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Preface

This volume contains the proceedings of the 45th International Conference on Appli-
cation and Theory of Petri Nets and Concurrency (Petri Nets 2024). The aim of this
series of conferences is to create an annual opportunity to discuss and disseminate the
latest results in the field of Petri nets and related models of concurrency, including tools,
applications and theoretical developments.

The 45th conference and affiliated events were organized by the SMV (Semantics,
Modeling and Verification) team at the Computer Science Department of the Faculty of
Sciences of the University of Geneva, Switzerland, jointly with members of the Centre
Universitaire d’Informatique. The conference took place at the Campus Biotech Geneva.

This year, 42 papers were submitted. Each paper was reviewed by at least three
reviewers. The discussion phase and final selection process by the Program Committee
(PC) were supported by the EasyChair conference system. From 39 regular papers and
3 tool papers, the PC selected 19 papers for presentation: 17 regular papers and 2 tool
papers. After the conference, some of these authors were invited to submit an extended
version of their contribution for consideration in a special issue of a journal. We thank
the PC members and other reviewers for their careful and timely evaluation of the
submissions and the fruitful constructive discussions that resulted in the final selection
of papers. The Springer LNCS team provided excellent support in the preparation of this
volume.

The keynote presentations were given by

– Rob van Glabeek, University of Edinburgh: Just Distributability
– José Manuel Colom, University of Zaragoza: Harnessing Structure Theory of Petri

Nets in Discrete Event System Simulation
– Gabriele Taentzer, Philipps-Universität Marburg: On the Application of Model-

Driven Optimization to Business Processes

Alongside Petri Nets 2024, the following workshops took place:

– Model Checking Contest 2024
– Workshop on Petri Nets and Software Engineering (PNSE) 2024
– Workshop on Petri Net Games, Examples and Quizzes for Education, Contest and

Fun (PENGE) 2024

coordinated by Susanna Donatelli and Karsten Wolf. Other co-located events
included the Petri Net Course and Tutorials, coordinated by Jörg Desel as well as a
Tool Exhibition.



vi Preface

We greatly appreciate the efforts of all members of the Local Organizing Committee
chaired by Didier Buchs for the time spent in the organization of this event. We hope
you enjoy reading the contributions in this LNCS volume.

June 2024 Lars Michael Kristensen
Jan Martijn van der Werf
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Just Distributability (Abstract of Invited Talk)

Rob van Glabbeck

In this talk I investigate which systems can be implemented in a distributed fashion,
by sequential components that interact solely through asynchronous communication.
Naturally, such an implementation should satisfy the same safety and liveness properties
as the original system. Here I use Petri nets to model the systems under investigation,
and find a way to implement any net in a distributed fashion, provided we allow read or
listen arcs in our implementations.
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Harnessing Structure Theory of Petri
Nets in Discrete Event System Simulation

José-Manuel Colom(B)

Aragón Institute of Engineering Research (I3A), University of Zaragoza,
Zaragoza, Spain

jm@unizar.es

Abstract. Nowadays Discrete Event Systems (DESs) require complex
and large models, for which distributed simulation engines become, in
practice, the tools used to understand and analyze their behavior. The
feasibility and efficiency of a distributed simulation of these large-scale
models is strongly dependent of the information that can be obtained
from the models, previously to the simulation process itself. This infor-
mation can give assistance to the generation of an initial partition of the
model, allowing a well balanced workload among the individual simula-
tion engines deployed, or in the generation of the predicates to be evalu-
ated in order to determine the enabling of transitions; or the computation
of look-ahead information in conservative strategies of distributed sim-
ulation. Petri nets allow to obtain information from the structure that
can be used to advance conclusions or properties about the course of a
simulation. This information can be usefull either independently of the
considered initial marking, or parameterised by its initial choice. This
structural information can be obtained in modelling phase, completed
in simulation time and re-elaborated from the simulation results, and
therefore associated to the model or modules of the model in such a way
that can be harnessed in further simulations where these nets will be
used. Last but no least, the maintenance of the structure of the Petri
net during the simulation (in an interpreted simulation instead of a com-
piled one) allows to make load balancing during the simulation or to
federate with legacy simulators, in an easier way than using other kind
of specification models or simulation schemes.

Keywords: Petri Nets · Structural Analysis · Distributed Simulation ·
Discrete Event Systems

1 Introduction

Discrete Event Systems (DES) are systems whose state is modified in a timely
and distinguishable way in their evolution. DESs have acquired great relevance
due to the multitude of them that are inserted into the daily life: from the
Internet of Things (IoT) itself to the evacuation of a sports stadium for a seri-
ous incident, passing through the public health system, or highly automated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

L. M. Kristensen and J. M. van der Werf (Eds.): PETRI NETS 2024, LNCS 14628, pp. 3–23, 2024.
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4 J.-M. Colom

and geographically dispersed manufacturing systems. The main characteristic
of these systems is their complexity and size, which can scale to large values.
These properties, together with the fact that prototypes cannot be built to test
solutions or introduce improvements, make model building an essential necessity.
These models must abstract the behavior of the system as faithfully as possible
to address the problem of its design, analysis or improvement.

These complex and scalable DES models are used to simulate the behavior of
the system, under different scenarios, to investigate its evolution. The analysis
of results will allow to better understand the system, help make decisions in real
situations or even design optimization systems that improve its behavior. Petri
nets (PNs) are models that have proven to be particularly suitable for describing
the behavior of DESs. In addition to their conceptual simplicity and graphic
representation, they add the characteristic of being executable models: the state
is represented by variables called places, and the state change by transitions that
modify the token contens in the places, in a local and atomic way.

In a general context, DESs Parallel Simulation (DESPS) slices a single exe-
cution of a discrete event simulation program across multiple processes on a
high-performance computing system [12]. A discrete event simulation captures
the behavior of a real or conceived system over time and evolves the state of the
system to a new state at distinguishable, typically irregular, points in simulation
time. A sequential discrete event simulation program includes two fundamental
concepts: state variables that capture the state of the system being modeled and
events that allow the transition of state variables from one state to the next. In
a discrete event simulation, changes in the simulation state occur only through
event processing. Each event contains a timestamp that represents a point in
simulation time at which the state transition occurs.

A DESPS program can be viewed as a collection of sequential discrete event
simulations (called Logical Processes - LP) that interact by exchanging time-
stamped messages. Each message represents an event scheduled (sent) by one
LP to another. Synchronization of DESPS programs must ensure that parallel
execution of the LPs produces exactly the same results as a sequential execu-
tion of the same program where all events take effect in timestamp order. Syn-
chronization schemes (see [11]) that guarantee this property are classified into
conservative and optimistic. Some conservative schemes [7] use a mechanism of
locking an LP until it can guarantee that no events with a lower timestamp will
be received in the future. To do this, each LP must maintain a global lookahead
value (LA) that guarantees that it will not receive messages with a timestamp
lower than its current simulation time plus LA. Optimistic schemes allow events
to be processed out of order, but use a rollback mechanism to recover from such
errors.

Distributed simulation is concerned with running simulations on comput-
ing platforms of a wider geographical extent than parallel computers. Dis-
tributed simulation allows to enable the exploitation of geographically dis-
tributed resources in the simulation operation, or to run simulations close
to source data streams. Moreover, using distributed simulation allows the
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integration of simulators operating on different computers into a single simu-
lation environment. LP synchronization (time management) is also a problem
in distributed simulation, but new and no less important problems appear: (1)
distribution of information between simulators participating in distributed sim-
ulation in an efficient and timely manner; or (2) reduction in the amount of data
and messages communicated. The search for interoperability between simulators
developed separately has led to standards to interconnect simulations such as
the High Level Architecture (HLA) [1–3].

The domain of distributed simulation has grown and evolved over the past
years, but has new challenges arising from new applications and changes in the
hardware and software systems on which they operate. R.Fujimoto pointed out
six research challenges in [12] that still remain today:
C1. Scalable simulations based on large and complex real-world applications.
C2. Exploitation of heterogeneous machine architectures.
C3. Distributed simulation more accessible thanks to simpler models and cloud

computing.
C4. Online decision making through real-time distributed simulation.
C5. Distributed and parallel simulation with energy efficiency.
C6. Fast composition of distributed simulations.

This article propose the use PNs in all phases of the DES Simulation Engi-
neering process. The characteristic to exploit of the PNs is its structural infor-
mation that the model provides. In the following sections some of the contribu-
tions of the Structure Theory of PNs to the distributed simulation of scalable
DES models will be presented. Section 2 presents the justification of a modular
methodology for the construction of scalable models and the most appropriate
simulation schemes for the challenges in [12]. Section 3 presents Linear Enabling
Functions as a mechanism for eliminating the need to maintain the global state
of the system in a distributed simulation and facilitating federation with legacy
simulators. Section 4 presents how to take advantage of Vector Simulators for
calculating and managing the lookahead of LPs, and how to deal with scala-
bility, dynamic evolution, and interoperability of models. Section 5 presents an
overview of the approach and Sect. 6, highlights some conclusions.

2 Petri Nets for Distributed Simulation of Scalable DESs

Petri Nets (PN) are used as models to specify the behaviour of DESs. In this work
flat Place/Transition Nets will be considered. Its definition is based on two main
pillars. The first one is that they are models with an explicit structure expressed
by static relationships between state variables (places) and transformers of the
values of the state variables (transitions). The second pillar is the rule for the
occurrence of transitions that transforms the net state. For the ocurrence of a
transition a precondition named enabling condition, must be fullfilled: all input
places to the transition have a token contents greater than a threshold specified
by the weight of the arc. If this is the case, the classic token game happens
by updating the token contents of the places connected to the transition in an
atomic form. These characteristics make PNs a kind of executable model.
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2.1 Construction of PNs for Simulation

Given a system modelled with a PN, the system behaviour is obtained from the
PN through the occurrence of its transitions. An execution in the PN is a sequence
of transition occurrences. It is possible that from an initial net state (initial
marking) different sequences of transitions can be followed. It will be assumed
a weak fairness property in the occurrence of transitions [13]: if a transition is
persistently enabled, it will eventually progress.

Fig. 1. A bounded Petri Net [20]. The net becomes unbounded with the initial marking
m0[A] = m0[C] = 0 and m0[B] = 4.

The PN in Fig. 1 has the finite Reachability Graph (RG), depicted on the
right in the Figure, with initial marking m0[B] = 3. The same net, but with
m0[B] = 4, becomes an unbounded PN system that has an infinite RG. This
example leads to drawing several considerations that affect the development of
simulation techniques for this class of models. The first one is that, in the general
case, it is not feasible to simulate unbounded PNs, whatever the approach
adopted. Simulation of unbounded nets requires storing and maintaining the con-
tent of tokens of unbounded places (or lists of projected events), so problems of
overflow the memory dedicated to storing them can arise. The second consider-
ation arises from how to ensure that the PN to be simulated is bounded. If this
certainty is wanted before starting to simulate the model, then some analysis
will have to be made to determine if the boundedness property is verified by the
PN. This can be done by the construction of the RG with an Algorithm such as
that in [15], including the condition to detect unboundedness of a net system:
the system S = 〈N ,m0〉 is unbounded iff there exists m′′, reachable from m0

and σ ∈ T ∗, such that m′′ σ−→m′ and m′ � m′′.
The PN in Fig. 1, with m0[B] = 3, is a bounded net system that would

be simulatable, but in the case of m0[B] = 4, it is unbounded in which case
it would not be simulatable. Therefore, before modifying the marking of any
place to launch a new simulation (common action when exploring the behavior
of a model with different initial markings that, for example, represent different
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resource contents) it is necessary to carry out an analysis of the boundedness
property, which in the general case requires building the RG.

The integration of the Karp and Miller condition [15] to detect unbounded-
ness of a net system, within the simulation algorithm it is also not feasible. That
is, every time a transition t occurs, verify that there is no predecessor marking
of the one reached by the occurrence of t, which token contents is less than and
non-equal to the new marking obtained. This verification requires the storage of
all the markings reached during the simulation, and the time costs grow as the
simulation progresses (since the list of markings grows). Moreover, the consis-
tency of the information of the states reached must be guaranteed, since the PN
has been partitioned into several components that have been separated for its
distributed simulation.

From all of the above, it can be concluded that the PN models that are well-
formed for simulation are those that, for any initial marking, the resulting net
system is bounded. That is, this property must be guaranteed by the net struc-
ture, and is known as structural boundedness property [21]. The property
can be verified from the incidence matrix as the following results shows.

Proposition 1 ([23]). The following three statements are equivalent:

1. N = (P, T,Pre,Post) is structurally bounded.
2. There is no x ≥ 0 such that C · x ≥\ 0 (transition-based characterization)
3. There exists y > 0 such that y · C ≤ 0. (place-based characterization)

To verify the previous property, linear algebra algorithms are required that
determine if a system of inequalities has at least one solution. There are Linear
Algebra Software Packages such as [9], in which the matrices they can deal with
are limited to a few tens of thousands of rows and columns. This number is small
when it concerns scalable PNs modeling detailed logistics systems, for example,
which may contain millions of places and transitions.

The practical impossibility of verifying the structural boundedness property
for a complete large PN makes it necessary to define a strategy to guarantee that
the simulation is possible. In [4,14,25] a strategy is proposed that aims to obtain
structurally bounded models by construction, from small-sized components that
each one has the property. The construction proceeds through component inte-
gration operations, which preserve the property (closed operators with respect
to the class of structurally bounded PNs). For example, components can be Petri
subnets that can be integrated through the merging of some interface transitions
declared into each component. The following result shows that the transition
merging operator between PN components is closed for the class of structurally
bounded nets.

Proposition 2. Let F = {Ci|Ci = (Si, Θi), i = 1, . . . , k} be a finite family of
PN components, where Si = (Ni,m0i), Ni = (Pi, Ti,Ci), and Θi ⊆ Ti the set of
transitions that Ni offers to merge with other components. If Ni = (Pi, Ti,Ci),
for all i = 1, . . . , k, is structurally bounded, any PN obtained by composition of
elements of F via transition merging operations is structurally bounded.
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In order to exploit the above result to obtain a structurally bounded net by
construction, by merging transitions, some previous works with the components
are needed: (1) Independent verification that each component is structurally
bounded using standard software packages. It will be affordable because the
size of a component is modest compared to the global model; (2) Associate the
property to the component when adding it to the library (for a component only
once must be verified the property).

The methodology for building models from components can be extended
including new operators. Similarly to the merging operator, they must be closed
with respect to the class of structurally bounded nets. For example, a transition
replication operator in a PN component (a replicated transition is a distinguish-
able copy of a original transition, with a different name, and connected to the
same places as the transition it replicates and with the same weights in arcs) is
closed with respect to the class of structurally bounded nets.

2.2 Strategy for Distributed Simulation of PNs

The simulation of a DES is based on the construction of a PN model that will be
executed following occurrence sequences of transitions of the PN. The execution
of a PN requires an engineering task that obtains a computer program from the
PN which execution is the simulation of the DES. This engineering task is called
PN implementation and, in the case of parallel or distributed simulation, it will
give rise to a set of Logical Processes (LP) that are synchronized interchanging
messages. These programs must take into account, to generate them, the repre-
sentation of the state of the PN, the rules of enabling of transitions and the rules
for the occurrence of transitions playing the token game. Transitions can incor-
porate a temporal interpretation that can be deterministic or stochastic—timed
PNs (TPN) or stochastic PNs (SPN).

Implementations of a PN are classified as compiled or interpreted. A compiled
implementation of the PN generates programs (LPs) whose execution sequences
mimic the sequences of transition occurrences in the PN. The PN is only a kind of
blue-print that dissapears at the moment the control flow of the LPs is generated
using the instructions of a programming language. This kind of implementation
makes that an initial partition of the model must be done to assign each part to a
LP in compilation-time, and this partition cannot be changed in execution-time.
This means that the level of parallelism and distribution is locked at compilation-
time [14], and dynamic load balancing or reconfiguration can be only done at the
level of LP. This initial partition introduces rigidities in the load re-balancing
during the simulation, which may be necessary to do for multiple factors [10].
This rigidity is due to the fact that the transitions encapsulated in an LP are not
externally distinguishable and are treated as a unit. Compiled implementations
have been the option for discrete event control systems [18,19].

An interpreted implementation of a PN is based on a generic program, named
interpreter or simulation engine (simbot), that implements the basic algorithm
for occurrence of transitions in a PN: (1) detection of enabled transitions; (2)
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solving conflicts between transitions; (3) occurrence of transitions and updat-
ing of the net marking. The PN remains during execution under the form of
data structures representing each one of the PN objects that must be used and
updated by the interpretation cycle of the simbot for the occurrence of tran-
sitions. In this implementations, the model specification is separated from the
program used to simulate the model, which is essential for scaling simulations and
simplifying the dynamic deployment of simulation programs on distributed exe-
cution platforms [27]. When the model is not embedded in the program instruc-
tions of the simulator, this enables easier model portability to other simulators
or hardware platforms.

The use of simulation engines specialised in the interpreted implementation
of PNs (simbots) avoids the development of the systems entirely from scratch
[17]. Simbots provide a core permanent portion of services that can be executed
in heterogeneous infrastructures such as mini clusters, the cloud, and even allow
to embed these simulation services into IoT devices.

A simbot follows an execution cycle, in three stages, for the occurence of a
set of concurrent transitions from a state: (1) detection of enabled transitions;
(2) construction of the list of transitions to occur in the cycle, solving previously
the existing conflicts; (3) occurrence of the transitions with the updating of the
net marking. The first stage is the most time-consuming operation, and the
efficiency of a PN interpreter is mainly related to the transition enabling test
implemented. There are two large families of enabling tests known [8,20].

1. Place-driven approaches [19,22,24,26]. In this type of tests an explicit repre-
sentation of the marking of the places of the PN is required. The enabling test
for a transition is an assertion that verifies that each input place to it has a
token contents above the threshold that specifies the input arc. Normally, for
each transition a representative input place is chosen, that in case of not hav-
ing enough tokens avoids continuing to test input places. This choice reduces
the number of marking tests, and therefore, a good representative place is
one that is not frequently marked.

2. Transition-driven approaches [20,24]. In this case, a representation of the
places and their marking is not required. Instead, an enabling function is cre-
ated for each transition that discriminates whether the transition is enabled
or not. The value of this function is updated when the occurrence of a neigh-
boring transition changes the enabling state of the transition. In [5,6], a
transition-driven method was presented for P/T nets characterising the tran-
sition enabling by means of a Linear Enabling Functions (LEF).

As a conclusion to this section, the adopted decisions for the definition of the
simulation strategy of PNs are shown below. These decisions are supported by
the advantages provided by PNs and its Structure Theory, offering answers to
the research challenges posed by R. Fujimoto and listed in the introduction.

– Answers to challenge C1. Methodologies for building scalable models based
on components that are structurally bounded (to ensure that they are simu-
latable for all initial marking) and composition operators closed with respect
to structurally bounded nets.
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– Answers to challenge C2. Interpreted implementations of PNs based on
generic simulation engines executing the transition occurrence cycle, that can
be provided for any type of computing platform and software architecture.
These simulation engines are separated from the models to be simulated,
which are data structures portable to different platforms.

– Answers to C3 challenge. Transition-driven approaches for enabling transi-
tion tests that do not require an explicit representation of the net marking,
avoiding costly mechanisms to guaranteeing data consistency and availability
in distributed environments. The grouping of each set of transitions in struc-
tural coupled conflict relation within a same simulation engine to avoid costly
protocols for distributed decision making.

– Answers to challenges C4, C5 and C6. The points indicated here follow from
the content of the following section. The intensive use of Linear Enabling
Functions (LEFs) to characterize the transitions enabling. This reduces the
number of messages (events) exchanged between simbots to the minimum
necessary to collect the changes in the enabling of a transition due to the
occurrence of neighboring transitions. This leads to a better energy efficiency
of the computational platforms where the simulations are executed. Use of
simulators with vector of LEFs to link model transitions, in a natural and
simple way, with agents in the simulation environment for decision making
or connect with legacy simulators that perform specialized functions.

3 Enabling Functions of Transitions and Event
Distribution

Given a net system (N ,m0) and a transition t of N , a Linear Enabling Function
(LEF) of t, ft : RS(N ,m0) → ZZ, is a linear function depending on the marking
m, that characterizes the enabling of t at m according to the following rule:
ft(m) ≤ 0, m ∈ RS(N ,m0), if and only if for all p ∈ •t, m[p] ≥ Pre[p, t].

The use of LEFs simplifies the enabling test, because only a scanning for
transitions with LEFs less than or equal to zero is needed, i.e. only one test
per transition over an integer value without the maintenance of the net marking
(the state). Moreover, the LEF of t only must be updated if some transition
belonging to ••t or (•t)• has occurred. The updating only requires the addition
of a predefined constant to the current function value. In the case of conflicts,
preemption of some enabled transitions can appear.

For each t ∈ T the following sets are defined: (1) SeqPre
t = {p ∈ •t | sb(p) =

Pre[p, t]}; and (2) SupPre
t = {p ∈ •t | sb(p) > Pre[p, t]}. These sets are defined

using sb(p) instead of b(p) because b(p) ≤ sb(p), and it can be computed in
polynomial time (with respect to the net size) by solving a Linear Programming
Problem [21]: sb(p) = max{m[p] | m[p] = m0 + C · σ,m ≥ 0,σ ≥ 0}. The
computation of all sb(p) requires an Algorithm that proceeds in a compositional
way over the components used to construct the complete model. Therefore, a
transition t, •t = SeqPre

t ∪ SupPre
t , belongs to one of following Classes:

Class 1. |•t| ≥ 1, and |SupPre
t | ≤ 1.
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Class 2. |•t| ≥ 1, and |SupPre
t | > 1.

3.1 Linear Enabling Functions (LEFs) for Class 1 Transitions

Let (N ,m0) be a net system and t a transition of Class 1. In the case
that SupPre

t 
= ∅, let pπ be the place belonging to this set. The function
ft : RS(N ,m0) → ZZ, is called Linear Enabling Function (LEF) of t, where
∀m ∈ RS(N ,m0),

ft(m) = sb(pπ) · ∑
p∈SeqPre

t
(Pre[p, t] − m[p]) + Pre[pπ, t] − m[pπ],

with sb(pπ) · ∑
p∈SeqPre

t
Pre[p, t] + Pre[pπ, t] ≥ ft(m) ≥ Pre[pπ, t] − sb(pπ)

Previous definition assumes: SeqPre
t 
= ∅ and SupPre

t 
= ∅. Particular cases are,

SeqPre
t = ∅: ft(m) = Pre[pπ, t] − m[pπ]; Pre[pπ, t] ≥ ft(m) ≥ Pre[pπ, t] − sb(pπ)

SupPre
t = ∅: ft(m) =

∑
p∈SeqPre

t
(Pre[p, t] − m[p]);

∑
p∈SeqPre

t
Pre[p, t] ≥ ft(m) ≥ 0

For a given marking m ∈ RS(N ,m0), ft(m) can be used to discriminate
when a transition t is enabled. The following result characterizes this situation.

Proposition 3. A Class 1 transition, t, is enabled at marking m iff ft(m) ≤ 0.

Fig. 2. Transition t of Class 1. Geometric representation of its LEF ft(m).

Figure 2 illustrates the geometric interpretation of LEFs for a transition t of
Class 1 with two input places p and q. In the cartesian plane in Figure, taking
into account the sb(p) and sb(q), the potential marking vectors are inside the
rectangle with vertices [0, 0], [0, 2], [5, 0], and [5, 2]. Nevertheless, the marking
vectors enabling t are only those contained in the segment defined by the points
[2, 2] and [5, 2]. The LEF for this transition is ft(m[p],m[q]) = 12−5m[q]−m[p].
The hyperplane ft(m[p],m[q]) = 0 separates the markings enabling t from the
rest of possible markings.
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All LEFs need to be re-calculated if a new marking is reached. This re-
evaluation has three drawbacks: (1) The marking of the net must explicitly
represented; (2) The marking must be updated each time a transition occurs;
(3) The value of the LEFs must be re-computed each time the marking changes.
Thus, the use of LEFs increases the computational cost of the simulation cycle of
a classical simulation based on the markings. Proposition 4 presents an updating
method of the values of the LEFs to cope the previous drawbacks: it does not
require to keep the marking of the net, the updating of a LEF is made only if the
number of tokens of some input place of the transition has been modified, and
the updating uses the current value of the LEF adding a constant supplied by
the occurred transition. This constant summarizes the changes in the enabling
of the transition by the occurrence of its neighbour transition.

Proposition 4. Let t be a transition of Class 1, where SeqPre
t 
= ∅ and SupPre

t 
=
∅, and t′ a transition occurring from m ∈ RS(N ,m0), m[t′〉m′,

ft(m′) = ft(m) − sb(pπ) · ∑
p∈SeqPre

t
C[p, t′] − C[pπ, t′]

In particular: 1) If SeqPre
t = ∅, ft(m′) = ft(m) − C[pπ, t′]; 2) If SupPre

t = ∅,
ft(m′) = ft(m) − ∑

p∈SeqPre
t

C[p, t′]. �
The constants in Proposition 4 can be obtained before simulation from the

net structure and the structural bounds of places, and they are associated to the
transition that occurs, t′. From an operative point of view, after the occurrence
of t′, a constant must be sent to each transition with at least one input place
connected by an arc to t′. So, only LEFs of directly connected transitions by a
place to t′ will be updated; only these transitions will receive a constant from t′.

In order to simulate a net system, (N ,m0), each transition of the net is
reduced to a data structure containning: (1) A variable to store the current
value of its LEF. The initial value, ft(m0), of the LEF is computed before the
simulation; (2) A list of constants together with the identity of the transition to
send each constant. This constant is the event transmitted (attaching a times-
tamp) by the transition that occurs, to the transition which enabling conditions
has changed because this occurence, and it will be used to update the LEF of the
receiver in timestamp order. The top subnet in Fig. 3 depicts a simple example
with the data of two transitions α and β. The occurrence of α requires the updat-
ing of the LEFs of α and β because α modifies the contents of tokens of places
J and K, input places of α and β, respectively. So, two constants appear in the
data structure of α indicating the destination transitions after its occurrence.

3.2 Vector Linear Enabling Functions for Class 2 Transitions

The enabling of a Class 2 transitions cannot be characterized by means of a
unique LEF, as in the case of Class 1 transitions. Nevertheless, Non-Linear
Enabling Functions (NLEF) for the characterization of its enabling can be
defined. The non-linearity of NLEFs introduces computational costs and rep-
resentation problems that make disappear all advantages obtained from the use
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Fig. 3. Construction of a PN model by composition of two subnets via fusion of tran-
sition u with the transition α and the transition v with the transition β.

of Enabling Functions in distributed simulation, as in the case of Class 1 tran-
sitions.

The enabling of Class 2 transitions can be characterized by means of a family
of LEFs. Each LEF determines the contribution of a subset of input places to
the enabling of the transition. A subset of transition input places enables the
transition if and only if the LEF constructed with their marking variables has
a value less than or equal to zero. To build this LEF, the subset of places must
satisfy the same conditions that in the case of Class 1 transitions. A transition
is completely enabled, if all place subsets (used to construct the LEFs family)
enable the transition individually. So, all LEFs must have a value less than or
equal to zero for the marking evaluated.

A transition t of Class 2 satisfies: |•t| ≥ 1, •t = SeqPre
t ∪ SupPre

t , SeqPre
t ∩

SupPre
t = ∅ and |SupPre

t | > 1. A Legal Covering of •t, LC(•t), is a family of
place subsets, LC(•t) = {L1, . . . , Lk}, that verifies: (1) Li ⊆ •t, i = 1, . . . , k; (2)
•t =

⋃k
i=1 Li; and (3) |Li ∩ SupPre

t | ≤ 1, i = 1, . . . , k.
LCs with the minimum number of subsets are preferred, because give rise

to a minimum number of LEFs and therefore optimizes the number of test to
determine the enabling of a given transition. It is easy to see, that the Mini-
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mal Legal Coverings of a transition t contain a number of subsets equal to the
cardinality of SupPre

t .
Let (N ,m0) be a net system and t a Class 2 transition, •t = SeqPre

t ∪SupPre
t ,

SupPre
t = {pπ1 , . . . , pπk

}, k > 1. Let LC(•t) be a Minimal Legal Covering of
•t, LC(•t) = {L1, . . . , Lk}, and {pπj

} = Lj ∩ SupPre
t . The vector function,

Ft : RS(N ,m0) → ZZk, is called Vector Linear Enabling Function (VLEF) of
a Class 2 transition t, where ∀j ∈ {1, . . . , k},m ∈ RS(N ,m0),

Ft(m)[j] = sb(pπj
) ·

∑

p∈SeqPre
t ∩Lj

(Pre[p, t] − m[p]) + Pre[pπj
, t] − m[pπj

],

Pre[pπj
, t] − sb(pπj

) ≤ Ft(m)[j] ≤ sb(pπj
) ·

∑

p∈SeqPre
t ∩Lj

Pre[p, t] + Pre[pπj
, t]

The previous vector function Ft(m) assumes that SupPre
t 
= ∅ and SeqPre

t 
= ∅.
If one of these sets is empty a simpler form of the VLEF can be obtained from
the above expression applying the same procedure that presented for transitions
of Class 1. The following result characterizes that the VLEF of t, Ft(m), can be
used to discriminate when t is enabled for a given marking m ∈ RS(N ,m0).

Proposition 5. A transition t of Class 2 is enabled at m iff Ft(m) ≤ 0 (i.e.
∀j ∈ {1, . . . , k}, Ft(m)[j] ≤ 0).

Proposition 6 presents an updating method, similar to Class 1 transitions, of
the VLEFs with the same advantages than there, but in this case the constants
are vectors (Updating Factors, UF ) instead of scalars.

Proposition 6. Let t be a transition of Class 2, with VLEF Ft(m) ∈ ZZk derived
from the Minimal Legal Covering LC(•t) = {L1, . . . , Lk}, and let t′ be a transi-
tion occurring from m ∈ RS(N ,m0), m[t′〉m′,

Ft(m′) = Ft(m) + UF (t′ → t), UF (t′ → t) ∈ ZZk,

UF (t′ → t)[j] = −sb(pπj
) ·

∑

p∈SeqPre
t ∩Lj

C[p, t′] − C[pπj
, t′],∀j = 1 . . . k,

The previous updating of the VLEF from Ft(m) to Ft(m′) assumes that
SupPre

t 
= ∅ and SeqPre
t ∩ Lj 
= ∅. Simplified versions of the updating constants

can be obtained for the cases SeqPre
t ∩ Lj = ∅ or SupPre

t = ∅, in a similar way to
the case of transitions of Class 1.

The Updating Factors, UF (t′ → t), can be obtained directly from the net
structure and the structural bounds of places, and they are associated to the
transition that occurs, t′. After the occurrence of t′, an UF must be sent to each
transition with at least one input place connected by an arc to t′. So, only the
VLEFs of the directly connected transitions by a place to t′ will be updated. In
the bottom net in Fig. 3, the transitions r, u and v admit a single LEF since
they are Class 1 transitions and therefore only require handling scalars. However,
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the transitions x, y, and z are Class 2 transitions whose minimal LCs require
2 LEFs, i.e. vectors of dimension 2 must be handled. In this example exist
functions and constants of various dimensions, but it is possible to normalize
the representation to the dimension imposed by the transition with the largest
cardinality of its minimal LC.

4 Impact of Enabling Functions in Distributed Simulation
of PNs

Distributed simulators specialized in Class 1 transitions will be called Scalar
Simulators. PNs that contain Class 2 transitions, need Vector Simulators that
are able of operating, representing and managing vectors.

The deployment of a PN for distributed simulation requires having a battery
of simulation interpreters (symbots) generated to run on the different machines
of the platform. Then we proceed to partition the PN into sets of transitions
where each of them is represented by its LEF/VLEF and the updating con-
stants that include the identity of the recipient transitions. When generating
this partition, it will be necessary to include all transitions in conflict relation
with a given one in the same set (to avoid complex distributed decision-making
protocols). Each one of these sets of transitions will be loaded into a different
simbot. Each simbot with its loaded transitions constitutes a Logical Process
of the Distributed Simulator. Load balancing techniques in execution platforms
that redistribute Logical Processes to improve efficiency can be used with the
simbot and its loaded transitions. Additionally, load balancing can be performed
between transitions hosted in different symbots. To do this, it is enough to move
the data structures of the transitions from the source simbot to the destination
simbot since this data are independent of the machine where the simbot that
interprets them is executed.

In [4,6,14], several versions of the simbot interpretation cycle are presented.
In this cycle, the standard techniques for calculating lookahead within conserva-
tive simulation techniques, can be improved by adding information obtained from
the structure of the PN using the Synchrony Theory. For example, the compu-
tation of the synchronic distance [21] between the groups of transitions included
in two different symbots, allows to generate an implicit place that informs when
a group should not wait for messages from the other group, or to predict the
updating constants yet to arrive. This place can be easily incorporated to the
corresponding VLEFs.

The VLEF mechanism of Vector Simulators can see extended its use to
support: (1) the deployment of large models to simulate (scalability); (2) the
dynamic evolution of the model being simulated (dynamic models); (3) inter-
action with legacy simulators, external systems or environments not included
in the PN model (interoperability). In essence, a VLEF represents a family of
preconditions that must be satisfied simultaneously for the transition to occur.
The preconditions described so far come from the transition input places, but
with the same support is possible to include preconditions based on the result
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returned by a function, or a program or simply the fusion with a new transi-
tion belonging to a external model that synchronizes during simulation. These
aspects are developed below.

Vector Simulators and the Deployment of Scalable and Large PNs. The
simulation of PNs of scalable systems presents a first problem concerning the
description of the model. This can be alleviated by using modular/hierarchical
component-oriented description languages [4,16] that allows models to be built
from modules of manageable dimensions, and later composed by means of tran-
sition synchronization mechanisms, message passing or competition for shared
resources. The second problem concerns the compilation and elaboration of these
models to generate the transitions data that will finally be loaded into the dif-
ferent simbots of the distributed simulator. This is a challenging problem that
requires a large amount of computational resources (time and memory). This
makes that the sizes of the nets that can be simulated are very restrictive in
practical situations, frustrating one of the objectives pursued with distributed
simulation and using cloud infrastructures, even before the simulation can be
launched.

Fig. 4. PN model for simulation after composition of two subnets of Fig. 3.

Vector Simulators offer the adequate mechanisms to support the separated
compilation of modules, of a manageable size, that can later be linked when
loading the model in the simbots of the distributed simulator via merging of
transitions over the corresponding VLEFs. The two nets presented in Fig. 3 are
compiled separately and later composed via fusion of transition α with transi-
tion u, and transition β with transition v. The integration of the two compiled
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modules is an operation restricted to: (1) the transitions that are composed
via fusion, by changing the definition of the VLEFs; (2) the transitions whose
occurrence modifies the enabling state of the transitions used in the fusion, by
adapting the constants to be sent to the merged transitions. The rest of the
transitions are not affected. Figure 4 shows the result of the composition.

Vector Simulators and Models that can Change Dynamically Dur-
ing Simulation. In the previous paragraph, a method has been presented
to link compiled models, prior to their simulation. Linking is done by merg-
ing transitions that belong to different modules. The presented method mainly
sought to support the separate compilation of large PNs that would be impos-
sible to directly compile the entire model, or that would require high resource
consumption.

