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Abstract. Microgrids face challenges in monitoring and controlling the
power quality (PQ) of integrated electrical systems to make timely deci-
sions. Inverter-based technologies handle small-scale smart grids’ power
quality parameters (PQPs) and play an important role in condition mon-
itoring. Accurate forecasting of such parameters is difficult due to the
stochastic nature of demand, distributed generation, and weather condi-
tions. Moreover, energy clients have concerns over growing privacy and
security breaches for collaboration involving data exchanges. This study
aims to predict PQPs indices of home microgrids using ANN, LSTM,
and CNN-LSTM models. To preserve users’ privacy, federated learning
has been applied with some adaptive differential privacy on the global
model and clients’ data. Comparative analysis of the ML model and DP
parameters shows that the LSTM model gives better results with ade-
quate privacy parameters to predict the PQPs of five distributed micro-
grids. LSTM model gives the least MAE of 0.2323 for FL without privacy
and 0.3256 test loss for appropriate DP level.

Keywords: Machine Learning · Microgrid · Federated Learning ·
Power Quality

1 Introduction

Integration of small renewable energy (RE) sources at the user end eases envi-
ronmental degradation and climate change. Intermittent RE makes power grid
stability less reliable, leading to cascading failure due to prolonged disturbances.
The growing integration of distributed energy resources (DER), enormous elec-
tronic devices such as controllers, power management units (PMUs), relays,
and household appliances deteriorate the power quality of modern intelligent
grids [8]. Intelligent control and monitoring systems are vital for appropriate,
timely decisions to protect sensitive equipment in PQ management activities.
Electric appliance operations will be affected due to severe voltage deviation,
frequency changes, power factor variations, transients, and current imbalances.
Accurate prediction of the PQPs is an emerging problem in intelligent grid
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dynamics and stable system operations. It can be helpful for better and quicker
responses in case of PQ standards violations.

Microgrids (MG) require intelligent control systems for steady-state opera-
tion and monitoring in case of minor disturbances such as PQ parameter fluc-
tuations. The general parameters involve voltage (U), frequency (f), total har-
monic distortion of voltage (THDu), and total harmonic distortion of current
(THDi) [5]. These parameters rapidly fluctuate with the power demand and sup-
ply imbalance. Such variance is a significant problem in modern microgrids with
highly variable distributed solar and wind energy. Microgrids with long-lasting
transient states can lead to the collapse of the whole distribution network. Thus,
these parameters are directly or indirectly affected by renewable generations and
load patterns, which are influenced by weather conditions. This study forecasts
PQ parameters according to the weather patterns such as wind speed, solar
irradiance, temperature, humidity, etc.

Previous studies focus on statistical and linear ML models to forecast the
PQ parameters in centralized and local setups. In centralized learning, clients
share the data with the server; thus, information leakage concerns from the
clients. Similarly, in local learning, users face data scarcity issues that need to
be improved for ML training. This study uses a time series regression model to
predict the PQ parameters in a federated setting to preserve the privacy and
data islands.

Moreover, a differential privacy (DP) approach is also adapted to address the
issue of poisoning and model inference attacks. The literature needs to include
the application of FL and adaptive federated DP in forecasting the PQ param-
eters of MG. This study opens the research toward distributed secure learning
on the regression tasks of PQ forecasting and the tradeoff between model degra-
dation and privacy. The contribution of this research study is summarized as
follows:

– Comparatively analyze three data-driven models (ANN, LSTM, CNN-LSTM)
as a PQP forecaster in a federated setup to address MG clients’ privacy and
data scarcity.

– Evaluate the federated ML models based on test loss and use the most appro-
priate forecasting approach to analyze the DP mechanism in the distributed
setting of MG.

– Apply the adaptive differential privacy approach in a federated setup to secure
the server and client models against poisoning and inference attacks. Also,
compute the threshold of security that does not severely degrade the models
during the training.

