
CNN Architecture Extraction on Edge
GPU

Péter Horváth1(B), Lukasz Chmielewski2, Leo Weissbart1, Lejla Batina1,
and Yuval Yarom3

1 Radboud University, Nijmegen, The Netherlands
peter.horvath@ru.nl

2 Masaryk University, Brno, Czech Republic
3 Ruhr University, Bochum, Germany

Abstract. Neural networks have become popular due to their versatility
and state-of-the-art results in many applications, such as image classifi-
cation, natural language processing, speech recognition, forecasting, etc.
These applications are also used in resource-constrained environments
such as embedded devices. In this work, the susceptibility of neural net-
work implementations to reverse engineering is explored on the NVIDIA
Jetson Nano microcomputer via side-channel analysis. To this end, an
architecture extraction attack is presented. In the attack, 15 popular con-
volutional neural network architectures (EfficientNets, MobileNets, Nas-
Net, etc.) are implemented on the GPU of Jetson Nano and the electro-
magnetic radiation of the GPU is analyzed during the inference operation
of the neural networks. The results of the analysis show that neural net-
work architectures are easily distinguishable using deep learning-based
side-channel analysis.

Keywords: Deep Learning · Side Channel Attack · NVIDIA GPU

1 Introduction

The field of machine learning has seen an enormous amount of interest and use
in recent years. One specific area of machine learning, namely deep learning, has
proven to be versatile and provides state-of-the-art performance for many real-
world applications. Deep learning refers to multi-layer Artificial Neural Networks
(ANNs) that learn to solve a task by extracting the important features from data
and generalizing well to that task. These tasks, such as games, object detection,
image classification, or natural language processing, can be vastly different.

AlphaGo [32] is one of the deep learning-based breakthroughs where a neural
network learned to play Go and was able to beat one of the best human Go
players at the time. Similarly, AlphaZero [33] was developed to play chess and
outperformed human players. Lastly, AlphaStar [39] achieved superior levels,
compared to human players, in the StarCraft 2 real-time strategy computer
game, beating multiple of the best players in the world.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 158–175, 2024.
https://doi.org/10.1007/978-3-031-61486-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_10


CNN Architecture Extraction on Edge GPU 159

Additionally, image classification is a fundamental problem of computer
vision where deep learning models have achieved state-of-the-art results and
continue to provide improvements [6,8,17,20,34]. A more general problem in
computer vision concerns the field of object detection, which has also seen enor-
mous improvements in accuracy due to neural networks [21].

Similarly, deep learning provided multiple breakthroughs in Natural Lan-
guage Processing (NLP) in recent years [26]. NLP is a broad field that aims to
solve practical issues concerning human languages, such as information retrieval,
summarisation, or machine translation. Google Translate [2] and ChatGPT [25]
are popular NLP applications based on the Transformer [38] neural network
architecture.

Neural networks are changing many areas of our lives and are becoming
indispensable in our everyday lives. However, the design and training of neural
networks can be expensive in many ways, as follows:

1. Collecting the training dataset can be time-consuming and expensive;
2. Designing and training neural networks requires people with expertise;
3. The time it takes to train and validate a model can range from hours to weeks;
4. The cost of training and tuning can be high due to requiring specialized,

high-performance hardware, e.g., graphics processing units (GPUs).

Additionally, sometimes sensitive data is used to train a neural network, and
this data can also be vulnerable to reverse engineering. Therefore, keeping the
architecture and parameters of the trained models secret becomes an important
issue.

Beyond their great successes, neural networks also face a wide variety of
adversarial attacks. These attacks can have different goals, such as causing mis-
classification, input recovery, or reverse engineering architecture.

One kind of technique that attackers can employ is Side-Channel Analy-
sis (SCA). SCA exploits the physical leakages of electronic devices to extract
secret information. Despite existing countermeasures against SCA-based attacks,
it is not always possible to utilize these countermeasures, especially in resource-
constrained environments, because countermeasures usually come at a price of
speed and cost.