Nothing prevents this operation of linking the two nets from being carried
out at simulation time, as long as this operation is carried out from a safe state
so that the modification does not affect the simulation itself. If all transitions
involved in the fusion of the two nets are assigned to a same simulation engine,
then the data structures affected by the fusion reside in the same simulation
engine and the fusion only requires the stacking of the data structures of the
VLEFs and the constants. The rest of transitions whose occurrence modifies
the enabling state of the fused transitions only require the modification of the
constants to be sent. This modification can be done in any moment. This means
that the linking can be done at the beginning of the simulation cycle in the
simulation engine.

Vector Simulators and the Interaction with External Agents or Legacy
Simulators in Order to Federate a Set of Simulators. In some cases, the
modelling of a given system by means of PNs makes that some parts of the system
cannot be represented in terms of nets. For example, predicates associated to the
occurrence of a transition which truth value requires the consultation of some
external variables corresponding to: inputs from an unspecified environment or
simply inputs coming from human agents to be integrated in the behaviour of
the system. A typical example of a predicate of this kind can be a function to
solve a conflict between transitions.

Giving support to the simulation of the resulting models of this class of
systems requires equipping the simulation engines with capacities to evaluate the
predicates associated with the transitions, and whose truth value is a condition of
enabling of the transition but not based on terms of Petri nets. Vector Simulators
allow integrating these predicate-based enabling conditions in a natural way. To
do this, simply introduce the following mechanisms in the simulation engines
and in the data structures associated with the transitions:

– In the vectors that contain the compiled VLEFs, it is necessary to introduce
an extra entry for each predicate associated with the occurrence of the tran-
sition. The value stored in this entry will be the call to an external function
that will evaluate the associated predicate. The function will return 0 if the
predicate is true (the transition is enabled by the predicate) and 1 if the
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predicate is false (the transition is not enabled because of the predicate),
and so, the enabling of the transition follows the rules previously stated for
VLEFs.

– In the constants that must be transmitted to the transitions with predicates,
from transitions whose occurrence modifies their degree of enabling, the com-
ponents related to the predicates are equal to zero, in general. However, in
some cases, the transmission of some parameter to a data repository concern-
ing simulation or a data collection for decision making in some part of the
simulation can be done including in these entries invocation to transmission
functions making this sending of data.

Integration of a PN simulator with external agents like legacy simulators or
simulators to be federated, in general, can be done in the same way. To do this,
it is enough, as in the case of the predicates associated with the transitions, to
introduce an entry in the VLEF that allows invoking a function or procedure
related to the simulator to be federated. Summarising, Vector Simulators of Petri
Nets present well characteristics for a natural interoperability to work with other
products or systems.

Fig. 5. Large scale M&S supporting decision-making workflow on a PN-based MDE
approach.

5 A Model-Driven Approach for Scalable DESs

The analysis and design of real DESs today is inextricably associated with the
property of scalability. The systems have an extraordinarily large size (both
in size and in the specified details of the system) and therefore it is necessary



Harnessing Structure Theory of Petri Nets 19

to have models that allow this complexity to be managed, tools that support
analysis and design tasks, and methods that organize and systematize the work.
Figure 5 summarizes the approach proposed for this objective in [4,14], and is
configured as a Model-Driven Engineering approach based on PNs as a model
and Distributed Simulation as a tool. The most relevant parts of this proposal
are briefly discussed below.

Conceptual PN-Modelling. Modelling with a Domain-Specific Language
(DSL) that provides the basic conceptual entities of an application in a spe-
cific domain. Interactions with the environment or external simulators are also
modelled.

Timing and Functional Model Annotations. The model can be annotated
with labels that extend its interpretation. These annotations are required when
the semantics of the model does not cover some characteristics or functionali-
ties of the system to be modeled. For example, PN models can be annotated
and configured with deterministic time, probability distributions, or declarative
knowledge that mimics the system’s behaviour.

Operational Model. In order to provide assistance in the next phase of deploy-
ment and configuration, it is essential to develop an operational model of the
simulation platform. The operational model enriches the functional model with
characteristics of the execution platform to develop a quantitative analysis.

Elaboration and Compilation. An elaboration process translates high level
PN specifications into a flat model for an efficient interpretation. The conceptual
model is compiled generating data for each transition (following the LEF/VLEF
convention) that will be uploaded in the simbots devoted to execute the cycle of
transition occurrences. This is the coding phase of the model and it can require
a separated compilation of modules in large PNs.

Deployment and Distributed System Configuration. The set of transi-
tions coded following the compilation process must be partitioned into groups
for deployment among the simbots available on the execution platform. The cri-
teria for constructing these groups take into account the characteristics of the
platform (minimization of messages exchanged), the efficiency of the simulation
(number of concurrent LPs), etc. The PN structure provides information to sat-
isfy these criteria at a low cost. For example, locating embedded state machines
in the PN or marking invariants. The only strict constraint to be fulfilled in the
partition process is to keep transitions in structural conflicts in the same group.

Dynamic Configuration and Load-Balancing. In a large computing infras-
tructure, resources are shared by many agents, resulting in a much greater
variability in the allocation of computing and communication resources. Load-
balancing can be based on LPs (simbots as locked containers of transitions) as
interacting entities that can move between parts of the platform. LEF/VLEF-
coded model does not lock simbots, which enables the portability of transitions
(data coding transitions) between them.
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Execution, Data-Collection, Monitoring, Fault Detection. The architec-
tural proposal for distributed simulation is based on simbots specialised in an
interpreted simulation of the model. A simbot provides an efficient LEF-coded
PN interpreter, simulation services such as conservative synchronisation proto-
cols, load-balancing mechanisms, and monitoring and result collection [14].

Large-scale distributed simulation also requires a Simulation Information
System to support an MDE approach. Conceptual models, compiled code, and
collected information must be supported by an information system. Compilation
and elaboration processes store the correspondence between events in the flat
model and the conceptual model in the information system to translate the
simulation results in terms of the model users. A distributed Name Service is
also required to provide the location of any transition in order to send the events
generated for it.

6 Conclusions

Today there are many Discrete Event Systems of interest both for analysis
(because they are already created) and for their design from the beginning. All of
them share the need to be scalable; and the characteristic of their large size. That
is why a Model-Driven approach allows managing the complexity of the system;
and a tool such as distributed simulation allows to efficiently address the tasks of
analysis and design. This work proposes the use of PNs for DES modeling, with
the necessary extensions to cover characteristics of the system to be modeled that
are not directly supported by the PNs or that are not sufficiently specified to be
modeled with a PN. However, being a model with a sound, well-developed and
widely studied theory, when faced with large-dimensional systems it encounters
practical limitations solving problems (e.g. verifying the structural boundedness
of a net with millions of transitions) that, in many cases, makes unfeasible it
use and therefore interest in a model like PNs can decline. To prevent this neg-
ative perspective towards the model, this work have tried to take advantage
of the Structure Theory of PNs: a relevant characteristic of PNs, that marks
the difference with other existing models. Throughout the article, it has been
made evident, from Fujimoto’s challenges, that the exploitation of the informa-
tion extracted from the net structure allows to answer to these challenges in an
efficient way. The first step was to adopt a model building methodology based
on the composition of structurally bounded modules by merging transitions,
which allows large models to be built from small components (helping efficient
property verification). After that, solutions have been developed for a separate
compilation strategy that makes feasible to generate the executable model and
its deployment among the PN interpreters (LPs that constitute the distributed
simulator). Central to all these methods of exploiting structural information for
simulation have been techniques for characterizing transition enabling and that
allow PN simulation to be adapted to distributed environments by facilitating
portability, load balancing, or federation with legacy simulators. Among other
features.
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A Basic Concepts and Notations on Petri Nets

A Place/Transition (P/T) net, N , is a 4-tuple N = (P, T,Pre,Post), where P
and T are the sets of places and transitions, and Pre and Post are the |P |× |T |
sized, natural valued, pre- and post-incidence matrices. Post[p, t] = w means
that there is an arc from t to p with weight w, and Pre[p, t] = 0 indicates no
arc from p to t.

A marking is a |P | sized, natural valued, vector. A P/T system is a pair
S = (N ,m0), where m0 is the initial marking. A transition t is enabled at m
iff m ≥ Pre[P, t]; its occurrence, denoted by m t−→m′ or m[t〉m′, transform the
marking m into the marking m′ = m+C[P, t], where C = Post−Pre is called
the token flow matrix or incidence matrix.

An occurrence sequence from m is a sequence of transitions σ = t1 · · · tk · · ·
such that m t1−→m1 · · ·mk−1

tk−→mk · · · . The set of all the occurrence sequences,
or language of the net system, from m0, is denoted by L(N ,m0), and the set of all
the reachable markings, or reachability set, from m0, is denoted by RS(N ,m0).
The reachability relation is represented by a reachability graph RG(N ,m0) where
the nodes are the reachability set, and the directed arcs connect nodes m and
m′, with a label t, iff m t−→m′.

The conventional dot notation is used for pre- and postsets of a place or a
transition, e.g., •t = {p ∈ P |Pre[p, t] 
= 0}. Places with more than 1 output
transition are required to model conflicts. The output transitions of a same
place are said to be in structural conflict relation. The coupled conflict relation
is defined as the transitive closure of the structural conflict relation.
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Abstract. The optimization of business processes is an important task
to increase the efficiency of the described workflows. Metaheuristic opti-
mization, such as evolutionary search, has been used to optimize busi-
ness process models, but it requires a high level of expertise that not all
process designers have. Model-driven optimization (MDO) promises to
make the use of metaheuristic optimization accessible to domain experts
without in-depth technical expertise by allowing them to specify the opti-
mization algorithm directly at the model level. Because this approach is
less technical, the process designers can focus on the business process
models and their properties. Using concrete business process optimiza-
tion problems as a starting point, we discuss how MDO can be applied to
these problems, what MDO would offer for business process optimization,
and how the application to business processes could stimulate research
on MDO.

Keywords: Business process models · Optimization · Model-driven
engineering

1 Introduction

The optimization of business processes is a strategic activity in organizations
because it can increase the efficiency of work. A number of metrics have been
developed to analyze the quality of business process models [47]. Granularity,
which is reflected in the size of activities, is crucial for the design of balanced
processes; it can be measured with coupling and cohesion metrics [36]. To speed
up work, workflows can be further optimized by increasing parallelism within
tasks [12]. However, optimization is a difficult task when performed manually,
especially when multiple objectives must be considered. It requires a well-suited
optimization algorithm; the development of such an algorithm requires a high
level of expertise that not all process designers have. For example, the imple-
mentation of an evolutionary algorithm usually requires (aspects of) business
process models to be encoded in integer representations in order to perform an
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evolutionary search [46]. To make optimization accessible to domain experts, an
approach is needed that allows optimization tasks to be specified and executed
without deep technical expertise.

Various software engineering problems, such as software modularization [6],
process optimization, and release planning [2], have already been considered as
optimization problems. They have often been solved by using evolutionary algo-
rithms [20] which mimic the evolution in nature to solve optimization problems.
Model-driven engineering (MDE) [38] aims at representing domain knowledge in
models and solving problems through model transformations. MDE can be used
in the context of evolutionary optimization to minimize the expertise required
by users of optimization techniques. This combination of optimization and MDE
is referred to in the literature as model-based or model-driven optimization
(MDO) [1,3,9,18,22,48]. It applies evolutionary optimization to models. MDO
can simplify the application of evolutionary search to software engineering prob-
lems, because models are not encoded, but the search space consists directly
of models that are evolved by model transformations. A conceptual framework
that precisely defines all the main concepts of MDO based on graphs and graph
transformation is presented in [23]. It is intended to assist the modeler in using
MDO to solve such optimization problems.

Since we are focusing on evolutionary algorithms as the optimization tech-
nique in this paper, we will briefly recall them. With reference to, for example,
[5,16,23,48], an evolutionary algorithm is used to solve an optimization problem.
Usually, such a problem is formally defined by means of an objective (or fitness)
function that expresses the objective that is to be optimized. In practical appli-
cations, multiple objective functions often must be addressed simultaneously,
leading to the concepts of multi–objective problems and many-objective problems
and Pareto optimization [41]. For the optimization process, one needs a represen-
tation of possible solutions to the problem at hand; the solutions constitute the
search space. Practical optimization problems usually come with additional con-
straints that clarify which of the represented solutions are feasible (i.e., constitute
valid solutions to the optimization problem). Given a constrained optimization
problem and a representation for solutions, the key ingredients of an evolution-
ary algorithm are a generator for an initial population of solutions, a mechanism
for generating new solutions from existing ones (e.g., by mutation or crossover),
a selection mechanism that typically implements the evolutionary concept of
survival of the fittest, and a condition for stopping evolutionary computations.

MDO applies ordinary evolutionary algorithms, such as the well-known
NSGA-II algorithm [10], or other metaheuristic search techniques to (con-
strained) optimization problems but uses models, e.g., [8,23,48], or model trans-
formation sequences, e.g., [1,3,18], as representation for solutions. With MDEOp-
timiser [8] and MOMoT [3], tool support for both approaches is available so that
optimizations can be performed. In this paper, we propose the use of MDO for
business process optimization. We focus on the model-based approach to MDO
(as it tends to perform better [22]) and propose to optimize models of work-
flow processes directly, e.g., in the standardized workflow modeling language
BPMN [34].
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Business processes have been optimized in various ways [47]. In Sect. 2, we
present a selection of typical optimization problems that have been considered
for them. For each problem, we discuss the type of model being optimized, the
objectives for which the models are being optimized, and the constraints that
a feasible solution must satisfy. In Sect. 3, we describe for each of the selected
problems how MDO can be applied to it and what the benefits and challenges
are. Section 4 concludes the paper.

2 Optimization Problems on Business Processes

The selected optimization problems we consider are the clustering of information
elements (Sect. 2.1), the multi-objective optimization of non-functional proper-
ties of a business process (Sect. 2.2), and the parallelization of tasks of a business
process (Sect. 2.3).

2.1 Clustering of Information Elements in Workflow Processes

The first optimization problem is formulated for workflow processes which can
be seen as a conceptual basis for business processes [44]. Workflow processes have
also been formalized as a special class of Petri nets, more precisely as workflow
nets, to validate them.

A workflow process [36] contains a number of information elements that are
used as input or output elements of operations. An operation is a basic processing
step; it has one or more input information elements and one output information
element. An activity in a workflow process consists of one or more operations.
The output of one of the operations can be the input of another operation of
that activity. A workflow process is valid if (1) all operations occur at least once
in an activity, and (2) if the input of one operation depends on the output of
another operation, then the respective activities of which they are part of are
ordered so that they respect this dependency. While constraint (1) ensures the
completeness of the activity design, constraint (2) ensures the correctness of
their ordering.

The optimization problem to be solved is to find a good clustering of infor-
mation elements and operations into activities. A clustering with low coupling
between activities and high cohesion within each activity is considered the best,
since in this case the clusters can be well identified. In general, coupling measures
the number of connections between the elements of a model [45]. In workflow pro-
cesses, two activities are coupled if they share one or more common information
elements. The cohesion metric for workflow processes in [36] measures the coher-
ence within the activities of the process model. Similar to the coupling metric,
this cohesion metric also focuses on the information processing in the process.
The clustering problem can be formulated as a multi-objective problem, since we
aim for low coupling and high cohesion. The validity constraints presented above
formulate the feasibility constraints.
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2.2 Multi-objective Optimization of Non-functional Properties

A business process has several non-functional properties of interest, such as
cost, flow time, product quality, etc. Regularly, business processes are optimized
with respect to these criteria. To be of practical importance, an optimization
approach must consider multiple criteria simultaneously, e.g., minimizing cost
and flow time while maximizing quality.

Vergidis et al. [46] propose a framework for the multi-objective evolutionary
optimization of non-functional properties of business processes. They assume a
set of tasks to be given, where for each task additional information is provided:
A task comes with a set of input resources (it consumes), output resources (it
produces), and values for attributes of interest (such as cost or duration). For
a concrete optimization problem, a set of input resources and a set of output
resources are given. The goal is to find a process (a subset of the given tasks)
that produces the required output resources from the given input resources. That
is, for a process to be feasible, the selected tasks must satisfy certain constraints:
(1) each input resource of the optimization problem must be consumed by at
least one selected task; (2) each output resource of the optimization problem
must be produced by at least one selected task; and (3) the selected tasks must
lead to a connected process diagram. The process should be optimal with respect
to selected non-functional properties that are defined by objective functions. The
proposed framework is generic in the sense that it is not restricted to specific
non-functional properties. It is simply assumed that the objective functions can
be computed by aggregating the attribute values of the selected tasks.

The framework in [46] uses multi-objective evolutionary algorithms (MOEAs)
to search for optimal business processes. Different representations of a solution
are used for different operators of such an algorithm. Basically, a business process
is encoded as an array containing the tasks that make up the process. Standard
variation operators (crossover and mutation) are applied to these arrays. The
fitness of a solution with respect to the multiple objectives can be computed
by aggregating the values of selected tasks for the respective attributes; the
necessary information for this is stored in a matrix. To check the feasibility
constraints, [46] develops a Process Composition Algorithm (PCA) that assem-
bles the selected processes into a process diagram (repairing certain constraint
violations on the way). The resulting process design can then be checked for
feasibility; if constraint violations remain, their severity is computed in a Degree
of Infeasibility.

2.3 Parallelization of Tasks

The third optimization problem concerns business process optimization for pro-
cesses described using the standardized workflow modeling language BPMN [34].
Durán and Salaün present an automated approach to optimizing BPMN models
that are enriched with a description of the execution time and resources associ-
ated with tasks [12]. These enriched business process models take into account
not only behavioral but also quantitative aspects.
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The optimization problem aims at finding a reorganized enriched BPMN
model with reduced execution time. Possible reorganizations of tasks within
the BPMN model are described using refactorings. These reorganizations take
into account the resources used by each task. The main idea for reducing the
execution time is to increase parallelism between tasks as much as possible. The
refactorings must take into account specific constraints. For example, tasks can
only run in parallel if they do not compete for the same resources. Also, causal
dependencies between tasks may need to be preserved when adding parallelism.
These constraints represent feasibility constraints that must be satisfied for a
solution to the optimization problem to be valid.

2.4 Summary of Optimization Problems

We briefly summarize the similarities and differences of the three selected opti-
mization problems. All three optimization problems can be formulated for models
of business processes. In the clustering problem, these models describe workflow
processes; for the optimization of non-functional properties, the models are cur-
rently encoded as arrays of tasks in the business process. In the parallelization
problem, the standard modeling language BPMN is already used. The objective
of the clustering problem is of a structural kind, while the objectives of the
other two problems are more behavioral, since they both focus on optimizing
non-functional properties. In the parallelization problem, models even must be
simulated in order to evaluate the objective function. All three problems share
the fact that structural constraints must hold for a solution to be feasible. In
particular, in the parallelization problem, it becomes clear that behavior preser-
vation comes in addition to the preservation of structural constraints.

3 Applying Model-Driven Optimization to Business
Processes

In this section, we outline how MDO can be used to solve business process
optimization problems and illustrate our ideas at the selected problems just
recalled. We also discuss where MDO offers promising solutions to these opti-
mization problems and where the problems present challenges that could trigger
interesting research in MDO.

MDO for Business Processes. As explained in the introduction, MDO denotes
an approach to metaheuristic optimization in which models are crucial arte-
facts.1 Thus, applying MDO to business processes amounts to developing model
transformations in business process modelling languages such as BPMN. These
1 Typically, models or model transformation sequences constitute the search space, and

searching means modifying models or model transformation sequences. For feature
model configuration [21,30], search operators are designed and verified based on
models; however, for the actual search, models and operators are translated into
more machine-oriented representations to increase efficiency.
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model transformation rules can then be used as search operators in optimization
processes, where the search space consists of models (or model transformation
sequences). While rules tailored to a specific optimization problem and a specific
optimization algorithm promise the best results, MDO offers a certain degree of
genericity. A set of rules that specifies basic modifications of business process
models can constitute the search operators for different types of optimization
algorithms (such as evolutionary algorithms, hill climbing, or simulated anneal-
ing) and for different optimization problems (i.e., different objective functions
with respect to which models are evaluated).

For the three optimization problems presented, MDO would mean the fol-
lowing. For the clustering of information elements (in Sect. 2.1), (coupling and
cohesion) metrics have been defined that can be used to estimate the quality of
a given business process. However, no automated approach has been proposed to
optimize business processes with respect to these quality criteria. MDO serves
as such an approach. Coupling and cohesion, as defined in [36], are the objec-
tives; they can be combined into a single objective function or be kept separate
and multi-objective optimization is employed. For example, given a suitable set
of transformation rules and a business process, evolutionary search can be used
to find a clustering of the information elements that has low coupling and high
cohesion.

For the optimization of non-functional properties (in Sect. 2.2), multi-
objective optimization via evolutionary algorithms is already performed to find
business processes of high quality. Applying MDO here means to not encode the
models into arrays for the search but to use them directly. Below, we discuss the
benefits we expect from this change.

For the parallelization of tasks (in Sect. 2.3), the authors already use models
as crucial artefacts and the search is performed by model transformation. Thus,
the work [12] can be considered as an instance of MDO. However, instead of using
metaheuristic search, they explore their search space completely or via a hand-
crafted heuristic, which is not feasible for larger search spaces or specific to their
problem at hand. The framework of MDO here broadens the perspective to use
the transformation rules suggested in [12] also for other optimization problems
on business models, to try out other algorithms for the problem tackled in [12],
or to complement the objective addressed in [12] by further ones, making the
problem multi-objective.

Expected Benefits. One of the promises of MDO is to make optimization acces-
sible to domain experts without deep technical expertise. Domain experts need
only interact with models they are already familiar with, and may even be able
to design domain-specific search operators (i.e. transformation rules) that are
well suited to the search. While this hope has yet to be empirically verified,
testing it for business process optimization is appealing because process design
is typically a domain in which domain experts without technical expertise are
involved.

On the technical side, the main promise of MDO lies in the strong formal
foundation that model transformation has in graph transformation [15]. It can
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be used to make the search for feasible solutions easier. Realistic optimization
problems often come with constraints that the solutions must satisfy. As seen
above, this is also the case for all three optimization problems considered here.
For the optimization of non-functional properties [46], the authors even explicitly
mention that obtaining feasible process models during evolutionary search is a
major challenge; most constructed solutions are infeasible. For graph transforma-
tion rules, there is ample experience with regard to the treatment of constraints
(expressed in different kinds of logics). Such rules can be analyzed for preserving
the validity of given constraints, e.g., [13,27,40], be equipped with application
conditions that prevent rule applications that would introduce constraint viola-
tions, e.g., [19,32], or, for certain types of constraints, even be adapted so that
the constraints are preserved, e.g., [7,21,25]. In addition, there is a research focus
on repairing graphs and models with respect to constraints, which is another way
to make infeasible mutation and crossover results feasible, e.g., [29,33,37,39].

MDO has begun to make use of these formal results. There is empirical
evidence that evolutionary search on models benefits from transformation rules
that preserve the given constraints [7,21,23]. For certain types of constraints
(multiplicities), transformation rules that preserve them can be automatically
derived from a meta-model [7], i.e., for a given modeling language. So we are
convinced that MDO can be successfully used to optimize business processes for
various purposes.

Raised Research Challenges. Above, we argued that basing (evolutionary) search
on model transformation provides a means to address the problem of structural
constraints that are expected to hold for solutions. However, when optimizing
business processes, one usually needs to consider behavioral constraints as well:
Mostly, the optimized process should still exhibit the same behavior as the origi-
nal one. For example, the optimization of non-functional properties requires that
a feasible process uses the given resources and produces the required resources.
This constraint can be expressed as a formula on the graph structure and be
treated as described above. However, behavioral equivalence of the optimized
process with the original one is often expressed as a simulation or bisimulation.

There are techniques that allow one to check that the input and the output
of a graph (or model) transformation are behaviorally equivalent, e.g., are in a
(bi)simulation relation (see, e.g., [4,14,17,31,35]). However, there seems to be
less research on this topic than for structural constraints. Furthermore, we are
not aware of any research in MDO on preserving behavioral equivalence during
search. There is recent work on formalizing the BPMN execution semantics using
graph transformation, which facilitates behavioral property checking [28], which
could serve as a starting point for this line of research. All in all, we expect
that business process optimization can stimulate new research on preserving
behavioral equivalence during model transformation, thus enriching the set of
techniques that are used in MDO.

Another challenge is to develop an appropriate crossover operator for busi-
ness process models. A crossover operator typically mixes information from two
parent solutions to compute (one or two) child solutions that resemble their par-
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ents. In general, evolutionary search can benefit from using both crossover and
mutation, rather than just mutation alone [11,42]. We have started to develop
a generic (i.e., domain-agnostic) crossover operator for use in MDO [24,26]. It
unifies many crossover operators that have been proposed for specific models
or graphs. Initial experiments show some increase in search effectiveness com-
pared to using mutation alone, but the experiments also seem to indicate that
this generic operator suffers from producing too many infeasible solutions, i.e.,
from introducing constraint violations. We combined this operator with ad-hoc
repair of the computed solutions [24]. In applying MDO to business processes,
we expect this effect to occur as well, so the research on the development of
constraint-preserving crossover operators [43] needs to be continued. In addi-
tion, research is needed on how to concretize the generic crossover operator for
the business process domain.

4 Conclusion

Business process optimization is an important task for increasing the efficiency
of workflows. To make optimization accessible to domain experts, an approach is
needed that allows optimization tasks to be specified and executed without deep
technical expertise. In this paper, we have argued that it would be promising
to tailor model-driven optimization to business processes. We expect that this
would make it easier for process designers to apply metaheuristic optimization
such as evolutionary search to their optimization problems. We have recalled
three selected business process optimization problems and sketched how they
could be tackled and benefit from the use of MDO principles and techniques.

The application of MDO to business process optimization also poses new chal-
lenges for MDO. MDO has mostly been considered to address problems in soft-
ware engineering with objectives of a structural nature such as modularization.
Since business processes describe behavior, it must also be shown that the opti-
mized processes comply with behavioral constraints. Finally, the development of
domain-specific crossover operators seems to be another relevant research goal.
We have discussed how existing research results on model and graph transfor-
mation can support these lines of research in order to successfully apply MDO
to business processes.
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Varró, D. (eds.) Proceedings of the Fifth International Workshop on Graph Trans-
formation and Visual Modeling Techniques, GT-VMT@ETAPS 2006, Vienna, Aus-
tria, 1–2 April 2006. Electronic Notes in Theoretical Computer Science, vol. 211,
pp. 191–200. Elsevier (2006). https://doi.org/10.1016/J.ENTCS.2008.04.041

32. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: Constructing optimized constraint-
preserving application conditions for model transformation rules. J. Log. Alge-
braic Methods Program. 114, 100564 (2020). https://doi.org/10.1016/j.jlamp.
2020.100564

33. Nassar, N., Kosiol, J., Radke, H.: Rule-based repair of EMF models: formaliza-
tion and correctness proof. In: Graph Computation Models (GCM 2017). Elec-
tronic Pre-Proceedings (2017). pages.di.unipi.it/corradini/Workshops/GCM2017/
papers/Nassar-Kosiol-Radke-GCM2017.pdf

34. OMG: Business process model and notation. version 2.0 (2011). http://www.omg.
org/spec/BPMN/2.0/

35. Rangel, G., Lambers, L., König, B., Ehrig, H., Baldan, P.: Behavior preservation in
model refactoring using DPO transformations with borrowed contexts. In: Ehrig,
H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp.
242–256. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-
8 17

36. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and coupling metrics for workflow
process design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS,
vol. 3080, pp. 290–305. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25970-1 19

37. Sandmann, C., Habel, A.: Rule-based graph repair. In: Echahed, R., Plump, D.
(eds.) Proceedings Tenth International Workshop on Graph Computation Models,
GCM@STAF 2019, Eindhoven, The Netherlands, 17 July 2019. EPTCS, vol. 309,
pp. 87–104 (2019). https://doi.org/10.4204/EPTCS.309.5

38. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006). https://doi.org/10.1109/MC.2006.58

39. Schneider, S., Lambers, L., Orejas, F.: A logic-based incremental approach to graph
repair featuring delta preservation. Int. J. Softw. Tools Technol. Transf. 23(3), 369–
410 (2021). https://doi.org/10.1007/s10009-020-00584-x

40. Schneider, S., Maximova, M., Giese, H.: Invariant analysis for multi-agent graph
transformation systems using k-induction. In: Behr, N., Strüber, D. (eds.) ICGT
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Abstract. Trace parsing, a technique for obtaining the correspondence
between a trace, which is a string of activities, and a process model,
forms the basis of process mining. Conventional trace parsing methods
have not considered process models with concurrent loops (CLOOPs), in
which a certain sub-process is executed in indefinite numbers of concur-
rent executions, despite their importance. In this paper, we propose a new
formal grammar, a Concurrent Context-Free Grammar (CCFG), which
can handle CLOOPs. CCFGs are a generalization of context-free gram-
mars, which can handle concurrent strings allowing parallelism among
strings. This simple generalization adds a new operator corresponding to
a CLOOP to process trees, a type of process model, and greatly extends
the representational capability of process trees. This paper also intro-
duces a trace parsing method for a CCFG. This allows the CCFG to
verify whether a trace can be derived from the process model, and the
CCFG can be used for conformance checking.

Keywords: Conformance checking · Formal grammar · Iterated shuffle

1 Introduction

Conformance checking is an important task that forms the basis of process mining.
Given a process model that represents a business process and an event log that
records the execution trace of the business, conformance checking compares the
process model and the event log to measure the amount of deviation. By finding
traces that do not follow the process model, an audit can be performed to measure
the appropriateness of the business. Moreover, if the conformance is quantified,
the validity of the process model obtained by process discovery becomes clear. In
fact, there is a method for discovering process models with optimal conformance
in the process discovery method [1]. Conformance checking is not only a useful
stand-alone task, but also the basis for other tasks in process mining.

Conformance checking starts with understanding whether the process model
corresponds to the trace, which is the execution history of the business in each
case. Correspondence means that the trace is included in the language of the
process model. We call the task of understanding correspondence as trace parsing.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

L. M. Kristensen and J. M. van der Werf (Eds.): PETRI NETS 2024, LNCS 14628, pp. 39–60, 2024.

https://doi.org/10.1007/978-3-031-61433-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61433-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-61433-0_3


40 A. Watanabe et al.

If the process model is a Petri net, this task equals to the reachability problem
to the final markings [2], and if the model is a process tree, it equals to the
membership problem (of a formal language [3] or an automaton [4]). By checking
whether a trace corresponds to a process model, the conformance of the event log
to the process model can be quantified. Almost all recent conformance checking
methods are implemented according to the language of the process model (or
the probability of each trace in the language of the process model). Therefore,
conformance checking is basically realized by trace parsing.

However, current trace parsing methods cannot be applied to arbitrary busi-
ness processes. An example of a business process that cannot be handled by
existing trace parsing methods is a language called MIX [7]. MIX consists of
three activities, which can be executed in any order. However, the number of
executions of the three activities is always equal in the traces included in MIX;

MIX = {𝑤 ∈ {𝑎, 𝑏, 𝑐}∗; |𝑤 |𝑎 = |𝑤 |𝑏 = |𝑤 |𝑐}.

MIX cannot even be represented in a regular process tree because it is not
included in the regular language class. On the other hand, Petri nets can rep-
resent MIX as shown in Fig. 1. However, this Petri net is not bounded because
an unbounded number of tokens can be added to a place 𝑝1 by an unobserved
transition 𝑡1. The unbounded Petri net is quite difficult to solve the reachability
problem to the final marking.

Fig. 1. Petri net representing MIX.

MIX is a structure that appears in many business processes. Suppose a ham-
burger store offers three dishes (hamburger, fries, and drink) to each customer.
However, the order in which the dishes are prepared is irrelevant. In this case,
the total number of dishes is not fixed because it depends on the customer’s
order, but the number of dishes made is always the same. Therefore, if 𝑎, 𝑏, and
𝑐 are tasks to prepare each dish, the business process of this store is represented
by MIX. Since business processes are often executed according to the number of
customer orders, structures such as MIX that execute an indefinite number of
specific tasks in parallel are frequently used.

We call an indefinite number of concurrent structures such as MIX a con-
current LOOP (CLOOP). A CLOOP is expressed in formal languages by an
operator called iterated shuffle, but it is very difficult to handle because the
iterated shuffle operation is not closed to regular languages [8].
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This paper proposes a novel process model, Concurrent Context-Free Gram-
mar (CCFG), which can represent business processes with an indefinite number
of concurrent structures. The CCFG is a novel formal grammar that gener-
ates strings with concurrent structures represented by tuples called concurrent
strings. CCFGs define the languages of traces by deriving concurrent strings by
production rules and serializing them to represent the mapping from concurrent
strings to traces. CCFGs can be easily obtained from process trees that has been
extended to have CLOOPs. Thus, combined with any process discovery method
that acquires process trees, conformance checking of process trees with CLOOPs
can be performed [1,9].

We also propose an algorithm for trace parsing that determines whether any
given trace is in the language of a CCFG. This method extends the parsing
algorithm so that it can be applied to production rules with concurrency.

This paper is organized as follows. Section 2 refers to related studies on trace
parsing. Section 3 describes the preliminaries of our study. Section 4 defines the
process tree with CLOOP added. Section 5 describes concurrent strings and a
CCFG, the subject of this paper. Section 6 describes the trace parsing algo-
rithm for CCFGs. Section 7 presents an example of trace parsing with a CCFG.
Section 8 presents conclusions and future work.

2 Related Work

A CLOOP is treated as an iterated shuffle in formal languages. This section
describes how iterated shuffles are currently handled in Petri nets, process trees,
and formal grammars, which are process models often used in trace parsing.
Although declarative process models are widely included in trace parsing, they
are outside the scope of this paper because their language is quite different from
others and we have not found any studies that discuss iterated shuffle.

Adriansyah et al. proposed a method for measuring alignment distance by
creating Petri nets that simultaneously represent transitions in the trace and
transitions in the process model, and determining the reachability of the final
marking on the Petri net [10]. Leemans et al. proposed a method to search
for runs on Petri nets with 𝜖 transitions for stochastic labeled Petri nets [11].
Although these methods simultaneously measure the distance between the trace
and the process model as well as trace parsing, the token-based approach is faster
if one only wants to know the reachability of the end marking on the Petri net.
Rozinat et al.’s token-based method finds the run to a final marking by moving
a token along the trace on the Petri net. Unfortunately, these methods assume
that the Petri net is bounded, i.e., the number of markings is finite. As we have
already seen in the case of MIX, Petri nets are almost always not bounded when
there are iterated shuffles. Therefore, these methods do not guarantee that a
trace parsing can be performed on a process model with iterated shuffles. In
fact, it is not easy to determine how many times to fire the transition 𝑡0 when
moving tokens on a Petri net with MIX in Fig. 1, and no explicit realization
method has yet been proposed.
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Recently, a polynomial-time trace parsing method for process trees has been
proposed by Rocha et al. [4]. This method assumes that the language of the
target process tree is included in the regular language. Watanabe et al. proposed
PGPM, which replaces process trees with probabilistic context-free grammars
(CFGs). In PGPM, the subtrees under the PARALLEL operator of the process
tree are converted to a regular grammar (RG). This conversion procedure to
RL is similar to the location automata described by Broda et al. [12]. Broda
et al. proposed the concept of location, which represents the state of analysis of
concurrent elements, to handle shuffle operators in regular expressions. However,
although both methods deal with RGs or CFGs, as will be shown later, most
languages with iterated shuffle cannot be expressed in CFGs. Thus, business
processes with iterated shuffle cannot be handled by the usual process tree-based
approach.

