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Abstract. Self-supervised learning has been a powerful training
paradigm to facilitate representation learning. In this study, we design
a masked autoencoder (MAE) to guide deep learning models to learn
electroencephalography (EEG) signal representation. Our MAE includes
an encoder and a decoder. A certain proportion of input EEG signals
are randomly masked and sent to our MAE. The goal is to recover these
masked signals. After this self-supervised pre-training, the encoder is
fine-tuned on downstream tasks. We evaluate our MAE on EEGEyeNet
gaze estimation task. We find that the MAE is an effective brain sig-
nal learner. It also significantly improves learning efficiency. Compared
to the model without MAE pre-training, the pre-trained one achieves
equal performance with 1/3 the time of training and outperforms it in
half the training time. Our study shows that self-supervised learning is a
promising research direction for EEG-based applications as other fields
(natural language processing, computer vision, robotics, etc.), and thus
we expect foundation models to be successful in EEG domain.
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1 Introduction

Electroencephalogram (EEG) data, with its rich multidimensional structure,
offers unique insights into various neurological phenomena [20]. Understanding
the complexities of human brain activity through EEG signals has long been
a focal point in neuroscience. EEG-based research holds immense potential of
decoding cognitive processes, mental states, and various spatial and temporal
aspects of brain functioning. The EEGEyeNet dataset [13], specifically designed
for diverse neurocognitive studies, presents a valuable repository for exploring
and analyzing EEG data in the context of predictive modeling tasks.

Among the numerous EEG-based tasks, gaze position estimation is a sig-
nificant challenge due to its relevance in spatial cognition. This task is per-
formed based on the Large Grid Paradigm where participants are instructed
to focus on a succession of dots that appear one after another, with each dot
appearing at one of 25 distinct positions on the screen [13]. The task is to
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predict the XY-coordinate of the participant’s gaze position. Accurate decod-
ing of absolute positions from EEG signals holds implications for neurorehabil-
itation, brain-computer interfaces, and understanding fundamental aspects of
spatial awareness.

Fig. 1. Pre-training and fine-tuning model architectures. EEG signals collected
from multiple channels are arranged into a matrix. (a) We mask random elements from
the input EEG signal matrix. Our MAE learns to recover these missing signals. (b) Our
main purpose is to measure the encoder’s performance change after MAE pre-training,
so we remove the decoder and fine-tune the encoder to predict gaze positions.

Deep learning methodologies have shown remarkable promise in unravel-
ing intricate patterns within EEG data [1,26]. Recently, the widely-used Vision
Transformer (ViT) model [10] has been proven to be able to significantly improve
the accuracy of absolute position prediction [29]. The model proposed by this
study, EEGViT, provides further evidence that EEG-based tasks could benefit
from computer vision models. EEGViT leverages ViT model weights pre-trained
on the ImageNet dataset [9] to achieve state-of-the-art performance, demonstrat-
ing that pre-training can contribute to the success of the model in addition to the
model architecture [29]. Our study further explores the potential of pre-training
to boost the model performance without data augmentation or modifying the
model architecture.

Self-supervised pre-training is a prevailing practice to facilitate the repre-
sentation learning of deep learning models. It helps the models learn useful
patterns and representation from the data and thus the models achieve bet-
ter performance on downstream tasks. In natural language processing (NLP),
self-supervised pre-training has been employed to guide large language models
to learn contextual information from text corpora [5,14,21,24,25]. Inspired by
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BERT [14], masked autoencoder (MAE) is applied to computer vision models
and shown to be successful and scalable vision learners [2,10,12].

As a self-supervised pre-training technique, MAE removes certain ratios of
content from inputs and tries to reconstruct them. When it is applied in ViT,
a certain ratio of input image patches are masked, and the goal is to recover
these masked patches [12]. Since EEGViT has shown the capability of the ViT
on EEG data, the applicability of MAE on EEG data is worth studying as well.
Therefore, our research question is: are MAEs effective brain signal learners?
We attempt to answer this question by employing a MAE design that is similar
to the one used for ViT pre-training. Our MAE masks random signals from the
input EEG signal matrix and reconstructs the missing signals. It has an encoder-
decoder architecture (Fig. 1a). The encoder operates on masked EEG signals
and learns meaningful latent representations. The decoder then reconstructs the
input signals from these latent representations. After pre-training with our MAE,
the decoder is removed and the encoder is applied to unmasked EEG signals for
gaze position prediction (Fig. 1b).