Therefore, this work will focus on the following research question: Are neu-
ral network implementations of large-scale convolutional neural net-
works on the GPU of NVIDIA Jetson Nano vulnerable to reverse
engineering using deep learning-based side-channel analysis?

The GPU platform is targeted because neural network implementations,
especially convolutional neural networks, in practice, often run on GPUs because
the core operations of neural networks are matrix operations (e.g., multiplica-
tions). These operations are highly parallelizable, which makes GPUs more suit-
able than CPUs for neural network-based applications.



160 P. Horváth et al.

1.1 Comparison with Related Work

In this work, we analyze electromagnetic and timing side channel information
similarly to the CSI-NN paper, which analyzed NNs running on microcontrollers
[3]. However, we focus on well-known and widely used, large-scale convolutional
neural network architectures in computer vision with a different and more pop-
ular platform for neural networks as the target, i.e. the GPU. In practice, since
GPUs provide efficiency through parallelism, they are commonly used to run
neural networks, especially large-scale ones. This GPU parallelism also poses a
big challenge in analyzing side-channel signals, as the number of concurrently
executing threads is much larger than that of microcontroller applications. More-
over, the attacks presented in this paper do not require the decapsulation of the
target chip, contrary to [3].

The work of Chmielewski and Weissbart [5] targets the same platform as we
do in this work, with the goals and methods similar to those of [3]. Basically, the
number of neurons, number of layers, and activation function types are recovered
based on using electromagnetic side-channel and timing information. However,
our work goes further in extending the approach to large-scale architectures and
showing that recovering neural net architectures used in real-world application
is viable.

In addition, some other works target desktop GPUs to extract hyperparam-
eters [19,23] but not an embedded system like the Jetson Nano that might be
deployed in an environment where an adversary is more likely to have physical
access.

A side-channel-based attack on neural networks is also presented in [40],
where the architecture extraction of neural networks, implemented on the CPU
of Raspberry Pi, is demonstrated using power-side channel analysis and machine
learning. The extracted architectures are similar to those in this work, but the
classification method, the target platform, and the used side channel are different
as they classify power traces with a Support Vector Machine (SVM) classifier.

1.2 Contributions and Outline

The target device in this work is the NVIDIA Jetson Nano, which is a micro-
computer tailored to run AI applications in a resource-constrained environment.
As already stated above, we demonstrate an architecture extraction attack by
distinguishing among a number of well-know neural net architectures on this
platform.

To summarize, the main contributions of this work are:

1. We demonstrate how complex convolutional neural network architectures
can be extracted by visually inspecting electromagnetic side-channel mea-
surements. To that end, 15 well-known neural network architectures from
computer vision are classified based on the electromagnetic radiation of the
device’s GPU.

2. We also show how the process of distinguishing the architectures can be auto-
mated using a deep learning classifier.



CNN Architecture Extraction on Edge GPU 161

This papers is organized as follows. Prior to discussing the experiments and
results, Sect. 2 gives an introduction to related topics. First, the investigated
neural network architectures are discussed in detail. Next, the relevant concepts
from side-channel analysis are introduced. Section 3 discusses the experimental
setup as well as the results of reverse engineering. Section 4 provides a discussion
about the results and possible countermeasures. Section 5 concludes the paper.

2 Background

2.1 CNN Architectures

This section introduces the convolutional neural network architectures that are
analyzed in this work. Most of these architectures are suitable for resource-
limited devices, such as the Jetson Nano, but there are other well-known archi-
tectures besides the ones analyzed in this work, such as ResNets [8], ShuffleNets
[42] and Xception [6].

