
EasyLog: An Efficient Kernel Logging
Service for Machine Learning

Xundi Yang, Kefan Qiu, and Quanxin Zhang(B)

Beijing Institute of Technology University, Beijing 100081, China
{kfqiu,zhangqx}@bit.edu.cn

Abstract. Recently, logs serves as a crucial tool to monitor system’s
real-time state for experiments and generate data for machine learn-
ing. However, the existing Linux logging system faces challenges such as
excessive log output and a high rate of important log message loss. To
tackle these issues, we propose the EasyLog solution, which effectively
mitigates these problems. EasyLog draws inspiration from the design
principles of log-related functions like pr xx, dev xx, and the Devkmsg

service. EasyLog extracts and records logs with special identifier suffixes
by introducing a ring buffer. In terms of interface utilization, EasyLog
offers the easy xx interface for kernel developers and the reading inter-
face for user-space applications.

Keywords: Machine learning systems · Linux logging service · Log
message loss · Ring buffer · Interface utilization · Server kernel
development

1 Introduction

In recent years, there has been a growing deployment of machine learning systems
on Linux Operating Systems. Within the Linux environment, numerous runtime
problems and potential threats necessitate resolution through security monitor-
ing and analysis, which includes the examination of logs to identify causes [1]. Log
information serves as an immediate reflection of a system’s operational status.
Developers utilize logs for diagnosing system malfunctions, recording experimen-
tal results, and generating data for training security analysis models.

In this paper, we focus on the logging service in the Linux server ker-
nel and aim to assist programmers in designing kernel drivers and generat-
ing data for machine learning. Generally, developers strive to capture system
state dumps, execute tracing, and communicate events through log data. Within
the 13,390,104 lines of source code in the Linux kernel, there are 498,897 lines
(approximately 3.79%) dedicated to logging code [2]. Logging functions in the
Linux kernel write messages into the log buffer. Commonly used logging func-
tions include the printk function, which is similar to the printf function. The
distinction lies in printk’s specification of the log level for event recording. Sub-
sequent Linux kernel versions have introduced variations of the printk func-
tion such as pr_info, and dev_warn, which incorporate log levels into their
nomenclature.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 16–28, 2024.
https://doi.org/10.1007/978-3-031-61486-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_2


EasyLog: An Efficient Kernel Logging Service for Machine Learning 17

However, the existing kernel logging services are unreliable due to several
factors. Firstly, the Linux kernel generates a substantial volume of continuous log
output from numerous programs. When Shiqing et al. [3] tested the overhead of
the Linux audit system, they found that servers generate approximately 130GB
of log data per day, while client machines generate about 5GB of log data per
day. Nevertheless, developers often focus on specific Linux kernel modules. For
instance, Tan Y et al. [4] employ authorization lists recorded in the logs as
the basis for comparison. In the RootAgency [5], the logs document the time
consumption from the test app initiating the request until the end user receives
the reply for the root privilege request. Neither of them pays attention to logs
related to unrelated modules. The excessive volume of irrelevant logs has caused
interference in their experiments. Furthermore, the kernel logging service also
faces the issue of log loss. The kernel log buffer is a ring buffer, which operates
on a first-in, first-out (FIFO) basis. The default size of the Linux kernel log
buffer is 128KB. As data accumulates beyond the capacity of the ring buffer,
the oldest data is overwritten to accommodate new information.

In this paper, we introduce a kernel logging service solution, EasyLog, which
effectively mitigates the above issues. In terms of interface utilization, EasyLog
provides write interfaces such as easy_xx for log writing at the kernel layer
and system call interfaces such as open, read, and close for log reading at
the application layer. Besides, regarding log simplification, the design of the
easy_xx functions is influenced by kernel functions like dev_info, appending
specific identifiers to the end of each log. When our write interfaces append to
record logs, EasyLog extracts logs using the identifier and stores them in our
new ring log buffer, which can be expanded to 2 MB. This approach significantly
reduces the volume of logs. It also elongates the time required to fill the circu-
lar buffer and decreases the likelihood of log loss. Furthermore, developers can
utilize the easy_xx functions in their experimental kernel, subsequently com-
pile and execute the code, and directly get logs from the new log buffer. To
sum up, EasyLog reduces log volume, enhances effective log density, diminishes
the probability of log loss, and facilitates the development of new modules for
programmers.

