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Abstract. Business processes drive the value creation at companies
requiring them to constantly monitor and improve the former. The field
of Process Comparison (PC) offers promising approaches to gain insight
into differences between variants of a process that one can leverage to
improve the latter. For example, one might consider the same process at
different points in time or at different sites. Recent PC methods consider
event logs containing data on real-life process executions the single source
of truth. However, there often exist additional specifications that can be
represented as Petri nets. In this paper, we propose an approach that
leverages a given Petri net to compare two event logs in a hierarchical
manner. To this end, we decompose the provided net into subprocesses
and extract data on their executions from the event logs. Based on these
executions, we exemplify how one can flexibly assess different aspects of
a process (e.g., control flow, performance, or conformance). Using sta-
tistical tests, we eventually detect differences between subprocesses with
respect to a selected aspect. Despite the approach is mostly agnostic to
the decomposition applied, we present a decomposition strategy that we
deem particularly suitable for PC. For this purpose, we consider the ned
Process Structure Tree of a Petri net and propose a novel preprocess-
ing approach to improve the final decomposition. We implemented the
approach in ProM and evaluate it in a real-life case study.

Keywords: Process Mining · Process Comparison · Process Variant
Analysis · Business Process Intelligence

1 Introduction

Modern information systems record increasing amounts of data on business pro-
cess executions. Event data are a special type of these data where each data point
is an event comprising a timestamp, an activity name, and a case id related to a
business case. Process mining methods are concerned with the analysis of event
data and the implementation of event-data-to-knowledge pipelines. Ultimately,
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process mining aims to provide insight to improve the process. Process Com-
parison (PC) approaches take this idea one step further revealing differences
between two (or more) process variants. Differences can, for example, concern
the process’ control flow (e.g., decision likelihoods) or performance (e.g., cycle
times). Thereby, PC provides insight into the effect of changes, comparing pro-
cess executions before and after a change, or into particularities of a process’
environment, comparing implementations at different sites.

Recent PC approaches often consider event data as the single source of truth
and, therefore, only take event logs as inputs [8,10,25]. Yet, this neglects process
models (e.g., BPMN models) as another valuable source of information. In prac-
tice, BPMN models are fundamental for the design and re-design of enterprise
information systems [3] making them an essential part of a process’ documenta-
tion. For analytical purposes, these models can be seamlessly converted into Petri
nets. The advantages of incorporating process models into PC are manifold: (i)
process models help to manage the complexity of processes. PC approaches solely
based on event data often rely on follows relations between activities. However,
example traces cannot properly represent these relations for large and concurrent
processes (e.g., production processes). Besides, process models allow to explicitly
consider duplicated transitions and to model and analyze interesting relations.
For example, in [4], the authors add user-defined places to measure times for
larger subprocesses within a single process variant. (ii) Submodels often define
logical units enabling us to analyze differences at different levels of granular-
ity. (iii) Finally, models provide a natural context to present the results of PC.
They are the common ground in a projected view of the differences. Despite the
advantages of model-based analysis, merely considering models usually results
in a loss of information. For instance, model notations such as Petri nets do not
support modeling frequencies. Besides, the actual process executions can deviate
from the model or exhibit dependencies not represented by the model.

In this paper, we propose a hybrid approach, which takes two event logs
and a shared process model as an input. Figure 1 shows the main concepts of
the approach. In contrast to existing approaches, we compare the event logs in a
hierarchical manner enabling process analysts to conduct an analysis at different
levels of granularity. For example, in Fig. 1, we detect a cycle time difference for
a large subprocess on the first level of the hierarchy. By drilling down into the
subprocess, one can refine this knowledge: (i) there is no significant difference
regarding the time it takes to execute the redo part and (ii) one concurrent
branch is even executed faster in the other process variant.

In this work, we use process models, transformed in Petri nets, to enable a
hierarchical analysis, but we discover differences based on the event data. To
this end, we decompose the Petri net into a hierarchy of subprocesses and com-
pute subprocess executions relating subprocesses and event data. Based on these
executions, we define measurements that assess different aspects of a process. In
doing so, we not only consider the control-flow and performance perspective, but
also propose to compare how process variants deviate from the model.
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Fig. 1. Hierarchical Process Comparison on two event logs using a shared process
model. First, we decompose the Petri net and relate the resulting subprocesses with the
event data. Based on these subprocess executions, we compare the two process variants
with respect to various perspectives. Ultimately, each vertex in the decomposition shows
whether a difference was discovered for the respective subprocess. The color is chosen
based on the effect size of the difference. Selecting a subprocess, it is highlighted in the
original model.

While the approach is mostly agnostic to the decomposition applied, it is
usually preferable that the nodes in the decomposition represent logically coher-
ent subprocesses. We therefore propose a decomposition strategy that leverages
the Refined Process Structure Tree (RPST) of a model [27]. In the RPST, each
node corresponds to a subprocess that is entered and exited via a single node,
respectively. However, as illustrated in Sect. 4.3, relaxing this requirement can
improve the decomposition (e.g., to handle long-term dependencies). To this end,
we propose an additional preprocessing step preceding the RPST computation,
where we use the event log to remove places to improve the block-structuredness
of the Petri net and, consecutively, the decomposition.

The remainder of this paper is structured as follows: we discuss related works
and preliminary concepts in Sects. 2 and 3, respectively. In Sects. 4.1 and 4.3,
we discuss the decomposition approach and illustrate its application to PC in
Sect. 4.2. In Sect. 5, we evaluate the method in a real-world case study. Finally,
we give our conclusion and directions for future work in Sect. 6.

2 Related Work

Our approach is directly related to works on PC and Petri net decomposition as
well as to approaches for decomposed conformance checking.