A technique that may be able to handle iterated shuffle is the Multiple CFG
(MCFG) [13]. The 𝑚-MCFG generalizes the CFG so that a non-terminal symbol
is a function whose input is at most 𝑚 strings. For example, it is known that MIX
can be represented by 2-MCFG [7]. However, even for MIX, which is relatively
simple, the grammar of the MCFG becomes extremely complicated. For this
reason, there is no known method for converting Petri nets and process trees to
MCFGs.

In conclusion, business processes with iterated shuffles, i.e., CLOOPs, cannot
be properly parsed using existing methods.

3 Preliminary

We first define the notation of strings used in this paper. Given some symbol set
Σ, 𝑤 ∈ Σ∗ is called a string or a serial string. In particular, given an activity set A,
a string 𝜎 ∈ A

∗ is called a trace. The 𝜎𝑙 denotes the 𝑙-th symbol of 𝜎. 𝜎:𝑙 denotes
the 𝑙-th substring of 𝜎 and 𝜎𝑙: denotes the 𝑙-th symbol or later substrings of 𝜎.
In this paper, concatenation of strings is simply written as 𝜎:𝑙−1𝜎𝑙: = 𝜎. However,
the concatenation of two sets 𝑈,𝑉 is expressed as 𝑈 ·𝑉 = {𝑢𝑣 |𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉} using
·. Kleene star ∗ is treated in the same way as in common formal languages for
both strings and sets.

3.1 Shuffle and Iterated Shuffle

Shuffle is an operation on two sets of strings, and iterated shuffle is an operation
on one set of strings. In this paper, we use the same definitions and notations of
shuffle and iterated shuffle as Jantzen et al. [8].

Definition 1 (shuffle �). 𝑈 � 𝑉 ≔ {𝑤 |𝑤 = 𝑢1𝑣1𝑢2𝑣2 . . . 𝑢𝑛𝑣𝑛, 𝑢1𝑢2 . . . 𝑢𝑛 ∈

𝑈, 𝑣1𝑣2 . . . 𝑣𝑛 ∈ 𝑉}.

Example 1. {𝑎𝑏}� {𝑐, 𝑑𝑒} = {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑐𝑎𝑏, 𝑎𝑏𝑑𝑒, 𝑑𝑎𝑏𝑒, 𝑎𝑑𝑏𝑒, 𝑑𝑒𝑎𝑏, 𝑑𝑎𝑒𝑏, 𝑎𝑑𝑒𝑏}.

Definition 2 (Iterated shuffle ⊗, ⊕). 𝑉⊗ ≔
⋃

𝑖≥0𝑉𝑖 , 𝑉⊕ ≔
⋃

𝑖≥1𝑉𝑖 , where
𝑉0 = {𝜖}, 𝑉𝑖+1 = 𝑉𝑖 � 𝑉.

Example 2. {𝑎𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐, 𝑎𝑎𝑏𝑏𝑐𝑐, 𝑎𝑎𝑏𝑐𝑏𝑐, 𝑎𝑎𝑎𝑏𝑐𝑏𝑐𝑏𝑐, 𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑐𝑐𝑐} ⊂ {𝑎𝑏𝑐}⊕ .
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3.2 Process Tree

In this study, a process tree, an excellent process model that guarantees sound-
ness, is used for trace parsing [14]. The process tree is defined recursively as
follows [5];

1. Let A be the set of activities. If 𝑎 ∈ A ∪ {𝜖}, then 𝑎 is a process tree.
2. If 𝑄1, . . . , 𝑄𝑛 (𝑛 ≥ 1) is a process tree and 𝑜 belongs to {→,×,�, +}, then

𝑜(𝑄1, . . . , 𝑄𝑛) is also a process tree.

For example, when A = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑄 ′

1 = 𝑎, 𝑄 ′

2 = ×(𝑎, 𝑏, 𝑐), 𝑄 ′

3 =→ (𝑎,�
(×(𝑏, 𝑐, 𝜖), 𝑑), +(→ (𝑒, 𝑓 ), 𝑔)) are all process trees.

Language of Process Trees. Let L(𝑄) ⊆ A

∗ denote the language of a process
tree 𝑄. The language of the process tree is defined as follows;

– L(𝑎) ≔ {𝑎} (𝑎 ∈ A ∪ {𝜖}),
– L(→ (𝑄1, . . . , 𝑄𝑛)) ≔ L(𝑄1) · · · · · L(𝑄𝑛),
– L(×(𝑄1, . . . , 𝑄𝑛)) ≔ L(𝑄1) ∪ · · · ∪ L(𝑄𝑛) =

⋃𝑛
𝑖=1 L(𝑄𝑖),

– L(� (𝑄1, . . . , 𝑄𝑛)) ≔ (L(𝑄1) ·
⋃𝑛

𝑖=2 L(𝑄𝑖))
∗

· L(𝑄1) = L(𝑄1) · (
⋃𝑛

𝑖=2 L(𝑄𝑖) ·

L(𝑄1))
∗,

– L(+(𝑄1, . . . , 𝑄𝑛)) ≔ L(𝑄1) � · · ·� L(𝑄𝑛).

L(𝑄) indicates the set of strings that can be derived from the process tree. For
example, L(𝑄 ′

1) = {𝑎}, L(𝑄 ′

2) = {𝑎, 𝑏, 𝑐}, L(𝑄 ′

3) = {𝑎𝑏𝑑𝑒𝑎, 𝑎𝑎𝑒𝑑, 𝑎𝑏𝑐𝑏𝑒𝑑𝑎, . . . }.
Since the language of the process tree consists of a concatenation (·), a union

set (∪), and a Kleene closure (∗), and since shuffle operators can be converted
to regular expressions [12], the language class of the process tree (PTL) is a
subset of the regular language class (RL) (PTL ⊆ RL). Conversely, given a
regular expression, we can construct a process tree with equal language from
any regular expression by mapping its concatenation to →, its union set to ×,
and its Kleene closure to � (RL ⊆ PTL.) Thus, the process tree and the regular
expression are equal (PTL = RL.)

The trace parsing task of this paper is to verify whether a trace is included
in the language of the process tree, given a trace and a process tree as input.

3.3 Iterated Shuffle Cannot Be Expressed by Any (Common)
Process Tree

Most languages containing iterated shuffle do not belong to the context-free
language class (CFL). As a typical example, ({𝑎𝑏𝑐})⊕ and MIX do not belong to
the CFL. This can be shown from the pumping lemma for context-free languages
[15].

Lemma 1 (Pumping lemma for context-free language). If 𝐿 is a context-
free language, there exists some pumping length 𝑝 ≥ 1, any trace of length 𝑝 or
more in 𝐿 can be written as 𝜎 = 𝑢𝑣𝑥𝑦𝑧, where 𝑢, 𝑣, 𝑥, 𝑦, 𝑧 satisfy the following
conditions;.

|𝑣𝑦 | ≥ 1, |𝑣𝑥𝑦 | ≤ 𝑝, ∀𝑖 ≥ 0, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐿.
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Using the pumping lemma, it can be proven that languages containing iter-
ated shuffle are not in the CFL.

Lemma 2. Neither 𝐿1 = ({𝑎𝑏𝑐})⊕ nor MIX is in the CFL.

Proof. Assume that 𝐿1 and MIX are both context-free languages. Then, for
each of 𝐿1 and MIX, there exists a certain number 𝑝 satisfying the condition
of Lemma 1. Here, considering the trace 𝜎1 = 𝑎𝑝𝑏𝑝𝑐𝑝, 𝜎1 ∈ 𝐿1 and 𝜎1 ∈ MIX.
However, considering the splitting of 𝜎1 into 𝑢𝑣𝑥𝑦𝑧, |𝑣𝑦 | ≥ 1 and |𝑣𝑥𝑦 | ≤ 𝑝, 𝑣𝑥𝑦 is
always composed of two or less characters among 𝑎, 𝑏, and 𝑐. Therefore, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧
is 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∉ 𝐿1 and 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∉ MIX because the numbers of 𝑎, 𝑏, and 𝑐 are not
equal when 𝑖 ≥ 2. This inconsistent with Lemma 1. Thus, neither 𝐿1 nor MIX
is in the CFL.

Since the RL is a true subset of the CFL, 𝐿1 and MIX are not included in the
RL either. In other words, the process tree can represent neither 𝐿1 nor MIX,
and lacks the capability to represent actual business processes.

4 Process Tree with Concurrent Loop Operator

In Sect. 3.2, we defined a common process tree. Our interest is to handle indef-
inite concurrent structures, i.e., iterated shuffles, in the process tree. To treat
iterated shuffles in process trees, we define a new operator called concurrent loop
(CLOOP). CLOOPs are denoted by � in the process tree.

To add CLOOPs, modify the process tree definition as follows;

1. Let A be the set of activities. If 𝑎 ∈ A ∪ {𝜖}, then 𝑎 is a process tree.
2. If 𝑄1, . . . , 𝑄𝑛 (𝑛 ≥ 1) is a process tree and 𝑜 belongs to {→,×,�, + �}, then

𝑜(𝑄1, . . . , 𝑄𝑛) is also a process tree.

Also, add the following to the definition of language in the process tree;

– L(� (𝑄1, . . . , 𝑄𝑛)) ≔ (L(𝑄1) · · · · · L(𝑄𝑛))
⊕ .

In the following, the process tree is defined as the one with the above extensions.
Using a CLOOP,� (𝑎, 𝑏, 𝑐) represents a process tree with 𝐿1 as the language.

Also, MIX is equivalent to the language of the process tree ×(� (+(𝑎, 𝑏, 𝑐)), 𝜖).
In the definition of a CLOOP in this paper, it is assumed that the process

is always executed at least once, and ⊕ is used. Zero iterations would be also
allowed by defining a CLOOP with ⊗ instead of ⊕. Actually, since ⊗ can be
expressed by ×(𝜖,� (·)), there is no difference in expressive capability.

5 Concurrent Language

In Sect. 4, we defined a new process tree with CLOOP operators. Our goal is to
realize trace parsing using this process tree. In this section, we define concurrent
strings as a new system of strings with the addition of tuple, which expresses
the concurrency of strings, so that iterated shuffle and shuffle can be handled.
We then define a formal grammar, CCFG, from which concurrent strings can
be derived, and describe how to obtain normal serial strings from concurrent
strings.
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5.1 Concurrent String

The set of 𝑑 (≥ 0) tuples in a set 𝑉 of symbols is denoted by 𝑉×𝑑. In
this paper, tuples are denoted by brackets. E.g., when 𝑉0 = {𝑎, 𝑏}, 𝑉×2

0 =
{(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑏)}. Note that 𝑉×𝑑 and 𝑉𝑑 are different, as 𝑉2

0 =
{𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}.

Let 𝑉∗×∗ ≔
⋃

∞

𝑑=0 (𝑉
∗

)

×𝑑. 𝑉∗×∗ represents a set of tuples consisting of an arbi-
trary number of strings. E.g., {(), (𝑎), (𝑎𝑎), (𝑎, 𝑏), (𝑎𝑏), (𝑎𝑏, 𝑏𝑎𝑎), (𝑏𝑏, 𝑎, 𝜖, 𝑎)} ⊆
𝑉∗×∗

0 . Furthermore, we can consider (𝑉∗×∗

)

∗×∗, a set of tuples whose
elements are strings containing an arbitrary number of tuples. E.g.,
{(), (𝑎𝑎(𝑏, 𝑎)), (𝑎𝑎(𝑎, 𝑏), 𝑏), (𝑎, 𝑏, 𝑎, 𝑎𝑏), (𝑎(𝜖, 𝑏), 𝑏, 𝑏)} ⊆ (𝑉∗×∗

0 )

∗×∗.
Repeating this, 𝑉 (0) ≔ 𝑉 and 𝑉 (𝑖) ≔ (𝑉 (𝑖−1)

)

∗×∗

(𝑖 > 0) can be defined. Then,
define 𝑉� ≔ (𝑉 (∞)

∪ 𝑉)∗. Since 𝑉 (∞) is a set of arbitrary tuples, 𝑉� is a set
of strings composed of any tuples and strings. The elements of 𝑉� are called
concurrent strings over 𝑉 . The reason why we call it a concurrent string is that
two tuples (𝑎, 𝑏) and (𝑏, 𝑎) are equivalent in the serialization described below in
Sect. 5.4, and the tuple elements can be considered to be unordered.

5.2 Concurrent Context-Free Grammar

Here we extend the common CFG to define a concurrent context-free gram-
mar (CCFG), which can represent a set of concurrent strings as a concurrent
language. A CCFG 𝐺 is defined as (𝑀, 𝐸, 𝑅, 𝑆). 𝑀, 𝐸, and 𝑆 are the same as
in common CFGs, and are the set of non-terminal symbols, the set of terminal
symbols, and the starting symbol (𝑆 ∈ 𝑀), respectively. However, 𝑅 in a common
CFG is a set of production rules with the symbol sequence (𝑀 ∪𝐸)∗ on the right
side, whereas 𝑅 in a CCFG is a set of concurrent production rules from which
concurrent strings are derived. In CCFGs, 𝑅 ⊆ 𝑀 × (𝑀 ∪ 𝐸)�, and a concurrent
production rule 𝑟 ∈ 𝑅 is represented using “⇒” as 𝐴 ⇒ 𝛼 (𝐴 ∈ 𝑀, 𝛼 ∈ (𝑀∪𝐸)�).
That is, the right side of 𝑟 ∈ 𝑅 is a concurrent string that can contain tuples.

Example 3. 𝐺1 = (𝑀1, 𝐸1, 𝑅1, 𝑆1) = ({𝑆, 𝐴, 𝐵}, {𝑎, 𝑏}, {𝑆 ⇒ (𝐴, 𝐵), 𝐴 ⇒

(𝐴, 𝑎), 𝐴 ⇒ 𝑎, 𝐵 ⇒ 𝑏𝐵, 𝐵 ⇒ 𝜖}, 𝑆) is a CCFG.

5.3 Concurrent Language by CCFG

If 𝐴 ⇒ 𝛽 ∈ 𝑅, there is a concurrent string 𝑤 in any (𝑀 ∪ 𝐸)� where 𝐴 is an
element and a concurrent string 𝑤′ with 𝐴 in 𝑤 replaced by 𝑏𝑒𝑡𝑎, we say that 𝑤
directly derives 𝑤′ and denoted by 𝑤 =⇒ 𝑤′. If 𝑤′′ is obtained by repeated direct
derivation from 𝑤, we say that 𝑤 derives 𝑤′′ and denoted by 𝑤 =⇒∗ 𝑤′′.

Given a CCFG 𝐺 = (𝑀, 𝐸, 𝑅, 𝑆), the set of all concurrent strings on 𝐸 which
can be derived from 𝑆 is called the concurrent language of 𝐺 and denoted by
C(𝐺).

C(𝐺) ≔ {𝑐 ∈ 𝐸�

|𝑆 =⇒∗ 𝑐}

A CCFG is a formal grammar that can define a concurrent language.
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Fig. 2. Derivation example of 𝑎𝑏𝑑𝑐(𝑒 𝑓 , 𝑔) on CCFG

Figure 2 illustrates the derivation process of a concurrent string 𝑎𝑏𝑑𝑐(𝑒 𝑓 , 𝑔)
by the CCFG. The derivation process of strings in a normal CFG is represented
by a tree structure called a syntax tree. The derivation process of a CCFG can
also be represented by a syntax tree, but in a CCFG, strings in tuples have no
order relation to each other. Therefore, the branches corresponding to tuples
are aligned horizontally on the syntax tree as shown in Fig. 2. The serialization
described in the next section gives an order to each symbol in a concurrent string
and converts it into a serial string. In other words, a CCFG generates a trace by
deriving a concurrent string and assigning an order to the concurrent string.

5.4 Serialization

We have now defined concurrent strings and described a CCFG, a formal gram-
mar for concurrent strings. However, our goal is not to represent a concurrent
language, but to obtain a language of serial strings (without tuples). Therefore,
in this section, we define the serialization process to obtain a set of serial strings
from a concurrent string. By serialization, a CCFG can represent a language of
serial strings. Especially, the key point of the proposal is that the serialization is
defined as shuffling strings in a tuple. This allows CCFGs to represent languages
with shuffle and iterated shuffle.

Definition 3 (Serialization 𝑠(𝑐)). The function 𝑠 : A�

→ 2A

∗

that obtains
a set of serial strings from a concurrent string 𝑐 ∈ A

� is called a serialization
function and is defined recursively as follows;

– If 𝑐 is a string containing no tuples, then 𝑠(𝑐) ≔ {𝑐}.
– If 𝑐 is a tuple 𝑐 = () with zero elements, then 𝑠(𝑐) ≔ {𝜖}.
– If 𝑐 is a tuple with one element denoted by 𝑐 = (𝑐1), then 𝑠(𝑐) ≔ 𝑠(𝑐1).
– If 𝑐 is a tuple represented as 𝑐 = (𝑐1, . . . , 𝑐𝑛) (𝑛 ≥ 2), then 𝑠(𝑐) ≔ 𝑠(𝑐1) �

· · ·� 𝑠(𝑐𝑛).
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– Otherwise (𝑐 is a string containing a tuple), then 𝑐 is represented as 𝑐 =
𝑐1𝑡1𝑐2𝑡2 . . . 𝑐𝑛𝑡𝑛 (𝑛 ≥ 0), where 𝑐1, . . . , 𝑐𝑛 is a non-tuple concurrent string and
𝑡1, . . . , 𝑡𝑛 is a tuple, as in 𝑠(𝑐) ≔ 𝑠(𝑐1) · 𝑠(𝑡1) · · · · · 𝑠(𝑐𝑛) · 𝑠(𝑡𝑛).

Serialization is a function that yields the set of all serial strings, i.e., the language,
obtained by ordering all concurrent elements in a concurrent string.

Example 4. The serialization for the concurrent string 𝑎(𝑏𝑑𝑐)(𝑒, 𝑓 , 𝑒)()(𝑔, (ℎ, 𝑖))
is shown below.

𝑠( 𝑎(𝑏𝑑𝑐)(𝑒, 𝑓 , 𝑒)()(𝑔, (ℎ, 𝑖)) )

= 𝑠(𝑎) · 𝑠((𝑏𝑑𝑐)) · 𝑠((𝑒, 𝑓 , 𝑒)) · 𝑠(()) · 𝑠((𝑔, (ℎ, 𝑖)))

= {𝑎} · 𝑠(𝑏𝑑𝑐) · (𝑠(𝑒) � 𝑠( 𝑓 ) � 𝑠(𝑒)) · {𝜖} · (𝑠(𝑔) � 𝑠((ℎ, 𝑖)))

= {𝑎} · {𝑏𝑑𝑐} · { 𝑓 𝑒𝑒, 𝑒 𝑓 𝑒, 𝑒𝑒 𝑓 } · ({𝑔}� (𝑠(ℎ) � 𝑠(𝑖)))

= {𝑎𝑏𝑑𝑐} · { 𝑓 𝑒𝑒, 𝑒 𝑓 𝑒, 𝑒𝑒 𝑓 } · ({𝑔}� {ℎ𝑖, 𝑖ℎ})

= {𝑎𝑏𝑑𝑐 𝑓 𝑒𝑒, 𝑎𝑏𝑑𝑐𝑒 𝑓 𝑒, 𝑎𝑏𝑑𝑐𝑒𝑒 𝑓 } · {𝑔ℎ𝑖, ℎ𝑔𝑖, ℎ𝑖𝑔, 𝑔𝑖ℎ, 𝑖𝑔ℎ, 𝑖ℎ𝑔}

= {𝑎𝑏𝑑𝑐 𝑓 𝑒𝑒𝑔ℎ𝑖, 𝑎𝑏𝑑𝑐 𝑓 𝑒𝑒ℎ𝑔𝑖, 𝑎𝑏𝑑𝑐 𝑓 𝑒𝑒ℎ𝑖𝑔, 𝑎𝑏𝑑𝑐 𝑓 𝑒𝑒𝑔𝑖ℎ, 𝑎𝑏𝑑𝑐 𝑓 𝑒𝑒𝑖𝑔ℎ, 𝑎𝑏𝑑𝑐 𝑓 𝑒𝑒𝑖ℎ𝑔,

𝑎𝑏𝑑𝑐𝑒 𝑓 𝑒𝑔ℎ𝑖, 𝑎𝑏𝑑𝑐𝑒 𝑓 𝑒ℎ𝑔𝑖, 𝑎𝑏𝑑𝑐𝑒 𝑓 𝑒ℎ𝑖𝑔, 𝑎𝑏𝑑𝑐𝑒 𝑓 𝑒𝑔𝑖ℎ, 𝑎𝑏𝑑𝑐𝑒 𝑓 𝑒𝑖𝑔ℎ, 𝑎𝑏𝑑𝑐𝑒 𝑓 𝑒𝑖ℎ𝑔,

𝑎𝑏𝑑𝑐𝑒𝑒 𝑓 𝑔ℎ𝑖, 𝑎𝑏𝑑𝑐𝑒𝑒 𝑓 ℎ𝑔𝑖, 𝑎𝑏𝑑𝑐𝑒𝑒 𝑓 ℎ𝑖𝑔, 𝑎𝑏𝑑𝑐𝑒𝑒 𝑓 𝑔𝑖ℎ, 𝑎𝑏𝑑𝑐𝑒𝑒 𝑓 𝑖𝑔ℎ, 𝑎𝑏𝑑𝑐𝑒𝑒 𝑓 𝑖ℎ𝑔}.

In the resulting language string, the 𝑒, 𝑓 , and 𝑒 contained in one tuple are
arranged in random order. Also, 𝑔, ℎ, and 𝑖 are in random order. On the other
hand, symbols that are not contained in the same tuple in a concurrent string
maintain their order. For example, in the case of 𝑏𝑑𝑐 and 𝑔, 𝑔 always appears
after 𝑏𝑑𝑐. The string obtained by serialization is ordered by the elements con-
tained in the same tuple in the concurrent string.

If the concurrent string is a tuple, the serialization function applies the shuf-
fle operator to the concurrent elements of the tuple. Conversely, if the concur-
rent string is not a tuple, it simply concatenates the strings. Therefore, lan-
guages that require shuffle can be expressed by corresponding PARALLEL(+)
and CLOOP(�) to tuples, which are expressed using the shuffle operator.

Using serialization, we can obtain a set of corresponding strings from any
concurrent string. In other words, any concurrent string has a corresponding
language. The 𝑠(𝑐) corresponding to a concurrent string 𝑐 is called the serial
language of 𝑐.

A CCFG 𝐺 has a concurrent language C(𝐺). Moreover, since 𝑐 ∈ C(𝐺) has
𝑠(𝑐), a CCFG has a set of serial strings from the union set of serial languages.
We call L(𝐺) ≔

⋃
𝑐∈C(𝐺)

𝑠(𝑐) the serial language of 𝐺, or simply the language of
𝐺. Trace parsing for 𝐺 is the task of checking whether 𝜎 ∈ L(𝐺) or 𝜎 ∉ L(𝐺)

for the trace 𝜎 ∈ 𝐸∗. The method of trace parsing for given 𝐺 and 𝜎 is described
in Sect. 6.
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5.5 Conversion from Process Tree to CCFG

In this paper, we assume that the process model given in trace parsing is a process
tree. In this section, we describe how to obtain a CCFG with an equivalent
language for a process tree containing CLOOPs.

The procedure for converting a process tree to a CCFG is simple. First, the
activity set A is simply mapped one-to-one to the set of terminal symbols 𝐸
in the CCFG. Next, any node in the process tree is mapped one-to-one to a
non-terminal symbol. Let V be the set of nodes in the process tree. A node
in V can be either an operator or an activity. The operator of each 𝑣 ∈ V is
𝑜(𝑣) : V → {→,×,�, +,�, 𝑇}, where 𝑜(𝑣) = 𝑇 if 𝑣 corresponds to an activity.
When 𝑜(𝑣) = 𝑇 , the corresponding activity is obtained by 𝑙𝑣 (𝑙𝑣 = 𝜖 if the activity
is 𝜖). The non-terminal symbol set is 𝑀 = {𝑜(𝑣)𝑣 |𝑣 ∈ V}. When 𝑣0 is a root node,
the corresponding non-terminal symbol 𝑜(𝑣0)𝑣0 is the initial symbol 𝑆.

Table 1. Concurrent production rules to be added to 𝑅 for each 𝑜(𝑣) operator

𝑜(𝑣) Concurrent production rules 𝑜(𝑣) Concurrent production rules

𝑇 𝑇𝑣 ⇒ 𝑙𝑣 � �𝑣⇒ 𝐶𝑣(1)

→ →𝑣⇒ 𝐶𝑣(1) . . . 𝐶𝑣( |𝑣 |) �𝑣⇒ 𝐶𝑣(1)𝐶𝑣(2) �𝑣

× ×𝑣 ⇒ 𝐶𝑣(1) . . .

. . . �𝑣⇒ 𝐶𝑣(1)𝐶𝑣( |𝑣 |) �𝑣

×𝑣 ⇒ 𝐶𝑣( |𝑣 |) � �𝑣⇒ (𝐶𝑣(1) . . . 𝐶𝑣( |𝑣 |) )

+ +𝑣 ⇒ (𝐶𝑣(1) , . . . , 𝐶𝑣( |𝑣 |) ) �𝑣⇒ (𝐶𝑣(1) . . . 𝐶𝑣( |𝑣 |) ,�𝑣)

A set of concurrent production rules 𝑅 can be constructed by combining
the non-terminal symbols of each node 𝑣 ∈ V of the process tree and the non-
terminal symbols of the child nodes of 𝑣. Let |𝑣 | be the number of child nodes of
node 𝑣, 𝑣(𝑖) be the 𝑖-th child node of 𝑣, and 𝐶𝑣(𝑖) (1 ≤ 𝑖 ≤ |𝑣 |) be the corresponding
non-terminal symbol. Then, for every 𝑣 ∈ V, the production rules shown in
Table 1 are added to 𝑅, depending on the operator 𝑜(𝑣).

Theorem 1. The CCFG 𝐺𝑄, which obtained the concurrent production rules
according to Table 1, has the same language as the original process tree 𝑄, i.e.
L(𝐺𝑄) = L(𝑄).

Proof. Let 𝑄𝑣 be a process tree with 𝑄 node 𝑣 as the root node. When 𝑜(𝑣) = 𝑇 ,
obviously L(𝐺𝑄𝑣) = L(𝑄𝑣) = {𝑙𝑣}.

In this time, at least one node 𝑣′ ∈ V of 𝑄, 𝑜( 𝑗) = 𝑇 at every child node
𝑗 ∈ {𝑣(1), . . . 𝑣(|𝑣 |)}, i.e. L(𝐺𝑄 𝑗 ) = L(𝑄 𝑗 ). If it can be proved that L(𝐺𝑄𝑣′ ) =
L(𝑄𝑣′ ) for this node 𝑣′, the same can be proved for nodes with 𝑣′ as a child
node, and recursively L(𝐺𝑄𝑣) = L(𝑄𝑣) for all nodes 𝑣 ∈ V. That is, L(𝐺𝑄) =
L(𝑄) for 𝑄. In the following, we will prove that L(𝐺𝑄𝑣) = L(𝑄𝑣) when ∀ 𝑗 ∈

{𝑣(1), . . . 𝑣(|𝑣 |)},L(𝐺𝑄 𝑗 ) = L(𝑄 𝑗 ) in each case where 𝑜(𝑣) is →, ×, �, +, and �.
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In case 𝑜(𝑣) =→: The only concurrent production rule applicable to the initial
symbol →𝑣 is →𝑣⇒ 𝐶1 . . . 𝐶 |𝑣 |. Since the string derived from each 𝐶𝑖 (1 ≥ 𝑖 ≥

|𝑣 |) is L(𝐺𝑄𝑣(𝑖) ), thus L(𝐺𝑄𝑣) = L(𝐺𝑄𝑣(1) ) · · · · · L(𝐺𝑄𝑣( |𝑣 |) ) = L(𝑄𝑣(1) ) · · · · ·

L(𝑄𝑣( |𝑣 |) ) = L(𝑄𝑣).
In case 𝑜(𝑣) = ×: Since the symbol sequence directly derived from the initial

symbol ×𝑣 is one of 𝐶1, . . . , 𝐶𝑛, thus L(𝐺𝑄𝑣) = L(𝐺𝑄𝑣(1) ) ∪ · · · ∪ L(𝐺𝑄𝑣( |𝑣 |) ) =
L(𝑄𝑣(1) ) ∪ · · · ∪ L(𝑄𝑣( |𝑣 |) ) = L(𝑄𝑣).

In case 𝑜(𝑣) =�: The symbol sequence directly derived from the initial symbol
�𝑣 is either 𝐶1 or 𝐶1𝐶𝑖 �𝑣 (2 ≤ 𝑖 ≤ |𝑣 |). Even the latter case, the symbol
sequence derived from �𝑣 is the same. Therefore, the symbol sequences derived
from �𝑣 are expressed as ({𝐶1} ·

⋃
|𝑣 |
𝑖=2{𝐶𝑖})

∗

· {𝐶1}. Thus, L(𝐺𝑄𝑣) = (L(𝐺𝑄𝑣(1) ) ·
⋃

|𝑣 |
𝑖=2 L(𝐺𝑄𝑣(𝑖) ))

∗

· L(𝐺𝑄𝑣(1) ) = (L(𝑄𝑣(1) ) ·
⋃

|𝑣 |
𝑖=2 L(𝑄𝑣(𝑖) ))

∗

· L(𝑄𝑣(1) ) = L(𝑄𝑣).
In case 𝑜(𝑣) = +: First, consider the concurrent language C(𝐺𝑄𝑣) of 𝐺𝑄𝑣.

The only concurrent production rule applicable to the initial symbol +𝑣 is +𝑣 ⇒

(𝐶1, . . . , 𝐶 |𝑣 | ). Let 𝑐𝑖 ∈ C(𝐺𝑄𝑣(𝑖) ) be any concurrent string derived from each
𝐶𝑖 (1 ≥ 𝑖 ≥ |𝑣 |), then

C(𝐺𝑄𝑣) = {(𝑐1, . . . , 𝑐 |𝑣 | ) |𝑐1 ∈ C(𝐺𝑄𝑣(1) ), . . . , 𝑐 |𝑣 | ∈ C(𝐺𝑄𝑣( |𝑣 |) )}.

At this time, since L(𝐺𝑄𝑣) =
⋃

𝑐∈C(𝐺𝑄𝑣)
𝑠(𝑐), thus

L(𝐺𝑄𝑣) =
⋃

(𝑐1 ,...,𝑐|𝑣| ) ∈C(𝐺𝑄𝑣)

𝑠((𝑐1, . . . , 𝑐 |𝑣 | ))

=
⋃

(𝑐1 ,...,𝑐|𝑣| ) ∈C(𝐺𝑄𝑣)

𝑠(𝑐1) � · · ·� 𝑠(𝑐
|𝑣 | )

= (

⋃

𝑐1∈C(𝐺𝑄𝑣(1) )

𝑠(𝑐1)) � · · ·� (

⋃

𝑐1∈C(𝐺𝑄𝑣( |𝑣|) )

𝑠(𝑐
|𝑣 | ))

= L(𝐺𝑄𝑣(1) ) � · · ·� L(𝐺𝑄𝑣( |𝑣 |) )

= L(𝑄𝑣(1) ) � · · ·� L(𝑄𝑣( |𝑣 |) ) = L(𝑄𝑣).

In case 𝑜(𝑣) =�: Let 𝛼 = 𝐶1 . . . 𝐶 |𝑣 |. Then the concurrent strings directly
derived from the initial symbol �𝑣 are either (𝛼) or (𝛼,�𝑣). Even the latter
case, the concurrent strings derived from �𝑣 are the same. Thus, the set of
strings derived from �𝑣 can be expressed as an infinite sequence such as (𝛼),
(𝛼, (𝛼)), (𝛼, (𝛼, (𝛼))),. . . where (𝛼, •) is added one by one to the outside. Among
the concurrent strings derived from �𝑣, let 𝛾𝑖 denote the concurrent string that
contains 𝛼 for 𝑖 times. L(𝐺𝑄𝑣) is

⋃
𝑖≥1 𝑠(𝛾𝑖). Also, 𝑠(𝛾1) = 𝑠(𝛼) = 𝑠(𝐶1 . . . 𝐶 |𝑣 | ) =

𝑠(𝐶1) · · · · · 𝑠(𝐶 |𝑣 | ) = L(𝐺𝑄𝑣(1) ) · · · · · L(𝐺𝑄𝑣( |𝑣 |) ) = L(𝑄𝑣(1) ) · · · · · L(𝑄𝑣( |𝑣 |) ).
Moreover, since 𝛾𝑖 = (𝛼, 𝛾𝑖−1) for any 𝑖 > 1, 𝑠(𝛾𝑖) = 𝑠(𝛼) � 𝑠(𝛾𝑖−1). Therefore,
the following holds;

L(𝐺𝑄𝑣) =
⋃

𝑖≥1

𝑠(𝛾𝑖) = 𝑠(𝛼) ∪ (𝑠(𝛼) � 𝑠(𝛼)) ∪ (𝑠(𝛼) � 𝑠(𝛼) � 𝑠(𝛼)) ∪ . . .

= (L(𝑄𝑣(1) ) · · · · · L(𝑄𝑣( |𝑣 |) ))
⊕ = L(𝑄𝑣).
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6 Trace Parsing by CCFG

The definition of the CCFG and the method of obtaining a CCFG were described
in Sect. 5. The purpose of this study is trace parsing, i.e., to determine whether
a given trace 𝜎 can be derived from a CCFG 𝐺. We propose a parsing method,
Top-Down Trace Parsing (TDTP), which searches for the derivation process of
𝜎 in 𝐺.

The TDTP searches for a string that can be derived from the initial sym-
bol and stores the parsed state in a memory called a chart. This is similar to
top-down left-to-right chart parsing, but with three modifications. First, the def-
inition of the left-most symbol has been modified. In CFG, the leftmost symbol
in a string is simply called the leftmost symbol. In contrast, in CCFGs, multiple
non-terminal symbols can be left-most because some elements are not ordered by
tuples. The second modification is that the TDTP preacquires the left-most ter-
minal symbol for any given symbol. This modification is not new, but is already
defined in LR parsing as what is called the first set [16]. Third, a chart stores
the entire tree under analysis as a single state. In ordinary chart parsing, the
elements that correspond to the nodes of the tree called items are stored in the
chart. However, in CCFGs, there can be multiple left-most non-terminal sym-
bols in a parsing tree, so it is necessary to store the entire tree in the chart in
order to know which is the left-most symbol. This modification requires a large
amount of memory because all possible parsing trees must be kept, but it has
the advantage that the parsing tree becomes a syntax tree directly at the end of
parsing.

Since the TDTP is just an extension of the common parsing method to handle
concurrent strings, it is expected to be able to parse CCFGs from arbitrary
process trees. In our investigations, we did not find any cases of misjudged trace
parsing. However, the validity of the TDTP has not yet been proven, and this
is a future work.

The computational efficiency of the algorithm is out of scope of this paper.
For example, Tomita’s method [17], one of the generalized LR methods, is an
efficient algorithm that manages multiple parsing trees together in a single stack
and works similarly to the TDTP, but is expected to be more memory and
computationally efficient. The ability to handle concurrent strings containing
iterated shuffles is the main contribution of the TDTP.

