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Abstract In this study, modified maximum likelihood (MML) estimators for the 
location and scale parameters of the Kumaraswamy Weibull (Kw-Weibull) distribu-
tion are derived based on ranked set sampling (RSS) method under the assumption of 
known shape parameters, see Tiku (1967, 1968) in the context of MML methodology. 
MML estimators based on RSS are compared with the traditional maximum like-
lihood (ML) estimators based on simple random sampling (SRS) via Monte-Carlo 
simulation study in terms of bias, mean squares error (.MSE) and relative efficiency 
(.RE) criteria. According to the results of the simulation study, MML estimators 
based on RSS are found to be more efficient than the ML estimators based on SRS 
in most of the simulation scenarios. 

1 Introduction 

The Weibull distribution, which takes its name from Waloddi Weibull, is one of the 
most popular probability distributions having widespread usage in different areas of 
science, such as reliability theory, engineering, biology, hydrology, etc., see Weibull 
(1939). However, it fails to provide a good fit to data sets having bathtub-shaped or 
upside-down bathtub-shaped failure rates that are commonly observed in the fields 
of engineering and reliability. In order to model such datasets, many different forms 
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of Weibull distribution have been proposed in the literature, for example, inverse 
Weibull, exponentiated Weibull, modified Weibull, transmuted inverse Weibull, etc. 
The Kumaraswamy Weibull (Kw-Weibull) distribution proposed by Cordeiro et al. 
(2010) is another form of the Weibull distribution, for the details of Kumaraswamy 
distribution, see Kumaraswamy (1980). It has a high degree of flexibility for modeling 
positive data encountered especially in the area of reliability. 

It is worthy to mention that obtaining a sample that is fairly representative of 
the population is an important step in statistical inference about the real world. 
Simple random sampling (SRS) is the most widely used sampling method in the 
literature. Nevertheless, sample selected via SRS may not represent the population 
well enough. To overcome this problem, the ranked set sampling (RSS) method is 
used as a powerful alternative to SRS especially for circumstances when the variable 
of interest is expensive or cannot easily be measured but can easily be ranked at a 
negligible cost, see McIntyre (1952). It offers the benefit of increasing the efficiency 
of the estimators for population parameters by containing the information provided 
not only by measured observations but also by the ranking process. 

There is an extensive literature focusing on the performance of RSS and its differ-
ent forms in parameter estimation. Dell and Clutter (1972) showed that an unbiased 
estimator for the population mean is obtained based on RSS irrespective of ranking 
errors and it is at least as efficient as the estimator obtained based on SRS with the 
same sample size. Stokes (1980a, b) and Stokes and Sager (1988) proved that RSS 
provides more precise estimators for the variance, Pearson correlation coefficient 
and cumulative distribution function, respectively. Stokes (1995) examined the max-
imum likelihood (ML) and the best linear unbiased estimators for the location and 
scale parameters of the location-scale distribution family based on RSS. Barabesi 
and El-Sharaawi (2001) showed that parametric inference based on RSS provides 
more information than SRS. Abu-Dayyeh et al. (2004) proposed different estimators 
for the location and scale parameters of the logistic distribution using SRS, RSS or 
some modifications of RSS. Helu et al. (2010) compared ML, method of moments 
(MoM) and Bayesian estimators for the Weibull distribution parameters based on dif-
ferent sampling schemes such as SRS, RSS and modified ranked set sample (MRSS). 
Al-Omari and Al-Hadhrami (2011) compared ML estimators for the parameters of 
the modified Weibull distribution based on the extreme ranked set sampling (ERSS) 
and SRS. Balci et al. (2013) derived modified maximum likelihood (MML) estima-
tors for the population mean and variance under RSS. Hussian (2014) compared the 
ML and Bayesian estimators for the Kumaraswamy distribution parameters based on 
SRS and RSS. Yousef and Al-Subh (2014) compared ML estimators for the Gumbel 
distribution parameters based on SRS and RSS with MoM and regression estima-
tors based on SRS. Dey et al. (2017) discussed the estimation of the parameter of 
the Rayleigh distribution using different estimation approaches based on different 
sampling methods such as SRS, RSS, MRSS and median RSS. Samuh et al. (2020) 
investigated the ML estimators for the new Weibull-Pareto distribution parameters 
based on SRS, RSS and some forms of RSS. Taconeli and de Lara (2022) evaluated 
the performance of nine different estimators for the discrete Weibull distribution 
parameters based on SRS and RSS.
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In this study, the MML estimators for the location and scale parameters of Kw-
Weibull distribution based on RSS are obtained when the shape parameters are 
assumed to be known. Then, they are compared with the traditional ML estimators 
based on SRS in terms of bias, mean squares error (.MSE) and relative efficiency 
(.RE) criteria via Monte Carlo simulation. The reason why we include MML method-
ology into the study is its capability to avoid problems due to iterative methods by 
providing explicit solutions. MML estimators are also asymptotically equivalent to 
ML estimators as well as having high efficiencies even for small sample sizes. As 
far as we know, this is the first study investigating the efficiencies of the MML esti-
mators for Kw-Weibull parameters in the context of RSS. Also, note that all the 
computations are conducted under the assumption of perfect ranking. See Ergenc 
and Senoglu (2023) for the ML estimators of Kw-Weibull parameters based on SRS. 

