
Martin Andreoni (Ed.)
LN

CS
 1

45
86 Applied Cryptography

and Network Security
Workshops
ACNS 2024 Satellite Workshops
AIBlock, AIHWS, AIoTS, SCI, AAC, SiMLA, LLE, and CIMSS
Abu Dhabi, United Arab Emirates, March 5–8, 2024
Proceedings, Part I

Lecture Notes in Computer Science 14586
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Martin Andreoni
Editor

Applied Cryptography
and Network Security
Workshops
ACNS 2024 Satellite Workshops
AIBlock, AIHWS, AIoTS, SCI, AAC, SiMLA, LLE, and CIMSS
Abu Dhabi, United Arab Emirates, March 5–8, 2024
Proceedings, Part I

Editor
Martin Andreoni
Technology Innovation Institute
Abu Dhabi, United Arab Emirates

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-61485-9 ISBN 978-3-031-61486-6 (eBook)
https://doi.org/10.1007/978-3-031-61486-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-61486-6

Preface

These proceedings contain the papers selected for presentation at the ACNS 2024
satellite workshops and the poster session, which were held in parallel with the main
conference (the 22nd International Conference on Applied Cryptography and Network
Security) from 5 to 8 March 2024.

Eight satelliteworkshops, two ofwhichwere new,were held in response to this year’s
call for workshop proposals. Each workshop provided a forum to address a specific topic
at the forefront of cybersecurity research.

– 6th ACNSWorkshop on Application Intelligence and Blockchain Security (AIBlock
2024), chaired by Weizhi Meng and Chunhua Su

– 5th ACNSWorkshop on Artificial Intelligence in Hardware Security (AIHWS 2024),
chaired by Stjepan Picek and Shivam Bhasin

– 6th ACNS Workshop on Artificial Intelligence and Industrial IoT Security (AIoTS
2024), chaired by Neetesh Saxena and Bong Jun Choi

– 5th ACNS Workshop on Secure Cryptographic Implementation (SCI 2024), chaired
by Jinggiang Lin and Bo Luo

– 1st Workshop on Advances in Asymmetric Cryptanalysis (AAC 2024), chaired by
Elena Kirshanova and Andre Esser

– 6th ACNSWorkshop on Security in Machine Learning and its Applications (SiMLA
2024), chaired by Ezekiel Soremekun

– 1st Workshop on Low-Latency Encryption (LLE 2024), chaired by Shahram
Rasoolzadeh and Santosh Ghosh

– 4th International Workshop on Critical Infrastructure and Manufacturing System
Security (CIMSS 2024), chaired by Chuadhry Muieeb Ahmed and; Rajib Ranian
Maiti

This year, we received a total of 61 submissions. Eachworkshop had its own Program
Committee (PC) in charge of the review process. These papers were evaluated based on
their significance, novelty, and technical quality. The review process was double-blind.
Ultimately, 33 papers were selected for presentation at the eight workshops, with an
acceptance rate of 54%.

ACNS also awarded the best workshop paper to Marina Krček and Thomas Ordas,
“Diversity Algorithms for Laser Fault Injection” from the AIHWS workshop. The
winning paper was selected from among the nominated candidate papers from each
workshop. The authors also received the monetary prize sponsored by Springer.

Besides the regular papers presented at the workshops, there were 12 invited talks.

– “Hard-Hat Cryptanalysis - Drilling Down into Real-world TLS Protocol Failures” by
Robert Merget (TII, UAE) and “Attacks Against the CPA-D Security of Exact FHE
Schemes, and Threshold-FHE schemes” by Damien Stehlé (Cryptolab, South Korea)
at the AAC workshop

vi Preface

– “Building a Low-Latency Pseudorandom Function” by Joan Daemen (Radboud Uni-
versity, TheNetherlands), “DesigningLow-LatencyPrimitives andModes”byGregor
Leander (Ruhr University Bochum, Germany), and “Automated Security Analysis of
Symmetric-Key Primitives Using Tools” by Yu Sasaki (Nagoya University, Japan) at
the LLE workshop

– “Attacking Machine Learning Models” by Yang Zhang (CISPA, Germany) at the
SiMLA workshop

– “Searchable Symmetric Encryption and its attacks” by Kaitai Liang (TU Delft, The
Netherlands) at the SCI workshop

– “Hardware Security through the Lens of Dr AI” by Debdeep Mukhopadhyay (IIT
Kharagpur, India), and “Touching Points of AI and Cryptography” by Moti Yung
(Columbia University & Google, USA) at AIHWS workshop

– “Cybersecurity in the 3D and IoT Era of Power Systems: Load Altering Attacks
Unleashed!” by Charalambos (Harrys) Konstantinou (King Abdullah University of
Science and Technology, Saudi Arabia) and “The Future of IoT Security: AI/ML and
Lightweight Cryptography countering emerging threats” by Hoda Alkhzaimi (NYU
Abu Dhabi, UAE) at the AIoTS workshop

– “Securing the Future: Advanced Safety and Resilience in Autonomous and Auto-
nomic Systems” byShreekant (Ticky) Thakkar (TII,UAE) and “Security ofAdvanced
Machine Learning Features inAutonomous Systems” byMuhammad Shafique (NYU
Abu Dhabi, UAE) at the CIMSS workshop

Charalambos Konstantinou also chaired a poster session, and 11 posters are included
in the proceedings as extended abstracts. The following poster was recognised with the
ACNS 2024 Best Poster Award.

– Francesco Antognazza, Alessandro Barenghi, Gerardo Pelosi, Ruggero Susella, “A
Versatile and Unified HQC Hardware Accelerator”

The ACNS 2024 workshops were made possible by the joint efforts of many indi-
viduals and organizations. We sincerely thank the authors of all submissions. We thank
each workshop’s program chairs and PCmembers for their great effort in providing pro-
fessional reviews and interesting feedback to authors on a tight schedule. We thank all
the external reviewers for assisting the PC in their particular areas of expertise. We are
grateful to Springer for sponsoring the best workshop paper award and the local organiz-
ing team for sponsoring the best poster award.We also thank the General Chairs,Michail
Maniatakos and Ozgur Sinanoglu, and the organizing team members of the main con-
ference and each workshop for their help in various aspects. A special acknowledgment
goes to Jianying Zhou for his guidance and suggestions on the workshop organization.

Last but not least, we thank everyone else, speakers, session chairs, and attendees,
for their contribution to the success of the ACNS 2024 workshops.

Martin Andreoni

AIBlock 2024

Sixth Workshop on Application Intelligence and Blockchain Security

08 March 2024

General Chair

Robert Deng Singapore Management University, Singapore

Program Chairs

Chunhua Su University of Aizu, Japan
Weizhi Meng Technical University of Denmark, Denmark

Program Committee

Alessandro Brighente University of Padova, Italy
Jintai Ding University of Cincinnati, USA
Dieter Gollmann Hamburg University of Technology, Germany
Cheng Huang University of Waterloo, Canada
Claudio Juan Universität Zürich, Switzerland
Georgios Kambourakis University of the Aegean, Greece
Mario Larangeira Tokyo Institute of Technology/IOHK, Japan
Wenjuan Li Education University of Hong Kong, China
Mahmoud Nabil Mahmoud North Carolina A&T University, USA
Zhe Xia Wuhan University of Technology, China
Peng Xu Huazhong University of Science and Technology,

China
Haiyang Xue Hong Kong Polytechnic University, China
Jianfeng Wang Xidian University, China
Ding Wang Nankai University, China
Qianhong Wu Beihang University, China
Chunhua Su University of Aizu, Japan
Andreas Veneris University of Toronto, Canada
Cong Zuo Beijing Institute of Technology, China

viii AIBlock 2024

Steering Committee

Robert Deng Singapore Management University, Singapore
Georgios Kambourakis University of the Aegean, Greece
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Man Ho Au Hong Kong Polytechnic University, China
Weizhi Meng Technical University of Denmark, Denmark

(Chair)
Chunhua Su University of Aizu, Japan

Additional Reviewer

Fuyang Deng Beihang University, China

AIHWS 2024

Fifth Workshop on Artificial Intelligence in Hardware Security

05 March 2024

Program Chairs

Shivam Bhasin Radboud University, The Netherlands
Stjepan Picek Radboud University, The Netherlands

Program Committee

Kashif Nawaz Technology Innovation Institute, UAE
Liran Lerman SWIFT/Université libre de Bruxelles, Belgium
Vincent Verneuil NXP Semiconductors, Germany
Lukasz Chmielewski Masaryk University, Czech Republic
Luca Mariot University of Twente, The Netherlands
Zhuoran Liu Radboud University, The Netherlands
Lejla Batina Radboud University, The Netherlands
Guilherme Perin Leiden University, The Netherlands
Kostas Papagiannopoulos University of Amsterdam, The Netherlands
Ileana Buhan Radboud University, The Netherlands
Lichao Wu Radboud University, The Netherlands
David Gerault Technology Innovation Institute, UAE
Naofumi Homma Tohoku University, Japan
Dirmanto Jap Nanyang Technological University, Singapore
Alan Jovic University of Zagreb, Croatia
Fatemeh Ganji Worcester Polytechnic Institute, USA

Web Chair

Marina Krcek Delft University of Technology, The Netherlands

AIoTS 2024

Fifth Workshop on Artificial Intelligence and Industrial IoT Security

05 March 2024

Program Chairs

Neetesh Saxena Cardiff University, UK
Bong Jun (David) Cho Soongsil University, South Korea

Web Chair

Mayank Swarnkar Indian Institute of Technology Varanasi (BHU),
India

Publicity Chairs

Daisuke Mashima Illinois Advanced Research Center, Singapore

Program Committee

Sridhar Adepu University of Bristol, UK
Ajit Kumar Soongsil University, South Korea
Daisuke Mashima Illinois Advanced Research Center, Singapore
Nikhil Tripathi IIIT Sri City, India
Chuadhry Mujeeb Ahmed Newcastle University, UK
Vishal Sharma Queen’s University Belfast, UK
Charalambos Konstantinou KAUST, Saudi Arabia
Mayank Swarnkar IIT Varanasi (BHU), India
Sangram Ray NIT Sikkim, India
Ali Ismail Awad UAE University, UAE
Chaminda Thushara Hewage Cardiff Metropolitan University, UK
Pradeep Kumar Swansea University, UK
Rohit Verma National College of Ireland, Ireland

SCI 2024

Fifth Workshop on Secure Cryptographic Implementation

06 March 2024

Program Chairs

Jingqiang Lin University of Science and Technology of China,
China

Bo Luo University of Kansas, USA

Publication Chair

Jun Shao Zhejiang Gongshang University, China

Publicity Chair

An Wang Beijing Institute of Technology, China

Web Chair

Fangyu Zheng Chinese Academy of Sciences, China

Program Committee

Sebastian Berndt University of Lübeck, Germany
Florian Caullery HENSOLDT Cyber GmbH, Germany
Bo Chen Michigan Technological University, USA
Jiankuo Dong Nanjing University of Posts and

Telecommunications, China
Haixin Duan Tsinghua University, China
Shanqing Guo Shandong University, China

xiv SCI 2024

Honggang Hu University of Science and Technology of China,
China

Shijie Jia Chinese Academy of Sciences, China
Rongxing Lu University of New Brunswick, Canada
Bingyu Li Beihang University, China
Fengjun Li University of Kansas, USA
Ximeng Liu Fuzhou University, China
Chunli Lv China Agricultural University, China
Qiang Tang University of Sydney, Australia
Sazzadur Rahaman University of Arizona, USA
Kui Ren Zhejiang University, China
Ruisheng Shi Beijing University of Posts and

Telecommunications, China
Shifeng Sun Shanghai Jiao Tong University, China
An Wang Beijing Institute of Technology, China
Ding Wang Nankai University, China
Juan Wang Wuhan University, China
Fangyu Zheng Chinese Academy of Sciences, China
Cong Zuo Beijing Institute of Technology, China

Contents – Part I

AIBlock – Application Intelligence and Blockchain Security

An End-to-End Secure Solution for IoMT Data Exchange 3
Saad El Jaouhari and Nouredine Tamani

EasyLog: An Efficient Kernel Logging Service for Machine Learning 16
Xundi Yang, Kefan Qiu, and Quanxin Zhang

LM-cAPI:A Lite Model Based on API Core Semantic Information
for Malware Classification . 29

Yifan Zhou, Zhenyan Liu, Jingfeng Xue, Yong Wang, and Ji Zhang

Acki Nacki: A Probabilistic Proof-of-Stake Consensus Protocol with Fast
Finality and Parallelisation . 43

Mitja Goroshevsky, Nikita Sattarov, and Alina Trepacheva

AIHWS – Artificial Intelligence in Hardware Security

FPGA Implementation of Physically Unclonable Functions Based
on Multi-threshold Delay Time Measurement Method to Mitigate
Modeling Attacks . 65

Tatsuya Oyama, Mika Sakai, Yohei Hori, Toshihiro Katashita,
and Takeshi Fujino

Incorporating Cluster Analysis of Feature Vectors for Non-profiled
Deep-learning-Based Side-Channel Attacks . 84

Yuta Fukuda, Kota Yoshida, and Takeshi Fujino

Creating from Noise: Trace Generations Using Diffusion Model
for Side-Channel Attack . 102

Trevor Yap and Dirmanto Jap

Diversity Algorithms for Laser Fault Injection . 121
Marina Krček and Thomas Ordas

One for All, All for Ascon: Ensemble-Based Deep Learning Side-Channel
Analysis . 139

Azade Rezaeezade, Abraham Basurto-Becerra, Léo Weissbart,
and Guilherme Perin

xvi Contents – Part I

CNN Architecture Extraction on Edge GPU . 158
Péter Horváth, Lukasz Chmielewski, Leo Weissbart, Lejla Batina,
and Yuval Yarom

Harnessing the Power of General-Purpose LLMs in Hardware Trojan
Design . 176

Georgios Kokolakis, Athanasios Moschos, and Angelos D. Keromytis

Everything All at Once: Deep Learning Side-Channel Analysis
Optimization Framework . 195

Gabriele Serafini, Léo Weissbart, and Lejla Batina

AIoTS – Artificial Intelligence and Industrial IoT Security

Device Fingerprinting in a Smart Grid CPS . 215
Chuadhry Mujeeb Ahmed, Nandha Kumar Kandasamy,
Darren Ng Wei Hong, and Jianying Zhou

Power Quality Forecasting of Microgrids Using Adaptive
Privacy-Preserving Machine Learning . 235

Mazhar Ali, Ajit Kumar, and Bong Jun Choi

Evaluation of Lightweight Machine Learning-Based NIDS Techniques
for Industrial IoT . 246

Alex Baron, Laurens Le Jeune, Wouter Hellemans,
Md Masoom Rabbani, and Nele Mentens

Measuring Cyber Resilience of IoT-Enabled Critical National
Infrastructures . 265

Adeola Adewumi, Mohammad Hammoudeh, Tooska Dargahi,
and Olamide Jogunola

SCI – Secure Cryptographic Implementation

Towards Discovering Quantum-Threats for Applications Using
Open-Source Libraries . 283

Xiaodong Ye, Teik Guan Tan, and Jianying Zhou

Pushing AES-256-GCM to Limits: Design, Implementation and Real
FPGA Tests . 303

Peter Cibik, Patrik Dobias, Sara Ricci, Jan Hajny, Lukas Malina,
Petr Jedlicka, and David Smekal

Contents – Part I xvii

Automated Generation of Masked Nonlinear Components:: From Lookup
Tables to Private Circuits . 319

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang, and Meiqin Wang

A Command-Activated Hardware Trojan Detection Method Based
on LUNAR Framework . 340

Xue Yang, Congming Wei, Yaoling Ding, Shaofei Sun, An Wang,
and Jiazhe Chen

Cross-Correlation Based Trace Segmentation for Clustering Power
Analysis on Public Key Cryptosystems . 359

Yaoyuan Hu, An Wang, Weiping Gong, Jingjie Wu, Ziyu Wang,
Shiming Zhang, and Shufan Ma

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 . 376
Mila Anastasova, Reza Azarderakhsh, and Mehran Mozaffari Kermani

Author Index . 397

Contents – Part II

AAC – Workshop on Advances in Asymmetric Cryptanalysis

Forging Tropical Signatures . 3
Lorenz Panny

Quantum Circuit Design for the Lee-Brickell Based Information Set
Decoding . 8

Simone Perriello, Alessandro Barenghi, and Gerardo Pelosi

Projective Space Stern Decoding and Application to SDitH 29
Kevin Carrier, Valerian Hatey, and Jean-Pierre Tillich

SiMLA – Security in Machine Learning and its Applications

One Class to Test Them All: One-Class Classifier-Based ADS-B Location
Spoofing Detection . 55

Alessandro Brighente, Mauro Conti, Sitora Salaeva, and Federico Turrin

Model Extraction Attack Without Natural Images . 75
Kota Yoshida and Takeshi Fujino

Privacy-Preserving Sentiment Analysis Using Homomorphic Encryption
and Attention Mechanisms . 84

Amirhossein Ebrahimi Moghaddam, Buvana Ganesh, and Paolo Palmieri

Differential Privacy with Selected Privacy Budget ε in a Cyber Physical
System Using Machine Learning . 101

Ruilin Wang and Chuadhry Mujeeb Ahmed

LEE – Low-Latency Encryption

Construction of 4× 4 Lightweight Low-Latency Involutory MDS Matrices 119
Zheng Zhao, Qun Liu, Yanhong Fan, and Meiqin Wang

CIMSS – Critical Infrastructure and Manufacturing System Security

Guidelines for Cyber Risk Management in Autonomous Shipping 143
Meixuan Li, Awais Yousaf, Mark Goh, Jianying Zhou,
and Sudipta Chattopadhyay

xx Contents – Part II

Identity-Based Cluster Authentication and Key Exchange (ID-CAKE)
Message Broadcasting and Batch Verification in VANETs 162

Apurva K. Vangujar, Alia Umrani, and Paolo Palmieri

Posters

One Time Chat – A Toy End-to-End Encrypted Web Messaging Service 183
Kamil Kaczyński and Michał Glet

Game Theoretic Modeling of Insider Threats in an Organization 188
K. C. Lalropuia, Sanjeev Goyal, and Borja Garcia de Soto

Smart Appliance Abnormal Electrical Power Consumption Detection 193
Rajesh Nayak and C. D. Jaidhar

Towards Secure 5G Infrastructures for Production Systems 198
Martin Henze, Maximilian Ortmann, Thomas Vogt, Osman Ugus,
Kai Hermann, Svenja Nohr, Zeren Lu, Sotiris Michaelides,
Angela Massonet, and Robert H. Schmitt

Cybersecurity Awareness Education: Just as Useful for Technical Users 204
Daniel Köhler, Michael Büßemeyer, and Christoph Meinel

Salsa20 Cipher: Assigning Values to Probabilistic Neutral Key Bits 209
Nitin Kumar Sharma and Sabyasachi Dey

A Versatile and Unified HQC Hardware Accelerator . 214
Francesco Antognazza, Alessandro Barenghi, Gerardo Pelosi,
and Ruggero Susella

Applying Self-recognition Biometrics to Live Deepfake Detection
in Video Conferences . 220

Hendrik Graupner, François-Nima Thobae, and Christoph Meinel

GAN and DM Generated Synthetic Image Detection in the Age
of Misinformation . 225

Tanusree Ghosh and Ruchira Naskar

Extremely Simple Fail-Stop ECDSA Signatures . 230
Mario Yaksetig

Contents – Part II xxi

Physically Unclonable Fingerprints for Authentication . 235
Navajit S. Baban, Jiarui Zhou, Sarani Bhattacharya, Urbi Chatterjee,
Sukanta Bhattacharjee, Sanjairaj Vijayavenkataraman, Yong-Ak Song,
Debdeep Mukhopadhyay, Krishnendu Chakrabarty, and Ramesh Karri

Author Index . 241

AIBlock – Application Intelligence
and Blockchain Security

An End-to-End Secure Solution for IoMT
Data Exchange

Saad El Jaouhari(B) and Nouredine Tamani

Institut Supérieur d’Electronique de Paris (Isep), Issy-les-Moulinaux, France
{saad.el-jaouhari,nouredine.tamani}@isep.fr

Abstract. In the field of healthcare, the emerging concept of the Inter-
net of Medical Things (IoMT) plays a crucial role in enhancing the
efficiency of medical services and introducing innovative solutions. Tra-
ditional healthcare services are no longer adequate to meet the grow-
ing medical needs, particularly in countries with an aging population.
Remote medical consultations have emerged as a viable solution, espe-
cially in rural areas facing the challenge of medical deserts. In such
scenarios, instead of physically visiting a hospital, patients can opt for
remote medical consultations, particularly for simple cases like medical
follow-ups. The patient’s health data is collected, monitored, and pro-
cessed in real-time, subsequently shared with remote doctors or hospitals.
IoMT devices, which easily measure vital signs, facilitate the seamless
collection of health data. However, ensuring the security and privacy of
sensitive IoMT data poses a significant challenge. In this context, one
potential solution to ensure the confidentiality and integrity of medi-
cal data is the utilization of Blockchain technology. This paper explores
the potential of Blockchain in IoMT networks, specifically focusing on
guaranteeing privacy, confidentiality, integrity, authentication, and non-
repudiation of medical data collected through medical IoT devices. Addi-
tionally, a proof of concept is provided to demonstrate how Blockchain
can be effectively employed to secure the sharing and storage of IoMT
data among connected nodes/devices and authorized users, particularly
medical entities.

Keywords: IoT · IoMT · Blockchain · Healthcare · Security and
Privacy · Confidentiality · Integrity · Authentication

1 Introduction

Modern medical systems have progressed from traditional electronic medical
records, where patient clinical information resides digitally within a single medi-
cal center (typically a hospital), to the era of Electronic Health Records (EHR).
In EHR systems, patient medical information is distributed across the health-
care system, enabling access and sharing among various entities. This evolu-
tion coincides with the integration of an expanding array of Internet of Medical
Things (IoMT) devices that collect patient-related medical and environmental
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 3–15, 2024.
https://doi.org/10.1007/978-3-031-61486-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_1&domain=pdf
http://orcid.org/0000-0002-1938-9963
http://orcid.org/0000-0001-9447-4159
https://doi.org/10.1007/978-3-031-61486-6_1

4 S. El Jaouhari and N. Tamani

data. IoMT devices serve the primary purpose of furnishing additional medi-
cal information to the medical corps, aiming to enhance the assessment of a
patient’s health condition and potentially improve medical treatment and ser-
vices. Notably, IoMT devices have proven efficient in remote monitoring and
medical follow-ups, eliminating the necessity for the physical presence of the
patient. The IoMT market in the United States reached US$30.56 billion in
2022 and is projected to exceed US$327.08 billion by 2032, reflecting a compound
annual growth rate (CAGR) of 26.80% from 2023 to 2032, according to a report
by [1]. However, this technological advancement has introduced complexities,
particularly in the management of data, similar to Electronic Health Records
(EHR). Ensuring security and privacy in handling this data is paramount due
to the unique nature of the healthcare environment, where security threats can
have life-threatening consequences for patients, making it more critical than in
any other domain.

For highly sensitive data, ensuring properties such as data integrity, confi-
dentiality, authentication, and non-repudiation becomes imperative. However, in
distributed environments, and considering the constraints associated with IoT,
maintaining these properties becomes challenging. Specifically, for IoMT data,
we must: 1) Ensure that only authorized entities and devices can interact with
the medical system, ensuring confidentiality. 2) Guarantee that collected medical
data remains unaltered, both accidentally and intentionally, preserving integrity.
3) Ensure the traceability and authentication of data, addressing both authen-
tication and non-repudiation concerns.”

In order to solve some of these issues, the Blockchain emerged as a disruptive
solution to add a security and privacy layer to the IoMT environment. Blockchain
is proven to be a tamper-proof digital ledger that enables secure peer-to-peer
exchange of data. It enables data exchange even between unreliable endpoints
without a third party. In this paper, we discuss the potential of Blockchain,
and in particular the private ones, in IoMT networks and propose a solution
to guarantee the privacy, confidentiality, and integrity of medical data collected
through medical IoT devices. The solution uses the Hyperledger Fabric (HLF)
developed by IBM [9] as a core in order to build a private blockchain. The latter
is used to manage our IoMT data between the different entities involved in the
process. In this case, only the authorized and registered peers (hospitals for
instance) can check and read the data from the private ledger.

The rest of the paper is organized as follows: Sect. 2 provides a summary
of related works. In Sect. 3, we present our proposed architecture, including a
discussion of use cases. Section 4 provides details about the implementation of
our proposal as a proof of concept, and the various interactions among the com-
ponents of our system. The paper concludes in Sect. 5, where we also draw some
lines for future work.

An End-to-End Secure Solution for IoMT Data Exchange 5

2 Related Work

In [13] and in [14], the authors designed a Blockchain architecture, based on the
Hyperledger Fabric, to secure IoT-based health monitoring systems. The pro-
posed architecture consists of two Blockchain networks: a) a Local one that is
a single-node Blockchain embedded in the Perception Domain (i.e., IoT edge
network), and b) a Global one that connects each Perception Domain to a
Blockchain. The authors in [12] used the IoT and Blockchain to improve drug
traceability in the pharmaceutical supply chain. The solution relies on the dis-
tributed ledger (DLT) to keep an immutable record of all transaction data. In [2],
and for mesh-based IoT networks, the authors introduced DAGSec, a secure ver-
sion of directed acyclic graphs (DAG), for IoT environments with high through-
put and low latency. They used directed acyclic graphs and local transaction
validation instead of global transaction validation to attain a high transaction
rate. Also, they developed a Blockchain-based witness system to approximate
the chronological order of independent transactions. In [10], the authors devel-
oped a novel decentralized Blockchain-based IoMT framework named Electronic
Medical Record Infrastructure (EMRI), where all the clinical reports and IoT
data are added. EMRI is an immutable and secure platform for the transaction
of healthcare data. However, it is still to be implemented in a healthcare orga-
nization. In [3], the authors presented a solution for a collaborative healthcare
management system, surgical process management, using IoT and Blockchain
integration architecture, ERTCA, which relies on Ethereum. They also solve the
issues related to constrained IoT resources when adopting the Blockchain min-
ing process by using a rich-thin IoT client categorization approach. In [5], the
authors proposed a model based on Blockchain for the remote patient monitor-
ing scenario, where the patient is equipped with wearable IoT devices. Their
model consists of five key parts: a Blockchain Network using Proof of Author-
ity (PoA), Cloud Storage, Healthcare Providers, Smart Contracts, and Patients
equipped with healthcare wearable IoT devices. Moreover, in [4], the authors
developed a platform for combining IoT-based smart healthcare systems and
Blockchain. The proposed system is based on HLF and it consists of five compo-
nents: an IoT gatway devices, HTTP-based API gateway as device-to-Blockchain
interface, membership service provider (MSP), peers, and orderers. Finally, the
authors in [15] introduced a permissioned Blockchain-based architecture, built
in HLF, to manage access control to medical data and to preserve patient data
privacy. The data are collected via an IoT Fog Gateway connected to wear-
able health devices. The ledgers and transactions are stored in the cloud. The
proposed architecture is designed for remote patient monitoring.

However, compared to our solution, most of these works do not take into
account contextual IoT data along with users’ immediate environment of in
order to enhance medical services such as teleconsultation, remote monitoring, or
medical follow-up. Moreover, most of them do not take into account the security
inside their perception layer (i.e., between the sensors and the gateway) before
even sending the data to the blockchain, which can be exploited by an adversary
to meddle with such sensitive data. Finally, we propose to use a permissioned

6 S. El Jaouhari and N. Tamani

Blockchain, which allows only selected and verified participants to interact with
the Blockchain, which we believe is more suitable in the medical domain to
protect data confidentiality and integrity, and hence the privacy of the patients.

3 Permissioned Blockchain for IoMT Medical Data

In this paper, a solution based on Hyperledger Fabric (HLF) Blockchain [9],
a private and permissioned blockchain, is developed to secure sensitive incom-
ing data from an IoMT sensors network. To do so, Node-RED [7] is used to
manage and interact with the different IoMT devices possessed by the patient
to collect health data. The data are then sent to the permission Blockchain.
Moreover, a User Interface (UI) is also provided to view the history of transac-
tions committed to the ledger. The Blockchain secures the IoMT data with an
identity Membership Service Provider (MSP) encapsulated in an X.509 digital
certificate and data encryption. The transactions are available and verifiable in
the immutable Blockchain ledger ensuring privacy, confidentiality, and integrity
to secure the IoMT data. Figure 1 illustrates the functional architecture of the
introduced solution along with its main components.

Fig. 1. Blockchain-based architecture for securing IoT health data from the patient’s
smart space

In what follows, we first present what is a patient’s smart space. Then, we
illustrate our solution with some use cases and we explain in detail the interaction

An End-to-End Secure Solution for IoMT Data Exchange 7

between the main components. Next, we introduce the HLF chaincode lifecycle
together with how Node-RED interacts with the ledger. Finally, we focus on the
dashboard representing the Visualization part.

Fig. 2. Definition of a patient’s smart space

3.1 Patient’s Smart Space

The medical IoT devices are located in the immediate environment of the patient,
or in what is called the patient’s smart space, as shown in Fig. 2. The goal is to
use such medical data, which is considered contextual data, to assist/help the
remote medical entity in making decisions.

In this context, a Smart Space (SS) [6] is defined as a user-centric set of
heterogeneous Smart Objects (SO)s (i.e., medical IoT devices) communicating
using different communication protocols, such as BLE, WIFI, Zigbee, MQTT
and so on, and which are accessible through a gateway, in our case via Node-
RED, which acts as a manager of all these SOs and an aggregator to all of their

8 S. El Jaouhari and N. Tamani

data. The latter will be responsible for exchanging and securing the data with
the Blockchain, as it will be explained later. For instance, the smart home of a
patient can be considered a smart space.

3.2 Use Cases

Several use cases can be identified in the field of healthcare where Blockchain
can be a great asset to improve efficiency, availability, and trust within an
IoMT-based environment [8,11]. Relevant use cases for our approach can be tele-
consultation and remote medical monitoring of the elderly, as shown in Fig. 3.

Fig. 3. Tele-consultation and remote monitoring use cases

The use cases can be implemented as distributed autonomous application
based on Blockchain. The different identified actors are as follows:

– Patients with all their sensors that create and write new data into the
Blockchain.

– Doctors who consume data and create new data as diagnoses and prescrip-
tions.

– Pharmacists who consume data and execute contracts delivering the medi-
cation to the patients.

– Heath insurers who consume data and execute contracts related to health
expenses (related to doctors, hospitals, etc.).

– Hospital emergency where nurses and doctors can have access to the his-
torical data of a given patient and can also generate data.

– Nurses who need to have access to data in case of ambulatory health service.
– Researchers who need to have access to the historical data for research

purposes

Sensors perform measurements and save the data into the blockchain. The doctor
analyses the data, makes a diagnosis, and creates the prescription. The prescrip-
tion is accessible to the pharmacist and to the health insurers. The pharmacist

An End-to-End Secure Solution for IoMT Data Exchange 9

serves the patient and validates the prescription and the insurer processes the
prescription for the check out. When sensors generate alarming data, a con-
tract can be executed: call the emergency services, call a nurse, schedule an
appointment, etc. All these services generate transactions for payments such as
a transaction refers to executing a contract. For privacy concerns, the contract
can include clauses for the pharmacists who need only to know the prescription
content and basic patient information (Social Security Number), and for the
insurers who need only to know the client identifier, and the amount of money
to pay to a given doctor or hospital.

Fig. 4. IoMT devices - gateway communication using MQTTS

4 Implementation of a Proof of Concept

The initial step involves establishing an environment conducive to deploy and
implement our solution. To do so, we have used an HPC with a CPU 12th
generation intel R© core(tm) i9-12900k, 32 GB RAM and a GPU Nvidia GP102
Titan XP. As for the software, the Hyperledger Fabric (HLF), an open source
enterprise-grade permissioned distributed ledger technology (DLT) platform,
Node-RED, Docker, and Kubernetes were deployed.

4.1 Component Interactions

Before delving into details, we first outline the three types of peers offered by
HLF. Each peer is a docker container that is managed by Kubernetes in the
Cloud as shown in Fig. 5.

– Endorser peers: with installed chaincode, simulate transaction execution in
isolated containers upon receiving a proposal. Using this simulation, they
generate a transaction proposal sent to the orderer peer, avoiding the need
for sequential transaction execution by all peers.

10 S. El Jaouhari and N. Tamani

– Orderer peers: they receive endorsed transactions and organize them into
blocks. After grouping transactions, orderers ensure consensus by distributing
these blocks to Endorsing peers, where validation occurs before committing
the transactions to the shared ledger. Orderer peers maintain records of both
valid and invalid transactions, while other peers only store valid transactions.

– Anchor peers: they act as intermediaries between peers within their organi-
zation and those belonging to an external one. For instance, an anchor peer
is used when a legitimate peer from one organization needs to communicate
with a given peer in another organization.

Fig. 5. Kubernetes Dashboard (Cloud)

Next, the main interactions between the different components of Fig. 1 are
as follows.

1. First, Node-RED is used as a gateway to collect medical data from the
patient’s smart space using the lightweight MQTT protocol, as shown in
Fig. 4. Moreover, to enhance security, MQTT over TLS (MQTTS) has been
used in order to guarantee end-to-end security from the IoT device to Node-
RED. It relies on certificates issued by a Certification Authority (CA) to
both encrypt the data and guarantee the identity of the communicating par-
ties, hence, guaranteeing the confidentiality, integrity (by using SHA-256 as a
hash function), authentication, and non-repudiation in this part of the archi-
tecture. The Node-RED, which represents the front end in this case, interacts
directly with the Hyperledger Fabric Client SDK APIs.

2. In order to invoke the chaincode (i.e. read, update, and write data to the
blockchain), nodes inside the Node-RED are configured to perform HTTPS
requests and return the response to the APIs defined by the Hyperledger
Fabric Client SDK. The chaincode invocation/lifecycle is explained below.

An End-to-End Secure Solution for IoMT Data Exchange 11

3. The APIs in HLF Client SDK can directly interact with the chaincode inside
the HLF Network (composed of multiple health organizations contributing to
the ledger) and can also update and read from the ledger.

4. Endorser Peer “PEER 2” executes the functions that are defined in the
chaincode in accordance with the request received from the API and then
sends the results to the Ordering Service.

5. The Ordering Service (or Orderer) creates the corresponding blocks and
sends them to “PEER 1”, representing the Anchor Peers, which will then
broadcast the blocks to the Endorser Peers. Anchor peers are only configured
to broadcast blocks for our application. Such functionalities provide a private
environment for different use cases and applications using private Blockchain.

6. Finally, the Endorser Peers broadcast the message to the API defined by the
Hyperledger Fabric SDK and the response can be verified by a debugger on
Node-RED.

The transaction history of IoMT data can be verified by checking the history
of data coming from the Ledger where it is stored securely and immutably in
the Blockchain. Moreover, the data received by the blockchain from the IoMT
sensor is encrypted (using the AES256 algorithm) and then packaged onto the
chaincode. The chaincode is invoked and data is processed through the ledger.
Each input data from the sensor is packed into blocks of immutable datasets. This
packaging of data into blocks is performed when the HTTPS request initiates
the chaincode lifecycle and invokes the chaincode in the blockchain to commit
key-value pairs to the ledger.

4.2 Hyperledger Fabric Chaincode Lifecycle

The HLF chaincode lifecycle is a sequence of actions performed by organizations
to agree on the parameters that define a chaincode (such as name, version,
endorsement policy, etc.) and deploy the chaincode to a channel for collaborative
use. Channel members come to an agreement via the steps below:

1. Package a chaincode: Every organization (e.g., healthcare organizations such
as hospitals in our use case) that wants to call chaincode functions obtains
the source code of a chaincode and packages it into an appropriate format.

2. Install the chaincode package: The chaincode should be installed on every
organization’s peer that is supposed to execute or endorse chaincode trans-
actions.

3. Approve a chaincode definition: Every organization that is going to use the
chaincode composes and submits a chaincode definition—a set of configura-
tion parameters considered to be acceptable by an organization.

4. Commit the chaincode definition to a channel: Once a required number of
channel participants have approved the same chaincode definition, this defi-
nition can be then committed to a channel. The commit transaction is per-
formed once and can be triggered by any organization.

12 S. El Jaouhari and N. Tamani

Fig. 6. IoMT sensors network simulated using Node-RED

4.3 Node-RED Interactions with the Ledger

Figure 6 provides views from the IoMT nodes simulated using Node-RED. The
real sensors were replaced by simulated sensors in Node-RED for simplicity’s
sake. In our testbed, the medical sensors (blood pressure sensor, pulse sensor,
oxygen level sensor, and temperature sensor) were connected to an MQTT bro-
ker, and the generated data is then published in the “MQTT subscribe (input)”
node, as shown previously in Fig. 4.

4.4 Visualization

Following the implementation of previous interactions in HLF with medical data
from simulated IoMT sensors using Node-RED, Fig. 7 illustrates the digital rep-
resentation of the value generated by the IoMT pulse sensor.

Fig. 7. IoMT data fetching and visualization

An End-to-End Secure Solution for IoMT Data Exchange 13

Fig. 8. Sensors data transaction history table

Moreover, Fig. 8 shows the history of the ledger, which contains transac-
tion Identities (T×Id), Sensor number, timestamp data, and the value of the
data generated by the sensor and fetched from the Hyperledger Fabric API. For
instance, in the last transaction details, we can confirm that it is identical to the
sensor data generated in Fig. 7. The history is fetched from the Ledger where
the data is stored immutably in the Blockchain.

5 Conclusion

In this paper, a permissioned Blockchain solution based on HLF is used to
enhance the security and privacy of the IoMT environment. In this environ-
ment, the involved parties are well-known and trusted since X.509 certificates
are used to identify each stakeholder. The solution encrypts IoMT data to ensure
its privacy and integrity. Moreover, the IoMT data stored in the Blockchain is
tamper-proof and cannot be modified. Furthermore, transaction hashes and the
history of the ledger are verifiable, ensuring, hence, accountability and trace-
ability of the IoMT data. A proof-of-concept using Node-RED, HLF, and IoMT
sensors, has also been developed and showed the successful configuration and
the real-time deployment of our solution. In future work, we plan to extend our
approach to execute smart contracts among the stakeholders involved in health-
care ecosystems, including insurers, practitioners, nurses, pharmacists, etc. to
implement a secure end-to-end distributed application. Furthermore, we plan
to conduct extensive experiments to validate and assess the performance of our
approach.

14 S. El Jaouhari and N. Tamani

References

1. Internet of medical things market (2023). https://www.precedenceresearch.com/
internet-of-medical-things-market

2. Alvarenga, I.D., Camilo, G.F., De Souza, L.A.C., Duarte, O.C.M.B.: Dagsec: a
hybrid distributed ledger architecture for the secure management of the internet
of things. In: 2021 IEEE International Conference on Blockchain (Blockchain), pp.
266–271 (2021). https://doi.org/10.1109/Blockchain53845.2021.00043

3. Bataineh, M.R., Mardini, W., Khamayseh, Y.M., Yassein, M.M.B.: Novel and
secure blockchain framework for health applications in IoT. IEEE Access 10,
14914–14926 (2022). https://doi.org/10.1109/ACCESS.2022.3147795

4. Bhawiyuga, A., Wardhana, A., Amron, K., Kirana, A.P.: Platform for integrating
internet of things based smart healthcare system and blockchain network. In: 2019
6th NAFOSTED Conference on Information and Computer Science (NICS), pp.
55–60 (2019). https://doi.org/10.1109/NICS48868.2019.9023797

5. Dwivedi, A.D., Malina, L., Dzurenda, P., Srivastava, G.: Optimized blockchain
model for internet of things based healthcare applications. In: 2019 42nd Interna-
tional Conference on Telecommunications and Signal Processing (TSP), pp. 135–
139 (2019). https://doi.org/10.1109/TSP.2019.8769060

6. El Jaouhari, S., Bouabdallah, A., Corici, A.A.: SDN-based security management of
multiple wot smart spaces. J. Ambient. Intell. Humaniz. Comput. 12, 9081–9096
(2021)

7. Foundation, O.: Node-red - low-code programming for event-driven applications.
https://nodered.org/. Accessed 13 Sept 2022

8. Haleem, A., Javaid, M., Singh, R.P., Suman, R., Rab, S.: Blockchain tech-
nology applications in healthcare: an overview. Int. J. Intell. Netw. 2, 130–
139 (2021). https://doi.org/10.1016/j.ijin.2021.09.005. https://www.sciencedirect.
com/science/article/pii/S266660302100021X

9. IBM: Getting started with iot blockchain service (2021). https://www.ibm.com/
docs/en/wip-bs?topic=SSCG66/iot-blockchain/developing/generic connect.html.
Accessed 13 Sept 2022

10. Mallick, S.R., Sharma, S.: EMRI: a scalable and secure blockchain-based iomt
framework for healthcare data transaction. In: 2021 19th OITS International Con-
ference on Information Technology (OCIT), pp. 261–266 (2021).https://doi.org/
10.1109/OCIT53463.2021.00060

11. Mamun, Q.: Blockchain technology in the future of healthcare. Smart Health
23, 100223 (2022). https://doi.org/10.1016/j.smhl.2021.100223. https://www.
sciencedirect.com/science/article/pii/S2352648321000453

12. Nawale, S.D., Konapure, R.R.: Blockchain & iot based drugs traceability for
pharma industry. In: 2021 IEEE International Conference on Engineering, Tech-
nology and Innovation (ICE/ITMC), pp. 1–4 (2021).https://doi.org/10.1109/ICE/
ITMC52061.2021.9570251

13. Oikonomou, F.P., Mantas, G., Cox, P., Bashashi, F., Gil-Castiñeira, F., Gonzalez,
J.: A blockchain-based architecture for secure iot-based health monitoring systems.
In: 2021 IEEE 26th International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD), pp. 1–6 (2021). https://
doi.org/10.1109/CAMAD52502.2021.9617803

14. Oikonomou, F.P., Ribeiro, J., Mantas, G., Bastos, J.M.C., Rodriguez, J.: A hyper-
ledger fabric-based blockchain architecture to secure iot-based health monitoring

https://www.precedenceresearch.com/internet-of-medical-things-market
https://www.precedenceresearch.com/internet-of-medical-things-market
https://doi.org/10.1109/Blockchain53845.2021.00043
https://doi.org/10.1109/ACCESS.2022.3147795
https://doi.org/10.1109/NICS48868.2019.9023797
https://doi.org/10.1109/TSP.2019.8769060
https://nodered.org/
https://doi.org/10.1016/j.ijin.2021.09.005
https://www.sciencedirect.com/science/article/pii/S266660302100021X
https://www.sciencedirect.com/science/article/pii/S266660302100021X
https://www.ibm.com/docs/en/wip-bs?topic=SSCG66/iot-blockchain/developing/generic_connect.html
https://www.ibm.com/docs/en/wip-bs?topic=SSCG66/iot-blockchain/developing/generic_connect.html
https://doi.org/10.1109/OCIT53463.2021.00060
https://doi.org/10.1109/OCIT53463.2021.00060
https://doi.org/10.1016/j.smhl.2021.100223
https://www.sciencedirect.com/science/article/pii/S2352648321000453
https://www.sciencedirect.com/science/article/pii/S2352648321000453
https://doi.org/10.1109/ICE/ITMC52061.2021.9570251
https://doi.org/10.1109/ICE/ITMC52061.2021.9570251
https://doi.org/10.1109/CAMAD52502.2021.9617803
https://doi.org/10.1109/CAMAD52502.2021.9617803

An End-to-End Secure Solution for IoMT Data Exchange 15

systems. In: 2021 IEEE International Mediterranean Conference on Communica-
tions and Networking (MeditCom), pp. 186–190 (2021).https://doi.org/10.1109/
MeditCom49071.2021.9647521

15. Zaabar, B., Cheikhrouhou, O., Ammi, M., Awad, A.I., Abid, M.: Secure and
privacy-aware blockchain-based remote patient monitoring system for internet
of healthcare things. In: 2021 17th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pp. 200–205
(2021).https://doi.org/10.1109/WiMob52687.2021.9606362

https://doi.org/10.1109/MeditCom49071.2021.9647521
https://doi.org/10.1109/MeditCom49071.2021.9647521
https://doi.org/10.1109/WiMob52687.2021.9606362

EasyLog: An Efficient Kernel Logging
Service for Machine Learning

Xundi Yang, Kefan Qiu, and Quanxin Zhang(B)

Beijing Institute of Technology University, Beijing 100081, China
{kfqiu,zhangqx}@bit.edu.cn

Abstract. Recently, logs serves as a crucial tool to monitor system’s
real-time state for experiments and generate data for machine learn-
ing. However, the existing Linux logging system faces challenges such as
excessive log output and a high rate of important log message loss. To
tackle these issues, we propose the EasyLog solution, which effectively
mitigates these problems. EasyLog draws inspiration from the design
principles of log-related functions like pr xx, dev xx, and the Devkmsg

service. EasyLog extracts and records logs with special identifier suffixes
by introducing a ring buffer. In terms of interface utilization, EasyLog
offers the easy xx interface for kernel developers and the reading inter-
face for user-space applications.

Keywords: Machine learning systems · Linux logging service · Log
message loss · Ring buffer · Interface utilization · Server kernel
development

1 Introduction

In recent years, there has been a growing deployment of machine learning systems
on Linux Operating Systems. Within the Linux environment, numerous runtime
problems and potential threats necessitate resolution through security monitor-
ing and analysis, which includes the examination of logs to identify causes [1]. Log
information serves as an immediate reflection of a system’s operational status.
Developers utilize logs for diagnosing system malfunctions, recording experimen-
tal results, and generating data for training security analysis models.

In this paper, we focus on the logging service in the Linux server ker-
nel and aim to assist programmers in designing kernel drivers and generat-
ing data for machine learning. Generally, developers strive to capture system
state dumps, execute tracing, and communicate events through log data. Within
the 13,390,104 lines of source code in the Linux kernel, there are 498,897 lines
(approximately 3.79%) dedicated to logging code [2]. Logging functions in the
Linux kernel write messages into the log buffer. Commonly used logging func-
tions include the printk function, which is similar to the printf function. The
distinction lies in printk’s specification of the log level for event recording. Sub-
sequent Linux kernel versions have introduced variations of the printk func-
tion such as pr_info, and dev_warn, which incorporate log levels into their
nomenclature.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 16–28, 2024.
https://doi.org/10.1007/978-3-031-61486-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_2

EasyLog: An Efficient Kernel Logging Service for Machine Learning 17

However, the existing kernel logging services are unreliable due to several
factors. Firstly, the Linux kernel generates a substantial volume of continuous log
output from numerous programs. When Shiqing et al. [3] tested the overhead of
the Linux audit system, they found that servers generate approximately 130GB
of log data per day, while client machines generate about 5GB of log data per
day. Nevertheless, developers often focus on specific Linux kernel modules. For
instance, Tan Y et al. [4] employ authorization lists recorded in the logs as
the basis for comparison. In the RootAgency [5], the logs document the time
consumption from the test app initiating the request until the end user receives
the reply for the root privilege request. Neither of them pays attention to logs
related to unrelated modules. The excessive volume of irrelevant logs has caused
interference in their experiments. Furthermore, the kernel logging service also
faces the issue of log loss. The kernel log buffer is a ring buffer, which operates
on a first-in, first-out (FIFO) basis. The default size of the Linux kernel log
buffer is 128KB. As data accumulates beyond the capacity of the ring buffer,
the oldest data is overwritten to accommodate new information.

In this paper, we introduce a kernel logging service solution, EasyLog, which
effectively mitigates the above issues. In terms of interface utilization, EasyLog
provides write interfaces such as easy_xx for log writing at the kernel layer
and system call interfaces such as open, read, and close for log reading at
the application layer. Besides, regarding log simplification, the design of the
easy_xx functions is influenced by kernel functions like dev_info, appending
specific identifiers to the end of each log. When our write interfaces append to
record logs, EasyLog extracts logs using the identifier and stores them in our
new ring log buffer, which can be expanded to 2 MB. This approach significantly
reduces the volume of logs. It also elongates the time required to fill the circu-
lar buffer and decreases the likelihood of log loss. Furthermore, developers can
utilize the easy_xx functions in their experimental kernel, subsequently com-
pile and execute the code, and directly get logs from the new log buffer. To
sum up, EasyLog reduces log volume, enhances effective log density, diminishes
the probability of log loss, and facilitates the development of new modules for
programmers.

The rest of the paper is structured as follows. Section 2 describes recent
application of logs, the principles underlying the printk mechanism, and recent
advancements in kernel-level logging service. In Sect. 3, the comprehensive archi-
tectural design is presented. Section 4 describes the details of the implementation
and the interface design of EasyLog. In Sect. 5, we validate the effectiveness of
EasyLog in mitigating the loss rate of important logs. Section 6 elucidates the
utilization of the EasyLog service to assist in the development of new modules
for the Linux kernel. Section 7 concludes.

2 Background

2.1 The Applications of Logs

When the kernel crashes, developers can solve bugs by analyzing the preserved
system log files. In recent years, logs aid developers in diagnosing system errors,

18 X. Yang et al.

training security models, and documenting experimental results. In 2015, the
EASEAndroid platform [6], the inaugural audit log analytic system for SEAn-
droid, employed semi-supervised learning to autonomously enhance the SEAn-
droid policy. In 2018, Xue B et al. [7] obtain the encryption rate and data
processing size of the baseband processor through log information. In 2021, Li Y
et al. [1] proposes a host security analysis method based on D-S evidence theory,
which involves extracting information from monitoring logs and subsequently
training a security analysis model. The model can be applied to host security
analysis in different operating systems with minimal or almost no modification.

2.2 The Analysis of Printk

The kernel log module resides in ./kernel/printk/. Figure 1 illustrates the
read-write framework of the kernel log module. As depicted in the figure, its
core component is the ring buffer, denoted as the “log buffer”. The printk
function and the devkmsg_write function, acting as producers, store messages
in the log buffer. On the other hand, the log service modules on the right side
of the figure function as a consumer, reading messages from the log buffer.

Fig. 1. The Read-Write Framework of the kernel log module

Log Buffer: The size of the kernel log buffer is determined jointly by the
configuration parameters CONFIG_LOG_BUF_SHIFT and the number of CPU cores
in the SMP system. During the kernel boot, information regarding the system’s
memory layout and the number of CPU cores is unknown before device tree
parsing. To support the utilization of the printk function, the kernel defines
a static global log buffer with a size of (1 << CONFIG_LOG_BUF_SHIFT). After
CPU initialization, an additional global log buffer is dynamically allocated with
a size of (1 << CONFIG_LOG_BUF_SHIFT + 1 << LOG_CPU_MAX_BUF_LEN), and
the log data from the original static buffer is copied into it.

The log buffer is managed through the data structure printk_ringbuffer.
Figure 2 presents the data structures of printk_ringbuffer. As depicted, it
comprises three main components: 1) a ring buffer for data storage, managed
using head and tail pointers to track the buffer’s status. When data needs to

EasyLog: An Efficient Kernel Logging Service for Machine Learning 19

be written, the head pointer is updated based on the length of the data being
written. If the free space in the ring buffer is insufficient, the oldest data is
purged starting from the tail pointer. Additionally, each piece of written data is
assigned an ID, which is used to indicate the index in the prb_desc array and
the printk_info array. 2) An array of prb_desc structures, with each element
maintaining the position information of a log within the ring buffer, along with
its status. 3) An array of printk_info structures, with each element responsible
for managing additional information associated with a log, such as its sequence
number(seq), timestamp, length, log level, and more.

Fig. 2. Principal Members and Data Structures of printk ringbuffer

Log Stoarge Process: We use the printk interface as an example for explain-
ing the log storage process. 1) Allocate an entry and increment the sequence num-
ber: The desc_reserve function retrieves an available entry from the prb_desc
structure array. If no free entry is available, it overwrites the oldest log. Upon
successful allocation, the descriptor’s status is set to desc_reserved. Subse-
quently, the sequence number for that log is set. 2) Allocate space and copy the
log: The data_alloc function allocates a segment of space from the ring buffer
to store the new log data. The log_data_copy function copies the data to be
written into the allocated space within the ring buffer. 3) Update the status: The
_prb_commit function updates the status of the new element in the prb_desc
array to desc_committed, and then the desc_make_final function updates the
status to desc_finalized. After this operation, the log is written and ready for
reading.

20 X. Yang et al.

Log Retrieval Process: When reading logs, a sequence number (seq) is pro-
vided as a parameter, and the prb_read function is called to retrieve the log
corresponding to that sequence number. 1) Retrieve a valid status log: The
desc_read_finalized_seq function reads the status of the log corresponding
to the provided sequence number. If the status is valid, the subsequent log data
and information retrieval operations are executed. After completion, the status
of that log is rechecked. If it remains valid and the sequence number has not
changed, it signifies that during the reading process, the data was not modified
by write operations. Otherwise, the reading process fails. 2) Handling of Read-
ing Failures: In case of reading failures, the prb_first_seq function is called
to obtain the first readable log after the provided sequence number, and the
retrieval process is restarted.

Devkmsg Log Interface: The devkmsg service provides log read and write
operations to user space through the device file node /dev/kmsg. Devkmsg main-
tains an independent sequence number and log reading is based on this sequence
number to determine which log needs to be read. The user space read interface
provided by EasyLog in this paper is modeled after the Devkmsg service.

Other Interfaces: 1) syslog interface: This interface exports logs through
system calls but does not provide log writing operations. The syslog interface
finds utility in various scenarios, including applications like dmesg, klogd, and
/proc/kmsg. 2) Console log interface: It primarily offers console initialization,
and registration processes, and specifies the preferred console interface through
command-line parameters. 3) Kmsg dump interface: This interface is primarily
used by pstore. pstore is applied to save system logs to a backend device in
the event of a system crash, assisting developers in debugging and analysis.

2.3 Recent Work About Logging

Linux manages storage devices, networks, man-machine interfaces, CPUs, and
more through software layers such as device drivers, file systems, and commu-
nication protocols. These intricate modules are maintained by hundreds of pro-
grammers. As Linux grows in complexity, an increasing number of system anal-
ysis tools have been proposed to help developers in analyzing system behavior.
The simplest logging tool in Linux is the printk function, as mentioned earlier.
In Linux kernel v1.3.983 [2], a set of additional logging functions was intro-
duced to enhance the conciseness of log statement recording. These functions
incorporate log levels in their names. Consequently, programmers are no longer
required to use printk function with log-level parameters such as KERN_DEBUG
and KERN_INFO. Another set of logging functions specifically designed for device
drivers, such as dev_dbg and dev_info, automatically embed the device name in
their outputs, thereby facilitating the identification of the source of log messages.

Both dev_xx functions and pr_xx functions are variants of the printk func-
tion, and the underlying issues with printk remain unresolved. The printk

EasyLog: An Efficient Kernel Logging Service for Machine Learning 21

function uses an asynchronous daemon to read and write a ring buffer, making
the buffer vulnerable to overwriting and event loss. The Linux Trace Toolkit
(LTT) [8] logs around 45 predefined events, including interrupts, system calls,
and network packet arrivals. The tool is advantageous due to its relatively low
overhead and the presence of a visualization tool to aid in analyzing logged data.
However, it lacks flexibility and scalability. Relayfs [9] is proposed, which divides
logs into different subsystem/client channels, effectively addressing the funda-
mental overhead caused by locking during logging. KLogger [10] is presented
as a software tool for logging operating system kernel events. Developers can
insert new log events into the kernel using this tool. Furthermore, an alternative
approach to logging all events is sampling. OProfile [11] adopts a sampling app-
roach, serving as the underlying infrastructure for HP’s Prospect tool. OProfile
uses Intel’s hardware performance counters to generate traps for every N occur-
rence of specific hardware events. However, since OProfile is based on periodic
sampling, it may miss events with finer granularity than the sampling rate.

3 Architecture

Figure 3 illustrates the architecture of EasyLog. 1) The server kernel subsystem
utilizes the easy_xx functions to record log entries. 2) EasyLog service filters
logs with specific suffixes and directs them into a newly created ring buffer. 3)
User-space applications access the new log buffer through the character device
node /dev/easylog.

Fig. 3. The architecture of EasyLog

4 Implementation

4.1 Channel and Data Management Schemes

The EasyLog module maintains a ring buffer as its log buffer. Its structure,
initialization, and read-write processes resemble the printk’s log buffer.

22 X. Yang et al.

Initialization: During the early stages of kernel startup, the original static
log buffer is still employed. Subsequently, in the start_kernel function, an
initialization function is called to dynamically allocate a global log buffer of size
(1>>CONFIG_EASYLOG_BUF_SHIFT).

Log Storage: The kernel subsystem uses the easy_xx functions to record log
entries, with each log appended with a special identifier suffix.

Log Filtering: The log_store function is responsible for appending logs gen-
erated by other modules to the original log buffer. Within the log_store func-
tion, the EasyLog service performs a hook-like operation. The service filters logs
generated by other modules, extracts logs with suffixes, removes the suffixes,
and subsequently stores them in our log buffer following the writing procedure
described in Sect. 2.1. This process ensures that the log buffer’s read and write
operations do not conflict through spin locks and local interrupt disabling. Dur-
ing this filtering step, both our log buffer and the printk’s log buffer need to be
locked for protection.

Log Retrieval: EasyLog maps our ring buffer to a pseudo-file, namely the char-
acter device file /dev/easylog, which can be accessed by userspace for reading
or process memory mapping.

4.2 Interface

This section describes the basic utilization of EasyLog in both kernel subsystems
and user space. Within the kernel subsystem, a set of kernel-space APIs can be
employed to write logs with suffixes, facilitating the extraction of logs by the
EasyLog service. In the user space, user programs can access logs from EasyLog
by reading from the character device node /dev/easylog.

Drawing inspiration from the pr_xx functions, the kernel subsystems write
a special log using the easy_xx function, where ’xx’ denotes the corresponding
log level. Each kernel log comprises three essential components [2]: the kernel
event level, a static message detailing the event, and variable values associated
with the log event. Detailed API definitions are provided below.

Code 1: The definition of easy xx functions

1: __printf(2, 3) void easy_suffix_printk(const char *, const char *,

...);

2:
3: #define easy_emerg(fmt, ...) \

4: easy_suffix_printk(KERN_EMERG, fmt, ##__VA_ARGS__)

5: #define easy_crit(fmt, ...) \

6: easy_suffix_printk(KERN_CRIT, fmt, ##__VA_ARGS__)

7: #define easy_alert(fmt, ...) \

8: easy_suffix_printk(KERN_ALERT, fmt, ##__VA_ARGS__)

EasyLog: An Efficient Kernel Logging Service for Machine Learning 23

9: #define easy_err(fmt, ...) \

10: easy_suffix_printk(KERN_ERR, fmt, ##__VA_ARGS__)

11: #define easy_warn(fmt, ...) \

12: easy_suffix_printk(KERN_WARNING, fmt, ##__VA_ARGS__)

13: #define easy_notice(fmt, ...) \

14: easy_suffix_printk(KERN_NOTICE, fmt, ##__VA_ARGS__)

15: #define easy_info(fmt, ...) \

16: easy_suffix_printk(KERN_INFO, fmt, ##__VA_ARGS__)

In this context, the easy_suffix_printk function, inspired by the dev_xx
functions, appends the “–easylog–” identifier to the end of each log. Subse-
quently, it invokes the vprintk_emit function, passing the kernel event level
and the newly generated log with the suffix.

The reading operation of user programs in EasyLog draws inspiration from
the reading operation of the devkmsg service. /dev/easylog is a readable char-
acter device file, permitting multiple user processes to access log records. Each
process can obtain a complete set of log entries from EasyLog.

The collection of user-space file operations provided by EasyLog is as follows:
1) The open function, responsible for opening the character device file node
/dev/easylog and creating a deveasylog_user structure object (as detailed
later) named user, corresponding to the deceasylog_open function in the ker-
nel. 2) The read function, which reads log entries from the log buffer, corresponds
to the deceasylog_read function in the kernel. 3) The release function, respon-
sible for releasing all resources acquired by the open function, corresponding to
the deceasylog_release function in the kernel.

Code 2: The collection of user-space file operations provided by EasyLog

1: const struct file_operations easylog_fops = {

2: .open = deveasylog_open,

3: .read = deveasylog_read,

4: .release = deveasylog_release,

5: };

Each process that opens /dev/EasyLog is associated with an independent
deveasylog_user structure object, as described below. The deveasylog_user
structure maintains a unique sequence number for each reading process, denoted
as seq, which represents the sequence number of the log currently being read
by the process. The mutex lock, denoted as lock, ensures that only one thread
within each process can perform write operations on the text_buf. The rs vari-
able is used for rate limiting. Following the Log Retrieval Process in Sect. 2.1, logs
are read from EasyLog’s log buffer, recorded in the text_buf, and subsequently
returned to user space by invoking the copy_to_user function.

24 X. Yang et al.

Code 3: The structure of deveasylog user

1: struct deveasylog_user {

2: u64 seq;

3: struct ratelimit_state rs;

4: struct mutex lock;

5: char buf[CONSOLE_EXT_LOG_MAX];

6: struct printk_info info;

7: char text_buf[CONSOLE_EXT_LOG_MAX];

8: struct printk_record record;

9: };

5 Experiment

This section of experiments aims to demonstrate the significant reduction in
the loss rate of important logs achieved by EasyLog. Important logs refer to the
logs associated with the development modules during server kernel development.
Within the developing server kernel subsystems, developers invoke the easy_xx
functions and append specific identifiers to the end of each log. This experiment
considers such logs as important logs, defined as label logs. EasyLog extracts the
logs with specific identifiers and stores them in a new ring log buffer.

In our experiments, it was essential to simulate real-world log generation sce-
narios as closely as possible, ensuring that normal logs and label logs terminated
their output as synchronously as feasible. The original printk and EasyLog
log buffer were set to 256 KB. We designed two kernel modules: one module
invokes pr_info to write N normal log entries, while the other module invokes
easy_info to write N*0.1 label log entries, ensuring a ratio of 100 normal logs to
10 label logs. The values of N range from 2048, 4096, 6144...20480. Additionally,
normal logs were generated at intervals of 0.1 s, whereas the generation intervals
for label logs were a random number between [0.5, 1.5] (with a mean of 1). These
two modules were executed concurrently, writing normal logs and label logs in
parallel. We consider the logs recorded in /dev/kmsg as the logs logged by the
original logging system, while the logs in /dev/easylog are the logs recorded
by EasyLog. The loss rate of label logs was tested separately. The formula for
calculating the loss rate of label logs is provided in Eq. 1. Table 1 presents the
experimental results.

Label Logs Loss Rate =
Label Logs Loss Count

Label Logs Count
× 100% (1)

EasyLog: An Efficient Kernel Logging Service for Machine Learning 25

Table 1. The loss rate of label logs

NO Label Logs Counta Normal Logs Countb Total Logs Count Label Logs Loss Rate

/dev/kmsgc /dev/easylogd

1 205 2,048 2,253 0 0

2 410 4,096 4,506 0 0

3 614 6,144 6,758 0 0

4 819 8,192 9,011 8.91% 0

5 1,024 10,240 11,264 26.86% 0

6 1,229 12,288 13,517 39.71% 0

7 1,434 14,336 15,770 48.12% 0

8 1,638 16,384 18,022 54.46% 0

9 1,843 18,432 20,275 59.31% 0

10 2,048 20,480 22,528 62.79% 0
a The generation intervals for label logs were a random number between [0.5, 1.5].
b Normal logs were generated at intervals of 0.1 s.
c The logs in /dev/kmsg are the logs logged by the original logging system.
d The logs in /dev/easylog are the logs recorded by EasyLog.

The Table 1 shows that: 1) When the log volume is relatively small, there is
no significant difference in the loss rate of label logs and it remains at 0. 2) As
the log volume gradually increases, the loss rate of label logs in the /dev/kmsg
increases progressively. 3) Due to the constraint of ensuring that normal and label
logs terminate their outputs concurrently, the growth in the loss rate of label logs
in the /dev/kmsg slows down as the log volume increases, and it will not reach
100%. 4) Because the total size of label logs is less than 256 KB, the loss rate of
label logs consistently remains at 0. In summary, EasyLog reduces the volume of
logs that need to be recorded by extracting important logs, allowing the system
sufficient time to store the logs from the buffer into files, thus effectively reducing
the probability of log loss.

6 Application

EasyLog aims to assist programmers in designing kernel drivers and generating
data for machine learning. In this section, we demonstrate how EasyLog aids
developers in kernel driver development. Some hardware devices, such as GPUs,
have old versions phased out and new versions released, necessitating corre-
sponding driver updates. Besides, the driver subsystems are significantly larger
than other subsystems. From Linux versions v4.3 to v5.3, there were a total of
211,437 modifications to log statements, with the driver subsystem accounting
for 86.60% of the overall log code changes [2]. Therefore, optimizing the logging
system is of paramount importance for Linux server kernel driver development.

In this chapter, we take USB storage device-related drivers as an example.
We output logs when USB flash drives are inserted and removed. The log content
includes relevant information about the USB flash drive, such as product, vendor,
manufacturer, serial number, as well as the time of insertion and removal. The

26 X. Yang et al.

Fig. 4. The output of “dmesg”. The figure indicates the original kernel logs include
too much unrelated information.

Fig. 5. The output of “cat /dev/easylog”. The figure indicates the EasyLog’s logs are
clearer and more coherent.

EasyLog: An Efficient Kernel Logging Service for Machine Learning 27

driver functions involved in this process include the scsi_add_lun function in
scsi/scsi_scan.c and the usb_disconnect function in usb/core/core.c. In
these respective locations within the functions, the easy_info function is called
to write the relevant log content. Repeatedly inserting and removing different
USB flash drives or hard drives, Fig. 4 and Fig. 5 depict screenshots of the dmesg
output and the cat /dev/easylog output. The Fig. 5 is clearer and more coher-
ent, devoid of interference in the logs, which is advantageous for programmers
working on new modules.

7 Conclusion

To address issues such as log loss and excessive log volume in the Linux log-
ging service, this paper proposes the EasyLog service. EasyLog maintains a ring
buffer as the log buffer. EasyLog extracts logs with special identifiers from the
logs written to the original log buffer and stores them in our new log buffer. Fur-
thermore, EasyLog provides write functions such as easy_xx for kernel modules
to write logs and read functions for applications to read logs.

In the fifth section, experimental results demonstrate that when the total log
volume is relatively low, both EasyLog and the original Linux logging module
have a log loss rate of 0 for critical logs. However, when the proportion of critical
logs remains constant but the total log volume increases, the log loss rate of
critical logs in the original Linux logging system gradually rises. In contrast, the
EasyLog module en sures that these critical logs are not overwritten by unrelated
logs by extracting critical logs and storing them in our new ring buffer. As a
result, the log loss rate of critical logs in EasyLog is significantly lower than in
the original Linux logging system. When the total size of critical logs does not
exceed the log buffer capacity, the loss rate of critical logs is 0.

In conclusion, EasyLog proficiently mitigates log loss concerns and facilitates
the creation of kernel drivers as well as the generation of data for machine
learning applications.

Acknowledgements. This work was supported by the National Key Research and
Development Program of China under Grant 2022YFB2701501 the National Natural
Science Foundation of China (no. U2336201).

References

1. Li, Y., Yao, S., Zhang, R., et al.: Analyzing host security using D-S evidence theory
and multisource information fusion. Int. J. Intell. Syst. 36(2), 1053–1068 (2021)

2. Patel, K., Faccin, J., Hamou-Lhadj, A., et al.: The sense of logging in the linux
kernel. Empir. Softw. Eng. 27(6), 153 (2022)

3. Ma, S., Zhai, J., Kwon, Y., et al.: Kernel-supported cost-effective audit logging for
causality tracking. In: 2018 USENIX Annual Technical Conference (USENIX ATC
18), pp. 241–254 (2018)

28 X. Yang et al.

4. Tan, Y., Xue, Y., Liang, C., et al.: A root privilege management scheme with
revocable authorization for Android devices[J]. J. Netw. Comput. Appl. 107, 69–
82 (2018)

5. Xue, Y., Tan, Y., Liang, C., et al.: RootAgency: a digital signature-based root
privilege management agency for cloud terminal devices. Inf. Sci. 444, 36–50 (2018)

6. Wang, R., Enck, W., Reeves, D., et al.: EASEAndroid: automatic policy analysis
and refinement for security enhanced android via large-scale semi-supervised learn-
ing. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 351–366
(2015)

7. Xue, B., Lu, L., Sikang, H., et al.: An isolated data encryption experiment method
by utilizing baseband processors. In: Proceedings of the 2018 2nd International
Conference on Management Engineering, Software Engineering and Service Sci-
ences, pp. 176–181 (2018)

8. Yaghmour, K., Dagenais, M.R.: Measuring and characterizing system behavior
using kernel-level event logging. In: 2000 USENIX Annual Technical Conference
(USENIX ATC 2000) (2000)

9. Zanussi, T., Yaghmour, K., Wisniewski, R., et al.: relayfs: an efficient unified app-
roach for transmitting data from kernel to user space. In: Linux Symposium, vol.
494 (2003)

10. Etsion, Y., Tsafrir, D., Kirkpatrick, S., et al.: Fine grained kernel logging with klog-
ger: experience and insights. In: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, pp. 259–272 (2007)

11. Cohen, W.E.: Tuning programs with OProfile. Wide Open Maga. 1, 53–62 (2004)

LM-cAPI:A Lite Model Based on API
Core Semantic Information for Malware

Classification

Yifan Zhou, Zhenyan Liu(B), Jingfeng Xue, Yong Wang, and Ji Zhang

School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 100081, China

zhenyanliu@bit.edu.cn

Abstract. Currently, malware is continually evolving and growing in
complexity, posing a significant threat to network security. With the con-
stant emergence of new types and quantities of malware coupled with the
continuous updating of dissemination methods, the rapid and accurate
identification of malware as well as providing precise support for cor-
responding warning and defense measures have become a crucial chal-
lenge in maintaining network security. This article focuses on API call
sequences in malware that can characterize the behavioral characteris-
tics of malware as text and then uses the latest text classification-related
technologies to achieve the classification of malware. This article pro-
poses a flexible and lightweight malicious code classification model based
on API core semantic information. To address the issues of prolonged
training time and low accuracy caused by excessive noise and redun-
dant data in API call sequences, this model adopts an intimacy analysis
method based on a self-attention mechanism for key information extrac-
tion. To enhance the capture of semantic information within malware
API call sequences, a feature extraction model based on a self-attention
mechanism is used to transform unstructured key API sequences into
vector representations, extract core features, and finally connect to the
TextCNN model for multi classification. In the dataset of the “Alibaba
Cloud Security Malicious Program Detection” competition, the F1 value
reached 90% in eight category classification tasks. The experimental
results show that the model proposed in this article can achieve bet-
ter results in malware detection and multi-classification.

Keywords: Network Security · Malware Classification · API call
sequence

1 Introduction

Malware is one of the most serious threats to network security, serving as a key
attack carrier in various network security events. When malware is executed, it

Supported by Major Scientific and Technological Innovation Projects of Shandong
Province (2020CXGC010116) and the National Natural Science Foundation of China
(No. 62172042).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 29–42, 2024.
https://doi.org/10.1007/978-3-031-61486-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_3

30 Y. Zhou et al.

poses a risk to the confidentiality, availability, and integrity of sensitive informa-
tion and data in the target system. Moreover, in order to avoid traditional mal-
ware detection and eradication mechanisms (such as firewalls, antivirus software,
and other signature-based defense methods) and improve their own survivability,
malware programmers employ sophisticated techniques. These involve modify-
ing and confounding malicious samples within the same family using diverse
strategies to alter code structures and generate various different code variants
while maintaining semantic equivalence. There are certain similarities in struc-
ture and behavior among variant samples from the same family. As malware
spreads, it utilizes various deformation engines to automatically generate new
variants. Simultaneously, the development of the malware industry chain is also
continuously collectivized and organized. Overall, the above phenomenon has
resulted in the proliferation of malware not only in terms of quantity but also in
the diversification of defense evasion methods. Consequently, the need for auto-
mated detection, elimination, and tracing of malware has become increasingly
urgent.

Over the past few years, the volume of malware data has grown rapidly.
Within the realm of artificial intelligence, natural language processing (NLP)
has emerged as a mature subfield, with machine learning [1] and neural net-
work methods of natural language processing gradually reaching maturity in the
domain of malware detection. Machine-learning-based malware detection meth-
ods [2,3] can automatically analyze a large amount of data through inductive
reasoning, enabling the detection and classification of malware into families. The
essence of machine-learning-based methods lies in feature extraction and model
building. The feature extraction process can be achieved through both static and
dynamic analysis methods. Commonly used features include opcode sequences,
API call sequences, byte sequences, etc. [4–6]. The model classifies samples by
analyzing features and using algorithms such as classification or clustering. An
API serves as the interface between an application program and a system. Its call
sequence encapsulates the behavioral information of the code during actual run-
time, providing an accurate characterization of the program’s purpose. Through
the analysis of API call sequences, it becomes evident that malware typically
calls fixed API sequences to perform destructive behavior. With the continu-
ous development of technology in the field of natural language processing, API
sequences can be regarded as a form of semantic text, exhibiting temporal rela-
tionships between APIs. The relevant technologies of natural language processing
can be applied to analyze API sequences [5,7].

We present a versatile and lite malware classification model based on the key
semantic information of API call sequences. To address the issue of long training
time and low accuracy resulting from excessive noise and redundant data in API
call sequences, this model employs keyword extraction technology for key infor-
mation extraction. To enhance the extraction of semantic information from API
call sequences, this article extensively employs language-training language mod-
els to obtain rich semantic representations. Moreover, neural network models are
employed to address the multi-classification challenge posed by malware. In this

LM-cAPI 31

experiment, we used the dataset provided by the “Alibaba Cloud Tianchi Com-
petition Security malware Detection;; competition question and conducted the
necessary data processing. The experimental findings demonstrate the superior-
ity of our proposed method in comparison to the general classification methods
using API call sequences as features. The proposed method is more effective in
multi classification of malware, with an accuracy rate of 90%.

2 Related Work

Malware technology has caused significant harm to users, enterprises, and even
countries due to its continuous development. Numerous information security
researchers both domestically and internationally are dedicated to the research
of malware.

The core of machine-learning-based malware detection methods lies in feature
extraction and modeling. The model classifies samples by analyzing features and
using algorithms such as classification or clustering. An API serves as the crucial
interface between an application program and a system, and its call sequence can
substantially reflect the program’s behavior. Therefore, numerous malware anal-
yses are based on API sequences. Darshan [8] et al. extracted API call sequences
from JSON files obtained from sandbox operations. They then applied the N-
Gram method to process the sequences and used machine learning algorithms to
construct classifiers with high detection accuracy. However, a drawback of this
method is its consideration of only a small subset of features from a larger pool,
necessitating further improvement in accuracy. Fang Yong [9] et al. addressed
this limitation by mixing dynamic and static API features through weight ratios
to compensate for the shortcomings of a single feature. They also proposed a
new semi-supervised clustering algorithm based on the unsupervised DBSCAN
algorithm, significantly improving the accuracy of clustering.

The above methods all require a large amount of data and labor to ensure
accurate classification. Furthermore, some models require the use of manual
design feature extraction, resulting in serious limitations in generalization issues.
The use of neural networks based on deep learning methods to solve text classifi-
cation problems is currently a hot research topic. Deep learning [10] is a branch of
machine learning based on multi-layer neural networks to learn deeper features
in samples. It is a complex machine learning algorithm capable of automati-
cally extracting the features of malware through multi-layer neural networks,
simplifying the feature extraction process and enhancing detection accuracy.
Lu Xiaofeng [11] et al. proposed a model assembly method. They introduced a
correlation analysis algorithm for API calls to mine features of API sequences.
Machine learning algorithms were then employed to learn these features. Subse-
quently, a recurrent neural network was utilized to detect malware, and finally,
a model combination was conducted, resulting in improved outcomes. However,
its drawback is that recurrent neural networks are unstable when dealing with
long sequences, potentially leading to extended model training time and poor
detection performance. Cui [12] et al. used grayscale images to represent disas-
sembly files of malware. They leveraged the advantages of convolutional neural

32 Y. Zhou et al.

networks in image processing to recognize and classify grayscale images and used
bat algorithms to address the problem of data imbalance between different mali-
cious software families. Nevertheless, a drawback is that the model exhibits low
flexibility and requires setting the input images of all samples to a uniform size.

The malware classification method based on deep learning does not require
the use of manually designed feature extraction and has high classification accu-
racy. However, the training time of neural networks is long, and they may
generate a large number of parameters, resulting in excessive hardware costs.
Currently, it is impossible to avoid the problem of using deep learning for pre-
diction. To address the issue of a large number of malware variants while also
considering detection efficiency and effectiveness, this article combines the char-
acteristics of the target task and the data used, takes API call sequences as the
research object, and regards them as a piece of text with semantic information.
Additionally, it implements a lightweight model based on API core semantic
information using the self-attention mechanism, which enhances the accuracy of
multi-classification.

3 A Lite Model Based on API Core Semantic Information

Figure 1 illustrates process of malware classification based on deep learning using
API call sequences as the research object. Firstly, collect executable programs on
the Windows platform, encompassing both malicious and benign samples. Subse-
quently, utilize the Cuckoo sandbox environment for simulation execution. After
certain data processing, obtain API sequences. Then, classify them using a clas-
sification model. Finally, process the text data for classification and input it into
the trained model to obtain the malware classification results. The lightweight
nature of the model proposed in this article is evident in two aspects. Firstly,
the model’s input consists of API call sequences containing only key information.
Secondly, while ensuring the model’s effectiveness, the number of parameters in
the model is greatly reduced.

3.1 API Call Sequence

The malware classification task based on API call sequences utilizes API call log
files as analysis objects. It extracts features from the collected files using text
analysis methods, preprocesses the data, and incorporates other techniques for
feature selection. However, there are significant differences between API call log
files and real-world text files. The first distinction lies in the fact that data in text
files is often in common languages such as Chinese or English, encompassing Chi-
nese and English words, etc. In contrast, data in API call log files represents API
functions, serving as the interface between the application program and the Win-
dows system, with a specific nature. Therefore, when classifying malware using
a pre-trained model with good training results, such as the powerful BERT, it is
necessary to extract API functions from the API sequence and establish a spe-
cial API vocabulary to retrain the language model. The second difference arises

LM-cAPI 33

Fig. 1. Malware Classification Process.

from the fact that, to avoid analysis, malware often inserts a significant amount
of redundant behavior into normal behavior. This results in excessively long
API sequences that interfere with analysis and conceal the malicious intent of
the code. Therefore, before extracting the core semantic information of API call
sequences, it is necessary to perform data preprocessing operations to remove
redundant and noisy data from the original sequence. This article reprocesses
API call sequences to reduce their complexity. However, the data preprocess-
ing method only removes multiple duplicate sequences, solving the redundancy
problem in file format. At this point, a substantial amount of information in
the API call sequence still has little impact on the classification results. There-
fore, this article proposes an operational method for extracting core semantic
information from the noise information in the API call sequence after dedupli-
cation. Considering that the classification process of malware often relies on a
few key information points to obtain the classification results, it is necessary to
perform key information extraction and feature selection operations on the API
call sequence after preprocessing the extensive data and ultimately extracting
its core semantic information.

3.2 A Lite Method for Extracting Key Semantic Information Based
on BERT

Since API call sequences fall into the category of a special text sequence, they
can be considered unstructured data. When classifying malware, it is essential
to convert these sequences into vector form. Therefore, a word embedding layer
is needed for vector representation.

The advent of the Transformer model has overcome the shortcomings of using
convolutional neural networks and recurrent neural networks in malware classi-
fication. These traditional models, being sequence-dependent, are constrained to
unidirectional semantics and lack the ability to simultaneously utilize contextual

34 Y. Zhou et al.

information. The Transformer model addresses these challenges by integrating a
self-attention mechanism into the encoder-decoder framework.

This article designs an intimacy analysis method utilizing the self-attention
mechanism. The method calculates the intimacy of word vectors and API call
sequences with varying lengths, identifying high intimacy sequences as key
sequences. The specific method involves inputting the API call sequence into
the BERT model for extraction and embedding, resulting in a vector represen-
tation of the API call sequence. Subsequently, N-gram is used to extract word
vectors of varying lengths, and cosine similarity is used to identify the phrase
that is most similar to the original API call sequence. The higher the cosine
similarity, the higher the intimacy. Finally, the sequence with the highest affin-
ity for the API call sequence is identified as a key semantic sequence. The core
semantic feature information is then extracted from this key semantic sequence
as input.

3.3 A Lite Method for Core Semantic Information Based on BERT

API call sequences are considered unstructured data due to the fact that they
belong to a distinct category of text sequences. When classifying malware, it is
necessary to convert it into vector form, which necessitates the use of a word
embedding layer for vector representation. The Transformer model, by bypass-
ing the limitations associated with autoregressive models in feature extraction,
has the capability to comprehensively learn any dependency relationships men-
tioned in the previous text. This article uses a simplified and improved ALBERT
model as a feature extractor and then uses a classification model to achieve
multi-classification of malware. There are several explanations for the feature
extraction model:

Model Input: The model converts each word into a vector as input, establishing
a word vector table. The original text is tokenized, and [CLS] is inserted at the
beginning to indicate that the feature is used for the classification model. In the
model’s final layer, the corresponding vector of this bit can serve as the semantic
representation of the entire sentence. This is because compared to other words
already in the text, this symbol without obvious semantic information will more
“fairly” integrate the semantic information of each word in the text. As a result,
it adeptly represents the semantics of the entire sentence. The key semantic
sequences are input into the Embedding and Encoder layers of the BERT model
to obtain an embedded representation containing the core semantic information.

Word Embedding: The vector of word embedding relies on word mapping, and
it learns contextually independent representations. The output value from the
feature extractor not only encompasses the word’s own semantics but also incor-
porates contextual semantics. It learns contextual representations and should
contain more semantic information. Consequently, the BERT model’s Encoder

LM-cAPI 35

should yield a larger vector dimension to accommodate more semantic informa-
tion. In this article, the word embedding dimension E (API) of the model is 128
dimensions, while the vector dimension T (API) output by the Encoder encoder
of the BERT model is 384 dimensions. E (API) is much smaller than T (API).
When processing API call sequences, there are a total of 295 categories of API
functions, resulting in a vocabulary size V (API) of 295. The specific opera-
tion of the word embedding layer is to input a vector with dimension V (API)
into a low-dimensional word embedding matrix, map it to a low-dimensional
space with dimension E (API), and then input a low-dimensional word embed-
ding matrix with dimension E (API) into a high-dimensional word embedding
matrix, and finally map it to a T (API) dimensional word embedding. Dimen-
sionality reduction operations significantly reduce the number of parameters in
the model. The Eqs. (1) and (2) show the change in time complexity after word
embedding matrix decomposition.

O = V (API) ∗ T (API) (1)

O = V (API) ∗ E(API) + E(API) ∗ T (API) (2)

Layer Parameters: In the BERT model, the sharing of parameters is limited
to either the fully connected layer or the attention layer. This article incor-
porates parameter sharing between several layers to further minimize training
parameters and enhance training time. Specifically, the multi-head attention
layer and the fully connected feedforward neural network layer share parame-
ters. The parameter size of the feature extractor can be greatly reduced by using
an improved self-attention mechanism-based core semantic extraction method,
the overall computational speed of the model can be accelerated, the hardware
memory overhead can be reduced, the training speed can be accelerated, and
the risk of model degradation can be reduced. The feature extractor presented
in this paper is more flexible and lightweight when compared to the steps of
extracting features in a large pre-trained language model.

3.4 TextCNN Classification Model

Extract the features of the sentence by inputting the embedded representation
containing sufficient semantic information into the convolutional layer of the
TextCNN model.

The feature maps are then input into the TextCNN model’s maximum pool-
ing layer, where they are concatenated to form a vector representation, result-
ing in a one-dimensional vector. Subsequently, the ReLU activation function is
used to output, and a dropout layer is added to prevent overfitting. The fully
connected layer is responsible for establishing the relationship between feature
information and category information. Finally, all fully connected layer output
values are connected to the softmax layer, and multi-classification results are
output.

36 Y. Zhou et al.

Finally, the overall structure of the model is shown in Fig. 2, which is mainly
composed of an input layer, an extraction core sequence layer, a feature extrac-
tion layer, a TextCNN layer, and an output layer. Initially, the API call sequence
is input from the input layer to the core sequence layer for extracting key infor-
mation, shortening the data length, and reducing the data volume. The feature
extraction layers are then connected to extract sufficient semantic representa-
tion while significantly reducing the training time. After encoding, the text of
the API call sequence, similar to text, is converted into serialized data, which is
then fed into the Transformer encoder. The final feature vector representation of
the output text is obtained after training with a self-supervised multi-layer bidi-
rectional Transformer encoder. It then enters TextCNN’s convolutional layer
to extract the feature representation of the sentence, obtain the feature map,
and connect the maximum pooling layer. The one-dimensional vector input is
a fully connected layer after the pooling procedure. Finally, all fully connected
layer output values are connected to the softmax layer, and multi-classification
results are output.

Fig. 2. A Lite Malware Classification Model Based on API Core Semantic Information.

The model incorporates key information extraction mechanisms, self-
supervised learning mechanisms, and a simple convolutional neural network
to form an overall model. Through the above improvement techniques, the
model greatly reduces the large number of parameters generated during the self-
supervised learning process and significantly accelerates its training speed. After
conducting numerous experiments, it was discovered that the above enhance-
ments effectively improve the accuracy of model predictions. This indicates that
relevant improvements are very necessary.

4 Experimental Validation and Result Analysis

4.1 Dataset

The dataset is provided by the Alibaba Cloud Tianchi Competition Security
Malicious Program Detection Challenge, which is derived from the API instruc-

LM-cAPI 37

tion sequence of a Windows binary executable program simulated by a sand-
box program. The sample data provided in the question was obtained from the
internet. The types of malicious files include infectious viruses, Trojan programs,
mining programs, DDOS Trojan horses, ransomware, etc., totaling 600 million
pieces of data. In consideration of the experiment’s utilization of call sequences
distinguished by file numbers, there are a total of 13887 files. The training set was
divided into 11110 and 2777 pieces, with a total of 295 API functions counted,
according to the 8:2 ratio. Table 1 illustrates the distribution of sample types
and specific quantities.

Table 1. Types and quantity of Malware samples.

Label Type Quantity

0 Benign sample 4978

1 Ransomware virus 502

2 Mining procedures 1196

3 DDoS Trojan 820

4 worm-type virus 100

5 Infectious virus 4289

6 Backdoor program 515

7 Trojan program 1487

4.2 Data Preprocessing

To elude analysis, malware frequently injects a significant amount of redundant
behavior into normal operations, resulting in the presence of multiple consecutive
identical APIs or API sequence fragments in the sequence. This redundancy in
information causes the resulting API sequence to become overly lengthy. This
not only hampers analysis and conceals the malicious intent of the code but
also extends the training time. Therefore, this article aims to reprocess API call
sequences, diminishing their complexity and yielding API call sequences that
genuinely reflect program behavior.

Additionally, manage APIs that convey the same meaning but have distinct
function names within Windows APIs. For instance, LoadLibraryA and LoadLi-
braryW are both library loading functions that end with A and W, respectively.
The reason is that the system provides different APIs for different encodings,
with the W ending mainly for UNICODE encoding and the A ending mainly for
ASCII encoding format. For such functions, consider the approach of eliminating
the suffix, presenting both LoadLibraryA and LoadLibraryW as LoadLibrary.

We analyzed the distribution of data length before and after data prepro-
cessing. Among these, 4,806 samples exhibit API sequence lengths within 500,
while 2,769 samples have API lengths exceeding 10000, accounting for 19.9 of
the total samples. There are 6216 API sequences with a length less than 500,

38 Y. Zhou et al.

and only 827 with a length greater than 10000, accounting for 5.9 of the total.
Through statistical analysis, it is evident that the deduplication operation effec-
tively reduces the length of API sequences, which helps to improve subsequent
analysis efficiency.

4.3 Evaluation Indicators

According to the statistics of different categories of malware in the dataset used,
it can be seen that the data distribution is uneven. There are over 4000 benign
samples in the training set, although the minimum number is less than 100.
Therefore, the text adopts accuracy P, recall R, f1 value, and weighted average
value as evaluation indicators for the malware classification model, which are all
calculated based on TP, TN, FP, and FN. TP denotes predicting positive cases
as positive cases; FN denotes predicting positive cases as negative cases; FP
denotes predicting negative cases as positive cases; and TN denotes predicting
negative cases as negative cases.

Based on the values of the above indicators, calculate the accuracy, recall,
and value of the i-th Malware category using formulas (3), (4), and (5). Set the
number of data items for the i-th Malware category as, and the total number of
data items as N. Then, calculate the weighted average P, weighted average R,
and weighted average value using Eq. (6) (7) (8):

Pi =
TPi

TPi + FPi
(3)

Ri =
TPi

TPi + FNi
(4)

Fi =
2 × Pi × Ri

Pi + Ri
(5)

P =
∑

Pi × Ni

N
(6)

R =
∑

Ri × Ni

N
(7)

F =
∑

Fi × Ni

N
(8)

4.4 Experimental Results

Parameter Settings. The key to handling sequence problems with TextCNN
is to use convolution to express sequence information. It is a one-dimensional
convolution, and using a single-length convolution kernel may lose some feature
information. Therefore, this article sets up a TextCNN model to extract features
from various angles using several convolution kernels of varying sizes, thereby
increasing the comprehensiveness of the features. This article conducts experi-
mental comparisons and designs convolutional kernels with sizes of 4, 5, 6, and

LM-cAPI 39

7. Each convolutional kernel contains 128 neurons, and ReLU is used as the
activation function. A maximum pooling approach is utilized to reduce dimen-
sionality after each convolutional layer. The concatenate function is then applied
to combine numerous convolutional and pooling layers. The cross-entropy loss
function is utilized to calculate the loss value during model training, and the
Adamw optimization method is used to achieve gradient descent and update the
model parameters. Setting the batch size to 32 when using the batch training
method, which divides the entire dataset into several small datasets, helps the
model converge and alleviates the problem of falling into local optima. Set the
number of iterations for training, i.e., the epoch value, to 10 and save the opti-
mal model for comparative analysis. Finally, it was determined that the best
classification performance was achieved when the improved convolutional neural
network parameters were taken from Table 2.

Table 2. LM-cAPI Parameter settings

Label Type

embeddingsize 128

hiddensize 384

learningrate 5e–5

filtersizes [4,5,6,7]

numf ilters 128

classifierdropoutprob 0.1

numtrainepochs 10

batchsize 32

Experimental Results and Analysis. According to the comparative experi-
mental results in Table 3, it can be seen that this article established a dictionary
based on API call functions and retrained the language model, achieving good
multi-classification results. Furthermore, the model introduces and optimizes key
information extraction and self-supervised learning methods. From a technical
perspective, it is beneficial to learn as much semantic information as possible
from the API sequence. This will significantly reduce the problem of parame-
ter explosion caused by self-supervised learning while ensuring the accuracy of
model classification.

We draws the loss index and accuracy change curves of the model on the
training and validation sets, as shown in Fig. 3. In the training process of mali-
cious code multi classification, when the loss is generally between 0.1 and 0.2,
the model has basically converged.

40 Y. Zhou et al.

Table 3. Comparison of experimental results

model precision recall f1-score

textcnn 0.80 0.79 0.81

bert 0.70 0.69 0.69

lm-capi 0.93 0.88 0.90

Fig. 3. The loss index and accuracy change curve of the model on the training and
validation sets.

Ablation Experiment. This section will split each module and conduct a series
of ablation experiments on the AAPD dataset to verify Verify the effectiveness
of each module of LSGG. It is mainly divided into the following five parts:

(1) TextCNN: Remove the word embedding part of the LM-cAPI to directly
interact with the label text in TextCNN.

(2) B-TCNN: Only BERT and TextCNN are used, excluding the shared param-
eter mechanism and word embedding layering mechanism of LM-cAPI. In
the neural network part, the English BERT pre training model is used.

(3) Pre B TCNN: Only BERT and TextCNN are used, excluding the shared
parameter mechanism and word embedding layering mechanism of LM-
cAPI. In the neural network part, in order to ensure fairness, the BERT
model is retrained for special datasets to obtain a pre trained language
model based on API call sequence vocabulary.

(4) M-cAPI: does not perform core semantic extraction, removes the core seman-
tic extraction part of LM-cAPI, and directly classifies based on the cleaned
dataset.

(5) LM cAPI: The standard LM cAPI. As shown in Fig. 4, it can be concluded
that pre-B-TCNN, M-cAPI, and LM cAPI perform better than B-TCNN in
multiple indicators. This implies that when employing pre-trained language
models for API call sequences, a new vocabulary needs to be used to re-train
the model.

Moreover, the performance of pre-B-TCNN has seen a slight decline when
compared to TextCNN. This suggests that the BERT model is limited to han-
dling text data with a length of 512. The truncated text loses some key data,

LM-cAPI 41

Fig. 4. Schematic diagram of LM-cAPI ablation experiment.

potentially leading to a decrease in results. In addition, the training of pre-
trained language models is more time-consuming, necessitating the use of a
lightweight model.

5 Conclusion

In the face of the rapid proliferation of malicious code types and quantities, cou-
pled with the continuous updating of dissemination methods, the challenge of
promptly and accurately identifying malicious code stands as a critical aspect of
maintaining network security. Machine learning, a hot topic in artificial intelli-
gence research, has found applications across multiple fields. Therefore, machine
learning can be used for malicious code detection to achieve automation and
intelligence in detection. This article takes dynamic API call sequences as the
research object and extracts and processes API sequences from two perspec-
tives. It then uses machine learning and deep learning algorithms for model
training. Through the modification of model parameters and optimization of the
network structure, the detection accuracy of the model is improved, fully lever-
aging the advantages of using machine learning algorithms for malicious program
detection.

API call sequences are one of the most important features in malicious code
detection. This article analyzes the current research status of existing malicious
code detection methods, especially those based on API sequences. In response
to the limitations of existing research, enhancements are made in both fea-
ture extraction and model training. From different perspectives, two malicious
code detection methods were implemented. The experimental results show that
both methods can effectively detect malicious code, highlighting their important
research significance. The main achievements of this article are as follows:

42 Y. Zhou et al.

We examined API call sequences in malicious code that can characterize the
behavioral characteristics of malicious code as text, and then used advanced
text classification-related technologies to classify malicious code. The intimacy
analysis method, based on the self-attention mechanism, is used to extract key
information. The feature extraction model based on self-attention mechanism
uses pre-training to more efficiently obtain semantic information about the con-
text in API call sequences. In comparison to BERT, it has the advantage of
significantly reducing the number of parameters, making the model lighter and
facilitating faster training. Finally, a simple TextCNN model is incorporated for
malicious code classification. The experimental results show that the proposed
model outperforms the baseline model in detecting and classifying malicious
code, achieving good results.

There is still room for improvement in this method, particularly by integrat-
ing dynamic methods to extract the behavior of malicious code during runtime
for analysis. Additionally, the incorporation of API call sequences from both
dynamic and static analyses could potentially enhance detection results.

References

1. Wadkar, M., Troia, F.D., Stamp, M.: Detecting malware evolution using support
vector machines. Expert Syst. Appl. 143, 113022.1-113022.10 (2020)

2. Natani, P., Vidyarthi, D.: Malware detection using API function frequency with
ensemble based classifier. In: International Symposium on Security in Computing
& Communication, pp. 378–388 (2013)

3. Han, W., Xue, J., Wang, Y., et al.: MalDAE: detecting and explaining malware
based on correlation and fusion of static and dynamic characteristics. Comput.
Secur. 83, 208–233 (2019)

4. Cha, S.K., Moraru, I., Jang, J., et al.: SplitScreen: enabling efficient, distributed
malware detection. J. Commun. Netw. 13(2), 187–200 (2011)

5. Malhotra, A., Bajaj, K.: A hybrid pattern based text mining approach for malware
detection using DBScan. CSI Trans. ICT 4(2–4), 1–9 (2016)

6. Karnik, A., Goswami, S., Guha, R.: Detecting obfuscated viruses using cosine sim-
ilarity analysis. In: Asia International Conference on Modelling & Simulation, pp.
165–170. IEEE Computer Society (2007)

7. Kinable, J., Kostakis, O.: Malware classification based on call graph clustering. J.
Comput. Virol. 7(4), 233–245 (2011)

8. Darshan, S., Kumara, M., Jaidhar, C.D.: Windows malware detection based on
cuckoo sandbox generated report using machine learning algorithm. In: 2016 11th
International Conference on Industrial and Information Systems (ICIIS), pp. 534–
549 (2016)

9. Fang, Y., Zhang, W., Li, B., et al.: Semi-supervised malware clustering based on
the weight of bytecode and API. IEEE Access 8, 2313–2326 (2019)

10. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
11. Xiaofeng, L., Fangshuo, J., Xiao, Z., Baojiang, C., Shengwei, Y., Jing, S.: A mali-

cious sample detection framework based on the combination of API sequence fea-
tures and statistical features. J. Tsinghua Univ. (Nat. Sci. Ed.) 58(05), 500–508
(2018)

12. Cui, Z., Xue, F., Cai, X., et al.: Detection of malicious code variants based on deep
learning. IEEE Trans. Ind. Inf. 14, 3187–3196 (2018)

Acki Nacki: A Probabilistic
Proof-of-Stake Consensus Protocol

with Fast Finality and Parallelisation

Mitja Goroshevsky(B), Nikita Sattarov, and Alina Trepacheva

GOSH, 919 North Market Street, Suite 950, Wilmington, Delaware 19801, USA
{mitja,nikita,alina.t}@gosh.sh

Abstract. We propose an asynchronous, highly effective proof-of-stake
protocol optimized for fast finality, while allowing for high throughputs
via execution parallelization. It is a probabilistic protocol that achieves
higher Byzantine fault tolerance than Nakamoto, BFT (including Hot-
stuff and AptosBFT), Solana, and other modern consensus protocols.
Our protocol reaches consensus in two communication steps and has
a total number of messages that are subquadratic to the number of
nodes, with probabilistic, dynamically adjusted safety guarantees. We
trade off deterministic consensus with theoretical constraints on message
complexity and the number of Byzantine agreements, with probabilistic
algorithms overtaking these boundaries. We further claim that because
of the use of randomness and socioeconomics in blockchain designs, no
real trade-off is actually present. One of the key ingredients of our app-
roach is separating the verification of execution by a consensus commit-
tee from the attestation of block propagation by network participants.
Our consensus committee is randomly selected for each block and is not
predetermined, while the Leader is deterministic.

Keywords: blockchain · consensus · BLS signature · DDoS attack

1 Introduction

Current public blockchains are almost exclusively used for financial applications,
be it for the store and transfer of value or decentralized finance. Users are ready
to pay gas and transaction fees when transacting in value. Blockchains do not
achieve mass adoption because they cannot support the quality of user experi-
ence expected from modern computer software. For one, it is almost impossible
to support free transactions to be able to offer a freemium business model for
developers. Secondly, the blockchain user interfaces suffer from long delays for
task completion related to block finalization times. The primary reason for this
user experience inefficiency is the inherent lack of performance in both trans-
action execution throughput and time to finality, due to strict requirements on
state validation. Private blockchains have also failed to achieve mass production

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 43–62, 2024.
https://doi.org/10.1007/978-3-031-61486-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_4

44 M. Goroshevsky et al.

in enterprise use cases due to their maintenance complexity and high computing
costs.

In this paper, we present a highly efficient, scalable, and practical blockchain
protocol optimized for heavy parallelization and extremely fast finality times.
The goal of the protocol is to produce performance comparable to cluster cloud
databases without compromising security.

Our paper has the following structure: in the next section, we give some
background on assumptions and a survey of related works. The third section
describes our protocol, the fourth and fifth sections analyze our protocol’s secu-
rity, the sixth section analyzes the performance of our protocol, and the last
section concludes.

2 Background

Usually, computer science consensus protocols are classified into two groups:
probabilistic and deterministic. The deterministic protocols, under different
safety conditions, were developed from 1978 [11,19] to the present day for various
applications [5], and with different safety properties, culminating in the develop-
ment of pBFT [9]. However, they were not used for solving the double-spending
problem of decentralized money use cases1.

2.1 Bitcoin

The first protocol that addressed this use case was introduced by Nakamoto on
Oct 31, 2008 [20]. Bitcoin uses a probabilistic consensus protocol based on Proof-
of-Work, where miners compete to win a slot to propose the new block and be
rewarded by expending computing resources to solve cryptographic puzzles.

In Bitcoin, economic incentives play a vital role in network safety and are
embedded into the matrix of the protocol’s safety guarantees.

The subsequent formula for the probability of a successful Double-Spend
attack in the Bitcoin network is based on the article by A. Pinar Ozisik and
Brian Neil Levine [21].

pbitcoin (z, δ) = 1 −
z+1∑

k=0

(
(z · δ)k · e−z·δ

k!
· (

1 − δz+1−k
))

,

where z - number of blocks till probabilistic “finality”, 0 < μ < 1 – fraction of
malicious miners, δ = μ

1−μ .
The downside of the Bitcoin protocol is its performance limitations. Bitcoin is

known to produce just 7 transactions per second, and its transaction finalization
time can exceed an hour. As we will see below, its security assumptions are
1 A double-spend attack, in the context of blockchain and digital currencies, refers to

a situation where a single set of digital tokens or currency is spent more than once.
This type of attack exploits the digital nature of the currency, as digital information
can be replicated.

Acki Nacki 45

quite weak as well. All of this did not prevent Bitcoin from being the largest
cryptocurrency by value to date. However, it did prevent Bitcoin from being
used for much more than a store and transfer of value.

Ethereum [31], introduced in 2014 as a smart contract platform [8], initially
also used PoW consensus. Its TPS was about 17 per second, but even this was
far from sufficient to meet the growing demand for Decentralized Applications
(dApps), primarily in the Decentralized Finance (DeFi) sector.

This unsatisfactory performance of PoW forced researchers to look for alter-
natives.

2.2 BFT

Notably, even before Ethereum, back in 2012, S. King and S. Nadal proposed
a protocol they called Proof-of-Stake [15] (PoS), where instead of committing
computing resources and electricity, network participants would commit a valu-
able stake, which they could subsequently lose if proven to act maliciously. This
opened a way to use deterministic consensus protocols such as pBFT-based and
others [10,14] in cryptocurrency settings, in combination with PoW and later
PoS protocols. Many protocols have been proposed since then, and some have
been implemented in working systems, improving on the original pBFT messag-
ing requirements and such [2,3,24].

All BFT-based protocols [30,34] generally have two states (faulty or not,
0 or 1) under the protocol assumption. However, in the PoS environment, the
decision to act maliciously or not depends not on the properties of the protocol
but on the economic realities of the PoS system. In addition, most blockchains
rely on probabilistic encryption [13] for their cryptography. Therefore, the BFT
consensus algorithms used in the settings of PoS consensus protocols somewhat
lose their deterministic properties, as we can no longer prove that non-malicious
participants will not turn Byzantine based on the content of the message they
are registering, and their determinism will always be bound by cryptographic
probability. Thus, if we have a probabilistic consensus protocol with safety guar-
antees comparable to modern cryptography and/or game theory, it will have
practically the same safety as BFT. Yet the penalty we pay in performance for
having a presumably deterministic protocol is limiting.