We compare the performance of the encoder pre-trained with our MAE to the
encoder trained from scratch. Experiment results show that MAE pre-training
boosts the encoder’s performance on EEGEyeNet gaze estimation task with-
out data augmentation or modifying the encoder architecture. Compared to the
encoder without MAE pre-training, the pre-trained one achieves equal perfor-
mance with 1/3 the time of training and outperforms it in half the training
time (Fig. 3). We anticipate that EEG-based applications will benefit more from
self-supervised pre-trained deep learning models just as other fields (NLP, com-
puter vision, robotics, etc.), and this even suggests the promising research on
foundation models [4,11,18,30,32] in the EEG domain.

2 Related Work

2.1 Masked Modeling in Language and Vision

Self-supervised pre-training by masked modeling has brought huge progress to
natural language processing (NLP). The masking mechanism in BERT [14] is to
randomly mask a certain percentage of the input tokens, and train the model to
predict the original token that has been masked out. GPT [5,21,24,25] adopts an
autoregressive training approach that predicts the next word in a sentence given
all the previous words, which means that during training, the model looks at a
part of a sentence and learns to predict the word that comes next. Inspired by
the practices in NLP, masked encoding has been applied to visual representation
learning [2,6,10,12].

2.2 Masked Autoencoder for EEG Data

Various deep learning models such as convolutional neural network (CNN),
recurrent neural network (RNN) and Transformer have been applied to EEG
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data [3,8,16,19,26–29,31]. While supervised learning has been a dominant
paradigm of training large deep learning models for a decade, in recent years,
self-supervised pre-training by masked modeling has been a great performance
booster. A deep learning model pre-trained with masked autoencoders (MAE)
often outperforms the same model solely trained with supervised learning. The
success of MAE in NLP and computer vision suggests that it is an effective rep-
resentation learner for both temporal and spatial data. Therefore, it is a natural
idea to apply MAE to EEG data.

Previous work has demonstrated the advantage of MAE on EEG-based sleep
stage classification [7], seizure sub-type classification [22] and cognitive load clas-
sification [23]. The MAEs in these studies reconstruct original features or raw
signals from masked features. Our study, however, employs a simple approach
that reconstructs original EEG signals from masked signals. The input EEG
signals are directly masked and fed to our MAE without further preprocessing
and feature extraction. Experiments have shown that this simple design can
still guide our MAE to learn signal representation that is useful for downstream
tasks.

2.3 EEG-Based Gaze Estimation

EEG-based gaze estimation aims at combining EEG signals with computational
techniques to predict the direction or position of a person’s gaze. This approach
leverages the fact that certain patterns in brain activity, as captured by EEG,
correlate with where a person is looking.

The EEGEyeNet dataset [13] is a comprehensive collection of high-density,
128-channel EEG data synchronized with eye-tracking recordings from 356
healthy adults. This dataset is unique due to its large scale and precise anno-
tation, encompassing over 47 h of recording. The third task in the associated
benchmark involves determining the absolute position of the subject’s gaze on a
screen, described in terms of XY-coordinates. This task is performed using data
from the Large Grid paradigm, where participants fixate on a series of dots at
different screen positions. It is the most challenging task in the benchmark, aim-
ing to simulate a purely EEG-based eye-tracker. The performance is measured as
the euclidean distance in millimeters between the actual and the estimated gaze
position. Current performance of deep learning models on this task is presented
in Table 4 of [29].

3 Methods

We design a masked autoencoder (MAE) that randomly masks signals from the
input EEG signal matrix and recovers these missing signals. As shown in Fig. 1,
our MAE has an encoder-decoder architecture. The encoder operates on masked
EEG signals and learns meaningful latent representations. The decoder then
reconstructs the input signals from these latent representations. As the overall
goal is to enhance the encoder’s capability to learn useful signal representations,
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after MAE pre-training, the decoder is removed and the encoder is applied to
unmasked EEG signals to perform downstream tasks. By doing so, we are able
to measure the encoder’s performance change after MAE pre-training.

3.1 Masking Mechanism

The masking is applied based on the matrix representation of EEG signals. Raw
EEG signals are collected from multiple channels. The signals from each channel
can be stacked row by row to form a matrix that is suitable for being neural
network input [29].

Before an EEG signal matrix is sent to our MAE encoder, a certain proportion
of its elements are randomly selected to be set to zero. We implement a simple
random selection. Suppose the dimension of EEG signal matrices is m×n and the
masking ratio is r. First we generate a random permutation of integers from 0 to
m×n−1. Then we select the first m×n×r integers from this permutation as the
indices to be masked. Next these selected indices are converted into 2D indices
corresponding to the row and column dimensions of the EEG signal matrix. For
index i in the selected indices, its corresponding row index is

⌊
i
n

⌋
and column

index is i mod n. The corresponding elements in the EEG signal matrix will be
set to 0.

