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Abstract. We propose an asynchronous, highly effective proof-of-stake
protocol optimized for fast finality, while allowing for high throughputs
via execution parallelization. It is a probabilistic protocol that achieves
higher Byzantine fault tolerance than Nakamoto, BFT (including Hot-
stuff and AptosBFT), Solana, and other modern consensus protocols.
Our protocol reaches consensus in two communication steps and has
a total number of messages that are subquadratic to the number of
nodes, with probabilistic, dynamically adjusted safety guarantees. We
trade off deterministic consensus with theoretical constraints on message
complexity and the number of Byzantine agreements, with probabilistic
algorithms overtaking these boundaries. We further claim that because
of the use of randomness and socioeconomics in blockchain designs, no
real trade-off is actually present. One of the key ingredients of our app-
roach is separating the verification of execution by a consensus commit-
tee from the attestation of block propagation by network participants.
Our consensus committee is randomly selected for each block and is not
predetermined, while the Leader is deterministic.
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1 Introduction

Current public blockchains are almost exclusively used for financial applications,
be it for the store and transfer of value or decentralized finance. Users are ready
to pay gas and transaction fees when transacting in value. Blockchains do not
achieve mass adoption because they cannot support the quality of user experi-
ence expected from modern computer software. For one, it is almost impossible
to support free transactions to be able to offer a freemium business model for
developers. Secondly, the blockchain user interfaces suffer from long delays for
task completion related to block finalization times. The primary reason for this
user experience inefficiency is the inherent lack of performance in both trans-
action execution throughput and time to finality, due to strict requirements on
state validation. Private blockchains have also failed to achieve mass production
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in enterprise use cases due to their maintenance complexity and high computing
costs.

In this paper, we present a highly efficient, scalable, and practical blockchain
protocol optimized for heavy parallelization and extremely fast finality times.
The goal of the protocol is to produce performance comparable to cluster cloud
databases without compromising security.

Our paper has the following structure: in the next section, we give some
background on assumptions and a survey of related works. The third section
describes our protocol, the fourth and fifth sections analyze our protocol’s secu-
rity, the sixth section analyzes the performance of our protocol, and the last
section concludes.

2 Background

Usually, computer science consensus protocols are classified into two groups:
probabilistic and deterministic. The deterministic protocols, under different
safety conditions, were developed from 1978 [11,19] to the present day for various
applications [5], and with different safety properties, culminating in the develop-
ment of pBFT [9]. However, they were not used for solving the double-spending
problem of decentralized money use cases1.

2.1 Bitcoin

The first protocol that addressed this use case was introduced by Nakamoto on
Oct 31, 2008 [20]. Bitcoin uses a probabilistic consensus protocol based on Proof-
of-Work, where miners compete to win a slot to propose the new block and be
rewarded by expending computing resources to solve cryptographic puzzles.

In Bitcoin, economic incentives play a vital role in network safety and are
embedded into the matrix of the protocol’s safety guarantees.

The subsequent formula for the probability of a successful Double-Spend
attack in the Bitcoin network is based on the article by A. Pinar Ozisik and
Brian Neil Levine [21].

pbitcoin (z, δ) = 1 −
z+1∑

k=0

(
(z · δ)k · e−z·δ

k!
· (

1 − δz+1−k
))

,

where z - number of blocks till probabilistic “finality”, 0 < μ < 1 – fraction of
malicious miners, δ = μ

1−μ .
The downside of the Bitcoin protocol is its performance limitations. Bitcoin is

known to produce just 7 transactions per second, and its transaction finalization
time can exceed an hour. As we will see below, its security assumptions are
1 A double-spend attack, in the context of blockchain and digital currencies, refers to

a situation where a single set of digital tokens or currency is spent more than once.
This type of attack exploits the digital nature of the currency, as digital information
can be replicated.
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quite weak as well. All of this did not prevent Bitcoin from being the largest
cryptocurrency by value to date. However, it did prevent Bitcoin from being
used for much more than a store and transfer of value.