An upper bound on the number of malicious nodes for breaking BFT consen-
sus protocols is 2

3 · N + 1, where N is the total number of nodes in the network.
From this, a formula for the successful probability of an attack for BFT consensus
protocols is easily derived:

pBFT (M,N) = I[� 2
3 ·N�+1, N](M),

where N is the number of network participants, M is the number of malicious
network participants, and IF (x) is an indicator function that takes the value 1
if x ∈ F , and 0 otherwise.

46 M. Goroshevsky et al.

2.3 Fast Byzantine Paxos

In [16,17], fast asynchronous Byzantine consensus was proposed. The authors
state that this protocol can reach consensus in two communication steps in the
common case. However, the cost of such fast finality is that the total number
of nodes must be ≥ 5 · f + 1, where f is the number of Byzantine nodes [18].
Consequently, it can handle a much smaller number of malicious nodes than
pBFT. Moreover, it’s proven that this bound is tight for deterministic protocols,
i.e., for the total number of nodes equal to 5f , it’s impossible to construct a
Byzantine consensus that works in two steps.

2.4 Modern Blockchains

Recognizing the performance problems of Nakamoto and BFT consensus proto-
cols, recently a few other approaches have surfaced. We will compare with the
three most performant among them: Solana, Avalanche, and Aptos.

Solana. Solana is a blockchain platform engineered for hosting decentralized
applications, emphasizing scalability and efficiency. It exhibits a higher transac-
tion processing capacity, with an ability to handle a greater number of trans-
actions per second, coupled with reduced transaction fees. Distinctively, Solana
operates on a Proof-of-Stake (PoS) blockchain architecture, but it augments
this with an additional mechanism called Proof-of-History (PoH). Yakovenko
published a white paper [32] describing the Proof-of-History (PoH) concept.
PoH allows the blockchain to reach consensus by verifying the passage of time
between events, and it is used to encode the passage of time into a ledger. Instead
of individual validator nodes, Solana uses validator clusters, where groups of val-
idators work together to process transactions. Although the PoH-based network
has shown some improvements in blockchain throughput, it has been criticized
for lacking a sound scientific foundation for its claims [23].

Avalanche. In the Avalanche consensus mechanism [1], nodes decide on trans-
action acceptance by conducting repeated voting among a small, randomly
selected group of validator nodes. When a node needs to determine the status of
a transaction, it inquires of a subset of validators for their opinion. These chosen
validators respond with their preferred transaction. If a significant majority of
the sampled validators agree on a specific transaction, that transaction becomes
the choice of the inquiring node. Over time, this node will also favor the trans-
action that most validators support. This process of sampling and gathering
responses continues until there is consistent agreement among the validators
over several consecutive rounds.

The threshold for what constitutes a significant majority, and the ‘Confidence
Threshold,’ which is the required number of consecutive rounds for achieving
consensus, are both adjustable parameters.

Acki Nacki 47

In Avalanche, subsampling has low message overhead. It doesn’t matter
whether there are twenty validators or two thousand; the number of consen-
sus messages a node sends during a query remains constant. Transitive voting,
where a vote for a block is a vote for all its ancestors, helps with transaction
throughput. Each vote is effectively many votes in one.

A notable issue arises when multiple blocks are proposed at the same height.
In such scenarios, the Avalanche protocol may face delays in determining the
correct block to accept, even though all proposed blocks could potentially be
valid. This delay is primarily due to the requirement that each block must be
executed and assessed by the subset of validators.

As described in the Avalanche white paper [26], the attack probability
dynamically changes based on the algorithm’s input parameters, such as the
number of nodes in the network, the number of malicious nodes, the size of the
query sample sent to another node for knowledge about a transaction, and the
number of rounds of these queries. Reducing the attack probability directly leads
to an increase in finalization time and message complexity. The asymptotic mes-
sage complexity is O(k · n · log n) [25], where n is the number of nodes in the
network, and k is the size of the sample in a single query, with the constraint
1 ≤ k ≤ n − 1.

AptosBFT. Aptos [27] improves on advanced variants of pBFT, namely Hot-
stuff [33]. In this respect, a comparison with Aptos in general is already described
in the BFT section above.

Like many other protocols, Aptos places a lot of emphasis on randomly choos-
ing the Leader and rotating it with every block. The main performance weakness
of such an approach is that often, leader rotation necessitates replicating exter-
nal messages, which users send to the blockchain, to all nodes in the network.
This represents an additional quadratic complexity growth overhead, usually
excluded when calculating the protocol’s messaging complexity.

Sharding. In search of further performance improvements, researchers came
up with the concept of sharding, which was first introduced in the Zilliqa
blockchain [29] and later developed in Ethereum for state sharding [6,7].

Additionally, several sharded protocols were proposed. These protocols
attempted to overcome the performance problem by sharding data and/or execu-
tion, introducing parallel leader selection, and state synchronization mechanisms,
notably in TON [12], Near [22], Elrond [28], and others. We do not compare these
protocols in our analysis because most of them use BFT as their basic consen-
sus algorithm and, therefore, may be considered as belonging to the previously
discussed groups.

Although the concepts of parallel execution of contracts and sharded states
are important advances in consensus algorithms and have improved network
scaling, these concepts alone have not overcome a certain barrier, approximately
100K TPS, even in laboratory environments.

48 M. Goroshevsky et al.

3 Construction of Acki Nacki

Now we present the Acki Nacki probabilistic consensus protocol, with the goal of
pushing the performance of fault-tolerant consensus protocols as far as possible.

In Acki Nacki, participants can perform three roles: Block Producer, Block
Keeper, and Verifier (which we call an Acki-Nacki entity). All these roles could be
performed by any network participant in parallel. Thus, many Acki Nacki chains
(called Threads) can exist simultaneously, but since their security and function-
ality do not depend on each other, we will proceed below with a description of
an isolated chain2.

3.1 Definitions

Definition 1. Account (contract) is a record in a distributed database.

Definition 2. Thread is a subset of nodes serving a particular subset of
Accounts.

Definition 3. Block Producer (BP) is a leader of a particular Thread,
responsible for block production.

Definition 4. Block Keeper (BK) is an entity with two functions:

– Receives blocks from BP and sends an Attestation with the block hash and
other metadata back to BP. BK does not check the validity of block transac-
tions, nor does it attempt to execute the block, only applies it to its local state
with a mark ‘Not Final’.

– Performs a self-check to determine if it needs to become a Verifier for this
block as described below. If so, BK will verify the Block and broadcast the
result: Ack if the Block is okay, and Nack if the block is invalid.

Definition 5. Verifier (Acki-Nacki) is a BK responsible for block validation
and notifying all network participants about their verdict: whether the block is
valid or not.

Definition 6. Attestation is a message sent to BP by any BK after receiving
the block. Attestation is a BLS signature performed on BK’s private key. The BP
of the next block must aggregate all received Attestations for the previous block
into one BLS signature and include it in the Common section of the new block.

Definition 7. Ack is a message broadcasted to all network participants by Acki-
Nacki if the block is verified and valid.

Definition 8. Nack is a message broadcasted to all network participants by
Acki-Nacki if the block is verified and not valid.

Attestations and Verifier’s messages must contain the block hash, its BLS
signature [4] on BK’s private key, and some extra data. For example, Nack
contains the reason for block rejection.
2 Because of this multithreaded property, Acki Nacki uses an Asynchronous Virtual

Machine to execute transactions. This is beyond the scope of this paper, so we
mention it here for future references.

Acki Nacki 49

3.2 Security Assumptions

We follow standard assumptions of Safety and Liveness [23] properties for Acki
Nacki protocol. These properties ensure that the network operation resembles
that of a monolithic, valid server, i.e., a linearizably consistent block ledger.

– Safety: No two honest BKs accept different blocks of the same height, and
no block with an incorrect transaction is finalized.

– Liveness: If an honest BP receives a transaction, it will eventually be
included in every honest node’s ledger.

In accordance with these properties, we classify attacks that violate them:

Safety Attacks. Such attacks include dissemblance and private chain attacks.
Dissemblance means that the adversary maintains Byzantine nodes to send dif-
ferent messages to different nodes, potentially leading to nodes’ disagreement.
Private chain attacks occur when the adversary controls Byzantine nodes to
work on a separate blockchain privately while ostensibly following the protocol.

Liveness Attacks. These types of attacks include the aforementioned dissem-
blance and withholding attacks. Apart from affecting safety, dissemblance may
prevent honest nodes from making decisions indefinitely, thereby breaking live-
ness. Withholding means that the adversary controlling Byzantine nodes refrains
from sending messages to particular nodes, potentially causing them to be unable
to make decisions indefinitely.

3.3 Block Producer Selection Algorithm

BP selection in Acki Nacki is not random, as the security assumptions of the
protocol allow for BPs to be potentially malicious. The following deterministic
algorithm is used: the hash of the block with a shard split (or any other Thread
rotation demand) message is taken as a seed, and random sampling of one key
from the sorted list of BKs’ public keys is performed. The current list of BPs is
always presented in the Common Section of any Block.

Note: In Acki Nacki, a Block, besides containing TRXs, has a Common Section
for collecting block-related data like Attestations, Verifier’s messages, BPs list,
slashing/reward conditions, etc.

3.4 Acki-Nacki Selection Algorithm

After receiving a block, BK checks whether they are Acki-Nacki for this block.
To do this, they calculate a = sign(hash(B), sk), where sk is the secret BLS key
of BK, B is the current block. They then calculate the remainder of r = a%b,

50 M. Goroshevsky et al.

where b = N/v, N—the total number of network participants, v—the desired
average number of Acki-Nacki, with v such that N is divisible by v without a
remainder. Both a and b are integers. If the remainder r equals 0, then it is
Acki-Nacki; otherwise, it’s not.

Thus, any BK can randomly become Acki-Nacki with a probability of v/N .
The selection of each Acki-Nacki is an independent event.

This allows for controlling the average number of Acki-Nacki per block.
More details are described in the section “Expected Number of Acki-Nacki per
Block” 4.5.

3.5 Block Production and Broadcast

Fig. 1. The Acki Nacki protocol (Block production and broadcast).

BP releases a new block every 330 ms. As soon as the time arrives, it collects
the unprocessed messages, executes transactions, and creates a block (the block
is limited by the maximum computed operations and time). Once the block is
created, BP signs it with its BLS private key and broadcasts it to all BKs (Fig. 1).

Upon receiving the block from BP, BK checks if the min. block timeout since
the previous Attestation (at least 330 ms) is satisfied, computes an Attestation
for the block (BLS signature), and sends it back to the BP.

The min. block timeout from the previous Attestation is necessary to prevent
a ‘too many blocks’ safety attack, where a malicious BP generates so many
blocks that verifying them and producing Ack/Nacks in time becomes impossi-
ble. The attacking BP can spam the network with valid blocks until it produces
a malicious one, which may lead to the acceptance of a block with an incorrect
transaction.

Acki Nacki 51

3.6 Block Verification

Fig. 2. The Acki Nacki protocol (Block verification).

Block verification is carried out solely by Acki-Nacki entities that are chosen
based on the Acki-Nacki Selection Algorithm, as described above. Acki-Nacki
must validate a block and send an Ack/Nack message to the network (Fig. 2).
Otherwise, they will be subject to slashing (see ‘Slashing’ 3.11). While any third
party may also validate the block and send acknowledgments, provided they put
up a bond, they are not obliged to do so and thus are not part of the security
assumptions of the protocol.

If a BP creates a block with overly complex execution, it may
attempt to cause Acki-Nacki to delay block verification for more than the
max. , verification , time, preventing Ack/Nack transmission within the required
timeframe. This could result in a block with an incorrect transaction being
accepted.

To mitigate the ‘Block with too complex execution’ safety attack, an Acki-
Nacki that executes such a block will stop after 330 ms and send a special Nack
with the message ‘too complex’. The committee will then check the block and
penalize the BP if necessary.

52 M. Goroshevsky et al.

3.7 Acki-Nacki Selection Proof

Periodically, BK generates a long list of BLS key pairs, sorted by sequential
number (SeqNo). Each key pair is intended to be used only once for each block.
BK then inserts the hash (BLS private key || SeqNo) into the leaves of a Merkle
Tree, computes the Merkle root hash, and commits this hash to the network.
After each block, if BK was an Acki-Nacki, it reveals its private key and its
SeqNo, along with the Merkle Proof corresponding to this key and the block
hash, within the Verification message (Ack/Nack).

It is important to note that the remaining BKs (those not serving as Acki-
Nacki for this block) must also reveal their private keys for each block. This
can be done at a later stage, for example, in Attestations for the subsequent
block. The crucial point is that the reveal phase must be exhaustive in the end.
Both Acki-Nacki sending incorrect Ack/Nack messages, or being negligent in
not sending Verifications or revealing the keys, will be subject to slashing, as
described in the following sections.

3.8 Proof-of-Stake and Fork Choice Rule

Acki Nacki is a PoS protocol that requires all network participants to commit a
certain amount of Network Tokens as a Bond. While we do not discuss the eco-
nomic motivation for becoming a network participant in this paper, we assume
that the Tokens have a finite supply, as this plays a role in probability calcu-
lations, as will be shown below. In connection with the Fork Choice Rule, we
provide an algorithm based on the weight of stakes (Fig. 3).

Sometimes, a situation may arise where the network has two valid blocks at
the same height, without any malicious intent. To address this, we have devel-
oped the Fork Choice Rule algorithm, which deterministically selects one of the
valid blocks for finalization by all BKs.

Key definitions and notations used throughout this section are as follows:

1. N—number of BKs;
2. A— number of Attestations till probabilistic “finality”;
3. bj—block with index j;
4. K = {k1, k2, . . . , kN}—BK set;
5. S = {s1, s2, . . . , sN}—BK’s stake set where si is stake of Block Keeper ki;
6. Aj = {ki | ki has attested bj}—set of BKs that have attested block bj

7. hash (bj)—hash of the block bj header;
8. height (bj)—height of the block bj ;
9. KeySignBP (bj) — key of the BP proposed block bj ;

10. Fh = {bj | height(bj) = h}—conflicting blocks set at the height h;
11. A = {Aj | bj ∈ Fh}—set of Aj containing Block Keepers ki ∈ K that have

attested block bj ∈ Fh.

Each BK can attest to only one block at a certain height. In other words, if
a BK attests to two blocks at the same height, they will be subject to slashing.

Acki Nacki 53

Each BK executes the Acki-Nacki Selection Algorithm only for the block
that has more than A Attestations; otherwise, it is executed only for the block
that currently has the highest stake amount. For instance, if after verifying
block Bi, another block Bj appears at the same height with a greater stake
amount, the BK executes the Acki-Nacki Selection Algorithm for block Bj . After
applying the Fork Choice Rule, the BK sends to other BKs either the block
with Attestations, or the block with Attestations and Ack/Nack, depending on
whether they became Acki-Nacki for that block.

Fig. 3. Pseudocode of the Fork Choice Rule algorithm.

3.9 Block Finalization

Each BK obtains a new block, mutates the state, and marks the mutations
as not final. They then wait for Attestations for this block, sent by BP in the
Common section of subsequent blocks, until the minimum Attestation Threshold
is reached. The Minimum Attestation Threshold percentage is specified in the
network configuration.

After receiving the block and while collecting the necessary amount of block
Attestations, BK also waits for T ms as specified in the min. finality time for block
BX . If T ms pass and no Nacks have been received, then BK marks this block
as final (Fig. 4).

If there are not enough block attestations, the block won’t be finalized. In this
case, network participants can decide on the course of action: whether to allow

54 M. Goroshevsky et al.

continuous, not finalized block production; to halt the network after a certain
number of blocks; to slash or not to slash BKs for not providing attestations,
etc.

Fig. 4. The Acki Nacki protocol (Block finalization).

3.10 Joint Committee

If at least one BK receives a Nack, or if they receive an Attestation for the same
height on more than one block from a single BK, or detect any other malicious
action as described in the ‘Slashing’ section, they invoke the Joint Committee
function. This requires each BK to vote on whether to slash malicious BKs,
malicious BPs, and/or to reject a malicious block. In response, each BK either
verifies the block, checks Attestations, or performs any other necessary action
to ascertain whether someone is acting maliciously or otherwise falls under one

Acki Nacki 55

of the Slashing conditions. To confirm or reject that an action is a result of
malicious activity, the network must gather J votes, where J is a parameter set
by the network participants.

3.11 Slashing

The following are slashing conditions which can lead network participants to
either lose their entire stake or a portion of it (bleeding). When we say ‘lose,’
we mean that the stake will be burned and not transferred to any other party.
Burning plays a role in security assumptions, as discussed in a separate section
below.

– An accepted Nack will slash the BP and every Acki-Nacki which sent an Ack
for their entire stake.

– Attesting to more than one block at the same height will result in the slashing
of the entire stake of the BK.

– Producing two blocks at the same height from the same BP will result in the
slashing of the BP’s entire stake.

– A non-performing Acki-Nacki will result in the bleeding of its stake.
– A non-performing BK will result in the bleeding of its stake.
– Non-randomized BK keys will result in the bleeding of the stake.
– Non-sequential Acki-Nacki Keys in the Acki-Nacki Merkle Tree will result in

the bleeding of the BK’s stake.
– Too complex execution of a block by BP will result in the bleeding of its

stake.

3.12 Dynamically Adjustable Parameters

One of the main advantages of the Acki Nacki consensus protocol is the pres-
ence of several dynamically adjustable parameters. These include the number of
Attestations needed for block finalization, the average expected number of Acki-
Nacki per block, the number of votes required for the Joint Committee, and the
probability of a successful attack given a certain percentage of malicious BKs.
All these parameters can be changed by network participants through voting,
according to their preferences. For instance, participants can input the number
of BKs and the desired attack probability with a certain number of malicious
BKs. Based on this, Acki Nacki will then automatically adjust the parameters for
the number of Attestations and Acki-Nacki, ensuring that the network achieves
the highest throughput with the shortest finality.

4 Attack Analysis

4.1 Input Parameters

Notations, types and domains of the terms used in this section:

56 M. Goroshevsky et al.

Name Notation Type Domain

Number of BKs N Z+ [3; +∞]

Number of malicious BKs M Z [0;N − 1]

Number of spammed BKs d Z [0;N − M]

Number of Attestations A Z+ [1;N]

Successful attack probability p R (0; 1)

Expected number of Acki-Nacki per block v Z [0;N]

Number of votes for Joint Committiee J Z+ [1;N]

4.2 Combined Double-Spend and DDoS Attack

There are N BKs, of which M are malicious. The malicious BKs, using a dis-
tributed denial-of-service (DDoS) attack3, disconnect d honest BKs from the net-
work and perform a Double-Spend attack (Fig. 5). Verification prevents attacks
on consensus. If at least one of the honest BKs, which have survived the DDoS
attack, becomes an Acki-Nacki, the attack is deemed unsuccessful.

4.3 Constraints on the Number of Malicious Block Keepers

A malicious block will always be finalized if none of the honest BKs survive after
a DDoS attack. Additionally, malicious blocks will always be finalized if, in the
Joint Committee, the number of malicious BKs exceeds the number of honest
BKs. Thus, to determine the number of malicious BKs at which the attack will
be successful, or, in other words, the number of malicious BKs at which the
Safety property is violated:

M ≥ min(A, J) (1)

At the same time, if all malicious BKs disconnect and stop sending messages,
the network will halt, as it will not be able to collect enough Attestations. A
similar situation may occur if all malicious BKs disconnect or reject Nacks for
a malicious block during the execution of the Joint Committee function. Thus,
to determine the number of malicious BKs at which the network will stop, or,
in other words, the number of malicious BKs at which the Liveness property is
violated, we have:

M ≥ min(N − A + 1, N − J + 1) = N + 1 − max(A, J) (2)

As the constraints on the number of malicious BKs depend on the number of
Attestations needed for block finalization and the number of votes for the Joint
Committee, the Acki Nacki Security Assumptions are dynamically adjustable.
This allows the network to maintain the probabilistic safety property even when
the number of malicious BKs exceeds 50% of the network participants, and
3 A distributed denial-of-service (DDoS) attack is a malicious attempt to disrupt the

normal traffic of a targeted server, service, or network by overwhelming the target
or its surrounding infrastructure with a flood of Internet traffic.

Acki Nacki 57

furthermore, even when it exceeds 66% of the network participants. This holds
true for any assumption regarding the number of malicious BKs agreed upon by
network participants through voting.

4.4 Constraints on the Number of Spammed Block Keepers

Fig. 5. Scheme of the optimal DDoS Attack

Since consensus requires A Attestations, among the (N − d) BKs that continue
to function after the DDoS attack, at least A BKs must be capable of gathering
the required Attestations. Therefore N − d ≥ A.

In order for malicious BKs to launch a successful attack, they aim to spam
as many honest BKs as possible.

From this understanding, we conclude that doptimal = N − A.

4.5 Expected Number of Acki-Nacki per Block

The probability of becoming an Acki-Nacki per block for each BK is expressed
as v/N .

Let the random variable ξ denote the number of BKs that become an Acki-
Nacki. Then, the probability that k BKs become Acki-Nacki is described by the
following probability:

P (ξ = k) = Ck
N ·

(v

N

)k

·
(
1 − v

N

)N−k

(3)

We find that the random variable ξ follows a Binomial distribution, and its
expected value is E(ξ) = v. In other words, v is precisely the mathematical
expectation of the number of BKs that become an Acki-Nacki per block.

4.6 Successful Attack Probability in the Acki Nacki Consensus

Since honest BKs only collect A number of Attestations to finalize the block and
check for the absence of Nacks, the successful attack probability on the block will
be equal to the probability that no honest surviving BK has become Acki-Nacki:

58 M. Goroshevsky et al.

p (N,M, d, v) =
(
1 − v

N

)N−M−d

. (4)

Since malicious BKs DDoS the maximum possible number of honest BKs,
then the resulting successful attack probability on the block is expressed as:

p (N,M,A, v) =
(
1 − v

N

)A−M

. (5)

5 Safety Analysis

We assume that if malicious network participants successfully attack the network
at least once, the entire network breaks. Let’s find the probability of at least one
successful attack on the network in R attempts:

P (at least one successful attack) = 1 − (1 − p)R
. (6)

Since, in the Acki Nacki consensus protocol, the probability of breaking the
network at least once increases more rapidly when colluding with more malicious
BKs than when attempting more times, it is more advantageous to attempt once
with the maximum possible number of malicious BKs. The number of malicious
BKs may be at a maximum of A−1. If A > N/2, then it is almost impossible to
place stakes for so many malicious BKs, so let’s assume that attempts to break
the network will be made about once every year. We say ‘a year’ rather than ‘a
day’ because if the attacker had easy enough access to that much money, why
wouldn’t they buy the whole network at once?

Even if the attacker attempts to attack our network once a year, they have
a limited number of attempts since all stakes of the network participants that
were slashed are burned.

Figure 6 and Fig. 7 are illustrating the successful attack probability from a
number of malicious network participants for Bitcoin, pBFT, and Acki Nacki
protocols with a total of 1000 network participants. To calculate the successful
attack probability in Bitcoin, we use the commonly accepted number of blocks
for probabilistic ‘finality’, which is 6. For calculating the successful attack prob-
ability in Acki Nacki, we use the number of Acki-Nacki set to 40 and the number
of Attestations set to 800.

As observed, Acki Nacki provides significantly higher security guarantees
compared to Bitcoin. Furthermore, this holds true when compared to pBFT,
especially in scenarios where the number of malicious network participants
exceeds 2/3 of the total network participants. To further illustrate this point, we
compared the probability of at least one successful attack on our network in the
coming years with the probability of a comet hitting the planet Earth, leading
to a global catastrophe. Assume that such a comet falls once every 106 years.

As we can see in Fig. 8, it is more likely that a comet will fall in the coming
years and destroy life as we know it than for malicious BKs to successfully attack
the network.

Acki Nacki 59

Fig. 6. Comparison of successful attack probabilities in Bitcoin, pBFT and Acki Nacki

Fig. 7. Fig. 6 with log-scaled y-axis

Fig. 8. Comparison plot of the successful attack probability in the Acki Nacki consensus
protocol with the global catastrophe probability

60 M. Goroshevsky et al.

6 Performance Analysis

Without taking state sharding into account, the limitation to performance in the
Acki Nacki network boils down to two factors: the number of blocks a BK can
receive over the network and apply, and the number of blocks all network Acki-
Nacki can process at any given moment. This performance is entirely dependent
on the computer and network resources committed by participants, the number
of BKs, and the expected number of Acki-Nacki per block.

We do not discuss state sharding solutions in this paper, but it is quite easy
to envision an Acki Nacki sharded design: some BKs can choose not to store
a state that belongs to a certain address space. The only remaining practical
limitation in an asynchronous system would be how messages passed from one
Account to another, residing in two different shards, would be executed by the
BP and verified if the BP and Acki-Nacki do not possess the state of one of the
participating Accounts.

With a sharded design, there is no theoretical limit to the throughput of
the Acki Nacki network. Without sharding, and considering modern computer
hardware and datacenter internet connections, we calculate a practical limit of
250, 000 transactions per second for minimal 500-byte messages, achieving less
than 1-second finality. With sharding enabled, the protocol can scale to millions
of transactions of any complexity, merely by adding computing resources, making
it comparable to centralized cloud services.

Acki Nacki achieves this performance as a result of significantly reduced
message complexity during most of its operation time.

The Acki Nacki algorithm achieves consensus in two communication steps.
The first step involves sending the block from BP to BKs. The second step
involves sending Ack/Nacks from Acki-Nacki to all BKs, in parallel with the
sending of Attestations from BKs to BP.

In total, the following messages are sent: The block from BP to BKs, the
Attestations from BKs to BP, and the Ack/Nack messages from several chosen
Acki-Nacki to BKs. Here, the optimistic scenario ends. The Nack message and
accidental Forks will trigger more messages, but as we have shown, Nack mes-
sages are highly improbable, and Forks are rare events. Most of the time, the
network will operate by sending just 3 types of messages, where the total number
of all messages sent equals (N − 1) · v + 2 · N . The message complexity of Acki
Nacki depends on the desired security parameters, taking into account that, in
practice, v � N .

7 Conclusion

We have demonstrated an efficient probabilistic consensus protocol with reduced
message complexity and high parallelism in transaction execution, leading to
fast finality times and scalability improvements. Our security assumptions are
dynamic and can change during network operations, demonstrating the proto-
col’s flexibility. Our safety analysis shows high adaptability to network parame-
ters while maintaining desired safety guarantees.

Acki Nacki 61

References

1. Ava Labs, Inc.: The avalanche documentation. avalanche consensus (2024).
https://docs.avax.network/learn/avalanche/avalanche-consensus

2. Bach, L.M., Mihaljevic, B., Zagar, M.: Comparative analysis of blockchain consen-
sus algorithms. In: 2018 41st International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics (MIPRO), pp. 1545–1550.
IEEE (2018). https://doi.org/10.23919/MIPRO.2018.8400278

3. Berrang, P., von Styp-Rekowsky, P., Wissfeld, M., França, B., Trinkler, R.: Alba-
tross - an optimistic consensus algorithm. In: 2019 Crypto Valley Conference on
Blockchain Technology (CVCBT), pp. 39–42. IEEE (2019). https://doi.org/10.
1109/CVCBT.2019.000-1

4. Boneh, D., Drijvers, M., Neven, G.: Bls multi-signatures with public-key aggrega-
tion. In: ASIACRYPT (2018). https://crypto.stanford.edu/∼dabo/pubs/papers/
BLSmultisig.html

5. Boneh, D., Shoup, V.: A graduate course in applied cryptography (2020). https://
dlib.hust.edu.vn/bitstream/HUST/18098/3/OER000000253.pdf. draft 0.5

6. Buterin, V., et al.: Ethereum roadmap, what about sharding? (2022). https://
ethereum.org/en/roadmap/#what-about-sharding

7. Buterin, V., et al.: Combining ghost and casper (2020). https://doi.org/10.48550/
arXiv.2003.03052

8. Buterin, V., Wood, G.: A next generation smart contract and decentralized
application platform. White Paper (2014). https://static.peng37.com/ethereum
whitepaper laptop 3.pdf

9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
3rd Symposium on Operating Systems Design and Implementation (OSDI 1999),
New Orleans, Louisiana, pp. 173–186. (1999). https://pmg.csail.mit.edu/papers/
osdi99.pdf

10. Danezis, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Narwhal and tusk: a
dag-based mempool and efficient bft consensus. In: Proceedings of the Seventeenth
European Conference on Computer Systems, pp. 34–50 (2022). https://doi.org/10.
5281/zenodo.6353717

11. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

12. Durov, N.: Telegram open network blockchain (2020). https://ton.org/tblkch.pdf.
white Paper

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984). https://mit6875.github.io/PAPERS/probabilistic encryption.pdf

14. Grigg, I.: Eos-an introduction (2017). https://iang.org/papers/EOS An
Introduction.pdf. white paper

15. King, S., Nadal, S.: Ppcoin: peer-to-peer crypto-currency with proof-of-stake
(2012). https://decred.org/research/king2012.pdf

16. Ku, T.W., Chen, K.: No need for recovery: a simple two-step byzantine consensus
(2019). https://doi.org/10.48550/arXiv.1911.10361

17. Martin, J.P., Alvisi, L.: Fast byzantine consensus. In: 2005 International Conference
on Dependable Systems and Networks, DSN 2005, pp. 402–411 (2005). https://doi.
org/10.1109/DSN.2005.48

18. Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Depend. Secure
Comput. 3(3), 202–215 (2006). https://doi.org/10.1109/TDSC.2006.35

https://docs.avax.network/learn/avalanche/avalanche-consensus
https://doi.org/10.23919/MIPRO.2018.8400278
https://doi.org/10.1109/CVCBT.2019.000-1
https://doi.org/10.1109/CVCBT.2019.000-1
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://dlib.hust.edu.vn/bitstream/HUST/18098/3/OER000000253.pdf
https://dlib.hust.edu.vn/bitstream/HUST/18098/3/OER000000253.pdf
https://ethereum.org/en/roadmap/#what-about-sharding
https://ethereum.org/en/roadmap/#what-about-sharding
https://doi.org/10.48550/arXiv.2003.03052
https://doi.org/10.48550/arXiv.2003.03052
https://static.peng37.com/ethereum_whitepaper_laptop_3.pdf
https://static.peng37.com/ethereum_whitepaper_laptop_3.pdf
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://doi.org/10.5281/zenodo.6353717
https://doi.org/10.5281/zenodo.6353717
https://doi.org/10.1109/TIT.1976.1055638
https://ton.org/tblkch.pdf
https://mit6875.github.io/PAPERS/probabilistic_encryption.pdf
https://iang.org/papers/EOS_An_Introduction.pdf
https://iang.org/papers/EOS_An_Introduction.pdf
https://decred.org/research/king2012.pdf
https://doi.org/10.48550/arXiv.1911.10361
https://doi.org/10.1109/DSN.2005.48
https://doi.org/10.1109/DSN.2005.48
https://doi.org/10.1109/TDSC.2006.35

62 M. Goroshevsky et al.

19. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
21(4), 294–299 (1978). https://doi.org/10.1145/359460.359473

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

21. Ozisik, A.P., Levine, B.N.: An explanation of nakamoto’s analysis of double-spend
attacks. CoRR abs/1701.03977 (2017). https://doi.org/10.48550/arXiv.1701.03977

22. The NEAR White Paper (2021). https://near.org/papers/the-official-near-white-
paper

23. Shoup, V.: Proof of history: what is it good for? (2022). https://www.shoup.net/
papers/poh.pdf

24. Sun, Z., Chang, J., Zhu, N., et al.: Rangers protocol 2.0 (2022).
https://rangersprotocol.obs.ap-southeast-1.myhuaweicloud.com/Navigation/
RangersProtocolWhitepaper.pdf

25. Team Rocket: Snowflake to avalanche: a novel metastable consensus protocol
family for cryptocurrencies (2018). https://knowen-production.s3.amazonaws.
com/uploads/attachment/file/1922/Snowflake%2Bto%2BAvalanche%2B-%2BA
%2BNovel%2BMetastable%2BConsensus%2BProtocol%2BFamily.pdf

26. Team Rocket, Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.: Scalable and prob-
abilistic leaderless bft consensus through metastability (2020). https://doi.org/10.
48550/arXiv.1906.08936. Cornell University

27. The Diem Team: Diembft v4: State machine replication in the diem
blockchain (2021). https://developers.diem.com/papers/diem-consensus-state-
machine-replication-in-the-diem-blockchain/2021-08-17.pdf

28. The MultiversX Team: Multiversx, a highly scalable public blockchain via adap-
tive state sharding and secure proof of stake (2019). https://files.multiversx.com/
multiversx-whitepaper.pdf. Technical whitepaper - release 2 - revision 2

29. The Zilliqa Team: The zilliqa technical whitepaper (2017). https://docs.zilliqa.
com/whitepaper.pdf

30. Tse, S., Liu, M., et al.: Harmony technical whitepaper-version 2.0 (2023). https://
harmony.one/whitepaper.pdf

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014),
p. 32. https://ethereum.github.io/yellowpaper/paper.pdf. Ethereum project yel-
low paper 151.2014

32. Yakovenko, A.: Solana: a new architecture for a high performance blockchain v0.
8.13 (2018). https://solana.com/solana-whitepaper.pdf

33. Yin, M., Malkhi, D., Reiter, M., Gueta, G., Ittai, A.: Hotstuff: bft consensus
with linearity and responsiveness. In: 38th ACM Symposium on Principles of Dis-
tributed Computing (PODC 2019), Toronto, ON, Canada, 29 July–2 August 2019
(2019). https://doi.org/10.1145/3293611.3331591

34. Zhong, W., et al.: Byzantine fault-tolerant consensus algorithms: a survey. Elec-
tronics 12(18), 3801 (2023). https://doi.org/10.3390/electronics12183801

https://doi.org/10.1145/359460.359473
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.48550/arXiv.1701.03977
https://near.org/papers/the-official-near-white-paper
https://near.org/papers/the-official-near-white-paper
https://www.shoup.net/papers/poh.pdf
https://www.shoup.net/papers/poh.pdf
https://rangersprotocol.obs.ap-southeast-1.myhuaweicloud.com/Navigation/RangersProtocolWhitepaper.pdf
https://rangersprotocol.obs.ap-southeast-1.myhuaweicloud.com/Navigation/RangersProtocolWhitepaper.pdf
https://knowen-production.s3.amazonaws.com/uploads/attachment/file/1922/Snowflake%2Bto%2BAvalanche%2B-%2BA%2BNovel%2BMetastable%2BConsensus%2BProtocol%2BFamily.pdf
https://knowen-production.s3.amazonaws.com/uploads/attachment/file/1922/Snowflake%2Bto%2BAvalanche%2B-%2BA%2BNovel%2BMetastable%2BConsensus%2BProtocol%2BFamily.pdf
https://knowen-production.s3.amazonaws.com/uploads/attachment/file/1922/Snowflake%2Bto%2BAvalanche%2B-%2BA%2BNovel%2BMetastable%2BConsensus%2BProtocol%2BFamily.pdf
https://doi.org/10.48550/arXiv.1906.08936
https://doi.org/10.48550/arXiv.1906.08936
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://files.multiversx.com/multiversx-whitepaper.pdf
https://files.multiversx.com/multiversx-whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://harmony.one/whitepaper.pdf
https://harmony.one/whitepaper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://solana.com/solana-whitepaper.pdf
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.3390/electronics12183801

AIHWS – Artificial Intelligence
in Hardware Security

FPGA Implementation of Physically
Unclonable Functions Based

on Multi-threshold Delay Time
Measurement Method to Mitigate

Modeling Attacks

Tatsuya Oyama1(B), Mika Sakai1, Yohei Hori2, Toshihiro Katashita2,
and Takeshi Fujino1

1 Ritsumeikan University, Kyoto, Shiga, Japan
{ri0068hi,ri0101xh}@ed.ritsumei.ac.jp, fujino@se.ritsumei.ac.jp

2 National Institute of Advanced Industrial Science and Technology,
Tsukuba, Ibaraki, Japan

{hori.y,t-katashita}@aist.go.jp

Abstract. Physically Unclonable Functions (PUFs) are security primi-
tives that generate chip-specific responses by exploiting the subtle man-
ufacturing variations in semiconductor devices. Arbiter PUF is a typi-
cal extensive PUF that has a large space for challenge–response pairs
(CPRs); however, it is vulnerable to deep learning (DL) attacks predict-
ing unknown CRPs. One of the approaches to mitigate DL attacks is
the RG-DTM PUF, which utilizes the delay time measurement (DTM)
method with a multi-offset sense amplifier; however, this technique is dif-
ficult to implement on FPGAs. In this paper, we propose a DTM method
for FPGAs (fDTM) by placing multiple DFFs at unbalanced positions
from the output of the delay paths. We implement the fDTM PUF on
Xilinx Artix-7 and in a simulation and demonstrate its attack resistance
against DL attacks. The experimental results show that the fDTM PUF
achieves much higher attack resistance than the conventional Arbiter
PUF with the equivalent area and achieves equivalent attack resistance
to previous PUFs with areas around several to dozens of times smaller.

Keywords: Physically Unclonable Function (PUF) · Arbiter PUF ·
RG-DTM PUF · Field-programmable Gate Array (FPGA) · Modeling
attacks · Deep neural networks (DNN)

1 Introduction

In recent years, many electronic devices, including sensor nodes, home appli-
ances, and automobiles, have become connected to the so-called Internet of
Things (IoT). Since IoT devices exchange vast amounts of information, often
deployed within attackers’ reach, the security of IoT devices is of great signifi-
cance. However, implementing security in IoT devices is difficult in many cases
because the hardware resources of such devices are limited.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 65–83, 2024.
https://doi.org/10.1007/978-3-031-61486-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_5

66 T. Oyama et al.

For the security of resource-limited IoT devices, Physically Unclonable Func-
tions (PUFs) [1] have been actively studied for the past few decades. A PUF
is a security primitive generating chip-specific identifications (IDs) exploiting
subtle variations in semiconductor devices. Given the same input (challenge), no
two PUFs generate the same output (response) due to this device variation. The
challenge–response pairs (CRPs) of PUFs are different from each other, and thus,
PUFs can be used for security purposes, e.g., identification, authentication, and
secret key generation. The international standard ISO/IEC 20897 [2] defines two
types of PUFs: extensive PUFs (strong PUFs), which provide huge challenge–
response space, and confined PUFs (weak PUFs), which provide only a limited
space for CRPs. Examples of extensive PUFs are Arbiter PUF [3] and Loop
PUF [4]; examples of confined PUFs are Ring Oscillator PUF [5] and SRAM
PUF [6].

On another front, the market of Field-Programmable Gate Arrays (FPGAs)
has recently been expanding due to their short time-to-market and low devel-
opment cost compared to Application-Specific Integrated Circuits (ASICs) [7,
8]. Several reports have mentioned that vendors integrate IoT services into
FPGAs [9]. Therefore, the usage of FPGAs is expected to expand into security-
critical applications.

Considering the above backgrounds, implementing PUFs on FPGAs would
be a promising approach to secure FPGA-based IoT devices. This paper
focuses on the arbiter-based extensive PUF, which can be used for simple
challenge–response authentication and updatable secret key generation. How-
ever, there are two major problems with implementing arbiter-based PUFs
on FPGAs. First, Arbiter PUFs are vulnerable to modeling attacks using
machine learning (ML) [10–12]. To improve modeling attack resistance, vari-
ants of Arbiter PUFs have been proposed such as XOR PUFs [5], lightweight
secure PUFs (LSPUFs) [13], multiplexer PUFs (MPUFs) [14], and interpose
PUFs (IPUFs) [15]. Nevertheless, the physical size of these PUFs are several to
dozens of times larger than the Arbiter PUF.

Secondly, implementing a PUF on an FPGA is difficult because the logic
and wiring resources in FPGAs are fixed. When implementing the Arbiter PUF,
manual place-and-routing is necessary to achieve equal-delay wiring, which is
impractical in the FPGA design flow. Consequently, responses of Arbiter PUFs
on FPGA are prone to bias, resulting in low uniqueness, which also leads to a
high success rate of modeling attacks. To improve the uniqueness of the Arbiter
PUF on FPGAs, Double Arbiter PUFs [16], FF-APUFs [17], and Response Gen-
eration according to Delay Time Measurement (RG-DTM) PUFs [18] have been
proposed. However, the resource utilization of the Double Arbiter PUF and the
FF-APUF significantly increases compared to the Arbiter PUF. The size of the
RG-DTM PUF is almost equivalent to the Arbiter PUF, but it requires a multi-
offset sense amplifier, which usually cannot be implemented on FPGAs.

To improve both ML attack resistance and the uniqueness of an FPGA-
implemented PUF with only a small resource overhead, we propose the multi-
threshold delay time measurement method for FPGAs (fDTM) and an fDTM

FPGA Implementation of Physically Unclonable Functions 67

Fig. 1. Structure of (a) Arbiter PUF and (b) RG-DTM PUF.

PUF that has a sophisticated delay arbitration scheme. The proposed PUF
requires only several flip-flops and XOR gates in addition to the Arbiter PUF.

The contributions of this study are summarized as follows:

– Realizes the fDTM method that has the equivalent functionality to a multi-
offset sense amplifier, which is previously considered difficult to implement
on FPGAs.

– Develops and implements the modeling-attack-resistant fDTM PUF on
FPGAs.

– Mounts deep learning (DL) attacks on the fDTM PUF and demonstrates its
attack resistance in FPGA implementation and simulation.

2 Preliminaries

2.1 Arbiter PUF

The Arbiter PUF [3] comprises a multi-stage selector and an arbiter circuit
(Fig. 1(a)). The Arbiter PUF uses the delay difference between two equal-length

68 T. Oyama et al.

Fig. 2. Structure of (a) XOR PUF and (b) LSPUF.

Fig. 3. Structure of (a) MPUF, (b) cMPUF, and (c) rMPUF.

paths in the selector chain as device-specific information. Depending on the
challenge input to each selector, the two paths are chosen to go straight or to
cross each other. The arbiter circuit determines the positive or negative difference
in delay time at the final stage of the two paths and outputs a 1-bit response of
0 or 1. The Arbiter PUF is characterized by a vast CRP space, such that the
number of CRPs doubles when the number of selector stages is increased by one.
However, there is a problem in that the response and challenge are correlated,
and the CRPs can be predicted by ML-based modeling attacks.

2.2 Variants of Arbiter PUF

To mitigate ML attacks, variants of the Arbiter PUF, for example, XOR PUF [5],
LSPUF [13], MPUF [14], and IPUF [15], have been introduced in the previous
studies.

The n-XOR PUF consists of n Arbiter PUFs and an XOR gate as shown
in Fig. 2(a). The outputs from the n PUFs are XORed to generate a one-bit
response. The LSPUF also consists of n Arbiter PUFs (Fig. 2(b)). In the output
network, m bits out of n outputs are chosen and XORed to generate a response.
The length of response in the LSPUF generated at once is up to the number of
different m-bit outputs chosen from n.

As Fig. 3(a) depicts, the (l, k)-MPUF comprises 2k Arbiter PUFs for response
generation (denoted as Ar

i), k Arbiter PUFs for response selection (denoted as
As

i), and a 2k-to-1 multiplexer, where l denotes the length of the selector chain.
The 2k-to-1 multiplexer has k multiplexer stages, which are broken down into

FPGA Implementation of Physically Unclonable Functions 69

Fig. 4. Structure of IPUF.

2k −1 of 2-to-1 multiplexers in total. The 1-bit response of the MPUF is selected
from the 2k outputs of Ar

i according to the k-bit select signal from As
i . In the

cMPUF, the number of Arbiter PUFs for response generation (Ar
i) is 2k−1, half

the number of the MPUF (Fig. 3(b)). In the rMPUF, the number of Arbiter
PUFs for response selection (As

i) is 2k − 1 since each 2-to-1 multiplexer has a
different selection signal (Fig. 3(c)).

(x, y)-IPUF consists of two XOR PUFs in which the number of Arbiter
PUFs is x and y, respectively (Fig. 4). The response of the upper XOR PUF, rx,
is interposed to the challenge of the lower XOR PUF.

The above PUFs are composed of multiple Arbiter PUFs. Thus, the area of
these PUFs is several to dozens of times larger than the Arbiter PUF.

2.3 RG-DTM PUF

The RG-DTM PUF is proposed to improve the uniqueness and the resistance
against ML-based modeling attacks. The RG-DTM PUF has a similar struc-
ture to the Arbiter PUF, except that it has a multi-offset sense amplifier as an
arbiter circuit (Fig. 1(b)). The offset sense amplifier can switch the number of
small capacitors added to the sense node by control signals L[3:0] and R[3:0]. It
enables multiple thresholds of the signal propagation delay in the arbiter circuit.
Consequently, the RG-DTM PUF outputs 0/1 responses according to the delay
distribution divided into multiple segments, as shown in Fig. 1(b).

The RG-DTM PUF can achieve high uniqueness and attack resistance to
modeling attacks with only a small resource overhead. However, FPGAs cannot
implement the offset sense amplifier.

2.4 Evaluation Metrics

The evaluation metrics of PUF performance in this study are the steadiness and
uniqueness defined in the international standard ISO/IEC 20897 [2].

Steadiness. The steadiness is the property that indicates whether the same
challenge to the same PUF returns the same response. High steadiness ensures
that the PUF responses are reproducible and that a genuine device is correctly
authenticated; low steadiness can result in the false rejection of a genuine device.
The PUF responses are noise-prone as they are generated from the subtle differ-
ence in the signal propagation delay. Therefore, it is difficult to obtain the same
responses every time the same challenges are input.

70 T. Oyama et al.

The steadiness is evaluated using the intra-Hamming distance (intra-HD)
among the repeatedly generated responses [2]. μintra (the mean of intra-HD)
and σintra (the standard deviation of the intra-HD) should ideally both be zero.

Uniqueness. The uniqueness is the property indicating that different PUFs
generate different responses when the same challenge is input. High uniqueness
ensures that different devices are distinguished from each other; low uniqueness
can result in a fake device can impersonating a genuine device.

The uniqueness is evaluated using the inter-Hamming distance (inter-HD)
among the responses from different PUFs [2]. Since all responses are ideally inde-
pendent of each other, the distribution of the inter-HD follows a binomial distri-
bution. μinter (the mean of the inter-HD) should ideally be Nres/2, and σinter

(the standard division of inter-HD) should be
√

Nres · p1 · (1 − p1) =
√

Nres/2,
where p1 is the probability of the response being 1 and Nres is the length of the
response block for evaluation.

2.5 PUF Model

We use the Arbiter PUF model introduced in [10] for simulation and DL attacks.
Let wi be the delay difference of the i-th stage of the selector chain, and Φi ∈
{−1, 1} be the parity of the i-th stage (1 ≤ i ≤ n+1). The (n+1)-th parameter
is for the arbiter circuit. The parity Φi determines if the delay difference wi

has a positive or negative impact eventually at the arbiter circuit. The parity is
calculated from challenge bits ci ∈ {0, 1} as follows:

Φi =

{∏n
k=i(1 − 2ck) (i = 1, · · · , n)

1 (i = n + 1).
(1)

Then, the total delay difference Δ of the Arbiter PUF is given by

Δ = �wT �Φ, (2)
where

�w = (w1, w2, · · · , wn, wn+1)T , (3)
�Φ = (Φ1,Φ2, · · · ,Φn,Φn+1)T . (4)

Finally, the response of the Arbiter PUF r is obtained by

r =

{
1 (Δ ≥ 0)
0 (Δ < 0).

(5)

3 Proposed Method

We propose the fDTM method to detect the delay difference between two paths
by using multiple DFFs and XOR gates, which has the equivalent functionality

FPGA Implementation of Physically Unclonable Functions 71

Fig. 5. Structure of the proposed fDTM PUF.

to a multi-offset sense amplifier. This technique enables the modeling-attack-
resistant fDTM PUF. The concept of the fDTM method is illustrated in Fig. 5.
The structure of the fDTM PUF is similar to that of the Arbiter PUF except that
is has the DTM circuit for signal arbitration. Two selector chains are separately
placed at the left and right side with sufficient distance. The key idea is to place
the DFFs at unbalanced locations from the output of the two selectors and XOR
the outputs from the DFFs (Fig. 5).

Let δLi
and δRi

be the delay from the output of the left/right selector to the
i-th DFF, respectively. If the DFF is located at the unbalanced position, δLi

−δRi

will be some non-zero value θi, and the DFF determines whether the total delay
difference is greater or less than θi. The leftmost DFF1 is placed closest to the
left selector chain and farthest from the right one, and therefore, δL1 − δR1 will
be the smallest negative value θ1. To the contrary, the rightmost DFF will give
the largest positive value θn. Arranging multiple DFFs from left to right, we can
obtain delay differences such that θn > · · · > θ2 > θ1.

Consequently, using multiple DFFs with different delay biases θi, we can
achieve multi-threshold delay detection, as illustrated in Fig. 6. For example,
using three DFFs is equivalent to dividing the delay difference distribution into
four segments, while the conventional Arbiter PUF using one DFF divides the
distribution into two segments. Using the model in Sect. 2.5, the response of the
fDTM PUF r is calculated as

72 T. Oyama et al.

Fig. 6. Multi-threshold response generation in fDTM PUF.

r =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 (Δ ≥ θn)
0 (θn > Δ ≥ θn−1)

· · ·
1 (θ2 > Δ ≥ θ1)
0 (Δ < θ1)

(6)

where θi represents the threshold of the delay difference, as illustrated in Fig. 6.
The concrete implementation method of the fDTM PUF is explained in

Sect. 4.3.

4 Implementation

4.1 Experimental Setup

The experimental setup of the FPGA implementation and response generation
of fDTM PUF is shown in Fig. 7. A CW305 FPGA board made by NewAE
Technology equipped with Xilinx Artix-7 is used as the evaluation environment.
The operating frequency of the board is 10 MHz. The PUF and control circuits
are described in Verilog HDL. The design and development tool used is Vivado
2022.1. The challenge is input from the host PC to the PUF, and the response
is transferred from the PUF to the host PC via USB.

4.2 Implementation of Arbiter PUF

Since the fDTM PUF performs the arbiter-based response generation, we first
explore the optimum structure of Arbiter PUF. The parameters used in the
Arbiter PUF implementation and experimentation are listed in Table 1.

FPGA Implementation of Physically Unclonable Functions 73

Fig. 7. Experimental setup for implementation and evaluation of the PUFs

Fig. 8. Intra- and inter-HD of Arbiter PUF without any placement constraints.

As mentioned earlier, achieving the high performance of the Arbiter PUF
on FPGAs is difficult because the fine adjustment of wiring is unavailable for
FPGAs. Figure 8 shows the intra- and inter-HD of the Arbiter PUF without any
placement constraints. The mean and standard deviation of the distributions are
far from the ideal values (μinter = 128 · 0.5 = 64, σinter =

√
128/2 = 5.66). In

this study, we give strict placement constraints for the selector chain and the
arbiter circuit to make the two signal paths as equal in length as possible. The
best placements of the selector chain and the arbiter circuit are explored through
trial-and-error experiments.

The selectors that switch signal paths are arranged with a distance between
left and right, as shown in Fig. 9. The first selector stage to which the rising
signal is input is placed on the lower side, and the 128th stage connected to
the arbiter circuit is placed on the upper side. To enable equal-length wiring
between the left and right selectors, pass-through LUTs are added to the four
paths input to the selectors, and their locations are specified by the constraint
settings.

74 T. Oyama et al.

Table 1. Parameters of the Arbiter PUF.

Description Value

Number of selector stages 128

Number of evaluated devices 4

Number of iterations to obtain responses 16

Length of the response block for evaluation 128

Number of different challenges 65536

Fig. 9. Placement of the selectors and pass-through LUTs of the Arbiter PUF

The arbiter circuit that judges the positive and negative difference in the
delay time of the two paths is implemented using a D flip-flop (DFF). The
arbiter circuit is placed just above the 128th stage selector.

Figure 10 illustrates the placement of the left and right selectors with distance
24 and the candidate positions of the arbiter circuit (DFF). The distance between
selectors means the difference in the X coordinate of the slice where the left and
right selectors are located. When the distance is zero, the left and right selectors
are located in the same slice. The candidate positions of the DFF are numbered
from (1) through (25). The position of the DFF is one slice above the selector. If
the delay of the left and right paths are equivalent, the responses of the Arbiter
PUF are expected to be unbiased, i.e., the probability of the response being 1 is
50%.

Figure 11 shows the relationship between the response and the position of the
Arbiter DFF. The probability of the response being 1 (p1) gradually decreases
as the DFF is moved from the left selector side to the right side. As the figure
depicts, using the DFF (13) produces the most unbiased responses (p1 � 50%).
This indicates that the delay difference between the two paths observed at the
DFF is almost zero when the DFF is located near the center; the farther the
DFF is located from the center, the larger the delay difference becomes.

FPGA Implementation of Physically Unclonable Functions 75

Fig. 10. Selector chains with distance of 24 and candidate positions of arbiter circuit
(DFF).

Fig. 11. Relationship between the response bias (p1) and DFF position.

Using the above experimental results, we can realize a high-performance
Arbiter PUF by placing the DFF so that p1 approaches 50%. To find the best
placement of the Arbiter PUF, we change the following three parameters and
evaluate the performance in each case:

– Distance between left and right selectors (7 different distances: 0, 1, 2, 6, 12,
18, and 24);

– Position of the arbiter circuit (DFFs between the left and right selectors);
– Region to place the entire Arbiter PUF.

Compared to Fig. 8, the most significant improvement is observed in the layout
where the selector distance is 24 and the DFF is implemented on DFF (13)
(Fig. 12). The mean and standard deviation of intra- and inter-HD are close to
the ideal value (μinter = 64, σinter = 5.66).

4.3 Implementation of fDTM PUF

In the implementation of fDTM PUF, the distance between the left and right
selectors is 24. From the results in Sect. 4.2, we choose (7), (13), and (19) DFFs
for a 4-split fDTM PUF and (5), (9), (13), (17), and (21) DFFs for a 6-split
fDTM PUF.

Figures 13 and 14 show the intra-HD (steadiness) and inter-HD (uniqueness)
of the 4-split and 6-split fDTM PUFs, respectively. Compared to Fig. 12, the

76 T. Oyama et al.

Fig. 12. Intra- and inter-HD of the Arbiter PUF implemented with the placement
constraints.

Fig. 13. Evaluation of 4-split fDTM
PUF.

Fig. 14. Evaluation of 6-split fDTM
PUF.

fDTM PUFs accomplish steadiness and uniqueness performances as high as the
Arbiter PUF. In particular, the standard deviation of the inter-HD (σinter) of
the 6-split fDTM PUF is improved from 6.86 to 5.70, closer to the ideal value of
5.66. Note that if the standard deviation of the inter-HD becomes larger, more
PUFs can have small inter-HD and possibly impersonate the genuine PUF.

On the other hand, the standard deviation of the intra-HD (σintra) of the
fDTM PUF becomes slightly worse as the number of arbiter DFFs increases. This
would be because, in arbiter-type PUFs, the delay difference near the threshold is
subject to noise. Since the fDTM PUF has multiple thresholds, its responses are
more noise-prone than those of the Arbiter PUF are. Nevertheless, the distribu-
tions of the intra- and inter-HD are clearly separated; therefore, the performance
of the fDTM PUF is sufficient for practical use.

5 Security Evaluation

We conduct a modeling attack using deep learning (DL) to evaluate the security
of fDTM PUF implemented on FPGA (cf. Sect. 4.3). We compare the attack
resistance of fDTM PUFs with other arbiter-type PUFs in FPGA implementa-
tion and simulation.

FPGA Implementation of Physically Unclonable Functions 77

Table 2. Structure of the DNN.

Number of nodes Activation function Dropout

Input layer 129 – –

Hidden layer 1 5,000 ReLU 0.5

Hidden layer 2 1,000 ReLU 0.2

Hidden layer 3 500 ReLU 0.2

Hidden layer 4 200 ReLU 0.2

Output layer 1 Sigmoid –

5.1 Experimental Setup for Modeling Attack

We evaluate the modeling attack resistance of the Arbiter PUF and the fDTM
PUF in the FPGA implementation (cf. Sect. 4) and simulation. The structure
of the deep neural network (DNN) used in the DL modeling attack is listed
in Table 2 with reference to [19]. The hidden layers are all fully connected in
this experiment; the optimizer used is Adam; the learning rate is 0.001; the loss
function is binary cross entropy; the batch size is 100. The response is 1 if the
output of the DNN is greater than 0.5; otherwise, it is 0. As seen from [20], the
input to the DNN is the parity �Φ converted from the challenge �C. The reason for
using �Φ for the input to the DNN is that using �C results in low attack accuracy,
as reported in [21].

The responses of the FPGA-implemented PUFs are obtained by 15-bit tem-
poral majority voting to eliminate noise, i.e., the responses are taken 15 times
each with the same challenges. In the simulation of Arbiter and fDTM PUFs, �w is
randomly generated from a normal distribution with a mean and standard devi-
ation of 0 ps and 5.7 ps, respectively, which are taken from the measured results
in [22]. �Φ is calculated from the randomly generated binary challenges. The
responses of the Arbiter and fDTM PUFs are calculated according to Eqs. (5)
and (6), respectively.

5.2 Results

The results of the DL modeling attacks against the Arbiter and fDTM PUFs
are shown in Fig. 15. The attack success rate indicates the probability for the
DNN model to correctly predict the response to the given challenge. The attack
success rate (= prediction accuracy of the model) is evaluated using 10,000 test
CRPs. The number of training CRPs is varied from 1,000 to 16,000. The 2-split
is the result of the Arbiter PUF; the 4- and 6-splits are the result of the fDTM
PUF. The solid lines are the results of the measured data, and the dashed lines
are simulation data. The simulation results of the 2-split Arbiter PUF and 4-split
fDTM PUF match the measured results remarkably. The simulation results of
the 6-split fDTM PUF eventually comes close to the measured ones, though a
further investigation should be needed to explain the difference.

78 T. Oyama et al.

Fig. 15. Success rate of the DL modeling attacks.

Basically, the attack resistance of the fDTM PUF increases with the number
of splits, as Fig. 15 illustrates. Even higher attack resistance is expected with
more number of splits. The security and performance evaluation of fDTM PUFs
with more splits is left as future work.

We also compare the attack resistance of our fDTM PUF with other attack-
resistant PUF proposals: n-XOR PUF, lightweight secure PUF (LSPUF), MUX
PUF and its variants (MPUF, cMPUF, rMPUF), and interpose PUF (IPUF).
The attack resistance of the fDTM PUF is evaluated by the minimal number of
CRPs needed to achieve an attack success rate greater than 90%. In this study,
the threshold is set to a relatively moderate value (90%) not to overestimate
the required number of CRPs. The simulation results of other PUFs are taken
from [20], in which the number of CRPs is provided with the attack success rate
of 96–99.5%.

Table 3 describes the attack resistance (= required number of CRPs) and area
of different PUFs. All PUFs comprise the 128-stage selector chains. The area
factor indicates how many times larger the PUF is than the Arbiter PUF. Here,
the additional resources such as DFFs, MUXs, and LUTs are not considered, as
they are negligible in size compared to the resources used in the Arbiter PUF.
Figure 16 plots the relationship between the attack resistance and area utilization
of the PUFs.

Usually, it is not easy to compare performance with previous studies because
the parameters of the PUFs, the hyper-parameters of the DNN, and the evalu-
ation criteria used in between studies are different. For example, we use a quite
large DNN to attack all the developed PUFs (cf. Table 2). Our DNN has four
hidden layers with 6,700 nodes in total. [20] uses small DNNs with different
structures for different PUFs: 1 hidden layer with 3 nodes for the Arbiter PUF,
4 hidden layers with 400 nodes in total for the 5-XOR PUF, and 4 hidden layers

FPGA Implementation of Physically Unclonable Functions 79

Fig. 16. Plot of attack resistance and area utilization of different PUFs.

with 1,600 nodes in total for the 5-XOR LSPUF. Thus, the figures in Table 3
cannot be strictly comparable or even give pessimistic comparison results for our
PUF, but would provide rough estimation of relative attack resistance.

6 Discussion

As seen from Figs. 15 and 16 and Table 3, the number of required CRPs needed
to attack the fDTM PUF increases with the number of splits, indicating that
the attack resistance improved with the number of delay thresholds. Comparing
within this work, the results indicate that the fDTM PUF accomplished 170
times higher attack resistance than the Arbiter PUF, with almost the same area
as the Arbiter PUF. It is also deduced from the results that an fDTM PUF with
more splits is expected to have a higher attack resistance. However, an fDTM
PUF with more delay thresholds can be more noise-prone, resulting in lower
steadiness. It is left as future work to investigate the relationship between the
number of splits, attack resistance, and the steadiness of the fDTM PUF.

Note that, as mentioned in Section V-B, the DNN used in this work is quite
large, while it is very small in [20]. Therefore, our DNN is expected to have
quite high attack ability. Additionally, in this work, the thresholds of the attack
accuracy with which the attack is considered successful is set to the lower value
(90%), resulting in the relatively small number of CRPs in Table 3. Even in
the pessimistic estimation, the fDTM PUF achieves an at least 16 times higher
attack resistance than the Arbiter PUF in [20].

Other PUFs in Fig. 16 such as LSPUF, MPUF, and IPUF have higher resis-
tance than our fDTM PUF, but their area penalty is also high. These PUFs use

80 T. Oyama et al.

Table 3. Attack resistance and area utilization of different PUFs.

PUF type #CRPs required Area factor

Arbiter PUF (this work) 768 baseline

Arbiter PUF [20] 8,000 1×
4-split fDTM (this work) 12,288 1×
6-split fDTM (this work) 32,768 1×
8-split fDTM (this work) 131,072 1×
2-XOR (this work) 12,288 2×
3-XOR (this work) 16,384 3×
4-XOR (this work) 131,072 4×
2-XOR [20] 32,000 2×
3-XOR [20] 37,600 3×
4-XOR [20] 255,000 4×
5-XOR [20] 655,000 5×
6-XOR [20] 1,200,000 6×
3-XOR LSPUF [20] 80,000 4×
4-XOR LSPUF [20] 240,000 5×
5-XOR LSPUF [20] 1,200,000 6×
6-XOR LSPUF [20] (1,200,000)∗ 7×
(128,3)-MPUF [20] 112,000 11×
(128,4)-MPUF [20] 184,000 20×
(128,5)-MPUF [20] 312,000 37×
(128,3)-cMPUF [20] 112,000 7×
(128,4)-cMPUF [20] 160,000 12×
(128,5)-cMPUF [20] 215,000 21×
(128,3)-rMPUF [20] 80,000 15×
(128,4)-rMPUF [20] 264,000 31×
(128,5)-rMPUF [20] 400,000 63×
(3,3)-IPUF [20] 288,000 6×
(4,4)-IPUF [20] 647,000 8×
(5,5)-IPUF [20] (1,200,000)∗ 10×

*Attack failed.

multiple Arbiter PUFs as components, and therefore, replacing their Arbiter
PUFs with the fDTM PUFs will (1) reduce the area penalty without decreas-
ing the attack resistance, or (2) further enhance the attack resistance without
increasing the area penalty.

FPGA Implementation of Physically Unclonable Functions 81

7 Conclusions

This paper introduced the FPGA implementation of a Physically Unclonable
Function (PUF) based on a delay-time measurement (DTM) method that
achieves high attack resistance against deep learning (DL) attacks. The DTM-
based PUF was first implemented using a multi-offset sense amplifier in [18], but
this technique was difficult to implement on FPGAs. In this paper, we proposed
the DTM method for FPGAs (fDTM) using multiple D flip-flops (DFFs) that
were placed in unbalanced locations. The proposed method enabled a multi-
threshold delay arbitration that had equivalent functionality to a multi-offset
sense amplifier.

We implemented the fDTM PUF on a Xilinx Artix-7 FPGA and applied DL
attacks to evaluate the security of the PUF. We also evaluated the security of the
fDTM PUF via simulation. The fDTM PUF achieved much higher attack resis-
tance than the Arbiter PUF, with almost the same area utilization. Compared
to other attack-resistant PUF proposals, the fDTM PUF achieved equivalent
security with areas around several to dozens of times smaller.

The future directions of this study include: (1) implementing fDTM PUFs
with more splits and investigating the relationship between the number of splits,
attack resistance, and the steadiness of the fDTM PUF;

(2) improving DL attacks against fDTM PUFs; (3) applying the fDTM
method to other attack-resistant PUFs, and (4) evaluating the effectiveness and
security of the fDTM PUF in real applications such as lightweight device authen-
tication and cryptographic key generation.

ACKNOWLEDGMENT. A part of this work was supported by JSPS KAKENHI
Grant Number JP22H03593 and JP21H03413 and by JST, the establishment of univer-
sity fellowships towards the creation of science technology innovation, Grant Number
JPMJFS2146.

References

1. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.A.: Physical one-way functions.
Science 297, 2026–2030 (2002)

2. ISO/IEC. ISO/IEC 20897-1:2020: Information security, cybersecurity and pri-
vacy protection—Physically Unclonable Functions—Part1: Security Requirements
(2020)

3. Lee, J., Lim, D., Gassend, B., Suh, G., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: 2004 Symposium on VLSI Circuits. Digest of Technical Papers
(IEEE Cat. No.04CH37525), pp. 176–179 (2004)

4. Cherif, Z., Danger, J.-L., Guilley, S., Bossuet, L.: An easy-to-design PUF based on
a single oscillator: the loop PUF. In: 2012 15th Euromicro Conference on Digital
System Design, pp. 156–162 (2012)

5. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference, Series DAC 2007, pp. 9–14. Association for Computing Machinery,
New York (2007). https://doi.org/10.1145/1278480.1278484

https://doi.org/10.1145/1278480.1278484

82 T. Oyama et al.

6. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74735-2 5

7. Global field-programmable gate array (FPGA) market 2023 — analysis of the
latest industry trends by 2030 (2023). https://www.marketwatch.com/press-
release/global-field-programmable-gate-array-fpga-market-2023-analysis-of-the-
latest-industry-trends-by-2030-2023-05-09

8. A.B.: Field-programmable gate array (FPGA) market is expected to reach around
usd 22.10 billion by 2030, grow at a cagr of 15.12 period 2023 to 2030 — data
by contrive datum insights pvt ltd. (2023). https://www.globenewswire.com/
en/news-release/2023/02/21/2612772/0/en/Field-Programmable-Gate-Array-
FPGA-Market-Is-Expected-To-Reach-around-USD-22-10-Billion-by-2030-Grow-
at-a-CAGR-Of-15-12-during-Forecast-Period-2023-To-2030-Data-By-Contrive-
Datum-I.html

9. Saha, S.: FPGA market (2023). https://www.futuremarketinsights.com/reports/
fpga-market

10. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, Series CCS 2010, pp. 237–
249. Association for Computing Machinery, New York (2010). https://doi.org/10.
1145/1866307.1866335

11. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 13(10), 1200–1205 (2005)

12. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware
security. In: IEEE International Test Conference 2008, pp. 1–10 (2008)

13. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. In:
IEEE/ACM International Conference on Computer-Aided Design, pp. 670–673.
IEEE (2008)

14. Sahoo, D.P., Mukhopadhyay, D., Chakraborty, R.S., Nguyen, P.H.: A multiplexer-
based arbiter PUF composition with enhanced reliability and security. IEEE Trans.
Comput. 67(3), 403–417 (2017)

15. Nguyen, P.H., Sahoo, D.P., Jin, C., Mahmood, K., Rührmair, U., Van Dijk, M.:
The interpose PUF: secure PUF design against state-of-the-art machine learning
attacks. Cryptology ePrint Archive (2018)

16. Machida, T., Yamamoto, D., Iwamoto, M., Sakiyama, K.: A new mode of operation
for arbiter PUF to improve uniqueness on FPGA. In: Federated Conference on
Computer Science and Information Systems 2014, pp. 871–878 (2014)

17. Gu, C., Liu, W., Cui, Y., Hanley, N., O’Neill, M., Lombardi, F.: A flip-flop based
arbiter physical unclonable function (APUF) design with high entropy and unique-
ness for FPGA implementation. IEEE Trans. Emerg. Top. Comput. 9(4), 1853–
1866 (2021)

18. Fruhashi, K., Shiozaki, M., Fukushima, A., Murayama, T., Fujino, T.: The arbiter-
PUF with high uniqueness utilizing novel arbiter circuit with delay-time measure-
ment. In: IEEE International Symposium of Circuits and Systems (ISCAS) 2011,
pp. 2325–2328 (2011)

19. Yashiro, R., Hori, Y., Katashita, T., Sakiyama, K.: Deep learning attack against
large n-XOR PUFs on 180nm silicon chips. In: Proceedings of 2020 International
Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP)
(2020)

https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5
https://www.marketwatch.com/press-release/global-field-programmable-gate-array-fpga-market-2023-analysis-of-the-latest-industry-trends-by-2030-2023-05-09
https://www.marketwatch.com/press-release/global-field-programmable-gate-array-fpga-market-2023-analysis-of-the-latest-industry-trends-by-2030-2023-05-09
https://www.marketwatch.com/press-release/global-field-programmable-gate-array-fpga-market-2023-analysis-of-the-latest-industry-trends-by-2030-2023-05-09
https://www.globenewswire.com/en/news-release/2023/02/21/2612772/0/en/Field-Programmable-Gate-Array-FPGA-Market-Is-Expected-To-Reach-around-USD-22-10-Billion-by-2030-Grow-at-a-CAGR-Of-15-12-during-Forecast-Period-2023-To-2030-Data-By-Contrive-Datum-I.html
https://www.globenewswire.com/en/news-release/2023/02/21/2612772/0/en/Field-Programmable-Gate-Array-FPGA-Market-Is-Expected-To-Reach-around-USD-22-10-Billion-by-2030-Grow-at-a-CAGR-Of-15-12-during-Forecast-Period-2023-To-2030-Data-By-Contrive-Datum-I.html
https://www.globenewswire.com/en/news-release/2023/02/21/2612772/0/en/Field-Programmable-Gate-Array-FPGA-Market-Is-Expected-To-Reach-around-USD-22-10-Billion-by-2030-Grow-at-a-CAGR-Of-15-12-during-Forecast-Period-2023-To-2030-Data-By-Contrive-Datum-I.html
https://www.globenewswire.com/en/news-release/2023/02/21/2612772/0/en/Field-Programmable-Gate-Array-FPGA-Market-Is-Expected-To-Reach-around-USD-22-10-Billion-by-2030-Grow-at-a-CAGR-Of-15-12-during-Forecast-Period-2023-To-2030-Data-By-Contrive-Datum-I.html
https://www.globenewswire.com/en/news-release/2023/02/21/2612772/0/en/Field-Programmable-Gate-Array-FPGA-Market-Is-Expected-To-Reach-around-USD-22-10-Billion-by-2030-Grow-at-a-CAGR-Of-15-12-during-Forecast-Period-2023-To-2030-Data-By-Contrive-Datum-I.html
https://www.futuremarketinsights.com/reports/fpga-market
https://www.futuremarketinsights.com/reports/fpga-market
https://doi.org/10.1145/1866307.1866335
https://doi.org/10.1145/1866307.1866335

FPGA Implementation of Physically Unclonable Functions 83

20. Santikellur, P., Bhattacharyay, A., Chakraborty, R.S.: Deep learning based model
building attacks on arbiter PUF compositions. Cryptology ePrint Archive, Paper
2019/566 (2019). https://eprint.iacr.org/2019/566

21. Ikezaki, Y., Nozaki, Y., Yoshikawa, M.: Deep learning attack for physical unclon-
able function. In: 2016 IEEE 5th Global Conference on Consumer Electronics, pp.
1–2 (2016)

22. Shiozaki, M., Hori, Y., Oyama, T., Shirahata, M., Fujino, T.: Cause analysis
method of entropy loss in physically unclonable functions. In: IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2020)

https://eprint.iacr.org/2019/566

Incorporating Cluster Analysis
of Feature Vectors for Non-profiled
Deep-learning-Based Side-Channel

Attacks

Yuta Fukuda(B) , Kota Yoshida , and Takeshi Fujino

Ritsumeikan University, Kusatsu, Shiga, Japan
ri073pi@ed.ritsumei.ac.jp, y0sh1d4@fc.ritsumei.ac.jp,

fujino@se.ritsumei.ac.jp

Abstract. Differential deep learning analysis (DDLA) was proposed
as a side-channel attack (SCA) with deep learning techniques in non-
profiled scenarios at TCHES 2019. In the proposed DDLA, the adversary
sets the LSB or MSB of the intermediate value in the encryption process
assumed for the key candidates as the ground-truth label and trains a
deep neural network (DNN) with power traces as an input. The adver-
sary also observes metrics such as loss and accuracy during DNN training
and estimates that the key corresponding to the best-fitting DNN is cor-
rect. One of the disadvantages of DDLA is the heavy computation time
for the DNN models because the number of required models is the as
same as the number of key candidates, which is typically 256 in the case
of AES. Furthermore, the DNN models have to be trained again if the
adversary changes a ground-truth label function from LSB to other labels
such as MSB or HW. We propose a new deep-learning-based SCA in a
non-profiled scenario to solve these problems. Our core idea is to con-
duct dimensionality reduction on the leakage waveform using DNN. The
adversary conducts cluster analysis using the feature vectors extracted
from power traces using DNN. Only one DNN needs to be trained to
reveal all key bytes. In addition, once the DNN is trained, multiple label
functions can be tested without the additional cost of training DNNs.
We provide two case studies of attacking against AES, including AES
without SCA countermeasures and the ASCAD database. The results
show that the proposed method requires fewer waveforms to reveal all
key bytes than DDLA. In addition, the proposed method requires 1/75
less computation time than DDLA.

Keywords: side-channel attacks · deep-learning · cluster analysis

1 Introduction

1.1 Background and Related Works

Side-channel attacks (SCAs) reveal secret information, such as cryptographic
keys, by observing leakage waveforms, such as power consumption and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 84–101, 2024.
https://doi.org/10.1007/978-3-031-61486-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_6&domain=pdf
http://orcid.org/0009-0004-4180-9217
http://orcid.org/0000-0003-1293-6415
http://orcid.org/0000-0001-9441-3137
https://doi.org/10.1007/978-3-031-61486-6_6

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 85

electromagnetic radiation. The adversary constructs a statistical model between
leakage waveforms and values calculated from the internal state of the encryp-
tion process The methods used to calculate intermediate values depend on the
assumed leakage models and implementation of the target device. When attack-
ing against software implementation, Hamming weight (HW) of intermediate
value is used most often.

SCA involves two types of scenarios: profiled and non-profiled attacks. In a
profiled scenario, the adversary uses a profiled device whose cryptographic key
is known. The adversary constructs a statistical model using leakage waveforms
acquired from the profiled device and reveals the cryptographic key in a targeted
device by utilizing the model. Attack assessment and countermeasures studies are
considered essential requirements because adversaries have easy access to profiled
devices, often purchasing them in response to the recent increase in the number of
IoT devices. Conventional attacks in profiled scenarios include template attacks
[5]. In a non-profiled scenario, the adversary does not use a profiled device. The
adversary assumes a statistical model and directly reveals a cryptographic key
in a targeted device without a profiled device. Typical attacks in non-profiled
scenarios include differential power analysis focusing on the difference of leakage
waveforms [11] and correlation power analysis that assumes a correlation between
leakage waveforms and intermediate value [2]. In this paper, we deal with non-
profiled scenarios.

Since 2016, deep-learning-based side-channel attacks (DL-SCAs) have been
discussed as an approach that differs from conventional SCAs [3,10,12,16,18].
In many cases, the attack based on the profiled scenario had been studied. On
the other hand, differential deep learning analysis (DDLA) was proposed in
the non-profiled scenario by Timon [21]. In DDLA, the adversary must train
as many deep neural networks (DNNs) as key candidates. The DNN is trained
to predict the intermediate values calculated from plaintext and each key candi-
date. Then, the adversary guesses that the key corresponding to the DNN model
with the best learning metrics (loss, accuracy, etc.) among those models is the
correct key. Timon evaluated its attack performance with ASCAD, which is a
public dataset [19], and software-implemented AES without SCA countermea-
sures in Atmel XMEGA128, software-implemented AES with misalignment, and
software-implemented AES with second-order masking. Kuroda et al. studied
practical DDLA aspects against software-implemented AES with two kinds of
masking countermeasure, including rotating s-boxes masking, and the full key
bytes (16 bytes) were successfully revealed [13,14]. Alipour et al. provided hid-
ing countermeasures to interfere with model learning in DDLA [1]. Kwon et al.
applied an early stopping method to prevent over-fitting in DDLA [15]. They
also improved the speed by training DNNs in parallel. Hoang et al. introduced
DDLA based on multi-output classification [9]. This enables faster attacks than
parallel networks. Do et al. also introduced DDLA using multi-output classifi-
cation and multi-output regression [7]. It performs faster and achieves higher
attack performance than single-output approaches. Do et al. investigated DNN

86 Y. Fukuda et al.

models for DDLA and the effect of hiding countermeasures due to noise gener-
ation [6]. Meanwhile, Wu et al. took a different approach which used plaintext
labeling to conduct non-profiled DL-SCA [22].

1.2 Our Contribution

In this study, we propose a non-profiled DL-SCA based on an approach dif-
ferent from DDLA. This attack uses DNN to reduce the dimensionality of the
waveform and reveals the key via cluster analysis of reduced feature vectors.
We provide a method using two kinds of DNNs, autoencoder (AE) and convolu-
tional neural network (CNN). In our attacks against software implementations,
we provide an efficient method for training DNNs by taking advantage of the
fact that encryption is a sequential process. We provide two case studies. These
include two attacks against software implementations, which are AES without
SCA countermeasures and the ASCAD database. These attacks can be analyzed
in much less time than DDLA.

The contributions of this study are summarized as follows.

– We propose a new non-profiled DL-SCA which is a different approach from
DDLA. We provide two types of attacks: AE-based attacks and CNN-based
attacks.

– We provide two case studies on software implementation (Case study S-1
and S-2). Case study S-1 involves AES without SCA countermeasures. Case
study S-2 involves the ASCAD database. These case studies explain how to
take advantage of the fact that the AES function is sequential byte-by-byte
to improve the training efficiency of the DNN model.

1.3 Paper Organization

The remainder of this paper is organized as follows. Section 2 provides prelimi-
nary information on DDLA. Section 3 describes a new non-profiled attack using
cluster analysis as the proposed method. Section 4 provides two case studies
describing attacks against software implementations. Section 5 summarizes our
work.

2 Differential Deep-Learning Analysis

In TCHES 2019, Timon proposed differential deep-learning analysis (DDLA)
as deep-learning-based side-channel analysis in non-profiled scenarios [21]. The
adversary prepares the DNN of the number of candidate keys, trained with inter-
mediate values as ground-truth labels calculated from plaintext and each candi-
date key. Cryptographic keys are estimated by comparing the evaluation metrics
(loss and accuracy) when each model is trained. When focusing on loss, the can-
didate key corresponding to the model with the lowest loss score is estimated
as the correct key. When focusing on accuracy, the candidate key corresponding

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 87

to the model with the highest accuracy score is estimated as the correct key.
The algorithm of DDLA, when focusing on loss metrics, is shown in Algorithm
1, where I(·) denotes the label computation function, which is used to compute
intermediate values during the encryption process using the plaintext P and key
candidate k. In the case of attacks against software-implemented AES, I(·) is
given as follows.

I(k,P) = LSB(S-Box(k ⊕ P)), (1)

where S-Box(·) denote the S-Box function of the AES and LSB(·) is a function
used to get the least significant bit (LSB) when the argument is converted to
binary. Adversary can change LSB(·) to MSB(·) that means the most significant
bit (MSB). Meanwhile, L(Mθk

(T), I(k,P)) denotes the loss with the ground-
truth label I(k,P) when the leakage waveforms T are input to the DNN model
Mθk

with model parameter θk.

Advantage of DDLA. In this attack, the DNN builds the relationship
between leakage waveforms and intermediate values from scratch during the
key-dependent encryption process. Unlike CPA, this relationship is not limited
to correlation. For example, it is possible to construct a DNN that combines the
features of the two points where the mask and masked values are processed dur-
ing masking countermeasures. The relationship exists when the key candidate is
correct and the training loss is reduced. In contrast, when the key candidate is
incorrect, the relationship does not exist, and the training loss is not reduced.
Therefore, the adversary can estimate the key by comparing the training loss.

Disadvantage of DDLA. DDLA requires 256 × 16 models to reveal all key
bytes (128bit) in AES. Thus, a very long computation time is required. Further-
more, the re-training of the model is necessary when the adversary attempts to
change the label function applied to the intermediate values.

3 Proposed Method

3.1 Core Idea

We propose a non-profiled SCA method via cluster analysis of feature vectors
which are extracted by dimensionality reduction of leakage waveforms using
deep-learning techniques. This method offers the following advantages.

– The number of deep learning models trained for dimensionality reduction
is greatly reduced compared to DDLA, which requires many deep learning
models. This is highly effective for the reduction of computing resources for
model training.

– The adversary can try many kinds of cluster analysis by changing different
leakage models such as HW and HD (details will be described in Sect. 3.3)
once the feature vectors have been extracted from DNN models.

88 Y. Fukuda et al.

Algorithm 1. Differential deep-learning analysis (using loss metrics)
Input: Leakage Traces T, Plain-text P, Key space K,

Number of epoch Nep, DNN model parameters θk(k ∈ K),
Base DNN model parameters θbase

Output: Estimated key k∗

1: for k in K do
2: θk = θbase
3: for epoch = 1 to Nep do
4: Training Mθk with (T, I(k,P))
5: lloss[Nep] = L(Mθk(T), I(k,P))
6: end for
7: Lloss[k] = min lloss
8: end for
9: k∗ = arg min

i
Lloss[i]

10: return k∗

– SCA countermeasures such as masking can be successfully analyzed by intro-
ducing supervised training on models for dimensionality reduction.

Hereafter, we refer to this method as cluster-analysis-based side-channel attacks
(CA-SCAs).

The basics of CA-SCAs are explained below. An overview of CA-SCAs is
shown in Fig. 1. First, the adversary trains a DNN model for dimensionality
reduction of the leakage waveform. Next, the adversary extracts feature vectors
from the leakage waveforms by using the trained DNN. It is noted that each
feature vector is corresponding to the intermediate values which is determined
by plaintext and key candidate. Finally, the adversary conducts cluster analysis
on the feature vectors by using the label (i.e., LSB, MSB, HW, HD) of the
intermediate values. Figure 1 shows the schematic diagram of cluster analysis
using LSB. If the labeling is performed with the correct key, the dots with the
same label are clustered together, and the dots with different labels are plotted
apart from each other as shown k̂ = correct key in the figure. On the other hand,
the dots are randomly scattered in case of incorrect key as shown as k̂ = 0x00
in the figure. The adversary estimates the candidate key corresponding to the
most appropriately clustered plot to be the correct key.

The quantitative score used in the cluster analysis is the Calinski-Harabasz
index, which is described in Sect. 3.2. In this study, auto-encoder (AE) and con-
volutional neural network (CNN) are used as DNN models, and their respective
attack procedures are described in Sects. 3.4 and 3.5, respectively.

3.2 Calinski-Harabasz Index

We used the Calinski-Harabasz index (CH index) for cluster analysis. The CH
index is the variance ratio criterion, and a higher score indicates a better-defined
cluster [4]. When inputting data x and labels c indicating the class, the CH index
is formulated as follows.

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 89

Fig. 1. Overview of cluster-analysis-based side-channel attacks (CA-SCAs)

CHscore(x, c) =
Bk

Wk
× N − k

k − 1
, (2)

where k, N , Bk, and Wk denote the number of classes, the size of all data,
between-class variance, and within-class variance, respectively. In addition, Bk

and Wk are formulated as follows.

Bk =
k∑

i=1

ni||mi − m||22, (3)

Wk =
k∑

i=1

∑

x∈Ci

||x − mi||22, (4)

where Ci, mi, m, and ni denote the cluster of class i, the center of gravity of class
i, the overall center of gravity, and the number of samples in class i, respectively.
Meanwhile, ||x − mi||2 and ||mi − m||2 denote the L2 norm of the two vectors.

The score has no upper limit. A higher score indicates that the cluster is well
formed. In contrast, a score closer to 0 indicates an inappropriate cluster, i.e., a
mixture of classes.

3.3 Selected Function for Calculation of CH Index

Once a DNN model is trained for dimensionality reduction, CA-SCA can try
multiple attacks using various leakage models. The calculation of the CH index
requires labels indicating which cluster the input vector belongs to, and the
function that calculates the labels can be changed. Here, we provide a list of
possible functions that an adversary can choose from. The functions described
below are the samples when the target is AES-128.

Known Plaintext. The target round the adversary focuses on depends on
whether they know the plaintext P or the ciphertext C. The adversary focuses
on the first round of AES when they know the plaintext P.

90 Y. Fukuda et al.

Assumed SCA Leakage Model. The adversary generally assumes a leakage
model in SCA. Examples of SCA leakage models include HW.

When attacking a software-implemented application on a microcontroller, the
adversary typically uses HW. This exploits the fact that the value of the micro-
controller’s precharge bus affects the power consumption. The selected function
in case of the known plaintext is formulated as follows:

v = S-Box(kt ⊕ Pt), (5)

where S-Box(·), kt, and Pt denote the S-Box function, the t-th byte cryptographic
key, and the t-th byte plaintext, respectively.

Other Options. When the selected function is a bijection, CA-SCAs do not
work. This is because the grouping based on the labels calculated for each can-
didate key is the same. It is necessary to disable the bijection using the following
function.

– Hamming weight of HW (Eq. 5): The adversary conducts cluster analysis
on the label of HW, as same as attack with CPA. In this case, the number of
label is nine from HW=0 to HW=8. In this paper, the function is defined as
follows.

fhw(v) = HW(v), (6)

where HW(·) is a function that calculates the Hamming weight of its argu-
ments.

– Mono-bit including LSB/MSB: The adversary conducts cluster analysis
in mono-bit labeling, including LSB/MSB, as it does when attacking with
DDLA. For example, in the case of LSB labeling, there are two classes which
are LSB=0 group and LSB=1 group. In this paper, the function is defined as
follows.

fmono(v, b) = v ⊕ 2b, (7)

where b is the bit position to be selected. For example, when LSB labeling is
selected, b is 0.

– Multi-bit: This is an extension of mono-bit labeling. For this option, the
cluster analysis of the two classes focusing on mono-bit labeling is conducted
eight times, changing the bit positions. As a result, the CH index for each of
the 8-bit positions is calculated, and the sum of these values is calculated as
follows.

fmulti(x, v) =
7∑

b=0

CHscore(x, fmono(v, b)), (8)

where x, v, and b denote the dimension-reduced waveform, the value calcu-
lated using Eq. (5), and the bit position, respectively. The adversary calcu-
lated and compared these sum values for each candidate key.

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 91

Fig. 2. Feature vectors extraction using auto-encoder in CA-SCA

3.4 Procedure of CA-SCA with Autoencoder

Auto-encoder (AE) is a type of DNN for achieving dimensionality reduction via
unsupervised training [8]. AE learns to make the input and output the same,
then the difference between them are often used for anomaly detection. In this
study, we train AE by the leakage waveforms to obtain feature vectors which
will be used for clustering on the CA-SCAs.

AE consists of an encoder and decoder, as shown in Fig. 2. The input data
are compressed into latent variables (feature vectors) using the encoder and then
reconstructed to its original dimensions using the decoder. AE is unsupervised
learning in which the loss between the output and input data is minimized.

The attack procedure of CA-SCA with AE is shown in Algorithm 2. First, an
AE consisting of an encoder Mθe with parameters θe and a decoder Mθd with
parameters θd is trained unsupervised using waveforms set T (lines 1–3 in algo-
rithm 2). Next, the waveforms in the S-Box process corresponding to the target
byte are input to the trained encoder Mθe , and their latent variables Z are cal-
culated (line 4 in algorithm 2). Finally, the adversary performs a cluster analysis
of Z using the label computed from the candidate keys and plaintext according
to the assumed leakage model (e.g., LSB of S-Box out in the first round). This
cluster analysis is performed for each candidate key, and the candidate key with
the highest CH index is estimated to be the correct key.

3.5 Procedure of CA-SCA with Convolutional Neural Network

CA-SCA, described in the previous section, can be extended to a method using
supervised learning. One method of supervised learning is convolutional neural
networks (CNNs). The procedure of CA-SCA with CNNs is described below.

It is necessary to consider how to label the leakage waveforms since CNN
is supervised learning that requires ground-truth label. CA-SCA with CNN
uses plaintext/ciphertext as labels. Here, we explain why plaintext label-
ing is effective in CA-SCA against software-implemented AES. SCAs against
software-implemented AES generally focus on the S-Box output v at the first
round shown below.

92 Y. Fukuda et al.

Algorithm 2. Cluster-analysis-based side-channel attacks with auto-encoder
Input: Leakage Traces T, Plain-text P, Key space K,

Number of epoch Nep, Encoder parameter θe,
Decoder parameter θd

Output: Estimated key k∗

1: for epoch = 1 to Nep do
2: Training Mθe , Mθd with T // Training of AE
3: end for
4: Z = Mθe(T) // Feature vectors (Latent Variables) on AE
5: for target byte = 0 to 15 do
6: for k in K do
7: Lcal[k] = CHscore(Z, I(k,P)) // Calculation of clustering score
8: end for
9: k∗[target byte] = arg max

i
Lcal[i]

10: end for
11: return k∗

v = S-Box(k∗ ⊕ P), (9)

where k∗, P and S-Box(·) denote correct key, plaintext, and S-Box function. In
case of the DDLA training, the intermediate value v is used as the supervised
output label. In our CA-SCAs, the plaintext P is used as the supervised output
label, but the same effect can be achieved because of the following reason. The
key k implemented on the target device is fixed, then the plaintext P and the
intermediate value v are bijective according to the Eq. (9).

The procedure of CA-SCAs using CNN is explained using Algorithm 3. At
first, a CNN consisting of a feature extraction layer Mθf and a classification layer
Mθc as shown Fig. 3 is trained using a waveform set T and plaintext P (lines 1–3
in Algorithm 3). The trained CNN outputs the probability of plaintext given the
waveforms w (it is illustrated as p(Plaintext = 0x00|w0) in Fig. 3). Next, feature
maps are calculated using the trained feature extraction layer Mθf (line 4 in
Algorithm 3). The feature map corresponds to dimensionality-reduced feature
vectors and can be treated the same as the latent variables in the previous
section. Finally, the target byte and key candidates are set, and the CH index
is calculated for each. The adversary assumes that the key candidate with the
highest CH index is the correct key.

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 93

Algorithm 3. Cluster-analysis-based side-channel attacks with convolutional
neural network
Input: Leakage Traces T, Plaintext P, Key space K,

Number of epoch Nep, feature extractor layers parameter θf ,
classification layers parameter θc

Output: Estimated key k∗

1: for epoch = 1 to Nep do
2: Training Mθf , Mθe with (T,P) // Training of CNN
3: end for
4: Z = Mθf (T)

// Z is the feature vectors which is used for cluster-analysis.
5: for target byte = 0 to 15 do
6: for k in K do
7: Lcal[k] = CHscore(Z, I(k,P)) Calculation of clustering score
8: end for
9: k∗[target byte] = arg max

i
Lcal[i]

10: end for
11: return k∗

Fig. 3. Feature vectors extraction using convolutional neural network in CA-SCA

4 Evaluation with Software-Implemented AES

4.1 Overview

This section describes the attack evaluation of CA-SCAs against software-
implemented AES. Section 4.2 describes how to improve learning efficiency for
DNN models when attacking against software-implemented AES with CA-SCA
using AE, as explained in Sect. 3.4, and CA-SCA using CNN, as described in
Sect. 3.5. Section 4.3 evaluates attacks against AES without SCA countermea-
sures. Section 4.4 evaluates attacks against the ASCAD database. Section 4.5
discusses these evaluations.

94 Y. Fukuda et al.

Fig. 4. Overview of how to improve learning efficiency at DNN.

4.2 Efficient Training Method of AE and CNN

As discussed in Sect. 3.1, CA-SCA is advantageous in terms of computational
cost because the number of trained models is significantly reduced compared to
DDLA. In this section, we discuss another advantage of CA-SCA in terms of
learning efficiency, i.e., the ability to train models with fewer waveforms.

Each byte is processed sequentially when encryption is processed on a micro-
controller with a single core. In other words, the attacked SubByte is processed
byte by byte. Therefore, SCA leakage corresponding to the 16 key bytes appears
in 16 separate locations in the leakage waveform. The SubBytes processing
details at these locations are generally the same. In the proposed method, the
leakage waveforms of 16 bytes are concatenated, and AE and CNN are trained
with these waveforms dataset as shown in Fig. 4. It is possible to obtain 16
waveforms from a single encryption as training data.

In CA-SCA with AE, the reconstruction error is minimized. On the other
hand, in CA-SCA with CNN, the CNN is trained using waveforms focused on a
byte as input and plaintexts of the byte as output. A concatenated dataset of 16
bytes is used for training. The trained AE or CNN is input with the waveforms

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 95

focused on the target byte, and feature vectors are extracted. Cluster analysis is
then applied to reveal cryptographic keys.

4.3 Case Study S-1: Software-Implemented AES Without SCA
Countermeasures

This section provides the results of attack evaluations of software-implemented
AES without SCA countermeasures. We evaluated four attack methods: CA-
SCA with AE, CA-SCA with CNN, DDLA, and CPA. The the setup for the
evaluation is described in detail below.

Details of Waveforms. ChipWhisperer-Lite (CW1173), developed by new
AE Technology, was used as the environment for waveform acquisition. CW303-
XMEGA target, also developed by New AE Technology, was used as the tar-
get microcontroller board. This board is equipped with an 8-bit microcon-
troller, ATXmega128D4-AU. Power consumption during encryption operations
was acquired using the A/D converter on CW1173, which has a sampling rate
of 29 MS/s.

Setup for Analysis. The number of waveforms used in the analysis was set
from 50 to 1,000 at 50 intervals, and multiple runs were performed. An autoen-
coder consists of an Encoder with one Conv 1D layer and two fully connected
layers and a decoder with two fully connected layers and two transposed Conv1D
layers. A CNN consists of one Conv 1D layer and three fully connected layers.

Experimental Results. Attacks were conducted when the selected function
for the calculation of the CH index was varied. The functions to be evaluated
were as follows.

– HW labeling: The CH index is calculated using CHscore(w, fhw(vhw)),
where w denotes leakage waveforms, and vhw and fhw(·) are defined in Eq.
(5) and (6).

– LSB labeling: The CH index is calculated using CHscore(w, fmono(vhw, 0)),
where fmono(·) is defined in Eq. (7).

– Multi-bit: The CH index is calculated using fmulti(w, vhw), where fmulti(·)
is defined in Eq. (8).

The results of CA-SCA with AE and CA-SCA with CNN are shown in Fig. 5a
and 5b, respectively. The horizontal axis shows the number of waveforms used
in the analysis, and the vertical axis shows the number of revealed key bytes. In
CA-SCA with AE, all key bytes were revealed in 450 waveforms for clustering
with HW labeling and 500 waveforms for clustering with multi-bit. On the other
hand, only 11 key bytes were revealed by clustering with LSBs, even with 1,000
waveforms. In CA-SCA with CNN, all key bytes were revealed in 350 waveforms
for clustering with HW labeling and 400 waveforms for clustering with multi-bit.

96 Y. Fukuda et al.

Fig. 5. Comparison results of the selected functions on the CA-SCAs

Fig. 6. Comparison with other non-profiled attacks when attacking against software-
implemented AES without SCA countermeasures

On the other hand, only eight key bytes were revealed by clustering with LSBs,
even with 1,000 waveforms. These results indicate that the selected function for
CA-SCA with AE and CNN is important. However, as mentioned above, once
the model has been trained, the selected function can be changed, and the attack
can be conducted in many kinds. The computational cost for clustering is very
small compared to that of DNN training.

We compared the results with other non-profiled attacks (CPA and DDLA).
In CA-SCA, HW labeling was adopted as the selected function. The results of
the evaluation are shown in Fig. 6, where the horizontal axis shows the number
of waveforms used in the analysis, and the vertical axis shows the number of
revealed key bytes. In CA-SCA using AE and CNN, all key bytes were revealed
in 450 and 350 waveforms, respectively, as described above. In CPA, all key bytes
were revealed in 30 waveforms. In DDLA, only 13 key bytes were revealed, even
if 1,000 waveforms were used. CPA is most advantageous for software implemen-
tation without SCA countermeasures, where there is a correlation between the
HW of intermediate value and the waveforms. On the other hand, we showed
that CA-SCA is superior to DDLA in attacks using deep learning techniques.

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 97

4.4 Case Study S-2: ASCAD Database

In this section, we provide the results of attack evaluations of the ASCAD
database. We evaluated the following attack methods: CA-SCA with AE, CA-
SCA with CNN, DDLA, and CPA. The setup for the evaluation is described
below.

Details of Waveforms. The ASCAD database is a public dataset that provides
the electromagnetic (EM) emission waveforms during the operation of AES with
a table re-computation masking countermeasure on AVR ATMega8515, which is
an 8-bit microcontroller1. These waveforms were acquired using an oscilloscope
with a sampling rate of 2 GS/s. The waveforms corresponding to the first round
of AES processing are available in this dataset. In general, the evaluation is
often limited to the SubBytes processing of the 2nd byte of the first round, but
waveforms corresponding to SubBytes processing for all bytes are used in this
study. This dataset has table re-computation masking countermeasure, but the
mask value is fixed to 0 for the 0th and 1st byte. Note that masking is disabled
for these two bytes.

Setup for Analysis. The number of waveforms used in the analysis was set
from 1,000 to 20,000 at 1,000 intervals, and multiple runs were performed. The
waveforms corresponding to SubBytes other than the 2 bytes for which masking
was disabled were used to train for training the DNN. An autoencoder consists
of an Encoder with three Conv 1D layers and three fully connected layers and a
decoder with four fully connected layers and four transposed Conv1D layers. A
CNN consists of three Conv 1D layers and four fully connected layers.

Experimental Results. We compared the results with other non-profiled
attacks (CPA and DDLA). In CA-SCA, multi-bit was adopted as the selected
function. The results of the evaluation are shown in Fig. 7, where the horizontal
axis shows the number of waveforms used in the analysis, and the vertical axis
shows the number of revealed key bytes. In CA-SCA using CNN, all key bytes
were revealed in 12,000 waveforms. In CA-SCA using AE, only 2 bytes that are
unmasking bytes were revealed. In CPA, only 3 bytes that include unmasking
bytes were revealed. In DDLA, only 5 key bytes were revealed, even if 20,000
waveforms were used. The above results show that CA-SCA using CNN has the
highest attack efficiency of the four methods.

4.5 Discussion

It is expected that the computation time to attack is greatly smaller than DDLA
since CA-SCA trains only one DNN model. Thus, we measured and compared
the computation time. We used a workstation equipped with a CPU: Intel Xeon

1 The ASCAD database is available at https://github.com/ANSSI-FR/ASCAD.

https://github.com/ANSSI-FR/ASCAD

98 Y. Fukuda et al.

Fig. 7. Comparison with other non-profiled attacks when attacking against ASCAD
database

Table 1. Comparison of computation time in case study S-1

Method CPA DDLA CA-SCA with AE CA-SCA with CNN

Time 2 s 50 m 8 s 41 s 37 s

Cold6226R (2.98GHz), DDR4 memory: 192GB, and a GPU: RTX-A5000 24GB
to measure the computation time. The scope of time measurement focused on
parts of the DNN training, calculations of a correlation coefficient, and the CH
index. Note that data loading and label calculation are not included in the scope.

Table 1 summarizes the computation time required for the four attacks in case
study S-1. CPA assumes a correlation between intermediate values and wave-
forms and is very fast, taking only 2 s, because it only calculates the correlation
coefficient. On the other hand, DDLA, which is SCA using deep learning tech-
niques, is very slow, taking 50 min and 8 s. This is because 16×256 DNN models
are trained to estimate 16 key bytes. CA-SCAs using AE and CNN had com-
putation times of 41 and 37 s, respectively. The computation time of CA-SCAs
with AE and CNN was approximately 1/75 of the computation of DDLA.

The CA-SCA with AE in case study S-2 did not reveal the key. This is because
AE is an unsupervised learning method that does not provide ground-truth
labels for training. There is a correlation between the product of the two points,
where the mask value and the masked value are processed, in the waveforms
and the HW of the true intermediate value [17]. The model cannot learn this
relationship because unsupervised learning does not provide a ground-truth label
that depends on the true intermediate value. Therefore, CA-SCA with AE did
not work for the ASCAD database.

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 99

Table 2. Summary of the number of waveforms required to reveal all key bytes in
attacking against software implementation

Method CPA DDLA CA-SCA with
AE

CA-SCA
with CNN

Case study S-1
AES w/o
SCA countermeasures

30 1,000 450 350

(13 key bytes)

Case study S-2
ASCAD database

20,000 20,000 20,000 12,000
(3 key bytes) (5 key bytes) (2 key bytes)

5 Conclusion

We examined new non-profiled side-channel attacks (SCAs) using deep learning
techniques. We proposed cluster-analysis-based side-channel attacks (CA-SCAs)
where correct key is revealed by the score of cluster analysis on feature vectors
extracted from waveforms by using deep neural networks (DNNs). We used auto-
encoder (AE) and convolutional neural networks (CNNs) as DNNs. Our method
requires only one trained DNN model to reveal all key bytes, whereas DDLA
requires 256 × 16 trained DNN models. Therefore, the computation time for
model training is very short. Another advantage of our method is that once
the DNN model is trained, it is not necessary to re-train the DNN model when
trying attacks with different labels. We provided 2 case studies to demonstrate
the effectiveness of the proposed method.

We evaluated attacks against the AES without SCA countermeasures and the
ASCAD database in case studies S-1 and S-2. We used a method that effectively
trains DNNs by utilizing byte-by-byte sequential processing. In both case studies,
we showed that all key bytes are revealed using fewer waveforms than DDLA.
We also showed that the computation time for our attack is reduced compared
to DDLA. Table 2 summarizes the number of waveforms required for the attack.

We confirmed the effectiveness of the proposed method through the above
four case studies. In our future work, we plan to study leakage assessment, e.g.,
test vector leakage assessment [20], using CA-SCAs.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP22H03593 and JST, the establishment of university fellowships towards the creation
of science technology innovation, Grant Number JPMJFS2146.