The remaining sections of this work are organized as follows. In Sect. 2, Kw-
Weibull distribution is described and the MML estimators for the location and scale 
parameters of the Kw-Weibull distribution based on RSS are derived. Section 3 
presents the results of the Monte Carlo simulation study. Finally, concluding remarks 
are given in Sect. 4. 

2 Parameter Estimation 

In this section, Kw-Weibull distribution is briefly described and the MML estimators 
based on RSS for its location and scale parameters are obtained with the assumption 
of known shape parameters. 

2.1 Kw-Weibull Distribution 

Let .X be a random variable with Kw-Weibull density function 

. 
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Here, . a, . b and .p are the shape parameters, .μ and .σ are the location and scale 
parameters, respectively. The random variable .X having Kw-Weibull distribution 
with the mentioned parameters is shortly denoted by.X ∼Kw-Weibull.(a, b, p, σ, μ). 

Kw-Weibull distribution is negatively or positively skewed in addition to being 
leptokurtic (having kurtosis greater than 3) or platykurtic (having kurtosis less than 
3) based on the values of the shape parameters. It is also reduced to some well-known 
probability distributions, such as Weibull, exponentiated Weibull, Rayleigh, expo-
nentiated Rayleigh, Exponential and exponentiated Exponential for some specific 
values of its shape parameters. For the details of the Kw-Weibull distribution, one 
may refer to Cordeiro et al. (2010), Guven and Senoglu (2023). 

2.2 MML Estimators Based on RSS 

In order to obtain a ranked set sample, firstly .m sets of size .m are selected by using 
SRS. Then, the sample units in each set are ranked in ascending order according to 
some inexpensive criterion, e.g., visual inspection, expert opinion or a concomitant 
variable without any exact measurement. After ranking, the unit with the smallest 
rank is selected from the first set. The unit with the second smallest rank is selected 
from the second set and this procedure is continued until the largest ranked unit is 
selected from the. mth set. The entire process constitutes a cycle and can be repeated 
for. r times yielding a sample of size.n = mr , if needed. At the end, only the selected 
units are actually measured. 

For this study, let .X(i)ic, .i = 1, . . . ,m; .c = 1, . . . , r , be the resulted sample with 
size.n = mr from Kw-Weibull.(a, b, p, σ, μ) distribution. Realize that.X(i)ic denotes 
the .i th order statistics for the . i th set from the . cth cycle. In the rest of this study, . Xic

is used instead of .X(i)ic for the sake of simplicity. 
The probability density function (pdf) of .Xic is obtained as 

. fXic (xic) = m!
(i − 1)!(m − i)! [FX (xic)]

i−1 [1 − FX (xic)]
m−i fX (xic) (3) 

where. f and. F are the density and distribution functions of Kw-Weibull distribution 
given in equations (1) and (2), respectively. 