The paper continues with Sect. 2 as a literature review, which provides
insights into the past related studies. Section 3 discusses the proposed method of
the study. Section 4 analyzes the simulation setup, data processing, and results
of the research work. Lastly, Sect. 5 concludes the study by highlighting key
findings and gaps in the current study.
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2 Literature Review

Power Quality remains a significant problem in microgrids, and it deteriorates
further with multiple intelligent devices and highly variable local renewable gen-
eration. PQ parameter prediction is critical for early warning and preparedness
in transient disturbances. I.S Jahan et al. [5] predicted five PQ indices, i.e., fre-
quency, voltage, flicker, total harmonics distortion of current and voltage with
decision tree and neural network approaches. DT was found to be a suitable
model for the off-grid system experiment based on the test loss for six days.
Jakub Kosmal and Stranislav Misak [7] analyzed PQ management of a decen-
tralized microgrid predominantly with PV generation and active demand side
management (ADSM). The three PQ parameters included ficker severity, fre-
quency, and THDu. The ADSM controls the consumption plan based on the
predicted PQ parameters, which would lead to equipment damage outside limits.
Similarly, Ibrahim Jahan et al. [6] carried out clustering approaches for the same
data based upon several features like appliance (AC. heating, light, fridge, TV)
states with weather variables (temperature, pressure, GHI, U.V., wind speed)
to predict five PQ indices (U, PF, PL, THDu, THDi). Four forecasting models
(DT, KNN, BGDT, BODT) were used for each cluster node and evaluated based
on RMSE. All the models better forecast the power factor (PL) and load, while
BODT gives the least RMSE for all the parameters except higher error of 6.736
for THDi.

Federated learning is a new paradigm of machine learning where multiple
clients collaborate to learn a global model without sharing their data with the
central server. The computation is done at edge devices where client data resides.
Thus, FL provides a better solution in cases of data scarcity, privacy, and secu-
rity concerns. FL applications have been seen in intelligent grids for anomaly
detection, energy trading, EV scheduling, NILM, and RE forecasting. Several
FL studies have been conducted to accurately predict the demand and gener-
ation of different building setups and energy resources, such as solar and wind
[1,3].V. Venkatesh et al. [9] analyzed the distributed energy forecasting using
the BuildFL framework on IoT-based pecan street datasets. FL prediction gives
similar load patterns when compared with GridLAB-D generated consumption
profile. Similarly, Zhang and Wang [10] performed distributed aggregation of
sub-parameters of the probabilistic wind forecasting model. The ADMM algo-
rithm decomposes the problem into sub-parts and evaluates the probabilistic
regression models of 10 wind farms based on the quantile score. ADMM and
mirror-descent algorithms have been studied in distributed setup for measuring
the PQ variables, and the literature still needs to include FL [4].

The probabilistic ADMM approach, in a distributed setup, concatenates the
cost function into sub-problems in which clients share their information. Such a
technique has limitations over non-convex models and lacks privacy guarantees
in collaborative learning. Literature has thorough FL studies on energy demand
prediction and renewable generation forecasting. Data-driven ML approaches
have provided reasonable solutions in smart grids, and implementing FL is more
straightforward than traditional probabilistic methods. However, research on
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minute time series PQP prediction needs for federated and centralized ML. Thus,
current research aims to analyze the application of FL and DP in power quality
forecasting in distributed microgrid networks. The study compares non-linear
ML models in privacy-preserving distributed learning to address the privacy
and security issue in microgrid PQ parameter predictions, which is lacking in
the literature.

3 Methodology

Modern power systems aim to be more resilient towards energy security, cli-
mate change, cyber-physical attacks, power disturbances, and cascading outages.
DERs at the consumer end increase smart grid resiliency, energy, and cyber secu-
rity by providing energy in case of catastrophic power outages and disturbances.
Moreover, flexible energy markets encourage prosumers in cost-effective demand
response (DR) tasks through home energy monitoring and control systems. Such
intelligent home energy systems make incremental usage of power electronics and
IoT devices for energy conversion, storage, monitoring, and control of power qual-
ity variables at the user end. The smart home system collects sensitive data from
these devices and electrical appliances. We applied distributed ML and differ-
ential privacy in a federated setup to preserve the privacy and security of home
microgrids. The methodology of the study is provided in detail below (Fig. 1).

