
LM-cAPI:A Lite Model Based on API
Core Semantic Information for Malware

Classification

Yifan Zhou, Zhenyan Liu(B), Jingfeng Xue, Yong Wang, and Ji Zhang

School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 100081, China

zhenyanliu@bit.edu.cn

Abstract. Currently, malware is continually evolving and growing in
complexity, posing a significant threat to network security. With the con-
stant emergence of new types and quantities of malware coupled with the
continuous updating of dissemination methods, the rapid and accurate
identification of malware as well as providing precise support for cor-
responding warning and defense measures have become a crucial chal-
lenge in maintaining network security. This article focuses on API call
sequences in malware that can characterize the behavioral characteris-
tics of malware as text and then uses the latest text classification-related
technologies to achieve the classification of malware. This article pro-
poses a flexible and lightweight malicious code classification model based
on API core semantic information. To address the issues of prolonged
training time and low accuracy caused by excessive noise and redun-
dant data in API call sequences, this model adopts an intimacy analysis
method based on a self-attention mechanism for key information extrac-
tion. To enhance the capture of semantic information within malware
API call sequences, a feature extraction model based on a self-attention
mechanism is used to transform unstructured key API sequences into
vector representations, extract core features, and finally connect to the
TextCNN model for multi classification. In the dataset of the “Alibaba
Cloud Security Malicious Program Detection” competition, the F1 value
reached 90% in eight category classification tasks. The experimental
results show that the model proposed in this article can achieve bet-
ter results in malware detection and multi-classification.

Keywords: Network Security · Malware Classification · API call
sequence

1 Introduction

Malware is one of the most serious threats to network security, serving as a key
attack carrier in various network security events. When malware is executed, it

Supported by Major Scientific and Technological Innovation Projects of Shandong
Province (2020CXGC010116) and the National Natural Science Foundation of China
(No. 62172042).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 29–42, 2024.
https://doi.org/10.1007/978-3-031-61486-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_3


30 Y. Zhou et al.

poses a risk to the confidentiality, availability, and integrity of sensitive informa-
tion and data in the target system. Moreover, in order to avoid traditional mal-
ware detection and eradication mechanisms (such as firewalls, antivirus software,
and other signature-based defense methods) and improve their own survivability,
malware programmers employ sophisticated techniques. These involve modify-
ing and confounding malicious samples within the same family using diverse
strategies to alter code structures and generate various different code variants
while maintaining semantic equivalence. There are certain similarities in struc-
ture and behavior among variant samples from the same family. As malware
spreads, it utilizes various deformation engines to automatically generate new
variants. Simultaneously, the development of the malware industry chain is also
continuously collectivized and organized. Overall, the above phenomenon has
resulted in the proliferation of malware not only in terms of quantity but also in
the diversification of defense evasion methods. Consequently, the need for auto-
mated detection, elimination, and tracing of malware has become increasingly
urgent.

Over the past few years, the volume of malware data has grown rapidly.
Within the realm of artificial intelligence, natural language processing (NLP)
has emerged as a mature subfield, with machine learning [1] and neural net-
work methods of natural language processing gradually reaching maturity in the
domain of malware detection. Machine-learning-based malware detection meth-
ods [2,3] can automatically analyze a large amount of data through inductive
reasoning, enabling the detection and classification of malware into families. The
essence of machine-learning-based methods lies in feature extraction and model
building. The feature extraction process can be achieved through both static and
dynamic analysis methods. Commonly used features include opcode sequences,
API call sequences, byte sequences, etc. [4–6]. The model classifies samples by
analyzing features and using algorithms such as classification or clustering. An
API serves as the interface between an application program and a system. Its call
sequence encapsulates the behavioral information of the code during actual run-
time, providing an accurate characterization of the program’s purpose. Through
the analysis of API call sequences, it becomes evident that malware typically
calls fixed API sequences to perform destructive behavior. With the continu-
ous development of technology in the field of natural language processing, API
sequences can be regarded as a form of semantic text, exhibiting temporal rela-
tionships between APIs. The relevant technologies of natural language processing
can be applied to analyze API sequences [5,7].