For a comprehensive survey on PC, we refer the reader to [26]. Despite
not being limited to the control flow or performance perspective [22], most
PC approaches consider these. One can distinguish PC approaches that con-
sider event logs as input [7,8,10,22,25,28], compare process models [6,14,18], or
require a process model and two (or more) event logs as input [1,12,17,23,30].
Log-based approaches often represent follows relation between activities by
means of a graph [7,8,22,25,28]. Then, a statistical test is used to detect fre-
quency differences [8,22,25]. For example, in their seminal approach, Bolt et al.
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represent the event logs by a shared transition system [8]. Like our approach,
they introduce measurement functions to annotate the states and edges of the
transition system and apply Welch’s t-test to detect differences. In contrast to
our work, the proposed measurements neither assess differences on a subpro-
cess level nor consider relations between subprocesses. Besides, in contrast to
model-based approaches, event log-based methods cannot represent duplicate
activities.

Process model comparison methods analyze differences on the process speci-
fication level [6,14,18]. If event data is available, only considering models would
discard the event data as a valuable source of information providing insight into
decision likelihoods and time. Therefore, approaches for data-driven PC using
process models generally enrich the latter with information obtained from the
event data. Thereby, one can investigate aspects like execution times and de facto
path frequencies in the model. For example, in [17], the authors merge two pro-
cess models into a difference model which is further enriched with instance traffic
information. For each edge, they then detect frequency differences. In [30], Wynn
et al. explicitly consider Petri nets. Like our approach, they use alignments [5] to
relate the model with the (potentially slightly deviating) data. Compared to our
method, their approach provides more detailed results on waiting times between
transitions. However, they only consider pairs of transitions rather than larger
subprocesses and their relations. Moreover, they do not validate the statistical
significance of the differences returned. In general, to the best of our knowledge,
there currently exists no hierarchical, model-based PC approach.

Petri net decomposition techniques simplify models to (heuristically) solve
problems on subnets. For different applications, various approaches have been
proposed [2,9,13,16,27,32]. In this work, we compare process variants with
respect to coherent sub-workflows (i.e., subprocesses) of the original model. To
this end, we build on the notion of single-entry, single-exit (SESE)-fragments,
which have originally been proposed in [27] as a unique, hierarchical decom-
position of a process model into self-contained subnets. This notion expands
upon an earlier definition by Johnson et al. [15]. The resulting, more granular
decomposition coined the term Refined Process Structure Tree (RPST). Further
improvements and a more efficient way to compute the RPST have been pro-
posed in [24]. In this work, we propose an additional pre-processing step that
can improve the decomposition for the sake of PC but weakens the structural
guarantees.

An application of SESE fragments related to our approach is decomposed
conformance checking [20]. While we also consider conformance in the context
of RPSTs, we use fragments to aggregate the diagnostics, similar to [21], rather
than improving the computational efficiency.

3 Petri Nets and Process Mining Concepts

We denote sets by capital letters. Given a set S, its powerset is denoted by P(S),
and the set of all multisets is denoted by B(S). For a multiset m ∈ B(S), the
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multiplicity and an element s ∈ S is m(s) ∈ N. Given two multisets m1,m2 ∈
B(S), we write m1+m2 (m1 −m2) to denote their sum (difference). Besides, we
write m1 ≤ m2 if m1(s) ≤ m2(s) holds for all s ∈ S. In an abuse of notation, we
also apply these operators to pairs of sets and multisets.

The Kleene star (S∗) represents the set of all finite sequences over a (count-
able infinite) alphabet S. Given a sequence σ = 〈σ1, . . . , σn〉 ∈ S∗, we refer to
its ith element as σi. The length of σ is denoted by |σ|. Let I = {i1, . . . , im} ⊆
{1, . . . , |σ|} be a set of indices. Assuming the order i1 < · · · < im, the index set
I induces the subsequence σ[I] = 〈σi1 , . . . ,σim〉.

Petri Nets. Let A denote the universe of activity labels.

Definition 1 (Labeled Petri Net). Let τ /∈ A be a special silent label. A
labeled Petri net is a tuple N = (P, T, F, l), where (i) P is a finite set of places,
(ii) T is a finite set of transitions, (iii) F ⊆ (P ×T )∪ (T ×P ) is a flow relation,
and (iv) l : T → A ∪ {τ} is a labeling function.

Let N = (P, T, F, l) be a Petri net. For an element x ∈ P ∪ T , its preset (post-
set) are defined as •x := {y|(y, x) ∈ F} (x• := {y|(x, y) ∈ F}). Given a set of
edges F ′ ⊆ F , we denote the set of adjacent places by PF ′ := {p ∈ P∃t ∈
T ((p, t) ∈ F ′ ∨ (t, p) ∈ F ′)}. Likewise, for the set TF ′ of adjacent transitions.
The edge-induced subnet NF ′ is the Petri net

(
PF ′ , TF ′ , F ′, l �TF ′

)
, where l �TF ′

denotes the restriction of l on the adjacent transitions. The semantics of Petri
nets are determined by marking places, firing (sequences of) transitions.

Definition 2 (Marking, Firing). Let N = (P, T, F, l) be a labeled Petri net.
A marking m ∈ B(P ) of N is a finite multiset of places. A transition t ∈ T is
enabled in m if •t ≤ m. If t is enabled, firing t in m results in the marking
m′ = (m − •t) + t•, written as m[t〉Nm′.

Definition 3 (Firing Sequence). Let N = (P, T, F, l) be a labeled Petri net
and mI ,mF ∈ B(P ) be two markings. A sequence σ = 〈t1, . . . , tn〉 ∈ T ∗ is a
valid firing sequence from mI to mF of N , written mI

σ−→N mF , if there exist
markings m1, . . . ,mn+1 such that (i) m1 = mI , (ii) mn+1 = mF , and (ii) for
1 ≤ i ≤ n we have mi[ti〉Nmi+1.

In process mining, a commonly considered class of Petri nets are workflow nets
(WF-nets). A WF-net has a clear start and end, and all elements are on a
directed path from the start to the end.

Definition 4 (Workflow Net (WF-net)). A labeled Petri net N = (P, T, F, l)
is a labeled workflow net (WF-net) if (i) there is a unique source place pI (i.e.,
{pI} = {p ∈ P |•p = ∅}), (ii) there is a unique sink place pF (i.e., {pF } =
{p ∈ P |p• = ∅}), and (iii) every node is on a path from pI to pF .