MobileNet. MobileNets [11] are convolutional neural networks suitable for real-
time applications in constrained environments. The architecture relies on depth-
wise separable convolutional blocks to speed up computations. These blocks
consist of a depthwise convolutional layer and a pointwise convolutional layer.
First, the depthwise convolutional layer applies 3 × 3 kernels on only one input
channel of the input. Second, the produced feature map of the depthwise convo-
lutional layer is the input to the pointwise convolutional layer with 1×1 kernels,
which are applied to all input channels. In standard convolutions, the 3× 3 ker-
nels would be applied to all input channels. Empirically, it has been shown that
depthwise separable convolutions provide less latency with a negligible decrease
in accuracy compared to standard convolutional layers. This is very important
for embedded systems as the resources such as area and power consumption are
typically limited.

MobileNetV2. MobileNetV2 [31] is an optimized version of MobileNets. In
this architecture, the depthwise separable convolutional blocks are expanded
with linear bottleneck layers and residual connections [8,41] to form inverted
residual blocks.

EfficientNets. EfficientNet [36] proposes a compound scaling method that uni-
formly scales model depth, width, and resolution with scaling coefficients. This
compound scaling method is based on the intuition that all dimensions of a net-
work have to be balanced to achieve better accuracy and efficiency. The baseline
network, EfficientNetB0, is similar to that of MobileNetV2 as it is based on
the same inverted residual blocks with bottleneck layers. In addition, squeeze-
and-excitation [12] is added to the blocks. The upscaled versions of the baseline
architecture, such as EfficientNetB1, -B2, -B3, -B4, -B5, and -B6, are scaled up
using the compound scaling method mentioned earlier.



162 P. Horváth et al.

DenseNets. DenseNets [13] do not use depthwise separable convolutions, they
are based on the idea of feature reusing. In terms of the architecture, this means
that feature maps produced by a layer are inputs to all subsequent layers. The
architecture of DenseNets employs dense blocks and transition layers. Dense
blocks use the principle of feature reusing, while transition layers are responsible
for downsampling.

NasNetMobile. The NasNet [43] architecture is quite distinct when compared
to the previous architectures. The main building blocks of the NasNet archi-
tecture are the normal and reduction cells. These cells have multiple branches
that apply different operations on the inputs in parallel, and the results of the
branches are concatenated to form the output of the cell. The operations in
the branches consist of standard convolution, separable convolutions, pooling or
identity.

MobileNetV3. MobileNetV3 [10] is the further optimized version of
MobileNetV2 with various new additions. Similarly to MobileNetV2,
MobileNetV3’s main building blocks are the inverted residual blocks with bot-
tleneck layers, but with the addition of squeeze-and-excitation [12] in some
blocks in the new architecture. Additionally, the ReLU nonlinearity is substi-
tuted with the swish activation [30] in some blocks. The paper specifies the
MobileNetV3small architecture for environments where resources are limited and
the MobileNetV3large architecture for high-resource use cases. These architec-
tures are very similar, with MobileNetV3large having more bottleneck blocks.

2.2 Side-Channel Analysis

Side-channel analysis (SCA) exploits the physical leakages of electronic devices
to extract secret information [15,16]. Such leakages could be power consumption,
electromagnetic (EM) emanations, timing, optical, or sound, while secret infor-
mation could be anything that has to remain confidential. The attacks based on
side-channel information were first introduced in the 90’s, targeting constrained
firmly cryptographic devices such as smartcards [15,16] and they pose ever since
a constant threat to the security of various embedded systems. In this work, we
exploit the timing and EM side channels.

Timing Analysis. Timing vulnerabilities in implementations arise from dif-
ferent sources, such as branching, cache hits/misses, and instructions. These
vulnerabilities also pose a threat to cryptographic algorithms [4,16,27]. Tim-
ing attacks are typically based on the vulnerability of implementations where an
operation takes a varying amount of time to complete, where this variation is due
to the private key or other data being manipulated or even different instructions
executed.