In order to obtain the ML estimators for the location and scale parameters of 
Kw-Weibull distribution based on RSS, first the likelihood.(L) function is written as 
follows 

.L =
r|   |

c=1

m|   |
i=1

m!
(i − 1)!(m − i)!

1

σ
[F (zic)]

i−1 [1 − F (zic)]
m−i f (zic) (4) 

where.zic = xic−μ

σ
. Then, the log-likelihood.(ln L) function is obtained by taking the 

logarithm of . L as given below
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. ln L = ln
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By taking the partial derivatives of .ln L with respect to the parameters . μ and . σ and 
setting them equal to zero, the likelihood equations are obtained as 

. 
∂ ln L
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and 

. 
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Likelihood equations in (6) and (7) cannot be solved in closed form since they 
include nonlinear functions of the parameters. Therefore, in order to obtain ML 
estimators, numerical methods should be used. However, they have some drawbacks 
such as .i) non-convergence, .i i) convergence to wrong roots and .i i i) convergence 
to multiple roots. Thus, in this study Tiku’s MML methodology is used, which 
provides explicit estimators maintaining the same asymptotic properties with ML 
estimators. In MML methodology, since the complete sums are invariant to ordering, 
i.e. .

Er
c=1

Em
i=1 z(i)c = Er

c=1

Em
i=1 zic, first the likelihood equations in (6) and (7) 

are written in terms of standardized order statistics .z(1)c < z(2)c < · · · < z(m)c . (c =
1, . . . , r) as follows 

. 
∂ ln L
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= − 1

σ

(
rE
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mE
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(i − 1)g1(z(i)c) −
rE
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mE
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+
rE

c=1

mE
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g3(z(i)c)

)
= 0 (8)
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and 

. 
∂ ln L

∂σ
= − 1

σ
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rE
c=1

mE
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(i − 1)z(i)cg1(z(i)c) −
rE
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rE
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Here, .z(i)c = x(i)c−μ

σ
, .g1(z(i)c) = f (z(i)c)

F(z(i)c)
, .g2(z(i)c) = f (z(i)c)

1−F(z(i)c)
and .g3(z(i)c) = f ,(z(i)c)

f (z(i)c)
. 

Secondly, nonlinear functions, .g1(z(i)c), .g2(z(i)c) and .g3(z(i)c) are linearized 
around the expected values of the ordered statistics, i.e. .t(i)c = E(z(i)c), by using  
the first two terms of the Taylor series expansion as follows 

.

g1(z(i)c) ∼= α1i − β1i z(i)c,

g2(z(i)c) ∼= α2i + β2i z(i)c,

g3(z(i)c) ∼= α3i − β3i z(i)c

(10) 

where 

. 

α1i = f (t(i)c)

F(t(i)c)
+ β1i t(i)c, β1i = −

(
f ,(t(i)c)
F(t(i)c)

− ( f (t(i)c))2
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)
,
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(1 − F(t(i)c))2

)
,
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f (t(i)c)

+ β3i t(i)c and β3i = −
(

f ,,(t(i)c) f (t(i)c) − ( f ,(t(i)c))2

( f (t(i)c))2

)
.

It should be noted that .zic are independent and non-identically (inid) distributed, 
therefore expected values of standardized order statistics, .t(i)c, are calculated via 
Monte Carlo simulation to avoid mathematical difficulties in theory. 

By incorporating the linearized functions in (10) into (8) and (9), the modified 
likelihood equations are obtained as below 

. 
∂ ln L∗
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and 

. 
∂ ln L∗

∂σ
= − n
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σ
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Simultaneous solutions of the equations (11) and (12) give the following MML 
estimators 

.μ̂ = K − Dσ̂ and σ̂ = −B + √
B2 + 4nC

2
√
n(n − 1)

(13) 

where 

. K =
Er

c=1

Em
i=1 δi x(i)c

M
, M = r

mE
i=1

δi , D = r
Em

i=1 /\i

M
,

δi = (i − 1)β1i + (m − i)β2i + β3i , /\i = (i − 1)α1i − (m − i)α2i + α3i ,

B =
rE

c=1

mE
i=1

/\i
(
x(i)c − K

)
and C =

rE
c=1

mE
i=1

δi
(
x(i)c − K

)2
.