We present a versatile and lite malware classification model based on the key
semantic information of API call sequences. To address the issue of long training
time and low accuracy resulting from excessive noise and redundant data in API
call sequences, this model employs keyword extraction technology for key infor-
mation extraction. To enhance the extraction of semantic information from API
call sequences, this article extensively employs language-training language mod-
els to obtain rich semantic representations. Moreover, neural network models are
employed to address the multi-classification challenge posed by malware. In this



LM-cAPI 31

experiment, we used the dataset provided by the “Alibaba Cloud Tianchi Com-
petition Security malware Detection;; competition question and conducted the
necessary data processing. The experimental findings demonstrate the superior-
ity of our proposed method in comparison to the general classification methods
using API call sequences as features. The proposed method is more effective in
multi classification of malware, with an accuracy rate of 90%.

2 Related Work

Malware technology has caused significant harm to users, enterprises, and even
countries due to its continuous development. Numerous information security
researchers both domestically and internationally are dedicated to the research
of malware.

The core of machine-learning-based malware detection methods lies in feature
extraction and modeling. The model classifies samples by analyzing features and
using algorithms such as classification or clustering. An API serves as the crucial
interface between an application program and a system, and its call sequence can
substantially reflect the program’s behavior. Therefore, numerous malware anal-
yses are based on API sequences. Darshan [8] et al. extracted API call sequences
from JSON files obtained from sandbox operations. They then applied the N-
Gram method to process the sequences and used machine learning algorithms to
construct classifiers with high detection accuracy. However, a drawback of this
method is its consideration of only a small subset of features from a larger pool,
necessitating further improvement in accuracy. Fang Yong [9] et al. addressed
this limitation by mixing dynamic and static API features through weight ratios
to compensate for the shortcomings of a single feature. They also proposed a
new semi-supervised clustering algorithm based on the unsupervised DBSCAN
algorithm, significantly improving the accuracy of clustering.

The above methods all require a large amount of data and labor to ensure
accurate classification. Furthermore, some models require the use of manual
design feature extraction, resulting in serious limitations in generalization issues.
The use of neural networks based on deep learning methods to solve text classifi-
cation problems is currently a hot research topic. Deep learning [10] is a branch of
machine learning based on multi-layer neural networks to learn deeper features
in samples. It is a complex machine learning algorithm capable of automati-
cally extracting the features of malware through multi-layer neural networks,
simplifying the feature extraction process and enhancing detection accuracy.
Lu Xiaofeng [11] et al. proposed a model assembly method. They introduced a
correlation analysis algorithm for API calls to mine features of API sequences.
Machine learning algorithms were then employed to learn these features. Subse-
quently, a recurrent neural network was utilized to detect malware, and finally,
a model combination was conducted, resulting in improved outcomes. However,
its drawback is that recurrent neural networks are unstable when dealing with
long sequences, potentially leading to extended model training time and poor
detection performance. Cui [12] et al. used grayscale images to represent disas-
sembly files of malware. They leveraged the advantages of convolutional neural



32 Y. Zhou et al.

networks in image processing to recognize and classify grayscale images and used
bat algorithms to address the problem of data imbalance between different mali-
cious software families. Nevertheless, a drawback is that the model exhibits low
flexibility and requires setting the input images of all samples to a uniform size.

The malware classification method based on deep learning does not require
the use of manually designed feature extraction and has high classification accu-
racy. However, the training time of neural networks is long, and they may
generate a large number of parameters, resulting in excessive hardware costs.
Currently, it is impossible to avoid the problem of using deep learning for pre-
diction. To address the issue of a large number of malware variants while also
considering detection efficiency and effectiveness, this article combines the char-
acteristics of the target task and the data used, takes API call sequences as the
research object, and regards them as a piece of text with semantic information.
Additionally, it implements a lightweight model based on API core semantic
information using the self-attention mechanism, which enhances the accuracy of
multi-classification.

3 A Lite Model Based on API Core Semantic Information

Figure 1 illustrates process of malware classification based on deep learning using
API call sequences as the research object. Firstly, collect executable programs on
the Windows platform, encompassing both malicious and benign samples. Subse-
quently, utilize the Cuckoo sandbox environment for simulation execution. After
certain data processing, obtain API sequences. Then, classify them using a clas-
sification model. Finally, process the text data for classification and input it into
the trained model to obtain the malware classification results. The lightweight
nature of the model proposed in this article is evident in two aspects. Firstly,
the model’s input consists of API call sequences containing only key information.
Secondly, while ensuring the model’s effectiveness, the number of parameters in
the model is greatly reduced.