Ethereum [31], introduced in 2014 as a smart contract platform [8], initially
also used PoW consensus. Its TPS was about 17 per second, but even this was
far from sufficient to meet the growing demand for Decentralized Applications
(dApps), primarily in the Decentralized Finance (DeFi) sector.

This unsatisfactory performance of PoW forced researchers to look for alter-
natives.

2.2 BFT

Notably, even before Ethereum, back in 2012, S. King and S. Nadal proposed
a protocol they called Proof-of-Stake [15] (PoS), where instead of committing
computing resources and electricity, network participants would commit a valu-
able stake, which they could subsequently lose if proven to act maliciously. This
opened a way to use deterministic consensus protocols such as pBFT-based and
others [10,14] in cryptocurrency settings, in combination with PoW and later
PoS protocols. Many protocols have been proposed since then, and some have
been implemented in working systems, improving on the original pBFT messag-
ing requirements and such [2,3,24].

All BFT-based protocols [30,34] generally have two states (faulty or not,
0 or 1) under the protocol assumption. However, in the PoS environment, the
decision to act maliciously or not depends not on the properties of the protocol
but on the economic realities of the PoS system. In addition, most blockchains
rely on probabilistic encryption [13] for their cryptography. Therefore, the BFT
consensus algorithms used in the settings of PoS consensus protocols somewhat
lose their deterministic properties, as we can no longer prove that non-malicious
participants will not turn Byzantine based on the content of the message they
are registering, and their determinism will always be bound by cryptographic
probability. Thus, if we have a probabilistic consensus protocol with safety guar-
antees comparable to modern cryptography and/or game theory, it will have
practically the same safety as BFT. Yet the penalty we pay in performance for
having a presumably deterministic protocol is limiting.

An upper bound on the number of malicious nodes for breaking BFT consen-
sus protocols is 2

3 · N + 1, where N is the total number of nodes in the network.
From this, a formula for the successful probability of an attack for BFT consensus
protocols is easily derived:

pBFT (M,N) = I[� 2
3 ·N�+1, N ](M),

where N is the number of network participants, M is the number of malicious
network participants, and IF (x) is an indicator function that takes the value 1
if x ∈ F , and 0 otherwise.
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2.3 Fast Byzantine Paxos

In [16,17], fast asynchronous Byzantine consensus was proposed. The authors
state that this protocol can reach consensus in two communication steps in the
common case. However, the cost of such fast finality is that the total number
of nodes must be ≥ 5 · f + 1, where f is the number of Byzantine nodes [18].
Consequently, it can handle a much smaller number of malicious nodes than
pBFT. Moreover, it’s proven that this bound is tight for deterministic protocols,
i.e., for the total number of nodes equal to 5f , it’s impossible to construct a
Byzantine consensus that works in two steps.

2.4 Modern Blockchains

Recognizing the performance problems of Nakamoto and BFT consensus proto-
cols, recently a few other approaches have surfaced. We will compare with the
three most performant among them: Solana, Avalanche, and Aptos.

Solana. Solana is a blockchain platform engineered for hosting decentralized
applications, emphasizing scalability and efficiency. It exhibits a higher transac-
tion processing capacity, with an ability to handle a greater number of trans-
actions per second, coupled with reduced transaction fees. Distinctively, Solana
operates on a Proof-of-Stake (PoS) blockchain architecture, but it augments
this with an additional mechanism called Proof-of-History (PoH). Yakovenko
published a white paper [32] describing the Proof-of-History (PoH) concept.
PoH allows the blockchain to reach consensus by verifying the passage of time
between events, and it is used to encode the passage of time into a ledger. Instead
of individual validator nodes, Solana uses validator clusters, where groups of val-
idators work together to process transactions. Although the PoH-based network
has shown some improvements in blockchain throughput, it has been criticized
for lacking a sound scientific foundation for its claims [23].

Avalanche. In the Avalanche consensus mechanism [1], nodes decide on trans-
action acceptance by conducting repeated voting among a small, randomly
selected group of validator nodes. When a node needs to determine the status of
a transaction, it inquires of a subset of validators for their opinion. These chosen
validators respond with their preferred transaction. If a significant majority of
the sampled validators agree on a specific transaction, that transaction becomes
the choice of the inquiring node. Over time, this node will also favor the trans-
action that most validators support. This process of sampling and gathering
responses continues until there is consistent agreement among the validators
over several consecutive rounds.

