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Abstract. In this paper, we develop a longevity swap de-risking strat-
egy to mitigate the impact of the longevity risk related to payments that
depend on how long individuals are going to live. In order to ensure the
development of an effi-cient capital market for longevity risk transfers,
the longevity hedge would allow longevity risk to be shared efficiently and
fairly between the parties. Our results show that the fixed proportional
risk premium that the counter-party requires to take on the longevity
risk varies by changing the mortality model adopted to represent the
evolution of the longevity of the population underlying the swap and
that, as the risk premium changes, the total transfer of longevity risk
may become inefficient.
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1 Introduction

Every institutions and governments making payments that depend on how long
individuals are going to live face with longevity risk, the risk that individuals
live longer than expected. In particular, defined benefit pension plan sponsors,
annuity providers are transferring these obligations, to life (re)insurers via insur-
ance and capital solutions such as for instance buy-outs, buy-ins, longevity swaps
and so on. Nevertheless, as the demand of longevity risk protection increases, the
key question consists in capability of (re)insurance sector to cope with future
increasing potential liabilities of the longevity risk exposures [2,4]. The inno-
vative capital market solutions for transferring longevity risk consist in several
forms of transactions, each differing in the types of risk transferred and the
categories of risk created, including longevity (or survivor) bonds, longevity (or
survivor) swaps, mortality (or q-)forward contracts, and reinsurance sidecars
(also called strategic reinsurance vehicles). According to Reinsurance Group of
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America (RGA) that has completed a new US$1.7 billion longevity risk transfer,
the longevity swap arrangement covers roughly 11,000 single premium immediate
annuity contracts, transferring the longevity related risk away [7].

A longevity swap transaction is based on periodic fixed payments that are
paid to the swap counterparty in exchange for periodic payments according to
the difference between the actual and expected pension or annuity mortality
experience. When the longevity swap is index-based, the mortality experience is
represented by the standardised population cohorts (“index swaps”). De-risking
strategies may broaden, above all by considering that risk-mitigation instruments
should not involve material basis risk that is intrinsically inherent the longevity
hedges. Furthermore, regulatory restrictions could affect the technical forms and
options. In particular, the feasibility of the de-risking transactions depends on
the appropriate cost of the longevity risk transfer. It is well-known that the
degree of the cost-efficient longevity de-risking solutions may stimulate or on
the contrary deflate the market’s potential for further risk transfers.

In this paper we investigate how the fixed proportional risk premium that
the counterparty requires to take on the longevity risk varies with the underlying
mortality model adopted. Our results show that, as the risk premium changes,
the transfer of longevity risk may become more or less effective.

The remainder of the paper is organized as follows: in Sect. 2 we introduce
de-risking strategy based on longevity swap and define the optimization prob-
lem that determines the optimal proportion of risk that should be transferred.
Section 3 shows the main findings of the numerical application. Section 4 con-
cludes.

2 De-risking Strategies

Let us consider a portfolio of annuitants all aged x0 at time 0, we define spx,t

the probability that an individual alive at time t, with age x, survives to age
x + s at year t + s, and sp̂x,t its conditional expected value. We denote with
v = 1

1+r the discount factor with the discount rate r (assumed to be deter-
ministic), we define the conditional expected value of a life annuity a(x(t)) as
E[a

k(x)
|px,t,2 px,t, . . . ] =

∑ω−x
s=1 vs

sp̂x,t.
Let A0 and V0 the asset and portfolio expected liabilities at time 0. The initial

unfunded liabilities, UL0, are given by V0 − A0. The insurer benefit liability at
time t, is the discounted expected value of future benefits, with Bt the total
annual benefit in t. Bt is given by the product of the individual benefit b, assumed
to be equal for all the insureds, and the number of survived annuitants, nt:
Bt = b · nt. Let Jt be the return on assets from t − 1 to t at j(t − 1, t) rate, this
implies that Jt = At−1 · j(t − 1, t). Denoting Kt the capital flow in the year t,
the portfolio asset is given by:

At = At−1 + Jt + Kt − Bt (1)

while ULt, without de-risking strategy, is obtained as follows:

ULt = Vt − At−1 − Jt + Bt (2)
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If a time t the unfolded liabilities are greater than zero, ULt > 0, the insurer
experiences a portfolio loss and vice versa. Furthermore, we assume that, the
insurer amortizes the unfunded liability year by year, that is Kt = ULt ∀t.