3.1 API Call Sequence

The malware classification task based on API call sequences utilizes API call log
files as analysis objects. It extracts features from the collected files using text
analysis methods, preprocesses the data, and incorporates other techniques for
feature selection. However, there are significant differences between API call log
files and real-world text files. The first distinction lies in the fact that data in text
files is often in common languages such as Chinese or English, encompassing Chi-
nese and English words, etc. In contrast, data in API call log files represents API
functions, serving as the interface between the application program and the Win-
dows system, with a specific nature. Therefore, when classifying malware using
a pre-trained model with good training results, such as the powerful BERT, it is
necessary to extract API functions from the API sequence and establish a spe-
cial API vocabulary to retrain the language model. The second difference arises



LM-cAPI 33

Fig. 1. Malware Classification Process.

from the fact that, to avoid analysis, malware often inserts a significant amount
of redundant behavior into normal behavior. This results in excessively long
API sequences that interfere with analysis and conceal the malicious intent of
the code. Therefore, before extracting the core semantic information of API call
sequences, it is necessary to perform data preprocessing operations to remove
redundant and noisy data from the original sequence. This article reprocesses
API call sequences to reduce their complexity. However, the data preprocess-
ing method only removes multiple duplicate sequences, solving the redundancy
problem in file format. At this point, a substantial amount of information in
the API call sequence still has little impact on the classification results. There-
fore, this article proposes an operational method for extracting core semantic
information from the noise information in the API call sequence after dedupli-
cation. Considering that the classification process of malware often relies on a
few key information points to obtain the classification results, it is necessary to
perform key information extraction and feature selection operations on the API
call sequence after preprocessing the extensive data and ultimately extracting
its core semantic information.

3.2 A Lite Method for Extracting Key Semantic Information Based
on BERT

Since API call sequences fall into the category of a special text sequence, they
can be considered unstructured data. When classifying malware, it is essential
to convert these sequences into vector form. Therefore, a word embedding layer
is needed for vector representation.

The advent of the Transformer model has overcome the shortcomings of using
convolutional neural networks and recurrent neural networks in malware classi-
fication. These traditional models, being sequence-dependent, are constrained to
unidirectional semantics and lack the ability to simultaneously utilize contextual



34 Y. Zhou et al.

information. The Transformer model addresses these challenges by integrating a
self-attention mechanism into the encoder-decoder framework.

This article designs an intimacy analysis method utilizing the self-attention
mechanism. The method calculates the intimacy of word vectors and API call
sequences with varying lengths, identifying high intimacy sequences as key
sequences. The specific method involves inputting the API call sequence into
the BERT model for extraction and embedding, resulting in a vector represen-
tation of the API call sequence. Subsequently, N-gram is used to extract word
vectors of varying lengths, and cosine similarity is used to identify the phrase
that is most similar to the original API call sequence. The higher the cosine
similarity, the higher the intimacy. Finally, the sequence with the highest affin-
ity for the API call sequence is identified as a key semantic sequence. The core
semantic feature information is then extracted from this key semantic sequence
as input.

3.3 A Lite Method for Core Semantic Information Based on BERT

API call sequences are considered unstructured data due to the fact that they
belong to a distinct category of text sequences. When classifying malware, it is
necessary to convert it into vector form, which necessitates the use of a word
embedding layer for vector representation. The Transformer model, by bypass-
ing the limitations associated with autoregressive models in feature extraction,
has the capability to comprehensively learn any dependency relationships men-
tioned in the previous text. This article uses a simplified and improved ALBERT
model as a feature extractor and then uses a classification model to achieve
multi-classification of malware. There are several explanations for the feature
extraction model:

Model Input: The model converts each word into a vector as input, establishing
a word vector table. The original text is tokenized, and [CLS] is inserted at the
beginning to indicate that the feature is used for the classification model. In the
model’s final layer, the corresponding vector of this bit can serve as the semantic
representation of the entire sentence. This is because compared to other words
already in the text, this symbol without obvious semantic information will more
“fairly” integrate the semantic information of each word in the text. As a result,
it adeptly represents the semantics of the entire sentence. The key semantic
sequences are input into the Embedding and Encoder layers of the BERT model
to obtain an embedded representation containing the core semantic information.

