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Preface

This year marks the twentieth anniversary of the first edition of the International Con-
ference Mathematical and Statistical Methods for Actuarial Sciences and Finance. The
conference is now in its eleventh edition: International Conference MAF2024 – Math-
ematical and Statistical Methods for Actuarial Sciences and Finance.

This sequence of biennial conferences was initiated by theDepartment of Economics
and Statistics of the University of Salerno, Italy. The idea underlying this series of
scientific meeting is that collaboration and cross-pollination among mathematicians and
statisticians engaged in actuarial sciences, insurance, and finance could enhance research
in these fields. The effectiveness of this idea has been demonstrated by the widespread
participation in all editions, held at various locations including the University of Salerno,
Italy (2004, 2006, 2010, 2014, and 2022); Ca’ Foscari University of Venice, Italy (2008,
2012, and 2020); University Paris-Dauphine in Paris, France (2016); and University
Carlos III of Madrid, Madrid (2018). This effectiveness has also been demonstrated by
the attention that both the scientific community and the community of professionals have
consistently shown towards the volumes of peer-reviewed papers that have accompanied
all past editions of the MAF.

The current international conference MAF2024 took place in Le Havre, France, in
April 4–6, 2024. It was organized by the University of Le Havre Normandie, the ICN
Business School of Paris, France, and the Department of Economics of the University
Ca’ Foscari of Venice, Italy, with the collaboration of the Department of Economics and
Statistics of the University of Salerno, Italy.

This volume presents a compilation of peer-reviewed papers selected from the
submissions intended for presentation at MAF2024.

It covers a wide variety of subjects: actuarial models; artificial intelligence and
machine learning for finance; clustering of financial data; credit riskmethods andmodels;
derivatives; ESG finance; financial econometrics; FinTech and InsurTech; forecasting of
actuarial and financial phenomena; fundraising; life insurance; longevity; methods for
time series analysis; natural language processing for finance; optimization methods for
insurance and finance; pensions; probability in actuarial sciences and finance; real-world
case analyses; risk assessment and management; solvency analysis; sustainability; static
and dynamic portfolio management; and trading systems.

Of course, both MAF2024 and this volume would not have been possible without
the valuable collaboration of the members of the Scientific and Organizing Committees,
without the support of the sponsors, namely: the Italian Association for Mathematics
Applied to Social and Economic Sciences – AMASES, Italy; theDepartment of Economics
of theUniversityCa’ Foscari ofVenice, Italy; theDepartment of Economics and Statistics
of theUniversity of Salerno; andEgonon SA – Risk management and advisor, Appenzell,
Switzerland. Additionally, we extend our gratitude to some important partners, including
the Italian Statistical Society, and the Italian National Council of Actuaries.



vi Preface

MAF2024 was further enriched by the contributions of three distinguished plenary
session speakers: Stéphane Loisel of the National Conservatory of Arts and Crafts of
Paris, France; Marie Brière of AMUNDI in Paris, France; and Antonio Mele of the
University of Italian Switzerland of Lugano, Switzerland.

To all of them, our sincere thanks.
Finally, we are pleased to inform you that the Steering Committee is already working

on the next edition of MAF in 2026.
We look forward to seeing you!

February 2024 Marco Corazza
Florence Legros
Frédéric Gannon

Claudio Pizzi
Vincent Touzé
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Abstract. Humanity has observed remarkable improvements in life
expectancy at birth. These improvements imply a greater longevity risk in
the life insurance field, for pension systems and for the individuals involved
in retirement planning. Our work aims to give sense of how longevity evo-
lution reverberates into increasing costs for pension provision. We use the
Lee-Carter model and the Human Mortality Database (HMD) data of six
EU countries. We assess the dynamics of the price of a temporary life annu-
ity, issued in different calendar years. With respect to the past, in all the
countries under study, underwriting a life annuity is becoming progres-
sively more expensive, with similarities between countries especially in
relation to the cost of longevity risk protection for females.

Keywords: Life expectancy at birth · longevity risk · life annuities

1 Introduction

Population ageing is both a social achievement and a core problem because of its
important implications that relate, for instance, to pension provision and health
care supply (e.g., [3]). Indeed, it is well-established in the literature that higher
survival prospects imply challenges for public pension systems and private pen-
sion plans, with welfare effects determined by the higher longevity prospects for
female retirees (e.g., [1,10]) Not all countries have experienced the same pace
in longevity improvements. For instance, as stressed by [4], countries of Eastern
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Corazza et al. (Eds.): MAF 2024, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 1–6, 2024.
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Europe have witnessed a rapid increase in the proportion of older people, but
later than other European countries. Nevertheless, the issue of ageing popula-
tion has acquired cruciality in both low-mortality and high-mortality countries
[8]. Our study aims to assess how the phenomenon of ageing population, in its
different features for a range of European countries, has impacted on the cost
of annuitization, in a very simple insurance context. Indeed, we assume that the
single premium paid by the annuitant, namely the single amount to be paid at
the time of the annuity issue, reflects only the so-called financial-demographic
equivalence principle, without any additional charging or adjustment. By way
of an example, we focus of an immediate annuity, whose duration is 15 years,
issued on an annuitant aged 60. We determine the premium that the annuitant
would pay in different calendar years in the past, namely 1960, 1980, 2000, 2020,
and in the two future years 2030 and 2040. This procedure involves computing
the actuarial present value (APV) of the considered annuities and thus implies
making assumptions about how mortality is expected to evolve during the policy
duration, since annuity payouts are paid by the insurer upon the annuitant’s sur-
vival at each policy anniversary. We select 60 as the age for our annuitant based
on the average retirement age of males and females from 1958 to 2010 in the
countries under study. Our evidence reveals, for 15-year durations, differences
in the APV across calendar years, that give sense of the economic implications
of the evolving pace of longevity improvement. Such evidence persists even for
longer policy durations. We consistently use, throughout the analysis, the Lee-
Carter (LC) model [6], because of its simplicity and its wide use at statistical
offices to obtain mortality forecasts [2]. The increasing trend in longevity brings
with it the increase in the APV of the considered type of annuity. Within our
study, by observing the dynamics of such APVs over time, we gain insights into
the pace of longevity improvements at different stages of the considered time
horizon, for six different European countries, thus uncovering both commonali-
ties and distinct patterns. Our work thus gives sense of how longevity evolution
reverberates into increasing costs for pension provision, for countries character-
ized by different levels of mortality. The paper consists of the following sections:
Sect. 2 addresses the used data, the fitting and forecasting procedure of the Lee-
Carter model and its application to our case study addressing the computation
of the actuarial present values of temporary life annuities. Section 3 presents the
results. Section 4 concludes.

2 Data and Methodology

We use the available mortality data, relative to deaths and exposures to risk,
from the Human Mortality Database (HMD) [5] for six European countries:
Bulgaria, France, Italy, Slovakia, Spain, and Sweden. We choose some countries
of Western Europe and some of Eastern Europe to examine variations in survival
prospects, the rate of longevity improvement, and the evolution of APV values
over time between these two groups. We compute the actuarial present value
(APV) of temporary life annuity contracts, issued in different calendar years:
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1960, 1980, 2000, 2020, 2030 and 2040. We use the Lee-Carter model projections
of mortality rates to describe the expected mortality profile of annuitants aged
60 at the considered times of policy issue. In this respect, we calibrate the Lee-
Carter model to the 30 years of data preceding the issue time and project it
for the next 15 years. For the issue times 2030 and 2040, we only make use of
projected mortality trajectories. Using the same pricing procedure throughout
the consistent time horizon allows us to consistently catch the dynamics of the
underlying data and to coherently assess how much the cost of a temporary
annuity is changing over time, based on the same assumption about the law
governing mortality evolution. We use the StMoMo package [9] to implement the
fitting and the forecasting of the Lee-Carter model, whose predictor structure is
as follows [6]:

lnm(x,t) = αx + βxkt , (1)

where m(x,t) is the central death rate for a person aged x in the calendar year t
and kt is a period parameter describing the general level of mortality over time,
specifically it controls the rate at which mortality changes over time. We use
the methods from actuarial mathematics (see, e.g., [7]) to assess the actuarial
present value (APV) of a temporary immediate life annuity, which expires in
15 years, for individuals (males and females) aged 60 in 1960, 1980, 2000, 2020,
2030 or 2040. The actuarial present value (APV) of the annuity is obtained as
in Eq. 2:

π = b
15∑

k=1

vk
kp60,t , (2)

where π is the single premium paid by the annuitant to be determined, b refers to
the annual amount received by the annuitant (assumed equal to 1000), vk is the
discount factor, kp60,t is the probability that the annuitant aged 60 in calendar
year t survives age 60 + k We assume that the interest rate is constantly equal
to 2% since we are mainly interested in assessing the impact of the demographic
dynamics on the single premium π. Let t be the calendar year of the annuity
issue. The probability that a person aged 60 in t survives age 60 + k can be
expressed as follows:

kp60,t =
k−1∏

h=0

p60+h,t+h =
k−1∏

h=0

e−m60+h,t+h , (3)

where m60+h,t+h is a predicted value by the Lee Carter model, while p60+h,t+h

is the annual survival probability obtained from it.

3 Results

In Fig. 1, we display the actuarial present value of the temporary life annu-
ity described in Sect. 2, issued on a woman aged 60 in t=1960, 1980, 2000,
2020, 2030, 2040, under projected LC survival probabilities. For each consid-
ered country (Bulgaria, France, Italy, Slovakia, Spain, Sweden), we report, from
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the left to the right, the bars showing the amount of the APV for the con-
sidered calendar years displayed in ascending order. In Table 1, we report the
relative difference between APVs computed every 20 years starting from 1960,
when female annuitants are considered. In Fig. 2, we display the actuarial present
value of the temporary life annuity described in Sect. 2, issued on a man aged
60 in t = 1960, 1980, 2000, 2020, 2030, 2040, under projected LC survival prob-
abilities. In Table 2, we report the corresponding relative differences, as for the
female case. Even though gender is not a pricing factor in the insurance markets,
considering both the female and the male case allows us to assess the different
cost implied by differing survival prospects and thus to gain intuition about the
potential longevity risk management and welfare effects.

Fig. 1. Actuarial Present Value of Temporary Life Annuity issued on a female aged 60
in t= 1960, 1980, 2000, 2020, 2030, 2040 with projected LC survival probabilities.

Fig. 2. Actuarial Present Value of Temporary Life Annuity issued on a male aged 60
in t= 1960, 1980, 2000, 2020, 2030, 2040 with projected LC survival probabilities.

The considered type of life annuity is becoming progressively more expen-
sive, with high similarities between countries especially in relation to the cost
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of longevity risk protection for females. Since Bulgaria and Slovakia are char-
acterized by a higher mortality risk for both genders than the other countries
under study, a life annuity contract is historically less expensive. When look-
ing at the relative differences in the APV, shown in Tables 1 and 2, we obtain
evidence of the economic implications of the different pace of longevity improve-
ments under a gender and a cross-country perspective. Indeed, for females, the
highest increase in the survival prospects, and the corresponding increase in the
APV of a life annuity contract, has affected the 20-years span between 1960 and
1980 for France, Italy, Spain and Sweden. For males and for the same countries,
except for Spain, the largest increase has arisen later, between 1980 and 2000.
It is also interesting to notice that Bulgaria and Slovakia have experienced a
distinct pattern, also in terms of the APV change rates. For both counties, the
largest change has occurred between 2000 and 2020 for both genders, with a
remarkable increase for males in Slovakia. With respect to past, the change of
the APV between 2020 and 2040 is expected to occur at a lower rate than in the
past, with the changes for male annuitants having larger magnitudes compared
to female annuitants, and with Slovakia marking the highest increase for both
genders.

Table 1. Relative percent variation of the actuarial present value of a temporary life
annuity for females, between two consecutive (20-years apart) issue years.

ΔAPV Bulgaria France Italy Slovakia Spain Sweden

(APV1980-APV1960)/APV1960 3,79% 4,45% 3,51% 4,68% 5,56% 4,25%

(APV2000-APV1980)/APV1980 1,96% 2,10% 2,76% 0,36% 2,60% 1,17%

(APV2020-APV2000)/APV2000 4,05% 0,93% 2,02% 5,08% 1,59% 1,96%

(APV2040-APV2020)/APV2020 1,73% 0,76% 1,20% 2,05% 1,00% 1,21%

Table 2. Relative percent variation of the actuarial present value of a temporary life
annuity for males, between two consecutive (20-years apart) issue years.

ΔAPV Bulgaria France Italy Slovakia Spain Sweden

(APV1980–APV1960)/APV1960 1,59% 2,67% –1,38% 0,73% 3,90% –0,44%

(APV2000-APV1980)/APV1980 –1,69% 6,70% 8,26% –2,32% 3,51% 6,70%

(APV2020-APV2000)/APV2000 3,28% 4,46% 6,52% 11,88% 4,92% 4,99%

(APV2040-APV2020)/APV2020 1,54% 2,50% 2,66% 4,71% 2,39% 2,37%

4 Conclusions

Humanity has observed remarkable improvements in life expectancy at birth.
These improvements imply a greater longevity risk in the life insurance field,
for pension systems and for the individuals involved in retirement planning. Our
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work aims to give sense of how longevity evolution reverberates into increasing
costs for pension provision. We assess the dynamics of the price of a temporary
life annuity, issued in different calendar years, of six EU countries: Bulgaria,
France, Italy, Spain, Slovakia and Sweden. We use the Lee-Carter model to
obtain the survival projections needed to price the contract, over the different
time horizons of the policy duration under study. When looking at the relative
differences in the APV, we obtain evidence of the economic implications of the
different pace of longevity improvements under a gender and a cross-country
perspective. The considered type of life annuity is becoming progressively more
expensive, but at a different pace over the considered time horizon, for the two
genders and for the countries under study.
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Abstract. The existence of a pure and rational (time consistent) pref-
erence over the life cycle is problematic. We propose an ‘existential’ app-
roach to time preference where the subject only cares about his ‘future
selves’ insofar as his reasons for living today that involve those selves:
his time preference is inversely proportional to the robustness and scope
of his current life projects. The empirical measure of such a preference
involves building ordinal scores derived from a series of questions, mostly
concrete or relating to everyday life. We obtain overall stability of time
preference over the medium term, from 2007 to 2020 (until the first
Covid lockdown). The variations in this preference for the same individ-
ual panel member appear poorly explained by usual covariates, apart
from a negative effect of age and of getting married.

Keywords: Time preference · Life-cycle model · Savings · Subjective
rationality

1 Introduction: The Problem of a Pure and Rational
Time Preference

Time preference plays a role in many areas of the economic literature, including
savings and investment, economic growth, interest rate determination, labour
supply, health, addiction behaviour and the value placed on human life.

Yet, as emphasized by John Elster (1986, p. 138), the concept of a pure
and rational (time consistent) preference for the present “is always a problem”
when analysing an individual’s choices over his life-cycle, that is on a finite
horizon. Many eminent economists and philosophers (Jevons, Ramsey, Harrod,
Tobin, Rawls) consider such a preference to be a flaw in individual rationality
that can and should be eliminated. For the psycho-economic approach (Strotz
1956; Akerlof 1991; Laibson 1997), on the other hand, short-term impatience
is an intrinsic component of human action, but it reflects a limit to rationality
(behavioural biases) against which appropriate policies can protect people for
their own good.
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This problem of the existence of a pure and rational time preference over the
life cycle has been largely ignored in the recent economic literature which has
focused on the issue of the stability of this preference over time – particularly in
the face of major shocks such as the Great Recession or the Covid-19 pandemic
– without any empirical consensus finally emerging.

This paper draws heavily on Arrondel and Masson (2024) who focus on two
theoretical questions: What meaning should be attributed to a pure and ratio-
nal time preference over the life-cycle, and what dimensions of choice might it
represent? In what way would this preference be operational, and what original
and relevant predictions could it lead to?

To be more specific, consider the saver who follows a life-cycle model, with
C(t) consumption at age t in continuous time and end of life T. Assumed to be
time-additive, his or her utility function is written in a situation of certainty at
time s:

Us [C (s) ...C (T )] =
∫ T

t=s

α (t)u [t, C (t)] dt, α (t) ≥ 0, (1)

where the discount factor α(t) reflects the decreasing weight (from α(s) = 1)
given to the instantaneous utility flow u(t,.) due to the existence of a prefer-
ence for the present. The rate of depreciation of the future δ(t) is (minus) its
logarithmic derivative:

δ (t) = −α
′(t)

α (t)
≥ 0 ; α (t) = e− ∫ t

0 δ(t)dt = e−δt if δ (t) = δ (2)

A rational preference for the present corresponds to choices that are time consis-
tent, i.e. a system of preferences that is stable over time. The rate δ can depend
on age t, but not on the distance to the present (t − s), that will create a conflict
between the desires of the present self and the future self.

Short-term impatience, denoted here by β (corresponding to Laibson’s (1−
β)) is inherent in human behaviour, thus justifying a behavioural or psycho-
economic approach. It reflects the specific discounting of the immediate future
in relation to the present:

Ut (Ct, Ct+1, . . . , CT ) = ut (Ct) + (1 − β)
T−t∑
k=1

(1 + δ)−kut+k(Ct+k) (3)

with 0 ≤ β ≤ 1. β > 0 generates a time inconsistency of choices. It may reflect
deficit in imagination or foresight as well as lack of willpower and self-control. It
explains that a large proportion of long-term savings are in a contractual form,
with the money tied up in investment products not benefiting from any premium
in terms of risk or return but allowing the saver to self-discipline.

2 An Existential Approach to Time Preference

What about the meaning and usefulness of δ? In Arrondel and Masson (2024),
we follow an ‘existential’ approach to that time preference, assumed to expresses
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the very nature of human subjectivity in self-to-self relationships over the life
cycle. The subject only cares about his ‘future selves’ insofar as his reasons for
living today involve those selves: his time preference is inversely proportional
to the robustness and scope of his current life projects (marriage, job, housing,
children, preparing for retirement, etc.). The continuity of life, represented by
these coefficients α(t), is then no longer a given but a work-in-progress, which
depends on life choices made on the spectrum between two poles:

1. α(t) close to 0, which may reflect a disjointed existence with “no rhyme or
reason”, or also correspond to a “carefree” life (advocated by Parfit 1984);

2. α(t) close to 1, which represents a unified life, striving towards a goal, like
the edifying lives of the saints, devoted to a noble quest.

This preference α may reveal discontinuities at the nodes of existence – whether
desired or experienced, whether a twist of fate or the fulfilment of a current
project – that divide the life cycle into successive phases. This idiosyncratic pref-
erence extends the person’s intertemporal rationality. It thus generates rational
myopia, as in Becker and Murphy (1988) model of rational addiction, leading to
self-destructive behaviour. It also leads to temporary myopias at the nodes of
existence, producing ‘little deaths’ followed by ‘little rebirths’ (Parfit 1984).

3 Empirical Analysis: An Ordinal Time Preference Score

The empirical approach to this ‘existential’ concept of time preference must be
specific. It involves the measurement of composite individual scores based on a
wide range of questions, often concrete or relating to everyday life, rather than
the simple intertemporal trade-off questions usually used (or even Likert scales).
For our study, these ordinal scores were established on the basis of the five waves
of the PATER survey on household savings and investment (2007, 2009, 2011,
2014 and 2020), with large panel subsamples.

These composite ordinal scores are calculated from some thirty questions, the
same in each wave, covering a wide range of areas of life, such as consumption,
leisure, investments, work, family, health, retirement, etc. The questions were
of a different kind, often concrete or relating to everyday life: “Is retirement
something you are preparing for a long time in advance?”; “Are you concerned
about keeping fit?”; “Should you instil in your children the taste for saving?”;
“Are you prepared to deprive yourself of some of life’s pleasures in order to live
longer?”; “Do you approve of children who prioritise leisure activities over their
studies?”; “Are you someone who generally makes plans?”. Others concerned
reactions to fictional scenarios as well as lottery choices. The aim was to construct
a coherent relative indicator or ‘score’ of each respondent’s time preference. The
score is therefore intended to be an aggregate, qualitative and ordinal measure,
representative of the answers given by the respondent to a varied set of questions.
We code the responses into five categories: far-sighted: −2 or −1; neutral: 0;
short-sighted: +1 or +2. The individual’s score is finally the sum of the answers
given reduced to those items which, ex post, were found to form a statistically
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coherent whole (according to Cronbach’s alpha criterion). The underlying idea
is that no question is sufficient in itself, but that the score reveals a dimension
common to all the questions, ruling out polluting factors.

Carried out on the five waves of the PATER survey, this analysis leads to
highly heterogeneous measures of time preference between individuals and to
concordant cross-sectional results from one wave to the next: income, age, being
a woman, being married, having received an inheritance, and level of education
all have a negative effect of their own on time preference – conclusions that
largely match Fisher’s (1930) intuitions. Time preference δ also has a significant
negative effect (comparable from one wave to the next) on the amount of wealth
held. The probability of owning shares decreases with preference for the present
and risk aversion, while the probability of being home-owner decreases with
preference for the present but increases with risk aversion. Finally, foresight
strongly increases the holding of life insurance (annuities). All these effects are
compatible with the theoretical predictions.

Let us come to the issue of preference stability. We have shown (Arrondel
and Masson (2017) that, using this scoring method, attitudes to time remained
stable during the Great Recession, between 2007 and 2014: individuals’ psyches
did not change during the crisis. But here we are first interested in the potential
impact of the Covid crisis on time preference.

Figure 1 plots the distribution of the panel sample in 2014 and 2020 accord-
ing to time preference measured by the value of the score, with a higher score
indicating less foresight (stronger preference for the present).

The histograms for the two waves (2014 and 2020) are very similar for the
panelled sample. Kolmogorov-Smirnov tests verify that the distributions are not
significantly different. In addition, the correlation between the time preference
score measured in 2014 and that measured in 2020 is 0.60 for individuals surveyed
on both dates.

An econometric study allows us to test the temporal stability of the time
preference score at the individual level over the period 2007–2020. Panellised
individuals of a given age seem to have become less far-sighted after the Great
Recession (2009 wave), but this effect soon diminishes (from the 2011 wave) and
the score remains then stable (no Covid effect in 2020).

Consider finally individual variations of time preference for panellised indi-
viduals. Over short panel data, of two or three years (between 2007 and 2009,
2009 and 2011, 2011 and 2014, 2014 and 2020), those variations in the time
preference score δ appear to be poorly explained by the observed variables or
life cycle events: they appear to be akin to white noise or measurement errors,
as suggested by Meier and Sprenger (2015) on experimental data. On the other
hand, over longer panel periods, between 2007 and 2020 for example, age has
a significant and negative effect on the time preference score, as is the case in
cross-sections.

What about other demographic changes, such as marriage (or entry into
a stable union). Cross-sectional data show that married people have a lower
preference for the present. This negative correlation can be interpreted in two
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Fig. 1. Stability of time preference: panel data. Source: PATER Panel 2014 and 2020
(N = 1465)

ways: either that individuals with a lower δ rate are more inclined to marry
(spurious dependence), or that getting married broadens future prospects by
reducing δ (state dependence). Over longer durations, the second explanation
also holds. The PATER panel shows that individuals who married during the
period 2007–2020 (134 observations) had a time preference score that fell by 1
point on average (−4.7 vs. −3.7). In addition, the panel econometric study on
the overall sample (fixed effects model) confirms a significant negative ‘within
effect’ of unions on the time preference score.

4 Conclusions

This paper extends our previous analysis conducted over the period 2007–2014
on the four first waves of our PATER survey (see Arrondel and Masson 2024). A
fifth wave was carried out during the first Covid lockdown. The robust and con-
sistent results obtained from successive waves over the total period 2007–2020,
concerning the properties of the time preference score, its determinants and its
effects on the amount and composition of wealth, support our existential concep-
tion of time preference. The results reveal strong individual heterogeneity and
show that time preference is generally stable over a relatively long period, despite
a series of economic and health macro shocks. Scores for panellised individuals
are highly correlated from one wave to the next, and their variations are largely
unexplained, with the exception of age and entry into a stable partnership. Age
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effects on time preference are significantly negative, both cross-sectionally and
longitudinally, over sufficiently long panel periods.

In line with our existential conception of time preference, which also implies
that the latter may change at desired or unwanted nodes of existence, we find
that getting married significantly decreases the time preference score − an impor-
tant innovation of this paper. On the other hand, on our possibly still too small
samples, other life-cycle events (such as separation or divorce, childbirth or the
departure of children from home, retirement or widowhood) have no significant
effect, either cross-sectionally or longitudinally, on the time preference score.

At the same time, our scoring method relies on a statistical apparatus that is
relatively heavy. The time preference score is based on around thirty questions.
Simply retaining just a few of these would greatly weaken the previous results
and invalidate some of them. However, there is a way out, albeit an imperfect one.
Our results show that the time preference scale, that is a Likert scale between
0 and 10 (0 referring to “living from day to day” and 10 to a person “who
thinks about the future and is far-sighted”) is relatively well correlated with the
score and preserves many of its properties and results. It therefore represents an
acceptable alternative.
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Abstract. Longer lives are an achievement and the course of lifespan is
increasingly influenced by unobservable risk factors altering the chrono-
logical pace of aging. Then, the present work proposes an analytical
approach to characterizing the human lifetime based on the concept of
non-chronological age. Starting from a chronological Gompertz mortal-
ity framework, we define the non-chronological lifespan and characterize it
probabilistically by deriving, in closed-form, the expression for the cumula-
tive distribution function, the density of deaths function, and the mortality
hazard function. We find that non-chronological death probabilities are a
time-dependent affine transformation of chronological death probabilities
for a newborn, and we highlight the link between the non-chronological
lifetime and the concept of individual frailty in heterogeneous mortality
modelling. We believe that our proposal may contribute to shaping a new
perspective on longevity risk measurement and management.

Keywords: Lifetime · Non-chronological age · Longevity risk

1 Introduction

In the last decades, the human lifetime has grown continuously and human mor-
tality has shifted to later ages ([8]). Mortality deferment to older ages was empir-
ically observed by investigating changes in the main lifetime indicators expressed
in terms of chronological age, such as the mortality hazard, the survival function,
and density of deaths function (see, e.g., [6]). While living longer, aka longevity, is
a positive achievement at the individual level, it implies significant unexpected
financial exposures for governments, annuity providers, and pension schemes,
namely ‘longevity risk’ in actuarial jargon. Such a risk is a compelling matter of
interest for both actuaries and policymakers, and both demographic and actu-
arial literature have seen an enriched focus on mortality modelling and forecast-
ing. Nowadays, thanks to the advances in medical literature, new perspectives
on longevity analysis have emerged. In particular, the concept of biological age
has been introduced, that is the age indicating how old the human mechanism is
at both the cellular and molecular levels (see, e.g., [2]). The biological age may
be misaligned with respect to the corresponding chronological age, and it can
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reasonably be acknowledged as a key element in analyzing lifespan randomness.
The biological age is usually estimated by collecting data concerning physio-
logical and molecular variables for a large sample of people, and, by means of
multivariate regression, the sign of statistically-significant regression coefficients
leads an increment or a reduction of the corresponding chronological age. In
other words, due to biological (and observable) factors, person’s age does not
move necessarily in lockstep with calendar time and different individuals may age
at different rates. Within the actuarial literature, in [3] the meaning and the use
of the biological age is discussed for the first time. On one side, this paper high-
lights that the biological age is a relevant variable to predict the risk of chronic
disease and maximize the health span, but not necessarily lifespan; on the other,
the presence of a non-chronological age that differs from the chronological one
impacts lifespan and the longevity risk measurement. Therefore, by referring to
a Gompertz-Makeham mortality framework, [3] paves the way to construct a
non-chronological age, namely longevity-risk-adjusted global age (L-RaG), dif-
ferent from the biological one and in contrast to the chronological age. Another
type of non-chronological age is defined in [1], namely survivorship-age (s-age),
representing the age at which a proportion of a population is still alive. The
underlying idea is to invert the relation between the survival function and the
chronological age, so that the latter becomes a function of the survival levels. The
authors investigate the behaviour of the mortality hazard associated to the s-
age, showing that populations experience a similar risk of dying at specific levels
of survivorship. The L-RaG and the s-age are outcomes of distinct approaches,
but both state the existence of a non-chronological age determined without the
use of observable biological factors. Interestingly, we note that this is what hap-
pens when frailty-based models are employed in shaping heterogeneous mortality
due to unobservable risk factors (see, e.g., [4,5]). Indeed, some biological factors
entailing the gap between the non-chronological age and the chronological one
may be not directly observable or not available, and, in addition, they imply a
mortality differentiation among individuals. Then, the gap between these ages
may be assimilated into an unobserved frailty. To some extent, this is also the
intuition behind the work in [7]. The authors assume a Generalized Gompertz
distribution (GG) for the lifetime and prove that, under specific assumptions,
the frailty can be interpreted as a random correction to the chronological age.
However, their proposal allows the presence of negative chronological ages. In
the vein of the aforementioned literature, the present work aims to character-
ize the human lifetime taking into account a random shift of the chronological
age. More in detail, we primarly consider a chronological age-based mortality
by means of the Gompertz model, and then we assume a Generalized Gompertz
distribution for the random shift to probabilistically define a non-chronological
lifetime. As a result, we provide closed-form expressions for the cumulative dis-
tribution function, the density of death function and the mortality hazard under
the non-chronological lifetime. Our proposal contributes to the current litera-
ture by posing a new modelling perspective concerning the lifespan randomness
due to unobservable risk factors, avoiding the possibility of negative lifetimes.
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The paper is organized as follows. In Sect. 2 we recall the Gompertz mortality
framework and we introduce the GG distribution. In Sect. 3 we develop our pro-
posal by defining the non-chronological lifetime and providing analytical results
concerning its distribution. Finally, Sect. 4 poses conclusions.

2 Chronological Lifetime in a Gompertz Framework

Given a probability space (Ω,F ,P), let T0 be the random lifetime for a newborn.
We assume that T0 is Gompertz distributed, i.e., T0 ∼ G(h, g), with cumulative
distribution function (cdf) and probability density function (pdf) given, respec-
tively, by

FT0(x) = 1−exp
{

−h(egx − 1)
g

}
, fT0(x) = h egx exp

{
−h(egx − 1)

g

}
, (1)

and the following mortality hazard holds

μ(x) =
fT0(x)

1 − FT0(x)
= h egx. (2)

Equation (2) represents the well-known Gompertz mortality law (under the
chronological age), where the parameter h is the initial mortality level and the
parameter g indicates the rate of aging. For any chronological age x > 0, the
residual random lifetime is defined as Tx = T0 − x |T0 > x, and its cdf, pdf and
mortality hazard in the Gompertz mortality framework are, respectively,

FTx
(t) = 1 − exp

{
−h

g
egx(egt − 1)

}
, (3)

fTx
(t) = h eg(x+t) exp

{
−h

g
egx(egt − 1)

}
, (4)

μ(x + t) = h eg(x+t), (5)

where t > 0. As argued in [7], the lifetime distribution for a newborn can be
described in more general terms by adopting the GG distribution. In detail, we
say that T0 has the Generalized Gompertz distribution, GG(a, b, c), a ∈ R, b, c >
0, if the cdf and the pdf are, respectively, defined as

FT0(x) = 1−Γ
(
c, exp

(
x−a

b

))
Γ (c)

, fT0(x) =
1

bΓ (c)
exp

{
c

x − a

b
− exp

(
x − a

b

)}
,

(6)
where Γ (c, w) =

∫ +∞
w

uc−1e−udu is the upper incomplete Gamma function and
Γ (c) = Γ (c, 0) is the complete Gamma function. We notice that cdf and pdf in
(6) are defined for x ∈ R, that is negative lifetimes may occur with positive prob-
ability. Despite this drawback, in [7] it is shown that, when the lifetime under
a frailty-based model is considered, a GG-frailty defines a random age correc-
tion to the chronological lifetime. In the next section, we propose chronological
lifetime shifting by using the GG distribution and avoiding negative lifetimes.
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3 Shifting the Chronological Lifetime

Let us introduce the non-chronological lifetime T̃ . We assume that for a newborn
T̃0 = T0 almost surely, while the residual lifetime can be defined according to
the passage of age in a non-chronological manner:

T̃x = T0 − (x + Δ) |T0 > x, (7)

where (x + Δ) is a non-chronological age, being Δ a random shift in width and
sign, and with T0 and Δ stochastically independent. The cdf of (7) is defined in
the following Proposition 1.

Proposition 1. Let the non-chronological lifetime T̃x be defined as in (7), and
assume that Δ ∼ GG(0, b, c), with b, c > 0 and cdf given by

FΔ(δ) = 1 −
Γ

(
c, e

δ
b

)
Γ (c)

, δ ∈ R. (8)

Then, if the chronological lifetime has Gompertz distribution, i.e. T0 ∼
G(h, g), h, g > 0, the cdf of the non-chronological lifetime is

F
˜Tx

(t) = B(t) + A(t)FT0(x + t), t > 0, (9)

where FT0(x + t) = 1 − exp
{

−h
g (eg(x+t) − 1)

}
, and

A(t) =
g

c
gh −1 b

c
g −1 h

c(h−1)
hg (1 + hb)− c

g Γ
(

c
b , e

−gt
(

1+hb
gb

))
(1 − FT0(x))Γ (c)

, (10)

B(t) =
1

1 − FT0(x)
−

Γ
(
c, e− t

b

)
Γ (c)

(
2

1 − FT0(x)
− 1

)
− A(t). (11)

Proof. Since T̃x = T0 − (x + Δ) |T0 > x, then the cdf of the non-chronological
lifetime is determined by computing

F
˜Tx

(t) = P (T0 ≤ x + Δ + t |T0 > x)

=
1

1 − FT0(x)

∫ +∞

−t

P (x < T0 ≤ x + δ + t) dFΔ(δ)

=
1

1 − FT0(x)

{∫ +∞

−t

FT0(x + δ + t) dFΔ(δ) − FT0(x)(1 − FΔ(−t))
}

.

(12)
By assuming that T0 ∼ G(h, g), with h, g > 0, the expression of FT0(x) is the

cdf in (1), while the cdf’s expression of Δ is given by (8). Then, by substituting
in (12), we get

F
˜Tx

(t) = exp
{

h

g
(egx − 1)

}
− Γ (c, e− t

b )
Γ (c)

(
2 exp

{
h

g
(egx − 1)

}
− 1

)

−
Γ

(
c
b , e

−gt
(

1+hb
gb

))
bgΓ (c)

( g

h

) c
gh

(
1 + hb

hb

)− c
b

exp
{

−h

g
egx(egt − 1)

}
.

(13)
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Due to (1) and (3), it holds that:

exp
{

h

g
(egx − 1)

}
=

1
1 − FT0(x)

, exp
{

−h

g
egx(egt − 1)

}
=

1 − FT0(x + t)
1 − FT0(x)

.

(14)

By substituting (14) in (13), and rearranging the terms, the expressions (9)-
(11) follow, completing the proof. ��

From Proposition 1, we highlight the following considerations:

• Firstly, (9) provides the probability of death at the non-chronological age
ξ := x + Δ, namely tq̃ξ by exploiting the actuarial notation, and it differs
from the corresponding probability of death at the chronological age x, i.e.
tqx. The latter can written as

tqx = B + A x+tq0, (15)

where x+tq0 is the probability of death by the chronological age (x + t) for
a newborn, A = 1

1−FT0 (x)
, and B = − FT0 (x)

1−FT0 (x)
. Looking at (9) and (15), we

observe that both the chronological and the non-chronological probabilities of
death are affine functions of the probability x+tq0. The coefficients of the tqx’s
affine transformation are time-invariant, while they become time-dependent
(and more complex) when the probability tq̃ξ is computed. To some extent,
while the chronological probabilities of death are defined in a static way, the
non-chronological probabilities stem from a time-dependent adjustment of
x+tq0;

• The Generalized Gompertz distribution assumption for Δ can be related to
the frailty coefficient characterizing the frailty-based mortality models. In
particular, a Gamma distribution is usually adopted for the frailty coefficient
which is applied, in a multiplicative way, to the population mortality hazard
(see, e.g., [4,5]). Then, for all the Gamma realizations in the interval (0, 1)
the individual mortality hazard is lower than that of the population (lower
individual frailty), and the opposite case occurs for realizations in (1,+∞)
(higher individual frailty). For the purposes of our proposal, we highlight
that the Gamma and Generalized Gompertz distributions are connected. For
instance, Δ = b ln(Y ) ∼ GG(0, b, c), with b > 0, if Y ∼ Gamma(c, 1), c > 0.
In other words, our proposal supposes a non-chronological lifetime obtained
as a frailty-based shift of the chronological lifetime. Then, for every realiza-
tion y ∈ (0, 1) we attain negative outcomes for Δ, implying a reduction of
the chronological age and an increment of the lifetime (i.e. lower frailty);
conversely, for every realization y ∈ (1,+∞), we have positive values for Δ,
a consequent growth of the chronological age and a shortened lifetime (i.e.
greater frailty).

Moreover, by differentiating (9), the pdf of the non-chronological lifetime is

f
˜Tx(t)

=
d

dt
F

˜Tx(t)
= C(t) + A(t)fT0(x + t), (16)
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where fT0(x + t) is defined in (1) (with x replaced by x + t), and

C(t) = B′(t) + A′(t)FT0 (x + t), (17)

B′(t) =
exp

{
−e− t

b − tc

b

} (
1− 2

1− FT0 (x)

)

bΓ (c)
− A′(t), (18)

A′(t) =
exp

{
− e−gt(1 + bh) + g2tc

bg

}
1

1− FT0 (x)

(
1 + bh

b

) c(g−b)
bg

g
c(b−gh)

ghb h
c(h−1)

gh

bΓ (c)
. (19)

Finally, the non-chronological mortality hazard can be computed as

μ̃(x + t) =
f

˜Tx(t)

1 − F
˜Tx(t)

.

4 Conclusion

In this work, we have proposed an analytical approach to define a non-
chronological lifetime and investigated its main probabilistic features. We have
found that non-chronological death probabilities are a time-dependent affine
transformation of chronological death probabilities for a newborn. In addition,
we have highlighted how the shift between the non-chronological and chrono-
logical lifetimes and the concept of individual frailty in heterogeneous mortality
models may be related.
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Abstract. This paper deals with the estimate of surrender rate with
explanatory variables by a Generalized Linear Model for Location, Scale,
and Shape (GAMLSS) where the response variable is assumed Beta Bino-
mial. In actuarial practice and literature, the Binomial Generalized Lin-
ear Model is frequently used to get an estimate of surrender rates per
policy count conditional to policy and policyholder features. We suggest
a regressive model based on a Beta Binomial assumption of the response
variable. Beta Binomial is a discrete random variable that differs from
binomial because the probability of success at each of n trials is not
fixed, but beta distributed. Beta Binomial random variable is fit to model
binomial phenomena where the probability of success is not fixed but is
inferred from data. Beta Binomial random variable has greater variance
and skewness than a Binomial random variable with the same mean,
because in the Beta Binomial approach the uncertainty about what the
true probability is, is taken into account. This uncertainty makes val-
ues far from mean more plausible. Finally, the Beta Binomial does not
belong to the exponential family. For this reason, a GAMLSS model is
used to get parameter estimates.

Keywords: Surrender · Lapse · GAMLSS · Beta Binomial

1 Introduction

Surrender is one of the most important expressions of policyholder behavior; the
latter has a big influence on asset liability management for most life insurance
companies. The goal of this paper is the estimate of surrender rate with explana-
tory variables by a Beta Binomial Generalized Linear Model for Location, Scale,
and Shape (BBGAMLSS). In actuarial practice and literature, the Binomial
Generalized Linear Model (BGLM) is used to estimate surrender rates. In [3],
BGLM is used to get an estimate of the surrender rate considering economic
variables using the logit function and the complementary log-log function. Some
recent studies, (see [1]) introduce a two-part model based on the simultaneous
use of a BGLM and a Beta Regression (see [2]) in order to get an estimate of
the expected cash flows due to lapses considering both the surrender and with-
drawal component. Our idea is to get an estimate of surrender probability per

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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policy count introducing an assumption of Beta Binomial (BB) distribution on
the response variable to consider the uncertainty on the surrender probability;
in this context, the probability of success can’t be assumed fixed as in the toin
coss or roll the dice experiment.

BB is a more dispersed (and more asymmetric) random variable (r.v.) than
a binomial. This means that when data shows a very dispersed distribution the
probability of success could be not fixed but varies around a value. In this case,
a BB model could appear more appropriate for the estimate of the probability
of success.

Finally, in order to get an estimate of surrender rates conditional to poli-
cyholder or policy features we introduce a regression model; in particular, we
select a GAMLSS (see [4]) to model a BB response variable. GAMLSS (unlike
the GLM) works even if the response variable does not belong to the exponential
family.

2 Beta Binomial Random Variable

Let Y ∼ BB(a, b, n) be a BB r.v., with parameters a, b ≥ 0, and n is a positive
integer. A BB r.v. Y with parameters a, b and n has probability mass function:

fY (y) =
Γ (y + a) · Γ (n − y + b) · Γ (a + b) · Γ (n + 2)

(n + 1) · Γ (a + b + n) · Γ (a) · Γ (b) · Γ (y + 1) · Γ (n − y + 1)
(1)

A BB r.v. is a binomial r.v. where the probability of success p is beta distributed
with parameters a and b. We can formalize p ∼ Beta(a, b), then E[p] = a

a+b .
Using the notation a

a+b = p, we can write the mean variance and skewness
(γ) of the BB random variable in a form that is compliant with the binomial
case.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E[Y ] = n a
a+b = np

σ2(Y ) = n ab
(a+b)2

a+b+n
a+b+1 = np(1 − p)a+b+n

a+b+1

γ(Y ) = (a+b+2n)(b−a)
a+b+2

√
1+a+b

nab(a+b+n) =
1−2p√
np(1−p)

a+b+2n
a+b+2

√
1+a+b
a+b+n

(2)

As one can see, for n ≥ 1 the BB r.v. has always greater variance and skewness
than a binomial r.v. with the same mean.

Assuming a BB distribution for the response variable, our goal is to estimate
the number of surrenders (and therefore the probability of surrender) conditional
on some covariates.

Surrender cannot be defined as a phenomenon where the probability of the
event is fixed for each risk class but reasonably varies around a value. In other
words, each policyholder in a single risk class has a different behavior because the
regressive model cannot consider all the variables that influence the propensity
to surrender.
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In order to make a BB regression model, we need to specify the dependency
structure between the response variables and the set of covariates xh. GLM is
impossible to use because BB does not belong to the exponential family. Hence,
we apply a GAMLSS.

3 A Brief Introduction to GAMLSS

A GAMLSS model assumes a sample of I observations yi, i = 1, . . . , I from a
random variable Yi, with probability density function f

(
yi|θi

)
, conditional on

θi = (θ1,i, θ2,i, θ3,i, θ4,i) = (μi, σi, νi, τi) a vector of four distribution parameters.
The parameters are in a regressive relationship with the explanatory variables.
Let (μi, σi, νi, τi) be the distribution parameters.

μi is the location parameter, σi is the scale parameter and the two remaining
give contributions to define skewness and kurtosis, although the model can be
generalized to more (or less) than four distribution parameters.

Let yT = (y1, . . . , yI) be the I length vector of the response variable. Also
for k = 1, 2, 3, 4, let gk(.) be known monotonic link functions relating the distri-
bution parameters to explanatory variables by:

gk (θk) = ηk = Xkβk +
Jk∑

j=1

Zjkγjk, with k = 1, 2, 3, 4. (3)

where μ, σ, ν, τ and ηk are vectors of length I, βT
k = (β1k, β2k, . . . , βmkk) is a

parameter vector of length mk, Xk is a fixed known design matrix of order I×mk,
Zjk is a fixed known I × qjk design matrix and γjk is a qjx dimensional random
variable which is assumed to be distributed as γjk ∼ Nqjk

(
0, G−1

jk

)
, where G−1

jk

is the (generalized) inverse of a qjk × q′
jk symmetric matrix Gjk = Gjk (xλjk),

which may depend on a vector of hyperparameters λjk.
Equation (3) introduces a general definition of GAMLSS without assuming

a specific distribution for the response variable.
In this paper, we assume Y ∼ BB(a, b, n). BB is compliant with GAMLSS

structure, then it is possible to express a and b as a function of μ and σ by the
following parametrization:

a =
μ

σ
; b =

1 − μ

σ
(4)

4 Some Numerical Results

We set our model on a database from an Italian life insurance company between
the years 2009 and 2013. We consider Gender (G) and class of policy duration
(CPD) in years as our covariates. In Table 1, we report for each year the observed
number of surrenders and number of policies for G, CPD, and for each year of
our sample. CPD variable has 5 levels: < 7;[7, 11);[11, 15);[15, 17);≥ 17.
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Table 1. Observed number of surrenders by G, CPD and year

G CPD 2009 2010 2011 2012 2013 Total
Surrenders Policies Surrenders Policies Surrenders Policies Surrenders Policies Surrenders Policies Surrenders Policies Surrender rate

F < 7 503 3,792 454 2,402 316 1,697 774 3,420 1,229 5,624 3,276 16,935 19.34%
F [7,11) 116 2,435 116 2,736 143 1,710 302 2,011 245 1,881 922 10,773 8.56%
F [11,15) 0 0 44 954 76 2,229 81 2,085 118 2,005 319 7,273 4.39%
F [15,17) 0 0 0 0 4 37 12 111 6 85 22 233 9.44%
F ≥ 17 0 0 0 0 0 0 0 0 4 30 4 30 13.33%
M < 7 443 3,720 463 2,483 275 1,726 618 3,251 1,020 5,507 2,819 16,687 16.89%
M [7,11) 110 2,475 99 2,615 116 1,751 321 2,087 196 1,950 842 10,878 7.74%
M [11,15) 0 0 42 1,043 88 2,251 83 2,117 102 2,063 315 7,474 4.21%
M [15,17) 0 0 0 0 2 47 9 117 3 83 14 247 5.67%
M ≥ 17 0 0 0 0 0 0 0 0 0 39 0 39 0.00%
Total 1,172 12,422 1,218 12,233 1,020 11,448 2,200 15,199 2,923 19,267 8,533 70,569 12.09%

Table 2. BGLM estimates compared with observed means and standard deviations

G CPD Estimated
mean

Observed
mean

Estimated
standard deviation

Observed standard
deviation

F < 7 650.23 655.20 22.92 323.13

F [7,11) 187.31 184.40 13.08 75.60

F [11,15) 66.94 63.80 7.99 39.61

F [15,17) 3.74 4.40 1.85 4.45

F ≥ 17 0.37 0.80 0.59 1.60

M < 7 568.77 563.80 21.72 252.67

M [7,11) 165.49 168.40 12.37 83.69

M [11,15) 59.86 63.00 7.58 37.30

M [15,17) 3.46 2.80 1.79 3.31

M ≥ 17 0.43 0.00 0.63 0.00

Females show a mildly greater propensity to surrender. In order to get an
estimate of the number of surrenders, the parameter estimate is made by a
BGLM and a BBGAMLSS.
In Table 2 we report the means and the standard deviations of the number of
surrenders estimated by BGLM, making a comparison with the observed values.

As one can see, the expected values are very close, but BGLM strongly under-
estimates the standard deviations. Data show very large dispersion; the latter
is due to a probability of success that varies around a value and is not fixed
as in the binomial case. This additional uncertainty could be better modeled
assuming a BB distribution.

Hence, we get a parameter estimate of a BBGAMLSS model, where random
effects are not considered. Furthermore, we choose a logit function as a link for
μ and a logarithmic one for σ, in order to get a value included in the interval
(0, 1) for μ and a positive value for σ.

In Table 3 we report the means and the standard deviations of the number of
surrenders estimated by BBGAMLSS, making a comparison with the observed
values.



An Application of Beta Binomial GAMLSS 23

Table 3. BBGAMLSS estimates compared with observed means and standard devia-
tions

G CPD Estimated
mean

Observed
mean

Estimated
standard deviation

Observed standard
deviation

F < 7 637.75 655.20 114.10 323.13

F [7,11) 195.22 184.40 99.22 75.60

F [11,15) 66.65 63.80 12.32 39.61

F [15,17) 3.57 4.40 1.86 4.45

F ≥ 17 0.38 0.80 0.75 1.60

M < 7 567.36 563.80 97.60 252.67

M [7,11) 175.91 168.40 85.86 83.69

M [11,15) 60.80 63.00 11.20 37.30

M [15,17) 3.38 2.80 1.80 3.31

M ≥ 17 0.44 0.00 0.83 0.00

Observing Table 2 and Table 3, it is worth noting that even though the two
models provide very close estimates of the conditional means, the standard devi-
ations of the conditional distributions are very different.

The BBGAMLSS estimates are closer to observed standard deviations than
the BGLM case.

Fig. 1. Standard deviations for 4 risk classes. Binomial and BB comparison
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Finally, we analyze the conditional predicted standard deviations in binomial
and BB cases. In Fig. 1, the standard deviations of the two random variables
by varying n are reported for 4 risk classes; the risk classes are obtained by
combining levels of G and levels < 7 and [7, 11] of CPD. As one can see, the
standard deviation increases as n increases in each case and is always greater in
the BB case (continuous line) than binomial case (dotted line). The difference is
larger as n increases. This is in line with the BB variance formula in Eq. (2).
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Abstract. In actuarial analysis, it is very useful to analyze the behavior
of an interval-bounded random variable, as a percentage, a proportion,
or a fraction, conditioned to other explanatory variables. For this kind
of variables, considering the presence of bounds, in general in (0,1), the
estimate of the conditional mean and/or conditional quantiles is more
trivial than other continuous or discrete variables. This work aims to
show the application of a copula-based regression model on the study
of the percentage lapsed in partially lapsed life policies, demonstrating
how this approach can be an effective and powerful tool compared to an
alternative standard regression models like Beta Regression.

Keywords: Copula Regression · Copula Quantile Regression · Beta
Regression · Pair Copula Construction · Lapse

1 Introduction

The analysis of continuous response variables limited to intervals of finite length
is relevant in a wide variety of disciplines to study percentages, proportions, or
fractions. Some of the regression approaches for the open interval in (0, 1) are
described in Kieschnick & McCullough [7]. An application in the actuarial field
of Beta Regression (Ferrari & Cribari Nieto [6]) extended to allow the closed
interval is provided by Baione et al. [3]. This work aims to show how a copula-
based regression approach can be an alternative tool to support the user in the
study of bounded variables.

Starting from the famous Sklar’s theorem (Sklar [10]), statistical copulas have
played a central role in the analysis of the dependence structure in multiple con-
texts. One of the key qualities of this approach is the parting of the estimate
of marginal distributions from the estimate of the dependence structure. Hence,
in a regression context, copulas can provide a valid extension for the study of
bounded variables to those already existing in the literature. Inevitably copula
regression (CR) and Quantile Copula Regression (CQR) also have their draw-
backs - such as the high number of parameters or difficult interpretation of the
results particularly in the case of categorical variables. However, CR and CQR
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have the advantage of carrying out the analysis of the central value as well as
the non-symmetric prediction intervals by estimating the parameters only once,
among others.

Before observing the methodological aspects, it is underlined that although
it is possible to proceed using n-dimensional copulas (n-copulas) in the case of
both discrete and continuous variables - as can be observed in Ahn et al. [2] - in
the present work we used the Pair Copula Construction (PCC) which allows you
to increase the flexibility of the model using bivariate copulas. For an extensive
and exhaustive reference in PCC, CR and CQR readers can refer to Czado [4].

2 Methodological Approach

The PCC approach consists of decomposing the multivariate probability density
function (pdf) or probability mass function (pmf), in the discrete case, into
the marginal pdf/pmf of the variables and the dependence structure defined by
bivariate copulas. This approach allows two main advantages linked to bivariate
copulas: the wide range of choices for the bivariate distribution and the flexibility
of being able to use different copulas for each pair of variables.

An overview of PCC in the continuous and discrete case is shown in Pana-
giotelis et al. [8], in this analysis the class of Drawable-Vines or, more commonly,
D-Vines (Aas et al. [1]) is used. The D-Vine with n+1 variables is made up of a
sequence of n trees, in which each node is connected to two edges, except the first
and last which are connected to a single edge, furthermore each edge describes a
pair-copula density (conditional or not on a subset of the other variables). With
this choice, the number of possible D-Vines is (n+1)!

2 , as it depends exclusively
on the initial ordering.

In order to introduce the regression approach with copulas, let a response
variable Y and a set of explanatory variables Xi, i = 1, . . . , n be defined. Apply-
ing the probability integral transform we obtain the respective values in the unit
interval F−1

Y (Y ) = V dependent variable and the set F−1
Xi

(Xi) = Ui, i = 1, . . . , n
of n explanatory variables. In the presence of both discrete and/or continuous
variables, “joined” in pairs by a bivariate copula function C, the joint density
of two variables (e.g. Ui and Uj) depends on their nature and similarly occurs
for the conditional distribution. To define C it is necessary to explain the h-
functions, which correspond to the conditional distributions of the marginals. If
both Xi (Ui) and Xj (Uj) are continuous they are defined as

hi|j(ui|uj) =
∂C(ui, uj)

∂uj
. (1)

Indeed, when we consider two discrete variables, defining ui1 , uj1 , ui2 , uj2 ∈ [0, 1]
with ui1 > ui2 and uj1 > uj2 we have:

⎧
⎨

⎩

ĥi|j(ui|uj1 , uj2) = Ci,j(ui,uj1 )−Ci,j(ui,uj2 )

uj1−uj2

ĥj|i(uj |ui1 , ui2) =
Cij

(ui1 ,uj)−Ci,j(ui2 ,uj)

ui1−ui2
.

(2)
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For what concerns statistical regression, Schallhorn et al. [9] shows how to derive
the conditional distribution functions iteratively. If we model the joint distribu-
tion of (V,U) by a D-Vine, with order V,Ul1 , . . . , Uln with (l1, . . . , ln)′ being a
permutation of (1, . . . , n), then we get:

CV |U (v|u) ={
hV |Uln ;U−ln

(CV |U−ln
(v|u−ln)|CUln |U−ln

(uln |u−ln))
ĥV |Uln ;U−ln

(CV |U−ln
(v|u−ln)|CUln |U−ln

(uln |u−ln), CUln |U−ln
(u−

ln
|u−ln))

(3)
with u−

li
= FXli

(x−
li

) = lima→xli
FXli

(a).

In order to use copula regression in the PCC approach it is possible to extend
the analysis presented in Sungur [12].

The CR function of V with respect to U is defined by the following Stieltjes
integral

EC [V |U ] =
∫ 1

0

vdCV |U (v|u) (4)

Therefore, it is possible to obtain the CR function of Y with respect to the
other variables

E[Y |X] = F−1
Y (EC [V |U ]) (5)

with FY which corresponds to the distribution function of Y .
Without estimating further parameters, following Schallhorn et al. [9], if we

want to observe the conditional quantile of Y with respect to the other n variables

Qα[Y |X] = qα(x) = F−1
Y |X1,...,Xn

(α|x) = F−1
Y (C−1

V |U (α|u)) (6)

where α ∈ (0, 1) corresponds to the probability level of the quantile.
In the continuous case, it is obvious that the term C−1

V |U (α|u) is obtained by
inverting the h-functions in (1), whereas in the discrete case we need to define
the value β ∈ [0, 1] such that:

C−1
V |U (α|u) = arg min

CV |U (β|u)≥α

(CV |U (β|u) − α) (7)

It is very important to note that in Eq. (6) the marginal distribution of the
dependent variable plays a predominant role in the estimation of the conditional
quantile.

3 Numerical Application

In the following application, we consider a portfolio of � = 1, 625 (partially)
lapsed life insurance policies. The response variable is the percentage of the
reserve lapsed by the policyholder in a year (Lapse%). Whereas we consider six
explanatory variables, both continuous, discrete and categorical, listed below:
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– RA - the amount of mathematical reserve at the beginning of the year (con-
tinuous);

– LD - the lapse duration (discrete): the observations of this variable are in the
range between 3 years and 18 years from contract issue;

– PA - the amount of premiums paid (ordered categorical): we consider four
classes as follows, less than e10,000 (class 1), between e10,000 and e20,000
(class 2), between e20,000 and e30,000 (class 3), over e30,000 (class 4);

– PT - the type of premium payment (categorical): single premium (S) or peri-
odic premium (P);

– Gender - policyholder gender (categorical): Male (M), Female (F);
– Age - policyholder age at inception (discrete): between 14 years and 85 years.

The categorical variables have been pre-processed so that they can be managed
as discrete variables. For binary responses this pre-processing does not influence
the outcomes.

To carry out the analysis, the R package vinereg is used, which allows us
to obtain the structure of the D-Vine - implementing via the Dißmann algo-
rithm (Dißmann et al. [5]) - to select the underlying copulas and to estimate the
corresponding parameters.

In this application, the estimation of the marginal distributions of each vari-
able is left to the vinereg package, which select a kernel density estimate (with
bounded support) for continuous variables and a jittered kernel density estimate
for discrete variables. The aim is to show how in some contexts the possibility of
performing a regression on the dependency structure, without worrying about
the underlying distribution, allows this tool to lend itself to different contexts.
The model (CR) observed to describe the dependence structure uses exclusively
parametric bivariate copulas, therefore kernel distributions such as the Trans-
formation Local Likelihood Copula (see Sumarjaya [11]) are excluded.

The order of variables selected by the D-Vine model is: Lapse%, PT, RA,
PA, Gender, LD, Age.

In order to demonstrate whether CR can be a suitable and effective tool in
the regression analysis of a bounded variable, we compare the CR model with a
standard Beta Regression (BR) model (Ferrari & Cribari-Nieto [6]) with a probit
link function. By noting that the observed average is 61.56%, the estimated
average with CR is 61.66% whereas the value provided by BR is 60.85%. It
is worth noting that this outcome can be justified by a different number of
parameters used for CR calibration (39) compared to the BR (8).

Then, as previously explained, once the vine structure has been estimated,
the same parameters allow determining the quantiles. So, we compare the average
distribution of the conditional quantiles of the different observations estimated
by the two models.

In Fig. 1 panel (a) we show the density of the conditional response variable
obtained as the average, for each probability level in α = {0.01, 0.02, . . . , 0.99},
of the conditional quantiles of the each model as:

∑�
i=1 Qα[Y |x(i)]/�. As one

can see the shape of the BR curve is smoother than the CR one as the latter is
estimated by a univariate local polynomial kernel density estimators while BR
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Fig. 1. Comparison between observed and fitted pdf of the conditional response vari-
able - CR (long dash line) and BR (dot dash line) and Q-Q plot graph

is based on a parametric approach. In panel (b) the Q-Q plot of the average
conditional quantiles are reported in order to put in evidence the strong likeness
of the estimate obtained with the CR and BR.

Finally, to investigate the differences between predictions of CR against BR,
we look at the Lapse Duration (LD) variable. In Fig. 2 we visualize the influence
of LD by calculating the mean (circles) and the percentile levels 2.5% (squares)
and 97.5% (triangles) for each x(i), i = 1, . . . , �, then we plot it against xij , j =
1, . . . , n and add a smooth curve through each point clouds.

It can be seen how the two models provide different realizations albeit with
consistent behaviors as remarkable by the smoothed lines. Specifically, the BR
shows for each LD’s value that lapse rates are clustered into two groups whereas
the CR shows more scattered values. The main motivation for these differences
is explained by strong influence of the variable premium payment type PT, which
assumes value P or S, and in the BR model is the most significant variable that
influences the partial lapse duration.

Fig. 2. Influence of Lapse Duration on the response variable using the regression
models.
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Abstract. In this contribution, we consider a Multi-Layer Perceptron
(MLP) methodology for predicting specific gift features, particularly the
count of donations and the gift amounts. Moreover, we use Garson’s indi-
cator to evaluate the relative importance of the input variables to the
output(s) in the MLP model with the aim of enhancing the effective-
ness of fundraising campaigns. In the discussed application, the Donors’
behaviors are estimated using a simulated dataset that includes individ-
ual characteristics and information about donation history.

Keywords: Multi-Layer Perceptron · Input relevance · Garson’s
indicator · Fundraising Management

1 Introduction

The optimization of a fundraising (FR) campaign, namely the maximization of
the estimated global return under budget constraints, relies on the selection of
the most promising Donors and requires an efficient use of available information.
Accurate estimates of the number of donations, their amounts, and the gift
probability are based on Donors’ individual characteristics and donation history
about past campaigns. These are crucial in evaluating the result of a fundraising
campaign. Parametric and non-parametric approaches can be used to estimate
the quantities of interest.

Recently, to estimate the gift probability [2] discusses statistical parametric
methodologies and suggests modelling the number of gifts as a Poisson random
variable with an intensity parameter that depends on Donors’ characteristics. A
Poisson regression can then be used to estimate the expected number of dona-
tions, the probability of gift, and to assign a score to each Donor measuring their
propensity to the donation.

The development of non-parametric Machine Learning (ML)-based models
for FR is a very recent research stream; see, for example, [4] and [3]. Along this
line, [1] proposed a Multi-Layer Perceptron (MLP) to predict the number of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Corazza et al. (Eds.): MAF 2024, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 31–36, 2024.
https://doi.org/10.1007/978-3-031-64273-9_6
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donations and the gift amount and applied it to a simulated dataset of Donors’
individual characteristics and donation history.

In this contribution, we extend the analysis carried out in [1], focusing on
the relative importance of the input variables in the MLP model with the aim
of enhancing the effectiveness of FR campaigns. In particular, in the analysis,
we use the Garson’s indicator. Section 2 presents the FR model and the dataset.
Section 3 introduces the MLP and the input relevance. Section 4 discusses the
application, and Sect. 5 concludes.

2 Data Collection and the FR Process

Associations collect in databases (DB) and manage information on Donors, Con-
tacts and results from previous campaigns. Any gift received is associated with
the Donor (a person, a company, or other entity), their available individual char-
acteristics, and the gift history (gift events, timing and gift amounts). For large
and medium-sized Associations, the information may include quantitative and
qualitative features, besides advanced characteristics of the Donors’ profile. For
smaller ones, a systematic collection of information on Donors is very limited.
The availability of data and their quantitative exploitation, together with the
expertise of professionals in the field, are crucial elements in determining the
success of a campaign.

In [2] and [1], the arrival of a donation, i.e. a ‘gift’, to an Association is
modeled as the outcome of a random variable that can be analyzed according
to four different dimensions: the occurrence of the donation, represented by a
dichotomous variable; the frequency as a count variable measuring the number
of donations received in a given period of time; the timing as a duration variable;
and the amount of the donation as a positive variable.

Let xn be the vector that collects selected observable individual character-
istics of Donor n, with n = 1, . . . , N . Define zn as the vector of transformed
individual characteristics, where qualitative features are properly transformed
into quantitative ones or dummy variables.

Individual profile variables can be divided into personal situation variables
(gender, age, number of children, education, place of origin, size of residence
town, etc.); economic and financial situation variables (wage, wealth, invest-
ments); risk aversion variables (as a proxy of which the number of insurance
contracts is taken); and other information such as personal interests, religious
involvement, social network, geographical distances and involvement in the cam-
paign subject, among others.

This contribution aims to assess the relevance of these input features in
explaining the output elements of an FR campaign, as measured by the count of
donations and the gift amounts. To this purpose, we apply and extend the MLP
methodology proposed in [1].



Input Relevance in Multi-Layer Perceptron for Fundraising 33

Table 1. Some individual characteristics along the Giving Pyramid, with a finer seg-
mentation for the Sporadic and Regular Donors

Donors Low
wealth

Insurance
policies
≥ 1

Min gift
amount

Max gift
amount

Sporadic (sd1) 70% 35% 20 50

Sporadic (sd2) 70% 35% 30 100

Regular (rd1) 40% 65% 50 400

Regular (rd2) 40% 65% 100 500

Large 10% 65% 300 1000

We introduce the simulated1 DB, which will be used to test the proposed
methodology. The dataset is composed by N = 30 000 Donors. The segmentation
is as follows: 75% are Sporadic Donors (among them, about 25% made only one
donation), 19% Regular Donors, and 6% Large Donors.

Personal profile variables collected are: age and number of children, educa-
tion2 (in four categories: Master and Ph.D., Bachelor, High School, other/lower
school level), wealth (measured in thousands of euro), risk aversion (measured
as numbers of insurance policies signed by the Donor).

The database includes the gift history for each Donor: the number of dona-
tions, the average gift amount, and the number of gift requests. Table 1 reports
some individual characteristics according to the segmentation in the Giving
Pyramid for the data collected in the DB.

3 Basics on MLP and Input Relevance

In this section, we first provide some basics of the supervised ML tool, known
as MLP, and then we introduce the approach used to determine the relevance of
the input variables to the output one(s).

According to a well-known metaphor, an MLP can be considered as a com-
putational model inspired by the structure and functioning of the biological
neural networks that comprise the brain of superior living beings. An MLP is
a simple Artificial Neural Network where neurons (or nodes) represent units of
computation of the network.

The nodes are organized into layers; typically: an input layer, whose nodes
(sensors) receive the data from the external environment; one or more hidden

1 The DB is constructed from experts’ knowledge and based on a realistic composition
of a set of Donors. The database has already been used in [1].

2 A categorical variable transformed into values ranging from 1 to 4, assigning 4 to
the highest category.
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layers, whose nodes carry out the computational tasks3; and an output layer,
whose nodes (devices) release the result of the computation towards the external
environment. All the nodes in one layer are fully connected to the nodes in the
next one, but not among those within the same layer.

Note that in supervised ML, the MLP is trained on a labeled dataset, meaning
that during the phase of parameters estimation, the MLP is presented with a
dataset

{(z1,n, . . . , zi,n, . . . , zI,n; o1,n, . . . , ok,n, . . . , oK,n) , n = 1, . . . , N} ,

where (zi,n)i=1,...,I is the n-th vector of input features, (ok,n)k=1,...,K is the
associated vector of output labels, and N is the dimension of the dataset. Pairs
of nodes belonging to consecutive layers are associated with weights, namely vij
and wjk, representing the strength of the connections. With reference to the
MLP, the hyperparametrization phase provided the best configuration for the
number of hidden layers and nodes. In our application, a single-hidden-layer MLP
proved to be the best architectural structure identified for making predictions
about Donor’s behaviors (see [1]).

As for the training phase, the weights are adjusted in an iterative procedure
over the training dataset. This stage starts with a random initialization of the
weights; in subsequent runs of the MLP, the weights are chosen in order to
minimize a suitable error metric based on the distance between the computed
and actual outputs. The training process ends when a pre-fixed stopping criterion
is satisfied, and then the obtained optimal weights are used in the validation
phase.

It is well-known that the design complexity of an MLP, which can be seen as
a black box, does not provide a direct interpretation of the obtained weights. In
contrast, it is important to assess the impact of the explanatory inputs on the
output variable(s).

Our main aim is to study the relevance of inputs to explain the outputs and to
obtain relative rankings and ratings of the input features. Over the years, various
methods have been proposed in the literature; for a review, see [6] and [8]. In
particular, to assess the relative importance of Donors’ features (input variables)
on the FR campaign results (output variables), we use Garson’s indicator (see
[5]):

Gik =

∑J
j=1

(
|vij · wjk|

/∑I
p=1 |vpj |

)

∑I
q=1

∑J
j=1

(
|vqj · wjk|

/∑I
p=1 |vpj |

) ,

where Gik denotes the relevance of the i-th input variable, with i = 1, . . . , I,
to the k-the output variable, with k = 1, . . . ,K, and J is the number of nodes
in the hidden layer. It is noteworthy that Garson’s indicator is nonnegative
3 This represents the “intelligent” part of the computation; where the adjective intel-

ligent means that, under mild assumptions, an MLP “can approximate virtually any
function of interest to any desired degree of accuracy [. . .].” (see [7, p. 360].).
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and normalized to sum to 1 overall input relevances, thus measuring the relative
importance of the inputs but without indicating the sign of the importance itself.