We consider a de-risking strategy for longevity risk based on a longevity swap
(LS), written on living policyholders, with hedge cost HCLS . We denote with
inLS

t = max(KLS
t , 0) and outLS

t = max(−KLS
t , 0) the present value of capital

inflows and capital outflows, subject to constant penalty factors ψ1 and ψ2, respec-
tively. ψ1 represents the opportunity cost due to the need to increase the capital
and ψ2 the opportunity cost due to lock capital that could have been invested
otherwise. The total portfolio cost TPCLS of the strategy is obtained as:

TPCLS = HCLS +
ω−x∑

t=1

inLS
t (1 + ψ1) − outLS

t (1 + ψ2)
(1 + r)t

(3)

Denoting with HCFLS
t the hedging cash flows from de-risking strategy, the

unfunded liabilities with the de-risking strategy is given by:

ULLS
t = Vt − At−1 − Jt + Bt − HCFLS

t (4)

We denote with TULLS the total unfunded liabilities over the entire time
horizon of the de-risking strategy based on LS:

TULLS =
ω−x∑

t=1

ULLS

(1 + r)t
(5)

We consider a plain vanilla longevity swap written on n0 survivors. We define the
fixed leg of longevity swap at time t as b · n0 ·t p̂x(1 + π) (where π is the fixed
proportional risk premium that the counterpart requires to take on longevity risk)
and the floating leg as b·n0 ·tpx. At each t, t = 1, 2, . . . the LS payoff is given by the
difference between the floating and the fixed leg: b·n0[tpx−tp̂x(1+π)], t = 1, 2, . . .

Setting π so that the swap value is zero at the inception date, the swap price is
null, HPLS = 0. With a hedging proportion of hLS , the hedging cost is equal to:

HCLS = −hLS · b · n0 · E
[

ω−x∑

t=1

d(0, t)[tpx −t p̂x(1 + π)]

]

(6)

Following [6], the optimal hedge level for the de-risking strategy can be obtained
solving an optimisation problem where the insurer aims to minimizing the Con-
ditional Value-at-Risk of the total unfunded liabilities at a fixed confidence level
α, CV aRα(TULLS), with respect to hLS , subjected to the constraint that the
total cost does not exceed a fixed amount c. This is formalised in the following
non-linear optimization problem:

min
hLS

CV aRα[TULLS ]

sub
E[TPCLS ] ≤ c
E[TULLS ] ≤ 0
0 ≤ hLS ≤ 1

(7)
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As already noted in [6], the de-risking strategy is strongly influenced by its
cost (which depends on π). On the other hand, the cost of the LS is also related
to the assumptions on the evolution of mortality in terms of both trend and
volatility. Therefore, the choice of the mortality model is a determining factor in
defining the optimal de-risking strategy. In the following numerical application,
we verify how the optimal risk transfer rate hLS is influenced by the choice
of the underlying mortality model, and how the existence of an information
asymmetry on mortality trends between protection seller (short position on LS)
and protection buyer (long position on LS) is crucial.