Two constraints should be added to CCFGs provided to the TDTP. First, the
TDTP handles only concurrent production rules whose right side is a tuple. For
this reason, the concurrent production rule 𝐴 ⇒ 𝛼 is modified to 𝐴 ⇒ (𝛼). Since
𝑆((𝛼)) = 𝑆(𝛼), this modification does not affect the languages of CCFGs. Second,
the right side of a concurrent production rule is assumed to be in (𝛼) ∈ (𝑀∪𝐸)∗×∗,
not (𝛼) ∈ (𝑀 ∪ 𝐸)�, i.e., there is no tuple within a tuple. This constraint is
not a problem because a concurrent production rule 𝐴 ⇒ ((𝛼1), (𝛼2)) can be
decomposed into three concurrent production rules 𝐴 ⇒ (𝐵,𝐶), 𝐵 ⇒ (𝛼1), and
𝐶 ⇒ (𝛼2). In addition, tuples do not always contain tuples in the concurrent
production rules obtained by the method in Sect. 5.5.
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6.1 Definition of TDTP Component Concepts

First, we will define concepts related to the TDTP. In the following, 𝐴, 𝐵, 𝐶, 𝐷 ∈

𝑀 and 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 ∈ (𝑀 ∪ 𝐸)∗ (𝑖 ∈ N).

Item. Let 𝑞 = 𝐴 ⇒ (𝛼1•𝛽1, . . . , 𝛼𝐾 •𝛽𝐾 ) be called an item. In item, the position
of • indicates how far the analysis of the sequence has progressed. Sequences to
the left of • are symbols that have already been analyzed, and sequences to the
right of • are symbols that are expected to appear in the future.

Parsing Tree. The TDTP uses a parsing tree, which consists of components
called nodes, to represent the progress of the parsing. A parsing tree is denoted
by 𝑡 = [𝑣1, . . . , 𝑣 |𝑡 | ] = [(𝑞1, 𝑖1, 𝑑1), . . . , (𝑞 |𝑡 | , 𝑖 |𝑡 | , 𝑑 |𝑡 | )] where 𝑣𝑘 = (𝑞𝑘 , 𝑖𝑘 , 𝑑𝑘) is a
node, 𝑖𝑘 is the index of the parent node, and 𝑑𝑘 is the index of elements in the
tuple of the parent to which 𝑣𝑘 belongs in. If a node is the root node, then 𝑖𝑘 = −1
and 𝑑𝑘 = −1. When 𝑞𝑘 = 𝐴 ⇒ (𝛼1 • 𝛽1, . . . , 𝛼𝐾 • 𝛽𝐾 ), 𝑏𝑘𝑖 = 𝛼𝑖 • 𝛽𝑖 is called the
𝑖-th branch of 𝑣𝑘 (𝑖 ∈ 1, . . . , 𝐾).

Completion of Nodes and Branches. Suppose that 𝑞𝑘 = 𝐴 ⇒ (𝛼1 •

𝛽1, . . . , 𝛼𝐾 • 𝛽𝐾 ) at node 𝑣𝑘 ∈ 𝑡. A node 𝑣𝐾 is said to be complete if 𝛽𝑖 = 𝜖
for any 𝑖 ∈ 1, . . . , 𝐾. If not, the node is incomplete.

In the TDTP, when the 𝑖-th branch of node 𝑣𝑘 is completed, a new parsing
tree is created by replacing 𝑏𝑘𝑖 = (𝛼𝑖 • 𝐵𝑖𝛽𝑖) to (𝛼𝑖𝐵𝑖 • 𝛽𝑖). If 𝑣𝑘 is completed
as a result, the same process is performed recursively on the parent nodes of 𝑣𝑘 .
Therefore, all parents of incomplete nodes are maintained as being incomplete
in the parsing tree in the chart.

Left-Most Incomplete Branch (lmib). Node 𝑣𝑘 is the left-most incomplete
node if 𝑣𝑘 ∈ 𝑡 is incomplete and no other incomplete node in 𝑡 has 𝑣𝑘 as its
parent. When 𝑣𝑘 is the leftmost incomplete node, all branches 𝑏𝑘𝑖 = 𝛼𝑖 • 𝛽𝑖 that
are 𝛽𝑖 ≠ 𝜖 are called left-most incomplete branches (lmib).

From the definition of lmib, a procedure lmib(𝑡) that performs the following
steps yields the set of indices of all lmib of any parsing tree 𝑡 (the lmib set).

– For 𝑘 = 1, . . . , |𝑡 |, if 𝛽𝑖 ≠ 𝜖 at any branch 𝑏𝑘𝑖 = 𝛼𝑖 • 𝛽𝑖 (𝑖 = 1, . . . , |𝑞𝑘 |) of
𝑣𝑘 = (𝑞𝑘 , 𝑗𝑘 , 𝑑𝑘), add 𝑗𝑘 to the incomplete parent set N and (𝑘, 𝑖) to the
incomplete branch set B.

– The left-most incomplete branch set is {(𝑘, 𝑖) ∈ B|𝑘 ∉ N}.

In this procedure, the first step searches for incomplete branches and acquires
both incomplete branches and nodes. In the second step, all incomplete branches
that are not parents of another incomplete branch are acquired. Note that in a
CFG, there is only one lmib for any parsing tree, but in case of a CCFG, there
can be multiple lmibs.
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6.2 Related Function Definitions

In the following, we define three functions that are useful in realizing the TDTP.

first(𝑨). If 𝐴 is the symbol corresponding to the leftmost incomplete branch
lmib(𝑡) of the parsing tree 𝑡 obtained for 𝜎:𝑙−1, the TDTP checks whether 𝐴 is
capable of deriving a string prefixed by the next terminal symbol 𝜎𝑙. To do this,
for any symbol 𝐴, we need a way to obtain all possible terminal symbols that
could come at the beginning of a terminal symbol sequence that can be derived
from 𝐴.

Therefore, we define the set first(𝐴) as follows;

first(𝐴) ≔ {𝑤 ∈ 𝐸 |𝑤𝛽 ∈ 𝑠(𝛿), 𝐴 =⇒∗ 𝛿}.

first(𝐴) indicates the set of terminal symbols located at the head of any terminal
symbol sequence derived from any symbol 𝐴. In case of a concurrent production
rule, if 𝐴 =⇒∗

(𝑏𝑐, 𝑑𝑒, 𝑓 𝑔), then 𝑏, 𝑑, and 𝑓 , the heads of each, are all in first(𝐴).
first(𝐴) can be obtained by the following procedure, starting from the symbol

corresponding to the leaf node of the process tree.

– For all 𝑤 ∈ 𝐸 , first(𝑤) = {𝑤}.
– For all production rule 𝐴 ⇒ (𝐵1𝛾1, . . . , 𝐵𝐾𝛾𝐾 ) ∈ 𝑅, first(𝐴) ← first(𝐴) ∪

⋃𝐾
𝑖=1 first(𝐵𝑖).

Note that the first set is defined recursively by other first sets. In practice, the
entire sets can be obtained by executing the procedure from the leaf nodes to
the root node of a process tree. Also, since the first sets depend on only 𝑅, the
procedure only needs to be computed once for a given process tree.

wait(𝒒, 𝒅). wait(𝑞, 𝑑) returns the next symbol at the 𝑑-th branch of item 𝑞.
wait(𝐴 ⇒ (𝛼1 • 𝛽1, . . . , 𝛼𝑑 • 𝐵𝑑𝛽𝑑 , . . . , 𝛼𝐾 • 𝛽𝐾 ), 𝑑) = 𝐵𝑑.

step(𝒒, 𝒅). step(𝑞, 𝑑) advances the analysis of the 𝑑-th branch of item 𝑞 by one
and returns the item with • moved to the right by one. step(𝐴 ⇒ (𝛼1•𝛽1, . . . , 𝛼𝑑•

𝐵𝑑𝛽𝑑 , . . . , 𝛼𝐾 • 𝛽𝐾 ), 𝑑) = 𝐴 ⇒ (𝛼1 • 𝛽1, . . . 𝛼𝑑𝐵𝑑 • 𝛽𝑑 , . . . , 𝛼𝐾 • 𝛽𝐾 ).

6.3 Top-Down Trace Parsing

This section describes the Top-Down Trace Parsing (TDTP) algorithm for pars-
ing traces by CCFGs. The TDTP is an extension of the parsing approach that
accumulates parsing states in a chart by creating a parsing tree top-down from
an initial symbol, so that it can be applied to CCFGs. Since a common CFG is
considered to be a special case of CCFGs in which tuples of concurrent produc-
tion rules are limited to have at most one concurrent element, the TDTP can
also parse CFGs.

The TDTP is shown in Algorithm 1. The TDTP parse the trace 𝜎 sequen-
tially. Starting from 𝑙 = 1, parsing trees in which the string 𝜎:𝑙 appears in the
prefix are accumulated into chart[𝑙]. The TDTP first performs a forward pro-
cedure to extend the current lmib set until it reaches the given terminal symbol
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𝜎𝑙. When the target terminal symbol is reached, a backward procedure com-
pletes the branch in the opposite direction. Growing any branch of lmibs in this
manner yields a parsing tree. The forward and backward processes are shown in
Algorithm 2 and 3, respectively.

Algorithm 1. topdownTraceParsing(𝜎, 𝐺)
Require: 𝜎: a trace, 𝐺 = (𝑀, 𝐸, 𝑅, 𝑆): a CCFG.
1: Find first(𝐴) for any symbol 𝐴 ∈ 𝑀 ∪ 𝐸 from 𝑅.
2: For all 𝑆 ⇒ (𝛾1, . . . , 𝛾

|𝑟 | ) ∈ 𝑅, add [(𝑆 ⇒ (•𝛾1, . . . , •𝛾
|𝑟 | ),−1,−1] to chart[0].

3: for 𝑙 = 1, . . . , |𝜎 | do
4: 𝑤 ← 𝜎𝑙
5: for 𝑡 ∈ chart[𝑙 − 1] do
6: for (𝑘, 𝑖) ∈ lmib(𝑡) do
7: (𝑞, 𝑗 , 𝑑) ← 𝑡𝑘
8: 𝐴 ← wait(𝑞, 𝑖)
9: if 𝑤 ∈ first(𝐴) then

10: forward(𝑙, 𝑡, 𝑘, 𝑖, 𝑤)
11: end if
12: end for
13: end for
14: end for
15: return whether a parsing tree with all nodes completed is in chart[|𝜎 |] or not.

If chart[|𝜎 |] has a parsing tree with all nodes completed, the TDTP returns
true because the trace 𝜎 can be derived from the target CCFG. If all items 𝐴 ⇒

(𝛾1•, . . . , 𝛾𝐾•) of the completed parsing tree are converted to 𝐴 ⇒ (𝛾1, . . . , 𝛾𝐾 ),
the syntax tree can be obtained at the same time.

7 Trace Parsing Example

In this section, the operation of the TDTP is explained using an example of
trace parsing for a process tree → (𝑎, +(→ (𝑏, 𝑐), 𝑑),� (𝑒, 𝑓 )) and a trace 𝜎 =
𝑎𝑑𝑏𝑐𝑒𝑒 𝑓 𝑓 . Let 𝐺1 = (𝑀1, 𝐸1, 𝑅1, 𝑆1) be the CCFG obtained from the process
tree according to the procedure in Sect. 5.5. 𝑀1 = {→1, 𝑇2, +3,→4, 𝑇5, 𝑇6, 𝑇7,�8

, 𝑇9, 𝑇10}, 𝐸1 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 }, 𝑆1 =→1, and

𝑅1 = {→1⇒ 𝑇2+3 �8, 𝑇2 ⇒ 𝑎, +3 ⇒ (→4, 𝑇7), →4⇒ 𝑇5𝑇6,

𝑇5 ⇒ 𝑏, 𝑇6 ⇒ 𝑐, 𝑇7 ⇒ 𝑑, �8⇒ (𝑇9𝑇10,�8), �8⇒ (𝑇9𝑇10),

𝑇9 ⇒ 𝑒, 𝑇10 ⇒ 𝑓 }.
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Algorithm 2. forward(𝑙, 𝑡, 𝑗 , 𝑑, 𝑤)
Require: 𝑙: the current parsing position in the trace, 𝑡: parsing tree, 𝑗 : index of the

node to be analysed at 𝑡, 𝑑: index of the branch to be analysed at 𝑡 𝑗 , 𝑤: terminal
symbol of 𝜎𝑙 .

1: (𝑞, 𝑗 ′, 𝑑′) ← 𝑡 𝑗
2: 𝐴 ← wait(𝑞, 𝑑)
3: if 𝐴 = 𝑤 then
4: 𝑞𝑛𝑒𝑤 ← step(𝑞, 𝑑)
5: 𝑡𝑛𝑒𝑤 is an array of 𝑗-th element 𝑡 𝑗 = (𝑞, 𝑗 ′, 𝑑′) of 𝑡 replaced to (𝑞𝑛𝑒𝑤, 𝑗

′, 𝑑′).
6: if 𝑞𝑛𝑒𝑤 is complete then
7: backward(𝑙, 𝑡𝑛𝑒𝑤, 𝑗)
8: else {𝑞𝑛𝑒𝑤 is incomplete}
9: Add 𝑡𝑛𝑒𝑤 to chart[𝑙].

10: end if
11: else
12: for 𝑟 = 𝐴 ⇒ (𝛾1, . . . , 𝛾

|𝑟 | ) ∈ 𝑅 do
13: if 𝑤 ∈ first(𝐴) then
14: 𝑞𝑐ℎ𝑖𝑙𝑑 ← 𝐴 ⇒ (•𝛾1, . . . , •𝛾

|𝑟 | )

15: 𝑡𝑛𝑒𝑤 is an array of (𝑞𝑐ℎ𝑖𝑙𝑑 , 𝑗 , 𝑑) added to the end of 𝑡.
16: for 𝑑𝑐ℎ𝑖𝑙𝑑 = 1, . . . , |𝑞𝑐ℎ𝑖𝑙𝑑 | do
17: 𝐵 ← wait(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝑑𝑐ℎ𝑖𝑙𝑑)
18: if 𝐴 ≠ 𝐵 and 𝑤 ∈ first(𝐵) then
19: forward(𝑙, 𝑡𝑛𝑒𝑤, 𝑗𝑐ℎ𝑖𝑙𝑑 , 𝑑𝑐ℎ𝑖𝑙𝑑 , 𝑤)
20: end if
21: end for
22: end if
23: end for
24: end if

Algorithm 3. backward(𝑙, 𝑡, 𝑗)
Require: 𝑙: The current parsing position in the trace, 𝑡: parsing tree, 𝑗 : Index of the

node at 𝑡
1: (𝑞, 𝑗𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑑𝑝𝑎𝑟𝑒𝑛𝑡 ) ← 𝑡 𝑗
2: if 𝑞 is incomplete or 𝑞 is root ( 𝑗𝑝𝑎𝑟𝑒𝑛𝑡 = −1) then
3: Add 𝑡 to chart[𝑙].
4: else
5: (𝑞𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑗𝑔𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑑𝑔𝑝𝑎𝑟𝑒𝑛𝑡 ) ← 𝑡 𝑗𝑝𝑎𝑟𝑒𝑛𝑡
6: 𝑞𝑛𝑒𝑤 ← step(𝑞𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑑𝑝𝑎𝑟𝑒𝑛𝑡 )
7: 𝑡𝑛𝑒𝑤 is an array of 𝑗𝑝𝑎𝑟𝑒𝑛𝑡 -th element 𝑡 𝑗𝑝𝑎𝑟𝑒𝑛𝑡 of 𝑡 replaced to

(𝑞𝑛𝑒𝑤, 𝑗𝑔𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑑𝑔𝑝𝑎𝑟𝑒𝑛𝑡 ).
8: backward(𝑙, 𝑡𝑛𝑒𝑤, 𝑗𝑝𝑎𝑟𝑒𝑛𝑡 )
9: end if
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Fig. 3. Parsing trees

Initialization. When topdownTraceParsing is started, according to L2, the
parsing tree 𝑡 (1) = [(→1⇒ (•𝑇2+3 �8),−1,−1)] corresponding to the derivation
from the initial symbol 𝑆1 as shown in Fig. 3a is added to chart[0]. This tree
means that the string 𝑇2+3 �8 may appear next. In Fig. 3, completed nodes are
shown in white and incomplete nodes are shown in gray. The node with the lmib
is circled by a red dashed line.

Parsing Process at 𝒍 = 1. Considering the only parsing tree 𝑡 (1) in chart[0]
at 𝑙 = 1, the only incomplete branch is ((→1⇒ (•𝑇2+3 �8),−1,−1). Thus,
lmib(𝑡1) = {(1, 1)}. Since wait(→1⇒ (•𝑇2+3 �8), 1) = 𝑇2, the L9 of topdownTra-
ceParsing checks whether 𝑤 = 𝜎1 = 𝑎 is in first(𝑇2). Since 𝑇2 ∈ first(𝑇2) = {𝑇2, 𝑎},
forward(1, 𝑡 (1) , 𝑘 = 1, 𝑖 = 1, 𝑎) in L10 of topdownTraceParsing is executed.

Thus, according to L12 in forward, all concurrent production rules in 𝑅1

which 𝑇2 is on the left side are obtained. Thus, according to L12 in forward, all
concurrent production rules in 𝑅1 which 𝑇2 is on the left side are obtained. Thus,
according to L12 in forward, all concurrent production rules in 𝑅1 which 𝑇2 is
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on the left side are obtained. Thus, according to L12 in forward, all concurrent
production rules in 𝑅1 which 𝑇2 is on the left side are obtained.

In forward(1, 𝑡, 1, 1, 𝑎), since 𝐴 = wait(→⇒ (•𝑇2+3 �8), 1) = 𝑇2, 𝐴 ≠ 𝑤 = 𝑎.
Thus, according to L12 in forward, all concurrent production rules in 𝑅1 which
𝑇2 is on the left side are obtained. Since there is only 𝑟 = 𝑇2 ⇒ (𝑎) and 𝑤 ∈

first(𝑇2) = {𝑎}, a new item 𝑞𝑐ℎ𝑖𝑙𝑑 = 𝑇2 ⇒ (•𝑎) is created and (𝑞𝑐ℎ𝑖𝑙𝑑 , 1, 1) is
added to 𝑡 (1) to create the parsing tree 𝑡 (2) (L14 and L15 of forward). 𝑡 (2) is
shown in Fig. 3b. In the first branch of 𝑞𝑐ℎ𝑖𝑙𝑑, wait(𝑞𝑐ℎ𝑖𝑙𝑑 , 1) = 𝑎. Since 𝐵 =
𝑎 ≠ 𝑇2 = 𝐴 and 𝑤 = 𝑎 ∈ first(𝑎) = {𝑎}, the condition in line 18 is satisfied, so
forward(1, 𝑡 (2) , 2, 1, 𝑎) is executed recursively.

When the forward function is executed again, wait(𝑇2 ⇒ (•𝑎)) = 𝑎 = 𝑤.
Therefore, by L4 and L5, a parsing tree 𝑡 (3) is obtained by replacing item 𝑇2 ⇒

(•𝑎) in 𝑡 (2)2 with 𝑞𝑛𝑒𝑤. The replacement of 𝑞𝑛𝑒𝑤 represents a move forward one
step in the parsing by moving •, since the symbol 𝑎 was derived as a result of
the derivation from the initial symbol. At this time, • has reached the right-most
side in 𝑞𝑛𝑒𝑤, and no more symbols can be derived. Thus, backward(𝑙 = 1, 𝑡 (3) , 2)
is executed by the L7 of the forward function.

According to the completion of 𝑡 (3)2 = (𝑇2 ⇒ (𝑎•), 1, 1), backward(1, 𝑡 (3) , 2)
recursively completes the parent node (if necessary). Since 𝑡 (3)2 is obviously com-
pleted, L5 to 8 of the backward function create a new item from the parent node
(→1⇒ (•𝑇2+3 �8),−1,−1). 𝑞𝑛𝑒𝑤 = step(→1⇒ (•𝑇2+3 �8)) is →1⇒ (𝑇2 •+3 �8),
which • is moved one position to the right. In L7 and L8 of backward, cre-
ate a new parsing tree 𝑡 (4) with 𝑞𝑛𝑒𝑤 replacing the items in 𝑡 (3) and execute
backward(1, 𝑡 (4) ,−1). Figure 3c shows 𝑡 (4) . In the recursively executed backward
function, 𝑞 =→1⇒ (𝑇2 •+3 �8) has a symbol on the right of • and is incomplete.
Therefore, add 𝑡 (4) to chart[1] by the third line and terminate the processing of
the backward function.

This is the procedure at 𝑙 = 1. It may seem complicated. In reality, however,
the forward function generates nodes according to the generation rules from
the initial symbol until 𝜎1 = 𝑎, and once 𝑎 is reached, the backward function
simply completes the node. Up to this point, there are no operations that are
caused by the concurrent structure. Therefore, TDTP is almost all the same with
common chart parsing except that the entire tree is stored in the chart and the
non-terminal symbols derived from any symbol are known by the first function.

Parsing Process at 𝒍 = 2. Next, topdownTraceParsing parses by the symbol
𝜎2 = 𝑑 at 𝑙 = 2. In the parsing tree 𝑡 (4) in chart[1], lmib(𝑡 (4) ) = {(1, 1)}, that is,
the left-most incomplete branch of 𝑡 (4) is 𝑏11 = (𝑇2 • +3 �8) (which is shown in
Fig. 3c as the node enclosed by the red dashed line). At this time, wait(→⇒ (𝑇2•
+3 �8), 1) = +3, and first(+3) = {𝑏, 𝑑}. From 𝑑 ∈ first(+3), forward(2, 𝑡 (4) , 2, 1, 𝑑)
is executed according to line 10 of topdownTraceParsing.

In forward(2, 𝑡 (4) , 2, 1, 𝑑), 𝑞 = 𝑡 (4)1 =→⇒ (𝑇2 • +3 �8) is considered. The
forward function creates a parsing tree 𝑇 (5) with (𝑞𝑐ℎ𝑖𝑙𝑑 , 2, 1) added to 𝑡 (4) as
𝑞𝑐ℎ𝑖𝑙𝑑 = +3 ⇒ (• →4, •𝑇7) (L14 and L15 of forward). This is the first example
of a concurrent string affecting the parsing behavior, with 𝑞𝑐ℎ𝑖𝑙𝑑 having two
branches. In this case, 𝑡 (5) is represented as in Fig. 3d. In the figures in this paper,
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multiple edges are drawn on one node only for tuples with multiple branches.
Note that →1 in Fig. 3d outputs one edge (with three heads), while +3 outputs
two edges (each with one head). wait(𝑞𝑐ℎ𝑖𝑙𝑑 , 1) =→4, wait(𝑞𝑐ℎ𝑖𝑙𝑑 , 1) = 𝑇7, 𝑑 ∉
first(→4) = {𝑏}, and 𝑑 ∈ first(𝑇7) = {𝑑}, L13 of forward is true only in case
𝐴 = 𝑇7, and 𝑞𝑐ℎ𝑖𝑙𝑑 = 𝑇7 ⇒ (•𝑑) also satisfies the condition in L18. Therefore,
forward(2, 𝑡 (5) , 4, 2, 𝑑) is performed recursively.

In forward(2, 𝑡 (5) , 4, 2, 𝑑), (𝑇7 ⇒ (•𝑑), 4, 2) is added and further replaced
to (𝑇7 ⇒ (𝑑•), 4, 2). Since this additional node is completed, (+3 ⇒ (• →4

, •𝑇7), 2, 1) is replaced to (+3 ⇒ (• →4, 𝑇7•), 2, 1) by backward, and the parsing
tree 𝑡 (6) shown in Fig. 3e is created. +3 ⇒ (• →4, 𝑇7•) is incomplete because the
second branch is completed but the first branch is not. Therefore, 𝑡 (6) is added
to chart[2] by the third line in backward, and the analysis at 𝑙 = 2 is finished.

Parsing Process at 𝒍 = 5. The analysis process at 𝑙 ≥ 3 is omitted, but the
procedure at 𝑒 when 𝑙 = 5 is explained because it helps to understand that
the proposed method prevents infinite loops due to CLOOPs. When 𝑙 = 5, the
forward function adds a node with the item �8⇒ (•𝑇9𝑇10, • �8) to a parsing
tree to create 𝑡 (7) in Fig. 3f. In 𝑡 (7) , 𝑇9 and �8 are the symbols corresponding to
the left-most incomplete branches, and both have 𝑒 in the first(·) sets. If there is
no 𝐴 ≠ 𝐵 condition at L18 of the forward, �8 recursively executes the forward,
generating an infinite number of parsing trees with �8 incremented. In fact,
since successive �8 do not invoke forward as 𝐴 = 𝐵 =�8, only one �8 is created
at most in any 𝑙. On the other hand, at 𝑙 = 6, only one more �8 can be generated
again because the forward is again executed on the generated �8.

The 𝐴 ≠ 𝐵 condition in the TDTP narrows the range of possible parsing
trees. It is possible that 𝑒 in �8 is actually derived from the second CLOOP
(�8). However, the TDTP is unable to find a parsing tree that maps the first 𝑒
to the second �8. Since the purpose of this paper is to determine only whether
a trace is in the language of the process tree, it is not important which CLOOP
the activity was generated from. However, this limitation should be carefully
considered in cases where all possible syntax trees are required (e.g., to calculate
the probability that a given trace is generated from a CCFG).

Parsing Result. Table 2 shows the chart at the end of the parsing. chart[8]
contains four parsing trees, two of which have all nodes completed. Since the
completed parsing tree is at the end of chart, the target trace 𝑎𝑑𝑏𝑐𝑒𝑒 𝑓 𝑓 is
in L(𝐺1), i.e. 𝑎𝑑𝑏𝑐𝑒𝑒 𝑓 𝑓 conforms to the process tree → (𝑎, +(→ (𝑏, 𝑐), 𝑑),�
(𝑒, 𝑓 )). Figure 3g and 3h represent two completed parsing trees. They differ in
which of the two 𝑓 corresponds to the two 𝑒, respectively.
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Table 2. Chart when parsing 𝑎𝑑𝑏𝑐𝑒𝑒 𝑓 𝑓 with 𝐺1.

𝑙 chart[𝑙]

0 [(→1⇒ (•𝑇2+3 �8),−1,−1)]

1 [(→1⇒ (𝑇2 • +3 �8),−1,−1), (𝑇2 ⇒ (𝑎•), 1, 1)]

2 [(→1⇒ (𝑇2 • +3 �8),−1,−1), (𝑇2 ⇒ (𝑎•), 1, 1), (+3 ⇒ (• →4, 𝑇7•), 1, 1), (𝑇7 ⇒ (𝑑•), 3, 2)]

3 [(→1⇒ (𝑇2 • +3 �8),−1,−1), (𝑇2 ⇒ (𝑎•), 1, 1), (+3 ⇒ (• →4, 𝑇7•), 1, 1), (𝑇7 ⇒ (𝑑•), 3, 2),

(→4⇒ (𝑇5 • 𝑇6), 3, 1), (𝑇5 ⇒ (𝑏•), 5, 1)]

4 [(→1⇒ (𝑇2 +3 • �8),−1,−1), (𝑇2 ⇒ (𝑎•), 1, 1), (+3 ⇒ (→4 •, 𝑇7•), 1, 1), (𝑇7 ⇒ (𝑑•), 3, 2),

(→4⇒ (𝑇5𝑇6•), 3, 1), (𝑇5 ⇒ (𝑏•), 5, 1), (𝑇6 ⇒ (𝑐•), 5, 1)]

5 [(→1⇒ (𝑇2 +3 • �8),−1,−1), (𝑇2 ⇒ (𝑎•), 1, 1), (+3 ⇒ (→4 •, 𝑇7•), 1, 1), (𝑇7 ⇒ (𝑑•), 3, 2),

(→4⇒ (𝑇5𝑇6•), 3, 1), (𝑇5 ⇒ (𝑏•), 5, 1), (𝑇6 ⇒ (𝑐•), 5, 1), (�8⇒ (𝑇9 • 𝑇10), 1, 1), (𝑇9 ⇒ (𝑒•), 8, 1)],

[(→1⇒ (𝑇2 +3 • �8),−1,−1), (𝑇2 ⇒ (𝑎•), 1, 1), (+3 ⇒ (→4 •, 𝑇7•), 1, 1), (𝑇7 ⇒ (𝑑•), 3, 2),

(→4⇒ (𝑇5𝑇6•), 3, 1), (𝑇5 ⇒ (𝑏•), 5, 1), (𝑇6 ⇒ (𝑐•), 5, 1), (�8⇒ (𝑇9 • 𝑇10, • �8), 1, 1), (𝑇9 ⇒ (𝑒•), 8, 1)]

6 [(→1⇒ (𝑇2 +3 • �8),−1,−1), (𝑇2 ⇒ (𝑎•), 1, 1), (+3 ⇒ (→4 •, 𝑇7•), 1, 1), (𝑇7 ⇒ (𝑑•), 3, 2),

(→4⇒ (𝑇5𝑇6•), 3, 1), (𝑇5 ⇒ (𝑏•), 5, 1), (𝑇6 ⇒ (𝑐•), 5, 1), (�8⇒ (𝑇9 • 𝑇10, • �8), 1, 1), (𝑇9 ⇒ (𝑒•), 8, 1),

(�8⇒ (𝑇9 • 𝑇10), 8, 2), (𝑇9 ⇒ (𝑒•), 10, 1)],

[(→1⇒ (𝑇2 +3 • �8),−1,−1), (𝑇2 ⇒ (𝑎•), 1, 1), (+3 ⇒ (→4 •, 𝑇7•), 1, 1), (𝑇7 ⇒ (𝑑•), 3, 2),

(→4⇒ (𝑇5𝑇6•), 3, 1), (𝑇5 ⇒ (𝑏•), 5, 1), (𝑇6 ⇒ (𝑐•), 5, 1), (�8⇒ (𝑇9 • 𝑇10, • �8), 1, 1), (𝑇9 ⇒ (𝑒•), 8, 1),
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8 Conclusion

In this paper, we propose a novel formal grammar, a CCFG, for representing
business processes with CLOOPs. We also proved that a CCFG can be easily
obtained from a process tree, and that the obtained CCFG has the same lan-
guage as the original process tree. A CCFG can represent a language containing
iterated shuffles by a combination of concurrent string derivation and serializa-
tion. Therefore, the CCFG extends the expressive power of process trees to real
business processes.

In this paper, we also proposed the TDTP, an algorithm for trace parsing
using a CCFG. The TDTP acquires a syntax tree corresponding to a given trace
by growing a parsing tree constructed from initial symbols according to the given
trace. However, the validity and computational efficiency of the TDTP algorithm
were not verified in this paper, and this is a future work.

Most of the linguistic properties of the CCFG are still unknown, and this is
also a future work. In particular, the relations between the CCFG and automata,
including Petri nets, are unknown, although this is a very interesting topic. The
relations with other formal grammars, such as multiple context free grammars,
also deserve attention.

Probabilistic CCFG, which adds the concept of probability to a CCFG, is also
a topic of practical interest. While the modeling of probabilities for concurrent
strings is expected to be analogous in case of a PCFG for a common CFG, the
modeling of probabilities for the serialization of concurrent strings is expected
to be neither simple nor unique. We intend to study the probability modeling of
the CCFG in the future.
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Abstract. Alignments are a well-established conformance checking technique
that serve to reconcile system logs with normative process models. For processes
involving multiple entities, such as objects and resources performing different
tasks, the interaction of these entities must be taken into account in the align-
ments. In traditional approaches, it is achieved by considering a log event as
matching a model event when all the entities registered in the logged event fully
match the ones required by the model, thus considering events as unbreakable
process atoms. We relax this requirement to deal with partial agreements between
logged and modeled events and define relaxed alignments, aiming at maximizing
the synchronized interactions between entities. Our approach is based on the use
of projections of the log and model on individual objects, to deal with partial
agreements. The optimality criterion is based on the cost function taking into
account the deviating moves (events with non-matching event labels), the degree
of (partial) event matches, and the correlations between non-matching parts of
events involved in the process execution. Illustrating with a running example, we
demonstrate that our approach yields alignments that better capture deviations in
the context of complex, multi-object processes.

Keywords: Petri nets · Conformance checking · Interacting objects ·
Projections

1 Introduction

Real-world processes exhibit complex behavior involving various activities executed by
system resources (including both humans and machines) for different objects following
certain rules. The executed activities get recorded in event logs, which serve as input
data for numerous process mining algorithms. Conformance checking is one of the
branches of process mining, focusing on checking the process behavior registered in an
event log against a normative process model representing the expected process behavior.

Many approaches consider process instances (cases) in isolation from other
instances [1]. However, the execution of a process instance is often affected by the
execution of other instances, e.g. because of shared resources, case batching, or interac-
tion between objects [3,10,12]. Event logs and process models that include information
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about object interaction and constraints enable the use of conformance checking for pro-
cesses with interacting objects. Such analysis goes beyond the single instance control-
flow perspective, checking whether and where the process behavior recorded in an event
log deviates from the interaction constraints prescribed by the process model [20].

Alignments is one of the popular conformance checking techniques, exposing where
the behavior recorded in a log and the model agree, which activities prescribed by the
model are missing in the log, and which log activities should not have been performed
according to the model [2,6]. Usually alignments focus on the control flow of a pro-
cess, with more advanced techniques additionally incorporating data and/or resource
information [4,7,14,15]. Even in these cases, they still operate on a case-by-case basis,
providing optimal alignments considering individual cases, but failing to synchronize
interactions between objects and expose deviations concerning inter-object dependen-
cies. In our previous work, we proposed system alignments, working on multiple objects
simultaneously and taking into account inter-object dependencies [20,21].

One limitation of the existing methods, which we address in this paper, concerns
their binary approach to matching logged activities with modeled ones. A logged activ-
ity is deemed a match if and only if the correct task is executed on the right objects at the
right moment in time. For instance, a successful match within a package delivery pro-
cess might require a package to be delivered at a predetermined depot by the deliverer
who picked up the package. Any deviation from this exact combination—such as a dif-
ferent delivery location (at another depot or at home), or by a different deliverer—would
be considered a mismatch. In fact, an alignment including such partially deviating activ-
ities, would receive a lower score than an alignment in which the entire delivery step is
skipped, because of being penalized both for an unwanted activity execution (deviating
delivery) and for skipping the required activity (matching delivery). This binary app-
roach oversimplifies the matching process and may lead to penalizing deviations that
are almost compliant with the overall model requirements.

To overcome this limitation, we propose relaxed alignments that can accommodate
partially compliant behavior by loosening constraints with respect to certain perspec-
tives, represented by projections of the event log and the process model on correspond-
ing objects. We show that relaxed system alignments incorporate optimal trace align-
ments while maximizing that match of object interactions imposed by log and model.

This paper is organized as follows. In Sect. 2 we introduce basic concepts of poset
theory, event logs, and Petri nets. In Sect. 3, we explain the limitations of standard
alignment mechanisms using a running example. In Sect. 4, we introduce and formalize
the notion of projections on objects for event logs, process models, and alignments.
Section 5 presents the concept of relaxed alignments, using these projections, enabling
partial compliance of L and M . We discuss implications of our work in Sect. 6.

2 Preliminaries

In this section, we start with definitions and notation of multisets and partially ordered
sets. Then we briefly introduce some definitions for logged and modeled behavior of
processes with interacting objects, coming from related work. For more detailed expla-
nations, we refer the reader to the respective sources.
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2.1 Multisets, Posets, and Sequences

Definition 1 (Multiset). A multiset m over a set X is m : X → N. X⊕ denotes the
set of all multisets over X . The support supp(m) of a multiset m is the set {x ∈ X |
m(x) > 0}. We list elements of the multiset as [m(x) · x | x ∈ X].