Here, it should be noted if . μ̂ is larger than.Min(x(1)c), it is taken as. Min(x(1)c) −
10−4. Also, . n in the divisor of . σ̂ is replaced by .

√
n(n − 1) as a bias-correction. See 

also Akgül and Şenoğlu (2017) in the context of Weibull distribution. 

3 Monte-Carlo Simulation 

In this section, ML and MML estimators for the Kw-Weibull location and scale 
parameters are compared in terms of bias, .MSE and .RE criteria via an extensive 
Monte Carlo simulation study. .REs are calculated using the following equalities 

.RE1 = MSE(μ̂MML ,RSS)

MSE(μ̂ML ,SRS)
× 100 (14) 

and 

.RE2 = MSE(σ̂MML ,RSS)

MSE(σ̂ML ,SRS)
× 100. (15)
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Here, .μ̂MML ,RSS and .σ̂MML ,RSS denote the MML estimators for the location and 
scale parameters of the Kw-Weibull distribution based on RSS, respectively, while 
.μ̂ML ,SRS and.σ̂ML ,SRS denote the ML estimators for the location and scale parameters 
of the Kw-Weibull distribution based on SRS, respectively. Note that ML estimates 
based on SRS and MML estimates based on RSS are calculated by using 10,000 
replications. ML estimates of the parameters of interest are computed using optim 
function in R statistical software, while MML estimates are obtained explicitly. 

In the simulation scenario, following values of the set size. m, cycle size. r and the 
shape parameters .a, b and . p are used 

• .(m, r)=(3,4), (4,3) and (6,2) for . n=12 
.(m, r)=(3,8), (4,6), (6,4) and (8,3) for . n=24 

• .(a, b)= (1,1), (2,2), (5,6) and (6,3.5) 

and 

• . p= 1.5, 3 and 6. 

Simulated bias and .MSE values for the estimators of the location and scale 
parameters of the Kw-Weibull distribution and the corresponding .RE values are 
presented in Table 1. 

The following conclusions can be drawn from Table 1. 

• For small value of . n, i.e., .n = 12, .μ̂ML ,SRS and .σ̂ML ,SRS do not perform well 
in terms of bias criterion while .μ̂MML ,RSS and .σ̂MML ,RSS have negligibly small 
bias in majority of the cases except when .p = 1.5, .(a, b) = (2, 2) and .p = 3, 
.(a, b) = (1, 1). A point worthy of note for some of these exceptional cases is that 
biases of.μ̂MML ,RSS and.σ̂MML ,RSS become smaller than.μ̂ML ,SRS and.σ̂ML ,SRS as 
the set size .m increases, respectively. 

• MML estimators based on RSS and ML estimators based on SRS of the location 
parameter . μ and scale parameter . σ have negligibly small bias values for . n = 24
except when.p = 1.5,.(a, b) = (2, 2) and.p = 3,.(a, b) = (1, 1). In the mentioned 
cases .μ̂MML ,RSS and .σ̂MML ,RSS have considerably larger bias than their counter-
parts .μ̂ML ,SRS and .σ̂ML ,SRS , respectively. 

• Overall, in view of bias, it can be deduced that MML estimators based on RSS of 
. μ and . σ have superiority over ML estimators based on SRS of . μ and . σ . 

• .μ̂MML ,RSS outperforms.μ̂ML ,SRS in terms of efficiency in most of the cases and this 
superiority becomes more apparent as the set size .m increases for a fixed. n. Here, 
it should be noted that when .p = 1.5, .(a, b) = (2, 2) and .p = 3, .(a, b) = (1, 1), 
.μ̂ML ,SRS has higher efficiency than .μ̂MML ,RSS only for some small values of . m, 
see .RE1 from Table 1. 

