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Abstract. Within the efficient markets framework, discounted stock
prices are typically represented through Brownian martingales. The pri-
mary measure for evaluating risk is the volatility of log-returns, under
the assumption that higher variability indicates greater associated risk.
The theoretical foundation of this claim stems from the characterization
of the path regularity of price process through the Lévy characterization
theorem of Brownian motion. Since this explanation lacks a financial
interpretation when considering more realistic models, such as stochastic
volatility models, it is necessary to disentangle volatility and regularity.
Replacing volatility by the Hölder regularity provides insights into mar-
ket deviations from the equilibrium of the martingale model, and - within
the Fractional Stochastic Regularity Model - contributes to identify the
“fair” volatility aimed by the market.
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1 Introduction

This contribution underscores the crucial distinction between volatility and reg-
ularity for the purpose of characterizing risk in financial dynamics. Volatility
quantifies the extent to which data deviate from their mean value, while regular-
ity captures the manner in which data are dispersed. In the framework of paradig-
matic Efficient Market Hypothesis (EMH) and the consequent (Brownian) mar-
tingale model, the determination of “how ” data are dispersed is uniquely dictated
by the quadratic variation of the process. Nevertheless, challenges emerge when
questioning or relaxing this model, prompting the need for a distinct consider-
ation of volatility and regularity and advising against a blanket association of
volatility with risk. The introduction of memory, triggered by positive or negative
autocorrelation, influences the level of regularity in the sequence and introduces
a potential error in the assessment of financial risk based solely on volatility,
whose value may not be influenced by autocorrelation.
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The need to neatly distinguish between volatility and regularity also arises
from the tendency of literature to support the EMH based on the commonly
observed null value of the empirical autocorrelation function of log-returns, a
well-known stylized fact. However, a null empirical autocorrelation can also result
from a time-varying pointwise regularity of log-returns, a change which is not
necessarily detected by volatility. In addition to aiding in the formulation of
more realistic models of financial dynamics, the pointwise regularity - owing to
its direct connection with the martingale model benchmark - offers insights into
market mechanisms that are not captured by volatility alone.

2 Background and Model

Some notions are recalled here which will be combined to show how regularity
enhances the informational content of volatility.

Theorem 1. [Lévy’s Characterization Theorem] Given the filtered probability
space (Ω, F , {Ft}t≥0,P), let (Xt) be a local martingale with X0 = 0. Then, the
following are equivalent:

(a) {Xt} is standard Brownian motion on the underlying filtered probability space
(b) {Xt} is continuous and {X2

t − t} is a local martingale
(c) {Xt} has quadratic variation 〈X〉2,t = t.

The equivalence between the condition of local martingale of an Ft-Brownian
motion and its quadratic variation is fundamental to justify why, in the context
of efficient markets, volatility has traditionally served as a risk indicator: accord-
ing to the Efficient Market Hypothesis (EMH) [6], if the discounted price process
behaves as a martingale, then the only governing factor influencing its random-
ness is determined by the growth of its quadratic variation, proportional to the
time interval t. The absence of alternative possibilities makes the adoption of
volatility as a risk indicator a natural choice within this framework.

Pointwise Hölder Exponent. Given the continuous real-valued stochastic pro-
cess {Zt, t ≥ 0}, its path roughness at any fixed τ > 0 is usually measured
through the pointwise Hölder exponent at τ . This is defined as [2,3]:

αZ(τ) := sup{α ∈ [0, 1] : lim sup
r→0+

r−αOscZ(τ, r) < +∞} (1)

where, for all real number r > 0 small enough,

OscZ(τ, r) := sup{|Zt′ − Zt′′ | : (t′, t′′) ∈ [τ − r, τ + r]2}

is the oscillation of {Zt} on the circular neighbourhood of τ with radius r.
For specific classes of stochastic processes, such as Gaussian processes, the
zero-one law implies the existence of a non-random quantity aZ(t) for which
P(aZ(t) = αZ(t)) = 1 [2]. When {Zt} is a semimartingale (e.g. Brownian
motion), αZ = 1

2 . Deviations from 1
2 characterize non-Markovian processes
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(whose quintessential example is the well-known fractional Brownian motion,
fBm); processes with αZ ∈ (

1
2 , 1

)
exhibit excessively high smoothness, while

those with αZ ∈ (
0, 1

2

)
display insufficient smoothness to satisfy the martingale

property. Specifically, the quadratic variation of the process can be proven to be
zero if αZ > 1

2 , and infinite if αZ < 1
2 .