For two multisets m1,m2 over X , we write m1 ≤ m2 if ∀x∈Xm1(x) ≤ m2(x),
and m1 < m2 if m1 ≤ m2 ∧ m1 �= m2.

Definition 2 (Partial order, Covering relation, Partially ordered set). A partially
ordered set (poset) X = (X̄,≺X) is a pair of a set X̄ and a partial order ≺X⊆ X × X
(irreflexive, antisymmetric, and transitive). We overload the notation and write x ∈ X
if x ∈ X̄ . For x, y ∈ X , we write x‖Xy if x ⊀ y ∧ y ⊀ x, and x � y if x ≺ y ∨ x = y.

The covering relation � ⊂≺ is the transitive reduction of partial order ≺ which is
the smallest subset of ≺ with �

+ =≺, i.e., � =
{
(x, y) ∈≺ ∣

∣∀(x,z)∈≺z ⊀ y
}
.

We define X< as the set of all sequences with elements from X̄ that respects the
partial order, i.e., for a σ = 〈σ1, . . . , σ|X̄|〉 ∈ X< we have {x ∈ σ} = X̄ and≺X⊆<σ .

Definition 3 (Poset projection). For a poset X = (X̄,≺X) and a subset Y ⊆ X̄ , we
define the projection X�Y of X on Y as X�Y =

(
X̄ ∩ Y,≺X ∩(Y × Y )

)
.

Definition 4 (Sequence). A sequence σ over a set X of length n ∈ N is Xn. With
n > 0, we write σ = 〈σ1, . . . , σn〉, and denote n by |σ|. 〈〉 denotes the empty sequence
where n = 0. The set of all finite sequences over X is denoted by X∗. A projection
of a sequence σ on a set Y is defined inductively by 〈〉�Y = 〈〉 and (〈x〉) · σ)�Y ={

〈x〉 · σ�Y if x ∈ Y

σ�Y otherwise
, where x ∈ X and · is the sequence concatenation operator.

2.2 Recorded Behavior: System Logs

We consider processes with interacting objects and we assume that each object belongs
to exactly one object type, known beforehand. This object type corresponds in fact to a
role played by objects of this type in the process. Note that while in reality, every object
is identifiable in a way, and O could be considered a set rather than a multiset, we allow
for abstractions of objects. Take for example warehouse objects, where a warehouse has
space for two packages, without distinguishing between the two spots.

Definition 5 (Objects, Object roles).We assume a finite multisetO of object names and
a finite set R of object roles. Each object name o ∈ O has a single role role(o) ∈ R
assigned to it.

Events are atomic activity executions that occurred at a specific time and involved
objects and actors. In a system log, we abstract away from the events’ actual timestamps
and only use the relative ordering between them. An event log can be transformed to
traces, defined as projections e.g., on the object names.

Definition 6 (Event, System log, Trace). Let Σ be a set of activities. An event e is a
tuple (a, t, O)id , with a unique identifier id , an activity a ∈ Σ, timestamp t and a
non-empty multiset of object names O ≤ O, indicating objects involved in it.
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Fig. 1. Example: labeled Petri net N1 with marking m such that m(p11) = 2.

A system log L = (L̄,≺L) is a set of recorded events L̄ with partial order ≺L

inferred from the recording mechanism(s).
A trace Lo of object o ∈ O is defined as Lo = (

{
(a, t, O)id ∈ L |o ∈ O

}
,≺Lo

)
with ≺Lo

=≺L ∩ (
Lo × Lo

)
.

We write e instead of eid when it is clear that e refers to an identifiable event.

2.3 Modeled Behavior: Process Models

Petri nets [19] are process models used to describe and reason about the execution of a
process.

Definition 7 (Labeled Petri net). A labeled Petri net [18] is a tuple N = (P, T,F , �),
with sets of places and transitions P and T , respectively, such that P ∩ T = ∅, and a
multiset of arcs F : (P × T ) ∪ (T × P ) → N defining the flow of the net. � : T →
Στ = Σ ∪ {τ} is a labeling function, assigning each transition t a label from alphabet
Σ or label τ for silent transitions.

Given an x ∈ P ∪ T , its pre- and post-set, •x and x•, are sets defined by •x =
{y ∈ P ∪ T | F((y, x)) ≥ 1} and x• = {y ∈ P ∪ T | F((x, y)) ≥ 1} respectively.

The Petri net N1 = (T1, P1,F1, �1) in Fig. 1 is a simple example of a model for a
package delivery process. A deliverer rings a doorbell to deliver a package at home or
at a depot, depending on whether the door is answered. Alternatively, the package can
be delivered at a depot immediately. τ1 ∈ T1 and τ2 ∈ T1 are the silent transitions in
N1 (�1(τ1) = �1(τ2) = τ ), denoted as black boxes.

Definition 8 (Marking, Enabling and firing of transitions, Reachable markings). The
state of a labeled Petri net N = (P, T,F , �) is defined by its marking m ∈ P⊕ that
describes how many tokens each place contains.

A transition t ∈ T is enabled in marking m iff m ≥• t. An enabled transition can

fire, resulting in a state change, denoted by m
t−→ m′, where the resulting marking m′

is defined by m′ = m−• t+ t•. We say that m′ is reachable from m and write m
∗−→ m′

if there is some sequence of transition firings σ ∈ T ∗ such that m
σ1−→ · · · σ|σ|−−→ m′.

Certain types of Petri nets allow to model differentiation between object roles and
their interaction. For the technique we propose in this paper, any formalism of process
models can be used as long as its language can be defined in terms of partial orders.
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Formalisms from [11,13,16,17,20] are examples of that. In previous work [20,21], we
proposed alignment methods for resource-constrained ν-nets, which trivially extend to
typed Jackson nets and easy sound t-PNIDs. Note that these formalisms incorporate
multiple interacting processes with only one-to-one interactions. For many-to-many
relations, i.e., with variable number of interacting objects, one should resort to for-
malisms like Object-centric nets [3] or synchronizing proclets [10]. In this paper we
use typed Petri nets with identifiers (t-PNIDS) [22], defined as follows:

Definition 9 (Typed variables, Typed Petri net with identifiers [22]). V =
⊎

r∈R Vr is
the set of variables with for every r ∈ R: role(v) = r for v ∈ Vr. We write VR =⊎

r∈R Vr with R ⊆ R. A typed Petri net with identifiers (t-PNID) is a tuple N =
(P, T, F, �, α, β), with F = supp(F), where:

– (P, T,F , �) is a labeled Petri net (c.f., Definition 7);
– α : P → R∗ is the place typing function;
– β : F → (V∗)⊕ defines for each flow a multiset of variable vectors such that the

variable types correspond with the place types: a(p) = (role(v1), . . . , role(v|v|))
for any v ∈ supp(β((p, t)) and a(p′) = (role(v′

1), . . . , role(v
′
|v′|)) for any v′ ∈

supp(β((t, p′)) where t ∈ T, p ∈• t, p′ ∈ t•. V ar(t) = In(t) ∪ Out(t) with
In(t) = {vi | p ∈• t,v ∈ supp(β((p, t))), 1 ≤ i ≤ |v|} and
Out(t) = {vi | p ∈ t•,v ∈ supp(β((t, p))), 1 ≤ i ≤ |v|}.

Rp and Rt are the sets of roles related to places and transitions in N according to α,
defined as Rp = {α(p)i | 1 ≤ i ≤ |α(p)|} and Rt =

⋃
p∈(•t∪t•) Rp.

A state of a t-PNID is defined by its marking, which can change by firing enabled
transitions in the net, as defined in Definition 10:

Definition 10 (Marking, Enabling and firing of transitions). Let N = (P, T, F, α, β)
be a t-PNID. A marking of N is a function m : P → (supp(O)∗)⊕ such that
α(p) = (role(o1), . . . , role(ok)) for any (o1, . . . ,ok) ∈ m(p). For the set of iden-
tifiers in marking m, we write Id(m) = {oi | p ∈ P,o ∈ supp(m(p)), 1 ≤ i ≤ |o|}.

A mode μ of a transition t is an injection μ : V → supp(O) such that role(v) =
role(μ(v)). We overload the notation of μ to (V∗)⊕ → (O∗)⊕ and write μ(β(a)) =[
β(a)(v) · (μ(v1), . . . , μ(v|v|)) | vsupp(β(a))

]
for any a ∈ (P × T ) ∪ (T × P ).

A transition firing tidμ denotes a firing of transition t with mode μ and identifier id

and defines a state change in N : m
tidμ−→ m′. t is enabled with mode μ if μ(β((p, t))) ≤

m(p) for all p ∈ P and μ(v) /∈ Id(m) for each v ∈ Out(t)\ In(t), i.e., fresh variables
are truly fresh. The marking m′ reached after firing of t with mode μ is defined as:

m′(p) = m(p) − μ(β((p, t))) + μ(β((t, p))) for all p ∈ P (1)

objects(tidμ ) denotes the multiset of involved objects in tidμ , i.e., the consumed objects
and newly created ones, defined as follows:

objects(tidμ ) = [β((p, t))(v) · μ(vi) | p ∈• t,v ∈ supp(β((p, t))), 1 ≤ i ≤ |v|] +
[β((t, p))(v) · μ(vi) | p ∈ t•,v ∈ supp(β((t, p))), 1 ≤ i ≤ |v|,vi ∈ Out(t) \ In(t)]

(2)
Tμ is the set of all possible transition firings.
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We write tμ instead of tidμ when tμ clearly refers to an identifiable transition firing.

Definition 11 (t-PNID Process model, Execution poset and sequence, Run, Language).
Let M = (N,mi,mf ) be a t-PNID process model, where N is a t-PNID and mi and
mf are respectively the initial and final states of M . An execution sequence in M is a
firing sequence σ reaching mf from mi, denoted as mi

σ−→ mf .
An execution poset (also called a run) ϕ = (ϕ̄,≺ϕ) is a poset of transition firings

such that each sequence σ ∈ ϕ> respecting the partial order is a firing sequence, i.e.,
mi

ϕ−→ mf ⇐⇒ ∀σ∈ϕ>mi
σ−→ mf .

The language L(M) of a model M is the set of all execution posets in M .

3 Rethinking Alignments for Processes with Interacting Objects

We use a running example to describe system alignments as introduced in previous
works and then show some limitations of such alignments related to the binary inter-
pretation of the deviations, thus explaining the need for partial synchronization.

Our running example extends the package delivery process from Fig. 1 by adding
activities for ordering, depot registration, and collection. Figure 2a shows its recorded
system log L containing the delivery of three packages by one deliverer (d1) in the
same street. d1 delivers package p1, which fits in the mailbox, and then proceeds to ring
the doorbells to deliver package p2, which remains unanswered, and package p3. In the
meantime, d1 receives a notification that no ring activity has been recorded for the first
package, so the deliverer logs it, while package p2 is registered for depot delivery. The
example ends with d1 handing over p3 and delivering p2 to the warehouse w1; p3 is
collected afterwards. Figure 2b shows the t-PNID process model M = (N,mi,mf )
modeling this process’ behavior, with correlations between deliverers (blue) and pack-
ages (white) in places p5 and p6, and between warehouses (red) and packages in places
p7 and p9. Note that the log deviates from the model as the model requires ringing
before delivery and delivering the package at the depot before moving on to the next
package delivery, if the delivery was unsuccessful, while the deliverer optimizes this
business process as shown in the log.

Alignments between logged and modeled behavior consist of moves belonging to
one of three types: log moves, model moves, and synchronous moves. Log moves indi-
cate that an event from the log cannot be mimicked by the process model, and model
moves show that the model requires the execution of an activity that has no matching
recorded event in the log at the corresponding position. Unlike these deviating moves,
synchronous moves are conforming moves and signify that the observed and modeled
behavior agree on the event. Figure 3 shows these moves for the running example by
layering transition firings (purple) from a run in the process model M and the events
(yellow) from the system log L. The synchronous moves are thus the ones combining
the yellow and the purple visual elements (e.g., orderhome

[p1]), model moves are the elements

in purple (e.g., orderdepot
[p2]) and log moves are the yellow ones (e.g., orderhome

[p2]). Formally, we
define these moves as follows:
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Fig. 2. Running example of a delivery process with object roles R = {p, d, w}. (Color figure
online)

Fig. 3. An optimal system alignment γ∗, where events and transition firings are depicted as aO

(yellow) and tobjects(tμ) (purple) respectively, with their respective covering relations. Conform-
ing and deviating moves are annotated in white and red respectively. (Color figure online)

Fig. 4. Trace alignments γ∗
Lo

for o ∈ {p1, p2, p3, d1, w1}, with conforming and deviating moves
are annotated in white and red respectively. (Color figure online)
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Definition 12 (Log, model and synchronous moves). Let L be a system log and M =
(N,mi,mf ) a process model with N = (P, T, F, �, α, β). Tμ denotes the set of all
possible transition firings in M (see Definition 8).

Γs = {(e, tμ) | e = (a,O) ∈ L, tμ ∈ Tμ, a = �(t), O = objects(tμ)} is the set of
possible synchronous moves, Γl = {(e,�) | e ∈ L} is the set of possible log moves,
and Γm = {(�, tidμ ) | tidμ ∈ Tμ} is the (infinite) set of possible model moves, with the
additional identifier making each move unique.

We write Γlm = Γl ∪ Γm for shorthand notation of all deviating moves.
We define an alignment as a poset over the set of synchronous, log and model moves

that incorporates both the system log and the allowed behavior of model [20]. Log and
model moves expose deviations of the observed behavior from the model behavior while
synchronous moves show where the observed behavior follows the model.

Definition 13 (Alignment). Let L = (L̄,≺L) be a system log and M = (N,mi,mf )
be a process model. An alignment γ = align(NM,L) is a poset γ = (γ̄,≺γ), where
γ̄ ⊆ (Γl ∪ Γs ∪ Γm), having the following properties:

1. γ�L = L̄ and ≺L⊆≺γ�L

2. mi
γ�T−−→ mf , i.e., ∀σ∈(γ�T )< ,mi

σ−→ mf

with alignment projections on the log events γ�L and on the transition firings γ�T :

γ�L =
({e | (e, tμ) ∈ γ̄, e �=�} ,

{(
e, e′) | (

(e, tμ) ,
(
e′, t′

μ

)) ∈≺γ , e �=��= e′})
(3)

γ�T =
({tμ | (e, tμ) ∈ γ̄, tμ �=�} ,

{(
tμ, t′

μ

) | (
(e, tμ) ,

(
e′, t′

μ

)) ∈≺γ , tμ �=� t′
μ

})
(4)

We consider the optimal alignment, denoted as γ∗, to be the alignment where the
number of deviating moves is minimized, which is achieved by minimizing the standard
cost function c:

c((e, tμ)) =

{
1 if (e, tμ) ∈ Γlm ∧ �(t) �= τ

0 otherwise
(5)

The alignment γ∗ forM andL from our running example shown in Fig. 3 is optimal.
Note that all objects involved in an event from the log and the corresponding transi-

tion firing in the process model must agree on what happened. A synchronous move is
defined atomically, i.e., the event and the transition firing can either be synchronized in
its entirety or not at all. In our running example, the steps performed by d2 for p2 do fit
the modeled behavior if taken in isolation from other packages. However, d1 switched
to an activity related to p3 after ringing the door for p2, while the model requires the
deliverer to continue working with a package after ringing the door. Based on the atomic
synchronization for all involved objects, a choice between synchronizing steps either for
p2 or for p3 had to be made in the alignment, based on the cost function, which resulted
in a pessimistic interpretation of system conformance. Although this alignment does
respect all inter-object dependencies, this ultimately leads to a skewed view of how
well the individual objects fit the process model.

We further illustrate this idea using optimal trace alignments for individual objects,
i.e., for packages p1, p2 and p3, deliverer d1, and warehouse w1 (see Fig. 4). Here, any
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interaction between different objects is ignored, assuming we have a process model for
each object role that models the behavior of individual objects. Therefore, such trace
alignments are defined on these corresponding models. We highlight that the log trace
for package p2 is aligned completely synchronously with the model, while the optimal
alignment γ∗ from Fig. 3 shows that the recorded event ring[p2,d1] is not synchronized
with the model. During the interval in which deliverer d1 is recorded to be involved in
activities for package p2, d1 is also involved in other activities with package p3, causing
the deviation in γ∗. An intuitive way of resolving this is by changing the order

home
[p2] event

from the log to an order
depot

[p2] transition firing in the process model. This shows that the
problem caused by d1 is cascaded to activity executions only involving p2. While there
are other optimal alignments for M and L, the propagation of this deviation caused by
d1 to package from their interaction is inevitable.

Therefore there is a need for relaxing system alignments by allowing partial syn-
chronization of events and transition firings. We explore the properties of such align-
ments concerning the incorporated individual trace alignments.

4 Object Projections for Alignments

The regular alignment denotes the worst-case alignment considering all objects simul-
taneously, providing a pessimistic view on the alignment behaviors from the perspective
of individual objects or subsets of objects. We exploit traces, defined as log projections
(c.f., Definition 6), to reveal these perspectives in the recorded behavior. We define
projections for the modeled behavior as well, and subsequently, use them in the system
alignments.

4.1 Process Model Projections

A projection of a process model captures the behavior for a subset of the objects
involved in the process. Within a t-PNID, every object follows the behavior specified by
the corresponding role, which is defined through its place typing function. We can use
this property to define the projection on objects of t-PNIDs, as well as their markings
and transition firings as follows:

Definition 14 (Object projection of t-PNIDs and its markings and firings). Given a t-
PNID N = (P, T, F, �, α, β) and submultiset of objects O ≤ O. Let R = {role(o) |
o ∈ supp(O)} ⊆ R be the roles associated with O. The projection of N on O is
N�O = (PR, TR, FR, �R, αR, βR) with

PR =
{
pRp | p ∈ P, Rp = Rp ∩ R �= ∅}

with αR(pRp) = α(p)�R (6)

TR = {tV | t ∈ T, V ⊆ (V ar(t) ∩ VR)} with �R(tV ) = �(t) (7)

FR =
{
(pRp , tV ) ∈ (PR × TR) | (p, t) ∈ F

} ∪ {
(tV , pRp) ∈ (TR × PR) | (p, t) ∈ F

}

with βR((pRp , tV )) = [β((p, t))(v) · v�V | v ∈ supp(β((p, t)))] (8)
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Fig. 5. Projections of N on object roles p, d, and w.

Let m be a marking in N , i.e., m : P → (supp(O)∗)⊕. Its projection on objects
O is the submarking m�O : PR → (supp(O)∗)⊕ defined for each p ∈ PR as follows:
m�O(p) = [m(p)(o) · o�O | o ∈ supp(m(p))].

Let tμ be a transition firing in N ; its projection on objects O is tμ�O = (t�O)μ�O

with t�O = tV ∈ TR such that there exists a bijection {(o, v) ∈ (supp(O) × V ) |
role(o) = role(v)} and μ�O = μ�V .

For the projection on a set of roles R ⊆ R, we also write N�R = N�O for any
O ≤ O such that R = {role(o) | o ∈ supp(O)}. For the sake of readability, we write
N�o instead of N�[o] and N�r instead of N�{r}, for o ∈ supp(O) and r ∈ R.

In order to allow individual objects to traverse the net, the projection of transitions
is applied to the variables of corresponding types.

For the process model M in Fig. 2b with R = {p, d, w}, M�r is shown in Fig. 5 for
each r ∈ R.

We show that the projections of t-PNIDs, of their markings and transition firings
maintain the properties of the original t-PNIDs, their markings and firings, and hence a
projection is also a process model.

Theorem 1 (A projected (t-PNID) process model is a (t-PNID) process model). Let
M = (N,mi,mf ) be a process model with t-PNID N and O ≤ O be a multiset of
objects with roles R = {role(o) | o ∈ supp(O)}. M�O = (N�O,mi�O,mf �O) is also
a process model, i.e., N�O is a t-PNID, mi�O and mf �O are markings in N�O, and
tμ�O is a transition firing in N�O for any t ∈ TR.

Proof. N�O is a t-PNID as it has the three properties from Definition 9:

– (P, T,F , �) with any F ∈ F⊕ is a labeled Petri net by definition of t-PNIDs.
(PR, TR,FR, �R) is essentially a subnet of (P, T,F , �) with the same labeling func-
tion and therefore a labeled Petri net;

– αR : PR → R∗ by definition of vector type projection, and since R ⊆ R, we have
αR : PR → R∗;
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– Again, by definition of vector type projection, βR : FR → (V∗
R)

⊕, hence βR :
FR → (V∗)⊕. Furthermore, for any pRp

∈ PR, |αR(pRp
)| = |α(p)�R| = |Rp|, and

for all tV ∈ TR such that (pRp
, tV ) ∈ FR, |βR((pRp

, tV ))| = |β((p, t))�R| = |Rp|.
Let v ∈ supp(β((pRp

, tV ))), and let roles(v) = (role(v1), . . . , role(v|v|)). α(p) =
role(v) by definition of t-PNIDs, and therefore we have αR(pRp

) = α(p)�R =
roles(v)�R = (role((v�R)1), . . . , role((v�R)|Rp|)).
Similarly, for all tV ∈ TR such that (tV , pRp

) ∈ FR and v ∈ supp(β((tV , pRp
))),

|βR((tV , pRp
))| = |β((a, b))�R| = |Rp| and αR(pRp

) = α(p)�R = roles(v)�R =
(role((v�R)1), . . . , role((v�R)|Rp|)).

By definition, m�O is only defined on PR. Furthermore, for a place pRp
∈ PR, its

marking m�O(p) = [m(p)o · o�O | o ∈ supp(m(p))], where role((o�O)i) ∈ R for
1 ≤ i ≤ |o�O|, i.e., it only contains objects from O. Hence, mi�O and mf �O are
markings in N�O.

The projection of transition firing tμ on O from marking m to m′ is tμ�O, which is

a firing in N�O, i.e., m�O

tμ�O−−−→ m′�O. ��

Linking Elements in Process Model Projections. With Definition 14, projections of
t-PNIDs are defined so that its elements, i.e., places, transitions, and arcs, are linked
when their properties are the same. This is especially useful when combining multiple
projection nets, which we do in the next section.

Definition 15 (Linking projection elements). Let N = (P, T, F, �, α, β) be a t-PNID,
O ≤ O a multiset of objects, and N�O = (PR, TR, FR, �R, αR, βR) the projection of
N on O, with R = {role(o) | o ∈ supp(O)} ⊆ R.

An element x ∈ (P ∪ T ∪ F ) and its corresponding projected element x�O ∈
(PR ∪ TR ∪ FR) are linked, denoted x = x′, if and only if they reason over the same
objects. For places p ∈ P and pRp

∈ PR, p = pRp
iff Rp = RpRp

= Rp. For
transitions t ∈ T and tV ∈ TR, t = tV iff V ar(t) = V ar(tV ) = V . For arcs (p, t) ∈
F and (pRp

, tV ) ∈ FR (and (t, p) ∈ F and (tV , pRp
) ∈ FR), (p, t) = (pRp

, tV )
((t, p) = (tV , pRp

)) iff p = pRp
and t = tV .

By Definition 14, in all three cases, the element and its corresponding projection have
the same properties when they are linked. For linked places p and pPR

, α(p) =
αR(pRp

), for linked transitions t and tV , �(t) = �R(tV ), and for linked arcs (p, t)
and (pRp

, tV ) (and (t, p) and (tV , pRp
)), β((p, t)) = βR((pRp

, tV )) (β((t, p)) =
βR((tV , pRp

))).
Figure 6 depicts the union of several projection nets regarding the transition deliver

depot ,
showing how and which elements are linked. On top of Fig. 6, we see that N =
N�{p,d,w}, since {p, d, w} covers all object roles in N . This is trivially true for any
net and its projection on all involved object roles, i.e., N�R = N iff (

⋃
p∈P Rp) ⊆ R.

4.2 Alignment Projections

The definition of alignment projections follows directly from the definition of poset
projections (c.f., Definition 3): only the moves involving the projected objects are kept.
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Fig. 6. All projections of N for the transition deliver
depot , i.e., N�R for all R ∈ P ({p, d, w}).

Let γ be an alignment between system log L and process model M = (N,mi,mf ),
and O ≤ O be a multiset of objects, the projection of γ on O, denoted as γ�O and
is defined by γ�O = ({tμ�O | tμ ∈ γ, objects(tμ) ∩ supp(O) �= ∅},≺γ�O

) with
≺γ�O

=≺γ ∩(≺γ�O
× ≺γ�O

). In Lemma 1, we show that the projected alignment is an
alignment on the projected log and model.

Lemma 1 (γ�O is an alignment between L�O and M�O). Let γ be an alignment
between event log L and process model M = (N,mi,mf ), and let O ≤ O be a
multiset of objects. The projection of γ on objects O, i.e., γ�O, is an alignment between
the projections of L and M on objects O, i.e., γ�O�L = L̄ and ≺L⊆≺γ�O�L

, and

mi�O

γ�O�T−−−−→ mf �O.

Proof. This follows directly from the fact that projections of transition firings are tran-
sition firings in the projected net, as proved in Theorem 1. ��

A projected trace alignment is a projected alignment on a single object o ∈ O,
denoted as γ�o (shorthand notation for γ�{o}). It relates directly to the respective trace
Lo in the log (c.f., Definition 6).

5 Partial Synchronization of Objects

In this section, we use projection nets to partially synchronize events and transition
firings. We modify the synchronous product model by adding all possible projections
to create a relaxed alignment. We discuss and provide a cost function that optimizes
criteria to ensure that projected trace alignments correspond to optimal trace alignments
while synchronizing as much shared behavior as possible.
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Fig. 7. Example fraction of the union of projection nets and correlation creation/destruction net
NC , i.e., a fraction of (

⋃
R∈P(R) N�R) ∪ NC .

5.1 Partial Synchronization in Alignments via Projections

As described in Sect. 3, a system alignment suffers from the problem that its projected
trace alignments are not maximally conforming as they inherit deviating moves from
their interacting objects. Take for example p2 from alignments shown in Figs. 3 and 4.
γ∗�p2

has higher cost than γ∗
Lp2

, because of the alignment for its interacting object d1.
While this alignment technique clearly exposes the violations of inter-object depen-
dencies, it obscures how well the recorded behavior of p2 matches with its projected
modeled behavior.

In this paper, our goal is to get to the other side of the spectrum where projected
trace alignments are optimal regarding their projected behavior, while still synchroniz-
ing the interactions as much as possible. We have shown that optimal trace alignment
can be achieved by aligning a trace, i.e., a projection from the log, to the correspond-
ing projection of the model. As a basis for computing the alignment, we use the syn-
chronous product model of the process model and a representation of L in the same
formalism as M , denoted as ML = (NL,mL

i ,mL
f ) [20]. MS incorporates M , ML

and synchronous transitions added for each pair of a transition tL from NL a transition
t ∈ T of net N having the same label. Synchronous transitions inherit the incoming and
outgoing places from both tL and t. Log, model, and synchronous moves relate directly
to the firing of these log, model, and synchronous transitions, and a run γ ∈ L(MS)
is an alignment of M and L. The optimal trace alignments can also be computed on
projections of this synchronous product model immediately. Using this fact, here we
propose an alignment method that allows for partial synchronization of the behavior of
interacting objects by incorporating projections in the synchronous product model.

To allow for synchronized as well as projected moves, we modify the synchronous
product model by adding all projections directly to it. Figure 7 depicts an example of
the union of projection nets regarding the transition for ring and deliver

home from the running
example. Note that this union includes additional silent transitions τp5

create and τp5
destroy.

Without these, it is not possible to fire a projected transition when a correlation is estab-
lished. In other words, we can only stay in one projection net throughout the interaction
of objects. To break this up, we introduce the correlation creation/destruction net which
can create and destroy new and existing correlations.



74 D. Sommers et al.

Note that for a transition t with |Var(t)| > 2, i.e., with more than two involved
objects, also the projections for subsets of Var(t) are added, to allow for any com-
bination of interacting objects to synchronize in every transition. For example, with
t = deliver

depot , we have Var(t) = {p, d, w}, so |P(Var(t)) \ {{p, d, w}, ∅}| = 6 projec-
tions of t are added. These projections are shown in Fig. 6.

We denote the union of all projections of the synchronous product model together
with the correlation/destruction net as the relaxed synchronous product model, of which
we denote a run as a relaxed alignment:

Definition 16 (Relaxed synchronous product net, Correlation creation/destruction net,
Relaxed alignment). With t-PNID synchronous product model MS = (NS ,mS

i ,mS
f ),

the fully relaxed synchronous product model is M̃S = (ÑS ,mS
i ,mS

f ) where ÑS =
(
⋃

O∈P(O) NS�O) ∪ NC , with NC = (PS , TC , FC , �C , αS , βC) the correlation cre-
ation/destruction net. For every p ∈ P with |Rp| > 1, there is for every partition BRp

of Rp, with |BRp
| > 1, a create correlation transition τ

p,BRp

create and a destroy correla-

tion transition τ
p,BRp

destroy . NC contains arcs from p to τ
p,BRp

create (and from τ
p,BRp

destroy to p) and

from τ
p,BRp

create to pR for every R ∈ BRp
(from pR to τ

p,BRp

destroy ) with βC such that a single
variable with the corresponding type is assigned to each arc.

A relaxed alignment γ̃ is an alignment where partial matching is allowed, which is
a run in M̃S , i.e., γ̃ ∈ L(M̃S).

We show that easy soundness (the reachability of the final marking from the initial
marking) of the relaxed synchronous product model is preserved, since any run in the
original synchronous product model is also a run in the relaxed one. Therefore, relaxed
alignments can be computed using the same methods as for regular alignments.

Lemma 2 (Any run in MS is also a run in M̃S). Let MS = (NS ,mS
i ,mS

f ) be a

synchronous product model and M̃S = (ÑS , m̃S
i , m̃S

f ) be its relaxed version. Any run

ϕ ∈ L(MS) is a run ϕ ∈ L(M̃S) in M̃S , i.e., mi
ϕ−→ mf =⇒ m̃i

ϕ−→ m̃f .

Proof. Let ϕ ∈ L(M) be a run in M . With T and T̃ the transitions of M and M̃
respectively, we have by definition T ⊆ T̃ , so for every transition firing tμ ∈ ϕ, we have
t ∈ T̃ . Furthermore, no new conditions are introduced in M̃ , i.e., the pre-sets (and post-
sets) of transitions in T remain unchanged in M̃ , hence ϕ ∈ L(M) =⇒ ϕ ∈ L(M̃).

��
Corollary 1 (Easy soundness is preserved after relaxing a synchronous product net).
With MS = (NS ,mS

i ,mS
f ) and M̃S = (ÑS , m̃S

i , m̃S
f ) a synchronous product t-PNID

model and the corresponding relaxed model. M̃S is easy sound if MS is easy sound,
i.e., mi

∗−→ mf =⇒ m̃i
∗−→ m̃f .

Proof. From Lemma 2, any run ϕ ∈ L(MS) is also a run in MS , i.e., ϕ ∈ L(M̃S) and
therefore m̃i

∗−→ m̃f . ��
As we show in Lemma 1, the relaxed alignment has the property that for any o ∈

O, its projected trace alignment γ̃�′
o is also a valid trace alignment γLo

, i.e., it is an
alignment of the trace Lo onto the corresponding projection process model M�o.
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Lemma 3 (Projected trace alignments are trace alignments). Let γ̃ be a relaxed align-
ment. Its projected trace alignment γ̃�′

o, for each o ∈ O, is an alignment for L�o on the
corresponding projection net M�o, where γ̃�′

o = γ̃�o \ TC
μ , i.e., without create/destroy

correlation moves.

Proof. Let us write γ̃o and Lo for abbreviation of γ̃�′
o and L�o. By definition of projec-

tions, we have M̃�o = M�o and M̃L�o = ML�o = MLo . Hence, M̃S�o = MS�o =
MSo and

(1) γ̃o�L = Lo and ≺Lo
⊆≺γ̃o�L

;

(2) γ̃o�T ∈ L(M�o), i.e., mi�o

γ̃o�T−−−→ mf �o.

This implies that γ̃o ∈ L(MS
o ), and therefore we can write γ̃o = γL�o,M�o

. ��

5.2 Optimal Relaxed Alignments: Three Criteria

The aim for the optimal relaxed alignment is to synchronize as much behavior as pos-
sible for as many objects simultaneously as possible, balancing it with optimization
of alignments on individual objects. This requires a cost function with the following
criteria:

The first-order criterium, based on k1 : L(M̃S) → N, is similar to regular align-
ments. We want to minimize the number of deviating moves, and more specifically, the
number of distinguishable objects involved in deviating moves. Formally,

k1(γ̃) =
∑

tμ∈γ̃∩Γlm,�(t) 	=τ

|supp(objects(tμ))| (9)

should be minimized. Later we show that this criterium ensures optimal projected trace
alignments.

The second-order criterium, based on k2 : L(M̃S) → N, synchronizes behav-
ior between objects where possible, such that a projected move indicates that only the
involved objects allow for the behavior. In other words, the alignment is minimally
relaxed. Formally,

k2(γ̃) =
∑

(tV )μ∈γ̃

|Var(t)| − |Var(tV )| (10)

should be minimized.
The third-order criterium, based on k3 : L(M̃S) → N, is to minimize the cre-

ation (and destruction) of correlations, so that they are only used either to decrease k1
and/or k2, or to create (destroy) correlations as efficiently as possible. For example,
if we want to destroy the correlation of three objects with roles x, y and z, we prefer
the firing of transition τ

p,{{x},{y},{z}}
destroy over the firings of transitions τ

p,{{x,y},{z}}
destroy and

τ
p�{x,y},{{x},{y}}
destroy , even though they achieve the same result. Formally,

k3(γ̃) = |{tμ ∈ γ̃ | t ∈ TC}| (11)

should be minimized.
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We define our cost function and show that it respects criteria k1 to k3 for certain
choices for parameter ε used in the definition. For any (t(e)V , tV ) ∈ T̃S :

c((t(e)V , tV )μ) =

⎧
⎪⎨

⎪⎩

|V | + (|Var(t)| − |V |)ε if �∈ {
t(e), t

} ∧ �(t) �= τ

ε2 if tV ∈ TC

(|Var(t)| − |V |)ε otherwise

(12)

We overload the notation to denote the cost of a complete alignment γ̃ ∈ L(M̃S):

c(γ̃) =
∑

(t
(e)
V ,tV )μ∈γ̃

c((t(e)V , tV )μ) (13)

which we rewrite to decompose it into components of c1, c2, and c3.

c(γ̃) =
∑

(t
(e)
V

,tV )μ∈γ̃∩Γlm,�(t) �=τ

|V | + (|Var(t)| − |V |)ε+

∑

(t
(e)
V

,tV )μ∈γ̃∩Γs

(|Var(t)| − |V |)ε +
∑

tμ∈γ̃,t∈T C

ε2 (14)

=
∑

(t
(e)
V

,tV )μ∈γ̃∩Γlm,�(t) �=τ

|V | +
∑

(t
(e)
V

,tV )μ∈γ̃,t/∈T C

(|Var(t)| − |V |)ε +
∑

tμ∈γ̃,t∈T C

ε2

= c1(γ̃) + c2(γ̃) + c3(γ̃)

with c1(γ̃) =
∑

(t
(e)
V ,tV )μ∈γ̃∩Γlm,�(t) 	=τ

|V |, c2(γ̃) =
∑

(t
(e)
V ,tV )μ∈γ̃,t/∈T C (|Var(t)| −

|V |)ε, c3(γ̃) =
∑

tμ∈γ̃,t∈T C ε2.
Minimizing this cost function results in an optimal relaxed alignment γ̃∗ with the

following properties:

Lemma 4. There is a value for ε such that γ̃∗ has minimum number of deviating
involved objects, i.e. k1(γ̃) is minimized.