3 Numerical Application

We consider a portfolio of immediate temporary life annuities (with term
T = 20), written on a cohort of males all aged 65 at issue (t = 0) with
n0 = 10, 000. For sake of simplicity we assume b = 1, so Bt = nt. Expenses and
taxes are not considered in the valuation. The single premium, ΠX , is deter-
mined according to the Standard Deviation Principle (ΠX = E[X]+λ ·SD[X]).
We fix λ at 20%. We consider two different mortality models, the traditional
Lee-Carter model [5] (LCA in the following) and the Lee-Carter model includ-
ing a frailty factor proposed by [3] (denoted with ATFLCA). We estimate LCA
and ATFLCA models for English 50–90 aged male population. For LCA model,
we used data about death rates and exposures to risk only and we refer to the
Human Mortality Database. For ATFLCA model, we also used data relating to
the co-morbidity trend in the population, and we referred to the English Lon-
gitudinal Study on Ageing (ELSA) [1]. Performing 10,000 simulation, we obtain
the evolution of the ULt, the total unexpected losses, TUL, and the total port-
folio costs TPC, without hedging. We then introduce the optimization problems
setting a constraints for E[TPC]: the maximum level c for the expected total
cost related to strategy j is set in relation to its initial value (without hedging):
c = 0.5 · E[TPC]. The following assumption are adopted in the evaluations:

– the initial asset, A0, are equal to the total portfolio single premium;
– we assume a flat rate of return on asset (j(t − 1, t) = r = 0.02 ∀t);
– the penalty factors in the TPC are: ψ1 = ψ2 = 0.2.

Adopting a demographic technical basis determined through the LCA model
(see Table 1 columns 2 and 3), the initial portfolio liabilities are: V0 = 168, 102
while the total portfolio single premium, P , are: 168,810. The risk premium of
the longevity swap, π, is set at 0.421%. This value was determined consistently
with the standard deviation principle adopted for the determination of the single
premium. Without hedging the E[TUL] is negative, denoting an expected profit,
but the portfolio is characterized by a positive CV aR99.5%[TUL] (with an aver-
age of the losses beyond the V aR at 99.5% of 8,239.21. The penalties ψ1 and
ψ2 strongly reduce the profit, but E[TPC] is still negative. Results show that
the optimal strategy minimizing CV aR99.5%[TULLS] is obtained with LS share
equal to 46.6%. (partial risk transfer). When a hedging strategy is introduced,
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Table 1. Results with no hedging and swap strategies minimizing CV aRα[TULLS ]:
LCA scenario (second and third columns) and ATFLCA scenario (forth and fifth
columns). Results with swap strategy minimizing CV aRα(TULLS) in presence of
asymmetric information: ATFLCA scenario (sixth column).

LCA scenario ATFLCA scenario Asymm. inf.

No hedging Hedging No hedging Hedging Hedging

πLS 0.421% 1.580% 0.421%

hLS 0.0% 46.6% 0.0% 42.9% 100.0%

HCLS 0.00 325.76 0.00 1,122.84 697.29

E[TUL] –707.71 -381.95 –2,647.99 –1,525.15 –1,950.70

CV aR99.5%[TUL] 8,239.21 4,490.62 29,712.79 17,277.74 –1,183.74

E[TPC] –96.00 –48.00 –357.91 –178.96 –1,465.93

E[TUL] is increased (but still negative) while the CV aR99.5%[TUL] is almost
halved. The expected total cost (E[TPC]) is also increased, but still negative.

Adopting a demographic technical basis determined through the ATFLCA
model (see Table 1 columns 4 and 5), the initial portfolio liabilities are: V0 =
167, 595 while the total portfolio single premium, P , are: 170,242. Without
hedging the E[TUL] is negative, but the portfolio is characterized by a very
high CV aR99.5%[TUL], as a consequence of the high variability of the death
probability simulated with the ATFLCA model. As a consequence, the E[TPC]
is strongly increased even if still negative. Results show that the optimal
strategy minimizing CV aR99.5%[TULLS] is obtained with LS share equal to
42.9% (partial risk transfer). When a hedging strategy is introduced, E[TUL] is
increased (but still negative) but the CV aR99.5%[TUL] is drastically reduced.
The expected total cost (E[TPC]) is still negative but an half than in the absence
of LS.