CNN Architecture Extraction on Edge GPU 163

Power Analysis. Kocher et al. (1999) [15] introduced power consumption-
based attacks called Simple Power Analysis (SPA) and Differential Power Anal-
ysis (DPA) by measuring the power consumption of microcontrollers during the
execution of cryptographic algorithms. These attacks exploit the dependence
between the power consumption of a device and the executed operations and
processed data by the device. SPA is a method to visually analyze and inter-
pret the collected power consumption measurements, also called traces. It often
requires a few or just a single trace to extract information about the operations
and data used in the targeted algorithm. DPA exploits the dependency of power
consumption on the processed data. The small variations in power due to differ-
ent data being processed can allow an adversary to extract secret information
(e.g., secret key) about the targeted algorithm using power measurements.

Electromagnetic Emanations. Electromagnetic (EM) emanations have been
exploited since the Second World War [35] and pose a massive security issue for
sensitive systems. Wim van Eck [37] was the first to publish a paper about the
risk of information leakage due to electromagnetic radiation using equipment
that anyone can acquire. His work demonstrated the danger of EM radiation by
reconstructing the frames of the video from display units using EM radiation.

Since then, EM radiation has also been used to break cryptographic imple-
mentations [18,29] or eavesdrop on display units [7,9,22]. Similar to power anal-
ysis, Simple EM Analysis (SEMA) and Differential EM Analysis (DEMA) are
methods that work exactly the same way as their counterparts in power analysis,
with the exception of the traces consisting of EM measurements. In this work,
we use electromagnetic emanations in combination with timing information to
distinguish the architectures.

3 Architecture Extraction

3.1 Threat Model

In our threat model, the adversary has the following knowledge and capabilities.

A1: Physical access to the target device.
A2: Access to an identical device for profiling.
A3: Capability to collect electromagnetic side-channel measurements.
A4: Knowledge that one of the 15 architectures listed in Table 1 is executed on

the target device.

The capabilities A1–A3 are standard assumptions in profiled side-channel
attacks [28]. The assumption of A1 can be relaxed as the adversary requires lim-
ited amount of physical access to the target device because the attack requires
only a single trace to identify the correct architecture. In addition, the assump-
tion of A4 is motivated by the investigated architectures’ efficiency in resource-
constrained environments like embedded devices. Furthermore, developers may
choose to pick an off-the-shelf architecture that is proven to work instead of
developing custom architectures, which can be an expensive and time-consuming
process. In our experiments, we use the same device for profiling and attacking.



164 P. Horváth et al.

Table 1. Analyzed convolutional neural network architectures

Name # parameters

EfficientNetB0 5.3 M
EfficientNetB1 7.9 M
EfficientNetB2 9.2 M
EfficientNetB3 12.3 M
EfficientNetB4 19.5 M
EfficientNetB5 30.6 M
EfficientNetB6 43.3 M
MobileNet 4.3 M
MobileNetv2 3.5 M
MobileNetv3small 2.5 M
MobileNetv3large 5.4 M
Densenet121 8.1 M
Densenet169 14.3 M
Densenet201 20.2 M
NASNetMobile 5.3 M

3.2 NVIDIA Neural Network Implementations

In our attack, we are considering the implementations from NVIDIA’s TensorRT
deep learning inference framework. TensorRT is a library written by NVIDIA
to support deep learning inference by running neural networks efficiently and
quickly on NVIDIA hardware.

TensorRT works as follows:

1. the user defines the neural network model
2. the user defines the desired optimizations for the model
3. TensorRT builds an engine based on the defined model and desired optimiza-

tions

Optimizations include layer fusions and calibration of the precision of cal-
culations. Given the precision constraints, TensorRT times different implemen-
tations and chooses the fastest ones for the model. The built engine includes
layer implementations and model weights, which can be subsequently used for
inference. In our experiments, we restricted the models to use implementations
with half-precision calculations to decrease the memory footprint of the archi-
tectures as some of them require more than the available DRAM in the device
if single-precision calculations are used.