The rest of the paper is structured as follows. Section 2 describes recent
application of logs, the principles underlying the printk mechanism, and recent
advancements in kernel-level logging service. In Sect. 3, the comprehensive archi-
tectural design is presented. Section 4 describes the details of the implementation
and the interface design of EasyLog. In Sect. 5, we validate the effectiveness of
EasyLog in mitigating the loss rate of important logs. Section 6 elucidates the
utilization of the EasyLog service to assist in the development of new modules
for the Linux kernel. Section 7 concludes.

2 Background

2.1 The Applications of Logs

When the kernel crashes, developers can solve bugs by analyzing the preserved
system log files. In recent years, logs aid developers in diagnosing system errors,



18 X. Yang et al.

training security models, and documenting experimental results. In 2015, the
EASEAndroid platform [6], the inaugural audit log analytic system for SEAn-
droid, employed semi-supervised learning to autonomously enhance the SEAn-
droid policy. In 2018, Xue B et al. [7] obtain the encryption rate and data
processing size of the baseband processor through log information. In 2021, Li Y
et al. [1] proposes a host security analysis method based on D-S evidence theory,
which involves extracting information from monitoring logs and subsequently
training a security analysis model. The model can be applied to host security
analysis in different operating systems with minimal or almost no modification.

2.2 The Analysis of Printk

The kernel log module resides in ./kernel/printk/. Figure 1 illustrates the
read-write framework of the kernel log module. As depicted in the figure, its
core component is the ring buffer, denoted as the “log buffer”. The printk
function and the devkmsg_write function, acting as producers, store messages
in the log buffer. On the other hand, the log service modules on the right side
of the figure function as a consumer, reading messages from the log buffer.

Fig. 1. The Read-Write Framework of the kernel log module

Log Buffer: The size of the kernel log buffer is determined jointly by the
configuration parameters CONFIG_LOG_BUF_SHIFT and the number of CPU cores
in the SMP system. During the kernel boot, information regarding the system’s
memory layout and the number of CPU cores is unknown before device tree
parsing. To support the utilization of the printk function, the kernel defines
a static global log buffer with a size of (1 << CONFIG_LOG_BUF_SHIFT). After
CPU initialization, an additional global log buffer is dynamically allocated with
a size of (1 << CONFIG_LOG_BUF_SHIFT + 1 << LOG_CPU_MAX_BUF_LEN), and
the log data from the original static buffer is copied into it.

The log buffer is managed through the data structure printk_ringbuffer.
Figure 2 presents the data structures of printk_ringbuffer. As depicted, it
comprises three main components: 1) a ring buffer for data storage, managed
using head and tail pointers to track the buffer’s status. When data needs to



EasyLog: An Efficient Kernel Logging Service for Machine Learning 19

be written, the head pointer is updated based on the length of the data being
written. If the free space in the ring buffer is insufficient, the oldest data is
purged starting from the tail pointer. Additionally, each piece of written data is
assigned an ID, which is used to indicate the index in the prb_desc array and
the printk_info array. 2) An array of prb_desc structures, with each element
maintaining the position information of a log within the ring buffer, along with
its status. 3) An array of printk_info structures, with each element responsible
for managing additional information associated with a log, such as its sequence
number(seq), timestamp, length, log level, and more.

Fig. 2. Principal Members and Data Structures of printk ringbuffer

Log Stoarge Process: We use the printk interface as an example for explain-
ing the log storage process. 1) Allocate an entry and increment the sequence num-
ber: The desc_reserve function retrieves an available entry from the prb_desc
structure array. If no free entry is available, it overwrites the oldest log. Upon
successful allocation, the descriptor’s status is set to desc_reserved. Subse-
quently, the sequence number for that log is set. 2) Allocate space and copy the
log: The data_alloc function allocates a segment of space from the ring buffer
to store the new log data. The log_data_copy function copies the data to be
written into the allocated space within the ring buffer. 3) Update the status: The
_prb_commit function updates the status of the new element in the prb_desc
array to desc_committed, and then the desc_make_final function updates the
status to desc_finalized. After this operation, the log is written and ready for
reading.



20 X. Yang et al.

Log Retrieval Process: When reading logs, a sequence number (seq) is pro-
vided as a parameter, and the prb_read function is called to retrieve the log
corresponding to that sequence number. 1) Retrieve a valid status log: The
desc_read_finalized_seq function reads the status of the log corresponding
to the provided sequence number. If the status is valid, the subsequent log data
and information retrieval operations are executed. After completion, the status
of that log is rechecked. If it remains valid and the sequence number has not
changed, it signifies that during the reading process, the data was not modified
by write operations. Otherwise, the reading process fails. 2) Handling of Read-
ing Failures: In case of reading failures, the prb_first_seq function is called
to obtain the first readable log after the provided sequence number, and the
retrieval process is restarted.