Proof. We have, by definition, for any (relaxed) transition firing (t(e)V , tV )μ ∈ Γ :

|supp(objects((t(e)V , tV )μ))| = |Var((t(e)V , tV ))| = |V | (15)

Therefore for any relaxed alignment γ̃ ∈ M̃S , w: c1(γ̃) = k1(γ̃).
Now suppose there is a relaxed alignment γ̃′ with k1(γ̃′) < k1(γ̃∗), then k1(γ̃∗) ≥

k1(γ̃′) + 1.

c(γ̃∗) = c1(γ̃∗) + c2(γ̃∗) + c3(γ̃∗) = k1(γ̃∗) + c2(γ̃∗) + c3(γ̃∗)
≥ k1(γ̃′) + 1 + c2(γ̃∗) + c3(γ̃∗)
= c(γ̃′) − c2(γ̃′) − c3(γ̃′) + 1 + c2(γ̃∗) + c3(γ̃∗)
> c(γ̃′) iff c2(γ̃∗) + c3(γ̃∗) − c2(γ̃′) − c3(γ̃′) < 1

(16)
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which holds if for both γ̃ ∈ {γ̃∗, γ̃′} we have c2(γ̃) + c3(γ̃) < 1. This is achieved with
ε such that

0 < ε < 1/max(
∑

(t
(e)
V ,tV )μ∈γ̃,t/∈T C

(|Var(t)| − |V |), |{tμ ∈ γ̃ | t ∈ TC
} |) (17)

Then c(γ̃∗) > c(γ̃′) is a contradiction, since γ̃∗ is optimal.

Lemma 5 (γ̃∗ is minimally relaxed as second-order criterium). Number of relaxations
k2 =

∑
(tV )μ∈γ̃(|Var(t)| − |Var(tV )|).

Proof. By definition, |Var(tV )| = |V |, so c2(γ̃) = k2(γ̃)ε.
Suppose there is a relaxed alignment γ̃′ with k1(γ̃∗) = k1(γ̃′) and has k2(γ̃′) <

k2(γ̃∗), then k2(γ̃∗) ≥ k2(γ̃′) + 1.
From Lemma 4, we know that c1(γ̃) = k1(γ̃) for any γ̃ ∈ L(M̃S), so we can

rewrite the cost function as:

c(γ̃∗) = c1(γ̃∗) + c2(γ̃∗) + c3(γ̃∗) = c1(γ̃∗) + k2(γ̃∗)ε + c3(γ̃∗)
≥ c1(γ̃∗) + (k2(γ̃′) + 1)ε + c3(γ̃∗)
= c1(γ̃∗) + c(γ̃′) − c1(γ̃′) − c3(γ̃′) + ε + c3(γ̃∗)
> c(γ̃′) iff c3(γ̃∗) − c3(γ̃′) < ε

(18)

which is the case if 0 < ε < 1 (ε2 < ε ⇐⇒ ε < 1), and then again c(γ̃∗) > c(γ̃′) is a
contradiction, since γ̃∗ is optimal.

Correlations are intactwhen they are created and destroyed throughout their original
creation and destruction.

Lemma 6. γ̃∗ has maximum intact correlations, satisfying the third-order criterium.

Proof. By definition we have c3(γ̃) = k3(γ̃)ε2. Now suppose there is a relaxed align-
ment γ̃′ with k1(γ̃∗) = k1(γ̃′), k2(γ̃∗) = k2(γ̃′) and has k3(γ̃′) < k3(γ̃∗), then
k3(γ̃∗) ≥ k3(γ̃′) + 1.

From Lemma 4 and 5, we know that c1(γ̃) = k1(γ̃) and c2(γ̃) = k2(γ̃)ε for any
γ̃ ∈ L(M̃S), so we can rewrite the cost function as:

c(γ̃∗) = c1(γ̃∗) + c2(γ̃∗) + c3(γ̃∗) = c1(γ̃∗) + c2(γ̃∗)ε + k3(γ̃∗)ε2

≥ c1(γ̃∗) + c2(γ̃∗)ε + (k3(γ̃∗) + 1)ε2

= c1(γ̃∗) + c2(γ̃∗)ε + c(γ̃′) − c1(γ̃′) − c2(γ̃′) + ε2

> c(γ̃′) + ε2

(19)

which is the case if ε > 0, and then again c(γ̃∗) > c(γ̃′) is a contradiction, since γ̃∗ is
optimal.

So if ε is chosen correctly, i.e., 0 < ε < 1 and respecting Eq. 17, minimizing cost
function c results in the optimal relaxed alignment having the desired properties.
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Fig. 8. Optimal relaxed alignment γ̃∗ with conforming, partial conforming, deviating, partial
deviating, and create/destroy correlation moves annotated in white, blue, red, purple, and grey
respectively. (Color figure online)

The optimal relaxed alignment for the running example is shown in Fig. 8. From γ̃∗,
we see that the deviations for package p1 are for all involved objects since it does not
contain any projections. The deviations discussed in Sect. 3 for package p2, caused by
the deliverer d1, are only contained in the projection of d1. From the move ring

[p2]
{p}, it is

evident that otherwise required objects are missing. γ̃∗ shows the individually optimal
alignment objects, while maximizing the synchronization of interaction where possible,
i.e., if you project γ̃∗ back onto the individual objects, you get the optimal trace align-
ments shown in Fig. 4. For package p1, having two optimal trace alignments, the one is
chosen that maximizes the interaction with d1. Next, we show that the optimal relaxed
alignment always has these properties.

5.3 Other Properties Regarding Projected Trace Alignments

Following from the criteria k1 to k3 defined above, and the fact that the cost function c
from Eq. 12 respects these criteria, we show two other properties of any relaxed align-
ment regarding its projected trace alignments, through Lemmas 7 and 8. Finally, we use
these lemmas to show, in Theorem 2, that the projected trace alignments of the optimal
relaxed alignment are also optimal trace alignments. Firstly, the difference between the
total cost of a relaxed alignment and of the corresponding trace alignments is smaller
than 1:

Lemma 7 (c(γ̃) − ∑
o∈O c(γLo

) < 1 for some 0 < ε < 1 ). Let c be as defined
in Eq. 12, γ̃ ∈ L(M̃S) be a relaxed alignment and let γLo

, o ∈ O, be the trace
alignment such that γLo

= γ̃�′
o, i.e., γLo

is linked to the projected trace alignment
without create/destroy correlation moves. There exists an ε, such that 0 < ε < 1 and
c(γ̃) − ∑

o∈O c(γLo
) < 1.

Proof. We have c(γ̃) = c1(γ̃)+c2(γ̃)+c3(γ̃) = k1(γ̃)+k2(γ̃)ε+k3(γ̃)ε2 with k1(γ̃) =∑
o∈O c(γ̃�′

o) =
∑

o∈O c(γLo
) by definition and construction of γLo

. Furthermore, we
know from Lemmas 4 to 6 that k2(γ̃)ε + k3(γ̃)ε2 < 1 with any ε respecting Eq. 17.
Therefore, c(γ̃) − ∑

o∈O c(γLo
) = k2(γ̃)ε + k3(γ̃)ε2 < 1. ��

Secondly, we can construct a relaxed alignment such that the projected trace align-
ments are optimal trace alignments:
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Lemma 8 (There exists an alignment with optimal projected trace alignments). Let
M̃S be the relaxed product model of MS . There is a relaxed alignment γ̃ ∈ L(M̃S)
such that for every o ∈ O, γ̃�′

o = γ∗
Lo,M�o

.

Proof. We show that combining optimal trace alignments, i.e., γ =
⋃

o∈O γ∗
Lo

with
γ∗

Lo
any optimal alignment for o ∈ O on M�o, results in a relaxed alignment without

synchronization. Additionally, ≺γ is extended with additional relations from L.
By construction we have γ�o = γ∗

Lo
and ≺γ∗

Lo
⊆≺γ�o

, so γ�o ∈ L(M�o). Since
M�o ⊆ M̃ by definition of M̃ , we have γ�o ∈ L(M̃). Since there is no synchronization,
there are no inter-object dependencies to adhere to from M , hence γ ∈ L(M̃). ��

Using the properties above, we show that the optimal relaxed alignment incorporates
projected trace alignments that are optimal as well:

Theorem 2. Projected trace alignments of γ̃∗ are optimal trace alignments.
Let γ̃∗ ∈ L(M̃S) be an optimal relaxed alignment. For every o ∈ O, γ̃∗�′

o is an
optimal trace alignment, i.e., γ̃∗�′

o = γ∗
Lo
.

Proof. We prove the property of optimal projected trace alignments by contradiction.
Let us assume that there is a projected trace alignment in γ̃∗ which is not optimal, i.e.,
∃o∈Oγ̃∗�′

o = γLo
. From Lemma 1, we know that every projected trace alignment is a

trace alignment, i.e., γ̃∗�′
o = γ

(∗)
Lo

(i.e., regardless of optimality).
From Lemma 8, we know that there exists a relaxed alignment with optimal pro-

jected trace alignment, i.e., γ̃ ∈ L(M̃S) with ∀o∈Oγ̃�o = γ∗
Lo
. Furthermore, with an

appropriate choice of ε, i.e., respecting Eq. 17, we know from Lemma 7 that for both γ̃∗

and γ̃, we have

c(γ̃∗) −
∑

o′∈O\{o}
c(γ∗

Lo′ ) − c(γLo
) = k2(γ̃∗)ε + k3(γ̃∗)ε2 < 1 (20)

c(γ̃) −
∑

o′∈O\{o}
c(γ∗

Lo′ ) − c(γ∗
Lo

) = k2(γ̃)ε + k3(γ̃)ε2 < 1 (21)

We know from optimal regular alignment that c(γLo
) ≥ c(γ∗

Lo
) + 1, so we can rewrite

the cost of γ̃∗ such that

c(γ̃∗) = k2(γ̃∗)ε + k3(γ̃∗)ε2 +
∑

o′∈O\{o}
c(γ∗

Lo′ ) + c(γLo
)

≥ k2(γ̃∗)ε + k3(γ̃∗)ε2 +
∑

o′∈O\{o}
c(γ∗

Lo′ ) + c(γ∗
Lo
) + 1

= c(γ̃) + 1 + (k2(γ̃∗)ε + k3(γ̃∗)ε2) − (k2(γ̃)ε + k3(γ̃)ε2)
> c(γ̃) (by Eqs. 20 and 21)

(22)

which is a contradiction since γ̃∗ is optimal. ��
Lemmas 4 to 6 and Theorem 2 prove that the optimal trace alignment combines

objects maximally with the least number of objects deviating and maximum intact
correlations, while the projected trace alignments represent optimal trace alignments.
Hence, the goal described in Sect. 3 is accomplished.
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5.4 Computational Complexity

The complexity of computing the optimal alignment is based on the size of the syn-
chronous product model. In the relaxed alignment problem, the synchronous product
model grows combinatorially in the number of interacting objects. However, the com-
binatorial growth happens locally for the projections of transitions in the synchronous
product model. In practice, we expect only a low number of interacting objects in indi-
vidual activities, which greatly mitigates the combinatorial explosion.

Furthermore, the search strategy (e.g., A∗) can be enhanced by providing an upper
bound for the total cost of the relaxed alignment, to prune non-optimal solutions in an
early stage. From Theorem 2 and Lemma 7, we know that the optimal relaxed align-
ment contains optimal trace alignments and its cost never exceeds that of the optimal
trace alignments by more than 1. The optimal trace alignments can be computed first,
and these computations do not suffer from the increased complexity. After that we can
compute the upper bound for the optimal relaxed alignment, namely

∑
o∈O c(γ∗

Lo
)+1.

Lastly, the relaxed synchronous product may exhibit structural patterns that favor
other methods for computing the optimal alignment [9], e.g., using SAT encodings [5]
or automated planning [8]. Further investigation into such structures is needed to verify
this conjecture.

6 Conclusion

In real-life processes, different objects interact with each other when executing differ-
ent tasks. Alignments aim at reconciling a system log and a normative process model,
providing a richer representation of the process by exposing deviations in the objects’
recorded and modeled behaviors, and violations of inter-object dependencies.

Due to the nature of object interactions specified in the model, traditional system
alignments provide a pessimistic view on the conformance for individual objects. We
exploit the multiple perspectives of the system by adding relaxations before generating
alignments, thus allowing for partial matching of activities in the logged and mod-
eled behaviors. Relaxed alignments address this problem in a general sense, relaxing
constraints for some objects and ensuring that the optimal relaxed system alignment
contains optimal trace alignments on the individual level.

In a real-life setting, it is interesting to incorporate domain knowledge into the def-
inition of an appropriate cost function for relaxed moves. This might both reduce the
computational complexity and enhancing the interpretability of the relaxed alignments.
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Abstract. Business processes drive the value creation at companies
requiring them to constantly monitor and improve the former. The field
of Process Comparison (PC) offers promising approaches to gain insight
into differences between variants of a process that one can leverage to
improve the latter. For example, one might consider the same process at
different points in time or at different sites. Recent PC methods consider
event logs containing data on real-life process executions the single source
of truth. However, there often exist additional specifications that can be
represented as Petri nets. In this paper, we propose an approach that
leverages a given Petri net to compare two event logs in a hierarchical
manner. To this end, we decompose the provided net into subprocesses
and extract data on their executions from the event logs. Based on these
executions, we exemplify how one can flexibly assess different aspects of
a process (e.g., control flow, performance, or conformance). Using sta-
tistical tests, we eventually detect differences between subprocesses with
respect to a selected aspect. Despite the approach is mostly agnostic to
the decomposition applied, we present a decomposition strategy that we
deem particularly suitable for PC. For this purpose, we consider the ned
Process Structure Tree of a Petri net and propose a novel preprocess-
ing approach to improve the final decomposition. We implemented the
approach in ProM and evaluate it in a real-life case study.

Keywords: Process Mining · Process Comparison · Process Variant
Analysis · Business Process Intelligence

1 Introduction

Modern information systems record increasing amounts of data on business pro-
cess executions. Event data are a special type of these data where each data point
is an event comprising a timestamp, an activity name, and a case id related to a
business case. Process mining methods are concerned with the analysis of event
data and the implementation of event-data-to-knowledge pipelines. Ultimately,
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process mining aims to provide insight to improve the process. Process Com-
parison (PC) approaches take this idea one step further revealing differences
between two (or more) process variants. Differences can, for example, concern
the process’ control flow (e.g., decision likelihoods) or performance (e.g., cycle
times). Thereby, PC provides insight into the effect of changes, comparing pro-
cess executions before and after a change, or into particularities of a process’
environment, comparing implementations at different sites.

Recent PC approaches often consider event data as the single source of truth
and, therefore, only take event logs as inputs [8,10,25]. Yet, this neglects process
models (e.g., BPMN models) as another valuable source of information. In prac-
tice, BPMN models are fundamental for the design and re-design of enterprise
information systems [3] making them an essential part of a process’ documenta-
tion. For analytical purposes, these models can be seamlessly converted into Petri
nets. The advantages of incorporating process models into PC are manifold: (i)
process models help to manage the complexity of processes. PC approaches solely
based on event data often rely on follows relations between activities. However,
example traces cannot properly represent these relations for large and concurrent
processes (e.g., production processes). Besides, process models allow to explicitly
consider duplicated transitions and to model and analyze interesting relations.
For example, in [4], the authors add user-defined places to measure times for
larger subprocesses within a single process variant. (ii) Submodels often define
logical units enabling us to analyze differences at different levels of granular-
ity. (iii) Finally, models provide a natural context to present the results of PC.
They are the common ground in a projected view of the differences. Despite the
advantages of model-based analysis, merely considering models usually results
in a loss of information. For instance, model notations such as Petri nets do not
support modeling frequencies. Besides, the actual process executions can deviate
from the model or exhibit dependencies not represented by the model.

In this paper, we propose a hybrid approach, which takes two event logs
and a shared process model as an input. Figure 1 shows the main concepts of
the approach. In contrast to existing approaches, we compare the event logs in a
hierarchical manner enabling process analysts to conduct an analysis at different
levels of granularity. For example, in Fig. 1, we detect a cycle time difference for
a large subprocess on the first level of the hierarchy. By drilling down into the
subprocess, one can refine this knowledge: (i) there is no significant difference
regarding the time it takes to execute the redo part and (ii) one concurrent
branch is even executed faster in the other process variant.

In this work, we use process models, transformed in Petri nets, to enable a
hierarchical analysis, but we discover differences based on the event data. To
this end, we decompose the Petri net into a hierarchy of subprocesses and com-
pute subprocess executions relating subprocesses and event data. Based on these
executions, we define measurements that assess different aspects of a process. In
doing so, we not only consider the control-flow and performance perspective, but
also propose to compare how process variants deviate from the model.
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Fig. 1. Hierarchical Process Comparison on two event logs using a shared process
model. First, we decompose the Petri net and relate the resulting subprocesses with the
event data. Based on these subprocess executions, we compare the two process variants
with respect to various perspectives. Ultimately, each vertex in the decomposition shows
whether a difference was discovered for the respective subprocess. The color is chosen
based on the effect size of the difference. Selecting a subprocess, it is highlighted in the
original model.

While the approach is mostly agnostic to the decomposition applied, it is
usually preferable that the nodes in the decomposition represent logically coher-
ent subprocesses. We therefore propose a decomposition strategy that leverages
the Refined Process Structure Tree (RPST) of a model [27]. In the RPST, each
node corresponds to a subprocess that is entered and exited via a single node,
respectively. However, as illustrated in Sect. 4.3, relaxing this requirement can
improve the decomposition (e.g., to handle long-term dependencies). To this end,
we propose an additional preprocessing step preceding the RPST computation,
where we use the event log to remove places to improve the block-structuredness
of the Petri net and, consecutively, the decomposition.

The remainder of this paper is structured as follows: we discuss related works
and preliminary concepts in Sects. 2 and 3, respectively. In Sects. 4.1 and 4.3,
we discuss the decomposition approach and illustrate its application to PC in
Sect. 4.2. In Sect. 5, we evaluate the method in a real-world case study. Finally,
we give our conclusion and directions for future work in Sect. 6.

2 Related Work

Our approach is directly related to works on PC and Petri net decomposition as
well as to approaches for decomposed conformance checking.

For a comprehensive survey on PC, we refer the reader to [26]. Despite
not being limited to the control flow or performance perspective [22], most
PC approaches consider these. One can distinguish PC approaches that con-
sider event logs as input [7,8,10,22,25,28], compare process models [6,14,18], or
require a process model and two (or more) event logs as input [1,12,17,23,30].
Log-based approaches often represent follows relation between activities by
means of a graph [7,8,22,25,28]. Then, a statistical test is used to detect fre-
quency differences [8,22,25]. For example, in their seminal approach, Bolt et al.



86 T. Brockhoff et al.

represent the event logs by a shared transition system [8]. Like our approach,
they introduce measurement functions to annotate the states and edges of the
transition system and apply Welch’s t-test to detect differences. In contrast to
our work, the proposed measurements neither assess differences on a subpro-
cess level nor consider relations between subprocesses. Besides, in contrast to
model-based approaches, event log-based methods cannot represent duplicate
activities.

Process model comparison methods analyze differences on the process speci-
fication level [6,14,18]. If event data is available, only considering models would
discard the event data as a valuable source of information providing insight into
decision likelihoods and time. Therefore, approaches for data-driven PC using
process models generally enrich the latter with information obtained from the
event data. Thereby, one can investigate aspects like execution times and de facto
path frequencies in the model. For example, in [17], the authors merge two pro-
cess models into a difference model which is further enriched with instance traffic
information. For each edge, they then detect frequency differences. In [30], Wynn
et al. explicitly consider Petri nets. Like our approach, they use alignments [5] to
relate the model with the (potentially slightly deviating) data. Compared to our
method, their approach provides more detailed results on waiting times between
transitions. However, they only consider pairs of transitions rather than larger
subprocesses and their relations. Moreover, they do not validate the statistical
significance of the differences returned. In general, to the best of our knowledge,
there currently exists no hierarchical, model-based PC approach.

Petri net decomposition techniques simplify models to (heuristically) solve
problems on subnets. For different applications, various approaches have been
proposed [2,9,13,16,27,32]. In this work, we compare process variants with
respect to coherent sub-workflows (i.e., subprocesses) of the original model. To
this end, we build on the notion of single-entry, single-exit (SESE)-fragments,
which have originally been proposed in [27] as a unique, hierarchical decom-
position of a process model into self-contained subnets. This notion expands
upon an earlier definition by Johnson et al. [15]. The resulting, more granular
decomposition coined the term Refined Process Structure Tree (RPST). Further
improvements and a more efficient way to compute the RPST have been pro-
posed in [24]. In this work, we propose an additional pre-processing step that
can improve the decomposition for the sake of PC but weakens the structural
guarantees.

An application of SESE fragments related to our approach is decomposed
conformance checking [20]. While we also consider conformance in the context
of RPSTs, we use fragments to aggregate the diagnostics, similar to [21], rather
than improving the computational efficiency.

3 Petri Nets and Process Mining Concepts

We denote sets by capital letters. Given a set S, its powerset is denoted by P(S),
and the set of all multisets is denoted by B(S). For a multiset m ∈ B(S), the
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multiplicity and an element s ∈ S is m(s) ∈ N. Given two multisets m1,m2 ∈
B(S), we write m1+m2 (m1 −m2) to denote their sum (difference). Besides, we
write m1 ≤ m2 if m1(s) ≤ m2(s) holds for all s ∈ S. In an abuse of notation, we
also apply these operators to pairs of sets and multisets.

The Kleene star (S∗) represents the set of all finite sequences over a (count-
able infinite) alphabet S. Given a sequence σ = 〈σ1, . . . , σn〉 ∈ S∗, we refer to
its ith element as σi. The length of σ is denoted by |σ|. Let I = {i1, . . . , im} ⊆
{1, . . . , |σ|} be a set of indices. Assuming the order i1 < · · · < im, the index set
I induces the subsequence σ[I] = 〈σi1 , . . . ,σim〉.

Petri Nets. Let A denote the universe of activity labels.

Definition 1 (Labeled Petri Net). Let τ /∈ A be a special silent label. A
labeled Petri net is a tuple N = (P, T, F, l), where (i) P is a finite set of places,
(ii) T is a finite set of transitions, (iii) F ⊆ (P ×T )∪ (T ×P ) is a flow relation,
and (iv) l : T → A ∪ {τ} is a labeling function.

Let N = (P, T, F, l) be a Petri net. For an element x ∈ P ∪ T , its preset (post-
set) are defined as •x := {y|(y, x) ∈ F} (x• := {y|(x, y) ∈ F}). Given a set of
edges F ′ ⊆ F , we denote the set of adjacent places by PF ′ := {p ∈ P∃t ∈
T ((p, t) ∈ F ′ ∨ (t, p) ∈ F ′)}. Likewise, for the set TF ′ of adjacent transitions.
The edge-induced subnet NF ′ is the Petri net

(
PF ′ , TF ′ , F ′, l �TF ′

)
, where l �TF ′

denotes the restriction of l on the adjacent transitions. The semantics of Petri
nets are determined by marking places, firing (sequences of) transitions.

Definition 2 (Marking, Firing). Let N = (P, T, F, l) be a labeled Petri net.
A marking m ∈ B(P ) of N is a finite multiset of places. A transition t ∈ T is
enabled in m if •t ≤ m. If t is enabled, firing t in m results in the marking
m′ = (m − •t) + t•, written as m[t〉Nm′.

Definition 3 (Firing Sequence). Let N = (P, T, F, l) be a labeled Petri net
and mI ,mF ∈ B(P ) be two markings. A sequence σ = 〈t1, . . . , tn〉 ∈ T ∗ is a
valid firing sequence from mI to mF of N , written mI

σ−→N mF , if there exist
markings m1, . . . ,mn+1 such that (i) m1 = mI , (ii) mn+1 = mF , and (ii) for
1 ≤ i ≤ n we have mi[ti〉Nmi+1.

In process mining, a commonly considered class of Petri nets are workflow nets
(WF-nets). A WF-net has a clear start and end, and all elements are on a
directed path from the start to the end.

Definition 4 (Workflow Net (WF-net)). A labeled Petri net N = (P, T, F, l)
is a labeled workflow net (WF-net) if (i) there is a unique source place pI (i.e.,
{pI} = {p ∈ P |•p = ∅}), (ii) there is a unique sink place pF (i.e., {pF } =
{p ∈ P |p• = ∅}), and (iii) every node is on a path from pI to pF .

The workflow system net (WF-sytem net) explicitly establishes a connection
between a WF-net and its semantics (i.e., its initial and final marking).
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Definition 5 (Workflow System Net (WF-sytem net)). A workflow sys-
tem net (WF-sytem net) SN = (N,mI ,mF ) comprises a labeled WF-net N =
(P, T, F, l), the initial marking mI = [pI ], and the final marking mF = [pF ].

The language of a WF-sytem net comprises all sequences of visible activity labels
of its valid firing sequences. Finally, a WF-sytem net is safe if we cannot reach
a marking where a place contains multiple tokens.

Definition 6 (Safeness). A WF-sytem net SN = ((P, T, F, l),mI ,mF ) is safe
if there is no valid firing sequence σ ∈ T ∗ reaching a marking m′ ∈ B(P ) from
mI (i.e., mI

σ−→N m′) with m′(p) > 1 for some p ∈ P .

Event Data. We leverage Petri nets to compare two process variants based on
data of their real-life executions. Each process execution corresponds to a busi-
ness case and comprises information on the activities executed for this particular
case. For each activity execution, we record the activity’s name and a timestamp.
While additional attributes are possible, they are not considered in this work.
An event log collects multiple process executions.

Definition 7 (Event Log). Let A and T denote (countable infinite) universes
of activity names and timestamps. The set of all activity executions is defined
as E := A × T . A trace σ = 〈(a1, t1), . . . , (an, tn)〉 ∈ E∗ is a finite sequence of
activity executions respecting time—that is ti ≤ tj for all 1 ≤ i < j ≤ n. An
event log L ∈ B(E∗) is a finite multiset of traces.

Dealing with event data, we frequently use two types of projection. The projec-
tion πS′ : S∗ → (S′)∗ of a sequence over a set S on a subset S′ ⊆ S only keeps the
elements contained in S′. Consider the trace σ = 〈(a, 1), (b, 2), (c, 3)〉. Projecting
σ onto all executions of a and b yields the trace π{a,b}×T (σ) = 〈(a, 1), (b, 2)〉.
Moreover, we write πtime : E∗ → T ∗ (πact : E∗ → A∗) to denote the projection of
traces onto the associated timestamps (activities). For example, for σ, we obtain
the sequence πtime(σ) = 〈1, 2, 3〉. In a slight abuse of notation, we also apply
πtime and πact to individual activity executions.

Alignments. In real life processes, the traces recorded might not perfectly match
with the prescribed Petri net model. Introducing a dedicated skip symbol, we
additionally require that columns either contain a single skip symbol or that the
trace’s activity matches the transition’s label. Thereby, an alignment represents
a joined, synchronized execution of the trace and the model.

Definition 8 (Alignment [2]). Let σ ∈ E∗ be a trace and SN = (N,mI ,mF ),
N = (P, T, F, l), l : T → A be a WF-sytem net. Let � /∈ A ∪ T denote a
special no-move symbol. We define the sets of synchronous, log, model, and all
moves as MSYNC := {(e, t)|t ∈ T, l(t) = τ, e ∈ E , πact(e) = l(t)}, MLM := E ×
{�}, MMM := {�} × T , and MALL := MSYNC ∪ MLM ∪ MMM, respectively. An
alignment of σ and N is a sequence of moves γ ∈ M∗

ALL such that

(i) projection π1 (γ) on the first element, ignoring �, yields σ—that is,
π��

(
π1 (γ)

)
= σ—and
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Fig. 2. Overview of our three-stage approach for comparing two process variants. First,
we hierarchically decompose the model into subprocesses. Second, we replay the event
data to relate the subprocesses with the data. Third, we compare the variants with
respect to the subprocesses from various perspectives. Eventually, we project the dif-
ferences onto the decomposition.

(ii) projection π2 (γ) on the second element, ignoring �, yields a valid firing

sequence from mI to mF of N—that is, mI

π ��(π2(γ ))−−−−−−−→N mF ,

where π�� := π(E∪T )\{�} denotes the projection that removes skips.

The set of best alignments is typically determined by a cost function minimizing
the number of log and visible model moves. In this work, we assume that a single
best alignment is given, which can make our approach non-deterministic. Finally,
given an alignment γ of a trace σ and WF-sytem net SN = ((P, T, F, l),mI ,mF ),
the marking reached after executing the first 1 ≤ k ≤ |γ| steps is mal

γ (k) with

mI

π ��(π2(γ[{1,...,k}]))−−−−−−−−−−−−−→N mal
γ (k). (1)

4 Hierarchical Process Comparison

This section presents our approach for comparing the executions of two process
variants based on a shared process model. To avoid boundary cases (e.g., empty
alignments), we assume that event logs do not contain empty traces and that
WF-sytem nets have at least one transition. Figure 2 shows an overview of our
approach that has three stages: (i) the model decomposition stage, where we
hierarchically decompose the model into subprocesses; (ii) the replay stage, where
we relate the subprocesses with the event data; and (iii) the comparison stage,
where we compare the process variants with respect to different perspectives.

4.1 Hierarchical Decomposition

Existing Petri net decomposition approaches [2,9,13,16,27] focus on the seman-
tic relation between the original Petri net and the sub-nets. For example, the
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Fig. 3. Illustration of a hierarchical WF-net decomposition. Subfigure (a) shows a WF-
net and ten (S0, . . . , S9) (single-entry, single-exit (SESE)) subprocesses. Each subpro-
cess contains the edges inside the illustrated rectangle. A hierarchy of these subpro-
cesses is depicted in Subfigure (b).

decomposition proposed in [2] is motivated by the idea of stitching together valid
firing sequences of the sub-nets to an (over-optimistic) execution of the original
net. In contrast, as illustrated in Fig. 2, we align the log with the original net.
Thereby, we gain more freedom to decompose the net in a hierarchical man-
ner without facing problems when relating process executions to sub-nets. Yet,
computing alignments can be computationally costly. In this work, we employ a
generic hierarchical decomposition based on the edges of a WF-net.

Definition 9 (Hierarchical Decomposition). Let N = (P, T, F, l) be a WF-
net. A hierarchical decomposition of N is a tree H = (S, E),S ⊆ P(F ), E ⊆ S×S

rooted at a vertex v0 ∈ S and downward-pointing edges such that v0 = F ; for
(v1, v2) ∈ E, we have v1 ⊃ v2; and for S ∈ S, the induced subnet NS is connected.

Intuitively, each vertex in the hierarchy corresponds to an edge induced subnet of
the original net. Under this interpretation, the original net is at the root, and each
non-root vertex’s net is a subnet of its parent’s net—that is, it comprises a subset
of its parent’s net’s places, transitions, and edges. We require connectedness of
subprocesses to later define the semantics of a subprocess execution.

Figure 3b shows a decomposition of the WF-net in Fig. 3a. Note that, given
the ten subprocesses in Fig. 3a, Definition 9 does not enforce a unique hierarchy.
A decomposition where S0 is the root and all remaining subprocesses are S0’s
children would also be valid. While a deeper hierarchy is usually preferable,
there can be exceptions. For example, an analysis that investigates parent-child
relations can benefit from this additional freedom (cf. Eq. (10)).

In general, Definition 9 does not impose strong restrictions on the decomposi-
tion applied. To relate event data to transitions of a Petri net, we use alignments
where we consider the complete trace and net. In contrast to relating individual
subprocesses independently of each other, this guarantees a globally consistent
assignment without additional considerations (e.g., an event cannot be assigned
to different transitions having the same label). Therefore, the measurements
proposed in Sect. 4.2 are mostly independent of the decomposition.
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Fig. 4. WF-net N3 = (P3, T3, F3, l) illustrating hierarchical PC. The edges in the col-
ored box in (a) depict the canonical fragments of the net. Subfigure (b) depicts a
decomposition of N3.

Despite our approach being mostly agnostic to the decomposition applied,
structural subprocess properties can play a role when interpreting the results. In
particular, we distinguish subprocesses—so-called fragments [27]—where control
flow enters and exits through a single node, respectively.

Definition 10 (Single-entry, single-exit (SESE) Subprocess). Let N =
(P, T, F, l) be a WF-net and S ⊆ F be a set of edges such that NS is connected.
A vertex v ∈ PS ∪ TS is a boundary vertex of NS if it is the source or the
sink of N or if v is incident to edges e1 ∈ S and e2 /∈ S; otherwise v is an
internal vertex. The subprocess S is a SESE subprocess if there exists entry and
exit vertices vi, ve ∈ PS ∪ TS such that (i) vi (ve) are boundary vertices; (ii) no
incoming edge of vi is in S or all outgoing edges of vi are in S; (iii) no outgoing
edge of ve is in S or all incoming edges of ve are in S; (iv) there is no other
boundary vertex v ∈ (PS ∪ TS) \ {vi, ve}.
All subprocesses illustrated in Fig. 3a are SESE subprocesses.

4.2 Measuring Differences

To compare event logs using the decomposition, we first relate the subprocesses
to the event data. We then define various measurements that, for example, assess
differences in the control flow or performance of subprocesses. Finally, we use
hypothesis tests to detect differences with respect to the measurements. We
illustrate the following concepts and a few interesting measurements on the WF-
net shown in Fig. 4a. Figure 4b shows its decomposition.

Subprocess Executions. In contrast to works that project the data onto the
subprocesses [2,20], we extract subprocess executions from alignments. Replay-
ing the alignment, we consider a subprocess being under execution as long as an
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associated place contains a token. Therefore, we require safe WF-nets to avoid
intermingled executions—that is, multiple, simultaneous executions of a subpro-
cess. If a place contains two tokens “created” by two events, it becomes unclear
to which event we should to relate the “consuming” event. To distinguish the
consumption and production of tokens, we introduce two helper functions. Given
an alignment γ and a subprocess S, we count the number of tokens contained in
S after the first k steps (inclusive) and the number of tokens contained before
the kth step produced tokens:

#al
S,γ (k) =

∣
∣[p ∈ mal

γ (k) | p ∈ PS ]
∣
∣, (2)

#al,−
S,γ (k) =

∣
∣
∣
∣
∣

[

p ∈
(

mal
γ (k) −

{
[] if π2 (γk) =�
π2 (γk)

• else

)∣
∣
∣
∣
∣
p ∈ PS

]∣
∣
∣
∣
∣
. (3)

Next, we define the intervals during which a subprocess is under executions.

