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Abstract Obtaining new statistical distributions involves employing various tech-
niques aimed at enhancing modeling efficiency. In this particular study, a novel distri-
bution is introduced by extracting the conditional diagonal section from the bivariate 
Farlie-Gumbel-Morgenstern distribution, where the marginals follow the Weibull 
distribution. The characteristics and specifications of this newly proposed distribu-
tion are thoroughly examined. Statistical discussions are held regarding the structure 
of the distribution, and parameter estimation techniques are applied using established 
methods. Furthermore, reliability analysis is conducted to assess its performance. To 
gauge the effectiveness of this innovative distribution for statistical modeling, data 
sets sourced from existing literature are utilized. Based on the findings, it is deduced 
that this fresh approach offers an efficient and robust model specifically suited 
for analyzing lifetime datasets. With this methodology, according to Kolmogorov 
Smirnov test statistics, the modeling efficiency of the Weibull distribution is increased 
by more than 20% in some situations. 
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1 Introduction 

Weibull distribution is one of the most popular lifetime distributions. This valu-
able distribution has been used widely in mechanic engineering (University of 
Cambridge, 2003). Weibull has also been used in modelling strength data (University 
of Cambridge, 2003) and in modelling data sets of many other fields commonly. In 
some study areas, some parameters of this distribution engaged in demonstrating 
an important situation (Basu et al., 2009). In some analyses, only the parameter 
value represents the quality (University of Cambridge, 2003). Although this distri-
bution is very capable of modelling very different kinds of lifetime datasets, in some 
datasets the modelling success rate may be lower. Some studies-to fix this situation-
researchers add more parameters for better modelling (Marshall, 1997; Mudholkar & 
Srivastava, 1993). Weibull distribution has some specialties that this distribution has 
relations to other distributions (Rinne, 2008). In this study, the main aim is to increase 
the modeling efficiency of Weibull distribution by a different and special technique. 
By this approach, the Weibull distribution has three parameters and the new distri-
bution may be more flexible in different kinds of datasets. This technique was used 
in a study for gaining new distribution (Ünözkan & Yilmaz, 2019). In this article, 
Weibull distribution gains a different capability than ever before. 

2 Materials and Methods 

In a study for gaining new distribution for flows a conditional Farlie-Gumbel-
Morgenstern Distribution was used. In this process the marginal distributions were 
exponential. In order to realize this, the study used an important theorem. 

2.1 Theorem (Sklar’s Theorem) 

Let F be a joint cumulative distribution function and H and G are marginals, then 
there is a copula function C in R for every x and y (Sklar, 1959). 

F(x, y) = C(H (x), G(y)) 

Farlie-Gumbel-Morgenstern (FGM) copula with marginals u and v can be written 
as below (Nelsen, 2006). 

Cθ (u, v) = uv + θuv(1 − u)(1 − v)
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Hence, two-dimensional bivariate FGM distribution with marginals H (x) and 
G(y) is as follows; 

F(x, y) = H (x)G(y)
[
1 + λH (x)G(y)

]
. 

The probability density function of this distribution is as below. 

f (x, y) = h(x)g(y)
[
1 + λ(1 − 2H (x))(1 − 2G(y))

]

Under Y = y condition, X has a conditional probability density function as 
follows. 

f X |Y =y(x) = h(x)
[
1 + λ(1 − 2H (x))(1 − 2G(y))

]

Under Y = y condition, X has a conditional distribution as below. 

F X |Y=y(x) =
{

h(x)
[
1 + λ(1 − 2H (x))(1 − 2G(y))

]
dx 

F X |Y =y(x) = H (x) − λ(1 − 2G(y))H (x)H (x) 

Under T = t condition probability of X ≤ t is 

F X |Y =y(t) = H (t) − λ(1 − 2G(t))H (t)H (t) 

Provided (Ünözkan & Yilmaz, 2019). 
Considering the models related to natural events, Weibull distribution has a wide 

range of usability. Because of modelling capability, Weibull distribution has been 
used widely. 

Then we have 

F(t) = (1 + λ)H (t) − λH (t)2 (3 − 2H (t)) 

We know from the literature that the transmuted distribution with baseline H (t) is 
(1 + λ)H (t) − λH (t)2 . Here, H (t)2 is the failure distribution of the two-component 
parallel system (with identical and independent) namely, represented as H2:2. In the  
light of this idea, F(t) can be also rewritten as the form of (1 + λ)H (t) − λH3:2(t) 
where H3:2 represents a failure distribution of 3 out of 2 system with independent 
and identical component. Thus, we have a different form of transmuted distribution. 
Hence when baseline distribution is assumed to be Weibull we have the following 
special form of distribution. 