The workflow system net (WF-sytem net) explicitly establishes a connection
between a WF-net and its semantics (i.e., its initial and final marking).
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Definition 5 (Workflow System Net (WF-sytem net)). A workflow sys-
tem net (WF-sytem net) SN = (N,mI ,mF ) comprises a labeled WF-net N =
(P, T, F, l), the initial marking mI = [pI ], and the final marking mF = [pF ].

The language of a WF-sytem net comprises all sequences of visible activity labels
of its valid firing sequences. Finally, a WF-sytem net is safe if we cannot reach
a marking where a place contains multiple tokens.

Definition 6 (Safeness). A WF-sytem net SN = ((P, T, F, l),mI ,mF ) is safe
if there is no valid firing sequence σ ∈ T ∗ reaching a marking m′ ∈ B(P ) from
mI (i.e., mI

σ−→N m′) with m′(p) > 1 for some p ∈ P .

Event Data. We leverage Petri nets to compare two process variants based on
data of their real-life executions. Each process execution corresponds to a busi-
ness case and comprises information on the activities executed for this particular
case. For each activity execution, we record the activity’s name and a timestamp.
While additional attributes are possible, they are not considered in this work.
An event log collects multiple process executions.

Definition 7 (Event Log). Let A and T denote (countable infinite) universes
of activity names and timestamps. The set of all activity executions is defined
as E := A × T . A trace σ = 〈(a1, t1), . . . , (an, tn)〉 ∈ E∗ is a finite sequence of
activity executions respecting time—that is ti ≤ tj for all 1 ≤ i < j ≤ n. An
event log L ∈ B(E∗) is a finite multiset of traces.

Dealing with event data, we frequently use two types of projection. The projec-
tion πS′ : S∗ → (S′)∗ of a sequence over a set S on a subset S′ ⊆ S only keeps the
elements contained in S′. Consider the trace σ = 〈(a, 1), (b, 2), (c, 3)〉. Projecting
σ onto all executions of a and b yields the trace π{a,b}×T (σ) = 〈(a, 1), (b, 2)〉.
Moreover, we write πtime : E∗ → T ∗ (πact : E∗ → A∗) to denote the projection of
traces onto the associated timestamps (activities). For example, for σ, we obtain
the sequence πtime(σ) = 〈1, 2, 3〉. In a slight abuse of notation, we also apply
πtime and πact to individual activity executions.

Alignments. In real life processes, the traces recorded might not perfectly match
with the prescribed Petri net model. Introducing a dedicated skip symbol, we
additionally require that columns either contain a single skip symbol or that the
trace’s activity matches the transition’s label. Thereby, an alignment represents
a joined, synchronized execution of the trace and the model.

Definition 8 (Alignment [2]). Let σ ∈ E∗ be a trace and SN = (N,mI ,mF ),
N = (P, T, F, l), l : T → A be a WF-sytem net. Let � /∈ A ∪ T denote a
special no-move symbol. We define the sets of synchronous, log, model, and all
moves as MSYNC := {(e, t)|t ∈ T, l(t) = τ, e ∈ E , πact(e) = l(t)}, MLM := E ×
{�}, MMM := {�} × T , and MALL := MSYNC ∪ MLM ∪ MMM, respectively. An
alignment of σ and N is a sequence of moves γ ∈ M∗

ALL such that

(i) projection π1 (γ) on the first element, ignoring �, yields σ—that is,
π��

(
π1 (γ)

)
= σ—and
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Fig. 2. Overview of our three-stage approach for comparing two process variants. First,
we hierarchically decompose the model into subprocesses. Second, we replay the event
data to relate the subprocesses with the data. Third, we compare the variants with
respect to the subprocesses from various perspectives. Eventually, we project the dif-
ferences onto the decomposition.

(ii) projection π2 (γ) on the second element, ignoring �, yields a valid firing

sequence from mI to mF of N—that is, mI

π ��(π2(γ ))−−−−−−−→N mF ,

where π�� := π(E∪T )\{�} denotes the projection that removes skips.

The set of best alignments is typically determined by a cost function minimizing
the number of log and visible model moves. In this work, we assume that a single
best alignment is given, which can make our approach non-deterministic. Finally,
given an alignment γ of a trace σ and WF-sytem net SN = ((P, T, F, l),mI ,mF ),
the marking reached after executing the first 1 ≤ k ≤ |γ| steps is mal

γ (k) with

mI

π ��(π2(γ[{1,...,k}]))−−−−−−−−−−−−−→N mal
γ (k). (1)

4 Hierarchical Process Comparison

This section presents our approach for comparing the executions of two process
variants based on a shared process model. To avoid boundary cases (e.g., empty
alignments), we assume that event logs do not contain empty traces and that
WF-sytem nets have at least one transition. Figure 2 shows an overview of our
approach that has three stages: (i) the model decomposition stage, where we
hierarchically decompose the model into subprocesses; (ii) the replay stage, where
we relate the subprocesses with the event data; and (iii) the comparison stage,
where we compare the process variants with respect to different perspectives.

4.1 Hierarchical Decomposition

Existing Petri net decomposition approaches [2,9,13,16,27] focus on the seman-
tic relation between the original Petri net and the sub-nets. For example, the
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Fig. 3. Illustration of a hierarchical WF-net decomposition. Subfigure (a) shows a WF-
net and ten (S0, . . . , S9) (single-entry, single-exit (SESE)) subprocesses. Each subpro-
cess contains the edges inside the illustrated rectangle. A hierarchy of these subpro-
cesses is depicted in Subfigure (b).

decomposition proposed in [2] is motivated by the idea of stitching together valid
firing sequences of the sub-nets to an (over-optimistic) execution of the original
net. In contrast, as illustrated in Fig. 2, we align the log with the original net.
Thereby, we gain more freedom to decompose the net in a hierarchical man-
ner without facing problems when relating process executions to sub-nets. Yet,
computing alignments can be computationally costly. In this work, we employ a
generic hierarchical decomposition based on the edges of a WF-net.