• .σ̂MML ,RSS performs better than .σ̂ML ,SRS in terms of efficiency for almost all 
cases. However, when.n = 24,.p = 1.5,.(a, b) = (2, 2) and.p = 3,.(a, b) = (1, 1), 
.σ̂ML ,SRS has slightly better efficiencies than .σ̂MML ,RSS for small values of . m, see  
.RE2 from Table 1. 

• .RE1 and.RE2 values also reveal that the efficiencies of MML estimators based on 
RSS increase as the set size .m increases for a fixed sample size . n.
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Table 1 Simulated Bias, .MSE and .RE values for the MML estimators based on RSS and ML 
estimators based on SRS 

. p = 1.5

.μ̂ . σ̂

Bias .MSE Bias .MSE .RE1 . RE2

.(m, r) . (a, b) = (2, 2)

ML(SRS) .n = 12 – 0.072340 0.029763 –0.078016 0.045597 

MML(RSS) (3, 4) 0.118564 0.034182 –0.070474 0.040843 114 90 

(4, 3) 0.097934 0.028135 –0.066931 0.036501 94 80 

(6, 2) 0.075475 0.021436 –0.058926 0.029582 72 65 

ML(SRS) .n = 24 – 0.038350 0.013196 –0.041993 0.021870 

MML(RSS) (3, 8) 0.113396 0.022673 –0.065169 0.022020 172 101 

(4, 6) 0.093946 0.017898 –0.060182 0.019451 136 89 

(6, 4) 0.072783 0.012764 –0.055847 0.015483 97 71 

(8, 3) 0.062998 0.010353 –0.052429 0.013266 79 61 

.(m, r) . (a, b) = (5, 6)

ML(SRS) .n = 12 – 0.070272 0.047452 –0.068373 0.044535 

MML(RSS) (3, 4) 0.049735 0.040172 –0.038698 0.038343 85 86 

(4, 3) 0.046873 0.035764 –0.038293 0.033975 75 76 

(6, 2) 0.044277 0.029992 –0.039003 0.028480 63 64 

ML(SRS) .n = 24 – 0.032074 0.022402 –0.031069 0.020975 

MML(RSS) (3, 8) 0.041789 0.020389 –0.030900 0.018943 91 90 

(4, 6) 0.045113 0.018845 –0.036734 0.017521 84 84 

(6, 4) 0.043766 0.015529 –0.038443 0.014650 69 70 

(8, 3) 0.043015 0.013745 –0.039000 0.012994 61 62 

. (a, b) = (6, 3.5)

ML(SRS) .n = 12 – 0.089519 0.070353 –0.071578 0.045657 

MML(RSS) (3, 4) 0.065021 0.061448 –0.036593 0.039812 87 87 

(4, 3) 0.056816 0.055442 –0.034802 0.036263 79 79 

(6, 2) 0.050850 0.044862 –0.034203 0.029368 64 64 

ML(SRS) .n = 24 – 0.041281 0.032912 –0.032437 0.021271 

MML(RSS) (3, 8) 0.049610 0.029827 –0.025006 0.019225 91 90 

(4, 6) 0.050599 0.028167 –0.029468 0.017995 86 85 

(6, 4) 0.049945 0.023364 –0.032949 0.014921 71 70 

(8, 3) 0.050030 0.020102 –0.035115 0.013003 61 61 

. p = 3

.μ̂ . σ̂

Bias .MSE Bias .MSE .RE1 . RE2

.(m, r) . (a, b) = (1, 1)

ML(SRS) .n = 12 – 0.074350 0.036051 –0.080780 0.039964 

MML(RSS) (3, 4) 0.083876 0.031710 –0.081147 0.035811 88 90 

(4, 3) 0.079154 0.028206 –0.078733 0.032574 78 82 

(6, 2) 0.069088 0.023539 –0.069279 0.027396 65 69
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Table 1 (continued) 