Multifractional Processes with Random Exponent. When the Hölder
exponent is allowed to change through time in a deterministic or stochastic
way, a class of stochastic process, named Multifractional Processes with Ran-
dom Exponent (MPRE), can be defined, subject to some technical constraints
[3,8]. A special case of the general MPRE process is

KH,C
t = C

∫ t

−∞

[
(t − s)Hs−1/2

+ − (−s)Hs−1/2
+

]
dBs, (2)

where C is a scale parameter, (x)+ = max(x, 0) and B is the Brownian motion.
By introducing a dependence on Hs in the integrand instead of Ht, the integral in
Eq. (2) can be formulated in the conventional Itô sense. [8] establish a rescaling
limit showing that, for each fixed t, as h → 0,

h−Ht

(
KH,C

t+hr − KH,C
t

)
=⇒ C

∫ r

−∞

[
(r − s)Ht−1/2

+ − (−s)Ht−1/2
+

]
dB̃s (3)

where B̃s is a Brownian motion independent of Ht. Equation (3), known as Local
Asymptotical Self-Similarity property (LASS), states that in the neighborhood
of any point t, KH

t behaves like a fBm with Hurst-Hölder exponent Ht.

(Rough) Fractional Stochastic Volatility Model (RFSV). Introduced by
[7] and based on the previous model defined by [5], the Rough Fractional Stochas-
tic Volatility (RFSV) model of the price process St reads as:

{
dSt = μtStdt + StσtdBt

σt = exp(Xt)
(4)

where μt is the drift term, Bt is a Brownian motion and Xt is a fractional
Ornstein-Uhlenbeck (fOU) process satisfying

dXt = α(m − Xt)dt + ρdBH
t , (5)

with m ∈ R, ρ and α positive parameters and with Bt and BH
t correlated in

general. [1] replace the stochastic process in the first line of Eq. (4) by an MPRE
driven by a Hölder exponent which follows a proper fOU process related to dXt

by a change of parameters. They show that the stochastic Hölder parameter of
the MPRE can replace the log-volatility in the second equation of model (4).
This sets up the Fractional Stochastic Regularity Model (FSR), defined as

{
St = KH,C

t

Ht = m′ + ρ′ ∫ t

−∞ e−α(t−s)dBH
s

(6)
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where St denotes the log-price of a stock or an index, Ht is the unique pathwise
solution of the fOU process of line 2 of (6). Denoting by n the length of the
sampled version of MPRE, m′ = − 1

log n ·m+ log C
log n and ρ′ = − 1

log n ·ρ. Thus, Eqs.
(4) and (6) state that a relation exists between volatility σt and regularity Ht

when the log-price is modelled by an MPRE and the log-volatility is modeled by
a fOU process. In this case, also the Hölder exponent follows a fOU process with
parameters which are linear transforms of those used to model the log-volatility.
This directly follows from Eq. (3), which entails (see [1]) (Table 1).

log σt,n = logC − Ht log n. (7)

Figure 1 exhibits the goodness of fit of relation (7) for six global financial indexes:
Dow Jones Industrial Average (DJI, USA), Nasdaq Composite (IXIC, USA),
Eurostoxx50 (SX5E, Europe), Footsie 100 (UKX, United Kingdom), Hang Seng
(HSI, Hong Kong) and Straits Times (STI, Singapore). Ht was estimated as in
[1,9].

Table 1. Data set and main statistics of the estimated Ht

DJI IXIC SX5E UKX HSI STI

Start date 1992-01-02 1971-02-05 2000-01-03 1984-01-03 1986-12-31 1987-12-28

End date 2021-12-28 2021-12-28 2021-12-31 2021-12-29 2021-12-29 2022-01-28

# Obs (n) 7,555 12,470 5,730 9,599 5,955 8,409

Mean 0.540 0.512 0.524 0.524 0.512 0.533

St. Dev. 0.0540 0.0549 0.0553 0.0464 0.0498 0.0536

Range 0.308–0.688 0.314–0.670 0.345–0.675 0.329–0.652 0.269–0.622 0.333–0.665

3 Meaning and Financial Interpretation of the
Relationship Between Volatility and Regularity

As discussed in the previous section, the Hölder regularity offers insight into
the extent to which the process diverges from the martingale property with the
baseline value Ht = 1/2. Substituting the Hölder exponent for the volatility
process is justified by this characterization and brings several advantages:

– Unlike volatility, the Hölder exponent is sensitive to autocorrelation irrespec-
tive of the scale parameter. Volatility fails to differentiate between data with
high or low correlation when appropriate scale parameters are applied, lead-
ing to instances where data with identical volatility levels may exhibit varying
degrees of correlation. This incongruity is problematic if volatility is intended
to assess financial risk. Conversely, the Hölder parameters of data with dif-
fering autocorrelations, are different irrespective of the scale.
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Fig. 1. Realized log volatility versus estimated Hölder exponents (one-day log-changes).
X-axis: estimated Hölder exponent; Y -axis: estimated log volatility (black dots), the-
oretical relation given by Eq. (7) (red line), 99% prediction bounds (dashed red lines).
Ht and realized volatility are estimated with a rolling window of 20 trading days.

– Volatility serves as a relative measure, indicating whether a market or asset
currently displays more or less variability compared to past periods. However,
it does not have the capacity to determine the “optimal” or “fair” level of
volatility, one that aligns with an efficient market. In contrast, the Hölder
parameter, ranging from 0 to 1, equals 1/2 only when the process aligns with
Brownian motion, a key aspect of the Efficient Market Hypothesis (EMH).

– As markets naturally gravitate towards the equilibrium state associated with
Ht = 1/2 following deviations, the distance |Ht − 1/2| becomes a significant
indicator for determining optimal buying or selling times. The dynamics of
Ht are expected to exhibit a fluctuating trend around the value 1/2, with the
rate of return to this equilibrium increasing as the deviation widens. Essen-
tially, this mechanism provides a stochastic formalization and a theoretically
grounded explanation for the commonly known trader adage “What goes up,
must come down.”

– When financial prices exhibit local behavior resembling a fBm (as seen in
processes like MPRE), the relationship between volatility and the Hölder
exponent can be expressed through Eq. (7). Consequently, using the Hölder
parameter instead of volatility does not result in any loss of information.

Table 2 provides a summary of the relationship between the Hölder exponent
and the martingale condition, offering a financial interpretation of this connec-
tion [4]. Unlike volatility, the Hölder exponent offers a comprehensive assessment
of market dynamics, addressing both the magnitude (how much) and character
(how) of price variability. It provides insights into the deviation from equilib-
rium, represented by the value Ht = 1/2, which acts as a benchmark for a
semi-martingale. The pointwise Hölder exponent serves as a descriptor of the
prevailing dynamics of the discounted price process at a specific moment, dis-
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tinguishing among a momentum market (linked to bullish phases or speculative
bubbles), a sideways market (indicative of directionless efficiency), and a reversal
market (resulting from rapid buy-and-sell activities, often following significant
price adjustments or periods of uncertainty).

Table 2. Financial interpretation of Ht

Ht Stochastic patterns Agents’ beliefs Market patterns

> 1
2 Persistence - Smooth

paths - 〈X〉2,t = 0

New information confirm
outstanding position

“Low” volatility - Momentum
Overconfidence - Underreaction

= 1
2 Independence -

Martingale - 〈X〉2,t = t

Information fully
incorporated by price

“Normal” volatility - Sideways
market - Efficiency

< 1
2 Mean-reversion - Rough

paths - 〈X〉2,t = ∞
New information disrupt
outstanding position

“High” volatility - Reversals -
Overreaction

This interpretation suggests that the apparently conflicting paradigms of
Rationality and Behavioral Finance can coalesce within a comprehensive frame-
work of bounded rationality, providing a more nuanced understanding of market
dynamics. Within this framework, the pointwise Hölder exponent explicitly iden-
tifies when rationality transitions to irrationality, a shift that volatility fails to
capture because of its insensitiveness to changes in the sign and intensity of
autocorrelation. In this sense, assuming the FSR model, the fair volatility is the
value corresponding to the value 1/2 of the Hölder exponent, via relation (7).
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