Suppose that H (t) = G(t) = 1 − e−
(

t 
β

)α 

.
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F(t) = (1 + λ)

(
1 − e−

(
t 
β

)α)
− λ

(
1 − e−

(
t 
β

)α)2(
3 − 2

(
1 − e−

(
t 
β

)α))
(1) 

The probability density function of conditional Farlie-Gumbel-Morgenstern with 
Weibull marginal (CFGM-W) is as below. 

f (t) = 
d 

dt 
(1 + λ)

(
1 − e−

(
t 
β

)α)
− λ

(
1 − e−

(
t 
β

)α)2(
3 − 2

(
1 − e−

(
t 
β

)α))

f (t) =
(

α 
β

(
t 

β

)α−1 

e
−

(
t 
β

)α
)

(

1 + λ − 6λ
(
1 − e−

(
t 
β

)α)
+ 6λ

(
1 − e−

(
t 
β

)α)2
)

, λ  ∈ [−1,1], α, β  >  0 

(2) 

Some shapes of probability density function are as below. 
According to Fig. 1, we can easily see that parameter β determines location 

solely. The other two parameters change the shape of the probability density function 
effectively in Figs. 2 and 3. Therefore, we believe that CFGM-W can be used in 
interesting data groups that have bimodal data plots.

The survival function of CFGM-W is as follows; 

S(t) = 1 − F(t) 

= 1 −
(

(1 + λ)

(
1 − e−

(
t 
β

)α)
− λ

(
1 − e−

(
t 
β

)α)2(
3 − 2

(
1 − e−

(
t 
β

)α)))

= 1 − (1 + λ)(H (t)) + λ(H (t))2 (3 − 2(H (t))) 

S(t) = (1 + λ)H (t) − λ
(
3
(
H (t)

)2 − 2
(
H (t)

)3)

The hazard rate function of CFGM-W is as below. 

r(t) = 
f (t) 
S(t) 

=

(
α 
β

(
t 
β

)α−1 
e
−

(
t 
β

)α)(

1 + λ − 6λ
(
1 − e−

(
t 
β

)α)
+ 6λ

(
1 − e−

(
t 
β

)α)2
)

1 −
(

(1 + λ)

(
1 − e−

(
t 
β

)α)
− λ

(
1 − e−

(
t 
β

)α)2(
3 − 2

(
1 − e−

(
t 
β

)α)))
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Fig. 1 Plots of the probability density function-1
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Some shapes of hazard rate function are as below. 
According to Figs. 4 and 5, we can easily see that parameter β has a big impact on 

both the probability density function and the hazard rate function. Thus, we believe 
that CFGM-W can be used in interesting data groups that may pose changeable types 
of risks.

Figures 4 and 5 show that there is an inverse relationship between the hazard 
rate function and the value of parameter β. When parameter β increases, the hazard 
rate function decreases. According to plots, there are initially changing proportions 
of deaths, and at the beginning, some components rapidly deteriorate. Thereafter a 
balance is formed and an almost constant hazard rate is observed. 

According to Fig. 3 parameter α determines bimodality. When parameter α has 
a value bigger than 3 the second model has a bigger top. When parameter α has a 
value lower than 3 the first part of the model has a bigger top.
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Fig. 2 Plots of the probability density function-2

2.2 Maximum Likelihood Estimation 

L

(
β, α, λ; t 

_

)
= f (t1, t2, t3, . . . ,  tn;β, α, λ) = 

n|   |

i=1 

f (ti; β, α, λ) 

= 
n|   |

i=1

(
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β

(
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β

)α−1 

e
−

(
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β

)α
)(

1 + λ − 6λ
(
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+ 6λ

(
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β
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)

= αnβ1−n−α 
n|   |
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(ti )
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− En 
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ti 
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i=1

(
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(
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( ti 
β

)α ))

+ (6λ)n 
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By using Log Likelihood, the maximum likelihood estimation of parameters can 
be obtained with the derivation of β, α and λ. 

log

(
L

(
β, α, λ; t 

_

))
= nlogα − (n + α − 1)logβ + (α + 1) 

nE

i=1 

log(ti)
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Fig. 3 Plots of the probability density function-3
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Fig. 4 Plots of hazard rate function-1 

Fig. 5 Plots of hazard rate function-2



Some Comments on Increasing Modelling Efficiency of Weibull … 137

2.3 Least Squares Estimation 

F(t) = (1 + λ)