Definition 9 (Hierarchical Decomposition). Let N = (P, T, F, l) be a WF-
net. A hierarchical decomposition of N is a tree H = (S, E),S ⊆ P(F ), E ⊆ S×S

rooted at a vertex v0 ∈ S and downward-pointing edges such that v0 = F ; for
(v1, v2) ∈ E, we have v1 ⊃ v2; and for S ∈ S, the induced subnet NS is connected.

Intuitively, each vertex in the hierarchy corresponds to an edge induced subnet of
the original net. Under this interpretation, the original net is at the root, and each
non-root vertex’s net is a subnet of its parent’s net—that is, it comprises a subset
of its parent’s net’s places, transitions, and edges. We require connectedness of
subprocesses to later define the semantics of a subprocess execution.

Figure 3b shows a decomposition of the WF-net in Fig. 3a. Note that, given
the ten subprocesses in Fig. 3a, Definition 9 does not enforce a unique hierarchy.
A decomposition where S0 is the root and all remaining subprocesses are S0’s
children would also be valid. While a deeper hierarchy is usually preferable,
there can be exceptions. For example, an analysis that investigates parent-child
relations can benefit from this additional freedom (cf. Eq. (10)).

In general, Definition 9 does not impose strong restrictions on the decomposi-
tion applied. To relate event data to transitions of a Petri net, we use alignments
where we consider the complete trace and net. In contrast to relating individual
subprocesses independently of each other, this guarantees a globally consistent
assignment without additional considerations (e.g., an event cannot be assigned
to different transitions having the same label). Therefore, the measurements
proposed in Sect. 4.2 are mostly independent of the decomposition.
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Fig. 4. WF-net N3 = (P3, T3, F3, l) illustrating hierarchical PC. The edges in the col-
ored box in (a) depict the canonical fragments of the net. Subfigure (b) depicts a
decomposition of N3.

Despite our approach being mostly agnostic to the decomposition applied,
structural subprocess properties can play a role when interpreting the results. In
particular, we distinguish subprocesses—so-called fragments [27]—where control
flow enters and exits through a single node, respectively.

Definition 10 (Single-entry, single-exit (SESE) Subprocess). Let N =
(P, T, F, l) be a WF-net and S ⊆ F be a set of edges such that NS is connected.
A vertex v ∈ PS ∪ TS is a boundary vertex of NS if it is the source or the
sink of N or if v is incident to edges e1 ∈ S and e2 /∈ S; otherwise v is an
internal vertex. The subprocess S is a SESE subprocess if there exists entry and
exit vertices vi, ve ∈ PS ∪ TS such that (i) vi (ve) are boundary vertices; (ii) no
incoming edge of vi is in S or all outgoing edges of vi are in S; (iii) no outgoing
edge of ve is in S or all incoming edges of ve are in S; (iv) there is no other
boundary vertex v ∈ (PS ∪ TS) \ {vi, ve}.
All subprocesses illustrated in Fig. 3a are SESE subprocesses.

4.2 Measuring Differences

To compare event logs using the decomposition, we first relate the subprocesses
to the event data. We then define various measurements that, for example, assess
differences in the control flow or performance of subprocesses. Finally, we use
hypothesis tests to detect differences with respect to the measurements. We
illustrate the following concepts and a few interesting measurements on the WF-
net shown in Fig. 4a. Figure 4b shows its decomposition.

Subprocess Executions. In contrast to works that project the data onto the
subprocesses [2,20], we extract subprocess executions from alignments. Replay-
ing the alignment, we consider a subprocess being under execution as long as an
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associated place contains a token. Therefore, we require safe WF-nets to avoid
intermingled executions—that is, multiple, simultaneous executions of a subpro-
cess. If a place contains two tokens “created” by two events, it becomes unclear
to which event we should to relate the “consuming” event. To distinguish the
consumption and production of tokens, we introduce two helper functions. Given
an alignment γ and a subprocess S, we count the number of tokens contained in
S after the first k steps (inclusive) and the number of tokens contained before
the kth step produced tokens:

#al
S,γ (k) =

∣
∣[p ∈ mal

γ (k) | p ∈ PS ]
∣
∣, (2)

#al,−
S,γ (k) =

∣
∣
∣
∣
∣

[

p ∈
(

mal
γ (k) −

{
[] if π2 (γk) =�
π2 (γk)

• else

)∣
∣
∣
∣
∣
p ∈ PS

]∣
∣
∣
∣
∣
. (3)

Next, we define the intervals during which a subprocess is under executions.

Definition 11 (Subprocess Execution). Let SN = ((P, T, F, l),mI ,mF ) be
a WF-sytem net, S ⊆ F be a set of edges, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be
an alignment of σ and SN. The partial execution intervals of S given γ are

Epart
SN,γ ,S = {{i, . . . , j}|1 ≤ i ≤ j ≤ |γ| (Intervals)

∧ ∀i ≤ k < j
(
#al

S,γ (k) ≥ 1
)

(Token contained)

∧ ∃i ≤ k ≤ j
(
π2 (γk) ∈ TS

)
(Transition fired)

∧∀i < k < j
(
#al,−

S,γ (k) = 0 → π2 (γk) ∈ TS

)}
.(No short-circuiting loops)

(4)
The complete execution intervals of S given γ are the maximal partial execution
intervals

Eexec
SN,γ ,S =

{
I1 ∈ Epart

SN,γ ,S |∀I2 ∈ Epart
SN,γ ,S (I1 ⊆ I2 → I1 = I2)

}
. (5)

Equation (4) gives the conditions for a subprocess to be considered under execu-
tions. First, the subprocess must contain a token. Second, at least one transition
of the subprocess must fire as for place-bounded subprocesses a token can pass
without entering the subprocess. For example, consider p1 in Fig. 4a and the
subprocesses S1 and S5. Despite both subprocesses contain p1, a trace can only
enter one. Third, there is no outside short-circuiting loop (i.e., a loop containing
a single transition that is not adjacent to the subprocess) that consumes the last
token and produces a new token in it. For example, consider the subprocess S3

in Fig. 4a and the following alignment γ2:

#al,−
S3,γ2

(k) 0 0 1 0 0 0 0 0 1 0
#al

S3,γ2
(k) (1 1 1 1 1 {1) 1 1 1 0}

γ2 = � a1 b a2 a2 � a1 a2 b c
t1 t3 t6 t4 � t5 t3 t4 t6 t9

. (6)
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The token counts of S3, displayed on top of the alignment, show that t5 consumes
the last token before it produces a new token in S3. Yet, t5 is not contained in
S3. Finally, Eq. (5) defines a subprocess’ executions as the longest intervals
during which the process is considered being under execution. In Eq. (6), the
parentheses and braces indicate the resulting executions.