References

1. Alipour, A., Papadimitriou, A., Beroulle, V., Aerabi, E., Hély, D.: On the perfor-
mance of non-profiled differential deep learning attacks against an AES encryp-
tion algorithm protected using a correlated noise generation based hiding coun-
termeasure. In: 2020 Design, Automation & Test in Europe Conference & Exhibi-
tion, DATE 2020, Grenoble, France, 9–13 March 2020, pp. 614–617. IEEE (2020).
https://doi.org/10.23919/DATE48585.2020.9116387

https://doi.org/10.23919/DATE48585.2020.9116387

100 Y. Fukuda et al.

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

4. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-
Theory Methods 3(1), 1–27 (1974)

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

6. Do, N.T., Hoang, V.P., Doan, V.S., Pham, C.K.: On the performance of non-
profiled side channel attacks based on deep learning techniques. IET Inf. Secur.
17(3), 377–393 (2023). https://doi.org/10.1049/ise2.12102. https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12102

7. Do, N.T., Le, P.C., Hoang, V.P., Doan, V.S., Nguyen, H.G., Pham, C.K.: MO-
DLSCA: deep learning based non-profiled side channel analysis using multi-output
neural networks. In: 2022 International Conference on Advanced Technologies for
Communications (ATC), pp. 245–250 (2022). https://doi.org/10.1109/ATC55345.
2022.9943024

8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.
1127647. https://www.science.org/doi/abs/10.1126/science.1127647

9. Hoang, V.P., Do, N.T., Doan, V.S.: Efficient non-profiled side channel attack using
multi-output classification neural network. IEEE Embed. Syst. Lett. 1 (2022).
https://doi.org/10.1109/LES.2022.3213443

10. Ito, A., Ueno, R., Homma, N.: Perceived information revisited new metrics to eval-
uate success rate of side-channel attacks. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2022(4), 228–254 (2022). https://doi.org/10.46586/tches.v2022.i4.228-254

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

12. Kubota, T., Yoshida, K., Shiozaki, M., Fujino, T.: Deep learning side-channel
attack against hardware implementations of AES. In: 2019 22nd Euromicro Con-
ference on Digital System Design (DSD), pp. 261–268 (2019). https://doi.org/10.
1109/DSD.2019.00046

13. Kuroda, K., Fukuda, Y., Yoshida, K., Fujino, T.: Practical aspects on non-profiled
deep-learning side-channel attacks against AES software implementation with two
types of masking countermeasures including RSM. In: Proceedings of the 5th Work-
shop on Attacks and Solutions in Hardware Security, ASHES 2021, pp. 29-40.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/
3474376.3487285

14. Kuroda, K., Fukuda, Y., Yoshida, K., Fujino, T.: Practical aspects on non-profiled
deep-learning side-channel attacks against AES software implementation with two
types of masking countermeasures including RSM. J. Cryptogr. Eng. 1–16 (2023)

15. Kwon, D., Hong, S., Kim, H.: Optimizing implementations of non-profiled deep
learning-based side-channel attacks. IEEE Access 10, 5957–5967 (2022). https://
doi.org/10.1109/ACCESS.2022.3140446

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1049/ise2.12102
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12102
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12102
https://doi.org/10.1109/ATC55345.2022.9943024
https://doi.org/10.1109/ATC55345.2022.9943024
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
https://doi.org/10.1109/LES.2022.3213443
https://doi.org/10.46586/tches.v2022.i4.228-254
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/DSD.2019.00046
https://doi.org/10.1109/DSD.2019.00046
https://doi.org/10.1145/3474376.3487285
https://doi.org/10.1145/3474376.3487285
https://doi.org/10.1109/ACCESS.2022.3140446
https://doi.org/10.1109/ACCESS.2022.3140446

Incorporating CA of Feature Vectors for Non-profiled DL-SCAs 101

16. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

17. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 19

18. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019). https://
doi.org/10.13154/tches.v2019.i1.209-237

19. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive, p. 53 (2018). http://eprint.iacr.org/2018/053

20. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

21. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 107–131 (2019).
https://doi.org/10.13154/tches.v2019.i2.107-131

22. Wu, L., Perin, G., Picek, S.: Hiding in plain sight: non-profiling deep learning-based
side-channel analysis with plaintext/ciphertext. Cryptology ePrint Archive, Paper
2023/209 (2023). https://eprint.iacr.org/2023/209

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
http://eprint.iacr.org/2018/053
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.13154/tches.v2019.i2.107-131
https://eprint.iacr.org/2023/209

Creating from Noise: Trace Generations
Using Diffusion Model for Side-Channel

Attack

Trevor Yap1,2 and Dirmanto Jap2(B)

1 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore

trevor.yap@ntu.edu.sg
2 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore

djap@ntu.edu.sg

Abstract. In side-channel analysis (SCA), the success of an attack is
largely dependent on the dataset sizes and the number of instances in
each class. The generation of synthetic traces can help to improve attacks
like profiling attacks. However, manually creating synthetic traces from
actual traces is arduous. Therefore, automating this process of creating
artificial traces is much needed. Recently, diffusion models have gained
much recognition after beating another generative model known as Gen-
erative Adversarial Networks (GANs) in creating realistic images. We
explore the usage of diffusion models in the domain of SCA. We pro-
posed frameworks for a known mask setting and unknown mask setting
in which the diffusion models could be applied. Under a known mask set-
ting, we show that the traces generated under the proposed framework
preserved the original leakage. Next, we demonstrated that the artifi-
cially created profiling data in the unknown mask setting can reduce the
required attack traces for a profiling attack. This suggests that the arti-
ficially created profiling data from the trained diffusion model contains
useful leakages to be exploited.

Keywords: Side-channel · Neural Network · Deep Learning · Profiling
attack · Generative Models · Diffusion Model

1 Introduction

Side-channel Attacks (SCA) are one of those crucial threats that are required
to be evaluated. Information on the secret data could be leaked in physical
properties such as power consumption [13], and electromagnetic emanation [1].
Many of such physical properties come in a form known as traces. SCA analyzes
these traces to recover the secret data in various ways. Profiling attacks and
non-profiling attacks are common forms of SCA. Very often, the success of these
attacks relies heavily on the number of traces. However, in a practical setting,
there might be a limitation on the number of traces that can be collected by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 102–120, 2024.
https://doi.org/10.1007/978-3-031-61486-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_7&domain=pdf
http://orcid.org/0000-0001-8651-574X
http://orcid.org/0000-0002-3149-9401
https://doi.org/10.1007/978-3-031-61486-6_7

Trace Generations Using Diffusion Model for Side-Channel Attack 103

the adversary, presumably due to some factors; for example, the device itself is
protected, which only allows limited access to the device. Due to this limitation,
the performance of the SCA could be affected, for example, making it hard
to generalize the leakages. As such, there is a need for more data or traces to
analyze. However, manually creating artificial traces can be quite complicated
and tedious as it needs to capture the leakage information and its characteristics
properly.

In recent years, there has been a rise in using machine learning techniques
to tackle the automation of creating such artificial traces. One common app-
roach is to use Generative Adversarial Networks (GAN) [7], a popular technique
commonly used in the image processing domain for generating synthetic images.
Recently, a few of the previous works [23] and [16] have investigated creating
artificial traces using GAN. However, in the image domain community, another
generative model known as the Denoising Diffusion Probabilistic Model (DDPM)
has risen in popularity recently due to its performance in producing more realis-
tic images exceeding that of GAN. As such, in this work, we aim to explore and
investigate how to adopt DDPM into the SCA domain.

Our Contributions. In this work, our contributions are stated as follows:

1. We investigate the applicability of the DDPM approach for traces generation
in the context of SCA. We proposed two different frameworks in which a
diffusion model can be used: Known mask setting and unknown mask setting.

2. In the known mask setting, we highlight that the generated traces can exhibit
the original leakages as observed in the original traces by evaluating the traces
with Correlation Power Analysis (CPA).

3. On the other hand, we show the effectiveness of the diffusion model in gen-
erating artificial data in the unknown mask setting. By increasing the down-
sampled profiling traces with the newly generated data from the diffusion
model, we show that the number of attack traces needed for a profiling attack
decreases.

In this work, we target synchronized and desynchronized traces. We validate
our approach on traces up to the first-order masking for real traces. We leave
higher-order masking of real traces to future works. The results can be publicly
accessed on the following weblinks1.

Paper Organization. The paper is organized as follows. In Sect. 2, we give
an overview of related works over the recent years. Section 3 will provide the
necessary background on side-channel analysis and DDPM. In Sect. 4, we present
the datasets and the building blocks of the neural network being used. Section 5
provides a visualization of the leakages that an diffusion model could provide.
Subsequently, we present the results of profiling attack when using artificial data
created by the trained diffusion model for profiling in Sect. 6. Lastly, in Sect. 7,
we conclude the paper and outline some future works.

1 https://github.com/yap231995/Diffusion-SCA.

https://github.com/yap231995/Diffusion-SCA

104 T. Yap and D. Jap

2 Related Works

One of the common approaches adopted in the machine learning domain is the
data augmentation approach. A form of data augmentation is the Synthetic
Minority Over-sampling Technique (SMOTE), which was explored in [19]. They
applied data augmentation to deal with data imbalance due to the Hamming
Weight (HW) leakage model. As such, after balancing the training data, it could
improve the attack performance. Another work on different data augmentation
was reported in [14], where the authors investigate data augmentation techniques
against masked AES with hiding countermeasures. It reported that the data aug-
mentation could help in decreasing the effectiveness of hiding countermeasures,
albeit requiring specific configuration when dealing with different Deep Neu-
ral Network (DNN) architectures. Another work by Cagli et al. [4] proposed
using data augmentation for Deep-Learning (DL)-based SCA. They proposed a
data augmentation method by manually adding jitters into the original traces
to increase the number of traces for profiling.

Recently, more works have performed more in-depth investigations on the
applicability of data augmentation through the automatic generation of synthetic
traces through the use of DNN. [23] introduced a new approach to generating
new traces through the usage of Conditional Generative Adversarial Network
(CGAN). They show that CGAN can generate new traces that learn the leakage
from both unprotected and protected implementations. However, the leakage
model considered in their work is the Hamming Weight (HW) leakage model,
resulting in fewer classes. Furthermore, the correlation of the traces evaluated
did not consider any comparison with other keys. In [16], the authors proposed
another approach when generating traces automatically based on CGAN and
Siamese networks. They used the proposed approach to generate datasets for
both symmetric and public-key cryptographic implementations. Compared to
previous work, they also investigate and analyze the effect of the GAN network
on data generation. However, they only considered the dataset with fixed key
profiling and attack traces called ASCADf and an ECC dataset. In [11], the
authors proposed another CGAN-based approach. In their approach, the gener-
ator receives real traces as input and is not conditioned with label class, which
allows it to extract the features from the unlabeled set. Therefore, their app-
roach did not create new artificial data but as a form of feature extraction and
dimensionality reduction.

In all recent works, the idea is to use data augmentation to generate artificial
data, which can also capture the characteristics of the leakage as well as the
countermeasures, such as hiding or masking leakage. Most of the works have
been utilizing GAN as the main approach for data generation and work under the
unknown mask setting. In this work, we investigate an alternative approach using
diffusion model for data generation for both known mask and unknown mask
settings and investigate how the approach could learn the leakage characteristics.

Trace Generations Using Diffusion Model for Side-Channel Attack 105

3 Background

In this section, we provide basic backgrounds on the topics that we will use
throughout the whole paper.

3.1 Correlation Power Analysis (CPA)

One of the most commonly used attacks is the CPA [3]. The general approach
is to use Pearson correlation to establish the relation between different inter-
mediate values from different secret hypotheses and the actual leakage values.
The attacker will use the intermediate values computed as function f of known
inputs p and (hypothetical) secret k ∈ K. In this case, the attacker will compute
H = f(p, k). These intermediate values will then be compared with the actual
leakage traces T obtained while processing actual secret k∗. The secret k with
the highest (absolute) correlation can then be estimated as the secret value.

The Pearson correlation between x and y can be computed as follow:

r(x, y) =
∑N

i=1((xi − x̄)(yi − ȳ))
√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
. (1)

For the intermediate values, they have to be mapped to the leakage. In gen-
eral, a leakage model is used to approximate the behavior of the measured traces.
For the software implementation, the leakage is usually assumed to follow the
HW model. In contrast, for hardware implementation, it is the Hamming dis-
tance (HD) model. In addition to the mentioned leakage values, an identity
mapping (ID) can also be used as an alternative leakage model. In this work, we
will mainly focus on the ID leakage model.

3.2 Profiling Attacks

Profiling attacks assume a worst-case scenario where the adversary has access to
a clone device and a target device. These two devices are similar to each other. In
this setting, the adversary can manipulate or know the device’s key of the clone
device while the key for the target device is unknown to him. Furthermore, the
adversary has the ability to collect multiple traces from a known set of random
plaintexts (or ciphertexts) from both devices. The adversary will obtain the
profiling traces from the clone device while acquiring the attack traces from the
target device. The goal of the adversary is to recover the unknown key from the
target device.

Profiling attacks can be divided into the profiling phase and the attack phase.
In the profiling phase, a distinguisher F is built from the set of profiling traces.
This distinguisher will return a conditional probability mass function Pr(T |Z =
z). During the attack phase, the distinguisher returns a probability score for
each hypothetical sensitive value. In other words, we obtain yi = F(ti) where
ti represents an attack trace. We compute the log-likelihood score for every key
k ∈ K as follows:

106 T. Yap and D. Jap

sNa
(k) =

Na∑

i=1

log(yi[zi,k]),

where Na as the number of attack traces used and zi,k = C(pi, k) are the hypo-
thetical sensitive values based on the key k with pi being the corresponding
public variable to the trace ti and C is the cryptographic primitive. Next, we
rank the key of the log-likelihood score in decreasing order and classify them
into a guess vector G = [G0, G1, . . . , G|K|−1] with the score G0 corresponds to
the score of the most likely key candidate, and the score G|K|−1 to be the score
for is the least likely key candidate. The rank of the key shall be denoted as the
index of guess vector G. The guessing entropy GE is defined as the average rank
of the correct key k∗ over multiple experiments [22]. If GE = 0, when using Na

attack traces, the attack is considered successful. We denote NTGE to be the
least number of traces required to attain GE = 0.

The most known profiling attack is Template Attacks (TA). The distinguisher
is built using the Bayes’ Theorem with the assumption that the conditional prob-
ability Pr(T |Z = z) follows the multivariate Gaussian distribution [5]. Overall,
it outputs the following as the posterior probability,

Pr(Z = zk|T = t) = −D

2
log(2π) − 1

2
log(det(Σk)) − 1

2
(t − tk)T Σk(t − tk),

where tk is the sample mean of class zk and Σk is the covariance matrix of class
zk with determinant det(Σk).

3.3 Denoising Diffusion Probabilistic Models (DDPM)

DDPM was first created by [9] in 2020 to generate images and was extensively
improved [17]. In fact, recently [6] shows that with enough tuning, DDPM could
attain better performance compared to GAN. DDPM is a type of Markovian
Hierarchical Variational Autoencoder (H-VAE), which can be viewed as stack-
ing multiple Variational Autoencoder together (VAE). Figure 1 illustrates how
DDPM works visually. Given a data distribution x0 ∼ q(x0), we define the for-
ward noising process q which iteratively adding Gaussian noise at each time t
with a variance βt ∈ (0, 1) to x0 to obtain x1 to xT as

Fig. 1. Visualization representation of DDPM. x0 represents the original data while
xT denote the pure Gaussian noise. The intermediate xt portrays the noisy version of
x0 at time step t.

Trace Generations Using Diffusion Model for Side-Channel Attack 107

q(x1, . . . , xT |x0) =
T∏

t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI).

Suppose T is sufficiently large and the βt follows a schedule, for example linear
or cosine schedule, then the latent xT is almost isotropic Gaussian distribution
(i.e., xT ∼ N (0, I)). This means that we can sample xT ∼ N (0, I) and reverse
the process to obtain data from q(x0). Throughout this work, we set βt to follow
the cosine schedule as proposed in [17].

We estimate the reverse process by using a neural network by defining the
reverse process as

p(xt−1|xt) = N (xt−1;μθ(xt, t),Σθ(xt, t)).

As noted in [9], because noising process q is modeled from a Gaussian distribu-
tion, one can show that it is allowed to sample xt for any t directly from the
input data x0,

xt =
√

ᾱtx0 +
√

1 − ᾱtε

q(xt|x0) = N (xt;
√

ᾱtx0, 1 − ᾱtI)

where αt = 1 − βt, αt =
∏t

s=0 αs and ε ∼ N (0, I).
By Bayes’ Theorem, we can reformulate q(xt−1 | xt, x0) in terms of β̄t and

μq(xt, x0):
q(xt−1 | xt, x0) = N (xt;μq(xt, x0), β̄tI)

where

β̄t =
1 − ᾱt−1

1 − ᾱt
βt, and μq(xt, x0) =

√
ᾱt−1β

1 − ᾱt
x0 +

√
ᾱt(1 − ᾱt−1)

1 − ᾱt
xt.

There are various way to approximate μθ(xt, t) to μq(xt, x0). One can rewrite
μθ(xt, t) as μθ(xt, t) = 1√

αt
(xt − βt√

1−ᾱt
εθ(xt, t)). We simply train a neural net-

work εθ to minimize ‖ε − εθ(xt, t)‖2. We call this neural network to be the
diffusion model.

Conditional Free Guidance. Very often, one would want to produce data
based on their label. In other words, we are also interested in modeling p(x | y)
where y is the label. Especially in SCA, we would like to create a diffusion model
that could obtain traces based on their leakage model. [10] first introduces the
concept of Conditional Free Guidance (CFG) by ditching the idea of using a
separate classifier to predict newly generated data and train two diffusion mod-
els. CFG trains both the unconditional diffusion model and conditional diffusion
simultaneously (in practice, this is just one model). The idea is to let the uncon-
ditional diffusion model guide the conditional model for more exploration, which
allows for more diversity. An equivalent goal when training a diffusion model is
known as the score-based formulation, where the objective is to maximize the
score ∇xt

log p(xt | y). One can formulate this score as

108 T. Yap and D. Jap

∇xt
log p(xt | y) = γ∇xt

log p(xt | y) + (1 − γ)∇xt
log p(xt)

where the term ∇xt
log p(xt | y) corresponds to the score of the conditional

diffusion model while ∇xt
log p(xt) is the score of the unconditional diffusion

model, with γ being the hyperparameter that controls how much the conditional
diffusion model cares about the label. Throughout this paper, we consider γ to
be 0.7. We refer readers to [15] for a more holistic understanding of the diffusion
model and CFG.

4 Datasets and Neural Network Used for Experiment

In this section, we present the datasets that will be used for any of the experi-
ments and the neural network used as the diffusion model.

4.1 Datasets

Simulated Traces. We generate simulated traces of 24 sample points. These
traces are leaking with the value of the Advance Encryption Standard (AES)
substitution box. Suppose each trace is defined as an array, trace[0, . . . , 23], and
d ∈ {0, 1, 2, 3} to be the masking order of the simulated dataset. The sample
points that consist of the values of the masks are presented in Table 1. Here, we
denote Z = Sbox(pt ⊕ k∗) where pt is the plaintext byte and k∗ is the correct
key. Here, we fix k∗ = 0x03. Furthermore, mi are randomly generated bytes
for secret sharing. We randomly generate random byte values for the remaining
points. Then, we add a small noise sampled from the normal distribution to
every sample point with zero mean and variance of 0.01. We generated 14, 000
traces for training the diffusion models.

Table 1. Leakage points of the traces generated in simulated data based on the masking
order.

Masking Order d Leakage Point

0 trace[5, . . . , 10] = Z

1 trace[10, . . . , 15] = Z ⊕ m1

trace[0, . . . , 5] = m1

2 trace[0, . . . , 4] = Z ⊕ m1 ⊕ m2

trace[9, . . . , 14] = m1, trace[18, . . . , 22] = m2

3 trace[0, . . . , 3] = Z ⊕ m1 ⊕ m2 ⊕ m3

trace[7, . . . , 9] = m1, trace[13, . . . , 17] = m2, trace[18, . . . , 22] = m3

ChipWhisperer (CW). The CW dataset provides a standard comparison base
for the evaluation of different algorithms [18]. The dataset we consider runs the
unprotected AES-128 implementation on the CW308 Target. We will refer to

Trace Generations Using Diffusion Model for Side-Channel Attack 109

this dataset as CW throughout this paper. This dataset targets the first byte in
the first round of the AES Sbox, Sbox(pt⊕k∗), with a fixed key k∗. The dataset
consists of 10, 000 traces.

ASCADf and ASCADr. The ASCAD dataset consists of a first-order masked
AES implementation on an 8-bit AVR microcontroller (ATMega8515) [2]. We
target the third byte of the first round AES Sbox. This is a first-order masked
key byte. Two versions known as ASCADf and ASCADr are part of the ASCAD
dataset. ASCADf contains traces corresponding to the same fixed key for both
profiling and attack. ASCADr contains profiling traces generated from a random
key setting, while the attack traces are obtained from the fixed key target device.
The dataset consists of 50, 000 profiling traces and 10, 000 attack traces for both
datasets. The traces in ASCADf are composed of 700 sample points, while the
traces in ASCADr consist of 1400 sample points.

4.2 Neural Network Used: UNet

We train UNet [21] as the diffusion model. A simple illustration of an UNet is
shown in Fig. 2. We consider the UNet to consist of 1-dimensional convolutional
layers, where each convolution layer is followed by a group normalization [24]
and the activation, SiLU [8]. In the UNet, we applied multiple skipped connec-
tions (see Fig. 2). Furthermore, the UNet also contains attention mechanisms to
improve its performance. We refer to the weblink for the full architecture used.
We train the UNet together with an Exponential Moving Averages (EMA) [12]
to help to enhance the stability of the training. In order for the neural network
to understand which timestamp t the noise is from, it is first applied as a word
embedding and followed by a shallow perceptron with GeLU as the activation
function. Similarly, in order for the UNet to learn the information of the label
y, we feed y into another shallow perceptron with GeLU [8] as the activation
function. The output of these two embeddings are concatenated and fed to every
convolutional layer of the UNet.

Fig. 2. UNet architecture.

110 T. Yap and D. Jap

5 Known Mask Setting: Evaluation of the Generated
Traces Using CPA

In this section, we consider the scenario where we train a diffusion model under
the known mask setting. Here, we can consider this trained diffusion model
(together with the autoencoder) as a “portable oscilloscope” of the target device.
If an adversary obtains this trained “portable oscilloscope” without access to any
traces, they could essentially recover the secret key with the artificially generated
data from this trained diffusion model.

In this part, we evaluate the quality of the generated traces from such dif-
fusion model. To perform an evaluation of the quality, we conducted CPA on
both original traces and generated traces. The idea is to observe if the generated
traces can preserve the crucial leakages from the original traces. As such, while
we are performing CPA in key recovery mode, we assume that for higher-order
masking, the mask is known, and we assess if the mask leakage is also captured
in the generated traces.

5.1 Evaluation Framework

Side-channel traces could go up to thousands of sample points. The time required
to sample/generate new traces increases with the number of dimensionality. We
propose to use the framework to be applied with CPA. We note that this frame-
work can be used also in any non-profiling setting. This framework was first pro-
posed in [20] to help speed up the sampling process in generating high-resolution
images. The framework is as follows:

1. (Autoencoder phase) Train an autoencoder to encode and decode the
traces into a latent space with reduced dimension.

2. (Training phase) We first encode every attack trace into the latent space
by applying the encoder and train the diffusion model based on these attack
traces.

3. (Generative phase) Next, for a given label class, we used the trained dif-
fusion model to generate new latent embeddings by denoising randomly ini-
tialized embedding.

This framework introduces an autoencoder to help decrease the dimension of the
traces into a latent space. This will help reduce the time required to sample new
traces as the diffusion model generates a new latent embedding with smaller
dimensional. We can then obtain the new traces by decoding the new latent
embeddings (Fig. 3).

Autoencoder Phase. To train the autoencoder, we have to first find the archi-
tecture of the model. To find the hyperparameters, we perform a random search
(see Appendix A.1). In order to identify the best performing parameters, we
use the trace correlation metric. In short, we compute the average correlation
between the actual and reconstructed traces from the autoencoder and keep the

Trace Generations Using Diffusion Model for Side-Channel Attack 111

Fig. 3. Framework for using diffusion model in CPA. We define Z to be the corre-
sponding mask data (e.g., L = Z ⊕ m1 ⊕ · · · ⊕ md).

parameter that resulted in the highest correlation. Given traces T and recon-
structed T ′, we compute r(T, T ′) as described in Eq. 1.

After the autoencoder has been trained with the best performing parameters,
we proceed with the trace generation using the diffusion model. We trained the
diffusion model with the latent embedding instead of the actual traces. Once
the model is trained with their proper labels, we can generate the new latent
embedding with their corresponding labels. In the case of higher-order masking,
for each trace, we generated corresponding mask share(s), and using this infor-
mation, with knowledge of the secret, one can compute back the corresponding
plaintext (or in the profiling setting, we can directly use the corresponding label
for training). After the latent embeddings are generated, we use the autoencoder
to decode these embeddings back to get the generated traces. If necessary, one
can also normalize the generated traces as post-processing.

Training Phase. We train the diffusion model conditionally with a generalized
CFG. In our setting, we consider a known mask setting where one would have
the mask value and the mask data value. We set the label given to the diffusion
to be both the mask and the mask data, namely y = (Z ⊕ m1 ⊕ · · · ⊕ md−1,
m1,. . . , md) where d is the masking order of the dataset and Z is the hypothetical
sensitive values. We train the diffusion model according to Sect. 3.3. Note that
y,m1, . . . ,md are in real values when used to train the diffusion model.

Generative Phase. In this phase, one can choose the number of artificial
data/latent embeddings one would want to generate.

1. Firstly, we generate ng latent embeddings for each value of L.
2. Then, we randomly generate values of each mask values m1, . . . ,md and

obtain the label y = (L,m1, . . . ,md).

112 T. Yap and D. Jap

3. Feed the diffusion model with randomly generated latent embeddings and the
label y to obtain denoised latent embeddings. Then, we decode these denoised
latent embeddings to obtain the artificial traces.

5.2 Experiment Results

We apply our framework on simulated traces from higher-order masking and
three datasets with real traces: CW, ASCADf and ASCADr.

Simulated Traces. We performed the assessment for masking order 0, 1, 2 and
3 of the simulated traces. Since the results are similar for all the masking orders
tested, we shall only present the results on masking order 3. Considering that the
sizes of the simulated traces are small. We train the diffusion model without the
use of an autoencoder. We train the diffusion model using a batch size of 512, a
learning rate of 0.0005, and 50 epochs. We sample ng = 10 artificial data for each
value of L = Sbox(pt⊕k∗)⊕m1⊕m2⊕m3 with randomly generated m1,m2 and
m3. We get a total of 256 ∗ 10 = 2560 artificial latent embeddings and apply the
decoder to obtain the newly generated traces. We apply the CPA on these newly
generated traces. The result of the CPA for each mask is shown in Fig. 4. The
correlation of the original traces is illustrated in Fig. 4a while the correlation of
the generated traces is depicted in Fig. 4b. We see that the generated traces from
the diffusion model obtain similar correlations on every share in comparison with
the corresponding correlations within the original traces. In fact, we see that the
correlation of mask m1 is amplified within around the sample point 11. This
shows that the diffusion model could potentially generate traces that amplify
the leakages.

Fig. 4. CPA on original and generated simulated data of order 3 (with known shares).

Trace Generations Using Diffusion Model for Side-Channel Attack 113

CW. We then test the approach on real datasets. Our first target is the CW
dataset. Using random search, we found an autoencoder that mapped the traces
into a latent embedding of size 992. Afterward, we generate new traces using
the diffusion model. Here, we are using the ID leakage model, resulting in 256
classes. We then generate 2,000 traces in total using the diffusion model. We
perform CPA on the original traces as well as on the generated traces, both
using 2,000 traces in total. In Fig. 5a, we show the CPA on original CW traces,
and in Fig. 5b, we show the CPA on generated CW traces. Overall, we could see
that the generated leakage could preserve the important leakages from different
sample points. Similarly, we also see the correlation with respect to Sbox(pt⊕k∗)
is amplified in areas that are not correlated previously, showing that diffusion
models could possibly increase the intensity of the leakages in areas that are
previously not correlated.

Fig. 5. CPA on original and generated CW data.

ASCADf. Next, we test the approach on the ASCADf dataset. Similar to the
previous experiment, we employ random search on the hyperparameters to find
an autoencoder. We then constructed an autoencoder that mapped the traces
into a latent embedding of size 192. Afterward, we generate new traces using
the diffusion model. Again, we are using the ID leakage model with 256 classes.
We then generate for each class 10 traces, so we have 2,560 traces in total. We
perform CPA on the original traces as well as on the generated traces, both using
2,560 traces in total. In Fig. 6a, we showed the CPA on original ASCADf traces,
and in Fig. 6b, we showed the CPA on generated ASCADf traces. Here, we can
observe that the leakage of the intermediate value, as well as the mask, can be
preserved in the generated leakage. In observe that there is increase in correlation
with respect to Sbox(pt ⊕ k∗) ⊕ r. Especially between sample points 0 to 200,

114 T. Yap and D. Jap

Fig. 6. CPA on original and generated ASCADf data of order 1 (with known shares).

this could be that the diffusion model learns the leakages there and amplified it
in those areas. We leave the study of explainability of diffusion models to future
works.

Fig. 7. CPA on original and generated ASCADr data of order 1 (with known shares).

ASCADr. Lastly, we test the approach on ASCADr dataset. Since the key is
not fixed, we cannot perform key recovery, instead, we plot the correlation on
the intermediate value and the mask for the original (Fig. 7a) and the generated
traces (Fig. 7b). Here, we can observe that similar to the ASCADf case, the
generated traces can preserve the leakages from the original traces.

Trace Generations Using Diffusion Model for Side-Channel Attack 115

In general, from the experiments conducted on these three datasets, we can
clearly observe that the diffusion model can generate new traces that can preserve
and even amplified the important leakages from the original dataset in the known
mask setting.

6 Unknown Mask Setting: Profiling Attack

We will first provide the framework when using DDPM in a profiling attack,
followed by the experimental results. As mentioned earlier, we will be using the
ID leakage model throughout this section.

6.1 Framework for Profiling Setting

In this section, we explore the effectiveness of using a diffusion model in the
profiling attack setting. Figure 8 depicts the overall framework of using a diffusion
model in a typical profiling setting. The framework for profiling can be described
as follows:

1. Use a dimensionality reduction on the profiling traces to obtain its corre-
sponding latent embeddings.

2. Train the diffusion models with the profiling latent embeddings.
3. Generate new latent embeddings with the trained diffusion model. If neces-

sary, we can also normalize the generated traces as post-processing.
4. Use these new latent embeddings with the original latent embeddings as the

new profiling set for the profiling attack.

We choose Principle Component Analysis (PCA) as the dimensionality reduc-
tion technique. For each of the datasets, we pick the dimension that managed to
recover the key with the least NTGE required. Therefore, for each dimension
ranging from 8 to 48 with an interval of 8, we apply PCA and subsequently
perform TA.

Fig. 8. Framework for using diffusion model in Profiling attack. Z is defined to be the
hypothesis sensitive variable (e.g., Z = Sbox(pt ⊕ k∗))

We note here that the labels used to guide the diffusion model are the same
as the ones used in the profiling attack. This means that this framework is in an
unknown mask setting, unlike the previous framework in Sect. 5.1. The label y
is the hypothetical sensitive variable Z.

116 T. Yap and D. Jap

In order to test the efficacy of the diffusion model for profiling attacks, we
apply TAs in various settings. We use TA over the deep learning-based attack, as
the deep learning-based attack has too many factors that could affect the NTGE
attained. For example, even when using the same architecture, the weights are
randomly initialized, which could result in different performances in two different
training. Therefore, TA is a much better baseline for exploring diffusion models’
effectiveness than using deep learning-based profiling attacks.

Various Setting Tested. We apply TA in three different settings. Firstly,
we perform TA on the original dataset. We denote this as Original. Next, we
decrease the dataset to balance every class to the minimum number of traces
within a class. For example, in ASCADf, the class 213 obtains the least number
of traces with 139 traces. Therefore, we downsample every class to 139 and
obtain traces of size 139 × 256 = 35584 for profiling. This is to simulate when
there is a lack of profiling traces. Then, we run TA on this downsampled dataset.
We call this setting Downsampled. As the next step, we want to determine if
using the diffusion model to generate new latent embedding would help in TA.
We simply double the traces of each class within the downsampled dataset. We
denote this scenario as Downsampled+Generated Latent. Subsequently, we train
all our diffusion models with a batch size of 200, a learning rate of 0.001, and
2000 epochs for each dataset experimented.

6.2 Experiment Results for Profiling Attacks

ASCADf. We consider the use of PCA to compress the dimension of the
traces to 24 as it successfully breaks the dataset and obtains the least num-
ber of NTGE with TA. We presented the results in Table 2. Here, we observed
that Downsampled+Generated Latent slight improvement over the Downsam-
pled scenario. This shows that when the adversary has the diffusion model and
with limited traces, it could improve the attack.

Table 2. NTGE for ASCADf when applying TA in the various setting.

Original Downsampled Downsampled+Generated Latent

NTGE 1, 194 1, 552 1, 531

Dataset Size 45, 000 35, 584 71, 168

ASCADr. For ASCADr, we compress the dimension to 16. We show the per-
formance in Table 3. Similarly to the above, we see an improvement in NTGE
when adding newly generated latent from the diffusion model into the down-
sampled dataset. Since there is a reduction of approximately 200 traces in the
NTGE. This shows that the generated latent/traces with the diffusion model
could help to slightly improve the performance when the number of traces is
limited to build the template.

Trace Generations Using Diffusion Model for Side-Channel Attack 117

Table 3. NTGE for ASCADr when applying TA in the various setting.

Original Downsampled Downsampled+Generated Latent

NTGE 3, 953 4, 742 4, 598

Dataset Size 45, 000 34, 816 69, 632

ASCADf desync50: Here, we consider desynchronization within the ASCADf
dataset, denoted as ASCADf desync50. The dataset is created by considering
random desynchronization up to 50 sample points in each trace within the
raw traces before extracting the 700 sample points. For ASCADf desync50, we
reduce the dimension of the traces to a size of 48. Table 4 shows the perfor-
mance results of the TA for ASCADf desync50. Surprisingly, we observe that
Downsampled+Generated Latent obtained a significant decrease in NTGE. The
NTGE decreases by around 4000 traces, which is almost half of the NTGE
attained when training with the original dataset. When adding the new latent
created by the diffusion model into the downsampled dataset, it even attained
the best NTGE out of all the three settings. This shows that the diffusion model
is effective even in desynchronized datasets.

Table 4. NTGE for ASCADf desync50 when applying TA in the various setting.

Original Downsampled Downsampled+Generated Latent

NTGE 9, 606 9, 017 5, 730

Dataset Size 45, 000 35, 584 71, 168

7 Conclusion and Future Works

In this work, we have investigated and explored the applicability of using the
DDPM approach for artificial trace generation in the context of SCA. We
have conducted the study on two different frameworks, namely the known and
unknown mask settings. We then performed the experiments on several datasets
to create a new set of traces using the diffusion model. Our experimental results
have shown that the generated traces can preserve the original leakages in the
known mask setting. We have also demonstrated that in the unknown mask set-
ting, the diffusion model can create artificial data that can help to improve the
profiling attack, suggesting that leakages are learned within the generated data.
In the future, we will investigate more on improving the performance of the pro-
posed DDPM approach; for example, one direction is to optimize or speed up
the sampling process. We would like to investigate if this can also be adapted
for portability scenarios on custom traces from different setups.

Acknowledgment. This research is supported by the National Research Foundation,
Singapore, and Cyber Security Agency of Singapore under its National Cybersecurity
Research & Development Programme (Cyber-Hardware Forensic & Assurance Eval-
uation R&D Programme ¡NRF2018NCRNCR009-0001). Any opinions, findings and

118 T. Yap and D. Jap

conclusions or recommendations expressed in this material are those of the author(s)
and do not reflect the view of National Research Foundation, Singapore and Cyber
Security Agency of Singapore.

A Appendix

A.1 Random Search Hyperparameters for Autoencoder

We conducted random search to find hyperparameters for the autoencoder. In
the following table, we listed down the range of values used for each parameters
(Table 5).

Table 5. Range for hyperparameter random search

Parameters Start Max Step

Number of Layers 2 6 1

Number of Batch Size 64 2048 32

Embedding Size 128 Trace length 32

Epoch Size 40 100 1

Learning Rate (10x) −5 −2 1

Node Size per Layer 32 2048 32

A.2 Hyperparameters Used on Autoencoder

In the following tables, we reported the hyperparameters found through random
search (Table 6).

Table 6. Hyperparameters used for each dataset, found through random search

Parameters CW ASCADf ASCADr

Number of Layers 3 3 3

Number of Batch Size 896 800 1536

Embedding Size 992 192 256

Epoch Size 86 97 97

Learning Rate (10x) −4 −3 −3

Size of Nodes [928, 448, 992] [704, 992, 192] [704, 992, 256]

Correlation 0.87 0.97 0.85

Trace Generations Using Diffusion Model for Side-Channel Attack 119

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2),
163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

5. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

6. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis (2021)
7. Goodfellow, I.J., et al.: Generative Adversarial Networks (2014)
8. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs) (2023)
9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models (2020)

10. Ho, J., Salimans, T.: Classifier-free diffusion guidance (2022)
11. Karayalcin, S., Krcek, M., Wu, L., Picek, S., Perin, G.: It’s a kind of magic: a novel

conditional GAN framework for efficient profiling side-channel analysis. Cryptology
ePrint Archive (2023)

12. Klinker, F.: Exponential moving average versus moving exponential average. Math.
Semesterber. 58(1), 97–107 (2010). https://doi.org/10.1007/s00591-010-0080-8

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Li, H., Perin, G.: A systematic study of data augmentation for protected AES
implementations. Cryptology ePrint Archive (2023)

15. Luo, C.: Understanding diffusion models: a unified perspective (2022)
16. Mukhtar, N., Batina, L., Picek, S., Kong, Y.: Fake it till you make it: data augmen-

tation using generative adversarial networks for all the crypto you need on small
devices. In: Galbraith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 297–321.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95312-6 13

17. Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models (2021)
18. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware

embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

19. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardware Embed. Syst. 209–237 (2019)

20. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models (2022)

21. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation (2015)

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/s00591-010-0080-8
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17

120 T. Yap and D. Jap

22. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

23. Wang, P., et al.: Enhancing the Performance of Practical Profiling Side-Channel
Attacks Using Conditional Generative Adversarial Networks (2020)

24. Wu, Y., He, K.: Group normalization (2018)

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26

Diversity Algorithms for Laser Fault
Injection

Marina Krček1(B) and Thomas Ordas2

1 Delft University of Technology, Delft, The Netherlands
m.krcek@tudelft.nl

2 STMicroelectronics, Grenoble, France

Abstract. Before third-party evaluation and certification, manufac-
turers often conduct internal security evaluations on secure hardware
devices, including fault injection (FI). Within this process, FI aims to
identify parameter combinations that reveal device vulnerabilities. The
impracticality of conducting an exhaustive search over FI parameters has
prompted the development of advanced and guided algorithms. However,
these proposed methods often focus on a specific, critical region, which
is beneficial for attack scenarios requiring a single optimal FI parameter
combination.

In this work, we introduce two novel metrics that align better with
the goal of identifying multiple optima. These metrics consider the num-
ber of unique vulnerable locations and clusters (regions). Furthermore,
we present two methods promoting diversity in tested parameter com-
binations - Grid Memetic Algorithm (GridMA) and Evolution Strategy
(ES). Our findings reveal that these diversity methods, though identify-
ing fewer vulnerabilities overall than the Memetic Algorithm (MA), still
outperform Random Search (RS), identifying at least ≈8× more vulner-
abilities. Using our novel metrics, we observe that the number of distinct
vulnerable locations is similar across all three evolutionary algorithms,
with ≈30% increase over RS. Importantly, ES and GridMA prove supe-
rior in discovering multiple vulnerable regions, with ES identifying ≈55%
more clusters than the worst-performing MA.

Keywords: Laser Fault Injection · Parameter Search · Evolutionary
Algorithms · Diversity Algorithms · Multiple Optima

1 Introduction

Small embedded devices frequently employ cryptographic algorithms to pro-
vide security. According to Kerckhoff’s principle, it is expected that security is
intact when the secret key is unknown, even if all the other information about
the cryptographic system is public. Consequently, these algorithms are often
mathematically secure, rendering brute-force attacks impractical. Regardless,
implementation attacks, such as side-channel attacks (SCA) and fault injection
(FI) attacks, can potentially lead to a successful security breach of such crypto-
graphic systems. Side-channel attacks are passive, with the attacker measuring
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 121–138, 2024.
https://doi.org/10.1007/978-3-031-61486-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_8

122 M. Krček and T. Ordas

the time [12], power consumption [11], or other side-channel data emanating
from the target device. Given a correlation between the processed data and mea-
sured side-channel information, the attacker can obtain secret information. On
the other hand, fault injection attacks are active, where the attacker purposely
interacts with the device, inducing errors during the execution of the underlying
algorithm. Specifically, the attack can use external sources, such as electromag-
netic radiation [18], lasers [26], temperature [9], and voltage glitching [10], to
manipulate data in memory, skip instructions, or alter instructions themselves.
These implementation attacks are commonly used in security evaluations and
are consequently extensively investigated [1,23]. The objective is to establish
an enhanced and automated evaluation process that surpasses the current stan-
dard in terms of efficiency. The new algorithms should excel in uncovering more
potential vulnerabilities while making more efficient use of available resources or
possibly even reducing the required resources.

We focus on laser fault injections (LFI), as introduced by Skorobogatov et al.
[26]. The issue with laser injection (and other types of fault injections) comes
from the injection parameters determined by equipment. With the laser, we have
to define the location of the laser shot on the targeted hardware device (x and
y coordinates), the distance from the microscope lens, which is commonly used
with lasers, and, lastly, we also have the laser settings, such as laser intensity,
delay, and pulse width. Additionally, lasers can have pulses that demand several
more parameters to define. Another critical component of successful injections
is the trigger on when to perform the injection. In security evaluation, the worst
scenario is often considered, where it is assumed that we have open access to
the targeted device, and the trigger can be placed at any point in the execution.
Obviously, there are many parameters we should consider. Additionally, the pos-
sible values and combinations of those parameters increase to the extent that
exhaustive search is not feasible for security evaluation or attack.

In the attack, the adversary aims to find the parameters that lead to
exploitable fault injection effects. These desired effects also depend on the
method for the attack, where some of the popular attacks are differential fault
analysis (DFA) [3], statistical fault attack (SFA) [7], and statistical ineffective
fault attacks (SIFA) [6]. Each attack can require different characteristics of the
FI effects. Still, some commonly desired and possibly exploitable faults include
causing the device to skip instructions or change values in memory [1]. This work
does not address identifying exploitable faults but focuses on a scenario within
the internal security evaluation. During the security evaluation, a target char-
acterization is performed, striving to uncover all vulnerabilities that can later
be categorized based on their level of critical exploitability. While executing an
exhaustive search would ensure that all possible vulnerabilities are observed, this
process is not feasible as there are many products to be evaluated, and the search
is impractical even for a single target. The aim is then adjusted to find as many
vulnerabilities as possible within reasonable time and resources. Therefore, the
FI parameter search is a process that should observe many vulnerabilities and
provide high confidence that little to no vulnerabilities are overlooked. Instead

Diversity Algorithms for Laser Fault Injection 123

of an exhaustive search, the location on the target is often searched in a grid-like
manner using the same laser settings. Defined laser settings could come from
previous experience, which might be misleading if the target or the bench is
entirely new [28]. If more options for laser settings are tested over the whole
target area, this process becomes time-consuming, so alternatively, a random
search is applied. However, both methods could omit parameter sets that lead
to faults. In grid search, while the location is relatively thoroughly inspected,
fixing the laser settings can contribute to overlooking many vulnerabilities. By
including different laser settings, the search converges to an exhaustive search
where the security analysts aim to reduce the search space based on previous
knowledge, but the execution time for these algorithms could still be measured
in weeks. On the other hand, random search is unreliable as different runs can
lead to very different observations, which causes misrepresentation of the tar-
get’s security level. Therefore, there is an incentive to improve the process of
exploring the FI parameter search space more efficiently in an automated way.

Evolutionary algorithms (EAs) were explored for laser fault injection [14],
voltage glitching [4,21,22], and electromagnetic fault injection [16,24] since laser
fault injections are not the only type of injections suffering from the previously
described issues. From the machine learning domain, hyperparameter optimiza-
tion techniques [27], reinforcement learning [17] and Generative Adversarial Net-
works (GANs) [25] were also investigated. Additionally, the prediction ability of
machine learning methods was explored for portability issues in the FI parameter
search [13] and estimating the full target characterization [28].

The issue with aforementioned search algorithms, like evolutionary algo-
rithms and tuning techniques, lies in their tendency to converge on a single
vulnerable area as they are designed to obtain a single optimal solution. Pre-
vious works show a significant increase in the observed faults clustered in one
sensitive region [16,21]. While that can be highly effective for attackers, we focus
on security evaluation, where identifying multiple vulnerable regions is deemed a
more favorable outcome. To better assess algorithm success in parameter search
concerning the security evaluation goals, we propose to use the number of unique
locations (x-y) and clusters with faults as additional metrics. We investigate the
performance of several algorithms: random search, memetic algorithm, and two
novel algorithms not explored before in the FI context - Grid Memetic Algorithm
(GridMA) and Evolution Strategy (ES). The new algorithms are introduced as
they promote the diversity of the parameter combinations. This diversity aims to
achieve a more diverse search, uncovering distant vulnerabilities and identifying
multiple optima instead of a single sensitive region. Experiments are performed
with laser fault injections but should be suitable for other fault injection types.

Our main contributions are:

– We propose two methods that promote diversity among the tested FI param-
eter combinations. Promoted diversity ensures fewer vulnerabilities are over-
looked, and multiple optima are uncovered during the search.

– We investigate other aspects of the algorithm performance for the FI param-
eter search, such as unique locations and clusters.

124 M. Krček and T. Ordas

– The results show that the evolutionary algorithms find ≈30% more unique
vulnerable locations than random search.

– The GridMA and ES algorithms found around 41% and 55% more vulnerable
clusters than the worst-performing MA in this aspect, respectively. Thus, the
diversity algorithms help determine more vulnerable regions.

2 Preliminaries

2.1 Random Search (RS)

Random Search (RS) is a widely used optimization method when exhaustive
search is impractical. In the context of FI parameter search, it explores a pre-
defined search space by randomly selecting parameter values and assessing their
performance, with each value having an equal probability of selection. We ensure
that only unique parameter combinations are considered, eliminating duplicates.

2.2 Memetic Algorithm (MA)

The memetic algorithm (MA) enhances the genetic algorithm (GA) by incor-
porating local search [19]. We apply the local search at the end of each GA
iteration, constituting the first generation of memetic algorithms. This specific
method has been successfully utilized in previous research [14,16]. The flow of
the MA is depicted in Fig. 1. MA is a population-based optimization technique,
operating on a set of individuals, each representing a potential solution to a
specific optimization problem. The algorithm begins by generating an initial
population using an initialization method, where a random sampling approach
is often used. The algorithm then uses a problem-specific fitness function to
evaluate each solution’s performance. After evaluation, the genetic operators,
including selection, crossover, and mutation, that drive the learning process are
performed. The selector operator identifies solutions from the current popula-
tion for reproduction. Usually, the best-performing solutions are favored as they
are more likely to yield improved solutions. The selected solutions, called parent
solutions, undergo the crossover operator, which combines their traits to cre-
ate one or more offspring solutions. The new solutions (offspring) undergo the
mutation operator, which introduces random variations into the new solutions.
The mutation probability is commonly kept low, preventing the algorithm from
acting like random sampling. The process generates a new population that con-
tinues into another algorithm iteration. To ensure the best-performing solutions
are not lost, elitism is employed. Elitism explicitly preserves one or more of
the best solutions from the current population for the next generation. Lastly,
some solutions are selected for further improvement using the local search. In
this work, we use the memetic algorithm introduced in [14], where the algorithm
incorporates the Hooke-Jeeves as local search [8]. The algorithm runs until a
predefined termination condition is satisfied. These termination conditions com-
monly consider the number of iterations or evaluations for ending the execution.

Diversity Algorithms for Laser Fault Injection 125

Fig. 1. Flow of the Memetic Algorithm.

2.3 Clustering Method

In the analysis, we use a clustering method called Mean Shift [5], an unsupervised
clustering algorithm designed to identify clusters in a continuous distribution
of data points. It is a centroid-based algorithm that updates candidates for
centroids by computing the mean of points within a specific region (referred to as
the bandwidth). Subsequently, these candidates are filtered in a post-processing
stage to eliminate nearly identical centroids, forming the final set of centroids. We
opted for the Mean Shift clustering algorithm because, unlike some other popular
methods such as K-Means [15], it does not require users to predefine the number
of clusters. While several different algorithms share this characteristic, we chose
Mean Shift due to its simplicity as a centroid-based algorithm with only one
hyperparameter. We believe it will provide satisfactory results for our analysis.
However, we do not claim Mean Shift as the superior clustering algorithm. Note
that the considered algorithms were those provided by a Python package called
scikit-learn [20] to enable quick implementation and usage, as clustering is not
the main topic of this work.

3 Related Work

Carpi et al. [4] investigated various search strategies for voltage glitch parameters,
specifically the glitch shape and timing, for a successful FI attack. They explored
glitch voltage and length with Monte Carlo (random), FastBoxing, Adaptive
Zoom&Bound, and a Genetic Algorithm (GA). The genetic algorithm, without
fine-tuning, required more measurements than the superior Adaptive Zoom&
Bound algorithm. Picek et al. [22] extended the GA for the same voltage glitch
parameters by employing a specialized crossover operator and selection mecha-
nism, finding more faults than random search. Later, Picek et al. [21] introduced
a memetic algorithm considering three voltage glitching parameters, namely glitch
length, voltage, and offset. The authors mentioned the impracticality of specific
algorithms used in previous work [4] due to increased dimensionality, excluding

126 M. Krček and T. Ordas

them from comparison. Their objective was to efficiently identify favorable param-
eters within minimal time, seeking both successful parameter combinations and
regions with consistent behavioral outcomes. Maldini et al. [16] increased the
parameter search space by optimizing five parameters for Electromagnetic Fault
Injection (EMFI) using a memetic algorithm. Krček et al. [14] demonstrated the
effectiveness of a similar memetic algorithm for laser fault injection (LFI). These
studies showcased the efficacy of the memetic algorithm across various FI types.
Werner et al. [27] employed two hyperparameter optimization techniques from
machine learning to enhance the parameter search for voltage glitching. They
proposed a two-stage optimization strategy to reduce the dimensionality of the
parameter space, similar to Carpi et al. [4]. Rais-Ali et al. [24] compared three
different methods for EMFI, with the GA consistently outperforming the others
in identifying areas of interest. The authors emphasize that, from an attacker’s
perspective, the goal is to identify a single exploitable fault using a specific FI
parameter set. However, in the evaluation context, the objective is to ensure
device security without excessive time investment, requiring a high-dimensional
search to avoid overlooking potential parameter combinations. In [16,21,24], the
authors evaluated performance based on the number of observed vulnerabilities,
considering the notion of distinct regions and faults. We introduce diversity meth-
ods within the evolutionary approach to improve the algorithms’ ability to dis-
cover more distinct regions with vulnerabilities. Related work on voltage glitch-
ing parameter search typically involved optimization of two or three parameters,
while EMFI and LFI examined five. We optimize the same five parameters for LFI,
performing a high-dimensional parameter search.

Wu et al. [28] focused on laser settings’ impact on a specific building block.
The authors noted that the complete characterization took over a week to exe-
cute. This underscores the need for faster and more efficient algorithms in the
field. However, their work differs from ours, as our research investigates fault
injection considering five distinct parameters, intending to uncover vulnerabil-
ities across various building blocks within an integrated circuit (IC). Krček et
al. [13] explored the transferability of results to different samples of the same
target using decision tree models, falling outside the scope of this work for com-
parison as this work focuses on improving the parameter search without prior
knowledge. Lastly, Moradi et al. [17] and Sedaghatbaf et al. [25] applied rein-
forcement learning and Generative Adversarial Networks (GANs), respectively,
for efficiently exploring the fault injection space in simulations for adaptive cruise
control systems in autonomous vehicles domain. These techniques could poten-
tially extend to fault injection on hardware devices, aligning with our work.

Comparing all methods from the mentioned related work is time-consuming
and complex. Hence, we leave this task to future work, recognizing the impor-
tance of unifying and evaluating these advanced methods to determine the state-
of-the-art approach for parameter search in the scope of security evaluation,
target characterization, and FI attacks. In this study, we compare new algo-
rithms with random search and memetic algorithm, previously employed for
high-dimensional parameter search on EMFI and LFI.

Diversity Algorithms for Laser Fault Injection 127

4 Diversity Algorithms

This section explains the newly proposed diversity algorithms that should help
identify multiple vulnerable regions within the FI parameter search.

4.1 Grid Memetic Algorithm (GridMA)

We propose a novel approach, named the Grid Memetic Algorithm, that involves
partitioning the target area for exploration into a grid and running the previously
explained memetic algorithm within each grid region. The primary objective of
the GridMA approach is to ensure attention (time and evaluations) of the algo-
rithm to all target regions, mitigating the risk of overlooking vulnerabilities in
specific (x-y) locations. For instance, if the target area is divided into a 3 × 3
grid, resulting in nine distinct regions, GridMA executes the MA independently
in each region during a single run. As the search space size within each grid
region decreased, we reduced the MA hyperparameters, specifically the popula-
tion and elite sizes. GridMA represents a minor adaptation to the established
MA. Nevertheless, it is a valuable initial step in evaluating diversity algorithms,
precisely when we aim to obtain multiple vulnerable target regions.

4.2 Evolution Strategy (ES)

Evolution Strategy, like genetic algorithms, belongs to the class of evolutionary
algorithms inspired by the principles of natural evolution [2]. The initial ver-
sion of ES consisted of a single-parent solution from which one offspring was
produced through a mutation-like procedure. The superior solution between the
parent and offspring is preserved, and it resumes the same iterative process until
it fulfills specific termination criteria. These termination conditions align with
those described for MA in Sect. 2.2, consisting of attributes such as the number
of iterations, evaluations, or acquiring a specified fitness level. Over time, ES
has evolved, and in its more general form, it adopts the notation of (μ+, λ)-ES.
For instance, the original version can be denoted as (1 + 1)-ES, suggesting the
presence of only one parent and one offspring in the process. Thus, μ represents
the number of parents, and λ indicates the number of offspring. Additionally, a
μ/ρ notation can be used for parents, where μ denotes existing parents, and ρ
indicates the number of parents selected for producing offspring. Typically, ρ is
less than or equal to μ, meaning that a subset of the best individuals is chosen
for reproduction. In the notation, we use symbols + or , to indicate whether the
solutions selected for the following generation are derived from both parents and
offspring (μ + λ) or the parents (μ) are discarded, and only the offspring (λ),
regardless of their fitness, continue to the next generation.

In the context of the described notation, we employ the (μ + λ)-ES. The
original, (1 + 1)-ES, using one single parent and an offspring, still converges to
one optimal solution. Thus, to achieve diversity and reduce the risk of focusing
on a single optimal solution, we set μ > 1, effectively creating a population
of size μ as employed in MA. The initial set of solutions is distributed across

128 M. Krček and T. Ordas

different locations, and in each iteration, new offspring are generated from each of
these parent solutions as we set λ > 1. Consequently, ES maintains a population
of diverse solutions that evolve through iterations. This iterative process may
lead to finding distinct solution clusters representing local optima. Thus, by
employing ES, we expect to decrease the chances of overlooking vulnerabilities
within the target area and observe more distinct solutions with optimal fitness.

5 Experimental Setup

5.1 Target

In collaboration with STMicroelectronics, we utilize their products for our exper-
iments. Due to confidentiality reasons, we cannot disclose the details of the tar-
gets and the utilized laser bench. The target for our experiments is an IC con-
structed with 40nm technology. Since we use lasers for fault injection, mechanical
thinning, a standard procedure, was part of the preparation for the experiments.
During security evaluation, test programs can be deployed on the targeted prod-
ucts. The program running on our target device is a test program where data
words are loaded into a register from the non-volatile memory (NVM). This test
program can commonly be a part of the functionalities occurring within different
algorithms on these devices. The target has no security countermeasures as the
purpose here is not an attack breaking the device’s security and countermea-
sures. Additionally, this provides the worst-case scenario. The implementation
is done in the C programming language, and the pseudocode is displayed in
Pseudocode 1.1. The pseudocode shows calls to three functions, where the first
function is the trigger event. The trigger event is a monitored event used to
trigger the laser shot to inject faults at the desired time. In this case, the injection
is aimed during the execution of the following function. That function loads the
data from the NVM into a register. Lastly, we read the register and compare the
value with the expected data. There is a fault if the register value has changed
(fault class fail). On the other hand, if the injection was unsuccessful and the
data is unmodified, equal to the expected value, then we give this response a
fault class pass. Lastly, if there is no response from the device due to a time-out
error or reset, we categorize this as a fault class mute. Note that the IC was
reset to the initial state after each injection to provide a clean condition for each
injection.

Pseudocode 1.1. Pseudocode of the program running on the target device.

. . .
t r i g g e r e v e n t ()
l o a d r e g i s t e r () // i n j e c t i o n here
r e a d r e g i s t e r ()
. . .

The FI parameter search is done on the following five parameters - x, y,
delay, laser pulse width, and intensity. These parameters are commonly used

Diversity Algorithms for Laser Fault Injection 129

in literature and practice during a security evaluation [13,16]. We use a subset
of the available values for each of the five parameters, defined according to
the known layout and target cartography. Step sizes are defined based on the
minimum possible step according to the utilized bench equipment, and the target
area size includes different building blocks of the IC. The intervals are kept the
same for all experiments. While we cannot share the parameter intervals as they
are specific to the product and laser bench, we note that there are 370 772 710
possible combinations of the parameter values. The exhaustive search with the
defined subset of possible values will take around 643 days if we consider that
one laser shot takes ≈0.15 s.

While we focus on a single target in this study, the parameter search algo-
rithms we introduce are versatile and applicable across various targets, bench
configurations, and FI types. On average, the relative performance of these algo-
rithms is expected to remain similar across mentioned scenarios. The obtained
target responses guide these algorithms. Therefore, regardless of the selected
target and setup, they strive to identify optimal solutions within the current
setup and measured responses. The extent of improvements is limited by the
finite number of detectable vulnerabilities associated with a specific target and
bench setup.

5.2 Algorithm Details

In all our experiments, we specified a maximum limit of 6 000 evaluations of
unique FI parameter combinations as a termination condition. Since we perform
injection five times with the same parameter combination, we allow 30 000 laser
shots. The number of evaluations is a practical upper bound on the algorithm’s
execution time. Previous work [13] indicates that a similar evaluation count leads
to successful convergence, thus further justifying its selection.

In our approach, as we perform five measurements with the same parame-
ter combination, we can acquire distinct fault class responses given the same
parameters. Thus, there is a slight variation in our fault classification compared
to related work. In our results, we present classes so that if there is even a single
fail response within the measurements, we consider it a critical outcome and
label it under fail comb. notation, signifying a fail combination. This approach
aggregates all fail occurrences, disregarding the specific combinations that led
to them. A more fine-grained categorization might be beneficial if we consider
a specific attack, as parameter combinations with consistent outcomes might be
more suitable for attacks. However, since we are in a security evaluation scenario,
any occurrence of a fail response is considered critical. Other classes we include
are those with mute response, a combination of mute and pass referred to as
mute pass, and lastly, there is a pass class where only pass class occurred in five
measurements. The fitness function for all algorithms is calculated as

fitness =
fP · NP + fM · NM + fF · NF

NP + NM + NF
,

130 M. Krček and T. Ordas

where fP , fM , and fF correspond to the fitness values assigned to the fault
classes pass, mute, and fail, respectively. Similarly, NP , NM , and NF represent
the frequency of these classes occurrences within the number of measurements for
a specific parameter combination. The sum of NP , NM , and NF constitutes the
total number of measurements per parameter combination. This fitness function
definition follows the previous works [13,14]. In our case, the fitness values for
fP , fM , and fF are 1, 2, 10, respectively. These values differ slightly from prior
works, as we choose to create a more pronounced distinction in fitness value
between each fault class. This design decision emphasizes the significance of
any fail combination by assigning it a significantly higher fitness value. Before
evaluating the entire population, we conduct a sorting operation using a greedy
approach that considers the Manhattan distance between different locations of
the FI parameter combinations within the population as described in [14].

MA Hyperparameters. We employ a population of size 100, with an elite size
of 10. The initialization method employs a random sampling strategy while pre-
venting duplicates. For selection, we implement the roulette wheel method. We
use uniform crossover and a uniform mutation with a mutation probability of
0.05. Lastly, the Hooke-Jeeves algorithm is applied for local search. Note that
the hyperparameters in our experiments remain the same and have been taken
based on information from previous work [14].

GridMA Hyperparameters. We dedicated additional experiments to explor-
ing the hyperparameters of the GridMA algorithm, as it is a newly proposed
method. We performed a minor hyperparameter search focused on the grid size,
the population size, and the elite size of the MA. This section outlines the hyper-
parameters for the final version of the GridMA, whose results are shown in
Sect. 6. The MA instances running in each grid have the same hyperparameters
as described in Sect. 5.2, except for the mentioned hyperparameters that we were
able to decrease due to the reduced scope of exploration within each grid region.
Accordingly, the population size is set at 30 individuals, with an elite size of
5. We divide the area in 4 × 4 grid, effectively conducting a total of 16 MA
algorithms during a single run of GridMA. Since we maintain the total number
of evaluations at 6 000 parameter combinations, each grid region is limited to
evaluating only 375 FI parameter combinations.

ES Hyperparameters. Evolution Strategy is a new approach, so we explored
several hyperparameters. Specifically, we assessed the algorithm’s performance
concerning the number of parents and offspring and the mutation probability.
While we quickly obtained reported results, further fine-tuning may improve per-
formance. The reported results are derived from ES employing 40 parent solu-
tions and 5 offspring with the initial generation of parents established through
random sampling. This algorithm uses the mutation operator as the sole source
of introducing solution modifications, so a higher mutation probability will be

Diversity Algorithms for Laser Fault Injection 131

necessary. We observed that the mutation probability of 0.4, much higher than
used with MA, produces the best results without converging to a purely random
search approach. The mutation probability applies to each specific dimension
within the parameter combinations. For example, with 40% probability, muta-
tion will occur from uniformly distributed values of the given parameter. Uni-
form mutation encourages more substantial modification, allowing more ‘jumps’,
particularly beneficial in the context of FI parameter search, as there are more
non-vulnerable areas than vulnerable ones. In Sect. 6.4, we explore several modi-
fications to the ES algorithm, including the Gaussian mutation approach, which
is more commonly utilized to ensure a higher probability of local changes.

6 Experimental Results

This section presents results from applying the described algorithms to the same
IC and laser bench. We aim to identify more locations with a fail outcome and
uncover multiple vulnerable regions. To achieve this, we avoid restricting our
search to a 2D location exploration, as it could overlook numerous parameter
combinations due to the need for fixed laser settings. To effectively assess and
identify algorithms that perform well for our objective, we compare them not
only based on the observed 5D parameter combinations with a fail outcome
but also on the number of unique locations (2D) and clusters. We executed
each algorithm five times and reported the average results to ensure statistically
relevant observations.

6.1 Number of Unique Parameter Combinations (5D)

We initially assess the number of unique parameter combinations with fail out-
comes, where we use percentages from total tested combinations as in previ-
ous work for a more straightforward comparison. The results, shown in Table 1,
reveal a comparable increase in fail responses between random search (RS) and
memetic algorithm (MA) to the reported results in [13,14,16]. The MA iden-
tified ≈55.6× more FI parameter combinations leading to fail response than
RS. In contrast, the two new methods, which provide greater diversity in the
population of the FI parameters, obtained a lower percentage of fail responses
compared to the MA. Compared to RS, we still find ≈12.4× more fails with
GridMA, and ≈7.8× more with the ES. This decrease in the percentage arises
from GridMA’s exploration of areas where vulnerabilities might not exist. The
ES, which relies solely on mutation, introduces more randomness than the MA,
leading to a decrease in the number of identified vulnerabilities. Moreover, each
parent evolved independently, resulting in more dispersed parameters and less
exploitation of sensitive locations. These features should enhance our current
objective but are shown to impact this metric negatively. Considering only the
number of unique 5D parameter combinations tested, MA outperforms the other
tested algorithms. However, the evolutionary approaches with diversity still offer
advantages and should be preferred over random search.

132 M. Krček and T. Ordas

Table 1. The average percentage of observed fault classes from all tested parameter
combinations (6 000) using four different algorithms on the same IC. The average is
calculated over five runs.

RS MA GridMA ES

fail comb. 0.61% 33.84% 7.54% 4.77%

mute 1.23% 3.23% 4.44% 4.53%

mute pass 0.79% 1.21% 2.24% 2.83%

pass 97.36% 61.72% 85.79% 87.88%

6.2 Number of Unique Locations (2D)

In this work, we explore other metrics that could be used to evaluate the perfor-
mance of different parameter search algorithms employed for fault injection. As
we explain, MA converges commonly to one region sensitive to the utilized FI
type and exploits it, leading to many observed FI parameter combinations with
fail outcome. These parameter combinations come from a cluster of close x-y
locations that can be detected visually (see Fig. 1b in [16] and Fig. 2 in [21]). In
security evaluation, there should be a certain confidence that not many vulnera-
bilities are missed during the assessment of the IC. Also, we aim to find multiple
regions with vulnerabilities, so we explore algorithms that promote diversity as
it should help produce vulnerabilities distant in the utilized 5D space. More
importantly, we want distant solutions when looking at the observed vulnerabil-
ities’ location (x-y). Thus, in Table 2, we report the number of unique parameter
combinations with different fault classes and the number of unique locations per
fault class from those parameter combinations. The table has two columns per
algorithm, with the first showing the numbers from all the tested parameter com-
binations and the second showing the number of unique x-y locations. We also
calculate what we refer to as location coverage, dividing the number of unique
locations (2D) by the number of total tested unique 5D parameter combina-
tions. This number shows the ratio of covered area within the tested parameter
combinations. The numbers are rather small if we look at the absolute possible
locations instead of relative to the tested parameters. To put it into perspec-
tive, from all possible combinations (≈370 million), we only test 0.00162% with
6 000 combinations. Unique tested locations from all possible locations (2D) per
algorithm are 4.27%, 1.67%, 2.02%, and 3.07% for RS, MA, GridMA, and ES,
respectively. We see an increase in the absolute location coverage between differ-
ent evolutionary approaches, but RS has the best result. In the table, we report
the relative location coverage as it provides an easier comparison. The relation
between the algorithms is the same when we compare the absolute and relative
location coverage. The results show that RS has the best coverage with 97.95% as
the algorithm has no guidance. The worst location coverage is with MA (38.24%),
supporting the motivation for this work. GridMA and ES improve coverage with
46.36% for GridMA and 70.29% for ES. Location coverage can serve as a measure
of the algorithm’s confidence in not overlooking vulnerable areas. Comparing the

Diversity Algorithms for Laser Fault Injection 133

unique locations with fail response between MA, GridMA, and ES, we see that
the algorithms find a similar number of unique locations with fail - around 48,
which is around 30% more than with RS (36.4). While similar in the number of
unique locations with fail outcome, GridMA found the most unique locations
on average with higher location coverage than MA. This improvement over MA
is not as significant as the difference in performance between the evolutionary
approaches and RS. Still, it shows the potential of diversity algorithms for secu-
rity evaluation as they provide better coverage and thus confidence in identified
vulnerabilities while delivering a similar improvement over RS in the number of
unique, vulnerable locations.

Table 2. The average number of unique parameter combinations and x-y locations per
fault class, and in total for all four algorithms. The average is calculated over five runs.

RS MA GridMA ES

Nb. comb. | Nb. loc. 6000 5877.2 6000 2294.6 6000 2781.4 6000 4217.4

Location coverage 0.9795 0.3824 0.4636 0.7029

fail comb. 37 36.4 2030.2 48.4 452 49.2 285.6 47

mute 74 73 194 60.4 266.2 70.4 271.6 93.2

mute pass 47.4 47 72.8 45.8 134.6 61.4 169.8 67.6

pass 5841.6 5723.4 3703 2218.8 5147.2 2704.8 5273 4088.6

6.3 Number of Location Clusters

Finding distant, vulnerable locations is considered more valuable as the smaller
regions could further be explored with an exhaustive search on a significantly
reduced search space [24]. Thus, we compare the algorithms based on the number
of observed location clusters with a specific fault class. We calculate the number
of clusters using the Mean Shift clustering algorithm. The bandwidth hyperpa-
rameter for the Mean Shift algorithm defines the window/region from which the
mean is calculated. We executed the clustering with different bandwidth values,
precisely 0.1, 0.2, 0.3, 0.4. With a bandwidth of 0.3, the region was large enough
to categorize all the x-y points as one cluster for all fault classes. Table 3 shows
the number of clusters averaged over five runs with bandwidth set to 0.1. Using
the same bandwidth ensures the number of clusters is comparable as the same
window size is considered. Note that if the number of clusters is more signifi-
cant, the vulnerabilities are observed in more distant and distinct locations on
the target, which is the desired objective. The results show that GridMA finds
the most clusters with fail outcome, implying that the observed locations are
more distant than other algorithms. GridMA and ES obtain a similar number
of clusters on average, closely followed by RS. MA, on the other hand, clearly
shows a smaller number of clusters observed. These results further emphasize the
benefits of diversity methods for security evaluation and finding multiple regions

134 M. Krček and T. Ordas

Table 3. The number of clusters based on Mean Shift clustering algorithm over the
unique x-y locations per fault class. The bandwidth size is 0.1. The number of clusters
is averaged over five runs.

RS MA GridMA ES

fail comb. 7.8 5.8 8.2 8

mute 11.4 8.6 9.6 10.6

mute pass 9.6 8.4 10.8 10.2

pass 41.8 37 34.2 33.8

sensitive to the utilized FI type. We checked the clustering model’s predictions
visually for several cases to ensure that classified clusters are meaningful. While
some more distinct locations were still clustered together using this bandwidth,
the predicted clusters seemed reasonable. Moreover, we use the same bandwidth
to ensure comparable results, as relative correlation is essential.

6.4 Further Exploring the Evolution Strategy Algorithm

The results show that evolutionary algorithms perform better than random
search when considering the number of unique FI parameter combinations and
unique locations with fail response. Considering the number of clusters, RS was
better than MA, but the diversity algorithms were better overall. Thus, while
the performance was not significantly improved using the diversity algorithms
considering these metrics, the observed minor improvements show promising
results. Therefore, we deem it necessary to explore these algorithms more within
the scope of future work. In this section, we explore several ES versions to obtain
enhanced performance.

We test the ES algorithm with a more common Gaussian mutation, which
uses the Gaussian distribution to set the probabilities of each of the param-
eter values getting selected. The mutation probability will then be used as a
standard deviation σ parameter, while the parameter’s current value will be the
mean μ. This mutation makes local changes more likely, while the more distant
significant changes have a low probability of occurring, but not zero. We refer
to this version of ES as ES gauss. Another modification we test is the initializa-
tion method, where we use a grid approach to set the parents of ES in distinct
regions over the target area, considering only the location parameters. This way,
the location parameters within the initial population are well-distributed, and
the evolution should have a better chance of observing more distant and dis-
tinct regions with fail response. This version of ES is named ES grid. We then
combine both modifications into a third version of ES referred to as ES grid
gauss. Lastly, we execute a GridES, similar to GridMA, where we run ES within
each grid cell over the target area. The grid is split in the same manner as for
GridMA. We ran the GridES with the ES grid version as it was the best consid-
ering the number of clusters, and it performed similarly to the best ES versions

Diversity Algorithms for Laser Fault Injection 135

Table 4. The average percentage of observed fault classes from all tested parameter
combinations (6 000) using five different versions of ES algorithm on the same IC. The
average is calculated over three runs.

ES
gauss

ES
grid

ES
grid gauss

GridES
grid

fail comb. 0.61% 4.19% 0.82% 0.82%

mute 1.83% 6.31% 2.02% 1.68%

mute pass 1.17% 2.85% 1.08% 0.94%

pass 96.39% 86.66% 96.08% 96.57%

considering the other two metrics. Note that the reported results from the new
ES versions are mean values from three runs, while the previous experiments
ran five times. From the results in Table 4, considering the number of unique
FI parameter combinations with fail response, the initial ES version per-
forms the best on average, followed by the ES grid version. The versions with
Gaussian mutation perform more closely to the results observed with random
search. However, applying grid initialization for the version with Gaussian muta-
tion did help increase the number of observed vulnerabilities. Still, using uniform
mutation proved better within these experiments. Similar to ES gauss and ES
grid gauss, GridES obtained a similar number of faults as RS. Considering the
number of unique locations with fail response, versions ES grid and ES grid
gauss were better than the initial ES version, as seen in Table 5. On average,
the number of unique locations is now closer to the best GridMA algorithm, and
it remains in the scope of previously observed improvements over RS using any
of the evolutionary approaches. Considering this metric, ES gauss and GridES
perform similarly to RS. Gaussian mutation increases the location coverage to
the same level as RS, as evident from the results with the ES gauss and ES
grid gauss. Finally, we consider the number of clusters with fail response in
Table 6, and the ES grid version found 9 clusters on average, while the GridMA,
had 8.2 clusters which was the previous best result. We also note that all the
ES versions observed more clusters than the initial version, and GridES had
the same number on average. Thus, we improved the initial ES, with the cru-
cial modification being the grid initialization. Gaussian mutation provided more
randomness in the location parameters, which led to enhanced location coverage
but less vulnerable parameter combinations and locations. However, interest-
ingly, all ES versions provided more clusters than RS and MA, demonstrating
the potential of diversity methods.

136 M. Krček and T. Ordas

Table 5. The number of unique parameter combinations and x-y locations per fault
class, and in total for all four algorithms. The average is calculated over three runs.

ES gauss ES grid ES grid gauss GridES grid

Nb. comb. | Nb. loc. 6000 5869 6000 4235.5 6000 5857.3 6000 4322

Location coverage 0.9782 0.7059 0.9762 0.7203

fail comb. 36.3 36 251 48 49 48.7 48.7 35.7

mute 110 107.3 378.5 124.5 121.3 121 101 78

mute pass 70 69.7 171 86.5 64.7 64.7 56.3 47

pass 5783.7 5666 5199.5 4075 5765 5632 5794 4216.3

Table 6. The number of clusters based on the Mean Shift clustering algorithm over the
unique x-y locations per fault class. The bandwidth size is 0.1. The number of clusters
is averaged over three runs.

ES
gauss

ES
grid

ES
grid gauss

GridES
grid

fail comb. 8.3 9 8.3 8

mute 11.3 10 9.6 10.3

mute pass 9 12 10 9.3

pass 32.3 31.5 27.6 40

7 Conclusions and Future Work

Previous works show the benefits of algorithms such as memetic algorithm in
finding more FI parameter combinations with vulnerabilities compared to com-
monly used random search. However, the observed results commonly come from a
single sensitive region, and during security evaluation, we do not want to neglect
possibly exploitable vulnerabilities. Thus, we propose diversity algorithms that
promote diversity in the population of evolutionary algorithms and test the
GridMA and Evolution Strategy and its variations. While we evaluate algorithms
considering the number of unique FI parameter combinations as in related work,
we additionally assess algorithm success based on the number of unique locations
(x-y) and clusters with faults as two additional metrics that better align with the
objective of finding multiple vulnerable regions. MA performs best only when the
number of faults is concerned. However, GridMA and ES with grid initialization
and Gaussian mutation (ES grid gauss) found more unique locations with faults.
Nonetheless, all evolutionary algorithms, including MA, found around 30% more
unique locations with fail responses than RS, performing similarly. Considering
the number of clusters, MA performed the worst, while ES with grid initializa-
tion (ES grid) had the most clusters, followed by the GridMA algorithm and
other ES versions. This work shows that the diversity approach helps find more
distant locations with the desired outcome. However, the improvements are less

Diversity Algorithms for Laser Fault Injection 137

significant than the difference between evolutionary algorithms and RS regard-
ing the number of FI parameter combinations. Thus, while this work showcases
the potential enhancement using the diversity approaches, future work could
consider (μ, λ)-ES and more advanced diversity algorithms to provide more sig-
nificant improvements.

References

1. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

2. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction.
Nat. Comput. 1, 3–52 (2002)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems (1997)
4. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it

if you can: parameter search strategies for successful fault injection. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 16

5. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

6. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Pri-
mas, R.: SIFA: exploiting ineffective fault inductions on symmetric cryp-
tography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572
(2018). https://doi.org/10.13154/tches.v2018.i3.547-572. https://tches.iacr.org/
index.php/TCHES/article/view/7286

7. Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Proceedings of the 2013 Workshop on Fault Diagnosis and Tol-
erance in Cryptography, FDTC 2013, USA, pp. 108–118. IEEE Computer Society
(2013). https://doi.org/10.1109/FDTC.2013.18

8. Hooke, R., Jeeves, T.A.: “Direct search” solution of numerical and statistical prob-
lems. J. ACM 8, 212–229 (1961)

9. Hutter, M., Schmidt, J.-M.: The temperature side channel and heating fault
attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp.
219–235. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 15

10. Kim, C.H., Quisquater, J.-J.: Fault attacks for CRT based RSA: new attacks, new
results, and new countermeasures. In: Sauveron, D., Markantonakis, K., Bilas, A.,
Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72354-7 18

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

12. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

13. Krček, M., Ordas, T., Fronte, D., Picek, S.: The more you know: improving laser
fault injection with prior knowledge. In: 2022 Workshop on Fault Detection and
Tolerance in Cryptography (FDTC), pp. 18–29. IEEE (2022)

14. Krček, M., Fronte, D., Picek, S.: On the importance of initial solutions selection in
fault injection. In: 2021 Workshop on Fault Detection and Tolerance in Cryptog-
raphy (FDTC), pp. 1–12 (2021). https://doi.org/10.1109/FDTC53659.2021.00011

https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.13154/tches.v2018.i3.547-572
https://tches.iacr.org/index.php/TCHES/article/view/7286
https://tches.iacr.org/index.php/TCHES/article/view/7286
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-540-72354-7_18
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1109/FDTC53659.2021.00011

138 M. Krček and T. Ordas

15. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

16. Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electro-
magnetic fault injection. In: 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 35–42. IEEE (2018)

17. Moradi, M., Oakes, B.J., Saraoglu, M., Morozov, A., Janschek, K., Denil, J.:
Exploring fault parameter space using reinforcement learning-based fault injec-
tion. In: 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 102–109. IEEE (2020)

18. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88. IEEE
(2013)

19. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts - towards memetic algorithms. Caltech Concurrent Computation Program
(2000)

20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

21. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor:
memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 159–173. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21476-4 11

22. Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic algorithms for
fault injection attacks. In: 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1106–
1111. IEEE (2014)

23. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-based
physical side-channel analysis. ACM Comput. Surv. 55(11), 1–35 (2023)

24. Rais-Ali, I., Bouvet, A., Guilley, S.: Quantifying the speed-up offered by genetic
algorithms during fault injection cartographies. In: 2022 Workshop on Fault Detec-
tion and Tolerance in Cryptography (FDTC), pp. 61–72. IEEE (2022)

25. Sedaghatbaf, A., Moradi, M., Almasizadeh, J., Sangchoolie, B., Van Acker, B.,
Denil, J.: DELFASE: a deep learning method for fault space exploration. In: 2022
18th European Dependable Computing Conference (EDCC), pp. 57–64. IEEE
(2022)

26. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

27. Werner, V., Maingault, L., Potet, M.L.: Fast calibration of fault injection equip-
ment with hyperparameter optimization techniques. In: Grosso, V., Pöppelmann,
T. (eds.) CARDIS 2021. LNCS, vol. 13173, pp. 121–138. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-97348-3 7

28. Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S.: A fast characterization method
for semi-invasive fault injection attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS,
vol. 12006, pp. 146–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-40186-3 8

https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-3-030-97348-3_7
https://doi.org/10.1007/978-3-030-40186-3_8
https://doi.org/10.1007/978-3-030-40186-3_8

One for All, All for Ascon:
Ensemble-Based Deep Learning

Side-Channel Analysis

Azade Rezaeezade1(B), Abraham Basurto-Becerra2, Léo Weissbart2,
and Guilherme Perin3

1 Delft University of Technology, Delft, The Netherlands
a.rezaeezade-1@tudelft.nl

2 Radboud University, Nijmegen, The Netherlands
3 Leiden University, Leiden, The Netherlands

Abstract. In recent years, deep learning-based side-channel analysis
(DLSCA) has become an active research topic within the side-channel
analysis community. The well-known challenge of hyperparameter tuning
in DLSCA encouraged the community to use methods that reduce the
effort required to identify an optimal model. One of the successful meth-
ods is ensemble learning. While ensemble methods have demonstrated
their effectiveness in DLSCA, particularly with AES-based datasets,
their efficacy in analyzing symmetric-key cryptographic primitives with
different operational mechanics remains unexplored.

Ascon was recently announced as the winner of the NIST lightweight
cryptography competition. This will lead to broader use of Ascon and a
crucial requirement for thorough side-channel analysis of its implemen-
tations. With these two considerations in view, we utilize an ensemble of
deep neural networks to attack two implementations of Ascon. Using an
ensemble of five multilayer perceptrons or convolutional neural networks,
we could find the secret key for the Ascon-protected implementation with
less than 3 000 traces. To the best of our knowledge, this is the best cur-
rently known result. We can also identify the correct key with less than
100 traces for the unprotected implementation of Ascon, which is on par
with the state-of-the-art results.

Keywords: Side-channel Analysis · Deep Learning · Ensemble · Ascon

1 Introduction

Introducing the Ascon family as a new standard for authenticated encryp-
tion [NIS23] has raised interest in the available implementations that could be
used in embedded devices and their security. Then, evaluating the physical secu-
rity of cryptographic implementations against side-channel analysis (SCA) is a
crucial step in developing secure embedded devices.

SCA is an implementation attack that exploits measurements of unintended
physical leakages of sensitive information from a device through side channels
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 139–157, 2024.
https://doi.org/10.1007/978-3-031-61486-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_9

140 A. Rezaeezade et al.

such as power consumption, electromagnetic emission, or timing. The analysis
methods for SCA have evolved since the first works on the subject, introducing
simple power analysis (SPA) and differential power analysis (DPA) [KJJ99].
Today, SCA methods are numerous and are classified into two main categories:
profiled and non-profiled attacks.

Non-profiled attacks, including Differential Power Analysis (DPA) [KJJ99],
Correlation Power Analysis (CPA) [BCO04], and Mutual Information Analysis
(MIA) [GBTP08], are techniques where an attacker uses a large set of measure-
ments and statistical tools to exploit the leakage of secret information.

Profiled attacks include techniques like template attack [CRR02], stochas-
tic attacks [SLP05], and machine learning-based attacks [MPP16], where the
attacker mounts the attack in two phases. In the first phase, known as pro-
filing/template building, the attacker needs access to a clone device to build
profiles. In the second phase, which is known as the attack/template matching
phase, the attacker matches the built profiles to recover the secret data.

Deep learning-based side-channel analysis (DLSCA) has become a research
hot spot from 2016 [MPP16]. The studies have reported many advantages for
this approach, including the robustness to different masking and hiding counter-
measures [MBC+20,MPP16,CDP17] and removing the need for pre-processing
[CDP17,KPH+19]. Despite all these advantages, it is frequently emphasized that
the principal challenge in DLSCA is the selection of a neural network model that
is tailored to the specific nuances of the problem at hand [PPM+23].

To overcome that challenge, different works have used various approaches,
including hyperparameter tuning [WPP22,RWPP21,AGF21], regularization
techniques [RB22], or designing a methodology for model selection [ZBHV20].
An interesting and effective strategy proposed to circumvent (or, at least alle-
viate) the challenge of finding an optimal model is the utilization of ensemble
techniques [PCP20], where multiple sub-optimal neural network models com-
bine to enhance the overall performance of DLSCA. While the results presented
in that work demonstrate the utility of the ensemble method in enhancing
attack performance, a gap in generalization across various cryptographic prim-
itive implementations is evident. Until recently, the publicly available datasets
for symmetric-key cryptography were centered around the AES primitive, as
discussed in [PPM+23].

Consequently, the effectiveness of many proposals, including the ensemble,
has been validated using only AES-based datasets. This raises a question about
the efficiency of diverse proposals in DLSCA for AES when considering other
cryptographic primitives. Ascon, the NIST lightweight cryptography competition
winner, currently being standardized for broad public use, is an ideal subject for
such investigation. The known vulnerability of the Ascon encryption mode of
operation to side-channel analysis and the availability of its datasets make it
an ideal candidate for this research. This shift toward considering Ascon as a
benchmark in DLSCA research not only aligns with its growing use but also
provides a broader perspective on the adaptability and efficiency of DLSCA
across different cryptographic primitives.

Ensemble-Based Deep Learning Side-Channel Analysis 141

In this research, we attack two software implementations (one unprotected
and one protected) of the Ascon primitive using the ensemble method. The key
contributions of our work are:

– Extension beyond AES-based experiments: Previous research demon-
strated the effectiveness of the ensemble method in DLSCA, only focusing on
the AES primitive. Our study extends this, showing that the ensemble method
is also effective for other cryptographic primitives. We particularly highlight
improved attack performance on protected Ascon implementations, where the
challenge is more significant, and the attacks have not been very successful
so far. The successful results with ensembles give hope that other DLSCA
proposals aiming at AES may generalize for other cryptographic primitives.

– Exploring Ascon in the context of side-channel analysis: With Ascon
being standardized by NIST and its usage expected to increase, there is a
pressing need for comprehensive side-channel analysis of its implementations.
In this research, we successfully attack both protected and unprotected Ascon
implementations using the ensemble method. Our attack using the ensemble
method outperforms the state-of-the-art results, emphasizing the necessity of
designing and implementing adequate countermeasures for vulnerable opera-
tions in Ascon’s implementation.

2 Preliminaries

2.1 Ascon Primitive

Ascon is a family of cryptographic algorithms designed to provide secure encryp-
tion and authentication in resource-constrained environments. This family of
cryptography primitives is based on sponge construction [BDPVA12] and was
selected by NIST in February 2023 to be standardized [NIS23] for lightweight
applications. Ascon is an authenticated encryption algorithm that includes asso-
ciated data, meaning it not only encrypts a message to maintain its confiden-
tiality but also attaches a tag to the encrypted message and associated data
to ensure integrity. The algorithm can take four inputs: plaintext P , associated
data A, nonce M , and a key k. It outputs the authenticated ciphertext C and an
authentication tag T . The algorithm includes four operation phases: initializa-
tion, associated data process, plaintext process (ciphertext process in decryption),
and finalization. Figure 1 shows these four phases of Ascon.

In Ascon-128, the input of the initialization phase is a 320-bit initial state
(IV ||k||M in Fig. 1 consisting of the 64-bit constant IV , the 128-bit key k, and
the 128-bit fresh nonce M) in the form of five 64-bit words x0 to x4. This
five-word state updates through the algorithm phases and is used as the secret
state (or the sponge state) for encryption (decryption) and tag generation. The
initialization phase includes twelve (same) permutation functions (shown as pa

in Fig. 1) that update the initial state. The permutation function consists of
three parts: 1) the addition of the round constants, 2) a non-linear five-bit S-box
(substitution layer), and 3) a linear diffusion layer.

142 A. Rezaeezade et al.

Fig. 1. Ascon’s mode of operation and S-box.

During a data exchange, data like headers and metadata must remain in
plaintext, but maintaining integrity is crucial for this data. The optional associ-
ated data processing phase maintains its integrity. In this phase, when an associ-
ated data block (Ai) is received, its first r = 64 bits is XORed to the first r = 64
bits of the sponge state, then the whole sponge state is permuted b = 6 times (pb

in Fig. 1). The associated data processing phase updates the sponge state using
the associated data blocks. Then, the updated sponge state attains the plaintext
process phase. The plaintext process phase XORs the 64-bit plaintext block Pi

with the first r = 64 bits of the sponge state to produce ciphertext block Ci.
Then, the whole state is transformed by the permutations pb, b = 6 to update
the sponge state for the next plaintext block. The finalization phase XORes the
key with the sponge state and transforms the results with pa, a = 12, to provide
the 128-bit authentication tag T . For more details about different parts of the
Ascon primitive, refer to [DEMS16].

2.2 Ensembles

Ensemble techniques combine multiple predictors (machine learning models or
deep neural networks) to reduce generalization error [GBC16]. The predictor can
be a simple machine learning method like a decision tree or an advanced one
like a deep neural network. Ensemble techniques work because different predic-
tors may capture various aspects of the data, and by combining them, one can
often achieve better performance than every single model contributing to the
ensemble. There are different techniques for ensemble predictors, including vot-
ing, bagging, boosting, and stacking. These techniques are different in how they
create and combine the models. For example, bagging involves training multiple
models independently and averaging their predictions. This method is useful for
reducing variance and overfitting. Boosting, on the other hand, trains models
sequentially, with each new model focusing on the data points that previous
models miss-classified, aiming to improve the predictive performance iteratively.
In deep learning, ensemble methods typically involve different architectures or
configurations of neural networks, such as varying numbers of layers, nodes, or
activation functions [PCP20].

Ensemble-Based Deep Learning Side-Channel Analysis 143

The ensemble method has also been used in the domain of SCA (see Sect. 3).
Our ensembling approach is aligned with the one Perin et al. used in [PCP20].
Their technique is specialized bagging (bootstrap aggregating), where the mod-
els in the ensemble are selected through a random search, and each model is
trained on the entire dataset (the “bag” used for training every single model
is equal to the whole training dataset). The models are trained independently.
We diverge from common practices like majority voting or averaging to inte-
grate the models’ output. That is because, in the context of DLSCA, models
often provide uncertain predictions about the class of a trace1. The accuracy
of models in an attack phase is marginally better (or sometimes even worse)
than a random guess [PCP20]. Consequently, techniques like majority voting or
averaging are ineffective in enhancing attack performance. As an alternative, we
exploit the small bias of the model outputs toward the correct class by utilizing
the guessing entropy metric. Section 2.3 provides more information about this
side-channel metric.

2.3 Deep Learning-Based Side-Channel Analysis

As mentioned in Sect. 1, profiling SCA has a phase of template building where
the attacker gathers many traces from a clone device and builds the templates
using those traces and a phase of template matching where the attacker matches
the traces from the device under attack with the templates to find out to which
template the traces belong. The output of the template matching phase is a
matrix of probabilities showing with what probability each trace belongs to each
template. Looking into the procedure of profiling SCA, deep learning (machine
learning) classification is a natural choice for profiling attacks. Template building
is equivalent to learning the classes2 using many examples during the training
phase and template matching is equivalent to classification on not previously
seen data in the test phase. Using softmax as the last layer of a deep neural
network, we can obtain the probability matrix as before. Using that matrix, we
can calculate the common metrics like guessing entropy and the required number
of attack traces to measure the performance of profiling SCA.

Guessing Entropy. In the attack phase of a profiled attack, guessing
entropy [Mas94,KB07] is the average number of guesses that must be made
before finding the correct key. The output of a profiling side-channel attack with
Q attack traces is a probability vector of key hypotheses h = [h1, h2, . . . , h|K|] in
decreasing order (i.e., h1 has the highest probability and h|K| the lowest probabil-
ity of being the correct key), where |K| is the key space. The information about
each key candidate is calculated using hi = ΣQ

j=1 log p(xj , y), where p(xj , y) is
the probability that the trace xi belongs to class y. Thus, guessing entropy is
1 Trace is the whole or part of the measurement given as input to the neural network.
2 Usually, classes are all the possible intermediate values specified by the selected

leakage model, something we know like the plaintext or public nonce, and the secret
key.

144 A. Rezaeezade et al.

the average position of the correct key, k∗, in h. Equation (1) shows the formal
definition of guessing entropy:

GE = E(rankk∗(h)), (1)

where rankk∗(h) denotes the position of the correct key k∗ in the probability
vector h, and E is the expectation operator. An attack is considered a successful
attack if GE = 1.

For the ensemble of models, we accumulate all individual models’ output
probabilities class-wise for each trace, and then the rest of the procedure is the
same as above.

Required Number of Attack Traces. The required number of attack traces
is the minimum number of traces needed to always place the correct key in the
first position of h.

3 Related Work

Two research streams are closely related to the work presented in this paper.
The first stream employs ensemble methods to improve SCA. The second stream
targets implementations of Ascon. The following section briefly summarizes what
has been done so far.

Ensemble methods were used in the SCA domain as soon as the community
started to use machine learning. For example, Picek et al. in [PHJ+17] used
Random Forest (which is an ensemble of decision trees), Rotation Forest, and
MultiBoosting, all methods that use ensembling to improve the accuracy of pre-
dictions. In [LMBM13] and [MPP16], researchers again used Random Forest,
which is one of the most popular options for machine learning-based SCA (next
to Support Vector Machines). In a recent work, which we consider as the first and
the most relevant from the DLSCA perspective, Perin et al. used bagging of mul-
tiple deep neural networks for attacking different AES implementation [PCP20].
One can find more details about [PCP20] in Sect. 2.2.

Several researchers have analyzed Ascon’s side-channel resistance since its
submission to the NIST lightweight competition. In [RAD20], a method named
SCARL is used to recover the secret key of an Ascon Artix-7 FPGA implemen-
tation. SCARL uses LSTM autoencoders for dimensionality reduction of S-box
operations power measurements and reinforcement learning for clustering key
candidates. In [SS23], transfer learning is used from gate-level power simula-
tion traces for an Ascon software implementation running on a custom-made
RISC-V SoC to improve the performance of DLSCA using raw power traces as
input (measured from a chip prototype of the same design). In [WP23], multi-
task learning is used to evaluate the side-channel resistance of protected and
unprotected Ascon datasets.

Ensemble-Based Deep Learning Side-Channel Analysis 145

4 Experimental Setup

4.1 Attack Point and Leakage Model

During the initialization and finalization phases of the Ascon encryption mode of
operation as described in Fig. 1, the secret key is directly involved with the nonce,
a user input data. Since this phase processes something we know (the nonce)
and the secret information we aim to obtain (the key), it can be the target of
side-channel analysis. As is the usual case for symmetric cryptography, the best
point to attack is the non-linear S-box output of first-round permutation. The
S-box operation in Ascon takes 5-bit inputs from the sponge state and gives
5-bit outputs (Fig. 2). The S-box operates column-wise, i.e., the input includes
only one bit from each word x0 to x4 at a time.

Fig. 2. Ascon column-wise S-box. S-box operation takes 5-bit input that includes only
one bit from each word xi and gives 5-bit output that contains one bit from each
word yi.

The Ascon S-box layer is a column-wise operation on the sponge state,
applied to an individual column of the sponge state with 64 columns. One signif-
icant benefit of the Ascon S-box operation is its ability to be executed through
XOR and AND operations on xis [DEMS16]. Taking xis as the inputs of the
S-box layer and yis as the outputs of this layer, the outputs of the non-linear
S-box can be calculated as:

y0 = x0 + x1 + x2 + x3 + x1x2 + x0x1 + x1x4

y1 = x0 + x1 + x2 + x3 + x4 + x1x2 + x1x3 + x2x3

y2 = x1 + x2 + x4 + x3x4 + 1
y3 = x0 + x1 + x2 + x3 + x4 + x0x3 + x0x4

y4 = x1 + x3 + x4 + x0x1 + x1x4 = x1(1 + x0 + x4) + x3 + x4.

(2)

In our approach to target the first round of permutation, we substitute the
xi values with their original values, which consist of the public constant, the
key’s high and low parts, and the nonce’s high and low parts for x0 to x4,
respectively. By examining Eq. (2), it is evident that in y4, all components are
public except for x1 (the key’s high part). This characteristic makes y4 a practical
intermediate value for side-channel attacks. Furthermore, it is feasible to deduce

146 A. Rezaeezade et al.

x1 using a divide-and-conquer3 strategy and retrieve x1 with 8-bit chunks. We
use the following leakage model to recover the whole x1 in eight attacks.

Y = k
(1)
i &(255 ⊕ IVi ⊕ M

(1)
i) ⊕ M

(1)
i ⊕ M

(2)
i i = 0, ..., 7 (3)

To obtain the remaining key bits (x2), we use y0 or y1 (since they have non-
linear terms including x2) as the intermediate value. The other half of the key,
x1, can be taken as a known, and the recovered value can be replaced in the
selected intermediate value.

Comparing with Attacking AES: As mentioned in Sect. 1, most of the pub-
lished research in the DLSCA domain focused on AES-based datasets. Here, we
mention some similarities and differences between the side-channel analysis of
AES and Ascons to make our attack easier to understand.

The most highlighted difference between attacking Ascon and AES stems
from these algorithms’ structure differences. AES-128 has ten rounds of S-
box, shift rows, mix columns (except for the last round), and add round key,
while Ascon has a sponge-based construction with initialization and finaliza-
tion phases. In the AES, the side-channel attacks target the first or last rounds
because only these two rounds operate on a known value (plaintext in the first
round and ciphertext in the last round) and the key. The structure of the Ascon
algorithm is entirely different from AES, and only the initialization and final-
ization phases of this algorithm seem to be vulnerable against SCA. While the
known values in the case of AES are plaintext or ciphertext, they are nonce and
the tag in the case of Ascon. Consequently, there are fundamental differences in
the S-box implementation of Ascon and AES. For instance, in the case of AES,
S-box input is a combination of key and plaintext, while it is a combination of
two bits of the key, two bits of the nonce, and one bit of the initial value in the
case of the Ascon. However, in both cases, the S-box output seems the most effec-
tive point to attack as this point offers non-linearity. Also, divide-and-conquer
is helpful in both cases.

4.2 Datasets

Considering the primary goal of this research is evaluating the effectiveness of the
ensemble method for attacking Ascon primitive implementation, we use two pub-
licly available datasets4 introduced in [WP23]. The first dataset, referred to as
Ascon-Unprotected from this point, is provided using the 32-bit optimized imple-
mentation of Ascon-128 v1.2. The other dataset, referred to as Ascon-Protected,
is provided using a first-order protected implementation of Ascon. This imple-
mentation uses bit-interleaved and a specific masking countermeasure designed

3 Divide-and-conquer strategy is a strategy to recover a long key by retrieving its
smaller parts separately.

4 https://zenodo.org/records/10229484.

https://zenodo.org/records/10229484

Ensemble-Based Deep Learning Side-Channel Analysis 147

to be efficient with the Ascon S-box5. The C implementations by the Ascon team
are available in their GitHub repository [SDG+20]. Traces are collected using
a ChipWhisperer Lite board and an 8-bit precision oscilloscope, coupled with
the STM32F4 target running at a frequency of 7.37MHz. Both datasets contain
traces of Ascon’s first-round permutation during the initialization phase. We use
60 000 traces from the datasets; the first 50 000 traces are collected with random
keys, used for training, and 10 000 traces are collected using a fixed key, used for
the attack phase. Traces from the Ascon-Unprotected dataset have 772 samples,
and from the Ascon-Protected dataset have 1 408 samples.

4.3 Neural Network Architectures

Multilayer Perceptron (MLP) is a class of feedforward artificial neural net-
works (ANNs) that consist of at least three layers of nodes: an input layer, one or
more hidden layers, and an output layer. Each layer has one or more neurons con-
nected to the neurons in the following layer through weighted edges. These neu-
rons typically include a non-linear activation function, which allows the network to
learn non-linear relationships between input and output data. The MLP learns to
map input data to the correct output through an iterative optimization algorithm
that adjusts the weights of the connections by minimizing a loss function. To min-
imize the loss function, ANNs mostly use gradient descent and back-propagation.
MLPs are usually used for tasks like classification and regression.

Convolutional Neural Network (CNN) is another class of feedforward neu-
ral networks. CNNs have one or more convolutional layers followed by one or
more fully connected layers. The convolutional layers apply a set of learnable
filters (sometimes known as kernels) to the input. Filters are simply vectors
(in the one-dimensional convolution) or matrices (in the two-dimensional con-
volution) of coefficients that update during a process similar to that of MLPs.
An activation function is used after each convolution layer to add non-linearity.
Then, there can be a max/average pooling layer that simply reduces the spa-
tial size of the representation expanded by the filters. The network extracts the
most important features using a combination of filters and pooling layers. CNNs
are commonly used for classification, but their architecture can be adapted for
regression by altering the final layer and the loss function.

4.4 Methodology

This section provides a set of experiments to inspect the ensemble method’s
effectiveness for DLSCA. To evaluate the efficacy of ensembles, we compare
5 The masking technique used in the implementation is called Domain-Oriented Mask-

ing (DOM). It is a specialized technique used in cryptographic hardware, but it can
also be applied in software implementation. It involves dividing a circuit into sep-
arate domains, each handling only one part of the data. This separation ensures
that each domain only accesses a specific portion of the data, reducing the risk of
data leakage through side-channel attacks. For more reading, one can look into the
implementation of Ascon and [GIB18].

148 A. Rezaeezade et al.

Table 1. Random search range for MLP and CNN hyperparameters.

Hyperparameter Range

MLP’s Architecture Hyperparameters

Number of neurons [30, 40, 50, 60, 70, 80, 90, 100, 120, 150]

Number of layers [2, 8], step = 1

CNN’s Architecture Hyperparameters

Number of convolution layers [2, 4], step = 1

Number of filters [4, 20], step = 2

First layer’s filter size [4, 24], step = 2

i(th) layer filter size ((i− 1)filter size)2

Stride [2, 10], step = 2

Pooling “Average”, “Max”

Pooling size [4, 10], step = 2

Pooling stride [4, 10], step = 2

Number of dense layers [2, 4], step = 1

Number of neurons in dense layers [50, 100, 150, 200, 300, 400, 500]

Common Learning Hyperparameters in MLP and CNN

Learning rate random.uniform(0.0001, 0.001)

Activation function “relu”, “tanh”, “selu”, “elu”

Optimizer “Adam”

Weight initialization “he uniform”

Batch size 128

Epochs 10

the performance of the ensemble (a group of the neural network models) with
the performance of the best model. To show that the results can be general-
ized, the experiments are conducted on two different datasets introduced in
Sect. 4.2(Ascon-Unprotected and Ascon-Protected). To assure that the results
are valid for various neural network topologies, we employed MLP and CNN
models (Sect. 4.3) combined with the leakage model introduced in Sect. 4.1. Using
two datasets, two neural network topologies, and a single leakage model gives
us four combinations. In each combination, we aim to retrieve x1, which is eight
bytes of the sixteen-byte secret key. We use a divide-and-conquer strategy, i.e.,
we repeat the following steps eight times for each combination, and each time,
we retrieve a sub-key of size one byte.

– Acquiring best predictor: In [WPP22], Wu et al. showed that random
search can reach neural network models with top performance when one
attacks relatively easy datasets. Considering this, we generate fifty different
models using random search. The range of hyperparameters for the random
search is given in Table 1). Then, we use guessing entropy to compare the per-
formance of these fifty models and take the model with the best performance

Ensemble-Based Deep Learning Side-Channel Analysis 149

as the best model. It is worth mentioning that the selected model is not the
best possible model. Other, more advanced hyperparameter tuning techniques
(like reinforcement learning [RWPP21] or Bayesian optimization [WPP22])
or searching with a wider range of hyperparameters with more randomly
generated models can lead to models with better performance. Hence, our
experiments aim not to find an optimal model, and we only want to investi-
gate whether the ensemble performs better than the single best model. We
report the best model’s guessing entropy (GE-Best) and its required number
of attack traces (NT-Best) as the performance of the best model.