The threshold for what constitutes a significant majority, and the ‘Confidence
Threshold,’ which is the required number of consecutive rounds for achieving
consensus, are both adjustable parameters.
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In Avalanche, subsampling has low message overhead. It doesn’t matter
whether there are twenty validators or two thousand; the number of consen-
sus messages a node sends during a query remains constant. Transitive voting,
where a vote for a block is a vote for all its ancestors, helps with transaction
throughput. Each vote is effectively many votes in one.

A notable issue arises when multiple blocks are proposed at the same height.
In such scenarios, the Avalanche protocol may face delays in determining the
correct block to accept, even though all proposed blocks could potentially be
valid. This delay is primarily due to the requirement that each block must be
executed and assessed by the subset of validators.

As described in the Avalanche white paper [26], the attack probability
dynamically changes based on the algorithm’s input parameters, such as the
number of nodes in the network, the number of malicious nodes, the size of the
query sample sent to another node for knowledge about a transaction, and the
number of rounds of these queries. Reducing the attack probability directly leads
to an increase in finalization time and message complexity. The asymptotic mes-
sage complexity is O(k · n · log n) [25], where n is the number of nodes in the
network, and k is the size of the sample in a single query, with the constraint
1 ≤ k ≤ n − 1.

AptosBFT. Aptos [27] improves on advanced variants of pBFT, namely Hot-
stuff [33]. In this respect, a comparison with Aptos in general is already described
in the BFT section above.

Like many other protocols, Aptos places a lot of emphasis on randomly choos-
ing the Leader and rotating it with every block. The main performance weakness
of such an approach is that often, leader rotation necessitates replicating exter-
nal messages, which users send to the blockchain, to all nodes in the network.
This represents an additional quadratic complexity growth overhead, usually
excluded when calculating the protocol’s messaging complexity.

Sharding. In search of further performance improvements, researchers came
up with the concept of sharding, which was first introduced in the Zilliqa
blockchain [29] and later developed in Ethereum for state sharding [6,7].

Additionally, several sharded protocols were proposed. These protocols
attempted to overcome the performance problem by sharding data and/or execu-
tion, introducing parallel leader selection, and state synchronization mechanisms,
notably in TON [12], Near [22], Elrond [28], and others. We do not compare these
protocols in our analysis because most of them use BFT as their basic consen-
sus algorithm and, therefore, may be considered as belonging to the previously
discussed groups.

Although the concepts of parallel execution of contracts and sharded states
are important advances in consensus algorithms and have improved network
scaling, these concepts alone have not overcome a certain barrier, approximately
100K TPS, even in laboratory environments.
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3 Construction of Acki Nacki

Now we present the Acki Nacki probabilistic consensus protocol, with the goal of
pushing the performance of fault-tolerant consensus protocols as far as possible.

In Acki Nacki, participants can perform three roles: Block Producer, Block
Keeper, and Verifier (which we call an Acki-Nacki entity). All these roles could be
performed by any network participant in parallel. Thus, many Acki Nacki chains
(called Threads) can exist simultaneously, but since their security and function-
ality do not depend on each other, we will proceed below with a description of
an isolated chain2.

3.1 Definitions

Definition 1. Account (contract) is a record in a distributed database.

Definition 2. Thread is a subset of nodes serving a particular subset of
Accounts.

Definition 3. Block Producer (BP) is a leader of a particular Thread,
responsible for block production.

Definition 4. Block Keeper (BK) is an entity with two functions:

– Receives blocks from BP and sends an Attestation with the block hash and
other metadata back to BP. BK does not check the validity of block transac-
tions, nor does it attempt to execute the block, only applies it to its local state
with a mark ‘Not Final’.

– Performs a self-check to determine if it needs to become a Verifier for this
block as described below. If so, BK will verify the Block and broadcast the
result: Ack if the Block is okay, and Nack if the block is invalid.