Fig. 1. (Left) Home MG system with DERs, Storage, Inverters, Appliances, and Con-
trol System. (Right) Privacy-preserving federated setup for Home MG clients for col-
laborative ML training without sharing data.
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3.1 Microgrid System

The Microgrid concept has been practiced for decades at the distribution, com-
munity, and user levels. Prosumers with integrated RE, PEV, and battery storage
made themselves small-scale microgrids that involved different tasks, like energy
trading, demand response, load management, and protection schemes via mon-
itoring and control systems [2]. Our study considers five home microgrids with
PV, a small wind turbine, and a battery bank. The system model has been used
in a home hybrid system test platform by Smart Grid Lab of VSB Technical Uni-
versity, Czech Republic [6]. Two buses are connected to two 2 kW PV modules
and four 115 Ah lead-acid batteries with respective inverters. The voltage across
the DC bus varies from 40.5–64 V (V) due to variable charging and discharging.
A 240 V and 50 Hz frequency AC bus is connected with a load, grid, wind tur-
bine, and hybrid inverter responsible for converting DC supply to AC for end
usage. The load consists of several electrical appliances used for daily household
activities, producing high noise in the AC system due to the appliances’ induc-
tive, capacitive, and resistive nature. An energy management system has been
used to monitor and control the microgrid operation, which has several input
signals from the weather station, electric grid PQ analyzer, etc.

3.2 Data-Driven Model

Prediction has been carried out by analyzing linear and non-linear ML
approaches. Comparative analysis on ANN, LSTM, and CNN-LSTM hybrid
models has been conducted to predict the PQ variables. ANN models are rela-
tively simple to implement as they better approximate any continuous function
but can be problematic for data scarcity and temporal dependencies. LSTM bet-
ter captures the temporal features but has a complex model and lacks spatial fea-
ture extraction. CNN-LSTM is a hybrid model in which the CNN layer extracts
spatial features, and LSTM layers handle the time-series patterns. Comparing
these three models gives a better understanding of the relationship between sin-
gle and hybrid ML models for recurrent tasks.

3.3 Privacy Preserving Method

Clients have concerns about data leakage, which can lead to misuse of personal
information, malfunction of devices, and potential attacks on microgrids to dis-
turb the whole power system. Federated learning, which can better preserve
users’ privacy, has been used in the study. In FL, the data reside on clients, and
models are trained on edge devices; thus, no information has been shared with
a central server. As the goal of FL is to learn a general global model, there is a
threat of poison and model inversion attacks. Differential privacy adds noise in
the client model weights to protect the user information from a poison attack.
Similarly, noise is added to the server model weights to protect the global model
from inversion attacks by malicious clients. However, if the noise or security
is high, the accuracy declines, and the prediction task will be affected. So, we
evaluated different privacy parameters using an adaptive approach.
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Algorithm 1. Pseudo Code of Proposed Method
Initialize: Model (M0), Clients (K), NoiseValue (N), Batch(d ∈ D)
for t = 1 to T client(i ∈ K) do:

Client Updates: Δ′t
i , bti ← FedAVG(i, M t, St)

Server Updates:
Δ̄t = Agg.(D − it) + Noise(N)
M t+1 = M t + nsΔ̄

t

St+1 = Adaptive(St)
end for
LocalUpdate: FedAVG(i, M t, St)

M ← M0, M ← SGD(M, nl, d)
Δ ← M − M0, b ← ClippingNorm(‖Δ‖ ≤ S)
Δ′ ← Δ · min(1, S/b)

return (Δ′, b)

Federated Differential Privacy. In federated learning, the model poses a
threat from malicious actors to manipulate the raw local information. Encryp-
tion schemes present viable protective measures but pose a possibility of cryp-
tographic breach and incur high computational costs. A nascent and promising
alternative comes from DP, which offers privacy guarantees during training. FL
process starts with the server initializing the forecasting model (M ) to the clients
(K ). Each client (i ∈ K) locally updates the global model (M ) on their private
data (Di) and sends it back to the server with noise bit bi. The server aggregates
the client update at each round with the additional noise under the FedAVG and
DP mechanism, as shown in Algorithm 1. Any randomized learning algorithm
satisfies (ε, δ)−DP for any adjacent input data d and d′, by adding noise function
as given.

M(d) = f(d) + Noise(Sf )

where, Sf is the maximum l2-distance norm ‖f(d)− f(d′)‖2 and ε is the privacy
loss parameter with the failure probability δ ∈ [0, 1]. In the above equation, the
M(d) can achieve (ε, δ)−DP privacy by adding Gaussian noise N(0, S2

fσ2) with
ε ≤ 1 and δ ≥ 0.8 · exp(−(σε)2/2) in the function f(d). Here, σ is the noise
multiplier that controls the trade-off between privacy and model degradation
during the federated training process.