– Acquiring ensemble: To benefit from the ensemble method in general, a
group of neural networks that individually can learn the problem and give
predictions better than random guesses is needed. Since accuracy is not a
good metric to judge the performance of a model in the side-channel analy-
sis domain, we use guessing entropy to select models that perform the best
among the randomly generated models. We take five6 models with the small-
est guessing entropy from the pool of randomly generated models to be used
in the ensemble.
The selected models do not necessarily need to find the key (reach GE = 1);
they only need to reduce the GE to small values. In Sect. 2.3, we have seen
that guessing entropy can be calculated by accumulating the probability that
the neural network gives for each key hypothesis over the attack traces. We
sum up the probabilities for each key hypothesis from all individual models
in the ensemble and accumulate that over the attack traces. We report the
final guessing entropy as the ensemble guessing entropy and refer to it as
GE-Ensemble. The required number of attack traces can be calculated using
the GE-Ensemble, which we call NT-Ensemble.

– Comparing the best model and the ensemble performance: The final
step is comparing the performance of the best-acquired models (GE-Best
and NT-Best) and the performance of the ensemble model (GE-Ensemble
and NT-Ensemble). The selected group of predictors for the ensemble always
includes the best predictor, and improved performance means that the ensem-
ble method was effective.

5 Experimental Results

The objective of this section is to demonstrate the effectiveness of using the
ensemble method for side-channel analysis of the Ascon primitive implementa-
tion. As noted in Sect. 1, the ensemble method has only been utilized to attack
AES primitive implementations. Thus, its effectiveness for other primitives is
unclear. We demonstrate that the ensemble technique enables successful attacks
on both unprotected and protected implementations of the Ascon primitive. Our
6 This number can vary depending on the problem, the complexity of individual mod-

els, and the desired balance between performance and complexity. In our experi-
ments, we observed that five models could already offer good performance improve-
ment.

150 A. Rezaeezade et al.

results confirm that the ensemble method is the most efficient technique to attack
Ascon’s protected implementation so far. Moreover, the success of the ensemble
method attacking Ascon’s unprotected implementation matches the success of
a model selected through Bayesian optimization [WP23], again confirming that
the ensemble of weaker learners can match the performance of a single model
selected through an advanced hyperparameter tuning process.

Fig. 3. Guessing entropy for Ascon-Unprotected. On top, each color shows the evolu-
tion of guessing entropy for ensemble of five MLPs (a) and the best-found MLP (b)
selected from a pool with fifty randomly generated MLP for each sub-key. On the bot-
tom, each color shows the evolution of guessing entropy for ensemble of five CNNs (c)
and the best-found CNN (d) among fifty randomly generated ones for each sub-key.
(Color figure online)

5.1 Ascon-Unprotected

This section presents experimental results when attacking Ascon-Unprotected,
an unprotected software implementation of Ascon, using the ensemble method,
and compares the results with the performance of the best-found models with
random search. Figure 3a shows the evolution of guessing entropy using the
ensemble method for eight sub-keys. For each sub-key, the ensemble combines

Ensemble-Based Deep Learning Side-Channel Analysis 151

Fig. 4. The required number of attack traces with and without ensemble method in
the Ascon-Unprotected dataset. On the left side, the required number of attack traces
using the best MLP (green) and the ensemble of five MLPs (orange) is compared. On
the right side, the required number of attack traces using the best CNN (green) and
the ensemble of five CNNs (orange) is compared. (Color figure online)

the five best MLP neural networks selected among fifty randomly generated
ones. In contrast, Fig. 3b depicts the guessing entropy evolution for the same
sub-keys but employing the best-found MLP model. Observe that the reduction
in guessing entropy is generally fast, though slightly slower for certain sub-keys.
Figure 4a offers a clearer view of the impact of using the ensemble method. The
effectiveness is most evident for key 3, where the required number of attack traces
drops from 100 to 70. However, in half of the cases, using the ensemble method
slightly increased the required number of attack traces. This observation is not
unusual in scenarios where the problem tackled by the deep neural networks is
relatively straightforward. For instance, a closer look into the performance of all
randomly generated MLPs for sub-key 4 (key 4 in Fig. 3a) shows that more than
80% of the models could reveal the key with fewer than 10 traces, indicating
that the attack is relatively easy for all the generated models. Consequently,
finding an optimal model for this sub-key does not need much effort, and using
the ensemble method does not offer additional performance benefits.

Turning to CNNs, Fig. 3c and Fig. 3d show the guessing entropy evolution
for the same eight sub-keys, using an ensemble of the five best CNNs and the
best-found CNN among fifty randomly generated ones for each sub-key. The
ensemble’s overall performance generally surpasses that of the best CNNs. How-
ever, when comparing MLP and CNN performances, it is apparent that either
the best MLP or the ensemble of MLPs is typically more effective in key recov-
ery. This observation has been mentioned in [RB22] as the “general ability of
MLP models to find the key” and the “potential ability of CNN models to find
the key”. As discussed in [RB22], a limited number of MLP neural networks are
more successful in reducing guessing entropy on average than the same number
of CNN neural networks. Yet, with a more detailed architecture search, usually
the best-found CNN outperforms the best-found MLP in key recovery.

152 A. Rezaeezade et al.

A comparison of Fig. 4a and Fig. 4b reveals that the best CNN requires at
least five times more traces than the best MLP to recover a key. This observation
suggests that our search within the hyperparameter space detailed in Table 1 was
not detailed enough, with no CNN model coming close to the optimal solution
among the randomly generated models. However, the ensemble of CNN models
could improve the attack performance compared to the best-found CNN, indicat-
ing that the ensemble is more helpful when dealing with a group of weak models
rather than a group of powerful models. Comparing our results to the multi-task
model on the Unprotected-Ascon dataset from previous work [WP23], we can
see that the ensemble method with CNNs is on par with the multi-task model,
recovering the key with around 1 000 traces. However, the ensemble method with
MLPs can recover the key with about 100 traces, which is significantly better
than the multi-task model where for some sub-keys more than 1 000 traces were
needed.

5.2 Ascon-Protected

Next, we outline experimental results when attacking Ascon-Protected, a first-
order protected software implementation of Ascon. The experiments in this
section present a more challenging test for the efficacy of the ensemble method,
particularly because the considered dataset is not easy to break [WP23].
Figure 5a illustrates the evolution of guessing entropy using an ensemble of five
MLP neural networks. Figure 5b shows the same attack using the best-found
MLP for each sub-key. Comparing these two figures shows that the reduction in
guessing entropy using the ensemble method is much faster than the best-found
MLP. The superior performance of the ensemble method is highlighted when
analyzing the required number of attack traces. Figure 6a compares the required
number of attack traces for both the ensembles and the best MLP. Clearly, the
best MLP could only reveal sub-key 3 (key 3 in Fig. 6a) and sub-key 8 (key 8 in
Fig. 6a), whereas the ensemble of MLPs successfully recovered all the sub-keys
except sub-key 2 (key 2 in Fig. 6a)7.

Similar observations apply to the CNN models, as shown in Fig. 5c and
Fig. 5d. The ensemble method allows for the reduction of all sub-keys guess-
ing entropy to GE = 1, except for sub-key 4 (key 4 in Fig. 5c), while none of the
best-found CNNs in the pools of randomly generated CNN models could reduce
GE to one. The stark contrast is further evident in Fig. 6b.

Considering the results from the ensemble learning on the Ascon-Protected
and Ascon-Unprotected datasets, we can conclude that the ensemble method is
significantly more effective for challenging datasets, where finding optimal mod-
els is more difficult. This conclusion can be supported by the similar performance
7 This observation again emphasizes that extracting some sub-keys is more challenging

than others. This difficulty stems from the difference in the amount of leakage for
each sub-key. This difference in leakage can come from the architecture of the target
(related to the hardware) or the implementation of the algorithm (related to the
software). However, this is a common phenomenon in SCA, and to justify it, we
need to get deeper into hardware and software implementations.

Ensemble-Based Deep Learning Side-Channel Analysis 153

Fig. 5. Guessing entropy for Ascon-Protected. On top, each color shows the evolution
of guessing entropy for ensemble of five MLPs (a) and the best-found MLP (b) selected
from a pool with fifty randomly generated MLP for each sub-key. On the bottom, each
color shows the evolution of guessing entropy for ensemble of five CNNs (c) and the
best-found CNN (d) among fifty randomly generated ones for each sub-key.

of both the ensembles and the best-found MLP model in the Ascon-Unprotected
dataset and the considerably improved results using the ensemble method in the
Ascon-Protected dataset. The difference in the effectiveness of using the ensem-
ble method in these two datasets stems from the difficulty of finding optimal
and sub-optimal neural network models. Since it is relatively easy to find pow-
erful models for the Ascon-Unprotected dataset, the ensemble method does not
offer much improvement. In contrast, in the case of Ascon-Protected, almost
all the best-found models performed poorly. However, combining those weak
models through the ensemble method could still significantly improve the attack
performance.

It is worth mentioning that using an ensemble of good models is more effective
compared to an ensemble of poor models (as expected). While the ensemble
method can offer better performance even using poor models, combining good
models provides more performance benefits [MK23]. One should consider that
with a good model, we do not mean an optimal model but a sub-optimal one

154 A. Rezaeezade et al.

Fig. 6. The required number of attack traces with and without ensemble method in
the Ascon-Protected dataset. On the left side, the required number of attack traces
using the best MLP (green) and the ensemble of five MLPs (orange) is compared. On
the right side, the required number of attack traces using the best CNN (green) and
the ensemble of five CNNs (orange) is compared. (Color figure online)

that can still find the key or reduce the guessing entropy to small values. In
the case of the Ascon-Protected dataset, most of the best-found models in our
experiments were not good enough to break the target. To find individual models
with better performance, we could extend the range of the hyperparameters
outlined in Table 1 and increase the number of models in the random models’
pool to increase the chance of finding better models.

The result from our ensemble method on the Ascon-Protected dataset signif-
icantly improved over the previous work [WP23], where the authors could not
recover all the bits of the key with their multi-task model. We can recover the
key with less than 3 000 traces using the ensemble method.

6 Conclusions and Future Work

This research investigated the effectiveness of applying an ensemble method to
attack both protected and unprotected implementations of the Ascon primitive.
While the ensemble method was considered before in DLSCA, its effectiveness
for symmetric-key primitives was only validated using AES-based datasets, lead-
ing to questions about its applicability to primitives with different operational
logic. Our research demonstrated the successful application of ensemble methods
to Ascon implementations. Besides, using the ensemble of neural network mod-
els, we improved state-of-the-art attacks on Ascon’s protected implementation,
underscoring that future implementations should consider the current vulnera-
bilities and that stronger countermeasures are needed to prevent DLSCA. Our
experimental results show that with an ensemble of (only) five neural network
models, it is possible to extract the secret key with less than 3 000 traces from
the protected implementation and, at most, with 100 traces from the unpro-
tected implementation. One possible future work in this direction is using better
(and more) models for the ensemble, where we stipulate it can improve the final
performance even further.

Ensemble-Based Deep Learning Side-Channel Analysis 155

As the next step, we intend to investigate whether an ensemble of neural
networks of different types (ensemble of different topologies like MLP and CNN)
trained using different leakage models can improve the attack performance. Our
intuition is that a model with a particular topology trained with the same leakage
model tends to generate less diverse predictions than models with a different
topology trained with different leakage models. Indeed, when we use a dataset
and a specific combination of neural network topologies and leakage models, the
acquired models are less diverse and mostly focus on similar leakage (points of
interest). By integrating diverse neural network types and leakage models into
our ensemble, we aim to extract a richer spectrum of information from individual
traces, potentially leading to more potent and efficient DLSCA.

References

[AGF21] Acharya, R.Y., Ganji, F., Forte, D.: InfoNEAT: information theory-based
neuroevolution of augmenting topologies for side-channel analysis. CoRR,
abs/2105.00117 (2021)

[BCO04] Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage
model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28632-5 2

[BDPVA12] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the
sponge: single-pass authenticated encryption and other applications. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-
0 19

[CDP17] Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with
data augmentation against jitter-based countermeasures. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 3

[CRR02] Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç,
K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 3

[DEMS16] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2.
Submission to the CAESAR Competition 5(6), 7 (2016)

[GBC16] Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge (2016)

[GBTP08] Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information anal-
ysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85053-3 27

[GIB18] Groß, H., Iusupov, R., Bloem, R.: Generic low-latency masking in hard-
ware. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 1–21 (2018)

[KB07] Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-
channel attacks. In: Ning, P., De Capitani di Vimercati, S., Syverson,
P.F. (eds.) Proceedings of the 2007 ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA, 28–31
October 2007, pp. 286–296. ACM (2007)

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27

156 A. Rezaeezade et al.

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 25

[KPH+19] Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise.
Unleashing the power of convolutional neural networks for profiled side-
channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3),
148–179 (2019)

[LMBM13] Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine
learning approach against a masked AES. In: Francillon, A., Rohatgi, P.
(eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 5

[Mas94] Massey, J.L.: Guessing and entropy. In: Proceedings of 1994 IEEE Inter-
national Symposium on Information Theory, p. 204 (1994)

[MBC+20] Masure, L., et al.: Deep learning side-channel analysis on large-scale
traces. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS
2020. LNCS, vol. 12308, pp. 440–460. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58951-6 22

[MK23] Mohammed, A., Kora, R.: A comprehensive review on ensemble deep
learning: opportunities and challenges. J. King Saud. Univ. Comput. Inf.
Sci. 35(2), 757–774 (2023)

[MPP16] Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic imple-
mentations using deep learning techniques. In: Carlet, C., Hasan, M.A.,
Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49445-6 1

[NIS23] NIST Information Technology Laboratory. NIST lightweight cryptography
standardization process. The National Institute of Standards and Technol-
ogy (2023). https://csrc.nist.gov/News/2023/lightweight-cryptography-
nist-selects-ascon

[PCP20] Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: improving gen-
eralization with ensembles in machine learning-based profiled side-channel
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 337–364
(2020)

[PHJ+17] Picek, S., et al.: Side-channel analysis and machine learning: a practical
perspective. In: 2017 International Joint Conference on Neural Networks,
IJCNN 2017, Anchorage, AK, USA, 14–19 May 2017, pp. 4095–4102. IEEE
(2017)

[PPM+23] Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-
based physical side-channel analysis. ACM Comput. Surv. 55(11), 227:1–
227:35 (2023)

[RAD20] Ramezanpour, K., Ampadu, P., Diehl, W.: SCARL: side-channel analy-
sis with reinforcement learning on the Ascon authenticated cipher. arXiv
preprint arXiv:2006.03995 (2020)

[RB22] Rezaeezade, A., Batina, L.: Regularizers to the rescue: fighting overfit-
ting in deep learning-based side-channel analysis. IACR Cryptology ePrint
Archive, p. 1737 (2022)

[RWPP21] Rijsdijk, J., Lichao, W., Perin, G., Picek, S.: Reinforcement learning
for hyperparameter tuning in deep learning-based side-channel analysis.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 677–707 (2021)

[SDG+20] Schläffer, M., Dobraunig, C., Großschädl, J., dos Santos, L.C., Bachmann,
F., Eichlseder, M.: ASCON-C Implementation. Github repository (2020).
https://github.com/ascon/ascon-c

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-319-08302-5_5
https://doi.org/10.1007/978-3-030-58951-6_22
https://doi.org/10.1007/978-3-030-58951-6_22
https://doi.org/10.1007/978-3-319-49445-6_1
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
http://arxiv.org/abs/2006.03995
https://github.com/ascon/ascon-c

Ensemble-Based Deep Learning Side-Channel Analysis 157

[SLP05] Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential
side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005.
LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/
10.1007/11545262 3

[SS23] Shanmugam, D., Schaumont, P.: Improving side-channel leakage assess-
ment using pre-silicon leakage models. In: Kavun, E.B., Pehl, M. (eds.)
COSADE 2023. LNCS, vol. 13979, pp. 105–124. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-29497-6 6

[WP23] Weissbart, L., Picek, S.: Lightweight but not easy: side-channel analy-
sis of the Ascon authenticated cipher on a 32-bit microcontroller. IACR
Cryptology ePrint Archive, p. 1598 (2023)

[WPP22] Wu, L., Perin, G., Picek, S.: I choose you: automated hyperparameter
tuning for deep learning-based side-channel analysis. IEEE Trans. Emerg.
Top. Comput. 1–12 (2022)

[ZBHV20] Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient
CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(1), 1–36 (2020)

https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-031-29497-6_6

CNN Architecture Extraction on Edge
GPU

Péter Horváth1(B), Lukasz Chmielewski2, Leo Weissbart1, Lejla Batina1,
and Yuval Yarom3

1 Radboud University, Nijmegen, The Netherlands
peter.horvath@ru.nl

2 Masaryk University, Brno, Czech Republic
3 Ruhr University, Bochum, Germany

Abstract. Neural networks have become popular due to their versatility
and state-of-the-art results in many applications, such as image classifi-
cation, natural language processing, speech recognition, forecasting, etc.
These applications are also used in resource-constrained environments
such as embedded devices. In this work, the susceptibility of neural net-
work implementations to reverse engineering is explored on the NVIDIA
Jetson Nano microcomputer via side-channel analysis. To this end, an
architecture extraction attack is presented. In the attack, 15 popular con-
volutional neural network architectures (EfficientNets, MobileNets, Nas-
Net, etc.) are implemented on the GPU of Jetson Nano and the electro-
magnetic radiation of the GPU is analyzed during the inference operation
of the neural networks. The results of the analysis show that neural net-
work architectures are easily distinguishable using deep learning-based
side-channel analysis.

Keywords: Deep Learning · Side Channel Attack · NVIDIA GPU

1 Introduction

The field of machine learning has seen an enormous amount of interest and use
in recent years. One specific area of machine learning, namely deep learning, has
proven to be versatile and provides state-of-the-art performance for many real-
world applications. Deep learning refers to multi-layer Artificial Neural Networks
(ANNs) that learn to solve a task by extracting the important features from data
and generalizing well to that task. These tasks, such as games, object detection,
image classification, or natural language processing, can be vastly different.

AlphaGo [32] is one of the deep learning-based breakthroughs where a neural
network learned to play Go and was able to beat one of the best human Go
players at the time. Similarly, AlphaZero [33] was developed to play chess and
outperformed human players. Lastly, AlphaStar [39] achieved superior levels,
compared to human players, in the StarCraft 2 real-time strategy computer
game, beating multiple of the best players in the world.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 158–175, 2024.
https://doi.org/10.1007/978-3-031-61486-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_10

CNN Architecture Extraction on Edge GPU 159

Additionally, image classification is a fundamental problem of computer
vision where deep learning models have achieved state-of-the-art results and
continue to provide improvements [6,8,17,20,34]. A more general problem in
computer vision concerns the field of object detection, which has also seen enor-
mous improvements in accuracy due to neural networks [21].

Similarly, deep learning provided multiple breakthroughs in Natural Lan-
guage Processing (NLP) in recent years [26]. NLP is a broad field that aims to
solve practical issues concerning human languages, such as information retrieval,
summarisation, or machine translation. Google Translate [2] and ChatGPT [25]
are popular NLP applications based on the Transformer [38] neural network
architecture.

Neural networks are changing many areas of our lives and are becoming
indispensable in our everyday lives. However, the design and training of neural
networks can be expensive in many ways, as follows:

1. Collecting the training dataset can be time-consuming and expensive;
2. Designing and training neural networks requires people with expertise;
3. The time it takes to train and validate a model can range from hours to weeks;
4. The cost of training and tuning can be high due to requiring specialized,

high-performance hardware, e.g., graphics processing units (GPUs).

Additionally, sometimes sensitive data is used to train a neural network, and
this data can also be vulnerable to reverse engineering. Therefore, keeping the
architecture and parameters of the trained models secret becomes an important
issue.

Beyond their great successes, neural networks also face a wide variety of
adversarial attacks. These attacks can have different goals, such as causing mis-
classification, input recovery, or reverse engineering architecture.

One kind of technique that attackers can employ is Side-Channel Analy-
sis (SCA). SCA exploits the physical leakages of electronic devices to extract
secret information. Despite existing countermeasures against SCA-based attacks,
it is not always possible to utilize these countermeasures, especially in resource-
constrained environments, because countermeasures usually come at a price of
speed and cost.

Therefore, this work will focus on the following research question: Are neu-
ral network implementations of large-scale convolutional neural net-
works on the GPU of NVIDIA Jetson Nano vulnerable to reverse
engineering using deep learning-based side-channel analysis?

The GPU platform is targeted because neural network implementations,
especially convolutional neural networks, in practice, often run on GPUs because
the core operations of neural networks are matrix operations (e.g., multiplica-
tions). These operations are highly parallelizable, which makes GPUs more suit-
able than CPUs for neural network-based applications.

160 P. Horváth et al.

1.1 Comparison with Related Work

In this work, we analyze electromagnetic and timing side channel information
similarly to the CSI-NN paper, which analyzed NNs running on microcontrollers
[3]. However, we focus on well-known and widely used, large-scale convolutional
neural network architectures in computer vision with a different and more pop-
ular platform for neural networks as the target, i.e. the GPU. In practice, since
GPUs provide efficiency through parallelism, they are commonly used to run
neural networks, especially large-scale ones. This GPU parallelism also poses a
big challenge in analyzing side-channel signals, as the number of concurrently
executing threads is much larger than that of microcontroller applications. More-
over, the attacks presented in this paper do not require the decapsulation of the
target chip, contrary to [3].

The work of Chmielewski and Weissbart [5] targets the same platform as we
do in this work, with the goals and methods similar to those of [3]. Basically, the
number of neurons, number of layers, and activation function types are recovered
based on using electromagnetic side-channel and timing information. However,
our work goes further in extending the approach to large-scale architectures and
showing that recovering neural net architectures used in real-world application
is viable.

In addition, some other works target desktop GPUs to extract hyperparam-
eters [19,23] but not an embedded system like the Jetson Nano that might be
deployed in an environment where an adversary is more likely to have physical
access.

A side-channel-based attack on neural networks is also presented in [40],
where the architecture extraction of neural networks, implemented on the CPU
of Raspberry Pi, is demonstrated using power-side channel analysis and machine
learning. The extracted architectures are similar to those in this work, but the
classification method, the target platform, and the used side channel are different
as they classify power traces with a Support Vector Machine (SVM) classifier.

1.2 Contributions and Outline

The target device in this work is the NVIDIA Jetson Nano, which is a micro-
computer tailored to run AI applications in a resource-constrained environment.
As already stated above, we demonstrate an architecture extraction attack by
distinguishing among a number of well-know neural net architectures on this
platform.

To summarize, the main contributions of this work are:

1. We demonstrate how complex convolutional neural network architectures
can be extracted by visually inspecting electromagnetic side-channel mea-
surements. To that end, 15 well-known neural network architectures from
computer vision are classified based on the electromagnetic radiation of the
device’s GPU.

2. We also show how the process of distinguishing the architectures can be auto-
mated using a deep learning classifier.

CNN Architecture Extraction on Edge GPU 161

This papers is organized as follows. Prior to discussing the experiments and
results, Sect. 2 gives an introduction to related topics. First, the investigated
neural network architectures are discussed in detail. Next, the relevant concepts
from side-channel analysis are introduced. Section 3 discusses the experimental
setup as well as the results of reverse engineering. Section 4 provides a discussion
about the results and possible countermeasures. Section 5 concludes the paper.

2 Background

2.1 CNN Architectures

This section introduces the convolutional neural network architectures that are
analyzed in this work. Most of these architectures are suitable for resource-
limited devices, such as the Jetson Nano, but there are other well-known archi-
tectures besides the ones analyzed in this work, such as ResNets [8], ShuffleNets
[42] and Xception [6].

MobileNet. MobileNets [11] are convolutional neural networks suitable for real-
time applications in constrained environments. The architecture relies on depth-
wise separable convolutional blocks to speed up computations. These blocks
consist of a depthwise convolutional layer and a pointwise convolutional layer.
First, the depthwise convolutional layer applies 3 × 3 kernels on only one input
channel of the input. Second, the produced feature map of the depthwise convo-
lutional layer is the input to the pointwise convolutional layer with 1×1 kernels,
which are applied to all input channels. In standard convolutions, the 3× 3 ker-
nels would be applied to all input channels. Empirically, it has been shown that
depthwise separable convolutions provide less latency with a negligible decrease
in accuracy compared to standard convolutional layers. This is very important
for embedded systems as the resources such as area and power consumption are
typically limited.

MobileNetV2. MobileNetV2 [31] is an optimized version of MobileNets. In
this architecture, the depthwise separable convolutional blocks are expanded
with linear bottleneck layers and residual connections [8,41] to form inverted
residual blocks.

EfficientNets. EfficientNet [36] proposes a compound scaling method that uni-
formly scales model depth, width, and resolution with scaling coefficients. This
compound scaling method is based on the intuition that all dimensions of a net-
work have to be balanced to achieve better accuracy and efficiency. The baseline
network, EfficientNetB0, is similar to that of MobileNetV2 as it is based on
the same inverted residual blocks with bottleneck layers. In addition, squeeze-
and-excitation [12] is added to the blocks. The upscaled versions of the baseline
architecture, such as EfficientNetB1, -B2, -B3, -B4, -B5, and -B6, are scaled up
using the compound scaling method mentioned earlier.

162 P. Horváth et al.

DenseNets. DenseNets [13] do not use depthwise separable convolutions, they
are based on the idea of feature reusing. In terms of the architecture, this means
that feature maps produced by a layer are inputs to all subsequent layers. The
architecture of DenseNets employs dense blocks and transition layers. Dense
blocks use the principle of feature reusing, while transition layers are responsible
for downsampling.

NasNetMobile. The NasNet [43] architecture is quite distinct when compared
to the previous architectures. The main building blocks of the NasNet archi-
tecture are the normal and reduction cells. These cells have multiple branches
that apply different operations on the inputs in parallel, and the results of the
branches are concatenated to form the output of the cell. The operations in
the branches consist of standard convolution, separable convolutions, pooling or
identity.

MobileNetV3. MobileNetV3 [10] is the further optimized version of
MobileNetV2 with various new additions. Similarly to MobileNetV2,
MobileNetV3’s main building blocks are the inverted residual blocks with bot-
tleneck layers, but with the addition of squeeze-and-excitation [12] in some
blocks in the new architecture. Additionally, the ReLU nonlinearity is substi-
tuted with the swish activation [30] in some blocks. The paper specifies the
MobileNetV3small architecture for environments where resources are limited and
the MobileNetV3large architecture for high-resource use cases. These architec-
tures are very similar, with MobileNetV3large having more bottleneck blocks.

2.2 Side-Channel Analysis

Side-channel analysis (SCA) exploits the physical leakages of electronic devices
to extract secret information [15,16]. Such leakages could be power consumption,
electromagnetic (EM) emanations, timing, optical, or sound, while secret infor-
mation could be anything that has to remain confidential. The attacks based on
side-channel information were first introduced in the 90’s, targeting constrained
firmly cryptographic devices such as smartcards [15,16] and they pose ever since
a constant threat to the security of various embedded systems. In this work, we
exploit the timing and EM side channels.

Timing Analysis. Timing vulnerabilities in implementations arise from dif-
ferent sources, such as branching, cache hits/misses, and instructions. These
vulnerabilities also pose a threat to cryptographic algorithms [4,16,27]. Tim-
ing attacks are typically based on the vulnerability of implementations where an
operation takes a varying amount of time to complete, where this variation is due
to the private key or other data being manipulated or even different instructions
executed.

CNN Architecture Extraction on Edge GPU 163

Power Analysis. Kocher et al. (1999) [15] introduced power consumption-
based attacks called Simple Power Analysis (SPA) and Differential Power Anal-
ysis (DPA) by measuring the power consumption of microcontrollers during the
execution of cryptographic algorithms. These attacks exploit the dependence
between the power consumption of a device and the executed operations and
processed data by the device. SPA is a method to visually analyze and inter-
pret the collected power consumption measurements, also called traces. It often
requires a few or just a single trace to extract information about the operations
and data used in the targeted algorithm. DPA exploits the dependency of power
consumption on the processed data. The small variations in power due to differ-
ent data being processed can allow an adversary to extract secret information
(e.g., secret key) about the targeted algorithm using power measurements.

Electromagnetic Emanations. Electromagnetic (EM) emanations have been
exploited since the Second World War [35] and pose a massive security issue for
sensitive systems. Wim van Eck [37] was the first to publish a paper about the
risk of information leakage due to electromagnetic radiation using equipment
that anyone can acquire. His work demonstrated the danger of EM radiation by
reconstructing the frames of the video from display units using EM radiation.

Since then, EM radiation has also been used to break cryptographic imple-
mentations [18,29] or eavesdrop on display units [7,9,22]. Similar to power anal-
ysis, Simple EM Analysis (SEMA) and Differential EM Analysis (DEMA) are
methods that work exactly the same way as their counterparts in power analysis,
with the exception of the traces consisting of EM measurements. In this work,
we use electromagnetic emanations in combination with timing information to
distinguish the architectures.

3 Architecture Extraction

3.1 Threat Model

In our threat model, the adversary has the following knowledge and capabilities.

A1: Physical access to the target device.
A2: Access to an identical device for profiling.
A3: Capability to collect electromagnetic side-channel measurements.
A4: Knowledge that one of the 15 architectures listed in Table 1 is executed on

the target device.

The capabilities A1–A3 are standard assumptions in profiled side-channel
attacks [28]. The assumption of A1 can be relaxed as the adversary requires lim-
ited amount of physical access to the target device because the attack requires
only a single trace to identify the correct architecture. In addition, the assump-
tion of A4 is motivated by the investigated architectures’ efficiency in resource-
constrained environments like embedded devices. Furthermore, developers may
choose to pick an off-the-shelf architecture that is proven to work instead of
developing custom architectures, which can be an expensive and time-consuming
process. In our experiments, we use the same device for profiling and attacking.

164 P. Horváth et al.

Table 1. Analyzed convolutional neural network architectures

Name # parameters

EfficientNetB0 5.3 M
EfficientNetB1 7.9 M
EfficientNetB2 9.2 M
EfficientNetB3 12.3 M
EfficientNetB4 19.5 M
EfficientNetB5 30.6 M
EfficientNetB6 43.3 M
MobileNet 4.3 M
MobileNetv2 3.5 M
MobileNetv3small 2.5 M
MobileNetv3large 5.4 M
Densenet121 8.1 M
Densenet169 14.3 M
Densenet201 20.2 M
NASNetMobile 5.3 M

3.2 NVIDIA Neural Network Implementations

In our attack, we are considering the implementations from NVIDIA’s TensorRT
deep learning inference framework. TensorRT is a library written by NVIDIA
to support deep learning inference by running neural networks efficiently and
quickly on NVIDIA hardware.

TensorRT works as follows:

1. the user defines the neural network model
2. the user defines the desired optimizations for the model
3. TensorRT builds an engine based on the defined model and desired optimiza-

tions

Optimizations include layer fusions and calibration of the precision of cal-
culations. Given the precision constraints, TensorRT times different implemen-
tations and chooses the fastest ones for the model. The built engine includes
layer implementations and model weights, which can be subsequently used for
inference. In our experiments, we restricted the models to use implementations
with half-precision calculations to decrease the memory footprint of the archi-
tectures as some of them require more than the available DRAM in the device
if single-precision calculations are used.

CNN Architecture Extraction on Edge GPU 165

Fig. 1. Heatmap of 78 MHz clock frequency after scanning the chip of the Jetson Nano
device. The heatmap was generated by applying the Fourier-transform on traces col-
lected at each point on the chip. Purple indicates no activity of the 78 MHz clock
frequency while yellow indicates the highest activity of this frequency at a certain
point. Multiple yellow points can be used to mount a successful architecture extraction
attack. (Color figure online)

Fig. 2. Location of the Riscure EM probe. The probe tip is located above the chip.

3.3 Measurement Collection

We use the PicoScope 3207B oscilloscope with a Riscure EM probe [1] and
Riscure EM probe station [1] to collect electromagnetic side-channel measure-
ments in the architecture extraction attack. In order to capture the inference of
the neural networks from the device, a GPIO pin on the Jetson Nano’s board
is used as a trigger for the oscilloscope to signal when the inference operation is
about to start. In the architecture extraction experiment, we set the GPU cores
of the device to operate at 76MHz clock frequency, so we set the sampling rate
of the oscilloscope at 1GS/s. In order to detect where the chip of the Jetson
Nano leaks the most information, the whole chip was scanned. The results of the

166 P. Horváth et al.

Fig. 3. Example traces of the investigated architectures.

scan are shown in Fig. 1. Based on the figure and experiments, there are multiple
locations where the architectural information of neural networks leaks. The final
location of the probe is shown in Fig. 2.

CNN Architecture Extraction on Edge GPU 167

3.4 Architecture Extraction Using SEMA and Timing Analysis

Here we discuss Simple EM Analysis and timing analysis on the collected traces
using. The traces shown in this section are not the raw traces but the prepro-
cessed versions of those. For preprocessing, we applied windowed averaging of
size 1 000 on the absolute value of the measurements. Alignment of the traces is
not required for this attack.

Figure 3 shows example traces of the architectures that are investigated in
this paper. For the MobileNet and MobileNetv2 architectures, there are clear
timing differences between them, showing the MobileNetV2 takes more time to
execute. According to the benchmarks in the original paper [31], MobileNetV2
is faster than MobileNetV1. However, the experiments in the original paper
were carried out on the CPU of the Google Pixel 1 smartphone, using Ten-
sorFlow Lite, so this might explain the difference. The displayed patterns are
similar for the architectures, which is expected as MobileNetV2’s building block
is based on MobileNet’s building block. Regarding the MobileNetV3small and
MobileNetV3large architectures, the execution time for the MobilNetV3large
architecture is substantially larger than that of MobileNetV3small, as expected.
However, the execution time for the MobileNetV3small architecture is very
similar to that of the MobileNetV2. The DenseNet 121, DenseNet169, and
DenseNet201 architectures display very different EM patterns than the rest of
the architectures. In addition, the displayed patterns are very similar when com-
pared to each other. However, the timing differences clearly identify the correct
architecture DenseNet architecture. Regarding the EfficientNet architectures,
the EM patterns are similar to that of the MobileNet architectures, as expected,
but the timing differences give away the correct architecture. Lastly, the EM
patterns shown by the NasNet architecture are quite distinct compared to the
previous architectures. In terms of execution times, NasNet is very similar to
EfficientNetB4, but NasNet’s EM amplitude frequently drops near zero.

3.5 Architecture Extraction Using Deep Learning

In this section, we present how the architecture extraction attack can be auto-
mated using deep learning by framing the problem as a classification problem.
The models for each architecture for training were created using TensorFlow.
For some architectures, the TensorFlow implementation involves preprocessing
layers that actually do not belong to the architecture. These preprocessing lay-
ers make it possible for the network to receive inputs that are not preprocessed.
These layers were removed before creating the models so that every architecture
uniformly does not have preprocessing layers. Besides this, the default parameter
values of the TensorFlow implementations were used.

To train and validate the deep learning classifier, n = 5 models Ma,i were
created for every architecture (g = 15). For testing, t = 3 models were created
per architecture. These only differ in their weights Wa,i as all the weights are
sampled randomly from a normal distribution (with mean 0 and variance 1) for
every model.

168 P. Horváth et al.

Table 2. Classifier architecture and hyperparameters

Layer type Hyperparameters Activation

Conv1D filters: 32, kernel-size: 500, strides: 50 ReLU
Conv1D filters: 32, kernel-size: 300, strides: 10 ReLU
Max-pool pool-size: 10, strides: 5 –
Flatten – –
Dense neurons: 32 ReLU
Dropout dropout rate: 0.2 –
Dense neurons: 15 softmax

Formally,

Ma,i = fa(x;Wa,i)(i = 1, . . . , n+ t; a = 1, . . . , g)

which means that i’th model for the a-th architecture is defined as a function of
its weights and its inputs (x). Additionally,

Wa,i �= Wa,j

where j ∈ {1, 2, .., n+t}\{i}. The function fa depends on the architecture of the
model. Overall, g× (n+ t) = 120 models were created. The input and batch size
of the models during the experiments were set to 32×32×3 and 1, respectively.

We define a simple convolutional neural network as our classifier, shown in
Table 2, as they have proven to be effective in the SCA context [14,28]. We
collect 200 measurements for each model in the training and validation sets
and 20 measurements per model in the test set, which amounts to 15 900 traces
altogether. Out of the 15 900 traces, the test set contains 900 measurements,
and the remaining 15 000 traces are divided into training and validation sets in
a 70:30 ratio, i.e., the model is trained using 10 500 traces and validated using
4 500 traces. In addition, early stopping is used to avoid overfitting. After the
model is trained, it is evaluated on the test set and the accuracy of the model
was 99%. Note from the previous section that distinguishing the architectures is
not difficult; hence, the almost perfect accuracy is not surprising.

4 Discussion

4.1 Limitations

The attacks described are specific to this device’s GPU and the CUDA kernel
implementations provided by the specific TensorRT version used. In addition, we
work with the assumption that well-known architectures are used by the victim.
If a target device runs a different architecture, that is not in the dataset used
for profiling, then the attack does not work unless profiling is extended to more
architectures. However, with extensive profiling, we believe it is possible to cover
a wide array of architectures with different types of layers.

CNN Architecture Extraction on Edge GPU 169

4.2 Mitigation

Traditional ways to contain electromagnetic radiation, such as proper shielding
or introducing noise to decrease the Signal-to-Noise ratio, could alleviate the
problem [24].

Additionally, the architectures investigated in this work are popular because
of their efficiency and accuracy. However, ignoring these architectures and design-
ing custom networks could make an adversary’s job significantly harder. A
custom-designed neural network basically means an infinite number of possible
combinations of layers, layer sizes, etc. On the other hand, there are common
design principles for neural networks which narrow down the search space. For
instance, if a neural network performs classification, then it is safe to assume
that the last layer has a softmax activation.

Profiling also applies to custom-made neural networks, and a persistent
adversary could make a comprehensive profile that could also identify the types
of layers and layer sizes, as these are the main factors that influence EM mea-
surements.

4.3 Alternative Method

In this work, analyzing traces of whole architectures is enough to show that
reverse engineering the architecture is possible. However, one could reverse engi-
neer a whole architecture by running just parts of the architecture on the unpro-
tected device. In other words, starting with only the first layer of the architecture,
then with the first two, then the first three, and so on. With this perhaps a bit
of a time-consuming (due to the large number of layers in the investigated archi-
tectures) method, the individual layers can be identified in the traces, not just
the whole architecture. Since the number of parameters for these architectures is
constant, except perhaps for the first and last layers, this method remains viable.
The traces for the first and last layers can potentially be different because input
and output sizes are specific to each problem.

4.4 Example of Breaking down Network

In order to identify individual layers, one has to consider the layer type as well as
the activation (if any) of the layer. As we have seen in the classification results,
different weights barely impact the overall EM trace. Thus, we can concentrate
on building templates for one-layer MLPs with and without activation, 2-layer
MLPs with and without activation, and so on. To that end, a 3-layer MLP will
be reverse-engineered using this method. In the experiment, the input batch size
is 1, the input size is 100, and every fully connected layer has 32 neurons.

Figure 4 shows how the EM trace changes if a ReLU activation is removed.
The top figure is a trace of a 3-layer MLP where the fully connected layers are
followed by ReLU activation. The bottom figure is a trace of the same MLP,
except that a ReLU layer does not follow the last fully connected layer.

170 P. Horváth et al.

Fig. 4. 3-layer MLP with 3 ReLU activations (top) and 2 ReLU activations (bottom)

Continuing the removal of layers and activations one by one, the top figure
in Fig. 5 shows how the EM trace changes if a fully connected layer is removed.
The MLP in the bottom figure in Fig. 4 has a third fully connected layer, and the
top figure in Fig. 5 is the same MLP except that the last fully connected layer is
missing. Next, the removal of the ReLU activation that follows the second fully
connected layer leads to a trace as that of the bottom figure in Fig. 5.

CNN Architecture Extraction on Edge GPU 171

Fig. 5. 2-layer MLP with 2 ReLU activations (top) and 1 ReLU activation (bottom)

Removing layers one by one helps identify layer boundaries. Figure 6 shows
the trace for the 3-layer MLP with boundaries drawn with red dashed lines after
every fully connected layer and every activation. Overall, profiling can also be
executed on a more granular level, e.g. layer level, but this requires more profiling
to cover all the possible layer types with varying sizes.

172 P. Horváth et al.

Fig. 6. 3-layer MLP with boundaries between fully connected layers and activations.

5 Conclusions

In this paper, the susceptibility of neural networks to side-channel attacks was
analyzed on NVIDIA Jetson Nano. The neural networks ran on the GPU of
the device, which is a commonly chosen platform for real-world neural network
implementations.

In our attack, popular convolutional neural network architectures were clas-
sified based on the EM side channel. The chosen architectures are a common
choice in practice, especially in embedded devices, when the size and latency
of the network are important as resources are limited. The results show that
the analyzed architectures are easily distinguishable from each other, and this
process can be automated using a deep learning classifier.

Overall, the neural network implementations of NVIDIA’s TensorRT frame-
work are vulnerable to architecture extraction using side-channel attacks despite
the networks running in a highly parallel and noisy environment.

References

1. https://web.archive.org/web/20220119062522/. https://www.riscure.com/uploa
ds/2017/07/inspector_brochure.pdf. Accessed 25 Jan 2022

2. Google translate research. https://ai.googleblog.com/2020/06/recent-advances-in-
google-translate.html

https://web.archive.org/web/20220119062522/
https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf
https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html

CNN Architecture Extraction on Edge GPU 173

3. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI–NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: 28th USENIX
Security Symposium USENIX Security 2019, pp. 515–532 (2019)

4. Bernstein, D.J.: Cache-timing attacks on AES (2005)
5. Chmielewski, Ł, Weissbart, L.: On reverse engineering neural network implementa-

tion on GPU. In: Zhou, J., et al. (eds.) ACNS 2021. LNCS, vol. 12809, pp. 96–113.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81645-2_7

6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258 (2017)

7. Elibol, F., Sarac, U., Erer, I.: Realistic eavesdropping attacks on computer dis-
plays with low-cost and mobile receiver system. In: 2012 Proceedings of the 20th
European Signal Processing Conference (EUSIPCO), pp. 1767–1771. IEEE (2012)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

9. Hongxin, Z., Yuewang, H., Jianxin, W., Yinghua, L., Jinling, Z.: Recognition of
electro-magnetic leakage information from computer radiation with SVM. Comput.
Secur. 28(1–2), 72–76 (2009)

10. Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1314–1324 (2019)

11. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(2018)

13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

14. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
IACR Trans. Cryptogr. Hardware Embed. Syst. 148–179 (2019)

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105 (2012)

18. Kuhn, M.G., Anderson, R.J.: Soft tempest: hidden data transmission using elec-
tromagnetic emanations. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp.
124–142. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8_10

19. Liang, S., Zhan, Z., Yao, F., Cheng, L., Zhang, Z.: Clairvoyance: exploiting far-
field EM emanations of GPU to “see” your DNN models through obstacles at a
distance. In: 2022 IEEE Security and Privacy Workshops (SPW), pp. 312–322
(2022). https://doi.org/10.1109/SPW54247.2022.9833894

20. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

https://doi.org/10.1007/978-3-030-81645-2_7
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-49380-8_10
https://doi.org/10.1109/SPW54247.2022.9833894
http://arxiv.org/abs/1312.4400

174 P. Horváth et al.

21. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput.
Vis. 128(2), 261–318 (2020)

22. Liu, Z., et al.: Screen gleaning: a screen reading TEMPEST attack on mobile
devices exploiting an electromagnetic side channel. In: 28th Annual Network and
Distributed System Security Symposium, NDSS 2021, Virtually, 21–25, February
2021. The Internet Society (2021). https://www.ndss-symposium.org/ndss-paper/
screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-
an-electromagnetic-side-channel/

23. Maia, H.T., Xiao, C., Li, D., Grinspun, E., Zheng, C.: Can one hear the shape
of a neural network?: snooping the GPU via magnetic side channel. In: Butler,
K.R.B., Thomas, K. (eds.) 31st USENIX Security Symposium, USENIX Security
2022, Boston, MA, USA, 10–12 August 2022, pp. 4383–4400. USENIX Association
(2022). https://www.usenix.org/conference/usenixsecurity22/presentation/maia

24. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, vol. 31. Springer, Cham (2008)

25. OpenAI: GPT-4 technical report (2023). https://doi.org/10.48550/arXiv.2303.
08774

26. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning
for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(2),
604–624 (2020)

27. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive (2002)

28. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-based
physical side-channel analysis. ACM Comput. Surv. (2022)

29. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7_17

30. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

31. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

32. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

33. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

35. Singh, S.: The Code Book, vol. 7. Doubleday New York (1999)
36. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-

works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

37. Van Eck, W.: Electromagnetic radiation from video display units: an eavesdropping
risk? Comput. Secur. 4(4), 269–286 (1985)

38. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

39. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature 575(7782), 350–354 (2019)

https://www.ndss-symposium.org/ndss-paper/screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-an-electromagnetic-side-channel/
https://www.ndss-symposium.org/ndss-paper/screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-an-electromagnetic-side-channel/
https://www.ndss-symposium.org/ndss-paper/screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-an-electromagnetic-side-channel/
https://www.usenix.org/conference/usenixsecurity22/presentation/maia
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1409.1556

CNN Architecture Extraction on Edge GPU 175

40. Xiang, Y., et al.: Open DNN box by power side-channel attack. IEEE Trans. Cir-
cuits Syst. II Express Briefs 67(11), 2717–2721 (2020). https://doi.org/10.1109/
TCSII.2020.2973007

41. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1492–1500 (2017)

42. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

43. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8697–8710 (2018)

https://doi.org/10.1109/TCSII.2020.2973007
https://doi.org/10.1109/TCSII.2020.2973007

Harnessing the Power of General-Purpose
LLMs in Hardware Trojan Design

Georgios Kokolakis(B), Athanasios Moschos, and Angelos D. Keromytis

Georgia Institute of Technology, Atlanta, USA
{gkokolakis6,amoschos,angelos}@gatech.edu

Abstract. Large language models (LLMs) are becoming a powerful
transformative force of automation in the areas of software engineering
and cybersecurity. In software-centric security research, the LLMs have
undertaken a prime role in the identification and repair of security vul-
nerabilities and bugs. However, in hardware related fields such as logic
design and hardware security, use of LLMs has only recently started to
get traction. In this work we aim to explore the potential of LLMs in
the offensive hardware security domain. More specifically, we explore the
level of assistance that LLMs can provide to attackers for the insertion of
vulnerabilities, known as hardware trojans (HTs), in complex hardware
designs (e.g., CPUs). Having in mind high-level attack outlines, we test
the ability of a general-purpose LLM to act as a “filter” that correlates
system level concepts of security interest with specific module abstrac-
tions of hardware designs. By doing so, we tackle the challenges posed by
the context length limit of LLMs, that become prevalent during LLM-
based analyses of large code bases. Next, we initiate an LLM analysis
of the reduced code base, that includes only the register transfer level
code of the identified modules and test the LLM’s ability to locate the
parts that implement the queried security related features. In this way,
we reduce the complexity of the overall analysis performed by the LLM.
Lastly, we instruct the LLM to insert suitable trojan functionalities by
modifying the identified code parts accordingly. To showcase the poten-
tial of our automated LLM-based hardware trojan insertion flow, we
craft a realistic HT for a modern RISC-V micro-architecture. We test the
functionality of the LLM-generated HT on an FPGA board, by attack-
ing the integrity and the availability of the RISC-V CPU. Hence, we
demonstrate how general-purpose LLMs can navigate attackers through
complex hardware designs and assist them in the implementation of real-
istic HT attacks.

Keywords: Hardware Trojans · Large Language Models · ChatGPT ·
RISC-V

G. Kokolakis and A. Moschos—All student authors contributed equally to this paper.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 176–194, 2024.
https://doi.org/10.1007/978-3-031-61486-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_11

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 177

1 Introduction

Large language models are artificial intelligence algorithms that utilize deep
learning techniques to perform various natural language processing tasks. By
implementing deep learning techniques (e.g., transformer architectures [58]) lan-
guage models are able to process vast amounts of text data and generate coherent
human language responses. This is due to their remarkable ability of assimilat-
ing the context and relationships between human words. By dint of their diverse
dataset, LLMs have shown great potential in performing a series of complex
tasks both in the software and the hardware engineering domain.

In software engineering, LLMs are mainly employed as tools that assist in the
generation of code [1,18,26,31,35–37,39,41,42,50,53,61,65], the identification of
vulnerabilities and bugs [19,20,29,32,60] and recently bug correction [25,47,62].
In parallel, domain-specific LLMs have been developed to address more special-
ized tasks, like in the all-important fields of medical diagnosis and healthcare
assistance [24].

On the hardware engineering domain, encompassing of language models
seems to be more challenging due to the limited hardware description language
(HDL) code bases available in the wild. Furthermore, generation of bug-free HDL
code is usually more challenging and demands particular attention and expertise.
Another issue attributed to the restricted availability of HDL, is the frequent
inability of LLMs to produce syntactically correct and synthesizable HDL code.

A recent academic attempt tried to tackle this problem by fine-tuning pre-
trained LLMs on Verilog datasets [56]. Another work [57], focused on the gener-
ation of an automated framework called Autochip, that aims to correct bugs in
LLM-generated HDL code. Chang et al. [5] discuss the ways LLMs can aid hard-
ware engineers in producing more efficient logic designs through natural language
interaction. The authors developed an LLM-based design environment, named
ChipGPT, that can generate optimal logic designs through the use of natural
language specifications.

The hardware security community has only recently started to explore ways
in which LLMs can be utilized in system on chip (SoC) security. So far, LLMs
have showed promising results in formal verification tasks [33,45,54], as well as
generation of secure hardware [38,40,46,54]. The works explore different aspects
of the SoC security, pertaining to the correct generation of assertions (e.g., Sys-
temVerilog Assertions), the extraction of security properties dedicated to hard-
ware design, the generation of code for hardware security assertion and lastly
the detection of hardware vulnerabilities.

A universal characteristic of LLMs, is their ability to receive inputs written
in natural languages. The inputs are then further processed, taking the form of
tokens. Depending on the underlying algorithm, the representation of a token
can be a word [4], a sub-word [51,52,59] or a character [28]. Tokenization is
important, as it contributes to the reduction of computational and memory
costs and can assist in the assimilation of complex words and concepts by the
model [3]. However, LLMs do not posses the ability to receive unlimited amount
of tokens with each input. This can have a negative impact in cases where the

178 G. Kokolakis et al.

input length is considerably large (i.e., software programs consist usually of
numerous lengthy code files). Consequently, it is important to identify effective
filtering strategies that can address the challenge of context length limit when
there is need of analyzing complex code databases with LLMs. Commonly used
filtering strategies so far include either manual inspection or employment of
external tools to help locate only the necessary files or code segments for the
analysis.

In this work, we aim to leverage the use of a general-purpose LLM, to tackle
the challenge of efficiently filtering through complex hardware design databases,
for the purpose of hardware trojan insertion. Hardware trojans are malicious
modifications made in the logic of hardware designs, that can alleviate the imple-
mentation of attacks on the systems that host them. To that extent, we explore
the potential of LLMs in the implementation of efficient hardware trojan attacks.
Our contributions are the following:

• We discuss how the challenge of context length limit has been addressed in
relevant literature.

• We present an automated flow that encompasses a general-purpose LLM, to
identify suitable candidate modules in large HDL databases for the insertion
of trojans.

• Using our methodology, we perform among others, an end-to-end HT attack
on a complex RISC-V micro-architecture.

We observe that our methodology can help in the exploration of potential
attack routes available for the implementation of HT functionalities in hard-
ware designs. Thus, our methodology reduces the overall complexity associated
with the design of a hardware trojan attack.

Paper Organization: Section 2 presents relevant works around the use of large
language models in the detection, repair and insertion of hardware vulnerabil-
ities. Section 3 outlines the threat model considered for the use of our attack
methodology. Section 4 introduces our LLM-based automated design flow and
explores the implementation of trojan attacks in a diverse design dataset. In
Sect. 5 we showcase the power of our insertion flow, in a proof of concept hard-
ware trojan attack against a modern RISC-V CPU. In Sect. 6 we discuss possible
limitations of our flow and provide future research directions in the intersection
of LLMs with hardware trojan design. We conclude in Sect. 7.

2 Background and Related Work

The use of artificial intelligence (AI) programs has recently started to take shape
in the system on chip security domain through the use of LLMs and LLM-based
frameworks. Ahmad et al. [2] investigated the use of natural language guidance
for the remediation of security-related hardware vulnerabilities. To that end, the
authors generated a bug-fixing framework based upon the use of two general-
purpose LLMs, namely OpenAI’s Codex [43] and CodeGen [42]. For the quanti-
tative evaluation of the framework, the authors collated a database of hardware

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 179

Table 1. Use of automation in context length filtering for hardware vulnerability
related works.

Publication Vulnerability-Related
Operation

Context Length
Filtering Automation

LLM Type
Utilized

Design Database

[2] Repair ✗ General-Purpose CPU, Security Modules

[27] Detection, Repair � Domain-Specific CPU

[49] Detection, Repair,
Insertion

✗ General-Purpose CPU, Security Modules,
FSMs

Our Work Insertion � General-Purpose CPU, Security Modules

designs that featured security related bugs, taken either from MITRE’s common
weaknesses enumeration (CWE) list or relevant hardware security competitions
(e.g., Hack@DAC). The database was then used in the construction of appro-
priate prompts that were used as input to the framework, in order to generate
efficacy metrics about the LLM-proposed solutions in the remediation of the
vulnerabilities. To formulate the prompts, only the parts of the buggy RTL code
were provided as part of the prompts. The code selection process included either
feedback taken by bug detector tools or the assumption of a priori knowledge
of the code at fault. The necessity of assistance for the bug location identifica-
tion (e.g., code selection) is further acknowledged and discussed as one of the
framework’s limiting factors.

In [27], the authors showcase a unique approach in the training of domain-
specific LLMs for the purposes of identification and subsequent correction of
hardware defects. Their approach utilized the version control data available in
open-source hardware designs, in order to assemble a dataset of hardware design
defects accompanied with their remediation steps. This special dataset was sub-
sequently used for the generation of a framework that enabled the domain-
specific training of medium sized language models. The authors proceeded to
assess the efficacy of the hardware debugging framework by comparing the
domain-specific LLMs against state of the art general-purpose LLMs (e.g., Chat-
GPT and Bard) in the generation of hardware remedies. The “hardware-patches”
proposed by the fine-tuned models, were indeed more efficient than the solutions
proposed by their general-purpose counterparts. An important part of the train-
ing methodology, is that of data sanitization. This is considered to be essential
due to the LLMs’ adherence to specific context length constraints. Therefore,
the prompt generation process needs to be cost-aware. To that end, while files
with insufficient information were excluded from partaking in the dataset gen-
eration process, the larger ones were segmented in appropriate lengths through
a tokenization process, in order to be further considered in the generation of the
dataset.

Saha et al. [49] published an in-depth analysis on the use of generative pre-
trained transformers (GPTs) in state of the art works related to SoC software
and hardware security. In their work, a thorough investigation is attempted
over the possibilities stemming from the integration of a variety of LLM archi-
tectures in domains related to vulnerability detection, repair and insertion in

180 G. Kokolakis et al.

Fig. 1. Abstract view of the insertion options for an LLM-generated hardware trojan.

SoCs. Among others, their work tests the ability of ChatGPT-3.5 to efficiently
integrate CWE-based vulnerabilities in hardware designs and more specifically
inside finite state machines. The primary method pursued for the introduction
of the vulnerabilities is that of one/few-shot learning. To that end, ChatGPT
was presented with the part of the RTL code that needs to be maliciously mod-
ified, as well as an informative description of the hardware modifications that
need to be implemented in the provided piece of code. The part of the code that
was adjusted, was considered again to be known a priori. A deciding factor for
choosing ChatGPT in the implementation of the experiments was the model’s
ability to handle extended context lengths in the provided prompts. However,
the context length limits in LLM chatbots is discussed by the authors to be a
significant challenge, especially when it comes to handling larger design tasks.
Therefore, they consider this to potentially adversely affect the models’ efficiency
in performing security related tasks.

All of the works in Table 1 attempt to operate on databases of complex hard-
ware designs (e.g., CPUs). Irrespective of the LLM-framework basis (domain-
specific or general-purpose), the constrained context length limit remains a real-
ity for all of the suggested LLMs. In the SoC domain, this problem particularly
manifests when dealing with complex RTL databases (i.e., micro-architecture
implementations) which consist of dozens of HDL files and tens of thousands of
code lines, as seen in Table 4. Therefore, an automated strategy is necessary in
the identification of code parts of interest, so that context length is reduced.

The works in [2,49] consider the HDL code of interest that is included in
prompts, to be either already known or made known through the use of exter-
nal code vulnerability detectors [2]. We consider these approaches to be non-
automated as seen in Table 1. For the work in [27], the files are scrutinized for
inefficiencies and then tokenized before their use in prompts. We therefore con-
sider this work to include sufficient automation in the code of interest selection
process. From these works, only [49] includes a detailed discussion about use
of LLMs for hardware trojan insertion. However, as mentioned, the respective
RTL is manually selected and then provided to the GPT model for the vulner-

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 181

ability insertion. Our work aims to address this gap in the use of LLMs in the
offensive hardware security domain. We provide a methodology that automates
the filtering of large design databases for context length purposes, to alleviate the
insertion of vulnerabilities known as hardware trojans, in complex RTL designs.
We now proceed to explain the threat model under which our LLM-automated
methodology can be used by an attacker for the insertion of a hardware trojan.

3 Threat Model

We consider the use of general-purpose LLMs to be an attractive option for
a rogue entity inside a design house tasked with the insertion of a hardware
trojan. The scenario of a design stage attacker has been featured before in several
works [21,22,30,34]. The presence of a design stage attacker means that the rogue
entity is familiar with IC design practices, like logic design, simulation, physical
implementation and verification. For the successful introduction of a HT the
malicious actor would need to either have knowledge of the design under attack or
perform code review to get an understanding of the underlying design. However,
especially for large designs (e.g., SoCs) such an analysis, proves impractical as it
requires significant time and effort. Consequently, the introduction of an LLM in
this process can help alleviate the cumbersome task of pinpointing the parts of
code to be altered. We show the practicality of this approach in Sect. 5. Another
interesting outcome from the use of an LLM at this stage, is that it allows for a
more relaxed assumption in terms of the attacker’s familiarity with the specifics
of the design to be modified. For example, the malicious actor can be a company
engineer with access to the design servers but not directly working on the design
under attack. The above rationale leads to the following scenarios in terms of an
LLM-guided trojan insertion:

i) The HT is added at the front-end phase. The malicious actor, using the
LLM as a guide, adjusts the RTL database of the design to include the
malicious functionality. If the change goes unnoticed, the malicious RTL
database will proceed to the synthesis and the physical implementation stages
for the generation of the malicious finalized layout as seen in Fig. 1. The
malicious finalized layout, represented in a GDSII file form, is then sent for
fabrication.

ii) The HT is added at the back-end phase via engineering change orders
(ECO) on the finalized layout. Functional ECOs are logic modifications made
directly to the gate level netlist of the finalized layout and correspond to RTL
code changes. In this scenario, the finalized layout has been generated and
is ready to be shipped for fabrication. Therefore, a change at this point is
considered to be more stealthy, as the attacker tampers directly the ready
to tape out layout. The steps for this scenario are depicted in Fig. 1. Similar
to the front-end scenario, the attacker uses the LLM as a guide, to make
the necessary adjustments in the RTL code of the design for the inclusion
of the trojan. The attacker then passes the malicious RTL database through

182 G. Kokolakis et al.

Fig. 2. Our LLM-based Hardware Trojan Design Flow

a synthesis round and generates a malicious synthesized netlist. As a next
step, the malicious netlist is compared to the extracted netlist from the orig-
inal layout, using logic equivalence check tools. The outcome of this check is
the difference in logic between the two netlists, that is translated to a dig-
ital patch, ready to be applied on the existing finalized layout. This digital
patch basically contains only the extra malicious logic that describes the tro-
jan functionality. As a last step, the attacker uses physical implementation
tools to apply the patch through the use of ECOs on the original layout and
generates the new malicious finalized layout. Since the ECOs can keep the
existing layout intact and avoid the deterioration of the layout’s timings, the
inclusion of the HT can fly under the radar and not raise any suspicion about
possible changes in the finalized layout.

Next, we proceed to describe our LLM-based automated filtering method, that
reduces the context length of the prompts used for the hardware trojan inser-
tion. We also show our experimental results by applying this method and attack-
ing different hardware designs (e.g., a RISC-V microarchitecture, cryptographic
algorithms) using the GPT-3.5/4 models.

4 An LLM-Based Hardware Trojan Design Flow

Typical system on chip designs comprise of numerous modules described usually
in Verilog or VHDL hardware description languages. As mentioned in Sect. 2,
these complex databases consist of tens of thousands of code lines. The naive
approach of providing to the LLM under use the complete HDL database for
analysis, is not feasible. This is because the input LLM prompts need to abide
to a maximum context length limit that sets an upper bound to the number of
words that a prompt can have. Therefore, to automate the vulnerability insertion
through the use of LLMs, an attacker needs to create a filtering process that
would provide to the LLM only the part of the HDL code that is necessary for
the introduction of the hardware trojan. This naturally brings up the need for a
filtering process, that will allow the attacker to navigate through the complexity
of the respective design under attack and filter out any modules not fit for the
attack implementation. We observe that this filtering process can be implemented
through the use of general-purpose GPT models.

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 183

Table 2. Correlating system level concepts with hardware modules of a CPU archi-
tecture.

System-Level Concept User-GPT

Dialogue

of

Prompts

of Rep-

etitions

Hardware modules involved in read operations [8] 1 0

Hardware modules handling illegal memory accesses exceptions [6] 1 0

Hardware modules involved in high cache miss rate operations [11] 1 0

Hardware modules handling privilege level separation [7] 1 0

Hardware modules involved in time-expensive operations [9] 1 0

More specifically, we show that through LLM prompting an attacker can cor-
relate system-level concepts with different hardware modules and deduce infor-
mation about the modules of attack interest. Next, the attacker can provide as
input to the language model only the HDL code of the identified module(s). This
approach can successfully reduce the amount of code submitted for inspection to
the LLM, therefore minimizing the overall analysis complexity performed by the
LLM and making it easier to abide by the LLM’s context length limit. Figure 2
illustrates our proposed flow for automating the identification of candidate HT
host modules in complex designs and the subsequent implanting of hardware
trojans. Our flow is based on task decomposition [49] in order to streamline the
attack into simple, actionable steps, that can be performed even by an attacker
with incomplete knowledge about the specifics of the design under attack. We
proceed now to explain our trojan design flow in more detail and provide exper-
imental results.

4.1 Context Length Reduction

The objective of the first step in our automated trojan design flow, is to uti-
lize the LLM as a filter that will provide to the attacker the names of the HW
modules that are of attack interest. To that end, an attacker can query the
general-purpose LLM about the names of modules that take part in the imple-
mentation of different system level tasks performed by the design under attack.
To showcase the aforementioned ability of LLMs to correlate system level con-
cepts with hardware modules of interest, we questioned OpenAI’s GPT-3.5 and
GPT-4 models about different system level operations that happen inside a CPU
and asked for the CPU modules that implement them. Table 2 showcases the
system concept that the GPT was queried for, the number of prompts used to
receive back a useful response, as well as references to the dialogues between the
user and the GPT model. For all the queries, the LLM was able to provide a
detailed description of each module and its involvement in the specific system-
level operation. The questions were formulated under the rationale that such
system level functionalities and modules can be utilized by a malicious entity for
the purposes of a hardware trojan design. For instance, information about the
CPU module that generates exceptions related to unauthorized memory accesses
can be exploited by an attacker, in order to create a HT that facilitates such
unauthorized accesses, as we see later in Sect. 5.

184 G. Kokolakis et al.

4.2 Identifying RTL Code of Interest

Once the name of the module of attack interest is identified, the second step is to
provide as input to the general-purpose LLM the HDL code that describes it. As
seen in Fig. 2, the module’s HDL code is included in a prompt that is provided
to the LLM, so that a synopsis of the module’s functionalities is received back
as a response. This synopsis can provide a valuable insight to the attacker about
the characteristics of the module’s design.

Having in mind the high level attack scenario, the malicious actor then pro-
ceeds to ask for more information about the way specific security related func-
tionalities are implemented in the design. Moreover, the attacker requests from
the LLM to pinpoint to the code locations associated with the realization of
these functionalities. Once the respective locations are identified, the attacker
can provide more specialized requests for the appropriate modification of the
HDL code, in order to introduce the trojan functionality. Care must be taken,
so that the changes performed by the LLM do not break any of the original code
functionality. To that end, the attacker we consider in our threat model is in a
position to verify that the original functionality is kept intact by functionally
testing the modules.

To test the ability of ChatGPT to successfully pinpoint the security-related
code parts, we perform five different attacks on a set of cryptographic hardware
designs and the design of an open-source RISC-V micro-architecture. The sce-
narios we consider can be seen in Table 3, along with the number of prompts
and repetitions used to receive back a useful response, as well as references
to the dialogues between the user and the GPT model. We include bellow a
succinct summary of the attack scenarios that the GPT model was asked to
perform. The scenarios range from traditional leakage information attacks (e.g.,
leaking the AES key) to more sophisticated CPU memory attacks (e.g., tam-
pering privileged memory areas without privilege escalation). For the attacks on
the hardware security modules we use an open-source implementation of a DES
algorithm [48] and an open-source implementation of an AES algorithm [55].
For the implementation of the more sophisticated attacks, we target the imple-
mentation of a modern, Linux-capable, 64-bit RISC-V microprocessor, named
CVA6 [63,64].

Reduction in DES Encryption Rounds. This scenario involves an attack
against a hardware implementation of a DES encryption algorithm. The attack
aims to reduce the number of rounds in its encryption scheme [23], thus making
it less secure. Our goal is to evaluate if ChatGPT can locate the Verilog code
segment responsible for performing the encryption rounds. We asked the LLM
to provide the name of the module that needs to be adjusted in order to perform
the encryption round reduction attack. The LLM successfully located the Verilog
file and the encryption round loop code, giving us instructions on how to modify
it to reduce the encryption rounds.

Leakage of an AES Secret Key. In this scenario we examine if ChatGPT
can guide us in the implementation of an HT that would leak an AES secret

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 185

Table 3. High level description and prompt metrics for different hardware trojan attack
scenarios.

Module High-Level Description of the Attack
Scenario

User-GPT
Dialogue

of
Prompts

of
Repetitions

DES Reduction in DES encryption rounds [13] 3 0

AES Leakage of the AES secret key [10] 4 1

CVA6 Speculative execution of wrong-path
instructions

[14] 4 5

CVA6 Performance reduction via thermal
attacks

[11,12] 4, 5 2, 0

CVA6 Violation of OS-enforced memory
policies

[15–17] 3, 3, 6 6, 0, 5

key. Our goal is to evaluate if ChatGPT can locate Verilog code segments that
upon modification can lead to a key leakage. The LLM located the module that
is responsible for handling the AES key, including its generation and storage.
Subsequently, it provided suggestions with respect to modifications that can lead
to a key leakage.

Speculative Execution of Wrong-Path Instructions. In this scenario we
explore the possibility of a privilege escalation attack. The rationale is to interfere
with the branch prediction logic of the CVA6 CPU, in order to execute non-
privileged instructions while the CPU is in privilege mode. We asked the LLM
to identify the modules associated with the branch prediction in the CVA6 micro-
architecture. We then provided as input the HDL description of the identified
module and queried the model for code changes that an attacker can explore to
perform the above mentioned attack. As seen in [14], the model responded with
suggestions that involved modifications in code parts that describe the prediction
logic and the logic that updates the branch target address.

Thermal Attacks on CPU Performance. In this scenario we explore the
possibility of CPU performance degradation through the introduction of ineffi-
ciencies in the CPU’s pipeline. We examined two possible attacks, namely intro-
duction of dummy loops and generation of frequent cache misses.

• Dummy Loop Introduction: in this attack we aim to introduce inefficiencies
or loops in the instruction scheduler or the execution stage that will cause
the CPU to perform intensive operations continuously, thus increasing heat
generation. To achieve that ChatGPT pointed us to the ALU module of the
CPU and suggested code changes that would add dummy logic, to increase
the switching activity and inevitably the CPU’s temperature.

• Cache Evictions: in this attack the cache controller was targeted by the GPT
model, to cause frequent cache misses. Suggested modifications included alter-
ing the code of the FSM responsible for the cache eviction policies.

Violation of OS Memory Policies. This attack scenario attempts to perform
an attack against the integrity and availability of the CPU. Specifically modifi-

186 G. Kokolakis et al.

Table 4. Complexity of hardware designs measured by number of HDL files and lines
of code.

Design
Name

GitHub
Repository

of HDL
Files

of Code
Lines

DES [48] 15 1007

AES [55] 7 2714

CVA6 [63] 96 28559

cations in the micro-architecture are required, so that under certain conditions,
a user space process will be able to access the restricted kernel space memory.
For that, the LLM targeted the modules that handle the privilege level checks
inside the memory management unit (MMU). The LLM successfully located the
code that generates an exception when the user process attempts to access mem-
ory areas assigned to the kernel. Then it suggested changes that included the
modification of specific bits of page table entries (PTE), in order to circumvent
the generation of an exception and allow the illegal access. In the next section,
we further explore this attack scenario and use our automated methodology in
conjunction with GPT-3.5 and GPT-4 models, to implement a fully functional
hardware trojan inside the CVA6 micro-architecture.

5 Evaluation of an LLM-Generated HT

In this section, we present the implementation of a fully functional hardware tro-
jan inside the CVA6 CPU design. Having in mind the high level attack we want
to implement, we provide prompts to the GPT model, that help in the identifica-
tion of host modules in the CVA6 micro-architecture suitable for implementation
of the hardware trojan payload.

Identifying Suitable HT Host Modules. As can be seen in Table 4, the
CVA6 design is considerably complex, as it is comprised of 96 HDL files and
a total of 28.5K lines of System Verilog code. We utilize the GPT model to
filter through the micro-architecture’s design modules and find suitable host
candidates for the integration of the trojan’s malicious functionality. The attack
we want to implement aims to violate the separation of the memory address
space, enforced by the operating system, between privileged and non-privileged
areas. More specifically, we want to enable a user space process controlled by
a malicious actor, to access and modify arbitrary addresses in the kernel space
memory without the need for privilege escalation. To circumvent any ethical
objections posed by the LLM model, we express our prompts in the context of
exploring new micro-architectural features. To that end, we craft the prompts
seen in Figs. 3 and 4. The GPT model identifies the memory management unit
(MMU) to be responsible for supporting the virtual memory management and
the enforcement of memory protections. Consequently, this process filters down
the candidate host modules that need to be adjusted for the implementation

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 187

Fig. 3. Identify micro-architecture modules that support an operating system.

Fig. 4. Identify micro-architecture modules responsible for the separation of the mem-
ory address space.

of the payload, to only one, that of the MMU. For more information on the
identification of the MMU as a sutibale host module, we direct the reader to [15].
Next, the attacker needs to provide for code analysis to the LLM the HDL files
that implement the MMU, in order to integrate the payload functionality. We
now proceed to describe the implementation of the payload and the trigger circuit
of the hardware trojan.

Designing the Payload Circuit. The CVA6 micro-architecture is written in
System Verilog and the description of the MMU consists of a single HDL file
out of a total of 96. At first, the GPT model reads the HDL file and provides
as feedback a high-level description of the module’s functionalities. Since we are
interested in discovering the code responsible for the memory address space sep-
aration, we ask the GPT model to trace the code responsible for the generation
of an exception in the event of an illegal memory access. The illegal access of
interest happens upon accessing kernel space addresses while the CPU is in user

188 G. Kokolakis et al.

mode privilege level. In a traditional scenario, a kernel memory access is valid
only when the CPU has elevated privilege rights (supervisor or machine mode).
In any other case, the access is obstructed with the generation of an exception.
As seen in Fig. 5, the LLM model returns the part of the code that implements
the exception mechanism of the memory management unit. The exception mech-
anism is responsible for the generation of page fault errors related to faulty load
and store instructions.

The next step is to ask ChatGPT to modify the exception mechanism, so that
our malicious functionality is added to the micro-architecture. In our attack sce-
nario, upon triggering, the payload disables the generation of exceptions that
happen during the execution of faulty store instructions. A faulty store instruc-
tion is considered to be one that attempts to alter the value of an address for
which the privilege state of the processor does not concur with the privilege
rights required to access it. Consequently, once activated, the trojan will enable
a malicious user space process to access and modify addresses in the kernel space
memory without the need for privilege escalation. We show in Fig. 6 that the
LLM is able to add the requested trojan functionality by properly adjusting
the identified Verilog code. For more information on how the GPT adjusted the
memory management unit, we direct the reader to [16].

Designing the Trigger Circuit. The stealthiness of a hardware trojan is
directly related to the specific conditions that enable the trigger signal and how
easily these conditions can be met outside of an attack scenario. Ideally, the
triggering conditions should be instigated only by the attacker. To generate
the trigger signal, we target the register file (RF) module of CVA6. The RF
is comprised by 32 integer and 32 floating-point registers, with each one being
64-bits long. The register file of CVA6 is flip-flop based and the architectural
registers correspond one-for-one to the RF’s physical entries. We ask the GPT
model to attach the triggering circuit on two of the integer general purpose
registers (GPRs). For the attack to be feasible, any set of architectural registers
that can be reliably controlled (i.e., load values) by the attacker, is suitable to
insert the trigger. The triggering circuit passively monitors the values loaded in
these two registers. When two specific 64-bit values are placed simultaneously
in the chosen set of general-purpose registers, the HT is enabled and allows
the tampering of arbitrary kernel space memory addresses by a user process.
For more information on how the GPT adjusted the register file, we direct the
reader to [17].

5.1 Hardware Trojan Attack Implementation

We implement the GPT-generated hardware trojan using Xilinx’s Vivado and
create a new HT-CVA6 bitstream. Table 5 shows the utilization of the overall
CVA6 design inside the FPGA, along with the minimal footprint of the HT
implementation with respect to the CVA6’s size. We include these metrics, as
they are typical in papers evaluating the HT’s stealthiness.

To test the HT functionality we download the bitstream on a Genesys 2
FPGA board and boot inside a Linux OS. The effectiveness of the HT is tested

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 189

Fig. 5. Identify the code part responsible for the generation of an exception in an illegal
memory access.

Fig. 6. Modify the conditions for illegal memory access exception generation to add
the trojan functionality.

in two different attack scenarios: (i) against the integrity and (ii) against the
availability of the CVA6 system. For both of the attacks, a malicious user process
enables the trojan and proceeds to alter the values of arbitrary addresses in the
kernel address space. The integrity attack is performed in a controlled setting and
the affected addresses belong to custom-made Linux kernel modules (LKMs). At
the end of the attack, the LKMs hold attack-influenced values, thus violating
the integrity of the kernel. In the availability attack, the user process modifies
addresses belonging to the init task structure of the init process, leading to a
kernel panic.

190 G. Kokolakis et al.

Table 5. CVA6 and HT utilization of resources inside the Genesys 2 FPGA board.

Module Name LUTs FFs

CVA6 72606 47178

Trigger Circuit 26 1

Payload Circuit 4 3

6 Discussion

Our experiments showcased that LLMs can provide an effective assistance to
attackers looking to insert HTs in complex hardware designs. Nevertheless, we
acknowledge that our study is limited to the use of a single general-purpose
LLM on a small design dataset. Future research in the automation of hardware
trojan attacks through large language models, should encompass an examination
of a wider range of LLMs (both general-purpose and domain-specific) and a
larger sample of hardware designs. Moreover, it is worth examining how fine-
tuning of LLM parameters (i.e., the temperature parameter in charge of the
response creativity) can affect the quality of the LLM outputs and therefore the
effectiveness of the generated HT designs. On top of that, it is important to
focus research efforts on the implementation of frameworks that can verify the
effectiveness of LLM-generated HTs.

As discussed in Sect. 4.1, our methodology provides a way to address the
problem of context length limit in LLM prompts. However, we recognize that
our solution can prove to be inefficient, if the size of the submitted for analysis
HDL file surpasses the context length limit of the LLM’s prompts. In such a
scenario, an attacker will have to develop a more sophisticated strategy, similar
to the tokenization approach of the LLM4SecHW framework [27], to segment
the HDL code submitted for analysis. In our study, we did not encounter any
such issue. We consider the 4096 tokens limit [44] for ChatGPT to be adequate
enough to process typically-sized HDL files.

A future interesting direction in the intersection of language models with
hardware trojans research would be to investigate how introduction of relevant
HT publications in the feedback loop of LLMs, can lead to more efficient (e.g.,
stealthy, smaller) hardware trojan designs. We consider such a technique to
be attractive for attackers that want to encompass the latest advancements in
hardware trojan design, to reshape or enhance the characteristics of their trojan
implementations.

7 Conclusions

In this paper we presented an automated methodology that utilizes general-
purpose LLMs for the analysis of complex hardware designs and the subse-
quent insertion of hardware trojans in them. Our methodology is primarily seg-
mented in two phases, the filtering process and the trojan insertion. During the

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 191

first phase, an attacker can utilize the LLM as a fine-grained filter, to navi-
gate through the design’s large HDL database and discover information about
the modules of attack interest. To do that, the attacker is considered to have
an abstract idea of the desired attack and then proceeds to craft appropriate
prompts that will drive the LLM responses to pinpoint to specific candidate
modules. This way, an attacker manages to reduce the context length of the sub-
sequent LLM prompts, as only the RTL code of the identified module(s) needs
to be submitted for analysis to the LLM. After the initial analysis, the attacker
requests from the LLM to locate parts in the RTL code that correlate with
the attack target. During the second phase, the attacker using natural language
instructions, prompts the LLM with the modifications necessary for the inclu-
sion of the trojan functionality in the identified code. Using the above method,
we examined several attack scenarios on different hardware security modules,
as well as a complex RISC-V micro-architecture. To highlight the efficiency of
our automated methodology, we showcased a complete proof of concept trojan
implementation inside the utilized RISC-V CPU. For this attack scenario, our
method overcame the context length limitations by reducing the overall attack
space analysis from almost a hundred HDL files to only a single. Thus, our work
highlights the power LLMs can provide when integrated in the design cycle of
hardware trojan attacks.

References

1. GitHub Copilot: Your AI pair programmer (2021). https://copilot.github.com/
2. Ahmad, B., Thakur, S., Tan, B., Karri, R., Pearce, H.: Fixing hardware security

bugs with large language models. arXiv preprint arXiv:2302.01215 (2023)
3. Ali, M., et al.: Tokenizer choice for LLM training: negligible or crucial? arXiv

preprint arXiv:2310.08754 (2023)
4. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In:

Advances in Neural Information Processing Systems, vol. 13 (2000)
5. Chang, K., et al.: ChipGPT: how far are we from natural language hardware design.

arXiv preprint arXiv:2305.14019 (2023)
6. ChatGPT: Hardware modules handling illegal memory accesses exceptions. Ope-

nAI ChatGPT (2023). https://chat.openai.com/share/b4acf148-f31b-438f-a60b-
9570ed1ad4b4

7. ChatGPT: Hardware modules handling privilege level separation. Ope-
nAI ChatGPT (2023). https://chat.openai.com/share/9436a01d-3d3e-4fed-a8be-
780638dc2b7e

8. ChatGPT: Hardware modules involved in read operations. OpenAI ChatGPT
(2023). https://chat.openai.com/share/b4acf148-f31b-438f-a60b-9570ed1ad4b4

9. ChatGPT: Hardware modules involved in time-expensive operations. Ope-
nAI ChatGPT (2023). https://chat.openai.com/share/9436a01d-3d3e-4fed-a8be-
780638dc2b7e

10. ChatGPT: Leakage of the AES secret key. OpenAI ChatGPT (2023). https://chat.
openai.com/share/01888ff9-ace8-4eb3-b496-802c9b704a4d

11. ChatGPT: Performance reduction via thermal attacks (cache). OpenAI ChatGPT
(2023). https://chat.openai.com/share/c9cfdae6-71ea-4f7f-8696-cc7b7a92d770

https://copilot.github.com/
http://arxiv.org/abs/2302.01215
http://arxiv.org/abs/2310.08754
http://arxiv.org/abs/2305.14019
https://chat.openai.com/share/b4acf148-f31b-438f-a60b-9570ed1ad4b4
https://chat.openai.com/share/b4acf148-f31b-438f-a60b-9570ed1ad4b4
https://chat.openai.com/share/9436a01d-3d3e-4fed-a8be-780638dc2b7e
https://chat.openai.com/share/9436a01d-3d3e-4fed-a8be-780638dc2b7e
https://chat.openai.com/share/b4acf148-f31b-438f-a60b-9570ed1ad4b4
https://chat.openai.com/share/9436a01d-3d3e-4fed-a8be-780638dc2b7e
https://chat.openai.com/share/9436a01d-3d3e-4fed-a8be-780638dc2b7e
https://chat.openai.com/share/01888ff9-ace8-4eb3-b496-802c9b704a4d
https://chat.openai.com/share/01888ff9-ace8-4eb3-b496-802c9b704a4d
https://chat.openai.com/share/c9cfdae6-71ea-4f7f-8696-cc7b7a92d770

192 G. Kokolakis et al.

12. ChatGPT: Performance reduction via thermal attacks (loop). OpenAI ChatGPT
(2023). https://chat.openai.com/share/3ec61ff4-5cd1-4474-9a68-e4e813999435

13. ChatGPT: Reduction in des encryption rounds. OpenAI ChatGPT (2023). https://
chat.openai.com/share/1319eccf-9d6b-4d90-9487-a7a7150bf9d4

14. ChatGPT: Speculative execution of wrong-path instructions. OpenAI ChatGPT
(2023). https://chat.openai.com/share/27438636-70c4-4786-8eac-24b445c772f1

15. ChatGPT: Violation of OS-enforced memory policies. OpenAI ChatGPT (2023).
https://chat.openai.com/share/31d55383-37dd-4f09-bf78-9599f50eb704

16. ChatGPT: Violation of OS-enforced memory policies (payload circuit). Ope-
nAI ChatGPT (2023). https://chat.openai.com/share/777c995d-108c-48ab-8ce0-
83a46aec5cd0

17. ChatGPT: Violation of OS-enforced memory policies (trigger circuit). Ope-
nAI ChatGPT (2023). https://chat.openai.com/share/2974bd05-573b-406b-95b9-
ec7bba16053c

18. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021)

19. Chen, T., et al.: VulLibGen: identifying vulnerable third-party libraries via gener-
ative pre-trained model. arXiv preprint arXiv:2308.04662 (2023)

20. Chen, Y., Ding, Z., Alowain, L., Chen, X., Wagner, D.: DiverseVul: a new vul-
nerable source code dataset for deep learning based vulnerability detection. In:
Proceedings of the 26th International Symposium on Research in Attacks, Intru-
sions and Defenses, pp. 654–668 (2023)

21. De, A., Khan, M.N.I., Nagarajan, K., Ghosh, S.: Hartbleed: using hardware trojans
for data leakage exploits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28,
968–979 (2020)

22. Dharsee, K., Criswell, J.: Jinn: hijacking safe programs with trojans. In: 32nd
USENIX Security Symposium (USENIX Security 2023), Anaheim, CA, pp. 6965–
6982. USENIX Association (2023)

23. Dunkelman, O., Sekar, G., Preneel, B.: Improved meet-in-the-middle attacks
on reduced-round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77026-8 8

24. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29
(2019)

25. Fakhoury, S., Chakraborty, S., Musuvathi, M., Lahiri, S.K.: Towards generating
functionally correct code edits from natural language issue descriptions. arXiv
preprint arXiv:2304.03816 (2023)

26. Feng, Z., et al.: CodeBERT: a pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

27. Fu, W., Yang, K., Dutta, R.G., Guo, X., Qu, G.: LLM4SecHW: leveraging domain-
specific large language model for hardware debugging. In: Asian Hardware Oriented
Security and Trust (AsianHOST) (2023)

28. Gao, Y., Nikolov, N.I., Hu, Y., Hahnloser, R.H.: Character-level translation with
self-attention. arXiv preprint arXiv:2004.14788 (2020)

29. Hajipour, H., Holz, T., Schönherr, L., Fritz, M.: Systematically finding security vul-
nerabilities in black-box code generation models. arXiv preprint arXiv:2302.04012
(2023)

30. Hepp, A., Sigl, G.: Tapeout of a RISC-V crypto chip with hardware trojans: a
case-study on trojan design and pre-silicon detectability. In: Palesi, M., Tumeo, A.,
Goumas, G.I., Almudéver, C.G. (eds.) CF 2021: Computing Frontiers Conference,
Virtual Event, Italy, 11–13 May 2021, pp. 213–220. ACM (2021)

https://chat.openai.com/share/3ec61ff4-5cd1-4474-9a68-e4e813999435
https://chat.openai.com/share/1319eccf-9d6b-4d90-9487-a7a7150bf9d4
https://chat.openai.com/share/1319eccf-9d6b-4d90-9487-a7a7150bf9d4
https://chat.openai.com/share/27438636-70c4-4786-8eac-24b445c772f1
https://chat.openai.com/share/31d55383-37dd-4f09-bf78-9599f50eb704
https://chat.openai.com/share/777c995d-108c-48ab-8ce0-83a46aec5cd0
https://chat.openai.com/share/777c995d-108c-48ab-8ce0-83a46aec5cd0
https://chat.openai.com/share/2974bd05-573b-406b-95b9-ec7bba16053c
https://chat.openai.com/share/2974bd05-573b-406b-95b9-ec7bba16053c
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2308.04662
https://doi.org/10.1007/978-3-540-77026-8_8
http://arxiv.org/abs/2304.03816
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2004.14788
http://arxiv.org/abs/2302.04012

Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design 193

31. Huang, D., Bu, Q., Zhang, J., Xie, X., Chen, J., Cui, H.: Bias assessment and
mitigation in LLM-based code generation (2023)

32. Jin, M., et al.: Inferfix: end-to-end program repair with LLMs. arXiv preprint
arXiv:2303.07263 (2023)

33. Kande, R., et al.: LLM-assisted generation of hardware assertions. arXiv preprint
arXiv:2306.14027 (2023)

34. King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and
implementing malicious hardware. In: Monrose, F. (ed.) First USENIX Workshop
on Large-Scale Exploits and Emergent Threats, LEET 2008, San Francisco, CA,
USA, 15 April 2008, Proceedings. USENIX Association (2008)

35. Li, R., et al.: Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161 (2023)

36. Li, Y., et al.: Competition-level code generation with alphacode. Science 378(6624),
1092–1097 (2022)

37. Luo, Z., et al.: WizardCoder: empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568 (2023)

38. Meng, X., et al.: Unlocking hardware security assurance: the potential of LLMs
(2023)

39. Murr, L., Grainger, M., Gao, D.: Testing LLMs on code generation with varying
levels of prompt specificity (2023)

40. Nair, M., Sadhukhan, R., Mukhopadhyay, D.: Generating secure hardware using
chatGPt resistant to CWEs. Cryptology ePrint Archive (2023)

41. Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., Zhou, Y.: CodeGen2: lessons
for training LLMs on programming and natural languages. arXiv preprint
arXiv:2305.02309 (2023)

42. Nijkamp, E., et al.: CodeGen: an open large language model for code with multi-
turn program synthesis. arXiv preprint arXiv:2203.13474 (2022)

43. OpenAI: Openai codex (2021). https://openai.com/blog/openai-codex/. Accessed
24 Jan 2024

44. OpenAI: Chat completions API guide (2024). https://platform.openai.com/docs/
guides/text-generation/chat-completions-api. Accessed 26 Jan 2024

45. Orenes-Vera, M., Martonosi, M., Wentzlaff, D.: Using LLMs to facilitate formal
verification of RTL (2023)

46. Paria, S., Dasgupta, A., Bhunia, S.: Divas: an LLM-based end-to-end framework for
SoC security analysis and policy-based protection. arXiv preprint arXiv:2308.06932
(2023)

47. Pearce, H., Tan, B., Ahmad, B., Karri, R., Dolan-Gavitt, B.: Examining zero-shot
vulnerability repair with large language models. In: 2023 IEEE Symposium on
Security and Privacy (SP), pp. 2339–2356. IEEE (2023)

48. Pszczo�lowski, J.: Data encryption standard (DES) (2020). https://github.com/
jpszczolowski/des-verilog

49. Saha, D., et al.: LLM for SoC security: a paradigm shift (2023)
50. Sandoval, G., Pearce, H., Nys, T., Karri, R., Dolan-Gavitt, B., Garg, S.: Security

implications of large language model code assistants: a user study. arXiv preprint
arXiv:2208.09727 (2022)

51. Schuster, M., Nakajima, K.: Japanese and Korean voice search. In: 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5149–5152. IEEE (2012)

52. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 (2015)

http://arxiv.org/abs/2303.07263
http://arxiv.org/abs/2306.14027
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2305.02309
http://arxiv.org/abs/2203.13474
https://openai.com/blog/openai-codex/
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
http://arxiv.org/abs/2308.06932
https://github.com/jpszczolowski/des-verilog
https://github.com/jpszczolowski/des-verilog
http://arxiv.org/abs/2208.09727
http://arxiv.org/abs/1508.07909

194 G. Kokolakis et al.

53. Shen, B., et al.: PanGu-coder2: boosting large language models for code with rank-
ing feedback. arXiv preprint arXiv:2307.14936 (2023)

54. Srikumar, P.: Fast and wrong: the case for formally specifying hardware with LLMs.
In: Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). ACM. ACM Press (2023)

55. Strömbergson, J.: Advanced encryption standard (AES) (2023). https://github.
com/secworks/aes

56. Thakur, S., et al.: Benchmarking large language models for automated verilog RTL
code generation (2022)

57. Thakur, S., Blocklove, J., Pearce, H., Tan, B., Garg, S., Karri, R.: Autochip:
automating HDL generation using LLM feedback (2023)

58. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

59. Wang, C., Cho, K., Gu, J.: Neural machine translation with byte-level subwords.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp.
9154–9160 (2020)

60. Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., Wang, Q.: Software test-
ing with large language model: survey, landscape, and vision. arXiv preprint
arXiv:2307.07221 (2023)

61. Wong, M.F., Guo, S., Hang, C.N., Ho, S.W., Tan, C.W.: Natural language genera-
tion and understanding of big code for AI-assisted programming: a review. Entropy
25(6) (2023). https://doi.org/10.3390/e25060888. https://www.mdpi.com/1099-
4300/25/6/888. ISSN 1099-4300

62. Wu, Y., et al.: How effective are neural networks for fixing security vulnerabilities.
arXiv preprint arXiv:2305.18607 (2023)

63. Zaruba, F.: CVA6 (2019). https://github.com/openhwgroup/cva6
64. Zaruba, F., Benini, L.: The cost of application-class processing: energy and per-

formance analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core in 22-nm FDSOI
technology. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(11), 2629–2640
(2019). https://doi.org/10.1109/TVLSI.2019.2926114. ISSN 1557-9999

65. Zheng, Q., et al.: CodeGeex: a pre-trained model for code generation with multi-
lingual evaluations on HumanEval-X. arXiv preprint arXiv:2303.17568 (2023)

http://arxiv.org/abs/2307.14936
https://github.com/secworks/aes
https://github.com/secworks/aes
http://arxiv.org/abs/2307.07221
https://doi.org/10.3390/e25060888
https://www.mdpi.com/1099-4300/25/6/888
https://www.mdpi.com/1099-4300/25/6/888
http://arxiv.org/abs/2305.18607
https://github.com/openhwgroup/cva6
https://doi.org/10.1109/TVLSI.2019.2926114
http://arxiv.org/abs/2303.17568

Everything All at Once: Deep Learning
Side-Channel Analysis Optimization

Framework

Gabriele Serafini(B), Léo Weissbart, and Lejla Batina

Radboud University, Nijmegen, The Netherlands
{gabriele.serafini,leo.weissbart,lejla.batina}@ru.nl

Abstract. Deep learning is becoming an increasingly proficient tool for
side-channel analysis. While deep learning has been evolving around the
tasks of image and speech recognition for decades, it is still lacking matu-
rity for side-channel analysis. One of the challenges to train a good model
is the fine-tuning of its hyperparameters. Many methods have been devel-
oped for Hyperparameter Optimization, but a few have been applied for
deep learning side-channel analysis.

We study the use of sampling algorithm and early-stopping mecha-
nism in the hyperparameter optimization search for deep learning side-
channel analysis models. We also offer a scalable deep learning framework
to extend results obtained for other problems and datasets.

Our results show that hyperparameter optimization methods can save
time and resources while leading to models that can lead to the best pos-
sible output and at the same time are providing more confidence whether
to look for a better model.

Keywords: Deep Learning · Side-Channel Analysis · Hyperparameter
Optimization · Pruning

1 Introduction

From personal smart gadgets to sophisticated industrial machinery, devices
embedded with sensors, software, and other technologies are becoming an inte-
gral part of our daily lives. These devices, collectively referred to as the Inter-
net of Things (IoT), communicate over a common network, and the security
of this network depends on the reliability of the least secure device. However,
as the integration of IoT devices expands, the need for secure cryptographic
implementations grows bigger. One of the most critical concerns is the potential
vulnerability of these devices to cyberattacks, which can lead to unauthorized
access, data theft, or even taking control over the device’s functions, thus posing
significant risks to users’ privacy and security.

While strong cryptographic designs can give guaranties on the security of
an application, there remains numerous possibles threats. Side-Channel Analy-
sis (SCA) is a set of techniques aimed to explore the possible vulnerabilities of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 195–212, 2024.
https://doi.org/10.1007/978-3-031-61486-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_12

196 G. Serafini et al.

implementations of secure designs on physical devices. These techniques entail
the analysis of information contained in unintentional leakages from electronic
devices during operations involving sensitive secrets. This analysis can provide
insights into the device’s internal workings, exposing vulnerabilities to security
breaches.

The assessment of side-channel leakages is a part of standard evaluations for
electronics in commercial use, and typically involves the use of classic techniques
e.g., Differential Power Analysis [10] or Template attack [6]. While research on
SCA becomes more mature, new analysis methods are developed that add up
to the standard techniques for side-channel evaluators, such as Deep-Learning
SCA.

Among the various deep learning techniques, Convolutional Neural Net-
works (CNNs) turned out to be particularly suited for in profiling SCA. CNNs
are designed to automatically and adaptively learn spatial hierarchies of features,
which make them effective at recognizing subtle and complex patterns in side-
channel data. When trained on a side-channel dataset, a CNN model can learn
to associate the secret key to certain power leakage of a cryptographic operation
by extracting the important features it contains.

A fundamental challenge when using CNN, as a profiling SCA tool, is the
tuning of its hyperparameters. Hyperparameters define the configuration of a
model, and have a significant impact on a model performance. The sheer size
of the hyperparameter space to explore to find a fitting model and the cost
of evaluating each configuration make the hyperparameter optimization (HO)
task computationally expensive and time-consuming. Moreover, there exists no
guaranty for a CNN model that, if after the training phase the underlying attack
is not successful, no better configuration that would make the attack succeed
could be found. Thus, to ensure that an implementation is secure against CNN-
based SCA, an exhaustive HO search, exploring all possible configurations of
hyperparameters remains the best method.

The use of optimization techniques to tune hyperparameters can help to
ease the HO search to some extends. One such method is the use of sampling
based on optimization algorithms e.g., Bayesian optimization [25] or Genetic
algorithms [12], for exploring the search space of hyperparameter configurations
in an educated manner, and increase the chances that the best configurations
are explored the earliest possible during the search. Another method used to
enhance deep learning is Early Stopping. Based on the results of previous models
during the training phase, this method allows for the early termination of an
unpromising model training based on an intermediate results [2]. This method
can save computational resources and allows the HO process to allocate more
time to explore other, potentially better hyperparameter configurations.

In this paper, we aim to provide a first guideline towards a framework that
integrates efficiently HO for CNN-based side-channel analysis. We demonstrate
how the conjunction of early-stopping and optimization method, namely median
Early Stopping and tree-structured Parzen Estimator (TPE), can computation-
ally ease the HO search. The following points provide a more detailed overview
of the study’s focal areas:

Everything All at once 197

1. We give an introductory analysis to enhance the efficiency of hyperparam-
eter optimization in CNN-based SCA. We show it is possible to speed up
the HO process while minimizing the compromise on the quality of results.
The integration of sampling method and early-stopping offers more flexibility
in dealing with the exploration-exploitation trade-off during hyperparameter
tuning.

2. We introduce the use of Guessing Entropy (GE) inside sampling and early-
stopping to reach faster convergence to good fitting models.

3. We demonstrate how the use of patience early stopping together with median
early stopping can save resources by preventing long training of models that
appeared to have already converged and won’t learn further, and models that
appear to have little likelihood of improving previously run models.

4. We share the code used for model training and HO. The utilization of several
machine learning packages simplifies the hyperparameter optimization process
and is specifically crafted for SCA, thus paving the way for further exploration
with other optimization algorithms or machine learning frameworks in the
SCA setting.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
overview of existing research in the area of CNN-based side-channel analysis
and hyperparameter optimizations for this type of attacks. In Sect. 3, we pro-
vide necessary information on both SCA and deep learning attack. In Sect. 4, we
present the methodology we applied to create experiments, and especially the
datasets and framework we use. In Sect. 5, we show the results obtained from
our experiments with efficiency of the best obtained model, and saving computa-
tional resource compared to other results from the literature. Finally, in Sect. 6,
we sum up our results and identify some future research directions.

2 Related Works

The studies of deep learning for side-channel analysis have gained great interest
in recent years [21]. CNN-based deep learning have been shown many times to be
particularly efficient for attacks against masking countermeasure in cryptogra-
phy [11,15,17,22,28,30]. Wouters et al. in [28] managed to reduce the complexity
of the CNNs proposed by Zaid et al. [30] by an average of 52% while maintaining
similar performance. The authors argue that increasing the filter size can actu-
ally improve the performance of the network. The review also emphasizes the
importance of pre-processing side channel traces, and shows that with proper
pre-processing the first convolutional block proposed in [30] to extract features
can be omitted, which contributes to reducing the complexity of the models.
Their work highlights the need for proper evaluation of the hyperparameter
search space to conclude on the security of a given dataset.

In an effort to build a universal framework for deep-learning SCA to guaranty
better result reproducibility, Perin et al. [20] and Brisfors et al. [5] introduce two
publicly available frameworks designed to streamline deep learning based side
channel analysis. In these frameworks, the objective is to provide a basis for SCA

198 G. Serafini et al.

evaluations with deep learning, and provide useful functionalities published in
the literature.

Early-stopping and hyperparameter tuning for deep-learning SCA in dis-
cussed in [18,24]. The authors of [24] introduces the six sigma methodology for
choosing the best possible hyperparameters. The method is a derivative from a
well known methodology for various engineering problems often used to reduce
the variability of industrial processes.

In [18], Paguada et al. introduces an early-stopping method designed for
SCA model training. The early-stopping of the training is evaluated based on
the guessing entropy of the resulting attack, using the newly defined patience
and persistence of the guessing entropy. Our approach also uses optimized com-
putation of the guessing entropy and combines an automated search for the
best hyperparameters with a tree-structured Parzen optimization. Wu et al. in
[29], also suggest an automated method for modifying the hyperparameters, but
using Bayesian optimization. This paper also compares the tracking evolution of
the guessing entropy, accuracy, and leakage difference distribution of the result-
ing attack to choose the best fitting hyperparameters, but do not implement
early-stopping methods.

3 Background

3.1 Profiling SCA

Profiling SCA is a type of SCA that is opposed to non-profiled SCA (i.e., Single
Power Analysis and Differential Power Analysis). Contrary to non-profiled SCA
in which an attacker is assumed to have physical access to the device under
attack, profiling SCA makes the assumption that an attacker also has access to
and full control of an identical copy of the device under attack, and can learn
about leakage to profile before accessing the device under attack. This technique
is commonly divided in two phases:

1. A profiling phase: during this phase, the attacker collects side channel traces
from a copy of the target device while running cryptographic operations with
known secret. This data is then used to build a predictive model (i.e. a profile)
of the device’s behavior.

2. An attack phase: after the profiling phase, the attacker applies the developed
model to the target device while it is executing the same cryptographic oper-
ations with unknown key. If the model developed during the profiling phase
is accurate, the attacker can infer the secret key.

3.2 CNN and Profiling SCA

Convolutional Neural Networks (CNNs) are a specific type of feed-forward neu-
ral network that have become standard for tasks involving image and signal
processing. A CNN is generally composed of multiple convolutional layers fol-
lowed by fully connected layers. The input of a convolution layer is multiplied

Everything All at once 199

by several filters (also known as kernels) which are shifted along the input data,
performing a dot product operation at each position, and creating a so-called
feature map. During this convolution operation, the kernels act as feature extrac-
tor, each learning to identify a different pattern in the input data. The patterns
can range from simple edges to complex shapes or textures, and they emerge
automatically during the training process. Once the features are extracted, the
output of the convolution layers goes to a fully-connected network that acts as
a classifier.

A CNN, as well as other deep learning algorithms, is divided in two stages:
a training and an evaluation phase. During training, the neural network is chal-
lenged with raw input data and is followed by backpropagation correcting the
differential between the predicted and known labels. In the evaluation phase, the
network is challenged with a never previously used input data, and outputs a
probability distribution to classify the input based on the trained task.

Because of the similar two-stage structure of profiling SCA and deep learn-
ing classification, the later can be applied as a profiling method in SCA. In
such a framework, the aim is to classify observed side-channel leakages into cor-
responding secret information. Given this formulation, machine learning tech-
niques emerge as a natural choice for enhancing the efficiency and efficacy of
profiled side channel attacks.

SCA often involves extracting useful information from noisy, high-
dimensional data, a process that CNNs are exceptionally well-equipped to han-
dle. The properties of CNN align with the requirements of side channel analysis
for extracting features in a high dimensional power trace and overcome invari-
ance of a leakage position. The learned features are more representative and
discriminative, enabling them to effectively identify and classify patterns in side
channel data.

The property of translation invariance of CNNs is useful in the context of
side channel analysis. This property ensures that once a feature from a leakage,
such as a specific pattern, has been learned, the CNN model can recognize the
same pattern regardless of its position in any new side channel trace, making
CNNs effective tools to work effectively with raw, unprocessed data. This is
particularly beneficial in side channel analysis, where preprocessing steps such
as trace alignment can be challenging and time-consuming.

3.3 SCA Metrics

Precision, recall and accuracy, often fall short in deep-learning SCA due to the
binary nature of their result. These metrics focus on whether a single prediction
is correct, overlooking an attacker’s strategy of narrowing down potential keys
across many traces. A more informative metric in SCA is Guessing Entropy (GE),
which measures the average number of keys as attacker would need to guesses
before finding the correct one.

Guessing entropy can be modeled as follows:

GE = E [rankk∗(g)] (1)

200 G. Serafini et al.

In this context, rankk∗ denotes the position of the correct key k∗ in an ordered
vector of candidate keys. The vector g represents the output array of keys, sorted
in an order determined by the likelihood of each candidate key being the correct
one according to the classifier. The expectation is computed by averaging the
rank value over multiple experiments.