Devkmsg Log Interface: The devkmsg service provides log read and write
operations to user space through the device file node /dev/kmsg. Devkmsg main-
tains an independent sequence number and log reading is based on this sequence
number to determine which log needs to be read. The user space read interface
provided by EasyLog in this paper is modeled after the Devkmsg service.

Other Interfaces: 1) syslog interface: This interface exports logs through
system calls but does not provide log writing operations. The syslog interface
finds utility in various scenarios, including applications like dmesg, klogd, and
/proc/kmsg. 2) Console log interface: It primarily offers console initialization,
and registration processes, and specifies the preferred console interface through
command-line parameters. 3) Kmsg dump interface: This interface is primarily
used by pstore. pstore is applied to save system logs to a backend device in
the event of a system crash, assisting developers in debugging and analysis.

2.3 Recent Work About Logging

Linux manages storage devices, networks, man-machine interfaces, CPUs, and
more through software layers such as device drivers, file systems, and commu-
nication protocols. These intricate modules are maintained by hundreds of pro-
grammers. As Linux grows in complexity, an increasing number of system anal-
ysis tools have been proposed to help developers in analyzing system behavior.
The simplest logging tool in Linux is the printk function, as mentioned earlier.
In Linux kernel v1.3.983 [2], a set of additional logging functions was intro-
duced to enhance the conciseness of log statement recording. These functions
incorporate log levels in their names. Consequently, programmers are no longer
required to use printk function with log-level parameters such as KERN_DEBUG
and KERN_INFO. Another set of logging functions specifically designed for device
drivers, such as dev_dbg and dev_info, automatically embed the device name in
their outputs, thereby facilitating the identification of the source of log messages.

Both dev_xx functions and pr_xx functions are variants of the printk func-
tion, and the underlying issues with printk remain unresolved. The printk



EasyLog: An Efficient Kernel Logging Service for Machine Learning 21

function uses an asynchronous daemon to read and write a ring buffer, making
the buffer vulnerable to overwriting and event loss. The Linux Trace Toolkit
(LTT) [8] logs around 45 predefined events, including interrupts, system calls,
and network packet arrivals. The tool is advantageous due to its relatively low
overhead and the presence of a visualization tool to aid in analyzing logged data.
However, it lacks flexibility and scalability. Relayfs [9] is proposed, which divides
logs into different subsystem/client channels, effectively addressing the funda-
mental overhead caused by locking during logging. KLogger [10] is presented
as a software tool for logging operating system kernel events. Developers can
insert new log events into the kernel using this tool. Furthermore, an alternative
approach to logging all events is sampling. OProfile [11] adopts a sampling app-
roach, serving as the underlying infrastructure for HP’s Prospect tool. OProfile
uses Intel’s hardware performance counters to generate traps for every N occur-
rence of specific hardware events. However, since OProfile is based on periodic
sampling, it may miss events with finer granularity than the sampling rate.

3 Architecture

Figure 3 illustrates the architecture of EasyLog. 1) The server kernel subsystem
utilizes the easy_xx functions to record log entries. 2) EasyLog service filters
logs with specific suffixes and directs them into a newly created ring buffer. 3)
User-space applications access the new log buffer through the character device
node /dev/easylog.

Fig. 3. The architecture of EasyLog

4 Implementation

4.1 Channel and Data Management Schemes

The EasyLog module maintains a ring buffer as its log buffer. Its structure,
initialization, and read-write processes resemble the printk’s log buffer.



22 X. Yang et al.

Initialization: During the early stages of kernel startup, the original static
log buffer is still employed. Subsequently, in the start_kernel function, an
initialization function is called to dynamically allocate a global log buffer of size
(1>>CONFIG_EASYLOG_BUF_SHIFT).

Log Storage: The kernel subsystem uses the easy_xx functions to record log
entries, with each log appended with a special identifier suffix.

Log Filtering: The log_store function is responsible for appending logs gen-
erated by other modules to the original log buffer. Within the log_store func-
tion, the EasyLog service performs a hook-like operation. The service filters logs
generated by other modules, extracts logs with suffixes, removes the suffixes,
and subsequently stores them in our log buffer following the writing procedure
described in Sect. 2.1. This process ensures that the log buffer’s read and write
operations do not conflict through spin locks and local interrupt disabling. Dur-
ing this filtering step, both our log buffer and the printk’s log buffer need to be
locked for protection.

