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Abstract. Deep learning is becoming an increasingly proficient tool for
side-channel analysis. While deep learning has been evolving around the
tasks of image and speech recognition for decades, it is still lacking matu-
rity for side-channel analysis. One of the challenges to train a good model
is the fine-tuning of its hyperparameters. Many methods have been devel-
oped for Hyperparameter Optimization, but a few have been applied for
deep learning side-channel analysis.

We study the use of sampling algorithm and early-stopping mecha-
nism in the hyperparameter optimization search for deep learning side-
channel analysis models. We also offer a scalable deep learning framework
to extend results obtained for other problems and datasets.

Our results show that hyperparameter optimization methods can save
time and resources while leading to models that can lead to the best pos-
sible output and at the same time are providing more confidence whether
to look for a better model.

Keywords: Deep Learning · Side-Channel Analysis · Hyperparameter
Optimization · Pruning

1 Introduction

From personal smart gadgets to sophisticated industrial machinery, devices
embedded with sensors, software, and other technologies are becoming an inte-
gral part of our daily lives. These devices, collectively referred to as the Inter-
net of Things (IoT), communicate over a common network, and the security
of this network depends on the reliability of the least secure device. However,
as the integration of IoT devices expands, the need for secure cryptographic
implementations grows bigger. One of the most critical concerns is the potential
vulnerability of these devices to cyberattacks, which can lead to unauthorized
access, data theft, or even taking control over the device’s functions, thus posing
significant risks to users’ privacy and security.

While strong cryptographic designs can give guaranties on the security of
an application, there remains numerous possibles threats. Side-Channel Analy-
sis (SCA) is a set of techniques aimed to explore the possible vulnerabilities of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 195–212, 2024.
https://doi.org/10.1007/978-3-031-61486-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_12


196 G. Serafini et al.

implementations of secure designs on physical devices. These techniques entail
the analysis of information contained in unintentional leakages from electronic
devices during operations involving sensitive secrets. This analysis can provide
insights into the device’s internal workings, exposing vulnerabilities to security
breaches.

The assessment of side-channel leakages is a part of standard evaluations for
electronics in commercial use, and typically involves the use of classic techniques
e.g., Differential Power Analysis [10] or Template attack [6]. While research on
SCA becomes more mature, new analysis methods are developed that add up
to the standard techniques for side-channel evaluators, such as Deep-Learning
SCA.

Among the various deep learning techniques, Convolutional Neural Net-
works (CNNs) turned out to be particularly suited for in profiling SCA. CNNs
are designed to automatically and adaptively learn spatial hierarchies of features,
which make them effective at recognizing subtle and complex patterns in side-
channel data. When trained on a side-channel dataset, a CNN model can learn
to associate the secret key to certain power leakage of a cryptographic operation
by extracting the important features it contains.

A fundamental challenge when using CNN, as a profiling SCA tool, is the
tuning of its hyperparameters. Hyperparameters define the configuration of a
model, and have a significant impact on a model performance. The sheer size
of the hyperparameter space to explore to find a fitting model and the cost
of evaluating each configuration make the hyperparameter optimization (HO)
task computationally expensive and time-consuming. Moreover, there exists no
guaranty for a CNN model that, if after the training phase the underlying attack
is not successful, no better configuration that would make the attack succeed
could be found. Thus, to ensure that an implementation is secure against CNN-
based SCA, an exhaustive HO search, exploring all possible configurations of
hyperparameters remains the best method.

The use of optimization techniques to tune hyperparameters can help to
ease the HO search to some extends. One such method is the use of sampling
based on optimization algorithms e.g., Bayesian optimization [25] or Genetic
algorithms [12], for exploring the search space of hyperparameter configurations
in an educated manner, and increase the chances that the best configurations
are explored the earliest possible during the search. Another method used to
enhance deep learning is Early Stopping. Based on the results of previous models
during the training phase, this method allows for the early termination of an
unpromising model training based on an intermediate results [2]. This method
can save computational resources and allows the HO process to allocate more
time to explore other, potentially better hyperparameter configurations.