Definition 11 (Subprocess Execution). Let SN = ((P, T, F, l),mI ,mF ) be
a WF-sytem net, S ⊆ F be a set of edges, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be
an alignment of σ and SN. The partial execution intervals of S given γ are

Epart
SN,γ ,S = {{i, . . . , j}|1 ≤ i ≤ j ≤ |γ| (Intervals)

∧ ∀i ≤ k < j
(
#al

S,γ (k) ≥ 1
)

(Token contained)

∧ ∃i ≤ k ≤ j
(
π2 (γk) ∈ TS

)
(Transition fired)

∧∀i < k < j
(
#al,−

S,γ (k) = 0 → π2 (γk) ∈ TS

)}
.(No short-circuiting loops)

(4)
The complete execution intervals of S given γ are the maximal partial execution
intervals

Eexec
SN,γ ,S =

{
I1 ∈ Epart

SN,γ ,S |∀I2 ∈ Epart
SN,γ ,S (I1 ⊆ I2 → I1 = I2)

}
. (5)

Equation (4) gives the conditions for a subprocess to be considered under execu-
tions. First, the subprocess must contain a token. Second, at least one transition
of the subprocess must fire as for place-bounded subprocesses a token can pass
without entering the subprocess. For example, consider p1 in Fig. 4a and the
subprocesses S1 and S5. Despite both subprocesses contain p1, a trace can only
enter one. Third, there is no outside short-circuiting loop (i.e., a loop containing
a single transition that is not adjacent to the subprocess) that consumes the last
token and produces a new token in it. For example, consider the subprocess S3

in Fig. 4a and the following alignment γ2:

#al,−
S3,γ2

(k) 0 0 1 0 0 0 0 0 1 0
#al

S3,γ2
(k) (1 1 1 1 1 {1) 1 1 1 0}

γ2 = � a1 b a2 a2 � a1 a2 b c
t1 t3 t6 t4 � t5 t3 t4 t6 t9

. (6)
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The token counts of S3, displayed on top of the alignment, show that t5 consumes
the last token before it produces a new token in S3. Yet, t5 is not contained in
S3. Finally, Eq. (5) defines a subprocess’ executions as the longest intervals
during which the process is considered being under execution. In Eq. (6), the
parentheses and braces indicate the resulting executions.

Subprocess Measurements. Based on the subprocess executions, we can com-
pare processes with respect to various aspects on different levels of granularity.

Definition 12 (Trace Measurement). Let SN = ((P, T, F, l),mI ,mF ) be a
WF-sytem net, S ⊆ F be a set of edges, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be an
alignment of σ and SN. The universe of perspectives is F . The subprocess trace
measurement with respect to a perspective p ∈ F is a function μp

SN,S : M∗
ALL →

R ∪ {⊥} where ⊥ denotes the absence of a measurement.

In the following, we exemplify five measurements to illustrate how the decom-
position and subprocess executions facilitate the detection of process variant
differences. In particular, we consider the control flow, performance, and confor-
mance perspective. To this end, we assume the following context for the remain-
der of this section: Let SN = (N,mI ,mF ), N = (P, T, F, l) be a WF-sytem net,
H = (S, E), S ⊆ P(F ) be a hierarchical decomposition of SN, S ∈ S be a
subprocess, σ ∈ E∗ be a trace, and γ ∈ M∗

ALL be an alignment of σ and SN.

Control Flow. First, we can measure whether a subprocess was activated, and
how often it was executed:

μact
SN,S(γ) =

{
1 if

∣
∣Eexec

SN,γ ,S

∣
∣ > 0

0 else
, μfreq

SN,S(γ) =
∣
∣Eexec

SN,γ ,S

∣
∣. (7)

These measurements show differences with respect to the frequency of branching
decisions and the number of repetitions.

In addition, the hierarchical nature of the decomposition facilitates the anal-
ysis of conditional decisions. Consider the following two event logs (not showing
time for simplicity) that perfectly fit the Petri net N3:

L1 =
[
〈a1, a2, b, c〉60, 〈d, e〉14, 〈d, f〉26

]
, (8)

L2 =
[
〈a1, a2, b, c〉40, 〈d, e〉27, 〈d, f〉33

]
. (9)

In L2, the activities e and f occur more frequently. Accordingly, the control flow
measurements in Eq. 7 show that, in L2, executing S8 and S9 is more likely.
However, if we respect the initial choice, the likelihood of observing f given that
d was initially chosen is higher for L1 (65% vs 55%). We can incorporate this
into our frequency measurement by considering the parent subprocess S7. We
only consider whether S8 and S9 were activated if S7 was activated. Assuming
that S is not the root of H, let S̄ be the parent of S (i.e., (S̄, S) ∈ E). We define
the conditional subprocess activation measurement

μc.act
SN,S|S̄(γ) =

{
μact
SN,S(γ) if μact

SN,S̄
(γ) = 1

⊥ else
. (10)
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Conformance. Process executions do not always comply with the process model.
Thus, process variants might not only differ in how frequently they activate
model elements but also in how they deviate from the prescribed control flow. An
example is the occurrence of log moves measurement. For the subprocess S, we
consider log moves on activities that are among the labels of the transitions TS .
In particular, we count log moves that occur outside the subprocess’ executions:

μcc
SN,S(γ) =

∣
∣{i ∈ {1, . . . , |γ|} |γi ∈ MLM ∧ ∃t ∈ TS l(t) = πact

(
π1 (γi)

)

∧∀I ∈ Eexec
SN,γ ,S i /∈ I

}∣
∣ . (11)

Differences with respect to this measurement show that, in one process vari-
ant, transitions of S are more likely to occur at unexpected positions. However,
this measurement also illustrates a major challenge dealing with log moves—
namely, duplicate transition labels. In case multiple transitions have the same
label, we count log moves multiple times.

Performance. Performance differences between process variants are often of
major interest. Using our notion of process executions, one can define various
performance measurements. In the following, we exemplify two complementary
measurements and discuss their limitations. Given a complete execution interval
I ∈ Eexec

SN,γ ,S of the subprocess S, we first consider the time series

γ
sync_t

S,[I] = πtime
(
π1

(
πMSYNC∩(E×TS)

(
γ[I]

)))
(12)

of synchronously executed subprocess transitions in I. Next, we define the syn-
chronous subprocess execution duration as the time difference between the first
and last synchronously executed transition that is adjacent to the subprocess:

μ
sync_t
SN,S (γ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if |γsync_t

S,[I] | = 0
for all I ∈ Eexec

SN,γ ,S

avg

({
max(γsync_t

S,[I] )

−min(γsync_t

S,[I] )

∣
∣
∣
∣
∣

I ∈ Eexec
SN,γ ,S

∧|γsync_t

S,[I] | > 0

})

else

(13)
While this measurement provides insight into differences in the duration during
which a subprocess was active, it does not account for delays prior or after the
execution. For example, consider the subprocess S3 in N3 and the alignment

γ3 = �
1

b
10
a1

11
a2

20
c

t1 t6 t3 t4 t9
, (14)

where the activity executions’ timestamps are depicted on top of the activities.
Despite the first move marks S3, the first activity is executed at time step 10.
In contrast, μ

sync_t
N3,S3

(γ3) = 1 suggests a fast execution of S3. To compare initial
delays, we can consider the elapsed time since case start measurement

μ
elap_t
SN,S (γ,σ) = min

I∈Eexec
SN,γ ,S

(
min(γsync_t

S,[I] )
)

− πact(σ0) (15)



Process Comparison Using Petri Net Decomposition 95

that extracts the time until the very first synchronous execution of a subpro-
cess’ transition. However, even if we consider both measurements, there are four
major limitations: (i) for loops, we only consider the first delayed start. (ii)
The elapsed time since case start measurement is monotonically increasing (e.g.,
μ
elap_t

N3,(t4,p6)
(γ3) = μ

elap_t
N3,S3

(γ3)+(11−10)). Thus, the analyst needs to consider that
differences can propagate to later parts of the process. (iii) The synchronous sub-
process execution duration of subprocesses containing a single transition is either
zero or undefined. (iv) For non-SESE subprocesses, there can be additional exter-
nally caused delays even after a subprocess’ execution started. Therefore, one
generally needs to consider multiple performance measurements depending on
the performance aspect of interest and the subprocess under consideration. For
example, to address the third limitation, we might consider the causal predeces-
sors and successors of a transition in the run of the Petri net. For S8, we would
compute the time between firing t2 and t7. Yet, for the concurrent subprocesses
S3 and S4, this means that their duration would be determined by t1 and possi-
bly t9 if we consider the transition that removes the last token. In this case, we
would get the same measurement value for both subprocesses.

Hypothesis Testing. Applying the presented trace measurements, we extract zero
(⊥) or one value per alignment. As we aim to compare subprocesses based on
their executions, we first discard the irrelevant measurements (i.e., measure-
ments having the value ⊥). For each subprocess and perspective, we thereby
obtain a population of real-valued measurements. To detect statistically signif-
icant differences between populations, we apply hypothesis testing under the
null hypothesis that there is no significant difference. In doing so, we implicitly
assume that the measurements are independent of each other. In practice, this
assumption might not always hold (e.g., if a single resource handles multiple
cases simultaneously). Nevertheless, case independence is a common assumption
in the field of PC [8,10,25]. Moreover, we additionally assume that the measure-
ments are approximately normally distributed; yet the populations might have
different means and variances. Based on these assumptions, we apply Welch’s
t-test [29] with a p-value of 0.05 to test if two populations’ mean values differ.

Besides the significance of a difference, the effect size assesses its strength. For
large populations, even small differences in their means can become statistically
significant. Therefore, we employ Cohen’s d [11] to quantify a difference’s effect
size. Eventually, we determine the color of each subprocess in the decomposition
based on whether there is a significant difference, whether the mean is larger for
the left or right process variant, and the Cohen’s d value.

4.3 Strategies for Decomposition

While our notion of WF-net decomposition is very generic, it is usually desirable
that vertices in the hierarchy define logically coherent and independent subpro-
cesses. In the literature, a structural characterization of such a subprocess is to
require that it has a single entry and a single exit vertex [27]. Thereby, each
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Fig. 5. Limitations of a SESE-based decomposition. The WF-net shown in (a) extends
the WF-net in Fig. 3a by an additional long-term dependency (red). The colored poly-
gons depict the non-trivial SESE subprocesses that constitute the RPST of this model.
Using a SESE-based decomposition, we cannot analyze the subprocesses between t1
and t5 (i.e., S2 in Fig. 3a) and p6 and t10 (formerly S3). The language preserving trans-
formation depicted in (b) would allow to further decompose S3 in N1. (Color figure
online)

subprocess is self-contained interacting with the remaining net at its entry and
exit node. This characterization serves as a basis for the RPST of a WF-net [27].
The RPST is a decomposition comprising a maximal set of vertices satisfying the
following conditions: (i) each vertex is a fragment (i.e., a SESE subprocess); (ii)
each fragment is canonical—that is, there exists no overlapping fragment (not
necessarily contained in the RPST) that neither is a proper super- nor subset;
and (iii) each vertex is a child of its smallest superset. These conditions imply
that the edges of a net are the leaves of its RPST. Such an edge fragment is
also called trivial (i.e., a fragment of size one). For example, excluding trivial
fragments, Fig. 3b shows the RPST of the WF-net in Fig. 3a. For further details
on (computing) RPSTs, we refer the reader to [24,27].

The property of defining self-contained subprocesses makes the RPST a
promising decomposition technique for hierarchical PC. Therefore, in our imple-
mentation, we leverage an adapted version of a WF-net’s RPST. We propose
to adapt the RPST computation for the sake of PC because the strict SESE
requirement makes the decomposition sensitive. For example, consider the WF-
net N2 depicted in Fig. 5a which extends N1 (Fig. 3a) by two additional places.
The highlighted places p12 and p13 couple the choices between a1 and a2 and
between d1 and d2. This significantly changes the set of canonical fragments.
Compared to N1, the added places induce two additional canonical fragments
SLT1 and SLT2 but violate the SESE property of six of the original canonical
fragments. Thereby, the resulting RPST would neither allow us to explicitly ana-
lyze the choice between a1 and a2 nor could we distinguish the two main blocks
of the workflow (i.e., the process before and after c).

WF-net Skeleton. As shown in Fig. 2, we propose an additional preprocessing
step of the WF-net to create more SESE subprocesses. The idea is to remove
places that connect structurally distant parts of the model preventing a more
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fine granular decomposition. As places constrain the behavior of the WF-net,
removing places instead of transitions yields a net describing a relaxed process.
In contrast, removing transitions can result in Petri nets without valid firing
sequences. Thus, the RPST obtained by removing places describes a relaxed
baseline process that we consider the skeleton process of the original model.

In order to later compute its RPST, we need to ensure that the skeleton
process is a WF-net. Intuitively, this means that we can only remove constraints
(i.e., places) that do not break the workflow. Accordingly, we can neither remove
the source nor the sink. Moreover, we might only remove a place if, in the
resulting net, each node is on a path between the source and the sink. For
example, in N2 (Fig. 5a), the only candidates for removal are p4, p12, and p13.

While removing p12 and p13 results in the original net that has a fine granular
decomposition, this is not the case for p4. After removing p4, no further place
can be removed resulting in a decomposition similar to the one before (SLT1 and
SLT2 would be extended up to p2). What distinguishes the places p12 and p13
from p4 is that latter place constraints the local order of activities. In each firing
sequence of the net that contains t2, the number of steps in which p4 is marked
is less than for p12. Therefore, we propose to preferably remove places that are
marked for many steps.

Definition 13 (Place Marking Interval). Let N = (P, T, F, l) be a safe
WF-net and T ∈ B(T ∗) be a multiset of valid firing sequences of N . Given a
firing sequence σ = 〈t1, . . . , tn〉 ∈ T, the token intervals of a place p ∈ P are

tiσ (p) = {(i, j)|1 ≤ i < j ≤ n, p ∈ ti
•, p ∈ •tj ,∀k(i < k < j) → p /∈ •tk ∪ tk

•} .
(16)

The average number of steps a place p ∈ P is marked is

ttT(p) = avg([j − i|(i, j) ∈ +
σ∈T

tiσ (p)]) . (17)

This idea is inspired by an ILP Miner [31] variant that prefers adding places
to a net where the token is consumed quickly. The safeness of the WF-net is
crucial to uniquely match the transitions that produced and consumed a token.
In contrast to structural place removal conditions, Definition 13 is not affected
by implicit places (i.e., places that do not affect the valid firing sequences). For
the sake of efficiency, in our implementation, we re-use the alignments of the
event logs to evaluate Eq. (17) rather than sampling the net.

Finally, we propose the following decomposition strategy for hierarchical PC:
(i) sort the places according to Definition 13 in descending order, (ii) iterate over
the sorted places removing places as long as the resulting net remains a WF-
net (i.e., remains connected), (iii) compute the RPST of the resulting WF-net
skeleton, and (iv) add the edges of the removed places as subprocesses under the
root. Consider a set of firing sequences for N2 (Fig. 5a) such that p12 and p13
are marked at least once. Depending on the position of t4 in the firing sequence,
the places p12 and p13 are marked for two or three steps. Each time one of these
places is marked, the place p4 is marked for at least one step less. Therefore, one
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can show that we have ttS(p4) < ttS(p12) or ttS(p4) < ttS(p13) (not necessarily
both). Removing any other place would violate the WF-net constraint. Thus, we
first remove p12 or p13 after which p4 cannot be removed anymore.

While there are various ways to combine the RPST and the places removed,
we simply add the associated sets of edges under the root. In contrast, one could
add them under the smallest subprocess that contains the place’s adjacent tran-
sitions. Adding the edges under the root has the advantage that the remaining
tree is a proper RPST for the block skeleton. Assuming that the set of edges
removed is usually small, we expect this design decision to have a minor impact.

Our place removal approach might change the language of the WF-sytem net.
Fortunately, this does not affect the analysis since we compute the alignments
with respect to the original net. Besides, there are other language-preserving
transformations that might improve a net’s SESE decomposability. Figure 5b
shows an example using a silent transition as a concurrency split. Since this
does not change the model in terms of its language, we currently leave this
to the modeler. Besides, approaches that transform other model notations into
Petri nets often natively use silent transitions to create SESE subprocesses.

5 Case Study

We implemented our approach as a ProM plugin, available in the ProM nightly
builds1, and evaluate it in a case study on the real-life Road Traffic Fine Manage-
ment (RTFM) event log [19]. To the best of our knowledge, from the model-
based approaches discussed in Sect. 2, only Wynn et al. [30] provide the publicly
available implementation Profiler 3d . Therefore, we qualitatively compare the
results to Profiler 3d . Like existing works that consider this log [8,10,25], we
split it into low fine cases—that is, the initial fine is less than AC50—and high
fine cases—that is, the fine is larger or equal to AC50.

Based on the original log, we created a highly fitting BPMN model and
transformed it into the Petri net depicted in Fig. 6a. On a high level, a fine
is first created (CF) and then either paid (P) or sent (SF). In the latter case,
the offender may either pay it, or the case enters a subprocess concerned with
additional penalization (AP) or appealing (IDA2P). We duplicated the pay-
ment transition (P) to precisely represent highly frequent variants where the
fine was paid. Thereby, we can explicitly analyze the different ways of paying a
fine. Finally, we add an implicit place (i.e., a place that does not constrain the
behavior), highlighted red in Fig. 6a. It creates additional boundary nodes in the
additional penalization subprocess. Thereby, no proper fragment can contain this
subprocess making it difficult to decompose. Despite the place being implicit,
it is well-suited to investigate the time between inserting the fine notification
(IFN) and paying (P) or collecting (SCC) it.

1 https://promtools.org/prom-6-nightly-builds/.

https://promtools.org/prom-6-nightly-builds/
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Fig. 6. Comparing low and high fine cases in terms of differences in the control flow.
Subfigure (a) depicts a Petri net of the process. The decomposition depicted in (b)
shows the differences detected using the conditional subprocess activation measure-
ment. For significant differences, the shade depicts the effect size, and the color illus-
trates whether subprocesses are activated more likely for low (blue) or high (red) fines.
Besides, we collapsed uninteresting subtrees (yellow outlines). The red annotations
relate the nodes in the decomposition of the Petri net and to the descriptions in the
text. (Color figure online)

5.1 Results

Figure 6b shows the hierarchical decomposition of the Petri net in Fig. 6a, and
Fig. 7 depicts the output of Profiler 3d . Our proposed decomposition strategy
correctly identifies the additionally introduced place as a non-skeleton place.
Next, we investigate control flow differences. Since the Petri net in Fig. 6a con-
tains a considerable number of choices, we employ the conditional subprocess
activation measurement. Thereby, we can analyze subprocesses proceeding a
choice irrespective of the choice’s likelihood. Figure 6b shows that, for low fines,
it is considerably more likely that we observe an immediate payment (Diagnostic
D(I)). Profiler 3d also detect this difference. In contrast, high fines are often first
sent (SF) to the offender (D(II)). After a fine was sent, an offender might pay,
or—an interesting, frequent option present in the event log—the case may end.
While latter option is more probable for low fines (D(III)), receiving a payment
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Fig. 7. Results obtained using Profiler 3d by Wynn et al. [30]. Due to limitations of
the tool, the transitions depict conditional firing likelihoods. Given that the transition
fires, the bar shows the fraction of low (green) and high (fine) cases. Detecting decision
likelihood differences therefore requires comparing this fraction with the annotation of
the transition labeled CF which is activated by all cases. The colored arcs on the edges
depict the median sojourn times between pairs of activities, where the height of an
edge scales with the sojourn time observed. The annotations refer to the differences
described in the text. If the conclusions drawn using our method and the depicted
approach differ, we underline the annotation. (Color figure online)

after sending the fine is more likely for high fines (D(IV)). Moreover, for high
fines, the likelihood is higher that the case neither ends nor is paid but enters an
extended subprocess (D(V)). This subprocess includes three concurrent strands
of work. On the prefecture’s site, the delayed payment leads to a notification
(IFN) and an additional penalty (AP). Moreover, the prefecture might receive
an appeal (IDA2P). On the offenders’ side, they might decide to start paying the
fine (possibly in multiple steps) even though an additional penalty will already
be added due to the delay. For this subprocess, we observe two main differences.
First, appeals are more likely for high fines (D(VI)). Second, given that an appeal
was made, it is more probable to be successful for high fine cases (D(VII)). In
particular, this difference might be quite interesting for stakeholders. Conse-
quently, for low fine cases, it is slightly more likely that one eventually observes
a payment or credit collection (D(VIII)). From the preceding differences, D(VI)
and D(VII) are most noticeable in Fig. 7. For the remaining differences, the fact
that one needs to visually compare fractions of cases makes them very difficult
to detect.

Performance. Analyzing performance differences, we investigate the synchronous
subprocess execution duration as well as the elapsed time since case start . Figure 8
depicts the projection of measurement differences onto the decomposition. First,
high fine cases tend to have a longer overall cycle time (D(IX)). The average
duration between a fine’s creation and its last observed activity is approximately
a year, while it is 263 days for low fine cases. Next, is noteworthy that, on average,
low fines are sent 18 days earlier (D(X))—that is, 72 versus 90 days. Since there
is no difference regarding the elapsed time since case start for CF, we would
expect that Fig. 7 shows a sojourn time difference for the edge (CF, SF ). Yet,
this is not the case. Moreover, one can attribute all significant differences with
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Fig. 8. Hierarchical comparison of low (avg. 2) and high fine (avg. 1) cases in terms
of performance. In this decomposition of the Petri net in Fig. 6a, we collapsed unin-
teresting subtrees (yellow outlines). For each subprocess (i.e., vertex), we compare its
synchronous subprocess execution duration. For selected subprocesses (red dashed), we
also depict the elapsed time since case start . The annotations depict the correspond-
ing subprocesses in Fig. 6a as well as labels for the diagnostics. We further enlarged
important subprocesses (gray). (Color figure online)

respect to the elapsed time in the subtree rooted at S2 to D(X). However, this
requires an additional analysis of the average values. Due to the hierarchical
decomposition, we can also easily see that the difference in the average duration
of the subprocess S2, entered by sending the fine, is smaller than for S0—that
is, 33 days vs 98 days (D(XI)). This suggests that the time savings for low
fines are due to immediate payments (S1). In fact, there is almost no difference
regarding the duration of the appealing and additional fining subprocess S5

(D(XII)). Finally, the introduced non-skeleton place gives additional insight into
the time between inserting the notification (IFN) and the final payment (P) or
credit collection (SCC). It shows that this duration does not differ significantly
(D(XIII)). However, low fine cases that mark this place (i.e., cases that enter
S5) tend to be paid slightly earlier shown by a shorter elapsed time since case
start (D(XIV)). Nevertheless, the overall time until the last payment is made or
is collected forcefully, does not differ significantly (D(XV)). Finally, Profiler 3d
detects increased sojourn times between IDA2P and SA2P for high fines. Similar
to D(XIV), it also indicates that after a fine is inserted (IFN), the final payment
is made slightly earlier for low fines (D(XVI)).
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5.2 Discussion

Our evaluation shows that the conditional subprocess activation measurement is
well-suited to compare process variants that considerably differ in the likelihoods
of choices. In doing so, the hierarchical approach allows us to reason about sub-
processes on different levels of granularity. For example, we not only observe that
appeals are more likely for high fine cases D(VI), but also that these appeals a
slightly more successful D(VII). Combined with the ability to consider duplicate
labels, we could also compare the frequency of payments in different process
contexts. Considering the performance, we identified differences in the execu-
tion duration of different subprocesses. Moreover, we gained additional insight
by comparing subprocesses among the hierarchy (comp. D(X)). However, this
requires the analyst to reason on top of the output of the method. Besides, one
needs to consider and relate multiple performance metrics to paint the full pic-
ture. Finally, the proposed reduction of the net to its skeleton process enabled
us to add an implicit place without negatively affecting the decomposition. This
place could then be used to investigate a specific aspect of the process.

Compared to Profiler 3d [30], our approach shows differences more clearly.
Moreover, the proposed method allows to reason about larger subprocesses and
automatically analyzes subprocesses on different levels of granularity. While Pro-
filer 3d also supports hierarchical Petri nets as input, it requires that the hier-
archy is specified upfront.

6 Conclusion

In this paper, we leverage a shared Petri net to compare two event logs in a
hierarchical manner. To this end, we decompose the model into a hierarchy of
subprocesses. For each subprocess and case in the event logs, we then extract
intervals during which the subprocess is considered being under execution. Based
on these intervals, measurements that assess different aspects of the process can
be defined. In this paper, we exemplify measurements that assess differences
in the control flow, performance, and conformance. Furthermore, we propose a
decomposition strategy based on Refined Process Structure Trees. In doing so,
we introduce a new preprocessing step to improve the decomposability of the
net. The case study shows how the proposed method allows to reason on larger
subprocesses but also to drill down on interesting details.

For future work, we plan to investigate process-aware measurements that
do not consider each case in isolation. The guidance provided by a good model
might help to alleviate this limitation of existing process comparison approaches.
Moreover, we intend to make the approach more interactive by allowing the user
to assess performance metrics of flexibly defined sections during runtime.
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Abstract. Continuous Petri nets (CPNs) form a model of (uncountably
infinite) dynamic systems that has been successfully explored for mod-
elling and theoretical purposes. Here, we focus on the following topic.
Let the mode of a marking be the set of transitions fireable in the future.
Along a firing sequence, the sequence of different modes is non increas-
ing, and forms what we call the trajectory of the sequence. The set of
achievable trajectories is an important issue, for instance in the study
of biological processes. In CPNs, a marking can be reachable by a finite
sequence, or lim-reachable by an infinite convergent sequence. The set
of trajectories (resp. markings) obtained via lim-reachability (sometimes
strictly) includes the set of trajectories (resp. markings) obtained via
reachability. Here, we introduce transfinite firing sequences over count-
able ordinals and establish several results: (1) while trans-reachability
is equivalent to lim-reachability, the set of trajectories associated with
trans-reachability may be strictly larger than the one associated with
lim-reachability; (2) w.r.t. trajectories, transfinite sequences over ordi-
nals smaller than ω2 are enough; and (3) checking whether a trajectory
is achievable is NP-complete.

We then turn to a more difficult problem: the specification, for
all transfinite firing sequences, of their achievable signatures, i.e. the
sequences of markings witnessing the changes of mode along the trajec-
tory. In view of this goal, we define a finite symbolic reachability tree
(SRT) that tracks the possible signatures of the system; in the SRT,
a set of markings with same mode is associated with each vertex. We
establish that, for bounded CPNs, reversibility holds inside the leaves of
the SRT (which correspond to the long-run behaviours). This property is
also crucial in the application domains that motivate this work, namely
regulation, signaling, ecosystems and other biological networks, where all
quantities are bounded in mass or energy. Finally, from an algorithmic
point of view, we show how to build an effective representation of the
SRT in exponential time, even when the CPN is unbounded.

1 Introduction

Petri Nets in Life Sciences. Over the last decades, life sciences have been
increasingly benefitting from the increased application of formal methods involv-
ing discrete event system models. This is particularly true for boolean and
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L. M. Kristensen and J. M. van der Werf (Eds.): PETRI NETS 2024, LNCS 14628, pp. 109–131, 2024.

https://doi.org/10.1007/978-3-031-61433-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61433-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-61433-0_6


110 S. Haar and S. Haddad

Thomas networks; but several authors (Heiner et al. [2,15], Chaouia et al. [4–6],
and others) have successfully used and studied (discrete) Petri nets, specifically
in systems biology for the modelling of metabolism, cellular regulation (includ-
ing the first author [7,17]), signalling [19], or ecosystems [1]. For the relation
between Boolean Networks and Petri nets, see [8]. Further application fields for
Petri nets in the life sciences, such as ecology [1], are currently emerging.

A central objective in these efforts is to identify and study attractors, infor-
mally stated as the possible long run behaviours of the system. These objects
are crucial in several domains. For instance, in the context of cellular regula-
tion, attractors give exactly the phenotypes of the studied system, whereas the
collapse or blossom of an ecosystem is characterized by the attractors it enters.
Furthermore an attractor fulfills reversibility : all visited states in an attractor
can be visited again.

The Limits of Discrete Models. The discrete and non-deterministic nature
of Petri nets are a key asset in these applications in the sense that they provide
exhaustive treatment at a reasonable complexity (PSPACE for the reachability
problem of bounded nets), compared to the predominant ODE or Markovian
models in life sciences thus far. In fact, some works have studied more permis-
sive discrete firing rules, between discrete Petri nets [9] and Boolean Networks
[7,10,11,18]. The key motivation here is to ensure a better state space cover-
age, to avoid false predictions, diagnoses, or therapies. On the formal side, a
gap in the reachability coverage had been first reported for contextual Petri
nets [9]; following this, extensions to the traditional spectrum of semantics was
developed for Boolean networks [7,10,11,18], culminating in a most permissive
or MP semantics [18]. This MPS provides a sound overapproximation of the
natural, continuous behaviour of the system, paired with a low complexity for
the discrete reachability problem (see [18] and the zenodo tool]. Faithful refine-
ment of this overapproximation remains an important open problem. From the
continuous end of the spectrum, several authors (e.g. Heiner et al. [16]) have
introduced continuous and fuzzy Petri nets as models of biological systems, in
order to account for uncertainties in the modeling and observation of natural
systems. However, the theory necessary for exploiting such models in prediction
is still missing.

Continuous Petri Nets (CPN) [3,12,14]. In a CPN, the marking can evolve
by firing a real quantity of a transition thus leading to a place marking defined
by a real. CPNs present several interests both from a theoretical and a modelling
point of view:

– Infinite firing sequences can be “convergent” and reach at the limit some
marking. This yields the notion of lim-reachability which is sometimes more
appropriate for modelling biological systems;

– reachability, lim-reachability and some other interesting problems can be
solved in polynomial time while more difficult problems like the deadlock-
freeness problem are NP-complete. These results hold even in unbounded
CPNs, a major advantage over Petri nets.
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Our Contributions. Motivated by biological applications we focus on the fol-
lowing topic. Let the mode of a marking be the set of transitions fireable in the
future. Along a firing sequence, the sequence of different modes is non increasing
and forms what we call the trajectory of the sequence. The set of achievable tra-
jectories is an important issue for instance in the study of biological processes.
In CPNs, a marking can be reachable by a finite sequence or lim-reachable by an
infinite convergent sequence. The set of signatures (resp. markings) obtained via
lim-reachability (sometimes strictly) includes the set of trajectories (resp. mark-
ings) obtained via reachability. Here we introduce transfinite firing sequences
over countable ordinals and establish several results:

– while trans-reachability is equivalent to lim-reachability, the set of trajecto-
ries associated with trans-reachability may be strictly larger than the one
associated with lim-reachability;

– w.r.t. trajectories transfinite sequences over ordinals less than ω2 are enough;
– checking whether a trajectory is achievable is a NP-complete problem.

Afterwards, we turn on a more difficult problem: the specification for all transfi-
nite firing sequences of their signature, i.e. the sequence of markings witnessing
the changes of mode in the trajectory. In view of this goal, we define a finite
symbolic reachability tree (SRT) which tracks the possible signatures of the
system and where a set of markings with same mode is associated with each
vertex. From an algorithmic point of view, we show how to build an effective
representation of the SRT in exponential time even. While all these results hold
for possibly unbounded CPNs, we establish that for bounded CPNs inside the
leaves of the SRT (which correspond to the long-run behaviours), the CPN is
reversible. This corresponds to the presence of attractors in the case of bounded
discrete models. Indeed, while in general Petri nets, attractors may not exist,
as soon as the net is bounded, the reachability graph is finite and must have
finite terminal strongly connected components, which correspond to attractors.
Boundedness is a reasonable assumption in the application domains; indeed, reg-
ulation, signaling and other biological networks are mass/energy bounded. Note
that an efficient method for exhaustive attractor search via unfolding prefixes of
safe discrete Petri nets was presented in [7].

Organisation. In Sect. 2, we introduce continuous Petri nets and recall some of
their theoretical properties needed for developing our results. Then in Sect. 3, we
define transfinite firing sequences, their trajectory and signature and establish
several related results including the NP-completeness of the trajectory problem.
Afterwards in Sect. 4, we define the SRT and establish the reversibility inside its
leafs and design the building of an effective representation. Finally in Sect. 5, we
conclude and give some perspectives to this work. Omitted proofs can be found
in the appendix of the technical report [13].
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2 Continuous Petri Nets

We will follow the terminology and notations of [14] and for some notions the
ones of [3,12]. The omitted proofs of the results presented in this section can be
found in [12].

Notations. Denote R+ � [0,∞), I � [0, 1], 0 � (0, . . . , 0) ∈ R
n. Let v ∈ R

X
+

where X is a finite set. Then [[v]] � {x ∈ X | v[x] > 0} and will be called the
support of v.

2.1 Definitions and Previous Results

Syntactically, there is no difference between CPNs and ordinary Petri nets.

Definition 1 (Continuous Petri Net (CPN)). A net is a tuple
N = (P ,T ,Pre,Post), where:

– P a finite nonempty set of places;
– T is a finite set of transitions with P ∩ T = ∅;
– Pre (resp. Post) is the backward (resp. forward) P × T incidence matrix,

whose entries belong to N.

Notations. The incidence matrix of N is the matrix C � Post−Pre. For p ∈ P ,
set •p � {t ∈ T : Post(p, t) > 0} and p• � {t ∈ T : Pre(p, t) > 0}. Dually, for
t ∈ T , set •t � {p ∈ P : Pre(p, t) > 0} and t• � {p ∈ P : Post(p, t) > 0}. If
x ∈ P ∪ T , write •x• � •x ∪ x•. These notations are extended to sets of items:
•X �

⋃
x∈X

•x, X• �
⋃

x∈X x• and •X• �
⋃

x∈X
•x•. The reverse CPN is defined

by: N −1 � (P ,T ,Post,Pre).
In a CPN, the marking of a place is a non negative real and a CPN allows a

fraction of a transition firing, scaling the quantities to be consumed and produced
accordingly.

Definition 2 (Marking, Marked CPN). A (continuous) marking m of a
CPN N is an item of R

P
+. A marked CPN is a pair (N ,m0) where m0 is an

initial marking.

Definition 3 (Enabling, Firing). Let N be a CPN, m be a marking of N ,
and t ∈ T. Then:

1. enab(t ,m), the enabling degree of t in m, is defined by minp∈•t
m(p)

Pre(p,t) when
•t �= ∅, and ∞ otherwise. If enab(t ,m) > 0, one says that t is enabled in m.

2. For every t and α ∈ [0, enab(t ,m)] ∩ R, t can be α-fired in m, lead-
ing to a new marking m′ given by: ∀ p ∈ P m′(p) � m(p) + α ·
C(p, t), and we write m αt−→N m′ (allowing null firings).

Notation. By analogy with Petri nets, we sometimes rewrite m 1t−→N m′ as
m t−→N m′. Z � R+ ×T denotes the set of firing steps. We denote by ω the first
infinite ordinal.
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Definition 4. Let m0 be a marking, n ∈ N and σ = (αiti)i≤n be a finite
sequence over Z. Then σ is a finite firing sequence from m0 if there exists a
finite sequence of markings (mi)i≤n+1 such that for all i ≤ n, mi

αiti−−→ mi+1.
In that case, write m0

σ−→N mn+1.
Let σ = (αiti)i∈N be an infinite sequence over Z with

∑
i∈N

αi < ∞. Then σ
is an infinite firing sequence from m0 if there exists a infinite family of markings
(mi)i≤ω such that (1) for all i ∈ N, mi

αiti−−→ mi+1 and (2) limi→∞ mi = mω.
In that case, write m0

σ−→N mω.

Observation and Notations. The finiteness of
∑

i∈N
αi ensures the existence

of limi→∞ mi. When there is no ambiguity about N , m σ−→N m′ will simply
be denoted m σ−→ m′. Sometimes we omit the final marking and write m σ−→N
instead of m σ−→N m′. Let σ = (αiti)i≤n be a finite sequence (resp. σ = (αiti)i∈N

be an infinite sequence such that
∑

i∈N
αi < ∞). Then �σ ∈ R

T
+, the Parikh

vector of σ, is defined by �σ[t] �
∑

ti=t αi. Let m0
σ−→ m. Then the state equation

m = m0 + C�σ can be established by recurrence and possibly taking limits.