Definition 5. Verifier (Acki-Nacki) is a BK responsible for block validation
and notifying all network participants about their verdict: whether the block is
valid or not.

Definition 6. Attestation is a message sent to BP by any BK after receiving
the block. Attestation is a BLS signature performed on BK’s private key. The BP
of the next block must aggregate all received Attestations for the previous block
into one BLS signature and include it in the Common section of the new block.

Definition 7. Ack is a message broadcasted to all network participants by Acki-
Nacki if the block is verified and valid.

Definition 8. Nack is a message broadcasted to all network participants by
Acki-Nacki if the block is verified and not valid.

Attestations and Verifier’s messages must contain the block hash, its BLS
signature [4] on BK’s private key, and some extra data. For example, Nack
contains the reason for block rejection.
2 Because of this multithreaded property, Acki Nacki uses an Asynchronous Virtual

Machine to execute transactions. This is beyond the scope of this paper, so we
mention it here for future references.
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3.2 Security Assumptions

We follow standard assumptions of Safety and Liveness [23] properties for Acki
Nacki protocol. These properties ensure that the network operation resembles
that of a monolithic, valid server, i.e., a linearizably consistent block ledger.

– Safety: No two honest BKs accept different blocks of the same height, and
no block with an incorrect transaction is finalized.

– Liveness: If an honest BP receives a transaction, it will eventually be
included in every honest node’s ledger.

In accordance with these properties, we classify attacks that violate them:

Safety Attacks. Such attacks include dissemblance and private chain attacks.
Dissemblance means that the adversary maintains Byzantine nodes to send dif-
ferent messages to different nodes, potentially leading to nodes’ disagreement.
Private chain attacks occur when the adversary controls Byzantine nodes to
work on a separate blockchain privately while ostensibly following the protocol.

Liveness Attacks. These types of attacks include the aforementioned dissem-
blance and withholding attacks. Apart from affecting safety, dissemblance may
prevent honest nodes from making decisions indefinitely, thereby breaking live-
ness. Withholding means that the adversary controlling Byzantine nodes refrains
from sending messages to particular nodes, potentially causing them to be unable
to make decisions indefinitely.

3.3 Block Producer Selection Algorithm

BP selection in Acki Nacki is not random, as the security assumptions of the
protocol allow for BPs to be potentially malicious. The following deterministic
algorithm is used: the hash of the block with a shard split (or any other Thread
rotation demand) message is taken as a seed, and random sampling of one key
from the sorted list of BKs’ public keys is performed. The current list of BPs is
always presented in the Common Section of any Block.

Note: In Acki Nacki, a Block, besides containing TRXs, has a Common Section
for collecting block-related data like Attestations, Verifier’s messages, BPs list,
slashing/reward conditions, etc.

3.4 Acki-Nacki Selection Algorithm

After receiving a block, BK checks whether they are Acki-Nacki for this block.
To do this, they calculate a = sign(hash(B), sk), where sk is the secret BLS key
of BK, B is the current block. They then calculate the remainder of r = a%b,
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where b = N/v, N—the total number of network participants, v—the desired
average number of Acki-Nacki, with v such that N is divisible by v without a
remainder. Both a and b are integers. If the remainder r equals 0, then it is
Acki-Nacki; otherwise, it’s not.

Thus, any BK can randomly become Acki-Nacki with a probability of v/N .
The selection of each Acki-Nacki is an independent event.

This allows for controlling the average number of Acki-Nacki per block.
More details are described in the section “Expected Number of Acki-Nacki per
Block” 4.5.

3.5 Block Production and Broadcast

Fig. 1. The Acki Nacki protocol (Block production and broadcast).

BP releases a new block every 330 ms. As soon as the time arrives, it collects
the unprocessed messages, executes transactions, and creates a block (the block
is limited by the maximum computed operations and time). Once the block is
created, BP signs it with its BLS private key and broadcasts it to all BKs (Fig. 1).

Upon receiving the block from BP, BK checks if the min. block timeout since
the previous Attestation (at least 330 ms) is satisfied, computes an Attestation
for the block (BLS signature), and sends it back to the BP.