In this paper, we aim to provide a first guideline towards a framework that
integrates efficiently HO for CNN-based side-channel analysis. We demonstrate
how the conjunction of early-stopping and optimization method, namely median
Early Stopping and tree-structured Parzen Estimator (TPE), can computation-
ally ease the HO search. The following points provide a more detailed overview
of the study’s focal areas:
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1. We give an introductory analysis to enhance the efficiency of hyperparam-
eter optimization in CNN-based SCA. We show it is possible to speed up
the HO process while minimizing the compromise on the quality of results.
The integration of sampling method and early-stopping offers more flexibility
in dealing with the exploration-exploitation trade-off during hyperparameter
tuning.

2. We introduce the use of Guessing Entropy (GE) inside sampling and early-
stopping to reach faster convergence to good fitting models.

3. We demonstrate how the use of patience early stopping together with median
early stopping can save resources by preventing long training of models that
appeared to have already converged and won’t learn further, and models that
appear to have little likelihood of improving previously run models.

4. We share the code used for model training and HO. The utilization of several
machine learning packages simplifies the hyperparameter optimization process
and is specifically crafted for SCA, thus paving the way for further exploration
with other optimization algorithms or machine learning frameworks in the
SCA setting.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
overview of existing research in the area of CNN-based side-channel analysis
and hyperparameter optimizations for this type of attacks. In Sect. 3, we pro-
vide necessary information on both SCA and deep learning attack. In Sect. 4, we
present the methodology we applied to create experiments, and especially the
datasets and framework we use. In Sect. 5, we show the results obtained from
our experiments with efficiency of the best obtained model, and saving computa-
tional resource compared to other results from the literature. Finally, in Sect. 6,
we sum up our results and identify some future research directions.

2 Related Works

The studies of deep learning for side-channel analysis have gained great interest
in recent years [21]. CNN-based deep learning have been shown many times to be
particularly efficient for attacks against masking countermeasure in cryptogra-
phy [11,15,17,22,28,30]. Wouters et al. in [28] managed to reduce the complexity
of the CNNs proposed by Zaid et al. [30] by an average of 52% while maintaining
similar performance. The authors argue that increasing the filter size can actu-
ally improve the performance of the network. The review also emphasizes the
importance of pre-processing side channel traces, and shows that with proper
pre-processing the first convolutional block proposed in [30] to extract features
can be omitted, which contributes to reducing the complexity of the models.
Their work highlights the need for proper evaluation of the hyperparameter
search space to conclude on the security of a given dataset.

In an effort to build a universal framework for deep-learning SCA to guaranty
better result reproducibility, Perin et al. [20] and Brisfors et al. [5] introduce two
publicly available frameworks designed to streamline deep learning based side
channel analysis. In these frameworks, the objective is to provide a basis for SCA
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evaluations with deep learning, and provide useful functionalities published in
the literature.

Early-stopping and hyperparameter tuning for deep-learning SCA in dis-
cussed in [18,24]. The authors of [24] introduces the six sigma methodology for
choosing the best possible hyperparameters. The method is a derivative from a
well known methodology for various engineering problems often used to reduce
the variability of industrial processes.

In [18], Paguada et al. introduces an early-stopping method designed for
SCA model training. The early-stopping of the training is evaluated based on
the guessing entropy of the resulting attack, using the newly defined patience
and persistence of the guessing entropy. Our approach also uses optimized com-
putation of the guessing entropy and combines an automated search for the
best hyperparameters with a tree-structured Parzen optimization. Wu et al. in
[29], also suggest an automated method for modifying the hyperparameters, but
using Bayesian optimization. This paper also compares the tracking evolution of
the guessing entropy, accuracy, and leakage difference distribution of the result-
ing attack to choose the best fitting hyperparameters, but do not implement
early-stopping methods.