4 Applications and Results

We aim to assess the relevance of the Donors’ characteristics on the count of
donations and gift amounts. In our investigation, we test the following two MLP-
based prediction models:

cd = fMLP,1 (ga, ag, nc, ed, we, ra, co) ,
ga = fMLP,2 (cd, ag, nc, ed, we, ra, co) ,

where cd denotes the count of donations, ga specifies the gift amount, ag, nc,
ed, we, ra, and co indicate the Donor’s age, number of children, education level,
wealth, risk aversion, and number of contacts, respectively (see Sect. 2). In mod-
els fMLP,1 and fMLP,2, the cd and ga forecasts are based on the other I − 1
inputs.

On the basis of the validation results for these models, detailed in [1], we
compute the related Garson’s indicators.

In Tables 2a and 2b, we present the results of the analyses of input relevance
for the prediction models fMLP,1 and fMLP,2, respectively. In both tables, in
column 1, the input variables are ranked in decreasing order according to their
relevance to the output, and in column 2, the values of the Garson’s indicator
for the same input variables are reported.

Table 2. Results related to the analyses of input relevance to the output

(a)Model fMLP,1, with the count of
donations (cd) as the output variable

Input variable Gi1

Gift amount (ga) 64.43 %

Risk aversion of the D. (ra) 17.87 %

No. of children of the D. (nc) 7.56 %

Wealth of the D. (we) 5.49 %

Education level of the D. (ed) 1.94 %

No. of contacts of the D. (co) 1.61 %

Age of the D. (ag) 1.11 %

(b)Model fMLP,2, with the gift
amount (ga) as the output variable

Input variable Gi1

Risk aversion of the D.(ra) 34.45 %

Count of donations (cd) 34.34 %

Wealth of the D. (we) 17.75 %

Education level of the D. (ed) 6.83 %

No. of contacts of the D. (co) 2.90 %

Age of the D. (ag) 2.72 %

No. of children of the D. (ga) 1.02 %

It is worth noting that in fMLP,1 the gift amount is the most relevant input
factor to predict the count of donations; such a result is coherent with the seg-
mentation of the Giving Pyramid and data reported in Table 1. Whereas, when
considering model fMLP,2, the count of donations is the second most relevant
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input in predicting the gift amount. This highlights a significant mutual depen-
dence between these factors.

Moreover, the (decreasing) order of the input variables according to their
relevance presents analogies for both prediction models. It turns out that risk
aversion (ra) is highly relevant in both cases, and wealth (we) is more relevant
in predicting the amount of donations, but it is also important for the number
of donations. These results are also consistent with the data reported in Table 1.

Finally, in both prediction models, the first three to four most relevant input
variables collectively contribute to “explain” more than 85% to around 95%
of the associated output variable. These values are relative weights that are
computed on a number I − 1 of available inputs. This result emphasizes the
relative importance of these input variables.

5 Concluding Remarks

In this contribution, we considered two MLP-based models to predict the number
of donations and the gift amount. Among those proposed in the literature, we
applied the Garson’s indicator to assess the relative importance of the input
variables to the output. The main findings show that it is possible to rank the
inputs based on their impact on the output and that a relatively small set of input
variables can well predict the variables of interest. These results help identify
which inputs are the most relevant for the forecast of the expected gift and
can be exploited to implement effective FR campaigns. For future research, the
analysis will be extended to consider indicators alternative to Garson’s.
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Abstract. With increasing interest in recent years, investors have
devoted attention to the art market as a potential alternative asset
class to be included in portfolios. Besides cultural and aesthetic value,
investment in art could provide diversification benefits, and a hedge
against market volatility and inflation. We use data on the global art
auction market to analyze this asset’s risk-return characteristics, and
to investigate its inclusion in optimal portfolios, based on the classical
Markowitz mean-variance and the mean-CVaR optimization models. The
results show that art makes an interesting asset, which enters the optimal
portfolios.

Keywords: Art investment · Alternative assets · Portfolio allocation ·
Mean-variance · Mean-CVaR

1 Introduction

In the last decades, uncertainty in financial markets has led many investors to
diversify their portfolios with a mix of standard and alternative investments.
Among alternative assets, art is drawing considerable attention among investors
and wealth managers. Suffice it to say that ultra-high-net-worth individuals hold,
on average, around 5% of their portfolios in art and collectibles [1] and 74% of
asset managers in 2023 offered art wealth management services [2].

Besides finance professionals, scholars in finance have also shown interest in
the art market. Starting with some isolated pioneering studies in the 1970 s and
1980 s such as the contributions of Stein [3] and Baumol [4], who estimated the
rate of return on art investment, the literature on art investment has grown
considerably, exploring a broad spectrum of financial themes related to the art
market, as outlined in Barro et al. [5]. In particular, a number of studies over
the years have investigated the role of art in portfolio allocation. Campbell [6]
shows that investing a small fraction of wealth in art improves the trade-off
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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between risk and return of the portfolio, while Korteweg et al. [7] argue that
a better diversification is achieved by targeting specific art market segments
and Tucker et al. [8] report a relevant percentage allocated to art asset. On
the other hand, Worthington and Higgs [9] find that art does not provide any
diversification gains, thus it is still unclear whether art should be included in a
financial portfolio.

The main aim of this contribution is to investigate the role of art as an
alternative asset in portfolio allocation. We consider global art auction market
data on an extended and up-to-date time period; this allows us to verify whether
the recent increased interest in art investments has led to an expansion of the
presence of art in optimal portfolio allocations, with respect to the previous
results presented in the literature, obtained with much less recent data.

Section 2 presents the data and the models employed; Sect. 3 reports the
results of the portfolio allocation, and Sect. 4 concludes.

2 Data and Methodology

To carry out the analysis, we consider the perspective of an US investor who holds
a well diversified portfolio of both standard and alternative investments. The
data on financial markets are retrieved from Bloomberg and include: an equity
market index, S&P 500 Index (SPX), a bond market index, Bloomberg Barclays
U.S. Aggregate Bond Index (LBUSTRUU), the Gold to USD rate (XAUUSD),
and a real estate market index, Real Estate FTSE NAREIT all equity REITS
index (FNERTR).

The art price data come instead from the All Art Index provided by Art
Market Research (AMR), a London-based firm specialized in data analysis for
collectibles’ market. The All Art Index (henceforth AMRAAI) monitors the most
important auction houses worldwide, and all artists who sold there at least one
artwork in the past 24 months are included in the computation. In detail, AMR
employs a 24 months weighted moving average to determine an average price
representative of each artist in its database – where smaller weights are asso-
ciated to older sales – and to compute an aggregate index, all average prices
are added up on a monthly basis. The AMRAAI, which is exclusive of buyer’s
premium, is expressed in pound sterling, and data are available with a monthly
frequency, from January 1978.

We use a dataset spanning from January 1978 to December 2022. We convert
the AMRAAI to a US dollar-denominated index using the monthly GBP to USD
exchange rate and we adjust all the indices for US inflation, using the Consumer
Price Index of the Federal Reserve Bank of St. Louis, to account for the change
in the purchasing power over this extended time period.

From an analysis of the monthly returns, we find that art returns are affected
by several periodic spikes, spikes that are particularly high in May and Novem-
ber, as confirmed by an inspection of the correlogram (not reported here for
the sake of brevity). This peculiar behavior is due to the periodicity of the most
important auctions, during which the most expensive works of art are auctioned.
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Table 1. Returns’ descriptive statistics

Statistic SPX LBUSTRUU XAUUSD FNERTR AMRAAI

Mean 0.0431 0.0160 0.0155 0.0463 0.0354

Std. dev 0.1015 0.0465 0.1233 0.1151 0.1147

Maximum 0.2523 0.1708 0.4259 0.2949 0.3741

Minimum –0.3391 –0.1361 –0.2637 –0.4956 –0.2655

Skewness –0.5825 0.0531 0.6183 –1.1238 0.2321

Kurtosis 4.2811 4.9091 3.8517 7.2441 3.6158

VaR (95%) 0.1326 0.0611 0.1878 0.1559 0.1613

CVaR (95%) 0.2087 0.0940 0.2382 0.2513 0.2073

Table 2. Returns’ correlation matrix

SPX LBUSTRUU XAUUSD FNERTR AMRAAI

SPX 1

LBUSTRUU 0.223 1

XAUUSD 0.038 –0.02 1

FNERTR 0.667 0.17 0.114 1

AMRAAI 0.062 –0.076 0.156 –0.002 1

In this research, we focus on investors interested in high-end works of art,
which are mainly traded in May and November auctions. We thus construct
semi-annual indices based on May and November values, and this allows us to
overcome the issues caused by the seasonal behavior of the AMRAAI returns.
The descriptive statistics for semi-annual returns are displayed in Table 1, while
Table 2 reports the returns’ correlation matrix. As we may see, art performs
reasonably well, compared to the other asset classes, exhibiting a relatively high
average return and a positive skewness, but it has a quite high standard devia-
tion. In addition, Table 2 shows that art is practically uncorrelated with the other
asset classes, as found in several previous studies (e.g. Renneboog and Spaenjers
[10]), and such a low correlation persists also with a monthly frequency.

To investigate the potential benefits of including art in a multi-asset port-
folio, we first resort to the classical mean-variance Markowitz model [11]. The
formulation of the model is reported below:

min
w

w
′
Σw

s.t. w
′
μ ≥ h

w
′
e = 1

w ≥ 0

(1)
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where w is the vector of the asset weights, Σ is the return variance-covariance
matrix, μ is the vector of the return means, h is the portfolio target return fixed
by the investor, e is a vector of 1 s, and 0 is the null vector.

In addition, in order to take into account the tail risk, we apply also the
mean-CVaR model that tackles risk from a different perspective, as formulated
in Rockafellar and Uryasev [12]:

min
w ,uk,α

α +
1

q(1 − β)

q∑

k=1

uk

s.t. w
′
rk + α + uk ≥ 0, k = 1, ..., q

uk ≥ 0, k = 1, ..., q

w
′
μ ≥ h

w
′
e = 1

w ≥ 0, α ∈ R

(2)

where r is a random vector of returns, α is the VaR of the portfolio with a
confidence level β, uk is an auxiliary variable which is equal to (−w

′
rk − α)+,

and q is the number of scenarios generated.

3 Empirical Results

For both optimization models, the efficient frontier is obtained both in the case
of portfolios consisting of all five assets considered, including art, and in the case
where art is excluded from the portfolio. In the computations, h takes 20 equally
spaced values between the return of the minimum variance portfolio (h = 0.0205)
and the maximum attainable return (h = 0.0463).

In the CVaR portfolio optimization, q = 10, 000 scenarios are generated for
the asset returns based on the historical simulation, assuming that the distribu-
tions of the returns do not vary over time. The application of the Augmented
Dickey-Fuller test, where the order of the model is selected using the Akaike
Information Criterion, shows that all the time series of returns of the assets in
our portfolio are indeed stationary at the 5% significance level (results are not
reported but can be submitted upon request). The confidence level is β = 0.95.

The results show that investing in art enables the investor to obtain a better
portfolio in terms of standard deviation and rate of return (Fig. 1a). Moreover,
the results are confirmed for the CVaR model (Fig. 1b), and indeed the better
performance seems substantial, more notably with the CVaR model.

Figure 2 illustrates the composition of the optimal mean-variance and CVaR
portfolios that include art. In both cases, the allocation in art is relevant, espe-
cially for more aggressive portfolios. For example, in optimal CVaR portfolio no.
10, over 30% of total wealth is allocated to art (see the left panel in Fig. 2).

However, it is unlikely that an institutional investor would allocate such a
large proportion to an alternative investment asset. Therefore, we have extended
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Fig. 1. Efficient frontiers of portfolios with art and with no art; expected return of the
portfolio on the y-axis, risk measure (std. dev. and CVaR) on the x-axis

Fig. 2. Efficient portfolio weights

Fig. 3. Mean-variance constrained portfolios
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our analysis introducing weight restrictions on the alternative asset positions;
more precisely, we introduce an upper bound U on the weight of each alterna-
tive asset (XAUUSD, FNERTR, AMRAAI). For the sake of brevity, we present
only the results for the mean-variance model. Figure 3a shows the behavior of
the efficient frontier as the upper bound U varies; Fig. 3b displays the optimal
allocation as the target return h varies, for U = 0.10. We may notice that the
upper bound on the weight for art is always reached, with the exception of the
most aggressive portfolio, which is composed only of equity and real estate.

4 Conclusions

The results obtained show that, even including the most recent data for the
global art auction market, the optimal portfolios allocate a relevant share to art,
in accordance with the results of several previous contributions in the literature,
thus confirming that art makes an interesting asset for portfolio diversification
purposes. On the other hand, some peculiarities of the art market, such as the
low liquidity and the high transaction costs, could be explored more in depth,
together with their effects on the portfolio allocation. Further research could
also investigate the effects of the inclusion of additional alternative assets, e.g.,
commodities and cryptocurrencies.
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Abstract. Developing sustainable business standards for small and me-
dium-sized enterprises (SMEs), entailing targets such as the minimiza-
tion of carbon emissions, the promotion of equality and transparency in
business processes, is key to achieve transition towards a greener econ-
omy. In light of the challenges in implementing and embedding sustain-
ability practices in small firms, we consider the problem of evaluating the
environmental, social, and governance (ESG) performance of listed Euro-
pean SMEs, w.r.t. different sustainability indicators, using a multicriteria
decision analysis (MCDA) approach. Due to lack of agreement over the
‘true’ ESG metrics of firms discussed in the literature, we depart from
the practice of constructing a composite indicator based on a sorting of
firms, and we assess the stability of the results when the parameters of
the preference model are uncertain. Moreover, with the aim of identify-
ing possible sector-specific differences, the sustainability performance is
gauged with reference to five economic sectors, based on a unique dataset
of SMEs.

Keywords: ESG · Small and medium-sized enterprises (SMEs) ·
Multiple criteria Decision Analysis · Sustainability

1 Introduction

The sustainability assessment is becoming nowadays the crux of policies aiming
at enforcing minimum Environmental, Social, and Governance (ESG) require-
ments, as sustainability measures may suffer from inconsistency of the data and
how they are reported: existing ESG ratings from prominent data providers
tend to disagree significantly on the very definition of sustainability drivers [2].
Such difficulties are compounded by the size of small and medium enterprises,
which (i) deal with business data in an unstructured and non-standardised way,
especially w.r.t. supply chain management [8], or (ii) may have little interest in
managing their ESG performance [7], making the operationalization of sustain-
ability practices difficult.

This contribution investigates the problem of sustainability assessment for
small and medium enterprises, by using a multicriteria decision analysis (MCDA)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Corazza et al. (Eds.): MAF 2024, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 43–48, 2024.
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approach, which allows us to deal flexibly with the multiple, conflicting targets
that must be managed when pursuing sustainability. We specifically take care of
the size of the involved firms, by selecting twelve indicators ad hoc, which reflect
in a parsimonious way many relevant dimensions towards which we expect SMEs
should direct their efforts in terms of sustainability goals. In this analysis, rather
than constructing a standard composite indicator derived from the aggregation
of different dimensions, we evaluate probabilistically the attained rankings, based
on rank acceptability and pairwise winning indices, following the stochastic mul-
tiacceptability analysis (SMAA) approach [6]. The rank acceptability index gives
the probability that, randomly picking a set of parameters, a given firm attains a
specific rank, whereas the pairwise winning indices specify the probability that a
firm attains a better rank than another. In this way, the outcomes are evaluated
in a robust way. The analysis is carried out for five different economic sectors,
so as to uncover possible elements where progress on sustainability performance
is still uncertain or unstable, with particular attention to best and worst per-
formers within each sector. The rest of the contribution is organized as follows.
In Sect. 2 we outline the methodology, then in Sect. 3 we present the data and
the empirical application. Section 4 concludes.

2 A Multicriteria Ranking Method for Sustainability
Assessment

In what follows, we consider a setting with m alternatives to be assessed w.r.t.
n conflicting criteria. The problem is modelled through the MUlticriteria RAnk-
ing MEthod (MURAME) approach of [5], which consists in a combination of
ELECTRE III and PROMETHEE II outranking methods. We refer to [1] for a
detailed discussion of the model, in the context of sustainability assessment. To
implement the SMAA, we follow the general framework provided in [6], which
is here adapted to the peculiarities of the MURAME approach, in order to con-
struct rank acceptability and pairwise winning indices, allowing to investigate
how the ranking of the alternatives varies according to different sets of criteria
parameters.

The preferences of a decision maker are integrated in the model by intro-
ducing, for any given criterion cj , with j = 1, . . . , n, an indifference threshold,
qj , a preference threshold pj and a veto threshold vj , for which it holds that
qj ≤ pj ≤ vj . The main idea of SMAA is to employ Monte Carlo simulation
to visit the parameters’ spaces, in order to provide the decision makers with
values describing the problem, and to perform a parameter stability analysis.
Let W and Q,P, V denote the spaces for the feasible weights and the thresholds,
respectively, defined as follows:

W =

{
w : wj ≥ 0,

m∑
j=1

wi = 1

}
Q =

{
q : 0 ≤ qj ≤ pj

}

P =

{
p : qj ≤ pj ≤ vj

}
V =

{
v : pj ≤ vj ≤ 1

}
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Moreover, let fw, fq, fp and fv be the probability distributions over these
spaces, ranging in the feasible spaces W,Q,P and V . The choice of the distri-
butions depends on whether the decision maker can express definite information
about the shape of the distribution of such parameters or not. For simplicity, in
our application we assume uniform distributions for each criterion weights and
thresholds. To construct a ranking function, which maps the alternative i to a
rank h, according to a set of simulated parameters, we perform a Monte Carlo
simulation.

We aim to construct the ranking acceptability and the pairwise winning
indices that handle possible robustness concerns w.r.t. the stability of the results,
so as to give a probabilistic interpretation of the results. We proceed as follows.
First, a function K(i, w, q, p, v) = h, providing the rank h of a firm i, for a given
simulation of parameters, is considered. To derive the two indices, the ranking
functions mi

h(i, w, q, p, v) and pih(i, k, w, q, p, v), taking either value 1 or 0, are
constructed:

mi
h(i, w, q, p, v) =

{
1, if K(i, w, q, p, v) = h

0, otherwise

pih(i, k, w, q, p, v) =

{
1, if K(i, w, q, p, v) < K(k,w, q, p, v)
0, otherwise

Essentially, the ranking function mi
h(i, w, q, p, v) is equal to 1 if the firm i is

assigned to a specific rank h; moreover, pi(i, k, w, q, p, v) is equal to 1 if firm i
has a better (lower) rank compared to k. Finally, the rank acceptability index
Ci

h ∈ [0, 1] and the pairwise winning index P i ∈ [0, 1] provide a probabilistic
classification of alternatives over possible rankings, i.e. respectively the prob-
ability that a rank h is assigned to alternative i and the probability that the
alternative i is better than alternative k. Mathematically, both are multidimen-
sional integrals over the parameter spaces, which can be estimated numerically
via Monte Carlo simulation (see e.g. the formulation in [4]).

3 Application and Discussion of Results

For the empirical analysis, we consider a unique hand-collected dataset of 78
firms for the year 2021, based on a screening we perform to obtain a set of listed
SMEs, adequately reporting on sustainability topics. The analysis is performed
for firms belonging to Consumer Discretionary (CD), Health Care (HC), Finan-
cials (F), Industrials (I) and Information Technology (IT) classes, on a sector-by-
sector basis1. Other sectors are not included due to lack of data. Furthermore,
the selected criteria are aligned to Global Reporting Initiative Standards and
include carbon intensity, waste generation intensity, non-renewable electricity
1 10 firms belong to CD, 12 to F, 13 to HC, 16 to IT and 27 to I. For a detailed

analysis of the dataset, along with information for its replication, we refer the reader
to [1].
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consumption, water consumption intensity, average training hours, job creation,
management diversity by gender, gender pay gap, board diversity by gender, eco-
nomic value generation and distribution, board independence and the CEO pay
ratio. Moreover, assuming that underreporting implies unwillingness or inability
to report information, missing data are replaced with the worst value of the sec-
tor. Finally, the acceptability and the pairwise winning indices are obtained by
performing n = 100, 000 simulations over the feasible regions specified in Sect. 2.

Table 1. Category acceptability indices by sector.

Best

ESG E S G

CD 0.7224 0.7281 1 0.7283

F 0.7014 1 1 0.9089

HC 0.4739 0.6145 0.6157 0.9997

I 0.9998 1 0.7463 0.9264

IT 0.8708 1 0.5108 0.7853

(a) Probabilities that the
best-classified firm of a sector for a
combination of ESG or E, S, G
criteria does not change its rank.

Worst

ESG E S G

CD 1 1 0.9999 1

F 0.9986 1 1 0.9959

HC 0.9998 1 1 0.9997

I 0.9992 0.9760 1 0.9614

IT 1 0.9312 0.7746 0.5898

(b) Probabilities that the
worst-classified firm of a sector for a
combination of ESG or E, S, G
criteria does not change its rank.

The rank acceptability indices are reported in Tables 1a and 1b, with respect
to the ESG performance, along with stand-alone Environmental, Social and Gov-
ernance components. An important aspect that we observe in the data is that,
even when taking into account uncertainty in the evaluation of SME’s sustain-
ability performance, the assessments of best and worst firms, i.e. the probabilities
that the ranks of the best or the worst firms remain the same across different
preferences of a decision maker, such as a policymaker or a credit officer, are
robust across all sectors.

When the scores are gauged only w.r.t. specific E, S or G pillars, the out-
comes remain stable. Such findings are important when considering the ESG
performance of firms, in light of the uncertainty surrounding its measurement,
as shown by the lack of agreement between ESG scores from different data
providers, with important implications in terms of investor preferences and ulti-
mately, asset prices [3]. Turning to a selection of acceptability and pairwise
indices w.r.t. firms in the CD sector, results points to high stability of preferences
of good alternatives over poor ones, as shown in Figs. 1 and 2. In the former,
we show that little to no variability is observed for most firms, and variation
typically occurs within three notches of the ranking. In the latter, the pairwise
winning indices are presented. Note that substantial divergence between alterna-
tives emerge in most cases, and in a particular case, a firm is actually preferred
over all the alternatives in the dataset. Unreported results2 for the remaining
2 Available upon request.
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Fig. 1. Category acceptability indices for CD firms. A high percentage implies that
the firm is assigned to the corresponding ranking with a high confidence, based on
the share of possible parameter values for a given ranking. A low ranking with a high
probability should be interpreted as a positive signal about a firm.

Fig. 2. Pairwise winning indices for CD firms. A high percentage implies that the firm
on row i outperforms the firm on column j with a high confidence, based on the share
of possible parameter values for a given simulation.

sectors, similarly show that the best firms tend to be picked over poorly per-
forming ones with little uncertainty as well; less accurate assignments for firms
with an average performance are observed. Such patterns might suggest that
there are no sector-specific ESG reporting practices requiring deeper analysis.
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4 Conclusions

In this paper, we have modelled the ESG scoring problem through a combina-
tion of an outranking approach and stochastic multiacceptability analysis, to
capture the sustainability performance in a probabilistic way. Results confirm
the robustness of the methodology, paving the way to more extensive analysis,
covering the relationship between ESG performance and financial risk in SMEs.
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Abstract. Two methods are presented in order to create a dissimilarity
measure for random variables. These methods exploit some theoretical
and computational advantages of the Wasserstein distance. The dissim-
ilarity measures are hence applied to develop a hierarchical clustering
procedure for time series, which are especially helpful in risk analysis.

Keywords: Clustering · Copula · Risk · Wasserstein distance

1 Introduction

In the vast field of machine learning, one often encounters the need to com-
pare probability distributions and measure the dissimilarity between them. In
this respect, traditional distance metrics like Kullback-Leibler divergence may
fail when dealing with distributions that have different supports or significant
overlap. Wasserstein distance, instead, has proved to be able to overcome such
limitations [10]. In fact, unlike other distance measures that rely on pointwise
differences, the Wasserstein distance measures the minimal effort required to
reconfigure the probability mass of one distribution in order to recover the other
distribution.

Here, we use the Wasserstein distance dWp
[13,15] in order to derive two dis-

similarity measures among random variables. Specifically, the first dissimilarity
measure Δ1 we propose identifies those variables that have the same distribution.
In financial risk management, when X and Y represent the loss distributions,
it may identify the losses with similar value-at-risk at different levels. When X
and Y represent climate variables collected at different sites, instead, it may be
helpful for regionalization purposes [14], i.e. to create regions that have similar
climatic behaviour (i.e. similar temperature distribution).

The second dissimilarity measure Δ2 is instead inspired by recent works on
Wasserstein-based measures of association (see, e.g., [7,9]). It measures the dis-
tance between the copula associated with (X,Y ) and the comonotonic copula
M2 that represents the maximal rank-invariant dependence between X and Y

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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(see, e.g., [2]). Thus, it serves to quantify whether X and Y are strongly associ-
ated regardless of their marginal behavior. In risk analysis, for instance, it may
check whether X and Y tend to have jointly large (respectively, small) values,
i.e. they are concordant.

The paper is organized as follows. In Sect. 2, we revisit the notion of Wasser-
stein distance. In Sect. 3, instead, we demonstrate the advantage of the proposed
dissimilarity measure to develop agglomerative hierarchical clustering algorithms
for time series. An illustration is presented in Sect. 4.

2 The Wasserstein Distance

In order to measure the dissimilarity between probability distributions, we will
leverage on the Wasserstein distance between them and the related empirical
measures [10,12]. To this end, we recall some basic facts that will be used in this
paper (see, e.g., [13,15]).

Given two d–dimensional random vectors X and Y with probability laws μX

and μY, respectively, their p–Wasserstein distance (p ≥ 1) can be expressed as

dWp
(μX, μY) = inf

γ∈Γ (μX,μY)

{
(E|X − Y|p)1/p : X ∼ μX,Y ∼ μY

}
, (1)

where Γ (μX, μY) denotes the collection of all joint probability laws whose
marginals are μX and μY, respectively. It is possible to prove that the above
minimization problem has a solution, which is unique if μY is absolutely contin-
uous with respect to the Lebesgue measure. For one-dimensional random vectors,
the distance reduces to the following formula

dp
Wp

(μX , μY ) =
∫ 1

0

|F−1
X (u) − F−1

Y (u)|pdu, (2)

where F−1
X and F−1

Y are the quantile functions associated with X and Y , respec-
tively.

Although theoretically appealing, the computation related to the Wasserstein
distances may be not available in closed form, up to the Gaussian case. However,
the involved probability measures can be approximated by taking consistent
empirical versions of the input measures [3,10]. In fact, for discrete measures,
the computation of the Wasserstein distance is in principle obtained through the
solution of a finite-dimensional linear program; see [12].

Specifically, consider the measures μX and μY that are only available through
a finite number of samples {xt}t=1,...,T and {yt}t=1,...,T in R

d, and all points have
the same mass, then

μX =
1
T

T∑
t=1

δxt
, μY =

1
T

T∑
t=1

δyt
,

where δxt
is the Dirac distribution at the point xt. Consider the sample matrices

MX = (x1, . . . ,xT )� ∈ R
T×d and MY = (y1, . . . ,yT )� ∈ R

T×d, respectively. In



Clustering Financial Time Series with Wasserstein Distance 51

this context, the set of all probabilistic couplings between these two measures is
then the set of doubly stochastic matrices P defined as

P =
{
γ ∈ R

T×T |γ1T = T−11T ,γ�1T = T−11T

}
,

where 1T is a T -dimensional vector of ones. Here, we use the fact that all points
have the same probability mass. The dWp

distance between the two measures is:

dp
Wp

(μX, μY) = min
γ∈P

〈γ,L〉F ,

where 〈·, ·〉F is the Frobenius dot product and L ≥ 0 is the cost function matrix
whose entry is given by Ltt′ = ‖xt − yt′‖p (see, e.g., [12]).

3 The Methodology

In the framework of copula-based hierarchical clustering [4], we propose two
novel dissimilarity measures that can be used for pairwise dissimilarities among
all the components of a given random vector.

Given two continuous random variables X and Y with marginals FX and
FY , and copula CX,Y , the first dissimilarity matrix is given by

Δ1(X,Y ) = dWp
(X,Y ) (3)

according to (2). The second dissimilarity measure is instead given by

Δ2(X,Y ) = dWp
(CX,Y ,M2), (4)

where M2 is the comonotonicity copula that describes the maximal concordance
between random variable. Such a dissimilarity has been also suggested in [1].

Notice that, if Y = αX for some α �= 0, then Δ1(X,Y ) �= 0, since the random
variable needs not have the same distribution, while Δ2(X,Y ) = 0, since X
and Y are completely dependent. Moreover, for two independent and identically
distributed X and Y , it follows that Δ1(X,Y ) = 0, but Δ2(X,Y ) �= 0. Thus,
the two dissimilarity measures describe two different stochastic aspects.

Given a random sample (xt, yt)t=1,...,T from (X,Y ), the estimation of (3) can
be done by relying on the associated discrete measures as explained in Sect. 2. For
the estimation of (4), instead, we compute the associated pseudo-observations
associated with the random sample [5] and, from them, calculate the associated
discrete (copula) measure. As is known, the pseudo-observations are taking val-
ues on the grid {1/(T +1), . . . , T/(T +1)}2 where T is the sample size. Here, we
prefer to divide by (T + 1) in order to be within the boundary of [0, 1]2. Thus,
the discrete version of the copula CX,Y can be considered as a matrix in R

T×2.
Moreover, the discrete version of the copula M2 is obtained from the sample

{
mt =

(
t

T + 1
,

t

T + 1

)
: t = 1, . . . , T

}
,

which describes the comonotonic behaviour between two variables in the copula
setting.
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4 Illustration: Analysis of the Components of the FTSE
MIB

In this section, we present a case study to illustrate the methodology introduced
in Sect. 3. Specifically, we are interested in providing a hierarchical clustering
of the forty components of FTSE-MIB according to the two introduced dis-
similarity measures. As known, such a procedure may be relevant for portfolio
diversification (see, e.g., [8] and references therein).

To this end, we consider log-returns of the daily (adjusted) prices of the forty
components listed on the FTSE MIB from January 2nd, 2023 to December 29,
2023. The time series of the daily prices in EUR are obtained from the web-
site Yahoo Finance (see https://it.finance.yahoo.com/). The database contains
a total of 253 daily observations for each variable and no missing values. As
traditional in risk analysis that focuses on the right-side of the distribution, the
relative log-returns are calculated with a negative sign.

First, we consider an ARMA-GARCH copula model (see, e.g., [11]) and esti-
mate the marginals and the copula according to a two-stage procedure as illus-
trated in [5, section 6.2.3]. Specifically, we estimate an appropriate ARMA(1,1)-
GARCH(1,1) model with Student distribution for each time series. It allows
us to model the conditional mean and variance taking into account possible
time-varying volatility patterns. Moreover, the obtained residuals generally show
no strong evidence of heteroskedasticity and/or serial dependence according to
Weighted Ljung-Box Test and ARCH LM Tests. Once an appropriate ARMA-
GARCH model has been estimated to each time series, the possible dependence
relations among variable is investigated on the pseudo-observations associated
with the residuals.

Fig. 1. Dendrograms obtained from agglomerative hierarchical clustering (linkage
method: complete) applied to the time series of log-returns for the forty components
listed on the FTSE MIB and on: (a) the forecasted one-day ahead distribution and
the pairwise dissimilarity Δ1; (b) the pairwise dissimilarity Δ2. Period: 02/02/2023–
29/12/2023.

https://it.finance.yahoo.com/
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In Fig. 1 (panel a), we provide the agglomerative hierarchical clustering (com-
plete linkage) of the time series based on the forecasted one-day ahead distri-
bution of log-returns for each time series and on the pairwise dissimilarity Δ1.
These scenarios may serve to provide a suitable picture of the individual risks.
Instead in Fig. 1 (panel b), the agglomerative hierarchical clustering (complete
linkage) of the time series based on the pairwise dissimilarity Δ2 is shown. These
two scenarios may serve to provide a suitable picture of concordance among dif-
ferent risks.

In Fig. 2 we adopt, instead, the procedure described in [6] in order to merge
both clusters. In such a case, time series belonging to the same group have similar
risk profile as well as they tend to comove. These findings should be considered
with particular care when a diversified portfolio should be built.
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Fig. 2. Dendrogram obtained from merging via the algorithm in [6] the two dendro-
grams presented in Fig. 1.
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12. Peyré, G., Marti, M.: Computational optimal transport: With applications to data
science. Found. Trends R© Mach. Learn. 11(5-6), 355–607 (2019)

13. Santambrogio, F.: Optimal transport for applied mathematicians. Birkäuser, NY
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Abstract. The wind farm performance is often characterized by uncer-
tainty since it depends on unstable condition of wind speed and, conse-
quently, on unstable wind energy conversion. This aspect makes the wind
projects valuation quite difficult. The Real Options Approach (ROA)
represents an adequate methodology to assess wind energy projects. This
work applies the ROA by considering a specific stochastic process that
would fit for the wind speed modelling, and other typical characteristics
of wind projects, such as their multistage nature. We model the wind
turbine performance by including three possible scenarios: cut-in speed,
rated output speed and cut-out speed. A numerical example is provided
to implement our mathematical valuation approach.

Keywords: Wind energy modelling · Real Options Approach · Wind
speed uncertainty · Multistage projects

1 Introduction

The electricity production through the wind projects has gained its importance
by considering the increasing environmental issues that affect our planet. Increas-
ing generation capacity in liberalized power markets requires the producers to
account for future long-term uncertainties. In particular, this is true for wind
producers since the inherent intermittency of its energy production depends on
wind regimes. Due to the considerable lifetime of these plants and the mentioned
uncertainties, traditional discounted cash flow methods used to obtain the NPV
of the investment are unsuitable for these projects. In fact, the wind farm perfor-
mance is often characterized by uncertainty since it depends on unstable condi-
tion of wind speed and, consequently, on unstable wind energy conversion ([5]).
To take into account the uncertainty, the Real Options Approach (ROA) can be
used to develop flexible investment strategies. Depending on the present value
in a certain time, the decision maker can decide to execute, wait, or abandon
the construction project of a power plant. Previous studies applied the ROA
to assess wind energy projects ([1–4]). This work expand the existing litera-
ture by providing a ROA that considers a specific stochastic process based on

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Corazza et al. (Eds.): MAF 2024, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 55–60, 2024.
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an adjusted version of the classical mean reversion in order to consider three
thresholds applied to wind energy production. The lowest threshold represents
the stop of the turbines given the too low wind speed (cut-in speed). Above the
cut-in speed threshold, the electric power output rapidly increases up to reach
the limit of the electric generator (rated output power). The highest threshold
represents the stop of the turbines due to the risk of damage caused by the
excessive wind speed. Moreover, the ROA with this specific stochastic process
is embedded in a multistage valuation framework that characterized the wind
farm investments. A numerical example is also proposed.

2 Stochastic Modelling

This work develops a mathematical model based on the Real Options Approach
(ROA) to price the wind projects by modelling the uncertain wind energy pro-
duction. The ROA is applied by considering a specific stochastic process that
would fit for wind speed modelling, and other typical characteristics of wind
projects, such as their multistage nature. As shown in [5,6], we model the wind
speed as:

Wt = sw(t) + wt (1)

where sw is a seasonality composition (measured hourly), i.e.:

sw(t) = βw1 sin
(

2πt

8760

)
+ βw2 cos

(
2πt

8760

)
(2)

and w is modelled as a Ornstein-Uhlenbeck process:

wt = λw(w̄ − wt)dt + σwdZw
t (3)

where λw > 0 is the speed of adjustment, w̄ is the long run mean of wind speed,
σw is the wind speed volatility, Zw

t is the standard Brownian motion and βw1,
βw2 are two positive parameters of seasonality.

2.1 Power Curve

The power curve of a wind turbine represents the relationship that links the elec-
trical power produced by a wind turbine (WT) with wind speed. Although wind
turbine manufacturers provide guaranteed power curves, the performance of a
wind turbine can vary depending on weather conditions, as well as the location
in which it operates. As a result, a power curve must be created to represent
the normal operation of each WT installed at a given site. Wind turbine perfor-
mance is then monitored and compared to performance under normal operation.
We lists the various scenarios that can influence the turbine performance.

– Cut-in speed (sL): When the wind speed is very low, the wind force on the
turbine blades is insufficient to rotate them, so the active power produced
is zero. As the wind speed increases, the wind turbine begins to rotate and
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generate power. The speed at which the turbine begins to rotate and generate
power is known as cut-in speed, and it is typically between 3 and 4 m per
second.

– Rated output speed (sM): When the wind speed exceeds the cut-in speed,
the amount of electric power output rapidly increases. However, when a cer-
tain speed is reached, the power output gets to the limit of the electric gen-
erator. Such limit is known as the rated output power and the wind speed at
which this limit is reached is called the rated output wind speed. The turbine
design is intended to limit power to this maximum level at higher wind speed.

– Cut-out speed (sH): When the speed exceeds the rated output wind speed,
the forces on the turbine structure increase and the rotor is at risk of being
damaged. Consequently, once a certain speed is exceeded, braking is used to
stop the rotor. This limit is called the cut-out speed, and when it is exceeded
the energy produced returns to zero.

The wind speed to produce energy W̃t is such that: if it is below a threshold
Wt < sL, it is equal to zero W̃t = 0 as the wind speed is modest to move the
blades; if it exceeds the threshold Wt > sH , it is equal to zero W̃t = 0 as the
gusts of wind are so intense that it requires stopping the blades for safety; if it
exceeds the threshold Wt > sM , the wind speed does not improve the rotation
of the blades which is already maximum, and so W̃t = sM . We summarize the
effective weed speed as:

W̃t = sM1(sM≤Wt<sH) + Wt1(sL≤Wt<sM ) (4)

Once the forecasting of wind speed is performed and validated, the wind turbine
power output is then computed according to the following equation, given by A.
Betz:

Pt =
1
2
CpρSW̃t

3
(5)

Betz explains the impossibility to entirely convert the kinetic energy of a mass
of air into mechanical energy. He also discovered that there is an upper limit to
the amount of kinetic energy that can be converted. Due to this reason, Betz
introduced a parameter, called the power coefficient Cp, which can be calculated
as a function of the speed ratio of the wind wake behind the rotor to the speed
ahead, and its value is Cp = 0.593. Moreover, ρ is the air density, S is the section
through which the air mass flows that depends on the diameter D of the wind
turbine, and so S = πD2

4 . Figure 1 describes the relation between the wind speed
and the power output of a turbine, where PR is the rated power of the wind
turbine.

3 Real Options Application on Wind Farm Projects

In order to value a wind farm, we hypothesize that electricity price Pe is constant
and is determined by Feed-in tariff (FiT) mechanism. The revenue that a wind
farm can obtain during its lifetime for each wind turbine are:

Rt = Pt · Pe (6)
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Fig. 1. Wind turbine power output

and therefore, the value of the project V can be obtained by discounting all the
revenues generated by selling electricity and subtracting the discounted mainte-
nance costs C (which may have a different timing from the revenues):

V = N

⎛
⎝ n∑

j=0

Rje
−δhj −

m∑
j=0

Cje
−δjz

⎞
⎠ (7)

where N is the number of turbine installed in the wind farm, h = TF

n , z = TF

m , n
is the number of discretization of revenues, m is the number of discretization of
costs, TF is the technological obsolescence of the wind farm (after TF there are
not revenues). For our applications, we assume to discretize the revenues every
hour based on wind speed simulations, while the costs with an annual interval.
Finally, we denote as K0,K1 and K2 the investment costs in order to realize
and to implement the wind farm (for example costs for concessions K0, costs of
expropriation of areas K1 and costs of building wind turbines K2). The project
will be realized at maturity T if:

sT = max[0;VT − K2] (8)

If we denote as st1 the value of option at time t1, with t1 < T , the investment
K1 will be realized if:

ct1 = max[0; st1 − K1] (9)

and the value of this investment opportunity at initial time t0 = 0 is a
compound option c0. The value of c0 may be calculated through a Monte Carlo
approach, as

c0 = e−rt1E[max(ct1 − K0, 0)] (10)
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being r the risk-free interest rate and K0 the initial investment cost. In particular,
since ct depends on st and so, on the stochastic process Vt (t ∈ (0, T ]), we
need to simulate it. This can be realized thank to a numerical Eulero scheme
implemented on a suitable function φ of wt

1, i.e.,
{

V̂t+Δ = φ
(
ŵt+Δ

)
ŵt+Δ = ŵt + λw(w̄ − ŵt)Δ + σw

√
Δ εt

(11)

where Δ is the time-step and εt is a white noise.
Consequently, the real option value (ROV) will be: ROV = −K0 + c0

4 Numerical Example

For our numerical analysis, we assume to evaluate a wind farm that consists of
N = 10 wind turbines. We list first of all the technical-natural values and after
that the parameters of real option evaluation. Regarding the technical-natural
parameters, we assume that λw = 3, βw1 = βw2 = 0.7; w̄ = 5m/s; σw =
5; D = 10m; S = 78.53m2; ρ = 1.225 kg/m3; Cp = 0.593; PR = 30 kW ; sL =
4m/s; sM = 9.8m/s; sH = 21m/s. Regarding the economic parameters, we
assume that TF = 5 years; t1 = 1 year; T = 3 years; Pe = 0.121 Euro/KWh;
δ = 0.08; C = 1000 Euro (for each turbine); r = 0.05; σv = 0.60; K0 = 5000
Euro; K1 = 40 000 Euro; K2 = 150 000. Based on these assumption, we obtain
that each wind turbine produces 173.80 MW (see Figs. 2(a)–2(b)) and multiplied
by N = 10 we obtain that the entire wind farm produces 1738 MW. So, the
value of asset becomes V = 138 448 Euro. Applying formulas (10)–(11), we
obtain that c0 = 31 576 and the real option value ROV = 26 576. Since the
ROV is positive, the management should prefer to make the investment of wind
farm. The positive result of the ROV means that the investment should be

Fig. 2. Wind speed simulation and Energy output obtained from each wind turbine.

1 Such φ is easily obtained by combining Eqs. (1) (4), (5), (6) and (7). We prefer do
not write φ explicitly for the sake of notation and readability.
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pursued since the valuation that includes the uncertainty of project performance
is advantageous for investor. If the result had been negative, the investor would
have had to reject the project because it could have implied a large possibility
of financial loss.

5 Conclusions

In this work, we have analyzed how the uncertainty of wind speed and its pre-
diction can influence the value of a wind project. Starting from the technical
characteristics of the turbine, we can determine the level of energy that can
be obtained from a wind farm. Subsequently, we have assessed the value of this
project through compound real options, considering the different costs that must
be incurred sequentially before obtaining the cash flows. Through a numerical
case, we estimated the value of this wind farm which turns out to be positive in
the context of real options.

Acknowledgments. The Authors acknowledge the financial support from the pro-
gram MUR PRIN 2022 n. 2022ETEHRM “Stochastic models and techniques for the
management of wind farms and power systems”.
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Abstract. Within the efficient markets framework, discounted stock
prices are typically represented through Brownian martingales. The pri-
mary measure for evaluating risk is the volatility of log-returns, under
the assumption that higher variability indicates greater associated risk.
The theoretical foundation of this claim stems from the characterization
of the path regularity of price process through the Lévy characterization
theorem of Brownian motion. Since this explanation lacks a financial
interpretation when considering more realistic models, such as stochastic
volatility models, it is necessary to disentangle volatility and regularity.
Replacing volatility by the Hölder regularity provides insights into mar-
ket deviations from the equilibrium of the martingale model, and - within
the Fractional Stochastic Regularity Model - contributes to identify the
“fair” volatility aimed by the market.

Keywords: Hölder exponent · Volatility · Fractional Stochastic
Regularity Model

1 Introduction

This contribution underscores the crucial distinction between volatility and reg-
ularity for the purpose of characterizing risk in financial dynamics. Volatility
quantifies the extent to which data deviate from their mean value, while regular-
ity captures the manner in which data are dispersed. In the framework of paradig-
matic Efficient Market Hypothesis (EMH) and the consequent (Brownian) mar-
tingale model, the determination of “how ” data are dispersed is uniquely dictated
by the quadratic variation of the process. Nevertheless, challenges emerge when
questioning or relaxing this model, prompting the need for a distinct consider-
ation of volatility and regularity and advising against a blanket association of
volatility with risk. The introduction of memory, triggered by positive or negative
autocorrelation, influences the level of regularity in the sequence and introduces
a potential error in the assessment of financial risk based solely on volatility,
whose value may not be influenced by autocorrelation.
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The need to neatly distinguish between volatility and regularity also arises
from the tendency of literature to support the EMH based on the commonly
observed null value of the empirical autocorrelation function of log-returns, a
well-known stylized fact. However, a null empirical autocorrelation can also result
from a time-varying pointwise regularity of log-returns, a change which is not
necessarily detected by volatility. In addition to aiding in the formulation of
more realistic models of financial dynamics, the pointwise regularity - owing to
its direct connection with the martingale model benchmark - offers insights into
market mechanisms that are not captured by volatility alone.

2 Background and Model

Some notions are recalled here which will be combined to show how regularity
enhances the informational content of volatility.

Theorem 1. [Lévy’s Characterization Theorem] Given the filtered probability
space (Ω, F , {Ft}t≥0,P), let (Xt) be a local martingale with X0 = 0. Then, the
following are equivalent:

(a) {Xt} is standard Brownian motion on the underlying filtered probability space
(b) {Xt} is continuous and {X2

t − t} is a local martingale
(c) {Xt} has quadratic variation 〈X〉2,t = t.

The equivalence between the condition of local martingale of an Ft-Brownian
motion and its quadratic variation is fundamental to justify why, in the context
of efficient markets, volatility has traditionally served as a risk indicator: accord-
ing to the Efficient Market Hypothesis (EMH) [6], if the discounted price process
behaves as a martingale, then the only governing factor influencing its random-
ness is determined by the growth of its quadratic variation, proportional to the
time interval t. The absence of alternative possibilities makes the adoption of
volatility as a risk indicator a natural choice within this framework.

Pointwise Hölder Exponent. Given the continuous real-valued stochastic pro-
cess {Zt, t ≥ 0}, its path roughness at any fixed τ > 0 is usually measured
through the pointwise Hölder exponent at τ . This is defined as [2,3]:

αZ(τ) := sup{α ∈ [0, 1] : lim sup
r→0+

r−αOscZ(τ, r) < +∞} (1)

where, for all real number r > 0 small enough,

OscZ(τ, r) := sup{|Zt′ − Zt′′ | : (t′, t′′) ∈ [τ − r, τ + r]2}

is the oscillation of {Zt} on the circular neighbourhood of τ with radius r.
For specific classes of stochastic processes, such as Gaussian processes, the
zero-one law implies the existence of a non-random quantity aZ(t) for which
P(aZ(t) = αZ(t)) = 1 [2]. When {Zt} is a semimartingale (e.g. Brownian
motion), αZ = 1

2 . Deviations from 1
2 characterize non-Markovian processes
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(whose quintessential example is the well-known fractional Brownian motion,
fBm); processes with αZ ∈ (

1
2 , 1

)
exhibit excessively high smoothness, while

those with αZ ∈ (
0, 1

2

)
display insufficient smoothness to satisfy the martingale

property. Specifically, the quadratic variation of the process can be proven to be
zero if αZ > 1

2 , and infinite if αZ < 1
2 .

Multifractional Processes with Random Exponent. When the Hölder
exponent is allowed to change through time in a deterministic or stochastic
way, a class of stochastic process, named Multifractional Processes with Ran-
dom Exponent (MPRE), can be defined, subject to some technical constraints
[3,8]. A special case of the general MPRE process is

KH,C
t = C

∫ t

−∞

[
(t − s)Hs−1/2

+ − (−s)Hs−1/2
+

]
dBs, (2)

where C is a scale parameter, (x)+ = max(x, 0) and B is the Brownian motion.
By introducing a dependence on Hs in the integrand instead of Ht, the integral in
Eq. (2) can be formulated in the conventional Itô sense. [8] establish a rescaling
limit showing that, for each fixed t, as h → 0,

h−Ht

(
KH,C

t+hr − KH,C
t

)
=⇒ C

∫ r

−∞

[
(r − s)Ht−1/2

+ − (−s)Ht−1/2
+

]
dB̃s (3)

where B̃s is a Brownian motion independent of Ht. Equation (3), known as Local
Asymptotical Self-Similarity property (LASS), states that in the neighborhood
of any point t, KH

t behaves like a fBm with Hurst-Hölder exponent Ht.

(Rough) Fractional Stochastic Volatility Model (RFSV). Introduced by
[7] and based on the previous model defined by [5], the Rough Fractional Stochas-
tic Volatility (RFSV) model of the price process St reads as:

{
dSt = μtStdt + StσtdBt

σt = exp(Xt)
(4)

where μt is the drift term, Bt is a Brownian motion and Xt is a fractional
Ornstein-Uhlenbeck (fOU) process satisfying

dXt = α(m − Xt)dt + ρdBH
t , (5)

with m ∈ R, ρ and α positive parameters and with Bt and BH
t correlated in

general. [1] replace the stochastic process in the first line of Eq. (4) by an MPRE
driven by a Hölder exponent which follows a proper fOU process related to dXt

by a change of parameters. They show that the stochastic Hölder parameter of
the MPRE can replace the log-volatility in the second equation of model (4).
This sets up the Fractional Stochastic Regularity Model (FSR), defined as

{
St = KH,C

t

Ht = m′ + ρ′ ∫ t

−∞ e−α(t−s)dBH
s

(6)
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where St denotes the log-price of a stock or an index, Ht is the unique pathwise
solution of the fOU process of line 2 of (6). Denoting by n the length of the
sampled version of MPRE, m′ = − 1

log n ·m+ log C
log n and ρ′ = − 1

log n ·ρ. Thus, Eqs.
(4) and (6) state that a relation exists between volatility σt and regularity Ht

when the log-price is modelled by an MPRE and the log-volatility is modeled by
a fOU process. In this case, also the Hölder exponent follows a fOU process with
parameters which are linear transforms of those used to model the log-volatility.
This directly follows from Eq. (3), which entails (see [1]) (Table 1).

log σt,n = logC − Ht log n. (7)

Figure 1 exhibits the goodness of fit of relation (7) for six global financial indexes:
Dow Jones Industrial Average (DJI, USA), Nasdaq Composite (IXIC, USA),
Eurostoxx50 (SX5E, Europe), Footsie 100 (UKX, United Kingdom), Hang Seng
(HSI, Hong Kong) and Straits Times (STI, Singapore). Ht was estimated as in
[1,9].

Table 1. Data set and main statistics of the estimated Ht

DJI IXIC SX5E UKX HSI STI

Start date 1992-01-02 1971-02-05 2000-01-03 1984-01-03 1986-12-31 1987-12-28

End date 2021-12-28 2021-12-28 2021-12-31 2021-12-29 2021-12-29 2022-01-28

# Obs (n) 7,555 12,470 5,730 9,599 5,955 8,409

Mean 0.540 0.512 0.524 0.524 0.512 0.533

St. Dev. 0.0540 0.0549 0.0553 0.0464 0.0498 0.0536

Range 0.308–0.688 0.314–0.670 0.345–0.675 0.329–0.652 0.269–0.622 0.333–0.665

3 Meaning and Financial Interpretation of the
Relationship Between Volatility and Regularity

As discussed in the previous section, the Hölder regularity offers insight into
the extent to which the process diverges from the martingale property with the
baseline value Ht = 1/2. Substituting the Hölder exponent for the volatility
process is justified by this characterization and brings several advantages:

– Unlike volatility, the Hölder exponent is sensitive to autocorrelation irrespec-
tive of the scale parameter. Volatility fails to differentiate between data with
high or low correlation when appropriate scale parameters are applied, lead-
ing to instances where data with identical volatility levels may exhibit varying
degrees of correlation. This incongruity is problematic if volatility is intended
to assess financial risk. Conversely, the Hölder parameters of data with dif-
fering autocorrelations, are different irrespective of the scale.
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Fig. 1. Realized log volatility versus estimated Hölder exponents (one-day log-changes).
X-axis: estimated Hölder exponent; Y -axis: estimated log volatility (black dots), the-
oretical relation given by Eq. (7) (red line), 99% prediction bounds (dashed red lines).
Ht and realized volatility are estimated with a rolling window of 20 trading days.

– Volatility serves as a relative measure, indicating whether a market or asset
currently displays more or less variability compared to past periods. However,
it does not have the capacity to determine the “optimal” or “fair” level of
volatility, one that aligns with an efficient market. In contrast, the Hölder
parameter, ranging from 0 to 1, equals 1/2 only when the process aligns with
Brownian motion, a key aspect of the Efficient Market Hypothesis (EMH).

– As markets naturally gravitate towards the equilibrium state associated with
Ht = 1/2 following deviations, the distance |Ht − 1/2| becomes a significant
indicator for determining optimal buying or selling times. The dynamics of
Ht are expected to exhibit a fluctuating trend around the value 1/2, with the
rate of return to this equilibrium increasing as the deviation widens. Essen-
tially, this mechanism provides a stochastic formalization and a theoretically
grounded explanation for the commonly known trader adage “What goes up,
must come down.”

– When financial prices exhibit local behavior resembling a fBm (as seen in
processes like MPRE), the relationship between volatility and the Hölder
exponent can be expressed through Eq. (7). Consequently, using the Hölder
parameter instead of volatility does not result in any loss of information.

Table 2 provides a summary of the relationship between the Hölder exponent
and the martingale condition, offering a financial interpretation of this connec-
tion [4]. Unlike volatility, the Hölder exponent offers a comprehensive assessment
of market dynamics, addressing both the magnitude (how much) and character
(how) of price variability. It provides insights into the deviation from equilib-
rium, represented by the value Ht = 1/2, which acts as a benchmark for a
semi-martingale. The pointwise Hölder exponent serves as a descriptor of the
prevailing dynamics of the discounted price process at a specific moment, dis-
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tinguishing among a momentum market (linked to bullish phases or speculative
bubbles), a sideways market (indicative of directionless efficiency), and a reversal
market (resulting from rapid buy-and-sell activities, often following significant
price adjustments or periods of uncertainty).

Table 2. Financial interpretation of Ht

Ht Stochastic patterns Agents’ beliefs Market patterns

> 1
2 Persistence - Smooth

paths - 〈X〉2,t = 0

New information confirm
outstanding position

“Low” volatility - Momentum
Overconfidence - Underreaction

= 1
2 Independence -

Martingale - 〈X〉2,t = t

Information fully
incorporated by price

“Normal” volatility - Sideways
market - Efficiency

< 1
2 Mean-reversion - Rough

paths - 〈X〉2,t = ∞
New information disrupt
outstanding position

“High” volatility - Reversals -
Overreaction

This interpretation suggests that the apparently conflicting paradigms of
Rationality and Behavioral Finance can coalesce within a comprehensive frame-
work of bounded rationality, providing a more nuanced understanding of market
dynamics. Within this framework, the pointwise Hölder exponent explicitly iden-
tifies when rationality transitions to irrationality, a shift that volatility fails to
capture because of its insensitiveness to changes in the sign and intensity of
autocorrelation. In this sense, assuming the FSR model, the fair volatility is the
value corresponding to the value 1/2 of the Hölder exponent, via relation (7).
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Abstract. Since the seminal contribution of Yaari (1965), who showed
that individuals with no bequest motive should convert all their retire-
ment wealth into annuities, a number of papers have analysed the annu-
itization decision under the so-called all or nothing institutional arrange-
ment, where immediate lifetime annuities are purchased just at a one
point in time. In this paper, we investigate the effect of linear bequest
motives on the annuitization decision for a retired individual who maxi-
mizes the market value of future cash flows. Finally, we present numerical
examples analyzing optimal annuitization under strong or weak bequest
motives.

Keywords: optimal stopping · annuities · bequest motives

1 Introduction

An immediate annuity is an insurance product that pays the annuitant a regular
income for as long as he is alive, in exchange for a premium. The annuitization
decision has important economic implications because it has a direct effect on the
financial resources to support consumption in retirement age. The purchase of an
annuity helps individuals to manage the risk of outliving their financial wealth,
but it is usually an irreversible transaction, and most annuity contracts impose
steep penalties if policyholders want to access their money in the early years of
the contract. The natural alternatives to annuitization are the so-called do-it-
yourself strategies, i.e. the individual asset allocation amongst various financial
investment classes. However, it should be taken into account the investment risk
as well as the longevity risk to which individuals would be exposed.

Since the seminal paper by Yaari ([10], the study of the annuitization decision
has been the subject of a whole research field (see [3–7,9] among others).

This paper would contribute to this literature by investigating to what extent
linear bequest motives (see e.g. [6]) affect the annuitization decision. At this aim,
we consider an individual whose retirement wealth is invested in a financial fund
which eventually must be converted into an annuity. As in [7], we consider two
different mortality forces: a subjective one, used by the individual to weight

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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for Actuarial Sciences and Finance, pp. 67–73, 2024.
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future cashflows (denoted μ), and a objective one, used by the insurance com-
pany to price the annuity (denoted μ̂). The interplay between these two different
mortality forces contributes to some key qualitative aspects of the optimal annu-
itization decision. Before annuitization the individual’s wealth is invested in the
financial market, and at the time of an annuity purchase, the entire wealth is con-
verted into a lifetime annuity. The central idea is to compare the value deriving
from an immediate annuitization with the value of continuing the investment in
the financial market. The optimization criterion pursued by the individual is the
maximization of the present value of future expected cash-flows, via the optimal
timing of the annuity purchase. In particular, the individual takes explicitly into
account the presence of linear bequest motives, with a parameter that measures
its strength.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
financial and actuarial assumptions and then the optimal annuitization prob-
lem. In Sect. 3 we perform its analytical study providing the explicit solutions.
In Sect. 4 we present some numerical examples to discuss how the presence of
bequest motives affects the annuitization decision.

2 Problem Formulation

In this study we are interested in the portion of the individual’s wealth dedicated
to retirement needs. Such wealth is invested in a financial fund which eventually
will be converted into an annuity. The value (Xt)t≥0 of the financial fund is mod-
elled by a stochastic process on a filtered probability space (Ω,F , (Ft)t≥0,P).
Letting (Bt)t≥0 be a Brownian motion adapted to (Ft)t≥0, the fund’s value
evolves according to{

dXx
t = (θ − α)Xx

t dt + σXx
t dBt, t > 0

Xx
0 = x ≥ 0,

(1)

where θ is the average continuous return of the financial investment, α is the
constant dividend rate and σ > 0 is the volatility coefficient.

We consider an individual whose age η ≥ 0 is fixed at time 0. At time t ≥ 0
the individual uses a constant subjective mortality force μ ∈ R+ to compute
her self-assessed life expectancy zpη = e−μz, i.e. the subjective probability to
survive z years. Furthermore, the probability that the individual dies during
the next z years is zqη+t = 1 −z pη+t. The insurance company instead relies
on a so-called objective survival probability function z p̂η+t = e−μ̂z where μ̂ ∈
R+ is the constant objective mortality force. The different survival probability
functions account for the imperfect information available to the insurer on the
individual’s risk profile. The value at time t > 0 of a unitary life annuity is
given by âη+t =

∫ ∞
0

e−ρ̂u
up̂η+tdu. Here ρ̂ is the interest rate guaranteed by the

insurer. The individual evaluates the expected present value of a unitary lifetime
annuity by using the coefficient aη+t =

∫ ∞
0

e−ρu
upη+tdu. In case the annuity is

purchased at time t, the constant cash flow paid by the insurer is Pt = Xt−K
âη+t

,

where the constant K is either a fixed acquisition fee (K > 0) or a tax incentive
(K < 0).
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The optimisation criterion is the maximization of the present value of future
expected cash-flows. Let τd : Ω → R+ be the residual lifetime of the individual
of age η (τd is assumed to be independent of the Brownian motion for all t ≥
0). Letting τ be the time of the annuity purchase, the value function of the
optimisation problem is defined by

V (x) = sup
τ≥0

E

[∫ τd∧τ

0

e−ρtαXx
t dt + 1{τd≤τ}e−ρτdνXx

τd
+ Pτ

∫ τd

τd∧τ

e−ρtdt

]
, (2)

where ρ is the individual’s constant discount rate, ν ∈ [0, 1] measures the strength
of the bequest motives. Before annuitization, i.e. for t < τ , the individual receives
the dividends from the fund at rate α. After annuitization, i.e. for t > τ , she gets
the annuity payment at a constant rate Pτ . In case the individual dies before
the time of the annuity purchase, i.e. on the event {τd ≤ τ}, she leaves a bequest
equal to her wealth.

The optimisation problem (2) may be rewritten as follows

V (x) = sup
τ≥0

E

[ ∫ τ

0

e−(ρ+μ)t(α + μν)Xx
t dt + e−(ρ+μ)τδ(Xx

τ − K)
]
, (3)

with δ := (ρ̂+μ̂)
(ρ+μ) . To ensure the finiteness of the value function, throughout this

paper, we assume that

Assumption 1. θ − α − μ − ρ < 0

3 Analysis of the Optimal Stopping Problem

To analyze problem (3), we rely on the geometric approach to the optimal stop-
ping problem (see [2]).

Our first task is to put the optimal stopping problem (3) in the form

sup
τ

E

[
e−wτG(Xτ )

]
,

where w is a discount rate and G(·) is a reward function.

Noticing that E

[ ∫ ∞
0

e−(ρ+μ)t(α + μν)Xx
t dt

]
= βx where β := α+μν

ρ+α+μ−θ , we

may rewrite (3) as follows

V (x) = βx + sup
τ≥0

E

[
e−(ρ+μ)τ

(
(δ − β)Xx

τ − δK
)]

(4)

Therefore, we limit ourself to study the problem

v(x) = sup
τ≥0

E
[
e−(ρ+μ)τG(Xx

τ )
]

(5)
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where
G(x) := (δ − β)x − δK. (6)

As usual in optimal stopping theory, we let C =
{
x ∈ R+ : v(x) > G(x)

}
and

S =
{
x ∈ R+ : v(x) = G(x)

}
be respectively the so-called continuation and

stopping regions since, as long as Xt ∈ C, it is not optimal to stop the diffusion.
Assumption (1) and standard optimal stopping results (see [8, Cor. 2.9, Sect. 2])
guarantee that C is an open connected set and τ∗ := inf {t ≥ 0 : Xx

t ∈ S} is
optimal for v(x), i.e. the optimal stopping time is the first entry time of X in
S. Define the infinitesimal generator L of X by (Lu)(x) = 1

2 σ2x2u
′′
(x) + (θ −

α)xu
′
(x), for any u(·) two time continuously differentiable. Then (see e.g. [1],

pp. 18–19), there exist two linearly independent, strictly positive solutions of the
ordinary differential equation Lu = (ρ + μ)u, i.e. ψ(x) = xγ+ and φ(x) = xγ−

where γ+ and γ− solve

1
2

σ2γ(γ − 1) + (θ − α)γ − (ρ + μ) = 0.

Notice that γ+ > 1 and γ− < 0. As in [2], we define the strictly increasing
function y = F (x) = ψ(x)

φ(x) = xγ+−γ− , together with its inverse function F−1(y) =

y
1

γ+−γ− , and set

Ĝ(y) :=
{

0 if y = 0,(
G
φ ◦ F−1

)
(y) if y > 0.

(7)

The following result due to Dayanik and Karatzas (see [2]) relates the convexity
of the function Ĝ to the form of the continuation region and computes the value
function.

Theorem 2. Ĝ(y) is strictly convex if and only if (L − (ρ + μ))G(x) > 0.
Moreover, let Q(·) be the smallest nonnegative concave function that dominates
Ĝ(y). Then v(x) = φ(x)Q(F (x)).

In our case,

Ĝ(y) = (δ − β)y
1−γ−

γ+−γ− − δKy
−γ−

γ+−γ− , y > 0. (8)

Define
y1 =

[
− δKγ−

(δ − β)(1 − γ−)

]γ+−γ−
,

and
y2 =

[
− δKγ−γ+

(δ − β)(1 − γ−)(γ+ − 1)

]γ+−γ−
.

It is easy to see that y1 < y2. Depending on the values of the model parameters,
we distinguish the following cases
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1. Case δ > β

(a) If K ≥ 0 then Ĝ
′
(y) > 0 for y > y1 and Ĝ′′(y) < 0 for y > y2. The

smallest nonnegative concave function Q(y) that dominates Ĝ(y) is

Q(y) =
{

m∗y if y < y∗,
Ĝ(y) if y ≥ y∗,

where m∗ and y∗ are solutions of the system
{

Ĝ(y) = my

Ĝ
′
(y) = m.

In other

words, m∗ and y∗ are such that the line y = m∗y is tangent to Ĝ(y) at
the point y∗. Returning to the variable x, we find that the continuation
and stopping regions are respectively C = (0, x∗) and S = [x∗,∞), with
x∗ = δK

(δ−β)
γ+

γ+−1 .

(b) If K ≤ 0 then Ĝ
′
(y) > 0 and Ĝ′′(y) < 0 for all y > 0. Therefore,

S = [0,∞), i.e. the annuity is immediately purchased whatever is the
initial wealth x.

2. Case δ < β

(a) If K ≥ 0 then Ĝ
′
(y) < 0 and Ĝ′′(y) > 0 for all y > 0. Therefore,

C = (0,∞), and it is never optimal to purchase an annuity.
(b) If K < 0 then Ĝ

′
(y) > 0 for y < y1 and Ĝ′′(y) > 0 for y > y2. The

smallest nonnegative concave function Q(y) that dominates Ĝ(y) is

Q(y) =
{

Ĝ(y) if y ≤ y1,

Ĝ(y1) if y ≥ y1.
(9)

In other words, for y ≥ y1 the function Q is an horizontal line. The
continuation and stopping regions are respectively C = (x∗∗,∞) and S =
[0, x∗∗], with x∗∗ = F−1(y1) = δK

(δ−β)
γ−

1−γ−
.

4 Numerical Application

Here we present a numerical application of the results obtained in the previous
sections. Fix the following set of parameters α = 2%, θ = 7%, σ = 6%, ρ = ρ̂ =
5%. Notice that Assumption 1 is satisfied.

In Fig. 1.(a) we look at case 1.(a) and the optimal stopping threshold x∗

between the continuation and stopping regions is plotted when the parameter ν
increases, in three different mortality scenarios: μ = 1

20 , μ̂ = 1
18 , μ = μ̂ = 1

20 ,
μ = 1

18 , μ̂ = 1
20 . Notice that x∗ increases as ν increases, that is as the strength

of bequest motives increases the continuation region enlarges. If μ < μ̂ (> μ̂)
then the individual believes she is healthier (respectively unhealthier) than the
average. For a fixed value of ν, moving from the first to the third scenario x∗

increases, and then the continuation region becomes progressively larger.
In Fig. 1.(b) we look at case 2.(b) and the optimal stopping threshold x∗∗ is

plotted when the parameter ν increases, in the three different scenarios. Notice
that, in all scenarios, x∗∗ decreases as ν increases, i.e. the continuation region
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progressively enlarges as the strength of the bequest motives increases. For a
fixed value of ν, moving from the first to the third scenario x∗∗ decreases, and
then the continuation region becomes progressively larger.