Word Embedding: The vector of word embedding relies on word mapping, and
it learns contextually independent representations. The output value from the
feature extractor not only encompasses the word’s own semantics but also incor-
porates contextual semantics. It learns contextual representations and should
contain more semantic information. Consequently, the BERT model’s Encoder



LM-cAPI 35

should yield a larger vector dimension to accommodate more semantic informa-
tion. In this article, the word embedding dimension E (API) of the model is 128
dimensions, while the vector dimension T (API) output by the Encoder encoder
of the BERT model is 384 dimensions. E (API) is much smaller than T (API).
When processing API call sequences, there are a total of 295 categories of API
functions, resulting in a vocabulary size V (API) of 295. The specific opera-
tion of the word embedding layer is to input a vector with dimension V (API)
into a low-dimensional word embedding matrix, map it to a low-dimensional
space with dimension E (API), and then input a low-dimensional word embed-
ding matrix with dimension E (API) into a high-dimensional word embedding
matrix, and finally map it to a T (API) dimensional word embedding. Dimen-
sionality reduction operations significantly reduce the number of parameters in
the model. The Eqs. (1) and (2) show the change in time complexity after word
embedding matrix decomposition.

O = V (API) ∗ T (API) (1)

O = V (API) ∗ E(API) + E(API) ∗ T (API) (2)

Layer Parameters: In the BERT model, the sharing of parameters is limited
to either the fully connected layer or the attention layer. This article incor-
porates parameter sharing between several layers to further minimize training
parameters and enhance training time. Specifically, the multi-head attention
layer and the fully connected feedforward neural network layer share parame-
ters. The parameter size of the feature extractor can be greatly reduced by using
an improved self-attention mechanism-based core semantic extraction method,
the overall computational speed of the model can be accelerated, the hardware
memory overhead can be reduced, the training speed can be accelerated, and
the risk of model degradation can be reduced. The feature extractor presented
in this paper is more flexible and lightweight when compared to the steps of
extracting features in a large pre-trained language model.

3.4 TextCNN Classification Model

Extract the features of the sentence by inputting the embedded representation
containing sufficient semantic information into the convolutional layer of the
TextCNN model.

The feature maps are then input into the TextCNN model’s maximum pool-
ing layer, where they are concatenated to form a vector representation, result-
ing in a one-dimensional vector. Subsequently, the ReLU activation function is
used to output, and a dropout layer is added to prevent overfitting. The fully
connected layer is responsible for establishing the relationship between feature
information and category information. Finally, all fully connected layer output
values are connected to the softmax layer, and multi-classification results are
output.



36 Y. Zhou et al.

Finally, the overall structure of the model is shown in Fig. 2, which is mainly
composed of an input layer, an extraction core sequence layer, a feature extrac-
tion layer, a TextCNN layer, and an output layer. Initially, the API call sequence
is input from the input layer to the core sequence layer for extracting key infor-
mation, shortening the data length, and reducing the data volume. The feature
extraction layers are then connected to extract sufficient semantic representa-
tion while significantly reducing the training time. After encoding, the text of
the API call sequence, similar to text, is converted into serialized data, which is
then fed into the Transformer encoder. The final feature vector representation of
the output text is obtained after training with a self-supervised multi-layer bidi-
rectional Transformer encoder. It then enters TextCNN’s convolutional layer
to extract the feature representation of the sentence, obtain the feature map,
and connect the maximum pooling layer. The one-dimensional vector input is
a fully connected layer after the pooling procedure. Finally, all fully connected
layer output values are connected to the softmax layer, and multi-classification
results are output.

Fig. 2. A Lite Malware Classification Model Based on API Core Semantic Information.

The model incorporates key information extraction mechanisms, self-
supervised learning mechanisms, and a simple convolutional neural network
to form an overall model. Through the above improvement techniques, the
model greatly reduces the large number of parameters generated during the self-
supervised learning process and significantly accelerates its training speed. After
conducting numerous experiments, it was discovered that the above enhance-
ments effectively improve the accuracy of model predictions. This indicates that
relevant improvements are very necessary.