Subprocess Measurements. Based on the subprocess executions, we can com-
pare processes with respect to various aspects on different levels of granularity.

Definition 12 (Trace Measurement). Let SN = ((P, T, F, l),mI ,mF ) be a
WF-sytem net, S ⊆ F be a set of edges, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be an
alignment of σ and SN. The universe of perspectives is F . The subprocess trace
measurement with respect to a perspective p ∈ F is a function μp

SN,S : M∗
ALL →

R ∪ {⊥} where ⊥ denotes the absence of a measurement.

In the following, we exemplify five measurements to illustrate how the decom-
position and subprocess executions facilitate the detection of process variant
differences. In particular, we consider the control flow, performance, and confor-
mance perspective. To this end, we assume the following context for the remain-
der of this section: Let SN = (N,mI ,mF ), N = (P, T, F, l) be a WF-sytem net,
H = (S, E), S ⊆ P(F ) be a hierarchical decomposition of SN, S ∈ S be a
subprocess, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be an alignment of σ and SN.

Control Flow. First, we can measure whether a subprocess was activated, and
how often it was executed:

μact
SN,S(γ) =

{
1 if

∣
∣Eexec

SN,γ ,S

∣
∣ > 0

0 else
, μfreq

SN,S(γ) =
∣
∣Eexec

SN,γ ,S

∣
∣. (7)

These measurements show differences with respect to the frequency of branching
decisions and the number of repetitions.

In addition, the hierarchical nature of the decomposition facilitates the anal-
ysis of conditional decisions. Consider the following two event logs (not showing
time for simplicity) that perfectly fit the Petri net N3:

L1 =
[
〈a1, a2, b, c〉60, 〈d, e〉14, 〈d, f〉26

]
, (8)

L2 =
[
〈a1, a2, b, c〉40, 〈d, e〉27, 〈d, f〉33

]
. (9)

In L2, the activities e and f occur more frequently. Accordingly, the control flow
measurements in Eq. 7 show that, in L2, executing S8 and S9 is more likely.
However, if we respect the initial choice, the likelihood of observing f given that
d was initially chosen is higher for L1 (65% vs 55%). We can incorporate this
into our frequency measurement by considering the parent subprocess S7. We
only consider whether S8 and S9 were activated if S7 was activated. Assuming
that S is not the root of H, let S̄ be the parent of S (i.e., (S̄, S) ∈ E). We define
the conditional subprocess activation measurement

μc.act
SN,S|S̄(γ) =

{
μact
SN,S(γ) if μact

SN,S̄
(γ) = 1

⊥ else
. (10)
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Conformance. Process executions do not always comply with the process model.
Thus, process variants might not only differ in how frequently they activate
model elements but also in how they deviate from the prescribed control flow. An
example is the occurrence of log moves measurement. For the subprocess S, we
consider log moves on activities that are among the labels of the transitions TS .
In particular, we count log moves that occur outside the subprocess’ executions:

μcc
SN,S(γ) =

∣
∣{i ∈ {1, . . . , |γ|} |γi ∈ MLM ∧ ∃t ∈ TS l(t) = πact

(
π1 (γi)

)

∧∀I ∈ Eexec
SN,γ ,S i /∈ I

}∣
∣ . (11)

Differences with respect to this measurement show that, in one process vari-
ant, transitions of S are more likely to occur at unexpected positions. However,
this measurement also illustrates a major challenge dealing with log moves—
namely, duplicate transition labels. In case multiple transitions have the same
label, we count log moves multiple times.

Performance. Performance differences between process variants are often of
major interest. Using our notion of process executions, one can define various
performance measurements. In the following, we exemplify two complementary
measurements and discuss their limitations. Given a complete execution interval
I ∈ Eexec

SN,γ ,S of the subprocess S, we first consider the time series

γ
sync_t

S,[I] = πtime
(
π1

(
πMSYNC∩(E×TS)

(
γ[I]

)))
(12)

of synchronously executed subprocess transitions in I. Next, we define the syn-
chronous subprocess execution duration as the time difference between the first
and last synchronously executed transition that is adjacent to the subprocess:

μ
sync_t
SN,S (γ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if |γsync_t

S,[I] | = 0
for all I ∈ Eexec

SN,γ ,S

avg

({
max(γsync_t

S,[I] )

−min(γsync_t

S,[I] )

∣
∣
∣
∣
∣

I ∈ Eexec
SN,γ ,S

∧|γsync_t

S,[I] | > 0

})

else

(13)
While this measurement provides insight into differences in the duration during
which a subprocess was active, it does not account for delays prior or after the
execution. For example, consider the subprocess S3 in N3 and the alignment

γ3 = �
1

b
10
a1

11
a2

20
c

t1 t6 t3 t4 t9
, (14)

where the activity executions’ timestamps are depicted on top of the activities.
Despite the first move marks S3, the first activity is executed at time step 10.
In contrast, μ

sync_t
N3,S3

(γ3) = 1 suggests a fast execution of S3. To compare initial
delays, we can consider the elapsed time since case start measurement

μ
elap_t
SN,S (γ,σ) = min

I∈Eexec
SN,γ ,S

(
min(γsync_t

S,[I] )
)

− πact(σ0) (15)
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that extracts the time until the very first synchronous execution of a subpro-
cess’ transition. However, even if we consider both measurements, there are four
major limitations: (i) for loops, we only consider the first delayed start. (ii)
The elapsed time since case start measurement is monotonically increasing (e.g.,
μ
elap_t