CNN Architecture Extraction on Edge GPU 165

Fig. 1. Heatmap of 78 MHz clock frequency after scanning the chip of the Jetson Nano
device. The heatmap was generated by applying the Fourier-transform on traces col-
lected at each point on the chip. Purple indicates no activity of the 78 MHz clock
frequency while yellow indicates the highest activity of this frequency at a certain
point. Multiple yellow points can be used to mount a successful architecture extraction
attack. (Color figure online)

Fig. 2. Location of the Riscure EM probe. The probe tip is located above the chip.

3.3 Measurement Collection

We use the PicoScope 3207B oscilloscope with a Riscure EM probe [1] and
Riscure EM probe station [1] to collect electromagnetic side-channel measure-
ments in the architecture extraction attack. In order to capture the inference of
the neural networks from the device, a GPIO pin on the Jetson Nano’s board
is used as a trigger for the oscilloscope to signal when the inference operation is
about to start. In the architecture extraction experiment, we set the GPU cores
of the device to operate at 76MHz clock frequency, so we set the sampling rate
of the oscilloscope at 1GS/s. In order to detect where the chip of the Jetson
Nano leaks the most information, the whole chip was scanned. The results of the



166 P. Horváth et al.

Fig. 3. Example traces of the investigated architectures.

scan are shown in Fig. 1. Based on the figure and experiments, there are multiple
locations where the architectural information of neural networks leaks. The final
location of the probe is shown in Fig. 2.



CNN Architecture Extraction on Edge GPU 167

3.4 Architecture Extraction Using SEMA and Timing Analysis

Here we discuss Simple EM Analysis and timing analysis on the collected traces
using. The traces shown in this section are not the raw traces but the prepro-
cessed versions of those. For preprocessing, we applied windowed averaging of
size 1 000 on the absolute value of the measurements. Alignment of the traces is
not required for this attack.

Figure 3 shows example traces of the architectures that are investigated in
this paper. For the MobileNet and MobileNetv2 architectures, there are clear
timing differences between them, showing the MobileNetV2 takes more time to
execute. According to the benchmarks in the original paper [31], MobileNetV2
is faster than MobileNetV1. However, the experiments in the original paper
were carried out on the CPU of the Google Pixel 1 smartphone, using Ten-
sorFlow Lite, so this might explain the difference. The displayed patterns are
similar for the architectures, which is expected as MobileNetV2’s building block
is based on MobileNet’s building block. Regarding the MobileNetV3small and
MobileNetV3large architectures, the execution time for the MobilNetV3large
architecture is substantially larger than that of MobileNetV3small, as expected.
However, the execution time for the MobileNetV3small architecture is very
similar to that of the MobileNetV2. The DenseNet 121, DenseNet169, and
DenseNet201 architectures display very different EM patterns than the rest of
the architectures. In addition, the displayed patterns are very similar when com-
pared to each other. However, the timing differences clearly identify the correct
architecture DenseNet architecture. Regarding the EfficientNet architectures,
the EM patterns are similar to that of the MobileNet architectures, as expected,
but the timing differences give away the correct architecture. Lastly, the EM
patterns shown by the NasNet architecture are quite distinct compared to the
previous architectures. In terms of execution times, NasNet is very similar to
EfficientNetB4, but NasNet’s EM amplitude frequently drops near zero.

3.5 Architecture Extraction Using Deep Learning

In this section, we present how the architecture extraction attack can be auto-
mated using deep learning by framing the problem as a classification problem.
The models for each architecture for training were created using TensorFlow.
For some architectures, the TensorFlow implementation involves preprocessing
layers that actually do not belong to the architecture. These preprocessing lay-
ers make it possible for the network to receive inputs that are not preprocessed.
These layers were removed before creating the models so that every architecture
uniformly does not have preprocessing layers. Besides this, the default parameter
values of the TensorFlow implementations were used.

To train and validate the deep learning classifier, n = 5 models Ma,i were
created for every architecture (g = 15). For testing, t = 3 models were created
per architecture. These only differ in their weights Wa,i as all the weights are
sampled randomly from a normal distribution (with mean 0 and variance 1) for
every model.