ML(SRS) .n = 24 – 0.038107 0.016294 –0.040955 0.018091 

MML(RSS) (3, 8) 0.081924 0.018450 –0.078850 0.020235 113 112 

(4, 6) 0.074480 0.016125 –0.074630 0.018297 99 101 

(6, 4) 0.064266 0.013034 –0.065295 0.015079 80 83 

(8, 3) 0.058952 0.011039 –0.061466 0.012996 68 72 

.(m, r) . (a, b) = (2, 2)

ML(SRS) .n = 12 – 0.063038 0.040924 –0.066700 0.044006 

MML(RSS) (3, 4) 0.043504 0.033315 –0.045686 0.037454 81 85 

(4, 3) 0.041683 0.029675 –0.044383 0.033306 73 76 

(6, 2) 0.041134 0.025014 –0.043584 0.028443 61 65 

ML(SRS) .n = 24 – 0.031525 0.019718 –0.033480 0.021016 

MML(RSS) (3, 8) 0.036230 0.016268 –0.037837 0.018210 83 87 

(4, 6) 0.036178 0.015217 –0.038019 0.017004 77 81 

(6, 4) 0.037944 0.012768 –0.040078 0.014503 65 69 

(8, 3) 0.038649 0.011388 –0.040665 0.012865 58 61 

.(m, r) . (a, b) = (5, 6)

ML(SRS) .n = 12 – 0.066067 0.049908 –0.065113 0.046415 

MML(RSS) (3, 4) 0.023655 0.043534 –0.027627 0.040959 87 88 

(4, 3) 0.028471 0.038423 –0.030532 0.036367 77 78 

(6, 2) 0.028696 0.031618 –0.029825 0.030151 63 65 

ML(SRS) .n = 24 – 0.031656 0.024048 –0.031556 0.022217 

MML(RSS) (3, 8) 0.015219 0.020430 –0.019033 0.019377 85 87 

(4, 6) 0.021625 0.018428 –0.024169 0.017512 77 79 

(6, 4) 0.029105 0.015444 –0.030505 0.014800 64 67 

(8, 3) 0.030638 0.013605 –0.031642 0.013070 57 59 

. p = 3

.μ̂ . σ̂

Bias .MSE Bias .MSE .RE1 . RE2

.(m, r) . (a, b) = (6, 3.5)

ML(SRS) .n = 12 – 0.073271 0.058461 –0.065721 0.045182 

MML(RSS) (3, 4) 0.025503 0.050083 –0.024275 0.039212 86 87 

(4, 3) 0.029301 0.046109 –0.026956 0.036219 79 80 

(6, 2) 0.034794 0.038262 –0.031707 0.030159 65 67 

ML(SRS) .n = 24 – 0.035316 0.028058 –0.031097 0.021661 

MML(RSS) (3, 8) 0.017353 0.023998 –0.016964 0.018845 86 87 

(4, 6) 0.024369 0.022289 –0.022939 0.017479 79 81 

(6, 4) 0.030895 0.019065 –0.028034 0.015003 68 69 

(8, 3) 0.033621 0.016752 –0.030527 0.013242 60 61 

. p = 6

.(m, r) . (a, b) = (1, 1)

ML(SRS) .n = 12 – 0.067451 0.044927 –0.070986 0.043264 

MML(RSS) (3, 4) 0.034575 0.036711 –0.051248 0.037367 82 86 

(4, 3) 0.034040 0.032620 –0.046275 0.033504 73 77 

(6, 2) 0.033945 0.026890 –0.041317 0.027858 60 64
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Table 1 (continued) 

ML(SRS) .n = 24 – 0.031876 0.021009 –0.033776 0.020162 

MML(RSS) (3, 8) 0.026835 0.017631 –0.042409 0.018324 83 91 

(4, 6) 0.032119 0.016027 –0.043968 0.016822 76 83 

(6, 4) 0.034754 0.013490 –0.042608 0.014250 64 71 

(8, 3) 0.036360 0.011805 –0.042345 0.012472 56 62 

.(m, r) . (a, b) = (2, 2)