Adaptive Clipping. To ensure better privacy, the FedAVG algorithm made
two levels of DP mechanism in a federated setup. In the client updates, local
model parameters must be clipped before sending to the server, while the
server adds enough noise to the aggregated weights. These measures provide
enough security for poisoning and inference attacks from the malicious adver-
sary. It has been seen in past studies that a clipping norm with too small a
value will slow the model converge process, while a larger value adds too much
noise, which degrades the model performance. Thus adaptive clipping approach
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S ← S · exp(−ncS(b̄ − γ), which start will low value S0 and gradually increase
with the learning rate nc(=0.2) to the target quantile γ(=0.5).

4 Simulation and Results

4.1 Dataset

The dataset used for our work is obtained from experimental results of a simu-
lated test bed environment by Smart Grid Lab in the Czech Republic. It consists
of several temporal and spatial features, as shown in Table 1. The dataset consists
of every 5-min reading of the respective variables for the June and July months
of 2019. The power quality parameters have been collected using a PQ analyzer
at the AC bus connected to the household load under EN 50160 and EN 61000-
2-20 European standards. Minute-wise power load consists of different household
appliances such as TV, boiler, kettle, fridge, microwave, lights, etc. These are
inductive, capacitive, and resistive loads, thus fluctuating the minute variation.
Similar time series weather datasets have been collected from the periphery of
the study site in Ostrava, Czech Republic.

Power quality and meteorological datasets used in the study have been col-
lected via a test-bed of a home hybrid system by Smart Grid Lab of VSB Tech-
nical University, Czech Republic [5]. The PQ analyzer collected the power load,
voltage, frequency, power factor, THDu, and THDi parameters from the AC
bus. The dataset contains 5-min intervals of input (GHI, WS, Pressure, Temper-
ature, and PL) and output parameters (frequency, voltage, THDu and THDi)
for two months.

Table 1. Input and Output Parameters used in Power Quality Analysis

Symbol Description Range

Weather Parameters

GHI Global Horizon Irradiance (W/m2) 0–1033

Ws Wind Speed (m/s) 0–5.7

P Atmospheric Pressure (hPa) 976.4–995.3

T Atmospheric Temperature (◦C) 9.2–32.2

Power Quality Parameters

PL Power Load (kW) 0.6–2.61

f Frequency (Hz) 49.9–50.08

U Voltage (V) 223.96–245.64

THDu THD of Voltage (%) 0.51–5.75

THDi THD of Current (%) 4.48–61.68
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4.2 Data Preprocessing

The multivariate time series study has several features that are used to predict
the desired output variable. In our research, we aim to forecast four parameters
that have directly or indirectly influenced the input features and the output
variable. The principal component analysis (PCA) approach is used to analyze
the correlation among all the input and output parameters. Based on the fea-
ture correlation matrix, the respective parameters have been dropped before
the training process. Similarly, as time series forecasting depends upon its past
trends, a lookback is also given as an input feature. Data normalization is crucial
in training the machine learning model to access the optimized weights and con-
nections between neurons. Thus, we normalized the data during preprocessing
for flexible training, a robust model, and better prediction results.

4.3 Experiment

Tensorflow federated (TFF) framework is used to perform simulations in a fed-
erated setup. The dataset has been used for centralized machine learning, and
to address the federated setup, we divide the data among five client modules. It
is assumed to be a cross-silo setup, which means the amount of data is the same
for each client, but the tabular data are highly different in temporal nature.
LSTM and CNN-LSTM models have one dense layer with respective LSTM
and CNN/LSTM layers, while only two layers are used for the ANN model.
The number of neurons for these layers has been kept the same, i.e., n = 50.
SGD optimizer has been used for the federated experiment. The MAE metric
has been used throughout the simulations to evaluate the model. The model
has been trained for global round R = 500 and evaluated on the test datasets.
Table 2 gives the details about the hyperparameters of ML models used in the
experiment of federated learning. Similarly, in the differential privacy, several
noise values have been added in global model weights and client model weights
to secure the model from malicious attacks and privacy leakage.

Table 2. Details of hyperparameters used in the implementation of ML models.