Log Retrieval: EasyLog maps our ring buffer to a pseudo-file, namely the char-
acter device file /dev/easylog, which can be accessed by userspace for reading
or process memory mapping.

4.2 Interface

This section describes the basic utilization of EasyLog in both kernel subsystems
and user space. Within the kernel subsystem, a set of kernel-space APIs can be
employed to write logs with suffixes, facilitating the extraction of logs by the
EasyLog service. In the user space, user programs can access logs from EasyLog
by reading from the character device node /dev/easylog.

Drawing inspiration from the pr_xx functions, the kernel subsystems write
a special log using the easy_xx function, where ’xx’ denotes the corresponding
log level. Each kernel log comprises three essential components [2]: the kernel
event level, a static message detailing the event, and variable values associated
with the log event. Detailed API definitions are provided below.

Code 1: The definition of easy xx functions

1: __printf(2, 3) void easy_suffix_printk(const char *, const char *,

...);

2:
3: #define easy_emerg(fmt, ...) \

4: easy_suffix_printk(KERN_EMERG, fmt, ##__VA_ARGS__)

5: #define easy_crit(fmt, ...) \

6: easy_suffix_printk(KERN_CRIT, fmt, ##__VA_ARGS__)

7: #define easy_alert(fmt, ...) \

8: easy_suffix_printk(KERN_ALERT, fmt, ##__VA_ARGS__)



EasyLog: An Efficient Kernel Logging Service for Machine Learning 23

9: #define easy_err(fmt, ...) \

10: easy_suffix_printk(KERN_ERR, fmt, ##__VA_ARGS__)

11: #define easy_warn(fmt, ...) \

12: easy_suffix_printk(KERN_WARNING, fmt, ##__VA_ARGS__)

13: #define easy_notice(fmt, ...) \

14: easy_suffix_printk(KERN_NOTICE, fmt, ##__VA_ARGS__)

15: #define easy_info(fmt, ...) \

16: easy_suffix_printk(KERN_INFO, fmt, ##__VA_ARGS__)

In this context, the easy_suffix_printk function, inspired by the dev_xx
functions, appends the “–easylog–” identifier to the end of each log. Subse-
quently, it invokes the vprintk_emit function, passing the kernel event level
and the newly generated log with the suffix.

The reading operation of user programs in EasyLog draws inspiration from
the reading operation of the devkmsg service. /dev/easylog is a readable char-
acter device file, permitting multiple user processes to access log records. Each
process can obtain a complete set of log entries from EasyLog.

The collection of user-space file operations provided by EasyLog is as follows:
1) The open function, responsible for opening the character device file node
/dev/easylog and creating a deveasylog_user structure object (as detailed
later) named user, corresponding to the deceasylog_open function in the ker-
nel. 2) The read function, which reads log entries from the log buffer, corresponds
to the deceasylog_read function in the kernel. 3) The release function, respon-
sible for releasing all resources acquired by the open function, corresponding to
the deceasylog_release function in the kernel.

Code 2: The collection of user-space file operations provided by EasyLog

1: const struct file_operations easylog_fops = {

2: .open = deveasylog_open,

3: .read = deveasylog_read,

4: .release = deveasylog_release,

5: };

Each process that opens /dev/EasyLog is associated with an independent
deveasylog_user structure object, as described below. The deveasylog_user
structure maintains a unique sequence number for each reading process, denoted
as seq, which represents the sequence number of the log currently being read
by the process. The mutex lock, denoted as lock, ensures that only one thread
within each process can perform write operations on the text_buf. The rs vari-
able is used for rate limiting. Following the Log Retrieval Process in Sect. 2.1, logs
are read from EasyLog’s log buffer, recorded in the text_buf, and subsequently
returned to user space by invoking the copy_to_user function.



24 X. Yang et al.

Code 3: The structure of deveasylog user

1: struct deveasylog_user {

2: u64 seq;

3: struct ratelimit_state rs;

4: struct mutex lock;

5: char buf[CONSOLE_EXT_LOG_MAX];

6: struct printk_info info;

7: char text_buf[CONSOLE_EXT_LOG_MAX];

8: struct printk_record record;

9: };

5 Experiment

This section of experiments aims to demonstrate the significant reduction in
the loss rate of important logs achieved by EasyLog. Important logs refer to the
logs associated with the development modules during server kernel development.
Within the developing server kernel subsystems, developers invoke the easy_xx
functions and append specific identifiers to the end of each log. This experiment
considers such logs as important logs, defined as label logs. EasyLog extracts the
logs with specific identifiers and stores them in a new ring log buffer.