Fig. 1. The threshold x∗ (a) and x∗∗ (b) in three different mortality scenarios

Finally, notice that if K = 0, then either S = [0,∞) or C = (0,∞). In
particular, letting for example μ = μ̂ = 1

20 , we find that if ν < 0.6 then S =
[0,∞), and if ν > 0.6 then C = (0,∞). In other words, in case of actuarially
fair annuities and zero acquisition fee/tax incentive, if the strength of bequest
motives is low enough then the individual immediately purchases the annuity
as Yaari ([10]) found. On the other hand, if the strength of bequest motives is
high enough then Yaari’s result does not hold anymore and the individual never
purchases the annuity.

In sum, these numerical examples show that the continuation region enlarges
as the strength of bequest motives increases. This means that consistent bequest
motives may explain the scarce propensity to purchase annuities.
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Abstract. In this paper, we develop a longevity swap de-risking strat-
egy to mitigate the impact of the longevity risk related to payments that
depend on how long individuals are going to live. In order to ensure the
development of an effi-cient capital market for longevity risk transfers,
the longevity hedge would allow longevity risk to be shared efficiently and
fairly between the parties. Our results show that the fixed proportional
risk premium that the counter-party requires to take on the longevity
risk varies by changing the mortality model adopted to represent the
evolution of the longevity of the population underlying the swap and
that, as the risk premium changes, the total transfer of longevity risk
may become inefficient.

Keywords: longevity risk · de-risking strategy · longevity swap

1 Introduction

Every institutions and governments making payments that depend on how long
individuals are going to live face with longevity risk, the risk that individuals
live longer than expected. In particular, defined benefit pension plan sponsors,
annuity providers are transferring these obligations, to life (re)insurers via insur-
ance and capital solutions such as for instance buy-outs, buy-ins, longevity swaps
and so on. Nevertheless, as the demand of longevity risk protection increases, the
key question consists in capability of (re)insurance sector to cope with future
increasing potential liabilities of the longevity risk exposures [2,4]. The inno-
vative capital market solutions for transferring longevity risk consist in several
forms of transactions, each differing in the types of risk transferred and the
categories of risk created, including longevity (or survivor) bonds, longevity (or
survivor) swaps, mortality (or q-)forward contracts, and reinsurance sidecars
(also called strategic reinsurance vehicles). According to Reinsurance Group of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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America (RGA) that has completed a new US$1.7 billion longevity risk transfer,
the longevity swap arrangement covers roughly 11,000 single premium immediate
annuity contracts, transferring the longevity related risk away [7].

A longevity swap transaction is based on periodic fixed payments that are
paid to the swap counterparty in exchange for periodic payments according to
the difference between the actual and expected pension or annuity mortality
experience. When the longevity swap is index-based, the mortality experience is
represented by the standardised population cohorts (“index swaps”). De-risking
strategies may broaden, above all by considering that risk-mitigation instruments
should not involve material basis risk that is intrinsically inherent the longevity
hedges. Furthermore, regulatory restrictions could affect the technical forms and
options. In particular, the feasibility of the de-risking transactions depends on
the appropriate cost of the longevity risk transfer. It is well-known that the
degree of the cost-efficient longevity de-risking solutions may stimulate or on
the contrary deflate the market’s potential for further risk transfers.

In this paper we investigate how the fixed proportional risk premium that
the counterparty requires to take on the longevity risk varies with the underlying
mortality model adopted. Our results show that, as the risk premium changes,
the transfer of longevity risk may become more or less effective.

The remainder of the paper is organized as follows: in Sect. 2 we introduce
de-risking strategy based on longevity swap and define the optimization prob-
lem that determines the optimal proportion of risk that should be transferred.
Section 3 shows the main findings of the numerical application. Section 4 con-
cludes.

2 De-risking Strategies

Let us consider a portfolio of annuitants all aged x0 at time 0, we define spx,t

the probability that an individual alive at time t, with age x, survives to age
x + s at year t + s, and sp̂x,t its conditional expected value. We denote with
v = 1

1+r the discount factor with the discount rate r (assumed to be deter-
ministic), we define the conditional expected value of a life annuity a(x(t)) as
E[a

k(x)
|px,t,2 px,t, . . . ] =

∑ω−x
s=1 vs

sp̂x,t.
Let A0 and V0 the asset and portfolio expected liabilities at time 0. The initial

unfunded liabilities, UL0, are given by V0 − A0. The insurer benefit liability at
time t, is the discounted expected value of future benefits, with Bt the total
annual benefit in t. Bt is given by the product of the individual benefit b, assumed
to be equal for all the insureds, and the number of survived annuitants, nt:
Bt = b · nt. Let Jt be the return on assets from t − 1 to t at j(t − 1, t) rate, this
implies that Jt = At−1 · j(t − 1, t). Denoting Kt the capital flow in the year t,
the portfolio asset is given by:

At = At−1 + Jt + Kt − Bt (1)

while ULt, without de-risking strategy, is obtained as follows:

ULt = Vt − At−1 − Jt + Bt (2)
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If a time t the unfolded liabilities are greater than zero, ULt > 0, the insurer
experiences a portfolio loss and vice versa. Furthermore, we assume that, the
insurer amortizes the unfunded liability year by year, that is Kt = ULt ∀t.

We consider a de-risking strategy for longevity risk based on a longevity swap
(LS), written on living policyholders, with hedge cost HCLS . We denote with
inLS

t = max(KLS
t , 0) and outLS

t = max(−KLS
t , 0) the present value of capital

inflows and capital outflows, subject to constant penalty factors ψ1 and ψ2, respec-
tively. ψ1 represents the opportunity cost due to the need to increase the capital
and ψ2 the opportunity cost due to lock capital that could have been invested
otherwise. The total portfolio cost TPCLS of the strategy is obtained as:

TPCLS = HCLS +
ω−x∑

t=1

inLS
t (1 + ψ1) − outLS

t (1 + ψ2)
(1 + r)t

(3)

Denoting with HCFLS
t the hedging cash flows from de-risking strategy, the

unfunded liabilities with the de-risking strategy is given by:

ULLS
t = Vt − At−1 − Jt + Bt − HCFLS

t (4)

We denote with TULLS the total unfunded liabilities over the entire time
horizon of the de-risking strategy based on LS:

TULLS =
ω−x∑

t=1

ULLS

(1 + r)t
(5)

We consider a plain vanilla longevity swap written on n0 survivors. We define the
fixed leg of longevity swap at time t as b · n0 ·t p̂x(1 + π) (where π is the fixed
proportional risk premium that the counterpart requires to take on longevity risk)
and the floating leg as b·n0 ·tpx. At each t, t = 1, 2, . . . the LS payoff is given by the
difference between the floating and the fixed leg: b·n0[tpx−tp̂x(1+π)], t = 1, 2, . . .

Setting π so that the swap value is zero at the inception date, the swap price is
null, HPLS = 0. With a hedging proportion of hLS , the hedging cost is equal to:

HCLS = −hLS · b · n0 · E
[

ω−x∑

t=1

d(0, t)[tpx −t p̂x(1 + π)]

]

(6)

Following [6], the optimal hedge level for the de-risking strategy can be obtained
solving an optimisation problem where the insurer aims to minimizing the Con-
ditional Value-at-Risk of the total unfunded liabilities at a fixed confidence level
α, CV aRα(TULLS), with respect to hLS , subjected to the constraint that the
total cost does not exceed a fixed amount c. This is formalised in the following
non-linear optimization problem:

min
hLS

CV aRα[TULLS ]

sub
E[TPCLS ] ≤ c
E[TULLS ] ≤ 0
0 ≤ hLS ≤ 1

(7)
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As already noted in [6], the de-risking strategy is strongly influenced by its
cost (which depends on π). On the other hand, the cost of the LS is also related
to the assumptions on the evolution of mortality in terms of both trend and
volatility. Therefore, the choice of the mortality model is a determining factor in
defining the optimal de-risking strategy. In the following numerical application,
we verify how the optimal risk transfer rate hLS is influenced by the choice
of the underlying mortality model, and how the existence of an information
asymmetry on mortality trends between protection seller (short position on LS)
and protection buyer (long position on LS) is crucial.

3 Numerical Application

We consider a portfolio of immediate temporary life annuities (with term
T = 20), written on a cohort of males all aged 65 at issue (t = 0) with
n0 = 10, 000. For sake of simplicity we assume b = 1, so Bt = nt. Expenses and
taxes are not considered in the valuation. The single premium, ΠX , is deter-
mined according to the Standard Deviation Principle (ΠX = E[X]+λ ·SD[X]).
We fix λ at 20%. We consider two different mortality models, the traditional
Lee-Carter model [5] (LCA in the following) and the Lee-Carter model includ-
ing a frailty factor proposed by [3] (denoted with ATFLCA). We estimate LCA
and ATFLCA models for English 50–90 aged male population. For LCA model,
we used data about death rates and exposures to risk only and we refer to the
Human Mortality Database. For ATFLCA model, we also used data relating to
the co-morbidity trend in the population, and we referred to the English Lon-
gitudinal Study on Ageing (ELSA) [1]. Performing 10,000 simulation, we obtain
the evolution of the ULt, the total unexpected losses, TUL, and the total port-
folio costs TPC, without hedging. We then introduce the optimization problems
setting a constraints for E[TPC]: the maximum level c for the expected total
cost related to strategy j is set in relation to its initial value (without hedging):
c = 0.5 · E[TPC]. The following assumption are adopted in the evaluations:

– the initial asset, A0, are equal to the total portfolio single premium;
– we assume a flat rate of return on asset (j(t − 1, t) = r = 0.02 ∀t);
– the penalty factors in the TPC are: ψ1 = ψ2 = 0.2.

Adopting a demographic technical basis determined through the LCA model
(see Table 1 columns 2 and 3), the initial portfolio liabilities are: V0 = 168, 102
while the total portfolio single premium, P , are: 168,810. The risk premium of
the longevity swap, π, is set at 0.421%. This value was determined consistently
with the standard deviation principle adopted for the determination of the single
premium. Without hedging the E[TUL] is negative, denoting an expected profit,
but the portfolio is characterized by a positive CV aR99.5%[TUL] (with an aver-
age of the losses beyond the V aR at 99.5% of 8,239.21. The penalties ψ1 and
ψ2 strongly reduce the profit, but E[TPC] is still negative. Results show that
the optimal strategy minimizing CV aR99.5%[TULLS] is obtained with LS share
equal to 46.6%. (partial risk transfer). When a hedging strategy is introduced,
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Table 1. Results with no hedging and swap strategies minimizing CV aRα[TULLS ]:
LCA scenario (second and third columns) and ATFLCA scenario (forth and fifth
columns). Results with swap strategy minimizing CV aRα(TULLS) in presence of
asymmetric information: ATFLCA scenario (sixth column).

LCA scenario ATFLCA scenario Asymm. inf.

No hedging Hedging No hedging Hedging Hedging

πLS 0.421% 1.580% 0.421%

hLS 0.0% 46.6% 0.0% 42.9% 100.0%

HCLS 0.00 325.76 0.00 1,122.84 697.29

E[TUL] –707.71 -381.95 –2,647.99 –1,525.15 –1,950.70

CV aR99.5%[TUL] 8,239.21 4,490.62 29,712.79 17,277.74 –1,183.74

E[TPC] –96.00 –48.00 –357.91 –178.96 –1,465.93

E[TUL] is increased (but still negative) while the CV aR99.5%[TUL] is almost
halved. The expected total cost (E[TPC]) is also increased, but still negative.

Adopting a demographic technical basis determined through the ATFLCA
model (see Table 1 columns 4 and 5), the initial portfolio liabilities are: V0 =
167, 595 while the total portfolio single premium, P , are: 170,242. Without
hedging the E[TUL] is negative, but the portfolio is characterized by a very
high CV aR99.5%[TUL], as a consequence of the high variability of the death
probability simulated with the ATFLCA model. As a consequence, the E[TPC]
is strongly increased even if still negative. Results show that the optimal
strategy minimizing CV aR99.5%[TULLS] is obtained with LS share equal to
42.9% (partial risk transfer). When a hedging strategy is introduced, E[TUL] is
increased (but still negative) but the CV aR99.5%[TUL] is drastically reduced.
The expected total cost (E[TPC]) is still negative but an half than in the absence
of LS.

The last case we consider is one in which the protection seller (short position
on LS) and the protection buyer (long position on LS) have different information
on the insured population (see Table 1 column 6), so that the former considers
appropriate to adopt the LCA model (and price the swap accordingly), while
the latter considers the ATFLCA model more appropriate and determines the
optimal de-risking strategy accordingly. Results show that the optimal strategy
minimizing CV aR99.5%[TUL] is obtained with LS share equal to 100% (total
risk transfer). E[TUL] is increased but still negative (implying a profit)) but the
CV aR99.5%[TUL] is totally reduced and becomes negative. The expected total
cost (E[TPC]) is more negative, which implies an improvement of the annuity
provider’s position.
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4 Conclusions

The aim of this paper is to analyse how de-risking strategies based on longevity
swaps are affected by their cost, expressed as a fixed proportional risk pre-
mium that the counterparty requires to assume longevity risk, with a focus on
the choice of the underlying mortality model. The mortality models considered
are the Lee-Carter model and its extension including a frailty factor (ATFLCA
model). Our results show that different mortality models imply a different risk
assessment of an annuity portfolio. If both counterparties of the longevity swap
assume the same mortality model, the cost of the de-risking strategy increases
with the portfolio’s riskiness and the optimal strategy for the annuity provider
(protection buyer) is to transfer only part of the longevity risk to the protec-
tion seller, with the share depending on the model adopted. If we assume that
the protection seller and the protection buyer have different information about
the insured population, so that the former considers it appropriate to adopt the
Lee-Carter model (and prices the swap accordingly) while the latter considers
the ATFLCA model more appropriate, de-risking is more effective and optimal
strategy is achieved through a total transfer of longevity risk.
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Abstract. Cyber insurance is a crucial tool for managing risks associ-
ated with cyber threats. A challenging task for insurance companies lies
in pricing cyber risk. Our study is motivated by the reasonable assump-
tion that firms entering into cyber insurance contracts face diverse cyber
threats in terms of types and magnitude. Considering these differences
ensures that premiums align with the actual risk exposure of the insured.
The study discusses this approach proposing a case study based on the
Chronology of Data Breaches provided by the Privacy Rights Clearing-
house.

Keywords: cyber risk · cyber insurance · premium · data breaches

1 Introduction

In contemporary society, our dependence on information systems offers signif-
icant opportunities but also brings new risks. Cyber insurance emerges as a
key tool for managing these risks. Insurers not only provide the opportunity to
relieve insureds from the need to accumulate capital for handling catastrophic
events, but they also have the potential to incentivize appropriate cybersecurity
measures through premiums and proactive security screening. Over the past five
years, the worldwide cyber insurance market has tripled in size and projections
indicate a further increase [1]. This industry faces unique challenges and obsta-
cles that are not commonly encountered in traditional insurance markets, such
as addressing the correlation of risks, managing the geographical dispersion of
risk and dealing with the lack of historical and actuarial data [2]. Several papers
extensively examine the relevant literature on cybersecurity insurance, research
and practice, in order to draft the current landscape and present the trends,
among the others [2,3]. Very insightful contributions concern the possibility of
transferring cyber risk through insurance-linked securities (see [5]). A challeng-
ing task for insurance companies concerns the pricing of cyber risk even due to
the lack of comprehensive data on security breaches and losses. Information on
the current industry practices for pricing risks is available in [4]. Remarkable
contributions on the topic of insurance policies pricing are given in [6–8].
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Our study is motivated by the reasonable assumption that a firm signing
a cyber insurance contract faces different cyber threats in terms of types and
magnitude. Taking into account these differences, enables more precise pricing of
cyber risk and guarantees that premiums align with the actual risk exposure of
the insured. This approach allows to mitigate the risks associated with underin-
surance or overinsurance, thereby minimizing the potential for premium leakage.
The rest of the paper is structured as follows. Section 2 focuses on the pricing
methodology. Section 3 discusses a case study and Sect. 4 concludes.

2 Pricing Cyber Risk

The standard assumptions of classical actuarial techniques are not as applicable
to price cyber risk. In actuarial mathematics a standard model is the frequency-
severity approach, also called collective risk model [9]. Despite the limitations
of this approach in the context of the quantification of cyber risk, in any case
it can be customized to account for cyber risk-at least as a first approximation.
Let us consider a policy covering a given risk. During the policy year, a random
number N (frequency) of claims will be recorded. Each claim will cause a random
loss, Lk k=1, 2, 3,...(severity), to the insured. The insurer will assess the claim
amount Yk for claim k. In case of partial cover we have Yk < Lk, while Yk = Lk

in case of full compensation.
Referring to a single policy, the total payout of the insurer X (aggregate

claim amount) during the policy year, is defined as follows: X = 0, if N = 0 and

X =
N∑

k=1

Yk, N > 0 (1)

The equivalence premium (fair premium) Π is given by the expected value of
the insurer’s payout E[X]:

Π = E[X]. (2)

Usually the following assumptions hold: the random variables Lk, k = 1, 2,...,N,
are independent of the random number N and the random variables Lk, k = 1,
2,...,N are mutually independent and identically distributed. Typically, insurer
adds a safety loading to the fair premium thus obtaining the so-called net pre-
mium, that is, before loading expenses. Resulting principles are [10]:

the expected value principle, Pev = (1 + α)Π;
the variance principle, Pvar = Π + αV ar(X);
the standard deviation principle, Psd = Π + α

√
V ar(X);

the semistandard deviation principle, Pssd = Π + α
√

E{[max(0,X − E(X)]2}
where α > 0 is a constant.

Other premium principles are defined via utility theory and incorporate the
attitude towards risk of the insurer. One example is the exponential premium
principle. Given an appropriate constant ρ > 0, we have Put = 1

ρ log[E(eρ·X)].
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Another principle of the premium assessment is based on the quantiles of the
distribution of X and is given by PQ(ε) = F−1

X (1−ε) where F is the distribution
function of X and ε ∈ (0, 1) is the confidence level. It is the quantile of order
(1 − ε) of the loss distribution and this means that the insurer wants to get the
premium that covers (1 − ε) · 100% of the possible loss. A reasonable range of
the parameter ε is usually from 1% to 5%.

Whatever is the principle to be used for the premium assessment, we need to
make realistic assumption on the distribution of both the number of claims N
and the claim amounts Y1, Y2, ....., YN . In the following, we consider two possible
solutions. In the first case, the insurer takes into account that different claims
can be caused by different type of incidents. This approach is described in Sect. 3.
The second solution consists in estimating the payout of the insurer considering
the distribution of the total aggregate claim amount X.

In order to give an example, in the following we assume that the insurance
company prices the risk that a firm may incur financial losses as a result of a
data breach which is the main cause of cyber incidents [12].

3 An Illustrative Example

Privacy Rights Clearinghouse (PRC) is a nonprofit organization focusing on data
privacy rights and issues. Their Chronology of Data Breaches in the US [11]
includes description and type of both the breach and the breached entity, along
with the breach severity, measured in terms of the number of breached records,
when available. For a detailed description of this dataset see [13]. We restrict
our analysis to the more recent data (breaches reported after the 1st of January,
2010) because they could better represent the current cyber threat situation; we
also select only breaches with complete information on breach sizes and cause.
In some previous studies [13,14] we investigated the causes of data breaches
and found significant differences in the distribution of the severity of breaches
caused by accidental exposure or inadequate vigilance (“negligent” breaches)
with respect to breaches originating from activities that actively targeted pri-
vate information (“malicious” breaches). Then we decided to model these two
distributions separately. In both cases, however, we found that the best fit for the
severity is given by a skew-normal distribution. Regarding “negligent” breaches,
it is worth specify that many employees are often the weakest link that causes a
successful cyber incident [15].

In this illustrative example, we consider a generic organization belonging
to the Business typology, that includes financial and banking services, manu-
facturing, retail. The total amount of registered breaches with full information
available for this category in the PRC dataset for the period 2010–2019 includes
732 data. In order to estimate the appropriate premium for this organization, we
follow some of the suggestions provided in [16] and build a simulation pipeline
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to generate a large number of scenarios suitable to represent the losses distribu-
tion. Evidences from the literature and from the available data that guided us
in developing this pipeline are the following:

– the probability for an organization of suffering k ≥ 0 breaches in a year can be
modeled by a geometric distribution whose parameter p has been estimated
in [16] separately for the three business subcategories. A weighted average of
these values results in the value p = 0.91;

– historical data on the type of data breaches for a generic Business type orga-
nization allows us to estimate the relative frequency of malicious (fm) and
negligent (fn) events, so that a simulated event will be of malicious type with
probability fm/(fm + fn);

– once the severity distribution (in terms of the volume Y of breached data) has
been fitted to the available data, the financial loss L for each breach event can
be roughly estimated by a regression model on Y . This formula was originally
derived by Jacobs [17] on Ponemon data and then improved by Farkas [16]
to better represent extreme events:

log(L) = 9.59 + 0.57 log(Y ). (3)

To obtain reliable estimates for the annual losses of a Business type organization,
we adopt a Monte-Carlo based simulation approach: once fixed a huge number
N of scenarios

– for any i ≤ N we simulate a corresponding number of claims ni by generating
a random value from a geometric distribution with parameter p as mentioned
before;

– then, in case ni > 0, we generate a random value nm from a Bernoulli dis-
tribution of parameter fm/(fm + fn) to assign nm events to the malicious
category and the remaining ni − nm to the negligent category;

– for each event, its severity is generated as a random value from the fitted
skew-normal distribution (malicious or negligent) and the related financial
loss estimated by the empirical formula (3).

Basing on the different methods described in Sect. 2, premiums can finally
be evaluated from the simulated distribution of losses. Cyber insurance com-
monly distinguishes between “third-party” and “first-party” losses depending
on whether they concern external parties or the insured itself. Jacobs trans-
formation estimates both first and third-party losses and we make the same
hypothesis. Moreover, we consider the case of full compensation.

4 Results and Conclusive Remarks

We present here some results obtained in the numerical simulations we performed
according to the pipeline described in the previous section. As stated in Sect. 2,
we also consider the alternative approach and proceed without splitting the
simulated claims into malicious and negligent ones, but simply generate the
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severity of each claim as a random value from the skew-normal distribution
fitted on all data. In both cases, we generated N = 1 million scenarios and
repeated the simulation pipeline 10 times, to obtain averaged estimates of the
different premiums along with their standard errors.

In the columns of Table 1 we report the values we obtained for the fair pre-
mium Π, the expected value premium Pev, the standard deviation premium Psd,
the semi-standard deviation Pssd, the exponential premium Put and the quantile
premium PQ along with their standard errors. In all simulations we chose α =
0.1, ρ = 0.01, ε = 0.05. The first row shows results of the described pipeline. In
the second row, given for comparison, the premiums has been evaluated instead
by estimating frequency and severity of the breaches without splitting the mali-
cious and negligent events.

Table 1. Estimates of the annual premiums according to the principles described in
Sect. 2 with the proposed methodologies.

Π Pev Psd Pssd Put PQ

Premiums 23647 ± 38 26011 ± 42 23648 ± 38 23647 ± 38 24034 ± 41 135382 ± 2245

Premiums(alt) 23429 ± 37 25772 ± 41 23430 ± 37 23430 ± 37 23801 ± 40 124746 ± 2787

First of all we observe that in both cases (first and second row of Table 1)
all the estimated premiums based on the equivalence principle (Pev, Psd, and
Pssd) exceed the fair premium. This surplus serves as a buffer to offset adverse
experiences. Regarding the principles involving standard deviation, the loading
is associated with the variability of the loss. Indeed, Put and PQ are higher
than Π, too. In particular, Put is defined via utility theory and incorporates the
attitude towards risk of the insurer. As regards PQ, that is the quantile of order
(1−ε) of the loss distribution, it is significantly higher than the other premiums;
the reason is that the insurer wants a premium that covers (1 − ε) · 100% of the
estimated losses.

Regarding the comparison of the two methods, it can be noticed that premi-
ums obtained by estimating frequency and severity of the breaches without split-
ting the malicious and negligent events (Premiums(alt), second row of Table 1),
are lower than the ones obtained with the methodology described in Sect. 3.
Although in this specific example the difference is minimal, this is indicative
of the fact that if the insurer estimates the premium without considering the
different types of cyber incidents, it could incur an underestimation of the pre-
mium itself. This difference becomes more evident in reference to the quantile
premium PQ. This means that extreme events could be significantly underesti-
mated by the insurer. In future research, we will test the methodology on other
datasets allowing us to consider a richer range of types of incidents and make
more extensive comparisons.
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Abstract. The concept of Sustainability has been identified as a key
factor in investment strategies for over a decade. Due to empirical evi-
dence suggesting better risk-return profiles for sustainable investments
than non-sustainable ones (under similar conditions), investors consider
ESG ratings essential information for investment choices. Despite persis-
tent inconsistencies and methodological uncertainties, new risk measures
are perceived as useful in identifying risks associated with the Environ-
mental, Social, and Governance pillars, both individually and collectively.
This study aims to assess whether a selected set of financial statement
variables and a dynamic measure of systemic risk observed at time t
can provide useful information for identifying the ESG rating class of
a company at time t + 1. To test this hypothesis, we use companies in
the EuroStoxx 600 index for the period 2016–2021 and apply a Machine
Learning (ML) model. Using a Random Forest (RF) classification model,
we estimate the ESG rating class at time t+1 with unprecedented accu-
racy. This agile and parsimonious model can provide valuable informa-
tion to sustainable investors for making strategic investment decisions.

Keywords: Machine Learning · Random Forest · Classification
Models · ESG Ratings

1 Introduction

Environmental, Social, and Governance (ESG) ratings offer an assessment of a
company or financial instrument’s sustainability profile or characteristics, includ-
ing its exposure to sustainability risks and its impact on society and/or the envi-
ronment. The importance of sustainability for businesses has sparked a multitude
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of applications across various sectors (see [2] and reference therein). For stake-
holders, ESG rating services have become the backbone of responsible investing
[12]. ESG ratings are associated with various economically and financially rele-
vant effects: higher intensity of sustainability and compliance with ESG criteria
appears to be correlated with lower capital costs [16], fewer capital constraints
[6,9], lower analyst forecast errors [21], and lower stock price volatility primarily
as a result of disclosure on ESG information [7].

The debate among scholars regarding the informational component of
ESG ratings concerning price and return performance is far from concluded.
Company-specific ESG classifications are associated with lower stock price
synchronicity, causing prices to fluctuate differently due to company-specific
information[23]. ESG ratings play an important informative role for investors,
and ESG disclosure leads to more efficient stock prices [17]. The authors also
suggest that the effect of ESG disclosure on the informative component of stock
prices is not uniform across pillars, being more sensitive to the social (S) compo-
nent. According to [18], ESG ratings can effectively predict investment outcomes,
given a high positive relationship between ESG and stock returns.

However, transparency in the ESG assessment process is lacking, as rating
agencies use proprietary models with limited disclosure of computation details
[10]. Given the varied and multifaceted nature of ESG approaches employed by
different providers, often resulting in non-convergent outcomes [3], the impor-
tance of identifying specific, replicable, and convergent metrics becomes clear
[22]. This emphasis on simplification is particularly useful as sustainable investors
can benefit from a clearer view, consequently making informed decisions based
on relevant data directly linked to corporate performance and ESG objectives.

Considering the ESG rating class as a strategic tool for the sustainable
investor, it becomes advantageous to identify metrics capable of determining the
ESG rating class within specific time intervals. In [15], through Rough Set Anal-
ysis (RSA), it is showed that corporate performance measures are effective in
identifying the ESG rating class. In [18], it is verified that financial and account-
ing indicators (Total Investments, Nominal Yield, Price Earning, EPS, PS, PB,
NPM, Current Ratio, ROA, and ROE) can accurately predict the ESG rating
class. In [4], it is highlighted that the predictive accuracy of models depends
on the rating size under analysis, and that the E and S dimensions of ratings
respond more effectively than the G dimension.

This study aims to explore the feasibility of predicting the ESG rating class
at time t + 1 based on financial data and market dynamics observed at time t.
It proposes a parsimonious, agile, and replicable Machine Learning (ML) model
that leverage information directly or indirectly available in a company’s financial
statements. Unlike current rating agency algorithms, which are complex and not
fully disclosed, the proposed model seeks to offer a more transparent and acces-
sible alternative by utilizing readily available information. By focusing on few
variables, the model aims to accurately estimate future rating classes, providing
investors with a lightweight and adaptable decision-making tool. The literature
review underscores the efficacy of ML techniques in identifying patterns and
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complex relationships in data [13], thereby enabling a more precise assessment
of ESG performance and the detection of trends or anomalies. This paper intro-
duces a novel approach by utilizing classification Random Forest models instead
of regression ones, which have demonstrated superior performance. Additionally,
it integrates a dynamic measure of systemic risk, represented by Conditional Beta
(BETA), as an independent variable.

2 Materials and Methods

In this study, companies included in the STOXX Europe 600 index during the
period 2016–2021 are analyzed. For each company, daily stock prices and ESG
scores, which are divided into the individual pillars of Environment (E), Social
(S), and Governance (G) (EiKon), as well as annual financial statement data
(EiKon), are considered. Among them: ROI, ROE, CAPEX, EBITDA, etc.

A preliminary data cleaning phase was necessary. Financial data for each
company were normalized relative to its value. Additionally, the data source
for ESG scores is Thomson Reuters, which expresses scores within the range
[0, 100] and converts these scores into textual format that we use as labels
for the classification model implemented here. The estimation of BETA values
was conducted by analyzing the conditional correlations between the daily stock
prices of each security and the STOXX Europe 600 index [14].

The Random Forest (RF) classification model presented in this study consists
of a set of autonomous decision trees, and their estimates are aggregated using
a majority voting strategy [20]. With this approach, it is possible to predict the
ESG rating class of a certain company in the year following the reference year of
the input data. To overcome the problem of overfitting typical of decision trees,
the RF algorithm builds the forest using numerous trees generated using the
Bootstrap Aggregating (Bagging) technique. Each tree in the forest is trained
on a subset of the original dataset and considers only a subset of the available
independent variables, generating complementary classifiers [5].

In the process of developing classification models, several predictive algo-
rithms were implemented. Among the considered ones, the RF classifier emerged
as the most performing, with more robust results compared to RF regression,
K-Nearest-Neighbour (KNN), and Support Vector Machine (SVM). In Sect. 3,
only the performances of the RF classifier and KNN are reported as the latter
can be considered a traditional benchmark model.

To measure the predictive power of the presented models, the main metric
chosen is the accuracy function, which measures, on a scale from 0 to 1, the num-
ber of correct predictions out of the total formulated. In the case of multi-class
predictions like those under consideration, the function is calculated for each
class. In addition, metrics such as precision, recall, and F1-score were considered
[19].
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3 Results and Conclusions

Models were trained on two different sets of independent variables: (i) ESG
rating (including individual Pillars E, S, G), financial and accounting data, as
well as BETA; (ii) financial and accounting data, as well as BETA.

Table 1.Macro-class estimation: results obtained with ESG pillars, financial statement
and Conditional BETA variables.

Class Random Forest (RF) K-Nearest Neighbors (KNN)

Precision Recall F1-score Precision Recall F1-score

A 0.84 0.81 0.83 0.76 0.79 0.77

B 0.77 0.82 0.80 0.71 0.72 0.72

C 0.79 0.65 0.71 0.67 0.52 0.59

D 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.80 0.73

Macro avg 0.80 0.76 0.78 0.71 0.68 0.69

Weighted avg 0.81 0.80 0.80 0.73 0.73 0.73

Table 2. Macro-class estimation: results obtained with financial statement and Con-
ditional BETA variables.

Class Random Forest (RF) K-Nearest Neighbors (KNN)

Precision Recall F1-score Precision Recall F1-score

A 0.66 0.59 0.62 0.53 0.55 0.54

B 0.70 0.77 0.67 0.55 0.58 0.57

C 0.00 0.00 0.00 0.33 0.17 0.23

D 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy 0.62 0.53

Macro avg 0.42 0.45 0.43 0.47 0.43 0.44

Weighted avg 0.57 0.62 0.59 0.52 0.53 0.54

Models executions with the above-described sets of independent variables (i)
and (ii) were aimed at identifying the permanence or migration at time t+1 from
the observed ESG macro-class (A, B, C, D) at time t. Tables 1 and 2 describe
the results obtained in estimating each macro-class from the RF classification
model and the KNN control on the two sets of independent variables (i) and (ii).

The superior accuracy of the RF model execution with set (i) shows that
considering the dynamics of the ESG rating and individual Pillars, it is possible
to offer investors a more accurate tool for predicting the class in which the
security will fall on the next year.
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The high accuracy achieved with this model allowed proceeding with the
execution of the RF classification algorithm to also verify the possibility of pre-
dicting the ESG sub-class (A+, A, A−, B+, B, B−, C+, C, C−, D). Regarding
the RF model, precision reaches maximum levels in the A+ and B+ sub-classes.
The descending trend highlighted seems to suggest a hierarchical distribution of
information and values of independent variables for the sub-classes themselves.
In other words, for higher ratings (macro-class A), more precise indications are
obtained independently of the model. This observation seems to confirm that
the intrinsic value of the ESG rating is a function of its level.

During the model building process, we observed the percentage feature
importance assigned to each independent variable. This is particularly relevant
because higher importance corresponds to a greater influence of the feature on
the identification outcome. Our observation corroborates findings from the lit-
erature regarding the significance of the informational content of financial data
[15] and underscores the importance of the systemic risk measure introduced in
this study for predicting the ESG class.

Among the most influential financial indicators, Total Equity (TOTE-
QUITY) stands out. It provides information about a company’s financial
strength, signaling its ability to invest in sustainable initiatives, social and envi-
ronmental responsibility, and corporate governance management. This indicator
also offers informative content regarding long-term financial stability and, conse-
quently, the company’s resilience. This aspect is directly related to the informa-
tional content offered by BETA that, being a dynamic measure of systemic risk,
can reflect the greater or lower ability of the company to react to market insta-
bility phases. These aspects are relevant for the ESG rating, as highlighted in
[1], and [8]. ROE and EBITDA are essential indicators for sustainable investors
as they offer insights into a company’s financial and operational sustainability,
along with its long-term profit generation capabilities [7]. On the other hand,
CAPEX, reflecting the company’s investments, can also mirror those in environ-
mentally friendly technologies. In synergy with Intangibles (INT), CAPEX can
reflect investments in Research and Development and, more generally, in inno-
vation. This latter aspect emphasizes the high weight assumed by the dynamics
of the “S” Pillar which considers how a company manages and engages with its
personnel, the communities in which it operates, and other stakeholders from a
social perspective [11].
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Abstract. We consider four technical indicators widely used in finan-
cial practice to determine the optimal signal aggregation, trading rule
definition, and indicator setting using the Particle Swarm Optimization
metaheuristic applied to an important financial fitness function, that is
the Sharpe Ratio. We experiment our trading system to the Italian index
FTSE MIB and to a set of financial stocks belonging to the FTSE MIB
over a multi-year period for training and testing. We generally achieve
superior out-of-sample performance, using a standard technical analysis
system as a benchmark.

Keywords: Trading system · Particle Swarm Optimization/PSO ·
Sharpe Ratio

1 Introduction

This paper proposes an algorithmic trading system based on Technical Analysis
(TA) indicators with optimization of the signal aggregation, the trading rule def-
inition, and the indicator setting. The parameters of the indicators, the trading
rules, and the signal weights are the inputs of the system, and the fitness func-
tion to be maximized is the well-known Sharpe Ratio over the trading period.
It is a complex global optimization problem, which we address by the Particle
Swarm Optimization (PSO) metaheuristic (Kennedy and Eberhart in [5]), an
approximate bio-inspired numerical optimizer.

TA indicators depend on one or more parameters (mainly time windows),
generally assumed equal to standard values in the financial practice. The trading
rules are functions whose inputs are the indicators; these functions generate
signals based on market prices.

Usually, trading systems jointly consider a plurality of indicators, whose
trading signals are aggregated through weighting, permitting a more informed
decision-making (e.g., Corazza et al. in [2]). We consider and aggregate four pop-
ular standard indicators, that are the Exponential Moving Average (MA), the
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Relative Strength Index (RSI), the Moving Average Convergence/Divergence
(MACD), and the Bollinger Bands (BB).

The existing studies have a main limitation: they only optimize a single cate-
gory of parameters at a time, whether it be the indicators setting, or the trading
rules definition, or the signal aggregation. For the first time in literature, Corazza
et al. in [3] proposed to simultaneously optimize the three categories of param-
eters of the trading system. In that work, the fitness function to be maximized
was the net capital at the end of the trading period, regardless of the risk level of
the trading strategy. In the present work, we apply that proposal of simultaneous
optimization to a different fitness function, that is the Sharpe Ratio.

The influence diagram of our trading system, from parameters to the fitness
function, can be depicted through three intermediate levels: indicators, signals,
and the aggregated signal. More precisely, the parameters of the indicators influ-
ence the computation of the indicators. Each indicator generates its own signal
through its trading rule based on the trading rules parameters. The signals are
aggregated into an overall signal using the weights of the indicators. Finally, the
Sharpe Ratio – which depends on buying, selling, and holding decisions derived
from the aggregated signal – is maximized via PSO by appropriately optimizing
the three categories of parameters.

The remainder of this paper is organized as follows. The next section is
devoted to describe the methodology used in this work. Section 3 presents the
out-of-sample results of our optimized trading system. Some final remarks con-
clude the paper.

2 Methodology

2.1 Parametrization of the Trading System

Our purpose is to optimize the parametrization of indicators, trading rules, and
signal aggregation for a total of 23 parameters. Table 1 collects the parameters
and describes their main features. For a description of the indicators, trading
rules, and signal aggregation, the reader is referred to Corazza et al. in [3].

The trading system with the standard values of the parameters (reported
in the last column of Table 1) serves as a benchmark for our optimized trading
system.

2.2 Constrained Optimization of the Sharpe Ratio

As performance measures, we consider the fitness function Sharpe Ratio over the
trading period T , which is a risk-adjusted performance ratio. For its computa-
tion, we need to determine the net daily return e(t), depending on: the strategy
s(·); the stock price variation P (t)/P (t − 1); and the trading fee δ in the case of
a strategy change:

e(t) = s(t − 1) ln (P (t)/P (t − 1)) − δ |s(t) − s(t − 1)| , t = 1, . . . , T. (1)
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Table 1. Parameters of the standard trading system

Parameter Symbol Indicator Area Standard value

Time window for computing MA wma MA Indicator 12

Minimum period of validity of MA rule dma MA Rule 1

Time window for computing RSI wrsi RSI Indicator 26

Threshold of RSI for entering in buy t
l,enb
rsi RSI Rule 30

Threshold of RSI for entering in sell th,ens
rsi RSI Rule 70

Threshold of RSI for exiting from buy t
h,exb
rsi RSI Rule 70

Threshold of RSI for exiting from sell tl,exs
rsi RSI Rule 30

Short time window for computing MACD line wshort
macd MACD Indicator 12

Long time window for computing MACD line wlong
macd MACD Indicator 26

Time window for computing MACD signal line wsignal
macd MACD Indicator 9

Minimum period of validity of MACD rule dmacd MACD Rule 1

Time window for computing the moving average for BB wma
bb BB Indicator 26

Time window for computing the standard deviation for BB wstd
bb BB Indicator 26

(Positive) number of standard deviation for the upper BB tu
bb BB Indicator 2

(Positive) number of standard deviation for the lower BB tl
bb BB Indicator 2

Number of standard deviation for exiting from sell tc,exs
bb BB Rule 0

Number of standard deviation for exiting from buy t
c,exb
bb BB Rule 0

Weight of MA signal θma MA Signal aggregation 0.25

Weight of RSI signal θrsi RSI Signal aggregation 0.25

Weight of MACD signal θmacd MACD Signal aggregation 0.25

Weight of BB signal θbb BB Signal aggregation 0.25

Threshold for the aggregated signal for entering in buy tb
as − Signal aggregation +1/3

Threshold for the aggregated signal for entering in sell ts
as − Signal aggregation −1/3

The fitness function to be maximized is the Sharpe Ratio at the end of the
trading period, ρ = SR(T ), under several constraints related to the parameters
of the system. The global optimization problems can be rewritten as the following
constrained maximization of ρ:

max
χ∈X

ρ

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wma, dma, wrsi, wshort
macd , wlong

macd, wsignal
macd , dmacd, wma

bb , wstd
bb ∈ N+

tl,enb

rsi ≥ 0, th,ens

rsi ≤ 100, tl,enb

rsi ≤ tl,exs

rsi ≤ th,ens

rsi , tl,enb

rsi ≤ th,exb

rsi ≤ th,ens

rsi

wlong
macd > wshort

macd

wstd
bb ≥ 2, tubb ≥ 0, tlbb ≥ 0, −tlbb ≤ tc,exs

bb ≤ tubb, −tlbb ≤ tc,exb

bb ≤ tubb

θma ≥ 0, θrsi ≥ 0, θmacd ≥ 0, θbb ≥ 0, θma + θrsi + θmacd + θbb = 1
tbas > tsas

,

(2)
where X represents the parameter space.

2.3 Particle Swarm Optimization

The constrained global optimization problem (2) is formulated in terms of mixed-
integer variables and it is nonlinear and nondifferentiable. Due to these complex-
ities, exact solution algorithms are still sought in literature and we need to use an
approximate solution method. Therefore, we consider to apply a metaheuristic
and we choose PSO for its exploration and exploitation capabilities (Kennedy
and Eberhart in [5], Wakasa and al in [7]).

Standard PSO is a solver for global unconstrained optimization problems,
whereas our optimization problem is a global constrained mixed-integer one.
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Consequently, we appropriately adapt the standard PSO for managing these
specificities.

For dealing with integer variables, we follow a widespread approach in liter-
ature, that is the truncation method proposed in Parsopoulos and Vrahatis in
[6].

For dealing with the other constraints, we reformulate our optimization
problem as an unconstrained one using the exact penalty method described
in Fletcher [4] and applied in the financial context in Corazza et al. in [1].
This method permits a correspondence between the optimizer of the original
constrained problem and the unconstrained penalized one. The reformulated
unconstrained version of the optimization problem is the maximization of the
following function ρ̂ with penalty parameter ε:

max
χ∈X

ρ̂ = ρ − 1

ε

[
max(0,−t

l,enb
rsi ) + max(0, th,ens

rsi − 100) + max(0, t
l,enb
rsi − tl,exs

rsi )

+ max(0, tl,exs
rsi − th,ens

rsi ) + max(0, t
l,enb
rsi − t

h,exb
rsi ) + max(0, t

h,exb
rsi − th,ens

rsi )

+ max(0,−wlong
macd + wshort

macd) + max(0,−wstd
bb + 2) + max(0,−tubb)

+ max(0,−tlbb) + max(0,−tlbb − tc,exs
bb ) + max(0, tc,exs

bb − tubb)

+ max(0,−tlbb − t
c,exb
bb ) + max(0, t

c,exb
bb − tubb) + max(0,−θma)

+ max(0,−θrsi) + max(0,−θmacd) + max(0,−θbb)

+ |θma + θrsi + θmacd + θbb − 1|+max(0,−tbas + tsas)
]
;

(3)

in our study we use ε = 10−2.

3 Applications

Our applications consider the closing prices of the FTSE MIB index and a set
of selected stocks belonging to the FTSE MIB at the date of May 31, 2022, and
traded on the market starting before January 2, 2007. We select five sectors,
that are highly representative of the Italian economy. As results, we apply our
methodology to the following stocks: Assicurazioni Generali S.p.A. (sector of
insurance); Atlantia S.p.A. (sector of industrial products and services); Enel
S.p.A. (sector of public services); Eni S.p.A. (sector of oil and natural gas);
Intesa Sanpaolo S.p.A. (sector of banks).

We have conducted three different out-of-sample experiments. First, the trad-
ing period is divided into two subperiods, that is a training period and an out-
of-sample testing one, but in each experiment a different length for the test-
ing period is considered: 1 stock-month, 2 stock-months, and 3 stock-months,
respectively; in Table 2, we provide the start and end dates for each in-sample
and out-of-sample subperiod. Then, the trading system is optimized using the
metaheuristic PSO over the training subperiod. Finally, the optimized trading
system is applied to the out-of-sample testing subperiod.
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The analysis is repeated 100 times, and we calculate the average value of the
Sharpe Ratio as weel as other quantities of interest. In doing so, we confer a
degree of statistical significance to the results, at least to some extent.

Table 2. Start and end dates for each in-sample and out-of-sample subperiod

Experiment In sample subperiod Out-of-sample subperiod

1 January 2, 2007 to April 29, 2022 May 2, 2022 to May 31, 2022

2 January 2, 2007 to March 31, 2022 April 1, 2022 to May 31, 2022

3 January 2, 2007 to February 28, 2022 March 1, 2022 to May 31, 2022

The results are collected in Tables 3. As for the structure of the tables, the
first column indicates the length of the out-of-sample period; the third and fourth
columns report the Sharpe Ratios of the standard system (which obviously are
independent from the repetitions) and the mean Sharpe Ratios of the optimized
system; the fifth and sixth columns present the annualized returns of the stan-
dard system and the mean annualized returns of the optimized system; finally,
the last column reports the mean percentage of days in which the equity line of
the optimized system is above the equity line of the standard system.

Table 3. Average out-of-sample performance of the optimized trading system over T
month(s) for 100 repetitions for each asset

T Stock SR(T )st Mean SR(T )PSO ēst Mean ēPSO Mean % >

1 Assicurazioni Generali −2.94 −0.28 −24.64 −6.46 48.76

1 Atlantia −4.01 −1.87 −22.72 −8.08 71.33

1 Enel −0.85 −0.27 −17.30 −6.38 41.24

1 Eni −3.82 0.89 −61.99 7.09 81.90

1 Intesa Sanpaolo 6.86 2.40 111.09 46.64 23.19

1 FTSE MIB 0.35 0.35 2.87 3.29 47.90

2 Assicurazioni Generali 2.30 0.76 22.99 9.20 29.00

2 Atlantia −3.00 0.47 −12.19 36.23 41.31

2 Enel −1.66 −0.76 −26.51 −11.13 59.12

2 Eni −1.89 −0.62 −34.10 −8.83 45.74

2 Intesa Sanpaolo 2.75 0.45 33.45 9.48 37.88

2 FTSE MIB 2.21 −0.64 15.59 −6.80 16.36

3 Assicurazioni Generali 6.15 1.59 74.73 28.47 18.02

3 Atlantia 1.90 1.80 22.74 46.99 32.44

3 Enel −1.35 −1.03 −27.88 −20.35 51.95

3 Eni −2.30 −0.72 −46.30 −15.59 72.22

3 Intesa Sanpaolo 2.54 0.74 41.39 16.83 39.11

3 FTSE MIB 1.34 0.82 9.01 12.53 59.71
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It is worth highlighting that:

– When considering the 1-month long out-of-sample period, the optimized sys-
tem draws or wins 5 times out of 6 compared to the standard system; the
performances degrade as the length of the out-of-sample period increases.
Consequently, our trading system would need to be re-optimized with appro-
priate frequency;

– Whatever the length of the out-of-sample period, when the optimized system
loses against the standard system, the mean values of the annualized returns
and of the Sharpe Ratios obtained by the optimized system are always pos-
itive, except one case. This could indicate that the PSO works well in the
optimization phase also in these cases, but likely paying for the choice of
using a unique hyper-parametrization for all stocks;

– In some cases where the optimized system underperforms the standard sys-
tem, the mean annualized returns of the optimized system are higher than
those of the standard system; therefore, the optimized trading system allows
an increase in the annualized return, although less than proportional to the
increase in the riskiness of the strategy.

4 Concluding Remarks

Our optimized trading system generally leads to superior performance over a
standard TA-based trading system for a set of financial stocks belonging to the
FTSE MIB on a multi-year horizon for training and testing.

Future researches will focus on: the use of a multi-objective fitness function
and multi-objective PSO for constructing an efficient risk-return frontier; the
application of the capability of PSO for automatically selecting the indicators.
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Abstract. Life annuities are actuarial products based on technical assumptions,
such as mortality. The degeneration of the human body leads, in addition to gener-
ating long-term care, to a higher mortality of the dependent than that of the general
and insured population. Therefore, the period for receiving this benefit would be
shorter. The aim of this paper is to determine the economic impact of the change
in the beneficiary’s status when receiving this life annuity. It should be stressed
that, in the life annuity, the biometric risk is borne by the insurer and that a lower
payment expectancy due to the pension beneficiary’s change to dependent status
entails a benefit, as this gain is not distributed to the beneficiary. A surplus is
created by paying out the same benefit. Thus, the use of an appropriate mortality
assumption results in a reduction of the mathematical payout provision, which
frees up capital and results in a lower solvency capital requirement.

Keywords: Actuarial fairness · life annuities · Long Term Care

1 Introduction

The aim of this paper is to determine the impact of a life annuity when the health status
changes to severely dependent/highly dependent with no return. The annuity contract
does not include mortality other than that of the general population, however, the change
in mortality due to a non-returning health condition may lead to a transformation of the
annuity’s purpose into a long-term care (LTC) benefit. If the same benefit is paid, the
use of an appropriate mortality assumption will reduce the value of the annuity, leading
to the release of capital and a lower solvency capital requirement.

This paper makes a breakthrough: it determines the procedure for calculating the
surplus for not differentiating mortality in the life annuity. The main contribution lies
in quantifying this surplus. On the one hand, as we do not know when the beneficiary
becomes severely dependent, this information should be provided by the beneficiary
himself/herself. On the other hand, the total effect on the insurer will depend on the
demographic composition of its life annuity portfolio.

Thenext section dealswithmeasurement. The third section includes themethodology
for valuation. The next section provides a representative application of the Spanish
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market to illustrate this. The discussion and implications of the model are included, and
the paper ends with the relevant conclusions.

2 Measuring Economic Impact

The economic effect can be captured with an Actuarial Gain/Loss (AGL) analysis. AGL
calculates the economic value of the differences between actuarial assumptions and
reality, generating a deficit or surplus. It is a common actuarial technique that can be
used to analyse both financial assets and biometric liabilities separately or jointly [7] -
Fig. 1.

Fig. 1. Main components of Actuarial Gain/Loss. Source: Own elaboration.

The literature analyses actual investment performance on the interest rate assumption
of the valuation [1, 3, 4, 14, 21]. It also considers the effect of discretionary choice of
actuarial assumptions and their gradual appropriateness. Its simplicity and analytical
power have brought it to the forefront of pension information systems [10], and in the
amortisation of pension deficits [13, 17, 19].

3 Methodology: Actuarial Gain/Loss

We take as a starting point the actuarial model proposed by [5, 6, 11, 12] contemplating
high degrees of dependency without return [4]. The beneficiary’s health status changes
at age x as he/she becomes severely or highly dependent. Then, under a new survival
function and with the initial benefit, the actuarial value of the benefit actually received
(VajRx) is given by the expression (1),

VajRx =
∫ w

x
bt · e− ∫ w

x
dμm

t dt · e− ∫ w
x δ(t)dt · dt (1)

Being,
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bt : Benefit function.
dμm

t : Instantaneous mortality rate of a severely or highly dependent person at the
t-th instant.

e− ∫ w
x

dμm
t dt : Probability of survival of an individual of age x as a function of the

instantaneous mortality rate of a dependent person.
δ(t): instantaneous interest rate.
e− ∫ w

x δ(t)dt : Financial discount function up to age x, through the instantaneous interest
rate.

The AGL is therefore defined as the difference between the actuarial value of the
benefit actually received and the benefit expected to receive under the initial assumptions:

AGLx = VajRx+1 − E(Vaj)x+1 (2)

where,

AGLx: Actuarial Gain/Loss generated at age x by the change in the beneficiary’s
health status.

E(Vaj)x+1: Present value of the benefit expected to be received under the initial health
status at age x + 1.

It can be determined for each beneficiary in each of the future years in case he/she
reaches future ages and becomes a dependent person.

VaAGLx =
w∑

h=x

AGLh · rq(d)
h · rh−xp

(r)
x · vh−x (3)

VaAGLx: Actuarial value of the AGL due to the change in the beneficiary’s health,
calculated at age x.

rq(d)
h : Probability that a retirement beneficiary at age h will be severely or severely

dependent at that age, being exposed to another cause of exit (mortality).
r
h−xp

(r)
x : Probability that a retirement beneficiary of age xwill reach age hwithout death

or change of health status.
vh−x: Financial discount factor from age h to age x.

In the case of the annuity, it is the pension beneficiary who is aware of his or her
health status, and if he or she changes to a dependent, only he or she can inform the
insurer. Therefore, the incidence of the dependent’s mortality is instantaneous from the
moment of notification.

4 Dependent Mortality Versus Overall Mortality: Discussion

[12] establishes the life expectancy of an individual in the most severe stages of depen-
dency. [8] start from a general mortality and propose additive displacement on the
instantaneous mortality rate. However, [16] indicate that dependents will have an over-
mortality that can be expressed by a multiplicative correction - θ - on the mortality
probability of the general population:

dqmx = θ · qmx (4)
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This correction can be variable at each age, although [16] indicated that a fixed
correction adjusts the mortality of older dependents better than other types of approxi-
mations. However, it overestimates mortality at lower ages and underestimates at higher
ages. Therefore, it is better to perform an additive adjustment (ε) considering age as an
independent variable in a functional form [18].

dqmx = qmx + ε where ε = f (x) (5)

As a result, mortality rates are lower at younger ages and increase with the degree of
dependency [15]. [20] determined the probability of death for severe dependency; they
used general mortality tables and adjusted them to the HID 98–01 statistics for France:

dqmx =
{
qmx + δ

1+γ xi−x ∀xi < 95

qmx · (1 + β) + δ
1+γ xi−x ∀xi ≥ 95

(6)

δ: Maximum value to be incorporated as a function of age at which it converges
asymptotically.

γ: Slope factor.
xi: Age of inflection at which the curve changes shape from convex to concave.
β: Multiplicative factor on overall mortality (Table 1).

Table 1. Overmortality factors for severe dependency in Spain. Source: [20].

Factors Men Women

δ 0.245 0.165

γ 1.135 1.09

xi 62.50 58.61

β 0.1142 0.0962

Mortality rates for disabled persons (dqmx ) and invalids (
iqmx ) converge to the general

population (qmx ) as age increases (Fig. 2).
As a final result, for both men and women, there is an actuarial gain, i.e. a smaller

capital sum needed to guarantee the benefit in the event of a change in health status. The
surplus is greater the younger the beneficiary is. The main implication is that, to pay
out the same benefit, there is money left over, so a surplus will be generated as it is not
distributed to the life annuity beneficiary.

The surplus decreases as the beneficiary becomes severely dependent at older ages,
as can be seen in Fig. 3, taking minimum values from the age of 100 onwards in the
case of retirement beneficiaries. As for the disability pension, it takes minimum values
for men, with a deficit per euro of benefit for women who change their health status to
severe dependency from the age of 90.



Actuarial Gains in Life Annuities Due to Declining Health: LTC 103

Fig. 2. Mortality differential after retirement age at 65. (x) Men; (y) Women. Source: Own
elaboration. Databases: [2, 9]; Mortality Tables with factors from [20].

Fig. 3. Evolution of the surplus by change of mortality tables and by euro benefit, according to
age and origin (Retirement -J- or Invalidity -I-). Source: Own work.

5 Conclusion

Logically, it is in the insurer’s interest that the beneficiary informs the insurer of his or
her change in health. This new is compulsory, as the risk status of the insured person
changes. However, the beneficiary himself/herself does not perceive a change of benefit
after this information, but it is the insurer itself that takes advantage. There is no incentive
to update the death risk status information from the beneficiary point of view.

It is necessary to establish a mutually beneficial incentive. So, part of the gain can
pass on to the beneficiary, with the mandatory benefit increase to help with LTC. There
is an incentive for the beneficiary and partially the insurer also reduces the capital at
risk.
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Abstract. Conducting a financially sustainable business may collide
with the constraints imposed by the necessity of the alignment with the
Sustainable Development Goals. On the one hand, regulators demand
companies to satisfy solvency requirements to operate in the insurance
activity. On the other hand, the global transition to a more sustainable
economy pushes companies to operate a severe business transformation.
We investigate the relationship between the Solvency Ratio and Environ-
mental, Social, and Governance score (ESG) score using an individual
fixed effect regression model, including insurance-specific control vari-
ables. Our results indicate that an insurance company’s ESG commit-
ment increases its solvency level.

Keywords: Solvency · Environmental · social and governance ·
Insurance

1 Introduction

Sustainability is a primary issue in the agenda of governments, firms, and society.
The insurance industry, which plays a fundamental role in the global economy, is
deeply related to sustainability [1]. Insurance companies are prominent national
and multinational institutional investors involved in sophisticated risk manage-
ment processes and have a strategic function in helping governments achieve Sus-
tainable Development Goals (SDGs) (for example, incorporating environmental
factors into the insurance coverage [5] or dealing with the social sustainability
[6]). Although implementing sustainability involves risks and opportunities both
on the asset and liability side and from a corporate perspective [4], an increas-
ing number of insurance companies have undertaken a journey to incorporate
sustainability into their businesses.

Based on the report of [5], insurance supervisors and regulators are pursuing
to understand how sustainable challenges connect to their institutional purposes,
first among all, the solvency of insurance companies, which has essential impli-
cations for their financial stability. To understand thoroughly the relationship
between the solvency of the insurance companies and their environmental, social,
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and governance (ESG) rating, we conduct a panel regression analysis to study
the impact of ESG on the solvency level of insurance companies.

As observed by [2], the empirical evidence on the effect of ESG on insurance
companies is limited in the existing literature. The paper that is more relevant
to ours is from [3]. It focused on the relationship between ESG awareness and
financial performance, solvency, and size of insurance companies. The authors
apply a fractional regression model between the ESG scores and size, profitabil-
ity, and solvency of large US insurance companies. They find that the most
influential variables in undertaking ESG policies are the company’s profitability
and size, but they also discover a significant association with the solvency ratio.
Differently from the paper of [3], we conduct a panel regression model with the
solvency ratio as the target variable and ESG score as the independent variable.
A list of control variables is also included in the model.

2 The Model

In this paper, we employ a fixed effects (FE) panel regression to assess whether
financially sound insurance firms are also aligned with the SDGs. We evalu-
ate the relationship between the Solvency Ratio (SR), chosen as an insurance
sustainable indicator, and various business, insurance-specific, and SDGs indi-
cators: (i) the ESG Score (ESG), ranging from 0 to 100, where 100 indicates
the most SDGs aligned companies, (ii) Loss Ratio (LR), implied losses over net
premium earned (iii), Return on Assets (ROA), net income over total assets, (iv)
Market Capitalization (MC), expressed in logarithm, (v) Reserve Ratio (RR),
total insurance reserves divided by the total assets. By selecting these variables,
we control the relationship between solvency and sustainability for a company’s
profitability, dimension, and insurance risk level.

The underlying assumptions for using this model are as follows. Focusing on
the fiscal year of analysis, we mitigate potential biases arising from inconsisten-
cies in ESG scores assigned to companies across different years. Additionally, we
address a potential endogeneity concern derivating from variations in companies’
ESG commitment over the years, which may lead to a correlation between the
dependent variable and regressors1. The model is presented in Eq. 1.

Y = Xβ + αi + ε, (1)

where Y is an N ×T matrix containing observations of the dependent variables,
where N is the number of companies and T is the number of sample years. The
matrix X is N × (K×T ), representing observations related to the K regressors.
The vector β consists of K coefficients estimated through maximum-likelihood
estimation (MLE). The vector αi contains the MLE fixed-effects parameters of
dimension N , and ε is an N × T matrix containing the error terms.

1 We conduct statistical tests to assess the validity of these assumptions.
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3 Numerical Application

We collect annual data from Refinitiv choosing companies classified as “Insur-
ance” according to the Refinitiv business sector classification (TRBC) from 2013
to 2022. We operate a data-cleaning process removing firms characterized by too
many missing values. We obtain a final sample of 723 observations relative to
104 worldwide companies divided into Life (23%), Property and Casualty (38%),
and Others (39%) insurers. Around 80% of the insurance companies included in
our analysis are based in North America or Europe, but our sample also con-
tains companies from every continent, as reported in Fig. 1. We retrieve ESG
data only for 34% of the companies, indicating the lack of popularity in the
practice of ESG disclosing within the insurance sector. Also, we do not observe
a consistent shift in providing ESG information throughout the years.

We run a panel regression as in Eq. (1) to discern a relationship between
financial stability and ESG practice. Table 1 contains the descriptive statistics
of the variable used in this analysis. The sample exhibits missing values and
wide ranges in the variables. The SR distribution shows fat tails, while the
interquartile range is thin. Differently, the ESG values are highly concentrated
around the average value and almost symmetrical. The box plots reported in
Fig. 2 show that the SR remains almost constant over the years but presents
consistent outliers. Even though ESG assumes similar values in the timeframe
analyzed, we denote a decrease in the average value comparing 2012 and 2022
data. Given the vast heterogeneity of our data, we use standardized variables to
account for the different variables’ scales as well as to reduce the influence of
outliers. By doing so, we improve both model’s interpretability and fit.

The results of the estimation are as follows. The panel regression explains a
high portion of SR’s total variability (79%), denoting the fact that these variables
are relevant to explain its time-varying dynamics. Among the control variables,
the linear relationship between SR and both ROA and RR is positive and relevant
since their parameter estimates are statistically significant (p-values <0.01 and
<0.05, respectively). Thus, increasing the proportion of net income or/and total
insurance reserves on total assets improves companies’ solvency level, on average.
Results indicate a positive and significant relationship between SR and ESG
(p-value <0.01), suggesting that an increase in the companies’ SDGs alignment
determines a decrease in the solvency risk of a company, ceteris paribus (Table 2).
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Table 1. Descriptive statistics of the variables used in the analysis, years 2013–2022.

SR ESG LR ROA MC RR

Min −72.03 5.70 −73.70 −33.82 15.46 0.00
Q1 0.98 34.81 58.50 0.67 21.64 0.48
Q2 2.58 44.58 64.40 1.70 22.69 0.59
Mean 3.58 48.12 61.43 1.97 22.75 0.56
Q3 5.93 61.23 69.65 3.92 24.02 0.67
Max 106.35 94.94 200.10 21.05 28.21 0.90
Skew 0.42 0.40 −1.64 −2.36 0.03 −0.85

Kurt 37.38 2.50 15.58 19.23 3.56 3.72

Fig. 1. Barplot of the geographical distribution of the firms’ HQ. Data are referred to
the final sample of 104 companies.

Fig. 2. Box plots of the Solvency Ratio (left panel), and ESG score (right panel), years
2013–2022. Data are referred to the final sample of 104 companies.
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Table 2. Model 1 estimates (std errors in brackets) fitted on the final sample of 104
companies. Variables are standardized to enhance the robustness of the results.

Variable SR

ESG 0.283***
(0.065)

LR −0.011

(0.069)
ROA 0.834***

(0.053)
MC 0.038

(0.052)
RR 0.150**

(0.045)
Constant 0.000

(0.020)
Obs 723
Companies 104
R-squared 0.79
Note: ∗ p < 0.1; ∗∗ p <
0.05; ∗∗∗ p < 0.01

4 Concluding Remarks

We are interested in exploring the role of firms’ ESG commitment in the insur-
ance sectors and its impact on business performance. In particular, we assess
whether the solvency requirements are in contrast with the demand for a more
sustainable economy.

To the best of our knowledge, this is one of the first works that investigate this
topic as researchers have mostly focused on the impact of ESG on the financial
sector considered as a whole. Focusing on the sole insurance sector, we contribute
to the existing literature by taking into account insurance-specific features.

In this paper, we measure the impact of the ESG score, used as a proxy
for the alignment of a company to the Sustainable Development Goals (SDGs),
on the solvency level of the worldwide insurance sectors, measured through the
Solvency Ratio (SR). We denote that insurance companies often lack adequate
disclosure on ESG themes, which implies difficulties retrieving large and reliable
datasets.

We use a fixed effects panel regression model that considers the time-constant
features of insurance companies and accounts for the time-varying consistency
of profitability, insurance-specific, and sustainable variables used in the analysis.
The model we chose uses data from 104 worldwide insurance companies observed
in the years 2012–2022. Our model explains a large portion of the SR variability
and finds a positive and significant relationship with the ESG score. Moreover,
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both Return on Assets (ROA) and Reserves Ratio (RR) positively contribute to
enhancing companies’ solvency levels.

Our results suggest that an insurance company’s ESG commitment matters
for its solvency level. Henceforth, we will further investigate the actual impact of
SDGs alignment in the insurance industry by including other relevant variables
and introducing different methodological approaches.
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Abstract. Following the principles of a sustainable economy, companies
are increasingly adopting business strategies that seek to harmonize profit
objectives with their environmental, social, and governance (ESG) poli-
cies. The financial sector’s growing awareness of climate and environmen-
tal risks underscores the necessity for developing sustainable investments
that endorse activities with minimal environmental impact. Sustainabil-
ity, incorporating environmental, social, and governance considerations,
is a strategic priority in this paradigm. This study focuses on the envi-
ronmental risk aspect, encompassing a company’s overall environmental
impact and potential risks arising from environmental issues. The primary
objective is to discern the structural features of listed firms that influence
their sustainability levels, as measured by their “E” score. Leveraging bal-
ance sheet information from a selection of European listed firms, our inves-
tigation aims to reveal potential relationships between corporate financial
variables and the E score. To unravel complex, non-linear relationships
within one of the most environmentally conscious markets, namely the
European market, we employ advanced techniques such as the random for-
est and gradient-boosting machine algorithms. This approach allows us to
deeply understand how financial variables interplay with a firm’s environ-
mental sustainability, offering insights into the intricate dynamics shaping
sustainable practices in a corporate context.

Keywords: Environmental score · corporate finance · machine
learning

1 Introduction

The financial sector’s increasing focus on climate change and environmental risks
stems from a recognition of the imperative for sustainable investments that bolster
productive endeavors while minimizing environmental harm. Environmental risks
encompass issues like inefficient energy consumption, deforestation, biodiversity
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loss, air and water pollution, and the failure to adapt to climate changes, poten-
tially resulting in fines or lawsuits. A keen awareness of these risks enables the
strategic allocation of resources in alignment with the principles of a sustainable
economy. In this evolving landscape, the demand for financial investments aligns
with sustainability impact objectives. Asset managers play a pivotal role in iden-
tifying investments that adhere to sustainability criteria. This paper specifically
delves into the Environmental (E) component of the ESG score, a widely used met-
ric for gauging a firm’s non-financial performance. Our focus is on exploring how a
company’s business activities influence its E score value. This contribution offers a
distinctive perspective compared to existing literature, which predominantly con-
centrates on how the ESG score can impact company profitability and financial
performance. In chronological order, the literature first focused on the relation-
ship between ESG and financial returns and then moved on to the impact of the
ESG score on corporate profitability. As regards the former aspect, [7] observe
that companies with higher ESG scores show higher financial returns and suf-
fer during periods of financial crisis. By analyzing a sample of S&P500 compa-
nies, [8] finds a positive correlation between ESG scores and firm financial per-
formance and shows that successful shareholder ESG proposals provide positive
abnormal returns, while [3] observe an indirect relation between ESG score and
the company’s cost of capital. Regarding the latter, we refer to [1,6,10,11,14], and
[17]. [12] invert the rationale with respect to the cited contributions questioning
whether financial performance leads to higher environmental performance. Fol-
lowing this vein, [4] and [5] propose a machine learning (ML) approach to detect
if fundamental ratios are predictors of ESG score. The same framework inspires
this paper, where, however, the E component is analyzed separately.