ML(SRS) .n = 12 – 0.061994 0.046736 –0.065090 0.046791 

MML(RSS) (3, 4) 0.015073 0.038908 –0.023530 0.039738 83 85 

(4, 3) 0.024646 0.035461 –0.030801 0.036364 76 78 

(6, 2) 0.024914 0.028947 –0.029336 0.030147 62 64 

ML(SRS) .n = 24 – 0.031791 0.022503 –0.033409 0.022475 

MML(RSS) (3, 8) 0.014317 0.018875 –0.022367 0.019448 84 87 

(4, 6) 0.021008 0.017164 –0.027384 0.017814 76 79 

(6, 4) 0.017814 0.014135 –0.030223 0.014779 63 66 

(8, 3) 0.030261 0.012393 –0.033767 0.013011 55 58 

. p = 6

.μ̂ . σ̂

Bias .MSE Bias .MSE .RE1 . RE2

.(m, r) . (a, b) = (5, 6)

ML(SRS) .n = 12 – 0.065423 0.049333 –0.065108 0.047079 

MML(RSS) (3, 4) 0.015262 0.042233 –0.019471 0.040597 86 86 

(4, 3) 0.024357 0.037928 –0.027087 0.036563 77 78 

(6, 2) 0.025777 0.032181 –0.027499 0.031188 65 66 

ML(SRS) .n = 24 – 0.029579 0.023694 –0.029604 0.022530 

MML(RSS) (3, 8) 0.009252 0.021041 –0.013529 0.020209 89 90 

(4, 6) 0.015196 0.019067 –0.018253 0.018450 80 82 

(6, 4) 0.023697 0.015617 –0.025511 0.015168 66 67 

(8, 3) 0.025037 0.013430 –0.026268 0.013090 57 58 

. (a, b) = (6, 3.5)

ML(SRS) .n = 12 – 0.067278 0.053691 –0.063828 0.046907 

MML(RSS) (3, 4) 0.016559 0.046085 –0.018403 0.040374 86 86 

(4, 3) 0.022479 0.041768 –0.023273 0.036743 78 78 

(6, 2) 0.030241 0.034589 –0.029848 0.030468 64 65 

ML(SRS) .n = 24 – 0.033218 0.025832 –0.031413 0.022463 

MML(RSS) (3, 8) 0.011041 0.022555 –0.013359 0.019740 87 88 

(4, 6) 0.017659 0.020266 –0.018731 0.017864 78 80 

(6, 4) 0.027006 0.016983 –0.026798 0.014978 66 67 

(8, 3) 0.030047 0.014780 –0.029262 0.013084 57 58



108 Ö. Gürer et al.

The reason why we use various different values of .m and . r in this study is to see 
the tradeoff between the efficiencies of the MML estimators based on RSS and the 
practical issues. It is mentioned in the literature that the efficiency of an estimator 
based on RSS is an increasing function of the set size. m, see for example, Patil et al. 
(1994) and Kowalczyk (2005). Results in Table 1 are consistent with the literature 
since the efficiencies of the MML estimators based on RSS increase as the set size. m
increases for a fixed. n, see.RE1 and.RE2 values in Table 1. However, large values of 
set size. m may cause an increase in cost and also difficulties in ranking, so in order to 
obtain enough number of measurements in statistical inference problems, the cycle 
size . r is increased instead of .m in RSS procedure. 

4 Conclusion 

In this study, MML estimators for the location and scale parameters of the Kw-
Weibull distribution are obtained under RSS in explicit forms. Then the performances 
of the proposed estimators are compared with those of the traditional ML estima-
tors based on SRS according to criteria of bias, .MSE and .RE using Monte Carlo 
simulation study. MML estimators based on RSS are found to be more efficient com-
pared to the traditional ML estimators based on SRS in most of the cases defined 
in simulation scenario. Simulation results also indicate that the efficiencies of the 
MML estimators increase as the set size .m increases as expected. Note that MML 
methodology based on RSS can easily be extended to other distributions belong to 
the location scale family. 
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