(
1 − e−

(
t 
β

)α)
− λ

(
1 − e−

(
t 
β

)α)2(
3 − 2

(
1 − e−

(
t 
β

)α))
= u 

Suppose that H (t) = 1 − e−
(

t 
β

)α 

, 

λH (t)(H (t) − 1)(2H (t) − 1) + H (t) − u = 0 

SS = 
nE

i=1 

(λH (ti)(H (ti) − 1)(2H (ti) − 1) + H (ti) − u)2 

d 

d λ 

nE

i=1 

(λH (ti)(H (ti) − 1)(2H (ti) − 1) + H (ti) − u)2 = 0 

λLSE

/\

=
En 

i=1(H (ti) − u)(H (ti)(H (ti) − 1)(2H (ti) − 1))
En 

i=1 (H (ti)(H (ti) − 1)(2H (ti) − 1))2 

d 

d β 

nE

i=1 

(λH (ti)(H (ti) − 1)(2H (ti) − 1) + H (ti) − u)2 = 0 

d 

dα 

nE

i=1 

(λH (ti)(H (ti) − 1)(2H (ti) − 1) + H (ti) − u)2 = 0 

With the least squares estimation, we can reach a close form of estimation for 
parameter λ. For the other parameters, α and β numerical methods may be used with 
software support. 

In this study, Matlab 2016b software is used to obtain parameter estimations and 
Kolmogorov Smirnov test statistics. 

3 Results and Discussion 

Now, using some different data groups, we first compare CFGM-W with the most 
common statistical distributions. Subsequently, we offer CFGM-W as a new distribu-
tion for lifetime data with different kinds of data groups. While comparing distribu-
tions, we will use Kolmogorov–Smirnov test statistics for looking at the availability of 
our distribution to data sets. In Kolmogorov–Smirnov test statistics p-value indicates 
the success rate of distribution in the explanation (Næss, 2012; Ross, 2009).
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Once we see that the two distributions are equal, we will have a new problem. 
Which distribution is better for this data set? Because according to the hypothesis 
test, there may be many distributions that are equal to nonparametric distribution. 
Akaike Information Criterion (AIC) can be used to compare these distributions. 
When AIC is used, the distribution with the minimum AIC value is selected as the 
best distribution (Akaike, 1974). Since the AIC is a penalty value and the minimum 
value represents the maximum similarity to the non-parametric distribution of the data 
set, the minimum AIC value is the maximum similarity to the distribution (Snipes & 
Taylor, 2014; University of Cambridge, 2003). 

In this section, CFGM-W will be compared with the most known lifetime distribu-
tions using some different data groups. While comparing distributions, Kolmogorov– 
Smirnov test statistics will be used. When using Kolmogorov–Smirnov statistics, 
the least statistical value is considered to be the best modeling. The p-value of 
Kolmogorov–Smirnov statistics informs us about the plausibility of conformity. 

Data 1: The first data we used are the flood peak values (in m3/s) of the Wheaton 
River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances 
for the years 1958–1984, rounded to one decimal place. This data was analyzed in 
(Choulakian & Stephens, 2001) and after this the same data was used in Merovci 
and Puka ( 2014) and Ünözkan and Yilmaz (2019) (see Table 1). 

In Table 2 the new distribution offers the best model. Other distributions have 
been used widely, but CFGM-W fits better than all other known distributions in flow 
modelling.

Data 2: This data group contains 56 measurements of total flows from Sefaatli Creek 
in April from 1953 to 2014. The data group was received from the Turkish State Water 
Affairs Directorate and was first used in a study for flow distribution [6] (see Table 3).

In Table 4 the new distribution offers the best model. Other distributions have 
been used widely, but CFGM-W fits better than all other known distributions in flow 
modelling.

Table 1 Wheaton river flood peaks (m3/s) data 

1.7 2.2 14.4 1.1 0.4 20.6 3.4 

12 9.3 1.4 18.7 8.5 25.5 11.9 

1.1 2.5 14.4 1.7 37.6 0.6 21.5 

15 11 7.3 22.9 1.7 0.1 5.3 

1.7 7 20.1 0.4 14.1 9.9 2.5 

3.6 5.6 30.8 13.3 4.2 25.5 2.8 

5.3 0.7 13 27.6 64 27.4 27.1 

11.6 14.1 22.1 20.2 9.7 27 2.5 

2.2 39 0.3 36.4 1.5 1 2.7 

1.1 0.6 9 16.8 27.5 1.9 30 

10.4 10.7 
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Table 2 Wheaton river flood peaks (m3/s) data test results 