2 The Model

In this paper, we propose to implement both the random forest (rf) and the gradi-
ent boosting machine (gbm) algorithm (for further details, see [2] and [9]) to Envi-
ronmental score data to detect potential non-linear relations among variables. The
target variable is the Environmental score, E.score. The features considered are
listed in the following: Y ear is the current year, DPS is the Dividend per Share,
PtoE is the Price to Earnings, ROE is the Return On Equity, ROA is the Return
On Asset, SR is the Solvency Ratio, CI is the Carbon Intensity (ratio of total net
carbon dioxide emissions in tonnes to revenues million USD), MCtoE is the ratio
of Market Capitalization to EBIT, NPM is the Net Profit Margin (ratio of net
income to revenues), EBITm is the Earnings before interest and taxes (EBIT)
margin (ratio of EBIT to revenues), AT is the Asset Turnover (ratio of revenues
to total assets), LR is the Liquidity Ratio (ratio of stock of highly liquid asset to
total net cash outflows), and size is the size of the company calculated as the log-
arithm of the total assets. The relation of the regression among the variables may
be expressed by the following expression:

E.score = f(Y ear,DPS, P toE,ROE,ROA, SR,CI,MCtoE,NPM,EBITm,AT,LR, Size)
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3 Numerical Application and Concluding Remarks

In this numerical application, we have considered data from four European Stock
indexes (CAC, DAX, FTSE, and FTSE MIB), which represent th 70% of the
European stock market liquidity, over the period 2012–2022. The annual data
are collected from the Refinitiv data source [15]. After the data cleaning pro-
cess, the final sample includes 265 companies divided as follows: 49.1% FTSE,
CAC 18.1%, DAX 18.1%, and FTSE MIB 14.7%. We calculate the Pearson cor-
relation coefficient, r, between pairs of variables and investigate whether it is
significantly different from zero based on a t-distribution of the test statistic
t = r√

1−r2

√
n − 2, where n is the number of observations in the variables. If the

p-value is less than the chosen significance level, the correlation between the vari-
ables is significant. Table 1 shows the coefficients r and the results of the t-test
for the Pearson correlation coefficient applied to the full dataset. For the sake of
brevity, we only report the coefficients among the target variable (E.score) and
all the other features. For the E.score, the most significant (positive) correlation
is with Size, followed by ROA and AT (in these cases, the correlation coefficient
is negative). We also provide the results of the correlation analysis separately
for the four European Stock indexes (see Table 2 for the CAC and DAX indexes
and Table 3 for the FTSE and FTSE MIB). Although each of the four indices
has its specificity, we generally observe that the variable most correlated with
E.score is still size, and ROA is also highly correlated. We split the dataset
into a training set (70% of the data) and a test set (the remaining 30% of the
data). We conduct a tuning procedure on the model’s parameter space on the

Table 1. Pearson correlation coefficients and correlation tests of E.score with the other
features. Correlation coefficients (column r); results of the correlation test (column t,
column 95% CI for the confidence interval and p for the p-value: *: p-value < 0.05,
**: p-value < 0.01, ***: p-value < 0.001).

Feature r 95% CI t p

DPS 0.08 [0.04, 0.13] 3.72 0.007∗∗

PtoE −0.03 [−0.07, 0.02] −1.18 >.999

ROE −0.07 [−0.12,−0.03] −3.27 0.034∗

ROA −0.21 [−0.26,−0.17] −9.79 <.001∗∗∗

SR −0.15 [−0.20,−0.11] −6.99 <.001∗∗∗

CI 0.03 [−0.02, 0.07] 1.18 >.999

MCtoE −0.10 [−0.14,−0.05] −4.38 <.001∗∗∗

NPM 0.01 [−0.03, 0.05] 0.45 >.999

EBITm −0.03 [−0.08, 0.01] −1.48 >.999

AT −0.17 [−0.21,−0.13] −7.69 <.001∗∗∗

LR −0.10 [−0.14,−0.06] −4.51 <.001∗∗∗

Size 0.57 [0.54, 0.60] 31.23 <.001∗∗∗
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Table 2. Pearson correlation coefficients and correlation tests of E.score with the other
features. Correlation coefficients (column r); results of the correlation test (column t,
column 95% CI for the confidence interval and p for the p-value: *: p-value < 0.05,
**: p-value < 0.01, ***: p-value < 0.001).

Feature CAC DAX
r 95% CI t p r 95% CI t p

DPS 0.15 [0.05, 0.25] 2.96 0.134 0.09 [−0.02, 0.19] 1.59 >.999

PtoE 0.08 [−0.02, 0.18] 1.59 >.999 −0.04 [−0.14, 0.07] −0.69 >.999

ROE −0.12 [−0.22,−0.02] −2.44 0.556 −0.13 [−0.24,−0.03] −2.49 0.46

ROA −0.21 [−0.30,−0.11] −4.08 0.003∗∗ −0.28 [−0.37,−0.17] −5.31 <.001∗∗∗

SR −0.19 [−0.28,−0.09] −3.75 0.009∗∗ −0.2 [−0.30,−0.10] −3.79 0.009∗∗

CI −0.06 [−0.16, 0.04] −1.25 >.999 0.06 [−0.04, 0.17] 1.14 >.999

MCtoE −0.02 [−0.12, 0.08] −0.44 >.999 −0.09 [−0.19, 0.02] −1.64 >.999

NPM 0.08 [−0.02, 0.18] 1.61 >.999 −0.18 [−0.28,−0.08] −3.38 0.035∗

EBITm 0.06 [−0.04, 0.16] 1.11 >.999 −0.16 [−0.26,−0.06] −3.00 0.116

AT −0.28 [−0.37,−0.18] −5.66 <.001∗∗∗ −0.15 [−0.25,−0.05] −2.82 0.191

LR −0.11 [−0.21,−0.01] −2.15 >.999 −0.21 [−0.31,−0.11] −4.02 0.004∗∗

Size 0.42 [0.33, 0.50] 9.02 <.001∗∗∗ 0.59 [0.51, 0.65] 13.46 <.001∗∗∗

training set using a grid search to find the optimal values of the parameters.
The results are obtained from the R packages randomForest developed by [13]
for the rf algorithm and the gbm developed by [16] for the gbm. We conduct the
analysis separately for each of the four European Stock indexes considered.

We evaluate the model’s ability to predict the E score through two conven-
tional error measures, the root mean square error (RMSE) and the mean absolute
percentage error (MAPE). The error values for the train set (70% of the data)
and test set (30% of the data) are reported in Table 4. According to an empirical
rule, a MAPE value lower than 10% is considered a very good value, while a
MAPE value in the range of 10%–20% is considered a good value. Therefore,
the performances of our model are good for the indexes considered, except for
FTSE in both the train and test samples. Figure 1 shows the importance variable
for the four considered indexes. We highlight that the most important variable
influencing the E score is the firm size measured as a function of the total asset.
The second important variable is the Carbon Intensity, while the performance
ratios account for less contribution.
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Fig. 1. Relative influence of the variables by stock index. GBM.

Thanks to the machine learning algorithms, we have been able to catch com-
plex and non-linear relations between the features and the E.score. This is the
case of CI, which is linearly uncorrelated with the other features (e.g., Pearson’s
correlation coefficient between the E.score and CI is 0.03), but assumes great
importance in explaining the E.score. This analysis can be helpful for compa-
nies that want to pursue environmental sustainability objectives, highlighting
the variables on which they can most leverage to obtain high E.scores.

Table 3. Pearson correlation coefficients and correlation tests of E.score with the other
features. Correlation coefficients (column r); results of the correlation test (column t,
column 95% CI for the confidence interval and p for the p-value: *: p-value < 0.05,
**: p-value < 0.01, ***: p-value < 0.001).

Feature FTSE FTSE MIB
r 95% CI t p r 95% CI t p

DPS 0.17 [0.11, 0.22] 5.40 <.001∗∗∗ 0.14 [0.02, 0.26] 2.21 0.736

PtoE −0.08 [−0.14,−0.02] −2.71 0.231 0.07 [−0.06, 0.19] 1.05 >.999

ROE 0.00 [−0.06, 0.06] 0.12 >.999 −0.2 [−0.32,−0.08] −3.18 0.071

ROA −0.12 [−0.18,−0.06] −3.86 0.006∗∗ −0.33 [−0.44,−0.21] −5.35 <.001∗∗∗

SR −0.07 [−0.13,−0.01] −2.39 0.542 −0.21 [−0.33,−0.09] −3.35 0.041∗

CI 0.09 [0.03, 0.15] 2.93 0.136 −0.11 [−0.23, 0.02] −1.72 >.999

MCtoE −0.09 [−0.15,−0.03] −3.03 0.101 −0.28 [−0.39,−0.16] −4.48 <.001∗∗∗

NPM 0.11 [0.04, 0.17] 3.41 0.031∗ −0.36 [−0.47,−0.25] −6.04 <.001∗∗∗

EBITm 0.02 [−0.04, 0.08] 0.58 >.999 −0.3 [−0.41,−0.18] −4.80 <.001∗∗∗

AT −0.15 [−0.21,−0.09] −4.98 <.001∗∗∗ 0.01 [−0.11, 0.14] 0.21 >.999

LR −0.03 [−0.09, 0.03] −0.99 >.999 −0.15 [−0.27,−0.02] −2.32 0.575

Size 0.54 [0.50, 0.58] 20.67 <.001∗∗∗ 0.5 [0.40, 0.59] 8.92 <.001∗∗∗



Environmental Score and Financial Statement 117

Table 4. RMSE and MAPE by ML model and stock index. The underlined values
indicate the best values for the train set, and the doubled underlined ones indicate the
best values for the test set.

Index (Country of exchange) RMSE MAPE
RF GBM RF GBM
train test train test train test train test

CAC (France) 10.89 11.06 11.42 10.66 12.62 13.19 12.92 12.08
DAX (Germany) 9.62 10.96 9.96 10.93 11.55 14.33 12.17 13.71
FTSE (United Kingdom) 13.09 12.29 12.96 11.44 26.96 28.15 24.68 24.33
FTSE MIB (Italy) 13.55 12.15 12.60 11.55 20.98 18.66 18.66 16.11
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Abstract. Investment decisions in wind projects can be tough consid-
ering the uncertain economic performance depending on the stochastic
nature of revenues. Thanks to the recent innovation in Natural Language
Processing (NLP), this work tries to present an innovative approach
based on the Monte Carlo option pricing model and Sentiment Anal-
ysis. Treating it as a financial option, the idea is to price the managerial
flexibility of changing investment decisions during the project lifetime
depending on the wind investment’s profitability. In this way, the Monte
Carlo options pricing technique is combined with the sentiment (polar-
ity) score, allowing the modification of transition probabilities from one
phase of the investment to another and, consequently, the profitability
of the investment.

Keywords: Wind project · Sentiment analysis · Real Options

1 Introduction

Based on financial options theory, the Real Options Approach (ROA) has
been used in literature to overcome the limitations of the discounted cash
flow approaches, allowing for pricing the managerial flexibility according to the
project value evolution [16]. There are many cases of ROA used to evaluate
renewable projects [6,10] and through various methodologies [2,4], particularly
Monte Carlo (MC) methods [3,9,11,14] highlighting the usefulness of the MC
approach in calculating the real options in renewable energy.

This work uses the Monte Carlo approach to price Real Options (RO), focus-
ing on the investment choice in wind farm projects. The main innovation concerns
using the MC technique for pricing Real Options with the polarity score to mod-
ify the transition probabilities from one phase to the next in investments. This
addition helps the decision maker choose whether to continue the investment
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based on the information acquired from the external world. Since the polarity
score is calculated through the NLP method, this work proposes a combina-
tion between Sentiment Analysis and MC options pricing technique. Although
previous works combine Options theory with NLP, none of them provides an
integrated approach between MC options pricing method with Sentiment Anal-
ysis [7]. Moreover, other studies combine Artificial Intelligence (AI) techniques
with other mathematical approaches, such as the RO. For example, Rath and
Chow [15] propose a scalable Machine Learning framework for RO related to
Mobility-on-demand (MOD) services. Or Lazo et al. [12], who used a combina-
tion of MC and Genetic Algorithms (GA) to optimize the choice of alternatives
in an oil sector investment.

In our paper, the Sentiment Analysis task allows for determining the polarity
score of some newspaper articles, making it possible to modify the probability
of success/failure in the transition phases.

2 NLP and Sentiment Analysis

NLP models have evolved over time. Especially in recent years, one of the newer
models, Bidirectional Encoder Representations from Transformers (BERT [5]),
was born from the combination of the best elements of its predecessor mod-
els. In particular, this new model is an encoder-decoder network that uses the
transformers architecture [17] to solve the problems of its predecessors, such
as encoding context bidirectionally and requesting minimal changes for various
NLP tasks. BERT consists of a set of transformer encoders that perform two
fundamental tasks: Masked Language Modeling (MLM), that randomly mask
the 15% of the tokens being in the corpora and the Next Sentence Prediction
(NSP), that is the ability to predict if two sentences follow each other.

As defined in Di Bari et al. [7], we try to exploit the news polarity score
obtained through specific BERT models to improve the transition probabilities.
The chosen BERT model is FinBERT [1], which specializes in financial corpora
in English. This model was trained on three datasets: TRC2-financial (filtering
the TRC2 corpus based on financial keywords), FinancialPhraseBank [13], and

Table 1. FinBERT parameters description [1]

Parameter Value

Dropout (p) 0.1

Warm-up prop 0.2

Max_Seq length 64 tokens
Learning rate 2e−5

Loss 0.37

Accuracy 0.86

F1 -score 0.84
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FiQA Sentiment (a dataset created for the WWW’18 Conference challenge). As
reported by the author, the parameters for implementing this model and the
accuracy results after a 10-fold Cross-Validation are reported in Table 1. This
model has been implemented with a dropout probability of p = 0.1, a warm-up
proportion of 0.2, a maximum sequence length of 64 tokens, a learning rate of
2e−5, and a mini-batch size of 64, from which after a 10-fold cross-validation,
FinBERT achieves a Loss of 0.37, with an Accuracy of 0.86 and an F1 -score
of 0.84. The output of FinBERT is, for each inserted sentence of an article, a
polarity index [negative, neutral, positive] accompanied by a numerical score
γ ∈ [−1, 1], which average γ̄ =

∑
γ represents the global polarity of the news.

We can divide γ into γ− ∈ [−1, 0), representative of sentences with negative
polarity, and γ+ ∈ [0, 1], representative of sentences with positive polarity, hence
γ = γ−∪γ+. This polarity score can be used to modify the transition probability.
As identified in [7] followed the Dias [8] framework, the information revealed
η2 = γ̄. In this way, adjusting the range of variation (through manipulations
with logistic function), the revealed success probabilities for positive dependence
become [7]:

q+ = q + (1 − q)
√

γadj , (1)

q− = q − q
√

γadj . (2)

3 Monte Carlo Option Pricing Model

We denote as Vt the project present value evolution during the time t ∈ [0, T ].
We assume the wind project is characterized by sequential investment costs
K0, K1, and K2 that could be related respectively to the costs to initiate the
project, the costs to create the wind farm, and the costs for operation activity.
The investor holds the operational flexibility to invest in a wind project for a
profit V (T ) − K2. Otherwise, if K2 > V (T ), the investor should abandon the
wind investment to avoid financial losses. Following the classical Black-Scholes
model [2], we calculate the project value evolution up to time t1:

V i(t1) = V (0)e(r− σ2
2 )t1+σ

√
t1Z (3)

This way, we can compute n possible Monte Carlo iterations of possible revenue
scenarios. The V i(t1) values will act as the underlying assets of the Black-Scholes
formula (4) up to maturity T :

ei
t1 = V i(t1)N(d1) − e−r(T−t1)K2N(d2) (4)

with d1 and d2 in the classical form [2]. This way, we can include positive (q+) and
negative (q−) information revelation obtained by the sentiment analysis phase
to “adjust’ the probability of moving on to the next investment phase. The senti-
ment analysis is relevant to compute q+ and q− that represent the probabilities
that are adjusted for the parameter √

γadj that captures the information from
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the newspapers. In fact, this parameter represents the reshaped mean of differ-
ent polarities calculated through the BERT model on newspaper articles. Thus,
we adjust the Black-Scholes formula from t1 to T by making a kind of expected
value between the option multiplied by the success probability of the first phase
(p) and the option multiplied by the failure probability of the first phase (1−p).
Note that the underlying asset in the two scenarios is multiplied respectively by
positive (q+) and negative (q−) information revelation.

At this point, we can calculate the new payoff of the first stage t ∈ [0, t1].
It is calculated as a compound option (c) in which the underlying asset is rep-
resented by the previous simple option (e). Proceeding backward from t1 to t0,
and calculating a mean of the number of Monte Carlo simulations i = 1, 2, ..., n,
the final compound option value that represents the operational flexibility of the
wind projects is:

c̃i
0 = EQ[e−r(t1−t0)(et1 − K1)+], (5)

whose average gives the c̃0 value. Following the same logic of [7], the final RO
value (ROV) is given by:

ROV = −K0 + p · c̃0. (6)

A positive value of ROV implies that the wind investment should be pursued
because it could generate profits for potential investors.

To implement this approach, the numerical example should consider the char-
acteristics of wind energy production, electricity price, possible incentive mech-
anism of government, the value of the cost, the success probability of stages,
the intensity of information revelation calculated through NLP and other finan-
cial parameters such as volatility and risk-free rate. The implementation results
should support the investor in investment decision-making in renewable energy
projects. If the ROV is positive, the investor should pursue the project; other-
wise, he should reject it.

4 Conclusions

This work tries to support decision procedures in wind investment, combining
the Monte Carlo options pricing technique and sentiment analysis to allow the
investor to assess the wind projects. In this case, the Monte Carlo pricing tech-
nique is an embedding of the classical Monte Carlo method and the B&S formula
linked under a compound options framework. The Monte Carlo options pricing
technique is helpful since it allows us to consider the managerial flexibility of
pursuing the investment only if financial profitability conditions exist. At the
same time, sentiment analysis makes it possible to incorporate new probability
values into the Monte Carlo option pricing model on the transition or not to a
subsequent phase of the investment, based on the news that can be extracted
from the surrounding environment.
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Abstract. The reverse mortgage, in spite of its low uptake, is a tool of
protecting the so-called house rich-cash poor persons. It represents an
opportunity especially in social realities with a high aging population,
pension systems struggling to guarantee acceptable living standards, sig-
nificant proportion of homeowners with insufficient income to meet daily
expenses. The paper is interested in this contract by looking at it from
the point of view of the provider/lender who commits to a payment to
the borrower/pensioner against the amount that will be made when the
house is sold, in which the borrower will continue to live for life. Our focus
is on quantifying the risks that impact the contract, due to three main
sources of uncertainty. The purpose is to provide formulas for quantify-
ing each of these risks, which are easy to interpret and apply, and useful
for proceeding to profitable risk control strategies.

Keywords: Reverse mortgages · solutions for retirement · risk
analysis · risk indexes

1 The Reverse Mortgage: The New Way to View Your
Home as an Asset

The Reverse Mortgage contract (RM from here on) constitutes an interesting
contractual instrument aimed at protecting the so-called house rich-cash poor
social group, characterized by modest economic conditions but at the same time
owning the home in which they live. In economic-financial realities characterized
by a pension system often unable to guarantee acceptable standards of living in
old age, as is often the case in the Italian context, such instruments prove to
be extremely efficient. The idea behind the Reverse Mortgage is to consider the
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house in which an individual lives exactly as an asset. Here briefly the outline of
the contractual lines. As in [2], RMs allow (usually elderly) homeowners (bor-
rowers) to receive loans by the lender; such amounts will be repaid through the
selling of their homes following their deaths or their moving out of the home for
any reason. Such loans may be provided as a lump sum or as a periodic income
stream extended over a predefined interval or throughout the owner’s lifetime or
tenure in the home. Usually, (cf. [2]) a No Negative Equity Guarantee (NNEG)
is in the contract: if the balance of the loan exceeds the proceeds of sale of the
property, the amount due to the lender is reduced to the second quantity. In fact,
for lenders, the future liquidation value of the property will be a future market
value, conditioned by the impact of several variables. This uncertainty could lead
to conditions that threaten the NNEG condition. The NNEG guarantees that
the debt does not exceed the value of the property.

The diffusion of these contracts is not uniform around the world. While strong
interest is noted in, for example, the U.S., Canada, and the U.K., in general
acceptance in the rest of Europe is lukewarm, if not poor (see [3]). Reasons
for such behavior especially in realities where rationally the diffusion should be
marked, probably reside in weak and fragmentary information about an instru-
ment with a non-elementary structure (cf. [6]), which fails to “convince” both the
potential counterparts, in a general level of financial education that is far from
adequate for a developed economy. To this it is likely to assume that from the
same institutions potentially interested in the RM contract as lender/provider,
there is some resistance, due to the management and control of the many risks
that influence the valuations relevant to the definition of the contractual finan-
cial characteristics. It is precisely on this point that our work aims to contribute,
in order to simplify the quantification of the most relevant risks.

The layout of the paper is set proposing in Sect. 2 the contractual outline,
in Sect. 3 the identification and description of the three main sources of risk
impacting the contract and finally, in Sect. 4, some formulas proposed as risk
measures, useful to the lender to define appropriate strategies to control the
risks themselves. Final conclusions close the paper.

2 The Contractual Model

Let’s consider a RM issued in t = 0. The homeowner (borrower/pensioner) is
an individual aged x at the issue time. Again following [2], there are two ways
to collect the amounts due as a result of signing the contract: a lump sum LS0,
payable by the lender/provider at the issue time, or its equivalent in the form
of a life annuity, against a proportion α of the current market value of his house
H0, after deducting the insurance premium for the NNEG. The NNEG stems
from the possible circumstance that the sale value of the house may turn out to
be lower than expected. The actuarial value A0 in t = 0 of all the benefits the
homeowner/borrower is going to receive coincides with αH0, both in case of the
lump sum and of the annuity. The following equation can be written:

LS0 < A0 = αH0 (1)
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considering the difference (A0 − LS0) as the cost of the NNEG to be borne by
the borrower. We frame quantitatively the amount Vt payable to the lender by
the heirs of the borrower in an instant, here generically denoted by t, 0 < t <
ω − x, having indicated by ω the extreme age of an individual. If At and Ht are
respectively the value of the loan and the value of the property at time t, the
amount Vt to be borne by the heirs is given by:

Vt = At − max(0, At − Ht), with 0 < t < ω − x (2)

In Eq. (2) we can note a short position in a put option having strike price At,
that is the actuarial value at time t of the benefits the borrower has to receive;
its underlying is the house value Ht, representing the realized house value in the
real estate market at that moment.

3 The Main Risk Driver in a Reverse Mortgage

The issue that makes the evaluation of the monetary quantities inherent in the
contract particularly complex lies in some basic elements, which are random in
nature. The first is the value of the house at the time of its appraisal. There are
many micro-and macroeconomic variables that impact real estate market price
trends, which makes describing the random variable “house price” particularly
challenging. In addition to this, quantities will be valued at a random instant,
linked to the death or exit from the house. The description of the phenomenon
of mortality and longevity, in particular, attributable to the borrower, will be
relevant. Not least, the purely financial aspect plays a particularly relevant role,
given the likely wide extension of the contract term. It is therefore a matter
of describing the interest rates that will be applied to the actuarial valuations
involved in the contract. As clearly described in [5], these three risk drivers can
be considered the main vehicles of uncertainty in financial assessments related
to RMs.

Schematically, the house price risk depends on the volatility of the real estate
market; the lifespan of an individual depends on the longevity risk; the financial
risk is linked to the volatility of the financial market.

Some simple considerations can also be made intuitively.
If the borrower’s lifespan is longer than expected, the liquidation of the asset

through which the lender will recover the money lent will be postponed, exposing
that value to the impact of the other two risks for a longer period. So, it is possible
to conclude that the longevity risk increases the financial and the house price
risk. To this may be added that if the conclusion of the contract is moved forward
due to the longevity effect, the probability of having the liquidation value less
than the value of the house at that instant, which would mean a capital loss for
the lender, could increase.

To frame the three risk component, we use the notation in [2]:

– the longevity risk is described by means of the random survival function, P ,
used to specify the borrower’s survival probability year by year.
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– the financial risk is described by means of the interest rate rRM
s , the rate

used for loan-related valuations referred to the period s. Denoted by rs the
risk-free rate and π the risk premium, we can write:

rRM
s = rs + π

– the house price risk is described by means of the rate rHV
s , the rate used for

valuations related to real estate value over time and referred to the generic
period s, in other words, the rate of appreciation of real estate in the specific
market in which the contract is issued.

Again, considering the generic time of valuation t, we have:

At = αH0

t∏

s=1

(1 + rRM
s ) = At = αH0

t∏

s=1

(1 + rs + π), with 0 < t < ω − x (3)

Ht = αH0

t∏

s=1

(1 + rHV
s ), with 0 < t < ω − x (4)

The financial balance inherent in the contract at the issue time binds the lump
sum LS0 and the sum Vt in the following way:

LS0 =
ω−x∑

t=1

Vt

(
t∏

s=1

(1 + rs)−1

)

t−1/1qx (5)

where t−1/1qx is the probability that the borrower aged x dies between the
ages (x + t − 1) and (x + t). Formula (5) states that LS0 is exactly the single
premium of the contract or, in case of periodic payments, the value in t = 0 of
the provider/lender’s obligations.

In this context, we decide to elect as a synthetic variable representing the
financial value of the contract from the point of view of the lender/provider the
gain/loss at time t. To describe it we consider the opportunity cost rate rCC :

rCC = rs + ρ

in which, as in [2], ρ is an opportune spread with the risk-free interest rate.
Denoting by Lt the gain/loss at time t, we can write:

Lt =

[
LS0

t∏

s=1

(1 + rCC)

]
− Vt (6)

In formula (6), for what follows, the opportunity cost rate is considered fixed.
The Lt variable represents an important synthetic indicator of the financial

structure of the contract and constitutes, in our opinion, the fundamental quan-
tity to control for the lender. For this reason, in what follows, we will focus the
analysis of the risks that impact precisely on this quantity.
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4 RM Risk Sources and Related Indexes

In this section we propose some formulas, easily interpretable and implementable,
usable as risk measures and risk indexes.

From the lender perspective, we deal with the three risk drivers previously
presented, precisely the longevity risk, the house price risk and the financial risk
represented respectively by the stochastic variables P , rHV

s and rRM
s .

The three sources of risk can be modeled in accordance with the most appro-
priate theoretical assumptions. For example, as ascertained in the literature, real
estate prices can be described through a Geometric Brownian Motion, longevity
using the Lee Carter model, and finally the interest rate process with a jump
diffusion model, as made in [2].

For this purpose, the well-known variance decomposition formula proposed
by [4] and extended as in [1], appears extremely useful.

Starting from the recalled variance decomposition formula, we decompose
with respect to the survival model chosen for the actuarial valuations; as shown
in [1], proceeding with the decomposition with respect to each of the other two
risk sources leads to numerical results that are not significantly different from
each other and the one we propose.

We can write:

Var(Lt) = Var (E [Lt/P ]) + E [Var (Lt/P )] (7)

and we can proceed with the further decomposition of the second addend in
Eq. (7):

E[Var(Lt/P )] = E
[
Var

(
E

[
Lt/rHV

]
/P

)]
+ E

[
E

[
Var

(
Lt/rHV

)
/P

]]
(8)

In this way, we are able to quantify 3 risk measures, each referring to one of
the three sources of risk. In detail:

– Var (E [Lt/P ]) can be considered as a measure of the risk due to uncertainty
about longevity predictions. It is a longevity risk measure and has the nature
of a model risk.

– E
[
Var

(
E

[
Lt/rHV

]
/P

)]
can be considered as a measure of the risk due to

the impact of the volatility of the real estate market, that is the volatility of
the rate of appreciation of real estate. It is a real estate market risk measure.

– E
[
E

[
Var

(
Lt/rHV

)
/P

]]
can be considered as a measure of the risk due to

the volatility in the financial markets, that is the volatility of the rate in
mortgage valuations. It is a financial risk measure.

These risk measures can be usefully relativized, so as to refer them to each unit
of average loss at the moment of evaluation. Indicating with E[Lt] the expected
value of the losses at time t with respect to the variable P , having averaged
out the influence of the other two stochastic variables, the following risk indexes
are obtained, each referred, respectively, to each of the risk measures above
introduced:
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σ[Lt]
E[Lt]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
Var(E[Lt/P ])

E[Lt]
relative importance of longevity risk√

E[Var(E[Lt/rHV ]/P )]

E[Lt]
relative importance of house price risk√

E[E[Var(Lt/rHV )/P ]]

E[Lt]
relative importance of financial risk

(9)

5 Conclusions

The paper focuses on the reverse mortgage, that is a tool framed within the silver
economy. It places the home at the center, which becomes an asset for the owner.
The two counterparts are, precisely, the homeowner, the borrower/pensioner, and
the lender/provider, who pays a lump sum or a cash flow for the duration of the
contract. The contract ends when the borrower dies or moves out of the home.
Throughout the contract term, the borrower retains the right to live there.

The contract, which is widespread in some geographical realities, is struggling
to establish itself in countries that, on paper, would have all the characteristics to
be places of contract diffusion, such as Italy. Italy is not the only country to show
a strong reluctance toward this type of contractual solution: this phenomenon
is scarcely widespread in most of Europe, with the exception of the United
Kingdom.

This may be due to weak financial education, the objective complexity of
the contract, and the fact that various sources of risk, especially for the lender,
impact on it. It is on this point that the paper aims to contribute. From the
lender’s point of view, the three main sources of risk are identified, and their
respective measures are proposed through formulas that are easy to interpret
and implement. They provide a useful tool for the purpose of refining risk man-
agement and control strategies from a corporate perspective.
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Abstract. This study aims to estimate the information efficiency of
financial markets based on the Hurst exponent, with a focus on the S&P
500 index. The approach involves using statistical models to estimate the
implied Hurst exponent through the historical series of the VIX (a proxy
for implied volatility) with a 30-day time lag. In this way, the traditional
backward-type Hurst estimation is reconciled with that derived from the
VIX, which represents a forward-looking measure (a proxy for 30-day
volatility). The test sample also includes the COVID pandemic period.
The results reveal a good fit from ensemble stacking models, with the
random forest standing out as the most effective approach in estimating
the implied Hurst index.

Keywords: Hurst Exponent · VIX · Inefficient Market · Ensemble
Stacking · Regression

1 Introduction

There are different approaches to interpreting the Hurst index [4]. Bianchi [3]
considers Hurst to be a measure of relative volatility with respect to the ideal
value of 1

2 , where the market is described by a geometric Brownian motion, and
thus efficient. Following this approach, the estimation of prospective (implied)
Hurst is addressed in the following work as an estimate of expectations on the
future informational efficiency of the market. As a first analysis we investigated
the relationship between the Hurst exponent (Ht) and implied volatility [7]. The
VIX Index, developed by the Chicago Board of Options Exchange (CBOE), is
a proxy of implied volatility for the Standard & Poor’s 500 Index and is also
widely regarded as a measure of turbulence in U.S. and global financial markets
[5]. The formula defining VIX is the following [11]:

V S(t, T ) =
2

T − t

∑

i

ΔKi

K2
i

eri(T−t)Oi (Ki, T ) − 1
T − t

[
Ft

K0
− 1

]2

, (1)
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where T is the common expiration date for all option contracts involved in the
calculation, Ft is the forward index level from the option prices at time t, Ki

is the strike price of the i-th out-of-the-money option at time t, Oi (Ki, T ) is
the midpoint of the bid-ask spread for each out-of-the-money option with strike
price Ki,K0 is the first strike price below Ft,ΔKi = Ki+1−Ki

2 is the half-interval
between strike prices preceding and following Ki, and rt is the risk-free rate
over the period (T − t). Considering a time varying Hurst exponent [1], in a
multi-fractional Brownian motion framework (mBm) [9], we built a statistical
approach using the VIX with lag t-30 as a predictor. The first step of the analysis
is to estimate Hurst. A comprehensive review on the estimation method can be
found in Garcin [6]. Following Bianchi and Pianese [2,3] the estimator (AMBE)
can be built [2]:

Ĥt = −
log

(√
(π)Sk/

(
2k/2Γ

(
k+1
2

)
Kk

))

k log
(

n+1
q

) (2)

with Sk =
1

δ − q + 1

i−q∑

j=i−δ

|Xj+q,n − Xj,n|k , i = δ + 1, . . . , n.

2 Statistical Models

We consider daily observations from 02/04/2007 to 24/03/2023 and use the
natural log-adjusted price to compute the Hurst exponent. For each model we
split the dataset into train (60%), validation(20%) and test (20%). We employed
a grid search technique with cross fold (n = 5) to find optimal hyperparameters
(i.e., number of degree for poly, number of iteration, max depth end learning rate
for boosting). The object function chosen for boosting model is the Huber−loss.

2.1 ADL

The auto-regressive distributed lag (ADL) model is a dynamic regression model
considering both current and past values of explanatory variables to explain
current and future values of the dependent variable.The model is as follows:

Ht = β0 + β1 · VIXt−30 + ε (3)

2.2 Polynomial Regression

Polynomial regression extends linear regression by introducing polynomial fea-
tures.The degree of the polynomial (n) is a hyperparameter.
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2.3 Support Vector Regression (SVR)

SVR aims to find a function f(x) that predicts y with minimal error. The kernel
function (K(xi, xj)) determines the type of mapping:

Ht = f(V IXt−30) =
n∑

i=1

αiK(xi, x) + b

where αi are Lagrange multipliers and b is a bias term. The hyperparameter C
controls the trade-off between smoothness and accuracy.

2.4 Decision Tree Regression, Bagging and Boosting

Decision tree regression predicts y by recursively partitioning the input space,
where the prediction for each region is the mean of the target values. CatBoost,
a boosting algorithm, is renowned for its robustness against overfitting. Its dis-
tinctive feature includes the automatic handling of categorical variable encoding
and is characterized by robustness, requiring less parameter tuning effort com-
pared to other boosting algorithms, thanks to optimal default settings. Random
forest [8] builds an ensemble of decision trees by randomly selecting subsets of
the features and samples to train each tree. This helps to reduce over-fitting and
improve generalization performance.

2.5 Ensemble Stacking Method

Ensemble stacking is a technique that combines multiple models, by training a
meta-model on the output of the individual models (see Odegua [10] and Wu
[13]). The meta-model takes the predictions of the base models as input and
learns to combine them in a way that maximizes the overall performance. Let
M be the number of base models and N be the number of observations in the
dataset. Each base model m produces a set of predictions:

y(m) = {y(m)
1 , y

(m)
2 , . . . , y

(m)
N }. The stacked dataset for the second-level model

can be constructed using the predictions of the base models as input features.
For the meta-model we investigate on different solutions:

– SEA (simple averaging ensemble) of all prediction at level 0
– linear regression
– random forest
– catboost

3 Models Results

The first aspect considered in the analysis is the stationarity of the two time
series (VIX and Hurst) in order to avoid spurious correlations in the models.
The (Dickey-Fuller) tests carried out show the stationarity hypothesis verified
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Table 1. Results of statistical tests

Variable Test Statistic Lag Order/df p-value Conclusion

H (Time Series) −5.839 15 0.01 Stationary

V IX (Time Series) −5.1079 15 0.01 Stationary

Studentized Breusch-Pagan Test 184.39 1 <2.2e−16 Heteroskedasticity

Lag Autocorrelation D-W Statistic 0.9408284 0 0.1179858 No Auto-correlation

Jarque Bera Test 1197.7 2 <2.2e−16 Non-Normality

(Table 1). In addition, the Jarque Bera test indicates a deviation from a Gaus-
sian distribution. The Breusch-Pagan test reveals a significant heteroskedasticity
statistic in the residuals of our model, while the Durbin Watson test suggests
that this autocorrelation may not be statistically significant.

The results on test set of the previously discussed models are reported below:

Table 2. Models results on test set

Model max err mae mse rmse R2 mape medape

lm 0.138 0.032 0.002 0.045 62% 4.925% 4.472%

poly 0.115 0.029 0.001 0.032 68% 4.42% 3.685%

svr 0.149 0.041 0.004 0.055 37% 6.171% 5.622%

dtr 0.121 0.030 0.001 0.032 68% 4.359% 3.469%

SAE 0.114 0.031 0.001 0.032 64% 4.756% 4.105%

ensemb rf 0.125 0.028 0.001 0.032 75% 4.383% 3.405%

ensemb lm 0.121 0.030 0.001 0.032 68% 4.35% 3.45%

ensemb catboost 0.124 0.029 0.002 0.032 67% 4.404% 3.419%

To study the behavior of the prediction error, we introduce the following
function:

f(Ht, Ĥt) = |Ht − Ĥt| (4)

This function allows us to analyze the prediction errors (absolute residuals)
between the actual efficiency of the market and the efficiency estimated by the
models described previously (Figs. 1, 2).
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Fig. 1. Estimation of implied Hurst by main models

Fig. 2. Absolute difference of implied Hurst estimation during COVID pandemic

4 Conclusions and Further Directions

In conclusion, the financial analysis of Hurst estimation provides valuable
insights into the future informational efficiency of the market. The ability to
assess the persistence of trends over time through the Hurst parameter proves
crucial for anticipating market dynamics and making informed decisions. From
a statistical point of view, the ensemble stacking approach, particularly based
on random forest, demonstrates superior performance on the test set, see Table
2. These results corroborate existing evidence in the literature regarding stack-
ing/blending approaches [12], emphasizing the robustness and effectiveness of
decision tree-based models and such predictive methodologies. Of particular sig-
nificance is the model’s performance during the critical period of the COVID
pandemic, where the random forest stands out for having the lowest absolute
error. If, on the one hand, we have verified the existence of a link between Hurst
and the VIX, just as implied volatility is analyzed, it would be of extreme inter-
est to delve into inefficiency studies. For example, in fractional option pricing
theory, investigating the term structure of the Hurst exponent.
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Abstract. Operational risk (OpRisk) is emerging as a crucial non finan-
cial consideration with widespread implications for financial institutions.
Shifting away from traditional regulatory tasks, including data collec-
tion, capital requirement calculations, and report generation for manage-
rial decisions, OpRisk functions are now adopting proactive strategies to
prevent or mitigate risks. The integration of Artificial Intelligence tech-
niques, increasingly essential for managerial insights, is utilized to glean
additional information from data. This study propels the utilization of
text analysis techniques in the context of OpRisk. A pioneering dimen-
sion involves examining pertinent tweet content from social media X
for the continuous monitoring of the evolving risk landscape, aiming to
identify early warnings about new types of potentially risky events.

Keywords: clustering · early warning · emerging OpRisks · natural
language processing · operational risk · text analysis · tweets

1 Introduction

The OpRisk is related to the risk of losses resulting from frauds, sanctions,
physical damage, IT issues, cyberattacks, and errors [1]. International financial
institutions have operational risk management functions, to perform regulatory
activities, such as loss data collection. They have databases to collect and store
the necessary information for each OpRisk event, such as loss amount, reference
date, Basel loss event type, and event description.

The present work addresses the application of text analysis techniques to
tweet data to observe the trend of OpRisk topics and detect new emerging
OpRisks. Text analysis is one of the main tasks of Natural Language Processing
(NLP), a branch of Artificial Intelligence (AI). The entire workflow is represented
in Fig. 1.
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Fig. 1. Workflow for tweet analysis.

2 Tweets Data

Two R scripts based on the package rtweet [2] have been written to access and
store tweets, and then scheduled to run using the R package taskscheduleR [3]:

– Script to extract tweets related to specific keywords (e.g., “fraud”, “sanction”,
“error”), mainly based on the ORX taxonomy [4] scheduled to run every hour.
The extraction was performed using the function search tweets.

– Script to extract tweets related to specific accounts for financial news (e.g.,
Financial Times, Bloomberg, Reuters), scheduled to run every day. The
extraction was performed using the function get timeline.

The different schedules of extraction are motivated by the number of tweets
expected for each type of search, and by the empirical observation that each
extraction cannot exceed around 100,000 tweets. Keyword extraction includes
personal account tweets, providing more relevant and earlier information than
financial accounts, for particular events (e.g., damages for earthquake or extreme
weather conditions). We used a specific API freely available for research activities
(after Twitter approval). Since the free API was dismissed when Twitter became
X, the available data sets are from May 5th to July 12th for keyword related
tweets, and from May 11th to July 11th for account related tweets.

3 Workflow for Tweet Data Analysis

Considering the amount of extracted tweets (around 100,000–150,000 per day),
we separately analyze each daily data set. All the steps described within the
present section are intended to be applied to each daily data set of tweets.
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3.1 Tweet Cleaning

Procedures to clean tweets include the following steps:

– For anonymization, a pre-defined list of most known names, extracted from
the R package gender, is excluded from tweets.

– Selecting the English-written tweets, setting the functions search tweets
and get timeline with the argument lang=’en’.

– Discarding re-tweets, removing hashtags and web links, ignoring cases, remov-
ing punctuations and digits, stop-words, and special characters, reducing
words to their lemmas, and removing duplicated tweets.

– Considering n-grams from ORX taxonomy, identifying bigrams-trigrams
within OpRisk event descriptions of the financial institution and the tweets
based on statistical tests on their frequencies [5].

– Removing all the terms having a frequency lower than 5 within all the tweets.

3.2 Tweet Vectorization and Semantic Adjustment

The tweet data set is transformed into a document-by-term matrix. Each row
represents a document (i.e., a tweet), each column represents a term (i.e., a word
or an n-gram), and each cell represents the Term Frequency (TF). To consider
the semantic similarity between different words, we adopt a word embedding
(pre-trained or trained on OpRisk event descriptions) and the related word-
similarity matrix similarity (with values higher than 0.8); the value of each “zero”
of the document-by-term matrix is updated with the value of the most similar
word included in the same row of the matrix, and scaled by the respective word
similarity score (refer to [6] for implications and impacts of this adjustment).

3.3 Dimensionality Reduction, Cluster Selection, Topic Analysis,
and Emerging Topics Detection

We use UMAP to produce a 2D data representation [7], and seeded LDA to
identify topic probability distributions [5] and, consequently, the clustering of
the tweets. Seeded LDA enforces specific topics with positive probability only
for a set of seeded tokens. It requires count data, so it has been applied to the
rounded semantic-aware document-by-term matrix and run with 1000 iterations
over a burn-in of 500. Seeded topics are based on the ORX taxonomy. Based
on seeded LDA results, we assign each document to the cluster related to the
topic with the highest probability. In case a document contains one or more seed
tokens, the assignment is constrained to the related seeded topics. We observe
the tweet daily frequencies for each topic to identify peaks, defined as cases above
the 95% quantile of the normal distribution estimated on the time series. Such
peaks can represent particular OpRisk events affecting the financial system, the
industry, or the governments. OpRisk analysts shall understand which OpRisk
events are relevant for their financial institution. To detect emerging OpRisks,
we consider five unseeded topics in seeded LDA. Observing the related word
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clouds, we can deep dive into the corresponding tweets to understand whether
such topics could be early warnings for the financial institution. Early warning
systems are extensively used in finance [8]. Furthermore, tweet analysis is often
used for predictive purposes [9]. Since OpRisk analysts cannot verify every single
tweet, we aim to detect the signal related to many tweets related to a specific
topic, including the most frequent words that are represented by word clouds.
For each day, it is much easier and faster to look at a few word clouds to spot
some OpRisk related words, than reading all the tweets or websites reporting
financial news.

4 Application to Tweet Data

We analyse the tweets that have been extracted as explained in Sect. 2 and
processed as illustrated in Sect. 3. We apply seeded LDA to each daily data
set, considering the seeded topics and the related seed tokens. For each day, we
cluster tweets based on the topic with the highest probability (considering the
constraint described in Sect. 3.3) and obtain, for each topic, the number of daily
tweets. The topic “08 Information Security” presents a peak (Fig. 2).
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Fig. 2. Number of daily tweets for 08 Information Security from May 5th to July 12th,
where the orange line represents 95% quantile of estimated normal distribution.

The observed peak is related to June 15th and 16th, which report around 1000
more tweets than on other days. We can analyze the UMAP 2D representation
including the tweets of June 15th, reported in Fig. 3. Deep diving the interactive
version of Figs. 3, it can be observed that several tweets in the clusters related to
“08 Information Security” (i.e. the light green ones) are related to a cyberattack
on US government agencies [10]. This is a potential early warning for a financial
institution, since it is related to a global cyberattack perpetrated by Russian
cybercriminals. It could have evolved into a cyber pandemic crisis affecting the
financial system. It would have been beneficial for financial institutions to have
been informed as soon as possible, to set up the proper prevention initiatives.
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Fig. 3. UMAP 2D representation of tweets related to June 15th 2023.

Peak detection can lead to false negatives. For instance, we detected a peak on
June 9th for the topic “08 Financial Crime” which referred to the alleged bribe
accepted by Joe Biden, which is not relevant for financial institutions. To detect
emerging new OpRisk topics, it is useful to analyze the word clouds related to
the five unseeded topics for each daily result. Inspecting the word cloud of the
4th unseeded topic related to June 15th, the token “severe thunderstorm warm”
appears in the bottom part of Fig. 4.
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Fig. 4. Word-cloud for the 4th unseeded topic of tweets related to June 15th.

These warnings were related to problematic weather conditions in the South-
east regions of the United States [11]. This early warning could have been relevant
for financial institutions having branches in the affected regions, allowing them
to prevent or mitigate the damages to employees and buildings.
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5 Conclusion

To get early warnings for emerging OpRisk events, we employed recent statistical
approaches and models: we utilized seeded LDA for constrained clustering in the
analysis of tweets related to OpRisk topics, and UMAP for dimensions reduc-
tion. Our refinement of standard text analysis techniques for tweets involved
the incorporation of n-grams based on the contemporary ORX taxonomy, as
well as relevant bigrams and trigrams. Analyzing daily tweets, a peak related
to cyberattacks emerged as a potential early warning for financial institutions.
Additionally, the detection of an emerging OpRisk topic concerning severe thun-
derstorms in Southeast U.S. regions suggests preemptive actions for potential
damages. While our proposed framework lays a robust foundation for tweets
related to OpRisk topics, further enhancements and extensions are conceivable.
Such research directions include:

– Identifying relevant n-grams, with n > 3, from OpRisk descriptions and
tweets, considering explicitly the multiplicity of the applied statistical tests.

– Incorporating web data, other than tweets, on a wider time window (e.g.,
social media, such as Threads, and news data providers, such as Talkwalker).

– Considering more advanced techniques to detect significant peaks and trends
in the daily number of tweets for each OpRisk related topic. For instance,
methods to detect change points can be used [12].

– Applying extensions of LDA (once adapted to include term seeds) able to
model the topics dependence, such as Structural Topic Model (STM) [13].

– Extending the analysis to Reputational Risk measurement, since severe
OpRisk events (especially, internal frauds) can have a reputational impact,
impacting the stock price of the financial institution [14].
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Abstract. This study introduces an innovative approach tomortality modeling by
incorporating external covariates into a multipopulation framework. Unlike tradi-
tional extrapolativemodels, thismethod acknowledges themultifaceted influences
on mortality, including environmental, economic, and lifestyle factors. By inte-
grating these variables into the Lee-Carter framework, the study aims to improve
the fit of mortality models, allowing for scenario building for policy planning and
risk assessment.
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1 Introduction

In recent decades, global life expectancy has seen a significant rise, emphasizing the
need for accurate mortality forecasts. Traditional models, primarily based on past trends,
often fail to capture the dynamic interplay of factors influencing mortality. This study
proposes a model that broadens the scope of mortality determinants, incorporating eco-
nomic, technological, environmental, and lifestyle variables to improve the accuracy and
applicability of mortality forecasts.

1.1 Literature Review

Mortality forecasting encompasses three main approaches [9]: extrapolation, which
extends current mortality trends into the future; explanation, which models mortality
using external variables linked to health outcomes; and expectation, based on expert
opinions. While often blended, these methods have distinct focuses. The present study
leverages the established link between mortality and economic development [2, 7] to
build a multipopulation stochastic mortality model within the Li-Lee framework [5]
drawing from the single-population GDP-basedmodel [6] and its multipopulation exten-
sionGDP-LLmodel [1], widening the scope of variables included in themodel following
other similar, but more limited attempts [3, 4, 8].
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2 Methodology

The research aims to formulate an interpretable mortality forecasting model, called
MEV (Multipopulation model with External Variables) utilizing various population-
level variables. This model, applied to male mortality only for brevity, extends beyond
conventional economic indicators like GDP to include fossil fuel use, consumption of
fruit and vegetables, alcohol and tobacco, share of adults with raised blood pressure,
height of men at age 18, caloric supply per capita and temperature anomalies. The
gendered covariates are available for females as well and female mortality, exhibiting
the same trends, althoughwith overall lower death rates, especially at younger ages. Data
sources include the Human Mortality Database for mortality data and for the external
variables WHO, FAO, NCD-RisC, Penn World Tables, HadCRUT4 for temperature
data, Wine Research Centre of the University of Adelaide, the International Cigarette
ConsumptionDatabase and BP Statistical Review ofWorld Energy. Themultipopulation
model for mortality rates m for country i, age x and year t is as follows:

log
(
mx,t,i

) = Ax +
∑J

j=1
Bj,xKj,t +

∑L

l=1
cl,xgl,t + ax,i + bx,ikt,i + εx,t,i. (1)

The estimation is adapted from the model in [1]. The J age-period terms Bj,xKj,t are
estimated at the group level, as well as the L age loadings cl,x and the common age terms
Ax. The terms gl,t are linear combinations of O external variables ho,t obtained through
singular value decomposition. The L < O principal components which explain each a
share of variance greater or equal to a set threshold are retained. After the estimation
at the group level, a country-level estimation produces the country intercepts ax,i and
the country-specific stationary age-period terms bx,ikt,i. In the applications, J = 0 or
J = 1. The model requires additional constraints on the parameters to be identified:
most notably, the gl,t terms need to be uncorrelated, which makes the use of principal
components a prerequisite.

This work builds upon the author’s previous research in single-population models
with external variables, of which the multipopulation model is an extension. The criteria
for multipopulation grouping have also been derived from the author’s previous work on
hierarchical clustering of mortality paths through the Hellinger distance, with a dynamic
cut-off height between 0.05 and 0.10 for the average distance and using the complete
agglomeration method (Table 1).

The model was applied to 27 countries from the Human Mortality Database, orga-
nized into seven clusters based on the relative distance of their respective mortality
paths.
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Table 1. Multipopulation groups, hierarchical clustering Hellinger distance cut-off and main
characteristics in the central year of the grouping period (1960–2019).

Countries Distance cut-off Life expectancy
at birth in 1990

Residual life
expectancy at 65
in 1990

Average
within-cluster
distance

Estonia, Latvia,
Lithuania

0,1171 70.249 14.712 0.0565

Bulgaria, Czechia,
Hungary, Poland,
Slovakia

0,1171 70.721 14.037 0.0558

Denmark, UK,
USA

0,0902 75.333 16.480 0.0540

Austria, Belgium,
Finland, West and
East Germany,
Ireland, Portugal

0,0902 75.024 16.015 0.0511

Netherlands,
Norway, Sweden

0,0514 77.062 16.942 0.0286

Italy, Spain,
Switzerland

0,0514 77.125 17.408 0.0327

Australia, Canada,
France

0,0646 76.684 17.403 0.0408

3 Results

3.1 Goodness of Fit

The model’s coverage ranges from 1975–2014, varying by cluster, depending on covari-
ate availability. The final year is 2014 except for the cluster with Australia, Canada and
France (2010). The starting year is 1996 for the Baltic cluster, 1993 for the Eastern
European one and 2000 for the cluster including Austria, Belgium, Finland, West and
East Germany, Ireland and Portugal.

Goodness of fit for the MEV model, and to a lesser degree for the GDP-LL model,
is less impacted by the number of years used to estimate it than is the case with the
Li-Lee model. The residuals in both absolute and percentage terms are presented for a
low-mortality cluster (Netherlands, Norway, Sweden) covering the 1975–2014 period:
the model appears to fit the data well, without patterns (vertical, horizontal or diagonal
lines) or clusters, except for a small cohort effect for WW2 cohorts in the Netherlands
(Fig. 1).
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Fig. 1. Residuals by year and age in percentage and absolute terms for a low mortality cluster.

Goodness of fit is assessed using the estimation ratios RC(i) and RAC(i) [1, 5], which
describe how well the common terms and the complete model, respectively, explain
variation in the data. The MEV model, with mean RC(i) and RAC(i) of 0.926 and 0.965,
outperforms both the GDP-LL (0.830 and 0.918) and the Lee-Carter (0.808 and 0.888).
Additionally, the MEV model is assessed in terms of mean absolute deviation (MAD),
mean absolute percentage deviation (MAPE) and Bayesian Information Criterion (BIC)
against the GDP-LL model. Out of 33 countries, the MEV shows a lower MAD for 19
countries, a lower MAPE for 20 and a lower BIC for 13. Mean MAPE is 4,01% for the
MEV model and 4,03% for the GDP-LL model.

Overall, the MEV model outperforms the GDP-LL model where the latter’s fit is
not very high and where the Li-Lee fit isn’t optimal either, like i.e. in Austria, Bulgaria,
Ireland or in the Baltic countries. Otherwise, the two models are similar.



Multipopulation Mortality Modeling 147

3.2 Stationarity and Cointegration

Time series need to be stationary or cointegrated in order to obtain reliable and mean-
ingful long-term estimates. While the order of integration varies between variables and
countries, all variables except temperature anomalies are non-stationary according to
at least one between the KPSS and Phillips-Perron test for almost all countries. Test-
ing for cointegration with the kt time term of the Lee-Carter model reveals at least one
cointegration relationship at the 5% level except for Finland and Denmark.

After estimating the multipopulation model, the country-specific kt residual time
trend has been modeled as a stationary AR(1) process in order to ascertain whether
the group-level terms account for the stochastic trend in its entirety: residual country-
specific time terms need to be stationary in order to ensure coherent forecasts. In no
country the estimated autoregressive term was greater or equal to 1, hence the residual
country-specific terms are stationary for all countries considered.

4 Discussion

Extrapolativemodels rely on past trends to estimate future oneswithout questioning their
validity. The inclusion of external variables fits the data better, allows for scenario-based
predictions with explicit assumptions and in general turns mortality from an exogenous
variable to a possibly endogenous part of more complex models. The multipopulation
approach is advantageous for its accuracy, benefiting from shared trends across countries,
reducing noise, especially for shorter time frames. The capacity to derive meaningful
estimates from just a few years of data proves especially valuable in situations where the
relationship between covariates and mortality shifts, as can occur with the onset of new
diseases or global catastrophic events. However, it requires comparable and consistent
data across all included populations.

This study presents a significant step forward in mortality modeling, offering a
versatile tool for scenario planning and policy development. While this model focuses
on groups with a common mortality trend, future research should focus on how to model
countries with similar covariate effects on mortality, but with divergent trends, obtaining
estimates that are coherent conditionally on the values of the covariates.
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Abstract. The increases in life expectancy over the last decades have strongly
impacted the distribution of ages at death. Its parametric estimation can be com-
plicated by cohort effects. Our addresses the issue by extending a recent three-
component parametric model to include cohort effects in a Bayesian framework.
The model is fit to male mortality data from five diverse Italian regions between
1974 and 2022. Our results demonstrate significant regional variations in mortal-
ity, influenced by cohort effects, particularly among cohorts born around World
War I. The model effectively captures the evolution of mortality components, with
cohort effects markedly improving fit of complex, even multi-modal curves.

Keywords: mortality · skew-normal · Bayesian · Italy · cohort effect

1 Introduction

In mortality studies, multi-component parametric models, such as the classic three-
component model [9], typically assume smooth age-at-death distributions. However,
this smoothness can be disrupted by cohort effects - unique variations tied to specific
birth cohorts [14]. These effects can lead to inaccuracies in traditional models if they are
not properly included. Our study aims to improve the fit of thesemodels by incorporating
cohort effects into a recent three-component parametric model [15], using a Bayesian
approach. This modification helps capture the real-world irregularities in mortality data
that are often missed when cohort effects are overlooked.
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1.1 Literature Review

Mortality modeling encompasses a diverse range of approaches, reflecting the variety
in both the aspects of mortality being modeled, like death rates [8], life expectancy
[11] or odds-ratios [6], and the methods employed, from parametric forms [5] to non-
parametric estimates [8], intermediate approaches [7] and neural networks [13]. Among
those, classical parametric forms continue to be relevant due to their ease of interpretation
[15]. Several models have been developed within a Bayesian framework, mainly based
on death rates [1, 4] or life expectancy [11].

Some birth cohorts experience higher or lower mortality throughout their lives, lead-
ing to cohort effects. These have been recognized and incorporated into various models
[10, 12], improving fit and forecasts. However, the integration of cohort effects within
Bayesian frameworks remains relatively rare [3]. This gap highlights the innovative
aspect of our study, which brings together the Bayesian methodology with a focused
consideration of cohort effects.

2 Model and Data

The study analyzes male mortality data from five Italian regions (Lombardia, Lazio,
Sicily, Sardinia, and Friuli Venezia Giulia) from 1974 to 2022 for ages 0 to 100. The
cohort effect strength, most evident for the 1915–1925 cohorts for which it is modeled,
varies substantially between the regions. The model extends the three-component one
by Zanotto et al. [15] and applies it in a Bayesian framework. The density distribution
of ages at death, unadjusted for cohort effects, is the following mixture, with θ being the
vector of parameters, x the age and t the year:

f (x; θ, t) = ζ1,t · fI (x; σI ) + ζ2,t fm∗
(
x;μm,t, σm,t, γm,t

) + ζ3,t fM ∗
(
x;μM ,t, σM ,t, γM ,t

)
.

(1)

The infant mortality component is a half-Normal with mean 0 and variance σI ,
while the premature mortality component fm∗ and the adult mortality component fM ∗
are Skew-Normals with the centered parametrization [15], both normalized by dividing
them by the probability of them assuming a value between 0 and 100. ζ ∼ Dirichlet(3)
is a mixing parameter with 2 degrees of freedom. Since the age is a discrete variable,
the normalized density is used to approximate the probability of dying at a given age,
resulting in faster estimation and no noticeable effect on parameter estimates. The model
is then adjusted to account for multiplicative cohort effects αt−x, with t − x being the
birth cohort, such that the probability of a person born in year t − x dying at age x in
year t is:

P(x; θ, t, α) = αt−xf (x; θ, t)
∑100

x=0 αt−xf (x; θ, t)
. (2)



Bayesian Modeling of Mortality in Italian Regions 151

The prior distributions are μm,t ∼ N (30, 5) and μM ,t ∼ N (80, 10) for the two
Skew-Normalmeans,σm,t, σM ,t ∼ Inv.Γ (0.001, 0.001) for theSkew-Normal variances,
γm,t, γM ,t ∼ N (0, 1) for the skewness parameters, ζt ∼ Dir(1, 1, 8) for the mixing
parameters and log(αt−x) ∼ U (−0.7, 0.4), corresponding to cohort effects from −50%
to+50%. The priors have been chosen in order to reduce both the risk of label switching
and the impact on posterior distributions.

3 Results

Sampling has been performed in Stan with 4 chains in order to assess convergence, 1,000
warm-up iterations and 1,000 sampling iterations. Cohort effects have been estimated
for the 1915–1925 cohorts.

3.1 Goodness of Fit

The age at death curves for the regions studied are frequently difficult to model, with
nonlinear effects and, in some cases, even multiple modes. As evidenced in Fig. 1, the
inclusion of cohort effects allows for a better fit compared to the three-component model
without cohort effects.

Cohort effects vary substantially in strength between regions. For Lombardia, they
range from +9,0% (1917) to −8,6% (1920), while in Sardinia the effect is substantially
lower, ranging from +3,0% (1916) to −4,0% (1920).

3.2 Convergence

Convergence is achieved for all regions for the premature and adult mortality compo-
nents, with a Gelman-Rubin statisticR

∧

lower than 1,1 for the relevant parameters. For the
infant mortality component, convergence is achieved in all 49 years for Lombardia and
Sicily. For Friuli Venezia Giulia, Lazio and Sardinia convergence of the mixing param-
eter ζ1 is achieved for 48, 49 and 47 years, respectively, and of the variance parameter
σI for 47, 47 and 44 years. We deem this to be a minor issue. Since infant mortality is
a specific component with no risk of label switching, the issue can be easily resolved
by either setting the σI parameter to a constant [15] or by substituting it with a point
probability [2], with a subsequent loss of fit.
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Fig. 1. Actual (black) and fitted (blue) life table deaths, with 95% credible intervals (red) by age
and region, selected years, mixture model with cohort effect (left) and without (right)

4 Discussion

The Bayesian three-component model presented shows a good fit to the complex curve
of age of death for the Italian regions analyzed. The presence of significant cohort effects
has been confirmed,with varying strength across regions, and their inclusion in themodel
markedly improves fit.As far aswe are aware, this is the first time cohort effects have been
included in a Bayesian mixture model focused on the age at death. Future developments
include leveraging the full power of Bayesian models by calculating quantities from the
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posterior that would be impractical to calculate in a MLE setting, like the distribution
of mortality indicators such as life expectancy or conditional standard deviation.
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Abstract. This article presents a comprehensive study on developing a
predictive product pricing model using LightGBM, a machine learning
method optimized for regression challenges in situations with limited
historical data. It begins by detailing the core principles of LightGBM,
including gradient descent, and then delves into the method’s unique
features like Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB). The model’s efficacy is demonstrated through a
comparative analysis with XGBoost, highlighting Light-GBM’s enhanced
efficiency and slight improvement in prediction accuracy. This research
offers valuable insights into the application of LightGBM in developing
fast and accurate product pricing models, crucial for businesses in the
rapidly evolving data landscape.
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1 Introduction

In the current fast-changing business environment, companies face significant
challenges in managing their sales strategies and determining the best pricing
strategies for their products. One of the most complex aspects of this task is
setting the price for a new product that lacks historical sales data.

Developing precise and dependable pricing strategies for new products has
given rise to advanced predictive models. These models are essential for com-
panies seeking to determine the best prices without prior experience. Of these
models, the LightGBM (Light Gradient Boosting Machine) algorithm is partic-
ularly effective in rapidly identifying the optimal forecast. This article employs
the LightGBM approach to construct a predictive pricing model for a novel prod-
uct, designed to address the intricate obstacles of contemporary markets, such
as rapidly changing consumer trends and intense market competition.

The LightGBM model stands out due to its efficient handling of large-
scale data and its capacity for fast processing, making it particularly suited
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for dynamic market conditions. It allows businesses to quickly adapt their pric-
ing strategies in response to real-time market changes, ensuring competitiveness
and relevance.

2 Preliminary Theoretical Base

The Gradient Descent method is based on the idea that if the function of
multiple variables F (x) is defined and differentiable in the vicinity of point a,
then F (x) decreases fastest by moving from a in the direction of the negative
gradient of F at a, denoted as −∇F (a) (where ∇ represents the gradient, a vector
of partial derivatives of the function). This implies that if an+1 = an −γ∇F (an)
for a sufficiently small step size (or learning rate) γ ∈ R+, then F (an) ≥ F (an+1).

In other words, γ∇F (a) is subtracted from a because we aim to move against
the gradient towards a local minimum. With this understanding, we initiate
with x0 as an assumption for a local minimum of F , considering the sequence
x0, x1, x2, . . . such that xn+1 = xn − γn∇F (xn), for n ≥ 0.

As a result, we obtain F (x0) ≥ F (x1) ≥ F (x2) ≥ . . ., and we expect the
sequence xn to converge towards a local minimum. It’s worth noting that the
step size γ can be adjusted at each iteration.

The Gradient Boosting Machine (GBM), a prominent technique in
machine learning, is primarily employed for addressing both classification and
regression challenges. This method enhances predictive accuracy by integrating
several simpler models. Unique to GBM is its iterative model-building approach,
a characteristic shared with other boosting techniques. Its versatility is further
highlighted by its capability to optimize a wide range of differentiable loss func-
tions.

Often, GBM is implemented in tandem with decision trees, leading to the
creation of the Gradient Boosting Decision Trees (GBDT) framework. This inte-
gration positions GBM as an adaptive ensemble method variant. In the GBDT
context, decision trees function as the primary estimators, a concept extensively
discussed in Friedman’s foundational paper [1], which delves into the intricacies
and applications of gradient boosting in machine learning.

2.1 LightGBM

LightGBM is a type of Gradient Boosting Decision Trees (GBDT) that was
developed by a team of researchers at Microsoft in 2016. This model was created
to improve upon the popular XGBoost model, which is known for its speed and
reliability in multi-class classification projects.

The reason for enhancing XGBoost was to achieve even greater efficiency
and faster implementation. The most computationally intensive task in GBDT
is the search for optimal split points, which is directly proportional to both
the number of features and the number of instances. This leads to speed-related
issues when dealing with large datasets. To address this, two new techniques were
introduced: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB). These techniques aimed to reduce the number of data instances
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and functions, thereby mitigating the computational challenges associated with
GBDT training on large datasets.

Gradient-Based One-Side Sampling (GOSS)
In GBDT, there is no individual weight for each data instance, but LightGBM
that instances with different gradients have varying impacts on information gain
calculations. Specifically, instances with higher gradients (less trained samples)
exert a greater influence on calculating information gain.

To balance the effect of data distribution, GOSS introduces a constant
multiplier for examples with smaller gradients, as presented in the algorithm
“Gradient-based One-Side Sampling” [2], compensating for their contribution to
the distribution.

More theoretically, GBDT utilizes decision trees to learn functions from
the input space χs to the gradient space G. Assuming a training dataset of
n instances {x1, x2, . . . , xn}, where each xi is a vector of dimension s in χs. Dur-
ing each gradient boosting iteration, we compute negative gradients of the loss
function with respect to the model’s predictions, denoted as {g1, g2, . . . , gn}.

Definition. Let O be the training dataset on a fixed node of the decision tree.
The variance gain of splitting feature j at point d for this node is defined as

Vj|O(d) =
1

nO

⎛
⎜⎝

(∑
{xi∈O:xij≤d} gi

)2

nj
l|O(d)

+

(∑
{xi∈O:xij>d} gi

)2

nj
r|O(d)

⎞
⎟⎠ ,

where nO =
∑

I[xi ∈ O], nj
l|O =

∑
I[xi ∈ O : xij ≤ d], and nj

r|O =
∑

I[xi ∈
O : xij > d].

In GBDT, the decision tree algorithm chooses d∗
j = argmaxdVj(d) for feature

j and computes the maximum gain Vj(d∗
j ). The data is then split based on

feature j∗ at point d∗
j into left and right child nodes.

In the novel GOSS algorithm a subset A is first formed by selecting the top
a×100% of instances with higher gradients. A random subset B is then sampled
from the remaining instances with lower gradients. The instances from subsets
A ∪ B are split based on the estimated variance reduction Ṽj(d).

For a subset Al, Ar, Bl, and Br defined as described, the estimated variance
reduction is given by:

Ṽj(d) =
1
n

((∑
xi∈Al

gi + 1−a
b

∑
xi∈Bl

gi

)2
nj

l (d)
+

(∑
xi∈Ar

gi + 1−a
b

∑
xi∈Br

gi

)2
nj

r(d)

)
,

where a and b are constants, and the coefficient 1−a
b is used for normalization.