During training, a mask is generated for each batch and epoch, which means
that none of the previously used masks is directly reapplied to the current batch.
This will avoid overfitting by ensuring that our MAE can learn as rich local and
global patterns as possible. The MAE cannot solve the reconstruction task by
simply memorizing the signal values.

3.2 Encoder Design

Our MAE encoder is EEGViT [29], a hybrid Vision Transformer (ViT) architec-
ture designed for EEG data. It combines a two-step convolution block [17] with
the ViT layers. When the ViT layers are initialized with the model weights pre-
trained on ImageNet dataset [9], EEGViT achieves state-of-the-art performance
(Table 4 of [29]).

The visual knowledge that ViT learns from large image datasets is beneficial
to EEG data as well. However, EEGViT utilizes pre-trained ViT model weights
directly for supervised training. We believe that the ViT model can first learn
some general EEG signal knowledge before it is applied to a specific task at
hand, by which the model can experience a milder transfer from vision domain
to EEG. We bridge this gap by using pre-trained ViT weights for MAE pre-
training. The ViT layers in our encoder are initialized with the model weights
pre-trained on ImageNet dataset. After the encoder learns general EEG signal
representation, it will be fine-tuned on downstream tasks.

3.3 Decoder Design

Following the MAE for ViT [12], our MAE decoder is a series of Transformer
blocks. The reason for this choice resembles the one for vision MAE. Our
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reconstruction task is at signal level. It requires a low-level understanding of
EEG raw signals. A low-level reconstruction task like pixels, or in our case, sig-
nals, needs a non-trivial decoder architecture. As described in [12], the decoder
design determines the semantic level of learned information. Different decoder
structures drive the encoder to extract different levels of signal patterns.

As introduced before, in the fine-tuning stage, only the encoder is kept for
supervised training. The MAE decoder assists the encoder with efficient signal
encoding, but since our main purpose is to compare the encoder’s performance
before and after MAE pre-training, the decoder is not used for downstream tasks.

3.4 Reconstruction Task

Our MAE takes in masked EEG raw signals and outputs reconstructed signals.
Note that we aim to recover the missing signals, but for implementation sim-
plicity the unmasked signals are also “reconstructed”. That is, our MAE output
has the same dimension as the input. Since we only care about the recovery of
missing signals, the reconstruction loss is computed on the masked elements of
an EEG signal matrix. This practice is similar to previous work [12,14].

Following MAEEG [7], we adopt a similarity loss function1:

L = 1 − x̂ · x
‖x̂‖‖x‖ (1)

where x is the original signals and x̂ is the reconstructed signals. x̂·x
‖x̂‖‖x‖ computes

cosine similarity. Subtracting it from 1 ensures that our MAE learns to minimize
the reconstruction loss. Cosine similarity encourages our MAE to capture the
intrinsic characteristics of EEG signals. We apply a reversed mask to both the
MAE output and full input, so that previously masked positions are now retained
and unmasked positions are now set to zero. Then we flatten these two matrices
to compute the loss.

4 Experiment Setting

We use the EEGEyeNet dataset [13] for MAE pre-training. Then we fine-tune
all layers of the MAE encoder on the same dataset.

4.1 EEG Data

The EEG data for training our model are from “Large Grid Paradigm” in
EEGEyeNet dataset which involves participants fixating on 25 different posi-
tions on a screen [13]. EEGEyeNet provides both minimally and maximally
pre-processed data. We focus on the minimally pre-processed data. This data
includes trials from 27 participants and a total of 21464 samples. Following
EEGViT [29], we split 70% of these samples into the training set, 15% into the
validation set, and 15% into the test set.
1 We also experiment with mean squared error (MSE) loss function, the performance

increase brought by it is not obvious.
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4.2 Training

We train our models on Google Colaboratory with 1 NVIDIA A100 GPU. Table 1
shows our training settings. For pre-training, we employ a larger learning rate
decay step size and train for more epochs than during fine-tuning. This is because
the reconstruction task is more complicated than the downstream gaze estima-
tion task. For fine-tuning, our settings are consistent with EEGViT. The reason
is that we use EEGViT model as our MAE encoder, and the goal is to evaluate
the encoder’s performance increase solely brought by MAE pre-training. This
consistent approach ensures that we are making a fair comparison.