168 P. Horváth et al.

Table 2. Classifier architecture and hyperparameters

Layer type Hyperparameters Activation

Conv1D filters: 32, kernel-size: 500, strides: 50 ReLU
Conv1D filters: 32, kernel-size: 300, strides: 10 ReLU
Max-pool pool-size: 10, strides: 5 –
Flatten – –
Dense neurons: 32 ReLU
Dropout dropout rate: 0.2 –
Dense neurons: 15 softmax

Formally,

Ma,i = fa(x;Wa,i)(i = 1, . . . , n+ t; a = 1, . . . , g)

which means that i’th model for the a-th architecture is defined as a function of
its weights and its inputs (x). Additionally,

Wa,i �= Wa,j

where j ∈ {1, 2, .., n+t}\{i}. The function fa depends on the architecture of the
model. Overall, g× (n+ t) = 120 models were created. The input and batch size
of the models during the experiments were set to 32×32×3 and 1, respectively.

We define a simple convolutional neural network as our classifier, shown in
Table 2, as they have proven to be effective in the SCA context [14,28]. We
collect 200 measurements for each model in the training and validation sets
and 20 measurements per model in the test set, which amounts to 15 900 traces
altogether. Out of the 15 900 traces, the test set contains 900 measurements,
and the remaining 15 000 traces are divided into training and validation sets in
a 70:30 ratio, i.e., the model is trained using 10 500 traces and validated using
4 500 traces. In addition, early stopping is used to avoid overfitting. After the
model is trained, it is evaluated on the test set and the accuracy of the model
was 99%. Note from the previous section that distinguishing the architectures is
not difficult; hence, the almost perfect accuracy is not surprising.

4 Discussion

4.1 Limitations

The attacks described are specific to this device’s GPU and the CUDA kernel
implementations provided by the specific TensorRT version used. In addition, we
work with the assumption that well-known architectures are used by the victim.
If a target device runs a different architecture, that is not in the dataset used
for profiling, then the attack does not work unless profiling is extended to more
architectures. However, with extensive profiling, we believe it is possible to cover
a wide array of architectures with different types of layers.



CNN Architecture Extraction on Edge GPU 169

4.2 Mitigation

Traditional ways to contain electromagnetic radiation, such as proper shielding
or introducing noise to decrease the Signal-to-Noise ratio, could alleviate the
problem [24].

Additionally, the architectures investigated in this work are popular because
of their efficiency and accuracy. However, ignoring these architectures and design-
ing custom networks could make an adversary’s job significantly harder. A
custom-designed neural network basically means an infinite number of possible
combinations of layers, layer sizes, etc. On the other hand, there are common
design principles for neural networks which narrow down the search space. For
instance, if a neural network performs classification, then it is safe to assume
that the last layer has a softmax activation.

Profiling also applies to custom-made neural networks, and a persistent
adversary could make a comprehensive profile that could also identify the types
of layers and layer sizes, as these are the main factors that influence EM mea-
surements.

4.3 Alternative Method

In this work, analyzing traces of whole architectures is enough to show that
reverse engineering the architecture is possible. However, one could reverse engi-
neer a whole architecture by running just parts of the architecture on the unpro-
tected device. In other words, starting with only the first layer of the architecture,
then with the first two, then the first three, and so on. With this perhaps a bit
of a time-consuming (due to the large number of layers in the investigated archi-
tectures) method, the individual layers can be identified in the traces, not just
the whole architecture. Since the number of parameters for these architectures is
constant, except perhaps for the first and last layers, this method remains viable.
The traces for the first and last layers can potentially be different because input
and output sizes are specific to each problem.

4.4 Example of Breaking down Network

In order to identify individual layers, one has to consider the layer type as well as
the activation (if any) of the layer. As we have seen in the classification results,
different weights barely impact the overall EM trace. Thus, we can concentrate
on building templates for one-layer MLPs with and without activation, 2-layer
MLPs with and without activation, and so on. To that end, a 3-layer MLP will
be reverse-engineered using this method. In the experiment, the input batch size
is 1, the input size is 100, and every fully connected layer has 32 neurons.