Additionally, the GOSS method is supported by the following theorem:

Theorem. Let E(d) =
∣∣∣Ṽj(d) − Vj(d)

∣∣∣ represent the approximation error in
GOSS. With probability at least 1 − δ, we have:

E(d) ≤ C2
a,b ln

(
1
δ

)
· max

{
1

nj
l (d)

,
1

nj
r(d)

}
+ 2DCa,b

√
ln

(
1
δ

)
n

,

where Ca,b = 1−a√
b

· maxxi∈Ac |gi| and D = max{ḡj
l (d), ḡj

r(d)}.
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Exclusive Feature Bundling (EFB). High-dimensional data often contain
numerous features, which can lead to model overfitting. Sparsity in feature space
is a common phenomenon.

Sparsity implies that many features are mutually exclusive, meaning they
do not have non-zero values simultaneously. This allows us to group them into
“exclusive feature bundles”. A scanning algorithm enables the construction of his-
tograms for these bundles, instead of individual features, reducing the histogram
construction complexity from O(#data × #feature) to O(#data × #bundle),
where #bundle is significantly smaller than #feature.

The EFB algorithm, which is introduced by the algorithm “Merge Exclusive
Features” in [2], can consolidate numerous exclusive features into a significantly
smaller set of dense features, enabling efficient avoidance of unnecessary compu-
tations for zero feature values.

In the study by Dunbray et al. [4], the detailed algorithm integral to the
LightGBM method is thoroughly outlined.

3 Practical Implementation

3.1 EDA and Pre-processing

The model was created as a way to solve classification problems. In this article,
we will examine how the model works with the problem of forecasting commodity
prices without history and for a dataset with non-numerical data.

The dataset is available on the Kaggle website under the name “Mercari Price
Suggestion Challenge”. Established in 2013, Mercari Inc. is a Japanese company
that operates one of the most popular C2C marketplaces in the Japanese market.

The data is already divided into training and testing sets. The dataset
comprises the following seven characteristics: “name”, “item condition id”,
“brand name”, “category name”, “shipping”, “item description” and “price”.

Our initial model looks like this:

y = a0 + a1X1 + · · · + anXn + ε

where: y is the dependent variable (price), X1, . . . , Xn are the independent vari-
ables (features), a0, a1, . . . , an are the coefficients associated with each indepen-
dent variable, ε represents the error term, which accounts for the variability in
y that is not explained by the model.

During the exploratory analysis and preparation of the data for work, it
was chosen log(y) as the dependent variable, because after constructing the his-
tograms of the distribution, it was found that the logarithmic distribution is the
closest to the normal one.

Also, the general category was divided into three separate subcategories,
missing values were processed. It’s worth noting that since most of our charac-
teristics are text, CountVectorizer, TfidfVectorizer were used to convert them to
numeric values.
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So, now we get a semi-logarithmic eight-factor model

log(y) = a0 + a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6 + a7X7 + a8X8 + ε.

3.2 Model Training

In this section, we delve into the practical implementation of the LightGBM
framework for price prediction.

The study was conducted in the Python environment using the Params func-
tion. For the ‘objective’ parameter, we designate ‘regression’ to align with our
regression task. Additionally, we specify the boosting type as ‘gbdt’, which is
the default setting. We include the ‘data sample strategy’ as our GOSS method,
which is known for its effectiveness in dealing with large datasets. Furthermore,
we activate the ‘enable bundle’ option to indicate our utilization of the Exclu-
sive Feature Bundling (EFB) technique. The chosen evaluation metric is ‘RMSE’,
reflecting the Root Mean Squared Error.

This configuration enables us to leverage the strengths of LightGBM for
accurate and efficient price prediction.

3.3 Evaluation

To evaluate the performance of the developed model, we will use the metrics
R2, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) [3],
where the Mean Absolute Error (MAE).

For comparison, we also implemented the XGBoost model. The obtained
comparative table presents model evaluations based on training for 1000 itera-
tions using the provided training data (Table 1):

Table 1. Model Performance Comparison

Metric LGBM XGBoost

RMSE 0.47667 0.47778

MAE 0.35779 0.35897

R-squared 0.59461 0.59274

Time, s 810.25 2116.69

In order to show that the distribution of the real price and the model are
quite similar, we visualized the entire sample, 1000 items and 100 items, which
is the most representative. Where real prices are shown in blue, predicted by
LightGBM in pink and predicted by XGBoost in green (Fig. 1).
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Fig. 1. Distributions of prices

4 Conclusion

Through our work, we have successfully developed a model that can predict the
price of a product without a history. Our model is based on the characteristics of
the product and data on similar products found in the vicinity, and we utilized
the LightGBM method. We used a real data set from Mercari, which is one of
the most popular C2C marketplaces in Japan, to showcase the novelty of the
LightGBM method. Pseudo-codes were provided to demonstrate how these new
algorithms work.

Our findings showed that the LightGBM method provides highly accurate
predictions for product prices without history, and is significantly faster com-
pared to other models. This study confirms the efficacy of using the LightGBM
method for price prediction. The results of our study can be valuable for com-
panies looking to develop automated recommender systems for a historical com-
modity price forecasting model.
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Abstract. In this work, we consider a spatio-temporal financial dataset,
with p = 84 units (a sample of asset returns from the “G7” countries) and
T = 666 daily observations, from May 2021 to December 2023. Assuming
that the p units can be grouped into clusters, we apply a clusterized
spatial dynamic panel data model and a multiple testing procedure, to
investigate the best partition of clusters for the dataset. We show that,
among the three candidate partitions considered in our analysis, the best
partition is the one based on the asset’s economic sector.

Keywords: Clustering · spatio-temporal models · financial returns

1 The Clusterized SDPD Model

Denoting with {yt, t = 1, 2, . . . , T} a spatio-temporal dataset – where the vector
yt = (yt1, yt2, . . . , ytp)′ is p-dimensional and includes the observations at time t
from p different locations (or spatial units) – we start from the heterogeneous
SDPD (Spatial Dynamic Panel Data) model, proposed in [1] and given by

yt = D(λ0)Wyt + D(λ1)yt−1 + D(λ2)Wyt−1 + D(β1)x
(1)
t + . . . (1)

. . . + D(βk)x(k)
t + c + εt,

where W is the spatial matrix, a known weight matrix reflecting the distances
between spatial units. The spatial matrix has a zero main diagonal and is usually
based on physical distances, to deal with spatial correlation. One can also build
matrix W using distances based on correlations between time series (or some
other association measures), instead of physical distances. The i-th equation of
this model, for i = 1, . . . , p, is

yti = λ0iw′
iyt + λ1iyt−1,i + λ2iw′

iyt−1 + β1ix
(1)
ti + . . . + βkix

(k)
ti + ci + εti,

where the column vector wi is the i-th row of W. The parameters of the model
are collected in the diagonal matrices D(λj) and D(βl), with j = 0, 1, 2 and
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l = 1, . . . , k, where λj = (λj1, . . . , λjp)′ and βl = (βl1, . . . , βlp)′. Note that each
location has its own parameters, therefore the model is said spatially heteroge-
neous. A different case is when all locations have the same parameter values,
then the Eq. (1) “collapses” into the classic homogeneous SDPD model of [4],
with λji = λj and βli = βl for all (i, j, l). Furthermore, the component D(βl)x

(l)
t

in Eq. (1) may be included to account for the effects of some covariates on the
time series data yt (the p-dimensional vector x(l)

t collects the data observed at
time t on the p locations and for a given covariate l, with l = 1, . . . , k). Finally,
c contains the fixed effects while εt ∼ i.i.d. with E(εt) = 0 and V ar(εt) = Σε.

When the spatial units are grouped into clusters, a hybrid SDPD model can
be considered, a cross between the homogeneous and heterogeneous cases. In
such a case, the spatial units belonging to the same cluster are expected to be
homogeneous. As a consequence, the associated spatial parameters, λji and βli

for i = 1, . . . , p, are set to be equal within clusters and to change for different
clusters. Denote with S the number of clusters and let {Gs, s = 1, . . . , S} be a
partition of {1, . . . , p}, with ps the number of units in the s-th cluster Gs, so
∑S

s=1 ps = p. The clusterized SDPD model is

yti = λ
(s)
0 w′

iyt + λ
(s)
1 yt−1,i + λ

(s)
2 w′

iyt−1 + β
(s)
1 x

(1)
ti + . . . + β

(s)
k x

(k)
ti + ci + εti,

∀i ∈ Gs; s = 1, 2, . . . , S; t = 1, 2, . . . , T, (2)

and it can be estimated by adapting the estimation procedure proposed in [1], as
suggested in [2]. When S = 1, we obtain the homogeneous SDPD whereas, when
S = p, we obtain the heterogeneous SDPD. However, to estimate the clusterized
SDPD model consistently, it is necessary to know the clustering partition (the
number of clusters and their composition), i.e. knowing {Gs, s = 1, . . . , S}.
To this aim, [2] have proposed a testing procedure which allows to verify if a
candidate partition of clusters, assumed under the null, is suitable to estimate
the clusterized SDPD model.

In this work, we move along two directions. First of all, we investigate the
empirical performance of the testing procedure, proposed in [2], through a sim-
ulation study (Sect. 2). Second, we give an application of this testing procedure
to analyse a real dataset of financial asset returns and to test the significance of
a given partition of clusters for the assets (Sect. 3).

2 A Simulation Study to Investigate the Performance
of the Testing Procedure for the Cluster Partition

The idea underlying the method proposed in [3] is based on a testing procedure
that compares two setups: a specific clusterized SDPD model, assumed under
H0 and an heterogeneous SDPD model, assumed under H1.

The testing procedure is based on the following statistics

δ̂
(s)
ji = θ̂ji − θ̂

(s)
j j = 1, . . . , 3 + k;∀i ∈ Gs; s = 1, . . . , S; (3)
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Table 1. Performance indicators of the multiple test calculated over 500 Monte Carlo replications

of a clusterized SDPD model with S = 4 clusters.

Multiple test for λ0 Multiple test for λ1 Multiple test for λ2 Multiple test for β1

H0 : ∩i,s

{
λ0i = λ

(s)
0

}
H0 : ∩i,s

{
λ1i = λ

(s)
1

}
H0 : ∩i,s

{
λ2i = λ

(s)
2

}
H0 : ∩i,s

{
β1i = β

(s)
1

}

False Discovery rate

T = 100 500 1000 100 500 1000 100 500 1000 100 500 1000

p = 10 0.024 0.022 0.028 0.044 0.077 0.063 0.038 0.032 0.043 0.020 0.018 0.016

50 0.052 0.018 0.036 0.098 0.056 0.064 0.092 0.026 0.056 0.032 0.046 0.026

100 0.062 0.036 0.064 0.202 0.068 0.054 0.142 0.068 0.076 0.104 0.062 0.044

Average Power

T = 100 500 1000 100 500 1000 100 500 1000 100 500 1000

p = 10 0.458 0.623 0.666 0.444 0.505 0.538 0.324 0.420 0.466 0.728 0.776 0.800

50 0.602 0.746 0.795 0.533 0.646 0.685 0.717 0.835 0.855 0.950 0.991 0.995

100 0.691 0.779 0.814 0.570 0.711 0.752 0.554 0.718 0.769 0.916 0.945 0.952

where θ̂ji is the heterogeneous estimator of the j-th parameter in the vector
θi = (λ0i, λ1i, λ2i, β1i, . . . , βki)′, while θ̂

(s)
j is the clusterized estimator of the

corresponding parameter θ
(s)
j , as

θ̂
(s)
j =

1
ps

∑

i∈Gs

θ̂ji, j = 1, . . . , 3 + k, (4)

that is the average of the heterogeneous estimators for the spatial units in the
s-th cluster. Details about these estimators can be found in [3] and [2] and are
omitted here to save space. For each j = 1, . . . , 3+k, when the assumed clustering
partition holds, the two estimators θ̂ji and θ̂

(s)
j are expected to produce similar

results and the statistics δ̂
(s)
ji are expected to be near to zero, for all (i, s). A

multiple test (with Bonferroni correction) is then built to test the validity of the
null hypothesis H0j (seen as the intersection of p univariate hypotheses H

(s)
0ji)

H0j : ∩i,sH
(s)
0ji with H

(s)
0ji : {θji = θ

(s)
j }, ∀i ∈ Gs; s = 1, . . . S, (5)

taking into account the familywise error rate (see [3] and [2] for more details).
Here we report some simulation results to confirm the validity of the testing

procedure, considering different values of time-series dimension, p = (10, 50, 100),
and different sample sizes, T = (100, 500, 1000). The parameter settings of the
simulation study are fixed as in [2] (in particular, we considered 500 Monte Carlo
replications, we set S = 4 clusters and the global size of the test was fixed to
α = 0.10). The results are shown in Table 1. Note that the four columns in the
table refer to the four different spatial parameters of model (2): λ

(s)
0i , λ

(s)
1i , λ

(s)
2i ,

and β
(s)
1i , respectively.
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The performance indicators reported in Table 1 are: a) false discovery rate
(FDR), which is the proportion of incorrect rejection of the null for at least one
of the true univariate hypotheses H

(s)
0ij (it represents the empirical size of the

test, so it should be FDR ≤ α, at least asymptotically); b) average power (AP),
which is the average number of the proportion of correct rejection of the null in
each iteration (the benchmark value is one, asymptotically). The values in the
table show a good performance for the multiple test, since we have small values
for FDP and increasing values for AP, when T increases. Regarding the FDR,
it does not exceed α = 10%, as desired, at least for high values of T .

3 Application of the Method to Test the Cluster
Partition of Financial Asset Returns

The multiple testing procedure described above can be used in many situations.
For example, we might consider the spatial data observed in a given group of
countries and we might want to see whether the SDPD model parameters are
homogeneous within countries and heterogeneous across countries. In such a
case, the test is used to verify if the “country partition” is relevant to explain
the variability in model parameters. Of course, many other examples of cluster
partition can be formulated, based on economic sectors, sex, education level or
some other features of the spatial units.

In this work, we consider an application to financial asset returns. In partic-
ular, we downloaded from Yahoo Finance the stock quotes of 84 financial assets,
coming from the G7 countries (Canada, France, Germany, Italy, Japan, United
Kingdom and USA). The assets were suitable chosen to represent the main eco-
nomic sectors of these countries. The names, the correspondent economic sectors
and the nationalities of these assets are reported in Table 2. The financial time
series range from 5th May 2021 to 29th December 2023, for a total of 666 daily
observations. We transformed data into log-returns and, before applying the mul-
tiple test, we removed a temporal observation for all the assets if at least one of
them contains a missing value for that date. In this way, the final spatio-temporal
dataset has T = 597 observations.

As widely adopted in the spatial methodology, the spatial matrix W =
{wi,r; i, r = 1, 2, . . . p} has been derived by converting the correlation coefficients
into distances, as follows:

wi,r =
√

2(1 − ρir), i, r = 1, 2, . . . , p,

where ρir is the correlation coefficient between the i-th and r-th time series of
log-returns. Finally, note that we do not have any exogenous regressors, here, so
we consider model (2) without exogenous components. This means that we have
to implement the multiple test only three times, once for each given vector of
parameters (λ0, λ1 and λ2).
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Table 2. Results of the multiple test, for three different cluster partitions assumed under H0, for

the financial dataset described in Sect. 3. Univariate rejections in the multiple test are in grey color,

F (= FALSE) is for “rejected” and T (= TRUE) for “not rejected”.

Asset “Sector” partition “Country” partition “Trivial” partition

1 BCE Inc T T T Telecommunications F T T Canada F T T G7
2 Bank of Nova Scotia T T T Bank T T T Canada T T T G7
3 Cameco Corporation T T T Energy T T T Canada T T T G7
4 Ticray Brands T T T Health T T T Canada T T T G7
5 Royal Bank of Canada T T T Bank T T T Canada F T T G7

6 Intact Finantial Corp T T T Insurance T T T Canada F T T G7
7 Gildan T T T Clothing T T T Canada T T T G7
8 Suncor Energy Inc T T T Oil and Gas T T T Canada T T T G7
9 Tourmaline Oil Corp T T T Oil and Gas T T T Canada T T T G7
10 Telus Corporation T T T Telecommunications T T T Canada T T T G7
11 Maple Leaf Food T T T Food and Beverage T T T Canada T T T G7
12 Engie T T T Energy T T T France T F T G7
13 Renault T T T Motors T T T France T T T G7
14 Hermes T T T Clothing T T T France T T F G7
15 AXA T T T Insurance T T T France T T T G7
16 Danone T T T Food and Beverage T T T France T T T G7
17 Essilor Luxottica T T T Health T T T France T T T G7
18 Totalenergies T T T Oil and Gas T T T France T T T G7
19 Credit Agricole T T T Bank T T T France T T T G7
20 Orange T T T Telecommunications F T T France F T T G7
21 Societe Generale T T T Bank T T T France T T T G7
22 BNP Paribas T T T Bank T T T France T T T G7
23 Micheline T T T Tyres T T T France T T T G7
24 Hello Fresh T T T Food and Beverage T T T Germany T T T G7
25 BMW T T T Motors T T T Germany T T T G7
26 Volkswagen Group T T T Motors T T T Germany T T T G7
27 Deutsch Bank T T T Bank T T T Germany T T T G7
28 Allianz T T T Insurance T T T Germany T T T G7
29 Adidas T T T Clothing T T T Germany T T T G7
30 E.On T T T Energy T T T Germany T T T G7
31 Continental T T T Tyres T T T Germany T T T G7
32 De Linde Group T T T Oil and Gas T T T Germany T T T G7
33 Munich Re T T T Insurance T T T Germany T T T G7
34 RWE T T T Energy T T T Germany T T T G7
35 Fresenius T T T Health T T T Germany T T T G7
36 Deutsch Telekom T T T Telecommunications T T T Germany F T T G7
37 Poste Italiane T T T Insurance T T T Italy T T T G7
38 Campari T T T Food and Beverage T T T Italy T T T G7
39 Moncler T T T Clothing T T T Italy T T T G7
40 Amplifon T T T Health T T T Italy T T F G7
41 Fineco T T T Bank T T T Italy T T T G7
42 Ferrari T T T Motors T T T Italy T T T G7
43 Unipol T T T Insurance T T T Italy T T T G7
44 Enel T T T Energy T T T Italy T T T G7
45 Generali T T T Insurance T T T Italy T T T G7
46 Telecom T T T Telecommunications T T T Italy T F T G7
47 Eni T T T Oil and Gas T T T Italy T T T G7
48 Intesa San Paolo T T T Bank T T T Italy T T T G7
49 Nissan T T F Motors T T F Japan T T F G7
50 Toyota T T F Motors T T F Japan T T F G7
51 Toray Industrie F T F Clothing T T F Japan F T F G7
52 Japan Tobacco T T F Food and Beverage T T F Japan F T T G7
53 Astellas Pharma T T F Health F T T Japan T T T G7
54 Mizuho Finantial Group F T F Bank T T F Japan F T F G7
55 Sumitomo Mitsui Fin. Grp. F T F Bank T T F Japan F T F G7
56 Chubu Electric Power T T T Energy T T T Japan F T T G7
57 Osaka Gas F T T Oil and Gas T T T Japan F T T G7
58 Tokyo Gas F T T Oil and Gas T T T Japan F T T G7
59 KDDI Corp T T T Telecommunications F T F Japan T T T G7
60 Dai-Ichi Life F T F Insurance T T F Japan F T F G7
61 Burberry Group T T T Clothing T T T United Kingdom T T T G7
62 Smith and Nephew T T T Health T T T United Kingdom T T T G7
63 Rolls-Roice Holdings T T T Motors T T T United Kingdom T T T G7
64 Vodafone Group T T T Telecommunications T T T United Kingdom T T T G7
65 Lloyds Banking plc T T T Bank T T T United Kingdom T T T G7
66 Admiral Group T T T Insurance T T T United Kingdom T T T G7
67 Aviva T T T Insurance T T T United Kingdom T T T G7
68 HSBC Holdings T T T Bank T T T United Kingdom T T T G7
69 Petrofac T T T Oil and Gas T T T United Kingdom T T T G7
70 Royal Dutch Shell B T T T Oil and Gas T T T United Kingdom T T T G7
71 Astrazeneca T T T Health T T T United Kingdom T T T G7
72 Aston Martin Lagonda T T T Motors T T T United Kingdom F T T G7
73 Abbott T T T Health T T T USA T T T G7
74 Tesla T T T Motors T T T USA T T T G7
75 Ford T T T Motors T T T USA T T T G7
76 Exxon Mobil T T T Oil and Gas T T T USA T T T G7
77 Loews Corporation T T T Insurance T T T USA T T T G7
78 Maraton Oil T T T Oil and Gas T T T USA T T T G7
79 Bank of America T T T Bank T T T USA T T T G7
80 JPMorgan T T T Bank T T T USA T T T G7
81 ATandT T T T Telecommunications T T T USA T T T G7
82 Ralph Lauren Corp T T T Clothing T T T USA T T T G7
83 Nike T T T Clothing T T T USA T T T G7
84 PEPSI.Co F T T Food and Beverage F T T USA F T T G7

Total number of rejections (=F) 7 0 8 11 5 0 8 12 15 2 8 21
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In this application, the spatial units are the 84 assets. We considered three
different partitions to group them into clusters. The first partition is based on
the economic sectors: in this case there are 10 different clusters (Bank, Clothing,
Energy, Food and Beverage, Health, Insurance, Motors, Oil and Gas, Telecom-
munications and Tyres). The second partition is based on the nationality of the
asset, in which case there are 7 clusters (Canada, France, Germany, Italy, Japan,
United Kingdom and USA). Finally, the last is the trivial partition, which con-
siders a unique cluster of units (denoted by “G7”). We stress that, for each one of
the three candidate partitions, we exactly know the composition of each cluster:
the multiple test is therefore used to test if that given partition is suitable for
the clusterized SDPD model to be used on the spatio-temporal dataset.

The results of the analysis are summarized in Table 2. The first column
reports the name of the assets. The other three columns report the results of the
multiple test for the three (candidate) clustering partitions (“sector”, “country”
and “trivial”, respectively). For each one, we report the decisions of the test for
the null hypothesis H

(s)
0ji, which is denoted as F = FALSE (for “rejected”) or T

= TRUE (for “not rejected”). So, for a given partition, a sequence (T, T, F) in
the i-th row of the table means that the null hypothesis has been rejected for
the parameter λ2i and not rejected for the parameters λ0i and λ1i. More clearly,
this means that asset i-th does not appear to belong to the assigned cluster,
at least for the spatial parameter λ2i. To accept the global null hypothesis (=
the given cluster partition is correct), we should observe (T,T,T) in any row i
of the table (although, normally, a low number of rejections can be tolerated).
Now, from the last row of Table 2, we can note that there are 21 rejections for
the “trivial” partition, which implies that we must reject the global null in this
case and conclude that the SDPD model is not homogeneous, that is S �= 1.
But there are also 11 rejections for the “sector” partition and 12 rejections for
the “country” one, so H0 should be rejected again. However, most of the rejec-
tions occur for the Japanese asset returns, which may be seen as outliers with
respect to all the cluster partitions. If we ignore the Japanese asset returns, we
can conclude that the “sector” partition is the best candidate for the clusterized
SDPD model since it gives less “rejected” cases (i.e. at least one FALSE in the
sequence) among the last three columns of Table 2. In fact, if we remove the
Japanese assets, we have 1 rejection (the PEPSI.Co asset in the second column)
against 3 for the “country” (the BCE Inc., Orange and PEPSI.Co in the third
column) and 11 for the trivial partition respectively.
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1 Climate and Environmental News Semantic Importance

Climate attention, shaped by a combination of scientific findings, social aware-
ness, and media portrayal, has begun to exert a profound influence on financial
markets, mainly in energy and commodity sectors [1]. This change in attention is
not merely academic; it is transforming the fundamental dynamics of how these
markets operate, are regulated, and are perceived by stakeholders.

The purpose of this paper is to measure the impact of the environmental and
climate discourse, extracted from articles appearing in the New York Times,
Los Angeles Times, USA Today, Financial Times, Wall Street Journal, from
January 2014 to November 2022, on the dynamics of returns of two US stock
market indexes: the S&P 500 and the S&P 500 Energy. While the significance
of sentiment within the stock market has been extensively explored in existing
literature, see [2,3,5] and others, our focus lies in delving deeper into the semantic
importance of environmental and climatic themes. As a first step, we select
the main themes related to climate change and environmental topics and build
and list of keywords from glossaries and previous research. Machine learning
techniques (Tf-Idf) and word embedding [6] are then applied to the news text
corpus to extract other possible words of interest (such as synonyms, hypernyms,
hyponyms, and other related terms) that are finally grouped into clusters. A
network is built between all the words of the pre-processed text, with a co-
occurrence threshold of five words1. The selected clusters of keywords are listed
in Table 1:
1 Common text pre-processing routines, such as tokenization, removal of stop-words,

and removal of word affixes, known as stemming, are applied to the news corpus
before computing the score.
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Table 1. Selected keywords for environmental and climate-related words

Cluster Description

Renewable Energy Energy sources naturally replenished such as solar wind
and hydropower alternatives to fossil fuels

Climate Action Efforts to reduce greenhouse gas emissions and mitigate
the effects of climate change

Climate Human Effects Effects of climate change caused directly by human
actions

Direct Climate Change Effects General effects of climate change

Waste Negative Words related to negative waste management

Waste Positive Words relate to positive waste management

Gas Emission Gases released in the atmosphere and contributing to
global warming

Energy Efficient Words related to energy efficiency

Green Mobility Refers to sustainable transportation

Net Zero Emissions Balance between the amount of greenhouse gases emitted
and the amount removed from the atmosphere

Environment&Education Education topic declined to the concept of environment

Sustainability General Generic words related to sustainability

Climate Resilience Generic words related to the concept of climate resilience

The importance score for the specific cluster i is assigned by the Semantic
Brand Score (SBS) [4], a measure of semantic importance that combines text
mining and network analysis methods. The SBS indicator is based on three
dimensions:

– the prevalence (PR), which measures how frequently a cluster of words is
used in the text;

– the diversity (DI), which evaluates how heterogeneous and unique the asso-
ciations to a cluster of words are;

– the connectivity (CO), which highlights how much the concept represented
by the cluster of words can bridge connections among other concepts in the
text.

The three dimensions are standardized and summed up to finally compute
the semantic importance of each cluster under a weekly time frame.

SBS(i) =
PR(i) − PR

std(PR)
+

DI(i) − DI

std(DI)
+

CO(i) − CO

std(CO)
, for i = 1, 2, . . . , n, (1)

where PR,DI,CO and std(PR), std(DI), std(CO) are, respectively, the average
value and standard deviation of each dimension over time. In Fig. 1 we plot
the semantic relevance of two of the keyword clusters, namely Climate human
effects, and Direct climate change effects. In this example, all articles appearing
in the Wall Street Journal and Financial Times (over 1500 articles per week
on average) are taken into account. From the picture, we can see the value and
variability of prevalence, diversity, and connectivity over time, and we are able
to catch how the SBS indicator is composed.
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Fig. 1. Semantic relevance of Climate human effects and Direct climate change effects
keywords (Financial news).

2 Model Specification

As a first experiment to verify which theme affects financial markets the most,
we fit an ARMAX model for the dynamics of logarithmic returns (Eq. 2) where
the error term follows an EGARCHX process (Eq. 3) on two market indexes.
Our goal is to check whether the return dynamics is better described when the
semantic relevance of a cluster is taken into account as an added exogenous
factor.

Rt = a + cXr
t + εt, t = 1, 2, . . . , T ; (2)

where Rt = ln Pt

Pt−1
is the logarithmic return, ε = {εt, t ≥ 0} =

√
htηt is the

error process with η = {ηt, t ≥ 0} Gaussian white noise and ht is the so-called
conditional variance:

log ht = α0 + α1ηt−1 + β1 log ht−1 + λ (|ηt−1| − E [|ηt−1|]) + γXh
t , (3)

where a, b, α0, α1, β1, λ, γ are constant parameters.
The explanatory variables Xr = {Xr

t , t ≥ 0} and Xh = {Xh
t , t ≥ 0} are

represented by the semantic importance score in the mean equation and their
first differences in the conditional variance specification. The estimation exercise
is finally repeated, considering the mean, rather than the individual, semantic
score across the selected clusters.
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3 Empirical Results

In this numerical experiment, our objective is to evaluate the impact of weekly
discourse on the environment and climate extracted from major US newspapers2

on both the S&P 500 Index and the S&P 500 Energy Index. The latter includes

Table 2. S&P 500 and S&P 500 Energy parameter estimates

Word Par S&P 500 S&P Energy

General Financial General Financial

Climate Action c 0.013** 0.004* −0.009 0.025

γ 0.688 1.056 −2.815** 0.950

Climate Human Effects c 0.003*** −0.001 0.005* 0.004***

γ −0.641*** 0.118 −0.386* −0.160

Climate Resilience c 0.024** 0.005 −0.006 0.036

γ −11.414*** −1.697 −6.329 2.996

Direct Climate Effects c 0.000 0.000 0.000** 0.001***

γ −0.006 0.015 −0.013 −0.035

Environment & Education c −0.006** 0.008 −0.036 0.022

γ −5.174* 0.441 −4.564 −0.738

Energy Efficient c −0.005*** 0.004 −0.007 0.028

γ −2.963 −1.413 −1.350 0.783

Gas Emission c 0.001 0.001 0.002** 0.003***

γ −0.067 0.009 −0.061 −0.001

Green Mobility c −0.001 −0.001 −0.004 0.005**

γ −0.416** −0.001 −0.041 −0.049

Net Zero Emissions c 0.028** 0.005** 0.029 0.033**

γ −7.155*** 0.111 −4.929* 1.250

Renewable Energy c 0.000 0.000 0.005 0.005

γ −0.188 0.448** −0.312 0.116

Sustainability General c 0.006 0.001 0.001 0.011***

γ −1.535 0.352 −0.013 −0.145

Waste Negative c 0.001*** −0.002 0.000 0.001

γ −0.400** 0.421*** −0.177 0.311**

Waste Positive c 0.011* 0.010** −0.009 0.017*

γ −0.106 0.047 0.127 0.408

Mean c 0.008*** 0.003 −0.012 0.036***

γ −4.621** 4.508** −2.338 1.792
Significance codes: ***p-value < 0.001; **0.001 ≤ p-value < 0.01; *0.01 ≤ p-value < 0.05

2 New York Times, Los Angeles Times, USA Today, Financial Times, Wall Street
Journal.
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all companies in the S&P 500 that fall under the energy sector according to the
Global Industry Classification Standard (GICS): 30 companies whose combined
float-adjusted market capitalization represents more than 5% of the total index
S&P 500 and letting, the energy sector holds the eighth position in terms of
weightage between the 11 sectors within the S&P 500 index.

The preliminary analysis results are detailed in Table 2. The findings indi-
cate that the S&P 500 Index is primarily influenced by news reported in gen-
eralist media, specifically by clusters related to climate action, climate’s human
effects, environment & education, energy efficiency, net zero emissions and nega-
tive waste. In contrast, financial news3 has a lower impact on the market index.
When focusing on the S&P 500 Energy Index, which includes only equities in the
Energy Sector, we obtain the opposite results. Here, financial news significantly
affects the energy index, particularly clusters related to climate human and direct
climate change effects, greenhouse gases, green mobility, net-zero emissions, and
sustainability. The estimated parameters, when considering the average score
across clusters, confirm that generalist news mainly influences the global market
index, while financial news significantly affects the energy sector index.
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Abstract. This paper introduces the Sparsity-constrained Graphical
Lasso (SCGlasso) for the precision matrix, Θ, in a multivariate Gaussian
framework. The estimator is designed to produce a shrunk estimate of Θ,
while simultaneously imposing a certain degree of sparsity, which is cru-
cial for reconstructing the conditional dependence graph and the partial
correlation graph. The proposed method employs an �1-norm (Glasso)
regularization to achieve shrinkage and imposes an �0-pseudo-norm con-
straint to ensure sparsity. The proposed approach performs well com-
pared to Glasso on simulated data, also in contexts where the number of
variables p exceeds the number of observations n.

Keywords: Gaussian graphical models · Glasso · �0-constraint ·
�1-penalty

1 Introduction

Let X ∈ R
n×p be a matrix of n realizations drawn from p normally distributed

random variables with a covariance matrix Σ and a precision matrix Θ = Σ−1.
The objective of this paper is to consider the problem of estimating a simulta-
neously sparse and shrunk version of Θ in a multivariate Gaussian framework
by introducing an estimation technique based on the �1-norm penalty and a
constraint on the �0-pseudo-norm.

Graphical models provide a powerful tool for representing the conditional
dependence structure among a set of random variables. A graphical model con-
sists of two main components: a graph G(N,E) and a joint distribution f . The
vertices (or nodes) of the graph N = {1, ..., p} represent a finite set of ran-
dom variables, while the set of edges E indicate the conditional dependencies
between pairs of variables. Mathematically, a pair of two edges (i, j) ∈ E, with
i, j = 1, ..., p and i �= j if and only if Xi �⊥⊥ Xj |Xc where C = {k ∈ N|k �= i, j}
and ⊥⊥ indicates stochastic independence between two random variables.

In this context, we focus on undirected Gaussian graphical models, where the
joint distribution of random variables follows a multivariate normal distribution.
In this particular case, Θ allows us to retrieve the dependence structure among
each component in the multivariate distribution (see [7,12]), since, given θi,j ,
that is the (i, j)-th element of Θ, θi,j = 0 ⇐⇒ Xi ⊥⊥ Xj |Xc and, consequently,
the edge (i, j) ∈ E ⇐⇒ θi,j �= 0.
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The purpose of this article is to introduce and analyze through simulations
a new possible estimator for the precision matrix Θ. This method is based on
both an �1-norm (Glasso) regularization to produce a shrunk estimate of Θ
and a constraint on the �0-pseudo-norm to impose sparsity. Nowadays, methods
penalizing the norm of Θ are generally used to estimate sparse and more intuitive
models.

Nevertheless, limited attention has been devoted to the implementation of an
a-priori constraint on the �0-pesudo-norm of Θ̂ that allows to impose a certain
degree of sparsity. Indeed, the importance of sparse modeling techniques (like the
�0-pseudo-norm constraint) is likely crucial for performing inference, especially
in those contexts where the number of variables p could vastly exceed the number
of observations n, as put forward by [4] for linear regression problems.

The contribution provided by this paper is twofold. Firstly, it introduces
a new estimator of Θ by integrating the �0-pseudo-norm constraint in the �1-
regularized maximum likelihood estimator. Secondly, we report the results of an
extensive comparison with reference to the �0-unconstrained estimator, obtained
through simulations on well-known network structures, such as scale-free and
cluster networks. The empirical evidence suggests that, while both Glasso and
SCGlasso offer good performances, the SCGlasso outperforms Glasso in the two
considered network structures with reference to all sample sizes.

The paper is structured as follows: Sect. 2 defines the estimation algorithm
underlying the SCGlasso. Section 3 reports the simulation settings and discusses
the results obtained. Section 4 concludes.

2 Sparisity-Constrained Glasso - SCGlasso

We propose a generalization of the estimation problem behind the Glasso that
integrates a constraint on the �0-pseudo-norm. It can be noted that the sparse
and shrunk estimation of the matrix Θ follows a procedure that actually resem-
bles an expanded version of the typical Glasso algorithm (see [1,10]).

With reference to the �1-norm penalization, the Sparsity-constrained Glasso
estimator is obtained by solving the following optimization problem:

Θ̂SC = argmax
Θ�0

1
2ρ0(Θ)≤k

{ log(det(Θ)) − trace(SΘ) − λρ1(Θ) } (1)

where:

– ρ0(Θ) =
∑p

i�=j I[θi,j �= 0] represents the �0-based quantity, that is a 0 − 1
indicator function. Note that, by construction, ρ0(Θ) = 2|E|, with |E| being
equal to the number of edges in the graph uniquely defined by Θ.

– ρ1(Θ) =
∑p

i�=j |θi,j | is the �1-norm of the off-diagonal entries of Θ.
– S is the sample correlation matrix of X.
– λ is the penalty parameter and it used to control the strength of the �1-

penalization.
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To solve the problem in (1), it is possible to divide it into two sequential
parts, avoiding the non-convexity implicit in the �0-constraint. Firstly, given
the penalty parameter λ, we solve the �0-unconstrained problem by exploiting
the ordinary Glasso algorithm, to infer the structure of Θ. Exploiting the rules
for convex optimization from [5], the sub-gradient equation is:

Θ−1 − S − λΨ = 0 (2)

With the symmetric matrix Ψ having diagonal elements zero and ψi,j =
sign(θi,j) if θi,j �= 0, else ψi,j ∈ [−1, 1] if θi,j = 0. Now it is possible to use
the block-wise coordinate descend algorithm proposed by [10]. To do this we
consider partitioning all the matrices into one column versus the rest.

Θ =
[
Θ11 θ12
θT
12 θ22

]

, S =
[
S11 s12
sT
12 s22

]

, etc. (3)

Denoting by W the current working version of Θ−1, with partitions as in (3),
the block coordinate descend cycles through each column/row of W, leading to
W11β − s12 − λψ12 = 0, with β = −θ12/θ22. It can be shown that the system
in (2) is equivalent to a modified version of the estimating equations for a Lasso
regression (see [15]). This allows us to solve each block-wise step using a modified
algorithm for the Lasso, treating each variable as the dependent variable and the
other p − 1 as the explanatory variables. This approach is similar to what has
been previously developed by [14].

From here, it is possible to introduce the second part of the algorithm, by not-
ing that it is always possible to modify the Glasso to have edge-specific penalty
parameters λi,j . Specifically, if λi,j = ∞ ⇒ θ̂ij = 0. Consequently, it is possible
to: 1) preliminary use the Glasso to obtain a temporary estimate of Θ the does
not solve problem (1), 2) Adopt a greedy rounding procedure. Specifically, apply
again the Glasso algorithm, while simultaneously setting to 0 all the edges θ̂i,j

that belong to the set of [n(n−1)]/2−k minimum elements (in absolute value) in
the preliminary estimated matrix Θ̂, to obtain the sparse and shrunk precision
matrix Θ̂SC. This new algorithm is the Sparsity-constrained Glasso (SCGlasso).
In SCGlasso, we are exploiting an approach for variables selection comparable
to the Sure Independence Screening, SIS, for linear models [2,8,9].

3 Simulations

We investigate the performance of SCGlasso, compared to the well-established
Glasso [10], considering two underlying network structures (scale-free and clus-
ter) with p = 30 and n = (20, 50, 100, 300, 600). We rely on the algorithms
proposed by [17] and by [16] to generate the adjacency matrix, using the R
package huge to produce the sparse precision matrices of all the network struc-
tures (parameters: v = 0.3 and u = 0.1). The optimal values of k and λ are
selected using Bayesian Information Criterion (BIC) for graphical models (see
[11] and [16]). In our application, BIC is minimized trough Brent algorithm (see
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[6]), which is derivative-free and performs a combination of golden section search
and successive parabolic interpolation.

Two performance measures, the F1-score and the norm error are used for
the comparison of the methods (e.g., [3] and [13]). The F1-score provides an
evaluation of the model selection performance, while the norm error gauges the
numerical accuracy of an estimated precision matrix. The norm error is defined
as η = ‖Θ̂ − Θ‖2.

3.1 Simulation Results

We report the comparison of the average performance of the two estimators on
the two network configurations, given the optimal parameters’ values selected as
discussed in the previous section. Results are presented in Table 1. By looking
at the model selection performance of the estimators, we observe that:

– Glasso (columns 1 and 5): it shows an initial increase in F1 score followed by
a decrease when sample size increases. We notice that this situation is strictly
related to the sub-optimality of the �1-regularization, since when n increases,
the optimal λ tends to zero, increasing both the true positive and the false
positive rates.

– SCGlasso (columns 3 and 7): the model selection performance of this esti-
mator always increases when sample size grows. In fact, by applying the �0-
pseudo-norm constraint on the individual elements of Θ̂ we are likely allowing
the increase in true positive rates and simultaneously constraining the false
positive rates.

From the point of view of numerical accuracy, our simulation shows that:

– Glasso (columns 2 and 6): unlike its behavior with reference to the F1 score,
η keeps shrinking as sample size increases.

– SCGlasso (columns 4 and 8): also from the numerical accuracy point of view,
we do not reject the decreasing trend of η along an increase in sample size.
The sparsity-constrained estimator also shows a higher accuracy compared to
ordinary Glasso for both structures and all sample sizes.
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Table 1. Mean values of F1 scores and norm errors, with standard deviations in brack-
ets, on B = 100 Monte Carlo runs for p = 30.

Sample size Scale-Free Cluster
Glasso SCGlasso Glasso SCGlasso
F1 η F1 η F1 η F1 η

n = 20 0.113 4.912 0.217 4.151 0.069 6.947 0.205 5.552
(0.009) (0.013) (0.008) (0.033) (0.007) (0.057) (0.006) (0.049)

n = 50 0.395 4.463 0.463 3.421 0.233 6.462 0.468 4.837
(0.017) (0.023) (0.008) (0.043) (0.015) (0.066) (0.007) (0.044)

n = 100 0.614 3.580 0.667 2.284 0.580 5.309 0.678 3.686
(0.008) (0.034) (0.008) (0.031) (0.008) (0.033) (0.006) (0.062)

n = 300 0.584 2.522 0.898 0.958 0.645 3.570 0.941 1.652
(0.006) (0.022) (0.006) (0.019) (0.004) (0.039) (0.003) (0.022)

n = 600 0.526 1.916 0.937 0.691 0.616 2.630 0.974 1.239
(0.005) (0.019) (0.004) (0.013) (0.003) (0.027) (0.003) (0.009)

4 Conclusion

In this article, we propose SCGlasso, a new method to compute a sparse and
shrunk estimate of the precision matrix Θ in multivariate Gaussian settings.
Positive definiteness of the estimated matrix is guaranteed by re-iterating the
node-specific version of Glasso. Moreover, SCGlasso algorithm has the crucial
advantage of avoiding the non-convexity of the set defined by �0-based constraint
which is essentially formed by the union over all

((p2)
k

)
possible subsets of k edges.

Results obtained through simulations do not reject the hypothesis of pure �1-
regularization to be sub-optimal with reference to the �0-constraint, both from
the model selection and estimation performance points of view.

Nevertheless, limitations might arise for SCGlasso from two aspects. Firstly,
the time complexity of the calibration process is at least of order O(p2) since
BIC should be minimized over λ for each k, with k ∈ C = {1, 2, ..., p(p−1)

2 }.
For instance, in the case of cluster data structure with p values of 5, 10, and
15, and n = 50, computational times (seconds) on a desktop computer with
an Intel i7 6-cores processor and 16GB of RAM, are the following: 1.97, 17.92,
100.2. In practice, it is possible to assume a certain degree of sparsity in the true
graph and iterate BIC minimization only in a subset of C. In our simulation,
BIC has been minimized for each k ∈ C∗ = {1, 2, ..., [p(p−1)

4 ]}, (where [p(p−1)
4 ]

denotes the integer part of p(p−1)
4 ) hence assuming, at maximum, the presence

of 50% of all possible edges. Secondly, when sample size is small, convergence of
SCGlasso might require a computationally relevant number of iterations to reach
the optimal λ. To avoid this problem, the parameter space for the implementation
of Brent algorithm should be carefully set, and the minimum level of λ should
be increased as n → p.



The Sparsity-Constrained Graphical Lasso 177

As a possible application on a real-world dataset, we study a numerical exam-
ple based on [18]. The dataset is made of p = 39 expression levels of isoprenoids
genes from n = 118 samples from the plant Arabidopsis Thaliana. We observe
that SCGlasso provides a sparser configuration than Glasso, allowing a better
interpretability of the relevant relationships among the 118 genes. Results are
available upon request.

Finally, for further research, it is possible to consider that, in general, the
Glasso guarantees the support set of Θ̂ to coincide with the support set of Θ, only
for a vast number of observations, that is n = Ω(d2log(p)). To mitigate problems
connected to the possible lack of oracle property in small samples, it might be
convenient to exploit an adaptive version of the Glasso, based on the Adaptive
Lasso introduced by [19] which is an oracle procedure for linear models. Adopting
this adaptive version of the Glasso in the sparsity-constrained estimator might
be appropriate for estimating the true support A of Θ, nevertheless its tuning
procedure might be computationally expensive, since it would imply to minimize
BIC over a 3-dimensional parameter space.
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Abstract. In a cliometric context of demographic and epidemiologi-
cal transitions, we have improved the accuracy of actuarial age-specific
mortality projections by develop-ing the multifactor composite PCR-
optimal/PLS model. The results show that the proposed model performs
well compared to conventional approaches, although variations by age
bracket suggest opportunities for improvement.

Keywords: Prospective mortality table · Actuarial mortality
forecasting · Multifactorial composite PCR-optimal/PLS model ·
Cliometrics

1 Introduction

The article has a twofold aim: to fulfil the cliometric objective of measuring
History and to develop a prospective modelling of mortality tables. Indeed, the
evolution of mortality rates is the counterpart of the historical experiences (epi-
demics, medical progress, improvement of living conditions, wars, revolutions,
etc.) of humanity in different regional realities. The development of a metric of
historical dynamics is naturally based on the calculation of life expectancy. The
improvement of statistical methods for modelling the deformation of mortality
rates over time meets the needs of both actuaries and historians. Floud and
Harris (1997) and Fogel (1986) already used anthropometric proxies as a basis
for a cliometric approach to mortality trends. We extend this vein of cliometric
research in the context of demographic and epidemiological transitions, marked
by time lags and disparities in the shape of age-specific mortality rate curves.

This study aims to improve long-term actuarial forecasts. Our innovative
approach is based on mathematical generalization and age-specific flexibilization
of the conventional models with cliometric inputs. The heterogeneous health
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impact of climate change according to age reinforces the argument in favor of
model flexibility. The article is structured in two sections: the first one deals with
the problems associated with classical models and presents our methodological
contributions, while the second one is devoted to the application of the models
with sensitivity tests in various contexts.

2 Issues and Methodological Contributions

A mortality table describes the mortality process of a cohort of individuals from
birth to death. Prospective tables are built from long-term forecasts of age and
sex-specific mortality in a population. Classical internal models (i.e. without
reference to exogenous population data) can be grouped into a family called
Generalized Age-Period-Cohort (GAPC) models (Villegas et al., 2015). The
best-known models are Lee-Carter (LC), Cairns-Blake-Dowd (CBD), Renshaw-
Haberman (RH), APC (age-period-cohort), M6, M7, M8 and Plat. LC and CBD
are commonly used in the insurance and pension industries.

Throughout this document, we consider a probability space (Ω,F ,P). The
LC model is one of the classical reference models whose performance we will
compare with that of the models we propose. In order to propose a generalization,
we study and formalize the relationship between the classical LC model and
principal component regression (PCR). The LC model focuses on mx,t which
represents the central mortality rate between ages x and x+ 1 measured in year
t. It is written (Boyer et al., 2015):

ln (mx,t) = ax + bxkt + εx,t,

where ax corresponds to the average of the logarithm of age-specific mortality
rates calculated over the entire period under consideration, while kt represents
the general trend in mortality levels over time. bx is the sensitivity to the common
factor kt specific to each age, and the residuals εx,t are assumed to be i.i.d., with
zero expectation and variance σ2

ε .
bx and kt are estimated using the first term of the singular value decompo-

sition of the matrix Z = ln (mx,t) − âx, (Gaba, 2021)

Z =

⎡

⎢

⎣

zxm,tq = ln
(

mxm,tq

) − âxm
· · · zxM ,tq = ln

(

mxM ,tq

) − âxM

...
. . .

...
zxm,tQ = ln

(

mxm,tQ

) − âxm
· · · zxM ,tQ = ln

(

mxM ,tQ

) − âxM

⎤

⎥

⎦ .

The singular value decomposition of Z is given by:

Z =
∑

i≥1

√

λiuiv
T
i ,

where ui is the i-th normalized eigenvector of ZZT corresponding to the eigen-
value λi :
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ZZT ui = λiui with uT
i ui = 1.

Note that vi is the i-th normalized eigenvector (vT
i vi = 1) of ZT Z. This

gives us the transfer formulae: vi = 1√
λi

ZT ui and ui = 1√
λi

Zvi.
Since the first eigenvalue λ1 is greater by construction than the others, the

best approximation of Z is then given by: Z ≈ √
λ1u1v

T
1 . By comparing the

relationship Z ≈ ̂kt
̂bT

x and Z ≈ √
λ1u1v

T
1 we have: ̂kt

̂bT
x =

√
λ1u1v

T
1 .

Taking into account the orders of ̂kt and ̂bx and the constraint bx
T bx = 1 ,

we obtain by identification: ̂bx = v1 and ̂kt =
√

λ1u1.
If we had used the alternative constraint

∑xM

x=xm
bx = 1 , we would have

obtained the following result: ̂bx = v1∑
j v1j

and ̂kt =
√

λ1

∑

j v1ju1 with
∑

j v1j �=
0.

Since the eigenvalues of (ZT Z) are distinct, each eigenvector vi is unique
(signed):

z∗
i = Zvi is the i-th principal component of Z.

We had previously established that under the constraint bx
T bx = 1 , ̂kt =√

λ1u1 and that Zv1 =
√

λ1u1. So we have that ̂kt =
√

λ1u1 = Zv1 = z∗
1 . Thus,

̂kt is equal to the first principal component of Z (z∗
1) and therefore the LC model

is a regression (with a constant term) on z∗
1 :

ln (mx,t) = ax + bxkt + εx,t = ax + bxz∗
1 + εx,t.

If we had used the alternative constraint
∑xM

x=xm
bx = 1, we would have

obtained the following result: ̂kt =
√

λ1

∑

j v1ju1 = Zv1
∑

j v1j = z∗
1

∑

j v1j .
So in this alternative case, ̂kt is equal to the first principal component of Z
(denoted z∗

1) by one multiplicative factor (
∑

j v1j), and so the LC model remains
a regression (with a constant term) on z∗

1 :

ln (mx,t) = ax + bxkt + εx,t = ax + bx(z∗
1

∑

j

v1j) + εx,t.

Combining the above demonstrated relationship between the LC model and
PCR regression, and the CBD model which targets the logit of the probability
of death, we formulate a nested PCR regression model with the first k principal
components:

logitqx(t) = ax + bx,1x
∗
1(t) + bx,2x

∗
2(t) + bx,3x

∗
3(t) + . . . + bx,kx∗

k(t) + εx,t,

where qx(t) is the probability of death at age x at time t while ax is the
average logitqx(t) for age x. x∗

i is the i-principal component of the matrix
X = logitqx(t) − âx. Note that k (k ≤ p) is the number of first principal com-
ponents selected (by the forward method) with p = M − m + 1 and that εx,t

correspond to the residuals of the model. We refer to this model as Logit-PCR.
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While a single temporal component reflects the demographic transition from
the point of view of overall mortality, taking into account the epidemiological and
health transition which affects ages in a differentiated way (Meslé & Vallin, 2000),
requires age-differentiated temporal components. The aim now is to improve the
Logit-PCR model by using one (or more) optimal principal components for each
age modeled. We propose some classic methods for selecting explanatory series
for the model: adjusted R2, AIC, BIC or MSEP (which we will use). The model
selection procedure is the stepwise method (used with adjusted R2, AIC, BIC)
or exhaustive search (which we will use). The new model is now formulated
separately for each age:

logitqx(t) = ax + β∗
c1x

∗
c1 + β∗

c2x
∗
c2 + . . . + β∗

ckx
x∗

ckx
+ εx,t,

where x∗
ci is a principal component of the matrix X = logitqx(t)− âx (not the i-th

principal component), while kx (kx ≤ p) is the number of principal components
selected. We refer to this internal model as Logit-PCR-Optimal or PCR-
Optimal.

A limitation of the PCR-Optimal model above is that the calculation of the
principal components does not take into account the variable to be explained.
We resolve this limitation by using partial least square (PLS) components, which
are calculated taking into account their correlations with the variable to be
explained. The objective here is to find for each age group x the best kx PLS
components. The PLS components are denoted l(1), l(2), . . . , l(k) linear combina-
tions of the starting variables l(j) = Xcjwhich are orthogonal to each other and
ranked in order of correlation with the variable to be explained. We refer to this
new internal model as the Logit-PLS or PLS:

logitqx(t) = r1l
(1) + . . . + rkx

l(kx) + εkx
.

Another limitation of classical mortality models is that they apply the same
model class to all mortality rate curves, irrespective of age. To overcome this
shortcoming, we introduce the concept of a composite model, allowing different
classes to be mixed to model various ages in the population. We propose a
multifactorial composite model (CM) using PCR-optimal or PLS models
or their mean. Drawing inspiration from Barigou et al. (2021), the modeling is
carried out in two iterations, enabling a more accurate and flexible approach to
mortality rate modeling.

First iteration: for each age, we make an a posteriori choice of its best model
class. The estimation history ranges from t0 to t1while forecasts are made from
t1 + 1 to t2.

Second iteration: for each age, we use a priori its best model class chosen in
iteration 1 to estimate its unbiased performance. The estimation history ranges
from t0 to t2 while forecasts are made for t2 + 1 to t3. The times t0, t1, t2, t3
are arbitrary cut-off points in the data history.
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3 Empirical Results and Sensitivity Tests

Frequent convergence problems have been detected for the APC, RH and M8
models depending on the data used and identification constraints. This finding is
made in several publications including Diaz et al. (2018), Villegas et al. (2015),
Hunt et al. (2015), Kennes (2017). In addition to the LC and LC Poisson (LC-P)
models, the other models tested in our case were the CBD, CBD Log-Poisson
(CBD-P), APC, RH, M7 and Plat models. For the APC, M7 and Plat models,
we found convergence problems for India and Ecuador, for example. As a result
of the above analyses, we will retain the following models as the classic internal
models of reference in our empirical work: LC, LC LC-P and CBD-P.

The series modeled is the probability of female death by age interval. Data
for India and Ecuador are taken from the Human Life-table Database (Max
Planck Institute for Demographic Research, 2023), while those for European
countries are taken from the Human Mortality Database (2023). Correction for
the periods of the two World Wars is made by replacing mortality values with
linear interpolations. Some countries are smoothed according to the shape of
their mortality curves and the quality of their forecasts during the first iteration:
this applies to India (moving average of order 9, as data are very patchy) and
Spain (moving average of order 5).

We have studied the performance (and sensitivity) of the CM model in rela-
tion to various modeling parameters and usage situations, through a series of
tests.

Modeling parameters: choices are made during the first iteration of composite
modeling. This involves minimizing the forecast errors (mean absolute percentage
error, MAPE) to select the best model class for each age bracket, the first year
of the learning history and any initial transformation of the modeled series.

Model environments: the countries studied are chosen to vary in terms of
geographical location (continent), cohorts and phases in the demographic tran-
sition process. Thus, forecasts are made over a 25-year horizon, for the following
countries: France, Italy, Spain, India and Ecuador (Table 1).

Looking at the results obtained in different model environments (Table 1), we
can make two major observations. Firstly, whatever the country tested and the
forecasting horizon (up to 25 years), the CM model systematically outperformed
conventional models by a wide margin. Secondly, the superior performance of
the CM model is not systematic when we examine the results by age bracket,
although the majority of age brackets are always in favor of the CM model. This
limitation of the CM model should be borne in mind when using it, and also as
an avenue for future improvement.

Robustness test: after reintroducing the mortality rates of the atypical years
(1914 to 1918 and 1939 to 1945) of the two World Wars in France, the two main
results mentioned above remain valid, although the relative performance of the
MC model has been reduced over the 25-year horizon (MAPE 41% lower than
the average for conventional models, compared with 55% previously).
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Table 1. Model MAPE (%) for five countries via CBD-P, CM, LC and LC-P.

4 Conclusion

Our aim was to improve long-term actuarial forecasts of age-specific mortal-
ity rates, taking into account demographic and epidemiological transitions. We
introduced the PCR-optimal or PLS multifactor composite internal model, which
generalizes and flexibilizes classical approaches by considering time lags and vari-
ations in mortality curves. Empirical results over 25 years and in a variety of con-
texts, including France, Italy, Spain, India and Ecuador, systematically demon-
strate the very good performance of the multifactor composite (CM) model
in comparison to conventional models. However, nuances by age group suggest
avenues for future improvement.

Further work will be needed to calculate the confidence intervals of the
model’s forecasts, in particular using a Monte-Carlo approach.

The universality of the demographic transition, which is spread across cohorts
of countries, can also be taken into account to improve CM models for emerging
and developing countries, via relational cliometric models (i.e., with reference to
data from an exogenous population) that we will have to develop.
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institutionnelle, démographique et économique. Thèse de doctorat, Université de
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Abstract. The COVID-19 pandemic crisis financially impacts the
PAYG pension schemes. In the short run, the economic shock induced a
decrease in receipts due to the contraction of the GDP. In the medium
and long run, the return to the pre-crisis level depends on the ability of
the economy to rebound. As to expenses, in the very short term, they do
not decrease due to the inertia. However, the fall in contributions is pro-
gressively taken into account to calculate the new pensions, which will
gradually contract expenditures. The demographic impact is mirrored
in a moderate increase in mortality, mainly that of retirees. We develop
a macroeconomic model that simulates these changes and is then used
to revise the pre-crisis forecasts in pension expenditures and payroll tax
receipts. Relying on the US Social Security 75-year forecast, we analyze
the impact of the crisis on the financial balance of its pension system.
We assess the extent of the additional fiscal adjustments required to
restore financial equilibrium through an Automatic Balancing Mecha-
nism (ABM).

Keywords: Pension scheme · Covid-19 · Automatic Balancing
Mechanism

1 Introduction

The 2020–2021 pandemic obviously impacts the economy by putting under pres-
sure the public finances and notably the unfunded pension schemes. Feher and
Bidegain (2020) and OECD (2020) early warn about the impact of COVID-
19 induced recession and mortality on the solvency and adequacy of pension
schemes. Tackling the pandemic effects on pension issues is both obvious and
urgent. At the individual level, the induced risks are multiple (Rappaport and
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Siegel, 2021). From the macroeconomic standpoint, in the short run, the public
pension schemes are mainly affected through the receipts channel because the
decline in the GPD induces less revenue from payroll tax whereas the pension
expenditures show great inertia. In the long run, financial balance is sensitive
to the indexation of future pensions to change in GPD and to the permanent
impact on revenue. In a recent paper, Munnell and Chen (2021) concludes that
“COVID is not a retirement story, but the pre-COVID weaknesses in the retire-
ment remain”. Even if the unfunded pension schemes were to be reformed before
the pandemic, it can be of interest to assess the future additional adjustments
related to the macroeconomic impacts of this exogenous shock.

We develop a simple macroeconomic model to simulate the induced devia-
tion from a benchmark scenario of Social Security forecast. Assessing the issue
of financial solvency and the potential need for balancing mechanisms, we use
the smooth Automatic Balancing Model (S-ABM) based on an optimal control
approach developed by Gannon and al. (2020). We apply the model to the US
Social Security and evaluate the induced changes in the automatic adjustment
parameters.

A simular study by Fratoni (2022) also relies on an Automatic Balance Mech-
anism (ABM) to assess the impact of COVID-19 shock. However, his approach
differs from ours since he characterizes the change in each demo-economic fac-
tors: unemployment rate, wage growth rate, inflation rate, mortality rates and
disability inception rates.

Next section details the deviation macroeconomic model and calibrates it to
mimic the 75-year US Social Security forecast changes between 2019 Trustees’
report (hereafter TR) and the successive reports (from 2020 to 2023). Section 3
assesses the induced changes in the dynamic paths of the S-ABM. Sect. 4 dis-
cusses the sensitivity of changes in the parameter values. Last section concludes.

2 Financial Impact of COVID 19: Modelling
the Deviation from a Benchmark Scenario

To evaluate the financial impact of COVID-19, we set up a simple deviation
model. First, we assume payroll tax receipts are proportional to GDP in the
same way as before the health crisis. The GDP, denoted Yt after COVID shock,
is developed as follows depending on the pre-crisis expected value denoted Ŷt−1:

Yt

Ŷt

=
(

Yt−1

Ŷt−1

)1−σY

λt−2020 +
(
1 − λt−2020

) (
YLR

ŶLR

)
(1)

where Y2020

Ŷ2020
is the initial shock and YLR

ŶLR
the long-run permanent deviation of

GPD with respect to the pre-crisis value. σY is a parameter of convergence to
the pre-crisis GDP level and λ an inertia factor of the short-term COVID-19
shock.

The receipts evolve as follows:

RECt =
̂RECt

Ŷt

· Yt (2)
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where ̂RECt is the forecasted pre-crisis level of the receipts. In this simulation,
the shock on receipts is seen as a pure shock linking their evolution to that of the
GDP. In practice, government measures to support activity (financing of partial
unemployment, for example) have enabled beneficiary companies to continue to
pay salaries and therefore to pay social contributions. This aspect is ignored in
our computations.

The impact on mortality rates during 2020 and 2021 caused by COVID-19
on the over-75 population has been quantified notably by the WHO over 15%
in high income countries. In this paper, we model the impact on the mass of
pensions without distinguishing explicitly the number of retirees and the average
of pensions. Hence we assumed that the mass of pensions initially planned has
strong inertia and evolves as follows:

EXPt = βt−2020 · ̂EXP t +
(
1 − βt−2020

) · (1 + μ) ·
̂EXP t

̂RECt

· RECt (3)

where β captures the inertia factor of pension expenditure and μ is the long-run
permanent deviation of the level of expenditures from the pre-shock value.

Fig. 1. Deviation from 2019 Trustee report (TR2019) projection.
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We assign the following values to the parameters: σY = 0.4, λ = 0.985,
μ = 2% and β = 0.4 and the following impact of COVID-19 on the GDP
Y2020

Ŷ2020
= 94.4% (5.6% decrease in GDP) in the short-run and YLR

ŶLR
= 95% in the

long-run. We estimate new forecast values of GDP (Fig. 1a), the receipts (Figs.
1b and 1c) and the expenditures (Figs. 1b and 1d). Our 5-parameter deviation
model produces intermediate values between the GDP (resp. expenditure ratio)
forecasts from the 2021 and 2022 (resp. 2021 and 2023) reports, compared to the
previous 2019 report. From 2021 onwards, the US Social Security Actuarial Office
has lowered the share of taxable income in GDP over the long term (see Fig. 1c).
This decision is independent of the COVID-19 pandemic. We therefore do not
take this change into account. TR2023 includes the new geopolitical context and
a lower economic growth path induced by the Russia-Ukraine conflict. We have
not calibrated the growth regime to this slightly more pessimistic scenario.

3 COVID 19 Impact: Deviation from the Benchmark
Scenario

We use the S-ABM developped in Gannon et al. (2020). The optimal control
problem is the following:

{
min{At,Bt}t=1...T

∑2094
t=2020

1
(1+δ)t L(At, Bt)∑2094

t=2020 At
RECt

Πt
j=2020(1+rj)

+ F2019 =
∑2094

t=2020 Bt
EXPt

Πt
j=2020(1+rj)

(4)

where L(At, Bt) = (At −1)2 +(Bt −1)2 is the current loss function to minimize,
rt is the free-risk interest rate, δ = 1.5% is the social rate of time preference,
EXPt are the pension expenditures, RECt are the contribution receipts and F0

is the buffer fund in period 0. At and Bt are the two deformation coefficients
modifying respectively the payroll tax rate (receipts) and the pension benefits
(expenditures). The optimal values of these coefficients guarantee the financial
sustainability of the pension schemes and can be expressed as follows.

(i) Final forecasted adjustment in 2094:
⎧⎨
⎩

A2094 = 1 + UO2019

REC2094/Π2094
i=2020(

1+ri
1+δ )/

∑2094
t=2020

REC2
t +EXP 2

t

Πt
i=2020

(1+ri)
2

1+δ

B2094 = 1 − EXP2094
REC2094

· (1 − A2094)
(5)

where UO2019 is the value of the Unfunded Obligation at the end of 2019.
(ii) Forecasted convergence rule to the final adjustments for 2020 ≤ t < 2094:

⎧⎨
⎩

(At − 1) = RECt

REC2094
· Π2094

i=t+1

(
1+ri

1+δ

)
· (A2094 − 1)

(Bt − 1) = EXPt

EXP2094
· Π2094

i=t+1

(
1+ri

1+δ

)
· (B2094 − 1)

(6)

Figure 2 gives the change in the trajectories of the adjustment pair (At, Bt)
with respect to the pre-crisis forecasted adjustments

(
Ât, B̂t

)
. The S-ABM sug-

gests the following additional adjustments
(
At − Ât, Bt − B̂t

)
:
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Fig. 2. Change in the Smooth-ABM (At: receipts and Bt: expenditures)

1) in the short-run: a +0.3% point increase in payroll tax receipts and a –0.7%
point decrease in pension expenditures;

2) in the long-run: a +0.9% point increase in payroll tax receipts and a –1.42%
point decrease in pension expenditures.

Table 1. Sensitivity analysis to receipts (GDP) change (in % point change)

Permanent shock Inertia to initial shock
YLR

ŶLR
ΔA0 ΔAT ΔB0 ΔBT λ ΔA0 ΔAT ΔB0 ΔBT

100% 0.19 1.07 –0.53 –1.71 1 0.20 1.08 –0.54 –1.71

97.5% 0.27 0.97 –0.62 –1.58 0.99 0.33 0.86 –0.68 –1.44

95% 0.34 0.87 –0.74 –1.44 0.985 0.34 0.87 –0.74 –1.44

92.5% 0.42 0.77 –0.79 –1.30 0.98 0.36 0.88 –0.72 –1.45

90% 0.50 0.66 –0.88 –1.15 0.97 0.37 0.89 –0.73 –1.46

4 Sensitivity to Deviation Parameters

The model is calibrated to reproduce a (relative) additional expenditure regard-
less of the possibility of the GDP returning to its pre-crisis level. Also, alternative
assumptions on GDP dynamics (Tables 1 and 2) only marginally influence the
need for financing after the crisis. Consequently, the long run ratio of GDP
deviation

(
YLR

ŶLR

)
mainly modifies the slope of the adjustment dynamics. With

respect to the benchmark calibration (95%), the higher (resp. lower) its value,
the weaker (resp. stronger) the short-run adjustment and the stronger (resp.
weaker) the long-run adjustment. The inertia factor to the initial COVID-19
economic shock (λ) has a simular impact. The pre-crisis expenditures inertia
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Table 2. Sensitivity analysis to expenditure change (in % point change)

Inertia to pre-crisis level Permanent excess

β ΔA0 ΔAT ΔB0 ΔBT μ ΔA0 ΔAT ΔB0 ΔBT

1 0.69 1.63 –1.10 –2.90 4% 0.77 1.80 –1.19 –3.00

0.75 0.35 0.89 –0.71 –1.46 3% 0.56 1.34 –0.95 –2.22

0.4 0.34 0.87 –0.74 –1.44 2% 0.34 0.87 –0.74 –1.44

0.1 0.34 0.86 –0.70 –1.43 1% 0.12 0.39 –0.45 –0.65

0.0 0.34 0.86 –0.70 –1.43 0.5% 0.07 0.22 –0.39 –0.35

level parameter (β) mainly impacts the solvency of the pension scheme (Tables 1
and 2). The higher (resp. lower) its value, the stronger (the weaker) the short-run
adjustment and the long-run adjustment. For small values of β, the variations
in adjustments tend to a limit value. The permanent excess parameter (μ) has
a similar impact.