The min. block timeout from the previous Attestation is necessary to prevent
a ‘too many blocks’ safety attack, where a malicious BP generates so many
blocks that verifying them and producing Ack/Nacks in time becomes impossi-
ble. The attacking BP can spam the network with valid blocks until it produces
a malicious one, which may lead to the acceptance of a block with an incorrect
transaction.
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3.6 Block Verification

Fig. 2. The Acki Nacki protocol (Block verification).

Block verification is carried out solely by Acki-Nacki entities that are chosen
based on the Acki-Nacki Selection Algorithm, as described above. Acki-Nacki
must validate a block and send an Ack/Nack message to the network (Fig. 2).
Otherwise, they will be subject to slashing (see ‘Slashing’ 3.11). While any third
party may also validate the block and send acknowledgments, provided they put
up a bond, they are not obliged to do so and thus are not part of the security
assumptions of the protocol.

If a BP creates a block with overly complex execution, it may
attempt to cause Acki-Nacki to delay block verification for more than the
max. , verification , time, preventing Ack/Nack transmission within the required
timeframe. This could result in a block with an incorrect transaction being
accepted.

To mitigate the ‘Block with too complex execution’ safety attack, an Acki-
Nacki that executes such a block will stop after 330 ms and send a special Nack
with the message ‘too complex’. The committee will then check the block and
penalize the BP if necessary.
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3.7 Acki-Nacki Selection Proof

Periodically, BK generates a long list of BLS key pairs, sorted by sequential
number (SeqNo). Each key pair is intended to be used only once for each block.
BK then inserts the hash (BLS private key || SeqNo) into the leaves of a Merkle
Tree, computes the Merkle root hash, and commits this hash to the network.
After each block, if BK was an Acki-Nacki, it reveals its private key and its
SeqNo, along with the Merkle Proof corresponding to this key and the block
hash, within the Verification message (Ack/Nack).

It is important to note that the remaining BKs (those not serving as Acki-
Nacki for this block) must also reveal their private keys for each block. This
can be done at a later stage, for example, in Attestations for the subsequent
block. The crucial point is that the reveal phase must be exhaustive in the end.
Both Acki-Nacki sending incorrect Ack/Nack messages, or being negligent in
not sending Verifications or revealing the keys, will be subject to slashing, as
described in the following sections.

3.8 Proof-of-Stake and Fork Choice Rule

Acki Nacki is a PoS protocol that requires all network participants to commit a
certain amount of Network Tokens as a Bond. While we do not discuss the eco-
nomic motivation for becoming a network participant in this paper, we assume
that the Tokens have a finite supply, as this plays a role in probability calcu-
lations, as will be shown below. In connection with the Fork Choice Rule, we
provide an algorithm based on the weight of stakes (Fig. 3).

Sometimes, a situation may arise where the network has two valid blocks at
the same height, without any malicious intent. To address this, we have devel-
oped the Fork Choice Rule algorithm, which deterministically selects one of the
valid blocks for finalization by all BKs.

Key definitions and notations used throughout this section are as follows:

1. N—number of BKs;
2. A— number of Attestations till probabilistic “finality”;
3. bj—block with index j;
4. K = {k1, k2, . . . , kN}—BK set;
5. S = {s1, s2, . . . , sN}—BK’s stake set where si is stake of Block Keeper ki;
6. Aj = {ki | ki has attested bj}—set of BKs that have attested block bj

7. hash (bj)—hash of the block bj header;
8. height (bj)—height of the block bj ;
9. KeySignBP (bj) — key of the BP proposed block bj ;

10. Fh = {bj | height(bj) = h}—conflicting blocks set at the height h;
11. A = {Aj | bj ∈ Fh}—set of Aj containing Block Keepers ki ∈ K that have

attested block bj ∈ Fh.