3 Background

3.1 Profiling SCA

Profiling SCA is a type of SCA that is opposed to non-profiled SCA (i.e., Single
Power Analysis and Differential Power Analysis). Contrary to non-profiled SCA
in which an attacker is assumed to have physical access to the device under
attack, profiling SCA makes the assumption that an attacker also has access to
and full control of an identical copy of the device under attack, and can learn
about leakage to profile before accessing the device under attack. This technique
is commonly divided in two phases:

1. A profiling phase: during this phase, the attacker collects side channel traces
from a copy of the target device while running cryptographic operations with
known secret. This data is then used to build a predictive model (i.e. a profile)
of the device’s behavior.

2. An attack phase: after the profiling phase, the attacker applies the developed
model to the target device while it is executing the same cryptographic oper-
ations with unknown key. If the model developed during the profiling phase
is accurate, the attacker can infer the secret key.

3.2 CNN and Profiling SCA

Convolutional Neural Networks (CNNs) are a specific type of feed-forward neu-
ral network that have become standard for tasks involving image and signal
processing. A CNN is generally composed of multiple convolutional layers fol-
lowed by fully connected layers. The input of a convolution layer is multiplied
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by several filters (also known as kernels) which are shifted along the input data,
performing a dot product operation at each position, and creating a so-called
feature map. During this convolution operation, the kernels act as feature extrac-
tor, each learning to identify a different pattern in the input data. The patterns
can range from simple edges to complex shapes or textures, and they emerge
automatically during the training process. Once the features are extracted, the
output of the convolution layers goes to a fully-connected network that acts as
a classifier.

A CNN, as well as other deep learning algorithms, is divided in two stages:
a training and an evaluation phase. During training, the neural network is chal-
lenged with raw input data and is followed by backpropagation correcting the
differential between the predicted and known labels. In the evaluation phase, the
network is challenged with a never previously used input data, and outputs a
probability distribution to classify the input based on the trained task.

Because of the similar two-stage structure of profiling SCA and deep learn-
ing classification, the later can be applied as a profiling method in SCA. In
such a framework, the aim is to classify observed side-channel leakages into cor-
responding secret information. Given this formulation, machine learning tech-
niques emerge as a natural choice for enhancing the efficiency and efficacy of
profiled side channel attacks.

SCA often involves extracting useful information from noisy, high-
dimensional data, a process that CNNs are exceptionally well-equipped to han-
dle. The properties of CNN align with the requirements of side channel analysis
for extracting features in a high dimensional power trace and overcome invari-
ance of a leakage position. The learned features are more representative and
discriminative, enabling them to effectively identify and classify patterns in side
channel data.

The property of translation invariance of CNNs is useful in the context of
side channel analysis. This property ensures that once a feature from a leakage,
such as a specific pattern, has been learned, the CNN model can recognize the
same pattern regardless of its position in any new side channel trace, making
CNNs effective tools to work effectively with raw, unprocessed data. This is
particularly beneficial in side channel analysis, where preprocessing steps such
as trace alignment can be challenging and time-consuming.

3.3 SCA Metrics

Precision, recall and accuracy, often fall short in deep-learning SCA due to the
binary nature of their result. These metrics focus on whether a single prediction
is correct, overlooking an attacker’s strategy of narrowing down potential keys
across many traces. A more informative metric in SCA is Guessing Entropy (GE),
which measures the average number of keys as attacker would need to guesses
before finding the correct one.

Guessing entropy can be modeled as follows:

GE = E [rankk∗(g)] (1)
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In this context, rankk∗ denotes the position of the correct key k∗ in an ordered
vector of candidate keys. The vector g represents the output array of keys, sorted
in an order determined by the likelihood of each candidate key being the correct
one according to the classifier. The expectation is computed by averaging the
rank value over multiple experiments.