Hyperparameters Search Space Value

No. of Neurons 10, 20, 30, 50 50

Activation Function ReLU, Tanh Relu

Server Learning Rate 1.0, 0.10, 0.01 0.1

Batch Size 40, 60, 80, 100 60

Client Learning Rate 0.2, 0.02, 0.002 0.02

Client Epochs 5, 10, 20, 30 10

No. of Global Rounds 200, 300, 500, 750 500
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4.4 Results and Discussion

The privacy-preserving FL approach has been analyzed to evaluate the three ML
models based on the MAE loss, as shown in Table 3. We only considered the dis-
tributed setup of microgrids. We did not analyze the local learning as our main
aim is to evaluate the better model in FL due to privacy constraints. The three
trained models have been assessed on individual test datasets of microgrids after
selecting appropriate hyperparameters during the training stage. After extensive
experiments, it has been shown that MG4 gives a better result for all the ML
models used in the experiment. Still, the LSTM model has the lowest average
MAE value, i.e., 0.3467. MAE value for MG3 is 0.2323, depicting that the LSTM
model is better learned on client 3. As the LSTM model gives better results than
ANN and hybrid models, it is used to analyze the impact of the differential pri-
vacy approach in the federated setup. Similarly, the differential privacy insights
on clients lead to better secure training results.

Table 3. MAE loss of the ANN, CNN-LSTM and LSTM models on test datasets.

Clients ANN CNN-LSTM LSTM

MG1 0.4293 0.3296 0.2378

MG2 0.4148 0.3709 0.3918

MG3 0.2562 0.2617 0.2323

MG4 0.2335 0.2461 0.2383

MG5 0.8538 0.9798 0.6333

Average 0.4355 0.4376 0.3467

Different DP parameters have been given for the federated training to learn
in a secure environment. During the training, a noise ratio is added to clients
and server models to secure them from poison and model inference attacks. Dif-
ferent noise multiplier values [0.0, 0.25, 0.5, 0.65, 0.75, 1.0] have been given to
find the tolerance range of the LSTM model from degradation. Extensive simula-
tions have been carried out to determine the optimum noise parameter through
the search space approach. Figure 2 shows these noise parameters’ results for
a training round of 500 rounds. It depicts that the LSTM model can tolerate
a noise value of up to 0.5 without degrading model quality. A noise value of
0.65 slightly deviates the model from the optimum, while a higher value of 0.75
and 1.0 significantly degrades the model. That’s why we stopped the training
for noise = 1.0 after rounds = 200. Though the noise secures the user’s privacy
during the training process, there is a trade-off of accurate prediction, which is
crucial in power quality parameter forecasting.

The noise values that mimic the global model without DP have been eval-
uated on the test datasets, as shown in Table 3. It shows the tradeoff between
privacy and model precision, as the LSTM model with lesser noise values has
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Fig. 2. MAE of LSTM model during the FL training with different level of DP Noise.

the least MAE loss of 0.3809 average. The study addresses the privacy issue in
distributed learning through an adaptive DP mechanism. It can be the baseline
for future studies that tackle secure aggregation techniques in intelligent grid PQ
forecasting applications. However, to address the data heterogeneity and accu-
rate model adaptation, personalized federated learning will give better analysis
in the future. Future studies must incline towards a statistical approach or tol-
erance factor to mitigate the impact of the clipping approach and change the
time series forecasting to an anomaly or error detection problem (Table 4).

Table 4. MAE loss of the LSTM model on different noise levels on clients test data.

MG1 MG2 MG3 MG4 MG5 Avg

Noise = 0.25 0.2595 0.4201 0.2941 0.2539 0.6767 0.3809

Noise = 0.5 0.3256 0.4614 0.3701 0.3202 0.7291 0.4332

Noise = 0.65 0.5128 0.5417 0.4989 0.4156 0.9528 0.5844

5 Conclusion

Distributed energy generation made microgrids more intelligent with the pro-
liferation of power electronic devices and monitoring systems. Intelligent ML
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operation of green microgrids faces privacy and security issues due to sharing
power quality parameters. Federated learning is a suitable approach to learn-
ing the patterns of predictive ML models to preserve privacy via edge training.
Comparative analysis on ANN, LSTM, and CNN-LSTM models evaluate better
prediction models in distributed settings. The LSTM model has the least MAE
test loss of 0.2323, making it most appropriate for federated predictive learning.
FL faces the challenge of potential model inversion and poison attacks at the
server and client end. Thus, the study provides an adaptive differential privacy
technique to secure the microgrid in such an FL setup. The results showed that
a privacy parameter of 0.5 value gave a better solution to secure the server and
home microgrid clients. In future studies, we aim to analyze the personalized FL
approach with DP under IEEE standards for hybrid energy systems.
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