4 Experimental Validation and Result Analysis

4.1 Dataset

The dataset is provided by the Alibaba Cloud Tianchi Competition Security
Malicious Program Detection Challenge, which is derived from the API instruc-



LM-cAPI 37

tion sequence of a Windows binary executable program simulated by a sand-
box program. The sample data provided in the question was obtained from the
internet. The types of malicious files include infectious viruses, Trojan programs,
mining programs, DDOS Trojan horses, ransomware, etc., totaling 600 million
pieces of data. In consideration of the experiment’s utilization of call sequences
distinguished by file numbers, there are a total of 13887 files. The training set was
divided into 11110 and 2777 pieces, with a total of 295 API functions counted,
according to the 8:2 ratio. Table 1 illustrates the distribution of sample types
and specific quantities.

Table 1. Types and quantity of Malware samples.

Label Type Quantity

0 Benign sample 4978

1 Ransomware virus 502

2 Mining procedures 1196

3 DDoS Trojan 820

4 worm-type virus 100

5 Infectious virus 4289

6 Backdoor program 515

7 Trojan program 1487

4.2 Data Preprocessing

To elude analysis, malware frequently injects a significant amount of redundant
behavior into normal operations, resulting in the presence of multiple consecutive
identical APIs or API sequence fragments in the sequence. This redundancy in
information causes the resulting API sequence to become overly lengthy. This
not only hampers analysis and conceals the malicious intent of the code but
also extends the training time. Therefore, this article aims to reprocess API call
sequences, diminishing their complexity and yielding API call sequences that
genuinely reflect program behavior.

Additionally, manage APIs that convey the same meaning but have distinct
function names within Windows APIs. For instance, LoadLibraryA and LoadLi-
braryW are both library loading functions that end with A and W, respectively.
The reason is that the system provides different APIs for different encodings,
with the W ending mainly for UNICODE encoding and the A ending mainly for
ASCII encoding format. For such functions, consider the approach of eliminating
the suffix, presenting both LoadLibraryA and LoadLibraryW as LoadLibrary.

We analyzed the distribution of data length before and after data prepro-
cessing. Among these, 4,806 samples exhibit API sequence lengths within 500,
while 2,769 samples have API lengths exceeding 10000, accounting for 19.9 of
the total samples. There are 6216 API sequences with a length less than 500,



38 Y. Zhou et al.

and only 827 with a length greater than 10000, accounting for 5.9 of the total.
Through statistical analysis, it is evident that the deduplication operation effec-
tively reduces the length of API sequences, which helps to improve subsequent
analysis efficiency.

4.3 Evaluation Indicators

According to the statistics of different categories of malware in the dataset used,
it can be seen that the data distribution is uneven. There are over 4000 benign
samples in the training set, although the minimum number is less than 100.
Therefore, the text adopts accuracy P, recall R, f1 value, and weighted average
value as evaluation indicators for the malware classification model, which are all
calculated based on TP, TN, FP, and FN. TP denotes predicting positive cases
as positive cases; FN denotes predicting positive cases as negative cases; FP
denotes predicting negative cases as positive cases; and TN denotes predicting
negative cases as negative cases.

Based on the values of the above indicators, calculate the accuracy, recall,
and value of the i-th Malware category using formulas (3), (4), and (5). Set the
number of data items for the i-th Malware category as, and the total number of
data items as N. Then, calculate the weighted average P, weighted average R,
and weighted average value using Eq. (6) (7) (8):

Pi =
TPi

TPi + FPi
(3)

Ri =
TPi

TPi + FNi
(4)

Fi =
2 × Pi × Ri

Pi + Ri
(5)

P =
∑

Pi × Ni

N
(6)

R =
∑

Ri × Ni

N
(7)

F =
∑

Fi × Ni

N
(8)

4.4 Experimental Results

Parameter Settings. The key to handling sequence problems with TextCNN
is to use convolution to express sequence information. It is a one-dimensional
convolution, and using a single-length convolution kernel may lose some feature
information. Therefore, this article sets up a TextCNN model to extract features
from various angles using several convolution kernels of varying sizes, thereby
increasing the comprehensiveness of the features. This article conducts experi-
mental comparisons and designs convolutional kernels with sizes of 4, 5, 6, and



LM-cAPI 39

7. Each convolutional kernel contains 128 neurons, and ReLU is used as the
activation function. A maximum pooling approach is utilized to reduce dimen-
sionality after each convolutional layer. The concatenate function is then applied
to combine numerous convolutional and pooling layers. The cross-entropy loss
function is utilized to calculate the loss value during model training, and the
Adamw optimization method is used to achieve gradient descent and update the
model parameters. Setting the batch size to 32 when using the batch training
method, which divides the entire dataset into several small datasets, helps the
model converge and alleviates the problem of falling into local optima. Set the
number of iterations for training, i.e., the epoch value, to 10 and save the opti-
mal model for comparative analysis. Finally, it was determined that the best
classification performance was achieved when the improved convolutional neural
network parameters were taken from Table 2.