3.4 Leakage Model

A leakage model is a critical component that links the observed side-channel
information to the intermediate values of the cryptographic operation being per-
formed. The leakage model thus forms a fundamental bridge between the phys-
ical world observations and the mathematical properties of the cryptographic
algorithm, allowing for an attacker to make informed deductions about secret
data.

The basic premise behind leakage models is that the side-channel emissions
of a device are not random, but depend on the device’s internal state and opera-
tions. In the case of a cryptographic device, these operations are influenced by the
data being processed and the secret key. The leakage model aims to describe this
relationship, essentially serving as a predictor of side-channel emissions based on
the known intermediate values of the cryptographic algorithm.

In this paper, only the Identity Leakage Model (ID) is considered.
This model assumes a direct relationship between the observed side-channel

leakage and the secret intermediate values during cryptographic operations.
Under the ID model, the observed leakage is assumed to be the identity

of the intermediate value. This suggests that the leakage directly reveals the
intermediate value, without any noise or distortion.

Mathematically, this can be expressed as:

L = V (2)

where, L denotes the observed leakage and V represents the secret intermediate
value.

In the context of the Advanced Encryption Standard (AES), for instance,
the intermediate value could be the result of the application of the S-box in the
first round, which can be expressed as V = Sbox(key + input).

This would result in 256 possible classes (corresponding to the 256 possible
values of an 8-bit output), each representing a distinct intermediate value.

3.5 Hyperparameter Optimization

Hyperparameter optimization (HO) is a critical step in the development of ML
algorithms. It entails determining an optimal set of hyperparameters, that min-
imizes or maximizes an established fit function, and so improves the model’s
performance. The hyperparameters are chosen before training a model and can-
not be changed later. Moreover, it is not possible to predict that a configuration
of hyperparameters will lead to a good model.
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Learning rate, number of layers in a neural network, number of hidden units
in each layer, type of activation functions, and many more parameters are exam-
ples of hyperparameters. When we initially apply a model, the ideal values for
these hyperparameters are often not obvious, and they might be highly problem-
dependent.

To find a suitable set of hyperparameters, one needs to explore different con-
figurations of a given model. Common methods for exploring hyperparameters
are:

– Grid Search: This is the simplest strategy, in which we establish a subset of
the hyperparameter space and methodically attempt all combinations within
the defined grid.

– Random Search: Unlike grid search, random search draws hyperparameter
values at random from a given space. When the number of hyperparameters
is considerable, this method may be more efficient than grid search.

– Bayesian Optimization: This method creates a posterior distribution of func-
tions that best describes the function to be optimized, and then uses it to
select the most promising hyperparameters to evaluate in the true function.

3.6 Tree-Structured Parzen Estimator

The process of selecting the hyperparameters that optimize a model’s perfor-
mance can be time-consuming and computationally expensive. It is, nonethe-
less, critical for developing strong and accurate ML models. In this study, we
use the Tree-structured Parzen Estimator (TPE) [4], a Sequential Model-Based
Optimization (SMBO) approach.

TPE constructs a model of the objective function with the goal of suggesting
more promising hyperparameters for evaluation.

TPE models two probability distributions: P (x|y) and P (y), where x rep-
resents the hyperparameters, and y is the corresponding objective function.
Through this modelling, TPE assigns greater weight to regions of the hyper-
parameter space it deems promising.

The operational procedure of TPE consists of the following steps:

1. TPE starts its process by randomly selecting n hyperparameters configura-
tions from the search space and evaluating the objective function for them.

2. These hyperparameters are then fitted into two distinct distributions: one for
those that yielded better outcomes of the objective function (termed “good”
values), and another for the remainder of the hyperparameters (termed “bad”
values).

3. In subsequent iterations, TPE samples more from regions having a high ratio
of good to bad hyperparameter values. This ratio is determined by a param-
eter, γ, which is a quantile threshold separating the good and bad hyperpa-
rameters based on their objective function outcomes.