Figure 4 shows how the EM trace changes if a ReLU activation is removed.
The top figure is a trace of a 3-layer MLP where the fully connected layers are
followed by ReLU activation. The bottom figure is a trace of the same MLP,
except that a ReLU layer does not follow the last fully connected layer.



170 P. Horváth et al.

Fig. 4. 3-layer MLP with 3 ReLU activations (top) and 2 ReLU activations (bottom)

Continuing the removal of layers and activations one by one, the top figure
in Fig. 5 shows how the EM trace changes if a fully connected layer is removed.
The MLP in the bottom figure in Fig. 4 has a third fully connected layer, and the
top figure in Fig. 5 is the same MLP except that the last fully connected layer is
missing. Next, the removal of the ReLU activation that follows the second fully
connected layer leads to a trace as that of the bottom figure in Fig. 5.



CNN Architecture Extraction on Edge GPU 171

Fig. 5. 2-layer MLP with 2 ReLU activations (top) and 1 ReLU activation (bottom)

Removing layers one by one helps identify layer boundaries. Figure 6 shows
the trace for the 3-layer MLP with boundaries drawn with red dashed lines after
every fully connected layer and every activation. Overall, profiling can also be
executed on a more granular level, e.g. layer level, but this requires more profiling
to cover all the possible layer types with varying sizes.



172 P. Horváth et al.

Fig. 6. 3-layer MLP with boundaries between fully connected layers and activations.

5 Conclusions

In this paper, the susceptibility of neural networks to side-channel attacks was
analyzed on NVIDIA Jetson Nano. The neural networks ran on the GPU of
the device, which is a commonly chosen platform for real-world neural network
implementations.

In our attack, popular convolutional neural network architectures were clas-
sified based on the EM side channel. The chosen architectures are a common
choice in practice, especially in embedded devices, when the size and latency
of the network are important as resources are limited. The results show that
the analyzed architectures are easily distinguishable from each other, and this
process can be automated using a deep learning classifier.

Overall, the neural network implementations of NVIDIA’s TensorRT frame-
work are vulnerable to architecture extraction using side-channel attacks despite
the networks running in a highly parallel and noisy environment.

References

1. https://web.archive.org/web/20220119062522/. https://www.riscure.com/uploa
ds/2017/07/inspector_brochure.pdf. Accessed 25 Jan 2022

2. Google translate research. https://ai.googleblog.com/2020/06/recent-advances-in-
google-translate.html

https://web.archive.org/web/20220119062522/
https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf
https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html


CNN Architecture Extraction on Edge GPU 173

3. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI–NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: 28th USENIX
Security Symposium USENIX Security 2019, pp. 515–532 (2019)

4. Bernstein, D.J.: Cache-timing attacks on AES (2005)
5. Chmielewski, Ł, Weissbart, L.: On reverse engineering neural network implementa-

tion on GPU. In: Zhou, J., et al. (eds.) ACNS 2021. LNCS, vol. 12809, pp. 96–113.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81645-2_7

6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258 (2017)

7. Elibol, F., Sarac, U., Erer, I.: Realistic eavesdropping attacks on computer dis-
plays with low-cost and mobile receiver system. In: 2012 Proceedings of the 20th
European Signal Processing Conference (EUSIPCO), pp. 1767–1771. IEEE (2012)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

9. Hongxin, Z., Yuewang, H., Jianxin, W., Yinghua, L., Jinling, Z.: Recognition of
electro-magnetic leakage information from computer radiation with SVM. Comput.
Secur. 28(1–2), 72–76 (2009)

10. Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1314–1324 (2019)

11. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(2018)

13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

14. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
IACR Trans. Cryptogr. Hardware Embed. Syst. 148–179 (2019)

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105 (2012)