3.4 Leakage Model

A leakage model is a critical component that links the observed side-channel
information to the intermediate values of the cryptographic operation being per-
formed. The leakage model thus forms a fundamental bridge between the phys-
ical world observations and the mathematical properties of the cryptographic
algorithm, allowing for an attacker to make informed deductions about secret
data.

The basic premise behind leakage models is that the side-channel emissions
of a device are not random, but depend on the device’s internal state and opera-
tions. In the case of a cryptographic device, these operations are influenced by the
data being processed and the secret key. The leakage model aims to describe this
relationship, essentially serving as a predictor of side-channel emissions based on
the known intermediate values of the cryptographic algorithm.

In this paper, only the Identity Leakage Model (ID) is considered.
This model assumes a direct relationship between the observed side-channel

leakage and the secret intermediate values during cryptographic operations.
Under the ID model, the observed leakage is assumed to be the identity

of the intermediate value. This suggests that the leakage directly reveals the
intermediate value, without any noise or distortion.

Mathematically, this can be expressed as:

L = V (2)

where, L denotes the observed leakage and V represents the secret intermediate
value.

In the context of the Advanced Encryption Standard (AES), for instance,
the intermediate value could be the result of the application of the S-box in the
first round, which can be expressed as V = Sbox(key + input).

This would result in 256 possible classes (corresponding to the 256 possible
values of an 8-bit output), each representing a distinct intermediate value.

3.5 Hyperparameter Optimization

Hyperparameter optimization (HO) is a critical step in the development of ML
algorithms. It entails determining an optimal set of hyperparameters, that min-
imizes or maximizes an established fit function, and so improves the model’s
performance. The hyperparameters are chosen before training a model and can-
not be changed later. Moreover, it is not possible to predict that a configuration
of hyperparameters will lead to a good model.

Everything All at once 201

Learning rate, number of layers in a neural network, number of hidden units
in each layer, type of activation functions, and many more parameters are exam-
ples of hyperparameters. When we initially apply a model, the ideal values for
these hyperparameters are often not obvious, and they might be highly problem-
dependent.

To find a suitable set of hyperparameters, one needs to explore different con-
figurations of a given model. Common methods for exploring hyperparameters
are:

– Grid Search: This is the simplest strategy, in which we establish a subset of
the hyperparameter space and methodically attempt all combinations within
the defined grid.

– Random Search: Unlike grid search, random search draws hyperparameter
values at random from a given space. When the number of hyperparameters
is considerable, this method may be more efficient than grid search.

– Bayesian Optimization: This method creates a posterior distribution of func-
tions that best describes the function to be optimized, and then uses it to
select the most promising hyperparameters to evaluate in the true function.

3.6 Tree-Structured Parzen Estimator

The process of selecting the hyperparameters that optimize a model’s perfor-
mance can be time-consuming and computationally expensive. It is, nonethe-
less, critical for developing strong and accurate ML models. In this study, we
use the Tree-structured Parzen Estimator (TPE) [4], a Sequential Model-Based
Optimization (SMBO) approach.

TPE constructs a model of the objective function with the goal of suggesting
more promising hyperparameters for evaluation.

TPE models two probability distributions: P (x|y) and P (y), where x rep-
resents the hyperparameters, and y is the corresponding objective function.
Through this modelling, TPE assigns greater weight to regions of the hyper-
parameter space it deems promising.

The operational procedure of TPE consists of the following steps:

1. TPE starts its process by randomly selecting n hyperparameters configura-
tions from the search space and evaluating the objective function for them.

2. These hyperparameters are then fitted into two distinct distributions: one for
those that yielded better outcomes of the objective function (termed “good”
values), and another for the remainder of the hyperparameters (termed “bad”
values).

3. In subsequent iterations, TPE samples more from regions having a high ratio
of good to bad hyperparameter values. This ratio is determined by a param-
eter, γ, which is a quantile threshold separating the good and bad hyperpa-
rameters based on their objective function outcomes.

Through this process, TPE continuously adapts its focus towards the promis-
ing areas of the hyperparameter space, while diminishing attention on areas
known to yield inferior results.

202 G. Serafini et al.

3.7 Early Stopping Strategies in Hyperparameter Optimization

Early stopping strategies in HO to the process of halting training of non-
promising hyperparameter configuration as early as possible during the tuning
process, saving computational resources. These techniques are particularly use-
ful for tuning complex machine learning architectures, where the computational
cost can be quite high [27]. Among early stopping strategies, the most notable
are: median early-stopping, asynchronous successive halving algorithm [13], and
hyperband algorithm [9,14]. These strategies monitor a model training perfor-
mance and use it to decide whether to stop the training prematurely. All these
strategies are adaptive early-stopping mechanisms that adapt the rules to trigger
the training stop based on the tracked monitored value. Early stopping strategies
were initially viewed as HO strategies when applied to grid search or random
search, but it has been demonstrated how these strategies can actually enhance
Optimization algorithms such as Bayesian Optimization [26,27].

In particular, we explore median early-stopping in this paper. Median-early
stopping will stop the training of a model when the objective value by the cur-
rent epoch is worse than the median value of the running averages of all com-
pleted previous trials objective values. Another early-stopping rule that can be
applied is the Patience-Early stopper. This method can be used to wrap an
early-stopping rule with a patience parameter that will trigger the wrapped rule
after a fixed number of epochs where no improvement can be observed.

Despite their computational benefits, these strategies bear the risk of prema-
turely discarding configurations that may start slow but eventually outperforms
others. This issue can augment with the double descent phenomena [16], poten-
tially leading to suboptimal final configurations.

3.8 Warm-Up Values in Early Stopping Strategies

Warm-up values refer to the initial set of iterations or epochs during which the
performance of the hyperparameter configurations is not evaluated for prun-
ing. This grace period allows the configurations to stabilize and exhibit their
potential before any pruning decisions are made. In our experiments, we uti-
lize these warm-up values in conjunction with the Median-Early-Stopper. The
Median-Early-Stopper operates by comparing the performance of each configu-
ration against the median performance of all configurations at similar epochs.
If a configuration’s performance falls below the median, it is stopped, allowing
resources to be focused on more promising configurations. To understand the
impact of warm-up values on this process, we experiment with warm-up periods
of 30, 50, 75, and 100 epochs. By varying these values, we aim to analyze how
different lengths of the warm-up period affect the overall hyperparameter opti-
mization process, particularly in terms of the timing and effectiveness of early
stopping decisions.

Everything All at once 203

4 Methodologies

4.1 Study Settings

The experiments utilize both the ASCADf and the ASCADr datasets [3]. Those
datasets have been introduced in an initiative to provide a ground base for side-
channel analysis of smartcard masked AES implementation. ASCADf dataset
was the first published, and contains traces collected from encryption operations
with a fixed key. The ASCADr dataset contains traces collected from encryptions
with random keys and was meant to be more challenging than ASCADf. For
both, we use the label obtained by using the Identity Leakage Model.

For the computational aspect, all the deep learning models were trained on
an NVIDIA GeForce GTX 1080 TI Graphics Processing Unit (GPU).

The implementation of the experiment was conducted using Python. The
TensorFlow [1] and Keras [7] libraries served as the foundation for constructing
and training the deep learning models, while Optuna [2] was employed for the
optimization of hyperparameters. For the purpose of visualizing results and mon-
itoring the progress of our experiments, we used Matplotlib [8], TensorBoard,
and Optuna’s built-in visualization features. These tools allowed us to effectively
track, analyze, and present the outcomes of our research in a clear and intuitive
manner.

4.2 CNN Model Architecture

In this research, we leveraged the benefits of sampling optimization with early-
stopping to perform hyperparameter optimization (HO) experiments on two SCA
datasets: ASCADr and ASCADf, with the identity leakage model.

The experiments are executed each for 100 models. In these experiments, the
HO process is guided using a customized objective function based on GE.

The CNN-based models can be decomposed in a feature extraction part (i.e.,
one or more convolutional blocks) followed by a multi-layer perceptron that acts
as a classifier to recover the guessed intermediate value of an input trace. One
convolutional block always is formed with a convolution layer and a pooling
layer. An additional normalization layer is inserted every two blocks between
the convolution and pooling layers to add regularization of parameters. A rep-
resentation of the obtained models is showed in Fig. 1. The Table 1 lists the
different hyperparameters chosen to explore and their range for this study.

We combined the capabilities of Optuna and Keras to dynamically construct
CNN models, the structure, and parameters of which were determined by the
Tree-structured Parzen Estimator (TPE) Sampling Algorithm used in the HO
process.

To enhance the efficiency of our experiments and explore the potential ben-
efits of early stop strategies, we conducted four tests for each dataset. Each test
uses the Median-Early-Stopping and Patience-Early-Stopping techniques with
varying degrees of intensity, adjusted by manipulating the warm-up values. For
ASCADf, an additional experiment was conducted without employing any early

204 G. Serafini et al.

Fig. 1. General overview of how the convolutional neural networks are built

Table 1. Hyperparameter space explored in the optimization process

Hyperparameter Range Step

batch size [100, . . . , 1000] 100

learning rate [1e-5] (Fixed) None

activation function [relu, selu] None

filters [2, . . . , 64] ×2

num conv layers [2, . . . , 5] 1

kernel size [2, 3, 5, 7, 11, 17] (for each conv layer) None

num fc layers [1, 2, 3] 1

size fc layers [64, . . . , 512] (for each fc layer) 64

epochs 200 or 300 (fixed) None

strides 1 (fixed) None

stopping method, providing a benchmark against which to assess the impact of
these resource-saving techniques.

Finally, we assessed the experiments by selecting the best models from each
and comparing their performance metrics. We compared the different models
using GE.

4.3 Hyperparameter Optimization Process

Optuna was selected as the primary tool for conducting a series of HO exper-
iments. The Tree-structured Parzen Estimator (TPE) sampling algorithm, a

Everything All at once 205

Bayesian optimization algorithm provided by Optuna, was employed for the
hyperparameter configuration selection.

An important component of the approach was the use of the averaged GE as
the objective function to guide the HO process:

GEaverage =
GE(1) + GE(2) + ...GE(n)

n
(3)

where n is the size of the subset of traces taken from the validation set to estimate
the key rank, which correspond to the number of used traces to compute the GE
during the training. Utilizing the averaged GE as a metric during the HO process
is helpful in comparing the efficiency between different models, since this metric
gives an estimation of both the amount of traces needed to reach a low GE, and
the amount of attempts needed for guessing the correct value. Optuna ultimately
utilized this number as an objective value to guide the Hyperparameter selection
of the future models based on TPE Algorithm.

5 Results

This section of our research delves into the results from our analysis of the
two distinct datasets: ASCADf and ASCADr. We focus primarily on the hyper-
parameter optimization experiments conducted at various warm-up values for
the Median Early Stopper, methodically studying their impact on resource use,
measured in number of epochs, and the performance of the best model. This
examination allows us to determine the effects of early stopping on the best
models’ result for each unique experiment.

5.1 Experiments for ASCADf

Table 2 encapsulates the impact of various warm-up periods on resource uti-
lization during hyperparameter optimization processes. The columns labeled
Median-Early-Stopper and Patience-Early-Stopper show the percentages of
epochs spared due to the implementation of the respective early stopping strate-
gies. These savings are calculated in comparison to the total number of epochs
that would have been required if no early stopping mechanism were employed.
This comparison highlights the efficiency gains achieved by employing these
early stopping strategies in our hyperparameter optimization process. By saving
epochs, we are able to evaluate more configurations using fewer resources, thus
enhancing the overall efficiency and scalability of the optimization process.

Specifically, the Median Early Stopper column denotes the percentage of
epochs saved because of the application of this strategy, the Patience Early
Stopper column represents the percentage of saved epochs attributed to early
stopping based on patience. Lastly, the Sum column aggregates these savings,
providing an overall view of the resource conservation.

The total savings (represented by the Sum column), which combines the
impacts of both the different early stopping strategies, doesn’t exhibit a direct

206 G. Serafini et al.

Fig. 2. Guessing entropy for the ASCADf experiments using warm up value of 30, 50,
75 and 100

Table 2. Summary of the effect of different warm-up values on the average number
of epochs saved with early stopping during training on ASCADf (in percentage of a
complete training)

Warm-up Median-Early-Stopper Patience-Early-Stopper Sum

30 49.085 2.68 51.765

50 36.825 7.34 44.165

75 9.975 24.82 34.795

100 4.79 33.27 38.06

relationship with the warm-up period. This follows from the fact that a lighter
early stop based on previous models lead to more space for the early stop mech-
anism based on the training patience to act.

From the data collected in Table 2 and corresponding performance drawn
from Fig. 2, we can analyze the relations between the warm-up steps applied
to the training and the performance outcomes of the optimal model in the HO
process. All settings perform as well as or better than the run without early-
stopping, confirming that early-stopping does not impact on the capacity of HO
to find a good fitting model.

The setting with a minimal warm-up phase of 30 steps realizes significant
resource savings, with nearly half of the epochs conserved. Notably, the model’s
performance under this condition doesn’t compromise drastically as it recovers
the key with approximately 200 traces, like the rest of the configurations. This
suggests that even an aggressive early stop schedule can still result in optimal
model performance.

Extending the warm-up phase to 50 or 75 steps results in a slight decrease in
epoch savings. However, the performance of the model remains similar, requiring

Everything All at once 207

around 200 traces for key recovery, which aligns with the performance exhibited
by setting the warm up-value to 30.

Increasing the warm-up phase to 100 steps, or even having no early stop at
all, maintains a consistent performance level, necessitating around 200 traces for
key recovery. This finding reinforces the premise that strategic early stop doesn’t
compromise finding optimal configurations, but it might instead ensure efficient
resource allocation and exploration-exploitation balance.

Table 3. Comparison with other papers of number of traces required to reach a GE
of 0 for ASCADf, ID leakage Model

Attempt Traces to reach GE = 0

[3] 1476

[30] 191

[23] 202

[29] 158

this study 230

5.2 Experiments for ASCADr

Table 4. Summary of the effect of different warm-up values on the average number
of epochs saved with early stopping during training on ASCADr (in percentage of a
complete training)

Warm-up Median-Early-Stopper Patience-Early-Stopper Sum

30 33.3 14.44 44.74

50 35.63 18.09 53.72

75 24.0 38.12 62.12

100 0.0 39.11 39.11

The Table 4 summarizes the effects of different warm-up values on the 2 early
stopping strategies for the ASCADr dataset.

When the warm-up value is set to 30, the Median Early Stopper con-
tributes to 33.30% saving in epochs, while Patience-Early Stopping approxi-
mately 14.44%, reaching the total reduction of epochs to approximately 44.74%.
Surprisingly, this figure is slightly lower than the reduction seen for higher warm
up values (50 and 74), even though a lower warm up value would usually mean
more aggressive pruning.

This counterintuitive result can be attributed to the fact that during this
particular experiment, effective configurations were relatively quickly identified,

208 G. Serafini et al.

and the experiment showed consistent improvements as the models were exe-
cuted. Considering the Median Early stop mechanism, this scenario naturally
led to a decrease and delay of early stopping compared to other scenarios.

Although a lower warm up value generally implies more aggressive early
stopping, it is essential to consider the dynamics of the optimization process
and the quality of the configurations with the order in which they are found.

At a warm-up value of 50, Median Early Stopper models saved about 35.63%
of the total epochs that could have been run, and the early stop saved approxi-
mately 18.09% of the epochs. The combined effect led to a reduction of around
53.72% in the number of epochs.

Increasing the warm-up value to 75, the impact of the Median Early Stopper
savings decreases to 24.0%, but the effect of early stopping increases to 38.12%,
leading to a total reduction of approximately 62.12%.

At a warm-up value of 100, the Median Early Stopper has no effect (0.0%
reduction), while the impact of early stopping slightly increases to 39.11%, lead-
ing to the overall reduction in epochs to 39.11%.

It’s important to explain that the elevated percentage of pruned epochs in
the ASCADr experiments, compared to those in the ASCADf experiments, is
primarily attributable to the baseline number of epochs set for each dataset.
In the ASCADr experiments, the default number of epochs, was set to 300. In
contrast, for the ASCADf experiments, this number was lower at 200.

This discrepancy means that, since the warm-up and early stopping values
are kept constant across both sets of experiments, the resource-saving techniques,
have a larger pool of epochs from which to cut in the ASCADr experiments. As
a result, these techniques appear to prune a higher percentage of epochs in the
ASCADr experiments compared to the ASCADf ones. This difference, however,
is simply a reflection of the different default epoch settings for the two datasets,
rather than indicating any inherent differences in the effectiveness of the early
stopping strategies.

Fig. 3. Guessing entropy for the ASCADr experiments using warm up value of 30, 50,
75 and 100

Everything All at once 209

Analyzing the outcomes of the best models’ Guessing Entropy (GE) from
various experiments of the ASCADr dataset, depicted in Fig. 3, reveals compa-
rable results across the board for different warm-up values, specifically 30, 50,
75, and 100. Interestingly, the model from the experiment with a warm-up value
of 30 exhibited slightly superior performance, reaching a GE of 0 with 170 traces.
Meanwhile, the best models from experiments with warm-up values of 50, 75,
and 100 also demonstrated commendable performance, requiring slightly more
than 200 traces to achieve a GE of 0.

Once more, despite the amounts of computational resources saved across the
different warm-up values, all experiments resulted in well performing models.
These results suggest that the role of early stopping strategies can be effective
in the HO process and can help to focus the process on more promising config-
urations and lead to better results.

Table 5. Comparison with other papers of number of traces required to reach a GE
of 0 for ASCADr, ID leakage Model

Attempt Traces to reach GE = 0

[19] 105

[23] 490

[29] 1568

this study 170

6 Conclusion and Future Work

In this paper, we investigated the role of HO in CNN-based SCA. We specifically
showed how the integration of sampling and early-stopping strategies can help
to find a good fitting model and save computing time and resources during the
HO process.

Our results showed that the implementation of adaptive early-stopping tech-
niques during the training phase could speed up the HO process without affect-
ing performance. Across all warm-up values used in the experiments, the models
consistently required around 200 traces for successful key recovery. This obser-
vation suggest that an efficient HO process, facilitated by early-stopping, does
not compromise the effectiveness of the CNN models in SCA.

Furthermore, the use of TPE as a sampling algorithm and a GE-based objec-
tive value reduce the number of explored configurations during the HO process
before finding a first good fitting model. These methods contributed to the effec-
tive selection and evaluation of hyperparameter configuration, leading to promis-
ing results shown in Tables 3 and 5.

In this work, we focused on the combination of TPE sampling and median
early-stopping methods, but there exists many other sampling and early-stopping
methods which could alleviate better the HO search. It would be interesting to

210 G. Serafini et al.

explore in more depth the different methods available in the machine learning
literature and adapt it to the problem of SCA. This work also explored only
the case of CNN-based deep learning, and only with a narrowed hyperparameter
search space, adapted from the previous research for the given datasets we used
for the experiments. When dealing with another dataset, a different search space
or even different neural network architecture should be designed. The standard-
ization of a common search space, taking into account width and depth limits
of the architecture, could help to increase the confidence of security assessment
of deep-learning based SCA.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/. software available from tensorflow.org

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631 (2019)

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2),
163–188 (2020)

4. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems, vol. 24
(2011)

5. Brisfors, M., Forsmark, S.: DLSCA: a tool for deep learning side channel analysis.
IACR Cryptol. ePrint Arch. 1071 (2019). https://eprint.iacr.org/2019/1071

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, C.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002.
Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer, Berlin (2003).
https://doi.org/10.1007/3-540-36400-5 3

7. Chollet, F., et al.: Keras (2015). https://keras.io
8. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3),

90–95 (2007). https://doi.org/10.1109/MCSE.2007.55
9. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperpa-

rameter optimization. In: Artificial Intelligence and Statistics, pp. 240–248. PMLR
(2016)

10. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
Advances in Cryptology — CRYPTO’ 99. Lecture Notes in Computer Science, vol.
1666, pp. 388–397. Springer, Berlin (1999). https://doi.org/10.1007/3-540-48405-
1 25

11. Kubota, T., Yoshida, K., Shiozaki, M., Fujino, T.: Deep learning side-channel
attack against hardware implementations of AES. Microprocess. Microsyst. 87,
103383 (2021). https://doi.org/10.1016/j.micpro.2020.103383

12. Li, C., et al.: Genetic algorithm based hyper-parameters optimization for transfer
convolutional neural network. CoRR abs/2103.03875 (2021). https://arxiv.org/
abs/2103.03875

13. Li, L., et al.: A system for massively parallel hyperparameter tuning. Proc. Mach.
Learn. Syst. 2, 230–246 (2020)

https://www.tensorflow.org/
https://eprint.iacr.org/2019/1071
https://doi.org/10.1007/3-540-36400-5_3
https://keras.io
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1016/j.micpro.2020.103383
https://arxiv.org/abs/2103.03875
https://arxiv.org/abs/2103.03875

Everything All at once 211

14. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res. 18(1), 6765–6816 (2017)

15. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M., Saraswat, V. (eds.) Secu-
rity, Privacy, and Applied Cryptography Engineering. Lecture Notes in Computer
Science(), vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49445-6 1

16. Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep
double descent: Where bigger models and more data hurt. J. Stat. Mech: Theory
Exp. 2021(12), 124003 (2021)

17. Paguada, S., Armendariz, I.: The Forgotten Hyperparameter: - introducing dilated
convolution for boosting CNN-based side-channel attacks. In: Zhou, J., et al. (eds.)
ACNS 2020. LNCS, vol. 12418, pp. 217–236. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-61638-0 13

18. Paguada, S., Batina, L., Buhan, I., Armendariz, I.: Being patient and persistent:
optimizing an early stopping strategy for deep learning in profiled attacks. IEEE
Trans. Inf. Forensics Secur. 17 (2022)

19. Perin, G., Chmielewski, �L., Picek, S.: Strength in numbers: improving generaliza-
tion with ensembles in machine learning-based profiled side-channel analysis. IACR
Trans. Cryptogr. Hardw. Embedded Syst., 337–364 (2020)

20. Perin, G., Wu, L., Picek, S.: AISY - deep learning-based framework for side-channel
analysis. Cryptology ePrint Archive, Report 2021/357 (2021). https://eprint.iacr.
org/2021/357

21. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-based
physical side-channel analysis. ACM Comput. Surv. 55(11), 1–35 (2023). https://
doi.org/10.1145/3569577

22. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–
176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6 10

23. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embedded Syst., 677–707 (2021)

24. Rioja, U., Paguada, S., Batina, L., Armendariz, I.: The uncertainty of side-channel
analysis: a way to leverage from heuristics. ACM J. Emerg. Technol. Comput. Syst.
17(3), 1–27 (2021). https://doi.org/10.1145/3446997

25. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012. Pro-
ceedings of a meeting held 3-6 December 2012, Lake Tahoe, Nevada, United
States, pp. 2960–2968 (2012). https://proceedings.neurips.cc/paper/2012/hash/
05311655a15b75fab86956663e1819cd-Abstract.html

26. Wang, J., Xu, J., Wang, X.: Combination of hyperband and Bayesian opti-
mization for hyperparameter optimization in deep learning. arXiv preprint:
arXiv:1801.01596 (2018)

27. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Hyperparameter search space
pruning – a new component for sequential model-based hyperparameter optimiza-
tion. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares,

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-030-61638-0_13
https://doi.org/10.1007/978-3-030-61638-0_13
https://eprint.iacr.org/2021/357
https://eprint.iacr.org/2021/357
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1145/3446997
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
http://arxiv.org/abs/1801.01596

212 G. Serafini et al.

C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 104–119. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23525-7 7

28. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw.
Embedded Syst., 147–168 (2020)

29. Wu, L., Perin, G., Picek, S.: I choose you: automated hyperparameter tuning
for deep learning-based side-channel analysis. IEEE Trans. Emerg. Top. Comput.
(2022)

30. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embedded Syst.,
1–36 (2020)

https://doi.org/10.1007/978-3-319-23525-7_7

AIoTS – Artificial Intelligence
and Industrial IoT Security

Device Fingerprinting in a Smart Grid
CPS

Chuadhry Mujeeb Ahmed1(B), Nandha Kumar Kandasamy2,
Darren Ng Wei Hong3, and Jianying Zhou3

1 Newcastle University, Newcastle upon Tyne, UK
mujeeb.ahmed@newcastle.ac.uk

2 Liteon Singapore, Singapore, Singapore
Nandha001@e.ntu.edu.sg

3 Singapore University of Technology and Design, Singapore, Singapore
{darren ng,jianying zhou}@sutd.edu.sg

Abstract. Data integrity attacks on the various meter readings found in
smart grid systems can be executed to be undetectable by current detec-
tion algorithms used in smart grid systems. These unobservable cyber-
attacks present a potentially dangerous threat to grid operations. Data
integrity attacks that involve the compromise of various meter readings
such as voltage and current levels can lead to threats ranging from triv-
ial problems such as energy usage miscalculations to dire consequences
resulting from the breakdown of the entire smart grid system through
overloading the generators. An efficient detection algorithm to detect
these attacks on various sensors embedded in the smart grid system is
proposed. Due to manufacturing imperfections, discretizing the sensor
readings produces variations in the readings that are unique to each sen-
sor. A fingerprint of this sensor noise (variations in readings) is modeled
through the use of machine learning techniques. Under a malicious spoof-
ing attack, the noise pattern deviates from the fingerprinted pattern and
hence enabling the proposed detection scheme to identify these attacks.
A novel ensemble learning method is used to identify the Intelligent Elec-
tronic Device (IED). Experiments are performed on the Electric Power
and Intelligent Control (EPIC) testbed. It is shown that a set of IEDs
under the different stages of the power generation process can be uniquely
identified with an accuracy greater than 90% based on the fingerprint.

Keywords: CPS Security · Device Fingerprinting · Sensor
Fingerprinting

1 Introduction

Cyber-Physical Systems (CPS) is an integration of computing and networking
elements with physical processes [8]. Embedded Computers and networks, mon-
itor and control the physical processes through the use of Intelligent Electronic

C. M. Ahmed—This work was carried out when authors were working at SUTD.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 215–234, 2024.
https://doi.org/10.1007/978-3-031-61486-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_13

216 C. M. Ahmed et al.

Device (IED) that computes the sensor readings. In particular, we will consider
examples of power generation systems in this work, a critical part of smart grid
systems. A smart grid system consists of physical components such as electric
power generators, power substations, transmission and distribution lines, and
cyber components such as smart meters, IEDs, controllers, transmission con-
trol centers and Human Machine Interface (HMI) components that are intercon-
nected via a communications network [1]. Advancements in micro-embedded sys-
tems and communication networks enabled existing physical systems to become
digitized. The digital components also expose the physical processes to malicious
entities in the cyber domain [6]. Recent activities of cyber attacks and sabotage
on these systems have raised security concerns about the reliability and security
of smart grid systems.

Challenges in Smart Grid Systems and CPS are fundamentally different from
traditional IT systems [4]. Real-time availability of the service also provides a
stricter operational environment than most traditional IT systems and many
CPSs are legacy systems, that were designed without security in mind. Because
Smart grid systems deal with the generation and supply of electricity, the manip-
ulation through a cyber attack might result in damage to the physical property
or the people who depend on these critical infrastructures, as was the case in
Ukraine where the power supply was disrupted for the residents due to a cyber
attack [7]. Data integrity is therefore an important security requirement for
CPS. Sensor readings can be spoofed through the sniffing of packets between
the communication of the IEDs and the HMI as classical man-in-the-middle
attack [13]. Data integrity attacks on sensor measurements and their impacts
and consequences have been studied largely in theory, including data manip-
ulation injection, replay attacks, and stealthy attacks. These previous studies
proposed attack detection methods based on statistical fault detectors such as
Cumulative Sum (CUSUM) or Chi-square, which can be deceived [11].

In this work, we propose an attack detection framework. The proposed detec-
tion scheme is a fingerprinting method to authenticate IEDs in smart grid sys-
tems when their readings are received at the HMI. This scheme is unique and
provides a novel way of extracting the noise imperfections of the IEDs. The sen-
sor noise is captured during the different stages of the power generation process.
Process stages such as the Smart Home, Transmission and Micro-grid read-
ings have been tested and experimented upon. Because of sensor manufacturing
imperfections, these IEDs can be differentiated from their noise pattern. These
variations are minute in nature and are therefore hard to control or reproduce,
making a spoofing of sensor readings of these noise profiles challenging. A fin-
gerprint is based on a set of time domain and frequency domain features that
are extracted from the data collection of the IED readings. A multi-class sup-
port vector machine (SVM) is used to classify the noise patterns of various line
readings found within each IED. Optimization in the decision function used and
the use of different kernels, which is a set of mathematical functions used to
transform the feature space of the dataset into higher orders for better separa-
tion of data have also been experimented on. Bagging algorithms form a class

Device Fingerprinting in a Smart Grid CPS 217

Fig. 1. Electrical layout of the EPIC (actual) test-bed. Electrical power lines are shown
in red color lines. MC - Mechanical coupling, CB - Circuit Breaker, IEDs - intelligent
electronic devices, the prefix G, M T and S stands for Generation, Micro-grid, Trans-
mission and Smart Home respectively. (Color figure online)

of algorithms that build several instances of a black-box estimator on random
subsets of the original training set and then aggregate their predictions to form
a final prediction. These methods are used as a way to reduce the variance of
a base estimator (e.g., a decision tree), by introducing randomization into its
construction procedure and then making an ensemble out of it.

A group of algorithms which includes Random Forest Classifier, Gradient
Boosting Classifier, and Ada Boost Classifiers have been experimented on. These
algorithms form the overall ensemble algorithm which takes in the output of
each of the machine learning algorithms and uses a majority vote to predict
the final class labels [12]. Such a classifier can be useful for a set of equally well-
performing model to balance out their weaknesses. IED and their respective lines
identification accuracy is observed to be as high as 93%, and at least 90% for
a range of sensors. The major contribution of this work includes the following:
a) A novel fingerprinting framework that is built for the identification of IEDs
based on sensor noise. b) A detailed evaluation of the proposed scheme as an
IED identification mechanism, for a class of IED spoofing attacks. c) Extensive
empirical performance evaluation on the EPIC testbed. A comparison of the
performance of the various machine learning algorithms implemented is also
presented. This work evaluates the device fingerprinting technique in the context
of the smart grid power generation process.

2 Background: EPIC Testbed

This work is carried out on the EPIC (Electric Power and Intelligent Control)
testbed which is a smart gird test-bed designed specifically for cyber security

218 C. M. Ahmed et al.

Fig. 2. A simplified network diagram for EPIC test-bed. Each dotted box represents a
subnet with the respective IP addresses and corresponds to individual inner rings. An
X in the IP address means that a device in that subnet would have a similar subnet
mask and then a unique X as its IP. The connection MSW1 − − > SSW1 − − >
CSW1 −− > TSW1 −− > GSW1 −− > MSW1 is the outer HSR ring

Fig. 3. Overview of the proposed technique.

studies and technology evaluations. The testbed is an industrial-grade system
capable of supplying power to a mini water treatment plant and a mini water dis-
tribution plant [3,9], thus enabling studies such as the cascading effect of cyber
attacks, i.e., how a cyber attack on one critical infrastructure affects the relia-
bility of other. As mentioned above, EPIC has been designed and implemented
with industry-grade equipment meeting all the standards and regulations of a
smart grid CPS. Further, EPIC provides an emulated environment that can-
not be observed in other test-beds, i.e., all four sections of a typical power grid
are available. The four sections are not only physically zoned into generation,
micro-grid, transmission, and smart home but also via network segregation for
IEDs and Programmable logic controllers (PLCs). Advanced metering infras-
tructure (AMI) meters are integrated along with the IEDs to measure current,
voltage, power, and frequency at different electrical nodes. Each section of EPIC
is described below,

Device Fingerprinting in a Smart Grid CPS 219

The electrical layout of EPIC is shown in Fig. 1, and a basic description is
given below. For further details on the electrical layout and physical process of
EPIC, an interested reader is referred to the EPIC test-bed paper [1].

– Generation: Due to the limitation on having fossil fuel-powered prime-
movers, the Generation stage is created using two induction motors that are
powered by variable speed drives (15kW). The induction motors are mechan-
ically coupled to respective 3-phase synchronous generators (10KVA each)
that act as the master (reference grid) for the electrical system.

– Micro-Grid: Renewable energy components for the electrical system are pro-
vided via solar Photo-voltaic (PV) array (34kW) and energy storage system
(18kW) with inverters to harness solar energy and also include the behavior
of distributed energy resource dynamics into the system.

– Transmission: The transmission stage is sectioned into two groups, 1) a
direct connection to downstream loads representing a pure micro-grid and 2)
a connection through a transformer (105kVA) to represent the line-impedance
and tap-changing functionalities in transmission systems.

– Smart Home: The smart home acts as the power distribution system’s load,
the load is configurable using programmable load banks (45kVA) containing
RLC1 loads and a motor (10kW) load for representing pumps, ventilation
systems, etc. Besides, as mentioned before two water test-beds are connected
to the EPIC test-bed to form a cluster of critical infrastructure.

Similar to the physical components, the network of epic is also sectioned
into four groups each representing the respective control zones, namely, power
generation, transmission, micro-grid, and smart home. The IEDs connected to
the individual nodes are connected using high-speed seamless redundancy (HSR)
rings which ensures n − 1 redundancy. The HSR rings connecting the IEDs are
referred to as inner rings, and each inner ring has a PLC for controlling the
process of the respective section. The IEDs and PLCs are named with suffixes
of the corresponding section, for example, an IED in the generator section is
named as GIEDx (x is numerical), whereas the IED in the smart home section
is named as SIEDx. All the inner rings are connected via another HSR ring
referred to as the outer ring, the outer ring enables the communication between
the inner rings. n − 1 redundancy is ensured for the outer ring as well. The
Supervisory Control and Data Acquisition (SCADA) system is connected to the
outer ring. Figure 2 shows the communication network architecture in the EPIC
testbed. The data flow from IED SIED1 will start at the physical measurement
“M” shown in Fig. 1, the measure data is then converted in IEC61850 network
data by SIED1 which is then made available to SPLC, and the SCADA system
via IEC61850 MMS (Manufacturing Message Specification) variables. IEC61850
GOOSE (Generic Object Oriented Substation Event) variables are used only for
the Transmission section and only made available among the IEDs.

1 Resistor-Inductor-Capacitor.

220 C. M. Ahmed et al.

Fig. 4. Scatter plot of TIED v1, v2 and v3 the addition of skewness as the third
dimension shows separability in the dataset. The results of these experiments conclude
that the noise patterns of these IEDs follow a unique variation.

3 Overview of the Proposed Technique

An overview of the proposed technique is shown in Fig. 3. The data is collected
using the log management tool in the testbed. We have studied the system design
and functionality of the power generation process of EPIC testbed and identified
3 different key stages and IEDs to focus the experiments on. We collected the
data under regular operation (no attack) with the predefined loads. As shown
in Fig. 3, we will discuss the process of collecting the dataset from the historian
HMI interface. Then, we will present the data preprocessing and chunking pro-
cess followed by the fingerprinting scheme [2,5] which involves the use of various
supervised machine learning algorithms embedded into a single ensemble learn-
ing cluster where each of the individual machine learning algorithm learners are
trained to solve the same problem and a voting classifier is used [10].

IED Noise: The IEDs send the readings of the sensors through the use of the
access point to the control unit. Here, Xk (refers to the set of sensor readings
of each of the IEDs at time k. Xk = {x1

k, x
2
k, ..., x

z
k} where z corresponds to the

total number of IEDs found in the EPIC testbed system. Due to manufacturing
imperfections of the IED components, the IED measurements of the various
system variables such as voltage and current contain noise. It has been observed
that when the intended value of the system variable is set, the readings are
always displaced by a small margin of up to 2 decimal places. For example,
when the voltage value is set to 240V, based on more than 5000 different data
points observed, the values received by the historian logging system show that
the reported value varies around the true value, indicating the presence of noise
found in these IEDs. This observation is seen similarly for each of the IEDs and
their line readings.

The presence of these noise patterns indicates a possibility that these fluc-
tuations can be individually identified for each of the IEDs. The data collected
is preprocessed to remove any possible loss of data during the data collection
stage due to unforeseen technical issues and is processed into chunks of size m.

Device Fingerprinting in a Smart Grid CPS 221

These chunks are then analyzed and statistical features such as mean and stan-
dard deviation are extracted. Both frequency domain and time-related features
are examined. The noise and its time/frequency domain features exhibit cluster-
ing characteristics indicating that the features extracted from the data points
belonging to the same IEDs tend to have small distances to data points of the
same IEDs thus forming dense areas of clustered points throughout the visual-
ization. Furthermore, these features extracted from the noise are profiled using
standard deviation, mean, and skewness to show further possible correlation. In
Fig. 4, we can see that there is a distinct separation between TIED4 v1 from
TIED4 v2 and v3. Although the separation is distinctively clearer, it is impor-
tant to note that the noise pattern found in the dataset from v3 is very similar
to that of v2 thus, identifying v3 from v2 might not provide desirable results.

Next, a set of machine learning algorithms are used to classify the IEDs from
one another. Noise fingerprints can be generated over time as the process of
power generation is in progress. During normal operations, the fingerprint will
be used to identify if the data reading received by the Control Access Point
(CAP) is indeed from the IEDs or if it is injected by the attacker.

Data Preprocessing: Data is collected from the IEDs right at the moment
EPIC is started to the end. After the collection of data is done, we would need to
do certain data preprocessing to prepare the dataset for both feature extraction
and then classification. We first remove all of the intermediate 0 values as we are
only concerned with values of the predefined range. For voltage, we have decided
that the predefined value would be at 240 V. The dataset is then compiled into
their respective IEDs such as TIED4, MIED1, MIED2, and SIED4. In total,
there were 3,680 raw data points collected.

Fig. 5. Accuracy percentage results of varying chunk sizes.

Data Chunking: After the collection of data is done, we would need to create
chunks of the dataset. Because the features are statistical, we would need to

222 C. M. Ahmed et al.

create chunks of data to extract these features. Chunking allows us to understand
the right size of data needed to capture the variance in the set and how much data
is needed to train the machine learning algorithm to produce desirable results. A
list of varying chunk sizes was tested upon such as (5,10,2,40) and based on the
accuracy performance, chunk size 20 produced the best results. Figure 5 shows
the accuracy results of the chunk size on the support vector machine algorithm
with the only variable difference as the chunk size, m. We could see that chunk
size 5 produces a fairly low accuracy performance as 5 data points do not capture
a lot of the variance in the data set thus each chunk produced did not tend to
follow a similar pattern. On the other spectrum, a chunk size of 40 captures most
of the variance in the data set but because the data collected is limited, using
a chunk size of 40 meant that the overall number of fingerprint data points to
classify is greatly reduced. Hence, the machine learning algorithm is not able to
produce a desired accuracy count.

Table 1. List of features used.

Feature Description

Mean x̄ = 1
N

∑N
i=1 xi

Std-Dev σ =
√

1
N−1

∑N
i=1(xi − x̄i)2

Mean Avg. Dev Dx̄ = 1
N

∑N
i=1 |xi − x̄|

Skewness γ = 1
N

∑N
i=1(

xi−x̄
σ

)3

Kurtosis β = 1
N

∑N
i=1(

xi−x̄
σ

)4 − 3

Spec. Std-Dev σs =

√
∑N

i=1(yf (i)2)∗ym(i)
∑N

i=1 ym(i)

Spec. Centroid Cs =
∑N

i=1(yf (i))∗ym(i)
∑N

i=1 ym(i)

Vector x is time domain data from the sensor
for N elements in the data chunk. Vector y is
the frequency domain feature of sensor data.
yf is the vector of bin frequencies and ym is
the magnitude of the frequency coefficients.

Feature Extraction: As shown in Table 1, there are seven different features
used to construct the fingerprint. The Fast Fourier Transform (FTT) algorithm
is an algorithm that samples time series data over a defined period and separates
it into its corresponding frequency components to extract its spectral features.
The fingerprinted data points from the chunking are then labeled according to
their respective IEDs for supervised learning.

Cross-Validation: Cross-validation is a type of model validation technique used
in the assessment of how the performance results of a given statistical analysis
will generalize to an unseen data set. It is a resampling procedure used to evaluate
the algorithm model on unseen data, i.e., how the model is expected to perform in
general when used to make classifications on data not used during the training

Device Fingerprinting in a Smart Grid CPS 223

phase of the model. It takes in a single parameter k, which is the number of
sub-divisions given to the overall dataset. For K different groups, take the first
group as the hold-out or test data set and combine the remaining groups as the
training data set. The machine learning model is fitted, trained, and evaluated
based on the hold-out set. The process is repeated for different hold-out sets
and their overall model evaluation score is returned. K-Folds cross-validation is
implemented with the use of the scikit-learn python module.

4 Threat Model

In this paper, we will only consider specific cyber-attacks on the data integrity of
these IED readings and not physical attacks due to the nature of the smart grid
system and the EPIC testbed system, direct contact to these sensors is very dan-
gerous and not easily accessible to both an intruder or even an insider (operator)
who has direct access to these physical IEDs. First, we profile the attacker and
lay down assumptions of the attacker backed with justification. Following on, we
will introduce one such possible cyber-attack on the EPIC testbed system. The
attack here is defined as a sequence of one or more malicious actions intended
to move a CPS such as EPIC system to an undesirable state while the attacker
refers to an individual, or a group, that intends to, or has launched attacks
on a CPS. The attacker model is a formal description of the capabilities and
knowledge base of an attacker and provides useful information when designing
protective and detective measures, and for comparing the chances of successfully
launching an attack. The attacker may have its motivation stemming from a set
of intentions such as denial of service, falsifying data and the actual usage of the
power supply, diverting resources, performance degradation or even damaging a
component.

4.1 Attacker Model

Assumptions on the Attacker: It is assumed that the attacker is an Insider, an
employee who has information access to the system network and has knowledge
of the operational process of the EPIC testbed or smart grid system. On top
of that, the attacker knows all of the different IEDs present in each of the 4
stages of the power generation process. The adversary has perfect knowledge of
the various sensor readings and can modify them arbitrarily. An example would
be the following, the adversary would like to reduce his apparent consumption
of electricity and thus would inject falsified readings of current and voltages to
make it appear as if he was not using the actual amount of electricity. The goal
is to minimize the apparent consumption without being detected.

The attacker is a strong adversary who can launch cyber-attacks both within
the premise and outside of the premise of the system. One of the key vulnerabili-
ties of the smart grid system is its communication link between the IEDs and the
HMI. As such, an attacker can compromise these communication links simply
through the use of a Man-in-The-Middle (MiTM) attack. This could also lead to

224 C. M. Ahmed et al.

a data integrity attack against one or more IEDs taking place when legitimate
data of the IED is tampered with, replaced, or deleted before its transmission to
the data concentrate unit is completed successfully. For example, by interject-
ing the communication link between the access points to the control unit, the
attacker can sniff the packets sent over the communication link and decide to
either drop the packet, delay the sending of the packet, or reload it with a dif-
ferent payload. Therefore, we will need to find a robust method to authenticate
the IED readings received on the end of the control unit and to the Historian
logging system. While a malicious insider can break into the network communi-
cation between the IEDs and the control unit, an outsider may also be able to
break into the network if an appropriate firewall is not installed. Furthermore,
we also assume that the attacker would want to be stealthy and undetected,
hence placing this attack under the unobservable attack category.

4.2 Attack Model

Data Injection Attacks: This class of attacks refers to one where the attacker
intercepts the communication link, sniffs the packet sent and injects or modifies
the actual IED sensor readings with a falsified one that is generated randomly
or with a specific intend. The adversary may inject fictitious data into the HMI
to either portray increased electricity consumption or to reduce it. It affects the
normal operations of the system as power load balances might be redistributed
to other areas as a result of this data injection. For example, manipulating the
current and voltage readings can lead to a misleading reading of power since
P = IV . Thus, the system state is disrupted, and power will be redistributed and
generated higher than the source needs. This is a direct attack on the integrity of
the system. The proposed solution uses a fingerprinting methodology to identify
that the readings are indeed coming from the IEDs and not from an attacker.
This is made possible due to the intricate nature of the imperfections. Because
the current readings and voltage readings have been fingerprinted, changing
their values (i.e. if the operating voltage is set to be at 240V but the spoofed
reading shows 220 V), the operator might increase the voltage by 20 V and when
it has been increased to 260 V, the attacker can send packets showing the desired
240 V but the actual voltage is now at 260 V. Similarly, this scenario works for
the Current as well. Because P = IV , an increase in either of Current or Voltage
will lead to an increase in power supply. Over or under powering over prolonged
periods can also be used for fault injection. Under powering can increase signal
propagation delay and can lead to setup time violations in hardware platforms.
In our experiments, we consider three types of data injection attacks.

Bias Data Injection Attack: The goal of the bias data injection attack is
to deceive the controller by sending an increased/decreased value of the actual
reading by a constant c, to deceive the controller into thinking that the received
values are the true IED sensor readings. For example, in this situation, the
voltage measurements are increased while the actual voltage level is invariant.

Device Fingerprinting in a Smart Grid CPS 225

Hence, the controller will continue to reduce the voltage supplied until it reaches
zero. The attack vector is defined as follows:

y′(k) = ŷ(k) ± c (1)

where c is a constant added at each time instant. A negative constant could be
used for attacks such as the one targeting damage by deceiving the controller to
increase the current to unacceptable levels.

Geometric Data Injection Attack: Geometric attack is similar to bias data
attack but consists of two additional coefficients α and β. The constant is now
modified to increase exponentially instead of constantly. The attack vector is
defined as follows:

y′(k) = ŷ(k) ± βαn−k (2)

where α ∈ (0,1) and β is a multiplier to be adjusted for maximum damage.
n here represents the last measurement received in the sequence and k is the
measurement number starting from 0.

Zero-Alarm Attack: zero-alarm attack is crafted such as to remain unde-
tectable by traditional statistical methods like cumulative sum (CUSUM). The
CUSUM detection mechanism is fed with the sequential data of the incoming
IED readings. It computes the current cumulative sum and does so by performing
a change point detection. Because CUSUM depends largely on two predefined
constant values, the threshold, τ , and the bias,b, the adversary can easily remain
undetected by choosing the attack vector δk that stays within the confines of
the threshold value. The impact and limitations of these statistical methods as
detection mechanisms have already been widely covered in the literature.

It is important to note that for such zero-alarm attacks if the attacker wants
to remain undetected, he cannot damage the system but can always still impact
the integrity of the system.

4.3 Attack Execution

Because of the nature of the EPIC testbed system, an actual MiTM attack
was not possible to carry out. This is due to the restrictions of the laboratory as
attacks can lead to dangerous scenarios. A successful attempt at a data injection
attack might bring dire consequences. In reality, however, the adversary would
need to intercept the data traffic between the communication lines of the IED’s
access point to the controller’s access point. The attack could be a physical
or logical MiTM, in which a physical MiTM is physically intrusive but has no
impact on the configuration of the plant and the logical MiTM does not need
physical intrusion but has a serious impact on the configurations of the plant as
the restoration is likely to consume 4–5 working days. Packets are then inspected
and modified (payload changed depending on the type of attack) but modified
data readings are injected into the sequence of legitimate data points found in the
historian logging system. The above attack is equivalent to malware that modifies
the configurations in the SCADA software to assign the IED’s IEC61850 server

226 C. M. Ahmed et al.

(one under attack) to a local port and feeds the modified data by polling the
actual IED and creating a malicious server on the above local port. From there,
the CUSUM and the proposed detection mechanism were tested for accuracy
and performance.

4.4 Generating Attack Data

As mentioned above, the simulated attack instead focuses on generating the
attack data which will be used by the adversary to inject into the controller
unit. A script has been written to read an incoming packet payload and modify
it according to whether it is a bias, geometric, or zero-alarm attack. For the
zero-alarm attack, to remain undetected, the function created to generate the
attack falsified data is a random number generator that generates a random
floating number based on the current reading received and does so in the ranges
of a predefined standard deviation. This allows the random floating numbers
to hover around a predefined value, but the changes are within the threshold
value set for CUSUM. Thus, allowing the adversary to stay undetected while
still being able to manipulate the data readings.

5 Performance Evaluation

In this section, a brief background of the statistical detection scheme, CUSUM
will be provided, followed by the performance of the machine learning algorithms
in identifying each of the IEDs, the model evaluation methods used as well as
the evaluation of the proposed detection mechanism scheme.

5.1 CUSUM

Statistical detectors estimate state values in each turn of the sequence and com-
pare it with the IED measurement reading. The difference between the two values
provides a value that stays within the threshold value under normal operation.
As such, the threshold value and the bias value are important key variables as
they affect the false alarm rate. To begin, we have identified two hypotheses
to be tested, H0 which represents the hypothesis where a given measurement
depicts normal process behavior, and H1, which represents the hypothesis where
a given measurement depicts anomalous process behavior (with attack).

CUSUM: S0,i = 0, i ∈ I,{
Sk,i = max(0, Sk−1,i + zk,i − bi), if Sk−1,i ≤ τi,

Sk,i = 0 and k̃i = k − 1, if Sk−1,i > τi.
(3)

Design parameters: bias bi > 0 and threshold τi > 0.
Output: alarm time(s) k̃i.

We have to choose both threshold τi and bias bi such that both are greater
than 0.

Device Fingerprinting in a Smart Grid CPS 227

5.2 Model Evaluation Methods

To prevent cases of over-fitting or under-fitting of the dataset, the technique
used to separate the dataset into Strain and Stest is crucial. Therefore, Cross-
validation is used as a means of model evaluation method. Cross-validation
belongs to a class of model evaluation methods that has significant performance
over the use of residuals. The limitations of residual evaluations include the fact
that they do not indicate how well the learner will do when it has to make pre-
dictions for unseen data (independent data). A simple solution to eliminate this
problem is to prevent the use of the entire data set as a whole when training the
classifier. A segment of the data is removed before the training process. After
which when the training phase has been completed, the data that was removed
earlier can now be used to test the performance of the classification model.
This forms the basis for a whole class of model evaluation methods called cross-
validation.

Hold Out Method: The simplest form of cross-validation, the data set is first
separated into two distinct sets, Strain and Stest. Next, the model is trained only
using the training set that was separated following which the model is then used
to predict the classes or labels of the data in the testing set. Hence, the testing
set is used to estimate the prediction error rate of the trained classifier algorithm.
However, from the experimentation, it is shown that when the dataset is sparse
or minute, we may not be able to set aside a portion of the dataset for testing.
Therefore, in the initial phase of the project, the Holdout method was removed
in favor of the k-fold cross-validation method with three-way data splits so that
the parameters of the algorithm could be tuned.

K-Fold Cross-validation: Is an improvement over the standard holdout
method. The algorithm works as such, the dataset is divided into k subsets,
and the holdout method is repeated k different times with each time, a a sliding
window of fixed value (subset) is used as a test set while the rest k − 1 sub-
sets are used as training sets. Even though this method takes k times as much
computation as compared to the holdout method, the variance of the resulting
estimate is reduced as k is increased, thus resulting in better model validation.

Choosing k: The number of k folds can affect the variance of the resulting
estimate. With a large k value, the bias of the true rate estimator will be small,
hence it will be more accurate. However, the variance of the true error rate will
be large, and also the computational time as it has to run k several times. With
a small k value, the number of experiments and computation time are reduced,
with a small variance of the estimator and the bias of the estimator will be large.

Using the first machine learning algorithm, SVM, K-Folds was running
repeatedly with a range of K ∈ {1, 10} and found that the most suitable number
of folds based on accuracy against computational time effort is 4. As such, the
value of k will be set at 4 when comparing amongst the algorithms.

228 C. M. Ahmed et al.

5.3 Zero-Alarm Attack Design

A zero-alarm attack is designed in such a way that it stays undetected by the
CUSUM detectors. As shown in the CUSUM procedure, we can write (3) in
terms of the estimation error ek:

Sk,i = max(0, Sk−1,i + |Ciek + ηk,i + δk,i| − bi), (4)

if Sk−1,i ≤ τi; and Sk,i = 0, if Sk−1,i > τi.
Consider the attack:

δk,i =
{

τi + bi − Ciek − ηk,i − Sk−1,i, k = k∗,
bi − Ciek − ηk,i, k > k∗. (5)

For all given k ≥ k∗, zero alarm has been raised. The assumption made here is
that the adversary knows exactly Sk−1,i, the value of the CUSUM sequence one
timestamp before inducing the attack. This would allow him to set the falsified
data such that it will not trigger the alarm of the CUSUM scheme. The IED
readings received by the controller will thus take the following form:

ȳk,i =
{

Cix̂k,i + τi + bi + Cix̂k − ηk,i − Sk−1,i, k = k∗,
bi + Cix̂k,i, k > k∗. (6)

5.4 Performance Metrics

The experiments were carried out for each of the IEDs and their respective line
values found within the EPIC testbed system. A binary classification model is
used to identify if the measurement received by the controller unit is indeed from
the IED access point transmission (normal) or is malicious (attack). Let I be
the total number of IEDs. We define TPi as the true positive for IED i when
it correctly classifies the IED based on ground truth while the false positive is
defined as FPi. Similarly, we take the false negative as FNi and is defined as the
wrongly rejected classification while TNi is the rightly rejected class. Therefore,
the overall accuracy for each of the IEDs in I can be defined as the following:

acc =
∑c

i=1 TPi +
∑c

i=1 TNi∑c
i=1 TPi +

∑c
i=1 TNi +

∑c
i=1 FPi +

∑c
i=1 FNi

. (7)

Device Fingerprinting in a Smart Grid CPS 229

Table 2. Multiclass identification between each Line measurement reading for each
IED.

IED Line 1 Line 2 Line 3

TIED4.I 93.12% 89.12% 92.10%

TIED4.V 91.15% 92.15% 78.89%

MIED1.V 93.34% 91.23% 93.14%

MIED1.I 88.12% 83.45% 87.12%

MIED2.V 89.12% 82.45% 93.14%

MIED2.I 86.34% 87.45% 88.34%

SIED4.V 91.23% 93.14% 76.54%

SIED4.I 89.45% 88.34% 85.23%

Fig. 6. Machine Learning Classifier comparison when used to identify IED v1, v2, v3
from one another in a multi-class problem.

Fig. 7. Graph showing the average performance of each kernel function.

230 C. M. Ahmed et al.

5.5 IED Identification Accuracy

In Table 2, the IED identification accuracies were given for 24 different IEDs.
The IEDs belong to 3 different processes found within the power generation
process. We can see that the lowest identification accuracy was 76.54% and this
is because SIED4.V3 has a very similar noise pattern to both V1 and V2 thus
the identification accuracy is a lot lower. This is, however, not a worrying factor
as the noise pattern of the IEDs is very difficult for the adversary to mimic.
On average, the IED identification hovers around a high 90% range for all 24
IEDs. The results shown in Table 2 is the average of 100 different runs from the
ensemble algorithm. In the case of identifying the sensors from one another, a
multi-class classification model is used.

5.6 Different Machine Learning Algorithm Performance

In Fig. 6, we can see that the performance of the ensemble algorithm class is at
least on average 10% better than the support vector machines. This is because
the identification of IEDs among each other is not linearly separable. As such,
the ensemble algorithm which consists of the gradient boosting algorithm, the
adaptive boosting algorithm, and the Random Forest algorithm performs bet-
ter. The ensemble algorithm uses the voting classifier concept where the main
idea is to combine conceptually different machine learning algorithms and use
a majority vote or the average of the predicted probabilities through the use
of soft-weighted voting to predict the class labels. This is especially useful for
a set of equally well-performing models as it balances out each of their weak-
nesses. In the case of soft voting, when the weights are provided, the predicted
class probabilities for each of the classifiers in the set are collected and weighted
accordingly and finally averaged. The deciding class label is hence derived from
the class with the highest probability count. The grid search optimizer is also
used for the voting classifier to tune the hyper-parameters of the individual
estimators. Because of the performance and validity of the ensemble algorithm
over the support vector machine, the ensemble algorithm is used as the machine
learning classifier to identify the IEDs. The ensemble algorithm was also used as
a comparison against the statistical detector, CUSUM. These results show and
prove that the noise-based device fingerprint through the use of the ensemble
learning algorithm provides very high accuracy in prediction against malicious
data.

Four different kernels (Sigmoid, Linear, Radial Basis Kernel Function (RBF),
and Polynomial) for SVM were used in the experiments. These were tested on
5 separate runs using k-folds cross-validation and the results are averaged and
compared. Figure 7 shows the average accuracy performance for each of the dif-
ferent kernels in the 5 separate runs. From the experimentation, we can conclude
that the top 2 performing kernels are the RBF and polynomial. RBF, however,
took considerably more computation time than polynomials. These 2 kernels
are used against a grid-search parameter estimation to improve the algorithm’s
performance. The polynomial kernel yields an accuracy rate similar to that of

Device Fingerprinting in a Smart Grid CPS 231

RBF but computes 21% faster, the kernel polynomial with grid-search parameter
estimation will be used for the final comparison against the other algorithms.

5.7 Attack Detection Performance

The experiments were carried out for each of the IEDs and their respective line
values found within the EPIC testbed system. A binary classification model is
used to identify if the measurement received by the controller unit is indeed
from the IED access point transmission or if it is modified data coming from the
adversary.

Threshold and Bias Selection: As mentioned in the CUSUM section the
threshold and bias should be selected such that the false alarm rate is not too
high but also not too low such that it is not able to detect any form of attack.
The values of the threshold and bias have been tested, and the final selected
values are 3.5 and 2. This in-turn leads to a very low false alarm rate while still
being functional to detect if there are any anomalies present. Figure 8 shows the
IED measurements of TIED4 current L1 over time. It can be seen that over
2500 s, there are only three false alarms. Further analysis shows that these false
alarms correspond to when the process is completed, and the current is reduced
to 0. If the threshold and bias are tweaked to remove these false alarms, CUSUM
will not be efficient in detecting max-min attacks, where the adversary would
set the measurement readings to either 0 (min) or extremely high (max) in an
attempt to disrupt the system.

Fig. 8. CUSUM threshold and bias setting with 3 false alarms over 2500 s.

Constant Bias Attack: Figure 9 shows that during the transmission state, the
malicious data was injected when k = 21 s (21 s since the start of the transmission
process in EPIC testbed). The bias attack used was δ1 = 2. CUSUM was able
to detect the attack immediately. The proposed mechanism was able to detect
the attack as well but because it uses a chunk size of 20, it has to wait for 20 s
before it can detect it.

232 C. M. Ahmed et al.

Geometric Attack: Similar to the constant bias attack, both CUSUM and
the proposed mechanism were able to detect the attack. The attack was also
launched at k = 21 s (21 s since the start of the transmission process in the
EPIC testbed).

Zero-Alarm Attack: Figure 10 shows the zero-alarm attack when it was
launched at k = 21 s (21 s since the start of the transmission process in EPIC
testbed). Because the attack was designed such that no alarms were raised,
CUSUM was not able to detect when the attack was launched. Since the adver-
sary has complete knowledge of the system including the CUSUM detector, he
can deliberately set and launch the attack such that the CUSUM detector would
not be able to detect it. Figure 10 shows the measurement readings received
during the experiment. It can be seen from the graph plots that the adversary
spoofed the measurements in a way that it stays within the confines of the
threshold and bias value, thus remaining undetected while reducing the values
of the measurement to near zero. On the other hand, because the spoofed values
do not follow the intrinsic noise pattern fingerprinted for each IED, the spoofed
data does not match the pattern fingerprinted using the proposed mechanism.
Our proposed technique here removes the limitation of CUSUM detectors as it
was able to detect the attack as the noise pattern coming from the crafted attack
does not match the one fingerprinted for the IEDs during the training phase.

Fig. 9. Constant Bias Attack with CUSUM detector. Attack Detection was made with
the The alarm is marked in the diagram.

Fig. 10. Zero-Alarm Attack with CUSUM detector. Attack Detection was not made,
CUSUM was not able to detect the attack.

Device Fingerprinting in a Smart Grid CPS 233

6 Conclusions

A novel method to fingerprint the noise patterns present in the IEDs of the
smart grid system is presented. From the experiments, it is shown that the noise
pattern of each IED can be fingerprinted uniquely and thus can be identified
individually with high confidence. With the extraction of both time and fre-
quency domains, these key feature attributes were passed into machine learning
classifiers for training purposes. Four different machine learning classifiers were
tested and experimented on. The best method as the ensemble learning algo-
rithm comprising adaptive boosting, gradient boosting, and random forest with
grid search optimization combined through the use of a voting classifier mecha-
nism where the class label is decided based on the highest probabilities. A binary
classification is used to detect malicious data from actual data that is received
from the IEDs as opposed to one from the adversary. Our results have shown
that the proposed mechanism eliminates the limitations of statistical detectors
such as CUSUM and can detect zero-alarm attacks.

References

1. Ahmed, C.M., Kandasamy, N.K.: A comprehensive dataset from a smart grid
testbed for machine learning based CPS security research. In: Abie, H., et al. (eds.)
CPS4CIP 2020. LNCS, vol. 12618, pp. 123–135. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-69781-5 9

2. Ahmed, C.M., Mathur, A.P., Ochoa, M.: NoiSense print: detecting data integrity
attacks on sensor measurements using hardware-based fingerprints. ACM Trans.
Priv. Secur. 24(1), 1–35 (2020). https://doi.org/10.1145/3410447

3. Ahmed, C.M., Palleti, V.R., Mathur, A.P.: WADI: a water distribution testbed
for research in the design of secure cyber physical systems. In: Proceedings of
the 3rd International Workshop on Cyber-Physical Systems for Smart Water Net-
works, CySWATER ’17, pp. 25–28. ACM, New York (2017).https://doi.org/10.
1145/3055366.3055375

4. Ahmed, C.M., Zhou, J.: Challenges and opportunities in cyberphysical systems
security: a physics-based perspective. IEEE Secur. Priv. 18(6), 14–22 (2020).
https://doi.org/10.1109/MSEC.2020.3002851

5. Ahmed, C.M., Zhou, J., Mathur, A.P.: Noise matters: Using sensor and process
noise fingerprint to detect stealthy cyber attacks and authenticate sensors in
CPS. In: Proceedings of the 34th Annual Computer Security Applications Confer-
ence, ACSAC ’18, pp. 566–581. ACM, New York (2018).https://doi.org/10.1145/
3274694.3274748

6. Cardenas, A., Amin, S., Sinopoli, B., Giani, A., Perrig, A., Sastry, S.: Challenges
for securing cyber physical systems. In: Workshop on Future Directions in Cyber-
Physical Systems Security, p. 5 (2009)

7. Case, D.U.: Analysis of the cyber attack on the Urainian power grid (2016)
8. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-

national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369 (2008).https://doi.org/10.1109/ISORC.2008.25

https://doi.org/10.1007/978-3-030-69781-5_9
https://doi.org/10.1007/978-3-030-69781-5_9
https://doi.org/10.1145/3410447
https://doi.org/10.1145/3055366.3055375
https://doi.org/10.1145/3055366.3055375
https://doi.org/10.1109/MSEC.2020.3002851
https://doi.org/10.1145/3274694.3274748
https://doi.org/10.1145/3274694.3274748
https://doi.org/10.1109/ISORC.2008.25

234 C. M. Ahmed et al.

9. Mathur, A.P., Tippenhauer, N.O.: SWaT: a water treatment testbed for research
and training on ICS security. In: 2016 International Workshop on Cyber-physical
Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). https://doi.
org/10.1109/CySWater.2016.7469060

10. MR, G.R., Ahmed, C.M., Mathur, A.: Machine learning for intrusion detection in
industrial control systems: challenges and lessons from experimental evaluation.
Cybersecurity 4(1), 1–12 (2021)

11. Murguia, C., Ruths, J.: Characterization of a CUSUM model-based sensor attack
detector. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp.
1303–1309 (2016). https://doi.org/10.1109/CDC.2016.7798446

12. Umer, M.A., Ahmed, C.M., Jilani, M.T., Mathur, A.P.: Attack rules: An adver-
sarial approach to generate attacks for industrial control systems using machine
learning. In: Proceedings of the 2nd Workshop on CPS and IoT Security and Pri-
vacy, CPSIoTSec ’21, pp. 35–40. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3462633.3483976

13. Urbina, D.I., et al.: Limiting the impact of stealthy attacks on industrial control
systems. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1092–1105. ACM (2016)

https://doi.org/10.1109/CySWater.2016.7469060
https://doi.org/10.1109/CySWater.2016.7469060
https://doi.org/10.1109/CDC.2016.7798446
https://doi.org/10.1145/3462633.3483976

Power Quality Forecasting of Microgrids
Using Adaptive Privacy-Preserving

Machine Learning

Mazhar Ali , Ajit Kumar , and Bong Jun Choi(B)

School of Computer Science and Engineering, Soongsil University,
Seoul 06978, Republic of Korea

{mazhar,davidchoi}@soongsil.ac.kr, kumar@ssu.ac.kr

Abstract. Microgrids face challenges in monitoring and controlling the
power quality (PQ) of integrated electrical systems to make timely deci-
sions. Inverter-based technologies handle small-scale smart grids’ power
quality parameters (PQPs) and play an important role in condition mon-
itoring. Accurate forecasting of such parameters is difficult due to the
stochastic nature of demand, distributed generation, and weather condi-
tions. Moreover, energy clients have concerns over growing privacy and
security breaches for collaboration involving data exchanges. This study
aims to predict PQPs indices of home microgrids using ANN, LSTM,
and CNN-LSTM models. To preserve users’ privacy, federated learning
has been applied with some adaptive differential privacy on the global
model and clients’ data. Comparative analysis of the ML model and DP
parameters shows that the LSTM model gives better results with ade-
quate privacy parameters to predict the PQPs of five distributed micro-
grids. LSTM model gives the least MAE of 0.2323 for FL without privacy
and 0.3256 test loss for appropriate DP level.

Keywords: Machine Learning · Microgrid · Federated Learning ·
Power Quality

1 Introduction

Integration of small renewable energy (RE) sources at the user end eases envi-
ronmental degradation and climate change. Intermittent RE makes power grid
stability less reliable, leading to cascading failure due to prolonged disturbances.
The growing integration of distributed energy resources (DER), enormous elec-
tronic devices such as controllers, power management units (PMUs), relays,
and household appliances deteriorate the power quality of modern intelligent
grids [8]. Intelligent control and monitoring systems are vital for appropriate,
timely decisions to protect sensitive equipment in PQ management activities.
Electric appliance operations will be affected due to severe voltage deviation,
frequency changes, power factor variations, transients, and current imbalances.
Accurate prediction of the PQPs is an emerging problem in intelligent grid
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 235–245, 2024.
https://doi.org/10.1007/978-3-031-61486-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_14&domain=pdf
http://orcid.org/0009-0009-0764-2181
http://orcid.org/0000-0001-5728-2270
http://orcid.org/0000-0002-6550-749X
https://doi.org/10.1007/978-3-031-61486-6_14

236 M. Ali et al.

dynamics and stable system operations. It can be helpful for better and quicker
responses in case of PQ standards violations.

Microgrids (MG) require intelligent control systems for steady-state opera-
tion and monitoring in case of minor disturbances such as PQ parameter fluc-
tuations. The general parameters involve voltage (U), frequency (f), total har-
monic distortion of voltage (THDu), and total harmonic distortion of current
(THDi) [5]. These parameters rapidly fluctuate with the power demand and sup-
ply imbalance. Such variance is a significant problem in modern microgrids with
highly variable distributed solar and wind energy. Microgrids with long-lasting
transient states can lead to the collapse of the whole distribution network. Thus,
these parameters are directly or indirectly affected by renewable generations and
load patterns, which are influenced by weather conditions. This study forecasts
PQ parameters according to the weather patterns such as wind speed, solar
irradiance, temperature, humidity, etc.

Previous studies focus on statistical and linear ML models to forecast the
PQ parameters in centralized and local setups. In centralized learning, clients
share the data with the server; thus, information leakage concerns from the
clients. Similarly, in local learning, users face data scarcity issues that need to
be improved for ML training. This study uses a time series regression model to
predict the PQ parameters in a federated setting to preserve the privacy and
data islands.

Moreover, a differential privacy (DP) approach is also adapted to address the
issue of poisoning and model inference attacks. The literature needs to include
the application of FL and adaptive federated DP in forecasting the PQ param-
eters of MG. This study opens the research toward distributed secure learning
on the regression tasks of PQ forecasting and the tradeoff between model degra-
dation and privacy. The contribution of this research study is summarized as
follows:

– Comparatively analyze three data-driven models (ANN, LSTM, CNN-LSTM)
as a PQP forecaster in a federated setup to address MG clients’ privacy and
data scarcity.

– Evaluate the federated ML models based on test loss and use the most appro-
priate forecasting approach to analyze the DP mechanism in the distributed
setting of MG.

– Apply the adaptive differential privacy approach in a federated setup to secure
the server and client models against poisoning and inference attacks. Also,
compute the threshold of security that does not severely degrade the models
during the training.

The paper continues with Sect. 2 as a literature review, which provides
insights into the past related studies. Section 3 discusses the proposed method of
the study. Section 4 analyzes the simulation setup, data processing, and results
of the research work. Lastly, Sect. 5 concludes the study by highlighting key
findings and gaps in the current study.

Power Quality Forecasting of Microgrids 237

2 Literature Review

Power Quality remains a significant problem in microgrids, and it deteriorates
further with multiple intelligent devices and highly variable local renewable gen-
eration. PQ parameter prediction is critical for early warning and preparedness
in transient disturbances. I.S Jahan et al. [5] predicted five PQ indices, i.e., fre-
quency, voltage, flicker, total harmonics distortion of current and voltage with
decision tree and neural network approaches. DT was found to be a suitable
model for the off-grid system experiment based on the test loss for six days.
Jakub Kosmal and Stranislav Misak [7] analyzed PQ management of a decen-
tralized microgrid predominantly with PV generation and active demand side
management (ADSM). The three PQ parameters included ficker severity, fre-
quency, and THDu. The ADSM controls the consumption plan based on the
predicted PQ parameters, which would lead to equipment damage outside limits.
Similarly, Ibrahim Jahan et al. [6] carried out clustering approaches for the same
data based upon several features like appliance (AC. heating, light, fridge, TV)
states with weather variables (temperature, pressure, GHI, U.V., wind speed)
to predict five PQ indices (U, PF, PL, THDu, THDi). Four forecasting models
(DT, KNN, BGDT, BODT) were used for each cluster node and evaluated based
on RMSE. All the models better forecast the power factor (PL) and load, while
BODT gives the least RMSE for all the parameters except higher error of 6.736
for THDi.

Federated learning is a new paradigm of machine learning where multiple
clients collaborate to learn a global model without sharing their data with the
central server. The computation is done at edge devices where client data resides.
Thus, FL provides a better solution in cases of data scarcity, privacy, and secu-
rity concerns. FL applications have been seen in intelligent grids for anomaly
detection, energy trading, EV scheduling, NILM, and RE forecasting. Several
FL studies have been conducted to accurately predict the demand and gener-
ation of different building setups and energy resources, such as solar and wind
[1,3].V. Venkatesh et al. [9] analyzed the distributed energy forecasting using
the BuildFL framework on IoT-based pecan street datasets. FL prediction gives
similar load patterns when compared with GridLAB-D generated consumption
profile. Similarly, Zhang and Wang [10] performed distributed aggregation of
sub-parameters of the probabilistic wind forecasting model. The ADMM algo-
rithm decomposes the problem into sub-parts and evaluates the probabilistic
regression models of 10 wind farms based on the quantile score. ADMM and
mirror-descent algorithms have been studied in distributed setup for measuring
the PQ variables, and the literature still needs to include FL [4].

The probabilistic ADMM approach, in a distributed setup, concatenates the
cost function into sub-problems in which clients share their information. Such a
technique has limitations over non-convex models and lacks privacy guarantees
in collaborative learning. Literature has thorough FL studies on energy demand
prediction and renewable generation forecasting. Data-driven ML approaches
have provided reasonable solutions in smart grids, and implementing FL is more
straightforward than traditional probabilistic methods. However, research on

238 M. Ali et al.

minute time series PQP prediction needs for federated and centralized ML. Thus,
current research aims to analyze the application of FL and DP in power quality
forecasting in distributed microgrid networks. The study compares non-linear
ML models in privacy-preserving distributed learning to address the privacy
and security issue in microgrid PQ parameter predictions, which is lacking in
the literature.

3 Methodology

Modern power systems aim to be more resilient towards energy security, cli-
mate change, cyber-physical attacks, power disturbances, and cascading outages.
DERs at the consumer end increase smart grid resiliency, energy, and cyber secu-
rity by providing energy in case of catastrophic power outages and disturbances.
Moreover, flexible energy markets encourage prosumers in cost-effective demand
response (DR) tasks through home energy monitoring and control systems. Such
intelligent home energy systems make incremental usage of power electronics and
IoT devices for energy conversion, storage, monitoring, and control of power qual-
ity variables at the user end. The smart home system collects sensitive data from
these devices and electrical appliances. We applied distributed ML and differ-
ential privacy in a federated setup to preserve the privacy and security of home
microgrids. The methodology of the study is provided in detail below (Fig. 1).

Fig. 1. (Left) Home MG system with DERs, Storage, Inverters, Appliances, and Con-
trol System. (Right) Privacy-preserving federated setup for Home MG clients for col-
laborative ML training without sharing data.

Power Quality Forecasting of Microgrids 239

3.1 Microgrid System

The Microgrid concept has been practiced for decades at the distribution, com-
munity, and user levels. Prosumers with integrated RE, PEV, and battery storage
made themselves small-scale microgrids that involved different tasks, like energy
trading, demand response, load management, and protection schemes via mon-
itoring and control systems [2]. Our study considers five home microgrids with
PV, a small wind turbine, and a battery bank. The system model has been used
in a home hybrid system test platform by Smart Grid Lab of VSB Technical Uni-
versity, Czech Republic [6]. Two buses are connected to two 2 kW PV modules
and four 115 Ah lead-acid batteries with respective inverters. The voltage across
the DC bus varies from 40.5–64 V (V) due to variable charging and discharging.
A 240 V and 50 Hz frequency AC bus is connected with a load, grid, wind tur-
bine, and hybrid inverter responsible for converting DC supply to AC for end
usage. The load consists of several electrical appliances used for daily household
activities, producing high noise in the AC system due to the appliances’ induc-
tive, capacitive, and resistive nature. An energy management system has been
used to monitor and control the microgrid operation, which has several input
signals from the weather station, electric grid PQ analyzer, etc.

3.2 Data-Driven Model

Prediction has been carried out by analyzing linear and non-linear ML
approaches. Comparative analysis on ANN, LSTM, and CNN-LSTM hybrid
models has been conducted to predict the PQ variables. ANN models are rela-
tively simple to implement as they better approximate any continuous function
but can be problematic for data scarcity and temporal dependencies. LSTM bet-
ter captures the temporal features but has a complex model and lacks spatial fea-
ture extraction. CNN-LSTM is a hybrid model in which the CNN layer extracts
spatial features, and LSTM layers handle the time-series patterns. Comparing
these three models gives a better understanding of the relationship between sin-
gle and hybrid ML models for recurrent tasks.

3.3 Privacy Preserving Method

Clients have concerns about data leakage, which can lead to misuse of personal
information, malfunction of devices, and potential attacks on microgrids to dis-
turb the whole power system. Federated learning, which can better preserve
users’ privacy, has been used in the study. In FL, the data reside on clients, and
models are trained on edge devices; thus, no information has been shared with
a central server. As the goal of FL is to learn a general global model, there is a
threat of poison and model inversion attacks. Differential privacy adds noise in
the client model weights to protect the user information from a poison attack.
Similarly, noise is added to the server model weights to protect the global model
from inversion attacks by malicious clients. However, if the noise or security
is high, the accuracy declines, and the prediction task will be affected. So, we
evaluated different privacy parameters using an adaptive approach.

240 M. Ali et al.

Algorithm 1. Pseudo Code of Proposed Method
Initialize: Model (M0), Clients (K), NoiseValue (N), Batch(d ∈ D)
for t = 1 to T client(i ∈ K) do:

Client Updates: Δ′t
i , bti ← FedAVG(i, M t, St)

Server Updates:
Δ̄t = Agg.(D − it) + Noise(N)
M t+1 = M t + nsΔ̄

t

St+1 = Adaptive(St)
end for
LocalUpdate: FedAVG(i, M t, St)

M ← M0, M ← SGD(M, nl, d)
Δ ← M − M0, b ← ClippingNorm(‖Δ‖ ≤ S)
Δ′ ← Δ · min(1, S/b)

return (Δ′, b)

Federated Differential Privacy. In federated learning, the model poses a
threat from malicious actors to manipulate the raw local information. Encryp-
tion schemes present viable protective measures but pose a possibility of cryp-
tographic breach and incur high computational costs. A nascent and promising
alternative comes from DP, which offers privacy guarantees during training. FL
process starts with the server initializing the forecasting model (M) to the clients
(K). Each client (i ∈ K) locally updates the global model (M) on their private
data (Di) and sends it back to the server with noise bit bi. The server aggregates
the client update at each round with the additional noise under the FedAVG and
DP mechanism, as shown in Algorithm 1. Any randomized learning algorithm
satisfies (ε, δ)−DP for any adjacent input data d and d′, by adding noise function
as given.

M(d) = f(d) + Noise(Sf)

where, Sf is the maximum l2-distance norm ‖f(d)− f(d′)‖2 and ε is the privacy
loss parameter with the failure probability δ ∈ [0, 1]. In the above equation, the
M(d) can achieve (ε, δ)−DP privacy by adding Gaussian noise N(0, S2

fσ2) with
ε ≤ 1 and δ ≥ 0.8 · exp(−(σε)2/2) in the function f(d). Here, σ is the noise
multiplier that controls the trade-off between privacy and model degradation
during the federated training process.

Adaptive Clipping. To ensure better privacy, the FedAVG algorithm made
two levels of DP mechanism in a federated setup. In the client updates, local
model parameters must be clipped before sending to the server, while the
server adds enough noise to the aggregated weights. These measures provide
enough security for poisoning and inference attacks from the malicious adver-
sary. It has been seen in past studies that a clipping norm with too small a
value will slow the model converge process, while a larger value adds too much
noise, which degrades the model performance. Thus adaptive clipping approach

Power Quality Forecasting of Microgrids 241

S ← S · exp(−ncS(b̄ − γ), which start will low value S0 and gradually increase
with the learning rate nc(=0.2) to the target quantile γ(=0.5).

4 Simulation and Results

4.1 Dataset

The dataset used for our work is obtained from experimental results of a simu-
lated test bed environment by Smart Grid Lab in the Czech Republic. It consists
of several temporal and spatial features, as shown in Table 1. The dataset consists
of every 5-min reading of the respective variables for the June and July months
of 2019. The power quality parameters have been collected using a PQ analyzer
at the AC bus connected to the household load under EN 50160 and EN 61000-
2-20 European standards. Minute-wise power load consists of different household
appliances such as TV, boiler, kettle, fridge, microwave, lights, etc. These are
inductive, capacitive, and resistive loads, thus fluctuating the minute variation.
Similar time series weather datasets have been collected from the periphery of
the study site in Ostrava, Czech Republic.

Power quality and meteorological datasets used in the study have been col-
lected via a test-bed of a home hybrid system by Smart Grid Lab of VSB Tech-
nical University, Czech Republic [5]. The PQ analyzer collected the power load,
voltage, frequency, power factor, THDu, and THDi parameters from the AC
bus. The dataset contains 5-min intervals of input (GHI, WS, Pressure, Temper-
ature, and PL) and output parameters (frequency, voltage, THDu and THDi)
for two months.

Table 1. Input and Output Parameters used in Power Quality Analysis

Symbol Description Range

Weather Parameters

GHI Global Horizon Irradiance (W/m2) 0–1033

Ws Wind Speed (m/s) 0–5.7

P Atmospheric Pressure (hPa) 976.4–995.3

T Atmospheric Temperature (◦C) 9.2–32.2

Power Quality Parameters

PL Power Load (kW) 0.6–2.61

f Frequency (Hz) 49.9–50.08

U Voltage (V) 223.96–245.64

THDu THD of Voltage (%) 0.51–5.75

THDi THD of Current (%) 4.48–61.68

242 M. Ali et al.

4.2 Data Preprocessing

The multivariate time series study has several features that are used to predict
the desired output variable. In our research, we aim to forecast four parameters
that have directly or indirectly influenced the input features and the output
variable. The principal component analysis (PCA) approach is used to analyze
the correlation among all the input and output parameters. Based on the fea-
ture correlation matrix, the respective parameters have been dropped before
the training process. Similarly, as time series forecasting depends upon its past
trends, a lookback is also given as an input feature. Data normalization is crucial
in training the machine learning model to access the optimized weights and con-
nections between neurons. Thus, we normalized the data during preprocessing
for flexible training, a robust model, and better prediction results.

4.3 Experiment

Tensorflow federated (TFF) framework is used to perform simulations in a fed-
erated setup. The dataset has been used for centralized machine learning, and
to address the federated setup, we divide the data among five client modules. It
is assumed to be a cross-silo setup, which means the amount of data is the same
for each client, but the tabular data are highly different in temporal nature.
LSTM and CNN-LSTM models have one dense layer with respective LSTM
and CNN/LSTM layers, while only two layers are used for the ANN model.
The number of neurons for these layers has been kept the same, i.e., n = 50.
SGD optimizer has been used for the federated experiment. The MAE metric
has been used throughout the simulations to evaluate the model. The model
has been trained for global round R = 500 and evaluated on the test datasets.
Table 2 gives the details about the hyperparameters of ML models used in the
experiment of federated learning. Similarly, in the differential privacy, several
noise values have been added in global model weights and client model weights
to secure the model from malicious attacks and privacy leakage.

Table 2. Details of hyperparameters used in the implementation of ML models.

Hyperparameters Search Space Value

No. of Neurons 10, 20, 30, 50 50

Activation Function ReLU, Tanh Relu

Server Learning Rate 1.0, 0.10, 0.01 0.1

Batch Size 40, 60, 80, 100 60

Client Learning Rate 0.2, 0.02, 0.002 0.02

Client Epochs 5, 10, 20, 30 10

No. of Global Rounds 200, 300, 500, 750 500

Power Quality Forecasting of Microgrids 243

4.4 Results and Discussion

The privacy-preserving FL approach has been analyzed to evaluate the three ML
models based on the MAE loss, as shown in Table 3. We only considered the dis-
tributed setup of microgrids. We did not analyze the local learning as our main
aim is to evaluate the better model in FL due to privacy constraints. The three
trained models have been assessed on individual test datasets of microgrids after
selecting appropriate hyperparameters during the training stage. After extensive
experiments, it has been shown that MG4 gives a better result for all the ML
models used in the experiment. Still, the LSTM model has the lowest average
MAE value, i.e., 0.3467. MAE value for MG3 is 0.2323, depicting that the LSTM
model is better learned on client 3. As the LSTM model gives better results than
ANN and hybrid models, it is used to analyze the impact of the differential pri-
vacy approach in the federated setup. Similarly, the differential privacy insights
on clients lead to better secure training results.

Table 3. MAE loss of the ANN, CNN-LSTM and LSTM models on test datasets.

Clients ANN CNN-LSTM LSTM

MG1 0.4293 0.3296 0.2378

MG2 0.4148 0.3709 0.3918

MG3 0.2562 0.2617 0.2323

MG4 0.2335 0.2461 0.2383

MG5 0.8538 0.9798 0.6333

Average 0.4355 0.4376 0.3467

Different DP parameters have been given for the federated training to learn
in a secure environment. During the training, a noise ratio is added to clients
and server models to secure them from poison and model inference attacks. Dif-
ferent noise multiplier values [0.0, 0.25, 0.5, 0.65, 0.75, 1.0] have been given to
find the tolerance range of the LSTM model from degradation. Extensive simula-
tions have been carried out to determine the optimum noise parameter through
the search space approach. Figure 2 shows these noise parameters’ results for
a training round of 500 rounds. It depicts that the LSTM model can tolerate
a noise value of up to 0.5 without degrading model quality. A noise value of
0.65 slightly deviates the model from the optimum, while a higher value of 0.75
and 1.0 significantly degrades the model. That’s why we stopped the training
for noise = 1.0 after rounds = 200. Though the noise secures the user’s privacy
during the training process, there is a trade-off of accurate prediction, which is
crucial in power quality parameter forecasting.

The noise values that mimic the global model without DP have been eval-
uated on the test datasets, as shown in Table 3. It shows the tradeoff between
privacy and model precision, as the LSTM model with lesser noise values has

244 M. Ali et al.

Fig. 2. MAE of LSTM model during the FL training with different level of DP Noise.

the least MAE loss of 0.3809 average. The study addresses the privacy issue in
distributed learning through an adaptive DP mechanism. It can be the baseline
for future studies that tackle secure aggregation techniques in intelligent grid PQ
forecasting applications. However, to address the data heterogeneity and accu-
rate model adaptation, personalized federated learning will give better analysis
in the future. Future studies must incline towards a statistical approach or tol-
erance factor to mitigate the impact of the clipping approach and change the
time series forecasting to an anomaly or error detection problem (Table 4).

Table 4. MAE loss of the LSTM model on different noise levels on clients test data.

MG1 MG2 MG3 MG4 MG5 Avg

Noise = 0.25 0.2595 0.4201 0.2941 0.2539 0.6767 0.3809

Noise = 0.5 0.3256 0.4614 0.3701 0.3202 0.7291 0.4332

Noise = 0.65 0.5128 0.5417 0.4989 0.4156 0.9528 0.5844

5 Conclusion

Distributed energy generation made microgrids more intelligent with the pro-
liferation of power electronic devices and monitoring systems. Intelligent ML

Power Quality Forecasting of Microgrids 245

operation of green microgrids faces privacy and security issues due to sharing
power quality parameters. Federated learning is a suitable approach to learn-
ing the patterns of predictive ML models to preserve privacy via edge training.
Comparative analysis on ANN, LSTM, and CNN-LSTM models evaluate better
prediction models in distributed settings. The LSTM model has the least MAE
test loss of 0.2323, making it most appropriate for federated predictive learning.
FL faces the challenge of potential model inversion and poison attacks at the
server and client end. Thus, the study provides an adaptive differential privacy
technique to secure the microgrid in such an FL setup. The results showed that
a privacy parameter of 0.5 value gave a better solution to secure the server and
home microgrid clients. In future studies, we aim to analyze the personalized FL
approach with DP under IEEE standards for hybrid energy systems.

Acknowledgment. This research was supported by the MSIT Korea under the NRF
Korea (NRF-2022R1A2C4001270) and the Information Technology Research Center
(ITRC) support program (IITP-2022-2020-0-01602) supervised by the IITP.

References

1. Ali, M., Singh, A.K., Kumar, A., Ali, S.S., Choi, B.J.: Comparative analysis of
data-driven algorithms for building energy planning via federated learning. Ener-
gies 16(18), 6517 (2023)

2. Ali, M., et al.: Techno-economic assessment and sustainability impact of hybrid
energy systems in Gilgit-Baltistan, Pakistan. Energy Rep. 7, 2546–2562 (2021)

3. Cheng, X., Li, C., Liu, X.: A review of federated learning in energy systems. In:
2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), pp.
2089–2095 (2022)

4. Gholizadeh, N., Musilek, P.: Distributed learning applications in power systems: a
review of methods, gaps, and challenges. Energies 14(12), 3654 (2021)

5. Jahan, I., Misak, S., Snasel, V.: Power quality parameters analysis in off-grid plat-
form. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds.) IITI 2021.
LNNS, vol. 330, pp. 431–439. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-87178-9 43

6. Jahan, I.S., Blazek, V., Misak, S., Snasel, V., Prokop, L.: Forecasting of power
quality parameters based on meteorological data in small-scale household off-grid
systems. Energies 15(14), 5251 (2022)

7. Kosmák, J., Mǐsák, S.: Power quality management in an off-gtrid system. In: 2018
IEEE International Conference on Environment and Electrical Engineering and
2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS
Europe), pp. 1–5. IEEE (2018)

8. Luo, A., Xu, Q., Ma, F., Chen, Y.: Overview of power quality analysis and control
technology for the smart grid. J. Mod. Power Syst. Clean Energy 4(1), 1–9 (2016)

9. Venkataramanan, V., Kaza, S., Annaswamy, A.M.: Der forecast using privacy-
preserving federated learning. IEEE Internet Things J. 10(3), 2046–2055 (2022)

10. Zhang, Y., Wang, J.: A distributed approach for wind power probabilistic fore-
casting considering spatio-temporal correlation without direct access to off-site
information. IEEE Trans. Power Syst. 33(5), 5714–5726 (2018)

https://doi.org/10.1007/978-3-030-87178-9_43
https://doi.org/10.1007/978-3-030-87178-9_43

Evaluation of Lightweight Machine
Learning-Based NIDS Techniques

for Industrial IoT

Alex Baron1,2, Laurens Le Jeune2,3, Wouter Hellemans2(B),
Md Masoom Rabbani2, and Nele Mentens2,4

1 Department of Mathematics, University of Padova, Padua, Italy
2 ES&S-COSIC, KU Leuven, Leuven, Belgium

{alex.baron,laurens.jeune,wouter.hellemans,
md.masoom.rabbani,nele.mentens}@kuleuven.be

3 EAVISE-PSI, KU Leuven, Leuven, Belgium
4 LIACS, Leiden University, Leiden, The Netherlands

Abstract. Internet of Things (IoT) devices have revolutionized commu-
nication, transportation, healthcare, and many other fields. In particular,
the adoption of these devices has propelled the growth of Industry 4.0
to an exponential pace. However, while this vast pool of interconnected
devices broadens the opportunities for better business and better lives,
it also attracts the attention of cybercriminals. Nevertheless, it has been
shown that the resource-constrained nature of these devices inhibits the
deployment of traditional security measures.

To this end, we investigate how various lightweight Machine Learning-
based intrusion detection systems (IDSs) can be implemented on
resource-constrained IoT devices. Specifically, we train various decision
tree and neural network-based models and implement them on Rasp-
berry Pi and Field-Programmable Gate Array (FPGA) platforms. Fur-
thermore, we evaluate our implementations on the IoT-23 and TON IoT
datasets and compare the results in terms of classification performance,
throughput and resource consumption. We show that tree-based models
surpass the neural network-based models in classification performance
and throughput but that hardware acceleration on FPGA can aid in clos-
ing the gap in terms of throughput. As such, this work opens the path
for the deployment of a real-time distributed IDS on low-cost devices.

Keywords: Intrusion Detection System · IIoT · Machine Learning ·
Embedded platforms · FPGA

This work is partially supported by the COllective Research NETworking (CORNET)
project “TrustedIOT: Trusted Computing Architectures for IoT Devices”. The Bel-
gian partners are funded by VLAIO under grant number HBC.2021.0895. This work is
also partially supported by Cybersecurity Initiative Flanders (VR20192203). Addition-
ally, W.H. is a SB PhD fellow at FWO (Research Foundation Flanders) under grant
agreement 1SH3824N. This paper is based on the work of [4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 246–264, 2024.
https://doi.org/10.1007/978-3-031-61486-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_15

Evaluation of Lightweight ML for NIDS in Industrial IoT 247

1 Introduction

The relentless advancement of modern informatization has led Internet of Things
(IoT) to play a remarkable role in several aspects of our daily lives. The possi-
bility of being able to manipulate a wide range of devices, all under the control
of a single centralized device, such as a smartphone, is making this market grow
exponentially over the last few years. IoT has a total potential economic impact
of 3.9 trillion to 11.1 trillion dollars a year by 2025 [20]. According to Cisco,
there will be 500 billion devices connected to the internet by the year 2030 [29].
These devices may range from home appliances such as thermostats and smart
light bulbs to sensors in healthcare or industry.

While very innovative, IoT is also very sensitive to safety problems, as attacks
on IoT networks can have devastating consequences. For example, after infecting
hundreds of thousands of IoT devices, the Mirai botnet targeted the infrastruc-
ture of Dyn, which controlled a significant portion of the internet’s Domain Name
System (DNS) infrastructure, and brought down sites such as Twitter, Netflix
and Reddit [33].

Although traditional defense techniques relying on authentication, encryp-
tion and access control may in specific situations be useful, IoT networks need
another layer of protection [5]. Intrusion Detection System (IDS) can provide this
protection by analyzing system events in an effort to uncover malicious activ-
ity, such as unauthorized file or resource access [1]. Recently Machine Learning
(ML) techniques have seen increasing application to improve IDS detection per-
formance [8,21].

With the advancement of technology and the growth of IoT networks, there
is a continuous search for highly effective solutions in the field of information
security [5]. The purpose of this paper is to present a new perspective in the field
of Edge Machine Learning regarding the protection of IoT networks, which con-
sists in the use of small board microcontrollers, also called edge-devices. Edge ML
can be defined as a field of ML which aims to bring ML applications on devices
that are cheap, as well as resource and power-constrained. The ultimate goal is
to develop and test different lightweight ML models that can fit into resource-
constrained devices to be integrated and deployed alongside the components of
an IoT network with the aim of guaranteeing network-based protection.

The pipeline of this work starts with the data collection of IoT network
traffic. The analyzed traffic is preprocessed after feature extraction which aims
to find the best performing features. Both common IoT network traffic and
different IoT networks attacks are taken into consideration in the dataset.
These attacks mainly include Denial-of-Service (DoS) and Distributed Denial-of-
Service (DDoS). ML models are trained to classify the network traffic as benign
or malicious and they will alert the system if any malicious packet is encountered.
Different kinds of classifiers are compared in this work, including Neural Net-
works (NNs), Decision Trees (DTs) and Random Forests (RFs). ML models are
installed on Raspberry Pis and Field-Programmable Gate Arrays (FPGAs), to
build a network-based device-independent IDS that can guarantee a remarkable
protection to the whole IoT environment.

248 A. Baron et al.

The main contributions of this work are:

– We develop and carry out a performance assessment on a set of lightweight
ML classifiers for IDS applications in IoT environments;

– We investigate the applicability of the TabNet architecture on resource-
constrained devices;

– We provide a proof-of-concept implementation of all classifiers based on Rasp-
berry Pi and/or FPGA platforms;

– We evaluate our models on state-of-the-art datasets and report relevant met-
rics.

This paper is organized as follows. We present different recent and perform-
ing IDSs applied to the IoT field in Sect. 2. In Sect. 3 we give an overview about
IoT security and IDSs. Furthermore, we describe ML models that are used in
this work. In Sect. 4, we present problems and the methodology assumed. Sub-
sequently, the results of the performed experiments are presented with relative
discussions in Sect. 5. Sect. 6 concludes the paper and proposes future works.

2 Related Work

In this section, we introduce various ML-based IDSs for IoT security.
There are many publications showcasing various techniques related to

anomaly detection in IoT networks. Common techniques include various NNs [6,
10,13], Conditional Variational Autoencoder (CVAE) [19], Recurrent Neural
Network (RNN) [2], RF [15], and Extreme Learning Machine (ELM) [17]. Addi-
tionally, some authors introduce more specific approaches. Lee et al. [18] ana-
lyze the power consumption of sensor nodes in IPv6 to flag malicious activ-
ity. Hosseinpour et al. [14] base their IDS on an Artificial Immune System
(AIS). Nobakht et al. [23] analyze device activity in a Software Define Network
(SDN). Sarhan et al. [28] use a Hierarchical Blockchain-based Federated Learning
(HBFL) framework to detect intrusions in a collaborative fashion. We provide
an overview of these techniques in Table 1, additionally highlighting whenever
implementations are distributed or centralized.

Related anomaly-based work shows considerable promise. However, most sys-
tems have been tested on older datasets, even though different attacks on smart
and industrial networks are continuously advancing. Most recent IDS systems
are centralized or cloud-based, leaving the internal network vulnerable if attack-
ers bypass the single centralized IDS or if the connection between devices and
cloud computing fails. Therefore, in this work, we explore distributed solutions.

3 Background

In this section, we briefly review the main tools and components involved in our
work. We start by describing the environment security of IoT networks and the
features of IDSs. Next, we describe the used ML model architectures. Finally, we
introduce FINN, which is used to deploy quantized neural networks on hardware.

Evaluation of Lightweight ML for NIDS in Industrial IoT 249

Table 1. Overview of relevant anomaly-based IDSs for IoT settings

References Method Placement

Lee et al. [18] IDS over 6LowPAN Distributed

Hosseinpour et al. [14] Lightweight IDS based on AIS Distributed

Hodo et al. [13] ANN Centralized

Nobakht et al. [23] Host-based IDS in SDN -

Lopez-Martin et al. [19] CVAE -

Kozik et al. [17] IDS based on ELM Centralized

Doshi et al. [6] NN Centralized

Ge et al. [10] NN -

Hasan et al. [11] LR, SVM, DT, RF, ANN Distributed

Almiani et al. [2] Full-automated IDS based on RNN -

Hussein et al. [15] RF -

Sarhan et al. [28] HBFL -

3.1 Problem Setting

The IoT is growing fast and is widening its fields of application. IoT systems are
well characterized for the heterogeneity and diversity of the devices involved.
As well as the mixture of devices deployed, several protocols are involved to
make IoT networks functional and reliable. Despite the widespread use of IoT
networks, they are quite different from a conventional computer network. In
particular, IoT systems are constrained in terms of computational capability
and complexity. Moreover, due to their heavily distributed and heterogeneous
nature, a centralized traditional solution may not be always suitable [5].

It is easy to infer that due to these limitations, most IoT devices are not
equipped with efficient defense mechanisms (e.g. memory isolation, address space
randomization, encryption and authentication algorithms [34]). Furthermore,
another serious threat, due in part to IoT networks’ fast and wide prolifera-
tion, are botnets that produce DoS and DDoS attacks as explained in Sect. 1.

IDSs aim to identify malware, malicious access or any kind of attack to defend
internal networks. They represent one major research problem in cybersecurity
and as there are several risks concerning networks there are different systems
built to secure an environment from external attacks [31].

Motivated by an increasing number of vulnerabilities, attacks, and informa-
tion leaks, IoT device manufacturers as well as cloud providers and researchers
are working to design security systems and protocols, to explore new vulnerabil-
ities and to seek effective ways to protect data privacy.

3.2 Machine Learning

In this paper, we investigate the deployment of lightweight ML models on tiny
and low-power devices. Specifically, we compare different kinds of NNs, Convo-
lutional Neural Networks (CNNs), Decision Trees (DTs) as well as ensembling

250 A. Baron et al.

techniques such as RF, AdaBoost, and Extremely Randomized Trees (ET). In
addition, we explore Attentive Interpretable Tabular Learning (TabNet) and
consider hardware acceleration of the CNNs using the FINN framework. For the
sake of completeness, we provide background information on TabNet and FINN.

TabNet. Attentive Interpretable Tabular Learning [3], or TabNet, is a novel
high-performance and interpretable canonical deep tabular data learning archi-
tecture that uses sequential attention to choose features for reasoning at each
decision step, resulting in more efficient learning. TabNet outperforms various
tabular learning models on various datasets for classification and regression
tasks.

TabNet’s architecture is divided in an encoder composed of different feature
transformers, attentive transformers and feature masking as well as a decoder
which is composed of feature transformers. TabNet is appropriate for an intru-
sion detection task with tabular network datasets, as it inputs raw data without
any preprocessing. Moreover, its training via gradient descent enables large flexi-
bility. Although the complexity introduced by the attention transformer and the
feature transformer in Tabnet’s architecture results in challenging deployment
for very small micro-controllers, TabNet performs extremely well for medium-
sized controllers.

3.3 FINN

FINN is an experimental tool designed by Xilinx Research Lab in order to imple-
ment Deep Learning model on FPGA. In particular, FINN builds a streaming
architecture where each layer has its own engine and each layer can be executed
as soon as the previous layer has generated the data. FINN targets Quantized
Neural Networkss (QNNs) trained in PyTorch with the help of Brevitas [24]
which is a Python library to create quantized models. Brevitas also comes with
a set of tools to manage the quantization properties and the functionality to
export the QNNs to FINN. The workflow of FINN starts once a suitable QNN
has been trained, tested and exported to an Open Neural Network Exchange
(ONNX) representation. FINN will transform the initial QNN into synthesizable
High-Level Synthesis (HLS) layers using different transformations. In particu-
lar, FINN’s pipeline starts by preparing the model to facilitate the tuning of
the layers which is based on setting up the graph model correctly and removing
floating point operators. The layers are then turned into HLS and grouped in
a Dataflow Partition which contains HLS layers suitable for acceleration. Once
the sythesizable model is completely ready, FINN uses Xilinx’s software called
Vivado and/or Vitis to generate the final HLS code, bitstream and driver used
to deploy the starting model on hardware.

4 Method

In this section we present the architecture, concept, design principles and the
pipeline of the conducted experiments of our work. After stating our objective,

Evaluation of Lightweight ML for NIDS in Industrial IoT 251

Fig. 1. Proposed network-based IDS applied architecture (a). Workflow of the proposed
framework during deployment, starting from the data collection to the classification (b).

we describe the datasets, features and metrics that we use. We describe our
metrics in the appendix.

We then show how we train the ML models introduced in Sect. 3 and deploy
them on Raspberry Pi and FPGA.

4.1 Research Objective

The main objective of the proposed work is to build different lightweight IDSs,
capable of distinguishing between benign and malicious network traffic. We inte-
grate them in individual IoT devices in the Local Area Network (LAN), as shown
in Fig. 1a. We assume that any device on the network can exchange data with all
the other connected devices and the victim of an attack may be any device which
belongs to the LAN. By introducing a high level of flexibility and autonomy in
the IDS, we seek to introduce IDSs that can be deployed on various devices.
Moreover, the IDSs should not only be accurate, but additionally, they should
not influence the overall performance of the IoT devices.

4.2 Proposed Framework

We now give an overview to the computation pipeline performed by the proposed
IDS that goes from the traffic capture to the binary classification between benign
and malicious traffic as shown in Fig. 1b. We now describe the individual steps.

Traffic Capture. The first step of the workflow consists of real-time and contin-
uous traffic capturing. Raw network data which includes in-going and out-going

252 A. Baron et al.

packets can be collected and processed with different tools such as Zeek [27] and
Wireshark [32]. For testing, in our experiments, we used two different datasets,
TON IoT [22] and IoT-23 [9]. They both provide a large amount of network traf-
fic collected in either the packet capture (pcap) and Comma-Separated Values
(CSV) format for TON IoT or conn.log1 labelled files for IoT-23.

Feature Extraction. After the network capturing we extract the relevant fields
from every network packet. In particular, each field corresponds to a feature. We
then aggregate packets in their respective flows and use the resulting features.
Feature extraction is a key step for the final efficiency and accuracy of ML
models, as they totally depend on the quality and quantity of information pro-
vided. Therefore, we try to extract generic packet features from traffic instead
of focusing on the characteristics of singular attacks or the specific behavior of
an infected IoT device. In particular we focus on header fields in the Internet
Protocol (IP) packet, including the size of the packet or IPv4 and TCP/UDP
related information. In the next subsection, we will list the features selected for
each dataset and the consequent reasons.

Feature Processing. Pre-processing consists of different procedures to make
acceptable and optimize the input data to a ML algorithm. Typically, the
datasets are composed of different types of data (e.g. integers, floats, doubles,
binary, strings, etc.). Non-numeric inputs need to be mapped to numbers or to
be converted into one-hot-encoded values, after which all numeric data needs to
be normalized to improve data quality and ML performance [30].