The last case we consider is one in which the protection seller (short position
on LS) and the protection buyer (long position on LS) have different information
on the insured population (see Table 1 column 6), so that the former considers
appropriate to adopt the LCA model (and price the swap accordingly), while
the latter considers the ATFLCA model more appropriate and determines the
optimal de-risking strategy accordingly. Results show that the optimal strategy
minimizing CV aR99.5%[TUL] is obtained with LS share equal to 100% (total
risk transfer). E[TUL] is increased but still negative (implying a profit)) but the
CV aR99.5%[TUL] is totally reduced and becomes negative. The expected total
cost (E[TPC]) is more negative, which implies an improvement of the annuity
provider’s position.
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4 Conclusions

The aim of this paper is to analyse how de-risking strategies based on longevity
swaps are affected by their cost, expressed as a fixed proportional risk pre-
mium that the counterparty requires to assume longevity risk, with a focus on
the choice of the underlying mortality model. The mortality models considered
are the Lee-Carter model and its extension including a frailty factor (ATFLCA
model). Our results show that different mortality models imply a different risk
assessment of an annuity portfolio. If both counterparties of the longevity swap
assume the same mortality model, the cost of the de-risking strategy increases
with the portfolio’s riskiness and the optimal strategy for the annuity provider
(protection buyer) is to transfer only part of the longevity risk to the protec-
tion seller, with the share depending on the model adopted. If we assume that
the protection seller and the protection buyer have different information about
the insured population, so that the former considers it appropriate to adopt the
Lee-Carter model (and prices the swap accordingly) while the latter considers
the ATFLCA model more appropriate, de-risking is more effective and optimal
strategy is achieved through a total transfer of longevity risk.

References

1. Banks, J., et al.: English Longitudinal Study of Ageing: Waves 0-9, 1998-2019. [data
collection]. 37th Edition. UK Data Service. SN: 5050 (2021). https://doi.org/10.
5255/UKDA-SN-5050-24

2. Blake, D., Cairns, A.J.G., Dowd, K., Kessler, A.R.: Still living with mortality: the
longevity risk transfer market after one decade. Br. Actuar. J. 24(1), 1–80 (2019).
https://doi.org/10.1017/s1357321718000314

3. Carannante, M., D’Amato, V., Haberman, S., Menzietti, M.: Frailty-based lee carter
family of stochastic mortality models. Qual. Quant. (2023). https://doi.org/10.
1007/s11135-023-01786-6

4. Kessler, A.R.: New solutions to an age-old problem: innovative strategies for manag-
ing pension and longevity risk. N. Am. Actuar. J. 25(sup1), S7–S24 (2021). https://
doi.org/10.1080/10920277.2019.1672566

5. Lee, R.D., Carter, L.R.: Modeling and forecasting U.S. mortality. J. Am. Stat. Assoc.
87(419), 659–671 (1992)

6. Lin, Y., MacMinn, R.D., Tian, R.: De-risking defined benefit plans. Insur. Math.
Econ. 63, 52–65 (2015). https://doi.org/10.1016/j.insmatheco.2015.03.028

7. RGA in $1.7bn longevity swap & reinsurance with Western & Southern (2022).
http://www.artemis.bm

https://doi.org/10.5255/UKDA-SN-5050-24
https://doi.org/10.5255/UKDA-SN-5050-24
https://doi.org/10.1017/s1357321718000314
https://doi.org/10.1007/s11135-023-01786-6
https://doi.org/10.1007/s11135-023-01786-6
https://doi.org/10.1080/10920277.2019.1672566
https://doi.org/10.1080/10920277.2019.1672566
https://doi.org/10.1016/j.insmatheco.2015.03.028
http://www.artemis.bm

	The Cost of Longevity Risk Transfer by Capital Solution De-risking Strategy
	1 Introduction
	2 De-risking Strategies
	3 Numerical Application
	4 Conclusions
	References