18. Kuhn, M.G., Anderson, R.J.: Soft tempest: hidden data transmission using elec-
tromagnetic emanations. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp.
124–142. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8_10

19. Liang, S., Zhan, Z., Yao, F., Cheng, L., Zhang, Z.: Clairvoyance: exploiting far-
field EM emanations of GPU to “see” your DNN models through obstacles at a
distance. In: 2022 IEEE Security and Privacy Workshops (SPW), pp. 312–322
(2022). https://doi.org/10.1109/SPW54247.2022.9833894

20. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

https://doi.org/10.1007/978-3-030-81645-2_7
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-49380-8_10
https://doi.org/10.1109/SPW54247.2022.9833894
http://arxiv.org/abs/1312.4400


174 P. Horváth et al.

21. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput.
Vis. 128(2), 261–318 (2020)

22. Liu, Z., et al.: Screen gleaning: a screen reading TEMPEST attack on mobile
devices exploiting an electromagnetic side channel. In: 28th Annual Network and
Distributed System Security Symposium, NDSS 2021, Virtually, 21–25, February
2021. The Internet Society (2021). https://www.ndss-symposium.org/ndss-paper/
screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-
an-electromagnetic-side-channel/

23. Maia, H.T., Xiao, C., Li, D., Grinspun, E., Zheng, C.: Can one hear the shape
of a neural network?: snooping the GPU via magnetic side channel. In: Butler,
K.R.B., Thomas, K. (eds.) 31st USENIX Security Symposium, USENIX Security
2022, Boston, MA, USA, 10–12 August 2022, pp. 4383–4400. USENIX Association
(2022). https://www.usenix.org/conference/usenixsecurity22/presentation/maia

24. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, vol. 31. Springer, Cham (2008)

25. OpenAI: GPT-4 technical report (2023). https://doi.org/10.48550/arXiv.2303.
08774

26. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning
for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(2),
604–624 (2020)

27. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive (2002)

28. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-based
physical side-channel analysis. ACM Comput. Surv. (2022)

29. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7_17

30. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

31. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

32. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

33. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

35. Singh, S.: The Code Book, vol. 7. Doubleday New York (1999)
36. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-

works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

37. Van Eck, W.: Electromagnetic radiation from video display units: an eavesdropping
risk? Comput. Secur. 4(4), 269–286 (1985)

38. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

39. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature 575(7782), 350–354 (2019)

https://www.ndss-symposium.org/ndss-paper/screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-an-electromagnetic-side-channel/
https://www.ndss-symposium.org/ndss-paper/screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-an-electromagnetic-side-channel/
https://www.ndss-symposium.org/ndss-paper/screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-an-electromagnetic-side-channel/
https://www.usenix.org/conference/usenixsecurity22/presentation/maia
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1409.1556


CNN Architecture Extraction on Edge GPU 175

40. Xiang, Y., et al.: Open DNN box by power side-channel attack. IEEE Trans. Cir-
cuits Syst. II Express Briefs 67(11), 2717–2721 (2020). https://doi.org/10.1109/
TCSII.2020.2973007

41. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1492–1500 (2017)

42. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

43. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8697–8710 (2018)

https://doi.org/10.1109/TCSII.2020.2973007
https://doi.org/10.1109/TCSII.2020.2973007

	CNN Architecture Extraction on Edge GPU
	1 Introduction
	1.1 Comparison with Related Work
	1.2 Contributions and Outline

	2 Background
	2.1 CNN Architectures
	2.2 Side-Channel Analysis

	3 Architecture Extraction
	3.1 Threat Model
	3.2 NVIDIA Neural Network Implementations
	3.3 Measurement Collection
	3.4 Architecture Extraction Using SEMA and Timing Analysis
	3.5 Architecture Extraction Using Deep Learning

	4 Discussion
	4.1 Limitations
	4.2 Mitigation
	4.3 Alternative Method
	4.4 Example of Breaking down Network

	5 Conclusions
	References