Each BK can attest to only one block at a certain height. In other words, if
a BK attests to two blocks at the same height, they will be subject to slashing.
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Each BK executes the Acki-Nacki Selection Algorithm only for the block
that has more than A Attestations; otherwise, it is executed only for the block
that currently has the highest stake amount. For instance, if after verifying
block Bi, another block Bj appears at the same height with a greater stake
amount, the BK executes the Acki-Nacki Selection Algorithm for block Bj . After
applying the Fork Choice Rule, the BK sends to other BKs either the block
with Attestations, or the block with Attestations and Ack/Nack, depending on
whether they became Acki-Nacki for that block.

Fig. 3. Pseudocode of the Fork Choice Rule algorithm.

3.9 Block Finalization

Each BK obtains a new block, mutates the state, and marks the mutations
as not final. They then wait for Attestations for this block, sent by BP in the
Common section of subsequent blocks, until the minimum Attestation Threshold
is reached. The Minimum Attestation Threshold percentage is specified in the
network configuration.

After receiving the block and while collecting the necessary amount of block
Attestations, BK also waits for T ms as specified in the min. finality time for block
BX . If T ms pass and no Nacks have been received, then BK marks this block
as final (Fig. 4).

If there are not enough block attestations, the block won’t be finalized. In this
case, network participants can decide on the course of action: whether to allow
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continuous, not finalized block production; to halt the network after a certain
number of blocks; to slash or not to slash BKs for not providing attestations,
etc.

Fig. 4. The Acki Nacki protocol (Block finalization).

3.10 Joint Committee

If at least one BK receives a Nack, or if they receive an Attestation for the same
height on more than one block from a single BK, or detect any other malicious
action as described in the ‘Slashing’ section, they invoke the Joint Committee
function. This requires each BK to vote on whether to slash malicious BKs,
malicious BPs, and/or to reject a malicious block. In response, each BK either
verifies the block, checks Attestations, or performs any other necessary action
to ascertain whether someone is acting maliciously or otherwise falls under one
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of the Slashing conditions. To confirm or reject that an action is a result of
malicious activity, the network must gather J votes, where J is a parameter set
by the network participants.

3.11 Slashing

The following are slashing conditions which can lead network participants to
either lose their entire stake or a portion of it (bleeding). When we say ‘lose,’
we mean that the stake will be burned and not transferred to any other party.
Burning plays a role in security assumptions, as discussed in a separate section
below.

– An accepted Nack will slash the BP and every Acki-Nacki which sent an Ack
for their entire stake.

– Attesting to more than one block at the same height will result in the slashing
of the entire stake of the BK.

– Producing two blocks at the same height from the same BP will result in the
slashing of the BP’s entire stake.

– A non-performing Acki-Nacki will result in the bleeding of its stake.
– A non-performing BK will result in the bleeding of its stake.
– Non-randomized BK keys will result in the bleeding of the stake.
– Non-sequential Acki-Nacki Keys in the Acki-Nacki Merkle Tree will result in

the bleeding of the BK’s stake.
– Too complex execution of a block by BP will result in the bleeding of its

stake.

3.12 Dynamically Adjustable Parameters

One of the main advantages of the Acki Nacki consensus protocol is the pres-
ence of several dynamically adjustable parameters. These include the number of
Attestations needed for block finalization, the average expected number of Acki-
Nacki per block, the number of votes required for the Joint Committee, and the
probability of a successful attack given a certain percentage of malicious BKs.
All these parameters can be changed by network participants through voting,
according to their preferences. For instance, participants can input the number
of BKs and the desired attack probability with a certain number of malicious
BKs. Based on this, Acki Nacki will then automatically adjust the parameters for
the number of Attestations and Acki-Nacki, ensuring that the network achieves
the highest throughput with the shortest finality.

4 Attack Analysis

4.1 Input Parameters

Notations, types and domains of the terms used in this section:
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Name Notation Type Domain

Number of BKs N Z+ [3; +∞]

Number of malicious BKs M Z [0;N − 1]

Number of spammed BKs d Z [0;N − M ]

Number of Attestations A Z+ [1;N ]

Successful attack probability p R (0; 1)

Expected number of Acki-Nacki per block v Z [0;N ]

Number of votes for Joint Committiee J Z+ [1;N ]

4.2 Combined Double-Spend and DDoS Attack

There are N BKs, of which M are malicious. The malicious BKs, using a dis-
tributed denial-of-service (DDoS) attack3, disconnect d honest BKs from the net-
work and perform a Double-Spend attack (Fig. 5). Verification prevents attacks
on consensus. If at least one of the honest BKs, which have survived the DDoS
attack, becomes an Acki-Nacki, the attack is deemed unsuccessful.