N3,(t4,p6)
(γ3) = μ

elap_t
N3,S3

(γ3)+(11−10)). Thus, the analyst needs to consider that
differences can propagate to later parts of the process. (iii) The synchronous sub-
process execution duration of subprocesses containing a single transition is either
zero or undefined. (iv) For non-SESE subprocesses, there can be additional exter-
nally caused delays even after a subprocess’ execution started. Therefore, one
generally needs to consider multiple performance measurements depending on
the performance aspect of interest and the subprocess under consideration. For
example, to address the third limitation, we might consider the causal predeces-
sors and successors of a transition in the run of the Petri net. For S8, we would
compute the time between firing t2 and t7. Yet, for the concurrent subprocesses
S3 and S4, this means that their duration would be determined by t1 and possi-
bly t9 if we consider the transition that removes the last token. In this case, we
would get the same measurement value for both subprocesses.

Hypothesis Testing. Applying the presented trace measurements, we extract zero
(⊥) or one value per alignment. As we aim to compare subprocesses based on
their executions, we first discard the irrelevant measurements (i.e., measure-
ments having the value ⊥). For each subprocess and perspective, we thereby
obtain a population of real-valued measurements. To detect statistically signif-
icant differences between populations, we apply hypothesis testing under the
null hypothesis that there is no significant difference. In doing so, we implicitly
assume that the measurements are independent of each other. In practice, this
assumption might not always hold (e.g., if a single resource handles multiple
cases simultaneously). Nevertheless, case independence is a common assumption
in the field of PC [8,10,25]. Moreover, we additionally assume that the measure-
ments are approximately normally distributed; yet the populations might have
different means and variances. Based on these assumptions, we apply Welch’s
t-test [29] with a p-value of 0.05 to test if two populations’ mean values differ.

Besides the significance of a difference, the effect size assesses its strength. For
large populations, even small differences in their means can become statistically
significant. Therefore, we employ Cohen’s d [11] to quantify a difference’s effect
size. Eventually, we determine the color of each subprocess in the decomposition
based on whether there is a significant difference, whether the mean is larger for
the left or right process variant, and the Cohen’s d value.

4.3 Strategies for Decomposition

While our notion of WF-net decomposition is very generic, it is usually desirable
that vertices in the hierarchy define logically coherent and independent subpro-
cesses. In the literature, a structural characterization of such a subprocess is to
require that it has a single entry and a single exit vertex [27]. Thereby, each
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Fig. 5. Limitations of a SESE-based decomposition. The WF-net shown in (a) extends
the WF-net in Fig. 3a by an additional long-term dependency (red). The colored poly-
gons depict the non-trivial SESE subprocesses that constitute the RPST of this model.
Using a SESE-based decomposition, we cannot analyze the subprocesses between t1
and t5 (i.e., S2 in Fig. 3a) and p6 and t10 (formerly S3). The language preserving trans-
formation depicted in (b) would allow to further decompose S3 in N1. (Color figure
online)

subprocess is self-contained interacting with the remaining net at its entry and
exit node. This characterization serves as a basis for the RPST of a WF-net [27].
The RPST is a decomposition comprising a maximal set of vertices satisfying the
following conditions: (i) each vertex is a fragment (i.e., a SESE subprocess); (ii)
each fragment is canonical—that is, there exists no overlapping fragment (not
necessarily contained in the RPST) that neither is a proper super- nor subset;
and (iii) each vertex is a child of its smallest superset. These conditions imply
that the edges of a net are the leaves of its RPST. Such an edge fragment is
also called trivial (i.e., a fragment of size one). For example, excluding trivial
fragments, Fig. 3b shows the RPST of the WF-net in Fig. 3a. For further details
on (computing) RPSTs, we refer the reader to [24,27].

The property of defining self-contained subprocesses makes the RPST a
promising decomposition technique for hierarchical PC. Therefore, in our imple-
mentation, we leverage an adapted version of a WF-net’s RPST. We propose
to adapt the RPST computation for the sake of PC because the strict SESE
requirement makes the decomposition sensitive. For example, consider the WF-
net N2 depicted in Fig. 5a which extends N1 (Fig. 3a) by two additional places.
The highlighted places p12 and p13 couple the choices between a1 and a2 and
between d1 and d2. This significantly changes the set of canonical fragments.
Compared to N1, the added places induce two additional canonical fragments
SLT1 and SLT2 but violate the SESE property of six of the original canonical
fragments. Thereby, the resulting RPST would neither allow us to explicitly ana-
lyze the choice between a1 and a2 nor could we distinguish the two main blocks
of the workflow (i.e., the process before and after c).

WF-net Skeleton. As shown in Fig. 2, we propose an additional preprocessing
step of the WF-net to create more SESE subprocesses. The idea is to remove
places that connect structurally distant parts of the model preventing a more



Process Comparison Using Petri Net Decomposition 97

fine granular decomposition. As places constrain the behavior of the WF-net,
removing places instead of transitions yields a net describing a relaxed process.
In contrast, removing transitions can result in Petri nets without valid firing
sequences. Thus, the RPST obtained by removing places describes a relaxed
baseline process that we consider the skeleton process of the original model.

In order to later compute its RPST, we need to ensure that the skeleton
process is a WF-net. Intuitively, this means that we can only remove constraints
(i.e., places) that do not break the workflow. Accordingly, we can neither remove
the source nor the sink. Moreover, we might only remove a place if, in the
resulting net, each node is on a path between the source and the sink. For
example, in N2 (Fig. 5a), the only candidates for removal are p4, p12, and p13.

While removing p12 and p13 results in the original net that has a fine granular
decomposition, this is not the case for p4. After removing p4, no further place
can be removed resulting in a decomposition similar to the one before (SLT1 and
SLT2 would be extended up to p2). What distinguishes the places p12 and p13
from p4 is that latter place constraints the local order of activities. In each firing
sequence of the net that contains t2, the number of steps in which p4 is marked
is less than for p12. Therefore, we propose to preferably remove places that are
marked for many steps.