Training and Classification. Preprocessed data is then used to fit our models
on the training set. Finally, after training our ML models using the preprocessed
data, they can be deployed for new traffic. In our work, we have selected different
ML models to test in different compositions, i.e. in different architectures. During
inference, the classifier takes as input the processed data and outputs whether
this network flow belongs to traffic considered malicious or not.

4.3 Datasets and Feature Importance

In this work we used two different datasets, specifically the TON IoT (Net-
work) Dataset [22] and the IoT-23 Dataset [9]. These are the most recent data
collections with malicious and benign IoT network traffic, bringing significant
information at the level of malware families that even modern security solutions
are unfamiliar with.

TON IoT comprises a collection of Industry4.0, IoT and Industrial IoT new
generation data. At UNSW Canberra, the dataset were collected in a large and
realistic network environment. The testbed was designed based on interacting
network, IoT devices and systems. The environment is composed of three layers
1 Obtained by running the Zeek network analyser.

Evaluation of Lightweight ML for NIDS in Industrial IoT 253

to mimick the implementation of recent realistic IoT networks. Specifically, the
edge layer involves physical devices, while the fog layer and the cloud layer
determine the computation location. TON IoT presents malicious scenarios with
nine different attack categories launched against vulnerable IoT applications,
Operating Systems (OSs) and network systems, as listed in Table 2. Several
heterogeneous sources of data are included into the dataset, in particular sensors,
OSs and network traffic. In our work we focus on the network traffic records
(i.e. traffic flow), which are extracted with Zeek [27]. The TON IoT dataset
comes with the extracted traffic flow in CSV format. The authors also provide a
Training and Test collection comprising a smaller portion of the dataset, which
we use for our work. Table 2 gives the composition of the network traffic data.

Table 2. Statistics of Network Records of TON IoT dataset [22]

Labels All Network Data Training and Testing

Backdoor 508,116 20,000

DDoS 6,165,008 20,000

DoS 3,375,328 20,000

Injection 452,659 20,000

MIMT 1,052 1,043

Password 1,718,568 20,000

Ransomware 72,805 20,000

Scanning 7,140,161 20,000

XSS 2,108,944 20,000

Normal 796,380 300,000

Total 22,339,021 461,043

The IoT-23 dataset [9] is a recent collection of network traffic from different
IoT devices. Data were captured in the Stratosphere Laboratory, AIC group,
FEL, CTU University in Czech Republic. The dataset comprises 23 different
network captures, also called sessions, with 20 malware and 3 benign network
traffic captures. During data collection, different malicious scenarios were exe-
cuted related to a specific malware which performed different actions in a Rasp-
berry Pi. The benign traffic however was collected using three real physical
devices. In particular, a Philips HUE smart LED lamp, an Amazon Echo home
personal assistant and a Somfy smart door-lock. As the devices were not sim-
ulated, the collection is characterized by the real network behaviour. We use
different scenarios of IoT-23 as shown in Table 3. For each capture, IoT-23 con-
tains a series of pcap files and conn.log.labeled files, which are the Zeek conn.log
files obtained by running Zeek network analyser using the original pcap file. We
derive a CSV file containing the chosen features with the related data starting
from the conn.log.labeled files using the zeek-cut tool provided by Zeek.

254 A. Baron et al.

Table 3. IoT-23 Dataset scenarios used in our work. FD stands for FileDownload,
PortScan is the short for PartOfHorizontalPortScan and C&C is short for Command
and Conquer. Specifically, theFileDownload label indicates that a file is being down-
loaded to the infected device. The Attack label refers to some kinds of attack which
try to exploit flaws such as telnet login, brute force, command injection etc.

Labels 1-1 8-1 34-1 35-1 44-1

Benign 469,275 2,181 1,923 8,262,389 211

DDos - - 14,394 2,185,302 1

C&C 8 8,222 6,706 81 14

C&C-FD - - - 12 11

PortScan 539,465 - 122 - -

Attack - - - 3 -

Total 1,008,748 10,403 23,145 10,447,787 237

The IoT-23 scenarios contain different kinds of attacks and consequently a
considerable amount of information. From the IoT23-35-1 scenario we extracted
a subset where the number of entries has been reduced to avoid data imbalance,
composed of 1, 048, 484 benign samples and 895, 929 malicious samples. Further-
more, we tested the IoT23-44-1 scenario with the aim of observing how the
selected ML models can perform with extremely reduced amount of data.

From TON IoT and IoT-23 we extract a subset of features that we use to
train the ML models. In particular, we concentrate on features concerning the
connection activity and the statistical activity related to the network and trans-
port layer. Although there are multiple characteristics which can be derived from
individual network packets, we have focused on the most consistent information.
Specifically, during the traffic analysis it is possible that some protocols are not
present in the layers, or the tool used to capture the traffic fails to gather cer-
tain non-essential characteristics. We have excluded information regarding DNS,
Secure Socket Layer (SSL) as well as Hypertext Transfer Protocol (HTTP) activ-
ity, focusing more on addresses, ports, amount of bytes transmitted, amount of
packets transmitted, duration of transmission and protocol used. From both
TON IoT and IoT-23 we extract the same 14 features, as shown in Table 4. We
additionally use scikit-learn [26] to depict the importance of each feature in an
RF in Fig. 2.

4.4 Experimental Setup

We train and validate the chosen ML models on a machine operated with 64-bit
Windows 11 Home, and an Intel Core i5-10210U four core CPU having 1.60 GHz
base frequency and 4.20 GHz as max turbo frequency. Afterwards, the saved
trained models are transferred to Raspberry Pi and FPGA for inference on new
input data.

Evaluation of Lightweight ML for NIDS in Industrial IoT 255

Table 4. Dataset features used in our experiments. Note that some identical features
may have different names in the datasets.

TON IoT IoT-23

No Name Type Name Type Specifics

1 ts Time ts Time Timestamp of connection

2 src port Number id.orig p Number TCP/UDP source port

3 dst port Number id.resp p Number TCP/UDP destination port

4 proto String proto String Protocol

5 service String service String DNS, HTTP, SSL, DHCP, etc.

6 duration Number duration Number Flow duration

7 src bytes Number orig bytes Number Source bytes

8 dst bytes Number resp bytes Number Destination bytes

9 conn state String conn state String Connection state

10 missed bytes Number missed bytes Number Number of missing bytes

11 src pkts Number orig pkts Number Number of source packets

12 src ip bytes Number orig ip bytes Number Number of source IP header bytes

13 dst pkts Number resp pkts Number Number of destination packets

14 dst ip bytes Number resp ip bytes Number Number of IP destination header bytes

Classifiers are implemented in Python 3.8 via several popular ML libraries,
especially PyTorch [25] as well as Scikit-learn [26], which is also used to derive
the performance and statistical results. Section A lists our model architectures
and their corresponding hyperparameters, and additionally comments on the
grid search, optimization and regularization used in our experiments.

In order to run the experiments, the trained and saved models are trans-
ferred to the Raspberry Pi running Pi OS Lite ready to perform inference. In
particular, the board is a Raspberry Pi Model 3B [7] which is equipped with
1.2 GHz BCM2837 Soc ARM Cortex-A53 CPU with 4 cores, 1024 MB of RAM
and a power requirement of 5 V at 2.5 A.

We also implement some models on FPGA using the FINN pipeline described
in Sect. 3. At the moment, FINN is open-source and publicly available2. We
tested the QNN Quant-NN on the PYNQ-Z2 FPGA board. The PYNQ-Z2
features 512MB DDR3 of RAM and it is equipped with a 650MHz dual-core
Cortex-A9 processor.

5 Results

In this section, we carry out a detailed performance analysis and we discuss the
results of the classifiers described in the previous section.

We start by evaluating the results for TON IoT and IoT-23 by comparing
tree-based and NN-based models in two separate groups. Table 5 and Table 6

2 https://github.com/Xilinx/finn.

https://github.com/Xilinx/finn

256 A. Baron et al.

Fig. 2. This histogram depicts the Feature Importance for a Random Forest. In partic-
ular, the Feature Importance is provided by the fitted attribute related to the Random
Forest, obtained with scikit-learn. In this RF model it is possible to see that the times-
tamp feature is very important for the correct classification of data. The horizontal
axis represents the features numerically in correspondence with Table 4.

show the results obtained in terms of key metrics for the TON IoT dataset, and
similarly Table 7 and Table 8 for IoT-23. Besides detection performance metrics,
we also consider the throughput, which is relevant when considering large-volume
attacks such as DoS and DDoS. This measure is computed by dividing the total
number of test instances by total time taken by a model to classify all the test
instances. Furthermore, tree-based models were trained on the Raspberry Pi
itself, as they are typically more lightweight than NNs, and their training times
were measured. This value is useful for hypothesizing possible on-device-training
for such models, directly on deployed devices (i.e. Raspberry Pis), with the goal
of improving performance over time and user privacy, and without requiring
users to update the device software.

Table 5. Results on TON IoT Dataset - Neural Networks.

Models Acc P R F1 ROC-AUC T

NN small 0.9893 0.9789 0.9904 0.9846 0.9895 2,336

NN 0.9889 0.9826 0.9858 0.9842 0.9882 1,810

CNN small 0.9473 0.9530 0.8937 0.9224 0.9349 2,398

CNN 0.9815 0.9921 0.9545 0.9729 0.9752 2,088

TabNet 0.9868 0.9744 0.9882 0.9813 0.9871 743

Table 5 shows the value of all relevant metrics concerning NNs on the
TON IoT dataset. It is evident from these results that CNNs do not perform
as well as the other NNs and TabNet, which achieve almost the same accuracy
(98.9%, 98.2% and 98.6% respectively). However, Table 6 shows that tree-based

Evaluation of Lightweight ML for NIDS in Industrial IoT 257

models perform considerably better than NNs using that dataset. We observe
that the DT outperforms other classifiers in terms of execution speed and overall
performance, as it obtains an almost perfect classification accuracy (99.99%) and
F1-score (99.99%). Tree-based ensemble models perform very similarly, with all
results hovering around 99.9%.

Table 6. Results on TON IoT Dataset - DT & Ensamble Models.

Models Estimators Acc P R F1 ROC-AUC T Training Time [s]

DT - 0.9999 0.9998 0.9998 0.9999 0.9998 2,311,528 15.87

RF 20 0.9998 0.9997 0.9998 0.9998 0.9998 122,221 116.81

RF 100 0.9998 0.9997 0.9998 0.9997 0.9998 18,247 573.40

AdaBoost 20 0.9989 0.9986 0.9985 0.9985 0.9988 41,893 110.25

AdaBoost 100 0.9997 0.9996 0.9995 0.9996 0.9996 7,940 561.32

ET 20 0.9998 0.9997 0.9998 0.9997 0.9998 51,809 103.66

ET 80 0.9998 0.9997 0.9998 0.9997 0.9998 19,312 396.65

Furthermore, training and classification speeds vary according to the number
of estimators in the various ensembles. The DT also has the best performance
for those metrics. In fact, this model is extremely suitable for classifying net-
work traffic with the selected pre-processing. RF, Adaboost, and ET perform
slightly worse however, with a noticeable difference in the sample processing
speed. Regarding TON IoT then, the DT clearly prevails, while both CNNs get
the worst results. Lastly, we observe that the 1D convolution applied in the con-
text of the TabNet does not obtain the same results as the feed-forward NNs and
tree-based models, which seem to be better suited for this classification task.

Table 7. Results on IoT-23 Dataset - Neural Networks.

Models Acc P R F1 ROC-AUC T

NN small 0.9977 0.9954 0.9998 0.9976 0.9977 1,568

NN 0.9984 0.9969 0.9997 0.9983 0.9984 1,250

CNN small 0.9954 0.9941 0.9963 0.9952 0.9953 1,524

CNN 0.9961 0.9955 0.9964 0.9960 0.9961 1,063

TabNet 0.9957 0.9973 0.9939 0.9956 0.9957 258

Table 8. Results on IoT-23 Dataset - DT & Ensamble Models.

Models Estimators Acc P R F1 ROC-AUC T Training Time [s]

DT - 0.9999 0.9999 1.0 0.9999 0.9999 153,991 164.57

RF 20 0.9999 0.9999 0.9999 0.9999 0.9999 72,101 698.52

AdaBoost 20 0.9967 0.9954 0.9979 0.9966 0.9967 36,102 665.36

ET 20 0.9997 0.9994 0.9999 0.9997 0.9997 67,681 540.91

258 A. Baron et al.

Regarding IoT-23, similar to the TON IoT results, the largest fully connected
NN performs best among the NN-based models with an accuracy of 99.84% as
shown in Table 7. Table 8 presents the tree-based models, with the DT and RF as
the best performing models. They obtain near-perfect results with an accuracy,
precision, recall, F1-score and AUC of at least 99.99%. Our results suggest that
the traffic flows in IoT-23 are more easily classified than the traffic captured by
TON IoT. Similar to TON IoT, the smallest CNN appears to perform worst,
while the DT and ensemble models again obtain the best results. Figure 3 and
Fig. 4 graphically show the results obtained for both TON IoT and IoT-23 with
regards to the accuracy, F1-score and AUC metrics. These results suggest that
the encoded belief over hypothesis carried by the NN characteristic is less effec-
tive in this scenario than the piece-wise constant approximation view introduced
by tree-like models where decision rules are inferred from the data features.

Fig. 3. Comparison of the statistical results of the models on TON IoT. The left chart
includes neural network based models and the right chart the tree-based algorithms.
The considered metrics are accuracy, f1-score and AUC-ROC measure. It is clear by
the plots that the tree-based models perform much better than the others.

All results up to this point refer to the experiments carried out on the Rasp-
berry Pi 3. Next, the results of the tests carried out by implementing a QNN in
the FPGA are exhibited.

Table 9 shows the results of the QNNs trained locally and then implemented
on the PYNQ-Z2 FPGA board. As can be seen from Table 10, which exhibits
the percentage utilization of the physical components of the FPGA board and
the measured values of latency, bandwidth, frequency, and power consumption,
this implementation is characterized by extraordinarily fast processing of input
data. The difference between the bandwidth measured during the simulation and
the bandwidth measured directly on the device can be attributed to overhead
in sample transfers. We note that the utilization of LUT, FF and BRAM is
relatively low, and combined with a clock frequency of 100 MHz we achieve an
extremely low latency. This translates to a generally good accuracy for an 8-
bit quantized model, which is 97.47% and 99.81% for TON IoT and IoT-23,
respectively.

Evaluation of Lightweight ML for NIDS in Industrial IoT 259

Fig. 4. Comparison of the statistical results of the models on IoT-23 Dataset. The
left chart includes NN-based models meanwhile the right chart shows the tree-based
algorithms. The considered metrics are accuracy, F1-score and AUC-ROC measure.
The charts show the better performance of tree-based models even in this scenario.

Table 9. Results of QNN first tested on PC.

Models Accuracy Precision Recall F1-score ROC-AUC

Quant-NN (TON IoT) 0.9747 0.9798 0.9468 0.9630 0.9682

Quant-NN (IoT-23) 0.9981 0.9964 0.9998 0.9981 0.9981

Overall, the DT seems to outperforms other classifiers for all investigated
metrics, but with RF and ET showing similar results, for both TON IoT and
IoT-23. We can firmly state that as tree-based models obtain the best results,
they are the best candidates for the IDS system. These results can likely
be attributed to the tabular nature of the network traffic alongside the pre-
processing applied to the chosen features which favors tree-based algorithms.
Furthermore the throughput of these models is significantly higher than the
other classifiers considered. The experimental tests demonstrate how the chosen
lightweight classifiers obtain excellent result at distinguishing network traffic as
benign or malicious within a wide group of different attacks, and how they can
be easily integrated into resource-limited devices such as Raspberry Pis and
FPGAs. Real-time efficiency of an IDS hardly depends on the dataset used in
the training phase. Therefore, to ensure the best security, it is necessary to use a
dataset that contains traffic patterns related to recent types of malicious attacks.
The datasets we used, TON IoT and IoT-23, are suitable choices for this purpose
and the presented results demonstrate that the chosen models show promising
performance.

260 A. Baron et al.

Table 10. Results on FPGA PYNQ-Z2 using performance Metrics.

Resource Utilization Available Utilization (%)

LUT 17,030 53,200 32.01%

LUTRAM 56 17,400 0.32%

FF 6,090 106,400 5.72%

BRAM 5.5 140 3.93%

T (simulation) [samples/s] 1,438,848

Latency [µs] 2.56

Frequency [MHz] 100

Power est. [W] 0.503

T (PYNQ) [samples/s] 717,529

6 Conclusions and Future Work

In this paper, a study on anomaly-based intrusion detection systems suitable
for securing IoT networks against malicious attacks is conducted. We document
the performance assessment of different ML classification algorithms, including
neural networks, decision tree, random forests, adaboost, extremely randomized
trees and TabNet. All the classifiers are benchmarked on recent IoT datasets
containing different kinds of attacks, namely TON IoT and IOT-23. The optimal
parameters of the models are obtained using a grid search algorithm combined
with a study on the feature importance. The performance of all the classifiers
has been measured in terms of accuracy, precision, recall and area under the
receiver operating characteristic curve. Moreover, the models are evaluated from
the perspective of processing speed.

The experiments are carried out on a Raspberry Pi 3B and a PYNQ-Z2
FPGA board, and the results show that the DT, RF, and ET models show the
best trade-off between prominent metrics and processing time. We show how
these models achieve excellent results for classifying network traffic processed
as tabular data. They are therefore a suitable choice for building IoT specific
IDSs. We demonstrate that the combination of Raspberry Pi or FPGA with ML
classifiers is capable of achieving excellent results in terms of detection accu-
racy and response time. As our models are lightweight, the additional overhead
on edge devices can be limited. This, alongside the high flexibility of our mod-
els, allows for hybrid and distributed deployment of additional security in a
resource-constrained IoT setting. The proposed system is trustworthy since even
if a centralized IDS or cloud computing fails, the internal security of individual
devices is not affected. This property proves useful in industrial IoT, where the
consequences of a failure to protect the individual device can have serious con-
sequences. In addition, the versatile design allows ordinary model updates via
on-device training, in order to adapt to emerging attacks which implies constant
advancement of the network security status.

Evaluation of Lightweight ML for NIDS in Industrial IoT 261

For future work, we plan on further investigating various models for
lightweight implementation on low-powered devices. Additionally, we should
explore how our system can be integrated in a real-work networking environment.
For this, we plan on integrating our system alongside existing IDS solutions. Fur-
thermore, leveraging incremental learning to extend our heuristics could facili-
tate more robust online intrusion detection.

A Model Architectures

– Neural Network Models:
To better understand the behaviour of NNs we experiment with the difference
between a small NN and a bigger NN, both for the multilayer perceptron
(MLP) using only fully connected layers as well as the CNN.
• NN1 (small NN): fully connected MLP composed of 3 hidden layers, with

64, 256, 64 neurons respectively. There are 14 input features and the out-
put layer has 2 neurons (binary classification). ReLU is used as activation
function.

• NN2 : smaller fully connected NN composed of one hidden layer of 64
neurons. Input layer has 14 neurons and the output layer 2.

• CNN1 (small CNN): it is composed of 1 convolutional layer characterized
by 1 input channel and 16 output channels, kernel size of 2 and stride of
1 and a fully connected layer with 96 input neurons and 2 output neurons
with ReLU as activation function.

• CNN2 : more advanced CNN composed of 2 convolutional layers and 2
fully connected layers. The first convolutional layer has 1 input channel, 8
output channels, kernel size of 3 and stride of 1. The second convolutional
layer has 8 input and 16 output channels, kernel of 3 and stride 1. The
fully connect layers have 64 and 2 neurons respectively. ReLU is used as
activation function.

• Quantized-NN : is composed of 3 layers. The hidden layer is composed of
64 neurons and the quantization is done with 8 bits using ReLU as acti-
vation function. This model is needed for the deployment on the FPGA.

– Decision Tree (DT): for the performance assessment the criterion is set to
entropy, and the maximum depth of the tree is set to 24, according to the
best parameters of the grid search.

– Random Forest (RF): the parameters are 100 estimators, i.e. the number
of trees included in the ensemble. The maximum depth of trees is set to 26
and the gini impurity is chosen as function to measure the quality of a split.

– AdaBoost: We use 100 estimators, with a learning rate of 0.1 and SAMME.R
as a boosting algorithm [12]. The base estimator is a Decision Tree initialized
with a maximum depth of 1.

– Extremely Random Forest (ET): according to the grid search we set the
number of estimators equals to 80, gini as a criterion and no maximum depth.

262 A. Baron et al.

– TabNet: We set the width of the decision prediction layer and the attention
embedding for each mask to 32, in accordance to the authors’ instructions [3].
We use 4 as steps in the architecture, with 3 independent Gated Linear Units
layers at each step is.

Grid Search: for Decision Trees, RF, AdaBoost, Extremely Randomized Trees
we used GridSearchCV to find the best hyperparameters.

Tree-based models have the ability to process a large number of samples per
second, so we can search for the highest performing hyper parameters (which
generally increase model heaviness) even at the cost of sacrificing some clas-
sification speed in exchange for higher accuracy. As a result, we prioritize the
accuracy over the bandwidth in the determination of the final hyperparameter
values.

Optimization Function: on our work we used Adam (Adaptive Moment Esti-
mation) optimizer [16] for all the NNs and for TabNet. The learning rate set for
TabNet is 0.02 and 0.01 for all the NNs.

Regularization: we first test the two fully-connected NNs and the two convo-
lutional NNs with different regularisation techniques including Dropout, L1, L2
regularization. Although regularisation is proven effective for preventing overfit-
ting, the classification accuracy of our models did not further improve. The NNs
are trained on dataset of millions of samples and they are able to generalize very
well on them, this implies our model models do not suffer from overfitting.

B Metrics

We evaluate our models with conventional ML metrics. Given some classification
problem, the true positives (TP) are attack samples that are classified as attack,
the false positives (FP) are normal samples that are classified as attack, the true
negatives (TN) are normal samples that are classified as normal and the false
negatives (FN) are attack samples that are classified as normal. The Accuracy
Acc = TP+TN

TP+TN+FP+FN then is the proportion of correction classifications. The
Recall R = TP

TP+FP or R monitors how well the classifier can detect attacks.
The Precision P = TP

TP+FP or P monitors how well a model can correctly iden-
tify attacks, and F1 = 2 · Precision · Recall

Precision + Recall is the harmonic mean of P and R.
Finally, the False Positive Rate or FPR = FP

FP+TN monitors the number of false
alarms. We also consider the Area under the Curve of the Receiver Operating
Characteristics (AUC-ROC), mapping the R in function of the FPR.

Additionally, we define the throughput T of models as the number of samples
they are able to process per second. Specifically for FPGA hardware, we also
monitor the resource consumption by considering the Lookup Table (LUT), Flip-
Flop (FF) and Block RAM (BRAM) utilization.

Evaluation of Lightweight ML for NIDS in Industrial IoT 263

References

1. RFC 4949: Internet security glossary, version 2 (2007)
2. Almiani, M., AbuGhazleh, A., Al-Rahayfeh, A., Atiewi, S., Razaque, A.: Deep

recurrent neural network for IoT intrusion detection system. Simul. Model. Pract.
Theory 101, 102031 (2020)

3. Arik, S.Ö., Pfister, T.: Tabnet: attentive interpretable tabular learning. CoRR
abs/1908.07442 (2019). http://arxiv.org/abs/1908.07442

4. Baron, A.: IMAT: a lightweight IoT network intrusion detection system based on
machine learning techniques. Master’s thesis, University of Padova (2022)

5. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki, P.: Network
intrusion detection for IoT security based on learning techniques. IEEE Commun.
Surv. Tutor. 21(3), 2671–2701 (2019)

6. Doshi, R., Apthorpe, N., Feamster, N.: Machine learning DDoS detection for con-
sumer internet of things devices. In: 2018 IEEE Security and Privacy Workshops
(SPW), pp. 29–35. IEEE (2018)

7. Raspberry Pi Foundation: Raspberry pi (2022). https://www.raspberrypi.com
8. Gamage, S., Samarabandu, J.: Deep learning methods in network intrusion detec-

tion: a survey and an objective comparison. J. Netw. Comput. Appl. 169, 1–21
(2020). https://doi.org/10.1016/j.jnca.2020.102767

9. Garcia, S., Parmisano, A., Erquiaga, M.J.: IoT-23: a labeled dataset with malicious
and benign IoT network traffic (2020). https://doi.org/10.5281/zenodo.4743746.
https://www.stratosphereips.org/datasets-iot23

10. Ge, M., Fu, X., Syed, N., Baig, Z., Teo, G., Robles-Kelly, A.: Deep learning-based
intrusion detection for IoT networks. In: 2019 IEEE 24th Pacific Rim International
Symposium on Dependable Computing (PRDC), pp. 256–25609. IEEE (2019)

11. Hasan, M., Islam, M.M., Zarif, M.I.I., Hashem, M.: Attack and anomaly detection
in IoT sensors in IoT sites using machine learning approaches. Internet Things 7,
100059 (2019)

12. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class adaboost. Stat. Interface 2(3),
349–360 (2009)

13. Hodo, E., et al.: Threat analysis of IoT networks using artificial neural network
intrusion detection system. In: 2016 International Symposium on Networks, Com-
puters and Communications (ISNCC), pp. 1–6. IEEE (2016)

14. Hosseinpour, F., Vahdani Amoli, P., Plosila, J., Hämäläinen, T., Tenhunen, H.: An
intrusion detection system for fog computing and IoT based logistic systems using
a smart data approach. Int. J. Digit. Content Technol. Appl. 10(5) (2016)

15. Hussein, A.Y., Falcarin, P., Sadiq, A.T.: IoT intrusion detection using modified
random forest based on double feature selection methods. In: Liatsis, P., Hussain,
A., Mostafa, S.A., Al-Jumeily, D. (eds.) TIOTC 2021. CCIS, vol. 1548, pp. 61–78.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97255-4 5

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Kozik, R., Choraś, M., Ficco, M., Palmieri, F.: A scalable distributed machine
learning approach for attack detection in edge computing environments. J. Parallel
Distrib. Comput. 119, 18–26 (2018)

18. Lee, T.-H., Wen, C.-H., Chang, L.-H., Chiang, H.-S., Hsieh, M.-C.: A lightweight
intrusion detection scheme based on energy consumption analysis in 6LowPAN.
In: Huang, Y.-M., Chao, H.-C., Deng, D.-J., Park, J.J.J.H. (eds.) Advanced Tech-
nologies, Embedded and Multimedia for Human-centric Computing. LNEE, vol.

http://arxiv.org/abs/1908.07442
https://www.raspberrypi.com
https://doi.org/10.1016/j.jnca.2020.102767
https://doi.org/10.5281/zenodo.4743746
https://www.stratosphereips.org/datasets-iot23
https://doi.org/10.1007/978-3-030-97255-4_5
http://arxiv.org/abs/1412.6980

264 A. Baron et al.

260, pp. 1205–1213. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-
007-7262-5 137

19. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Conditional vari-
ational autoencoder for prediction and feature recovery applied to intrusion detec-
tion in IoT. Sensors 17(9), 1967 (2017)

20. Manyika, J., Chui, M., Bisson, P., Jonathan Woetzel, R.D., Bughin, J., Aharon,
D.: Unlocking the potential of the internet of things (2015). https://www.
mckinsey.com/business-functions/mckinsey-digital/our-insights/the-internet-of-
things-the-value-of-digitizing-the-physical-world

21. Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed investigation
and analysis of using machine learning techniques for intrusion detection. IEEE
Commun. Surv. Tutor. 21(1), 686–728 (2018). https://doi.org/10.1109/COMST.
2018.2847722

22. Moustafa, N.: A new distributed architecture for evaluating AI-based security sys-
tems at the edge: network ton iot datasets (2021)

23. Nobakht, M., Sivaraman, V., Boreli, R.: A host-based intrusion detection and mit-
igation framework for smart home IoT using openflow. In: 2016 11th International
Conference on Availability, Reliability and Security (ARES), pp. 147–156. IEEE
(2016)

24. Pappalardo, A.: Xilinx/brevitas (2021). https://doi.org/10.5281/zenodo.3333552
25. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning

library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

27. Project, T.Z.: The zeek network security monitor (2020). https://zeek.org/
28. Sarhan, M., Lo, W.W., Layeghy, S., Portmann, M.: HBFL: a hierarchical

blockchain-based federated learning framework for a collaborative IoT intrusion
detection. arXiv preprint arXiv:2204.04254 (2022)

29. Shafique, K., Khawaja, B.A., Sabir, F., Qazi, S., Mustaqim, M.: Internet of things
(IoT) for next-generation smart systems: a review of current challenges, future
trends and prospects for emerging 5G-IoT scenarios. IEEE Access 8, 23022–23040
(2020). https://doi.org/10.1109/ACCESS.2020.2970118

30. Singh, D., Singh, B.: Investigating the impact of data normalization on classifica-
tion performance. Appl. Soft Comput. 97, 105524 (2020)

31. Tsai, C.F., Hsu, Y.F., Lin, C.Y., Lin, W.Y.: Intrusion detection by machine learn-
ing: a review. Expert Syst. Appl. 36(10), 11994–12000 (2009)

32. Wireshark: Wireshark. https://www.wireshark.org/
33. Woolf, N.: DDoS attack that disrupted internet was largest of its kind in history,

experts say (2016). https://www.theguardian.com/technology/2016/oct/26/ddos-
attack-dyn-mirai-botnet

34. Zhou, W., Jia, Y., Peng, A., Zhang, Y., Liu, P.: The effect of IoT new features
on security and privacy: new threats, existing solutions, and challenges yet to be
solved. IEEE Internet Things J. 6(2), 1606–1616 (2018)

https://doi.org/10.1007/978-94-007-7262-5_137
https://doi.org/10.1007/978-94-007-7262-5_137
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://doi.org/10.1109/COMST.2018.2847722
https://doi.org/10.1109/COMST.2018.2847722
https://doi.org/10.5281/zenodo.3333552
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://zeek.org/
http://arxiv.org/abs/2204.04254
https://doi.org/10.1109/ACCESS.2020.2970118
https://www.wireshark.org/
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

Measuring Cyber Resilience
of IoT-Enabled Critical National

Infrastructures

Adeola Adewumi1, Mohammad Hammoudeh2, Tooska Dargahi3,
and Olamide Jogunola3(B)

1 School of Science, Engineering and Environment, University of Salford,
Salford M5 4WT, UK

2 College of Computing and Mathematics, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Kingdom of Saudi Arabia

m.hammoudeh@kfupm.edu.sa
3 Department of Computing and Mathematics, Manchester Metropolitan University,

Manchester M1 5GD, UK
{t.dargahi,o.jogunola}@mmu.ac.uk

Abstract. Critical National Infrastructure (CNI) is vital and critical to
the delivery of essential services to society and is necessary for a country
to function properly. CNI are increasingly being connected to the internet
to improve operational efficiency and reduce costs. The adoption of the
Industrial Internet of Things (IoT) introduced new attack vectors which
have necessitated a need to build and improve cyber resilience in CNI.
The quantification of cyber resilience via metrics is one of the ways to
improve resilience. However, there is currently no standard methodology
and metrics to quantitatively measure cyber resilience in CNI. This paper
proposes a list of suitable cyber resilience metrics for IoT-enabled CNI.
Smart grid is considered as a CNI case study to measure the effective-
ness of the proposed cyber resilience metrics. Evaluation of the systemic
impact metric on smart grid showed that the performance of the system
under an attack is dependent on the recovery time; hence, the higher
the systemic impact, the lower the resilience of the CNI and vice versa.
Quantifying the resilience of CNI is crucial to determining the security
control defenses required to reduce the impact of a cyber attack.

Keywords: Industrial IoT · Critical National Infrastructure · Cyber
Resilience Metrics · Smart Grid

1 Introduction

The advent of Industry 4.0 technologies, and its key enabler, the Internet of
Things (IoT), is shaping the modern world. The Industrial IoT (IIoT) is a net-
work of devices, applications and sensors that facilitate data collection and analy-
sis across various industries, such as manufacturing, power generation and trans-
portation. IIoT has brought huge benefits such as improved efficiency, enhanced
productivity, greater flexibility, cost reduction, and increased profitability [1].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 265–280, 2024.
https://doi.org/10.1007/978-3-031-61486-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_16

266 A. Adewumi et al.

IoT-enabled Critical National Infrastructure (CNI) are increasingly comprising
a significant portion of both current and future critical infrastructures [2]. CNI
is vital and critical to delivering essential services to society and necessary for a
country to function effectively. Due to the adoption of IoT and Artificial Intelli-
gence (AI) in the energy sector, there has been optimization of energy resources,
dependence on smart grids, predictive protocols for natural disasters, and a pos-
itive impact on climate change. Also, the interconnected elements of smart grid
system make it possible to automatically optimize its operations and monitor
itself [3].

Despite the benefits derived from its usage, IIoT has also brought forth sev-
eral risks and cyber threats. The interconnection, interdependence, and complex-
ity of CNI have increased the attack surface which has culminated in a significant
increase in cyber attacks. Due to how essential CNIs are to daily life, any cyber
disruption or compromise could have a damaging impact on the availability,
integrity, and discharge of essential services, cause economic damages, threaten
public safety, and even lead to loss of lives. The threat landscape has evolved
from traditional to sophisticated cyber attacks. A report by Ponemon Institute
gathered that 90% of CNI providers had their Internet-connected critical infras-
tructure subject to cyber attacks [4], while 56% of organizations in the energy
sector that partook in the survey revealed that they had suffered an attack. This
invariably means that malicious actors have categorized CNI as a lucrative cyber
attack target. The number of threats continues to rise significantly, which also
necessitates a need to improve the cyber resilience of Internet-connected CNI.

To proactively ensure the functionality of Internet-connected CNIs during
cyber attacks, cyber resilience assessment methods such as checklists, models and
metrics are commonly used. Metrics are generally used to make informed deci-
sions which are also valid for improving resilience. However, the lack of standard
and comprehensive metrics to measure the resilience of CNI is a unique challenge
that will be addressed in this paper. Formal and comprehensive approaches to
improving resilience by leveraging metrics are undeveloped. Building or enhanc-
ing resilience requires metrics, and if cyber resilience is not measured, there is
no way to improve it [5,6].

This paper provides a novel solution to the challenge of IoT-connected CNI
cyber resilience by developing metrics that can assess, measure, and improve the
cyber resilience of IoT-connected CNI. These metrics are derived by conducting a
literature review of related works. We demonstrate the suitability of the proposed
metrics for the smart grid network through experimental analysis. The rest of
the paper is organized as follows. Section 2 reviews the existing literature and
the proposed resilience evaluation metrics in the literature. Section 3 explains our
proposed metrics, while Sect. 4 evaluates their efficiency through a smart meter
use-case. Section 5 concludes the paper and proposes future research directions.

2 Related Work

CNI refers to systems, resources, information, processes, networks, and peo-
ple, whose continued operation is essential to ensure the security of a country

Measuring Cyber Resilience of CNI 267

and upon which daily life depends [7]. The energy sector is among the most
sensitive CNIs, noted for its role in energy generation, management, and dis-
tribution. It plays a crucial part in maintaining business continuity within a
society, affecting both civil and military infrastructures. These CNI sectors are
labeled critical due to their significance and daily life importance, prompting
the decision to safeguard them. Disruptions such as natural disasters, terrorism,
accidental data loss, or cyber attacks, such as Stuxnet, Industroyer, BlackEn-
ergy3, Triton, Havex, and the recent pipedream attack, can severely affect the
economy, national public health, and the safety of citizens. Until recently, many
organizations within the CNI sectors have deployed and managed industrial con-
trol systems (ICS) in isolation and largely disconnected networks. However, the
adoption of IoT in CNI has brought interconnection to the fore, and efforts have
been made to consider the security of operational technology (OT) alongside
information technology (IT).

An appropriate definition for cyber resilience is needed to determine the
cyber resilience metrics suitable for CNI. Resilience has been an important term
used in different contexts and within multiple disciplines, hence the different
definitions of resilience. MITRE describes resilience as the ability of a nation,
organisation, mission or business process to anticipate, withstand, recover from,
and evolve to improve capabilities in the face of attacks on the supporting cyber
resources it needs to function [8]. Cutter et al. [9] defines resilience as the ability
to prepare and plan for, absorb, recover from, and more successfully adapt to
actual or potential adverse events. These definitions focus on resilience in the
context of disaster, especially on how to reduce disaster impacts. The National
Institute of Standards and Technology (NIST) [10] defines resilience as the ability
to anticipate, withstand, recover from, and adapt to adverse conditions, stresses,
attacks, or compromises on systems that use or are enabled by cyber resources.

In this paper, we will adopt the NIST definition and define cyber resilience
as the ability of a system to prepare and defend against cyber attacks, minimize
damage, maintain functionality level under attack, minimize recovery times from
cyberattacks and adapt. Metrics are used to measure, evaluate, and compare
processes. Metrics can be quantitative, qualitative, or semi-quantitative, and
they can be computed or derived. Cyber resilience metrics are an active research
area, especially as related to CNI.

2.1 CNI Most Targeted Industries

Mihalache et al. [11] conducted a review of the cyber resilience trends by
analysing the methods for cyber-physical systems (CPS) resilience enhancement.
CPS consists of hardware, software and other systems that are integrated and
networked as in critical infrastructure operations, and traffic flow management
amongst others. The review also showed the authors identified threats in the
physical, network and cyber layer. However, no metrics were highlighted to mea-
sure the resilience of CPS. Murino et al. [12] proposed a model-free, quantita-
tive, and general-purpose evaluation methodology to extract resilience indexes

268 A. Adewumi et al.

from system logs, process data and Security Information and Event Manage-
ment (SIEM) tool logs by simulating attacks against a wastewater treatment
plant model. While the analysis was in-depth, the ability of the indexes to dif-
ferentiate between cyber-attacks and natural event was identified as an issue.
Cassottana et al. [13] developed a CPS quantitative resilience assessment frame-
work that measured the resilience of a disruption before and after its occurrence
using a power substation as a case study. Fang et al. [14] proposed optimal repair
time and resilience reduction worth as metrics to measure the resilience of a net-
work system. These metrics quantify the priority with which a failed component
should be repaired and re-installed into the network and the potential loss in the
optimal system resilience due to a time delay in the recovery of a failed compo-
nent. These metrics were computed via mathematical modeling, and they focus
on the recovery phase of cyber resilience [14]. “The optimal repair time Tij

opt

is described as the time the arc ij is restored to function properly at a recovery
time T,” which is mathematically represented as:

T opt
ij = ΣT

t=0(1 − sij(t)) (1)

Francis and Bekera [15] proposed resilience metrics and a framework for
infrastructure systems. These metrics consolidate the adaptive capacity, absorp-
tive capacity, and recoverability of a resilient system. The adaptive capacity
focuses on how the system can adapt to adverse events, while the absorptive
capacity is the ability of a system to absorb and overcome adverse impacts. One
of the limitations identified with these metrics is their generality and suitabil-
ity for natural disasters [15]. Their proposed metrics is calculated through the
following equation:

ρi(Sp, Fr, Fd, Fo) = Sp
Fr

Fo

Fd

Fo
(2)

where

Sp = tδ

{
(tδ/t∗r)EXP [−a(tr − t∗r)] for tr ≥ t∗r
(tδ/t∗r) otherwise

(3)

Sp is the speed recovery factor, Fo is the original stable system performance
level, Fd is the performance level immediately post-disruption, F ∗

r is the per-
formance level after post-disruption equilibrium state is achieved, and Fr is the
performance at a new stable level after recovery, tδ is slack time, tr is time to
final recovery, t∗r is time to complete recovery, and a is the parameter controlling
decay in resilience. These metrics are rather too generic and, as such, not the
most applicable to evaluate the effectiveness of resilience of IoT-enabled CNI
during a cyber attack.

Hassell et al. [16] identified the percentage of successful and partially suc-
cessful attacks, the mean number of attack disruptions, defensive efficiency, and
attack noise as metrics for evaluating resilience. These metrics focus on the
defensive and detective aspects of resilience, and the authors also indicate time
as an underlying measurement of effectiveness [16]. Quantified the percentage

Measuring Cyber Resilience of CNI 269

of successful attack metric as the number of successful attacks observed (NA,
success) per the number of total attacks observed (NA, total), and the authors
also quantified the mean number of attack disruptions as a summation of the
number of disruptions on the ith attack (Ni, disruption) per number of total
attacks observed [14]. The metrics are useful in measuring the effectiveness of
cyber defense measures within a network, which can also be adopted in an IoT
network.

PA,success =
NA,success

NA,total
× 100% (4)

Ndisruption =
Σ

NA,total

i=1 Ni,disruption

NA,total
(5)

Hossain-McKenzie et al. [17] proposed performance-based cyber resilience
metrics such as systemic impact, and total recovery effort for analysing power
systems against cyber-attacks. A microgrid case study related to ADDSec MTD
technology was used to evaluate the metrics. Haque et al. [18] proposed a qual-
itative cyber resilience framework for the industrial control system. Analytical
hierarchy process was used to formulate the metrics based on different individual
sub metrics. Redundancy, robustness and rapidity are some of the metrics identi-
fied in this paper. The authors also decomposed and categorized further metrics,
such as physical redundancy and segmentation, as dimensional and operational
metrics, respectively. Even though the authors argued that the metrics are useful
in identifying aspects of the network that are non-resilient, one of the shortcom-
ings is that the metrics focus on experts’ technical opinions to assess the cyber
resilience of the ICS environment. The operational metrics focus on vulnerabil-
ity scans, insider threat management, training, and awareness. The resilience
metrics are mathematically represented as:

Ri = Wphy × dRiphy
+ Worg × dRiorg + Wtec × dRitec (6)

Segovia et al. [19] identified stability and performance as metrics that quan-
tify the absorptive and recoverability capability of a system at design time. The
absorptive property is the extent to which attacks can be handled, while the
recovery capacity describes the ability of a system to restore its operations while
undergoing performance degradation. The authors mentioned that these met-
rics could be used to measure the capacity of a system to absorb and recover
from malicious attacks. Also, design and structure metrics were proposed in this
paper, and the strength of this metric is assessing situational awareness [19].
These metrics focus on the important aspect of resilience which is the ability
of a system to recover. The performance and stability resilience (PR) metric is
represented as:

PR =
NR − RL

NR
(7)

NR = (TSsup − TSinf) × (KA + KR) (8)

270 A. Adewumi et al.

where KA represents the absorb time, KR represents the recovery time, RL
represents the resilience loss, and TS represents the performance threshold.

In summary, the review of the proposed resilience metrics in the literature
indicates a lack of comprehensive standard for measuring CNI resilience.

3 Proposed Metrics for Measuring Cyber Resilience

We will adopt the resilience metrics proposed by Haque et al. [18], and Hossain-
McKenzie et al. [17] to address the lack of comprehensive cyber resilience quan-
tification metrics for IoT-enabled CNI and the applicability of these metrics to
real-life systems. The metrics are assessed based on the absorptive, adaptive, and
recoverability capabilities of a resilient system, which are useful characteristics
in improving the resilience of CNI (Fig. 1).

Fig. 1. Cyber Resilience Characteristics

Robustness metric can be defined as the ability of a system to absorb and
withstand attacks with a reduced negative impact on the performance of the
system [20]. This invariably means that CNI performance is assured even during
an unforeseen cyber attack. This metric ensures that the failure of CNI systems
is accounted for, which means fail-safes are designed for the CNI components
and the network at large. For example, a robust CNI will not fail when design
thresholds are exceeded. In addition, robustness reduces the impact of the cyber
attacks by preventing the attack from compromising the other part of the CNI
network, especially where critical services could be accessed. Cimellaro et al. [21]
mathematically represented the robustness metric as:

Robustness = 1 − L̄(mL, σL); (%) (9)

where L̄ represents random variable expressed as a function of the mL, mean is
represented by mL, and σL represents standard deviation.

Measuring Cyber Resilience of CNI 271

Redundancy is another metric adapted from [19]. It is one of the metrics used
in assessing the maturity of cyber security in an IT environment and can also
be adapted in a CNI environment. Redundancy can be described as a system’s
capability to continue to function due to the provision of alternative resources,
which can also be called backup resources or systems. Resilient CNI must always
have at least one redundant component which can be used as an alternative in the
event of a failure that occurs through a cyber attack. Furthermore, provisioning
a redundant system or replicating modules is a function of identifying critical
components of the CNI. If non-critical components are provisioned, the purpose
of having a resilient system becomes defeated. Redundancy can be quantified as:

Redundancy =
Number of critical resources with alternative resource

Total number of critical resources
× 100

Resourcefulness is the ability to adapt to cyber attacks by leveraging on flex-
ible people to prioritize unanticipated challenges and innovate solutions during
an attack. Bruneau et al. [20] described resourcefulness as technologies employed
to monitor and detect cyber attacks from a technical perspective. This metric is
difficult to quantify because it is dependent on employee skills. Rapidity can be
described as the ability of a system to recover from a cyber attack in a timely
manner while containing the losses and avoiding disruption [17]. Rapidity can
also be used to measure the time taken for a system to be restored to pre-
disruption functionality; the goal is to optimise rapidity, which in turn increases
the resilience of a CNI system. Cimellaro et al. [21] mathematically represented
the rapidity metric as:

Rapidity =
dδ(t)
dt

; for toE ≤ t ≤ toE + TRE (10)

Rapidity =
L

TRE
(11)

where d
dt is the differential operator, δ(t) is the functionality of the system, t is

the time, and L is the loss functionality.
Systemic Impact (SI) and total recovery effort (TRE) are metrics created

by Vugrin et al. [22] for quantifying the resilience of infrastructure systems.
However, Hossain-McKenzie et al. [17] made an adjustment to these metrics
to accommodate for cyber threats, which will be adopted as metrics in this
thesis. Hossain-McKenzie et al. [17] described SI as the ability of a system to
mitigate cyber attack and continue operating through adverse conditions. SI
is measured by summing the difference between targeted system performance
(TSP) and actual system performance (SP) over the period, d(t), the attack
commenced till response measures, tf , are carried out. TSP represents the pre-
attack performance level while SP is the performance level during an attack
or disruption. SI measures the resilience of the CNI during a disruption and is
expressed as:

272 A. Adewumi et al.

SI =
∫ tf

t0

[TSP (t) − SP (t)] dt (12)

Total Recovery Effort (TRE) focuses on the recoverability capacity of the
system described as the cumulative effort required for the response measures
to overcome the cyber attack and recover the system [17]. This metric can be
measured by considering the resources used during the recovery process. TRE is
expressed as:

TRE =
∫ tf

t0

Σkrk(t)[REk(d(t), SP (t), t)] dt (13)

Fault tolerance is another metric that can be used to measure the resilience
of internet-connected CNI. It is defined as the ability of a system to continue
to operate at a defined level of performance while the components are failing or
malfunctioning. Fault tolerance is an important concept in traditional IT that
can also be adopted in CNI. This is due to the adverse impacts of the failure
of system components, which could be dangerous or even lead to loss of life.
Building fault-tolerant systems are equivalent to creating or having redundant
components and systems that can make failover possible in the event of system
failure. Hamilton et al. [23] outlined a metric for measuring fault tolerance for
Robot systems; however, it can be adapted for CNI.

eff = k1(f)2 + k2(P)2 (14)

Based on the CNI cyber attack review conducted, it has been observed that
malicious actors usually leverage the network as an attack vector to disrupt the
operations of CNI providers. This informs our decision to evaluate the effective-
ness of the proposed resilience metrics by considering a smart grid CNI as a
case study and set up a network simulation. IEA [24] defined a smart grid as an
electricity network that uses digital and other advanced technologies to moni-
tor and manage the transport of electricity from all generation sources to meet
the varying electricity demands of end-users. Smart grid components include
electric power substations, electric power generators, distribution, and trans-
mission lines, controllers, collector nodes, smart meters, and distribution and
transmission control centers [25]. Matey et al. [26] also highlighted some attack
surfaces such as data concentrator, SCADA, control system, Communication
channel, Remote terminal unit (RTU), Programmable logic controller (PLC),
and Advanced meter infrastructure (AMI) which are peculiar to smart grids.

Due to the complexity of the smart grid infrastructure, the communication
network of the smart meter component, which is one of the attack surfaces, will
be modeled and simulated for cyber resilience evaluation is this paper. Gunduz
and Das [3] highlighted some of the common cyber attacks that are prevalent
in smart grids, which include phishing, denial of service (DoS), eavesdropping,
packet drop attack, false data injection, jamming, a man in the middle and
buffer overflow attacks. Research showed that regular servers such as file servers,

Measuring Cyber Resilience of CNI 273

web and database servers configured in an ideal IT network are also configured
in an ICS network on operating systems (OS) such as Windows and Unix to
provide support for ICS functions. This shows that the attack surfaces are not
only restricted to the ICS components, but cyber attacks can start from the
traditional IT servers configured in the ICS network and propagate to the ICS
components.

For the performance evaluation of the proposed metrics, we have only simu-
lated a Distributed DoS (DDoS) attack. DDoS is an attack that causes exhaus-
tion of system and/or network resources due to attack and flood a targeted sys-
tem or network with unwanted service traffic or requests. This leads to unavail-
ability of the resource to its intended users and causes slow network perfor-
mance. For this simulation, the control server will be flooded with unwanted
ping requests, which will impact the server’s performance and cause the unavail-
ability of the smart meter control server to provide services such as file transfer
and database requests to multiple smart meter clients. This attack will disrupt
the smart meter network infrastructure, which will have an overall impact on
the resilience of the smart grid network infrastructure. Measuring the network’s
resilience during the attack depends on the impact of the attack on the server
performance.

4 Experimental Analysis

In this section, the metrics proposed above are evaluated using a smart meter net-
work. Various open-source and commercial network simulators are available that
can be used to carry out our intended simulation, including GNS3 (Graphical
Network Simulator 3), NS2/3 (Network Simulator Version 2/3), OPNET (Opti-
mized Network Engineering Tools) and OMNET++ (Optical Micro-Networks
Plus). OPNET modeler version 14.5 is the software application used for network
modeling and simulation in this paper. OPNET was chosen because it supports
discrete event simulation, which makes it easy to analyze the performance of
networks [27]. Also, OPNET was chosen because of some of its unique features,
which include its support for the Windows operating system, academic free ver-
sion, and tutorials on the installation and setup of the environment.

Two network scenarios were modeled: the baseline scenario and the DDoS
attack scenario. The smart meter baseline scenario represents the smart meter
network infrastructure simulated on OPNET without a cyber attack. The net-
work enables communication between smart meters and the control server. The
smart meter is represented as a workstation node as OPNET does not have a
node for a smart meter. Twenty smart meters are modeled and connected to
Ethernet switches (switch 1 and switch2) with a 100BaseT link which enables
data to be sent and received. The smart meter has been modeled to generate
packets that are sent through the Ethernet switch to the router and then through
the firewall to the control server, as depicted in Fig. 2. Applications such as FTP
(file transfer protocol), database, and HTTP have been configured on the con-
trol server and within the network. This is to model the real-life smart meter

274 A. Adewumi et al.

network by generating application traffic as energy data consumed by clients in
their homes are usually sent to the control server through a wide area network.
Metrics such as throughput and CPU utilization are configured to be measured
during the simulation.

Fig. 2. Considered Smart Meter Network Infrastructure

The smart meter DDoS scenario is simulated with a DDoS attack against the
network infrastructure. For the DDoS attack scenario, we created a duplicate of
the baseline scenario. We introduced an attacker to the network who compro-
mises some of the smart meters and reprograms them to send unlimited ping
traffic to the control server via the switches and routers, as shown in Fig. 3.

The attacker is represented by a workstation node, and DDoS traffic is sent to
the server, as seen in Fig. 3, with the attack starting at t = 0 s. The DDoS traffic
is represented with the dotted lines in red. IP addresses were auto-assigned to the
smart meters, control server, and attacker nodes. Also, for both scenarios, the
simulation was configured to last 21600 s (6 hrs.) The systemic impact (SI) metric
which can measure the impact of the DoS attack on the network is evaluated.
For this analysis, SI is defined by Eq. 12 where:

TSP1(t) = throughput of the network before the attack at time t

SP1(t) = throughput of the network during the attack at time t

The time analysis period is from 0 to 18000 (in seconds) i.e., t0 = 0 and
tf = 18000. Tables 1 and 2 are the data obtained after the simulation of the
DoS attack against the smart meter network. They show the server performance
(measured in seconds), CPU utilization (measured in %), throughput (measured

Measuring Cyber Resilience of CNI 275

Fig. 3. DDoS Attack Against Control Server

in bits/sec) and the DB query response time (measured in bytes/sec). The base-
line simulation result shows what the network performance should look like when
there is no attack against the network.

Table 1. Smart Meter Network Server Performance and CPU Utilization Simulation
Data.

Metric Server Performance (Sec) CPU Utilization (%)

Time(sec) Without DoS Attack With DoS Attack Without DoS Attack With DoS Attack

t = 0 0.00953 0.0163 0.2838 0.5892

t = 3060 0.01285 0.0169 0.5159 0.8022

t = 8280 0.01286 0.0164 0.5476 0.8332

t = 17820 0.01310 0.0164 0.5534 0.8313

The graph of the throughput metric, was sinusoidal throughout the simula-
tion, as seen in Figs. 4(c) and (d). The throughput of the baseline network never
went downward spiral at any time. However, an assumption was made during the
simulation which is - the failure of the link between router2 and the control server
because of the DDoS attack. This failure caused the control server to become
unavailable, and this had an impact on the resilience of the network. Based on
the analysis carried out, the attack started at t = 0 s with the throughput being
5303.644, which shows that the network was performing optimally. However,

276 A. Adewumi et al.

Table 2. Smart Meter Network Throughput and DB Query Simulation Data.

Metric Throughput (bits/sec) DB Query Traffic Received (bytes/sec)

Time(sec) Without DoS Attack With DoS Attack Without DoS Attack With DoS Attack

t = 0 2842.22 5303.64 2773.33 5361.777778

t = 3060 2769.80 1035.90 5104.99 7857.777778

t = 8280 2454.07 739.18 5440.45 8205.92

t = 17820 2584.89 1648.66 5498.60 8225.71

we noticed a decline in the network performance from t = 1440 s to t = 4680 s,
the throughput decreased significantly from 2071 to 956.625bits/sec respectively.
The decrease in throughput is synonymous with an under-performing network
which means the network is not at optimal performance. Recovery of the network
started at t = 7380 s and during this period, the throughput increased gradu-
ally from 718.90 to 1648.657bits/sec till the end of the simulation. To calculate
the SI metric of cyber resilience, we ran the simulation twice with recovery at
t3780 s and t7380 s. The following parameters are used from the data obtained
at different intervals during the first simulation when recovery is at t7380:

TSP1(t2520) = 2283.84, SP1(t2520) = 1243.081, SI = 18546325.38
TSP1(t3780) = 2557.273, SP1(t3780) = 847.556, SI = 30467156.94
TSP1(t4680) = 2681.478, SP1(t4680) = 690.601, SI = 35477428.14
TSP1(t7380) = 2547.85, SP1(t7380) = 718.90, SI = 32591889

The data shows that at random times t0, t1440, t4680 and t17820, the net-
work metrics; server performance (Fig. 4(B)) and CPU utilization (Fig. 4(A)) are
slightly higher during the attack than in the baseline scenario. However, metrics
such as throughput are much higher during the attack as seen in Figs. 4(C) and
(D). There is a ripple effect of the impact of the DoS attack on the network
metrics which serves as a basis for the SI resilience metric. From Table 2, it is
observed that there is a 0.3% increase in the CPU utilization of the DoS attack
scenario at t3060 and t8280. The increase signifies an increase in the systemic
impact on the control server’s performance via CPU utilization. Also, based on
the peculiarity of DDoS attack against any communication network, legitimate
packets from smart meter nodes are either dropped or delayed as is the case
during this simulation. Almajali et al. [28] emphasized the characteristics of a
resilient network communication infrastructure, the authors mentioned that per-
formance requirements are not compromised even during a cyber attack, and this
is true when evaluated against the cyber resilience definition proposed in this
paper.

For the systemic impact metric, the performance of the network is dependent
on recovery. This means that different recovery times lead to varying network
performance after an attack. For example, as seen with the SI calculations with
the first simulation where recovery was late (at t = 7380 s), the SI was high
which signified degradation of the network performance. However, for the second

Measuring Cyber Resilience of CNI 277

Fig. 4. Average results of DDoS attack and baseline simulation. From top left to bot-
tom right, A) The average time for CPU utilization B) The average time for server
performance C) The average time for throughput, late recovery D) The average time
for throughput, fast recovery.

simulation, recovery time was early (at t = 3780 s), hence the impact of the
attack on the network was minimal which showed the network was more resilient.
Conclusively, the higher the systemic impact, the lower the resilience. This means
that a resilient CNI network is one in which recovery operations are deployed
shortly after an attack which reduces the systemic impact significantly.

In addition, in situations where the attack is not prevented at the firewall
but impacts the performance of the server, the concepts of resilience namely
adaptability and recoverability are leveraged. The redundant servers configured

278 A. Adewumi et al.

can be spurned up to provide required services to clients while also blocking
the indicators of compromise and scanning the network for traces of malicious
software. This improves the resilience of the network and reduces recovery time.

5 Conclusion

Kott and Linkov [5] emphasized the importance of measuring cyber resilience for
improving cyber resilience. While there are different ways to measure resilience,
the use of metrics is one of the ways to quantitatively measure resilience. Several
researchers have suggested various metrics to measure resilience. However, a
review of these metrics showed that they are not suitable for IoT-enabled CNI.
Some of the shortcomings are the generality of these metrics, the inability of
the metrics to capture the system’s performance during runtime, and abstract
mathematical definitions that are hard to apply to evaluate the resilience of IoT-
enabled CNI practically. Resilience capacities, such as absorptive, adaptive, and
recoverability capacities, were used to determine the suitability of existing cyber
resilience metrics for internet-connected CNI. A literature review was conducted
to identify metrics that are currently being used to measure resilience.

The lack of an appropriate cyber resilience definition for CNI and the lack
of a universal and comprehensive list of metrics to assess, measure, and improve
the cyber resilience of IoT-enabled CNI are some of the research gaps identified
and addressed in this paper. We proposed cyber resilience metrics based on the
resilience metrics suggested in [18] and [17]. To determine the effectiveness of the
systemic impact metric, we evaluated the resilience of the smart grid case study
by conducting a simulation of the communication network of a smart meter.
We carried out a baseline scenario which showed the normal performance of the
network, while the denial-of-service attack scenario showed the performance of
the network when there is a disruption, especially the rate of recovery. With
these scenarios, we measured the resilience of the network. We observed that a
low systemic impact indicates high cyber resilience, and a high systemic impact
indicates low cyber resilience. From the scenarios simulated, we observed that
resilience is dependent on recovery time. It showed that during a cyber disruption
to a CNI network, the recovery rate is a function of determining the system’s
resilience. A high recovery time indicates a highly resilient system, and a low
recovery time means a low resilient system.

In the process of carrying out this research work, we identified some chal-
lenges and limitations that we encountered which could be considered as future
research areas for the cyber resilience of IoT-enabled CNI. One of the challenges
is CNI data collection, especially regarding modeling and simulation. Specific
datasets, such as the interdependency of CNI components topologies, are needed
for detailed CNI modeling. The lack of publicly available precise dataset is a chal-
lenge that can impair the correct representation of CNI systems and networks,
which can affect the cyber resilience assessment. We noticed that open-source
data about different aspects of CNI are not readily available for academic pur-
poses. This can be attributed to privacy and confidentiality issues. However, a

Measuring Cyber Resilience of CNI 279

standardized data methodology and collection can be proposed for future work.
The seconf future research ares on cyber resilience, could be focused on designing
tools that can model IoT-enabled CNI and assess cyber resilience. Moreover, the
simulation carried out in this research focused on static data analysis, i.e., the
DoS attack started at t0 and ended at around t4780. We aim to focus on the
dynamic cyber attack scenarios for future work.

References

1. Hammoudeh, M., et al.: A service-oriented approach for sensing in the internet
of things: intelligent transportation systems and privacy use cases. IEEE Sens. J.
21(14), 15753–15761 (2020)

2. Lloyd’s Register Foundation. Foresight review of cyber security for the industrial
IoT (2020). Accessed 7 Nov 2023

3. Gunduz, M.Z., Das, R.: Analysis of cyber-attacks on smart grid applications.
In: 2018 International Conference on Artificial Intelligence and Data Processing
(IDAP), pp. 1–5. IEEE (2018)

4. Muncaster, P.: Nine in 10 CNI providers damaged by cyber-attacks (2019).
Accessed 8 Nov 2023

5. Walshe, M., Epiphaniou, G., Al-Khateeb, H., Hammoudeh, M., Katos, V.,
Dehghantanha, A.: Non-interactive zero knowledge proofs for the authentication
of IoT devices in reduced connectivity environments. Ad Hoc Netw. 95, 101988
(2019)

6. Epiphaniou, G., Mohammad Hammoudeh, H., Yuan, C.M., Ani, U.: Digital twins
in cyber effects modelling of IoT/CPS points of low resilience. Simul. Model. Pract.
Theory 125, 102744 (2023)

7. Critical national infrastructure (2023). Accessed 8 Nov 2023
8. Bodeau, D., Graubart, R., Picciotto, J., McQuaid, R.: Cyber resiliency engineering

framework. MTR110237, MITRECorporation (2011)
9. Cutter, S.L., et al.: Disaster resilience: a national imperative. Environ. Sci. Policy

Sustain. Dev. 55(2), 25–29 (2013)
10. Ross, R., Pillitteri, V., Graubart, R., Bodeau, D., McQuaid, R.: Developing

cyber resilient systems: a systems security engineering approach. Technical report,
National Institute of Standards and Technology (2019)

11. Mihalache, S.F., Pricop, E., Fattahi, J.: Resilience enhancement of cyber-physical
systems: a review. In: Mahdavi Tabatabaei, N., Najafi Ravadanegh, S., Bizon, N.
(eds.) Power Systems Resilience. PS, pp. 269–287. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-94442-5 11

12. Murino, G., Armando, A., Tacchella, A.: Resilience of cyber-physical systems: an
experimental appraisal of quantitative measures. In: 11th International Conference
on Cyber Conflict (CyCon), vol. 900, pp. 1–19. IEEE (2019)

13. Cassottana, B., Roomi, M.M., Mashima, D., Sansavini, G.: Resilience analysis of
cyber-physical systems: a review of models and methods. Risk Anal. 43(11), 2359–
2379 (2023)

14. Fang, Y.-P., Pedroni, N., Zio, E.: Resilience-based component importance measures
for critical infrastructure network systems. IEEE Trans. Reliab. 65(2), 502–512
(2016)

15. Francis, R., Bekera, B.: A metric and frameworks for resilience analysis of engi-
neered and infrastructure systems. Reliab. Eng. Syst. Saf. 121, 90–103 (2014)

https://doi.org/10.1007/978-3-319-94442-5_11
https://doi.org/10.1007/978-3-319-94442-5_11

280 A. Adewumi et al.

16. Hassell, S., et al.: Evaluating network cyber resiliency methods using cyber threat,
vulnerability and defense modeling and simulation. In: MILCOM 2012-2012 IEEE
Military Communications Conference, pp. 1–6. IEEE (2012)

17. Hossain-McKenzie, S., Lai, C., Chavez, A., Vugrin, E.: Performance-based cyber
resilience metrics: an applied demonstration toward moving target defense. In:
IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society,
pp. 766–773. IEEE (2018)

18. Haque, M.A., De Teyou, G.K., Shetty, S., Krishnappa, B.: Cyber resilience frame-
work for industrial control systems: concepts, metrics, and insights. In: 2018 IEEE
International Conference on Intelligence and Security Informatics (ISI), pp. 25–30.
IEEE (2018)

19. Segovia, M., Rubio-Hernan, J., Cavalli, A.R., Garcia-Alfaro, J.: Cyber-resilience
evaluation of cyber-physical systems. In: 2020 IEEE 19th International Symposium
on Network Computing and Applications (NCA), pp. 1–8. IEEE (2020)

20. Bruneau, M., et al.: A framework to quantitatively assess and enhance the seismic
resilience of communities. Earthq. Spectra 19(4), 733–752 (2003)

21. Cimellaro, G.P., Reinhorn, A.M., Bruneau, M.: Framework for analytical quantifi-
cation of disaster resilience. Eng. Struct. 32(11), 3639–3649 (2010)

22. Vugrin, E.D., Warren, D.E., Ehlen, M.A.: A resilience assessment framework for
infrastructure and economic systems: quantitative and qualitative resilience analy-
sis of petrochemical supply chains to a hurricane. Process Saf. Prog. 30(3), 280–290
(2011)

23. Hamilton, D.L., Walker, I.D., Bennett, J.K.: Fault tolerance versus performance
metrics for robot systems. Reliab. Eng. Syst. Saf. 53(3), 309–318 (1996)

24. Smart grids. Accessed 7 Oct 2023
25. What are the basic components of smart grids (2021). Accessed 7 Oct 2023
26. Matey, A.H., Danquah, P., Koi-Akrofi, G.Y., Asampana, I.: Critical infrastructure

cybersecurity challenges: IoT in perspective. Int. J. Netw. Secur. Appl. 13(4), 41–
58 (2021)

27. Zheng, L., Yang, H.: Unlocking the Power of OPNET Modeler. Cambridge Uni-
versity Press, Cambridge (2012)

28. AlMajali, A., Viswanathan, A., Neuman, C.: Analyzing resiliency of the smart grid
communication architectures under cyber attack. In: CSET (2012)

SCI – Secure Cryptographic
Implementation

Towards Discovering Quantum-Threats
for Applications Using Open-Source

Libraries

Xiaodong Ye1(B), Teik Guan Tan2, and Jianying Zhou1

1 Singapore University of Technology and Design, Singapore, Singapore
sgsheldon.ye@gmail.com, jianying zhou@sutd.edu.sg

2 pQCee Pte Ltd., Singapore, Singapore

Abstract. The improvement of quantum computing poses a signifi-
cant threat to cryptographic security. It enables the potential utiliza-
tion of quantum algorithms to compromise classical cryptographic algo-
rithms, such as public-key cryptosystems including RSA (Rivest-Shamir-
Adleman), DH (Diffie-Hellman), and ECC (Elliptic Curve Cryptogra-
phy). Currently, many applications rely on open-source libraries for
various functionalities, including quantum-vulnerable public-key cryp-
tographic implementations to achieve data confidentiality, integrity, and
authenticity. So how can we determine the exposure of such applications
to quantum attacks? In this paper, we study the use of open-source cryp-
tographic algorithms for the Python programming language. We first
identify the most widely used Python cryptographic libraries and then
establish a simple keyword-based approach to identify the potential use
of vulnerable RSA, ECC, and DH algorithms within Python applica-
tions. Notably, the extracted set of 11 keywords demonstrates precision
and accuracy exceeding 90%.

Keywords: Quantum Threat · Public Key Cryptography ·
Vulnerability Detection · Keyword Analysis · Open Source

1 Introduction

In the cryptographic landscape, both asymmetric and symmetric encryption algo-
rithms are pivotal for data security. However, the increasing feasibility of quantum
computers poses a significant threat to these classical cryptographic algorithms.
Quantum algorithms, such as Shor’s algorithm, are known to break widely-used
asymmetric encryption schemes like RSA, ECC, and DH, while Grover’s algo-
rithm can reduce the security of symmetric encryption methods by speeding up
the search for the correct key. This paper focuses on three public key cryptography
algorithms and sets the stage for future studies to explore the quantum resilience
of a broader spectrum of cryptographic algorithms, including symmetric ones.

Public key (asymmetric) cryptography is considered the anchor of trust in
modern cryptographic systems. The use of classical cryptographic algorithms
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 283–302, 2024.
https://doi.org/10.1007/978-3-031-61486-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_17

284 X. Ye et al.

like RSA, ECC, and DH has long been relied upon for secure data transmission
and protection. This raises concerns about their continued security, as these
algorithms may no longer provide the level of protection they once did. The
situation is further complicated due to the reliance on open-source libraries used
by many applications to implement critical cybersecurity functionality. When
called at the API level, it may not be obvious that an underlying vulnerable
cryptographic algorithm is used.

Recognizing the urgency of the situation, the industry has made consider-
able progress in implementing advanced Post-Quantum Cryptography (PQC)
techniques [11]. At this point of writing, the NIST post-quantum cryptography
standardization process has already identified three digital signing algorithms
and one key exchange algorithm to replace the classical algorithms of RSA,
ECC, and DH [1]. Despite these developments, the industry still faces challenges
with legacy systems and scalability. When implementing PQC, the lack of com-
patibility between existing system architecture and new technologies, alongside
insufficient documentation and code readability, presents challenges for updates
and improvements. Moreover, given that these systems typically support critical
business functions, replacing or upgrading them can entail risks and costs, imped-
ing timely updates within the industry. Additionally, scalability issues, including
hardware limitations, software design constraints, and financial considerations,
restrict the comprehensive replacement of originally classical algorithms within
the industry.

Therefore, open-source cryptographic libraries containing classical crypto-
graphic algorithms that are vulnerable to quantum attacks will continue to be
utilized in the meantime. For users, it may not be apparent whether their appli-
cations, which utilize open-source libraries, are exposed to quantum threats. As a
consequence, it is vital to initiate the discovery process as early as possible. There
is an urgent need to identify these vulnerabilities and conduct a comprehensive
analysis of commonly used open-source cryptographic libraries to evaluate their
resilience against quantum attacks. This issue falls within the purview of the
Common Weakness Enumeration (CWE) framework, specifically under the clas-
sifications of CWE-327 (Use of a Broken or Risky Cryptographic Algorithm)
and CWE-1395 (Dependency on Vulnerable Third-Party Component).

This paper primarily focuses on Python programming language, due to its
widespread usage. According to the PYPL (PopularitY of Programming Lan-
guage) index as of July 2023, Python holds the top rank with a share of 27.43%,
while Java ranks second with a share of 16.19%. Furthermore, we find that apply-
ing keyword-based static analysis is an effective way to detect whether there are
risky or vulnerable algorithms in the application. The keyword-based method
streamlines the detection process by swiftly pinpointing instances where sus-
ceptible cryptographic functions are invoked, allowing for timely intervention
and mitigation strategies. Also, it offers a cost-effective solution, minimizing the
need for extensive code reviews or exhaustive system overhauls. Organizations
can effectively bolster their defenses against potential quantum-based intrusions
by proactively integrating this approach into the development cycle, preserving

Discovering Quantum-Threats for Applications 285

security. Early detection of potential vulnerabilities is crucial in implementing
preemptive measures to safeguard existing systems against quantum attacks that
may be launched by malicious individuals or organizations.

Contributions

In this paper, we conducted a comprehensive analysis of the popularity of open-
source asymmetric encryption libraries and identified 14 prominent libraries. The
results of the analysis indicate that the “cryptography,” “paramiko,” and “rsa”
libraries emerge as the three most widely used libraries, collectively representing
over 80% of the total usage among the top 14 ranked libraries.

We next propose an efficient keyword-based static analysis method for detect-
ing vulnerabilities in applications that utilize potentially risky cryptographic
algorithms. By analyzing the invocation methods and key functions within the
code and conducting many experiments, we arrive at a carefully selected set
of 11 keywords. They are: “65537”, “ec”, “rsa”, “ecc”, “ecdsa”, “dh”, “p256”,
“p384”, “p521”, “KexGex” and “KexGroup”. This set achieves an accuracy rate
of 91.57% and a precision rate of 92.79% in detecting the usage of RSA, ECC,
and DH algorithms.

Organization

The structure of the remaining paper is outlined as follows. Section 2 provides
background information on the threat posed by quantum algorithms to classical
encryption and related work on the detection of API misuses. Section 3 details
the methodology, which includes analyzing the popularity of Python libraries
and conducting a keyword analysis. Section 4 presents the detection of poten-
tial vulnerabilities to quantum attacks, along with experimental results and key
findings. Section 5 proposes potential future research directions, while Sect. 6
provides a summary of the study.

2 Background

2.1 Quantum Threat

Beginning with classical algorithms, public key cryptography operates using a
pair of keys: the public key, which can be shared with others, and the private
key, which must be kept confidential. These keys are generated in a manner that
ensures messages encrypted with the public key can only be decrypted using
the corresponding private key. The security of these algorithms is grounded in
the computational complexity of solving mathematical problems. Take RSA [18],
ECC [16] and DH [3,15] algorithms for examples, RSA utilizes the integer fac-
torization problem (IFP), ECC is based on the elliptic curve discrete logarithm
problem (ECDLP), and DH relies on the discrete logarithm problem (DLP).

However, with the invention of Shor’s algorithm in 1994 [21], a quantum
algorithm now exists that can factorize large numbers into their prime factors

286 X. Ye et al.

in polynomial time. Subsequently, Shor’s publication in 1999 delves deeper into
the quantum algorithms for prime factorization and discrete logarithms [22].

In 2001, a team successfully demonstrated Shor’s algorithm [24]. Their paper
documented the experimental implementation of Shor’s algorithm using seven
qubits, resulting in the successful factorization of the number 15.

In a paper by Elie and Nicolas (2021), an advancement in factoring integers
is presented, indicating the possibility of factoring a 2048-bit RSA integer in
177 days [8]. This accomplishment was achieved using 3D gauge color codes with
a threshold of 0.75% and a processor comprising 13436 physical qubits. This
work underscores the ongoing strides in quantum computing, demonstrating
the potential of specialized error-correcting techniques and hardware scaling in
addressing complex cryptographic challenges.

Additionally, Craig and Martin (2021) conducted research suggesting the
potential factorization of 2048-bit RSA integers within 8 h, using 20 million noisy
qubits [7]. This research highlights the rapid advancement of quantum hardware
and the ongoing development of strategies to mitigate the challenges posed by
inherent quantum system noise. Despite the challenges associated with noisy
qubits, the promising timeline for factoring 2048-bit RSA integers underscores
the potential of quantum computers to revolutionize the fields of encryption and
security.

Recently, IBM’s “Osprey” has emerged as one of the most advanced quan-
tum computers available, having 433 qubits [2]. This milestone marks a notable
technological leap, indicating quantum computers hold the potential to tackle
problems previously considered infeasible or computationally intensive.

Not only classical asymmetric encryption algorithms but also symmetric
encryption algorithms can be vulnerable to quantum attacks. There are two
quantum algorithms used to attack symmetric encryption algorithms. The first
is Simon’s algorithm [23], which can be used to target the discrete logarithm
problem in symmetric cryptographic systems, including block ciphers. In 2017,
Thomas Santoli demonstrated two applications of Simon’s algorithm for breaking
classical symmetric cryptosystems [19]. Another notable algorithm is Grover’s
algorithm, also known as the quantum search algorithm, which provides a
quadratic speedup in breaking symmetric encryption keys [10]. In 2016, Markus
Grassl estimated the quantum resources required to carry out an attack on AES
using Grover’s algorithm [9].

It is also important to note that the successful implementation of quantum
algorithms depends on the availability of large-scale, error-corrected quantum
computers. Notably, challenges persist due to the limitations and disruptions
caused by quantum computing application noise.

2.2 Related Work

A keyword-based detection method to determine the exposure of applications to
quantum attacks has not yet been implemented, despite its simplicity and direct
approach, which holds the potential for effectiveness in vulnerability detection.

Discovering Quantum-Threats for Applications 287

This approach is valuable in component analysis for identifying vulnerabilities
in third-party and open-source components.

In 2017, a group of researchers detected the vulnerabilities in IoT firmware
by searching keywords in the CVE list [26]. Web applications, such as WordPress
and phpMyAdmin, along with web servers like Apache, are primarily susceptible
to logical vulnerabilities, including XSS (cross-site scripting), injection attacks,
and authentication bypass issues. Clement Elbaz introduced a technique for the
automatic extraction of keywords from 0-day vulnerabilities, using updated data
from the CVE vulnerability database [4]. The method only relies on the free-
form description of vulnerabilities, without using their metadata. As reliable
and practical low-noise quantum computers have not yet been developed, the
existing dependable encryption algorithms have not been classified as risky in the
CVE vulnerability database. This implies that without relevant descriptions of
vulnerabilities, analysis becomes unfeasible. Widely used methods for detecting
significant keywords from extensive textual data or documents are discussed
by Zaffar Ahmed Shaikh [20]. He also analyzed techniques for topic detection
and tracking, with a specific emphasis on the automated identification of pivotal
terms. These techniques also hold applicability in detecting vulnerabilities in the
field of cybersecurity. A review of quantum cybersecurity, published by Faruk MJ
in 2022, utilized a keyword-based method to explore the potential intersection
between Quantum Computing and Cybersecurity [5]. Researchers conducted the
study using specific keywords and provided guidelines for future research.

Apart from keyword detection, current mainstream detection techniques such
as taint analysis have been extensively studied. These methods conduct in-depth
analysis based on specific rules or protocols. Compared to keyword detection,
they are more specific.

To achieve high-precision detection of cryptographic vulnerabilities in Java
programs, Sazzadur Rahaman (2019) developed a static analysis tool called
“CRYPTOGUARD” [17]. They manually analyzed around one thousand Apache
alerts and created 112 test cases based on the results, and the precision reached
98.61%. Another tool developed by Stefan Kruger (2019), “CrySL”, allows cryp-
tography experts to specify the secure usage of the cryptographic libraries they
provide [13]. It can detect cryptographic misuse in Java and Android applica-
tions based on predefined rules with a precision of 92.6%. A paper published by
Wenqing Li (2022) also introduced a static analysis detector “CryptoGo” that
uses static taint analysis techniques for automated, large-scale analysis of cryp-
tographic API misuses in Go [14]. It has an accuracy of 95.5%. It uniquely inte-
grates cryptographic algorithm classification into cryptographic misuse detection
for the first time. The underlying rules of this tool are derived from 12 crypto-
graphic rules, based on an in-depth analysis of API arguments in the latest
official Go cryptographic library. Another tool, introduced by Anna Katharina
Wickert (2021), known as “LICMA”, represents the first multi-language analysis
tool designed to detect cryptographic misuses [25]. It includes rules specifically
crafted to identify common cryptographic misuses across five different Python
libraries as well as the standard Java library. Miles Frantz (2022) also intro-
duced “Cryptolation”, a static analysis tool designed to scan Python code [6].

288 X. Ye et al.

This tool operates in a depth-insensitive and path-insensitive manner, achieving
a 98% precision rate. It employs 19 rules to identify several popular attack vec-
tors found within the OWASP top 10. They used Abstract Syntax Trees (ASTs)
to check if the imports in the code match the specified rules.

Nevertheless, existing static analysis tools use the rules, to be specific, these
tools depend on understanding whether they incorporate vulnerable algorithms
or misuses. This verification involves either static or dynamic analysis of partic-
ular code repositories or libraries. In the context of quantum threats, algorithms
previously deemed safe are now considered vulnerable. Consequently, a targeted
reanalysis using these tools is essential. In our approach, we adopted a similar
idea for extracting keywords to formulate rules. We derived these rules from
the top three most popular libraries and verified them across applications using
the top 14 popular libraries. Similar to “Cryptolation”, our approach also uses
ASTs, but with a different focus. We employed ASTs primarily to create key-
word databases and extract sets of keywords. These extracted keywords are then
established as rules for detection purposes.

3 Methodology

3.1 Problem Farming

Our objective is to derive an acceptable set of keywords from these libraries to
accurately detect the usage of quantum-vulnerable cryptographic algorithms in
real-world applications. Considering the diversity in different programming lan-
guages, this study concentrates on analyzing applications coded in the widely
adopted Python language. Because of the variety and quantity of open-source
libraries, we selected the library with high usage for analysis. Specifically, the
popularity and community adoption can be determined by analyzing the inter-
esting characteristics of the library. Then, the keywords for detecting the usage
of specific algorithms across different applications can be extracted from the
source code of libraries.

Our methodology to extract keywords from the source code of cryptographic
libraries is rooted in practicality and the understanding of how programmers
interact with these resources. Typically, developers engage with open-source
cryptographic libraries through their interfaces, which are marked by specific
function names, method calls, and other elements. These elements naturally
form the “keywords” in our source code analysis. Focusing on these interfaces
allows us to target the most probable points of interaction between the applica-
tion code and the cryptographic algorithms, creating a keyword set that’s not
only broadly applicable-given the shared interfaces across many libraries for sim-
ilar functions-but also far more efficient than conducting a line-by-line analysis
of entire libraries.

Eventually, the results can be evaluated to demonstrate the performance of
the selected keywords. Our methodology for detecting vulnerabilities is shown
in Fig. 1.

Discovering Quantum-Threats for Applications 289

Fig. 1. Methodology for Keywords-based Detection.

3.2 Data Preparation

We first investigated the usage of Python’s public key cryptography libraries.
However, the retrieved information from Google was limited, lacking specific
rankings and reports. To gather more data, we used the Python Package Index
(PyPI) to search specifically within the “cryptography” directory under the
“security” category. But the data is still unsatisfying. The query returned 1170
projects, with sorting options limited to relevance and date last updated.

Further investigation reveals two useful data sources, Libraries.io and the
official Python guides, both of which provide public datasets.

Libraries.io. Libraries.io is a comprehensive platform that facilitates open-
source software discovery and dependency management. It acts as a central-
ized catalog, indexing data from 7,393,803 packages from 32 package managers.
Among the statistics it provides, data on stars and forks are particularly inter-
esting, as they contribute to the analysis of a library’s popularity.

Python Guides. The Analyzing PyPI package download section provides
download statistics of packages. The dataset can be found in Google BigQuery
which is a serverless and cost-effective enterprise data warehouse that works
across clouds and scales. And it can also be found on “pepy.tech”, a website
that offers a user-friendly interface. We queried the last 36 months of history for
the specific library.

The “Stars” represents the number of times a repository has been liked,
indicating the level of recognition and attention it receives from users. A higher
number of stars implies a greater degree of endorsement and popularity for the
library. On the other hand, “Forks” represents the number of branches created
by other users based on the original repository. This quantity also serves as an
indicator of the library’s popularity and the number of derivative projects built
upon it.

290 X. Ye et al.

In this paper, we chose libraries with asymmetric encryption algorithms that
have a star count of more than 100. Table 1 illustrates the collected data. 14
commonly used libraries have been found.

Table 1. Characteristics of Popular Libraries

Library Name Stars Forks Total downloads

paramiko 8404 1934 990944012

cryptography 5668 1577 3823186597

pycrypto 2419 656 272147389

pycryptodome 2417 447 464220244

pycryptodomex 2417 447 690692866

pynacl 949 220 1075460496

ecdsa 831 300 238789509

pyopenssl 808 414 1459994214

rsa 423 100 4378036628

oscrypto 288 46 511899475

asn1crypto 287 128 1212988117

py-ecc 152 81 2372602

python-pkcs11 120 54 301018

pyelliptic 117 59 320220

We utilized a powerful static analysis tool called CodeQL to process the
data we obtained and create several databases. The tool is capable of converting
code into a database in the form of an Abstract Syntax Tree (AST), which is the
foundation for CodeQL’s functionality. The created databases, containing all the
relevant keywords, are generated from the AST databases. The AST structure
provides useful terms like “ImportMember”, “Attribute”, “Call”, “IntegerLit-
eral”, “ClassDef”, and “FunctionDef” to build the keyword database. We can
extract the relevant keywords by querying each term. It is necessary to extract all
keywords according to AST and then remove duplicates to obtain the complete
keywords database, as there may be slight variations in the extracted keywords
for each item. During the testing phase, a major problem may arise where the
extraction of keywords may unintentionally display all files that are dependent
on Python. To resolve this issue, a possible solution is to hardcode the file path
into the query. By implementing this, only the keywords from the specific project
will be displayed during the query, which will effectively filter out any irrelevant
results. For example, the query code below shows that “Attribute” can be used
to retrieve the attribute name.

Discovering Quantum-Threats for Applications 291

// CodeQL Query Sample

import python

from Attribute attribute

where

attribute.getLocation().getFile().toString().matches("D:/testcode/%")

select

attribute.getParentNode().getParentNode().getAChildNode(),

attribute.getAChildNode() as attributeChildNode,

attribute.getName() as attributeName,

attribute.getLocation().getFile().toString() as fileLocation

In our research, we extracted keywords by first placing the target files for
keyword extraction into a specific folder. We then used the CodeQL command
to generate a database file. Next, in the QL plugin of VS Code, we added the
generated database and added the source to the workspace. Taking “test.py” as
an example, we could access the full code with a simple left-click. To understand
the structure and components of the code more deeply, we utilized the “view
AST” feature in the sidebar of QL, which displayed the complete Abstract Syn-
tax Tree (AST) of the code file. The extraction of keywords was then carried out
by examining the symbols enclosed in brackets within the AST, in conjunction
with the use of specific query statements.

Moving from extracting keywords to creating a complete keywords database,
the complete keywords database can be derived in CSV file by executing the Cod-
eQL queries. We used built-in features like “Remove Duplicates” (found under the
“Data” tab in Excel) to directly remove duplicates from the selected column.

3.3 Data Analysis

Fig. 2. Trends in Download Statistics Across Different Libraries

292 X. Ye et al.

Popularity Analysis. Based on the analysis of download counts over the past
three years, as depicted in Fig. 2, the “cryptography” library and the “rsa”
library have higher download volumes compared to the other libraries. It is worth
noting that the remaining libraries consistently maintain download volumes of
around 50 million or below per month. Notably, libraries such as “py-ecc”,
“python-pkcs11”, and “pyelliptic” exhibit lower download counts, as depicted
by the bottom line in the graph.

However, due to the inconsistent scales of the three dimensions, namely stars,
forks, and total downloads, the rankings differ across each dimension. To address
this, the TOPSIS (Technique for Order Preference by Similarity to Ideal Solu-
tion) method can be applied [12]. It is a multi-criteria decision analysis technique
that enables comprehensive evaluation of alternative solutions by simultaneously
considering multiple evaluation criteria. Through data standardization, original
data is rescaled, and the best and worst indicators for each criterion are iden-
tified. Using these as reference points, the method computes the Euclidean dis-
tance for each alternative solution, producing a score. Higher scores indicate
greater proximity to the ideal solution.

The TOPSIS process involves the following steps. First, we construct a deci-
sion matrix A, where each row represents an indicator and each column repre-
sents a library.

A = (xij)m∗n,m = 14, n = 3, i = 1, 2, ...,m, j = 1, 2, ..., n (1)

Then, we normalize it to obtain a normalized decision matrix B.

B = rij =
xij√∑m
k=1 x

2
kj

(2)

Next, we create a weighted normalized decision matrix C by assigning weights
to each indicator based on their relative importance. The sum of the weights
assigned to each indicator equals 1.

C = (tij)m∗n = (rij)m∗n ∗ wj , wj =
Wj∑n
k=1 Wk

,
∑n

i=1 wi = 1 (3)

After that, we determine the best solution Sb, which is the maximum value
of each indicator across all libraries, and the worst solution Sw, which is the
minimum value of each indicator.

Sb = {max(tij | i = 1, 2, ...,m. j = 1, 2, ..., n)} ≡ {tbj | j = 1, 2, ..., n} (4)

Sw = {min(tij | i = 1, 2, ...,m. j = 1, 2, ..., n)} ≡ {twj | j = 1, 2, ..., n} (5)

We then calculate the Euclidean distances of each library in the three-
dimensional space to the best solution dib and the worst solution diw.

dib =
√∑n

j=1(tij − tbj)2 (6)

Discovering Quantum-Threats for Applications 293

diw =
√∑n

j=1(tij − twj)2 (7)

Using the distances to the best and worst solutions, we compute the score sib
for each library. This score is obtained by dividing the distance of each library’s
point in three-dimensional space to the positive ideal solution by the sum of
the distances to the positive ideal solution and the negative ideal solution. This
step transforms the high-dimensional distance into a two-dimensional score, with
higher scores indicating libraries that are closer to the optimal solution and,
therefore, indicating higher popularity.

sib =
diw

diw + dib
(8)

Fig. 3. Library Popularity with Various Weight Assignments

Ranking the scores can determine the popularity of each library. It is impor-
tant to note that each score represents distances in different two-dimensional
spaces, not within the same reference frame. Therefore, the summation of each
column does not necessarily equal 1.

Total downloads represent usage more relevantly, followed by the number of
forks which also indicates usage, while the quantity of stars primarily reflects
popularity but may not directly correspond to actual usage. We first assigned
equal weights to the three dimensions for comparative observation. Then, we

294 X. Ye et al.

reassigned weights wj based on the importance of usage: 0.5 to total downloads,
0.3 to forks, and 0.2 to stars. The results can be presented in Fig. 3. Under both
weight configurations, the libraries “cryptography”, “paramiko”, and “rsa” con-
sistently maintain their positions in the top 3. These three libraries collectively
account for over 80% of the total usage among the top 14 ranked libraries.

Keywords Analysis. In open-source cryptography libraries, code related to
specific algorithms is often associated with particular keywords. It is because
programming practices and standards ensure code readability and maintainabil-
ity, making it easy to use for developers. Following this, keywords relevant to
specific functionalities can be categorized by analyzing the source code.

We analyzed the keywords related to the RSA algorithm in the “cryp-
tography” library as an example. Initially, we identified the file of the RSA
algorithm. Two files in different directories utilize the functionality of RSA,
specifically “cryptography/hazmat/primitives/asymmetric/rsa.py” and “cryp-
tography/hazmat/backends/openssl/rsa.py”. Collectively, they form the com-
plete implementation of the RSA algorithm in the “cryptography” library, the
first one providing a high-level abstraction interface and the other offering the
low-level actual implementation.

To extract the relevant keywords, we employed CodeQL query keywords in
these two files. However, we encountered an issue with broadness, as certain
keywords like “decrypt” and “encrypt” are utilized by other cryptography algo-
rithms, leading to a high false positive rate. Relying on these keywords for detec-
tion may not be effective. Employing this method across different algorithms and
libraries could get a redundant keyword set. The primary objective is to estab-
lish an acceptable keyword set from the redundant keyword set. Given that we
have Python applications prepared, and labeled for the usage of specific algo-
rithms, determining an acceptable keyword set can be accomplished via multiple
experimental iterations.

By manually analyzing the code of open-source libraries, we selected key-
words for detection. In practice, we examined the source code and chose class
names, function names, and module names as keywords for testing. Then, we
searched for these keywords in multiple prepared Python applications, check-
ing each one for matches. After a group of keywords was tested, we compared
the original labels of the applications with the labels obtained after detection.
This allowed us to calculate precision and accuracy. After each experiment, we
reassessed the false positives and false negatives to identify new keywords that
might prove useful. Additionally, we conducted experiments to eliminate redun-
dant keywords, thereby streamlining our keyword set for effectiveness.

4 Experiment

In this paper, we used the source code of the top 3 popular libraries as the train-
ing set to derive an acceptable keywords set for detection. We next collected over
200 Python applications for testing purposes. The complete testing set consists

Discovering Quantum-Threats for Applications 295

of three main parts: test cases derived from the library, functionality models
for each algorithm, and special cases. The experiments involved the detection
of the usage of RSA, ECC, and DH within the top 3 libraries, along with the
validation of the selected keywords set. Note the detection method disregards
case sensitivity.

4.1 Detecting the Usage of RSA, ECC, DH in Top 1 Library

Taking the “cryptography” library as an initial example, we used 88 keywords
extracted from this library, which are relevant to the algorithms, as identifiers.
Additionally, we assumed that the three simplest keywords, “rsa”, “dh” and “ec”
were sufficiently effective.

The results in Table 2 demonstrate the performance of the keyword-based
method in detecting the usage of RSA, DH, and ECC algorithms in applica-
tions. However, relying on all relevant keywords cannot achieve the goal, solely
relying on a single keyword, while more efficient, still appears to be inadequate
for detecting the implementation of public key-based algorithms within Python
applications. We focused on analyzing the satisfactory keywords set for detecting
each algorithm in the following experiments.

Table 2. Performance of Keyword-Based Detection in Top 1 Library

Evaluation Metrics Identifier: 88 keywords Identifier: 3 keywords

Accuracy 46.67% 89.77%

Precision 42.86% 90.91%

Recall 100.00% 83.33%

F1 Score 60.00% 86.96%

Specificity 11.11% 94.23%

4.2 Detecting the Usage of RSA in Top 3 Libraries

The results in Table 3 indicate that using a single keyword “rsa” is insufficient. It
has been concluded that the keywords “RSAKey” and “65537” are also necessary
through analyzing the source code and conducting experiments. The number
65537 is commonly used as the public exponent in RSA encryption due to its
efficiency in modular exponentiation and its strong security properties as a prime
number. The accuracy has increased from 88.46% to 95.63%, while precision has
improved from 88.46% to 90.70%, and recall has risen from 60.53% to 92.86%,
and F1 score has increased from 71.88% to 91.76%.

296 X. Ye et al.

Table 3. RSA Detection in Top 3 Libraries

Evaluation Metrics Identifier: 1 keyword Identifier: 3 keywords

Accuracy 88.46% 95.63%

Precision 88.46% 90.70%

Recall 60.53% 92.86%

F1 Score 71.88% 91.76%

Specificity 97.46% 96.61%

4.3 Detecting the Usage of ECC in Top 3 Libraries

The findings indicate that the use of a single keyword “ec” results in an accuracy
rate of 92.95%, but the recall rate is only 59.09%. Therefore, we identified five
keywords for detection: “ec”, “ECDSAKey”, “KexNistp256”, “KexNistp384”,
and “KexNistp521”. In cryptographic terms, “ec” stands for import modular,
whereas “ECDSAKey” refers to the Digital Signature Algorithm that employs
elliptic curve cryptography. The keywords beginning with “KexNist” denote key
exchange algorithms that utilize the NIST standardized elliptic curves. These
curves are particularly designed to ensure secure cryptographic key exchange.
With this set of keywords, the accuracy rate improved from 92.95% to 97.44%.,
precision increased from 86.67% to 90.91%, and recall improved from 59.09% to
90.91%. Moreover, the F1 score increased from 70.27% to 90.91%. See Table 4.

Table 4. ECC Detection in Top 3 Libraries

Evaluation Metrics Identifier: 1 keyword Identifier: 5 keywords

Accuracy 92.95% 97.44%

Precision 86.67% 90.91%

Recall 59.09% 90.91%

F1 Score 70.27% 90.91%

Specificity 98.51% 98.51%

4.4 Detecting the Usage of DH in Top 3 Libraries

The results show consistent findings. See Table 5. Using a single keyword “dh” for
detection achieves an accuracy of 91.72%. However, the recall is only 47.62%. We
next obtained a set of 7 keywords, which improved the accuracy from 91.72%
to 96.79%, precision from 83.33% to 89.47%, recall from 47.62% to 85%, and
the F1 score from 60.61% to 87.18%. The other 6 keywords are “KexGex”,
“KexGexSHA256”, “KexGroup1”, “KexGroup14”, “KexGroup14SHA256”, and
“KexGroup16SHA512”. Keywords starting with “KexGex” refer to key exchange
algorithms that use the Diffie-Hellman group exchange mechanism. On the other
hand, “KexGroup” designates specific Diffie-Hellman algorithms that use prede-
fined prime moduli for secure key exchange between clients and servers.

Discovering Quantum-Threats for Applications 297

Table 5. DH Detection in Top 3 Libraries

Evaluation Metrics Identifier: 1 keyword Identifier: 7 keywords

Accuracy 91.72% 96.79%

Precision 83.33% 89.47%

Recall 47.62% 85.00%

F1 Score 60.61% 87.18%

Specificity 98.53% 98.53%

4.5 Validation on Selected Keywords Set

By analyzing the algorithms used in each library and summarizing the experi-
mental results, Table 6 is generated with detection metrics. The set of 15 key-
words can be used to detect the usage of RSA, ECC, and DH algorithms in
the top 3 libraries. Moreover, by optimizing the extraction process for the 15
precise-matched keywords, an extraction of 11 keywords was achieved, refer to
Table 7. A combination of exact matching and containment matching techniques
was employed for detection.

Table 6. Detection Keywords Set for Top 3 Libraries

Algorithms Cryptography Paramiko RSA

RSA rsa RSAKey 65537
rsa

ECC ec ECDSAKey
KexNistp256
KexNistp384
KexNistp521

DH dh KexGex
KexGexSHA256
KexGroup1
KexGroup14
KexGroup14SHA256
KexGroup16SHA512

Our analysis of the matching rules is as follows. To minimize the occurrence
of false positives from the keywords “ec” and “65537” using containment match-
ing, we subjected them to exact matching. We also included the keyword “ecc” to
enhance accuracy since it implies “ec”. Since both “rsa” and “RSAKey” contain
the keyword “rsa”, we used a containment relationship for “rsa”. For “ECD-
SAKey” and “RSAKey”, we utilized the extracted features “ecdsa” and “rsa”
respectively as keywords. To increase the probability of detection, we trans-
formed the keywords “KexNistp256”, “KexNistp384” and “KexNistp521” into

298 X. Ye et al.

the features “p256”, “p384” and “p521” respectively. These feature parts are
more commonly used, thus increasing the likelihood of detection. We utilized
a containment relationship for “KexGex” by extracting the common part from
“KexGex” and “KexGexSHA256”. Similarly, we condensed “KexGroup1”, “Kex-
Group14”, “KexGroup14SHA256,” and “KexGroup16SHA512” into the com-
mon feature “KexGroup” for containment matching.

Among these keywords, aside from the easily understood simple keywords,
there are also “p256”, “p384”, and “p512”. These three keywords refer to the
bit lengths of elliptical curves in the NIST’s Key Exchange. “KexGex” is a class
name found in the code for the DH key exchange algorithm. Similarly, “Kex-
Group” is also part of a class name within the DH algorithm. These parameters
determine the strength and method of the key exchange process.

Table 7. Optimized Keywords Set with 11 keywords

Exact match 65537 ec

Contain match rsa ecc ecdsa dh p256 p384 p521 KexGex KexGroup

To validate the effectiveness of the 11 optimized keywords extracted from
the top 3 public key cryptography libraries, we used 2 sets of keywords to detect
applications utilizing algorithms from the top 3 libraries. We first applied exact
match using a set of 15 keywords and then applied matching rules using an
optimized set of 11 keywords. We manually constructed a new testing set, which
includes test files from open-source libraries and some code examples. This set
comprised 156 applications, corresponding to 156 Python files, with 70 positive
samples and 86 negative samples. The results revealed a total of 69 positive
samples, comprising 64 true positive samples and 5 false positive samples. Addi-
tionally, there were 87 negative samples, consisting of 81 true negative and 6 false
negative samples. The results in Table 8 indicate that the optimized keyword set
has a similar performance.

Table 8. Detection on Specific Algorithms in Top 3 Libraries

Evaluation Metrics Identifier: 15 keywords Identifier: 11 keywords

Accuracy 92.95% 92.95%

Precision 92.75% 92.75%

Recall 91.43% 91.43%

F1 Score 92.09% 92.09%

Specificity 94.19% 94.19%

We proceeded to test applications that used the 4th to the 14th most popular
libraries. Our new testing set comprised 166 applications, out of which 108 used

Discovering Quantum-Threats for Applications 299

RSA, ECC, or DH algorithms, while 58 applications used these libraries without
utilizing these three algorithms. The experimental results revealed a total of 111
positive cases, including 103 true positives and 8 false positives. Additionally,
there were 55 negative cases, consisting of 49 true negatives and 6 false negatives.
The results in Table 9 demonstrate the efficacy of the keyword-based detection
method.

Table 9. Detection on Specific Algorithms in Top 4 to 14 Libraries

Evaluation Metrics Identifier: 11 keywords

Accuracy 91.57%

Precision 92.79%

Recall 94.50%

F1 Score 93.64%

Specificity 85.96%

The accuracy of 91.57% indicates that the model can correctly classify the
majority of samples overall. With a precision of 92.79%, the model has a high
likelihood of being correct when predicting an application involving certain algo-
rithms. A recall of 94.50% signifies that the model can identify most applications
containing specific encryption algorithms. An F1 score of 93.64% indicates a bal-
ance between precision and recall for the model. A specificity of 85.96% implies
that the model also performs relatively well on negative class samples.

The experimental results indicate that the set of keywords extracted from the
top 3 popular open-source libraries, when used to detect if applications contain
quantum-vulnerable algorithms utilizing the top 14 popular libraries, achieved
accuracy and precision of over 90%.

However, Keyword-based detection methods cannot achieve 100% accuracy
and precision. In some cases, dynamic code analysis techniques are necessary
to make determinations. For example, in cases where a vulnerable algorithm is
imported but not used or with self-designed algorithms, keyword-based detection
alone is insufficient. Additionally, in some scenarios, when an open-source code
repository is forked and substantial modifications are made to function names,
it can potentially evade keyword-based detection methods.

5 Future Work

While the current demonstration showcases promising results in identifying cryp-
tography algorithms susceptible to quantum attack, there are several avenues for
future research and improvement.

Further investigation into advanced techniques for keyword extraction could
yield more comprehensive and accurate sets of keywords. This may involve

300 X. Ye et al.

exploring Natural Language Processing (NLP) methods and Machine Learning
(ML) methods to select the optimal set of keywords.

The focus of this paper is on specific algorithms and libraries, but a more com-
prehensive understanding could be achieved by expanding the scope to include
a wider range of cryptography algorithms and programming languages. This
would involve analyzing all cryptography algorithms that could potentially be
vulnerable to quantum attacks, as well as evaluating commonly used program-
ming languages to create a comprehensive keyword database for detection. This
method can be used not only for asymmetric algorithms but also to include
specific keywords related to the implementation of symmetric algorithms, with a
particular focus on the configuration parameters that define key sizes. By identi-
fying these parameters in the code, we can assess not only the usage of symmetric
algorithms but also determine the integer values of the key sizes being used. In
addition, the CVE framework could be updated to keep track of and document
security vulnerabilities and attacks related to quantum computing.

Ensuring the safety of our systems not only involves detecting potential
threats but also implementing effective defense mechanisms. However, there are
challenges to this, such as the limitations of legacy applications and situations
where using NIST-compliant post-quantum cryptography algorithms may not
be practical or efficient. It is crucial to propose workable solutions that strike
a balance between security, practicality, and economic considerations. Further
research can explore ways to achieve this balance.

6 Conclusion

The paper begins by exploring potential vulnerabilities under quantum attack
and the current state of quantum technology from the perspective of quantum
cryptography. We discussed potential security vulnerabilities combining CWE-
327 and CWE-1395. The usage of classical cryptography algorithms might be
vulnerable. We then compared several tools in vulnerability detection, they pri-
marily employ rules for detection purposes. Considering the nature of quantum
risks, the prompt and ongoing refinement of detection techniques is essential to
effectively address and mitigate potential quantum threats.

Subsequently, we proposed an efficient keyword-based detection scheme for
identifying such potential vulnerabilities. We investigated 14 open-source encryp-
tion libraries and their popularity by using the TOPSIS method. This investi-
gation identified applications that utilize the “cryptography,” “paramiko,” and
“rsa” libraries as the most widespread. Collectively, they represent 80% of the
applications that use the popular cryptography library. These applications are
potentially prime targets susceptible to quantum attacks.

Using the classical public key cryptography algorithms RSA, ECC, and DH
as examples, the security of these algorithms is based on the complexity of com-
puting the mathematical problems. However, quantum algorithms can accelerate
computations, potentially compromising their security. We conducted the static
analysis with the CodeQL tool on the top 3 popular libraries to extract keywords

Discovering Quantum-Threats for Applications 301

for detecting the usage of these three algorithms. This process ultimately yielded
a set of 11 keywords. By applying precise and inclusive matching rules, the
proposed method efficiently determines the exposure of Python applications to
quantum attacks. We tested 166 Python applications, the accuracy rate reached
91.57%, the precision rate achieved 92.79%, and the recall rate reached 94.50%.