Table 2. LM-cAPI Parameter settings

Label Type

embeddingsize 128

hiddensize 384

learningrate 5e–5

filtersizes [4,5,6,7]

numf ilters 128

classifierdropoutprob 0.1

numtrainepochs 10

batchsize 32

Experimental Results and Analysis. According to the comparative experi-
mental results in Table 3, it can be seen that this article established a dictionary
based on API call functions and retrained the language model, achieving good
multi-classification results. Furthermore, the model introduces and optimizes key
information extraction and self-supervised learning methods. From a technical
perspective, it is beneficial to learn as much semantic information as possible
from the API sequence. This will significantly reduce the problem of parame-
ter explosion caused by self-supervised learning while ensuring the accuracy of
model classification.

We draws the loss index and accuracy change curves of the model on the
training and validation sets, as shown in Fig. 3. In the training process of mali-
cious code multi classification, when the loss is generally between 0.1 and 0.2,
the model has basically converged.



40 Y. Zhou et al.

Table 3. Comparison of experimental results

model precision recall f1-score

textcnn 0.80 0.79 0.81

bert 0.70 0.69 0.69

lm-capi 0.93 0.88 0.90

Fig. 3. The loss index and accuracy change curve of the model on the training and
validation sets.

Ablation Experiment. This section will split each module and conduct a series
of ablation experiments on the AAPD dataset to verify Verify the effectiveness
of each module of LSGG. It is mainly divided into the following five parts:

(1) TextCNN: Remove the word embedding part of the LM-cAPI to directly
interact with the label text in TextCNN.

(2) B-TCNN: Only BERT and TextCNN are used, excluding the shared param-
eter mechanism and word embedding layering mechanism of LM-cAPI. In
the neural network part, the English BERT pre training model is used.

(3) Pre B TCNN: Only BERT and TextCNN are used, excluding the shared
parameter mechanism and word embedding layering mechanism of LM-
cAPI. In the neural network part, in order to ensure fairness, the BERT
model is retrained for special datasets to obtain a pre trained language
model based on API call sequence vocabulary.

(4) M-cAPI: does not perform core semantic extraction, removes the core seman-
tic extraction part of LM-cAPI, and directly classifies based on the cleaned
dataset.

(5) LM cAPI: The standard LM cAPI. As shown in Fig. 4, it can be concluded
that pre-B-TCNN, M-cAPI, and LM cAPI perform better than B-TCNN in
multiple indicators. This implies that when employing pre-trained language
models for API call sequences, a new vocabulary needs to be used to re-train
the model.

Moreover, the performance of pre-B-TCNN has seen a slight decline when
compared to TextCNN. This suggests that the BERT model is limited to han-
dling text data with a length of 512. The truncated text loses some key data,



LM-cAPI 41

Fig. 4. Schematic diagram of LM-cAPI ablation experiment.

potentially leading to a decrease in results. In addition, the training of pre-
trained language models is more time-consuming, necessitating the use of a
lightweight model.

5 Conclusion

In the face of the rapid proliferation of malicious code types and quantities, cou-
pled with the continuous updating of dissemination methods, the challenge of
promptly and accurately identifying malicious code stands as a critical aspect of
maintaining network security. Machine learning, a hot topic in artificial intelli-
gence research, has found applications across multiple fields. Therefore, machine
learning can be used for malicious code detection to achieve automation and
intelligence in detection. This article takes dynamic API call sequences as the
research object and extracts and processes API sequences from two perspec-
tives. It then uses machine learning and deep learning algorithms for model
training. Through the modification of model parameters and optimization of the
network structure, the detection accuracy of the model is improved, fully lever-
aging the advantages of using machine learning algorithms for malicious program
detection.