In our experiments, it was essential to simulate real-world log generation sce-
narios as closely as possible, ensuring that normal logs and label logs terminated
their output as synchronously as feasible. The original printk and EasyLog
log buffer were set to 256 KB. We designed two kernel modules: one module
invokes pr_info to write N normal log entries, while the other module invokes
easy_info to write N*0.1 label log entries, ensuring a ratio of 100 normal logs to
10 label logs. The values of N range from 2048, 4096, 6144...20480. Additionally,
normal logs were generated at intervals of 0.1 s, whereas the generation intervals
for label logs were a random number between [0.5, 1.5] (with a mean of 1). These
two modules were executed concurrently, writing normal logs and label logs in
parallel. We consider the logs recorded in /dev/kmsg as the logs logged by the
original logging system, while the logs in /dev/easylog are the logs recorded
by EasyLog. The loss rate of label logs was tested separately. The formula for
calculating the loss rate of label logs is provided in Eq. 1. Table 1 presents the
experimental results.

Label Logs Loss Rate =
Label Logs Loss Count

Label Logs Count
× 100% (1)



EasyLog: An Efficient Kernel Logging Service for Machine Learning 25

Table 1. The loss rate of label logs

NO Label Logs Counta Normal Logs Countb Total Logs Count Label Logs Loss Rate

/dev/kmsgc /dev/easylogd

1 205 2,048 2,253 0 0

2 410 4,096 4,506 0 0

3 614 6,144 6,758 0 0

4 819 8,192 9,011 8.91% 0

5 1,024 10,240 11,264 26.86% 0

6 1,229 12,288 13,517 39.71% 0

7 1,434 14,336 15,770 48.12% 0

8 1,638 16,384 18,022 54.46% 0

9 1,843 18,432 20,275 59.31% 0

10 2,048 20,480 22,528 62.79% 0
a The generation intervals for label logs were a random number between [0.5, 1.5].
b Normal logs were generated at intervals of 0.1 s.
c The logs in /dev/kmsg are the logs logged by the original logging system.
d The logs in /dev/easylog are the logs recorded by EasyLog.

The Table 1 shows that: 1) When the log volume is relatively small, there is
no significant difference in the loss rate of label logs and it remains at 0. 2) As
the log volume gradually increases, the loss rate of label logs in the /dev/kmsg
increases progressively. 3) Due to the constraint of ensuring that normal and label
logs terminate their outputs concurrently, the growth in the loss rate of label logs
in the /dev/kmsg slows down as the log volume increases, and it will not reach
100%. 4) Because the total size of label logs is less than 256 KB, the loss rate of
label logs consistently remains at 0. In summary, EasyLog reduces the volume of
logs that need to be recorded by extracting important logs, allowing the system
sufficient time to store the logs from the buffer into files, thus effectively reducing
the probability of log loss.

6 Application

EasyLog aims to assist programmers in designing kernel drivers and generating
data for machine learning. In this section, we demonstrate how EasyLog aids
developers in kernel driver development. Some hardware devices, such as GPUs,
have old versions phased out and new versions released, necessitating corre-
sponding driver updates. Besides, the driver subsystems are significantly larger
than other subsystems. From Linux versions v4.3 to v5.3, there were a total of
211,437 modifications to log statements, with the driver subsystem accounting
for 86.60% of the overall log code changes [2]. Therefore, optimizing the logging
system is of paramount importance for Linux server kernel driver development.

In this chapter, we take USB storage device-related drivers as an example.
We output logs when USB flash drives are inserted and removed. The log content
includes relevant information about the USB flash drive, such as product, vendor,
manufacturer, serial number, as well as the time of insertion and removal. The



26 X. Yang et al.

Fig. 4. The output of “dmesg”. The figure indicates the original kernel logs include
too much unrelated information.

Fig. 5. The output of “cat /dev/easylog”. The figure indicates the EasyLog’s logs are
clearer and more coherent.