Definition 13 (Place Marking Interval). Let N = (P, T, F, l) be a safe
WF-net and T ∈ B(T ∗) be a multiset of valid firing sequences of N . Given a
firing sequence σ = 〈t1, . . . , tn〉 ∈ T, the token intervals of a place p ∈ P are

tiσ (p) = {(i, j)|1 ≤ i < j ≤ n, p ∈ ti
•, p ∈ •tj ,∀k(i < k < j) → p /∈ •tk ∪ tk

•} .
(16)

The average number of steps a place p ∈ P is marked is

ttT(p) = avg([j − i|(i, j) ∈ +
σ∈T

tiσ (p)]) . (17)

This idea is inspired by an ILP Miner [31] variant that prefers adding places
to a net where the token is consumed quickly. The safeness of the WF-net is
crucial to uniquely match the transitions that produced and consumed a token.
In contrast to structural place removal conditions, Definition 13 is not affected
by implicit places (i.e., places that do not affect the valid firing sequences). For
the sake of efficiency, in our implementation, we re-use the alignments of the
event logs to evaluate Eq. (17) rather than sampling the net.

Finally, we propose the following decomposition strategy for hierarchical PC:
(i) sort the places according to Definition 13 in descending order, (ii) iterate over
the sorted places removing places as long as the resulting net remains a WF-
net (i.e., remains connected), (iii) compute the RPST of the resulting WF-net
skeleton, and (iv) add the edges of the removed places as subprocesses under the
root. Consider a set of firing sequences for N2 (Fig. 5a) such that p12 and p13
are marked at least once. Depending on the position of t4 in the firing sequence,
the places p12 and p13 are marked for two or three steps. Each time one of these
places is marked, the place p4 is marked for at least one step less. Therefore, one
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can show that we have ttS(p4) < ttS(p12) or ttS(p4) < ttS(p13) (not necessarily
both). Removing any other place would violate the WF-net constraint. Thus, we
first remove p12 or p13 after which p4 cannot be removed anymore.

While there are various ways to combine the RPST and the places removed,
we simply add the associated sets of edges under the root. In contrast, one could
add them under the smallest subprocess that contains the place’s adjacent tran-
sitions. Adding the edges under the root has the advantage that the remaining
tree is a proper RPST for the block skeleton. Assuming that the set of edges
removed is usually small, we expect this design decision to have a minor impact.

Our place removal approach might change the language of the WF-sytem net.
Fortunately, this does not affect the analysis since we compute the alignments
with respect to the original net. Besides, there are other language-preserving
transformations that might improve a net’s SESE decomposability. Figure 5b
shows an example using a silent transition as a concurrency split. Since this
does not change the model in terms of its language, we currently leave this
to the modeler. Besides, approaches that transform other model notations into
Petri nets often natively use silent transitions to create SESE subprocesses.

5 Case Study

We implemented our approach as a ProM plugin, available in the ProM nightly
builds1, and evaluate it in a case study on the real-life Road Traffic Fine Manage-
ment (RTFM) event log [19]. To the best of our knowledge, from the model-
based approaches discussed in Sect. 2, only Wynn et al. [30] provide the publicly
available implementation Profiler 3d . Therefore, we qualitatively compare the
results to Profiler 3d . Like existing works that consider this log [8,10,25], we
split it into low fine cases—that is, the initial fine is less than AC50—and high
fine cases—that is, the fine is larger or equal to AC50.

Based on the original log, we created a highly fitting BPMN model and
transformed it into the Petri net depicted in Fig. 6a. On a high level, a fine
is first created (CF) and then either paid (P) or sent (SF). In the latter case,
the offender may either pay it, or the case enters a subprocess concerned with
additional penalization (AP) or appealing (IDA2P). We duplicated the pay-
ment transition (P) to precisely represent highly frequent variants where the
fine was paid. Thereby, we can explicitly analyze the different ways of paying a
fine. Finally, we add an implicit place (i.e., a place that does not constrain the
behavior), highlighted red in Fig. 6a. It creates additional boundary nodes in the
additional penalization subprocess. Thereby, no proper fragment can contain this
subprocess making it difficult to decompose. Despite the place being implicit,
it is well-suited to investigate the time between inserting the fine notification
(IFN) and paying (P) or collecting (SCC) it.

1 https://promtools.org/prom-6-nightly-builds/.

https://promtools.org/prom-6-nightly-builds/
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Fig. 6. Comparing low and high fine cases in terms of differences in the control flow.
Subfigure (a) depicts a Petri net of the process. The decomposition depicted in (b)
shows the differences detected using the conditional subprocess activation measure-
ment. For significant differences, the shade depicts the effect size, and the color illus-
trates whether subprocesses are activated more likely for low (blue) or high (red) fines.
Besides, we collapsed uninteresting subtrees (yellow outlines). The red annotations
relate the nodes in the decomposition of the Petri net and to the descriptions in the
text. (Color figure online)

5.1 Results

Figure 6b shows the hierarchical decomposition of the Petri net in Fig. 6a, and
Fig. 7 depicts the output of Profiler 3d . Our proposed decomposition strategy
correctly identifies the additionally introduced place as a non-skeleton place.
Next, we investigate control flow differences. Since the Petri net in Fig. 6a con-
tains a considerable number of choices, we employ the conditional subprocess
activation measurement. Thereby, we can analyze subprocesses proceeding a
choice irrespective of the choice’s likelihood. Figure 6b shows that, for low fines,
it is considerably more likely that we observe an immediate payment (Diagnostic
D(I)). Profiler 3d also detect this difference. In contrast, high fines are often first
sent (SF) to the offender (D(II)). After a fine was sent, an offender might pay,
or—an interesting, frequent option present in the event log—the case may end.
While latter option is more probable for low fines (D(III)), receiving a payment
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Fig. 7. Results obtained using Profiler 3d by Wynn et al. [30]. Due to limitations of
the tool, the transitions depict conditional firing likelihoods. Given that the transition
fires, the bar shows the fraction of low (green) and high (fine) cases. Detecting decision
likelihood differences therefore requires comparing this fraction with the annotation of
the transition labeled CF which is activated by all cases. The colored arcs on the edges
depict the median sojourn times between pairs of activities, where the height of an
edge scales with the sojourn time observed. The annotations refer to the differences
described in the text. If the conclusions drawn using our method and the depicted
approach differ, we underline the annotation. (Color figure online)