Through this process, TPE continuously adapts its focus towards the promis-
ing areas of the hyperparameter space, while diminishing attention on areas
known to yield inferior results.
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3.7 Early Stopping Strategies in Hyperparameter Optimization

Early stopping strategies in HO to the process of halting training of non-
promising hyperparameter configuration as early as possible during the tuning
process, saving computational resources. These techniques are particularly use-
ful for tuning complex machine learning architectures, where the computational
cost can be quite high [27]. Among early stopping strategies, the most notable
are: median early-stopping, asynchronous successive halving algorithm [13], and
hyperband algorithm [9,14]. These strategies monitor a model training perfor-
mance and use it to decide whether to stop the training prematurely. All these
strategies are adaptive early-stopping mechanisms that adapt the rules to trigger
the training stop based on the tracked monitored value. Early stopping strategies
were initially viewed as HO strategies when applied to grid search or random
search, but it has been demonstrated how these strategies can actually enhance
Optimization algorithms such as Bayesian Optimization [26,27].

In particular, we explore median early-stopping in this paper. Median-early
stopping will stop the training of a model when the objective value by the cur-
rent epoch is worse than the median value of the running averages of all com-
pleted previous trials objective values. Another early-stopping rule that can be
applied is the Patience-Early stopper. This method can be used to wrap an
early-stopping rule with a patience parameter that will trigger the wrapped rule
after a fixed number of epochs where no improvement can be observed.

Despite their computational benefits, these strategies bear the risk of prema-
turely discarding configurations that may start slow but eventually outperforms
others. This issue can augment with the double descent phenomena [16], poten-
tially leading to suboptimal final configurations.

3.8 Warm-Up Values in Early Stopping Strategies

Warm-up values refer to the initial set of iterations or epochs during which the
performance of the hyperparameter configurations is not evaluated for prun-
ing. This grace period allows the configurations to stabilize and exhibit their
potential before any pruning decisions are made. In our experiments, we uti-
lize these warm-up values in conjunction with the Median-Early-Stopper. The
Median-Early-Stopper operates by comparing the performance of each configu-
ration against the median performance of all configurations at similar epochs.
If a configuration’s performance falls below the median, it is stopped, allowing
resources to be focused on more promising configurations. To understand the
impact of warm-up values on this process, we experiment with warm-up periods
of 30, 50, 75, and 100 epochs. By varying these values, we aim to analyze how
different lengths of the warm-up period affect the overall hyperparameter opti-
mization process, particularly in terms of the timing and effectiveness of early
stopping decisions.
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4 Methodologies

4.1 Study Settings

The experiments utilize both the ASCADf and the ASCADr datasets [3]. Those
datasets have been introduced in an initiative to provide a ground base for side-
channel analysis of smartcard masked AES implementation. ASCADf dataset
was the first published, and contains traces collected from encryption operations
with a fixed key. The ASCADr dataset contains traces collected from encryptions
with random keys and was meant to be more challenging than ASCADf. For
both, we use the label obtained by using the Identity Leakage Model.

For the computational aspect, all the deep learning models were trained on
an NVIDIA GeForce GTX 1080 TI Graphics Processing Unit (GPU).

The implementation of the experiment was conducted using Python. The
TensorFlow [1] and Keras [7] libraries served as the foundation for constructing
and training the deep learning models, while Optuna [2] was employed for the
optimization of hyperparameters. For the purpose of visualizing results and mon-
itoring the progress of our experiments, we used Matplotlib [8], TensorBoard,
and Optuna’s built-in visualization features. These tools allowed us to effectively
track, analyze, and present the outcomes of our research in a clear and intuitive
manner.

4.2 CNN Model Architecture

In this research, we leveraged the benefits of sampling optimization with early-
stopping to perform hyperparameter optimization (HO) experiments on two SCA
datasets: ASCADr and ASCADf, with the identity leakage model.