Model K-S p 

GEV 0.1398 0.1087 

Log Pearson III 0.09948 0.44568 

Generalized Pareto 0.1005 0.43177 

Weibull 0.09045 0.5666 

Log-Normal 0.1394 0.1103 

CFGMWEM 0.0827 0.6774 

CFGM-W 0.0693 0.856

Table 3 Sefaatli Creek’s mean flows (m3/s) in April data 

29 44.9 9.5 12.5 10.8 19.8 18.3 

29.6 61.7 46.8 41.8 13.6 17.8 15.1 

26.9 14.1 36.3 23 18.4 19.5 41.5 

27.2 25.2 22 39.6 4.94 16.2 31.4 

6.21 2.99 4.12 2.47 19.99 9.844 5.525 

9.23 6.89 21.6 12.2 12.9 17.3 27.6 

7.72 8.14 29 36.5 31 4.248 3.52 

44.4 15.2 44.5 53.4 23.4 5.19 25.8

Table 4 Sefaatli Creek’s mean flows (m3/s) in April test results 

Model K-S p 

GEV 0.0545 0.993 

Log Pearson III 0.0548 0.9926 

Generalized Pareto 0.0495 0.998 

Weibull (3P) 0.05 0.9977 

Log-Normal (3P) 0.0626 0.9705 

CFGMWEM 0.0536 0.9944 

CFGM-W 0.045 1 

Data 3: This data set was used by Bhaumik et al. (2009), this data set carries vinyl 
chloride data obtained from clean-up gradient monitoring wells in mg/l (see Table 5).

In Table 6 it is obvious that the new distribution increases the modelling capability 
of the Weibull distribution. Although Weibull distribution is used commonly this new 
distribution offers a better model than classic distribution.

Data 4: The last data set contains Kevlar Epoxy strength results in spaceships (Badri-
narayan & Barlow, 1992). This test is implied on fibers under %90 pressure. The data 
represents failure times (see Table 7).
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Table 5 Vinyl chloride data 

5.1 1.2 1.3 0.6 0.5 2.4 0.5 

0.4 2 0.5 5.3 3.2 2.7 2.9 

1.8 0.9 2 4 6.8 1.2 0.4 

1.1 8 0.8 0.4 0.6 0.9 0.2 

2.5 2.3 1 0.2 0.2 0.1

Table 6 Vinyl chloride data test results 

Model K-S p 

Weibull 0.0963 0.8377 

CFGM-W 0.095 0.888

Table 7 Tensile strength under %90 pressure data 

0.54 0.8 1.52 2.05 1.03 1.18 0.8 

3.34 1.54 0.08 0.12 0.6 0.72 0.92 

1.81 2.17 0.63 0.56 0.03 0.09 0.18 

1.52 0.19 1.55 0.02 0.07 0.65 0.4 

1.6 1.8 4.69 0.08 7.89 1.58 1.64 

1.33 1.29 1.11 0.24 1.51 1.45 1.45 

1.05 1.43 3.03 0.03 0.23 0.72 1.51 

0.34 

Table 8 Tensile strength 
under %90 pressure data test 
results 

Model K-S p 

Weibull 0.107 0.5786 

Weibull (3P) 0.1072 0.5757 

CFGM-W 0.086 0.761

In Table 8 the new distribution offers the best model. Weibull and Weibull with 
three parameters are available either but CFGM-W fits better than the other two most 
known statistical distributions. 



Some Comments on Increasing Modelling Efficiency of Weibull … 141

Table 9 Values of parameter 
estimation in models Data group β λ α 

Wheaton river 10.353 1 1.0674 

Sefaatli Creek 23.796 0.4351 1.7181 

Vinyl chloride 1.9659 −1 0.6537 

Kevlar strength 7.4862 0.8518 2.0922 

4 Conclusion 

In the results and discussion section, anybody determines the capability of this new 
distribution easily. Compare with other lifetime distributions this new distribution 
may be more appropriate for some data groups. In the Table below are the param-
eter values of appropriate models. The structure of CFGM-W changes effectively 
with differences in all three parameters. In Table 9 there are maximum likelihood 
estimation values for parameters in modeling data 1 to data 4. 

We can easily see that CFGM-W gains conformity in different parameter values. 
According to test results for Data 1 to Data 4, we suggest that CFGM-W can be used 
in many kinds of lifetime data groups. 

We examine that CFGM-W has the best results in all data groups. According to 
the Tables in the application part, we conclude that CFGM-W can be identified as a 
lifetime distribution. 
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