EasyLog: An Efficient Kernel Logging Service for Machine Learning 27

driver functions involved in this process include the scsi_add_lun function in
scsi/scsi_scan.c and the usb_disconnect function in usb/core/core.c. In
these respective locations within the functions, the easy_info function is called
to write the relevant log content. Repeatedly inserting and removing different
USB flash drives or hard drives, Fig. 4 and Fig. 5 depict screenshots of the dmesg
output and the cat /dev/easylog output. The Fig. 5 is clearer and more coher-
ent, devoid of interference in the logs, which is advantageous for programmers
working on new modules.

7 Conclusion

To address issues such as log loss and excessive log volume in the Linux log-
ging service, this paper proposes the EasyLog service. EasyLog maintains a ring
buffer as the log buffer. EasyLog extracts logs with special identifiers from the
logs written to the original log buffer and stores them in our new log buffer. Fur-
thermore, EasyLog provides write functions such as easy_xx for kernel modules
to write logs and read functions for applications to read logs.

In the fifth section, experimental results demonstrate that when the total log
volume is relatively low, both EasyLog and the original Linux logging module
have a log loss rate of 0 for critical logs. However, when the proportion of critical
logs remains constant but the total log volume increases, the log loss rate of
critical logs in the original Linux logging system gradually rises. In contrast, the
EasyLog module en sures that these critical logs are not overwritten by unrelated
logs by extracting critical logs and storing them in our new ring buffer. As a
result, the log loss rate of critical logs in EasyLog is significantly lower than in
the original Linux logging system. When the total size of critical logs does not
exceed the log buffer capacity, the loss rate of critical logs is 0.

In conclusion, EasyLog proficiently mitigates log loss concerns and facilitates
the creation of kernel drivers as well as the generation of data for machine
learning applications.

Acknowledgements. This work was supported by the National Key Research and
Development Program of China under Grant 2022YFB2701501 the National Natural
Science Foundation of China (no. U2336201).

References

1. Li, Y., Yao, S., Zhang, R., et al.: Analyzing host security using D-S evidence theory
and multisource information fusion. Int. J. Intell. Syst. 36(2), 1053–1068 (2021)

2. Patel, K., Faccin, J., Hamou-Lhadj, A., et al.: The sense of logging in the linux
kernel. Empir. Softw. Eng. 27(6), 153 (2022)

3. Ma, S., Zhai, J., Kwon, Y., et al.: Kernel-supported cost-effective audit logging for
causality tracking. In: 2018 USENIX Annual Technical Conference (USENIX ATC
18), pp. 241–254 (2018)



28 X. Yang et al.

4. Tan, Y., Xue, Y., Liang, C., et al.: A root privilege management scheme with
revocable authorization for Android devices[J]. J. Netw. Comput. Appl. 107, 69–
82 (2018)

5. Xue, Y., Tan, Y., Liang, C., et al.: RootAgency: a digital signature-based root
privilege management agency for cloud terminal devices. Inf. Sci. 444, 36–50 (2018)

6. Wang, R., Enck, W., Reeves, D., et al.: EASEAndroid: automatic policy analysis
and refinement for security enhanced android via large-scale semi-supervised learn-
ing. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 351–366
(2015)

7. Xue, B., Lu, L., Sikang, H., et al.: An isolated data encryption experiment method
by utilizing baseband processors. In: Proceedings of the 2018 2nd International
Conference on Management Engineering, Software Engineering and Service Sci-
ences, pp. 176–181 (2018)

8. Yaghmour, K., Dagenais, M.R.: Measuring and characterizing system behavior
using kernel-level event logging. In: 2000 USENIX Annual Technical Conference
(USENIX ATC 2000) (2000)

9. Zanussi, T., Yaghmour, K., Wisniewski, R., et al.: relayfs: an efficient unified app-
roach for transmitting data from kernel to user space. In: Linux Symposium, vol.
494 (2003)

10. Etsion, Y., Tsafrir, D., Kirkpatrick, S., et al.: Fine grained kernel logging with klog-
ger: experience and insights. In: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, pp. 259–272 (2007)

11. Cohen, W.E.: Tuning programs with OProfile. Wide Open Maga. 1, 53–62 (2004)


	EasyLog: An Efficient Kernel Logging Service for Machine Learning
	1 Introduction
	2 Background
	2.1 The Applications of Logs
	2.2 The Analysis of Printk
	2.3 Recent Work About Logging

	3 Architecture
	4 Implementation
	4.1 Channel and Data Management Schemes
	4.2 Interface

	5 Experiment
	6 Application
	7 Conclusion
	References