The experiments are executed each for 100 models. In these experiments, the
HO process is guided using a customized objective function based on GE.

The CNN-based models can be decomposed in a feature extraction part (i.e.,
one or more convolutional blocks) followed by a multi-layer perceptron that acts
as a classifier to recover the guessed intermediate value of an input trace. One
convolutional block always is formed with a convolution layer and a pooling
layer. An additional normalization layer is inserted every two blocks between
the convolution and pooling layers to add regularization of parameters. A rep-
resentation of the obtained models is showed in Fig. 1. The Table 1 lists the
different hyperparameters chosen to explore and their range for this study.

We combined the capabilities of Optuna and Keras to dynamically construct
CNN models, the structure, and parameters of which were determined by the
Tree-structured Parzen Estimator (TPE) Sampling Algorithm used in the HO
process.

To enhance the efficiency of our experiments and explore the potential ben-
efits of early stop strategies, we conducted four tests for each dataset. Each test
uses the Median-Early-Stopping and Patience-Early-Stopping techniques with
varying degrees of intensity, adjusted by manipulating the warm-up values. For
ASCADf, an additional experiment was conducted without employing any early
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Fig. 1. General overview of how the convolutional neural networks are built

Table 1. Hyperparameter space explored in the optimization process

Hyperparameter Range Step

batch size [100, . . . , 1000] 100

learning rate [1e-5] (Fixed) None

activation function [relu, selu] None

filters [2, . . . , 64] ×2

num conv layers [2, . . . , 5] 1

kernel size [2, 3, 5, 7, 11, 17] (for each conv layer) None

num fc layers [1, 2, 3] 1

size fc layers [64, . . . , 512] (for each fc layer) 64

epochs 200 or 300 (fixed) None

strides 1 (fixed) None

stopping method, providing a benchmark against which to assess the impact of
these resource-saving techniques.

Finally, we assessed the experiments by selecting the best models from each
and comparing their performance metrics. We compared the different models
using GE.

4.3 Hyperparameter Optimization Process

Optuna was selected as the primary tool for conducting a series of HO exper-
iments. The Tree-structured Parzen Estimator (TPE) sampling algorithm, a
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Bayesian optimization algorithm provided by Optuna, was employed for the
hyperparameter configuration selection.

An important component of the approach was the use of the averaged GE as
the objective function to guide the HO process:

GEaverage =
GE(1) + GE(2) + ...GE(n)

n
(3)

where n is the size of the subset of traces taken from the validation set to estimate
the key rank, which correspond to the number of used traces to compute the GE
during the training. Utilizing the averaged GE as a metric during the HO process
is helpful in comparing the efficiency between different models, since this metric
gives an estimation of both the amount of traces needed to reach a low GE, and
the amount of attempts needed for guessing the correct value. Optuna ultimately
utilized this number as an objective value to guide the Hyperparameter selection
of the future models based on TPE Algorithm.

5 Results

This section of our research delves into the results from our analysis of the
two distinct datasets: ASCADf and ASCADr. We focus primarily on the hyper-
parameter optimization experiments conducted at various warm-up values for
the Median Early Stopper, methodically studying their impact on resource use,
measured in number of epochs, and the performance of the best model. This
examination allows us to determine the effects of early stopping on the best
models’ result for each unique experiment.

5.1 Experiments for ASCADf

Table 2 encapsulates the impact of various warm-up periods on resource uti-
lization during hyperparameter optimization processes. The columns labeled
Median-Early-Stopper and Patience-Early-Stopper show the percentages of
epochs spared due to the implementation of the respective early stopping strate-
gies. These savings are calculated in comparison to the total number of epochs
that would have been required if no early stopping mechanism were employed.
This comparison highlights the efficiency gains achieved by employing these
early stopping strategies in our hyperparameter optimization process. By saving
epochs, we are able to evaluate more configurations using fewer resources, thus
enhancing the overall efficiency and scalability of the optimization process.