after sending the fine is more likely for high fines (D(IV)). Moreover, for high
fines, the likelihood is higher that the case neither ends nor is paid but enters an
extended subprocess (D(V)). This subprocess includes three concurrent strands
of work. On the prefecture’s site, the delayed payment leads to a notification
(IFN) and an additional penalty (AP). Moreover, the prefecture might receive
an appeal (IDA2P). On the offenders’ side, they might decide to start paying the
fine (possibly in multiple steps) even though an additional penalty will already
be added due to the delay. For this subprocess, we observe two main differences.
First, appeals are more likely for high fines (D(VI)). Second, given that an appeal
was made, it is more probable to be successful for high fine cases (D(VII)). In
particular, this difference might be quite interesting for stakeholders. Conse-
quently, for low fine cases, it is slightly more likely that one eventually observes
a payment or credit collection (D(VIII)). From the preceding differences, D(VI)
and D(VII) are most noticeable in Fig. 7. For the remaining differences, the fact
that one needs to visually compare fractions of cases makes them very difficult
to detect.

Performance. Analyzing performance differences, we investigate the synchronous
subprocess execution duration as well as the elapsed time since case start . Figure 8
depicts the projection of measurement differences onto the decomposition. First,
high fine cases tend to have a longer overall cycle time (D(IX)). The average
duration between a fine’s creation and its last observed activity is approximately
a year, while it is 263 days for low fine cases. Next, is noteworthy that, on average,
low fines are sent 18 days earlier (D(X))—that is, 72 versus 90 days. Since there
is no difference regarding the elapsed time since case start for CF, we would
expect that Fig. 7 shows a sojourn time difference for the edge (CF, SF ). Yet,
this is not the case. Moreover, one can attribute all significant differences with
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Fig. 8. Hierarchical comparison of low (avg. 2) and high fine (avg. 1) cases in terms
of performance. In this decomposition of the Petri net in Fig. 6a, we collapsed unin-
teresting subtrees (yellow outlines). For each subprocess (i.e., vertex), we compare its
synchronous subprocess execution duration. For selected subprocesses (red dashed), we
also depict the elapsed time since case start . The annotations depict the correspond-
ing subprocesses in Fig. 6a as well as labels for the diagnostics. We further enlarged
important subprocesses (gray). (Color figure online)

respect to the elapsed time in the subtree rooted at S2 to D(X). However, this
requires an additional analysis of the average values. Due to the hierarchical
decomposition, we can also easily see that the difference in the average duration
of the subprocess S2, entered by sending the fine, is smaller than for S0—that
is, 33 days vs 98 days (D(XI)). This suggests that the time savings for low
fines are due to immediate payments (S1). In fact, there is almost no difference
regarding the duration of the appealing and additional fining subprocess S5

(D(XII)). Finally, the introduced non-skeleton place gives additional insight into
the time between inserting the notification (IFN) and the final payment (P) or
credit collection (SCC). It shows that this duration does not differ significantly
(D(XIII)). However, low fine cases that mark this place (i.e., cases that enter
S5) tend to be paid slightly earlier shown by a shorter elapsed time since case
start (D(XIV)). Nevertheless, the overall time until the last payment is made or
is collected forcefully, does not differ significantly (D(XV)). Finally, Profiler 3d
detects increased sojourn times between IDA2P and SA2P for high fines. Similar
to D(XIV), it also indicates that after a fine is inserted (IFN), the final payment
is made slightly earlier for low fines (D(XVI)).
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5.2 Discussion

Our evaluation shows that the conditional subprocess activation measurement is
well-suited to compare process variants that considerably differ in the likelihoods
of choices. In doing so, the hierarchical approach allows us to reason about sub-
processes on different levels of granularity. For example, we not only observe that
appeals are more likely for high fine cases D(VI), but also that these appeals a
slightly more successful D(VII). Combined with the ability to consider duplicate
labels, we could also compare the frequency of payments in different process
contexts. Considering the performance, we identified differences in the execu-
tion duration of different subprocesses. Moreover, we gained additional insight
by comparing subprocesses among the hierarchy (comp. D(X)). However, this
requires the analyst to reason on top of the output of the method. Besides, one
needs to consider and relate multiple performance metrics to paint the full pic-
ture. Finally, the proposed reduction of the net to its skeleton process enabled
us to add an implicit place without negatively affecting the decomposition. This
place could then be used to investigate a specific aspect of the process.

Compared to Profiler 3d [30], our approach shows differences more clearly.
Moreover, the proposed method allows to reason about larger subprocesses and
automatically analyzes subprocesses on different levels of granularity. While Pro-
filer 3d also supports hierarchical Petri nets as input, it requires that the hier-
archy is specified upfront.

6 Conclusion

In this paper, we leverage a shared Petri net to compare two event logs in a
hierarchical manner. To this end, we decompose the model into a hierarchy of
subprocesses. For each subprocess and case in the event logs, we then extract
intervals during which the subprocess is considered being under execution. Based
on these intervals, measurements that assess different aspects of the process can
be defined. In this paper, we exemplify measurements that assess differences
in the control flow, performance, and conformance. Furthermore, we propose a
decomposition strategy based on Refined Process Structure Trees. In doing so,
we introduce a new preprocessing step to improve the decomposability of the
net. The case study shows how the proposed method allows to reason on larger
subprocesses but also to drill down on interesting details.

For future work, we plan to investigate process-aware measurements that
do not consider each case in isolation. The guidance provided by a good model
might help to alleviate this limitation of existing process comparison approaches.
Moreover, we intend to make the approach more interactive by allowing the user
to assess performance metrics of flexibly defined sections during runtime.
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