5 Conclusion

In this article, we have set up a deviation model of the payroll tax receipts and
pension expenditures trajectories after the macroeconomic shock induced by the
pandemic. Using an Automatic Balance Mechanism (ABM), we have assessed
the additional adjustments required to satisfy the intertemporal financial equi-
librium. While these additional adjustments are moderate with respect to the
already existing needs before the pandemic shock, the range of the latter mainly
depends on the lasting consequences both on the GDP and on the capacity of
the pension system to update the mass of pensions to the new level of payroll tax
mass. Our computations (and calibration), based on the US OASDI forecasts,
show that the COVID-19 shock has a financial permanent impact. In compar-
ison with the pre-COVID unfunded obligations, it seems marginal but not nil.
Therefore, COVID-19 is partly “a retirement story”.
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Abstract. Real options have been used to evaluate investment deci-
sions with various structures, but have rarely been put into a game the-
oretical context. We examine the risk of war over a common resource,
whose value is a geometric Brownian Motion, where one country may
preemptively appropriate the resource, and the other wage war for it.
We derive a closed form expression for the optimal mixed strategy that
both countries should follow, and show that the resulting price level that
triggers capturing the resource and subsequent war asymptotically fol-
lows a power law. The present value of the time until war is triggered also
decays slowly asymptotically. In consequence, in spite of both countries’
propensity towards preemption, war may be indefinitely delayed.

Keywords: Real options · resource wars · games · mixed strategies

1 Introduction

Considering a resource that may be accessed by two countries in potential con-
flict, the context is comparable, to some extent, to that of investment deci-
sion in a competitive environment —a type of economic problem that has been
approached through real options. Real options are indeed useful in evaluating
investment or disinvestment opportunities [7], but reflecting strategic behavior
in a competitive environment is complex, and requires combining real options
and games, an area in which there has been some research [for example 2, 8].
The formal framework for preemption games in continuous time is laid out by
[4,5].

In our approach, we consider mixed (randomized) strategies, which offer
non-deterministic surprise, an important aspect in war. This requires following
a probabilistic approach in studying the real options embedded in the model,
because of the added complexity of optimal randomized strategies. This is dis-
tinct from usual approaches in real options where the optimal strategy is often
directly obtained through a differential equation [7]: we first express the present
value of decision variables, and then optimize, as in [1]. The second section
presents the model and real option framework. The third section embeds the
real options in a strategic framework and shows that the optimal distribution
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of the threshold at which one country will open the hostilities by seizing a com-
monly accessible resource asymptotically follows a power law, and that the time
to conflict decays slowly.

2 A Real Option Model for Resource Appropriation

We consider two countries, indexed as i and −i. The market price of some
resource is given by a stochastic process (St)t≥0, a geometric Brownian Motion
solution of dSt = μdt + σdBt. We assume that μ < σ2

2 . The Geometric BM is
a standard assumption in the real-option literature, and is generally considered
a good representation for the value of commodities on which real option-based
investment strategies are decided, such as oil or natural gas [6,7]. Each country
needs to use this resource and acquires it on the market. The quantity of the
resource in question, that must be consumed at each point in time, is a fixed
amount ψi per unit of time. The total cost of using the resource at time t is
therefore ψiSt. Decisions are made using an actuarial logic, and both countries
use the same discounting rate ρ > μ∨0. Hence, for Country i, the expected cost
of future resource procurement Ri at time 0 can be written:

Ri(S0) = ES0

[
−

∫ ∞

0

e−ρsψiSsds

]
=

−ψiS0

ρ − μ
= −αiS0.

With our assumptions αi > 0. For a cost Ci, let us assume Country i can appro-
priate territory where the resource can be found, in which case these resources
do not need to be acquired in the market. Then, after this territory is occupied,
the procurement cost becomes 0.

If Country i is the only one who could appropriate the resource, then this
decision corresponds to a standard real option. As the cost only depends on
the resource price St, the optimal decision threshold to appropriate the resource
must be expressed as a hitting time of the form Th = inf{u ≥ 0 : Su = h}, with
h ≥ S0. As a function of the threshold h, the total procurement cost, depending
on the decision threshold h, can be written:

Ri
h(S0) = ES0

[
−

∫ Th

0

e−ρsψiSsds

]
− CiES0

[
e−ρTh

]

In order to compute ES0

[
− ∫ Th

0
e−ρsψiSsds

]
, we simply write it as:

ES0

[
−

∫ ∞

0

e−ρsψiSsds

]
+ ES0

[∫ ∞

Th

e−ρsψiSsds

]
= Ri(S0) − ES0

[
e−ρTh

]
Ri(h).

We use the strong Markov property of the Brownian Motion applied at the
stopping time Th: the process starting from Th has the same law as the process
starting from h at any point in time. The Laplace transform of a geometric
Brownian Motion hitting time is well known [3] and for h ≥ S0, ES0

[
e−ρTh

]
=
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(
S0
h

) 1
2− μ

σ2 +
√

2ρ

σ2 +( 1
2− μ

σ2 )
2

. We will write β = 1
2 − μ

σ2 +
√

2ρ
σ2 +

(
1
2 − μ

σ2

)2. Since

μ < σ2

2 and ρ > μ, we have β > 1. Hence, we obtain the value of the potential
appropriation strategy Ri

h(S0) = −αiS0 +
(

S0
h

)β
(αih − Ci). This value can be

maximized as a function of h to find the optimal strategy. Solving for ∂Ri
h(St)
∂h = 0,

we obtain: h∗
i = Ci

β
αi(β−1) . The threshold expresses a ratio between the entry

cost and the future cost of having to buy the resource.

3 The Option of War in a Strategic Setting

3.1 Impact of Conflict

In a strategic context, Country −i may have already taken possession of the
resource, or may decide to attack Country i. We therefore need to make particu-
lar assumptions about the impact of the conflict situation on the costs. The cost
Ci we considered earlier is only applicable if the territory to be appropriated
is not already occupied. If it is occupied, appropriating it requires waging war.
We model war as a fixed cost that is applied instantaneously. Costs are suffered
by both the attacker and the defender: Wi is the cost for Country i attacking
Country −i, and Di is the cost for Country i defending against Country −i.
After the attacker wages war, both countries will share the resource, with an
allocation θi for Country i and θ−i = 1 − θi for Country −i. After this war, the
country which held the full territory loses a share of its benefit in exploiting the
resource, as a consequence.

Assume Country i holds the territory and exploits the resource at time 0.
Country −i sets a threshold l−i such that when it is reached, they will wage
war. In these conditions, the strategy’s value to Country −i can be expressed in
a similar way to what we have calculated earlier for Ri

h(S0):

R−i
l−i

(S0) = −α−iS0 +
(

S0

l−i

)β

(θ−iα−il−i − W−i) .

From Country i’s perspective, who is exploiting the resource alone initially, the
expected future costs of procuring the resource is 0 if Country −i does not wage
war. If it does, then it becomes:

Ri
l−i

(S0) = −
(

S0

l−i

)β

(θiαil−i + Di) .

We can therefore write the value of the strategies (li, l−i) before any of the
countries takes the resource, in all generality for Country i as:

Ri
li,l−i

(S0) =Ili<l−i

[
−αiS0 +

(
S0

li

)β

(αili − Ci) −
(

S0

l−i

)β

((1 − θi)αil−i + Di)

]

+ Ili≥l−i

[
−αiS0 +

(
S0

li

)β

(θiαili − Wi)

]
.
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Given l−i, one can determine the optimal level for li ≥ l−i in a deterministic
fashion. Indeed, Country i, in this case can find its optimal attack threshold with
the only condition that it be greater than l−i. Letting Country −i take over the
resource first, results in a value, for Country i, of:

−αiS0 +
(

S0

li

)β

(θiαili − Wi) .

The optimal war threshold without any constraint is therefore Ti = Wiβ
θiαi(β−1) .

However, since we must have li ≥ l−i, the optimal attack takes place when the
underlying price reaches l−i ∨ Ti.

3.2 Game-Theoretical Equilibrium

Each country needs to determine an optimal strategy to set the l thresholds.
To find an optimal strategy, we assume that thresholds are drawn from an opti-
mal probability distribution at the Bayes-Nash equilibrium, allowing fully mixed
strategies, which is possible [5]. The dominating strategies that consist in pre-
empting as soon as early preemption is as valuable as being a follower [4] may
be applicable in economic competition. However, we argue that in the context of
war, it is not possible to allow the enemy to know where one’s army will be at a
discrete point in time, so that the optimal mixed strategy cannot have a compact
support. At the optimum, if a player is drawing from the optimal distribution,
then whatever pure strategy the other player follows, should result in the same
value to them.

We write Li and L−i the independent random variables corresponding to
the optimal strategic choice for both countries, picked over all possible passage
times in the future. From the standpoint of Country i, we write the value of
these strategies R∗,i

Li,L−i
(S0), depending on the relative values of Li and L−i, as

R∗,i
Li,L−i,≥(S0) or R∗,i

Li,L−i,<
(S0). If Li ≥ L−i, then Country i can determine their

optimal attack threshold with the only constraint that it be higher than L−i.
Therefore, in this case:

R∗,i
Li,L−i,≥(S0) = −αiS0 +

(
S0

L−i ∨ Ti

)β

(θiαi (L−i ∨ Ti) − Wi) .

If on the contrary Li < L−i, then i is the first to take over the territory once
price Li is reached, but then Country −i determine their own optimal level,
which is symmetrical to the prior case, and equal to: Li ∨T−i. Therefore, in this
case:

R∗,i
Li,L−i,<

(S0) = − αiS0 −
(

S0

Li

)β

(θiαiLi − Ci)

−
(

S0

Li ∨ T−i

)β

((1 − θi)αi (Li ∨ T−i) + Di) .
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At the optimum in a Bayes-Nash equilibrium, the strategy followed by −i, in
setting the distribution of L−i, should make Country i indifferent to any specific
deterministic choice of Li. Therefore, there exists a constant independent of u
equal to:
∫ ∞

S0

P[L−i ∈ dv]R∗,i
u,v(S0) =

∫ u

S0

P[L−i ∈ dv]R∗,i
u,v,≥(S0) + P[L−i ≥ u]R∗,i

u,v,<(S0).

since R∗,i
u,v,<(S0) does not depend on v, and R∗,i

u,v,≥(S0) does not depend on u.
We write the density P[L−i ∈ dv] = fL−i

(v)dv, which cannot depend on Li.
Taking the derivative of the above equation with respect to u, we obtain:

0 = fL−i
(u)

(
R∗,i

u,u,≥(S0) − R∗,i
u,v,<(S0)

)
+

∂

∂u
R∗,i

u,v,<(S0)P[L−i ≥ u].

We write FL−i
(u) = P[L−i ≥ u], so that F ′

L−i
= −fL−i

. The equation can be
rewritten:

F ′
L−i

(u) = FL−i
(u)

∂
∂uR∗,i

u,v,<(S0)

R∗,i
u,u,≥(S0) − R∗,i

u,v,<(S0)
.

We have:

R∗,i
u,u,≥(S0) = − αiS0 +

(
S0

u ∨ Ti

)β

(θiαi (u ∨ Ti) − Wi)

R∗,i
u,v,<(S0) = − αiS0 −

(
S0

u

)β

(θiαiu − Ci)

−
(

S0

u ∨ T−i

)β

((1 − θi)αi (u ∨ T−i) + Di) .

If we assume that S0 = 1, without much loss in generality, and if the character-
istics of both countries are the same, so that Ti = T−i, we obtain the solution:

P[L−i ≥ u] = exp

(
−

∫ u

1

dx
θiαi(β − 1) − Ci

x
+ Ix<Ti(1 − θi)αi(β − 1) − Ix<Ti

Di
x

αiθix − Ci + xβ(x ∨ Ti)−β (αi(x ∨ Ti) + Di − Wi)

)
.

For x large (and greater than Ti in particular), the term under the integral in
the exponential can be approximated by θi(β−1)

(θi+1)x . Hence:

P[L−i ≥ u] ∼ e
− θi(β−1)

θi+1 ln(u) = u
− θi(β−1)

θi+1 .

This is a fat-tailed distribution, and more specifically a power law. The proba-
bility that one would have to wait until an arbitrary large threshold u is reached
before a first country occupies the territory is therefore:

P[Li ≥ u ∩ L−i ≥ u] ∼ u
− 2θi(β−1)

θi+1 .

The rate of decay of this probability is slow, so that there are chances that war
may in fact take place in a distant future only. The Laplace transform of the
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war-trigger level LW = Ti ∧ T−i (when a country first takes possession of the
resource) hence verifies, for u large:

E
[
e−ρTLW |LW ≥ u

] ∼ uγi

∫ ∞

u

dvγiv
−β−γi−1 =

u−β

β + γi
,

where we write γi =
2θi(β−1)

θi+1 . Note that E
[
e−ρTLW |LW ≥ u

] ∼ 1
β+γi

E
[
e−ρTu

]
.

Real options, generally used for investment decision, may be exercised at optimal
times that are known by the competitor, when in a competitive environment
where preemption may be beneficial. Transposing this framework to military
conflict, the consequent need for unpredictability changes the nature of the opti-
mal mixed strategy. When both countries act optimally, the time until conflict,
asymptotically, decays slowly. Therefore, due to the need for randomization, and
in spite of both countries’ propensity towards preemption, war may be indefi-
nitely delayed.
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Abstract. Credit card fraud identification is a challenging problem for
different reasons: it needs to be suddenly detected; it is based on the
use of huge data sets that have to be properly managed; the number
of fraudulent transactions is definitely lower than the number of gen-
uine transactions and then, this imbalance requires the use of proper
statistical models. Here we discuss how the data reduction, performed
through the variable selection, can be combined with the use of Gener-
alized Linear Models with asymmetric link functions which are able to
handle imbalanced data. We illustrate how these theoretical results can
be used for credit card fraud-detection purposes.

Keywords: credit card fraud · imbalanced data · asymmetric link ·
variable selection

1 Introduction

Credit card fraud is a business of billions of dollars a year and represents a huge
concern for banks. The main aim of banks is to identify a fraud as early as
possible and then immediately initiate the procedures to protect both the bank
and the customers.

The large amount of data on credit card transactions due to the increasing
number of users and services that employ this form of payment makes it diffi-
cult not only to manage the data but mainly to identify fraudulent transactions.
Luckily, among all transactions, the percentage of frauds is small but unfor-
tunately, it does not make easy their detection and implies a high imbalance
between genuine and fraudulent transactions. Further, the evolving habits of the
cardholders might change the structure of the transaction data sets, so that the
relevant variables having discriminating power against fraudulent transactions
may rapidly change.

These themes of data imbalance and variable selection in evaluating credit
card fraud have strong statistical consequences and, to the best of our knowledge,
they are not jointly addressed in the literature.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Corazza et al. (Eds.): MAF 2024, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 198–204, 2024.
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Some contributions aiming to detect credit card fraud are based on machine
learning approaches (see among the others [1,3,6,8]) and mainly focus the atten-
tion on the classification of the transactions or on the implementation of auto-
matic mechanisms to prevent these fraudulent actions.

In the context of credit card transactions, where the database can be very
huge and difficult to manage, our contribution aims to face the data reduction
problem, through variable selection. When this context is combined with fraud
detection another feature is added to the data: the imbalance of the response
variable (characterized by a number of zeroes, related to genuine transactions,
definitely higher than the number of ones, related to fraudulent transactions),
and consequently the presence of a high skewness that needs to be properly
accounted for.

Given this background and aiming to jointly treat the variable selection and
the data imbalance, in Sect. 2 we first clarify how the imbalance of the response
variable can be treated in the presence of binary data; in Sect. 3 we shortly
describe the variable selection algorithm that can be applied in this field. Finally,
Sect. 4 shows how these results can be applied in the context of credit card fraud
detection.

2 Imbalanced Data

Consider a binary response variable Y with distribution belonging to the expo-
nential family and with expectation E[Yi] = μi, for i = 1, 2, . . . , n, where n is the
sample size, and let X = (X1,X2, . . . , Xp) be a vector of p covariates. Consider
a monotone and differentiable function g(·):

g(μi) = x′
iβ, (1)

where β = (β0, β1, β2, . . . , βp) is the [(p + 1) × 1] vector of parameters and
β ∈ R

p+1, xi = (1, xi1, xi2, . . . , xip)′ is the vector of explanatory variables for
unit i.

Equation (1) defines the generalized linear model (GLM) with link function
function g(·) (see among the others [10]). In our context, Y is a binary response
variable having Bernoulli distribution with probability P (Yi = yi) = πi if yi = 1
and 1 − πi if yi = 0. Furthermore,

E[Yi] = πi = P (Yi = 1) = F (x′
iβ), (2)

where F (·) is the cumulative distribution function that, using the notation (1),
corresponds to:

F (x′
iβ) = πi = g−1(x′

iβ).

In the presence of a balanced, and then symmetric, response variable, the
Logit and Probit link functions are the most commonly used. They have the
advantage that the maximum likelihood equations are simple and the conver-
gence of the estimators is quite fast. Unfortunately, the imbalance of Y produces
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Fig. 1. Distribution function of Logit, GEV, Power Logit, and Gumbel variables.

biased estimates of β, and therefore asymmetric link functions should be selected
(among others see [4]).

For this reason, here, we consider some distributions that allow obtaining
asymmetric link functions: the class of Generalized Extreme Value (GEV) dis-
tributions (as a variant of [12]) and the Power Logistic distribution (originally
presented in [7] and largely investigated in [2]). The probability for the GEV
distribution is

GEV: πi = 1 − exp{−(1 − ξx′
iβ)

− 1
ξ

+ }, (3)

where (1 − ξx′
iβ)+ = max{(1 − ξx′

iβ), 0} and ξ ∈ R is the shape parameter,
whereas the Power Logistic distribution is:

Power Logistic: πi =
1

(1 + exp{−(x′
iβ)})α

, (4)

where α > 0 is the shape parameter that controls the asymmetry.
Note that both (3) and (4) include the Gumbel distribution. It is obtained

when ξ goes to zero [5] and α goes to infinity [11] for GEV and Power Logistic
respectively. This implies that the cLogLog link function [10] can be obtained as
a particular case of the two previous distributions.

The main problem raised by imbalanced binary data is that their distribution
function approaches 0 at a rate different from that approaching 1 and the link
function based on the distribution functions (3) and (4) can deal with this prob-
lem. To give empirical evidence of this feature, consider the distribution functions
in Fig. 1 where the standardized Logistic, Power Logistic (with α = 0.5), GEV
(with ξ = {−0.25, 0.20}) and Gumbel are plotted. Comparing the distributions
it can be noted that the Power Logistic approaches zero smoothly with respect
to all other distributions. The main differences among them can be seen in the
tails: the Gumbel and the more general class of GEV distributions differ on the
behaviour of the right tail; the Gumbel and Logistic differ on the left tail and in
the GEV case (including the Gumbel distribution) the shape parameter ξ mainly
affects the behaviour of the right tail.
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The bias reduction induced by the use of asymmetric links can be of interest
not only to increase the predictive performance of the GLM model (see [4] and
[12] in the GEV case) but even to improve the data reduction through variable
selection approaches based on the variable ranking, whose order is based on the
estimated vector β̂ (see [9] for the GEV case). Our approach is briefly described
in Sect. 3 and then applied to detect credit card fraud in Sect. 4.

3 Variable Selection

We now sketch the variable selection algorithm proposed in [9] that is here
extended to a more general class of link functions. It is based on two main steps:
the screening step (called GLM-SCR) and the variable selection step (called
GLM-VS).

Let Z be the (n × p) standardized matrix of covariates X, and let Y be the
binary response variable.

GLM-SCR step
For each zj , with j = 1, . . . , p:
(a) estimate the corresponding parameter βj maximizing the marginal likeli-

hood
∑n

i=1 �j(θj , zij , yi), where θj includes β0, βj and the shape param-
eter of the link functions (ξ or α in our paper);

(b) rank the standardized covariates included in Z, in non-increasing order
with respect to |β̂j | and select the first d covariates (where d < p is a
fixed tuning parameter) that will be included in the submodel denoted
with M̂d.

GLM-VS step
After reducing the dimensionality of data, the variable selection is conducted
by identifying the set K of covariates such that each subset I of covariates
included in K, has probability P (I ⊆ M̂d) ≥ πthr, where πthr is a fixed
threshold, with 0 < πthr < 1. More precisely, the set K is estimated by:

K̂ = arg max
I⊆ ̂Md

{|I| : P (I ⊆ M̂d) ≥ πthr}, (5)

with |I| the cardinality of I.

To estimate the probability P (I ⊆ M̂d), [9] apply a subsampling procedure
whose details are here omitted for brevity (see [9, Sect. 3.2]).

4 Credit Card Fraud Detection

The data set on which the analysis is conducted is a large database avail-
able on the Kaggle repository (https://www.kaggle.com/datasets/mlg-ulb/
creditcardfraud) composed of 30 variables, 284807 transactions, 492 of which
are labeled as fraudulent (0.172% of all transactions).

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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All variables have been anonymized by the data holder (and referred as “V1”,
..., “V28”) except for the “Amount” of each transaction and the “Class” (fraud-
ulent = 1; genuine = 0). We have randomly extracted from the data set 20000
transactions guaranteeing that the sample has the same proportion of zeroes and
ones in the “Class” variable, as in the full database. This choice has been made
to reduce the computational cost of the variable selection which is quite high
because of the subsampling used to estimate the probability in (5).

In the first stage of the analysis, we have selected the relevant variables using
the algorithm in Sect. 3 and the four link functions: Logistic (LO), GEV, Gumbel
(GU), and Power Logistic (PLO). In all cases, the tuning parameter d is fixed
equal to 10 whereas the threshold value for the probability πthr = 0.10. The
selected variables are presented in Table 1.

Table 1. Variables selected using the four different link functions

Link Selected variables

LO V11, V19, V4, V2, V21, V27, V20, V22, V8

GEV V11, V4, V19, V2, V21, V20, V25, V22

GU V4, V11, V19, V26, V28, V27, V2, V25, V13

PLO V11, V4, V2, V19, V21, V13, V15, V27

It can be noted that in all cases V2, V4, V11, and V19 are always selected
whereas certain variability can be seen for the selection of the remaining vari-
ables. Furthermore, for all link functions V4, V11, and V19 have the highest
probability, even if with different order of selection, and in no case the variable
“Amount” is considered relevant (giving evidence that the transaction amount
cannot be seen as a relevant wake-up call to detect frauds).

In the second stage of the analysis, we have evaluated the predictive ability of
the four GLMs. To this aim, we have extracted 5000 further transactions as test
set from the database using the same sampling procedure described before. Tak-
ing advantage of the variables selected in the previous step, we have estimated
the parameters of the four regression models. Then, to evaluate the predictive
accuracy of the models, we have computed the Accuracy rate (ACC), True Pos-
itive Rate (TPR), and True Negative Rate (TNR), given by:

ACC =
TP + TN

TP + TN + FP + FN
, TPR =

TP

TP + FN
, TNR =

TN

TN + FP
,

with TP = True Positive, TN = True Negtive, FP = False Positive, FN =
False Negative. In all cases, the cut-off has been fixed equal to the percentage
of ones in the original data set, and the results are presented in Table 2. It
clearly shows the superior performance of the GEV and Power Logistic models
to predict the fraudulent and the genuine transactions showing the advantage of
using asymmetric links when the data are imbalanced.
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Table 2. Predictive measures and confusion matrices of the four models

Link ACC TPR TNR Predicted

0 1

LO 79.8% 100.0% 79.8% Observed 0 3983 1008

1 0 9

GEV 91.1% 88.9% 91.1% Observed 0 4545 446

1 1 8

GU 81.9% 100.0% 81.8% Observed 0 4084 907

1 0 9

PLO 99.7% 55.5% 99.7% Observed 0 4978 13

1 4 5
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Partial Hedging of Spread Options
with a Given Probability
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Abstract. The paper develops the method of hedging a two-factor dif-
fusion market with a given probability. We construct the maximal perfect
hedging set for an option to exchange for another for which a lower bound
of option price is achieved. This method is then applied to pricing “pure
endowments with a guarantee” equity linked life insurance contracts.
The classical approach of pricing such options provides very low gain for
investors, the investor may take a given probability of risk in return of a
higher gain. Taken into account this argument, the paper develops risk
management strategies for this type of insurance and financial mixed
instrument.

Keywords: Partial Hedging · Life Insurance · Spread Options

1 Partial Hedging Problem

1.1 Financial Setting

We consider an arbitrage-free two factor diffusion model in a complete market
defined on the stochastic basis (Ω,F ,Ft, P ), t ≥ 0, P ∈ P and are adapted to
the filtration F , generated by two dependent Wiener processes W 1

t and W 2
t . The

capital at time t of an investor is defined by the relation

Xπ
t = βtBt + γ1

t S1
t + γ2

t S2
t (1)

where Bt is the price of a risk-free asset with B0 = 1 and Si
t , i = 1, 2, are risky

assets. For simplicity, in this paper we will assume Bt = 1, in other words the
interest rate is equal to 0 (rt = 0). Furthermore, π = (πt)t≥0 = (βt, γ

1
t , γ2

t )t≥0 is
a predictable trading strategy (hedge). By the definition of arbitrage-free com-
plete market, there exists a unique local martingale measure P ∗ such that the
processes (Si

t)t≥0 are local martingales with respect to measure P ∗. Equivalently,
the process (Xπ

t )t≥0 is a local martingale with respect to measure P ∗ for any
self-financing hedges. We call the trading strategy π ∈ SF (self-financing), if the
capital Xπ

t is realized without any inflow or outflow of cash or assets. This is
represented by

Xπ
t = Xπ

0 +
∫ t

0

γ1
udS1

u +
∫ t

0

γ2
udS2

u (2)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Let us fix T as the maturity date, and let H represent contingent claims. The
classical approach to pricing an European style option requires choosing a hedge
π ∈ SF such that

P (Xπ
T ≥ H) = 1 (3)

The fair price of such option is defined as the minimal initial capital (Xπ
0 ) which

is sufficient for (3) to hold.

Definition 1. Denote Π(x,H) as a collection of self-financing hedges where
Xπ

0 = x and Eq. (3) holds. Then the fair price of the contingent claim is equal
to

C(H) = inf{x : Π(x,H) �= ∅} (4)

There exists a hedge π∗ ∈ SF such that C(H) = Xπ∗
0 = E∗[H], π∗ is called a

perfect hedge.

The classical approach of pricing options leads to a very low gain for investors;
for European style options this gain is equal to zero by construction of the perfect
hedge. Taking this thought into account, we can relax condition (3), so that
investors can hedge the contingent claim bearing some risk. Mathematically,
this can be written as P (Xπ

T ≥ H) = 1 − α, where H is the pay-off at maturity
of the contingent claim, and α is a given significance level (Risk level). This
approach was considered on general models of a market with one risk-free and
one risky asset for pricing and developing minimal hedge of American options
by A. Novikov[6]. Our paper will follow a similar approach as the paper by A.
Novikov with application to life insurance contracts.

1.2 Construction of Hedge for General Models on European
Options

According to the second fundamental theorem of asset pricing, in a complete
market there always exists a unique martingale probability measure P ∗. Here
we introduce and define a new class of hedges SF (A), which is a set of self-
financing hedges in relation to a chosen constant A.

SF (A) = {π ∈ SF : Xπ
T ≥ H − A a.s.} (5)

where A is a given non-negative constant, and H is the pay-off of the contingent
claim. As mentioned in the previous section, to hedge the pay-off perfectly, the
value of portfolio at time of maturity Xπ

T must be greater than or equal to the
pay-off H. In class SF (A), this condition is relaxed by introducing non-negative
constant A. The set of possible self-financing hedges is expanded by decreasing
the pay-off from H to H − A. For this paper we will consider hedges only from
the class SF (A). Based on the class of hedges SF (A) we can derive a lower
bound of initial investor capital. The lower bound is illustrated in the following
lemma.

Lemma 1. If π ∈ SF(A), then E∗ [H − AI{Xπ
T < H}] ≤ Xπ

0 .
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We then restrict the set of hedges under consideration further, such that the
martingale probability of perfect hedge is equal to 1−α. The following subset of
hedges is created from the class SF (A), with respect to initial capital x, pay-off
H, significance level α, and non-negative constant A.

Π(x,H, α,A) = {π ∈ (A) : P ∗(Xπ
T ≥ H) = 1 − α} (6)

The fair price of an European style option with relation to the new set of hedges is
defined as C(H,α,A) = inf{x : Π(x,H, α,A) �= ∅}. Under general assumptions,
observe that there exists a hedge πα ∈ Π(x,H, α,A) with the initial capital

x = Xπα

0 = E∗[Xπ
T − AI{Xπ

T < H}] = C(H) − αA. (7)

Based on the above equality we can make the following observation. Lemma 1
indicates E∗[Xπ

T −AI{Xπ
T < H}] is the lower bound for initial capital x. On the

other hand, the fair price is the infimum of all possible initial capitals. Therefore,
by Lemma 1 for European options the fair price is equal to C(H,α,A) = C(H)−
αA.

The hedge πα defined above is constructed using statistical techniques of
hypothesis testing, in particular, the Neyman-Pearson Lemma. The given sig-
nificance level controls the probability of type I error, denoted α in this paper.
Suppose there exists an event E ∈ F such that P ∗(E) = 1 − α. In mathemati-
cal terms, the likelihood ratio under the two hypotheses are compared. Denote

Lt = Lt(Q) = dQ
dP ∗

∣∣∣∣
Ft

a Radon-Nikodym derivative, which is considered as the

likelihood ratio, of some measure Q ∈ P, Q �= P ∗. Consider the event to be the
perfect hedging set E = {LT ≥ λ(α)}. Consider a test with hypotheses H0 : P ∗

and H1 : Q, and let the rejection region be R = {LT < λ(α)}. For the event
E to exists it must be outside of the rejection region. In this case, the implied
null hypothesis is that a perfect hedge cannot be achieved, and the alternative
hypothesis is that it can hedge pay-off H.

Let π∗ = (γ1∗
t , γ2∗

t ) be the minimal hedge or risk-neutral hedge in the classical
pricing problem (when α = 0). Let Yt = E∗[H], then there exists a predictable
process At ≥ 0, A0 = 0 such that Yt = Mt − At where Mt is a martingale
with respect to P ∗ and Yt = Mt = H almost surely. Rewrite Mt in the form of
martingale representation and by assumption of completeness of market, there
exists a predictable process γ∗

t such that

Mt = M0 +
∫ t

0

γ1∗
t dS1

t +
∫ t

0

γ1∗
t dS2

t = Y0 +
∫ t

0

γ1∗
t dS1

t +
∫ t

0

γ1∗
t dS2

t

= C(H) +
∫ t

0

γ1∗
t dS1

t +
∫ t

0

γ1∗
t dS2

t (8)

With all necessary construction complete, we arrive to the final result theorem.

Theorem 1. Let hedge πα = (γ1α

t , γ2α

t ) be defined by the following equations

Xπα

t = Xπα

0 +
∫ t

0

γ1α

t dS1
t +

∫ t

0

γ1α

t dS2
t (9)
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Xπα

0 = C(H) − αA, γiα

t = γi∗
t − ϕtA, i = 1, 2 (10)

mt = P ∗(LT < λ(α)|F) = α +

∫ t

0

ϕ1
t dS1

t +

∫ t

0

ϕ2
t dS2

t (Martingale representation)

(11)
Then

α = P ∗(Xπα

T < H), πα ∈ Π(Xπα

0 ,H, α,A), (12)

and C(H,α,A) = Xπα

0 = C(H) − αA (13)

1.3 Extend to Two-Factor Diffusion Model

An exchange option is a derivative security that gives the owner the right but
not the obligation to forfeit one unit of a certain risky asset and obtain one unit
of the underlying asset in return. The pay-off option of such contingent claim is
given as follows.

max{S1
T , S2

T } (it can be reduced to)
=============⇒ max{S1

T − S2
T , 0} (14)

where S1
T and S2

T are two correlated risky assets following the geometric Brow-
nian motion.

dSi
t = Si

t(μidt + σidW i
t ) i = 1, 2, (15)

W 1
t and W 2

t are correlated Wiener processes with correlation cov(W 1
t ,W 2

t ) = ρt.
The martingale probability density of such model is given by

Z∗
T = exp

(
ϕ1W

1
T + ϕ2W

2
T − 1

2
σ2

ϕT

)
(16)

where

ϕ1 =
r(σ2 − σ1ρ) + ρμ2σ1 − μ1σ2

σ1σ2(1 − ρ2)
; ϕ2 =

r(σ1 − σ2ρ) + ρμ1σ2 − μ2σ1

σ1σ2(1 − ρ2)
(17)

and σ2
ϕ = ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2. (18)

Following the steps of the Novikov paper, we can use the Neyman-Pearson
Lemma to construct the maximal hedging set. We let λ(α) (variable used in
construction) be an equation similar to the likelihood ratio but containing a
variable (θα) dependent on the significance level α.

λ(α) = exp
(

ϕ1θα + ϕ2θα − 1
2
σ2

ϕT

)
(19)

where T is the maturity date. Then we set the likelihood ratio to be greater than
and equal to λ(α).
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{LT (P ) ≥ λ(α)} =

{
exp

(
ϕ1W

1
T + ϕ2W

2
T − 1

2
σ2

ϕT

)
≥ exp

(
ϕ1θα + ϕ2θα − 1

2
σ2

ϕT

)}

= {ϕ1W
1
T + ϕ2W

2
T − 1

2
σ2

ϕT ≥ ϕ1θα + ϕ2θα − 1

2
σ2

ϕT}
= {ϕ1W

1
T + ϕ2W

2
T ≥ (ϕ1 + ϕ2)θα} (20)

The two Wiener processes are normally distributed with the distribution W i
T ∼

N(0, T ) for i = 1, 2 and cov(W 1
T ,W 2

T ) = ρT . Suppose we have stochastic differ-
ential equation of the form dXt = βdt + σ1dW 1

t + σ2dW 2
t . By Levy’s character-

ization of Brownian motion we can come up with some σWt, where σ is a fixed
constant and Wt is another Wiener process. This is illustrated by the stochas-
tic differential equation dXt = βdt +

√
σ2
1 + 2σ1σ2ρ + σ2

2dWt. In particular, we
have,

ϕ1W
1
T + ϕ2W

2
T ∼ N(0, σ2) where σ2 = T (ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2) (21)

Let W ∗
T = ϕ1W

1
T + ϕ2W

2
T . We can determine θα with the following condition.

P (W ∗
T ≥ (ϕ1 + ϕ2)θα) = 1 − α (22)

P (LT ≥ λ(α)) = P

(
W ∗

T

σ
≥ (ϕ1 + ϕ2)θα

σ

)
= 1 − α (23)

Therefore,

(ϕ1 + ϕ2)θα

σ
= Zα ⇒ θα =

σZα

ϕ1 + ϕ2
where Z1−α = Φ−1(1 − α) (24)

By the previously mentioned theorem, C(H,α,A) = C(H) − αA, where C(H) is
calculated by Margrabe’s formula, C(H) = S1

0N(d1) − S2
0N(d2).

where d1 = ln
(

S1
0

S2
0

)
+

σ2

2
T ; d2 = d1−σ

√
T ; and σ =

√
σ2
1 + σ2

2 − 2ρσ1σ2

(25)
We have,

P (LT (P ) < λ(α)|Ft) = P (W ∗
T − W ∗

t < (ϕ1 + ϕ2)θα − W ∗
t )

= Φ

(
(ϕ1 + ϕ2)θα − W ∗

t

σψ

)
. (26)

Applying the two-dimensional Ito’s formula, we calculate the correction term
(ϕi

t) for the hedge γi∗
t as follows.

ϕi
t = − Bt

Si
tσi

× 1
σψ

√
2π

exp

(
− [(ϕ2

1 + ϕ2
2)θα − W ∗

t ]2

2σ2
ψ

)
(27)
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2 Application to Life Insurance

The insurance contract under discussion is an equity-linked pure endowment
contract. In such contracts, the insureds receive the linked equity if they can
survive a certain period to maturity. In this paper, we assume there are one
risk-free asset and two risky assets. We will consider a diffusion model with two
correlated Wiener process in which the risky asset prices are generated from.
Let T (x) denote the remaining life time of an individual with current age x at
the start of the contract. Then, at maturity, the pay-off of an equity linked pure
endowment insurance contract is

max{S1
T − S2

T , 0}I{T (x)>T} (28)

where T is the maturity time of the contract. Suppose T (x) is defined on the
stochastic basis (Ω̃, F̃ , P̃), the two probability measures P and P̃ are indepen-
dent. The risk neutral premium of such contract is

P = E∗ × Ẽ[max{S1
T − S2

T , 0}I{T (x)>T}] = E∗[H]T Px (29)

The fair premium for such insurance contract will be less than the price for the
exchange option given by Theorem 1. Following the approach of Brennan and
Schwartz [1] we have the following equality

P = E∗[H]T Px = E∗[H − AI{Xπα
T <H}] (30)

T px =
E∗[H − AI{Xπα

T <H}]

E∗[H]
=

C(H) − αA

C(H)
(31)

Remarks. This paper illustrates hedging with a given probability based on a
Two-factor Diffusion model with correlated Brownian Motions. This concept can
be expanded and explored in terms of Two-factor Jump Diffusion model. Aside
from different market models, it can also be applied to efficient hedging with
power loss function. Instead of having a given probability, we can hedge with
a given expected shortfall. Preliminary results of the two mentioned expansions
are achieved.
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Abstract. Area Yield Index (AYI) was considered as the most potential
alternative crop insurance policy in Indonesia. To support this policy,
delivering accurate paddy productivity prediction is a must. Thus, we
purpose a new flexible Be-ta Four Parameter Generalized Mixed Effect
Tree and Random Forest predic-tion model that combines the use of
tree regression and random forest with a Bayesian beta four parameter
GLMM approach. This model takes into con-sideration that paddy pro-
ductivity has a bounded minimum and maximum distribution or known
as a Beta Four Parameter distribution, variation effect of paddy pro-
ductivity between areas, and captures complex linear and non-linear
relationships in the data. This model was incorporated to design a pro-
totype AYI crop insurance in Central Kalimantan, Indonesia that can
be fur-ther developed in other areas. Farmer survey data integrated with
processed satellite data was utilized in the process. Results show that
high predictive accuracy was achieved in the proposed model. Therefore,
beneficial for accu-rately assessing risk, setting fair premiums, reducing
adverse selection, effi-ciently allocating resources, and ensuring the long-
term sustainability of the paddy crop insurance program.

Keywords: Area Yield Index (AYI) · Beta Four Parameter
Distribution (B4P) · General-ized Linear Mixed Model (GLMM) · Beta
Four Parameter Generalized Mixed Effect Tree (B4P GMET) · Beta
Four Parameter Generalized Mixed Effect Random Forest (B4P
GMERF)

1 Introduction

Area Yield Index (AYI) crop insurance policies is a yield or productivity-based
in-dex agricultural insurance policy. National Development Planning Agency
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(BAPPENAS), MoA, Japan International Cooperation Agency (JICA), and
other related stakeholders conducted an AYI pilot study in Karawang and
Kendal districts [1]. Reports show that AYI exhibits many positive aspects such
as minimal moral hazard and adverse selection. Furthermore, since the indem-
nity of AYI is determined by average sub district, insurers do not need to conduct
loss adjustment surveys. Therefore, AYI has lower administrative costs [1].

However, there are also obstacles needed to be addressed. One of the main
issues is lack of reliable historical data required to calculate the benchmark
yield (yc) at an area level (province or district). Next, estimates of monthly or
seasonal paddy yields (ȳi) are currently insufficient, particularly at a sub district
or village level. As a response, Statistics Indonesia (SI) has developed a monthly
paddy productivity estimate based on the Crop Cutting Experiments (CCEs).
Nonetheless, the guidelines and data quality need to be evaluated for further
applications of AYI [2].

Compensations paid by the insurer to all farmers in the sub area for AYI are
based on indemnity formula With this chapter, the preliminaries are over, and
we begin the search for periodic solutions to Hamiltonian systems. All this will
be done in the convex case; that is, we shall study the boundary-value problem

Indm = max(yc − ȳl, 0)SILij (1)

where Lij is the amount of land cultivated by a farmer j in a sub area i. For
simplicity we can set Lij at 1 hectare (Ha). While SI is the sum insured fixed
at 6,00,000 IDR per Ha, which is the minimum amount needed to be able to
continue farming in the next season if risks occur [3]. Payouts will be made
when ȳl is less than the yc value.

To calculate indemnity (1), it is apparent that predicting yc is vital. BAPPE-
NAS has used the current and average historical CCEs data in the pilot study
[4]. Meanwhile, other information can also be utilized to enhance predictions
accuracy, such as the farmer surveys and satellite data.

Aside from using average historical data for predicting yc, applying Expo-
nential Smoothing and ARIMA [5] are also popular. Machine Learning and Deep
Learning [6] approaches have also been applied. Even though promising, there
are several concerns that need to be accounted (1) heterogeneity of paddy pro-
ductivity among areas, (2) productivity data distributions that are bounded to
a certain minimum and maximum value also known as the B4P distribution [7]
and (3) occurrence of linear and nonlinear relationships between the response
and explanatory variables.

Hence, we propose a new approach and developed a B4P GMET and B4P
GMERF prediction models. For this reason, the main objective of this paper
is to evaluate the performance of these models and apply it to develop AYI.
Our proposed models are described in the next section. Section 3 presents the
findings of this study, and Sect. 4 concludes the paper.
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2 Developing B4P-GMET and B4P-GMET for Area
Yield Index Policy

At first, we have developed a B4P GLMM by using a Bayesian approach [8]
that extends the B4P regression model [9]. In this model we assume that yc ∼
B4P (α, β, a, b). Where, a is the minimum value, b is the maximum value, α is
the location parameter and α − β is the scale parameter. Thus, the model can
be formulated as

ηi = XT
i β + ZT

i bi (2)

The random effect matrix design is denoted by ZT
i and bi is the random

effect estimators in a particular area or sub areas, where bi ∼ iidN(0, σ2
i ). While

the fixed effect matrix is shown by XT
i and the fixed effect estimators of the

independent variables used are denoted as β. When applying a logit link function
for the model, then ηi = g (Mean[yc|xi]−a)

(b−a) = g(μi) = log( µi

1−µi
).

To accommodate nonlinear relationships GMET has been developed based
on a regression tree and GLMM [10]. The model first assumed a Bernoulli dis-
tribution. further we develop a B4P GMET that can be formulated as:

ηi = f(Xi) + ZT
i bi and bi ∼ iidN(0,σ2

i ) (3)

The fixed effect f(Xi) is estimated through CART algorithm and ZT
i bi is

estimated through the B4P-GLMM. A detail on the algorithms of estimating
parameters for GMET can be seen in [10]. Next, GMERF for a Bernoulli distri-
bution was introduced and applied the random forest to estimate the fixed effects
parameters for model in Eq. (2) [11]. Such as for GMET, we also continue to
developed GMERF for B4P distribution response variables.

The proposed models will be applied to an empirical case study in Central
Kali-mantan’s first planting season (2020). Paddy productivity was measured
by CCE’s and there were seven selected explanatory variables from the farmer
survey. Current and a four-month period lag of Sentinel 2A satellite data for
each plot will also be used (Table 1).

Model selection will be based on Root Mean Square Error (RMSE) and
Watanabe-Akaike information criterion (WAIC) values. Through a Bootstrap
simulation, the predicted values of the best model will then be accounted to
calculate the pure pre-mium and VaR of AYI. The process is summarized as
follows:

1. Predict paddy productivity (yij) for individual farmer’s based on the best fit
model

2. Resample with replacement 100 bootstrap farmer samples (n) for each sub
district

3. Calculate average yield for each sub district (ȳl) with ȳl = 1
n

∑n
1=1 yij

4. Calculate benchmark yield yc using average of an area, with yc = 1
N

∑N
a=1 ȳl.

N is the total sub areas with in an area
5. Calculate claim amounts based on formula (1)
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Table 1. Predictor Variables used in the Prediction Model

Variable Variable
Name

Unit Measurement/Category

Paddy Productivity Y Tons/Ha

Pest Attacks This Year X1 1 = Heavy, 2 = Medium, 3 = Light,
4 = Not Affected

Pest Attacks Last Year X2 1 = Heavy, 2 = Medium, 3 = Light,
4 = Not Affected

Impact of Climate Change This Year X3 1 = Affected, 2 = Not Affected

Impact of Climate Change Last Year X4 1 = Affected, 2 = Not Affected

Water Sufficiency This Year X5 1 = Not Enough, 2 = Sufficient,
3 = More than Enough

Water Sufficiency Last Year X6 1 = Not Enough, 2 = Sufficient,
3 = More than Enough

How to Handle Pest X7 0 = No Actions, 1 = Agronomist,
2 = Mechanical, 3 = Biological,
4 = Chemical

Band 4 − Infrared X8 Mm

Band 8 − Near Infrared X9 Mm

NDVI -Normalized Difference
Vegetation Index

X10 Index

KCL X12 Kg/Ha

Solid Organic Fertilizer X13 Kg/Ha

Liquid Organic Fertilizer X14 Kg/Ha

6. Repeat steps 2-6 1.000.000 times and estimate the expected pure premium
and VaR

7. Compare the result from simulation with actual conditions

3 Result and Discussion

Empirical data in Central Kalimantan (2020) shows that paddy productivity
has a B4P distribution. Estimates of this distribution indicate that the average
paddy productivity is estimated to be 3.03 and the variance is 1.070 tons per
hectare. The distribution is also skewed to the right. WAIC show that a B4P
GLMM is more suitable compared to the B4P GLM. Hence, random effects of a
sub district improve model fit and leads to a better un-derstanding of variability
of productivity among areas. Prediction wise, Table 2 proofs that the proposed
B4P GMERF and B4P GMET has a much better prediction accuracy compared
to the other models. Especially, when applying farmer survey and satellite data.
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Table 2. Model Evaluation for Developed Models

Model Variables WAIC RMSE

B4P GLM Farmer Survey Data –115.000 0.010

Satellite Data –91.615 0.011

Farmer Survey and Satellite Data –124.000 0.011

Farmer Survey Data –202.609 0.029

B4P GLMM Satellite Data –187.735 0.028

Farmer Survey and Satellite Data –206.745 0.020

Farmer Survey Data − 0.003

B4P GMET Satellite Data − 0.004

Farmer Survey and Satellite Data − 0.026

B4P GMERF Farmer Survey Data − 0.003

Satellite Data − 0.008

Faremer Survey and Satellite Data − 0.010

With regards to AYI, positive results were shown when utilizing satellite
data for predicting paddy productivity. Variable importance pointed out that
current and lagged infrared and near infrared reflectance along with current
NDVI relationship with paddy productivity are apparent. Thus, it can serve
as a remedy for current concerns among stakeholders regarding the insufficient
availability of accurate and real-time data at both the area and sub-area levels.
Other factors that are also considered important from the farmer survey are the
severity of pest attacks of the current year and the amount of KCL and Solid
Organic Fertilizer used. Lower use of KCL and Solid Organic Fertilizer tend to
lead to lower productivity.

Table 3. AYI Premium and VaR based on B4P GMERF Estimates (in Rupiah)

Area Yc Mean
of B4P

Pure
Premium

VaR95%

Province 3.03 1.70 640,872.70 1,011,718.10

District 1 2.70 1.02 166,207.50 246,789.23

District 2 3.27 1.80 467,944.70 1,022,576.50

Province and districts were used in the simulation to define a potential area
level. If AYI was set at province level, the policy will have a higher pure premium
and tail risks but easier to administer. In a region where heterogeneity is appar-
ent, setting a premium at district level is more sufficient. Therefore, preventing
high basis risk of farmers and insurers. Nonetheless, administration wise it will
be more challenging when in a region there are many districts. Table 3 also shows
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the estimated mean of a B4P distribution is much lower than the average value
(yc). Keeping in mind that paddy productivity has a B4P distribution, careful
attention should be done in defining yc. Setting higher average benchmark such
as in this study may lead to overestimating the expected losses and cause higher
premium for farmers, which may lead to decreased participation in the insurance
program itself.

4 Conclusion

This paper introduces B4P GMET and B4P GMERF prediction model applied
to pre-dict paddy productivity. This model enhanced the existing models by
considering (1) heterogeneity (2) appropriate B4P distributions, and (3) linear
and nonlinear condi-tions. This proposed method has shown promising results
compared to B4P GLM and B4P GLMM. By calibrating the models to empirical
data, extensive Bootstrap studies were performed to estimate the pure premium
and VaR of AYI. Here, we concluded that designing AYI at district level is
more appropriate when productivity among areas vary. Considerations must also
be given in defining the benchmark productivity when there is proof that the
distribution of paddy productivity follows a B4P distribu-tion. Last, the use of
satellite data in the model has proven a beneficiary, Thus, we encourage further
studies in other areas and continuously improve the model.
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Abstract. In this paper we propose the use of a single hidden layer feed forward
artificial neural network as a tool to appropriately capture the nonlinear dynam-
ics of the mortality rates modeled by a Lee-Carter type model. The proposed
procedure makes it possible to obtain point forecasts and, by using a bootstrap
scheme, the forecast distributions, which allow to take into account the uncer-
tainty of models’ predictions. Empirical evidence on Italian data shows a signifi-
cant improvement contribution of the proposed methodology.

Keywords: Lee-Carter Model · Feed-forward Neural Networks · Bootstrap
forecast distributions

1 Introduction

Forecasting human mortality rates is an important problem that is receiving increasing
attention especially in economics, demographics, social sciences and, in particular, in
actuarial science. In the context of stochastic description of the human mortality, the
Lee-Carter model [6] (from here on LC model) is one of the most popular for its simple
implementation, its efficiency and its easily interpretable parameters.

In the original LC model, the time series describing the mortality trend over time,
is modelled using a random walk model with drift. However, this can lead to obvious
limitations, especially in a forecasting framework, due to the presence of any nonlin-
earities. To solve the problem, there has been growing interest in adopting machine
learning techniques, focusing in particular on artificial neural networks (see [10]).

In this paper we explore the use of a single hidden layer feed-forward artificial
Neural Networks (NNs) as a forecasting tool to capture the nonlinear dynamics of the
mortality rates. The approach is also able to obtain, by using the bootstrap, forecast
distributions which allow to evaluate how much uncertainty is associated with each
point forecast. Despite their simple structure, NNs face several characteristics which
make them valuable and attractive in the forecasting. They are data-driven self-adaptive
methods and show good forecasting performance with high accuracy, without suffering
the so called “curse of dimensionality”. Furthermore, in our opinion, highly complex
neural network models cannot be easily justified in the context of mortality rates due to
the insufficient data availability, often encountered in these applications.

The paper is organized as follows. In Sect. 2 the LC model is briefly presented. In
Sect. 3, the employed NN model is introduced and discussed and the bootstrap scheme
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to obtain forecast distribution is presented. In Sect. 4 an application to Italian population
is discussed along with some concluding remarks.

2 The Lee Carter Model: Recalls and Remarks

As in [6], the LC model is given by the following form:

lnmx,t = ax+ ktbx+ εx,t
where mx,t is the observed central death rate at age x in year t, ax is the average age-
specific pattern of mortality, bx is a parameter representing the age-specific deviations
of mortality with respect to its averaged pattern as kt varies, kt being the time index
describing the general mortality trend and εx,t is the residual term at age x and time t.
To avoid identifiability of the parameters, the model requires the following constraints
∑x bx = 1 and ∑x kx = 0.

Lee and Carter estimated ax, bx and kt with U.S. mortality data from 1933 to 1987
using least squares. Specifically, they estimate ax by averaging log-rates over time and
bx and kt via a singular value decomposition of the residuals. In a second step they
adjusted the kt’s so that the observed number of deaths coincide with those estimated.
An important feature of the Lee-Carter approach is that, having reduced the time dimen-
sion of mortality to a single index kt , it is possible to use statistical time series methods
to model and forecast this index. In their application to U.S. mortality, Lee and Carter
discovered that, except for the flu epidemic of 1918, the index behaves like a simple
random walk with drift, where:

kt = kt−1+δ + et

where δ is the drift and the et are independent error terms with variance ν . The lin-
earity of the model for kt could be an obvious limitations, especially in a forecasting
framework, due to the presence of any nonlinearities in kt .

To overcome the problem, machine learning methods and, in particular, artificial
neural networks have been recently used. For example, a Recurrent Neural Network
with Long Short-Term Memory has been proposed in [9] to model and forecast mortal-
ity rates kt and extended in [7] to derive prediction intervals. The same Neural Network
architecture has been used in [8] to obtain a more accurate portrait of the future life
expectancy and lifespan disparity. Alternatively, convolutional neural networks, com-
bined with embedding layers, have been proposed in [10]. In the same framework, in
[5], a semi-parametric model based on an Autoencoderhas been proposed to capture the
nonlinearity features of the survival phenomenon.

3 Feed-Forward Neural Networks

We suppose that kt is modeled as:

kt = g(xt−1)+ et
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where g(.) is an unknown, possibly nonlinear, function, xt−1 = (kt−1, . . . ,kt−m) is a
vector of m lagged values of kt , and et are i.i.d. innovations with mean zero and finite
variance.
The function g(.) is approximated with a single input, single layer NN(r,s) defined as:

fs (x;θ) =
s

∑
j=1

c jψ
(
w′

jx+wj0
)
+ c0 (1)

with θ ′ = (c0,c1, . . . ,cs,w′
1, . . . ,w

′
s,w10, . . . ,ws0), parameter vector of dimension s(r+

2), where s is the hidden layer size, {w j, j = 1, . . . ,s} are the weight vectors of the
connections between the input layer and the hidden layer; {c j, j = 1, . . . ,s} are the
weights of the link between the hidden layer and the output neuron; {wj0, j = 1, . . . ,s}
are the bias terms of the hidden neurons; ψ(·) is a proper chosen activation function for
the hidden neurons. On the neural network, it is assumed that the activation function
ψ (·) is a continuous squashing function with ψ (·) ∈ C 2 (R) and that the hidden layer

size is such that s= s(T ) = O
(√

T/ logT
)
, with T the length of time series.

Once the hidden layer size s and the r explanatory variables have been fixed, the
weights of the network can be estimated as:

θ̂ = argmin
θ

T

∑
t=m+1

L (kt , fs (xt−1;θ))+
λ
2

‖θ‖2 (2)

whereL is an appropriate loss function, fs is a NN model with s neurons in the hidden
layer used to forecast kT+1, ‖·‖ is the L2-norm and λ is a regularization parameter which
forces the weights to decay towards zero and is usually fixed by cross-validation.

The proposed procedure allows to obtain point forecasts kT+h with h> 0 and, using
the bootstrap, the distributions of the forecasts, useful for taking into account the uncer-
tainty of the model forecasts. In particular, we implement a standard bootstrap scheme
from the residuals of the estimated NN(r,s). The approach is in the spirit of neural
network sieve bootstrap introduced in [1] and, consequently, it is asymptotically jus-
tified and, in small samples, outperforms alternative bootstrap schemes when the data
generation process is non-linear [2]. The procedure is implemented as in Alghoritm 1

4 Application to Real Data and Concluding Remarks

In this section, we introduce NNs in the classical scheme of the LC model. In particu-
lar, our aim is to evaluate the advantages of bootstrap forecast intervals based on NN
to improve the predictive ability of the LC model. We use the mortality datasets for the
Italian population, both for males and females, for the years 1872–2019, collected from
the website of Human Mortality Database (https://www.mortality.org/). The observa-
tions of the years 1872–1986 have been used as a training set, whereas the remaining
observations (from 1987 to 2019) have been used as a testing set for evaluating the
accuracy of the forecast results. The first step is to estimate the LC model parameters
ax, bx and kt using a singular value decomposition. The extracted time series kt , whose
plot is reported in Fig. 1, represents the initial base for the analysis. We have firstly ver-
ified if non linear features are present in kt . To this aim, the Teraesvirta Neural Network

https://www.mortality.org/
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Algorithm 1. Bootstrap forecast distribution
Require: Fix the forecast horizon h, the number of the bootstrap runs B, the values of r and s.
1: Let θ̂ be the estimate of the neural network model NN(r,s) by using (2).
2: Let F̂(x) the ECDF of the centered residuals from the estimated neural network.
3: for b from 1 to B do
4: Let ε(b)T+h be a random draw from F̂(x)

5: Compute the future bootstrap observations as k̂(b)T+h = f (x̂(b)T+h−1, θ̂) + ε(b)T+h where

x̂(b)T+h−1 = (k̂(b)T+h−1, . . . , k̂
(b)
T+h−m) with k̂(b)t = kt if t ≤ T .

6: end for
7: Given the set of B forecasts

{
k̂(b)T+h,b= 1, . . . ,B

}
, compute the ECDF F̂∗

T+h, which can be

used to estimate the unknown distribution FT+h of kT+h
8: The 1− α forecast interval for kT+h is given by

[
Q̂∗(α/2), Q̂∗(1−α/2)

]
where Q̂∗(.) is

the quantile function associated to the estimated bootstrap distribution F̂∗
T+h.

Test for neglected nonlinearity, reported in Table 1, shows a clear rejection of linearity
both for the female and male Italian data.

Following [7], as a benchmark, we have used an ARIMA(p,d,q) model to forecast
kt , with orders p and q fixed by using the AIC information criterion and the differencing
order d has been set equal to one, to obtain a stationary-in-mean time series. The best
specification has been an ARIMA(1,1,0) for females and an ARIMA(0,1,0) for males,
both with drift whose parameters have been estimated using maximum likelihood. Note
that the Teraesvirta Neural Network Test, reported in Table 1, shows the non linearity
of the residuals of both the models and, as a consequence, the inability of linear models
to capture the nonlinear dynamics of the series.

The ARIMA(p,d,q) performance has been then compared to a NN(r,s). The
NN(r,s) has been implemented by using Eq. (1) with xt including as explanatory vari-
ables m lagged values of kt and the trend; that is xt = (kt−1, . . . ,kt−m, t). The value of
m has been determined by using the auto distance correlation function which measures
the temporal dependence structure of a non linear time-series [12]. The hidden layer
size s has been determined by using cross validation. The best specification has been a
NN(4,5) for females and a NN(6,5) for males, both with a trend explanatory variable.
The weights have been estimated by using (2) in which L (.) is the squared loss func-
tion and the regularization parameter has been fixed equal to 0.001. The Terasvirta test
in Table 1 clearly shows the linearity of the residuals of both the NN models.

To compare the performance of the NN(r,s) model against the best ARIMA(p,d,q)
in the testing set and to measure the forecasting ability of the two models, we have
evaluated the point forecast accuracy by using the Root Mean Square Error (RMSE)
and the Mean Absolute Error (MAE). The forecast distributions have been calculated
by using the procedure illustrated in Algorithm 1 and the accuracy is evaluated through
the Winkler score (WS) [11], the Quantile Score (QS) [4] and the Continuous Ranked
Probability Score (CRPS) [3]. All computations have been implemented in R (version
4.3.1).

The results for female and male Italian population are reported in Table 2. Note
that for females, the neural network model and the ARIMA model produce very similar
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point forecasts, with a slight improvement of the latter compared to the former. How-
ever, when evaluating forecast distributions, a better performance of the neural network
is evident: all accuracy scores of the neural network are significantly lower than those
of the ARIMA model. For males, the neural network model has better accuracy of both
point forecasts and forecast distribution. The results are confirmed by looking at Fig. 1
in which are reported, for both ARIMA and NN models, the point forecasts along with
the (1− α) forecast intervals, with 1− α = 0.80 and 1− α = 0.95. It is evident that,
in both cases, NN models produce narrower forecast intervals. Our results seem in line
with the evidence reported, for example, in [7], in which a more complex Neural Net-
work has been implemented.
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Fig. 1. Observed and forecasted values of kt for female (on the top) and male Italian population
(on the bottom).
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Table 1. Test statistics and p-values for the Teräsvirta linearity test for the Italian population.

Original series ARIMA Residuals NN Residuals

Female Statistic 27.999 33.777 3.997

pvalue 0.000 0.000 0.136

Male Statistic 42.306 42.593 3.033

pvalue 0.000 0.000 0.220

Table 2. Forecast accuracy measures for the Italian population.

RMSE MAE WS QS CRPS

Female ARIMA 0.0449 0.0337 0.9284 0.0532 0.0528

NN 0.0473 0.0348 0.2243 0.0278 0.0276

Male ARIMA 0.0988 0.0868 1.5612 0.0907 0.0898

NN 0.0637 0.0527 0.4458 0.0409 0.0406
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Abstract. This work focuses on the changes among three stock exchange mar-
kets after the Brexit referendum. The markets and their indexes are the British
FTSE100, the German index DAX40 and the American index S&P500. Using
some nested GARCH and OLS models, it is shown that the volatility of the Euro-
pean indices reduced and the FTSE index decorrelated both with DAX and the
S&P in a significant way after the referendum.

Keywords: Brexit · changing point analysis · GARCH models

1 Introduction

On the 23rd of June 2016 the referendum about the UK exit from the EU (or the Brexit
referendum) can be considered as a breaking point for both the economic and the social
path of Great Britain. The result seemed to be unexpected by financial markets consid-
ering their immediate reaction. Despite the full consequences of the referendum involve
the medium term, this paper focuses on the short–term effects shown by the UK stock
exchange index or the FTSE100. To achieve the goal, the period between the 2nd of
January 2014 and the 31st of January 2020 was splitted into two sets according to the
referendum date. I remind that the 1st of February 2020was the date theUK stopped to be
an EU member State and the Withdrawn Agreement entered into force. Two additional
stock exchange indices were considered. They are the German DAX40 and the U.S.
S&P500 indexes to represent the EU and American stock markets. In the next paragraph
the volatility and the correlations of their log–returns are analyzed.

2 Time Series Analysis

2.1 Volatility

Although standard deviations of log – returns were lower in the period following the
referendum than the prior, their naïve ratios are assumed as not correct to assess the
changes into volatility cause to the conditional heteroskedasticity of the time series.
GARCH models are considered more appropriate for the achievement and their results
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for the full period (2/1/2014–31/1/2020) are reported below together with their log–
likelihood. A traditional notation is adopted so ht and rt are respectively the conditional
variance and the log–return at time t and l(θ ) is the log– likelihood.

FTSE100 ht = 0.051+ 0.146r2t−1 + 0.781ht−1 l(θ) = −363.944

S&P500 ht = 0.042+ 0.182r2t−1 + 0.758ht−1 l(θ) = −261.352

DAX 40 ht = 0.026+ 0.076r2t−1 + 0.902ht−1 l(θ) = −805.24

The order of these models is optimal according to the likelihood ratio test with a
significance level set to 0.05 and the Schwartz (Bayesian) information criterium.

Splitting the dataset before and after the referendum and applying different GARCH
models to each of the subsets, leads to reject the unique specification for the FTSE and
the DAX indices, but it doesn’t for the S&P500 according to the previous criteria. The
updated optimal equations for the volatility of the FTSE and the DAX are below.

FTSE100

before referendum ht = 0.03+ 0.15r2t−1 + 0.82ht−1

after referendum ht = 0.12+ 0.15r2t−1 + 0.61ht−1
l(θ) = −353.53

DAX40

before referendum ht = 0.03+ 0.08r2t−1 + 0.90ht−1

after referendum ht = 0.09+ 0.08r2t−1 + 0.79ht−1
l(θ) = −793.75

By a well–known relationship linking parameters of the GARCH model and the
unconditional variance of the process, a significant drop in the volatility can be stated
both for the British and the German indexes after the referendum. This relationship is
below.

V (rt) = ω

1− ∑p
i=1 αi − ∑q

i=1 βi

The standard deviations implied by models and the related empirical measures are
reported in the next table for each of the periods (Table 1).
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Table 1. Standard deviations.

Before referendum FTSE100 S&P 500 DAX40

Expected by GARCH 1.24 0.84 1.66

Empirical measure 0.97 0.86 1.31

After referendum FTSE100 S&P 500 DAX40

Expected by GARCH 0.71 0.84 0.85

Empirical measure 0.72 0.79 0.89

2.2 Stock Market Correlations

To analyze relationships among the markets, three sets of regressions were run. In every
regression, the full series of log – returns of one index was used as a dependent variable
and the log–returns of other indexes were used as independent variables. Every combi-
nation of splitted rather than full time series was considered, and the best model was
selected according to the likelihood ratio test with a significance level set to 0.05 and
the Schwartz (Bayesian) information criterium.

The regressions using no splitted independent variables according to the referendum
date were always rejected as the optimal choice. Below the best regression models.

FTSE = 0.21 S&Pbefore + 0.09 S&Pafter + 0.54 DAX

DAX = 1.05 FTSEbefore + 0.75 FTSEafter + 0.13 S&Pbefore + 0.29 S&Pafter

S&P = 0.38 FTSEbefore + 0.15 FTSEafter + 0.12 DAXbefore + 0.38 DAXafter

The interpretation of the results is quite clear. First, the correlations among the three
markets changed after the referendum. Second, the influence of the FTSE100 on the
DAX40 index weakened but the influence of the DAX40 on the FTSE100 appears to
remain stable. Third, the result of the referendum strengthened the connections between
the DAX40 and the S&P500 rather than the FTSE100 and the S&P500.

Upon completion, marginal and partial correlation matrices are reported considering
the two periods (Tables 2 and 3).
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Table 2. Marginal correlation matrices before and after the referendum.

Before referendum FTSE100 S&P 500 DAX40

FTSE100 1

S&P 500 0.58 1

DAX40 0.83 0.53 1

After referendum FTSE100 S&P 500 DAX40

FTSE100 1

S&P 500 0.45 1

DAX40 0.72 0.53 1

Table 3. Partial correlation matrices before and after the referendum.

Before referendum FTSE100 S&P 500 DAX40

FTSE100 1

S&P 500 0.28 1

DAX40 0.75 0.12 1

After referendum FTSE100 S&P 500 DAX40

FTSE100 1

S&P 500 0.11 1

DAX40 0.64 0.33 1

Moreover, the descriptive statistic R2 for all the regressions are in the table below.
Again, they are computed prior and posterior the referendum date (Table 4).

Table 4. R2 before and after the referendum

R2 FTSE100 S&P 500 DAX40

Before referendum 0.71 0.34 0.69

After referendum 0.53 0.29 0.58

Finally, the overall performances for each index are reported below (Table 5).
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Table 5. Overall performance in percentage

FTSE100 S&P 500 DAX40

Before referendum −6.09 14.33 7.38

After referendum 18.69 58.31 35.84

Whole period 7.96 74.51 35.91

Regarding the last table, it is worth ofmention that the gap between the performances
of theDAX and theFTSE is similar in the two periods: 0.13 before the Brexit referendum
and 0.17 after it. What it changed was the way these gaps occurred due to the break in
the correlation between the markets. A suchlike statement holds in comparing the S&P
and the FTSE performances. Clearly, the last descriptive statistics are confirming the
results of the inferential analysis of log–returns.

3 Conclusions

After the Brexit referendum a significant decorrelation of the FTSE100 from the other
indexes is observed together a drop in the volatility of the two European stock markets.
Maybe against the common expectation, the direct correlation between the German
and the American indexes strengthened after the referendum and that one involving the
British and the American indexes weakened.
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Abstract. Attributing the volatility of a portfolio to some exogenous
risk factors which are not directly invested in by the portfolio may be a
topic of interest to asset managers. Without any restriction on the nature
of risk factors, we must take into account that their returns may exhibit
strong correlations. Risk factor returns multi-collinearity causes severe
problems in estimating their portfolio volatility contributions. In order
to solve this issue, we propose a risk attributing pipeline that applies an
orthogonalisation algorithm to risk factor returns. Most importantly, the
risk factors interpretability is preserved, in the sense that the orthogo-
nalised risk factors are the ones attaining the least Frobenius norm of
the matrix of deviations from the original risk factors.