API call sequences are one of the most important features in malicious code
detection. This article analyzes the current research status of existing malicious
code detection methods, especially those based on API sequences. In response
to the limitations of existing research, enhancements are made in both fea-
ture extraction and model training. From different perspectives, two malicious
code detection methods were implemented. The experimental results show that
both methods can effectively detect malicious code, highlighting their important
research significance. The main achievements of this article are as follows:



42 Y. Zhou et al.

We examined API call sequences in malicious code that can characterize the
behavioral characteristics of malicious code as text, and then used advanced
text classification-related technologies to classify malicious code. The intimacy
analysis method, based on the self-attention mechanism, is used to extract key
information. The feature extraction model based on self-attention mechanism
uses pre-training to more efficiently obtain semantic information about the con-
text in API call sequences. In comparison to BERT, it has the advantage of
significantly reducing the number of parameters, making the model lighter and
facilitating faster training. Finally, a simple TextCNN model is incorporated for
malicious code classification. The experimental results show that the proposed
model outperforms the baseline model in detecting and classifying malicious
code, achieving good results.

There is still room for improvement in this method, particularly by integrat-
ing dynamic methods to extract the behavior of malicious code during runtime
for analysis. Additionally, the incorporation of API call sequences from both
dynamic and static analyses could potentially enhance detection results.

References

1. Wadkar, M., Troia, F.D., Stamp, M.: Detecting malware evolution using support
vector machines. Expert Syst. Appl. 143, 113022.1-113022.10 (2020)

2. Natani, P., Vidyarthi, D.: Malware detection using API function frequency with
ensemble based classifier. In: International Symposium on Security in Computing
& Communication, pp. 378–388 (2013)

3. Han, W., Xue, J., Wang, Y., et al.: MalDAE: detecting and explaining malware
based on correlation and fusion of static and dynamic characteristics. Comput.
Secur. 83, 208–233 (2019)

4. Cha, S.K., Moraru, I., Jang, J., et al.: SplitScreen: enabling efficient, distributed
malware detection. J. Commun. Netw. 13(2), 187–200 (2011)

5. Malhotra, A., Bajaj, K.: A hybrid pattern based text mining approach for malware
detection using DBScan. CSI Trans. ICT 4(2–4), 1–9 (2016)

6. Karnik, A., Goswami, S., Guha, R.: Detecting obfuscated viruses using cosine sim-
ilarity analysis. In: Asia International Conference on Modelling & Simulation, pp.
165–170. IEEE Computer Society (2007)

7. Kinable, J., Kostakis, O.: Malware classification based on call graph clustering. J.
Comput. Virol. 7(4), 233–245 (2011)

8. Darshan, S., Kumara, M., Jaidhar, C.D.: Windows malware detection based on
cuckoo sandbox generated report using machine learning algorithm. In: 2016 11th
International Conference on Industrial and Information Systems (ICIIS), pp. 534–
549 (2016)

9. Fang, Y., Zhang, W., Li, B., et al.: Semi-supervised malware clustering based on
the weight of bytecode and API. IEEE Access 8, 2313–2326 (2019)

10. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
11. Xiaofeng, L., Fangshuo, J., Xiao, Z., Baojiang, C., Shengwei, Y., Jing, S.: A mali-

cious sample detection framework based on the combination of API sequence fea-
tures and statistical features. J. Tsinghua Univ. (Nat. Sci. Ed.) 58(05), 500–508
(2018)

12. Cui, Z., Xue, F., Cai, X., et al.: Detection of malicious code variants based on deep
learning. IEEE Trans. Ind. Inf. 14, 3187–3196 (2018)


	LM-cAPI:A Lite Model Based on API Core Semantic Information for Malware Classification
	1 Introduction
	2 Related Work
	3 A Lite Model Based on API Core Semantic Information
	3.1 API Call Sequence
	3.2 A Lite Method for Extracting Key Semantic Information Based on BERT
	3.3 A Lite Method for Core Semantic Information Based on BERT
	3.4 TextCNN Classification Model

	4 Experimental Validation and Result Analysis
	4.1 Dataset
	4.2 Data Preprocessing
	4.3 Evaluation Indicators
	4.4 Experimental Results

	5 Conclusion
	References