The paper presents a practical approach for detecting potential vulnerabil-
ities under quantum attacks in applications that use other programming lan-
guages. The comprehensive analysis and data processing workflow highlight the
effectiveness of the keyword-based detection method.

References

1. Alagic, G., et al.: Status report on the third round of the nist post-quantum cryp-
tography standardization process. US Department of Commerce, NIST (2022)

2. Choi, C.Q.: Ibm’s quantum leap: the company will take quantum tech past the
1,000-qubit mark in 2023. IEEE Spectr. 60(1), 46–47 (2023)

3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6) (1976)

4. Elbaz, C., Rilling, L., Morin, C.: Automated keyword extraction from one-day
vulnerabilities at disclosure. In: NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium, pp. 1–9. IEEE (2020)

5. Faruk, M.J.H., Tahora, S., Tasnim, M., Shahriar, H., Sakib, N.: A review of quan-
tum cybersecurity: threats, risks and opportunities. In: 2022 1st International Con-
ference on AI in Cybersecurity (ICAIC), pp. 1–8. IEEE (2022)

6. Frantz, M., Xiao, Y., Pias, T.S., Yao, D.D.: Poster: precise detection of unprece-
dented python cryptographic misuses using on-demand analysis. In: The Network
and Distributed System Security (NDSS) Symposium (2022)

7. Gidney, C., Eker̊a, M.: How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits. Quantum 5, 433 (2021)

8. Gouzien, É., Sangouard, N.: Factoring 2048-bit RSA integers in 177 days with 13
436 qubits and a multimode memory. Phys. Rev. Lett. 127(14), 140503 (2021)

9. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

11. Hekkala, J., Muurman, M., Halunen, K., Vallivaara, V.: Implementing post-
quantum cryptography for developers. SN Comput. Sci. 4(4), 365 (2023)

12. Hwang, C.L., Lai, Y.J., Liu, T.Y.: A new approach for multiple objective decision
making. Comput. Oper. Res. 20(8), 889–899 (1993)

13. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: Crysl: an extensible approach
to validating the correct usage of cryptographic apis. IEEE Trans. Software Eng.
47(11), 2382–2400 (2019)

14. Li, W., Jia, S., Liu, L., Zheng, F., Ma, Y., Lin, J.: Cryptogo: automatic detection
of go cryptographic API misuses. In: Proceedings of the 38th Annual Computer
Security Applications Conference, pp. 318–331 (2022)

https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3

302 X. Ye et al.

15. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
21(4), 294–299 (1978)

16. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

17. Rahaman, S., et al.: Cryptoguard: high precision detection of cryptographic vulner-
abilities in massive-sized java projects. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2455–2472 (2019)

18. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

19. Santoli, T., Schaffner, C.: Using simon’s algorithm to attack symmetric-key cryp-
tographic primitives. arXiv preprint arXiv:1603.07856 (2016)

20. Shaikh, Z.A.: Keyword detection techniques: a comprehensive study. Eng. Technol.
Appl. Sci. Res. 8(1), 2590–2594 (2018)

21. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

23. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

24. Vandersypen, L.M., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H.,
Chuang, I.L.: Experimental realization of shor’s quantum factoring algorithm using
nuclear magnetic resonance. Nature 414(6866), 883–887 (2001)

25. Wickert, A.K., Baumgärtner, L., Breitfelder, F., Mezini, M.: Python crypto misuses
in the wild. In: Proceedings of the 15th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 1–6 (2021)

26. Xie, W., Jiang, Y., Tang, Y., Ding, N., Gao, Y.: Vulnerability detection in IoT
firmware: a survey. In: 2017 IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS), pp. 769–772. IEEE (2017)

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
http://arxiv.org/abs/1603.07856

Pushing AES-256-GCM to Limits:
Design, Implementation and Real FPGA

Tests

Peter Cibik , Patrik Dobias , Sara Ricci , Jan Hajny(B) , Lukas Malina ,
Petr Jedlicka , and David Smekal

Department of Telecommunications, Brno University of Technology, Technicka 12,
Brno, Czech Republic

{xcibik00,xdobia13,ricci,hajny,malina,xjedli23,smekald}@vutbr.cz

Abstract. In this paper, we present the optimization of the AES-256-
GCM encryption algorithm for high-speed security solutions based on
Field Programmable Gate Arrays (FPGA). We discuss strategies and
techniques to achieve the perfect balance between compactness and high
throughput, aiming at applications with data rates over 100 Gbps. Using
the presented optimizations, we were able to reduce the number of LUTs
by 50% and FFs by 85% compared to reference implementation without
any effect on security. Moreover, our resulting implementation achieves a
frequency of only 200 MHz, which is very practical for a real deployment
on existing chips, compared to many purely theoretical solutions that
already exist in the literature. Besides the description of optimization
techniques, we also present results from implementation on real hard-
ware in a real IP network. All components were not only simulated
but also deployed on real FPGA-enabled network cards based on Xil-
inx UltraScale+ chips. In particular, the performance of network packet
encryption was measured in a real physical network, with high-speed
data generators and network components. Therefore, we consider our
results highly relevant not only for designers but also practitioners seek-
ing cutting-edge solutions for fast networks.

Keywords: Acceleration · AES-256 · GCM · Cryptography · FPGA ·
Hardware implementation · Quantum-Resistant Cryptography ·
Optimization

1 Introduction

AES-256-GCM offers a powerful combination of authenticated encryption and
high-performance throughput, making it an essential encryption standard for
secure data transmission and storage. It is worth mentioning that with the
threat of a quantum computer, the quantum-safe AES-256-GCM strengthens
its importance. However, integrating AES-256-GCM into complex FPGA solu-
tions presents challenges in terms of size and throughput optimization.

This work is supported by the Ministry of the Interior of the Czech Republic under
Grant VJ01010008.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 303–318, 2024.
https://doi.org/10.1007/978-3-031-61486-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_18&domain=pdf
http://orcid.org/0000-0003-0780-6288
http://orcid.org/0000-0002-7321-7003
http://orcid.org/0000-0003-0842-4951
http://orcid.org/0000-0003-2831-1073
http://orcid.org/0000-0002-7208-2514
http://orcid.org/0000-0003-0833-8068
http://orcid.org/0000-0002-1996-5334
https://doi.org/10.1007/978-3-031-61486-6_18

304 P. Cibik et al.

The main bottleneck in AES-GCM implementations is usually the computa-
tion of the authentication tag. This prompted several authors to focus on the
optimization of this part. For instance, Zhou et al. [12] proposed to improve the
throughput of Galois field multiplication by using pipelined Karatsuba multi-
pliers. Using this approach, the authors removed all critical paths during tag
computation, and the bottleneck moved to the AES. On the other hand, Henzen
and Fichtner [2] aimed to achieve a throughput of 100 Gb/s for ethernet appli-
cations. To the best of our knowledge, they were the first to propose the use of
4 parallel cores instead of a single core in architecture design which are needed
for the expected results.

This article explores the optimization of AES-256-GCM for FPGA imple-
mentations to meet the requirements of compactness and high-throughput data
processing. By addressing these challenges, we enable the seamless integration
of AES-256-GCM into secure solutions that demand real-time data handling
while maintaining the necessary security levels, for example, in more complex
quantum-safe solutions.

2 Related Work

Hardware-accelerated AES-GCM implementation has been explored in several
research papers and documents. In addition to the FPGA-based hardware imple-
mentations, there are also a few works focusing on hardware-acceleration using
Application Specific Integrated Circuits (ASIC). For the sake of completeness,
we summarize previous hardware implementations on both of these digital design
platforms even though these two technologies differ in some aspects. In general,
ASIC offers more room for optimization and its elementary hardware units are
logical gates instead of LookUp Tables (LUTs), FlipFlops (FFs), Block Random
Access Memory (BRAM) and Digital Signal Processing (DSP) blocks in FPGA.
The above implies that a comparison of two implementations each from another
platform cannot be accurate.

Table 1. Comparison of existing AES measurements on FPGA.

Paper HW Platform Network IL LBT LBP

[4] Virtex-4 Not Tested � NA NA

[12] Virtex-5 Not Tested NA � NA

[2] Virtex-5 Not Tested NA � NA

[1] UltraScale Not Tested NA � NA

[9] Virtex-7 Not Tested � � NA

Our work UltraScale+ Tested � � �
states for “initial latency”, LBT for “latency before tag”,
LBP for “latency between packets” - you can find more about
latency in Sect. 6.1

Pushing AES-256-GCM to Limits 305

In Table 1, we highlight the main differences among the existing AES mea-
surements on FPGAs. In 2005, Yang et al. [10] presented a high-speed hardware
architecture for GCM mode. Their throughput-optimized ASIC implementation
of AES-GCM achieves a throughput of 34 Gb/s, running at a frequency of 271
MHz. It is important to note that their implementation has an initial latency
that impacts the throughput. In 2006, Hodjat and Verbauwhede [3] explored
the area-throughput trade-off for an ASIC implementation of the AES scheme.
In particular, they concentrate on the optimization of the critical path of the
AES cipher to optimize the throughput achieving 30 to 70 Gb/s in a 0.18 µm
standard cell library. In this case, the initial delay is not considered.

In 2007, Lemsitzer et al. [4] explored a design-space pipelined AES-GCM
implementation optimized for FPGA. They described 4 implementations with
different degrees of parallelism. Using the highest degree of parallelism, they
reached a theoretical throughput of 15.3 Gb/s at the maximum frequency of
140 MHz on a Virtex-4 FPGA. Their theoretical throughput is lower than in
our proposal and has lower throughput to utilisation ratio. In fact, if we con-
sider a multiple instances implementation as in our case, they would reach 175k
LUTs rather than 80k LUTs in our implementation. In the same year, Zhou et
al. [11] presented an AES architecture implementation that was then improved
in a follow-up article [12] in 2009. In the latter, they address high-throughput
implementations with a focus on the AES engine and the modular multiplica-
tion and their complexity on FPGA platforms. They achieve a throughput of 31
Gb/s at 243 MHz and 39 Gb/s at 305 MHz on Virtex-4 and Virtex-5 FPGAs.
They use only one instance of AES-GCM compared to other works, with a loss
of parallelization. Moreover, the latency between the last ciphertext transaction
and the tag is of 11 cycles. For instance, if we consider a plaintext of 1024b that
requires 8 cycles to be processed, their implementation would have a throughput
reduced by 55% with respect to the theoretical, that they report. In 2010, Henzen
and Fichtner [2] presented four pipelined AES-GCM cores parallelization that
reached the speed required for the new Ethernet standard. Their implementation
has a throughput of 119.3 Gb/s at 233 MHz on Virtex-5 FPGA. The authors do
not consider the latency during the key changes with a loss of performance for
real package size data.

In 2015, Buhrow et al. [1] proposed a scalable AES-GCM architecture for
highly parallel implementations on FPGAs. Their implementation can process
multiple separately-keyed packets simultaneously every clock cycle. They achieve
a throughput of 482 Gb/s at 314 MHz on Xilinx Virtex Ultrascale FPGA and
800 Gb/s in a system comprising multiple FPGAs, respectively. Although they
presented a theoretical throughput, they took into account the latency. With
respect to our implementation, they need a higher power of h for large data.
For instance, for 1500B of data, their implementation computes h93 instead
of h9 as in our case. In 2017, Vliegen et al. [9] maximize the throughput of
side-channel-protected AES-GCM implementations on an FPGA. They obtain
a throughput of 15.24 Gb/s on a high-end Virtex-7 device. The only drawback
of this implementation is a big initial latency of 71 cycles.

306 P. Cibik et al.

Note that all of the works above present only theoretically computed through-
put derived from the maximum frequency reported after implementation and the
data interface’s bit size. However, as noted in [1], these computations typically
overlook crucial delays (such as initial delay, delays between the last ciphertext
and tag, and delays between packets) that can significantly affect the actual
throughput. To address this, we decided to implement the full system and per-
form tests on physical devices to demonstrate the real-world throughput achieved
by our implementation.

2.1 Contribution

In this article, we present three AES-256-GCM implementations all suitable for
post-quantum deployment due to the quantum-safe size of the key. Our imple-
mentation is specifically optimized to reach the highest performance which means
achieving the wire-speed processing of packets with allocate appropriate hard-
ware resources, based on limited resources on board and necessity to fit in with
other parts of whole solution, and low initial latency. To do so, we propose a new
architecture with parallelization on the GCM level with only one AES-256-GCM
pipeline.

In short, to compare with competitors, we built an effective AES-256-GCM
to fit in a more complex encryptor solution based on FPGA, due to achieved low
utilization, reaching up to 100 Gbps throughput running on 200 MHz frequency
able to adapt to the fluctuation of data flow thanks to low initial latency as
described in details following sections.

The rest of this article is organized as follows. Section 3 reviews the original
implementation of an AES-256-GCM, and Sect. 4 states the design goals of our
optimization and describes the proposed architecture. Section 5 describes our
experimental setup and Sect. 6 reports the results. The final section contains the
conclusions.

3 Preliminary

Our entry point was an implementation of AES-256-GCM that follows the arti-
cles [5,7]. The original implementation had six parallel pipelines of the AES-
256-GCM and the distributional logic. Parallelization was done at the packet
level, which means that each packet goes to a specific pipeline and is processed
as a whole. The architecture of the parallel pipelines is shown in Fig. 9 and the
inner structure of the AES GCM ENCRYPTION component is shown in Figure 10 of
Appendix 7.

The original architecture used six standalone parallel pipelines of AES-256-
GCM, each of them consisting of one separate key-expansion component, one
Galois Multiplication (GM) component, one AES encryption core component,
and FIFO components. So, in total, we have:

Pushing AES-256-GCM to Limits 307

– Key expansion component - six times.
– AES encryption core component - six times.
– Galois Multiplication component - six times,

in six separate standalone processing pipelines. There is no parallelization on
the GCM level.

4 Proposed Architecture

Our AES-256-GCM implementation needs to be suitable for the post-quantum
environment. Therefore, to easily fit on a chip with the other primitives of the
system and achieve the expected throughput of the whole solution, we focused
on refactoring and its optimization. There are three main goals to be achieved:

– Initial latency - how many clock cycles does it take from the first valid
input to the first valid output.

– Utilization (size) - how many resources does the implementation consume,
especially LUTs, FFs, and BRAM.

– Throughput - how fast can we process (encrypt/decrypt) network data. We
would like to achieve wire speed (100 Gbps).

Achieving better results in all of these three domains can be challenging
because they are mutually exclusive in certain matters.

All components are written in VHDL (2008) language. Synthesis and FW
generation were provided by Vivado 2019.1 targeting a frequency of 200 MHz
for Xilinx FPGA chip xcvu9p-flgb2104-2-i.

Since GCM mode uses AES encryption only, components can be used for
both AES-256-GCM Encryption and Decryption only by switching one generic
input. The presented results are the same for both of them.

By applying different optimisation techniques like pipelining, resource shar-
ing, effective implementation, pre-computing of the values etc., described it the
following sections, there is an ability to achieve better results without the impact
on security of the implementation.

4.1 Core Components

To achieve our goals, we had to first implement core components, that are used
in the AES-GCM, namely AES encryption, key expansion, and Galois field mul-
tiplication, efficiently. We have implemented fully-pipelined key expansion and
AES components that enable encryption in each cycle even when encryption key
changes. Moreover, by setting generic parameter on these components, it is pos-
sible to modify number of registered rounds, to allow changes in area vs timing
costs. Implementation of most processes during round is straightforward on the
hardware, as it requires mostly permutation and XOR operations. The critical
process is SubBytes, that represents nonlinear operation. We have implemented
it using the substitution S-BOX table, that is stored in block RAM. For Galois
Field multiplication, we have implemented also pipelined digit-parallel multi-
plier that uses four parallel multipliers with 32 bit digit size and their output is
concatenated and reduced to 128 bits.

308 P. Cibik et al.

4.2 Plain Implementation

In this stage, we redesigned the whole implementation of the AES-256-GCM
(published in [5,7]) from parallelization per packet to parallelization inside GCM
mode [8]. We decided to use four AES core components for data encryption, when
at the beginning of packet processing, two of them are also used for initial
block and h computation. The new component architecture is shown in Fig. 11
of Appendix 7. In comparison with the original one (see Sect. 3 for more details),
only one processing pipeline is used instead of six.

The main idea behind this new implementation is to allow for the pro-
cessing of all 512 bit transactions in each cycle. To achieve this, four parallel
branches are used inside of the gcm component, as one AES core component
can process 128 bits at a time. The branches can be additionally divided into
two parts, encryption, and tag computation. Parallelization of the encryption
phase is straightforward due to the fact that AES-256 is in counter mode. A
challenge lies in generating the tag. We decided to use eight tag parts, which are
XORed at the end, resulting in the GCM tag. This is done using GM components
in the parallel branches. These components have one clock cycle delay; so to
permit continuous processing of all four branches we had to use eight tag parts.
To allow this, we needed higher powers of h, particularly h8 in the middle of the
packet and h9, h8, . . . , h3, h2 for the last two 512 bits transactions. If the packet
is shorter than 1024 bits, we only need lower powers.

This design can process 512 bits of input and, respectively, produce 512 bits
of output each clock cycle after an initial latency and pipeline filling.

Cumulatively, plain gcm implementation consists of the following parts:

– Key expansion component - once,
– AES encryption core component - four times,
– Galois Multiplication component - five times.

The AES encryption core components are set as ENC PIPELINE = 1, which
means that after each AES round is registered. Four GM components are used
for the tag computation, and the last one is used for h powers computation.

For this design, we are using a fixed order of how and which h powers are
computed, and compute all of them before starting the tag computation data
processing, respectively. Based on that, the highest power of h needed is h9.

Table 2 shows the order and delay of the output produced by the GM com-
ponent. If a similar value is on both inputs, the output is ready after one clock
cycle. On the contrary, different inputs require two clock cycles. Figure 1 shows
how the data are processed. Incoming data are processed by four parallel AES
encryption core components followed by four parallel GM components to ensure
the processing of whole input data with each clock cycle. Only one key expansion
component is used.

4.3 Opt1 Implementation

To speed up powers generation of h and reduce the initial latency, in the opt1
implementation, we added two more AES encryption core components. One is

Pushing AES-256-GCM to Limits 309

Table 2. h powers generation

Clock cycle 1 2 3 4 5 6 7 8 9 10

GM input a h h2 h4 h2 h h h h

GM input b h h2 h4 h4 h4 h2 h6 h8

GM output h2 h4 h8 h6 h5 h3 h7 h9

Fig. 1. Abstract scheme of data-processing by gcm plain component

responsible for h computation, and the second one computes the initial block.
So the other four components are only used for data processing. We also updated
the settings of ENC PIPELINE = 2 for all AES encryption core components. This
means that two rounds are performed each clock cycle. Before that, the data are
stored in pipelining register. Moreover, since all AES encryption core components
use the same setting, only one key expansion component is used with the same
round key, respectively, at the same time. The extended component architecture
and how the whole flow works is shown in Fig. 2.

In total, for opt1 implementation, there are:

– Key expansion component - once,
– AES encryption core component - six times,
– Galois Multiplication component - five times.

4.4 Opt2 Implementation

Since h to the power of 9 is not needed for short data, i.e., under 128 B in length,
and for starting the data processing, one more optimization could be developed.
In particular, we reordered the h powers generation. The new order is shown in
Table 3, and also updated the logic to be able to start processing data as soon

310 P. Cibik et al.

Fig. 2. Gcm internal component interconnection and flow of opt1 and opt2 implemen-
tation

Table 3. Updated h powers generation

Clock cycle 1 2 3 4 5 6 7 8 9 10

GM input a h h2 h4 h h h2 h5 h

GM input b h h2 h4 h2 h4 h4 h2 h8

GM output h2 h4 h8 h3 h5 h6 h7 h9

as the sufficient h power is ready without waiting for the last one. In this way,
h powers computed are based on the data length, stopping on the needed one.
This leads to an initial latency reduction and a higher throughput for shorter
data.

Opt2 implementation is an extension of opt1 implementation, which is
described in Sect. 4.3. Note that the amount of internally used components is
the same in both implementations, i.e., Opt1 and Opt2.

5 Experimental Setup

To test and benchmark our implementations, we implement the full system -
production-like post-quantum encryptor solution which dmeonstrate the use-
case where whole communication between client and server, over high-speed
network, is secured.

Pushing AES-256-GCM to Limits 311

As you can see in Fig. 3, it is based on server with two high-speed smart
NICs with the FPGA chip. Each card has one physical Ethernet interface to
communicate with the end device, one interface to exchange encrypted data,
and one interface to exchange keys for encryption and decryption. Firmware
loaded in both FPGAs on the smart NICs consists of subcores for encryption
and decryption using AES-256-GCM, key exchange scheme powered by Kyber,
ECDH, and (optional) QKD.

The system ensures the exchange and synchronization of the key and subse-
quently secure communication between end devices.

Fig. 3. Block scheme of physical setup during testing and benchmarking.

5.1 Implementation Details

AES encryption core component processes 128 bit data blocks. All our imple-
mentations were verified against NIST test vectors1, with many thousands of
test inputs compared against the software golden model implementation in ver-
ification and in our demo environment as described above.

6 Experimental Results

There are three main domains where we would like to achieve better results
with these re-implementations and optimizations. Each of them has a different
measurement setup.

1 https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program/cavp-
testing-block-cipher-modes.

https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program/cavp-testing-block-cipher-modes
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program/cavp-testing-block-cipher-modes

312 P. Cibik et al.

6.1 Latency

The first domain is the Initial Latency (IL). It reflects the number of clock cycles
from the first input valid block of data (also with metadata in the same cycle) to
the first processed block of data on the output. Therefore, in the lower level of
perspective, it is clock cycles amount from metadata ready and rx src rdy=′ 1′

in the same clock cycle to first tx src rdy=′ 1′. It is important because the data
flow is not constant, there are gaps between packets, etc. so this quantity tells us
how flexibly the component can react from state when no data are transmitted,
to fill all the internal pipelines and process data from input to output interface.
In Fig. 4 compares the results of all four implementations, the original one and
our three proposals.

As there is only one AES encryption core component in the original architec-
ture, the initial delay increases for small packet sizes up to 384 b. This is because
fewer 128 bit blocks need to be encrypted. From this size, the initial delay is then
constant. In plain architecture, the whole 512 b transactions are encrypted, so
the initial delay is the same for all packet sizes. In the opt1 implementation, we
reduced the initial delay as described in the previous section, so it is still con-
stant for all packet sizes. In the opt2 implementation, the initial delay increases
at the start since bigger packets need more h powers to start computing but then
drop to a constant delay of 21 cycles. This is because from packet size 1408 b we
need to wait only until h8 is computed to start processing the data.

Fig. 4. Comparison of initial delay.

Note that the metadata can be ready sooner than the transferred data.
Figure 5 depicts the results in this specific aforementioned situation. This is

Pushing AES-256-GCM to Limits 313

a between-transactions delay (LBP) with one specific condition. It can be per-
ceived as a period, in clock cycles, between the first and second processed packet
resp. from tag rdy of packet n to first tx src rdy of packet n + 1.

Fig. 5. Comparison of delay after metadata change.

For both latency measurement types, the lowest is for the opt2 implementa-
tion. You can see the improvement caused by h powers generation optimization
in opt2 compared to opt1.

Additionally, in most related works the latency between the last ciphertext
and tag (LBT), together with between-transactions delay, was reported, as it
has the biggest impact on throughput when keys are not changed per packet. In
all our implementations the latency is 1 clock cycle for the first packet and 0 for
all the following packets, as the FIFOs get filled.

6.2 Utilization

The second domain we try to optimize is utilization. A comparison of the after-
synthesis results is shown in Fig. 6.

In all our proposed implementations, the number of used LUTs is half in
comparison to the original implementation. For FFs, it is seven times less. The
amount of used BRAM is affected by the setting of the ENC PIPELINE for plain,
opt1, and opt2 implementations since a higher value leads to the usage of less
BRAM resp. moving it to LUTs.

Moreover, in Figure 7, we present the placement of all components in our final
system with the gcm op2 architecture. The system consists of Encryption (yellow)

314 P. Cibik et al.

Fig. 6. Hardware utilization comparison of different versions.

and Decryption (pink) subcores, Key Exchange (green) subcore, and subcores
to support communication using Ethernet (red) and PCI-E (blue). Altogether,
it utilizes almost two full SLR blocks out of the three available.

Fig. 7. Components placement after the implementation phase.

6.3 Throughput

The last but most important domain is throughput. We used two methods to
measure the throughput in our experimental setup. First, we used the iperf3
tool, to measure the throughput of real network traffic, then we used network
traffic generator firmware. Using the iperf3 method, we achieved the through-
put of 70 Gbps, which was the maximum speed of the given setup without any
influence of encryption, as we achieved also the same speed with the client and

Pushing AES-256-GCM to Limits 315

server directly connected. While using the network traffic generator, the through-
put was even higher, with values up to 100 Gbps for bigger packets. The compar-
ison of the measured throughput for all four implementations using the second
method is shown in Fig. 8.

In the encryption setup, the packet payload is encrypted, and an authen-
tication tag is appended to it. The packet size in the results is also with an
Ethernet header, which is not encrypted. The graph also shows an enhance-
ment for shorter packets caused by opt2. For packets over ∼350 B we achieve a
wire speed of 100 Gbps. We can therefore state that for normal distribution and
standard Ethernet MTU 1500 B we achieve wire speed.

Fig. 8. Throughput comparison of different versions for different packet sizes.

As listed in article [6], based on available resources, a final, opt2 implemen-
tation of AES-256-GCM is also suitable for mid-size resp. small FPGA Xilinx
boards.

6.4 Comparison

The comparison with other high-speed architectures is shown in Table 4. In this
article we present several implementations that gradually apply different opti-
mization steps. The most effective one, opt2 implementation, applying all the
optimization parts, achieves maximum theoretical frequency after implementa-
tion of 229 MHz, which corresponds to a throughput of 117.3 Gbps. opt2 imple-
mentation is comparable with the implementation of [2], with the difference that

316 P. Cibik et al.

our implementation uses more LUTs, but less BRAMs. When compared to [12],
our implementation has three times higher throughput, so to catch up, they
would need to use 3 parallel cores. Compared to [1], our implementation has a
lower resource use, but at the cost of lower throughput. It is worth noting that
our implementation was optimized to achieve a frequency of 200 MHz as the
remaining modules work at that frequency. It should not be difficult to increase
the frequency to achieve even higher throughput by using registers on critical
paths, but it will lead to increasing the initial latency, and our goal was to achieve
wire-speed throughput on 200 MHz frequency with as lowest initial latency and
utilization as possible.

Table 4. Comparison with existing architectures.

Work LUT/Slice BRAM Freq. [MHz] Throughput [Gb/s]

our work - opt2 79879 196,5 229 117.3

[1] 109000 - 358 183.3

[2] 9561∗ 450 233 119.3

[12] 4115∗ 59 287 36.7
∗ Reported as slices for Virtex 5, each slice contains 4 LUTs.

7 Conclusion

Our article introduces a significantly improved hardware-based optimized version
of AES-256-GCM for FPGA. Through extensive optimization developments, we
have achieved remarkable improvements compared to the original implementa-
tion. In our optimized version, we have significantly reduced the initial delay
and decreased resource utilization. Specifically, the utilization of LUTs has been
reduced by more than half, and the usage of FFs is now seven times less than in
the original implementation. With our optimized solution, we have achieved a
wire speed of 100 Gbps at a frequency of 200 MHz. This impressive throughput
enables the efficient processing of high-volume data in real-time. Additionally,
our solution’s versatility allows for deployment on mid-size FPGAs, expanding
its applicability across a range of systems. These substantial improvements in
performance and resource utilization demonstrate the practicality and potential
of our optimization for delivering secure and high-performance cryptographic
solutions in FPGA-based systems. By enhancing AES-256-GCM, we address the
demands of modern secure applications, particularly quantum-resistant ones. In
our future work, we will focus on the integration of optimized AES-256-GCM
into a post-quantum encryptor that also enables hybrid key establishment based
on Crystals-Kyber, ECDH or QKD systems.

Acknowledgement. This work is supported by the Ministry of the Interior of the
Czech Republic under Grant VJ01010008.

Pushing AES-256-GCM to Limits 317

Appendix A

AES and gcm Component Internal Schemes

input dicection input dicection

FIFO
order

FIFO
data

FIFO
metadata

AES_256_GCM_ENC_TOP

FIFO
data

FIFO
metadata

AES_256_GCM_ENC_TOP

. . .

Fig. 9. parallel top component architecture scheme

AES_GCM_ENCRYPTION

encryption_gcm

encryption
aes_core

EXPANSION
key_expansion

FIFO
plaintext data

FIFO
ciphertext data

galoismult
GM

Fig. 10. AES GCM ENCRYPTION component architecture scheme

gcm no-opt

EXPANSION
key_expansion

encryption
aes_core

encryption
aes_core

encryption
aes_core

encryption
aes_core

GM GM GM GMGM

Fig. 11. gcm plain component architecture scheme

References

1. Buhrow, B., Fritz, K., Gilbert, B., Daniel, E.: A highly parallel AES-GCM core
for authenticated encryption of 400 GB/s network protocols. In: 2015 Interna-
tional Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–7
(2015). https://doi.org/10.1109/ReConFig.2015.7393321

2. Henzen, L., Fichtner, W.: FPGA parallel-pipelined AES-GCM core for 100g ether-
net applications. In: 2010 Proceedings of ESSCIRC, pp. 202–205 (2010). https://
doi.org/10.1109/ESSCIRC.2010.5619894

https://doi.org/10.1109/ReConFig.2015.7393321
https://doi.org/10.1109/ESSCIRC.2010.5619894
https://doi.org/10.1109/ESSCIRC.2010.5619894

318 P. Cibik et al.

3. Hodjat, A., Verbauwhede, I.: Area-throughput trade-offs for fully pipelined 30 to
70 Gbits/s AES processors. IEEE Trans. Comput. 55(4), 366–372 (2006). https://
doi.org/10.1109/TC.2006.49

4. Lemsitzer, S., Wolkerstorfer, J., Felber, N., Braendli, M.: Multi-gigabit GCM-AES
architecture optimized for FPGAs. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 227–238. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74735-2 16

5. Malina, L., Cibik, P., Jedlicka, P., Smekal, D., Ricci, S., Hrabovsky, J.: Hardware-
based cryptographic accelerator for post quantum era. In: 2021 13th International
Congress on Ultra Modern Telecommunications and Control Systems and Work-
shops (ICUMT), pp. 149–155 (2021). https://doi.org/10.1109/ICUMT54235.2021.
9631686

6. Malina, L., Ricci, S., Dobias, P., Jedlicka, P., Hajny, J., Choo, K.K.: On the effi-
ciency and security of quantum-resistant key establishment mechanisms on FPGA
Platforms, pp. 605–613, January 2022. https://doi.org/10.5220/0011294200003283

7. Malina, L., Smekal, D., Ricci, S., Hajny, J., Ćıbik, P., Hrabovsky, J.: Hardware-
accelerated cryptography for software-defined networks with P4. In: Maimut, D.,
Oprina, A.-G., Sauveron, D. (eds.) SecITC 2020. LNCS, vol. 12596, pp. 271–287.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69255-1 18

8. McGrew, D., Viega, J.: The galois/counter mode of operation (GCM). submission
to NIST Modes of Operation Process (2004), https://csrc.nist.rip/groups/ST/
toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf, https://csrc.nist.
rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf

9. Vliegen, J., Reparaz, O., Mentens, N.: Maximizing the throughput of threshold-
protected AES-GCM implementations on FPGA. In: 2017 IEEE 2nd International
Verification and Security Workshop (IVSW), pp. 140–145 (2017). https://doi.org/
10.1109/IVSW.2017.8031559

10. Yang, B., Mishra, S., Karri, R.: A high speed architecture for galois/counter mode
of operation (gcm). Cryptology ePrint Archive, Paper 2005/146 (2005). https://
eprint.iacr.org/2005/146, https://eprint.iacr.org/2005/146

11. Zhou, G., Michalik, H., Hinsenkamp, L.: Efficient and high-throughput implemen-
tations of AES-GCM on FPGAS. In: 2007 International Conference on Field-
Programmable Technology, pp. 185–192 (2007). https://doi.org/10.1109/FPT.
2007.4439248

12. Zhou, G., Michalik, H., Hinsenkamp, L.: Improving throughput of AES-GCM with
pipelined Karatsuba multipliers on FPGAs. In: Becker, J., Woods, R., Athanas, P.,
Morgan, F. (eds.) ARC 2009. LNCS, vol. 5453, pp. 193–203. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00641-8 20

https://doi.org/10.1109/TC.2006.49
https://doi.org/10.1109/TC.2006.49
https://doi.org/10.1007/978-3-540-74735-2_16
https://doi.org/10.1007/978-3-540-74735-2_16
https://doi.org/10.1109/ICUMT54235.2021.9631686
https://doi.org/10.1109/ICUMT54235.2021.9631686
https://doi.org/10.5220/0011294200003283
https://doi.org/10.1007/978-3-030-69255-1_18
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://doi.org/10.1109/IVSW.2017.8031559
https://doi.org/10.1109/IVSW.2017.8031559
https://eprint.iacr.org/2005/146
https://eprint.iacr.org/2005/146
https://eprint.iacr.org/2005/146
https://doi.org/10.1109/FPT.2007.4439248
https://doi.org/10.1109/FPT.2007.4439248
https://doi.org/10.1007/978-3-642-00641-8_20

Automated Generation of Masked
Nonlinear Components:

From Lookup Tables to Private Circuits

Lixuan Wu1,2, Yanhong Fan3(B), Bart Preneel4, Weijia Wang1,2,3,
and Meiqin Wang1,2,3

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
{mqwang,weijiawang}@sdu.edu.cn, lixuanwu@mail.sdu.edu.cn

2 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China

3 Quan Cheng Shandong Laboratory, Jinan, China
yanhongfan@sdu.edu.cn

4 imec-COSIC, KU Leuven, Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract. Masking is considered to be an essential defense mechanism
against side-channel attacks, but it is challenging to be adopted for hard-
ware cryptographic implementations, especially for high-security orders.
Recently, Knichel et al. (CHES 2022) proposed an automated tool called
AGEMA that enables the generation of masked implementations in hard-
ware for arbitrary security orders using composable gadgets. This acceler-
ates the construction and practical application of masking schemes. This
paper proposes a new automated tool named AGMNC that can gener-
ate masked nonlinear components with much better performance. The
effectiveness of AGMNC is evaluated in several case studies. The evalua-
tion results show a significant performance improvement, particularly for
the first-order secure SKINNY S-box: saving 41% area, 25% latency, and
49% dynamic power. We achieve such a good result by integrating three
key techniques: a new composable AND-XOR gadget, an optimization
strategy based on the latency asymmetry feature of the AND-XOR gad-
get, and an implementation optimization for synchronization. Besides,
we use the formal verification tool SILVER and FPGA-based practical
experiments to confirm the security of the masked implementations.

Keywords: Side-Channel Analysis · Masking · Composable Gadget

1 Introduction

With the rapid growth of the Internet of Things (IoT), the number of connected
devices has increased significantly. IoT devices are attractive targets for a range
of attacks; in particular, the easy access to these devices renders them vulner-
able to physical attacks. Among these physical attacks, Side-Channel Analysis
(SCA) attacks [20,21] have gained significant attention from researchers and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 319–339, 2024.
https://doi.org/10.1007/978-3-031-61486-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_19&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_19

320 L. Wu et al.

practitioners due to their ability to extract secret information from the devices
without the need for direct access to the internal components. SCA attacks
can exploit various physical properties, such as timing [21] and power consump-
tion [20], to extract secret information processed by the device. In response to
the severe threat posed by SCA attacks, numerous approaches have been pro-
posed to mitigate this risk. Among approaches, masking [10] has emerged as the
most widely studied and deployed countermeasure due to its sound theoretical
foundations. For example, the first necessary requirement of a masking scheme
is the Ishai-Sahai-Wagner (ISW) d-probing model [17] that ensures that any d
internal variables are independently distributed from the secret input.

However, it is still non-trivial to adopt masking in practice, since d-probing
security is invalid in the presence of many known physical defaults. For instance,
many masking schemes (see, e.g., [15,17] for an incomplete list) were shown to be
insecure in hardware. It is mainly because they fall short in resisting glitches that
are known to be the most challenging hardware physical default to overcome.
In this respect, the glitch-extended probing model [13] has been proposed to
formalize glitches.

Although introducing some simple, practical, and formal adversary models
has facilitated the design and security verification of masking schemes, designing
masking schemes with high-security orders for complex circuits remains challeng-
ing due to the high computational cost. Following a divide-and-conquer strategy,
researchers have defined some composable security notions that allow large cir-
cuits to be constructed by sub-circuits satisfying composability, also known as
gadgets. In this way, constructing large circuits is reduced to the construction of
small ones satisfying composability. Those security notions include NI [2], SNI [3],
PINI [9], and so on. Also, the glitch-extended probing model and composable
security notions are also combined. To further promote the practical application
of composability, an automation tool called AGEMA was introduced by Knichel
et al. [18], which allows designers to generate hardware masked implementation
from an unprotected implementation using composable gadgets.

We note that, albeit AGEMA can easily generate masked hardware circuit
from a simple but unprotected design, there still exists a large hardware per-
formance gap between masked circuits generated from AGEMA and manually
designed ones. In this paper, based on the fact that nonlinear components of the
whole circuit are the most complex and difficult part of masking, we propose
a software tool AGMNC that takes some architecture-level optimizations into
account to reduce the gap.

Major Contributions. This paper has three major contributions:

A New Composable AND-XOR Gadget. There are usually XOR operations
between the quadratic terms and linear terms in the Boolean expressions of an
S-box. Consider, for example, the Boolean function f = ab + c : this function
is realized in AGEMA by trivially combining an HPC-AND gadget and XOR
operations. The implementation in AGEMA requires the insertion of additional
registers in the input path of each share of primary input c to synchronize the
output shares. To overcome this disadvantage, we propose an AND-XOR gadget,

Automated Generation of Masked Nonlinear Components: 321

which considers the HPC-AND gadget and XOR operations jointly. Compared
to the trivial combination, the AND-XOR gadget saves d + 1 registers, where d
is the security order: a circuit is secure against attacks or order d if it can resist
an attacker that combines d measurements for each trace.

Two Optimizations. In addition to the AND-XOR gadget, AGMNC integrates
two key techniques to improve the hardware performance of the masked imple-
mentation, namely latency asymmetry and implementation optimization. The
latency asymmetry means that the latency from each input port to the output
port is different in a gadget. The HPC-AND gadget, for example, has a latency
from the input port to the output port of 1 cycle and 2 cycles, respectively.
By using the properties of AND-XOR and HPC-AND gadgets, this technique
significantly reduces the latency and area of the final implementation. Based on
the observation and analysis, we describe a new optimization technique to syn-
chronize the latency of the final implementation. This technique requires fewer
registers than synchronization without optimization.

An Automation Tool AGMNC. Based on the previous gadget and key tech-
niques, we have developed a new automation tool AGMNC. The tool takes
a look-up table as input and automatically generates the masked circuit. To
illustrate the effectiveness of this tool, we apply AGMNC to several S-boxes.
The results show a significant improvement in the hardware performance of the
masked implementations. More specifically, for the first-order secure SKINNY
S-box, AGMNC achieves a maximum reduction of 41%, 25%, and 49% in area,
latency, and dynamic power, respectively, compared to AGEMA. Further, we
apply the formal verification tool SILVER [19] and FPGA-based practical exper-
iments to confirm the security of the masked implementations.

Paper Organization. We first present some necessary notions in Sect. 2. In
Sect. 3, we highlight a new gadget and two key techniques applied in AGMNC,
including the AND-XOR gadget, the latency asymmetry feature and the imple-
mentation optimization. To further evaluate the efficiency of AGMNC, Sect. 4
instantiates several S-boxes and full ciphers as case studies. In Sect. 5, we offer
theoretical and experimental security analysis for the final masked implementa-
tions generated by AGMNC. We conclude our work in Sect. 6.

2 Preliminaries

2.1 Boolean Masking

We denote a binary random variable with lower-case italic x, the i-th share of a
variable with xi. A capital X(∈ F

n
2 , n > 1) represents a binary random vector,

while Xj denotes the j-th shares of a vector X.
Boolean masking based on secret sharing has gained significant attention

in hardware security as an essential defense against SCA attacks. The Boolean
masking of a secret vector X ∈ F

n
2 consists of s independent and random shares,

denoted as (X0,X1, · · · ,Xs−1). It is necessary to ensure correctness by satisfy-
ing the condition X =

⊕s−1
i=0 Xi. Usually, the process of obtaining the above s

322 L. Wu et al.

shares involves two steps. Firstly, the Xi (0 ≤ i ≤ s − 2) are initialized with
uniformly random strings. Secondly, Xs−1 is derived as Xs−1 = (

⊕s−2
i=0 Xi)⊕X.

Rather than performing leaking computations on the vector X, computations
are performed on the shares Xi.

2.2 Probing Security

There are various models available to characterize and evaluate the security of
masking schemes. Among them, the d-probing model [17] has gained significant
popularity and is widely used. In this model, the number d of probes reflects
the order of the attack. Since the d-probing model cannot characterize physical
effects in hardware implementations, such as glitches, the model is limited to
software implementations. Specifically, glitches are switching activities of wires
in a circuit due to different delays of signals contributing to their intended val-
ues. To account for the impact of glitches, Faust et al. [13] adapted the d-probing
model and introduced the glitch-extended probing model. This model assumes
that each probe placed on a combinatorial circuit propagates backward to the
last synchronization point (e.g., registers). Since this paper is related to hard-
ware implementations, our evaluations and assessments are conducted under the
glitch-extended probing model.

2.3 Composable Masking Schemes

The design of masking schemes that enables high order security remains a highly
challenging task, even for an experienced designer. This encourages the devel-
opment of composable gadgets, which are considered to be an efficient approach
to designing masking schemes. Specifically, composable gadgets are modules
that realize atomic logic operations with specific properties. Since these gad-
gets achieve particular properties, combining these gadgets to construct masking
schemes for large circuits is possible. Therefore, this approach of using compos-
able gadgets simplifies the construction of masking schemes, as the focus is on
finding gadgets realizing logic operations with specific properties rather than
dealing with the whole complex circuits.

To achieve the composability of gadgets, Barthe et al. proposed the concept
of Strong Non-Interferene (SNI) [3]. Under the concept of SNI, each probe placed
on the output of the SNI-secure gadget is restricted to be perfectly simulatable
without any information captured by this probe. Although SNI satisfies the
composability of gadgets, it will lead to a large overhead with respect to fresh
entropy and circuit area, especially for high-security orders. As a more efficient
solution than SNI, Probe-Isolating Non-Interference (PINI) was introduced by
Cassiers et al. in [9]. Based on the concept of share domain [16], any probe
was restricted to only propagate within its own share domain under the PINI.
Formally, the concept of PINI can be described through Definition 1.

Definition 1 (d-Probe-Isolating Non-interference). Given a gadget G
with secret input X, X ∈ F

n
2 , let ti denotes probes placed on internal wires

Automated Generation of Masked Nonlinear Components: 323

of G and to denotes probes placed on output wires of G, such that ti + to ≤ d.
The gadget G is d-PINI if and only if for all possible ti and to, there exists a set
of primary input indexes PIi, with |PIi ≤ ti|, primary output indexes PIo, with
|PIo ≤ to|, such that the observations of ti and to can be perfectly simulated by
XPIi∪PIo .

2.4 Hardware Private Circuits

Since PINI enables the trivial composition of gadgets, several concrete imple-
mentations of composable gadgets have been proposed. The HPC1 gadget intro-
duced in [8] realizes the function of a 2-input AND gate and can be simply
extended to arbitrary security orders. Specifically, HPC1 consists of a DOM-
AND and a refresh gadget, where the sharing of one input of DOM-AND is
refreshed through the refresh gadget. The number of fresh masks required by
HPC1 is d(d+1)/2+ [1, 2, 4, 5, 7, 9, 11, 12, 15, 17]1for security order d ≤ 10. Fur-
ther, another composable gadget HPC2 was introduced in the same work. The
HPC2 is another construction for a 2-input AND gate that can be extended to
arbitrary security orders. Compared to HPC1, HPC2 requires less fresh random-
ness, i.e., d(d+1)/2. Both HPC1 and HPC2 exhibit latency asymmetry feature:
this means that if the first input sharing enters the HPC1 or HPC2 gadget at
cycle k and another input sharing enters the gadget at cycle k + 1, then the
output can be generated at cycle k + 2.

2.5 AGEMA

Knichel et al. [18] proposed an open-source software tool AGEMA, which makes
it easy for designers to generate hardware masked circuits based on the unpro-
tected HDL implementations. Based on the PINI concept, AGEMA supports
several composable gadgets, including HPC1 and HPC2. Pipelining and clock
gating are two synchronization techniques applied in AGEMA. Pipelining inserts
additional registers to synchronize the input signals of each composable gadget,
and clock gating modulates the clock signals of registers to achieve the same goal.
Although pipelining requires a larger area overhead, it achieves better through-
put than clock gating. Pipelining is more efficient than clock gating when large
amounts of information are processed. In order to provide a fair comparison, the
hardware performance below related to AGEMA is generated using the pipelin-
ing synchronization technique.

3 Key Techniques of AGMNC

In this section, we explain how AGMNC can generate more efficient masked
implementations of S-boxes. The key techniques include a new AND-XOR gad-
get, latency asymmetry of the AND-XOR gadget, and implementation optimiza-
tion.
1 This is a compact notation indicates that for security order d = 1, 1 additional mask

is required; for security order d = 2, 2 additional masks are required, and so on.

324 L. Wu et al.

3.1 AND-XOR Gadget

Cassiers et al. [8] introduced HPC1 and HPC2 to realize 2-input composable
AND gadgets under the PINI notion in the glitch-extended probing model. As
they can achieve arbitrary security orders, HPC1 and HPC2 are essential gadgets
used in AGEMA to generate masked implementations. To facilitate the explana-
tion and analysis, we utilize the term HPC-AND gadget to generally represent
the implementation of a 2-input AND gadget using HPC1 or HPC2.

Fig. 1. AND-XOR in AGEMA.

There are usually XOR operations between the quadratic terms and linear
terms in the Boolean expressions of nonlinear components, such as an S-box.
The scenario can be denoted as the Boolean function f = ab + c, where a ∈
F2, b ∈ F2, c ∈ F2. In AGEMA, the Boolean function above is realized using
the HPC-AND gadget and XOR operations. The implementation for the first
order security is depicted in Figs. 1(a) and 1(b), where the red dashed line is the
HPC-AND gadget, and the blue dashed line is the XOR operations. Since the
latency of a single HPC-AND is 2 cycles, it is necessary to insert two layers of
registers in the shared path of primary input c (i.e., c0, c1) to synchronize the
latency before performing the XOR operations.

Fig. 2. AND-XOR gadget.

Automated Generation of Masked Nonlinear Components: 325

After careful analysis, we construct two new compact designs for the two cases
in Figs. 1(a) and 1(b). As an example, we provide a schematic overview of our
designs for the first security order in Figs. 2(a) and 2(b), respectively. Although
the dashed line registers (denoted as Regpipe[] in Algorithms 1 and 2) are essential
for a pipelined architecture, they do not impact the security of the statement.
Both designs integrate the above HPC-AND gadget and XOR operations into
a new gadget (called AND-XOR1 and AND-XOR2 gadget, respectively). Our
new gadgets can achieve PINI security under the glitch-extended probing model
and are generic for arbitrary security orders. From Fig. 2, it can be seen our new
gadgets save a layer of registers in the path of the shares of primary input c.
Since the c consists of at least d + 1 shares, our designs generally reduce the
number of registers by d + 1 than AGEMA, where d is the security order. The
construction principle and security analysis of new gadgets are shown below.

Algorithm 1. AND-XOR1 gadget
Input: shares (ai)0≤i≤d, (bi)0≤i≤d and (ci)0≤i≤d, such that

⊕d
i=0 ai = a,

⊕d
i=0 bi = b

and
⊕d

i=0 ci = c.
Output: shares (fi)0≤i≤d, such that

⊕d
i=0 fi = ab+ c.

1: if d = 1 then
2: M [b0] = Reg[b0 ⊕ r0], r0 denotes a random bit.
3: M [b1] = Reg[b1 ⊕ r0]
4: else if d = 2 then
5: r2 = Reg[r0 ⊕ r1], r0, r1 and r2 denote a random bit, respectively.
6: M [b0] = Reg[b0 ⊕ r0]
7: M [b1] = Reg[b1 ⊕ r1]
8: M [b2] = Reg[b2 ⊕ r2]
9: else if d ≥ 3 then

10: refer to the appendix of [8].
11: for i = 0 to d do
12: for j = i+ 1 to d do
13: rij = rji, denotes a random bit.
14: for i = 0 to d do
15: for j = 0 to d, j �= i do
16: uij = Reg[Regpipe[ai] ⊗ M [bj] ⊕ rij]

17: for i = 0 to d do
18: fi = Reg[Regpipe[ai] ⊗ M [bi] ⊕ Regpipe[ci]] ⊕ ⊕d

j=0,j �=i uij

Construction Principle. Algorithm 1 describes the generic algorithm-level
of the AND-XOR1 gadget. The first-order case is depicted in Fig. 2(a). At the
start of AND-XOR1 gadget (lines 1 to 10), a refresh gadget is essential to provide
the desired security. The details of the refresh gadget are only provided for the
cases of the first security order (lines 2 to 3) and the second security order
(lines 5 to 8). The cases of security order d ≥ 3 are given in the appendix
of [8]. Then, some randomness is generated in lines 11 to 13. Lines 14 to 16

326 L. Wu et al.

describe the cross-domain multiplications, i.e., the multiplications of two signals
from different domains, the results of which are XOR-ed with randomness and
then stored in registers. Lines 17 to 18 delineate three functionalities. Firstly,
it multiplies signals that belong to the same domain. Subsequently, the results
of the multiplications above are combined with the shares of primary input c
utilizing XOR operations. Finally, the XOR operations are utilized once more in
combination with the results of the cross-domain multiplications (lines 14 to 16).

The AND-XOR2 gadget is the other design, shown in Algorithm 2. In addi-
tion, the first-order secure AND-XOR2 gadget is illustrated in Fig. 2(b). The
first three lines of Algorithm 2 generate some randomness that will be used in
the following operations. From lines 4 to 9, four signals, namely uij , vij , qij and
tij , are defined. The signal uij is used to represent the results of ai ⊗ rij . The
signal vij masks the shares of the primary input b with randomness rij . The
multiplications of two signals from different domains are computed by qij . The
tij represents the combination of the results of ai ⊗ rij with the cross-domain
multiplications (i.e., qij) using XOR operations. Lines 10 to 11 correspond to
two parts, one is the multiplications of two signals from the same domain and
the combination of the above multiplications with the shares of primary input c
using XOR operations, and the other one is the combination of the cross-domain
multiplications qij with uij . These final output shares of the AND-XOR2 gadget
are generated by XORing the results of these two parts.

Algorithm 2. AND-XOR2 gadget
Input: shares (ai)0≤i≤d, (bi)0≤i≤d and (ci)0≤i≤d, such that

⊕d
i=0 ai = a,

⊕d
i=0 bi = b

and
⊕d

i=0 ci = c.
Output: shares (fi)0≤i≤d, such that f =

⊕d
i=0 fi = ab+ c.

1: for i = 0 to d do
2: for j = i+ 1 to d do
3: rij = rji, denotes a random bit.
4: for i = 0 to d do
5: for j = 0 to d, j �= i do
6: uij = Reg[Regpipe[ai] ⊗ Reg[rij]]
7: vij = Reg[bj ⊕ rij]
8: qij = Reg[Regpipe[ai] ⊗ vij]
9: tij = uij ⊕ qij

10: for i = 0 to d do
11: fi = Reg[Regpipe[ai] ⊗ Reg[bi] ⊕ Regpipe[ci]] ⊕ ⊕d

j=0,j �=i(tij)

Security Analysis. Below, we provide Theorems 1 and 2 to prove the PINI
security of AND-XOR1 and AND-XOR2 gadgets under the glitch-extended prob-
ing model.

Theorem 1. Assuming that all randomness bits used in the AND-XOR1 gadget
are statistically independent of each share of the primary inputs a, b and c, then
the AND-XOR1 gadget is glitch-robust PINI.

Automated Generation of Masked Nonlinear Components: 327

Proof.

i. When a probe placed on the input to M [bi], 0 ≤ i ≤ d, we can observe the
variables bi and its responding 1-bit randomness ri. This case can be denoted
as Pbi = [bi, ri], which can be perfectly simulated by bi and ri.

ii. When a probe placed on the input to uij , this case can be represented as
Puij

= [ai, bj ⊕ rj , rij], which can be perfectly simulated by ai and random-
ness rj and rij . If the additional variable uji is probed, this can be simulated
by adding aj to the simulation set. This is because the randomness ri and
rj (used to mask bi and bj , respectively) are independent of each other. All
other probes can be categorized into the above two cases, one with a single
probe (i.e., uij) and the other one with a pair of probes whose subscripts
are rotated (i.e., uij and uji). This is in line with the concept of PINI.

iii. The probe on fi, i.e., Pfi = [ai, bi ⊕ ri, ci]∪ {⋃d
j=0,j �=i uij} can be simulated

by ai, ci and bi ⊕ ri, which can be seen as a new random bit. If additionally
Pfj needs to be simulated, this can be done by following step ii, i.e., adding
the share aj and cj to the simulation set. This is because two output shares
have at most one common cross-domain. This is in line with the PINI notion.

Theorem 2. Assuming that all randomness bits used in the AND-XOR2 gadget
are statistically independent of each share of the primary inputs a, b and c, then
the AND-XOR2 gadget is glitch-robust PINI.

Proof.

i. When a probe placed on the input to uij , we can observe the variables ai

and rij . It can be represented as Puij
= [ai, rij], which can be perfectly

simulated by ai and randomness rij .
ii. When a probe placed on the input to vij , this case can be represented as

Pvij
= [bj , rij], which can be perfectly simulated by bj and randomness rij .

iii. The probe on qij , i.e., Pqij = [ai, bj ⊕rij] can be simulated by [ai, rij]. When
an additional variable qji is probed, this can be achieved by adding aj , bi
and bj to the simulation set. All other probes can be done based on the
above two cases, one is a single probe (i.e., qij) and the other one is a pair
of probes whose subscripts are rotated (i.e., qij and qji).

iv. The probe on tij , i.e., Ptij = [ai ⊗ rij , ai ⊗ (bj ⊕ rij)] can be simulated by
ai, rij and bj ⊕ rij , which can be seen as a new random bit. If additionally
Ptji needs to be simulated, this can be done by adding aj , bi, and bj to the
simulation set. The above case of considering two probes is in line with the
notion of PINI. All other probes can be processed using the above two cases,
one with a single probe (i.e., tij) and the other one with a pair of probes
whose subscripts are rotated (i.e., tij and tji).

v. The probe on the output share, i.e., Pfi = [ai, bi, ci] ∪ {⋃d
j=0,j �=i tij} can be

simulated by ai, bi, ci and processing d times the random bit rij to simulate
tij . From the expression of fi, it can be seen two output shares have at most
one cross-domain in common, and using the same argument as step iv, i.e.,
adding some input shares from only one other domain and some additional
randomness to the simulation set. This is in line with the notion of PINI.

328 L. Wu et al.

Compared with the implementations in AGEMA (as shown in Fig. 1), the two
new gadgets have d+1 fewer registers while maintaining the same requirements
of randomness and latency, where d is the security order. More specifically, a
single AND-XOR1 gadget requires d(d + 1)/2 + [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] bits
of randomness and 2 cycles of latency. Similarly, a single AND-XOR2 gadget
requires d(d+ 1)/2 bits of randomness and 2 cycles of latency. Due to the fewer
registers, our new gadgets require a lower area than AGEMA for the Boolean
function f = ab + c. It is worth mentioning that, in addition to the area advan-
tages of the Boolean function mentioned above, we believe that these two new
gadgets can yield comparable results as two standalone gadgets in the S-box
implementations. To facilitate the analysis of the common features of these two
new gadgets, we typically use the term AND-XOR gadget to represent both the
AND-XOR1 and AND-XOR2 gadgets in the remainder of this paper.

3.2 Latency Asymmetry of AND-XOR Gadget

To further enhance the latency of the AND-XOR gadget, we conduct a detailed
analysis of its latency asymmetry and integrate this feature into the automation
tool AGMNC. Latency asymmetry is a peculiar feature supported by the HPC-
AND gadget. This feature arises because only the shares from one primary input
of the HPC-AND gadget need to be refreshed. In other words, the HPC-AND
gadget has two sorts of shares from primary input, one of which has 1 cycle of
latency and the other has 2 cycles of latency. Interestingly, the AND-XOR gadget
also exhibits this feature for the following reason: as shown in Algorithms 1 and 2,
only the shares from primary input b need to be refreshed, while the shares from
primary input a and c use Regpipe[] to compensate for the latency asymmetry
caused by the refresh of the shares from b. In other words, the AND-XOR gadget
has three sorts of input ports, one with a latency of 2 cycles (marked as ‘b’) and
the remaining two with a latency of 1 cycle (marked as ‘a’ and ‘c’). In the
following, we demonstrate the impact of the latency asymmetric feature with
several concrete examples.

To demonstrate the impact of utilizing the latency asymmetry, Fig. 3 presents
two implementations with the Boolean function f = xyz as an example. Note
that Fig. 3 is a general schematic, where each signal is actually composed of d+1
shares and d is the security order of the masked implementation. Figure 3(a)
emulates the AGEMA implementation without considering the latency asym-
metry, which requires 4(d + 1) additional registers to synchronize the latency
and yields an implementation with a latency of 4 cycles. On the other hand,
Fig. 3(b) emulates the AGMNC implementation, which takes into account the
latency asymmetry. This results in an implementation with only 2(d + 1) addi-
tional registers and a latency of 3 cycles. Comparing these two implementations
reveals that Fig. 3(b) requires 50% fewer registers and 25% less latency than
Fig. 3(a). It can be seen that utilizing the latency asymmetry feature can lead
to significant improvements in terms of both area and latency.

Automated Generation of Masked Nonlinear Components: 329

Fig. 3. Functionality xyz implementations using HPC-AND.

The latency asymmetry feature can be effectively utilized in the implemen-
tation of a Boolean function, as demonstrated by the following example using
f = (xy + z)t + m. Firstly, we connect the later arriving signal to the input
port of the gadget with the shorter latency, i.e., connecting the output of the
AND-XOR gadget (marked as α) to the input port ‘a’ of the other AND-XOR
gadget (marked as β), instead of the input port ‘b’ in Fig. 4(a). However, since
the AND-XOR gadget has multiple input ports, there are inevitably some input
ports that do not satisfy the latency requirements, i.e., ports ‘a’ and ‘c’ of the
AND-XOR gadget (marked as α) and port ‘b’ and ‘c’ of the AND-XOR gadget
(marked as β) in Fig. 4(a). In such scenarios, inserting registers in the input
path is a viable solution to satisfy the latency constraints. Therefore, Fig. 4(b)
presents the final implementation of this example using the solution above, i.e.,
5(d + 1) registers are inserted in the input path, where d is the security order.

Fig. 4. The latency asymmetry of AND-XOR gadget.

To the best of our knowledge, we are the first to integrate the latency asym-
metry feature into an automated tool for generating masking schemes. Although
a tool was also developed to exploit this feature, [8] focused on finding a circuit
representation and did not automatically translate the circuit representation
into a masked circuit. In addition to supporting the new AND-XOR gadget and
implementation optimization to be described below, AGMNC has developed an
automated procedure to generate masked circuit integrating the latency asym-
metry feature.

3.3 Implementation Optimization

Until now, we have presented two key techniques employed by AGMNC, namely
the AND-XOR gadget and its latency asymmetry, which result in most cases

330 L. Wu et al.

in a final S-box design with considerably lower area or latency compared to the
design generated by AGEMA. To further optimize our design, we present an
implementation optimization technique in this section.

As elaborated in Sect. 3.2, if the latency requirements cannot be met by all
input ports of the HPC-AND or AND-XOR gadget, insertion of registers in
the input path becomes necessary to synchronize latency. Therefore, the num-
ber of registers inserted to synchronize latency directly impacts the area of the
final S-box design. Further, we propose an efficient implementation technique
for optimizing the number of registers required for synchronization. We present
two synchronization methods below using the representation of SKINNY S-box2

as an example. In this example, there are three layers, where N0 and N1 are
nonlinear and L is linear. The t0, t1, t2 and t3 are the outputs of AND-XOR
gadgets, while l0, l1, l2, l3 and l4 are the outputs of linear operations.

As shown in Fig. 5, we depict the common implementation without optimiza-
tion, where six, four, and zero different registers inserted in the N0,N1 and L
layers, respectively, to synchronize latency. Note that since there are two regis-
ters to store the value of x1 + 1 in the N0, only six registers are needed instead
of seven.

Fig. 5. Synchronization without optimization.

Fig. 6. Synchronization with optimization.

After observing and analyzing the above implementation, we note that in
layer N0, the signals that do not satisfy the latency requirements are generated
2 The detail of the representation for SKINNY S-box is shown in the Eq. (1) below.

Automated Generation of Masked Nonlinear Components: 331

using linear operations of four primary inputs (i.e., x0, x1, x2 and x3). Since
the number of these unsynchronized signals is larger than the number of pri-
mary inputs (i.e., 6 > 4), we propose a synchronization method that involves
the insertion of registers in the path of the primary inputs. By doing so, we
can ensure that the latency requirements of these primary inputs are met. Once
this is achieved, we can use these already synchronized primary inputs to gen-
erate those unsynchronized signals yet. This approach allows us to realize the
synchronization correctly with fewer registers. Specifically, in the example of
the SKINNY S-box, we insert registers in the path of each primary input (i.e.,
x0, x1, x2 and x3) until the latency constraints are satisfied, obtaining signals
x′
0, x′

1, x′
2 and x′

3 at layer L0(a) of Fig. 6. Then, at layer L0(b), we assign x′
0,

x′
1,x′

2 and x′
3 to signals, the latency of which does not meet the requirements

yet. At layer L0, this new approach requires only four registers to synchronize
latency, saving two registers compared to the approach of AGEMA shown in
Fig. 5. Since the L1 layer in the example exhibits a one-to-one correspondence
between the unsynchronized signals and the primary inputs to that layer (i.e.,
l1, l2, t1 and t0), this layer behaves the same as Fig. 5. It should be noted that
due to the masking scheme, i.e., each signal in Figs. 5 and 6 consists of at least
d + 1 shares, our implementation technique actually saves 2(d + 1) registers in
the above example.

3.4 Automation Tool AGMNC

Figure 7 shows the implementation principle of the automation tool AGMNC.
The input of AGMNC is the look-up table description of nonlinear component
(e.g., an S-box), and the output is a hardware masked implementation. The
operation process of AGMNC consists of two phases: one is the pre-processing
and the other one is the implementation-processing.

Fig. 7. The operation process of automation tool AGMNC.

332 L. Wu et al.

In the pre-processing phase, AGMNC first finds a circuit representation suit-
able for our techniques and tool above for a given S-box using several constraints
and the STP solver described in the next paragraph. Then, this circuit represen-
tation is synthesized into the corresponding netlist through the Design Compiler.
The unprotected netlist is fed to the implementation-processing module. For the
implementation-processing phase, the first step is to extract and replace cells.
This involves replacing the AND-XOR and AND gates in the netlist with the
AND-XOR and HPC-AND gadgets, respectively. The next step is calculating
the latency for each input and output port of each AND-XOR and HPC-AND
gadget. The latency asymmetry feature is checked and confirmed in this step.
Subsequently, the implementation optimization technique is executed to syn-
chronize the internal and output signals, the latency of which does not meet the
requirements. The key techniques in the implementation-processing phase have
been detailed in Sects. 3.1 to 3.3, hence this section focuses on the pre-processing
phase.

Given the inherent complexity of searching for the circuit representation of
a particular S-box, we utilize a solver based on the Boolean satisfiability (SAT)
problem, namely STP, to find the circuit representation. As mentioned above, in
the pre-processing phase, we should add several constraints to the STP solver to
find the circuit representation suitable for our techniques and tool. The meaning
and necessity of each constraint are described below.

Constraint 1 (the depth and number of AND-XOR and HPC-AND gadgets).
Since the latency of a single AND-XOR or HPC-AND gadget is two cycles, while
the linear operations can be executed without latency, we control the latency of
the final design by constraining the depth of AND-XOR and HPC-AND gadgets.
Since the area of a single AND-XOR or HPC-AND gadget is significantly higher
than that of a linear operation, especially for high-security orders, it is crucial
to constrain the number of AND-XOR and HPC-AND gadgets to find a final
design with excellent area. The depth and number of above gadgets are optional.

Constraint 2 (latency asymmetry feature). Considering the latency asymmetry
of AND-XOR and AND gadgets, we have to add constraints so that the ‘b’ input
port of each AND-XOR and HPC-AND gadget (as shown in Figs. 3 and 4) is
assigned to the signal generated by the linear operations of primary inputs or
by the linear operations in the previous layer.

Constraint 3 (the number of unique signals at specific positions). This con-
straint is necessary to take advantage of the implementation optimization tech-
nique and further reduce the area of the final design. The unique signals are
the primary inputs and the linear outputs in the previous layer. The specific
positions are the ‘a’ and ‘c’ input ports of each AND-XOR gadget, the ‘a’ input
port of each HPC-AND gadget, each linear output, and the final output.

Automated Generation of Masked Nonlinear Components: 333

More specifically, Eq. (1) is a circuit representation of SKINNY S-box found
by the STP solver. Equation (1) consists of two layers of AND-XOR gadget and
one final output layer. Two AND-XOR gadgets are in each AND-XOR gadget
layer (i.e., t0, t1, t2 and t3), respectively. There are three, two linear outputs in
each AND-XOR gadget layer (i.e., l0, l1, l2, l3 and l4), respectively. The under-
lined terms are exactly the specific positions in each layer, with 8 unique variables
(i.e., x0, x1, x2, x3, l1, l2, l3 and l4). In other words, at least 8(d+1) registers need
to be inserted to synchronize the latency, where d is the security order.

S = L ◦ N1 ◦ N0

N0 : t0 = (x1 + 1)(x2 + 1) + x3, t1 = (x3 + 1)(x2 + 1) + x0,

l0 = x0 + x3, l1 = x1 + 1, l2 = x2

N1 : t2 = t0l0 + l1, t3 = (t1 + 1)l1 + l2, l3 = t1, l4 = t0

L : y0 = t2 + l3, y1 = t3, y2 = l4, y3 = l3.

(1)

4 Performance Evaluations

This section provides several S-box and full cipher implementations to highlight
the benefits of applying our techniques and tool from Sect. 3.

4.1 S-Boxes

Following [24], we encode the constraints above described in Sect. 3.4 into the
STP solver. As a result, we find several circuit representations for the 4-bit S-
boxes of SKINNY [4], PRESENT [5] and PRINCE [6]. Further, we also adapt
the design in [7] to reconstruct the 8-bit S-box of AES [12], in which two parts
are modified, one is the inversion in GF (24) (seen as a 4-bit S-box by the STP
solver), and the other one is the generation of the inputs signals for the inversion
in GF (24). In particular, we reduce an AND gate in the inversion in GF (24) com-
pared to the design from [7], further reducing some randomness and hardware
area required by the masked AND gadget.

To our knowledge, AGEMA is the most related work with our paper. To com-
pare our work to state of the art, we provide two different masking schemes, one
is generated by AGMNC, and the other one is generated by AGEMA, referring
to [7,8]. We use Synopsys Design Compiler R-2020.09-SP4 and NanGate 45 nm
standard cell library to synthesize these implementations of different S-boxes.
Tables 1 and 2 list the synthesized results of the SKINNY S-box and AES S-
box. Regarding synchronization techniques, since pipelining can achieve better
throughput than clock gating when large amount of information are processed,
our work is focused on pipelining and the results of AGEMA is also based on
pipelining.

334 L. Wu et al.

From the results, our work significantly reduces the area overhead compared
to AGEMA. Specifically, we achieve an area reduction of about 21%–41% using
AND-XOR1 gadgets and about 13%–34% using AND-XOR2 gadgets. Notably,
for the first-order secure SKINNY S-box, the reduction is approximately 41%
and 34% using AND-XOR1 and AND-XOR2 gadgets, respectively. The area
reduction can be attributed to the utilization of AND-XOR gadgets and to two
key techniques, i.e., the latency asymmetry and implementation optimization.
Regarding latency, our work outperforms AGEMA by 25%, and specifically, for
the AES Sbox, we reduce the latency from eight cycles to six cycles. The latency
asymmetry feature of AND-XOR and HPC-AND gadgets leads to a latency
reduction. In addition, compared to AGEMA, our work reduces the dynamic
power of about 16%–49% and about 23%–47% using AND-XOR1 and AND-
XOR2 gadgets, respectively. In particular, the dynamic power reduction for the
first-order secure SKINNY S-box is approximately 49% and 47% using AND-
XOR1 and AND-XOR2 gadgets, respectively. These results demonstrate that
our proposed techniques and tool not only greatly reduce the area and latency
overhead, but also significantly reduce the dynamic power.

4.2 Full Ciphers

For the full ciphers, we provide two case studies: SKINNY, which is round-based
encryption and AES, which is byte-serial encryption. The above cases refer to
designs from [4,11], respectively.

To ensure a fair comparison, we initially employ AGEMA to generate the
masking scheme of the above ciphers and then replace its S-boxes with our con-
structions. Tables 3 and 4 list the hardware performance of SKINNY and AES.
Although our work focuses on S-box implementations, we have also made com-
parable performance in the full ciphers. Specifically, we achieve approximately
18%–27% (resp., 17%–24%), 20%–22% (resp., 20%–22%) and 18%–32% (resp.,
19%–31%) reduction in area, latency and dynamic power using AND-XOR1
gadgets (resp., AND-XOR2 gadgets), respectively. It is worth mentioning that
compared to the current automated tool AGEMA, for the first order masking
schemes of the SKINNY cipher, we achieve a reduction of approximately 27%
(resp., 24%) in the area and 20% (resp., 20%) in latency using AND-XOR1 gad-
gets (resp., AND-XOR2 gadgets), respectively. Due to the reduction of an AND
gate in the representation of the AES S-box, we reduce the randomness by 2
(resp., 1), 5 (resp., 3), and 10 (resp., 6) bits in the AES with security order
1, 2 and 3 using AND-XOR1 gadgets (resp., AND-XOR2 gadgets), respectively.
Whether the security order is 1, 2, or 3, and whether using AND-XOR1 or AND-
XOR2 gadgets, we achieve the reduction of approximately 20% in the area and
22% in latency, respectively. The results significantly reduce the gap between the
hand-crafted implementation [22] and the current automation tool AGEMA.

Automated Generation of Masked Nonlinear Components: 335

Table 1. Hardware performance of the SKINNY S-box.

Table 2. Hardware performance of the AES S-box.

Table 3. Hardware performance of the SKINNY round-based encryption function.

336 L. Wu et al.

Table 4. Hardware performance of the AES byte-serial encryption function.

5 Security Analysis

5.1 Theoretical Analysis

To ensure the sub-circuits are PINI secure under the glitch-extended prob-
ing model, we have examined the implementations of all sub-circuits with the
SILVER tool [19], including HPC1, HPC2, AND-XOR1, AND-XOR2, NOT_
masked, XOR_masked and XNOR_masked. Further, the validity of the con-
nections between sub-circuits is guaranteed because AGMNC uses deterministic
procedures to realize the connections between sub-circuits. In addition to the
above analysis, for the masked S-boxes described in this paper, we confirm the
security of all 4-bit S-boxes and some AES S-boxes under the glitch-extended
probing model using SILVER. Given that the SILVER is currently incapable
of analyzing full cipher implementations, we opted to perform experimental
analysis.

5.2 Experimental Analysis

We implement full ciphers on a SAKURA-G [23] board, where a Spartan-6 FPGA
is embedded. Our designs are supplied with a stable clock signal at the frequency
of 24MHz. The power consumption traces are monitored with a PicoScope 5244D
oscilloscope at a sampling frequency of 250 MS/s. Each randomness bit is dynam-
ically generated during runtime with the use of a 31-bit maximum length Linear
Feedback Shift Register (LFSR) presented in [1]. Then, each LFSR is initial-
ized with an independent random seed. As the leakage assessment scheme, we
perform fixed-versus-random t-test [14], which is widely used to evaluate the
security of masked implementations. In each design, we keep the key constant
and collect 1 million traces to conduct the t-test analysis.

Figures 8 and 9 depict the t-test results of SKINNY based on AND-XOR2
for the first-order and second-order masking schemes, respectively. The results in
Figs. 8(a), 9(a) and 9(b) confirm the first-order security for the first-order design,

Automated Generation of Masked Nonlinear Components: 337

as well as the first- and second-order security for the second-order design. For
comparison, we also provide the results in Figs. 8(b) and 9(c) for the two designs
when PRNG OFF to check our measurement setup.

Fig. 8. SKINNY round-based encryption, first-order based on AND-XOR2.

Fig. 9. SKINNY round-based encryption, second-order based on AND-XOR2.

6 Conclusion

In this paper, we developed a user-friendly tool for the automated generation
of masked nonlinear components (AGMNC), which enables hardware designers,
regardless of their experience level, to elegantly and efficiently create secure
masked hardware S-box circuits starting from the look-up table description.

AGMNC utilizes the AND-XOR gadget, latency asymmetry feature, and
implementation optimization to generate efficient masked circuits. Furthermore,
we show how to find implementations of given S-boxes that satisfy our techniques
using the STP solver. We use AGMNC to generate a masked implementation of
several S-boxes and evaluate the hardware performance from the perspective of
the individual S-box and the full cipher. The evaluation shows that our designs
require less area, latency, dynamic power, and even randomness, with a reduction
of up to 41%, 25%, 49%, and 3% than AGEMA, respectively. Finally, we use the
SILVER tool and FPGA-based practical experiments to verify the security of our
designs. As an open problem, to bridge the gap between PINI-based designs and
hand-crafted ones in terms of hardware performance, it is essential to propose
additional gadgets and optimization techniques.

338 L. Wu et al.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions on the paper. This work is supported
by the National Key Research and Development Program of China (Grant No.
2018YFA0704702), the National Natural Science Foundation of China (Grant No.
62032014), the Major Basic Research Project of Natural Science Foundation of Shan-
dong Province, China (Grant No. ZR202010220025), Quan Cheng Laboratory (Grant
No. QCLZD202306).

References

1. Alfke, P.: Efficient shift registers, LFSR counters, and long pseudo-random
sequence generators (1998). https://docs.xilinx.com/v/u/en-US/xapp052

2. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5_18

3. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 116–129 (2016)

4. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Yu.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5_5

5. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

6. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4_14

7. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 287–298.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30436-1_24

8. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.X.: Hardware private circuits: from
trivial composition to full verification. IEEE Trans. Comput. 70(10), 1677–1690
(2020)

9. Cassiers, G., Standaert, F.X.: Trivially and efficiently composing masked gadgets
with probe isolating non-interference. IEEE Trans. Inf. Forensics Secur. 15, 2542–
2555 (2020)

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1_26

11. Daemen, J., Rijmen, V.: The design of Rijndael. In: 2nd edition. Springer, Cham
(2002)

12. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)
13. Faust, S., Grosso, V., Pozo, S., Paglialonga, C., Standaert, F.X.: Composable mask-

ing schemes in the presence of physical defaults & the robust probing model (2018)

https://docs.xilinx.com/v/u/en-US/xapp052
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26

Automated Generation of Masked Nonlinear Components: 339

14. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for side-
channel resistance validation. In: NIST Non-invasive Attack Testing Workshop,
vol. 7, pp. 115–136 (2011)

15. Groß, H., Mangard, S.: A unified masking approach. J. Cryptogr. Eng. 8, 109–124
(2018)

16. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. Cryptology ePrint
Archive (2016)

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

18. Knichel, D., Moradi, A., Müller, N., Sasdrich, P.: Automated generation of masked
hardware. Cryptology ePrint Archive (2021)

19. Knichel, D., Sasdrich, P., Moradi, A.: SILVER – statistical independence and leak-
age verification. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS,
vol. 12491, pp. 787–816. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64837-4_26

20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

22. Momin, C., Cassiers, G., Standaert, F.-X.: Handcrafting: improving automated
masking in hardware with manual optimizations. In: Balasch, J., O’Flynn, C. (eds.)
COSADE 2022. LNCS, vol. 13211, pp. 257–275. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-99766-3_12

23. SAKURA: side-channel attack user reference architecture. http://satoh.cs.uec.ac.
jp/SAKURA/index.html

24. Stoffelen, K.: Optimizing s-box implementations for several criteria using SAT
solvers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 140–160. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_8

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-030-99766-3_12
https://doi.org/10.1007/978-3-030-99766-3_12
http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
https://doi.org/10.1007/978-3-662-52993-5_8

A Command-Activated Hardware Trojan
Detection Method Based on LUNAR

Framework

Xue Yang1, Congming Wei2,3(B), Yaoling Ding2, Shaofei Sun2, An Wang2,
and Jiazhe Chen4

1 School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 100081, China

2 School of Cyberspace Science and Technology, Beijing Institute of Technology,
Beijing 100081, China
weicm@bit.edu.cn

3 Advanced Cryptography and System Security Key Laboratory of Sichuan Province,
Chengdu 610054, China

4 China Information Technology Security Evaluation Center, Beijing, China

Abstract. Hardware Trojans have become a major challenge to ICs due
to their serious damage to the reliability and security. However, hardware
Trojans can be activated in a variety of ways, making accurate activation
of hidden hardware Trojans extremely difficult. In this paper, we propose
an automatic anomaly detection method based on LUNAR (Learnable
Unified Neighborhood-based Anomaly Ranking) based on graph neu-
ral networks to efficiently, quickly, accurately, and automatically detect
unknown commands secretly inserted by untrusted parties. This method
could effectively detect the command-activated hardware Trojans, which
are the most frequently used activation mode. While retaining the linear
time complexity advantage of PBCS (Pruning Bytes Command Search),
we try to use neighbor information in a trainable way to find anomalies
in each node, which could effectively reduce manual intervention in unsu-
pervised conditions. Our experiments mainly focus on the preprocessed
waveform sets with obvious features, Gaussian noise waveform sets with
weak features, and original waveform sets without any obvious features.
The results show that the LUNAR framework can detect anomalies sig-
nificantly better than One-Class SVM, Isolation Forest and Local Outlier
Factor, which are easily affected by parameter adjustment, especially in
scenarios with no preprocessing and no obvious features.

Keywords: Hardware Trojan Detection · Graph Neural Network ·
Side Channel Analysis

1 Introduction

In recent years, with the rapid development of information technology and pro-
cessors, integrated circuits, as key basic equipment, have been widely used in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 340–358, 2024.
https://doi.org/10.1007/978-3-031-61486-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_20

LUNAR-PBCS 341

various fields such as aerospace, industrial Internet, finance, and medical treat-
ment [1,2]. At the same time of the development of integrated circuit technology,
the structure and function of electronic information system tend to be complex,
which directly leads to a significant increase in the difficulty of security detection
[3]. Figure 1 shows the level of trust at different stages of a typical integrated
circuit’s life cycle [4]. Each party involved in ICs design and manufacturing can
insert malicious circuits that compromise the security and trust of the underlying
hardware, known as hardware Trojans [5]. Hardware Trojans can independently
complete the attack function, such as leaking information to the at-tacker, chang-
ing the circuit function, and directly destroying the circuit.

Fig. 1. Vulnerable steps of a modern IC life cycle [6]

Attackers often create a stealth Trojan that evades detection through routine
post-testing, but becomes apparent during prolonged field operations. For ICs of
moderate complexity, the number of possible Trojans can be very large and have
different activation mechanisms (called triggers) and effects (called payloads) [1].
Figure 2 shows a simplified block diagram of a hardware Trojan that causes a fail-
ure when triggered (by modifying the signal S to S′). The activation condition
that triggers the logic implementation is true. Such malicious inclusions effectively
play the role of “spy or terrorist” on the chip and can be very powerful, potentially
leading to disastrous consequences in a variety of applications [7].

Trojans in hardware usually require a trigger to activate, which means find-
ing the trigger is key to detecting hardware Trojans. The object of our research
is a hardware Trojan whose trigger type is command-activated, which aims
to efficiently, quickly, accurately and automatically detect unknown commands
secretly inserted by untrusted parties. The traditional method for command-
activated hardware Trojans is to check whether the device returns the expected
response value. This inefficient search strategy requires searching the entire com-
mand space, resulting in extremely high time complexity. Shang et al. proposed
an command search algorithm based on byte pruning and combined with side

342 X. Yang et al.

Fig. 2. General structure of a hardware Trojan in a design

channel information for hardware Trojan detection, which reduced the time com-
plexity from exponential to linear [8]. However, the anomaly detection model
used lacks trainable parameters and cannot adapt to different datasets. There-
fore, sufficient forward data must be captured before each detection for model
training, which requires a large workload and many restrictions.

We propose an automated anomaly detection method using LUNAR (Learn-
able Unified Neighborhood-based Anomaly Ranking) based on graph neural net-
works, which retains the advantages of linear time complexity of PBCS (Pruning
Bytes Command Search), and learns to use neighbor information in a trainable
way to find anomalies of each node. The unsupervised detection method can effec-
tively reduce the workload of manual intervention in the anomaly detection stage:

1. No need to use gold chips, nor to manual capture a large number of side
channel information of invalid commands byte by byte as a training set.

2. The LUNAR framework makes up for the lack of other methods’ ability to
learn optimization or adapt to specific datasets, and can maintain high accu-
racy in scenarios with low signal-to-noise ratio, such as power waveforms
without any preprocessing and scenes with little Gaussian noise.

3. The output of LUNAR-PBCS is not affected by different communication pro-
tocols, and the k that defines the neighborhood range has very little influence
on the final exception.

With the help of LUNAR-PBCS, we can accurately recover the executable com-
mands of the 8051 MCU in a short time according to the side channel information
when the chip parses the commands.

The rest of this article is organized as follows. In Sect. 2, we give a preliminary
look at APDU (Application Protocol Data Units) and parsing paths. Then we
summarize the relevant work in this field in Sect. 3. Sections 4 and 5 describe
model design and system design, respectively, and explain the core algorithms
used in our approach. In addition, in Sect. 6, we design three scenarios to validate

LUNAR-PBCS 343

our method and compare the effect of our method with the original three anomaly
detection methods. Finally, we conclude the paper in Sect. 7.

2 Preliminaries

2.1 Application Protocol Data Unit

APDU is a communication data unit between the host computer and the chip
that conforms to a specific communication protocol, and is often used for data
interaction and smart card control. In the smart card control scenario, APDU
is the data unit between the smart card and the card reader. The APDU used
in this paper is defined by the ISO/IEC 7816-4 protocol [9].

In the ISO/IEC 7816-4 protocol, there are two types of APDU: C-APDU
(Command APDU) and R-APDU (Response APDU). The command APDU is
sent by the card reader to the smart card and contains the required 5-byte
header (CLA, INS, P1, P2, Le) and 0 to 255 bytes of data. The response APDU
is sent by the smart card to the card reader and contains the mandatory 2-byte
status word and 0 to 256 bytes of data. Standard smart cards judge APDU bytes
sequentially, so the parsing path for C-APDU is CLA-INS-P1-P2-Le.

2.2 Parsing Path and Valid Bytes

Commands received by hardware interworking are parses in a specified sequence.
This sequence is called the parsing path. For example, the C-APDU parsing path
in ISO/IEC 7816-4 is CLA-INS-P1-P2-Le in byte order.

The judgment process of command parsing is usually pruned. Only when the
currently judged byte matches the valid command set, the validity of the next
byte will continue to be judged according to the parsing path. At this time, the
byte is recognized as a valid byte. Otherwise, the byte is an invalid byte, and
the validity of the next byte is no longer judged according to the parsing path.
The chip returns the response value of the empty command and the chip enters
the idle state.

The chip’s parsing behavior and discrimination process for each byte of dif-
ferent data are different, and the change of CMOS in the circuit is also different,
which will lead to differences in the captured side channel information, so that
we have the opportunity to make a successful outlier detection.

3 Related Works

3.1 Hardware Trojan Detection

Integrated circuits are widely used in aerospace, industrial Internet, medical
treatment, finance and other fields. The security of integrated circuits directly
affects the normal operation of various systems and the security of confidential
information, so hardware Trojans are a serious and valuable security problem

344 X. Yang et al.

[10]. The implant forms and activation methods of hardware Trojans are com-
plicated, and the conventional detection methods mainly include destructive
detection, logical test, side channel analysis and so on.

The destructive detection method is based on the failure analysis technique.
It reverses the packaged integrated circuit, scans the circuit layer by layer, and
reconstructs the circuit structure diagram to find out whether there is a hardware
Trojan in the circuit [11]; Logical testing was proposed by Wolff et al. [12].
Automatic Test Pattern Generation (ATPG) testing technology based on VLSI
fault testing mainly adopts different test vector generation methods [13,14]. The
hardware Trojan is detected by observing the effect of the hardware Trojan on
the circuit value at the output port. This detection method is extremely costly
and requires the generation of an extremely large number of test vectors for
execution and monitoring. In addition, the generated vectors are often difficult
to cover the entire command set; Side channel analysis realizes hardware Trojan
detection through the change of side channel information during chip running.
If there is a hardware Trojan implanted, it will inevitably cause effects such
as reduced performance and changed power consumption. This article mainly
discusses the method, so it will be explained in more detail below.

3.2 Hardware Trojan Detection Based on SCA

When a chip is working, it will cause changes in the side channel information such
as thermal signal, electromagnetic radiation signal or power consumption signal
[4]. Although the hardware Trojan is in the inactive state most of the time, the
implantation of the hardware Trojan and the behavior of constantly detecting
trigger conditions will have some impact on the side channel information, making
it a breakthrough for detection.

Power-based and path-delay based channel analysis are two basic schemes of
hardware Trojans. Power-based bypass analysis is often based on gold chips to
detect hardware Trojans by comparing the target device with a trusted device
with the same specifications as the target device and without hidden Trojan
circuits. Such trusted devices are called gold chips, and researchers often use
machine learning classification or clustering algorithms to complete detection
based on data labels [15]. Bypass analysis based on path delay detects Trojans
by comparing and measuring the delay difference of circuits. This is because the
implantation of hardware Trojans can lead to changes in the number of gates in
the circuit, which will change the delay characteristics of the circuit [16–19], such
as signal flipping delay and signal transmission delay. Trojans in the circuit can
be detected based on power consumption and path delay information. However,
due to the existence of process noise, the detection effect is often not very satis-
factory, especially the bypass detection based on delay information. Therefore,
researchers propose the bypass analysis by measuring multiple parameters and
combining them [20,21]. For example, Narasimhan et al. proposed to calculate
the maximum operating frequency of the circuit with the two parameters of
static current and dynamic current, which can reduce the influence of process
noise [20] and improve the Trojan detection effect.

LUNAR-PBCS 345

In this paper, a new method to avoid the use of gold chips is proposed,
which combines the unified local outlier anomaly detection method based on
graph neural network with the anomaly detection of side channel information
and applies it to hardware Trojan detection.

3.3 Pruning Bytes Command Searching

Hardware usually completes data interaction and chip control by receiving and
parsing commands and returning response values. Different types of hardware
follow different command and response value protocols, and APDU is one of
the communication data units between the host computer and the chip that
conforms to a specific communication protocol. The APDU used in this article
is defined by the ISO/IEC 7816-4 protocol.

For hardware Trojans triggered by specific commands, exhaustive testing can
theoretically be performed. As shown in Fig. 3, first of all, the executable com-
mand set composed of valid commands and the empty command set composed
of invalid commands are obtained by analyzing whether the response value or
the side channel information during chip execution has significant characteris-
tics. Comparing the executable command set with the official command-list, the
executable command set can be divided into user commands published by the
manufacturer and hidden commands not disclosed by the manufacturer, and
then possible Trojan commands can be targeted in the hidden commands. This
exhaustive based functional testing technology has simple principle, high stabil-
ity, and is not affected by process variables and test noise, but the number of
test vectors is large, the time complexity is high, and because the function may
require a specific context, the executable commands are likely to be lost [22].

Fig. 3. The process of inferring Trojan command

4 Valid Command Detection Algorithm Based on Power
Analysis

4.1 LUNAR Framework

Goodge et al. proposed a unified Anomaly detection framework LUNAR based on
the idea of graph neural network and local outlier detection [23]. Anomalies can
be detected by learning features based on nearest neighbor nodes. This approach

346 X. Yang et al.

uses the messaging framework of single-layer GNN to represent a set of data as
a graph. Where the node corresponds to each sample data, and the directed
edge connects the target node to a set of source nodes that are the nearest
neighbors of the sample. For a given target node, the network uses information
from its neighbors to learn to calculate its outlier score. It differs from the GNN
implementation in that:

a. Use any feature-based tabular dataset to build k-NN graphs, without being
limited to graph datasets.

b. Using the distance from a node to its k nearest neighbors as input is more
general than using eigenvectors.

c. A learnable message aggregation function is used, whereas most GNNs use
fixed aggregation functions.

Nearest Neighborhood Graph: For a sample data xi, we define it as a target
node and use edge (j, i) to connect target node xi, to source node j, where j is
a group of k nearest neighbors of xi. The eigenvector of an edge is equal to the
distance between two points xi, to j in Euclidean space.

ej,i =
{

dist(xi, xj) if j ∈ Ni

0 otherwise (1)

Since all training samples are assumed to be normal, we only need to look
for the nearest neighbor in the training sample, so the anomaly does not affect
the neighborhood.

Then, we need to define the message function, the aggregation function, and
the update function.

Message: The message passed from source node j to destination node i via edge
(j, i) is the eigenvector of edge (j, i). That’s the distance between two points.

φ(1) := ej,i. (2)

Aggregation: We use a learnable aggregation method suitable for dealing with
neighbor nodes of a fixed size k. Instead of using a fixed average or maximum
pool. Message aggregation involves joining them to give a K-dimensional vec-
tor e(i), where each entry represents the distance from xi to its corresponding
neighbor node.

e(i) := [e1,i, . . . , ek,i] ∈ R
k. (3)

This vector is mapped through the neural network to a single scalar value rep-
resenting the anomaly of node i:

h
(1)
Ni

:= F
(
e(i), Θ

)
. (4)

Update: Update the learned aggregate information output:

γ(1) := h
(1)
Ni

. (5)

LUNAR-PBCS 347

4.2 PBCS Combined with LUNAR

Hardware Trojan detection based on side channel information requires us to
capture the corresponding side channel information in real time when the chip
receives and analyzes the commands, that is, on the one hand, the PC controls
the chip to send and receive commands, and on the other hand, the oscilloscope is
controlled to capture the side channel information when the chip is working. The
side channel information mentioned in this paper is all power signals. Next, we
introduce the implementation flow of the hardware Trojan side channel detection
based on LUNAR.

In general, LUNAR uses a graph neural network to construct a dataset into a
graph. A single sample data is regarded as a point in the graph, the sample point
is defined as the target node, and the nearest neighbor node is defined as the
source node. Treat the distance between the edges as information (eigenvalue).
A target node is described by k source nodes. LUNAR then uses a learnable
aggregation method for dealing with neighbor nodes of a fixed size, which atten-
uates the effect of k. This vector in turn is mapped by the neural network into
a scalar that can represent the node outliers.

In the experiment implementation process of this paper, the traversal com-
mand i is sent to the chip and the corresponding side channel information xi

is captured in real time to obtain the side channel information dataset X to be
detected. Based on the unified framework of the LUNAR model, the abnormal
scores of different transformations are obtained, and the valid commands are
determined. LUNAR avoids directly training high-dimensional input features
when training, instead using the distance between two points.

Since abnormal samples occupy a significantly lower proportion in datasets,
during the detection process, it is first assumed that all side channel information
samples are normal, and then the anomalies are located through the neigh-
borhood based on the actual distribution of the data. This anomaly detection
scheme driven by data distribution has the advantage of not requiring the use
of golden chips, nor the need to manually capture side channel information of a
large number of invalid commands byte by byte as a training set.

5 System Design

5.1 Assumptions

Before describing the implementation method of hardware Trojan detection, the
experimental hypothesis of this paper is described first.

Assumption 1. There are power leaks when chips perform operations, and the
hardware power leaks obey the same probability distribution when the operations
are the same.

Common internal chips are usually based on CMOS processes, in which all
operations of the chip will be completed by changing the state of the logic gate
circuit. When the chip performs different operations, it will cause changes in the

348 X. Yang et al.

logic gate circuit of different parts. This change may be reflected in the physical
level of the overall current change of the chip, which can also be called power
consumption change. Assumption 1 is the physical basis and core concern of
power consumption analysis during side channel analysis.

Assumption 2. When the hardware performs an operation, the power leak can
be captured by some means.

Generally speaking, the inspector has absolute control over the device that
has hardware Trojan detection requirements. Most hardware devices without
special protection can be modified by circuit using some side channel technology
to capture power leakage. This is the basic condition for side channel analysis,
so Assumption 2 is also easy to implement.

Assumption 3. Executable commands are sparse in the possible command
space.

This is not an unrealistic assumption, because the command space is
extremely large, and the operations that the chip needs to perform are lim-
ited. In fact, in most devices, executable commands occupy only a very small
part of the command space. When designing Trojan commands, it is necessary
to ensure their concealment, and the functions that usually need to be performed
are relatively limited, so Assumption 3 can also be achieved.

Fig. 4. System design

LUNAR-PBCS 349

5.2 Detection System

The detection system of this paper is shown in Fig. 4. In the process of detection,
the master control module on the computer firstly sets the trigger conditions of
the oscilloscope, and the oscilloscope enters the state of preparation for sampling.
The master control module sends traversal commands to the chip, and the chip
command parsing module analyzes the commands. At the same time, the oscillo-
scope captures the power, electromagnetic and other information of the chip. The
oscilloscope sends the captured power or electromagnetic waveform to the master
control module on the computer. The master control module organizes the com-
mands and waveforms as the side channel information dataset X to be detected.

After obtaining the side channel information dataset X, the validity of cur-
rent byte will be detected through the LUNAR framework combined with PBCS.
If the current byte is valid, we will continue to traverse the next byte, and detect
the valid bytes byte by byte until the executable command set is obtained. Then
we compare it with the official command-list published by the manufacturer to
confirm whether there are hidden executable commands in the chip, which are
possible Trojan commands.

6 Evaluation and Findings

6.1 Evaluation Method

For the calculation of outlier scores, we similarly follow the framework of LUNAR
proposed by Goodge et al. The loss function is used to train GNN to output “0”
points for a normal node and “1” points for an abnormal node. Since all the
training points belong to the normal class, the network can output “0” scores
regardless of the input, thus achieving perfect training accuracy. To avoid such
trivial solutions, we generate negative samples as artificial exceptions and train
the model to output “1” point for negative sample nodes. Negative samples can
be generated by uniform distribution and subspace perturbation.

The first method is to generate negative samples through uniform distribu-
tion:

x(negative) ∼ U (−ε, 1 + ε) ∈ R
d (6)

where ε is a small and positive constant. The value of ε in all experiments is set
to 0.1 for simplicity. The training data will be normalized to the range [0, 1].
Considering that abnormal samples may be too far away from normal samples,
making it difficult for the model to learn the decision boundary, it is necessary
to generate some abnormal samples that are closer to and more difficult to
distinguish from normal samples.

The second method is to select a subspace among all the feature dimensions
of the normal sample and generate a negative sample by adding Gaussian noise
to the features in the subspace:

z ∼ N (0, I) ∈ R
d, (7)

350 X. Yang et al.

x(negative) = x
(train)
i + M ◦ εz (8)

where ε is a minimal positive integer, M ∈ Rd is a vector of binary random vari-
ables, every element of M has p, p has probability 1, and (1− p) has probability
0. Each dimension set to 1 will be disturbed by noise. The value of p is set to
0.2 in all experiments.

Based on the above information, our purpose is to learn the decision bound-
ary between normal and negative samples, which can be generalized to real
exceptions in the test set. In this paper, the generation of negative samples is
mixed with the above two methods.

6.2 Experiment and Result

Next, three different experimental scenarios are introduced, which are micro-
controller unit following ISO/IEC 7816-4 with filter, microcontroller unit fol-
lowing ISO/IEC 7816-4 with Gaussian noise and microcontroller unit following
ISO/IEC 7816-4 without filter.

In order to better reflect the byte-based experimental effect of PBCS, the
second byte called INS is iterated in the following scenario in a microcontroller
following the ISO/IEC 7816-4 protocol, where the first byte CLA = 00 is a valid
byte, and other bytes are added to 00 according to the protocol. That is, the
command set I traversed is [00 00 00 00 00, 00 01 00 00 00, 00 02 00 00 00
00, ..., 00 FF 00 00 00 00], and the side channel information of each command
execution is captured at the same time to obtain the side channel information
dataset X to be detected.

Fig. 5. Power waveforms with low-pass filter when the INS byte is invalid (four wave-
forms are overlaid).

LUNAR-PBCS 351

Fig. 6. Power waveform with low-pass filter when the INS byte is valid

Scenario 1: Microcontroller Unit Following ISO/IEC 7816-4 with Pre-
processing. In actual scenarios, since the behavior of capturing power signals is
acquired and the packaged chips need to be processed, various noises inevitably
exist in the environment. Directly captured side channel information datasets
usually have a low signal-to-noise ratio, so certain preprocessing is required.

In the power waveforms, features can be extracted by external filter, digital
filter, sliding window average and other methods. When the external filter is
connected or the low-pass filter is used for preprocessing, the signal-to-noise ratio
can be effectively improved and the points of interest with significant features
can be better located. The preprocessed power waveforms are shown above,
where Fig. 5 is the power waveform when INS byte is invalid, and Fig. 6 is the
power waveform when INS byte is valid. The power waveform when an INS
byte is invalid is overlaid with the power waveform when an INS byte is valid.

Fig. 7. Overlay the power waveform corresponding to the invalid INS byte (yellow)
with the power waveform corresponding to the valid INS byte (blue) in the preprocessed
waveform set. (Color figure online)

352 X. Yang et al.

According to the Fig. 5, we can see that the power waveforms when the INS
byte is invalid are highly consistent, which helps us more easily locate the power
waveform when the INS byte is valid in the dataset.

As shown in Fig. 7, the power waveform captured when there is a filter has
many significant characteristics, and the anomaly detection is easier and more
accurate at this time. The waveform set containing both valid bytes and invalid
bytes is detected by One-Class SVM, IF (Isolation Forest), LOF (Local Outlier
Factor) and LUNAR four methods respectively, and the outlier score of each
waveform is calculated. The result is shown in Fig. 8, the green dots correspond to
invalid byte waveforms, and the red triangles correspond to valid byte waveforms.

Fig. 8. Anomaly scores detected by One-Class SVM, IF, LOF and LUNAR on the
preprocessed waveform set. (Color figure online)

According to the Fig. 8, we can find that for waveform sets with obvious
features, the four methods can accurately determine the anomaly points. In this
scenario, the outlier score given by LOF for outliers is more significantly outlier
than that given by other methods.

Scenario 2: Microcontroller Unit Following ISO/IEC 7816-4 with Arti-
ficial Gaussian Noise. There may be various noises in the real experiment
environment. Based on the above experiments, we added Gaussian noise with
Xmean = 0 and sigma = 0.05 to the power waveform to verify the detection

LUNAR-PBCS 353

Fig. 9. Power waveforms with Gaussian noise when the INS byte is invalid (four wave-
forms are overlaid).

Fig. 10. Overlay the power waveform corresponding to the invalid INS byte (yellow)
with the power waveform corresponding to the valid INS byte (blue) in the Gaussian
noise waveform set. (Color figure online)

capabilities of each detection method in a noisy environment. Figure 9 shows
the power waveforms when four INS invalid bytes are overlaid. Different from
the preprocessed waveform, we can see that the power waveform when the INS
byte is invalid is no longer highly consistent at this time, which makes it more
challenging for us to locate the power waveform when the INS byte is valid in
the dataset.

When Gaussian noise is added, the power waveform (yellow) corresponding
to invalid INS byte and the waveform (blue) corresponding to valid INS byte
are shown in Fig. 10. Different from the waveforms with low-pass filter, we can
see that the difference between the two types of power waveforms is no longer
stable, which also brings more severe challenges to unsupervised detection.

Use One-Class SVM, IF, LOF, and LUNAR methods to detect waveform sets
containing valid bytes and invalid bytes, and calculate the anomaly score of each
waveform. The results are as shown in Fig. 11. The green dots correspond to

354 X. Yang et al.

Fig. 11. Anomaly scores detected by One-Class SVM, IF, LOF and LUNAR on the
Gaussian noise waveform set. (Color figure online)

the waveform of invalid bytes, and the red triangle corresponds to the waveform
of valid bytes. According to Fig. 11, we can infer that One-Class SVM and IF
are completely unable to distinguish valid commands from invalid commands.
LOF can identify that the power waveform corresponding to valid commands
has a relatively high degree of abnormality but cannot be an absolute outlier.
Only LUNAR can accurately The determination of valid commands, that is, for
waveform sets with more complex feature differences, LUNAR-based detection
has the best detection ability among the above methods.

Scenario 3: Microcontroller Unit Following ISO/IEC 7816-4 Without
Preprocessing. The detector’s behavior of capturing signals is acquired. There-
fore, in actual scenarios, it is usually necessary to reprocess the packaged chips.
This inevitably leads to the fact that directly captured side channel information
datasets usually have a low signal-to-noise ratio. However, inspectors are not
always able to explore the most appropriate preprocessing methods in less time
to capture points of interest and amplify features in the raw data. Therefore,
the following challenge is to perform anomaly detection on the power waveform
without preprocessing.

The following Fig. 12 shows the power waveform corresponding to the invalid
INS byte (yellow) and the power waveform corresponding to the valid INS byte
(blue) without preprocessing. Different from the preprocessing, it is difficult for
us to see the difference between the two types of power waveforms, which also
brings more severe challenges to unsupervised detection. For waveform sets con-

LUNAR-PBCS 355

Fig. 12. Overlay the power waveform corresponding to the invalid INS byte (yellow)
with the power waveform corresponding to the valid INS byte (blue) without prepro-
cessing. (Color figure online)

taining both valid bytes and invalid bytes, we still use four methods: one-class
SVM, IF, LOF, and LUNAR. And we calculate the outlier score of each wave-
form. The results are shown in Fig. 13, the green dots correspond to invalid byte
waveforms, and the red triangles correspond to valid byte waveforms. According
to Fig. 13, it can be inferred that only the detection-based LUNAR can accu-
rately detect the correct results for the waveform sets with not obvious features.

Fig. 13. Anomaly scores detected by One-Class SVM, IF, LOF and LUNAR on the
original waveform set. (Color figure online)

356 X. Yang et al.

6.3 Discovery and Discussion

In scenario 1, when the waveform set has obvious characteristics with prepro-
cessing, anomaly detection is not a very difficult problem. However, for wave-
forms with a low signal-to-noise ratio, how to effectively extract points of interest
through preprocessing is challenging, which requires inspectors to be experienced
and have an in-depth understanding of the target device.