Keywords: risk contributions · multi-collinearity · orthogonalisation ·
interpretability

1 Motivation

Identifying the different risk sources of a portfolio may be relevant to the work
of an asset manager. However, assessing risk contributions of risk factors which
a portfolio does not directly invest into requires to be handled with some care.

Considering a set of n assets {A1, . . . ,An}, a portfolio in this investible uni-
verse is specified by a vector w ∈ IRn, such that

∑n
i=1 wi = 1. We take wi ≥ 0

∀i ∈ 1, . . . , n, thus not allowing short selling. We denote by R ∈ IRn the vector of
asset returns at time t and by Σ ∈ IRn×n their covariance matrix. We measure
the risk of a portfolio by the volatility of its returns, i.e. σ =

√
wTΣw.

We consider a set of m risk factors {F1, . . . ,Fm}, without any restriction on
their nature, and we denote by F ∈ IRm the vector of their returns at time t and
by Ω ∈ IRm×m their covariance matrix. Following Alexander [1], we assume the
linear factor model

R = α + BF + ε (1)
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for the asset returns at time t, where α ∈ IRn is the vector of intercepts and
ε ∈ IRn is the vector of residuals at time t. Allocating σ to the m risk factors
requires estimating the n × m factor loadings matrix B.

A possible way to estimate the matrix B is by the ordinary least squares
method. Anyway, as discussed by Hastie et al. [3], the presence of risk factor
returns multi-collinearity may pose severe issues while trying to disentangle the
separate effects of distinct risk factors on portfolio volatility.

Without any restriction on risk factors themselves, the presence of multi-
collinearity is perfectly admissible and needs to be addressed properly in order
to identify meaningful and interpretable portfolio volatility contributions.

2 Methodology

In order to illustrate our pipeline to allocate volatility to risk factors, we recall
the theoretical results our method is built upon.

2.1 Risk Factors Volatility Contributions

Following Cazalet and Roncalli [2] and denoting by B+ the Moore-Penrose
inverse of the factor loadings matrix B, the risk contribution to the portfolio
volatility σ of the j-th risk factor, where j = 1, . . . ,m, is defined as

RC(Fj) =
(BTw)j(B+Σw)j

σ
. (2)

In the case of m < n, the risk allocation procedure gives rise to n−m residual
risk factors. These residual factors carry no meaningful financial interpretation,
but we attribute to them the risk contributions

RC(F̃k) =
(Ãw)k(ÃΣw)k

σ
, (3)

where k = 1, . . . , n−m and Ã = Ker(BT )T is an n×(n−m) matrix which, trans-
posed, spans the left null space of B. The residual risk contributions vanish when
m ≥ n. As shown by Roncalli and Weisang [6], the residual risk contributions
are necessary to satisfy the allocation principle

σ =
n∑

j=1

RC(Fj) +
n−m∑

k=1

RC(F̃k) . (4)

Remark 1. Despite portfolio volatility being strictly non-negative, risk factors
volatility contributions could take negative values. When this happens, the
volatility of the portfolio is reduced by the exposures to these risk factors.
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2.2 Orthogonalisation Procedure

We apply the orthogonalisation algorithm proposed by Klein and Chow [4]. This
procedure is egalitarian, due to its output not depending on the particular order
into which risk factors are processed. A set of orthogonalised risk factor returns
is obtained as a linear transformation of the original risk factor returns, namely

F⊥ = FS . (5)

We denote M = (T − 1)Ω, where T is number of time observations, i.e. the
number of rows of F . We refer to O as the m×m matrix whose columns are the
eigenvectors of M and to D−1/2 as the m × m diagonal matrix of the reciprocal
square roots of the eigenvalues of M . The transformation matrix is defined as

S = OD−1/2O . (6)

Despite the epitome orthogonalised, the T×m matrix F⊥ is not an orthogonal
matrix per se, as (F⊥)TF⊥ it not the m × m identity matrix. We abuse this
notation because F⊥, obtained by adding constant terms to orthogonal time
series, still results in uncorrelated time series.

Remark 2. The S transformation minimises the overall difference between the
original and the orthogonalised risk factor returns for all the Schatten p-norms
and, in particular, for the Frobenius norm when p = 2.

3 Case Study

To illustrate the effectiveness of the proposed methodology we present a case
study on real data for assets, portfolio weights and risk factors.

3.1 Data Retrieval

We choose a set of n = 31 investible assets and we build on them a balanced
portfolio, such that roughly 60% of our capital is allocated to fixed income assets
and the remaining 40% to equity assets.

Remark 3. The assets are selected to be of interest to an investment company
and thus they cannot be openly disclosed. However, such assets cover a large
majority of financial instruments, diversified by sector and geographical area,
and they are reasonable constituents of a strategic asset allocation, a diversified
long-term portfolio strategy with periodic rebalancing.

We also choose m = 5 risk factors. They are mostly related to the US econ-
omy, despite our portfolio being globally diversified. However, we believe these
risk factors to be broad enough to provide an exhaustive description of a global
balanced portfolio such as ours. We label them as:
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• Rate: an index tracking the performance of US treasury bills with a remaining
term to maturity between 7 and 10 years;

• Corporate: an index tracking the performance of US investment grade-rated
corporate bonds with a remaining term to maturity between 7 and 10 years;

• Market: an index tracking the performance of stocks from large and mid cap
segments of the US market;

• Commodity: an index tracking the performance of global futures contracts on
physical commodities;

• Currency: the euro against US dollar pair.

Both asset and risk factor series are retrieved on a daily basis, excluding
non-business days, from 2012-12-31 to 2023-12-01. Returns series are obtained
as percentage changes of the original series of total returns.

3.2 Empirical Results

To enforce a dynamic evolution of risk contributions, we choose a rolling window
of 22 days, i.e. a month of business days, and we apply (5) to orthogonalise
risk factor returns in each window. Risk factors contributions to volatility are
computed in every window by (2) and (3). The matrix Σ is estimated by the
shrinkage method proposed by Ledoit and Wolf [5], while for the matrix Ω we
resort to the sample covariance matrix.

The most critical issue in providing an interpretable risk allocation comes
from the fact that Rate and Corporate returns exhibit a very high correlation,
exceeding 0.9 for more than 86% of the 2588 rolling correlations evaluated.

Fig. 1. Cross correlations between orthogonalised risk factor returns and their original
counterparts over time. The rolling window is set to 22 business days

The rolling cross correlations between the orthogonalised risk factor returns
and their original counterparts are displayed in Fig. 1. Due to their strong multi-
collinearity, the Rate and Corporate factors are those most modified by the
orthogonalisation algorithm, thus exhibiting the lowest cross correlations. The
other factors higher cross correlations indicate that they are not strongly multi-
collinear either among themselves or with the Rate and Corporate factors.
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3.3 Results Interpretability

Figure 2(a) displays the annualised risk factors contributions to the volatility of
our balanced portfolio. Annualisation is obtained by scaling by

√
260, taking

260 as the number of business days in a year. The contributions in Fig. 2(b) are
normalised by dividing them by the volatility of the portfolio.

Fig. 2. Balanced portfolio risk factors volatility contributions over time. The rolling
window is set to 22 business days. a. Risk factors contributions cross-sectionally add
up to the portfolio volatility (solid line). b. Normalised risk factors contributions

Figure 2 allows us to attribute volatility spikes to turmoil periods and major
economics events. For the sake of illustration, we comment on some of them:

• Q2 2013: the Fed taper tandrum coincides with a Corporate risk surge;
• Q3 2015: the Chinese stock market turbulence coincides with a Commodity

and Currency risks surge;
• Q1 2016: the petrol prices plunge coincides with a Commodity risk surge;
• Q1 2018: the Volmageddon coincides with a Market risk surge;
• Q1 2020: the outbreak of the COVID-19 pandemic coincides with a Market

risk surge;
• Q2 2020: the crude oil futures price turning negative coincides with a Com-

modity risk surge, although partially hidden in Fig. 2 due to the aftermath of
the COVID-19 pandemic;
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• Q3 2022: the global interest rate normalisation coincides with a Corporate
risk surge.

4 Conclusions

In this article we developed an egalitarian pipeline to attribute the volatility of a
portfolio to some exogenous risk factors in an interpretable way. The effectiveness
of our methodology is illustrated by a case study on a balanced portfolio, and
we believe our setting to be general enough to be of help for the different needs
of an asset manager.

We also benchmarked our methodology against other techniques specifically
designed to handle multi-collinearity between predictors in a linear regression
context, such as Ridge or LASSO regressions, as discussed by Hastie et al. [3].
These methods did not prove completely successful because, despite shrinking
toward zero the regression coefficients of multi-collinear risk factors, they gave
rise to extreme and opposite volatility contributions, due to the lack of an explicit
disentanglement of the returns of strongly correlated risk factors.

One future development of this work could be trying to extend the afore-
mentioned Ridge or LASSO regularisation techniques by plugging into their loss
functions some ad hoc penalty terms. Moreover, it could interesting to extend
our methodology to risk measures other than portfolio volatility. Eventually, we
could even compare some nonlinear models in place of (1), and try to automat-
ically detect changes in the underlying risk dependence structure.

Notes and Comments. The authors are thankful to Luca Colussa, from Generali
Asset Management SGR S.p.A., Trieste, Italy, for its invaluable contribution and
for the fruitful discussions that made this work possible.
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Abstract. The zero utility premium principle is generalized under the Cumu-
lative Prospect Theory. Risk attitude and loss aversion are shaped via a utility
or a value function, and probabilities of ranked results are replaced by decision
weights. Transformation of objective probabilities models probabilistic risk per-
ception. Some properties of the behavioral premium principle are presented.

We then discuss an application making specific assumptions about the value
function, the probability distortion, and the distribution of the claim. In particular,
we study the impact of loss aversion on the premium.
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Prospect Theory

1 Introduction

We discuss a premium principle under the Cumulative Prospect Theory (CPT) [19]
which generalizes the zero utility principle ([4] and [5]), extending previous work of
[13].

A number of contributions study insurance premium principles and risk measures
under Rank-Dependent Utility Theory (RDU) [15] and Dual Utility Theory (DU) [23].
Distorted probabilities were introduced by [21] in the definition of a premium princi-
ple based on a proportional hazard transform of the decumulative distribution function
of the insurance risk. [22] applies distortion operators in order to price financial and
insurance risks; the approach is more related to the DU. [20] consider different proba-
bility weighting functions for gains and losses, with linear utility. Along the same line
of research, one may also include the contributions [1,2,9,17], and [3]. [10] introduces
a zero utility principle under RDU (see also [18] and [7]). [11] extend the equivalent
premium principle in a CPT framework discussing some special cases with linear and
exponential utility functions and the properties of the related premium; [12] study iter-
ative conditions of the premium principle defined in [11]. Also [16] apply CPT in order
to study the optimality of insurance from the viewpoint of the insured maximizing their
prospect value subject to a proportional premium principle adopted by the insurer. More
recently, [24] derive a CPT-based shortfall risk measure.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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The paper is organized as follows. Section 2 introduces the behavioral premium
principles and their properties. Section 3 discusses an application assuming particular
functional forms for the value function, the probability weighting function and the con-
tinuous distribution of the claim. Section 4 concludes.

2 Behavioral Premium Principles

The equivalent utility principle (see [5]) defines a premium which makes the insurer,
with a positive initial wealth W , indifferent before and after having accepted the risk,
X . The premium, P, is the solution (if it exists) to

u(W ) = E[u(W +P−X)], (1)

where u denotes the utility function satisfying the usual conditions. The loss severity,
X , can be modeled by a non-negative random variable.

WhenW = 0, or the utility function is defined with respect to the a reference point
which is set equal to the status quo û(x) = u(W + x) (see [10]), one refers to the zero
utility principle (see [4], p. 86).

Problem (1) has been solved in the literature assuming, in particular, linear, CARA
and CRRA utility functions. Further extensions of the premium principle (1) consider
the introduction of probability distortion.

A weighting (or distortion) function w is a strictly increasing function which maps
the probability interval [0,1] into [0,1], with w(0) = 0, and w(1) = 1. For an arbitrary
random variable X , the generalized expected value can be defined by the following
Choquet integrals:

Ew(X) =
∫ 0

−∞
(w(P(X > x))−1) dx+

∫ +∞

0
w(P(X > x)) dx , (2)

and

Ew+w−(X) =
∫ 0

−∞

(
w− (P(X > x))−1

)
dx+

∫ +∞

0
w+ (P(X > x)) dx , (3)

when different distortion functions are applied to probabilities of positive and negative
results. In particular, when X is a non negative random variable, one has

Ew(X) =
∫ +∞

0
w(P(X > x)) dx=

∫ +∞

0
w(SX (x)) dx , (4)

where SX (x) = 1−FX (x) is the survival function.
When risk attitudes are shaped via a utility function, u, as in RDU, or a value func-

tion, v, as in CPT, then

Ew(u(X)) =
∫ +∞

0
w(P(u(X)> y)) dy , (5)

and

Ew+w−(v(X)) =
∫ 0

−∞

(
w− (

P(v−(X)> y)
)−1

)
dy+

∫ +∞

0
w+ (

P(v+(X)> y)
)
dy ,

(6)
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extend the EU value under RDU and CPT, respectively, for a convenient random vari-
able X .

In particular, when a linear utility function is considered in problem u(W ) =
Ew(u(W +P−X)), the distortion premium principle (with w convex, see [21]) results:

P= Ew(X) , (7)

where w is the dual probability weighting function1. Note that, when w is convex, w is
concave.

As another special case, let u= (1− e−ax)/a, with a> 0, and consider condition

u(W ) =
∫ +∞

0
w(P(u(W +P−X)> y)) dy ;

then the generalized exponential premium principle under RDU arises (see [10]):

P=
1
a
lnEw

(
eaX

)
. (8)

2.1 Premium Principle Implied by CPT

Differently from EU theory, in CPT individuals are risk averse when considering gains
and risk seeking with respect to losses, and they are loss averse. Results are measured
relative to a reference point rather than in terms of final wealth. The random result P−X
in (1) can be positive or negative and is evaluated through a value function, v, which is
continuous and strictly increasing, with v(0) = 0, and non differentiable at the reference
point. Objective probabilities are replaced by decision weights, which are differences
in transformed, through a weighting function w, cumulative probabilities of losses and
counter-cumulative probabilities of gains.

The zero utility principle (1) can be generalized under CPT as follows:

v(0) = Ew+w− [v(P−X)] . (9)

Let the loss severity X be modeled by a non-negative continuous random variable,
with cumulative distribution FX and density fX , then the premium P for insuring X is
implicitly defined by the condition

0=
∫ P

0
v+(P− x)ψ+[FX (x)] fX (x)dx+

+
∫ +∞

P
v−(P− x)ψ−[1−FX (x)] fX (x)dx ,

(10)

where ψ(p) = w′(p) is the derivative of the probability weighting function. Condition
(10) defines the zero prospect value premium principle based on CPT for continuous
random variables (see [13]). When v(x) = x, and probabilities are not distorted, w(p) =
p, then the behavioral premium is equal to the equivalence premium, P= E(X).

The premium principle implied by CPT satisfies the following properties (see [13]
for a proof):

1 The dual probability weighting function w is defined as w(p) = 1−w(1− p), with w′(p) =
w′(1− p). Observe also that Ew(−X) = −Ew(X).
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No unjustified safety (or risk) loading: P(a) = a, for all constants a;

Non-excessive loading: P(X) ≤ sup(X);

Translation invariance: P(X+a) = P(X)+a, for all a.

Considering general value and distortion functions, positive scale invariance
(P(aX) = aP(X), for a > 0) does not hold for the premium defined by (10) (see also
[11]). This property holds under RDU if and only if the value function is linear. Addi-
tivity for independent risks, additivity for comonotonic risks, sub-additivity, stop-loss
order preserving are studied and proved under RDU (see [6–8,10], and [11]) for a class
of functions including linear and exponential utility, with some restrictions on the value
function and on the shape of the probability weighting function.

3 An Application with Exponential Value Function

Let us consider the following exponential value function:

v(x) =
{
v+ = (1− e−ax)/a x ≥ 0
v− = λ

(
ebx −1

)
/b x< 0,

(11)

where λ > 1 is the loss aversion parameter, a > 0, and b > 0. When v is substituted in
(10), one obtains the condition:

0=
∫ P

0

1− e−a(P−x)

a
ψ+[FX (x)] fX (x)dx +

∫ +∞

P
λ
eb(P−x) −1

b
ψ−[1−FX (x)] fX (x)dx .

(12)
Consider the two-parameter compound-invariant probability weighting function

suggested by Prelec [14]:
w(p) = e−δ (− ln p)γ

, (13)

with δ > 0, γ > 0. When γ < 1 (with some restrictions on δ ) the function has an inverse-
S shape. It’s derivative is ψ(p) = δγ 1

p (− ln p)γ−1e−δ (− ln p)γ
.

A problem studied in [13], Sect. 6, is extended in two ways: random results P−X
are evaluated in an aggregated framing, and a more flexible two-parameters weighting
function is adopted.

Assume that the random variable X has aWeibull distribution with parameters α > 0
and β > 0, with

fX (x) =
α
β

(
x
β

)α−1

e
−

(
x
β

)α

, FX (x) = 1− e
−

(
x
β

)α

.

One obtains: w(1 − FX (x)) = e
−δ

(
x
β

)αγ

, and ψ(1 − FX (x)) = δγ
(

x
β

)α(γ−1)

e
δ
((

x
β

)α −
(

x
β

)αγ )
.

We present some numerical results, based on Prelec’s probability weighting func-
tion, and assuming for X a Weibull distribution with parameters α = 5 and β = 100. We
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have E(X) = 91.8169 andVar(X) = 4.4230. Let us consider a= b in the value function
(11). Problem (12) can be solved numerically for P (convenient truncation in the second
integral is also required). It is worth noting that, when a approaches zero, with λ = 1,
and w(p) = p, the premium tends to P= E(X) = 91.8169.

Results are reported in Tables 1 and 2. In particular, in Table 1 only the effect of the
value function is computed (moderate values of the parameters are considered), with no
probability distortion. P increases with loss aversion, λ , and risk aversion, a. Table 2
shows the results when full form of CPT is adopted. Similar results are obtained with
other parameter settings. It is worth noting that loss aversion plays an important role.
When λ is close to one, and the shape of probability distortion implies that medium and
high probabilities of mid-rank results are under-weighted, combined with the Weibull
distribution2, it may happen that the P< E(X).

Table 1. Resulting premiums under CPT when X ∼ Wei(α ,β ), with α = 5, β = 100, E(X) =
91.8169; with exponential value function (11), assuming a= b, letting parameters a and λ vary;
assuming no probability distortion (γ+ = γ− = 1, and δ+ = δ− = 1)

a

λ 0.02 0.04 0.06 0.08 0.1

1 92.0969 92.3013 92.4493 92.5568 92.6355

1.25 94.1007 94.4140 94.6536 94.8380 94.9816

1.5 95.7191 96.1175 96.4284 96.6727 96.8668

1.75 97.0729 97.5404 97.9091 98.2017 98.4365

2 98.2342 98.7593 99.1759 99.5086 99.7771

Table 2. Resulting premiums under CPT when X ∼Wei(α ,β ), with α = 5, β = 100; with value
function (11), assuming a = b; adopting Prelec’s distortion function, with γ+ = 0.5, γ− = 0.6,
δ+ = 1.05, and δ− = 0.95)

a

λ 0.02 0.04 0.06 0.08 0.1

1.25 92.7326 93.7565 94.3928 94.7937 95.0571

1.5 95.7133 96.8809 97.6059 98.0676 98.3760

1.75 98.1868 99.4642 100.2574 100.7665 101.1103

2 100.2956 101.6608 102.5088 103.0564 103.4294

2 With an inverse-S shape probability weighting function, decision weights assigned to extreme
events are higher than objective probabilities. Nevertheless, in the application, a Weibull dis-
tribution is used; alternative distributions with heavier tails, such as the log-normal one, could
be considered.
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4 Concluding Remarks

Prospect Theory attracts increasing interest in the insurance theory literature and it
seems promising for its potential to explain a range of behaviors (diminishing marginal
utility, loss aversion, and probability weighting). We defined a premium principle under
CPT extending the zero utility principle. In the application, some preliminary results
are presented; the obtained behavioral premiums are higher than the equivalent pre-
mium, resulting in an implicit loading. As further extensions, fixed-percentage and
fixed-amount deductibles can be introduced in the analysis.
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Abstract. In the liability-driven life business (i.e., with fixed or partic-
ipating benefits), the understanding of the reserving process may be out
the reach of the policyholder, due to the actuarial principles on which
the valuation is based. In particular, the coherence between the costs
described under policy conditions and the amount accumulated into the
policy reserve may be lost. When the life policy is mainly viewed as
an investment by the policyholder, alternative investments may be con-
sidered (perhaps erroneously) more convenient and convincing, as their
dynamics appears more intuitive. We show that, based on the informa-
tion available to the policyholder, the reserve dynamics can be reinter-
preted in terms of equivalent periodic fees charged to the value of the pol-
icyholder’s investment. Most policyholders should understand the mean-
ing of a periodic fee, thus gaining greater awareness of the protection
provided by life policies, as well as better insights on their costs.

Keywords: Prospective reserve · Embedded periodic fee · Cost of
mutuality · Participating life policies · Participating annuities ·
Liability-driven business · Financial literacy

1 Introduction

In insurance, and in life insurance in particular, premiums are collected on aver-
age before the benefits are paid, to ensure that, apart from adverse circum-
stances, mutuality is cross-subsidised with the money paid by members of the
insurance pool, and not with insurer’s capital. As a result, the insurer is in a debt
position, which is protected by a mandatory fund, the so-called policy reserve.

The policy reserve is assessed based on actuarial principles, usually following
a prospective approach, i.e. as the expected present value of future benefits net
of future premiums, including a (safety or risk) margin meant to improve the
ability of the insurer to meet its obligations even in unfavourable situations.
The specific calculation rule of the policy reserve, and the margin in particular,
depends on regulation (e.g., local GAAPs, IFRS, Solvency 2). See [7] for a general
discussion. The calculation of reserves is described in many actuarial textbooks.
See, for example, [2–4].
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When the insurance policy is designed for providing not just a protection
against a life-contingent event, but also an investment opportunity, the amount
of the reserve is regularly disclosed to the policyholder, as from his/her viewpoint
it represents the value of his/her investment. However, the understanding of
its dynamics may be out of the reach of the individual, unless (s)he holds an
actuarial background. In particular, the coherence between the costs described
under policy conditions and the amount accumulated into the policy reserve may
be lost.

This is not the case of the asset-driven life business, i.e. when benefits are
unit-linked. In this kind of policies, by constructions the reserve takes the value
of the policy assets, to which periodic fees are explicitly charged to cover the
cost of any guarantee or rider benefit. See, for example, [3]. Regardless of the
policyholder’s ability to assess whether the fees are fair or not, this approach
makes the reserving process rather intuitive. Further, fees are applied in a way
that is similar to financial products, to which very often individuals compare life
policies, as in their view they can represent a convenient alternative.

Whatever the rule actually adopted for its calculation, also in the case of
the liability-driven business the reserve dynamics can be reinterpreted in terms
of equivalent periodic fees implicitly charged to the policyholder’s investment.
This is based on information usually accessible to the policyholder. Analysing
the dynamics of the periodic fees could improve awareness of the protection
provided by the insurance policy, and better insights into the costs charged by
the insurer, including loadings. For their part, insurers can find opportunities
for product innovations, if policyholders are better aware of their features and
costs. On the other hand, if policyholders are better able to estimate loadings,
insurers may need to revise their pricing parameters. It is then important for
them to be able to justify the size and dynamics of the equivalent periodic fees
consistently with the features of the guarantees they are providing.

In this paper we illustrate how to assess equivalent periodic fees, and provide
some simple examples for participating endowments and annuities. Although
the concept is straightforward, it has the potential to contribute to the financial
literacy competencies of individuals. This is an important issue in the context of
the financial well being of individuals, in the agenda of many policy makers; see,
for example, [5,6]. Our research aim is to check which insights can be gained by
individuals from the analysis of equivalent periodic fees, with particular regard to
their time profile. To address the individual’s perspective, we adopt a simplified
framework; in particular, the setting is deterministic and discrete-time.

The paper is organized as follows. In Sect. 2 we define the equivalent periodic
fees, and introduce a possible splitting into mutuality and loading components.
In Sect. 3 we analyse their time profile in some numerical examples. Finally, in
Sect. 4, we close the paper by outlining some further investigations.

2 Equivalent Periodic Fees and Components

In this Section we interpret the dynamics of the policy reserve in the perspective
of the policyholder, based on the information available to him/her. Considering
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an individual with a basic (or not too much advanced) financial education, we
perform our analysis in a discrete-time setting. For brevity, we disregard expenses
or asset management fees (which are common to other financial products), and
we only focus on the investment return and cost of mutuality (the latter being
typical of insurance products). Since the policyholder may consider the value of
the policy reserve as the value of his/her investment, we will also call it policy
account value (a usual terminology in the asset-driven business).

We consider a general structure of a life policy, allowing us to obtain as
particular cases either an endowment insurance or a life annuity. We denote
with: πt−1 the net premium paid at time t − 1; B

[D]
t the benefit paid at time

t in case of death during (t − 1, t); bt the survival benefit paid at time t if the
insured is alive. An endowment insurance is represented by setting a maturity
m and: B

[D]
t > 0 for t = 1, 2, . . . ,m; bt > 0 for t = m and bt = 0 for all other

times. A standard annuity is represented by setting: πt−1 > 0 for t − 1 = 0 and
πt−1 = 0 for all other times; bt > 0 for t = 1, 2, . . . . A life annuity with capital
protection can be obtained by setting B

[D]
t > 0 for t = 1, 2, . . . ,m, where m is

a finite time. We assume that a traditional pricing approach is adopted. This
means that an actuarial balance between net premiums and benefits is assessed
by setting a conservative discount rate (the so-called technical interest rate, i′),
and a conservative mortality assumption (that we will represent in terms of a
sequence of mortality rates q′

x+t−1, t = 1, 2, . . . ). We denote with x the entry age
of the insured, i.e. his/her age at time 0. Adoption of conservative assumptions in
the pricing parameters results in a loading embedded into net premiums, where
the loading represents the insurer’s expected profit.

For a participating policy, whatever the specific rule adopted by the insurer
for assessing the value of the reserve, at each policy anniversary the policy reserve
is credited an interest amount, based on the return of the assets backing the
reserve, net of the cost of mutuality.

For a policy in-force at time t, the dynamics of the policy reserve between
time t − 1 and time t can be synthetically described as follows:

Vt = (Vt−1 + πt−1) · (1 + i
[net]
t ) − bt , (1)

where i
[net]
t is a measure of the net annual return to the policyholder. Let it be

the return on the assets backing the reserve (in the participating business, this
information is usually disclosed to policyholders). The difference it − i

[net]
t is a

synthetic measure of the cost of mutuality and loadings.
To split it− i

[net]
t into a mutuality and loading component, we need a mortal-

ity/longevity index. This information can be obtained from national mortality
statistics, or from indexes available in the market of mortality/longevity-linked
securities (see [1] for an overview). We assume that from the mortality index it
is possible to obtain an estimate of the mortality rate in a reference population,
that we denote as q

[ref]
x+t−1 at age x+ t− 1. In the life insurance business, mutual-

ity arises from the insurer having to pay the benefit B
[D]
t in case of death, while

the value that would be cumulated in the policyholder’s investment would be
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Vt+bt (i.e., the policy account value before the payment of the survival benefit).
The cost of mutuality is then proportional to the amount B

[D]
t − Vt − bt, i.e. the

additional death benefit (in respect of the investment value). We describe the
cost of mutuality in the following way:

(Vt−1 + πt−1) · ξ[mut]
t = (B[D]

t − Vt − bt) · q[ref]x+t−1 , (2)

where ξ
[mut]
t is the fee for mutuality. We note that the mortality rate realized in

the insurer’s portfolio, that we denote as q
[ptf]
x+t−1, can be other than q

[ref]
x+t−1. This

means that an assessment based on the mortality index can over- or underesti-
mate the cost of mutuality really reported by the insurer.

Finally, the fee for loadings can be assessed as follows:

ξ
[load]
t = it − i

[net]
t − ξ

[mut]
t . (3)

Again we note that ξ
[load]
t may not coincide with the loading actually charged

by the insurer, due to the difference between q
[ptf]
x+t−1 and q

[ref]
x+t−1.

The fee for loadings can be further split into a financial and mortality compo-
nent, if the reserving basis is known. For brevity, we do not discuss this aspect.

3 Numerical Implementation

In this Section we discuss some examples, in a deterministic setting. In partic-
ular, we examine the equivalent fees emerging under a given trajectory of the
investment return and the mortality index, for participating endowments and
annuities.

We first consider a standard endowment insurance; see Table 1, listing the
equivalent fees and components for a selection of years. Pricing and other policy
parameters are reported in the caption of the table. We point out that the
revaluation rate of the reserve implies a minimum guaranteed annual return equal
to 2%. If the realized investment return is below the minimum, the insurer incurs
into a loss. The mortality rates recorded in the reference population are listed in
terms of their ratio to the pricing mortality rates. A ratio higher (lower) than 1
means a loss (profit) to the insurer; however, we recall that the real loss (profit)
reported by the insurer depends on the mortality rate realized in its pool, that
can be other than in the reference population. The estimated size of the insurer’s
profit or loss is reflected in the value of the fee for loadings, which can also be
negative (in case of large loss). From the point of view of the policyholder, it is
interesting to understand how much of the realized return it is absorbed by the
cost of mutuality. Such a cost depends on the realized mortality, but also on the
additional amount in case of death, which is defined by the policy design. If the
policyholder prefers to pay less for mutuality, (s)he should choose policies with
a lower additional death benefit amount (accepting, however, to lose part of the
insurance protection). To illustrate this, we consider alternatively annual level or
single recurrent premiums. In the latter case, the benefit amount is progressively
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Table 1. Endowment participating insurance. Entry age: 50. Duration: 10 years.
Annual premium amount: 1,000.00 euro. Pricing interest rate: i′ = 2%. Pricing life
table: Period, population life table (mortality rates q′

x+t−1). Annual revaluation rate

of the reserve: rt = max
{

0.95·it−i′
1+i′ , 0

}
.

t it
q
[ref]
x+t−1

q′
x+t−1

Level premiumsa Single recurrent premiumsb

i
[net]
t ξ

[mut]
t ξ

[load]
t i

[net]
t ξ

[mut]
t ξ

[load]
t

1 2.256% 0.9196 0.171% 1.811% 0.274% 2.105% 0.035% 0.116%

3 2.342% 1.1112 1.600% 0.692% 0.050% 2.190% 0.039% 0.114%

5 1.923% 1.1935 1.679% 0.383% −0.139% 1.970% 0.036% −0.083%

7 2.262% 0.8573 1.982% 0.142% 0.138% 2.127% 0.018% 0.117%

9 2.518% 1.1311 2.339% 0.058% 0.121% 2.384% 0.008% 0.127%
a: Initial benefit amount 11,018.89 euro.
b: Initial benefit amount (first premium) 1,216.06 euro.

cumulated, resulting in lower death benefit amounts before reaching maturity.
Indeed, the cost of mutuality is lower in the case of single recurrent premiums.

Table 2 quotes the equivalent periodic fees for a life annuity, for a selection of
years. We first note that the fee for mutuality takes negative value, as in the case
of life annuities mutuality implies a mortality credit to survivors. The size of such
a credit becomes higher as the individual ages, highlighting the advantages of an
annuity in respect of purely financial post-retirement arrangements, especially
at older ages; this is a very well-known feature to actuaries and insurers, but
possibly misunderstood by individuals. It is also interesting to note the increasing
path of the net return to the policyholder, mainly originated by the mortality
credits. We consider both the case of a standard life annuity and a life annuity
with capital protection. In the latter case, the presence of the death benefit
clearly reduces the size of mortality credits. Other comments are in line with
what discussed for endowments.

4 Further Investigations

In this paper we suggest an intuitive way to describe the life insurance reserv-
ing process to the individual, which is based on the information accessible to
the policyholder. Such information include primarily the policy reserve amount
and the return on the assets backing the reserve, that are usually disclosed by
the insurer. Further, if information about the mortality realized in the insurer’s
portfolio are not available, the use of a mortality/longevity index can allow to
obtain proxy estimates. Based on this set of information, the reserving (and ulti-
mately the pricing) process can be reinterpreted in terms of equivalent periodic
fees. In practice, this is a simple way to reinterpret the concept of actuarial fair-
ness, making it more accessible to an individual not able to perform complex
assessments. Such a reinterpretation can possibly suggest areas for improvement
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Table 2. Participating annuity. Entry age: 60. Initial benefit amount: 100.00 euro. Pric-
ing interest rate: i′ = 2%. Pricing life table: Projected, cohort, selected life table (mor-

tality rates q′
x+t−1). Annual revaluation rate of the reserve: rt = max

{
0.95·it−i′

1+i′ , 0
}
.

t it
q
[ref]
x+t−1

q′
x+t−1

Standard annuitya Annuity with capital protectionb

i
[net]
t ξ

[mut]
t ξ

[load]
t i

[net]
t ξ

[mut]
t ξ

[load]
t

1 2.071% 1.1497 2.556% −0.640% 0.155% 2.011% −0.013% 0.073%

5 2.443% 1.0543 3.066% −0.785% 0.163% 2.400% −0.086% 0.129%

10 2.288% 1.1804 3.400% −1.448% 0.336% 2.479% −0.362% 0.171%

15 2.372% 1.0767 4.436% −2.351% 0.286% 4.436% −2.351% 0.286%

20 2.267% 1.0432 6.675% −4.717% 0.309% 6.675% −4.717% 0.309%

25 1.949% 1.0782 11.351% −10.082% 0.680% 11.351% −10.082% 0.680%
a: Only annuity benefit. Initial capital amount (single premium) 1,838.92 euro.
b: Annuity benefit and death benefit. The death benefit is given by the Initial capital
amount (single premium) net of annuity benefits paid prior to death, if death occurs
prior to age 75. Initial capital amount (single premium) 1,937.44 euro.

of the pricing process or the policy design, or more simply of their descrip-
tion, which may be particularly useful in the case of complex products, such
as post-retirement ones. We plan to develop further assessments with regard to
mortality/longevity-linked annuity benefits, and to extend the assessment in a
stochastic framework to get a more comprehensive representation of the possible
paths of the embedded fees in different scenarios. We plan also to discuss more in
depth the implications of an overestimate of the insurer’s profit, arising from the
use of proxy information about mortality (or about other aspects not addressed
in this paper).
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Abstract. This paper presents a novel approach for forecasting stock
prices. Specifically, the approach consists of an ensemble of various deep
learning models, namely “multi-model”. Each deep learning model pro-
duces its own forecast, then all the forecasts are combined into a unique
one, according to different strategies and depending on different error
metrics. The final forecasts provided by the multi-model have resulted
in more reliable predictions than those provided by the individual deep
learning models.

Keywords: forecasting · stock markets · deep learning · neural
networks · recurrent neural networks · wavelet thresholding ·
CEEMDAN

1 Introduction

Forecasting stock prices is a challenging topic largely addressed via statistical
methods as well as Machine Learning and, more recently, Deep Learning. In this
paper, we present a forecasting system consisting of an ensemble of different Deep
Learning models, from recent literature, that we have named “multi-model”. In
finance, ensembles of models recently proved to perform better than individual
ones [4]. The remainder of this paper is organized as follows: Sect. 2 describes the
selection process of the publications on which this paper relies. Section 3 is based
on the implementation of the models that compose the multi-model. Section 4
briefly outlines the technologies used. Section 5 is focused on the stock market
data used. Section 6 reports the experimental results obtained.

2 Methodological Approach

Each model belonging to the multi-model has been drawn from a pool of pub-
lications representing the current state of the art of deep learning techniques in
stock forecasting. It has been considered crucial that each model could detect dif-
ferent features starting from the same initial dataset. The desired diversification
among the models have been achieved by choosing publications that proposed
different processes for feature selection and/or extraction: some models perform
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this operation by leveraging specific algorithms, others by employing embedded
neural networks for this purpose. The publications selected for the four imple-
mented models are Tsang et al. [5], Cao et al. [1], Livieris et al. [3] and Eapen
et al. [2]. Each model has been implemented from scratch following its reference
paper and, in case, slightly modified to address specific implementation issues.

3 Models

3.1 Model No. 1: WSAEs-LSTM

The first model implemented was inspired by the work of Tsang et al. [5], in
which a deep learning framework is proposed, characterized by: a min-max nor-
malization of the price time series, a denoising phase performed by means of the
Wavelet thresholding algorithm, feature extraction mediated by stacked autoen-
coders, and finally the prediction of the next-day price by means of a recurrent
neural network (i.e., a Long Short-Term Memory network).

Data Preparation: Time series normalization is carried out by using the Min-
MaxScaler class by the Scikit-learn library. The denoising phase is accomplished
by using the open-source library named wtdenoise, developed by Xie Xinyang1,
which provides the soft thresholding method SURE-Shrink. Wavelet threshold-
ing is performed by choosing the Symlet-8 (sym8) wave as the mother wavelet.

Model Architecture: As already mentioned, two neural networks are
employed to produce the next-day price forecast. The first feed-forward type
neural network is a stacked autoencoder composed of a total of 7 layers: 3 mir-
rored between the encoder and decoder plus the bottleneck layer. The three
layers of the encoder (decoder) are composed of 19, 15 and 12 units (flipped)
respectively, while the bottleneck layer has 10 units. L2-class layer weight reg-
ularizers having a penalty factor of 1e−2 are also applied to the autoencoder
layers via the activity regularizer parameter provided by the Keras API, which
allows a penalty to be applied to the output of the individual layer. The Expo-
nential Linear Unit (ELU) is chosen as the activation function for each layer.
The second recurrent type neural network employed is built on 2 LSTM layers
of 10 and 1 units respectively. The hyperbolic tangent is the activation function
of the first layer, while the sigmoid function is that of the second. A coefficient of
0.2 is assigned to the dropout and recurrent dropout parameters in both layers.
Of the two neural networks mentioned above, the autoencoder is trained first
and then split into its two components, the encoder and the decoder: the former
is placed before the LSTM layers, whereas the latter is placed after them; thus,
the final model is obtained. It is important to remark that having incorporated
the recurrent neural network between the encoder and the decoder, and having
it trained while keeping the autoencoder components frozen, this has allowed to
demonstrate how remarkably the network was able to learn effectively by making
predictions directly from the latent representation produced by the encoder.
1 https://github.com/courageface/wavelet-denoising.

https://github.com/courageface/wavelet-denoising
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3.2 Model No. 2: CEEMDAN-LSTM

The second model was based on the publication of Cao et al. [1], in which they
combine the CEEMDAN (Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise) algorithm, used for feature extraction from the historical
price series, with a recurrent neural network composed of LSTM layers.

Data Preparation: From the given time series, an arbitrary number of IMFs
(Intrinsic Mode Functions) and a residual, respectively denoted as Ci(t), i ∈
{1, . . . ,M} and RM (t), are obtained by decomposition, using the CEEMDAN
algorithm implementation offered by the PyEMD library. These components are
then normalized via MinMaxScaler to be given as input to the model.

Model Architecture: The model consists of 3 LSTM layers of 128, 64 and
32 units respectively, having the hyperbolic tangent as activation function and
null coefficients for standard and recurrent dropout parameters. Two densely
connected layers of 16 and 1 units follow, having an unspecified linear activa-
tion function. This structure is replicated for each of the CEEMDAN-generated
components, then the next-day price prediction is obtained as follows:

S̃(t) =
M∑

i=1

C̃i(t) + R̃M (t), t ∈ {1, . . . , L} (1)

with L the length of the original time series, C̃i(t) the series predicted by each
IMF, R̃M (t) the predicted series of the residue and S̃(t) the final prediction.

3.3 Model No. 3: CNN-LSTM

The third model was developed starting from the publication of Livieris et al.
[3]. It proposes a model that comprises a convolutional neural network, aimed
at feature extraction over a min-max normalized time series, a recurrent neu-
ral network to handle temporal dependencies and finally a densely connected
network to provide the final next-day forecast.

Model Architecture: Feature extraction of time series is carried out by means
of 2 one-dimensional convolutional layers (Conv1D) of 64 and 128 filters of
size (2,) each, having a default strides parameter of 1 and the rectified lin-
ear unit (ReLU) as activation function. These two layers are followed by a
one-dimensional max-pooling layer of analogous size. A 200-unit LSTM layer
is placed after the convolutional component, with a hyperbolic tangent as its
activation function and null coefficients for standard and recurrent dropout
parameters. Eventually there are 2 densely connected layers of 32 and 1 unit
respectively, having an unspecified linear activation.
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3.4 Model No. 4: MP-CNN-BDLSTM

The fourth model was developed from the publication by Eapen et al. [2], in
which an architecture built from three pipelines is proposed. Given the same
min-max normalized time series, each pipeline converges to different weights and
from the combination of the generated forecasts the next-day price is obtained.

Model Architecture: Each pipeline comes with 2 one-dimensional convolu-
tional layers of 128 and 256 filters of size (2,), with strides parameter equal to
1 and the ReLU as activation function; subsequently there is a one-dimensional
max-pooling layer with a pool size equal to 2. Consequently, there is a Keras
bidirectional layer that encapsulates a 400-unit LSTM layer, having the hyper-
bolic tangent (sigmoid) as the (recurrent) activation function, with standard
and recurrent dropout coefficients of 0.2. Furthermore, there are two densely
connected layers of 32 and 1 units, with an unspecified linear activation function
trailing the recurrent component. Ultimately there is a common Keras concate-
nation layer for all the pipelines, which takes the last dense layer of each of them
as input and provides its output to a final 1-unit dense layer, also having an
unspecified linear activation function.

4 Computational Settings

All the experiments were run on two computers having the following characteris-
tics. To guarantee replicability of the experiments, we made our code available.2

– System No. 1: Windows 10 22H2, Intel Core i7-4790K 4.00 GHz, NVIDIA
GTX 970 4 GB, 16 GB DDR3 1867 MHz

– System No. 2: Windows 11 22H2, AMD Ryzen 7 4800H 2.90 GHz, NVIDIA
RTX 2060 16 GB, 16 GB DDR4 3200 MHz

Code was written in Python 3.11.5 and Deep learning models have been
implemented using the Keras framework with Tensorflow 2.0 as its backend.

5 Stock Markets Data

5.1 Data Sources

In order to train and test the models belonging to the multi-model, two datasets
were adopted that differ considerably in terms of type, granularity and amount of
data; these profound differences are mainly due to their accessibility, as they are
open-source on one side, proprietary on the other. The former source of market
data was Yahoo! Finance, from which the public OHLCV data of the KOSPI

was drawn, while the latter one was Borsa Italiana S.p.A., which
provided us the historical time series of trades occurred in the Limit Order Book
of ten financial instruments traded in the Euronext Milan market, respectively:
Intesa Sanpaolo, Enel, Ferrari, Campari, Nexi, Prysmian, Leonardo, Azimut,
Moncler and Poste Italiane.
2 https://github.com/danieljaderpellattiero/multi-model-forecasting-for-finance.

https://github.com/danieljaderpellattiero/multi-model-forecasting-for-finance
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5.2 Datasets

For the reserved source of data provided by Borsa Italiana S.p.A., it has been
chosen an observation period between 1st September 2022 and 24th March 2023.
It has been decided to use only one trading day for each financial instrument,
because of the vastness of data generated in the market during intra-day trading.
Within the trading day then, three test runs have been crafted based on the
trading time slots and split into the training, validation and test set by adopting
an 85-10-5% ratio.

Regarding Yahoo! Finance data, it has been decided to craft three test runs
with a 70-20-10% ratio, consisting of a 3-year training set, a 10-month validation
set and a 5-month test set each. The beginning date of the first test run is 1st
January 2015, with a progressive 5-month slippage from that date. It has been
decided to observe only the adjusted closing price.

6 Experimental Results

The three strategies to combine individual forecasts via multi-model are briefly
summarized.

The first strategy, which can be thought of as a democratic approach among
models, consists into averaging the predictions provided by each model.

The second strategy can be considered as a “statically” weighted approach
because it performs a weighted average of the forecasts provided by the models,
where each model-specific weight depends (inversely) on the error computed on
the test set, used to assess the forecasting performances.

The last strategy can be regarded as a “dynamically” weighted approach.
It differs from the previous ones because the weight assigned to each model
now depends on the input. Specifically, for each new sequence given as input,
the most akin sequence within the training and validation set is selected. Once
identified, the error metric measured on the model for that specific sequence
is taken as the weight for the prediction made by the model on the new input
sequence. By doing so, one can estimate the expected precision of the predictions
provided by each model of the ensemble, possibly giving higher relevance to the
best performing model for that specific input.

Table 1 and Table 2 report four error metrics for the individual models and
the three ensemble strategies, on the KOSPI market data and the portfolio of 10
stocks, respectively. It is clear how merging the forecasts, especially when per-
formed considering the performance of the models, yields more accurate results.
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Table 1. Prediction error measures (on the test set) for the KOSPI dataset

Model MAE MSE RMSE MAPE

M1 0.0752 0.0089 0.0944 0.0085

M2 0.0967 0.0116 0.1078 0.0109

M3 0.0700 0.0076 0.0870 0.0079

M4 0.0933 0.0136 0.1168 0.0106

MM1 0.0685 0.0069 0.0833 0.0078

MM2,MAPE 0.0687 0.0071 0.0843 0.0078

MM3 0.0643 0.0070 0.0837 0.0075

Table 2. Prediction error measures (on the test set) for the dataset consisting of a
portfolio of 10 stocks (average and standard deviation over the 10 stocks)

Model MAE MSE RMSE MAPE

M1 0.1047 (0.1227) 0.0290 (0.0546) 0.1257 (0.1209) 0.0002 (0.0003)

M2 0.0241 (0.0144) 0.0011 (0.0010) 0.0306 (0.0123) 0.0001 (<0.0001)

M3 0.0475 (0.0386) 0.0051 (0.0057) 0.0645 (0.0320) 0.0001 (0.0001)

M4 0.0798 (0.0831) 0.0151 (0.0269) 0.0982 (0.0776) 0.0002 (0.0002)

MM1 0.0520 (0.0399) 0.0054 (0.0050) 0.0658 (0.0344) 0.0001 (0.0001)

MM2,MAPE 0.0230 (0.0182) 0.0015 (0.0014) 0.0352 (0.0157) 0.0001 (<0.0001)

MM3 0.0194 (0.0130) 0.0010 (0.0008) 0.0292 (0.0111) <0.0001 (<0.0001)

7 Conclusions

This paper empirically proves that combining different deep learning models,
individually and separately trained for predicting stock prices according to differ-
ent features and algorithms, leads to more robust and precise predictions. More-
over, among the three ensemble strategies proposed, results show that weighted
voting methods can reduce prediction error, especially when a “dynamic” (aka
input-dependent) weighting schema is adopted.
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Abstract. The old-age dependency ratios are indicators of the number of el-
derly people who are generally economically inactive compared to the number
of people of working age. They significantly affect the financial burden of social
public pension schemes, making it essential to analyze the influence of mortality
on this ratio. In this paper, the Gompertz model is used to investigate the effect of
mortality and fertility on the old-age dependency ratio, with a focus on the impact
of changes in life expectancy. Elasticity formulas are derived to analyze this effect,
and the results indicate that an increase in life expectancy leads to a considerable
rise in the old-age dependency ratio.
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Table

1 Introduction

The old-age dependency ratio is an important demographic indicator that reflects the
proportion of elderly people who are not in the labor force and dependent on those who
are working. It has become important in analyzing the financial burden of social pension
insurance, as it indicates how many potential retirees a potential worker has to support.
Its development significantly affects the financial burden of social pension insurance,
making it essential to analyze the influence of mortality on the old-age dependency ratio.
The Gompertz model is a suitable model for analyzing this influence since it provides a
good approximation for low-mortality life tables. According to the United Nations [7],
the old-age dependency ratio is projected to increase significantly in the coming decades.
By 2050, it is expected to reach 37% globally, meaning that there will be nearly four
elderly people for every ten people of working age. This increase is primarily due to the
aging of the baby boomer generation and declining birth rates in many countries.

The Gompertz model is a well-known model of demography that was proposed
by Benjamin Gompertz [1] in 1825. It states that the mortality intensity exponentially
increases with age in adulthood. It has been much applied in life table analysis and in
insurance mathematics using various modifications. Due to declining children and youth
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mortality, it has again become essential in order to describe “modern” life tables with
low mortality. The model allows us to fully describe the present and future life tables in
industrialized countries using only two parameters that are easy to estimate from data.

2 Analyzing the Effects of Life Expectancy

An increase in the old-age dependency ratio causes an increase in the premium, when the
pensions are constant, or a decrease in the pensions, when the premiums stay constant,
all else being equal, assuming, for example, that there is no change in the population
growth rate or the age classes used to define the old-age dependency ratio. Therefore, it is
important to analytically analyze the influence of mortality on the old-age dependency
ratio. This will be done hereafter with the Gompertz model since it provides a good
approximation for low-mortality life tables (see Pollard [6]). Especially the effect of
changes in the life expectancy on the ratio is analyzed. An increase in the life expectancy
will undoubtedly raise the dependency ratio, but by how much?

The old-age dependency ratio is a demographic indicator that measures the number
of elderly individuals (as defined by us, aged 60 and older) relative to the working-age
population (as defined by us, those aged 20 to 60); often we find the age 65 instead of
60:

OADR =

∞∫

60
l(x)dx

60∫

20
l(x)dx

=

∞∫

60
exp

(−ek·(x−m)
)
dx

60∫

20
exp

(−ek·(x−m)
)
dx

= e60 · l60
e20 · l20 − e60 · l60 = 1

e20·l20
e60·l60 − 1

,

where l(x) = exp
(
e−k·m − ek·(x−m)

) ≈ exp
(−ek·(x−m)

)
is the survivor function of the

Gompertz distribution with m>>k>0; m is the modal value and k is the growth rate of
the exponential force of mortality function. For a detailed presentation of the Gompertz
distribution, see, e.g., Pollard [5, 6], Carriere [2, 3].

The mean or life expectancy at birth is
μ = e0 = m − γ

k with γ = 0.57722.... The Euler-Mascheroni constant.

The variance is σ 2 ≈ π2

6 · 1
k2
.

Thus, the reciprocal value of k can be regarded as a dispersion parameter.
Typical values for low mortality life tables fall generally within the range of 85 to

90 for m, and 0.09 to 0.11 for k. For instance, using the German life table 2019/2021 for
females with a life expectancy of 83.4 years, a fit with the Gompertz distribution yields
values of m = 89.04 and k = 0.1143. This results in an estimated life expectancy of
83.95 years. The use of only two parameters of the Gompertz distribution is sufficient to
describe the entire life table and obtain good approximations for the life table parameters
of empirical tables.

The life expectancy at age x can be approximated by.

e(x) = −
γ+k·(x−m)−exp(k·(x−m))

k
exp(e−k·m−ek·(x−m))

(cf. Carriere [2, 3]).

Substituting the values of the life expectancy and the survivor function at age x in the
transformed formula of the old-age dependency ratio, provides a good approximation of
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the ratio when the modal age m is greater than 70:

OADR1 ≈ 1
γ−k·(m−20)−exp(−k·(m−20))
γ−k·(m−60)−exp(−k·(m−60)) − 1

.

If the modal value m is still increasing, then the ratio finally tends to.

OADRhat = 1
γ−k·(m−20)
γ−k·(m−60) − 1

= m − γ
k − 60

40
= e0 − 60

40
.

Figure 1 displays a 3-dimensional plot of the OADRs, which depend on both k and
e(0). The OADR is primarily determined by life expectancy and is less affected by k.
An increase in life expectancy leads to a considerable rise in OADR, while increasing k
only slightly decreases OADR.
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Fig. 1. Surface plot of OADR as a function of e(0) and k

Table 1 presents the old-age dependency ratios for a fixed value of k= 0.1, calculated
through numerical integration. The difference between the exact and approximate values
is negligible when the modal ages are high. Moreover, even the simple approximation
formula provides satisfactory results for very old ages.

To analyze the influence of a change in the life expectancy on the old-age dependency
ratio, elasticities are computed. Elasticity is the ratio of the percent change in one variable
to the percent change in another variable. Mathematically, elasticity is defined as

ε(OADR, e0) = dOADR

de0
· e0
OADR

.

Using the above approximation formula leads to a rather complicated formula

ε1(OADR1, e0) =

= k · eγ+e0·k(40 · k · eγ+e0·k − e20·k
(
e40·k(e0 · k − 20k + 1) − e0 · k + 60k − 1

))

(
40 · k · eγ+e0·k + e20·k

(
1 − e40·k

)) · (
k · eγ+e0·k(e0 − 60) + e60·k

) · e0
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Table 1. Old-age dependency ratios and elasticities: Exact and approximate values (k = 0.1)

e0 m OADR OADR1 OADRhat Elast Elasthat

65 70.8 0.220 0.229 0.125 5.18 13

70 75.8 0.314 0.318 0.25 4.42 7

75 80.8 0.418 0.419 0.375 3.86 5

80 85.8 0.528 0.529 0.5 3.43 4

85 90.8 0.644 0.644 0.625 3.09 3.4

90 95.8 0.762 0.762 0.75 2.83 3

95 100.8 0.883 0.883 0.875 2.62 2.71

100 105.8 1.005 1.005 1 2.44 2.5

where e0 = m − γ
k .

An easy-to-use elasticity formula is obtained using the simple approximation

εhat(OADRhat, e0) =
d
(
e0−60
40

)

de0
· e0
e0−60
40

= e0
e0 − 60

.

The elasticity provides insight into the proportional change in the old-age dependency
ratio (OADR) in response to a 1 percent increase in the life expectancy. Specifically, at age
85 (e(0)= 85), it indicates that such an increase in life expectancy leads to approximately
a 3 percent rise in the OADR, as shown in Table 1.

Figure 2 and Table 1 illustrate the elasticities (elast) of the old-age dependency ratio
(OADR) as a function of life expectancy.

3 Stable Populations and Low Fertility

A population with an unchanging age structure and a fixed rate of increase is called a
stable population (see, e.g., Keyfitz [4]). To determine the old-age dependency ratio in
a stable population with a growth rate of r, one must compute

OADR(r) =

∞∫

60
e−r·xl(x)dx

60∫

20
e−r·xl(x)dx

.

This expression can be approximated based on Keyfitz [4] by
OADR(r) ≈ OADR(0) · e−T ·r , where T is the difference between the mean age of

the two generations in the age classes 20 to 60 and 60 to ω.
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Fig. 2. OADR and Elasticity as a function of e(0) with k = 0.1; dotted lines represent
approximations with the simple formulas

Using the simple approximation of the old-age dependency ratio, for example, results
in the following elasticity formula:

ε(OADR, e0) ≈ e0
e0 − 60

· e−T ·r .

The elasticities are now dependent on the growth rate r and the life expectancy
e(0). In a stable population with a positive (negative) growth rate, the elasticities are
lower (higher) than in a stationary population by the factor e−T ·r . For example, at life
expectancy e(0) = 85, the elasticity is initially 3.09 (see Table 1). If we consider a
negative growth rate due to low fertility of -1% and a generation difference of 30 years
(T = 30), the factor e−T ·r is approximately 1.35, resulting in an increased elasticity of
about 4 under these specific demographic conditions and generation difference.

4 Conclusion

The paper emphasizes the importance of studying the profound impact of an aging
population on social welfare policies and the economy. A mere 1% increase in life
expectancy translates to approximately a 3% rise in the old-age dependency ratio within
a stationary population exhibiting low mortality. This effect is even more pronounced
in stable populations with low fertility rates, falling below replacement levels. As the
population ages persistently, it is imperative for policymakers to effectively address
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the requirements of both the elderly and the younger generations, thereby fostering
sustainable economic growth and upholding social welfare. Neglecting this balance
could entail consequential economic and social repercussions for generations to come.
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Abstract. This paper illustrates the main challenges identified in the
literature on cyber risk assessment in order to provide possible solutions
for the reduction of the gap between supply and demand of cyber insur-
ance. The aim is to contribute to a better understanding in quantifying,
managing and pricing cyber risk by means of: a deeper awareness of the
economic consequences they produce; the introduction and validation
of new actuarial techniques to allow insurers a more efficient manage-
ment of this class of risks; the design of innovative insurance contracts
and alternative ways of risk transfers to reduce the costs of insurance
premiums and mitigate the economic impacts.

Keywords: cyber insurance · risk management · parametric contracts

1 Introduction

The cyber insurance market, despite its growth and increasing relevance, faces
several limitations and challenges. These limitations stem from the nature of
cyber risks, market dynamics and the evolving landscape of technology and
regulations. Explicitly:

– rapidly evolving cyber threats: one of the most significant challenges is the
rapid evolution of cyber threats. Unlike traditional insurance domains, where
risks are relatively stable and predictable over time, cyber risks change fre-
quently, often outpacing the ability of insurers to understand and price them
effectively. This unpredictability, as highlighted in [13], makes it difficult for
insurers to assess risk accurately and set premiums.

– historical data: the cyber insurance industry suffers from a lack of extensive
historical data, which is crucial for traditional actuarial models. This limita-
tion, as discussed in [6], makes it challenging to predict the frequency and
severity of cyber incidents accurately. As cyber threats continuously evolve,
historical data might not accurately represent future risks and the need for
dynamic models that can adapt to new trends and threats emerges.

– aggregation risk and systemic events: the interconnectedness of technology
means that a single cyber event can impact multiple entities simultaneously.
This aggregation risk, as explored in [23,25], poses a significant challenge for
insurers who may face massive, correlated claims. The potential for systemic
events, such as widespread ransomware attacks, exacerbates this risk.
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– coverage ambiguities and policy standardization: the cyber insurance market
is characterized by a lack of standardization in policy terms and coverage.
As pointed out in [16,22], this results in ambiguities and misunderstandings
about what is covered, leading to disputes during claim settlements. The
diversity in policy wordings and coverage limits complicates the understand-
ing for both insurers and insured.

– regulatory and legal challenges: the regulatory landscape for cyber risks is
constantly evolving. Differences in regional and national regulations, as ana-
lyzed in [17], create additional complexities for insurers who must navigate
varying compliance requirements across jurisdictions. Moreover legal prece-
dents in cyber insurance claims are still developing, adding to the uncertainty.

– affordability and coverage limits: the rising costs of premiums, partly due
to the increasing frequency and severity of cyber attacks, are making cyber
insurance less affordable for small and medium-sized enterprises (SMEs).
Additionally, insurers often impose strict coverage limits to mitigate their
risk exposure, as observed in [3], which may result in inadequate coverage for
significant cyber events.

– quantifying intangible losses: cyber incidents often result in intangible losses
like reputational damage or loss of customer trust, which are difficult to quan-
tify. Actuarial models in this field must therefore incorporate both tangible
losses, like data recovery costs, and intangible losses, as discussed in [11].
They propose methodologies for estimating the financial impact of these non-
physical damages

– emergence of artificial intelligence and machine learning: recent advancements
in artificial intelligence (AI) and machine learning (ML) are being leveraged
to enhance cyber risk actuarial models. These technologies allow for the anal-
ysis of large datasets and identification of patterns and correlations that tra-
ditional methods might miss. [14] provides insights into how AI and ML
are revolutionizing this field, allowing for more accurate and up-to-date risk
assessments.

– cybersecurity complacency: there is a concern that the availability of cyber
insurance might lead to complacency in cybersecurity practices among insured
entities. This moral hazard, as discussed in the literature (i.e. see [18]), sug-
gests that companies might invest less in proactive cybersecurity measures,
relying instead on insurance to cover potential losses.

While cyber insurance is a vital tool in managing cyber risk, the market
faces significant challenges in terms of risk assessment, policy standardization,
regulatory compliance, and the ever-evolving nature of cyber threats. A range of
actuarial models have been proposed to address the complex and dynamic nature
of cyber risk. Zeller, [24], and Herath, [12], both present innovative models, with
Zeller focusing on marked point processes and Herath on copula methodology.
Bhme, [5], and Eling, [8], emphasize the need for a differentiated view of cyber
risk and the importance of human behavior in driving this risk. Liu, [15], and
Awiszus, [2], further explore the interdependence of cyber risks and the need for
more sophisticated modeling approaches. Eling,[9], and Avanzi, [1], highlight the
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challenges of data scarcity and the need for actuarial principles in valuing cyber
insurance contracts. These studies collectively underscore the need for robust and
flexible actuarial models to effectively manage cyber risk. This work contributes
to the literature on the management of cyber risks proposing a possible solution
for the reduction of the gap between supply and demand of cyber insurance. The
rest of the paper is organized as follows: Sect. 2 illustrates the framework and
the methodology; Sect. 3 discusses a case study and draws conclusions.

2 Framework and Approach Proposed

This section outlines the key elements of a framework intended as a possible way
of mitigating cyber risks: zero-inflated models to capture the dynamics of the
events and parametric contracts to attract the demand of protection.

Zero-Inflated Models. Zero-inflated models, such as the zero-inflated Poisson
distribution ([21]), and zero-inflated negative binomial models ([20]), have been
widely used in various fields to address the issue of excessive zeros in count
data. These models have been applied to diverse areas, including environmental
studies, software fault prediction, and product quality monitoring. The use of
these models has been shown to improve predictive quality and provide valuable
insights into underlying processes. Furthermore, the development of new models,
such as the zero-inflated Hermite distribution and the bivariate zero-inflated
negative binomial regression model, [21], has expanded the range of applications
for zero-inflated models. To the best of our knowledge these models have never
been used in actuarial applications. Zero-inflation in the cyber risk assessment
has the purpose of capturing the fact that, in some cases, the institution victim
of the cyber attack does not report the event. To better capture the dynamics
of data breaches and to improve loss estimates and risk pricing the baseline
model proposed in [7] has been extended by adding some Markov-Switching
features. The calibration of the model has been performed on data provided by
the Privacy Rights Clearinghouse (PRC), [19]. The PRC is the largest and most
extensive public dataset, that includes information on total breached records,
location and date of the incident, the entity level and an incident description.
The breach size has been transformed into a loss amount in accordance with
[10]. A second dataset was obtained from the Breach Level Index Data Breach
Database a centralized, global database of data breaches with calculations of
their severity based on multiple factors.

Parametric Insurance. In accordance with [4], a paper in which the authors
emphasize the importance of resilience in cyber risk management, advocating
for strategies that not only prevent attacks but also ensure quick recovery and
minimal impact in the event of a breach, a possible tool intriguing in its applica-
tion to cyber risk management is parametric insurance, an innovative approach
in the insurance industry, that offers a distinct mechanism for risk transfer.
Unlike traditional indemnity-based insurance that compensates for actual losses
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incurred, parametric insurance operates on pre-agreed triggers, such as the mag-
nitude of a cyber-attack or specific threat indicators. This model provides a
more rapid and objective claim settlement process, reducing the lengthy and
often complex assessment procedures typical in conventional cyber insurance
policies. The potential for applying parametric insurance to cyber risk lies in
its ability to offer swift financial support post-incident, crucial for businesses in
mitigating the immediate fallout of a cyber-attack. This is particularly relevant
in scenarios like widespread data breaches or DDoS attacks, where the quantifi-
cation of losses can be challenging and time-sensitive. Additionally, parametric
insurance could align well with industries that are highly susceptible to specific,
measurable cyber threats, providing a tailored risk management tool. The sim-
plicity and speed of this model not only enhance its attractiveness for businesses
seeking clear, straightforward coverage but also encourage proactive risk man-
agement practices. However, the success of parametric insurance in the cyber
domain hinges on the accurate identification and calibration of triggers, a task
that requires deep cybersecurity expertise and robust data analytics capabili-
ties. Risk managers who seek to take control of their risk can use parametric
insurance to make certain uninsurable risks insurable and complement their tra-
ditional indemnity programs. Parametric insurance can help organizations match
insurance capital to their specific risk profiles, providing more liquidity exactly
when they may need it the most. The parameter or index that acts as a proxy
for the actual sustained loss is an important determinant for the success of a
parametric product. Any mismatch between the actual loss and parametric pay-
out that arises due to issues in the parametric structure is termed as basis risk.
The presence of basis risk reduces the effectiveness of parametric insurance as
a risk management tool, creates a perception of parametric insurance being a
poor substitute for indemnity insurance, and prevents its widespread adoption.
A possible insurance payout could be based on a standard indemnity per lost or
stolen record, as follows:

I = f (iN | x,Tr, Ex) = x × f(x) =

⎧
⎨

⎩

1 if iN ≤ Tr
iN−Tr
Ex−Tr if Tr < iN ≤ Ex

0 if iN ≥ Ex
(1)

where iN represents the realised value of the underlying parameter (i.e. number
of compromised records), x is the sum insured, Tr is the trigger and Ex is the exit
below wich indeminity seizes. The value of the indemnity can be parametrized
to the size of the breach in order to mitigate moral hazards.