Table 1. Pre-training and fine-tuning settings.

Pre-training Fine-tuning

optimizer Adam [15] Adam

base learning rate (lr) 1e–4 1e–4

batch size 64 64

lr decay step size 10 6

lr decay factor 0.1 0.1

epochs 30 15

5 Results

We study the effects of masking ratio and decoder architecture, and report the
root mean squared error (RMSE) on the test set. The RMSE is in millimeters
(mm). See Sect. 2.3 for details of the gaze estimation task.

Each pre-training epoch takes approximately 2.4 to 2.6 min. A higher masking
ratio takes slightly more time. Each fine-tuning epoch takes approximately 2 min.

5.1 Encoder’s Performance

For MAE pre-training, we experiment with different masking ratios (10%–90%).
The MAE decoder has 1 or 2 Transformer blocks. In Sect. 3.3, we hypothesize
that our reconstruction task needs a non-trivial decoder architecture. Here, we
also use a simple multilayer perceptron (MLP) decoder as a baseline. Table 2
shows the mean and standard deviation over 5 fine-tuning runs. EEGViT’s result
is from our experiment2. For each decoder architecture, the best result among
all the masking ratios is presented in the table. See Fig. 2 for the full results.

2 Here “EEGViT” is equivalent to “EEGViT Pre-trained” in Table 4 of [29]. This
applies to the following mentions as well.
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Fig. 2. Fine-tuning results under different settings.
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Fig. 3. Fine-tuning loss curves. For each decoder setting, top two results among all
the masking ratios (r) are presented.
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We find that MAE pre-training reduces the encoder’s prediction error without
extra hyperparameter tuning. MAE decoder with 2 Transformer blocks achieves
the lowest average RMSE. However, the best results of these three decoder archi-
tectures are fairly close. From Fig. 2, we see that the encoder’s variance on the
gaze estimation task tends to be lower when pre-trained along with more com-
plex decoders, indicating that non-trivial decoder architectures help stabilize the
fine-tuning. We also notice that masking 40% of the input signal gives relatively
good results in all these three decoder settings. We infer that a masking ratio
between 40% and 50% is the optimal choice for our MAE.

Table 2. Results from 5 fine-tuning runs.

Model RMSE (mm)

EEGViT 55.9 ± 0.7

EEGViT-MAE, MLP 53.6 ± 0.5

EEGViT-MAE, 1 Transformer Block 53.7 ± 0.2

EEGViT-MAE, 2 Transformer Blocks 53.5 ± 0.3

5.2 Encoder’s Efficiency

As discussed in Sect. 4.2, our supervised fine-tuning setting is consistent with
EEGViT supervised training. We have shown that EEGViT pre-trained with
our MAE achieves better results within the same training epochs. This suggests
that it adapts faster to the gaze estimation task after MAE pre-training. Figure 3
shows the fine-tuning loss curves. For each decoder setting, top two results among
all the masking ratios are presented.

We find that after MAE pre-training, EEGViT achieves better performance
with half the training epochs. For masking ratio r = 0.4 in the 1 Transformer
block setting and r = 0.5 in the 2 Transformer blocks setting, EEGViT achieves
equal performance with 1/3 of training epochs. This demonstrates a significant
improvement in learning efficiency. We also observe mild overfitting in EEGViT-
MAE models, but it is mitigated in the 2 Transformer blocks setting.

6 Discussion and Conclusion

Visual knowledge that is learned from large image datasets like ImageNet can be
transferred to the EEG domain, which indicates that these two different signals
share some common underlying characteristics. Masked autoencoders (MAEs)
are capable of learning useful visual representations. We show that MAEs are
effective brain signal learners as well. MAE pre-training is beneficial to down-
stream tasks in terms of prediction precision and learning efficiency. In this work,
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we use the EEGViT model as the MAE encoder. However, we expect MAE pre-
training to be a generalizable approach to learn EEG signal representations. The
encoder model’s choice is flexible. In our future work, we plan to explore alter-
native encoder models beyond EEGViT to evaluate the generalizability of MAE
pre-training. Additionally, we plan to extend the experiments to cover more EEG
datasets.

Self-supervised pre-training has been widely explored in NLP and computer
vision. Similarly, EEG signal research could take this path by building large and
diverse EEG datasets to pre-train deep learning models. These pre-trained mod-
els can serve as foundation models [4,11,18,30,32] for EEG-based applications.
They can be fine-tuned on downstream tasks and are expected to obtain superior
performance and efficiency compared to models trained solely with supervised
learning.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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