Specifically, the Median Early Stopper column denotes the percentage of
epochs saved because of the application of this strategy, the Patience Early
Stopper column represents the percentage of saved epochs attributed to early
stopping based on patience. Lastly, the Sum column aggregates these savings,
providing an overall view of the resource conservation.

The total savings (represented by the Sum column), which combines the
impacts of both the different early stopping strategies, doesn’t exhibit a direct



206 G. Serafini et al.

Fig. 2. Guessing entropy for the ASCADf experiments using warm up value of 30, 50,
75 and 100

Table 2. Summary of the effect of different warm-up values on the average number
of epochs saved with early stopping during training on ASCADf (in percentage of a
complete training)

Warm-up Median-Early-Stopper Patience-Early-Stopper Sum

30 49.085 2.68 51.765

50 36.825 7.34 44.165

75 9.975 24.82 34.795

100 4.79 33.27 38.06

relationship with the warm-up period. This follows from the fact that a lighter
early stop based on previous models lead to more space for the early stop mech-
anism based on the training patience to act.

From the data collected in Table 2 and corresponding performance drawn
from Fig. 2, we can analyze the relations between the warm-up steps applied
to the training and the performance outcomes of the optimal model in the HO
process. All settings perform as well as or better than the run without early-
stopping, confirming that early-stopping does not impact on the capacity of HO
to find a good fitting model.

The setting with a minimal warm-up phase of 30 steps realizes significant
resource savings, with nearly half of the epochs conserved. Notably, the model’s
performance under this condition doesn’t compromise drastically as it recovers
the key with approximately 200 traces, like the rest of the configurations. This
suggests that even an aggressive early stop schedule can still result in optimal
model performance.

Extending the warm-up phase to 50 or 75 steps results in a slight decrease in
epoch savings. However, the performance of the model remains similar, requiring
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around 200 traces for key recovery, which aligns with the performance exhibited
by setting the warm up-value to 30.

Increasing the warm-up phase to 100 steps, or even having no early stop at
all, maintains a consistent performance level, necessitating around 200 traces for
key recovery. This finding reinforces the premise that strategic early stop doesn’t
compromise finding optimal configurations, but it might instead ensure efficient
resource allocation and exploration-exploitation balance.

Table 3. Comparison with other papers of number of traces required to reach a GE
of 0 for ASCADf, ID leakage Model

Attempt Traces to reach GE = 0

[3] 1476

[30] 191

[23] 202

[29] 158

this study 230

5.2 Experiments for ASCADr

Table 4. Summary of the effect of different warm-up values on the average number
of epochs saved with early stopping during training on ASCADr (in percentage of a
complete training)

Warm-up Median-Early-Stopper Patience-Early-Stopper Sum

30 33.3 14.44 44.74

50 35.63 18.09 53.72

75 24.0 38.12 62.12

100 0.0 39.11 39.11

The Table 4 summarizes the effects of different warm-up values on the 2 early
stopping strategies for the ASCADr dataset.

When the warm-up value is set to 30, the Median Early Stopper con-
tributes to 33.30% saving in epochs, while Patience-Early Stopping approxi-
mately 14.44%, reaching the total reduction of epochs to approximately 44.74%.
Surprisingly, this figure is slightly lower than the reduction seen for higher warm
up values (50 and 74), even though a lower warm up value would usually mean
more aggressive pruning.

This counterintuitive result can be attributed to the fact that during this
particular experiment, effective configurations were relatively quickly identified,
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and the experiment showed consistent improvements as the models were exe-
cuted. Considering the Median Early stop mechanism, this scenario naturally
led to a decrease and delay of early stopping compared to other scenarios.

Although a lower warm up value generally implies more aggressive early
stopping, it is essential to consider the dynamics of the optimization process
and the quality of the configurations with the order in which they are found.

At a warm-up value of 50, Median Early Stopper models saved about 35.63%
of the total epochs that could have been run, and the early stop saved approxi-
mately 18.09% of the epochs. The combined effect led to a reduction of around
53.72% in the number of epochs.