4.3 Constraints on the Number of Malicious Block Keepers

A malicious block will always be finalized if none of the honest BKs survive after
a DDoS attack. Additionally, malicious blocks will always be finalized if, in the
Joint Committee, the number of malicious BKs exceeds the number of honest
BKs. Thus, to determine the number of malicious BKs at which the attack will
be successful, or, in other words, the number of malicious BKs at which the
Safety property is violated:

M ≥ min(A, J) (1)

At the same time, if all malicious BKs disconnect and stop sending messages,
the network will halt, as it will not be able to collect enough Attestations. A
similar situation may occur if all malicious BKs disconnect or reject Nacks for
a malicious block during the execution of the Joint Committee function. Thus,
to determine the number of malicious BKs at which the network will stop, or,
in other words, the number of malicious BKs at which the Liveness property is
violated, we have:

M ≥ min(N − A + 1, N − J + 1) = N + 1 − max(A, J) (2)

As the constraints on the number of malicious BKs depend on the number of
Attestations needed for block finalization and the number of votes for the Joint
Committee, the Acki Nacki Security Assumptions are dynamically adjustable.
This allows the network to maintain the probabilistic safety property even when
the number of malicious BKs exceeds 50% of the network participants, and
3 A distributed denial-of-service (DDoS) attack is a malicious attempt to disrupt the

normal traffic of a targeted server, service, or network by overwhelming the target
or its surrounding infrastructure with a flood of Internet traffic.
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furthermore, even when it exceeds 66% of the network participants. This holds
true for any assumption regarding the number of malicious BKs agreed upon by
network participants through voting.

4.4 Constraints on the Number of Spammed Block Keepers

Fig. 5. Scheme of the optimal DDoS Attack

Since consensus requires A Attestations, among the (N − d) BKs that continue
to function after the DDoS attack, at least A BKs must be capable of gathering
the required Attestations. Therefore N − d ≥ A.

In order for malicious BKs to launch a successful attack, they aim to spam
as many honest BKs as possible.

From this understanding, we conclude that doptimal = N − A.

4.5 Expected Number of Acki-Nacki per Block

The probability of becoming an Acki-Nacki per block for each BK is expressed
as v/N .

Let the random variable ξ denote the number of BKs that become an Acki-
Nacki. Then, the probability that k BKs become Acki-Nacki is described by the
following probability:

P (ξ = k) = Ck
N ·

( v

N

)k

·
(
1 − v

N

)N−k

(3)

We find that the random variable ξ follows a Binomial distribution, and its
expected value is E(ξ) = v. In other words, v is precisely the mathematical
expectation of the number of BKs that become an Acki-Nacki per block.

4.6 Successful Attack Probability in the Acki Nacki Consensus

Since honest BKs only collect A number of Attestations to finalize the block and
check for the absence of Nacks, the successful attack probability on the block will
be equal to the probability that no honest surviving BK has become Acki-Nacki:
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p (N,M, d, v) =
(
1 − v

N

)N−M−d

. (4)

Since malicious BKs DDoS the maximum possible number of honest BKs,
then the resulting successful attack probability on the block is expressed as:

p (N,M,A, v) =
(
1 − v

N

)A−M

. (5)

5 Safety Analysis

We assume that if malicious network participants successfully attack the network
at least once, the entire network breaks. Let’s find the probability of at least one
successful attack on the network in R attempts:

P (at least one successful attack) = 1 − (1 − p)R
. (6)

Since, in the Acki Nacki consensus protocol, the probability of breaking the
network at least once increases more rapidly when colluding with more malicious
BKs than when attempting more times, it is more advantageous to attempt once
with the maximum possible number of malicious BKs. The number of malicious
BKs may be at a maximum of A−1. If A > N/2, then it is almost impossible to
place stakes for so many malicious BKs, so let’s assume that attempts to break
the network will be made about once every year. We say ‘a year’ rather than ‘a
day’ because if the attacker had easy enough access to that much money, why
wouldn’t they buy the whole network at once?