In scenario 2, there is artificially added Gaussian noise in the waveform set.
At this time, the feature differences between abnormal data and normal data are
relatively more complex, and anomaly detection based on unsupervised scenarios
is more challenging. Our experimental results prove that LUNAR can provide
accurate detection results in this scenario.

In scenario 3, the waveform set is not any preprocessed, and it is difficult
to find the characteristics corresponding to the abnormal waveform, and it is
difficult to directly detect the anomaly at this time. Our experimental results
show that the LUNAR also has a good effect in this scenario. We suspect that
this is because LUNAR improves the ability to learn optimizations or adapt to
specific datasets that other methods lack. Moreover, significantly better than
other methods, k defined in the LUNAR framework has little influence on the
final anomaly. It is difficult for One-Class SVM, IF and LOF to adjust the
parameters in the true “correct” direction without supervision, which has a
great negative impact on the correctness of the results.

In addition, there are still many scenarios worth exploring, such as the pres-
ence of different types of noise, the presence of random delays, and so on. For
example, we conducted experiments on the presence of Gaussian noise of differ-
ent strengths and the presence of random delay respectively, and LUNAR only
performed well on the addition of weak Gaussian noise, but did not perform well
on the presence of more Gaussian noise and the presence of random delay, which
is worthy of more in-depth research.

7 Conclusion

In this paper, an automatic anomaly detection method using the unified local
outlier LUNAR based on graph neural network is proposed. It retains the advan-
tages of linear time complexity of PBCS, and learns to use neighbor information
in a trainable way to find the anomaly of each node. The unsupervised detec-
tion method can effectively reduce the workload of manual intervention in the
anomaly detection stage.

The experiment mainly focuses on the detection of preprocessed waveform
sets with obvious features, Gaussian noise waveform sets with weak features, and
original waveform sets without any obvious features. Experiments have shown
that for Gaussian noise waveform sets with weak features and original waveform
sets without any obvious features, the LUNAR framework’s anomaly detection
effect is significantly better than other methods such as One-Class SVM, IF,
and LOF that are susceptible to parameter adjustment. This also proves that
our method can achieve highly automated and accurate detection even in the
environment with low signal-to-noise ratio.

LUNAR-PBCS 357

Acknowledgement. This work was supported by the National Key R&D Plan of
China (2022YFB3103800), The Open Fund of Advanced Cryptography and System
Security Key Laboratory of Sichuan Province (SKLACSS-202207), National Natural
Science Foundation of China (62302036, 62272047), and Henan Key Laboratory of
Network Cryptography Technology (LNCT2022-A24).

References

1. Bhunia, S., Hsiao, M.S., Banga, M., et al.: Hardware trojan attacks: threat analysis
and countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)

2. Lv, Y.Q., Zhou, Q., Cai, Y.C., et al.: Trusted integrated circuits: the problem and
challenges. J. Comput. Sci. Technol. 29(5), 918–928 (2014)

3. Sumathi, G., Srivani, L., Thirugnana Murthy, D., et al.: A review on HT attacks in
PLD and ASIC designs with potential defence solutions. IETE Tech. Rev. 35(1),
64–77 (2018)

4. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware trojan: threats and
emerging solutions. In: 2009 IEEE International High Level Design Validation and
Test Workshop, pp. 166–171. IEEE (2009)

5. Adee, S.: The hunt for the kill switch. IEEE SpEctrum 45(5), 34–39 (2008)
6. DARPA, TRUST in Integrated Circuits (TIC) - Proposer Information Pamphlet,

2007
7. Bhunia, S., Abramovici, M., Agrawal, D., et al.: Protection against hardware trojan

attacks: towards a comprehensive solution. IEEE Des. Test 30(3), 6–17 (2013)
8. Shang, N., Wang, A., Ding, Y., et al.: A machine learning based golden-free detec-

tion method for command-activated hardware Trojan. Inf. Sci. 540, 292–307 (2020)
9. ISO/IEC 7816-4:2005 Identification cards - Integrated circuit cards - Part 4: Orga-

nization, security and commands for interchange. Iso.org. 2008-10-03
10. Skorobogatov, S., Woods, C.: Breakthrough silicon scanning discovers backdoor in

military chip. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 23–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-
8 2

11. Wang, X., Tehranipoor, M., Plusquellic, J.: Detecting malicious inclusions in secure
hardware: challenges and solutions. In: 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, pp. 15–19. IEEE (2008)

12. Wolff, F., Papachristou, C., Bhunia, S., et al.: Towards Trojan-free trusted ICs:
problem analysis and detection scheme. In: Proceedings of the Conference on
Design, Automation and Test in Europe, pp. 1362–1365 (2008)

13. Banga, M., Hsiao, M.S.: A region based approach for the identification of hardware
Trojans. In: 2008 IEEE International Workshop on Hardware-Oriented Security
and Trust, pp. 40–47. IEEE (2008)

14. Banga, M., Hsiao, M.S.: A novel sustained vector technique for the detection of
hardware Trojans. In: 2009 22nd International Conference on VLSI Design, pp.
327–332. IEEE (2009)

15. Liakos, K.G., Georgakilas, G.K., Moustakidis, S., et al.: Machine learning for hard-
ware Trojan detection: a review. In: 2019 Panhellenic Conference on Electronics &
Telecommunications (PACET), 1–6. IEEE (2019)

16. Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In:
2008 IEEE International Workshop on Hardware-Oriented Security and Trust, pp.
51–57. IEEE (2008)

https://doi.org/10.1007/978-3-642-33027-8_2
https://doi.org/10.1007/978-3-642-33027-8_2

358 X. Yang et al.

17. Rai, D., Lach, J.: Performance of delay-based Trojan detection techniques under
parameter variations. In:2009 IEEE International Workshop on Hardware-Oriented
Security and Trust, pp. 58–65. IEEE (2009)

18. Li, J., Lach, J.: At-speed delay characterization for IC authentication and Tro-
jan horse detection. In: 2008 IEEE International Workshop on Hardware-Oriented
Security and Trust, pp. 8–14. IEEE (2008)

19. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detec-
tion. IEEE Des. Test Comput. 27(1), 10–25 (2010)

20. Narasimhan, S., Du, D., Chakraborty, R.S., et al.: Multiple-parameter side-channel
analysis: a non-invasive hardware Trojan detection approach. In: 2010 IEEE Inter-
national Symposium on Hardware-Oriented Security and Trust (HOST), pp. 13–18.
IEEE (2010)

21. Koushanfar, F., Mirhoseini, A.: A unified framework for multimodal submodular
integrated circuits trojan detection. IEEE Trans. Inf. Forensics Secur. 6(1), 162–
174 (2010)

22. Ma, X., Wang, H., Li, B., et al.: A power analysis method against backdoor instruc-
tion in chips. ACTA Electron. Sin. 47(3), 686 (2019)

23. Goodge, A., Hooi, B., Ng, S.K., et al.: Lunar: unifying local outlier detection
methods via graph neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 6, pp. 6737–6745 (2022)

Cross-Correlation Based Trace
Segmentation for Clustering Power

Analysis on Public Key Cryptosystems

Yaoyuan Hu1, An Wang1(B), Weiping Gong2(B), Jingjie Wu2(B), Ziyu Wang1,
Shiming Zhang3, and Shufan Ma3

1 School of Cyberspace Science and Technology, Beijing Institute of Technology,
Beijing, China

wanganl@bit.edu.cn
2 Guizhou Police College, Guiyang 550005, China

457615678@qq.com, wjj972@163.com
3 AVIC (CHENGDU) UAS CO., LTD., Chengdu 610000, China

Abstract. Simple Power Analysis (SPA) is a technique that directly
analyzes the power consumption information collected during the execu-
tion of cryptographic algorithms. It is primarily based on the fact that
different key values in public key cryptosystems (PKC) correspond to dis-
tinct operations, reflected in the power traces, allowing for key recovery.
Effective segmentation of the power trace significantly enhances the effi-
ciency of SPA, reducing the difficulty of key retrieval. This paper intro-
duces a semi-automated Cross-Correlation Based Trace Segmentation
method. We experimentally validated the segmentation method in sce-
narios involving smart cards, USB keys, and microcontrollers simulating
unmanned aerial vehicle cryptographic modules. The results demonstrate
the method’s high effectiveness in segmenting power traces of PKC.

Keywords: Side-channel analysis · Simple power analysis · Public key
cryptosystems · Power trace segmentation

1 Introduction and Related Work

In 1999, Kocher et al. first proposed an power analysis method for cryptographic
systems, successfully recovering the DES algorithm key using Simple Power Anal-
ysis (SPA) and Differential Power Analysis (DPA) [11]. In the following years,
power analysis experienced rapid development, witnessing the emergence of var-
ious novel power attacks, such as template attacks [4], collision attacks [2], cor-
relation power analysis [3], Mutual Information Analysis [5], and more.

In 2000, Mayer-Sommer et al. asserted that SPA constitutes an effective and
easily implementable attack. Due to its inherent simplicity, SPA may pose a
more serious threat in numerous practical applications compared to DPA [13].
In 2002, Mangard et al. utilized SPA through the observation of power consump-
tion patterns in the AES key expansion process, revealing information leakage
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 359–375, 2024.
https://doi.org/10.1007/978-3-031-61486-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_21

360 Y. Hu et al.

on a significant portion of smart card processors. This disclosure unveiled the
secret keys employed in the AES software implementations on smart cards [12].
Furthermore, SPA has evolved into a critical metric for evaluating the security
of cryptographic devices [7–9].

In SPA, attackers infer key information by monitoring the power consumption
variations of the target device during the execution of cryptographic algorithms.
In public key cryptosystems (PKC), different keys correspond to different oper-
ations, and these operations manifest differently in the power trace. Therefore,
if we can effectively segment the trace based on different operations, we can
efficiently classify the trace and subsequently recover the key. In the case of an
unknown encryption interval, IO trigger signals can be employed to locate the
encryption interval [1]. At the current stage, the general process of SPA involves
segmentation, dimensionality reduction, and clustering [6]. Among these, clus-
tering methods find extensive application in the side-channel analysis domain.
Chmielewski et al. employed clustering algorithms to attack the electromag-
netic (EM) leakage of a protected ECC algorithm, achieving an accuracy of
over 97% [15]. Additionally, Mesterharm et al. automated EM leakage analysis
using clustering algorithms [14]. Combining clustering algorithms with Convo-
lutional Neural Networks (CNN) can effectively reduce errors in side-channel
analysis [17]. Indeed, clustering algorithms have even been applied in template
attacks [10].

In 2022, Jens Trautmann and colleagues proposed a semi-automated seg-
mentation method for the traces of block cipher algorithms [16]. However, when
applied to PKC, this method may encounter the following three issues:

• In block cipher algorithms, the same operation is executed between different
rounds, whereas in PKC. Taking RSA as an example, when the key bit is 0, a
square operation is performed, and when the key bit is 1, one square operation
and one multiplication operation are executed. Therefore, when constructing
the CO template, it is not possible to determine whether to build the CO
template for key 0 or key 1. In such cases, the aforementioned segmentation
method may become ineffective.

• The above-mentioned segmentation method struggles to effectively find the
CO template when dealing with issues related to random delays, leading to
suboptimal segmentation results. In the case of AES, AES-128 consists of 10
rounds of encryption operations. The method mentioned earlier uses one or
several fixed interval lengths to estimate the length of each round in the AES
algorithm. However, due to the presence of random delays in the power trace,
there are significant time variations between each round. Therefore, calcu-
lating the correlation coefficient using a fixed length of continuous segments
for 10 rounds will not exhibit any sharp peaks, thus making it difficult to
effectively highlight the segmentation positions amidst other locations.

• The number of rounds in block cipher algorithms is fixed, allowing for the
effective utilization of these rounds to construct the entire encryption inter-
val’s CO template. However, the number of rounds in PKC is uncertain. In

Cross-Correlation Based Trace Segmentation 361

situations where the number of rounds is uncertain, the segmentation method
mentioned above is unable to construct the CO template effectively.

1.1 Our Contributions

We proposes a Cross-Correlation Based Trace Segmentation method that accom-
plishes effective segmentation of power traces in PKC.

• We provide detailed steps for each operation in the proposed method and
offer comprehensive explanations of the algorithms employed in each step.

• We validated our method using a publicly available dataset [18] containing
power traces collected from different platform software and hardware imple-
mentations of RSA and SM2 algorithms. This method achieves a segmenta-
tion accuracy of 100% on the dataset. We conducted a comparative analysis
of various existing trace segmentation methods in several aspects.

• We provided explicit assumptions, discussed the strengths and weaknesses of
our method and introduced specific fine-tuning mechanisms.

1.2 Paper Organization

In Sect. 2, we provide a concise overview of the application of correlation coeffi-
cients in side-channel analysis and introduce the concept of simple power analysis
in PKC. Section 3 offers a detailed exposition of our segmentation method. Mov-
ing on to Sect. 4, we demonstrated the effectiveness of our trace segmentation
method on the dataset [18] and conducted comparative analyses with other seg-
mentation techniques. Finally, in Sect. 5, we summarized the entire content of
the paper.

2 Preliminary

2.1 Correlation Coefficients for Power Analysis

In side-channel power analysis, attackers typically observe the power consump-
tion variations of a cryptographic system under different input states to infer the
key or other sensitive information. Correlation coefficients can be used to quan-
tify the degree of correlation between input and power consumption, assisting
attackers in identifying power patterns associated with the key.

ρX,Y =
cov(X,Y)

σXσY
. (1)

2.2 Simple Power Analysis on PKC

SPA is a technique that enables direct analysis of power consumption information
collected during the execution of cryptographic algorithms. Typically, attackers
can recover sensitive security parameters or key information in a cryptographic

362 Y. Hu et al.

device based on just one or a few given power traces. In the implementation of
PKC, conditional branches are generated based on the values of the key. When
the corresponding power traces also differ, the key values differ. Attackers can
directly extract key information by analyzing the power consumption shapes on
the power trace. Therefore, unprotected implementations of PKC are common
targets for SPA attacks.

Taking the RSA algorithm as an example, modular exponentiation is used
in both RSA encryption and decryption, often accelerated using the square-
and-multiply algorithm. The specific implementation process of the square-and-
multiply algorithm is shown in Algorithm 1: a 1024-bit integer d is utilized as the
RSA encryption key. When the key bit involved in the operation is 1, a square
operation followed by a multiply operation is performed. When the key bit is 0,
only a square operation is executed. We can capture the power trace during the
RSA decryption phase, as depicted in Fig. 1. It is evident that the shapes of the
power traces correspond to the square and multiply operations. Thus, by ana-
lyzing just one power trace, we can sequentially recover the square and multiply
operations, leveraging the differences between key bits 0 and 1 associated with
square and multiply operations. This enables the complete recovery of the RSA
encryption algorithm key.

Algorithm 1: Squaring-Multiplication Algorithm for RSA Encryption.
Input: 1024-bit integer d = d1023d1022 . . . d2d1d0.
Output: xd mod N .

1 Q = 1;
2 for j = 1023 down to 0 do
3 Q = Q2 mod N ;
4 if dj = 1 then
5 Q = Q · x mod N ;
6 end
7 end
8 return Q;

3 Cross-Correlation Based Trace Segmentation

3.1 Assumptions

To achieve effective trace segmentation, we make the following assumptions
regarding the power traces during the encryption and decryption of PKC:

• During the execution of cryptographic algorithms, we assume that when the
same operation is performed, the corresponding shapes of the power traces
are similar.

• During the execution of cryptographic algorithms, we assume that when dif-
ferent operations are performed, the corresponding shapes of the power traces

Cross-Correlation Based Trace Segmentation 363

0 0.5 1 1.5 2 2.5 3 3.5 4
105

-0.1
0

0.1
0.2
0.3

Vo
lta

ge

1.94 1.96 1.98 2 2.02 2.04 2.06
105

-0.1
0

0.1
0.2
0.3

Vo
lta

ge

SM

Fig. 1. Power trace of RSA decryption on STM32F429.

are distinct. However, due to influences such as the cryptographic device,
operands, registers, etc., there remains a certain degree of similarity in the
power trace shapes.

3.2 The Method Steps

Based on the aforementioned assumptions, the steps of the method for trace
segmentation are as follows:

1. Select a segment of the original power trace representing the power trace of
a single operation as the template.

2. Use the length of this template as the sliding window size and slide the window
point by point along the original power trace.

3. Calculate the correlation coefficient between the power trace within the sliding
window and the template trace with each slide.

4. Choose an appropriate filtering parameter to filter the correlation coefficient
curve, enhancing the appearance of prominent peaks in the curve.

5. Record the peak positions of the filtered correlation coefficient curve and set
a tolerance interval. Within this tolerance interval, the maximum value of the
original correlation coefficient curve is identified as the desired point for trace
segmentation.

Algorithm 2 is a pseudocode for calculating correlation coefficients using a
sliding window. The input to the algorithm includes the original power trace T ,
the starting position of the template pos, the sliding stride s, and the length l of
the sliding window. Based on the trace length, sliding window length, and step
size, the number of sliding steps n can be determined. The algorithm computes
correlation between the selected template Temp and the traces within the sliding
window W . The output is the calculated correlations Cor. In the experiments
of this paper, the s is selected as 1, indicating that correlation calculations
are performed on each trace within a sliding window. Increasing the s value
slightly improves computational speed while sacrificing a marginal precision.
However, it should be noted that when the s value is not equal to 1, the resulting
segmentation points need to undergo iterative computations related to the s
variable in order to obtain the final segmentation points.

364 Y. Hu et al.

Algorithm 2: Cross-Correlation Based Trace Segmentation.
Input: Trace T , length of the sliding window l, stride s, start position pos.
Output: Correlations Cor.

1 Temp = T [pos : pos+ l];
2 for i = 0 to n do
3 W = T [i ∗ s : i ∗ s+ l];
4 Cor[i] = CalculateCorrelation(T,W);

5 end
6 return Cor;

3.3 Advantages of the Method

The method proposed in this paper has several advantages. Firstly, it effectively
addresses the issue of random delays, allowing for accurate trace segmentation.
Additionally, the method incorporates a fine-tuning mechanism that enables
efficient and precise segmentation. The specific descriptions are as follows:

• The method is also effective in addressing the issue of random delays dur-
ing the encryption process. When the power trace is protected with random
delays, during the sliding process of the window over this portion of the
power trace, relatively high correlation coefficients will be computed between
the random delay and the selected template trace, resulting in several small
peaks on the correlation coefficient curve. These small peaks can be elimi-
nated by applying a simple filtering operation to the correlation coefficient
curve, consolidating them into a single peak, which corresponds to the desired
point for trace segmentation.

• The method provides a certain tolerance interval, reducing the potential
impact of segment point offsets caused by filtering the correlation curve. As
mentioned earlier, when calculating the correlation coefficient between the
template trace and the trace containing random delays, multiple peaks may
occur. Filtering all these peaks together may result in a potential offset in
the final peak. Therefore, we introduce a fault-tolerant interval to address this
issue. The obtained segmentation points are allowed to slide within the fault-
tolerant interval on the unfiltered trace. By locating the maximum value on the
unfiltered correlation coefficient curve, the impact of potential offsets caused
by filtering can be mitigated. Algorithm 3 is pseudocode for the fine-tuning
mechanism we designed. The input to the algorithm includes the unfiltered
correlation Cor, the peak segmentation points P obtained from the filtered
correlation coefficients, the sliding window length l, and the fine-tuning fac-
tor f . For each segmentation point pi, the final segmented point FP after fine-
tuning is determined by selecting the index of the maximum value within the
range Cor[p − f · l : p + f · l]. The fine-tuning factor f refers to the ratio of
the interval within which the computed segmentation points can be shifted. By
allowing movement within this interval, the segmentation point with the max-
imum correlation coefficient is selected, effectively enhancing the experimental

Cross-Correlation Based Trace Segmentation 365

precision. In the experiments of this paper, a range of 0.2 to 0.4 is chosen for
the fine-tuning factor f .

Algorithm 3: Fine-Tuning Mechanism for Correlation.
Input: Unfiltered correlation Cor, Segmentation points before fine-tuning P ,

sliding window length l, Fine-tuning factor f .
Output: Final segmentation points FP .

1 for pi ∈ P do
2 SubCor = Cor[p − f · l : p+ f · l];
3 FP [i] = GetMaxIndex(SubCor);

4 end
5 return FP ;

4 Experiments and Comparisons

We experimentally validated the segmentation method in scenarios involving
smart cards, USB keys, and microcontrollers simulating unmanned aerial vehicle
cryptographic modules. The results demonstrate the method’s high effectiveness
in segmenting power traces of PKC. Below, we will showcase the segmentation
results of this method on different power traces.

4.1 Experimental Results

SM2 on AT89S52. Figure 2 represents the original power trace of the SM2
decryption algorithm implemented in software on AT89S52. We can clearly
observe power traces corresponding to two different operations, highlighted with
orange rectangles in the figure. However, in actual segmentation, there is no need
to differentiate which power trace corresponds to which operation. We randomly
select a trace segment corresponding to one operation in the power trace as the
template, marked with a red rectangle in the figure. Then, using the size of this
template as the sliding window size, we slide along the power trace from the
starting point to the endpoint, calculating the correlation coefficient between
the template and the trace within the sliding window at each point.

Figure 3 depicts the computed correlation coefficient curve. We selected a
suitable filtering parameter to filter the correlation coefficient curve, ensuring
that prominent peaks appear in the curve. Figure 4 displays the correlation coef-
ficient curve after filtering. The red dots in the figure represent the trace seg-
mentation points selected from the filtered correlation coefficient curve. These
segmentation points are not precisely at the peak positions due to the fine-tuning
introduced by the tolerance interval provided in our method. Upon closer obser-
vation of the filtered correlation coefficient curve, we can discern the possibility of
distinguishing different operations based on the height of the curve peaks. Com-
bined with algorithm characteristics, there is an opportunity to directly recover

366 Y. Hu et al.

the algorithm key based on the heights of the curve peaks. Figure 5 illustrates
the specific trace segmentation results achieved by the method. This method
demonstrates excellent robustness. Segmentation success rate of 100%.

0 0.5 1 1.5 2 2.5 3 3.5
104

-40
-20

0
20
40

Vo
lta

ge

1.94 1.96 1.98 2 2.02 2.04 2.06
104

-60
-40
-20

0
20
40

Vo
lta

ge

Operation2Operation1 Template

Fig. 2. Power trace of SM2 decryption on AT89S52.

0 0.5 1 1.5 2 2.5 3 3.5
104

0

0.5

1

co
rre

la
tio

n

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 2.1
104

-0.2
0

0.2
0.4
0.6
0.8

co
rre

la
tio

n

Fig. 3. Correlation trace of SM2 decryption on AT89S52.

RSA on STM32F429. Figure 6 represents the original power trace of the
RSA decryption algorithm implemented in software on STM32F429. We can
clearly observe from the power trace that one type of operation corresponds to a
significant drop, while the other type of operation corresponds to a smaller drop.
Following the method steps outlined in Sect. 3.2, specific trace segmentation
results are obtained as shown in Fig. 7. Segmentation success rate of 100%.

0 0.5 1 1.5 2 2.5 3 3.5
104

-0.2
0

0.2
0.4

fil
te

re
d

co
rre

la
tio

n

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 2.1
104

-0.2
0

0.2
0.4

fil
te

re
d

co
rre

la
tio

n

Fig. 4. Filtered correlation trace of SM2 decryption on AT89S52.

Cross-Correlation Based Trace Segmentation 367

0 0.5 1 1.5 2 2.5 3 3.5
104

-40
-20

0
20

Vo
lta

ge

1.9 1.95 2 2.05 2.1
104

-40
-20

0
20

Vo
lta

ge

Fig. 5. Power trace segmentation result of SM2 decryption on AT89S52.

0 0.5 1 1.5 2 2.5 3 3.5 4
105

-0.1
0

0.1
0.2
0.3

Vo
lta

ge

1.94 1.96 1.98 2 2.02 2.04 2.06
105

-0.1
0

0.1
0.2
0.3

Vo
lta

ge

Operation1 TemplateOperation2

Fig. 6. Power trace of RSA decryption on STM32F429.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
105

-0.1
0

0.1
0.2
0.3

Vo
lta

ge

1.94 1.96 1.98 2 2.02 2.04 2.06
105

-0.1
0

0.1
0.2
0.3

Vo
lta

ge

Fig. 7. Power trace segmentation result of RSA decryption on STM32F429.

SM2 on Smart Card. Figure 8 represents the original power trace of the SM2
algorithm implemented on smart card. The number of peaks between differ-
ent operation intervals varies. We randomly select one type of operation as a
template. Following the method steps outlined in Sect. 3.2, specific trace seg-
mentation results are obtained as shown in Fig. 9. Segmentation success rate of
100%.

368 Y. Hu et al.

0 2 4 6 8 10
104

-0.2

0

0.2
Vo

lta
ge

3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2
104

-0.4

-0.2

0

Vo
lta

ge

Operation1 Operation2 Template

Fig. 8. Power trace of SM2 decryption on smart card.

0 2 4 6 8 10
104

-0.4

-0.2

0

0.2

Vo
lta

ge

3.7 3.8 3.9 4 4.1 4.2 4.3
104

-0.4
-0.2

0
0.2

Vo
lta

ge

Fig. 9. Power trace segmentation result of SM2 decryption on smart card.

RSA on ASIC X. Figure 10 represents the original power trace of the RSA
algorithm implemented on ASIC X. While the trace characteristics between dif-
ferent operations are not prominently distinct, careful observation reveals subtle
differences. However, we don’t need to concern ourselves with distinguishing
operations. By randomly selecting a segment, we can achieve the segmentation
effect. Specific trace segmentation results are obtained as shown in Fig. 11.

0 1 2 3 4 5 6 7
105

0

0.05

0.1

Vo
lta

ge

2.96 2.97 2.98 2.99 3 3.01 3.02 3.03 3.04
105

0

0.05

0.1

Vo
lta

ge

Operation1 Operation2Template

Fig. 10. Power trace of RSA decryption on ASIC X.

Cross-Correlation Based Trace Segmentation 369

0 1 2 3 4 5 6 7
105

0

0.05

0.1

Vo
lta

ge

2.94 2.96 2.98 3 3.02 3.04 3.06
105

0

0.05

0.1

Vo
lta

ge

Fig. 11. Power trace segmentation result of RSA decryption on ASIC X.

RSA on Smart Card. Figure 12 represents the original power trace of the
RSA algorithm implemented on smart card. From the zoomed-in plot of the
original trace, it is not immediately apparent that there are significant differences
between the different operations. However, upon closer observation, it can be
noticed that one of the operations exhibits a distinct downward spike in the
trace, while the other operation does not. Although we needn’t to understand
the internal differences between these operations, we can randomly select one
operation as the template and apply the methodology described in Sect. 3.2
to obtain the segmentation results. The segmentation results are illustrated in
Fig. 13.

0 1 2 3 4 5
105

0

0.2

0.4

Vo
lta

ge

1.98 1.985 1.99 1.995 2 2.005 2.01 2.015 2.02
105

-0.2

0

0.2

0.4

Vo
lta

ge

Operation1 Operation2 Template

Fig. 12. Power trace of RSA decryption on smart card.

0 1 2 3 4 5
105

0

0.2

0.4

Vo
lta

ge

1.98 1.985 1.99 1.995 2 2.005 2.01 2.015 2.02 2.025
105

0

0.2

0.4

Vo
lta

ge

Fig. 13. Power trace segmentation result of RSA decryption on smart card.

370 Y. Hu et al.

CRT-RSA on USB Key. Figure 14 represents the original power trace of
the CRT-RSA signature implemented on USB Key. In the case of CRT-RSA
implementation, the key distinction in the power traces lies in the different tim-
ings of the various operations, which is different from random delays. However,
using the previously mentioned conventional method [16] still fail to successfully
segment the traces. This is because the temporal variations between different
operations can create effects similar to random delays, causing the resulting cor-
relation coefficient curve to become indistinguishable. However, by employing
the method described in this paper, randomly selecting a segment, performing
sliding computations, and applying relevant adjustments, effective segmentation
points can be obtained. The segmentation results are illustrated in Fig. 15.

0 0.5 1 1.5 2 2.5
105

-0.4
-0.2

0
0.2

Vo
lta

ge

0.97 0.98 0.99 1 1.01 1.02 1.03
105

-0.4
-0.2

0
0.2

Vo
lta

ge

TemplateOperation1 Operation2

Fig. 14. Power trace of CRT-RSA on USB Key.

0 0.5 1 1.5 2 2.5 3
105

-0.4
-0.2

0
0.2

Vo
lta

ge

9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8
104

-0.6
-0.4
-0.2

0
0.2

Vo
lta

ge

Fig. 15. Power trace segmentation result of CRT-RSA on USB Key.

RSA on ASIC Y. Figure 16 represents the original power trace of the RSA
algorithm implemented on ASIC Y. The power traces collected on ASIC Y has
dense points and it is challenging to observe the differences between different
operations using basic techniques. It is indeed necessary to utilize dimensional-
ity reduction and clustering methods after successful segmentation to identify
specific differences. In this case, we can randomly select one segment as the
template and slide it over the original trace to calculate the final segmentation
points. Even with a relatively large number of data points in the trace, our
method remains effective. The segmentation results are illustrated in Fig. 17.

Cross-Correlation Based Trace Segmentation 371

0 2 4 6 8 10 12 14
105

0.05

0.1

0.15

Vo
lta

ge

4.95 4.96 4.97 4.98 4.99 5 5.01 5.02 5.03 5.04 5.05
105

0.04
0.06
0.08
0.1

0.12
0.14

Vo
lta

ge

Template

Fig. 16. Power trace of RSA on ASIC Y.

0 5 10 15
105

0.05

0.1

0.15

Vo
lta

ge

5.95 5.96 5.97 5.98 5.99 6 6.01 6.02 6.03 6.04 6.05
105

0.04
0.06
0.08
0.1

0.12
0.14

Vo
lta

ge

Fig. 17. Power trace segmentation result of RSA decryption on ASIC Y.

RSA on SAKURA-G. Figure 18 represents the original power trace of the
RSA algorithm implemented on SAKURA-G. For this trace, we are aware of its
characteristics and distinguishing features. The significant power consumption
in the depicted portion corresponds to RSA decryption, while the less signifi-
cant power consumption represents redundancy. After zooming in on the trace
during the decryption phase, we observed periodic spikes with regular patterns.
Each cryptographic operation corresponds to the interval between two prominent
peaks. The trace itself exhibits clear distinctions between different operations.
The segmentation results are illustrated in Fig. 19.

0 0.5 1 1.5 2 2.5
106

-40
-20

0
20
40

Vo
lta

ge

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
106

-40
-20

0
20
40

Vo
lta

ge

Template Operation2Operation1

Fig. 18. Power trace of RSA decryption on SAKURA-G.

372 Y. Hu et al.

0 0.5 1 1.5 2 2.5
106

-40
-20

0
20
40

Vo
lta

ge

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
106

-40
-20

0
20
40

Vo
lta

ge

Fig. 19. Power trace segmentation result of RSA decryption on SAKURA-G.

RSA on SAKURA-G Containing Random Delays. Differing from the
previous Fig. 18. The trace shown in Fig. 20 includes random delays, while other
aspects remain unchanged. The purpose of this experiment is to demonstrate
that the method mentioned in this paper can effectively mitigate the issue of
random delays. Different segments of the trace contain several unknown posi-
tions of random delays. In this case, you can still randomly select one segment,
perform sliding computations, and obtain the segmentation points as described
in the methodology. We effectively resisted the impact of random delays and
successfully carried out trace segmentation, as shown in the results in Fig. 21.

0 0.5 1 1.5 2
106

-100

0

100

Vo
lta

ge

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
106

-100

0

100

Vo
lta

ge

Template

Fig. 20. Power trace of RSA decryption on SAKURA-G (random delay).

0 0.5 1 1.5 2
106

-100

0

100

Vo
lta

ge

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
106

-100

0

100

Vo
lta

ge

Fig. 21. Power trace segmentation result of RSA decryption on SAKURA-G (random
delay).

Cross-Correlation Based Trace Segmentation 373

4.2 Experimental Summary

Our segmentation method has effectively implemented trace segmentation on the
public datasets [18], demonstrating the feasibility of applying our segmentation
method to the power trace of PKC. In some cases, we can even directly discern
the differences between different operations through the correlation coefficient
curves calculated and even possess some potential for key recovery.

4.3 Comparison and Summary of Different Methods

We conducted a series of comparisons between the segmentation methods men-
tioned in this paper and the segmentation method proposed in this paper.
In terms of the automation level of different methods, only SPA-GPT achieved
the automatic segmentation of power traces, while other methods were semi-
automated. Regarding the computation time of different methods, both the
Findpeak and This paper had computation times within 3 min, while SPA-GPT
required 10–30 min, and the computation time for the Semi-Auto CO Location
in public key segmentation was not available. As for the ability to resist ran-
dom delays, Semi-Auto CO Location method was unable to resist the impact
of random delays on power traces, while other methods effectively resisted ran-
dom delays in power segmentation. Comparing the power trace segmentation of
PKC, except for Semi-Auto CO Location, all other methods demonstrated the
capability to segment power traces of PKC. Regarding the key recovery capa-
bility, both SPA-GPT and This paper have the potential for key recovery, while
the other two methods lack such potential (Table 1).

Table 1. Comparison of Different Methods

Findpeak SPA-GPT [19] Semi-Auto CO Location [16] This Paper

Automatic Semi Fully Semi Semi
Time (mins) <=3 10–30 NULL <= 3
Random Delay Yes Yes No Yes
Attack on PKC Yes Yes No Yes
Key Recovery No Yes No Yes

5 Conclusions

At the current stage, the automation of SPA primarily involves three steps:
segmentation, dimensionality reduction, and clustering. Among them, effective
segmentation of the power trace is particularly crucial. In this paper, we intro-
duce a semi-automated, simple and effective method tailored for PKC, success-
fully achieving the efficient segmentation of power traces. We address challenges
related to diverse operations, random delays, and uncertain rounds. The experi-
ments demonstrate promising results for PKC implemented on different devices.

374 Y. Hu et al.

Acknowledgement. This work was supported by National Key R&D Program of
China (No. 2022YFB3103800), Guizhou Provincial Key Technology R&D Program
(No. [2023]442), Foundation of Guizhou Educational Committee (Nos. [2021]053,
[2023]080), Project for High Quality Development of Manufacturing Industry (No.
TC220A04X-2).

References

1. Beckers, A., Balasch, J., Gierlichs, B., Verbauwhede, I.: Design and implementation
of a waveform-matching based triggering system. In: Standaert, F.-X., Oswald,
E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 184–198. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-43283-0_11

2. Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3_6

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5_3

5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27

6. Heyszl, J., Ibing, A., Mangard, S., De Santis, F., Sigl, G.: Clustering algorithms
for non-profiled single-execution attacks on exponentiations. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 79–93. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08302-5_6

7. ISO: ISO/IEC 19790: Information Security Management Systems – Requirements.
ISO/IEC Standard 19790, International Organization for Standardization (2012)

8. ISO: ISO/IEC 30104: Information technology - Security techniques - Security
requirements for cryptographic modules. ISO/IEC Standard 30104, International
Organization for Standardization (2015)

9. ISO: ISO/IEC 17825: Information technology - Security techniques - Testing meth-
ods for the mitigation of non-invasive attack classes against cryptographic mod-
ulese. ISO/IEC Standard 1782590, International Organization for Standardization
(2016)

10. Kim, T.: A study of template clustering in the side channel template analysis.
In: 2018 International Conference on Information and Communication Technology
Convergence (ICTC), pp. 1295–1297. IEEE (2018)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

12. Mangard, S.: A simple power-analysis (SPA) attack on implementations of the AES
key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
343–358. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36552-4_24

13. Mayer-Sommer, R.: Smartly analyzing the simplicity and the power of simple power
analysis on smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 78–92. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_6

https://doi.org/10.1007/978-3-319-43283-0_11
https://doi.org/10.1007/978-3-540-77360-3_6
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-319-08302-5_6
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-36552-4_24
https://doi.org/10.1007/3-540-44499-8_6

Cross-Correlation Based Trace Segmentation 375

14. Mesterharm, C., Izmailov, R., Alexander, S., Tsang, S.: Automated clustering of
EM side-channel emissions to detect anomalous device behavior. In: Cyber Sensing
2020, vol. 11417, pp. 59–68. SPIE (2020)

15. Nascimento, E., Chmielewski, Ł: Applying horizontal clustering side-channel
attacks on embedded ECC implementations. In: Eisenbarth, T., Teglia, Y. (eds.)
CARDIS 2017. LNCS, vol. 10728, pp. 213–231. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75208-2_13

16. Trautmann, J., Beckers, A., Wouters, L., Wildermann, S., Verbauwhede, I., Teich,
J.: Semi-automatic locating of cryptographic operations in side-channel traces.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 345–
366 (2022)

17. Wang, A., He, S., Wei, C., Sun, S., Ding, Y., Wang, J.: Using convolutional neural
network to redress outliers in clustering based side-channel analysis on cryptosys-
tem. In: Qiu, M., Lu, Z., Zhang, C. (eds.) Smart Computing and Communication.
SmartCom 2022. LNCS, vol. 13828, pp. 360–370. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-28124-2_34

18. Wang, Z.: Traces for SPA-GPT (2023). https://github.com/pilipili520/SPA-GPT.
Accessed 01 Dec 2023

19. Wang, Z., et al.: SPA-GPT: general pulse tailor for simple power analysis based
on reinforcement learning. Cryptology ePrint Archive (2023)

https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-031-28124-2_34
https://doi.org/10.1007/978-3-031-28124-2_34
https://github.com/pilipili520/SPA-GPT

Fully Hybrid TLSv1.3 in WolfSSL
on Cortex-M4

Mila Anastasova1(B), Reza Azarderakhsh1, and Mehran Mozaffari Kermani2

1 Computer and Electrical Engineering and Computer Science Department
and I-SENSE at Florida Atlantic University, Boca Raton, FL, USA

{manastasova2017,razarderakhsh}@fau.edu
2 Computer Engineering and Science Department at University of South Florida,

Tampa, FL, USA
mehran2@usf.edu

Abstract. To provide safe communication across an unprotected
medium such as the internet, network protocols are being established.
These protocols employ public key techniques to perform key exchange
and authentication. Transport Layer Security (TLS) is a widely used net-
work protocol that enables secure communication between a server and
a client. TLS is employed in billions of transactions per second. Contem-
porary protocols depend on traditional methods that utilize the compu-
tational complexity of factorization or (elliptic curve) logarithm math-
ematics problems. The ongoing advancement in the processing power
of classical computers requires an ongoing increase in the security level
of the underlying cryptographic algorithms. This study focuses on the
analysis of Curve448 and Edwards curve Ed448, renowned for their supe-
rior security features that offer a 224-bit level of security as part of the
TLSv1.3 protocol. The exponential advancement of quantum computers,
however, presents a substantial threat to secure network communication
that depends on classical crypto schemes, irrespective of their degree of
security. Quantum computers have the capability to resolve these chal-
lenges within a feasible timeframe. In order to successfully transition
to Post-Quantum secure network protocols, it is imperative to concur-
rently deploy both classical and post-quantum algorithms. This is done
to fulfill the requirements of both enterprises and governments, while
also instilling more assurance in the reliability of the post-quantum sys-
tems. This paper presents a detailed hybrid implementation architecture
of the TLSv1.3 network protocol. We showcase the first deployment of
Curve448 and Crystals-Kyber for the purpose of key exchanging, and
Ed448 and Crystals-Dilithium for verifying the authenticity of entities
and for X.509 Public Key Infrastructure (PKI). We rely upon the widely
used OpenSSL library and the specific wolfSSL library for embedded
devices to provide our results for server and client applications.

Keywords: Network Protocols · TLSv1.3 · PKI · X.509, Elliptic
Curve Cryptography (ECC) · Post-Quantum Cryptography (PQC) ·
Cortex-M4

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 376–395, 2024.
https://doi.org/10.1007/978-3-031-61486-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61486-6_22&domain=pdf
https://doi.org/10.1007/978-3-031-61486-6_22

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 377

1 Introduction

In the era of digital technology, where information is easily transmitted world-
wide, the foundation of interconnected systems is formed by complex network
protocols ensuring reliability and interoperability of communication networks.
Security protocols, such as the most world wide SSL/TLS, relays on crypto-
graphical algorithms, to ensure data integrity, confidentiality, authentication and
non-repudiation. Public Key Cryptography (PKC) allows the secure communica-
tion establishment between entities through insecure channel, such as the Inter-
net, and is a fundamental component of security network protocols. Transport
Security Layer (TLS), also knows by the name of its predecessor Socket Security
Layer (SSL), integrates PKC algorithms for key exchange and digital signature
to allow secure data exchange across communication parties. It enables them to
transition their application data exchange to a Symmetric Key Cryptographic
scheme, which guarantees significantly improved computation time. Throughout
the years, the SSL/TLS protocol specification has been going through changes,
in order to eliminate vulnerabilities, improve timing and increase security of the
performed communication. In 2016, the latest version, TLSv1.3 [1], was released,
included many revisions, along with the deprecation of weak algorithms that were
supported in earlier versions of TLS, as well as the addition of new algorithms.

The Elliptic Curve Cryptography (ECC) family of algorithms is one of the
most widely deployed cryptographic PKC schemes, owing to their small key and
signature sizes, which allow them to be used in bandwidth-constrained scenar-
ios, as well as their relatively low computational cost, which allows them to be
used in both high- and low-end devices. Curve448, used for Elliptic Curve Diffie-
Hellman (ECDH) based key derivation, and its birationally equivalent Ed448,
forming Edwards curve Digital Signature Algorithm (EdDSA), have become of
interest among multiple ECC primitive instantiations, based on eliminating sev-
eral cryptographic security concerns inherent in NIST curves while offering high
security level.

The progressive development of Quantum Computers, marked by the con-
tinuous increase in q-bit quantities, presents a significant challenge to conven-
tional cryptographic methods that form the basis of network communication.
Shor [2] demonstrates that classical cryptographic primitives are vulnerable to
quantum computer attacks once a sufficiently powerful computer is constructed.
This would enable the solving of Factorization and Discrete Logarithm problems,
which form the core of classical cryptographic primitives.

In 2016, the National Institute of Standards and Technology [3] (NIST) began
evaluating the efficacy and efficiency of a list of recently submitted cryptographic
algorithms that are resistant to attacks by quantum computers. Following three
rounds of evaluation and enhancements, NIST has announced four algorithms
that will ultimately be standardized thereafter used in a broad variety of security
protocols. Among six families of post-quantum robust cryptographic algorithms,
lattice-based schemes show to be one of the most promising based on their rel-
atively compact key sizes and the extremely efficient computational cost. Based
on Module-Learning With Errors (M-LWE), Crystals-Kyber Key Encapsulation
Mechanism (KEM), based on Public Key Encryption (PKE) along with a varia-

378 M. Anastasova et al.

tion of the Fujisaki–Okamoto (FO) transform to ensure IND −CCA2-security,
is the only PQ key exchange finalists of the NIST PQ Standardization pro-
cess. Similarly, M-LWE-based Crystals-Dilithium Digital Signature Algorithms
(DSA) form part of the three PQ secure finalists for DSA along with Falcon and
SPHINCS+, showing on average (key generation + sign + verify) performance
advantage among its competitors and reasonably compact keys and signature
sizes.

Given that the PQ algorithms are relatively new, they fail to fulfill the secu-
rity criteria set by the government and industry. Therefore, a hybrid instan-
tiation is necessary to provide a seamless transition to PQ network protocols.
In this work, we present, to the best of our knowledge, the first entirely hybrid
instantiation of the widely deployed TLSv1.3 protocols, integrating classical high
security Curve448 ECDH and Crystals-Kyber1024 PQ KEM algorithms for key
derivation among client and server and Edwards curve Ed448 traditional digital
signature algorithm along with Crystals-Dilithium5, in order to ensure data pri-
vacy, integrity, authentication, and non-repudiation in the presence of classical
and PQ adversary. We perform hybrid key derivation and enhance the Public
Key Infrastructure (PKI) defined by the X.509 certificate standard by integrat-
ing hybrid keys, certificate (signature) generation and signature verification.

Ensuring the deployment of cryptographic algorithms and security proto-
cols on resource-constrained devices and bandwidth-limited scenarios is crucial
due to the increasing integration of small embedded systems in everyday life,
driven by the Internet of Things (IoT) and the desire to enhance lifestyle and
comfort. This study aims to assess the performance of the hybrid TLSv1.3 pro-
tocol using Curve448 with Kyber1024 and Ed448 with Dilithium5 algorithms.
The evaluation is conducted on the NIST approved ARMv7-based Cortex-M4
processor, specifically on the WiFi enabled STM32F413 Discovery Board. We
base our work on the widely deployed OpenSSL library in order to generate
the hybrid X.509 keys and signatures and wolfSSL embedded-focused library for
performance evaluation.

1.1 Related Work

The widespread use of Internet of Things (IoT) devices, embedded systems,
and various other low-end computer platforms has brought about an epoch of
remarkable connectivity via the deployment of network protocols. Yet, the inher-
ent characteristics of these devices, featuring restricted processing capabilities
and limitations in power and energy supply, provide a significant obstacle in the
implementation of resilient cryptographic protocols. Elliptic Curve Cryptogra-
phy is considered a fundamental aspect of secure communication because of its
simplicity and robust security promises. Nevertheless, the use of this technology
on low-end devices requires a careful and sophisticated strategy to overcome the
underlying constraints.

Curve448, introduced by Hamburg in [4], is meticulously designed to strike a
balance between strength and computational efficiency, making it a compelling
choice for secure key exchange and digital signatures. The high security level, in
comparison to other NIST curves or Curve2551 and Ed25519 proposed in [5] and

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 379

[6], comes at the cost of computational overhead based on the larger length of
the field arithmetics. This challenge is significantly important when it comes to
IoT devices with limited computational resources and bounded battery life. This
is the reason for exhaustive effort in the optimal implementation of the crypto-
graphic schemes aiming at optimal execution on embedded devices. The nature of
ECC allows optimizations on the field arithmetic layer, where different research
teams have shown efficient implementation for Curve448 and Ed448 targeting
8-bit AVR and 16-bit MSP, and 32-bit Cortex-M4 devices [7–12]. The higher-
layer group operation may also introduce implementation optimizations based
on applying optimal strategies for point addition and multiplication, the core
of ECC schemes. Several works have been performed, applying different point
multiplication architectures, such as low execution latency (Sliding Window [13]
method, Signed Comb [14] method), compact code side (Double-and-Add [15]) or
constant time performance (Double-and-Always-Add, Montgomery Ladder [16]).
The optimal implementation of Curve448 and Ed448 is further being evaluated
as part of network protocols [17].

Deploying post-quantum cryptography primitives on low-end devices is par-
ticularly problematic because to the increased resources needed for its implemen-
tation. Lattice-based post-quantum primitives, such as Kyber and Dilithium,
rely on computationally easy problems and do not need intricate multi-precision
field arithmetic due to the tiny modulus used in operations. Both methods rely on
two computationally intensive algorithms: the Secure Hash Algorithm 3 (SHA-
3) and the Number Theoretic Transform (NTT), which is essentially equivalent
to the Fast Fourier Transform (FFT) function applied over finite fields. Vari-
ous studies in the literature have offered distinct approaches, demonstrating the
most effective techniques for executing certain procedures.

Several researchers focus on optimizing the design of ARMv8-based devices to
demonstrate the effectiveness of NTT transform function and modular reduction
in enabling the use of NEON-specific Single Instruction Multiple Data (SIMD)
instructions. This optimization leads to significant improvements in the runtime
performance of the lattice-based Kyber and Dilithium PQ primitives [18–22].
Targeting Advanced Vector Extension (AVX) ISA (AVX2 and AVX-512) was
presented in [23,24]. Other writers focus on exploiting the computational capa-
bilities of more advanced devices, such as GPUs, which are known for their
high processing power [25–27]. Botros et al. have provided an implementation
design for low-end IoT devices that focuses on optimizing the RAM use of Kyber
while enhancing its speed performance [28]. Alkim et al. [29] demonstrate supe-
rior outcomes of NTT calculations by utilizing an improved modular reduction
architecture, which enables the adoption of an efficient Instruction Set Architec-
ture (ISA) in combination with lazy-reduction deployment. Abdulrahman et al.
present several ways for implementing NTT, enhancing register use management,
and achieving vector-matrix accumulation outcomes in their study [30].

The extensively improved classical and post-quantum public-key cryptogra-
phy (PKC) primitives serve as the fundamental mathematical components of
security network protocols, particularly the SSL/TLS network protocol, which
is the most extensively utilized. It employed several cryptographic techniques to

380 M. Anastasova et al.

provide safe and dependable communication between server and client entities
within the Internet network. While extensive research has been conducted on
the performance outcomes of cryptographic primitives, there has been a lack of
sufficient research on the complete integration of classical and hybrid systems
into network protocols, which is the focus of this study.

The incorporation of post-quantum (PQ) and hybrid operating modes into
the TLSv1.3 network protocol necessitates substantial effort due to the utiliza-
tion of numerous cryptographic methods. Several studies in the literature have
explored the development of a PQ operational mode for the TLSv1.3 proto-
col and its predecessor, TLSv1.2, as well as other network protocols [31,32].
Kampanakis et al. [33] examine the utilization of PQ signatures inside X.509
PKI certificates, specifically in relation to the package fragmentation mecha-
nism. Crockett et al. [31] present a study of hybrid key exchange within the
context of TLS and SSH network protocols. They examine several classical and
post-quantum cryptographic primitives and explore ways for deploying hybrid
authentication and X.509 PKI. Campagna et al. [34] describes the inclusion of
hybrid key exchange in the TLSv1.2 network protocol, which incorporates SIKE
and BIKE post-quantum key encapsulation mechanisms (PQ KEMs) in addition
to elliptic curve Diffie-Hellman (ECDH) methods. Sikeridis et al. [35] improve
the OQS and OpenSSL library by incorporating a PQ-standalone message signa-
ture and modifying the X.509 PKI with post-quantum capabilities. The authors
also evaluate the impact of the PQ message signature CertificateVerify exe-
cution cost in TLSv1.3. [36]. Marchsreiter et al. [37] present an assessment of
the post-quantum and hybrid operating mode of TLSv1.3, utilizing a hybrid key
agreement and hybrid digital signature technique for server authentication via
message signature CertificateVerify. Nevertheless, the authors provide their
findings derived from the deployment of PQ-standalone X.509 PKI. Further-
more, the assessment solely relies on NIST curves, neglecting the assessment of
TLSv1.3 integrated Curve448 and Ed448.

In our research, we focus on the deficiencies in the existing literature by
conducting an assessment of hybrid TLSv1.3. Specifically, we provide the first
evaluation of a fully hybrid TLSv1.3 implementation that utilizes Curve448 with
Kyber1024 as classical and post-quantum key exchange methods, and Ed448
with Dilithium5 as classical and post-quantum digital signature algorithms,
respectively.

1.2 Contributions

In this work, we present, to the best of our knowledge, the first fully hybrid
TLSv1.3 based on Curve448 and Crystals-Kyber1024 for key exchange and
Ed448 and Crystals-Dilithium5 for authentication and certificate verification.
Our contributions include the following:

1. We provide the entirely hybrid version of the TLSv1.3 network protocol,
including Curve448 and Ed448 to guarantee resilience against classical com-
puter adversaries, as well as Crystals-Kyber1024 and Crystals-Dilithium5 to
provide protection against quantum computer attacks.

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 381

2. We enhance the widely deployed OpenSSL library by including the capability
to generate the X.509 hybrid Ed448_Dilithium5-based keys and certificates
in PEM file format, where the certificate hybrid key and signature are both
based on classical Ed448 and PQ Dilithium5 algorithms.

3. We implement hybrid key exchange based on emerging high-security level
Curve448 and the PQ Kyber1024 algorithms, where both communication
parties issue a symmetric key value based on a classical and PQ shared secret
derivation.

4. We upgrade the embedded-specific wolfSSL cryptographic library to sign a
message using both classical and PQ signature algorithms and to verify hybrid
signatures based on Ed448_Dilithium5.

5. We deploy functions to process hybrid certificates Ed448_Dilithium5 certifi-
cates, including classical Ed448 and PQ Dilithium5 public key and signature
values. We also enable verification of Ed448_Dilithium5 hybrid certificate
signatures.

6. We evaluate the proposed hybrid TLSv1.3 based on Curve448_Kyber1024
for key agreement and Ed448_Dilithium5 for authentication and certifi-
cate validation on the NIST recommended ARMv7 Cortex-M4 STM32F413
WiFi equipped microcontroller and report the execution timing for the entire
TLSv1.3 transmitting a 15B short message both directions, and for the pure
TLSv1.3 handshake, neglecting the AEAD scheme overhead.

The subsequent sections of the paper are structured in the following manner. In
Sect. 2 we provide a comprehensive explanation of the mathematical principles
that form the foundation of Curve448 and Ed448 ECC algorithms. Additionally,
we analyze the distinctive features of Crystals-Kyber and Crystals-Dilithium PQ
algorithms. Section 3 provides an introduction to the TLS1.3 network protocol
and the X.509 PKI architecture. It also emphasizes the improvements made
in the design to achieve a completely hybrid TLSv1.3. In Sect. 4 we present
an evaluation of the execution latency of the TLSv1.3 protocol, as part of the
wolfSSL embedded cryptographic library. Ultimately, we bring our effort to a
close in Sect. 5.

2 Preliminaries

This section offers a concise explanation of the mathematical concepts that form
the foundation of the classical Curve448 and Ed448 key exchange and digital
signature algorithms. We discuss the mathematical base of PQ Crystals-Kyber
and Crystals-Dilithium algorithms. Finally, we present the X.509 PKI structure
denoting the required changes for hybrid PQ transition.

2.1 ECC Mathematical Background

Elliptic Curve cryptography stands as one of the most optimal asymmetric
key encryption scheme due to the compact key sizes and minimal computa-
tion latency, converting it in suitable scheme in scenarios of limited bandwidth
or processing power, which is often the case of low-end embedded devices.

382 M. Anastasova et al.

Fig. 1. X448 algorithm. G represents the value of the base point

Ed448-Goldilocks Edwards curve is denoted by the equation:

EEd/Fp : ax2 + y2 = 1 + dx2y2

Given that d = −39081 and a = 1 the curve operations for cryptographic
purposes are defined over a finite field denoted as Fp where p is equal to 2448 −
2224 − 1. The curve elements of Curve448 are represented by coordinate pairs
(x, y) ∈ Fp ×Fp. A birational map exists to project a point from Edwards curve
representation to the Montgomery curve representation.

(x, y) = (sqrt(156324) ∗ u/v, (1 + u)/(1 − u))

The use of Montgomery curves representation often guarantees an ideal
design for implementation, since it allows for efficient execution of group opera-
tions. The fundamental operation of ECC involves performing integer-point mul-
tiplications such that P = k ·Q results in point Q being added to itself k times.
Among the various point multiplication techniques is the so-called Montgomery
Ladder, which ensures execution latency benefits based on the unified point dou-
bling and addition formula, in addition to the constant time execution ensuring
Simple Power Analysis (SPA) resistance, and the well-defined Differential Power
Analysis countermeasure integration techniques. Furthermore, Montgomery lad-
der provides X−only coordinate operations when curve elements are presented in
projective representation with three coordinates (X,Y,Z). The affine coordinates
are retrieved at the end the of Montgomery Ladder execution as (x, y) = (XZ , Y

Z).
ECC provides resilience against classic computer adversaries because to the

challenging nature of solving the Elliptic Curve Discrete Logarithm problem. It is
employed for both key exchange and authentication, making it a desirable choice
in cryptographic network protocols like TLSv1.3, which is the main subject of
this study.

2.2 X448

The implementation of key agreement with Curve448 is achieved by the Elliptic
Curve Diffie-Hellman-like algorithm (ECDH). Similar to other techniques based
on elliptic curve cryptography (ECC), Curve448 depends on performing scalar-
point multiplication.

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 383

Fig. 2. Ed448 algorithm [38]. H denotes SHAKE256. L represents the order of Ed448
curve. G represents the value of the base point

During the execution of the Elliptic Curve Diffie-Hellman (ECDH) protocol,
both parties involved generate a scalar secret key sk. They then perform a scalar-
point multiplication operation, known as X448 for Curve448, using a parameter
base point G. This operation results in a new point on the curve, which is used
as their public key information pk as pk = sk · G. The parties exchange the
calculated public keys. Both parties currently possess their own private keys
as well as the public key of the other party. By utilizing the obtained public
key and their own secret key, each participant engages in an additional scalar-
point multiplication operation X448. As a consequence, a shared secret value
ss is obtained, which is denoted by a point on the elliptic curve. The ECDH
technique based on Curve448 is visually represented in Fig. 1, with the subindex
value A,B indicating the computation parties as Alice and Bob.

Alice and Bob apply a Key Derivation Function (KDF) to extract a sym-
metric key value from their shared secret. This enables them to transition to a
computationally efficient symmetric encryption method, guaranteeing that their
data flow is secured and safeguarded from eavesdropping.

2.3 Ed448

The Digital Signature Algorithm (DSA) enables the recipient of a message to
verify the sender’s identity (authentication), guarantees the integrity of the
data by preventing any unauthorized modifications during transmission (data
integrity), and eliminates the sender’s ability to deny delivering the message
(non-repudiation). In order to uphold these cryptographic principles, one can
employ ECC techniques, which rely on either EC Digital Signature Algorithms
(ECDSA) or Edwards Curve Digital Signature Algorithms (EdDSA), depending
on the specific elliptic curve being deployed.

Ed448 is an EdDSA method that utilizes the scalar-point multiplication oper-
ation X448, similar to the ECDH algorithm based on Curve448. In order to
deal with the arbitrary length of messages conveyed across the Internet, extra

384 M. Anastasova et al.

hashing methods are employed to create a fixed and concise message digest.
Ed448 utilizes the recently developed Secure Hash Algorithms 3 (SHA-3) hash-
ing algorithm, specifically employing the eXtendable Output algorithm (XOF)
SHAKE256 instantiation.

Fig. 3. Crystals-Kyber algorithm [39]. Each variable represents (the coefficients of)
a polynomial, bold text style denotes vector of polynomials, capital letter notation
denotes a matrix. enc and dec represents encode/decode, C and D present Com-
press/Decompress, respectively

The signature entity performs key generation and signing functions using the
two fundamental operations of point multiplication and hashing, as illustrated
in Fig. 2. Like Curve448 ECDH, a key pair (sk, pk) is created, where the secret
key value is then utilized to acquire the signature of the message M , R||S.
After receiving the message and the signature, the recipient can authenticate
the sender’s identity by utilizing the public key value. The verification function
determines whether to accept or reject the signature on the message value.

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 385

Fig. 4. CRYSTALS-Dilithium algorithm [40]. Each variable represents a polynomial,
bold text style denotes vector of polynomials, capital letter notation denotes a matrix

Within the realm of network protocols, digital signature algorithms play a
vital role in verifying the identity of communication parties and are an integral
component of the Public Key Infrastructure, namely in certificate verification
procedures. The integration of elliptic curve algorithms into TLSv1.3 is gaining
popularity, although it is vulnerable to attacks in the age of quantum computing.
This necessitates the switch to post-quantum key agreement and digital signature
techniques.

2.4 Lattices Mathematical Background

Post Quantum Cryptographic Algorithms promise resistance against an adver-
sary with a quantum computing power. Based on complex mathematical prob-
lems, PQ schemes promise to upgrade the cryptographic strength of the security
network protocols. Among different families of PQ primitives, such as Code-,
Hash-, Multivariate-, and Isogeny-based schemes, Lattice-based cryptographic
primitive ensure relatively compact key sizes, compared to other PQ schemes,
with the main advantage the limited computational requirements. Lattices are
used to define both - public key encryption schemes and digital signature algo-
rithms, relying on the Shortest Vector Problem (SVP), Closest Vector Prob-
lem (CVP) and Learning With Errors (LWE) (and it variations such as Ring-

386 M. Anastasova et al.

Learning With Errors (RLWE), Module-Learning With Errors (MLWE), Learn-
ing with Rounding (LWR), etc.), believed to be resistant against quantum adver-
sary.

In 2022 NIST has announced the finalists of the PQ standardization pro-
cess, where the only Key Encapsulation Mechanics to-be-standardized is the
lattice-based Crystals-Kyber and among three PQ DSA finalists, two (Crystals-
Dilithium and Falcon) are lattice-based. CRYSTALS-{Kyber, Dilithium} CRYp-
tographic SuiTe for Algebraic LatticeS (CRYSTALS) schemes rely on the diffi-
culty (MLWE problem) differentiating (A,As1 + s2) with A ∈ Zn×l

q , s1 ∈ Zl
q,

and s2 ∈ Zn
q from (A, b) with uniformly chosen value b. Along with the Shortest

Integer Solution (SIS) that lattices pose, consisting of finding a non-trivial value
x such that A · x = 0, the PQ KEM Kyber and PQ DSA Dilithium are created.

Government and industry security standards do not support the inclusion of
standalone PQ primitives into network protocols, considering their widespread
usage by billions of users every day. Therefore, a hybrid mode of operation is
necessary for a smooth transition to post-quantum robustness.

2.5 Crystals-Kyber

Crystals-Kyber Key Encapsulation Mechanism was presented in 2018 in [39]. As
the rest of PQ KEMs Kyber relies on INC−CPA Public Key Encryption (PKE)
scheme wrapped by the (variant of the) Fujisaki-Okamoto (FO) transform. The
Kyber.PKE method consists of key generation, encryption and decryption, rep-
resented as Kyber.PKE.KeyGen(), Kyber.PKE.En(), and Kyber.PKE.Dec() in
Fig. 3, respectively. The Key Encapsulation Mechanism (KEM) algorithm wraps
this functions in key generation, encapsulation and decapsulation, via some addi-
tional hash and XOF functions, in order to provide IND − CCA2 security of
the underlying scheme.

Crystals-Kyber is instantiated with different set of parameters to offer dis-
tinct levels of security. Specifically, Kyber512, Kyber768, and Kyber1024 cor-
respond to NIST Security Level 2, 3, and 5, respectively. Based on the secu-
rity level of Curve448 and Ed448, providing 224-bit security, and the nature of
the PQ primitives lacking trust, we consider the highest security level, in par-
ticular, Kyber1024, to integrate in the TLSv1.3 protocol in the scope of this
work. We should note that Crystals-Kyber768 is the recommended security level
to be used. The least recommended security level to be utilized is Crystals-
Kyber768. Despite its high security level, Kyber1024 remains appealing due to
its low latency, which is equivalent to that provided by traditional cryptographic
public key methods.

2.6 Crystals-Dilithium

The Crystals-Dilithium lattice-based DSA method is derived from the mathe-
matical issue of Module Learning With Error (MLWE), similar to the Crystals-
Kyber algorithm. It was suggested in the publication by Ducas et al. [40] and

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 387

Fig. 5. The Public Key Infrastructure (PKI) built using classical (Ed448) and post-
quantum (Dilithium5) Digital Signature Algorithm (DSA) techniques. The gray data
refers to the information fields found in the X.509 files. Superscript indicates the owner
of the data, while subscript indicates the type of information (Color figure online)

has been selected as one of the three DSA finalists for the NIST PQ standard-
ization process. Like Kyber, this system provides many levels of security. In our
study, we specifically concentrate on Dilithium5, which guarantees a high level
of security comparable to Ed448. The specifics of the PQ signature algorithm
are presented in Fig. 4, where the details about the three underlying functions
Dilithium.KeyGen(), Dilithium.Sign(), and Dilithium.Verify() are presented.

The application of DSA in the scope of TLSv1.3 involves the signing of
a TLSv1.3 handshake message for server authentication and its incorporation
into the PKI framework, where trusted authorities issue signatures to verify the
authenticity of information for a specific entity. This work specifically addresses
both aspects.

3 Hybrid Network Protocol Deployment

This section provides a comprehensive explanation of the TLSv1.3 network pro-
tocols and the underlying X.509 Public Key Infrastructure architecture. We rep-

388 M. Anastasova et al.

resent the primary execution points using graphical representation, highlighting
the changes that were made to enhance the protocol’s execution mode. These
modifications involve incorporating Curve448 and Kyber1024 for key exchange,
as well as Ed448 and Dilithium5 for message signature and PKI certificate vali-
dation.

3.1 PQ X.509

The Public Key Infrastructure (PKI) architecture is employed to guarantee the
authentication of communication participants in the network through a reliable
organization known as a Certificate Authority (CA). Public certificates are issued
and confirmed using X.509 standards via digital signature algorithms. Typically,
CA signatures rely on classical DSA algorithms. In the era of quantum comput-
ing, the verification of an entity’s identification by a trusted third party can be
easily forged in the presence of a quantum adversary.

The entirely hybrid TLSv1.3 model offers security based on both classical
and post quantum algorithms. Making an abrupt move to PQ-only protocol
implementation would jeopardize network security due to the relatively recent
application of the PQ algorithms in technology. The continued employment of
traditional cryptographic techniques poses a concern due to the rapid advance-
ments in quantum computing technology and the expanding computational capa-
bilities of these machines. Thus, a hybrid model, secures network traffic relaying
on two independent categories of cryptographic algorithms, offering robustness
against different adversaries. Among other works, [31], go into the details of the
security and performance implications of the hybrid execution model of widely
deployed network protocols, and define the motivation behind hybrid operation
mode as guaranteeing the security of the system as long as one of the underlying
cryptographic algorithms remains uncompromised.

As shown in Fig. 5, a Certificate Authority (CA), denoted as X.509 CA, owns
a key file that contains both secret and public key values. By employing the
confidential key data, the CA generates a signature, first, for its own certificate.
The certificate includes the public key information of the CA for the purpose
of validating issued signatures. It is important to note that real-world scenarios
frequently involve a chain of CA certificates, which is not addressed in this study.
After obtaining its own key and certificate files, the CA proceeds to distribute
the certificate to third-parties for further verification reasons.

We outline, in Fig. 5, the sequential steps involved in acquiring a validated
entity certificate. After an entity creates a key file, it sends identifying informa-
tion and the public key as a Signature Request to the CA for validation (1. X.509
Sign Request in Fig. 5) and verification of its identity. The CA verifies the data
of the entity and affixes its signature to the information, therefore generating a
certificate for the specified entity (2. X.509 (Hybrid) Cert Sign in Fig. 5).

Finally, when any communication network party initializes a connection with
the given entity, the certificate information is used (3.a X.509 (Hybrid) Cert
Verify in Fig. 5). To verify the identity of the entity, the public key, part of the
CA certificate, is being used (3.b X.509 (Hybrid) Cert Verify in Fig. 5).

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 389

Fig. 6. TLSv1.3 execution flow graphical representation. Gray data refers to the infor-
mation fields included in X.509 files, where superscript indicates the owner of the data
and subscript indicates the type of information. The compute stages are represented
by solid box lines, the message flow is represented by discontinuous lines, and the
certificate file is represented by scattered box lines (Color figure online)

The implementation of Public Key Infrastructure (PKI) includes the use of
Digital Signature Algorithm (DSA) processes, which are susceptible to attacks
from adversaries with quantum computing capabilities. This study proposes a

390 M. Anastasova et al.

way of applying a PQ DSA algorithm, in addition to the conventional approach,
to guarantee the system’s reliability.

This paper introduces a novel hybrid Public Key Infrastructure (PKI) archi-
tecture that combines the use of Ed448 with Dilithium5 DSA. We utilized the
OpenSSL cryptography library to generate hybrid PEM key files. We combined
the secret and private key values by concatenating them. While several meth-
ods exist for representing data in the information fields, our primary focus was
on the functional aspects and effectiveness of the system. Implementing more
modifications to the data field placements may be effortlessly done, yet, it falls
outside the scope of this project.

The entity owner of a key PEM file, which consists of a classical and PQ secret
keys followed by a classical and a PQ key public keys, uses its information fields
to generate digital signatures. In the context of a Certification Authority (CA),
the confidential key value is utilized to authorize the issuance of certificates for
other participants within the network. In the event of another entity, the secret
key values are utilized to generate hybrid signatures. This includes both classical
and PQ signatures of, for instance, the TLSv1.3 message CertificateVerify,
as explained in the subsequent section.

The public key information is stored within the certificate PEM files. In this
context, a certificate includes both classical and PQ public key values. These
values are then utilized by a recipient party that is interested in verifying the
authenticity of the transmitting entity. The verification procedure relies on both
classical and PQ signature systems, analogous to the signature generation. Both
signatures of the message are being transmitted simultaneously, with the lower
bytes representing the classical signature and the upper bytes representing the
PQ signature value.

Lastly, in the certificate signature field, two separate signatures are gener-
ated and saved by a trusted third party (CA). The CA utilizes classic secret
key data to produce a classical signature value. Subsequently, the PQ key value
is employed to generate a PQ signature. By utilizing the CA certificate’s keys,
which are often integrated into the communication parties’ systems, the authen-
ticity of both signatures on any certificate, issued by the specified CA, is con-
firmed, therefore confirming the identities of the communication parties.

Implementing a hybrid architecture mode for the PKI is a complex task
due to the large number of files being created and the diverse functionalities
required to process these files and extract their value. This work introduces
the first version of hybrid Ed448 and Dilithium5 PEM keys and certificates.
The creation and processing of these keys and certificates are performed using
the OpenSSL general crypto library and the wolfSSL embedded device-specific
library.

3.2 PQ TLSv1.3

TLSv1.3 guarantees a secure connection setup with a single roundtrip commu-
nications. The client and server establish a shared secret using key agreement

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 391

Table 1. Performance of the entirely hybrid TLSv1.3 handshake and the overall
TLSv1.3 protocol when a short 15B message is delivered between communication par-
ties. The values are expressed in terms of clock cycles [CC]

Work KEX Auth Cert Verify TLS1.3 handshake TLS1.3 with AEAD
wolfSSL [41] X448 Ed448 Ed448 – 44,358,855
Anastasova et al. [17] X448 Ed448 Ed448 – 46,310,749
This work X448 & Kyber1024 Ed448 & Dil5 – 97,624,103 106,735,300

X448 & Kyber1024 Ed448 & Dil5 Ed448 & Dil5 114,017,313 123,139,034

cryptographic mechanisms like ECDH or PQ KEMs. Both communication par-
ties utilize a key derivation function (KDF) to create a symmetric key value.
This key value is then utilized to encrypt their application data traffic using an
Authenticated Encryption with Additional Data (AEAD) cipher (Table 1).

The simplified graphical representation of TLSv1.3 is depicted in Fig. 6. The
server and client exchange their respective certificate files, which contain a sig-
nature created by a trusted third party (CA) to authenticate the certificate’s
legitimacy. After obtaining the certificate, the client confirms its genuineness by
verifying the signature using the public key information of the CA, which is
incorporated on the client’s side. The server’s authentication step entails creat-
ing a signature of the message. After receiving the message, the user authenti-
cates the signature by utilizing the server’s public key value acquired from the
server’s certificate. Ultimately, the server sends an HMAC (Hash-based Message
Authentication Code) of the entire message using the predetermined symmetric
key value. Upon the successful completion of the TLSv1.3 protocol handshake,
both communicating entities have the ability to securely transmit data across
the established channel.

Within the present work, we enhance the design of the TLSv1.3 network
protocol by integrating fully hybrid version of the protocol. For key exchange,
we use the Curve448 ECDH method in conjunction with the Kyber1024 PQ
scheme. Specifically, as indicated in Fig. 6, the cipher key for TLSv1.3 is obtained
by utilizing the shared secret information from both Curve448 and Kyber1024.
The session data is produced by combining the classical and PQ values and
utilizing them as input to a Key Derivation Function (KDF).

In order to carry out message signature, we utilize a hybrid technique by using
both Ed448 and Dilithium5. Like the Key Exchange (KEX) methods, both the
traditional and PQ DSA are performed simultaneously. The server’s PEM key
file has a classical secret key value, which is stored at the most significant bytes
of the secret key field. This value is utilized to generate a classical signature. The
PQ signature is generated using the least significant bytes from the secret key
field, which contains the PQ secret key data. After generating both the classical
and PQ signatures, they are combined and sent as a component of the Certificate
Verify message.

The hybrid Public Key Infrastructure (PKI), which is a component of
TLSv1.3, is also included in this project. In this work, the PEM key and cer-

392 M. Anastasova et al.

tificate fields have been altered to include the classical and Post-Quantum (PQ)
values, as explained in the previous section. Our hybrid TLSv1.3 architecture
now includes the complete integration of the hybrid PKI.

4 Performance Evaluation

The next section examines the obtained results in relation to performance.
We provide information on the latency of our design when it is run on the
STM32F413 discovery board. This board is equipped with a Cortex-M4 CPU
and is built on the ARMv7 architecture, which has been selected by NIST for
evaluating post-quantum primitives on low-end embedded devices. We execute
our experiments at a frequency of 76.6MHz, simulating a real-world scenario. The
findings are presented in terms of clock cycles. Multiple scenarios are considered
in relation to verification processes. We provide the complete implementation
of the TLSv1.3 protocol, including the exchange of brief messages between the
client and server. Additionally, we demonstrate the independent execution of the
TLSv1.3 handshake, showcasing the modifications made throughout this project.

The generation of the X.509 key and certificate files is based on modifica-
tion deployed on the OpenSSL cryptographic library. Since keys and certificates
are being generated outside the scope of the TLSv1.3 protocol, we do not report
performance results. However, it is important to note, that for the X.509 key gen-
eration and certificate verification (signature), again a hybrid approach involving
Ed448 and Dilithium5 was used.

We report the performance of TLSv1.3 protocol after integrating Curve448
and Crystal-Kyber, and Ed448 and Crystals-Dilithium for key generation, entity
authentication and certificate verification. The client computes ECC key gener-
ation and PQ KEM key generation and decapsulation routines in order to derive
a session key with the server. On the server side, the X.509 hybrid certificate is
being transmitted to the client along with a signature over the entire footprint
of the TLSv1.3 message value. The client uses the CA public key value to verify
the validity of the server certificate, thus executes hybrid signature verification.

The communication parties transmit data through a UART serial connection
based on 115200bps transmission speed. It is important to note that, based on
the large sizes of the transmitted certificate values, the performance results show
significant drop. However, the communication latency forms a large part of the
protocol execution time in a real-world scenario where data is transmitted all
over the worlds and should not be neglected when evaluating the impact of PQ
protocol transition.

We report around 114 million clock cycles for the execution of the fully
hybrid TLSv1.3 handshake based on Curve448 and Kyber1024 and Ed4448 and
Dilithium5 cryptographic primitives. The implementation of the whole TLSv1.3
protocol, including the transmission of a brief message encrypted using an AEAD
cipher, leads to an additional computational cost of around 20.3 million clock
cycles. By excluding the verification of the server certificate, which is based
on the CA signature, we observe an approximate improvement of 17.5% and

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 393

16% for the TLSv1.3 handshake and the fully hybrid TLSv1.3 handshake with
AEAD encrypted message transmission, respectively. However, it is important
to note that this scenario is not typical in real-world network communication.
Therefore, our focus is on the statistics related to the complete execution of
the TLSv1.3 protocol on the STM32F413 board. Enabling TLSv1.3 in entirely
hybrid mode leads to a ×2.77 the execution of the original wolfSSL classical-only
implementation and ×2.67 the latency of the optimal and side-channel robust
Curve448 and Ed448 design as part of wolfSSL [17].

5 Conclusion

This work introduces the initial fully hybrid operating mode of the widely
used TLSv1.3 network security protocol. The mode is based on Curve448 and
Crystals-Kyber for key exchange, and Ed448 and Crystals-Dilithium for the dig-
ital signature method. Within our approach, the client and server engage in
the exchange of information, encompassing public key data for both classical
and post-quantum (PQ) primitives. Our solution offers an architectural frame-
work where the involved parties engage in message signing and verification using
a combination of traditional and post-quantum methods. In addition, we offer
hybrid Public Key Infrastructure (PKI) by making changes to the commonly
used OpenSSL software. This allows us to create hybrid keys and certificates
that comply with the X.509 standard. We add the ability to process the hybrid
data within these keys and certificates, transforming the Certification Authority
(CA) into a hybrid entity that possesses both classical and Post-Quantum (PQ)
key values. To present performance results on the full hybrid TLSv1.3 protocol,
we utilize the wolfSSL cryptography library specifically designed for embedded
devices.

Acknowledgements. The authors would like to thank the reviewers for their com-
ments. This work is supported by NSF 214796 grant.

References

1. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
August 2018

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

3. T. N. I. of Standards and T. (NIST)., Post-quantum cryptography standardization,
2017-2018. Accessed 20 May 2021

4. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve, Cryptology ePrint Archive
(2015)

5. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. In: International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 124–142. Springer (2011)

https://doi.org/10.1007/11745853_14

394 M. Anastasova et al.

7. Seo, H.: Compact implementations of Curve Ed448 on low-end IoT platforms.
ETRI J. 41(6), 863–872 (2019)

8. Faz-Hernández, A., López, J., Dahab, R.: High-performance implementation of
elliptic curve cryptography using vector instructions. ACM Trans. Math. Softw.
(TOMS) 45(3), 1–35 (2019)

9. Seo, H., Azarderakhsh, R.: Curve448 on 32-bit ARM Cortex-M4. In: Hong, D. (ed.)
ICISC 2020. LNCS, vol. 12593, pp. 125–139. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-68890-5_7

10. Anastasova, M., Bisheh-Niasar, M., Seo, H., Azarderakhsh, R., Kermani, M.M.:
Efficient and side-channel resistant design of high-security Ed448 on ARM Cortex-
M4. In: 2022 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pp. 93–96. IEEE (2022)

11. Anastasova, M., Azarderakhsh, R., Kermani, M.M., Beshaj, L. Time-efficient finite
field microarchitecture design for Curve448 and Ed448 on Cortex-M4. In: Seo, S.H.,
Seo, H. (eds.) Information Security and Cryptology – ICISC 2022. ICISC 2022.
LNCS, vol. 13849, pp. 292–314. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-29371-9_15

12. Bisheh-Niasar, M., Anastasova, M., Abdulgadir, A., Seo, H., Azarderakhsh, R.:
Side-channel analysis and countermeasure design for implementation of Curve448
on Cortex-M4. In: Proceedings of the 11th International Workshop on Hardware
and Architectural Support for Security and Privacy, pp. 10–17 (2022)

13. Blake, I., Seroussi, G., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography,
vol. 265. Cambridge University Press, Cambridge (1999)

14. Hamburg, M.: Fast and compact elliptic-curve cryptography, Cryptology ePrint
Archive, 2012

15. Meloni, N.: New point addition formulae for ECC applications. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73074-3_15

16. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

17. Anastasova, M., El Khatib, R., Laclaustra, A., Azarderakhsh, R., Kermani, M.M.:
Highly optimized Curve448 and Ed448 design in wolfSSL and side-channel evalu-
ation on Cortex-M4. In: 2023 IEEE Conference on Dependable and Secure Com-
puting (DSC), pp. 1–8. IEEE (2023)

18. Becker, H., Hwang, V., Kannwischer, M.J., Yang, B.Y., Yang, S.Y.: Neon NTT:
faster dilithium, kyber, and saber on cortex-a72 and apple m1, Cryptology ePrint
Archive (2021)

19. Nguyen, D.T., Gaj, K.: Optimized software implementations of CRYSTALS-Kyber,
NTRU, and Saber using NEON-based special instructions of ARMv8. In: Proceed-
ings of the NIST 3rd PQC Standardization Conference (NIST PQC 2021) (2021)

20. Zhao, L., Zhang, J., Huang, J., Liu, Z., Hancke, G.: Efficient implementation of
kyber on mobile devices. In: 2021 IEEE 27th International Conference on Parallel
and Distributed Systems (ICPADS), pp. 506–513. IEEE (2021)

21. Kim, Y., Song, J., Youn, T.-Y., Seo, S.C., et al.: Crystals-dilithium on armv8.
Secur. Commun. Netw. 2022 (2022)

22. Zheng, J., He, F., Shen, S., Xue, C., Zhao, Y.: Parallel small polynomial multi-
plication for dilithium: a faster design and implementation. In: Proceedings of the
38th Annual Computer Security Applications Conference, pp. 304–317 (2022)

23. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography, Cryptology ePrint Archive (2018)

https://doi.org/10.1007/978-3-030-68890-5_7
https://doi.org/10.1007/978-3-030-68890-5_7
https://doi.org/10.1007/978-3-031-29371-9_15
https://doi.org/10.1007/978-3-031-29371-9_15
https://doi.org/10.1007/978-3-540-73074-3_15

Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4 395

24. Zheng, J., Zhu, H., Song, Z., Wang, Z., Zhao, Y.: Optimized Vectorization Imple-
mentation of CRYSTALS-Dilithium, arXiv preprint arXiv:2306.01989 (2023)

25. Wright, J., Gowanlock, M., Philabaum, C., Cambou, B.: A crystals-dilithium
response-based cryptography engine using GPGPU. In: Arai, K. (ed.) FTC 2021.
LNNS, vol. 360, pp. 32–45. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-89912-7_3

26. Zhao, X., Wang, B., Zhao, Z., Qu, Q., Wang, L.: Highly efficient parallel design of
Dilithium on GPUs, 2022

27. Shen, S., Yang, H., Dai, W., Zhang, H., Liu, Z., Zhao, Y.: High-throughput
gpu implementation of dilithium post-quantum digital signature, arXiv preprint
arXiv:2211.12265 (2022)

28. Botros, L., Kannwischer, M.J., Schwabe, P.: Memory-efficient high-speed imple-
mentation of Kyber on Cortex-M4. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2019. LNCS, vol. 11627, pp. 209–228. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-23696-0_11

29. Alkim, E., Bilgin, Y.A., Cenk, M., Gérard, F.: Cortex-M4 optimizations for {R,
M} LWE schemes. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 336–357 (2020)

30. Abdulrahman, A., Hwang, V., Kannwischer, M.J., Sprenkels, A.: Faster kyber and
dilithium on the Cortex-M4. In: Ateniese, G., Venturi, D. (eds.) Applied Cryptog-
raphy and Network Security. ACNS 2022. LNCS, vol. 13269, pp. 853–871. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-09234-3_42

31. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH, Cryptology ePrint Archive (2019)

32. Anastasova, M., Kampanakis, P., Massimo, J.: PQ-HPKE: post-quantum hybrid
public key encryption, Cryptology ePrint Archive (2022)

33. Kampanakis, P., Panburana, P., Daw, E., Van Geest, D.:The viability of post-
quantum X. 509 certificates, Cryptology ePrint Archive (2018)

34. Campagna, M., Crockett, E.: Hybrid post-quantum key encapsulation methods
(PQ KEM) for transport layer security 1.2 (TLS). In: Internet Engineering Task
Force, Internet-Draft draft-campagna-tls-bike-sike-hybrid, vol. 1 (2019)

35. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: a performance study, Cryptology ePrint Archive (2020)

36. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Assessing the overhead of post-
quantum cryptography in TLS 1.3 and SSH. In: Proceedings of the 16th Inter-
national Conference on emerging Networking EXperiments and Technologies,
pp. 149–156 (2020)

37. Marchsreiter, D., Sepúlveda, J.: Hybrid post-quantum enhanced TLS 1.3 on embed-
ded devices. In: 2022 25th Euromicro Conference on Digital System Design (DSD),
pp. 905–912. IEEE (2022)

38. Josefsson, S., Liusvaara, I.: Edwards-Curve Digital Signature Algorithm (EdDSA).
RFC 8032, January 2017

39. Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–
367. IEEE (2018)

40. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 238–268
(2018)

41. wolfSSL, wolfSSL. https://www.wolfssl.com/. Accessed 23 Jan 2023

http://arxiv.org/abs/2306.01989
https://doi.org/10.1007/978-3-030-89912-7_3
https://doi.org/10.1007/978-3-030-89912-7_3
http://arxiv.org/abs/2211.12265
https://doi.org/10.1007/978-3-030-23696-0_11
https://doi.org/10.1007/978-3-031-09234-3_42
https://www.wolfssl.com/

Author Index

A
Adewumi, Adeola I-265
Ahmed, Chuadhry Mujeeb I-215, II-101
Ali, Mazhar I-235
Anastasova, Mila I-376
Antognazza, Francesco II-214
Azarderakhsh, Reza I-376

B
Baban, Navajit S. II-235
Barenghi, Alessandro II-8, II-214
Baron, Alex I-246
Basurto-Becerra, Abraham I-139
Batina, Lejla I-158, I-195
Bhattacharjee, Sukanta II-235
Bhattacharya, Sarani II-235
Brighente, Alessandro II-55
Büßemeyer, Michael II-204

C
Carrier, Kevin II-29
Chakrabarty, Krishnendu II-235
Chatterjee, Urbi II-235
Chattopadhyay, Sudipta II-143
Chen, Jiazhe I-340
Chmielewski, Lukasz I-158
Choi, Bong Jun I-235
Cibik, Peter I-303
Conti, Mauro II-55

D
Dargahi, Tooska I-265
de Soto, Borja Garcia II-188
Dey, Sabyasachi II-209
Ding, Yaoling I-340
Dobias, Patrik I-303

E
El Jaouhari, Saad I-3

F
Fan, Yanhong I-319, II-119
Fujino, Takeshi I-65, I-84, II-75
Fukuda, Yuta I-84

G
Ganesh, Buvana II-84
Ghosh, Tanusree II-225
Glet, Michał II-183
Goh, Mark II-143
Gong, Weiping I-359
Goroshevsky, Mitja I-43
Goyal, Sanjeev II-188
Graupner, Hendrik II-220

H
Hajny, Jan I-303
Hammoudeh, Mohammad I-265
Hatey, Valerian II-29
Hellemans, Wouter I-246
Henze, Martin II-198
Hermann, Kai II-198
Hong, Darren Ng Wei I-215
Hori, Yohei I-65
Horváth, Péter I-158
Hu, Yaoyuan I-359

J
Jaidhar, C. D. II-193
Jap, Dirmanto I-102
Jedlicka, Petr I-303
Jogunola, Olamide I-265

K
Kaczyński, Kamil II-183
Kandasamy, Nandha Kumar I-215
Karri, Ramesh II-235
Katashita, Toshihiro I-65
Kermani, Mehran Mozaffari I-376
Keromytis, Angelos D. I-176

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
M. Andreoni (Ed.): ACNS 2024 Workshops, LNCS 14586, pp. 397–399, 2024.
https://doi.org/10.1007/978-3-031-61486-6

https://doi.org/10.1007/978-3-031-61486-6

398 Author Index

Köhler, Daniel II-204
Kokolakis, Georgios I-176
Krček, Marina I-121
Kumar, Ajit I-235

L
Lalropuia, K. C. II-188
Le Jeune, Laurens I-246
Li, Meixuan II-143
Liu, Qun II-119
Liu, Zhenyan I-29
Lu, Zeren II-198

M
Ma, Shufan I-359
Malina, Lukas I-303
Massonet, Angela II-198
Meinel, Christoph II-204, II-220
Mentens, Nele I-246
Michaelides, Sotiris II-198
Moghaddam, Amirhossein Ebrahimi II-84
Moschos, Athanasios I-176
Mukhopadhyay, Debdeep II-235

N
Naskar, Ruchira II-225
Nayak, Rajesh II-193
Nohr, Svenja II-198

O
Ordas, Thomas I-121
Ortmann, Maximilian II-198
Oyama, Tatsuya I-65

P
Palmieri, Paolo II-84, II-162
Panny, Lorenz II-3
Pelosi, Gerardo II-8, II-214
Perin, Guilherme I-139
Perriello, Simone II-8
Preneel, Bart I-319

Q
Qiu, Kefan I-16

R
Rabbani, Md Masoom I-246
Rezaeezade, Azade I-139
Ricci, Sara I-303

S
Sakai, Mika I-65
Salaeva, Sitora II-55
Sattarov, Nikita I-43
Schmitt, Robert H. II-198
Serafini, Gabriele I-195
Sharma, Nitin Kumar II-209
Smekal, David I-303
Song, Yong-Ak II-235
Sun, Shaofei I-340
Susella, Ruggero II-214

T
Tamani, Nouredine I-3
Tan, Teik Guan I-283
Thobae, François-Nima II-220
Tillich, Jean-Pierre II-29
Trepacheva, Alina I-43
Turrin, Federico II-55

U
Ugus, Osman II-198
Umrani, Alia II-162

V
Vangujar, Apurva K. II-162
Vijayavenkataraman, Sanjairaj II-235
Vogt, Thomas II-198

W
Wang, An I-340, I-359
Wang, Meiqin I-319, II-119
Wang, Ruilin II-101
Wang, Weijia I-319
Wang, Yong I-29
Wang, Ziyu I-359
Wei, Congming I-340
Weissbart, Léo I-139, I-158, I-195
Wu, Jingjie I-359
Wu, Lixuan I-319

Author Index 399

X
Xue, Jingfeng I-29

Y
Yaksetig, Mario II-230
Yang, Xue I-340
Yang, Xundi I-16
Yap, Trevor I-102
Yarom, Yuval I-158
Ye, Xiaodong I-283
Yoshida, Kota I-84, II-75

Yousaf, Awais II-143

Z
Zhang, Ji I-29
Zhang, Quanxin I-16
Zhang, Shiming I-359
Zhao, Zheng II-119
Zhou, Jianying I-215, I-283, II-143
Zhou, Jiarui II-235
Zhou, Yifan I-29

	 Preface
	 AIBlock 2024
	 AIHWS 2024
	 AIoTS 2024
	 SCI 2024
	 Contents – Part I
	 Contents – Part II
	AIBlock – Application Intelligence and Blockchain Security
	An End-to-End Secure Solution for IoMT Data Exchange
	1 Introduction
	2 Related Work
	3 Permissioned Blockchain for IoMT Medical Data
	3.1 Patient's Smart Space
	3.2 Use Cases

	4 Implementation of a Proof of Concept
	4.1 Component Interactions
	4.2 Hyperledger Fabric Chaincode Lifecycle
	4.3 Node-RED Interactions with the Ledger
	4.4 Visualization

	5 Conclusion
	References

	EasyLog: An Efficient Kernel Logging Service for Machine Learning
	1 Introduction
	2 Background
	2.1 The Applications of Logs
	2.2 The Analysis of Printk
	2.3 Recent Work About Logging

	3 Architecture
	4 Implementation
	4.1 Channel and Data Management Schemes
	4.2 Interface

	5 Experiment
	6 Application
	7 Conclusion
	References

	LM-cAPI:A Lite Model Based on API Core Semantic Information for Malware Classification
	1 Introduction
	2 Related Work
	3 A Lite Model Based on API Core Semantic Information
	3.1 API Call Sequence
	3.2 A Lite Method for Extracting Key Semantic Information Based on BERT
	3.3 A Lite Method for Core Semantic Information Based on BERT
	3.4 TextCNN Classification Model

	4 Experimental Validation and Result Analysis
	4.1 Dataset
	4.2 Data Preprocessing
	4.3 Evaluation Indicators
	4.4 Experimental Results

	5 Conclusion
	References

	Acki Nacki: A Probabilistic Proof-of-Stake Consensus Protocol with Fast Finality and Parallelisation
	1 Introduction
	2 Background
	2.1 Bitcoin
	2.2 BFT
	2.3 Fast Byzantine Paxos
	2.4 Modern Blockchains

	3 Construction of Acki Nacki
	3.1 Definitions
	3.2 Security Assumptions
	3.3 Block Producer Selection Algorithm
	3.4 Acki-Nacki Selection Algorithm
	3.5 Block Production and Broadcast
	3.6 Block Verification
	3.7 Acki-Nacki Selection Proof
	3.8 Proof-of-Stake and Fork Choice Rule
	3.9 Block Finalization
	3.10 Joint Committee
	3.11 Slashing
	3.12 Dynamically Adjustable Parameters

	4 Attack Analysis
	4.1 Input Parameters
	4.2 Combined Double-Spend and DDoS Attack
	4.3 Constraints on the Number of Malicious Block Keepers
	4.4 Constraints on the Number of Spammed Block Keepers
	4.5 Expected Number of Acki-Nacki per Block
	4.6 Successful Attack Probability in the Acki Nacki Consensus

	5 Safety Analysis
	6 Performance Analysis
	7 Conclusion
	References

	AIHWS – Artificial Intelligence in Hardware Security
	FPGA Implementation of Physically Unclonable Functions Based on Multi-threshold Delay Time Measurement Method to Mitigate Modeling Attacks
	1 Introduction
	2 Preliminaries
	2.1 Arbiter PUF
	2.2 Variants of Arbiter PUF
	2.3 RG-DTM PUF
	2.4 Evaluation Metrics
	2.5 PUF Model

	3 Proposed Method
	4 Implementation
	4.1 Experimental Setup
	4.2 Implementation of Arbiter PUF
	4.3 Implementation of fDTM PUF

	5 Security Evaluation
	5.1 Experimental Setup for Modeling Attack
	5.2 Results

	6 Discussion
	7 Conclusions
	References

	Incorporating Cluster Analysis of Feature Vectors for Non-profiled Deep-learning-Based Side-Channel Attacks
	1 Introduction
	1.1 Background and Related Works
	1.2 Our Contribution
	1.3 Paper Organization

	2 Differential Deep-Learning Analysis
	3 Proposed Method
	3.1 Core Idea
	3.2 Calinski-Harabasz Index
	3.3 Selected Function for Calculation of CH Index
	3.4 Procedure of CA-SCA with Autoencoder
	3.5 Procedure of CA-SCA with Convolutional Neural Network

	4 Evaluation with Software-Implemented AES
	4.1 Overview
	4.2 Efficient Training Method of AE and CNN
	4.3 Case Study S-1: Software-Implemented AES Without SCA Countermeasures
	4.4 Case Study S-2: ASCAD Database
	4.5 Discussion

	5 Conclusion
	References

	Creating from Noise: Trace Generations Using Diffusion Model for Side-Channel Attack
	1 Introduction
	2 Related Works
	3 Background
	3.1 Correlation Power Analysis (CPA)
	3.2 Profiling Attacks
	3.3 Denoising Diffusion Probabilistic Models (DDPM)

	4 Datasets and Neural Network Used for Experiment
	4.1 Datasets
	4.2 Neural Network Used: UNet

	5 Known Mask Setting: Evaluation of the Generated Traces Using CPA
	5.1 Evaluation Framework
	5.2 Experiment Results

	6 Unknown Mask Setting: Profiling Attack
	6.1 Framework for Profiling Setting
	6.2 Experiment Results for Profiling Attacks

	7 Conclusion and Future Works
	A Appendix
	A.1 Random Search Hyperparameters for Autoencoder
	A.2 Hyperparameters Used on Autoencoder

	References

	Diversity Algorithms for Laser Fault Injection
	1 Introduction
	2 Preliminaries
	2.1 Random Search (RS)
	2.2 Memetic Algorithm (MA)
	2.3 Clustering Method

	3 Related Work
	4 Diversity Algorithms
	4.1 Grid Memetic Algorithm (GridMA)
	4.2 Evolution Strategy (ES)

	5 Experimental Setup
	5.1 Target
	5.2 Algorithm Details

	6 Experimental Results
	6.1 Number of Unique Parameter Combinations (5D)
	6.2 Number of Unique Locations (2D)
	6.3 Number of Location Clusters
	6.4 Further Exploring the Evolution Strategy Algorithm

	7 Conclusions and Future Work
	References

	One for All, All for Ascon: Ensemble-Based Deep Learning Side-Channel Analysis
	1 Introduction
	2 Preliminaries
	2.1 Ascon Primitive
	2.2 Ensembles
	2.3 Deep Learning-Based Side-Channel Analysis

	3 Related Work
	4 Experimental Setup
	4.1 Attack Point and Leakage Model
	4.2 Datasets
	4.3 Neural Network Architectures
	4.4 Methodology

	5 Experimental Results
	5.1 Ascon-Unprotected
	5.2 Ascon-Protected

	6 Conclusions and Future Work
	References

	CNN Architecture Extraction on Edge GPU
	1 Introduction
	1.1 Comparison with Related Work
	1.2 Contributions and Outline

	2 Background
	2.1 CNN Architectures
	2.2 Side-Channel Analysis

	3 Architecture Extraction
	3.1 Threat Model
	3.2 NVIDIA Neural Network Implementations
	3.3 Measurement Collection
	3.4 Architecture Extraction Using SEMA and Timing Analysis
	3.5 Architecture Extraction Using Deep Learning

	4 Discussion
	4.1 Limitations
	4.2 Mitigation
	4.3 Alternative Method
	4.4 Example of Breaking down Network

	5 Conclusions
	References

	Harnessing the Power of General-Purpose LLMs in Hardware Trojan Design
	1 Introduction
	2 Background and Related Work
	3 Threat Model
	4 An LLM-Based Hardware Trojan Design Flow
	4.1 Context Length Reduction
	4.2 Identifying RTL Code of Interest

	5 Evaluation of an LLM-Generated HT
	5.1 Hardware Trojan Attack Implementation

	6 Discussion
	7 Conclusions
	References

	Everything All at Once: Deep Learning Side-Channel Analysis Optimization Framework
	1 Introduction
	2 Related Works
	3 Background
	3.1 Profiling SCA
	3.2 CNN and Profiling SCA
	3.3 SCA Metrics
	3.4 Leakage Model
	3.5 Hyperparameter Optimization
	3.6 Tree-Structured Parzen Estimator
	3.7 Early Stopping Strategies in Hyperparameter Optimization
	3.8 Warm-Up Values in Early Stopping Strategies

	4 Methodologies
	4.1 Study Settings
	4.2 CNN Model Architecture
	4.3 Hyperparameter Optimization Process

	5 Results
	5.1 Experiments for ASCADf
	5.2 Experiments for ASCADr

	6 Conclusion and Future Work
	References

	AIoTS – Artificial Intelligence and Industrial IoT Security
	Device Fingerprinting in a Smart Grid CPS
	1 Introduction
	2 Background: EPIC Testbed
	3 Overview of the Proposed Technique
	4 Threat Model
	4.1 Attacker Model
	4.2 Attack Model
	4.3 Attack Execution
	4.4 Generating Attack Data

	5 Performance Evaluation
	5.1 CUSUM
	5.2 Model Evaluation Methods
	5.3 Zero-Alarm Attack Design
	5.4 Performance Metrics
	5.5 IED Identification Accuracy
	5.6 Different Machine Learning Algorithm Performance
	5.7 Attack Detection Performance

	6 Conclusions
	References

	Power Quality Forecasting of Microgrids Using Adaptive Privacy-Preserving Machine Learning
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Microgrid System
	3.2 Data-Driven Model
	3.3 Privacy Preserving Method

	4 Simulation and Results
	4.1 Dataset
	4.2 Data Preprocessing
	4.3 Experiment
	4.4 Results and Discussion

	5 Conclusion
	References

	Evaluation of Lightweight Machine Learning-Based NIDS Techniques for Industrial IoT
	1 Introduction
	2 Related Work
	3 Background
	3.1 Problem Setting
	3.2 Machine Learning
	3.3 FINN

	4 Method
	4.1 Research Objective
	4.2 Proposed Framework
	4.3 Datasets and Feature Importance
	4.4 Experimental Setup

	5 Results
	6 Conclusions and Future Work
	A Model Architectures
	B Metrics
	References

	Measuring Cyber Resilience of IoT-Enabled Critical National Infrastructures
	1 Introduction
	2 Related Work
	2.1 CNI Most Targeted Industries

	3 Proposed Metrics for Measuring Cyber Resilience
	4 Experimental Analysis
	5 Conclusion
	References

	SCI – Secure Cryptographic Implementation
	Towards Discovering Quantum-Threats for Applications Using Open-Source Libraries
	1 Introduction
	2 Background
	2.1 Quantum Threat
	2.2 Related Work

	3 Methodology
	3.1 Problem Farming
	3.2 Data Preparation
	3.3 Data Analysis

	4 Experiment
	4.1 Detecting the Usage of RSA, ECC, DH in Top 1 Library
	4.2 Detecting the Usage of RSA in Top 3 Libraries
	4.3 Detecting the Usage of ECC in Top 3 Libraries
	4.4 Detecting the Usage of DH in Top 3 Libraries
	4.5 Validation on Selected Keywords Set

	5 Future Work
	6 Conclusion
	References

	Pushing AES-256-GCM to Limits: Design, Implementation and Real FPGA Tests
	1 Introduction
	2 Related Work
	2.1 Contribution

	3 Preliminary
	4 Proposed Architecture
	4.1 Core Components
	4.2 Plain Implementation
	4.3 Opt1 Implementation
	4.4 Opt2 Implementation

	5 Experimental Setup
	5.1 Implementation Details

	6 Experimental Results
	6.1 Latency
	6.2 Utilization
	6.3 Throughput
	6.4 Comparison

	7 Conclusion
	References

	Automated Generation of Masked Nonlinear Components:
	1 Introduction
	2 Preliminaries
	2.1 Boolean Masking
	2.2 Probing Security
	2.3 Composable Masking Schemes
	2.4 Hardware Private Circuits
	2.5 AGEMA

	3 Key Techniques of AGMNC
	3.1 AND-XOR Gadget
	3.2 Latency Asymmetry of AND-XOR Gadget
	3.3 Implementation Optimization
	3.4 Automation Tool AGMNC

	4 Performance Evaluations
	4.1 S-Boxes
	4.2 Full Ciphers

	5 Security Analysis
	5.1 Theoretical Analysis
	5.2 Experimental Analysis

	6 Conclusion
	References

	A Command-Activated Hardware Trojan Detection Method Based on LUNAR Framework
	1 Introduction
	2 Preliminaries
	2.1 Application Protocol Data Unit
	2.2 Parsing Path and Valid Bytes

	3 Related Works
	3.1 Hardware Trojan Detection
	3.2 Hardware Trojan Detection Based on SCA
	3.3 Pruning Bytes Command Searching

	4 Valid Command Detection Algorithm Based on Power Analysis
	4.1 LUNAR Framework
	4.2 PBCS Combined with LUNAR

	5 System Design
	5.1 Assumptions
	5.2 Detection System

	6 Evaluation and Findings
	6.1 Evaluation Method
	6.2 Experiment and Result
	6.3 Discovery and Discussion

	7 Conclusion
	References

	Cross-Correlation Based Trace Segmentation for Clustering Power Analysis on Public Key Cryptosystems
	1 Introduction and Related Work
	1.1 Our Contributions
	1.2 Paper Organization

	2 Preliminary
	2.1 Correlation Coefficients for Power Analysis
	2.2 Simple Power Analysis on PKC

	3 Cross-Correlation Based Trace Segmentation
	3.1 Assumptions
	3.2 The Method Steps
	3.3 Advantages of the Method

	4 Experiments and Comparisons
	4.1 Experimental Results
	4.2 Experimental Summary
	4.3 Comparison and Summary of Different Methods

	5 Conclusions
	References

	Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	2.1 ECC Mathematical Background
	2.2 X448
	2.3 Ed448
	2.4 Lattices Mathematical Background
	2.5 Crystals-Kyber
	2.6 Crystals-Dilithium

	3 Hybrid Network Protocol Deployment
	3.1 PQ X.509
	3.2 PQ TLSv1.3

	4 Performance Evaluation
	5 Conclusion
	References

	Author Index