Increasing the warm-up value to 75, the impact of the Median Early Stopper
savings decreases to 24.0%, but the effect of early stopping increases to 38.12%,
leading to a total reduction of approximately 62.12%.

At a warm-up value of 100, the Median Early Stopper has no effect (0.0%
reduction), while the impact of early stopping slightly increases to 39.11%, lead-
ing to the overall reduction in epochs to 39.11%.

It’s important to explain that the elevated percentage of pruned epochs in
the ASCADr experiments, compared to those in the ASCADf experiments, is
primarily attributable to the baseline number of epochs set for each dataset.
In the ASCADr experiments, the default number of epochs, was set to 300. In
contrast, for the ASCADf experiments, this number was lower at 200.

This discrepancy means that, since the warm-up and early stopping values
are kept constant across both sets of experiments, the resource-saving techniques,
have a larger pool of epochs from which to cut in the ASCADr experiments. As
a result, these techniques appear to prune a higher percentage of epochs in the
ASCADr experiments compared to the ASCADf ones. This difference, however,
is simply a reflection of the different default epoch settings for the two datasets,
rather than indicating any inherent differences in the effectiveness of the early
stopping strategies.

Fig. 3. Guessing entropy for the ASCADr experiments using warm up value of 30, 50,
75 and 100
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Analyzing the outcomes of the best models’ Guessing Entropy (GE) from
various experiments of the ASCADr dataset, depicted in Fig. 3, reveals compa-
rable results across the board for different warm-up values, specifically 30, 50,
75, and 100. Interestingly, the model from the experiment with a warm-up value
of 30 exhibited slightly superior performance, reaching a GE of 0 with 170 traces.
Meanwhile, the best models from experiments with warm-up values of 50, 75,
and 100 also demonstrated commendable performance, requiring slightly more
than 200 traces to achieve a GE of 0.

Once more, despite the amounts of computational resources saved across the
different warm-up values, all experiments resulted in well performing models.
These results suggest that the role of early stopping strategies can be effective
in the HO process and can help to focus the process on more promising config-
urations and lead to better results.

Table 5. Comparison with other papers of number of traces required to reach a GE
of 0 for ASCADr, ID leakage Model

Attempt Traces to reach GE = 0

[19] 105

[23] 490

[29] 1568

this study 170

6 Conclusion and Future Work

In this paper, we investigated the role of HO in CNN-based SCA. We specifically
showed how the integration of sampling and early-stopping strategies can help
to find a good fitting model and save computing time and resources during the
HO process.

Our results showed that the implementation of adaptive early-stopping tech-
niques during the training phase could speed up the HO process without affect-
ing performance. Across all warm-up values used in the experiments, the models
consistently required around 200 traces for successful key recovery. This obser-
vation suggest that an efficient HO process, facilitated by early-stopping, does
not compromise the effectiveness of the CNN models in SCA.

Furthermore, the use of TPE as a sampling algorithm and a GE-based objec-
tive value reduce the number of explored configurations during the HO process
before finding a first good fitting model. These methods contributed to the effec-
tive selection and evaluation of hyperparameter configuration, leading to promis-
ing results shown in Tables 3 and 5.

In this work, we focused on the combination of TPE sampling and median
early-stopping methods, but there exists many other sampling and early-stopping
methods which could alleviate better the HO search. It would be interesting to
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explore in more depth the different methods available in the machine learning
literature and adapt it to the problem of SCA. This work also explored only
the case of CNN-based deep learning, and only with a narrowed hyperparameter
search space, adapted from the previous research for the given datasets we used
for the experiments. When dealing with another dataset, a different search space
or even different neural network architecture should be designed. The standard-
ization of a common search space, taking into account width and depth limits
of the architecture, could help to increase the confidence of security assessment
of deep-learning based SCA.
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