3 Practical Implications and Conclusions

Some preliminary results are summarised in Table 1, that reports relevant risk
measures for different scenarios: case A constant indemnity, case B indemnity
decreases as the size of the breach increases, case C decreasing indemnity, trigger
checked per month (annually in A and B).
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Table 1. Risk Measures Quantification, values in USD

Expected Loss StDev Min Max VaR99.5% ES99.5%

Case A 1,517,108 383,963 709,846 6,681,873 3,491,097 4,468,927

Case B 655,883 130,487 359,246 2,342,271 1,305,110 1,636,666

Case C 517,455 43,299 354,915 665,156 615,633 625,786

The evidence of the numbers indicate that whatever the principle is the one
used to compute an insurance premium, either considering the standard devi-
ation or other risk measures, the parametric coverage leads to a reduction in
the costs and therefore an offer of more affordable prices. Determining accurate
parametric triggers and establishing appropriate payout structures require care-
ful calibration and further analyses and investigation, taking into account the
complex and ever-evolving cyber threat landscape to ensure the models remain
effective. The payout proposed can be considered as a first responder for small
and medium size entities against cashflow shortages and reduced revenue imme-
diately following a cyber event. It can contribute to the reduction of the gap
between supply and demand of cyber insurance.
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5. Böhme, R., Laube, S., Riek, M.: A fundamental approach to cyber risk analysis.
Variance 12(2), 161–185 (2019)

6. Cremer, F., Sheehan, B., Fortmann, M., et al.: Cyber risk and cybersecurity: a
systematic review of data availability. Geneva Pap. Risk Insur. 47(3), 1–39 (2022)

7. De Giovanni, D., Leccadito, A., Pirra, M.: On the determinants of data breaches:
a cointegration analysis. Decis. Econ. Finan. 44, 141–160 (2021)

8. Eling, M., Wirfs, J. H. Modelling and management of cyber risk. In: International
Actuarial Association Life Section (2015)

http://arxiv.org/abs/2310.04786


266 M. Pirra

9. Eling, M.: Cyber risk research in business and actuarial science. Eur. Actuar. J.
10(2), 303–333 (2020)

10. Farkas, S., Lopez, O., Thomas, M.: Cyber claim analysis using generalized Pareto
regression trees with applications to insurance. Insur. Math. Econ. 98, 92–105
(2021)

11. Gatzert, N., Schubert, M.: Cyber risk management in the US banking and insur-
ance industry: a textual and empirical analysis of determinants and value. J. Risk
Insur. 89(3), 725–763 (2022)

12. Herath, H.S., Herath, T.C.: Copula-based actuarial model for pricing cyber-
insurance policies. Insur. Mark. Compan. 2(1), 7–20 (2011)

13. Javaheri, D., Fahmideh, M., Chizari, H., Lalbakhsh, P., Hur, J.: Cybersecurity
threats in FinTech: a systematic review. Expert Syst. Appl. 122697 (2023)

14. Jena, T., Shankar, A., Singhdeo, A.: Harnessing machine learning for effective cyber
security classifiers. Asian J. Res. Comput. Sci. 16(4), 453–464 (2023)

15. Liu, Z., Wei, W., Wang, L., Ten, C.W., Rho, Y.: An actuarial framework for
power system reliability considering cybersecurity threats. IEEE Trans. Power
Syst. 36(2), 851–864 (2020)

16. Marotta, A., Martinelli, F., Nanni, S., Orlando, A., Yautsiukhin, A.: Cyber-
insurance survey. Comput. Sci. Rev. 24, 35–61 (2017)

17. Meagher, H., Dhirani, L.L.: Cyber-resilience, principles, and practices. In: Cyber-
security Vigilance and Security Engineering of Internet of Everything, pp. 57–74.
Springer, Cham (2023)

18. Nwankpa, J.K., Datta, P.M.: Remote vigilance: the roles of cyber awareness and
cybersecurity policies among remote workers. Comput. Secur. 130, 103266 (2023)

19. Privacy Rights Clearinghouse Data breach chronology database. https://
privacyrights.myshopify.com/products/data-breach-chronology-data-set.
Accessed Dec 2023

20. Phang, Y., Loh, E.: Zero inflated models for overdispersed count data. Int. J.
Health Med. Eng. 7(8), 1331–1333 (2013)

21. Satheesh Kumar, C., Ramachandran, R.: On some aspects of a zero-inflated
overdispersed model and its applications. J. Appl. Stat. 47(3), 506–523 (2020)

22. Tsohou, A., Diamantopoulou, V., Gritzalis, S., et al.: Cyber insurance: state of the
art, trends and future directions. Int. J. Inf. Secur. 22, 737–748 (2023)

23. Welburn, J.W., Strong, A.M.: Systemic cyber risk and aggregate impacts. Risk
Anal. 42(8), 1606–1622 (2022). PMID: 33594708

24. Zeller, G., Scherer, M.: A comprehensive model for cyber risk based on marked
point processes and its application to insurance. Eur. Actuar. J. 12, 33–85 (2022)

25. Zeller, G., Scherer, M.: Is accumulation risk in cyber systematically underesti-
mated? SSRN 4353098 (2023)

https://privacyrights.myshopify.com/products/data-breach-chronology-data-set
https://privacyrights.myshopify.com/products/data-breach-chronology-data-set


Identifying Graphical Configurations
in Technical Analysis Using Machine

Learning

Claudio Pizzi1(B) and Matteo Munini2

1 Ca’ Foscari University of Venice, Venice, Italy
pizzic@unive.it

2 Venice, Italy

Abstract. In this paper, we enhance Leigh’s procedure (Leigh 2002a)
for identifying the bull-flag configuration within a specified timeframe.
We improve the template construction method by introducing more flex-
ibility and eliminating predefined weight choices. The optimization of
parameters to maximize annualized return is achieved using a modified
fireworks algorithm. Additionally, in our approach, we introduce a sig-
nal generator to enhance model robustness and account for trader risk
attitudes. The approach is flexible, as it is suitable for other graphical
configurations. Our proposal demonstrates superior performance com-
pared to standard settings.

Keywords: Technical analysis · Bull-flag configuration · Fireworks
optimization

1 Introduction

Forecasting the stock market has always intrigued traders, investors, and
researchers. Technical analysis is an approach employed to analyze and under-
stand the financial market, seeking trading opportunities. Practitioners in this
discipline scrutinize financial time series to identify well-known patterns and
signals, utilizing various technical indicators and graphical configurations. In
contrast to the weak form of the Efficient Market Hypothesis, which posits the
impossibility of predicting the market solely based on price features, technical
analysis studies past data, such as price and volume, to forecast future price
variations. This paper proposes a trading system based on ‘charting,’ a subset of
technical analysis focusing on analyzing charts for specific patterns in price time
series. The method presented centers on the identification of the bull-flag pat-
tern, consisting of a consolidation part representing a downtrend and a breakout
capturing the shift in the price’s trend. A durable uptrend period is anticipated
when a bull-flag configuration is formed, and the trading strategy leverages this
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pattern to execute ‘buy-sell’ operations. The paper demonstrates the profitabil-
ity of this approach.

The remainder of this paper is organized as follows. The next section is
devoted to a short review of literature and Sect. 3 describes the methodology
used in this work. Section 4 presents the application of our proposal on a stock
market index. Some final remarks conclude the paper.

2 Literature Review

The papers [2] and [3] introduced a template-based matching method for detect-
ing the bull-flag configuration. A bull flag is a chart pattern resembling a flag
shape with the masts on either side, indicating consolidation within a trend. It
forms from price fluctuations in a narrow range, preceding and following sharp
rises or declines. The pattern consists of a consolidation (flag) followed by a
breakout, representing a sharp upward movement. The method involves using a
k by k matrix W of weights such that wi,j ≤ 1, where an appropriate assignment
of weights enables the representation of the bull-flag pattern. Leigh used k = 10
but is possible consider different value for k. However, the authors did not pro-
vide a method for defining the weights, introducing subjectivity into the process.
Nevertheless, the skewed-v-shape of the bull-flag can be accurately represented
by appropriately assigning unit weights, as illustrated in Fig. 1a [2].

Fig. 1. Bull Flag a) template presented in Leigh et al. (2002a), b) our proposal

To compute an index measuring the similarity between time series and the
bull-flag pattern, a moving window of width (dw) is chosen, representing the
number of observations. The dw observations are divided into k equal sub-
intervals, maintaining chronological order. A k by k data matrix D is then
defined, where each column represents one time sub-interval, and the rows rep-
resent price level intervals. For each cell in the data matrix, the number of
observations falling into it is counted and divided by the number of observations
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assigned to the corresponding column, resulting in a data matrix filled with real
numbers in the range [0, 1]. The similarity index is computed using the formula:

dwFiti =
k∑

c=1

k∑

r=1

W (i)
rc ∗ D(i)

rc i = dw + 1, . . . , t

where t is the length of the time series, dw is the width of the moving window,
and i identifies the last observation in the moving window.

A buy signal may be generated when the similarity index exceed an (1 − α)
quantile [2] and [3], or when it is greater than a threshold value [6]. The sell
signal is generated after a constant interval of fh days. In recent papers [1,5]
various template grids for the bull-flag pattern along with new trading rules were
introduced. Additionally, Wang and Chan [6] formalized a different method for
computing weights in the template matrix. However, a common drawback among
these methods is the subjectivity of the template, specifically the position of the
1 s and the weights within the matrix. Furthermore, the values of dw and fh
have not been optimized.

3 Methodology

3.1 The Template Matrix

The aim of this paper is to provide more flexibility to the Leigh approach, allow-
ing the weights to be chosen through a data-driven approach. The starting point
is the shape of the bull-flag graphical configuration proposed by Leigh et al. [2],
which is represented by the 1 s in Fig. 1a. For the remaining cells, the weights
must be estimated. We consider two sets of parameters, denoted as α and β
(Fig. 1b). α is the vector of weights for the consolidation part of the bull-flag,
while β is the vector for the breakout part.

We need different αs and βs to penalize in a different way the cells that are far
from those containing 1; theoretically, these weights must satisfy the following
conditions:

1 > α1 > . . . > αk > . . . > α9

1 > β1 > . . . > βk > . . . > β9

Following the approach in [6] a signal is generated when the threshold is
exceeded. Since the bull-flag configuration may be confused with a down-trend
pattern, to minimize false signals, we combine information from two similarity
indices. The first is calculated with respect to the bull-flag pattern, and the
second is computed with respect to the down-trend pattern:

{
kFit(bf) > thsbf with thsbf ∈ �
kFit(bf) > kFitdt · thsdt with thsdt > 1

where thsbf is the bull-flag threshold and thsdt is the down-trend threshold. The
signal is generated if and only if both conditions are met.



270 C. Pizzi and M. Munini

The methodology introduced in this section depends on several parameters:
weights (αs, βs), thresholds (thsbl and thsdt), window width (dw) and forecast
horizon (fh). Different combinations of parameters generate different returns, so
the problem is how estimate all the parameters to obtain the best performance
from the trading system. The problem could not be solved analytically and we
estimate the optimal set of parameters by the fireworks optimisation algorithm
[4]. The trading system’s performance can be assessed using various metrics. In
this paper, we focus on evaluating the return at the conclusion of the trading
period.

3.2 The FireWorks Algorithm

The Fireworks Algorithm (FA) is an optimisation procedure that searches for
the best solution by mimicking the behaviour of fireworks. The explosions of
fireworks, along with the sparks they generate, allow the algorithm to explore
and exploit the solution space effectively.

The implemented Fireworks Algorithm in this paper is as follows:

1. Choose N starting positions in the parameters space [4].
2. M sparks are generated at each of N locations. Each spark defines a set of

parameter values, allowing for the evaluation of the objective function.
3. Evaluate all the sparks, and the best N are retained as new locations. Repeat

steps 2–3 for t times.
4. Generate M sparks at N locations by increasing the amplitude of the explo-

sion compared to the previous step, allowing the algorithm to explore the
parametric space extensively. Return to step 3

5. Repeat the step 4 for k times.
6. From the final N location select the best.

Usually the FA is used to find the minimum of a function, so in our case the
objective function used by the optimizer is:

−R(α, β, dw, fh, thsbl, thsdt) + P (α, β) · ∂

where the function R is the cumulative trading gain at the end of the trading
period, while P is a penalization function for the constraints not respected by
the solution of algorithm and ∂ is a multiplier chosen by the operator:

P (α, β) =
7∑

i=1

Iαi
ραi

+ 2 ·
8∑

i=1

Iβi
ρβi

where ρ is the percentage of a weights in the bull-flag template that belong to the
same set (α or β). Ii is the number of constraints violation. A characteristic of
the FA is that it allows to define a lower and upper bound for each parameter. In
this way, the parametrization of the template can be controlled, and the model
is flexible to the trader’s needs or will.
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4 Application and Results

The model was tested on various financial time series, including both market
indices and stocks. In this section, we present, for brevity, only the results for a
market index, namely the NASDAQ Composite index (IXIC). However, similar
results were obtained for other market indices and stocks.

Table 1. Rolling window scheme used in the application.

Training set Operative Window

1st operation From 1st day to 2800th From 2801st day to 3000th

2st operation From 201st day to 3200th From 3201st day to 3400th

3st operation From 401st day to 3400th From 3401st day to 3600th

. . . . . . . . .

Regarding FA settings, we opted for wide parameter intervals to allow the
model flexibility based on the data. No prior assumptions or operation strategies
were imposed, except for the constraint on the relationship between the alpha
and beta parameters, as previously explained.

We analyzed the daily closing quotes of the NASDAQ Composite index span-
ning from March 2, 2006, to April 22, 2023. Employing a rolling window with a
width of 3000 observations, which are divided into two parts: the training set,
consisting of the first 2800 observations, and the validation set, comprising the
last 200 observations, as illustrated in Table 1. The model undergoes re-training
for each time window, allowing it to operate out-of-sample from April 17, 2017,
to March 22, 2023. Buy-sell operations on IXIC are represented in Fig. 2a, while
cumulative returns are depicted in Figure 2b.

The gross return at the end of the out-of-sample period is approximately
45%. Notably, the model exhibited robustness in its buy-sell decisions, effectively
mitigating losses during the global crisis that unfolded between 2021 and 2023.
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Fig. 2. a) Operations out-of-sample for IXIC from 17/04/2017 to 22/03/2023, b) IXIC
cumulative returns from 17/04/2017 to 22/03/2023 (below)

5 Conclusions

This paper introduces a novel template matching method that enhances flexi-
bility by employing a parameter grid instead of predefined values. Data-driven
weight selection minimizes subjectivity. The results are intriguing but limited to
a specific pattern, making it inadequate for an independent automatic trading
algorithm. To improve and develop such an algorithm, each technical analysis
graphical configuration from the literature should be transformed into a tem-
plate matrix, creating a library of templates. The proposed procedure would
then be applied to the entire library in parallel, selecting the one with the best
fit and its corresponding “buy-sell” strategy.
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Abstract. Portfolio’s optimal drivers for diversification are common
causes of the constituents’ correlations. A closed-form formula for the
conditional probability of the portfolio given its optimal common drivers
is presented, with each pair constituent-common driver joint distribu-
tion modelled by Gaussian copulas. A conditional risk-neutral PDE is
obtained for this conditional probability as a system of copulas’ PDEs,
allowing for dynamical risk management of a portfolio as shown in
the experiments. Implied conditional portfolio volatilities and implied
weights are new risk metrics that can be dynamically monitored from
the PDEs or obtained from their solution.
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1 Common Causal Conditional Risk-Neutral PDE

It has been proven that optimal portfolio drivers’ for diversification must be the
common causes of portfolio constituents’ correlations [2]. Reichenbach’s Common
Cause Principle (RCCP) provides a set of independent conditions that variables
need to satisfy to be a common cause of a probabilistic correlation [1]. Assume
that (Ω,F , P ) is a standard probability space representing a financial market. A
portfolio consists of n financial assets at = [a1t, . . . , ant] at time t with respective
weights w. The optimal common causal drivers for the portfolio are selected
based on the Commonality Principle [2]. Specifically, the subset of m optimal
common causal drivers for a portfolio are selected so that the Reichembach’s
Common Cause Principle independent conditions have the highest probability
[1], from a set of drivers’ candidates M belonging to Ω with M >> m. The
subset of optimal portfolio common drivers D = Dt−1 = [Dt−1,1, . . . , Dt−1,m]
assuming for simplicity a lag of 1, satisfying the RCCP conditions, make the
portfolio constituents conditional on D, independent:

P (pt|Dt−1) = P

(
n∑

i=1

wiait

∣∣∣∣∣Dt−1

)
=

n∑
i=1

m∑
j=1

wiDt−1,jP (ait|Dt−1,j) ∀t (1)
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Jeffrey conditionalization, P (ait|Dt−1,1 ≡ Dt−1,1, . . . , Dt−1,m ≡ Dt−1,m) =∑m
j=1 Dt−1,jP (ait|Dt−1,j), ∀t,∀i = 1, . . . n, is applied in the final step of (1).

The joint probabilities of each constituent, with respect to each common driver,
follow bivariate distributions that can be modelled with copulas. In the case of
a Gaussian copula, with ai = ait, Dj = Dt−1,j , for any particular t, the density
is:

C (ai,Dj)

=
1√

1 − ρ2ij

exp

⎛
⎝−

ρ2ij

(
Φ−1 (ai)

2 + Φ−1 (Dj)
2
)

− 2ρijΦ−1 (ai) Φ−1 (Dj)

2
(
1 − ρ2ij

)
⎞
⎠
(2)

The conditional probability is given by:

P (ai ≤ ai | Dj = Dj) =
∂

∂Dj
C(ai,Dj)

∣∣∣∣
(Fai

(ai),FDj
(Dj))

(3)

Applying (2) and (3) to (1), ∀t:

P (pt|Dt−1) =
n∑

i=1

m∑
j=1

wiDt−1,j
∂

∂Dt−1,j
C(Fait

(ait), FDt−1,j (Dt−1,j)) (4)

Using (4), and by computing the partial derivatives of C from (2):

P (p|D)

=
n∑

i=1

m∑

j=1

−wiDj exp

(
− ρaiDj

2(x1
2+x2

2)−2ρaiDj
x1x2

2
(
1−ρaiDj

2
)

)
2ρaiDj

2 x2
Φ′(x2)

− 2ρaiDj

x1
Φ′(x2)

2
(
1 − ρaiDj

2
)3/2

(5)

with p = pt, D = Dt−1, ai = ait, Dj = Dt−1,j , x1 = Φ−1(ai) and x2 = Φ−1(Dj).
In matrix form (5) is given by:

P (p|D) = −wT ΠD (6)

with w =

⎡
⎢⎣

w1

...
wn

⎤
⎥⎦, Π(nxm) =

⎡
⎢⎢⎣

∂C(a1,D1)
∂D1

. . . ∂C(a1,Dm)
∂Dm

...
. . .

...
∂C(an,D1)

∂D1
. . . ∂C(an,Dm)

∂Dm

⎤
⎥⎥⎦ and D(mxn) =

⎡
⎢⎣

D1 . . . D1

...
. . .

...
Dm . . . Dm

⎤
⎥⎦. Deriving (6) with respect to t, the following PDE is obtained:

∂ P (p|D)
∂t

dt = −wT

[(
∂Π

∂a

∂a

∂t
+

∂Π

∂D

∂D

∂t
+

∂Π

∂ρ

∂ρ

∂t

)
D + Π

∂D

∂t

]
dt (7)
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which can be expressed in terms of P (p|D) by using (6) as:
[

∂ P (p|D)

∂t
+

∂ P (p|D)

∂p

∂p

∂t
+

∂ P (p|D)

∂D

∂D

∂t
+

(
∂ P (p|D)

∂ρ
− wT Π

∂D

∂ρ

)
∂ρ

∂t

]
dt = 0 (8)

and the partial derivatives can also be obtained from (6) as ∂ P (p|D )
∂p =

wT
(

∂Π
∂a D

)
, ∂ P (p|D )

∂D = wT
(

∂Π
∂D D + Π

)
and ∂ P (p|D )

∂ρ = wT
(

∂Π
∂ρ D + Π ∂D

∂ρ

)
.

Portfolio dynamics ∂p
∂t are given by the Ito process dpt = μpdt + σpdWpt

with
σp the volatility. The common drivers’ dynamics ∂D

∂t follow the m-dimensional
Ito process dDt = μD dt + σD dWDt

, with σD the square-root of the variance-
covariance matrix of the common drivers, and WDt

a m-dimensional correlated
Brownian motion. By applying Ito’s lemma to P (p|D):

dP (p|D) =
[
∂P (p|D)

∂t
+

1
2

(
∂2P (p|D)

∂p2
σ2

p +
∂2P (p|D)

∂D2 σD
2

)

+
∂2P (p|D)

∂p∂D
σpσD

]
dt +

∂P (p|D)
∂p

dpt +
∂P (p|D)

∂D
dDt (9)

By substituting the PDE given in (8) into the Ito’s lemma derivation of P (p|D)
in (9):

dP (p|D) =
[
1
2

(
∂2P (p|D)

∂p2
σ2

p +
∂2P (p|D)

∂D2 σD
2

)
+

∂2P (p|D)
∂p∂D

σpσD

]
dt

−
(

P (p|D)
D

∂ D

∂ρ
+

∂ P (p|D)
∂ρ

)
dρt (10)

with ρt a (n ∗ m)-dimensional vector containing all the correlations between
portfolio constituents and the common drivers (not a correlation matrix). These
correlations’ dynamics must follow Ito processes of any suitable kind, which
is irrelevant for this work as the expressions become simplified, but including
a (n ∗ m)-dimensional Brownian motion. For simplicity, assuming it follows a
(n∗m)-dimensional geometric Brownian motion ∂ρ

∂t = dρt = μρρtdt+σρρtdW t
ρ ,

substituting in (10):

dP (p|D) =

[
1

2

(
∂2P (p|D)

∂p2
σ2

p +
∂2P (p|D)

∂D2
σD

2

)
+

∂2P (p|D)

∂p∂D
σpσD

−
(

P (p|D)

D

∂ D

∂ρ
+

∂ P (p|D)

∂ρ

)
μρ ρt

]
dt −

(
P (p|D)

D

∂ D

∂ρ
+

∂ P (p|D)

∂ρ

)
σρ ρt dW t

ρ (11)

The common causal conditional risk-neutral PDE is given by equating the drift
part in (11) to the drift of the common causal drivers’ processes’ times the
conditional probability of the portfolio given these set of common causal drivers.
This is due to the fact that, when portfolio constituents are projected in a
common causal conditional probability space, they become independent and the
portfolio risk is diversified, therefore the common causal conditional probability
space becomes conditionally risk-neutral. The return of the portfolio conditional
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on the common drivers is proportional to the common drivers’ drift term plus an
error term Δ accounting for portfolio’s common causal drivers’ error selection:

[
1

2

(
∂2P (p|D)

∂p2
σ2

p +
∂2P (p|D)

∂D2
σD

2

)
+

∂2P (p|D)

∂p∂D
σpσD

]
dt = [μD P (p|D) + Δ] dt (12)

and there is one condition, given by the following PDE, such that the PDE in
(11) does not have a Brownian motion component, making it conditional risk-
neutral:

P (p|D)
D

∂D

∂ρ
= −∂P (p|D)

∂ρ
(13)

Parameter Δ in (12) measures the deviations from conditional risk neutrality
due to unknown confounders or not having selected all optimal common causal
drivers for the portfolio. We assume now for simplicity it is zero. It can work
as a loss function for a learning/calibration problem in which the optimal set of
common drivers are found when Δ is minimum. Additionally, it can be used as a
signal that the common drivers’ set needs to be revised. If the partial derivatives
computed from (6) are substituted in (13):

−wT ΠD

D

∂D

∂ρ
= −wT

(
∂Π

∂ρ
D + Π

∂D

∂ρ

)
(14)

which simplifies to:

Π
∂D

∂ρ
=

(
∂Π

∂ρ
D + Π

∂D

∂ρ

)
(15)

This gives another condition for the PDE, ∂Π
∂ρ D = 0, which can be derived

analytically from Π in (6), and consists of a system of n equations. From now
on, the common causal conditional risk-neutral PDE is expressed in terms of
the vector of portfolio constituents’ returns, a, instead of the portfolio’s return
p in (12). The partial derivatives of P (p|D) in (12) are computed using the
expression in (6):

∂2 P (p|D)
∂p2

= wT

(
∂2Π

∂a2
D +

∂Π

∂a

∂D

∂a
+

∂Π

∂a

∂D

∂a
+ Π

∂2D

∂a2

)
= wT

(
∂2Π

∂a2
D

)
(16)

∂2 P (p|D)
∂D2 = wT

(
∂2Π

∂D2 D + 2
∂Π

∂D

)
;
∂2 P (p|D)

∂ρ2
= wT

(
∂Π

∂ρ

∂D

∂ρ
+ Π

∂2D

∂ρ2

)
(17)

∂2P (p|D)
∂p∂D

= wT

(
∂Π

∂a
+

∂Π

∂a∂D
D

)
(18)
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substituting (16–18) in (12), and assuming Δ = 0:

wT

[
1

2

((
∂2Π

∂a2
D

)
σp

2 +

(
∂2Π

∂D2
D + 2

∂Π

∂D

)
σD

2

)
+

(
∂Π

∂a
+

∂Π

∂a∂D
D

)
σp σD

]

= −μD wT ΠD (19)

with the portfolio variance σp
T σp = wT Σpw = σp

2 now expressed as a diago-
nal variance-covariance matrix of independent portfolio constituents, and having

factorized (19) by wT , getting, Σpw =

⎡
⎢⎣

σ2
1 . . . 0
...

. . .
...

0 . . . σ2
n

⎤
⎥⎦w. A PDE that does not

depend on the weights of the portfolio, except from the term Σpw, is obtained:

1

2

((
∂2Π

∂a2
D

)
Σp w +

(
∂2Π

∂D2 D + 2
∂Π

∂D

)
σD

2

)
+

(
∂Π

∂a
+

∂Π

∂a∂D
D

)
Σp wσD

+ μD
T DΠ = 0 (20)

with σD
2 = ΣD = Cov(Dk

t−1,D
q
t−1) = e(μDk+μDq)(t−1)(eρDk,DqσDkσDqt − 1),

Σp = Cov(av
t , az

t ) = e(μav+μaz)t(eσavσazt − 1), ∀k, q = 1, . . . ,m; v, z = 1, . . . , n,
and Cov(av

t , az
t ) = 0 if v �= z. Expressions are given for the partial derivatives in

(20), which can be computed with Kronecker products and substituted back in
(20). One case is shown due to space constraints:

DT ∂2Π

∂a2
Σp w

= DT
(nxm)

((
∂

∂a1
, . . . ,

∂

∂an

)
⊕

(
∂

∂a1
, . . . ,

∂

∂an

)
⊕ Π (nxm)

)

(nx(n2m))

Σp w(nxnx1)

= DT
(nxm)

⎡

⎢⎢⎢⎢⎣

∂3 C(a1,D1)

∂D1∂a2
1

. . . 0

.

.

.
. . .

.

.

.
∂3 C(a1,Dm)

∂Dm∂a2
1

. . . 0

. . .
∂3 C(an,D1)

∂D1∂a2
n

. . .
.
.
.

. . .
∂3 C(an,Dm)

∂Dm∂a2
n

⎤

⎥⎥⎥⎥⎦

(mx(mn2)

Σp w(n2x1) (21)

Notes and Comments. A system of copulas’ PDEs for each pair of constituent/
common driver is obtained. Each PDE can be used for online risk management
at constituent level, as seen in Figs. 1, 2, 3 and 4. Copulas’ PDEs are com-
puted from data on a rolling window basis. Deviations from theoretical values
are shown in these figures for two constituents and portfolio’s common drivers.
Large deviations are due to important events such as earning reports (From
18/03/2008 earnings reports, GS shares rise more than 30%), idiosyncratic news
(From 28/10/2008 the Volkswagen scandal caused GS shares to plunge), and sys-
tematic market moves (30/10/2008, Dax rose 2,44% in one day), all from Fig. 3.
Figures 1 and 3 show that deviations remain close to zero except for punctual
events, so that the conditional probabilities are almost always described accu-
rately by the PDEs. All copulas’ PDEs deviations add to the deviations from
conditional risk neutrality in the PDE system expressed as Δ in (12). If devia-
tions are added up over a period as in Fig. 2, risk-hedging information is obtained
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Fig. 1. Copulas’ PDEs values for Phyzer
- 2020

Fig. 2. Sum of values for 2020 (Phyzer)

Fig. 3. Copulas’ PDEs values for Gold-
man Sachs (GS) - 2008

Fig. 4. GS 2008 Volatility

and can be included in sensitivity-based methods for portfolio optimization with
respect to common causal drivers [2], as an extra component of the sensitivities
for tail-risk management (large deviations). Experiments use equal-weight port-
folios, but can be selected to minimize the deviations, left as future work. Large
deviations are related to increasing volatility (Fig. 4). Implied market hedges are
obtained after solving the weights in the PDE system. With the system PDEs
solution, which is left for future work, implied weights based on the conditional
risk-neutral common causal measure could be obtained for longer horizons.
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Abstract. Structural threshold models are common industry practice
for modelling portfolio credit risk, but often only consider default depen-
dence via underlying common factors. We consider a structural model
extension that allows for additionally incorporating default contagion
effects. A simulation study illustrates that ignoring default contagion
effects may lead to significant underestimation of portfolio tail risk. As
a key contribution, we propose a procedure for estimating default con-
tagion parameters from historical default probability data.

Keywords: portfolio credit risk · default contagion · structural model

1 Introduction

The dependence between default events of obligors is a key aspect of portfolio
credit risk management. A common approach in practice is to use a structural
threshold model (see [5, p. 465]) in which a default event of an obligor is triggered
by a latent value process reaching some threshold. The value processes of different
obligors are then often assumed to be conditionally independent given underlying
common factors, such as macroeconomic or industry-specific risk drivers.

Another important form of dependence may however arise due to default con-
tagion effects, in which an increase in default risk of one obligor directly causes
an increase in default risk of another obligor. In corporate parent-subsidiary rela-
tionships, for example, increased default risk can propagate from a parent com-
pany to a subsidiary. As another example, increased default risk of a sovereign
issuer may propagate to entities operating in the same country.

We propose a structural threshold model that incorporates both indirect
default dependence via underlying common factors, as well as direct default
contagion effects. The model specifically allows for the special case where the
default of one obligor guarantees the default of another, but also allows default
risk to partially propagate from or to multiple different obligors. As a key contri-
bution, we outline a procedure to estimate the contagion parameters from default
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probability data. Once calibrated, the model can be easily used for simulation of
portfolio losses, similar to the structural threshold models used in practice. The
combination of these desirable properties distinguishes the model from previous
proposed default contagion extensions of the threshold model (see e.g. [1,3,6])1.

Based on a simulation study, we illustrate that ignoring default contagion
effects may cause significant underestimation of portfolio tail risk. This risk is
relatively well captured by using estimated default contagion parameters.

2 Structural Model with Default Contagion

We consider a credit portfolio with obligors indexed by I = {1, . . . , N} that may
default only at the end of some specified time horizon T , e.g. in 1 year. Following
a structural approach, we consider a (latent) joint value process V = [Vi]i∈I and
say that an obligor has defaulted when its value process is non-positive:

{Default of obligor i at time T} := {Vi(T ) ≤ 0} , ∀i ∈ I. (1)

An increase in default risk, is thus represented by a decrease in value.
The joint value process V specifies both marginal default probabilities as

well as default dependence between obligors, including possible default contagion
effects. As is common in portfolio credit risk modelling, we focus on modelling
the dependence between defaults. To simulate the distribution of 1-year portfolio
losses, we therefore assume that the vector of marginal 1-year default probabili-
ties P̂D = [P̂Di]i∈I is given. For the estimation of default contagion parameters,
we assume the availability of the historical time-series {P̂D(tm)}M

m=0.
In practice, (estimated) default probabilities may for example be provided by

rating agencies or internal bank models. Alternatively, default probabilities may
be inferred from market data such as credit spreads. We assume that default
contagion effects are already incorporated into these default probabilities.

We additionally assume that we already know the binary structure of the
default contagion dependence: i.e. between which obligors there exists such direct
dependence. This binary structure is indeed obvious in many practical applica-
tions2. The strength of the dependencies remains to be estimated.

2.1 Base Model

We first consider V = Y, where Y = [Yi]i∈I represents the intrinsic value process
of all obligors and is assumed to be a correlated N -dimensional Brownian motion:

dY(t) = Σ
1
2 dB(t), Y(0) = y ∈ R

N , (2)

where B is an N -dimensional Wiener process and Σ is a correlation matrix3.
1 In particular, earlier proposed calibration of default contagion parameters often relies

on expert input or on strong ad hoc assumptions.
2 For example in corporate parent-subsidiary relationships. Alternatively, the binary

dependence structure may be identified using a network-based approach, see e.g. [2].
3 That is, the process is scaled such that Σii = 1 for all i ∈ I.
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In the base model, the marginal default probability for i ∈ I can be computed
as

PDi = P
[
Yi(T ) ≤ 0

∣
∣ Yi(0) = yi

]
= Φ

(
− yi√

T

)
, (3)

where Φ is the standard Gaussian CDF. Conversely, given a default probability
P̂Di ∈ (0, 1), we can solve for the corresponding starting point ŷi to obtain

ŷi = −
√

T · Φ−1
(
P̂Di

)
. (4)

We note that the base model effectively corresponds to a Gaussian threshold
model, similar to multi-factor extensions of the Merton model that are popular
in industry [5, p. 430]. We assume here that the correlation matrix Σ is known
or has already been calibrated by using such a model. The distribution of losses
can then be simulated when the default probability vector P̂D is also given.

2.2 Default Contagion Extension

We propose a structural extension of the base model in which default risk can
propagate via a parent structure represented by a weights matrix W = [Wij ]i,j∈I
with non-negative entries and row-sums equal to 1. We say j ∈ I is a parent of
child i ∈ I when WIj > 0 and i �= j. We say that obligor i has no parents when
Wii = 1. We assume the existence of a partition I = {IP , IC}, where all obligors
without parents are in IP and the child obligors in IC only have parents in IP

4.
In the proposed extended model, the value V is the (element-wise) minimum

of the intrinsic value Y and the propagated value X = [Xi]i∈I . The intrinsic
value Y is modelled as in (2) and the propagated value X is modelled as a
convex combination of the intrinsic value and the value of parents:

V(t) = min [Y(t),X(t)] , X(t) = WY(t). (5)

A decrease in value Vi of an obligor i may be caused by either a decrease in
intrinsic value Yi or by a decrease in value of its parents propagated via Xi.
Similarly, the default event as defined in (1) can be triggered by a decrease in
either intrinsic or propagated value:

{Default of obligor i at time T} = {Yi(T ) ≤ 0} ∪ {Xi(T ) ≤ 0} , ∀i ∈ I. (6)

We highlight two special cases that can be captured by this model:

1. In the special case that no obligor has parents, i.e. I = IP and W = I, the
model reduces to the base model. This is because each obligor i ∈ IP without
parents has WIi = 1 and therefore value Vi = min [Yi, Yi] = Yi.

2. If obligor i has one parent j with weight Wij = 1, then Vi ≤ Xi = Yj = Vj ,
so that a default event of parent j implies a default event of obligor i.

4 This imposes a restriction where it is not allowed for parents to have also parents
themselves and is similar to the primary-secondary structure assumed in [4].
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In the extended model, we have
[
Y(T )
X(T )

]
∼ N

([
y

Wy

]
, T ·

[
Σ ΣWT

WΣ WΣWT

])
, (7)

so that the marginal default probability of an obligor i ∈ I can be computed as

PDi

(
y;W

)
= P

[
Yi(T ) ≤ 0 or Xi(T ) ≤ 0

∣
∣ Y(0) = y

]

= Φ
(

− yi√
T

)
+ Φ

(
− xi

σXi

√
T

)
− Φρi

2

(
− yi√

T
, − xi

σXi

√
T

)
,

(8)

where xi = [Wy]i, σXi
=

√
[WΣWT ]ii and Φρi

2 (·, ·) is the bi-variate Gaussian
CDF with correlation ρi = [WΣ]ii/σXi

. For obligor i ∈ IP without parents, Eq.
(8) indeed simplifies to as in the base model in Eq. (3).

Given a weights matrix W, correlation matrix Σ and default probability
vector P̂D, we want to find the corresponding starting point ŷ that satisfies
PDi

(
ŷ;W

)
= P̂Di for all i ∈ I. We can first find ŷP := [ŷi]i∈IP

by using
the result in (4). Then given ŷP , we can numerically solve for the remaining
ŷC := [ŷi]i∈IC

by using the result in (8). The latter is possible because in (8)
PDi is strictly decreasing in yi and has range equal to (0, 1) when Wii > 0.5

The distribution of portfolio losses can be simulated when the weights matrix
W, correlation matrix Σ and default probability vector P̂D are estimated or
given. This is analogous to the base model, where W = I.

3 Estimation of the Weights Matrix W

Intuitively, we propose to estimate the weights matrix W by using that the value
processes of the obligors should have correlation Σ after filtering out default
contagion effects. We therefore consider a moment condition on the normalized
discrete-time increments of the intrinsic value process Y as defined in (2):

E
[
Z(tm)Z(tm)T

]
= Σ, for Z(tm) :=

Y(tm) − Y(tm−1)√
tm − tm−1

. (9)

Equation (9) implies the following moment condition for the subcomponents
ZC := [Zi]i∈IC

,ZP := [Zi]I∈IP
of obligors with and without parents respec-

tively:

E
[
ZC(tm)ZP (tm)T

]
= ΣCP , where ΣCP := [Σij ]i∈IC ,j∈IP

. (10)

Although the increments {Z(tm)}M
m=1 are not directly observed, we can use

{P̂D(tm)}M
m=0 to compute the inferred increments {Ẑ(tm)}M

m=1 for a given W:

Ẑ(tm;W) :=
ŷ(tm) − ŷ(tm−1)√

tm − tm−1
,where PD

(
ŷ(tm),W

) ≡ P̂D(tm). (11)

5 Note that PDi has lower bound lim
yi→∞

PDi(y;W) = Φ
( − xi√

TσXi

)
when Wii = 0,

since the probability of default triggered by propagated value Xi is then independent
of intrinsic value yi. For example, we have PDi > PDj when Wij = 1.
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We can thus estimate W by (numerically) minimizing the loss function L(W),
which is based on the Frobenius norm of the difference between ΣCP and the
sample correlation of the inferred value increments:

L(W) :=
∥
∥
∥Corr

(
ẐC(tm;W), ẐP (tm)

)
− ΣCP

∥
∥
∥

F
, for

ẐC := [Ẑi]i∈IC

ẐP := [Ẑi]i∈IP

. (12)

We note two advantages of the loss function in (12) for numerical optimization.
First, each row Wi := [Wij ]j∈I can be estimated separately for each i ∈ IC ,
as each row affects a different element of ẐC . So, if each child only has a few
parents, only a few weights have to be estimated per row. Second, we again note
that the weights corresponding to obligors without parents i ∈ IP are equal to
Wii = 1. This means that the increments ẐP have to be computed only once.

4 Numerical Example and Possible Extensions

To illustrate the possible impact of default contagion effects on aggregate portfo-
lio risk, we consider a numerical example. We first simulate portfolio losses using
the extended model in (5) for a randomly drawn weights matrix Wtrue. We then
also simulate losses with estimated weights West and naive weights Wnaive = I,
to assess the impact on the expected losses and Value-at-Risk (VaR).

We consider a portfolio with N = 800 obligors, partitioned into a set of oblig-
ors without parents IP = {1, . . . , 400} and a set of obligors IC = {401, . . . , 800}
that all have the same two parents {1, 2}. We choose an exposure of 100 for
all obligors and default probabilities of 0.005, 0.008 for the obligors in IP and
IC respectively. We also choose a correlation matrix Σ with off-diagonal entries
equal to 0.3, corresponding to a 1-factor model with equal factor loadings for all
obligors. Finally, for each child i ∈ IC , we fix randomly drawn weights to both
parents in {1, 2}, independent of all other obligors. The weights are drawn from
uniform distributions, such that Wi1 ∼ Unif(0, 1) and Wi2 ∼ Unif(0, 1 − Wi1).

For estimating W, we simulate M = 250 daily observations of the default
probability vector, corresponding to roughly 1 year of trading days. We then
minimize the loss function in (12) by an initial grid search, which is followed by
a numerical gradient-based optimization. This combination mitigates the issue
of possible local minima and is not too computationally intensive given that only
two parameters have to be estimated per row of W.

Figure 1 shows the simulated (relative) expected losses (EL) and VaR for
different quantiles for the three different weights matrices, based on 107 simula-
tions. For easier visual comparison, all figures are relative to the corresponding
figure for the true weights Wtrue. The results show that the simulated expected
losses are very close for all three weights matrices. This is as expected, because
the expected losses depend only on the marginal default probabilities to which
the model is calibrated by construction. The results also show that the VaR at
higher quantiles is significantly underestimated when ignoring default contagion
effects (i.e. using when Wnaive). In contrast, the results indicate that using the
estimated West allows for estimating the VaR reasonably well.
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Fig. 1. Simulated expected losses and VaR(q) for q = 0.99, 0.999, 0.9999

We note that although the aggregate portfolio risk is estimated reasonable
well, the estimation of the weights is relatively volatile on an obligor level. Also,
although daily historical default probability data may be inferred from market
data such as credit spreads, data provided by rating agencies or internal bank
models will likely be less frequent. It may therefore be worthwhile to further
improve the efficiency of the proposed estimation procedure: for example by
explicitly incorporating data from the underlying factor model. Nevertheless, we
have illustrated that it is possible to estimate default contagion parameters from
historical default probability data, overcoming the reliance on expert input.

An interesting extension of the proposed model would be to allow parents
to also have parents themselves. In that case, chain-like propagation of default
contagion effects can be incorporated. In such an extension, the propagated value
in (5) could for example become X(t) = WV(t). However, the results derived
in e.g. (7) and (8) would then take a less simple form. More generally, other
functional forms can be considered for the default contagion model extension.
For example, using a maximum instead of a minimum in (5) could represent the
case where one obligor acts as a guarantor for another obligor.
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Abstract. The article focuses on Value-at-risk measuring for options
in situations characterized by the lack of liquidity when the underlying
stock price has motionless periods. A similar behavior can be observed in
physical systems exhibiting sub-diffusion. In the considered sub-diffusive
model, the bond movement and stock process are time-changed by the
stochastic clock with gamma subordinator. In the model, the two tech-
niques for option pricing were considered. The first very common app-
roach for the time-changed model is to find option prices as the dis-
counted expected payoff under the risk-neutral measure. The second
technique for option pricing is based on a fractional version of what
is called Dupire’s equation. The Value-at-Risk evaluating procedure for
the proposed model was discussed and we show that this procedure is
based on the Fractional Fokker-Planck equation (FFPE).

Keywords: Option pricing · subdiffusion · Value-at-risk · Gamma
subordinator

1 Introduction

In recent decades subdiffusive processes are getting increasing attention. These
stochastic processes are usually used in statistical physics to model anomalous
diffusion phenomena with trapping events (see [4,5,8], and others). In financial
markets with illiquid assets, we often see similar anomalous subdiffusion, when
relatively long periods without any trading are observed. This feature is common
for crisis periods that negatively affect financial activity or for emerging markets
in which the number of participants, and thus the number of transactions, is
rather low.

Therefore, the physical models of subdiffusion can be successfully applied to
describe financial data and model the dynamics of the financial market, including
option pricing. See for example paper [2], where option pricing was proposed in
the fractional jump-diffusion model, papers [6,10] for Black-Scholes model, and
[7], for Bachelier model in the subdiffusive regime. The theory in these papers
was detailed for inverse α - stable [2,6,7], inverse tempered stable [7], inverted
inverse Gaussian [10], and inverted Poisson processes [2].
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In the paper, we consider the geometric Brownian Motion (BM) model in a
subdiffusion regime and propose a procedure for evaluating value-at-risk in the
studied model, time-changed by a Gamma subordinator. From this perspective,
our study closes a gap that is of particular interest to investors.

The paper is organized as follows. In the second section, we present our
model and describe the dynamics of the bond and underlying risk assets in the
subdiffusive framework with gamma subordinator. Also, we discuss two option
pricing techniques for our model. The third section is devoted to risk measuring
in this model. We consider the Fractional Fokker-Planck equation (FFPE) for
gamma subordinator, which describes the probability density function w(t) of
the sub-diffusive studied stock process and we discuss how it can be used for
value-at-risk (VaR) measuring.

2 Subdiffusive GBM Model with Gamma Subordinator

Assume that the market consists of at least one riskless asset, usually called
bond Bt, a risky asset with price St, usually called the stock, and one derivative
security, usually called call option, or put option, which will have a certain payoff
at a specified date in the future, depending on the values taken by the stock up
to that date.

Sub-diffusion occurs if we replace the calendar time t with some stochastic
process Ht, where Ht is called the inverse subordinator and means stochastic
clock, operation time. For our model, we replace the calendar time t with Ht in
risk-free bond motion and in classical GBM.

Then the time-changed risk-free bond has a value at time t equal to:

dBHt

BHt

= rdHt, B0 = 1, (1)

and the movement of the underlying risk assets St follows a subdiffusive geomet-
ric Brownian motion (GBM):

dSHt

SHt

=
(

μ +
σ2

2

)
dHt + σdBHt

, t > 0, (2)

with solution
SHt

= S0e
μHt+σBHt , t > 0. (3)

In formula (3) the standard diffusive process SHt
is time-changed by some

stochastic process Ht, which is called the inverse subordinator (“hitting time”).
The inverse subordinator Ht is defined as

Ht = inf (τ > 0 : Gτ ≥ t)) , (4)

and interpreted as the first time at which Gt hits the barrier t. Thus it is time of
the first reach a certain price, which may not change for some time. The definition
(4) of the inverse subordinator is based on the use of some other random process
called a subordinator Gt.
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The subordinator Gt is generally a non-decreasing stochastic process with
stationary independent increments (Lévy process), taking value in R+ and hav-
ing Laplace transform in the following form:

E
(
e−uGt

)
= e−tΨ(u), (5)

where Ψ(u) is called Lévy exponent. The subordinator Gt is often called the
“waiting” time. In this paper, we consider the Gamma process as a subordinator.
It is reasonable because the gamma process is a pure-jump increasing Lévy
process and thus it is a good candidate for construction waiting time.

The gamma subordinator Gt(a, c), t ≥ 0, is an Lévy process with independent
gamma-distributed increments, i.e. with the Lévy measure

ν̃(dx) = c
e−ax

x
Ix>0dx (6)

and the Laplace transform given by:

E
(
e−uGt

)
=

(
1

1 + ua

)ct

, a > 0, c > 0. (7)

The main component of the model is option pricing. In this paper, we discuss
two techniques for option evaluation. From paper [1,2,6,7] we know that the
subdiffusive model (1, 2) is arbitrage-free, and incomplete and the fair price of
the European call option with expiry date T and strike price K can be found as
the discounted expected payoff under some risk-neutral measure:

CH (S,K, T, σ) =
∫ ∞

0

C (S,K, x, σ) hΨ (x, T )dx (8)

Here, hΨ (x, T ) is the PDF of H(T ) for the subordinator with Lévy exponent Ψ
and C(S,K, T, σ) is given by classical Black-Scholes formula. In the above Eq.
(8) we can evaluate the subdiffusive call price C(·) by computing the integral
numerically. An alternative consists of calculating the price by Monte Carlo
simulations.

The second technique for option pricing in the considered model is based on
a fractional version of what is called Dupire’s equation. The fractional Dupire’s
equation (PIDE) was proposed by [2]. This equation is presented in a very general
form and valid for all invertible Lévy subordinators. In PIDE the derivative con-
cerning time was replaced by a convolution-type derivative, called Dzerbayshan-
Caputo (D-C) derivative. The Dzerbayshan-Caputo (D-C) derivative depends
upon the chosen kind of subordinator and Bernstein functions f(.). From this
PIDE in the Black and Scholes (B-S) regime, when the Brownian volatility is
constant and there are no jumps, the fraction Dupire PIDE can be rewritten as

fDCH(T, k) = −r
∂

∂k
CH(T, k) +

σ2

2
∂2

∂k2
CH(T, k), (9)
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where k = lnK and

fDu(t) = b
d

dt
u(t) +

∫ t

0

∂

∂t
u(t − s)ν(s)ds, (10)

where f is Bernstein function, which admits a similar representation to the
Laplace exponent of Lévy process

f(x) = a + bx +
∫ +∞

0

(1 − e−sz)ν̃(dz), (11)

and (a, b, ν̃) is the Lévy triplet of the Bernstein function. For gamma Lévy subor-
dinator the Lévy triplet of the Bernstein function is (0, 0, ν̃). The Lévy measure
ν̃(s) is defined by (6). The tail of the Lévy measure is given by

ν(s)ds =
(

a +
∫ +∞

s

ν̃(dx)
)

ds = ds

∫ +∞

s

ν̃dx = ds

∫ +∞

s

c
e−ax

x
dx. (12)

Thus, the D–C derivative for the option pricing equation (9) can be found as

fDu(t) = c

∫ t

0

∫ ∞

0

∂

∂t
u(t − s)

e−ax

x
ds. (13)

3 Risk Measuring for Subdiffusion

The value-at-risk is a quite useful tool for investors and can be used for under-
standing the past and making medium-term and strategic decisions for the
future. On the other side, we can apply VaR for the checking model perfor-
mance. For this, we can use the most important criterion of a risk management
system, namely to check if the regulatory requirements are fulfilled.

VaR can be defined as α-quantile of the profit (loss) function.
Let (Ω,F , P ) be the probability space. The value-at-risk of level α, 0 < α ≤ 1

is a probability functional, defined as α-quantile of the profit (loss) function
Y ∈ L(Ω):

V aRα(Y ) = W−1(α) = inf{y ∈ R : α ≤ W (Y )} , (14)

where W is the distribution function of Y , W−1 is the quantile function of α,
0 < α ≤ 1.

Let the time horizon coincide with the time to maturity, then the loss (profit)
function of the call option with strike price K is

Y = Y (S) = |S − K|+ − c0, (15)

Then the value-at-risk of level α, 0 < α ≤ 1 for random variable Y is

V aRα(Y ) = V aRα(|S − K|+) − c0 (16)
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due to the translation-equivariant property of probability functional VaR.
The cumulative distribution function (CDF) for Y (S) = |S − K|+ is given

in [9]:

WY (y) =

⎧⎪⎪⎨
⎪⎪⎩

y∫
−∞

wS(u + K) du, y ≥ 0

0, y < 0.

(17)

Thus, if the time horizon coincides with the time to maturity, the value-at-
risk of level α, 0 < α ≤ 1 one can find as (16–17), where w(t) is a solution of the
celebrated Fractional Fokker-Planck equation (see for example [8]):

∂w

∂t
= Φt[−μ

∂

∂x
+

σ2

2
∂2

∂x2
]w(x, t). (18)

In this equation Φt is the integro-differential operator defined as

Φtf(t) =
d

dt

∫ t

0

M(t − y)f(y)dy,

with the memory kernel M(t) defined via its Laplace transform

M̃(u) =
∫ ∞

0

e−utM(t)dt =
1

Ψ(u)
.

The Levy exponent for the gamma process is given by

Ψgamma(u) = c log(1 + ua), (19)

what implicates that the memory kernel M(t) can be expressed as:

M(t) = L−1

(
1

c log(1 + ua)

)
.

where L−1(f) is the inverse Laplace transform of the f(t) function. J. Janczura
and A. Wylomanska in [4] found a formula for the memory kernel M(t) in the
form

M(t) =
e−t/a

c

∫ ∞

0

ty−1

ayΓ (y)
dy. (20)

Thus, the formula (18) allows us to find, at least in some particular cases of
parameters a, c closed-form formulas for the PDF of the sub-diffusive studied
stock process. Approximated solutions w(t) of (18) can be derived by the finite
element method for FFPE (see for example [3]) or by the Monte Carlo tech-
niques based on the simulation algorithm of the time-changed stock process (see
the section above). Thus, the possibility of numerical computing probability
density function w(t) for the sub-diffusive studied stock process (with gamma
subordinator) opens the way to evaluate value-at-risk (VaR) in this model.
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5. Kumar, A., Wylomańska, A., Poloczański, R., Sundar, S.: Fractional Brownian
motion time-changed by gamma and inverse gamma process. Phys. A-Stat. Mech.
Appl. 468, 648–667 (2017)

6. Magdziarz, M.: Black-Scholes formula in subdiffusive regime. J. Stat. Phys. 136,
553–564 (2009)

7. Magdziarz, M., Orze�l, S., Weron, A.: Option pricing in subdiffusive Bachelier
model. J. Stat. Phys. 145, 187–202 (2011)

8. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a frac-
tional dynamics approach. Phys. Rep. Ser. 339(1), 1–77 (2000)

9. Shchestyuk, N., Tyshchenko, S.: Option pricing and stochastic optimization. In:
Malyarenko, A., Ni, Y., Rancic, M., Silvestrov, S. (eds.) SPAS 2019. Springer Pro-
ceedings in Mathematics and Statistics, vol. 408, pp. 651–669. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17820-7 28

10. Shchestyuk, N., Tyshchenko, S.: Subdiffusive option price model with inverse Gaus-
sian subordinator. Working Paper 1, School of Business, Orebro University, Sweden
(2024)

https://doi.org/10.1007/978-3-031-17820-7_28


A New Value-Based Investing Strategy
for Portfolio Selection Which Outclasses

the Benchmark

Giannicola Simari(B)

Master in Risk Management, Pisa University, Pisa, Italy
gnsimari@gmail.com

Abstract. This paper proposes a new fundamental analysis-based strategy to build
a remunerative stock portfolio. We believe that the value investing paradigm,
applied with consistency and automatically without any external interference, can
constitute a competitive advantage for investors. The procedure works by man-
aging the information coming from financial statements into six filtering criteria
aimed at evaluating profitability, financial condition and price convenience. As
case studies, we consider three separate portfolio selections from the S&P 500
(2000–2017), the STOXXEurope 600 (2002–2017) and the S&P100 (2001–2017)
benchmarked against a passive strategy represented by the Index. The criteria pro-
posed, invariant and irrespective of economics conditions and financial markets
forecasts are able to select, ex-ante, stocks producing significantly better results
than the benchmark for all the timelines considered.

Keywords: Portfolio selection · Value-based investing · Fundamental analysis ·
Investment Behavior

1 Introduction

Benjamin Graham is known as the father of value investing, a methodology to select
assets securities that, based on fundamental analysis, appear undervalued in comparison
with their intrinsic value (Graham and Dodd, 1934; Graham 1949). The crucial issue is
the determination of the intrinsic value of each asset, given that this quantity is neither
observable nor can it be computed in a deterministic way. Regarding this point, Oppen-
heimer (1984) observes that a suitable choice of stock selection rules can produce higher
returns than a passive strategy.Grantham (2004) comeswith seven selecting criteria, with
qualitative as well as quantitative nature and Graham and Zweig (2004) suggest that it is
wise not to overpay for a stock investment. Greenblatt (2005) confides in simple security
selection criteria and rules-based disciplined investing strategy. Gray & Carlisle (2012)
retain the quantitative approach provides practical insights into an investment strategy
that eliminate behavioral errors. Kahneman (2013) demontrates the illusion of skill in
investing. He explores how behavioral and cognitive psychological theories with con-
ventional finance provide explanations for irrational behaviors. Frazzini, Kabiller and
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Pedersen (2018) postulate that Warren Buffett’s Berkshire Hathaway performance is
the result of stock selection. Referring to such prescriptions, we propose a new way to
process financial statements data to select a remunerative stock portfolio. The Graham
pillars of intrinsic value evaluation, concentrated diversification and buying within the
margin of safety, are the guiding criteria employed in this work.

In the section “Methodology” we explain the screening rules and the portfolio con-
struction. In the section “Results” we report the main results of our analysis and in the
last section “Conclusion” we prove the premises of the paper: the importance of select-
ing stocks which are profitable, in sound financial condition, and bought at a convenient
price.

2 Methodology

2.1 Screening Rules and Portfolio Construction

The stocks entering each portfolio are selected using six criteria concerning the fol-
lowing financial statement areas: Profitability, Sound Financial Condition and Price
Convenience.

Profitability provides information about the firm ability to generate earnings in the
future. Sound Financial Condition is related to the company capacity to overcome eco-
nomic cycles. Price convenience provides a margin of safety, meaning that purchasing a
stock at a price sufficiently lower than its intrinsic value creates a buffer for an investment
to be made at a relatively low level of risk.

We clarify that our selection strategy is not affected by some typical selection bias
issues. More specifically:

a) the forward estimation bias: it takes places when predicted variables are used in place
of historical ones. We use only historical values;

b) the look ahead bias: is the bias coming from data unknown at the time of the analysis
(for example a revision relative to an accounting field which is published after a
few months). We use only the first published data, without considering revisions or
restatements;

c) the micro & small cap sample bias: this selection bias may raise concerns about the
lack of liquidity. We focus our analysis on three major stock indices.

2.2 Two Separate Strategies

For the S&P 500 and the STOXX Europe 600 we adopt an identical approach. As far
as the stock selection, the six criteria listed in the above section are applied sequentially:
if a stock does not pass one criterion it is eliminated and is not checked by the successive
ones. At the end, we select a maximum of ten assets (a number which is considered a
good compromise between risk diversification and return concentration). If more pass
the six filtering rules, only the best ten are considered; otherwise, only those satisfying
all six criteria are taken into account. The K(≤10) stocks selected in the portfolio are
equally weighted1.

1 All data used in the analysis are taken from Bloomberg. We processed more than 1,500,000
financial data for the S&P 500 Index, more than 1,800,000 for the STOXX Europe 600 and
more than 500.000 for the SPX 100, excluding stocks with missing accounting records.
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For the S&P 100 Index, we adopt a different strategy. We compute the six criteria
described above for all index components, ranking them from the best to the worst for
each criterion. We therefore combine all such ranks into a single score by adding them,
for example if a stock is the 20th in the first criterion, 30th in the second, 15th in the
third, 10th in the fourth, 5th in the fifth and 9th in the last one, its overall score is 89. This
different screening approach allows for have a larger number of stocks and to answer to
a frequent financial institutions requirement to invest in leading companies by market
capitalization. At the end, we select a maximum of thirty assets and the K(≤30) stocks
are equally weighted.

2.3 Strategy Evaluation

We compute the portfolio returns during a generic time period [t − 1, t] as

Rt =
K∑

i=1

wiri,t

and to summarize the return of the strategy after n periods we use the compound annual
growth rate

CAGR(t0, tn) =
(
V (tn)

V (t0)

) 1
tn−t0 − 1

We considered two different timelines:

Yearly Timeline. After the first portfolio choice (done for example in January 2003),
the stock selection is updated each year (January 2004, January 2005 and so on), keeping
the portfolio unchanged between two consecutive yearly revisions.

Monthly Timeline2. The strategy is the same as the previous one, with the difference
that the portfolio is updated monthly (instead of yearly).

Webenchmark the active strategy using a paired difference test for the null hypothesis
that the period differences between the portfolio returns produced by the active and the
passive strategy (buying the index), has a zero mean. The test statistic is

d

se(d)

where d is themean of dt’s and its standard error, se(d), is estimated according to Newey
andWest (1987) to take into account the possible autocorrelation of the dt’s differences.
Under the null, the test statistic in the above equation is asymptotically distributed as a
standard normal.
2 The important difference between the two timelines lies in the number of observations available
for the statistical check: the yearly one (which is applied to all case studies) produces as many
observations as the number of years considered; themonthly one (which is used only in the S&P
500 and the STOXX Europe 600 case studies) gives a number of observations equal to 12 ×
number of years.
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3 Results

The S&P 500 Index: Themain results of the analysis involving the S&P 500 are shown
in Table 1. The p-values evidence that the proposed value investing strategy produces
returns significantly higher than the benchmark irrespective of the month where the
investment began. Themonthly timeline evidences an average difference above 16%; the
yearly timelines provide mean differences ranging from 12% to 17% (the only exception
is October with 8.7%).

The higher variability shown by the monthly one is explained by the fact that the
yearly timeline tends to dampen the variability with respect to returns computed over
shorter periods.

The column Sign Diff. reports the number of times, in percentage, the active strategy
produces a return higher than the passive one for the whole period.

Table 2 reports the CAGR value of the yearly timeline, coming from the invest-
ment started in the corresponding month. The active selection gives average returns
considerably higher than the passive strategy for all the months.

The S&P 100 Index: The results about the strategy implemented on the S&P 100 Index
are shown in Table 7. There is a lower mean difference between the active strategy and
the benchmark, ranging from 5.4% to 6.9%, in comparison with the methodology used
in the other two case studies. We easily explain this with the fact that we invested in
a broader number of stocks (30 against 10) taken from a lower set of components: we
expect that selecting 30/100= 30% of components tends to produce results more similar
to the index than taking 10/500 = 2%. The general outcome is, however, the same: the
active selection gives returns higher than the passive strategy irrespective of the month
when an investment starts. In addition, the inclusion of a larger number of components
contributes to decrease the volatility of the selected portfolio, making it quite close to
the whole portfolio.

Table 2 reports the CAGR value of the yearly timeline.

4 Conclusions

In this paper we present a new way to manage the information coming from financials
to compose a remunerative stock portfolio. The results coming from applying the active
strategy benchmarked against a passive strategy, represented by the Index, confirm the
premises of the paper: the importance of selecting stocks which are profitable, in sound
financial condition, and bought at a convenient price. The criteria proposed, invariant
and irrespective of economics conditions and financial markets forecasts are able to
select, ex-ante, stocks producing significantly better results than the benchmark for all
the timelines considered. We tested the selection strategy proposed only on the S&P
500, the STOXX Europe 600 and the S&P 100 indices for one fundamental reason, the
financial statements of the companies included in these indices are timely and reliable,
a necessary condition to implement the methodology.
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Abstract. Pension reforms are on the agenda of several governments
worldwide, especially those experiencing a serious longevity risk, like
Italy, due to the combination of ageing of the population and declining
fertility rates. As a result, younger generations will have to cope with late
pension age and possibly lower pension incomes, and individuals may opt
to subscribe private pensions to sustain their expectations, in terms of
retirement age and pension benefits. Propensity to private pension plan-
ning depends heavily on financial literacy, as highlighted in the literature
(see [3–5], among others). In this context, for the Italian population we
propose to resort to model-based regression trees [8] to highlight indi-
viduals’ features that entail different effects of pension expectations and
financial literacy on propensity to pension planning.

Keywords: Model-based Regression Trees · Logistic regression ·
Propensity to pension planning · Financial Literacy · Pension
expectations

1 Motivation and Methodology

The goal of this preliminary investigation is the analysis of the effect that expec-
tation of pensions (in terms of both age and income) and financial literacy have
on retirement planning in Italy. With respect to the state of the art, our app-
roach is meant to challenge the ideas and the results of [2] concerning the UK
population, to the case of Italy, by means of an original statistical analysis able
to investigate which individuals’ features possibly modify the alleged effects that
pension expectations and financial literacy have on private pension plan partic-
ipation. To pursue this goal, we resort to the setting of model-based regression
trees [6,8], since it allows to disclose if and how a given maintained model fits
and explains the relationship between a response and a set of predictors, given
the values of partitioning variables that are selected automatically by the pro-
cedure according to some optimization criteria. The result is a tree where each
node, corresponding to a given set of observations, is characterized by a locally
optimal specification of the maintained model, thus enhancing its interpretation.
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2 Investigating Pension Planning in Italy

To focus on the Italian population, we resort to a selected set of variables col-
lected within the Survey of Household Income and Wealth (SHIW) [1] run by
the Bank of Italy in 2020, for a total of n = 2955 observations corresponding
to a set of employed or self-employed individuals. In particular, we will consider
the following variables:

– pens ins: responses to the binary question: ‘Have you recently subscribed a
private pension insurance to supplement your future pension income?’

– exp income: responses to the question: ‘What percentage of the current
income do you expect to be represented by your pension income?’

– exp age: responses to the question: ‘What do you expect will be your retire-
ment age?’

– finlit: variable counting the number of correct responses to the 3 financial
literacy questions provided by the respondent, mimicking the construction of
the so-called Lusardi-Mitchell score [5].

Our preliminary investigation will consist of separate logistic regression analyses
to study the effects that pension expectations, with respect both to income
and age, exert on pension planning in terms of subscription of private pensions.
Similarly, we will adopt the same methodology to investigate the effect that
financial literacy has on pension planning. The logics of model-based trees will
be exploited by assuming as maintained models the logistic regressions1:

1. pens insi ∼ exp incomei (see Subsect. 2.1);
2. pens insi ∼ exp agei (see Subsect. 2.2);
3. pens insi ∼ finliti (see Subsect. 2.3).

The choice of growing a tree for each predictor is meant to identify its individ-
ual effect on the response, conditionally to partitioning variables. Comparative
results with a tree, based on the logistic regression of the response against both
expectation variables and financial literacy indicators, will be discussed in the
concluding section2.

2.1 The Effect of Expected Pension Income on Pension Planning

Figure 1 displays the resulting tree based on the logistic regression pens insi ∼
exp incomei. The main differences is found between self-employed and not-self
employed individuals. Among the latter, being or not home owners makes a
difference. Further, for home owners there is a difference in model parameters
on the basis of the geographical area of residence (the discriminating factor is
residence in the South of Italy or not). Estimated parameters of the maintained
model are reported in Table 1: coefficients that correspond to significant effects
at the 5% level are highlighted in bold.
1 For short, we will use the notation Yi ∼ Xi to denote that we run a regression of

the response Yi against predictor Xi.
2 Hereafter this omnibus tree will not be presented for the sake of brevity.
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Fig. 1. Model-based tree for the logistic regression pens insi ∼ exp.incomei

Table 1. Regression coefficients estimated locally for the logistic regression
pens insi ∼ exp.incomei

Leaves (Terminal Nodes)

3 4 7 8 10 11

Intercept −0.708 −1.767 −2.436 −0.612 2.787 0.005

exp.income −0.013 −0.011 0.008 −0.004 −0.043 −0.012

2.2 The Effect of Expected Pension Age on Pension Planning

Figure 2 displays the resulting model-based tree based on the regression
pens insi ∼ exp agei. The main differences is found between self-employed
and not-self employed individuals. Among the latter, having or not a university
degree slightly modifies the maintained model for individuals belonging to the
boomer generation. It turns out that relevant gender differences in the effect
that expected pension age exerts on pension planning pertain only to employed
individuals belonging to the age generation X having a university degree (nodes
14 and 15).

Estimated parameters of the maintained model, for each tree leaf, are
reported in Table 2: coefficients that correspond to significant effects at the 5%
level are highlighted in bold.

2.3 The Effect of Financial Literacy on Pension Planning

As a final step in our investigation, we apply the logistic-based regression trees
for the regression pens insi ∼ finliti in order to disclose locally the effect of
financial literacy on pension planning [7]. Results indicate that, overall, higher
financial literacy scores induce higher propensity to pension planning, but to
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Fig. 2. Model-based tree for the logistic regression pens insi ∼ exp agei

Table 2. Regression coefficients estimated locally for the logistic regression
pens insi ∼ exp agei

Leaves (Terminal nodes)

3 4 8 9 10 12 14 15

Intercept −1.838 −4.604 −1.124 3.094 1.100 −4.709 6.812 10.547

exp.age 0.007 0.032 −0.014 −0.073 −0.031 0.060 −0.101 −0.169

different extent. The effect of financial literacy on the chosen indicator of pension
planning is statistically significant (at the 5% level) only for the response profiles
corresponding to nodes 2,6,9,10,15. In this respect, it is worth noticing that, for
employed people owning a house, having a university degree entails statistically
significant variations of the model parameters differently across Italy: in the
South and Islands, indeed, financial literacy has a significant effect on pension
plan participation only for employed individuals that are home owners belonging
to the generation X (node 15) (Table 3 and Fig. 3) .

Table 3. Locally Estimated coefficients for the model-based trees based on the logistic
regression pens insi ∼ finlinti

Leaves (Terminal nodes)

3 4 6 9 10 12 14 15

x(Intercept) −2.658 −3.211 −2.991 −1.617 −1.160 −2.043 −1.715 −3.592

finlit 0.515 0.358 0.709 0.390 0.409 0.297 0.298 1.287
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Fig. 3. Model-based tree for the logistic regression pens insi ∼ finliti

Table 4. Goodness of fit of the fitted logistic regression trees

Predictors

exp.income exp.age exp.income + exp.age finlit exp.income + exp.age + finlit

Loglik −1523.545 −1542.483 −1517.688 −1497.508 −1476.673

BIC 3182.942 3268.765 3219.174 3178.815 3185.092

3 Concluding Remarks

In conclusion, it is important to establish the advantages of the proposed app-
roach with respect to more standard ones. As a benchmark, consider that
BIC = 3205.356 and loglik = −1586.696 for the logistic regression of the
response using expectation variables and financial literacy indicators as pre-
dictors on the whole dataset. Table 4 reports the overall log-likelihood and BIC
values of the fitted trees; for completeness, we report also results for the model-
based tree based on the logistic regression with only expectation variables as
predictors, as well as both expectation variables and financial literacy indica-
tors. Overall, results clearly indicate advantages in goodness of fit and explana-
tory power entailed by the setting of model-based trees with respect to stan-
dard regression. In terms of covariates effects, it turns out that expectations
on pension income are a stronger leverage to boost private pension planning
than expectations on retirement age, yet financial literacy itself provides the
best trade-off between model-complexity and goodness of fit. As a consequence,
promoting financial literacy with respect to pensions should be considered a key
strategy for the sustainability of reforms for National Social Security Systems.

The preliminary investigation presented here will be completed with the
assessment of prediction performances: to this aim, ensemble tree methods, as
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random forests - in both parametric and non-parametric settings - should be
considered as competitive methods.
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