Even if the attacker attempts to attack our network once a year, they have
a limited number of attempts since all stakes of the network participants that
were slashed are burned.

Figure 6 and Fig. 7 are illustrating the successful attack probability from a
number of malicious network participants for Bitcoin, pBFT, and Acki Nacki
protocols with a total of 1000 network participants. To calculate the successful
attack probability in Bitcoin, we use the commonly accepted number of blocks
for probabilistic ‘finality’, which is 6. For calculating the successful attack prob-
ability in Acki Nacki, we use the number of Acki-Nacki set to 40 and the number
of Attestations set to 800.

As observed, Acki Nacki provides significantly higher security guarantees
compared to Bitcoin. Furthermore, this holds true when compared to pBFT,
especially in scenarios where the number of malicious network participants
exceeds 2/3 of the total network participants. To further illustrate this point, we
compared the probability of at least one successful attack on our network in the
coming years with the probability of a comet hitting the planet Earth, leading
to a global catastrophe. Assume that such a comet falls once every 106 years.

As we can see in Fig. 8, it is more likely that a comet will fall in the coming
years and destroy life as we know it than for malicious BKs to successfully attack
the network.
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Fig. 6. Comparison of successful attack probabilities in Bitcoin, pBFT and Acki Nacki

Fig. 7. Fig. 6 with log-scaled y-axis

Fig. 8. Comparison plot of the successful attack probability in the Acki Nacki consensus
protocol with the global catastrophe probability
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6 Performance Analysis

Without taking state sharding into account, the limitation to performance in the
Acki Nacki network boils down to two factors: the number of blocks a BK can
receive over the network and apply, and the number of blocks all network Acki-
Nacki can process at any given moment. This performance is entirely dependent
on the computer and network resources committed by participants, the number
of BKs, and the expected number of Acki-Nacki per block.

We do not discuss state sharding solutions in this paper, but it is quite easy
to envision an Acki Nacki sharded design: some BKs can choose not to store
a state that belongs to a certain address space. The only remaining practical
limitation in an asynchronous system would be how messages passed from one
Account to another, residing in two different shards, would be executed by the
BP and verified if the BP and Acki-Nacki do not possess the state of one of the
participating Accounts.

With a sharded design, there is no theoretical limit to the throughput of
the Acki Nacki network. Without sharding, and considering modern computer
hardware and datacenter internet connections, we calculate a practical limit of
250, 000 transactions per second for minimal 500-byte messages, achieving less
than 1-second finality. With sharding enabled, the protocol can scale to millions
of transactions of any complexity, merely by adding computing resources, making
it comparable to centralized cloud services.

Acki Nacki achieves this performance as a result of significantly reduced
message complexity during most of its operation time.

The Acki Nacki algorithm achieves consensus in two communication steps.
The first step involves sending the block from BP to BKs. The second step
involves sending Ack/Nacks from Acki-Nacki to all BKs, in parallel with the
sending of Attestations from BKs to BP.

In total, the following messages are sent: The block from BP to BKs, the
Attestations from BKs to BP, and the Ack/Nack messages from several chosen
Acki-Nacki to BKs. Here, the optimistic scenario ends. The Nack message and
accidental Forks will trigger more messages, but as we have shown, Nack mes-
sages are highly improbable, and Forks are rare events. Most of the time, the
network will operate by sending just 3 types of messages, where the total number
of all messages sent equals (N − 1) · v + 2 · N . The message complexity of Acki
Nacki depends on the desired security parameters, taking into account that, in
practice, v � N .

7 Conclusion

We have demonstrated an efficient probabilistic consensus protocol with reduced
message complexity and high parallelism in transaction execution, leading to
fast finality times and scalability improvements. Our security assumptions are
dynamic and can change during network operations, demonstrating the proto-
col’s flexibility. Our safety analysis shows high adaptability to network parame-
ters while maintaining desired safety guarantees.
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