Definition 5. Let (N ,m0) be a marked CPN. Then:
The reachability set is defined by:

RS(N ,m0) � {m : ∃ σ ∈ Z∗ m0
σ→ m}.

The lim-reachability set is defined by:

lim−RS(N ,m0) � {m : ∃ σ ∈ Z∞ m0
σ→ m}.

Since the last step m αt−→ m′ of a finite firing sequence can be mimicked

by the infinite firing sequence m
(2−nαt)n≥1−−−−−−−→ m′, we have RS(N ,m0) ⊆

lim−RS(N ,m0). However generally these two sets are different.
The next definitions and propositions are related to the main topic of our

study: given a marking m0, what are the transitions eventually firable in the
future, starting from m0?

Definition 6 (Firing set). The firing set of a marked CPN (N ,m0)
FS(N ,m0) ⊆ 2T is defined by: FS(N ,m0) � {[[�σ]] | ∃ σ ∈ Z∗ ∃ m m0

σ→ m}.
The next propositions summarize key results about firing sets and their close

connexion with reachability and lim-reachability.

Proposition 1. Let N be a CPN and m, m′ be markings of N .

– If [[m]] ⊆ [[m′]] then FS(N ,m) ⊆ FS(N ,m′);
– FS(N ,m) is closed under union;
– if T ′ = {t1, . . . , tk} ∈ FS(N ,m0) then there exists a sequence m0

σ−→ m with
σ = α1tβ(1) . . . αktβ(k), β a permutation of {1, . . . , k}, αi > 0 for all i, and
[[m]] = [[m0]] ∪ •T ′•.
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Definition 7. Let N be a CPN and m be a marking. Then TN ,m, the mode of
m in N is defined by: TN ,m � {t ∈ T | ∃m σ−→N with t ∈ [[�σ]]}.

Notations and Observations. The previous proposition implies that TN ,m is
both the maximal item of FS(N ,m) and the union of these items. When there
is no ambiguity about N , we will simply write Tm for TN ,m. Since the firing set
only depends on the support of the marking, Tm (resp. TN ,m, FS(N ,m)) can
also be denoted T[[m]] (resp. TN ,[[m]], FS(N , [[m]])).

Proposition 2. Let N be a CPN, P ′ ⊆ P and T ′ ⊆ T . Then:

– one can check in polynomial time whether T ′ ∈ FS(N , P ′);
– one can compute in polynomial time TN ,P ′ .

The next theorems now establish a characterization of reachability and lim-
reachability. Observe that the latter one is obtained by dropping from the former
one Condition (3).

Theorem 1. Let (N ,m0) be a marked CPN and m be a marking.
Then m ∈ RS(N ,m0) iff there exists v ∈ R

T
+ such that:

(1) m = m0 + C · v, (2) [[v]] ∈ FS(N ,m0), and (3) [[v]] ∈ FS(N −1,m).
When such a v exists, there exists a finite σ with �σ = v and m0

σ−→ m.

The structure of an infinite firing sequence witnessing the membership in
lim−RS(N ,m0) was established in the proof but not stated in the previous
version of the following theorem.

Theorem 2. Let (N ,m0) be a marked CPN and m be a marking.
Then m ∈ lim−RS(N ,m0) iff there exists v ∈ R

T
+ such that:

(1) m = m0 + C · v and (2) [[v]] ∈ FS(N ,m0).
Furthermore if m ∈ lim−RS(N ,m0), then there exist finite sequences σ0, σ1

such that m0
σ0−→ m1

(2−nσ1)n≥1−−−−−−−−→ m
with [[�σ0]] = [[�σ1]] = [[v]] and [[m0]] ∪ •[[�σ1]]• = [[m1]].

Theorem 2 and its applications here motivate the following definition.

Definition 8. Let N be a CPN, m, m′ be markings and σ be a finite sequence.
Then σ′ = (2−nσ)n≥1 is a repetitive discounted sequence from m to m′ if

m σ′
−→ m′ and •[[�σ]]• ⊆ [[m]].

The next lemma characterizes existence of repetitive discounted sequences.

Lemma 1. Let N be a CPN and m, m′ be two markings. Then there exists a
repetitive discounted sequence from m to m′ iff there exists v ∈ R

T
+ such that:

m′ = m + C · v and •[[v]]• ⊆ [[m]].
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Proof. The necessity of this condition follows immediately by defining v = �σ
when σ′ = (2−nσ)n≥1 is the repetitive discounted sequence.

Since •[[v]]• ⊆ [[m]], for all t ∈ [[v]], {t} ∈ TN ,[[m]] ∩ TN −1,[[m]] and by union
[[v]] ∈ TN ,[[m]] ∩ TN −1,[[m]].

For all n ≥ 0, let us introduce mn = 2−nm + (1 − 2−n)m′.
m0 = m and for all n ≥ 0, mn+1 = mn + C · 2−(n+1)v and [[mn]] = [[m]].

Using Theorem 1, there exists σ′′ such that m σ′′
−−→ m1 = 2−1m + 2−1m′

with �σ′′ = 1
2v. Thus for all n ≥ 0,

2−nm 2−nσ′′
−−−−→ 2−(n+1)m + 2−(n+1)m′ implying in turn:

mn = (1−2−n)m′+2−nm 2−nσ′′
−−−−→ (1−2−n)m′+2−(n+1)m+2−(n+1)m′ = mn+1

So, with a slight abuse of notation, denoting σ = 2σ′′, one gets:

m
(2−nσ)n≥1−−−−−−−→ m′. ��

2.2 Two Motivating Examples

Example 1. In figures, places are represented by circles with their initial mark-
ings inside, transitions by rectangles (each one with a label identifying it) and
Pre (resp. Post) specified by weighted edges entering (resp. leaving) transitions.
Consider the Petri net/CPN on the left hand side of Fig. 1. It can be thought of
as describing an epidemics situation, in which persons are initially healthy (p1)
but prone to catch one of two mild diseases (p2 or p3). If carriers of both dis-
eases meet, a new and highly contagious syndrome (p4) may emerge, which can
spread in the populations of both p2 and p3. The reachability graph with only
three states is depicted in the center part of Fig. 1, where the modes are noted
next to each node. The only terminal strongly connected components (TSCCs),
also called attractors in this context, are {p2} and {p3}. However using the CPN
firing rules we obtain the much richer dynamics. It can be checked that While
{p2} and {p3} remain attractors, a third one emerges in {p4}, showing how the
continuous dynamics may increase the set of attractors of a system (in other
circumstances, attractors may lose that status, merge etc.).

Fig. 1. A CPN/Petri net (left), its reachability graph (center) and another CPN (right).
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Example 2. Let us examine the CPN on the right of Fig. 1. In natural systems,
such a structure may correspond to a subsystem spanned by p2 and p3 that is
reversible as long as some amount of ressource p1 is available, but stops when p1
is depleted by a decay process. Let us examine the sequence of modes visited by
a firing sequence σ. If σ is a finite sequence then p1 remains marked along the
sequence; thus the single visited mode is T . For σ = (2−nt1)n≥1, the marking
reached by this infinite sequence is 1p3, and the corresponding sequence of modes
is {t3}. The marking 1p2 with associated mode ∅ is reachable from 1p3 in one step
(by firing 1t3). It is possible to reach 1p2 with σ = (2−nt12−nt3)n≥1. However
the sequence of modes of this infinite sequence is T∅. In fact, no finite or infinite
sequence of firings from m0 will produce the sequence of modes T{t3}∅. However,
if we introduce transfinite sequences (i.e. indexed by ordinals instead of integers)
then the sequence σ = (2−nt1)n≥11t3, where the last transition firing is indexed
by ordinal ω, yields the sequence of modes T{t3}∅. This example motivates what
will be introduced in the next section.

3 Signatures and Trajectories

In the following, we lift the representation level to abstract away from the indi-
vidual continuous markings. The key step is to shift attention from a marking
m to its mode Tm (i.e. the transitions still fireable in the future).

Notation. Let κ be a countable ordinal (i.e. an ordinal with countable car-
dinality). Then σ = (αιtι)ι<κ, where for all ι, (αιtι) ∈ Z, is a κ-transfinite
sequence. Let σ = (αιtι)ι<κ be a κ-transfinite sequence and ι < ι′ ≤ κ. Then
σι,ι′ = (αι′′tι′′)ι≤ι′′<ι′ .

Definition 9. Let m0 be a marking, κ be a countable ordinal and σ = (αιtι)ι<κ

be a κ-transfinite sequence over Z. Then σ is a firing sequence from m0, denoted
m0

σ−→ mκ, iff there exists a transfinite family of markings (mι)ι≤κ such that:

– for all ι < κ, mι
αιtι−−→ mι+1;

– for all limit ordinals κ′ ≤ κ, limι<κ′ mι = mκ′ ;
–

∑
ι<κ αι < ∞.

Notation. In the sequel, σ, a κ-transfinite firing sequence, will be denoted by
the pair σ = 〈(αιtι)ι<κ, (mι)ι≤κ〉, and as usual the firing relation will be denoted
by m0

σ−→ mκ.

Definition 10. Let (N ,m0) be a marked CPN. Then the trans-reachability set
is defined by:
trans− RS(N ,m0) � {m | ∃ σ κ-transfinite sequence such that m0

σ→ m}.
The following proposition and its corollary establish that trans-reachability is

equivalent to lim-reachability. Generalizing the case of infinite firing sequences,
the Parikh vector of σ is defined by �σ[t ] �

∑
tι=t αι.
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Proposition 3. Let (N ,m0) be a marked CPN and σ = 〈(αιtι)ι<κ, (mι)ι≤κ〉
be a κ-transfinite firing sequence. Then :

(1) mκ = m0 + C · �σ and (2)[[�σ]] ∈ FS(N ,m0).

Proof. We proceed by induction on ordinals.

Case 1: κ = κ′ +1. Thus mκ = mκ′ +ακ′C(tκ′). By induction, mκ′ = m0 +C ·
�σ0,κ′ . Thus mκ = m0+C·�σ0,κ. Since �σ0,κ′ ∈ FS(N ,m0), applying Proposition 1,

there exists a finite sequence m0
σ′
−→ m′ with �σ′ = �σ0,κ′ and [[m′]] = [[m0]]∪•�σ′•

implying [[mκ′ ]] ⊆ [[m′]]. Thus there exists some α > 0 such that m′ αtκ′−−−→, which
entails that [[�σ0,κ]] ∈ FS(N ,m0).

Case 2: κ is a limit ordinal. Since T is finite, there exists an ordinal κ′ < κ
with [[�σ0,κ′ ]] = [[�σ0,κ]]. Applying the induction hypothesis, [[�σ0,κ]] ∈ FS(N ,m0).

Let ε > 0. Since
∑

ι<κ αι < ∞, there exists some κε < κ such that for all
κε ≤ κ′ < κ

∑
κ′≤ι<κ αι ≤ ε. Let B = max(Pre(p, t),Post(p, t) | p ∈ P, t ∈ T ).

Then for all κε ≤ κ′ < κ:

– by induction, mκ′ = m0 + C · �σ0,κ′ ;
– and so ‖mκ′ − m0 + C · �σ0,κ‖ ≤ Bε.

Since mκ = limκ′<κ mκ′ , this implies that ‖mκ − m0 + C · �σ0,κ‖ ≤ Bε.
Letting ε go to 0, one gets that mκ = m0 + C · �σ0,κ. ��

Combining Proposition 3 with Theorem 2, we obtain the following corollary
which generalizes the case of infinite firing sequences.

Corollary 1. Let (N ,m0) be a marked CPN and σ = 〈(αιtι)ι<κ, (mι)ι≤κ〉 a
κ-transfinite firing sequence. Then there exist finite sequences σ0, σ1 such that

m0
σ0−→ m1

(2−nσ1)n≥1−−−−−−−−→ mκ with [[�σ0]]=[[�σ1]]=[[�σ]] and [[m0]]∪ •[[�σ1]]• =[[m1]].

As shown by the next proposition, along a transfinite firing sequence the
modes associated with the visited markings are non increasing.

Proposition 4. Let (N ,m0) be a marked CPN and σ = 〈(αιtι)ι<κ, (mι)ι≤κ〉
be a κ-transfinite firing sequence. Then for all ι < ι′, Tmι′ ⊆ Tmι

.

Proof. We proceed by a transfinite induction with nothing to prove for κ = 0.

Case 1: κ = κ′ + 1. Thus mκ′
ακ′ tκ′−−−−→ mκ which implies that every transition

eventually fireable from mκ is also eventually fireable from mκ′ . So Tmκ
⊆ Tmκ′ .

Case 2: κ is a limit ordinal. Since mκ = limι<κ mι, there exists some κ0 such
that for all κ0 ≤ κ′ < κ, [[mκ]] ⊆ [[mκ′ ]]. So Tmκ

= T[[mκ]] ⊆ T[[mκ′ ]] = Tmκ′ .
Thus given an arbitrary κ′′ < κ, either κ′′ ≥ κ0 and the result is established or
κ′′ < κ0 which implies by induction that Tmκ′′ ⊇ Tmκ0

⊇ Tmκ
. ��
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So along a transfinite firing sequence the mode of the visited markings may
only decrease a finite number of times. We aim at tracking these changes of mode
and so we introduce some useful abstractions for a sequence.

Definition 11. Let (N ,m0) be a marked CPN and σ = 〈(αιtι)ι<κ, (mι)ι≤κ〉 be
a κ-transfinite firing sequence.

– The leaps of σ are those ordinals ι0 < . . . < ιk with k ≤ |T | inductively
defined by ι0 = 0 and if ι	 exists and Tmι�

�= Tmκ
then ι	+1 exists and

ι	+1 = min(ι > ι	 | Tmι
�= Tmι�

);
– the signature of σ, sig(σ), is the pair ((mιi

)i≤k,mκ);
– the abstract signature of σ, asig(σ), is the pair ((Tmιi

)i≤k,mκ);
– the trajectory of σ, traj (σ), is (Tmιi

)i≤k.

Notation. Let T be a set. Then the set of possible trajectories Traj (T ) �
{(Ti)i≤k | ∀i < k Ti+1 � Ti ⊆ T}. By a slight abuse of notations, the markings
mι�

will also be called leaps of σ.
The next proposition shows that given a signature of a transfinite firing

sequence, there exists another transfinite firing sequence of ordinal less than ω2

with same signature. Furthermore this sequence has a special shape.

Proposition 5. Let (N ,m0) be a marked CPN and σ = 〈(αιtι)ι<κ, (mι)ι≤κ〉 be
a κ-transfinite firing sequence with k + 1 leaps. Then there exist finite sequences
σ0,0, σ0,1,. . ., σk,0, σk,1 such that:

– for all i ≤ k, mi,0
σi,0−−→ mi,1

(2−nσi,1)n≥1−−−−−−−−→ mi+1,0

with m0,0 = m0 and mk+1,0 = mκ;
– [[�σi,0]] = [[�σi,1]] and [[mi,0]] ∪ •[[�σi,1]]• = [[mi,1]];
– sig(σ′) = sig(σ) with σ′ = (σi,0(2−nσi,1)n≥1)i≤k,

being a (k + 1)ω-transfinite sequence;
– the leaps of σ′ are 0, ω, 2ω, . . . , kω.

Proof. We establish the result by recurrence on k.

Basis Case k = 0. This case corresponds to the situation where m0
σ−→ m with

Tm = Tm0 . Applying Corollary 1, there exist finite sequences σ0, σ1 such that

m0
σ0−→ m1

(2−nσ1)n≥1−−−−−−−−→ mκ with [[�σ0]] = [[�σ1]] = [[�σ]] and [[m0]] ∪ •[[�σ1]]• =
[[m1]]. Let σ′ = σ0(2−nσ1)n≥1 and consider an arbitrary marking m′ visited by
σ′. Since the modes are non increasing Tm′ ⊇ Tm and so there is no leaps other
than m0 in σ′ which establishes this case.

Inductive Case. Let σ = 〈(αιtι)ι<κ, (mι)ι≤κ〉 be a transfinite firing sequence
with signature ((mιi

)i≤k,mκ). Let σ = σ1σ2 where σ1 leads from m0 to mι1

(the second leap of σ) and σ2 leads from mι1 to m. By hypothesis of recurrence
there exist finite sequences σ1,0, σ1,1,. . ., σk,0, σk,1 fulfilling the properties of the
proposition w.r.t. σ2. Applying Corollary 1, there exist finite sequences σ′

0, σ
′
1
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such that m0
σ′
0−→ m1

(2−nσ′
1)n≥1−−−−−−−−→ mι1 with [[�σ0]] = [[�σ′

1]] = [[ �σ1]] and [[m0]] ∪
•[[�σ1]]• = [[m1]]. Let σ′ = σ′

0(2
−nσ′

1)n≥1. Since [[m0]] ⊆ [[m1]], Tm1 = Tm0

For i ≥ 1, let m1,i be the marking reached by the sequence σ′
0(2

−nσ′
1)1≤n≤i.

Observe that m1,i is a convex combination of m1 and mι1 with non null coef-
ficients. So [[m1]] ⊆ [[m1,i]] which implies that Tm1,i

= Tm1 = Tm0 . For any
arbitrary marking m′ �= mι1 visited by σ′, there exists some m1,i visited later
and so Tm′ ⊇ Tm1,i

= Tm0 . So the only leaps of σ′ are m0 and mι1 which
concludes the proof. ��

If we only consider modes and omit visited markings that we will tackle in
the next section, the existence of a trajectory is a central issue.

Definition 12. The trajectory problem takes as input a marked CPN (N ,m0)
and a trajectory τ ∈ Traj(T ) and checks whether there exists σ a transfinite
firing sequence of (N ,m0) such that traj(σ) = τ .

Proposition 6. The trajectory problem is NP-complete.

Proof. The proof of the hardness part is presented in the appendix. For the
membership in NP, let us consider a marked CPN (N ,m0) and a sequence
τ = T0 . . . TK ∈ Traj(T ) with T0 = Tm0 .

The non deterministic procedure, denoted A, relies on the existence of
the special shape (provided by Proposition 5) of the possibly transfinite firing
sequence with associated trajectory τ ,

m0 = m0,0
σ0,0−−→ m0,1

(2−nσ0,1)n≥1−−−−−−−−−→ m1,0
σ1,0−−→ · · ·

· · · (2−nσK−2,1)n≥1−−−−−−−−−−−→ mK−1,0
σK−1,0−−−−→ mK−1,1

(2−nσK−1,1)n≥1−−−−−−−−−−−→ mK,0

i.e., such that for all i < K:

– [[�σi,0]] = [[�σi,0]] and [[mi,0]] ∪ •[[�σi,1]]• = [[mi,1]];
– Ti = T[[mi,0]] = T[[mi,1]];
– and TK = T[[mK,0]].

• A first guesses (in polynomial time) a sequence of subset of transitions
(Xi)i<K and a sequence of subsets of places (Pi,0, Pi,1)0<i<KPK,0 with
P0,0 = [[m0]].

• Then A checks whether for all i < K Pi,0 ∪ •Xi
• = Pi,1.

• Afterwards A checks (in polynomial time due to Proposition 1) whether
for all i < K, TPi,0 = TPi,1 = Ti, and TPK,0 = TK .

• Then A checks the qualitative conditions of reachability and lim-
reachability characterizations (see Theorems 1 and 2) : for all i < K,
Xi ∈ FS(N , Pi,0) ∩ FS(N −1, Pi,1). Since FS(N , Pi,0) ⊆ FS(N , Pi,1),
there is no need to check whether Xi ∈ FS(N , Pi,1). Again due to Propo-
sition 1, these tests are performed in polynomial time.
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• If the previous checks are successful, A builds the following linear pro-
gram (including implicit strict inequalities due to the conditions about
the supports) related to the quantitative conditions of reachability and
lim-reachability characterizations where the (positive) variables are the
components of the set of markings {mi,j}i<K,j∈{0,1} ∪ {mK,0} and the
set of Parikh vectors {vi,j}i<K,j∈{0,1}:

m0,0 = m0 ∧
∧

0≤i<K

mi,1 = mi,0 + C · vi,0

∧
∧

0≤i<K

mi+1,0 = mi,1 + C · vi,1

∧
∧

0≤i<K,j∈{0,1}
[[mi,j ]] = Pi,j ∧ [[vi,j ]] = Xi

Here and later on, an equation like [[vi,j ]] = Xi is an abbreviation for:
∧

t∈Xi

vi,j [t] > 0 ∧
∧

t∈T\Xi

vi,j [t] = 0.

Then A checks in polynomial time if this linear program is satisfiable. ��

4 A Symbolic Reachability Tree

In Examples 1 and 2 above, we have used an abstraction approach that lumps
together markings having the same set of eventually firable transitions into
modes. Here, we will formalize the associated semantics in the form of symbolic
reachability trees, introduced in Subsect. 4.1. In Subsect. 4.2, the “reversibility”
of the leaves of these trees will be established, using linear algebra theory. Finally
we develop a construction of an effective representation of symbolic reachability
trees in Subsect. 4.3.

4.1 Definition

The aim of the symbolic reachability tree (SRT) that we will build is to rep-
resent in an effective way all the abstract signatures of κ-transfinite sequences
of a marked CPN. By effective we mean that we can check not only whether a
potential abstract signature exists, but also for inclusion or equality of the sets
of abstract signatures of two CPNs.

In order to define an appropriate SRT, we first introduce the abstract reach-
ability graph. Since the mode of a marking only depends on its support, the
abstract reachability graph tracks the possible evolution of the supports of reach-
able markings. Therefore, the vertices of this graph are the subsets of P . Let us
summarize some of the results of the previous section that guide us for the
construction of the edges of this graph:
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– For m σ−→ m′, a transfinite firing sequence with Tm′ = Tm, there exists an

infinite firing sequence σ′ with m σ′
−→ m′ implying [[�σ′]] ∈ FS(N , [[m]]);

– For m σ−→ m′, a transfinite firing sequence whose only leaps are the initial
and final markings, there exist a finite sequence σ0 and a repeated discounted

firing sequence (2−nσ1)n≥1 with m σ0−→ m1
(2−nσ1)n≥1−−−−−−−−→ m′, [[�σ0]] = [[�σ1]] =

[[�σ]] and [[m1]] = [[m0]]∪•[[�σ1]]•. The leaps of this alternative firing sequence
are also the initial and final markings.

Thus there will be two kinds of edges from P ′ to P ′′ �= P ′ in our graph. When
TP ′′ = TP ′ , there is an anonymous edge from P ′ to P ′′ if there exists a set of
transitions T ′ with T ′ ∈ FS(N , P ′) and P ′′ ⊆ P ′ ∪ T ′•, since those are the only
places that may be marked after the firing of an infinite sequence whose support
is T ′ and P ′\•T ′ ⊆ P ′′ since these places remain marked after such a firing.
When P ′′

� P and TP ′′ � TP ′ there is an edge labelled by some T ′ ⊆ T with
(1) •T ′• ⊆ P ′ and (2) P ′\•T ′ ⊆ P ′′. Here, (1) is a necessary condition for the
existence of a repeated discounted firing sequence described in Lemma 1, and
(2) is a necessary condition ensuring that the support of the target marking is
P ′′. This kind of edges is called border edges. Omitting labels for anonymous
edges will be justified during the description of the SRT.

Definition 13 (Abstract reachability graph). Let N be a CPN. Then its
abstract reachability graph ARG(N ) = (V,E) is defined as follows:

– V = 2P is its set of vertices;
– For all P ′ �= P ′′ ⊆ P with TP ′ = TP ′′ , P ′ → P ′′ is an edge of E iff

there exists T ′ ⊆ T such that:
(1) T ′ ∈ FS(N , P ′) and (2) P ′\•T ′ ⊆ P ′′ ⊆ P ′ ∪ T ′•.

– For all T ′ ⊆ T, P ′′
� P ′ ⊆ P, TP ′′ � TP ′ , P ′ T ′

−→ P ′′ is an edge of E iff:
(1) •T ′• ⊆ P ′ and (2) P ′\•T ′ ⊆ P ′′.

Let (N ,m0) be a marked CPN. Then its abstract reachability graph ARG(N ,m0)
is the restriction of ARG(N ) to the vertices reachable from [[m0]].

Lemma 2. The reflexive closure of →, the anonymous relation of ARG(N ),
denoted →∗ is transitive.

Proof. Let P1 → P2 → P3 with P3 �= P1. So for i ∈ {1, 2}, there exists Ti with
Ti ∈ FS(N , Pi) and Pi\•Ti ⊆ Pi+1 ⊆ Pi ∪ Ti

•. Let T ′ = T1 ∪ T2. Then:
P1\•T ′ = (P1\•T1)\•T2 ⊆ P2\•T2 ⊆ P3 ⊆ P2 ∪ T2

• ⊆ P1 ∪ T1
• ∪ T2

• = P1 ∪ T ′•.
Pick an arbitrary marking m with [[m]] = P ′. Applying Proposition 1, there
exists m σ−→ m′ with [[�σ]] = T1 and [[m′]] = [[m]] ∪ •T1

•.

Thus [[m′]] ⊇ P2. Since T2 ∈ FS(N , P2) there exists m′ σ′
−→ with [[�σ]] = T2.

So m σσ′
−−→ implying T ′ ∈ FS(N , P1). Thus P1 → P3. ��

The next definitions show how to define the acceptance of a signature of a
transfinite firing sequence by the ARG.
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Definition 14. Let (N ,m0) be a marked CPN, s = (P−
i

Xi−−→ P+
i )0<i≤k a

sequence of border edges of ARG(N ,m0) and Pf ⊆ P . Then the pair (s, Pf )
is a symbolic path of ARG(N ,m0) if [[m0]] →∗ Pf when s = ε, and s �= ε
implies

– [[m0]] →∗ P−
1 and P+

k →∗ Pf ;
– for all 0 < i < k, P+

i →∗ P−
i+1.

Definition 15. Let (N ,m0) be a marked CPN, (s, Pf ) be a symbolic path of

ARG(N ,m0) with s = (P−
i

Xi−−→ P+
i )0<i≤k and σ be a transfinite firing sequence

with sig(σ) = ((mi)i≤k,mf ). Then sig(σ) is accepted by (s, Pf ) if for all i ≤ k,
P+

i = [[mi]] and Pf = [[mf ]].

Example 3. Figure 2 depicts a marked CPN (N ,m0) and its abstract reach-
ability graph. The anonymous edges are represented by single lines, border
edges by double lines. For border edges labelled by T ′, we omit the brack-
ets defining T ′ (e.g., {t1, t2} is shown as t1, t2). Let σ = m0

t1t2−−→ 0 a fir-
ing sequence with sig(σ) = (m0 1p2 0,0), and the following symbolic path
in ARG(N ,m0): c = ({p1} t1−→ {p2} {p2} t2−→ ∅, ∅); c accepts sig(σ). For fir-

ing sequence σ′ = m0
(2−nt12

−nt2)n≥1−−−−−−−−−−−→ 0 with sig(σ′) = (m0 0,0), take pair:

c′ = ({p1, p2} {t1,t2}−−−−→ ∅, ∅) in ARG(N ,m0). Since {p1} →∗ {p1, p2}, c′ accepts
sig(σ′). Figure 3 depicts another marked CPN (N ′,m′

0) and its abstract reacha-

bility graph. Consider the symbolic path in ARG(N ′,m′
0): c′′ = ({p1, p2} {t1,t2}−−−−→

∅, ∅). The abstract reachability graph does not depend on the exact weights of
the net. Here, if x = 1, then no signature of a firing sequence will be accepted
by c′′ since for all lim-reachable marking ms, ‖m‖1 � m(p1) + m(p2) = 1. On

the other hand, if x = 2, then σ′′ = m0

1
4 t1−−→ m1

(2−n( 1
2 t11t2

1
4 t1))n≥1−−−−−−−−−−−−−−→ 0 with

m1 = 1
2p1 + 1

4p2 fulfills sig(σ′′) = (m0 0,0).

Fig. 2. A marked CPN and its ARG.
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Fig. 3. Another marked CPN and its ARG.

Fig. 4. The symbolic reachability tree of the marked CPN of Fig. 2.

The next proposition shows that the ARG accepts the signatures of all trans-
finite firing sequences (but possibly more as illustrated by the CPN of Fig. 3).
Its proof is an immediate consequence of the definition of the edges as discussed
above.

Proposition 7. Let (N ,m0) be a marked CPN and σ be a transfinite firing
sequence for (N ,m0). Then there exists a symbolic path (s, Pf ) of ARG(N ,m0)
such that sig(σ) is accepted by (s, Pf ).

In order to take into account the markings while building the SRT, we intro-
duce two operators on sets of markings of CPN.

Definition 16. Let N be a CPN and R be a set of markings. Then:

closure(R) = {m′ | ∃m ∈ R [[m]] →∗ [[m′]] ∧ m′ ∈ lim−RS(N ,m)}.

Let tr = P ′ T ′
−→ P ′′ be a border edge of ARG(N ). Then succ(tr, R) is:

{m′ | ∃m (2−nσ)n≥1−−−−−−−→ m′ ∧ m ∈ R ∧ [[m]] = P ′ ∧ [[m′]] = P ′′ ∧ [[�σ]] = T ′}.

We are now in a position to define the symbolic reachability tree which will
keep track of the abstract signatures of a marked CPN.

Definition 17 (Symbolic reachability tree). Let (N ,m0) be a marked CPN.
The symbolic reachability tree SRT (N ,m0), of (N ,m0) is a directed tree whose
vertices v are labelled by a non empty set of markings Rv and their common mode
Tv, and edges are labelled by border edges of ARG(N ,m0), inductively defined
by:
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– The root r is labelled by Tr = Tm0 and Rr = closure({m0}).

– Let v be a vertex labelled by Tv and Rv. For all border edge tr = P ′ T ′
−→ P ′′

such that succ(tr, Rv) �= ∅ there is a vertex v′ and an edge v
tr−→ v′ with

Tv′ = TP ′′ and Rv′ = closure(succ(tr, Rv)).

This tree is finite with depth at most T since every vertex has a finite number
of children with their mode strictly included in the mode of their father.

Example 4. In the examples of SRTs we only represent the set of markings
labelling a vertex omitting their common mode. The SRT of the CPN of Fig. 2
is depicted in Fig. 4. The set of markings associated with the root are the
lim-reachable markings such that p1 remains marked. Using the border edge

P
{t1}−−−→ {p2}, one reaches the vertex v2 whose set of markings is such that p1

is unmarked and p2 is marked, and thus their common mode is {t2}. Via the

border edge P
{t1,t2}−−−−→ ∅, one reaches the vertex v3 whose set of markings is the

null marking with ∅ as mode. Observe that some vertices have the same set of
markings and could be merged, thus producing a directed acyclic graph. The
SRT of the CPN of Fig. 3 when x = 2 is depicted in Fig. 5. The set of markings
associated with the root are those lim-reachable markings for which either p1 or
p2 remains marked; hence their common mode is T . This set is characterized by

the inequalities 0 < m(p1) + 2m(p2) ≤ 1. Using the border edge P
{t1,t2}−−−−→ ∅,

one creates the vertex v1, whose set of markings is the null marking, with ∅ as
mode.

The next two propositions establish that the SRT exactly captures the sig-
natures of the CPN.

Fig. 5. The symbolic reachability tree of the marked CPN of Fig. 3 when x = 2.

Proposition 8. Let (N ,m0) be a marked CPN and σ be a κ-transfinite firing
sequence with sig(σ) = ((mi)i≤k,mκ). Then there exists a path ρ = r

tr1−−→
v1

tr2−−→ · · · trk−−→ vk in SRT (N ,m0) such that: ∀1 ≤ i ≤ k mi ∈ Rvi
∧ mκ ∈ Rvk

.

Proof. Due to Proposition 5, there exist finite (possibly null) sequences σ0,0,
σ0,1, . . ., σk,0, σk,1 with 0 ≤ k ≤ |T | such that:

– for all i ≤ k, mi,0
σi,0−−→ mi,1

(2−nσi,1)n≥1−−−−−−−−→ mi+1,0 with m0,0 = m0 and
mk+1,0 = mκ;

– [[�σi,0]] = [[�σi,1]] and [[mi,0]] ∪ •[[�σi,1]]• ⊆ [[mi,1]];
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– sig(σ′) = sig(σ), where σ′ = (σi,0(2−nσi,1)n≥1)i≤k

is a finite-length (k + 1)ω-transfinite sequence;
– the leaps of σ′ are 0, ω, 2ω, . . . , kω.

When Tmκ
= Tm0 , by definition of Rr = closure(m0), one has mκ ∈ Rr since

mκ is lim-reachable from m0; thus ρ consists only of r.
Otherwise we build ρ in an inductive way. Note that Tm0,1 = Tm0 , and

since m0,1 is reachable from m0, also m0,1 ∈ Rr. Define P ′ = [[m0,1]],

P ′′ = [[m1,0]] and X = [[σ0,1]]. Note that tr1 = P ′ X−→ P ′′ is a border
edge of ARG(N ,m0) and m1,0 ∈ succ(tr1, Rr). Thus succ(tr1, Rr) �= ∅, and
there is a vertex v1 and a transition r

tr1−−→ v1 with m1,0 ∈ succ(tr1, Rr) and
m1,1 ∈ closure(succ(tr1, Rr)) = Rv1 .

By induction hypothesis, one gets a path r
tr1−−→ v1 · · · trk−−→ vk such that for

all 1 ≤ i ≤ k, mi,0 ∈ Rvi
. Since mκ = mk+1,0 is lim-reachable from mk,0 and

Tmκ
= Tmk,0 , we have mκ ∈ Rvk

, which concludes the proof. ��

Proposition 9. Let (N ,m0) be a marked CPN, ρ be a path r = v0
tr1−−→ v1

tr2−−→
· · · trk−−→ vk in SRT (N ,m0) and mκ ∈ Rvk

. Then there exists a transfinite firing
sequence σ with sig(σ) = ((mi)i≤k,mκ). such that: ∀1 ≤ i ≤ k mi ∈ Rvi

.

Proof. We build σ by induction. When k = 0, mκ ∈ Rv0 . By definition of Rv0 ,
there exists a infinite firing sequence m0

σ−→ mκ and Tmκ
= Tm0 which implies

that the signature of σ is (m0,mκ).
Assume now that k > 0. Then there exists a border edge trk = P ′ X−→ P ′′ and

a marking mk ∈ succ(tr, Rvk−1) such that [[mk]] = P ′′ and mκ is lim-reachable
from mk and Tmκ

= Tmk
.

Since mk ∈ succ(tr, Rvk−1), there exists m−
k ∈ Rvk−1 such that [[m−

k ]] = P ′,
and σ is a repeated discounted sequence with [[�σ]] = X and m−

k
σ−→ mk.

By induction hypothesis, we obtain a transfinite firing sequence from m−
1 ∈

Rr to mκ, and thus a transfinite firing sequence from m0 to mκ such that its
leaps are m0,m1, . . . ,mk as required by the proposition. ��

4.2 Terminal Components of the SRT for Bounded CPNs

As for marked Petri nets, a marked CPN is bounded if there exists a bound
B ∈ N such that for all reachable markings m, ‖m‖∞ ≤ B. There is a useful
characterization of (un)boundedness for marked CPN via linear programming.

Theorem 3 ([12]). Let (N ,m0) be a marked CPN. Then (N ,m0) is unbounded
iff there exists v ∈ R

T
+ such that (1) C · v � 0 and (2) [[v]] ⊆ Tm0 .

Consider m a marking belonging to a strongly connected component (SCC)
of the reachability graph of a bounded Petri net. Then for all m′ reachable from
m, m is reachable from m′. This property, which is called reversibility and whose
proof follows from the definition of SCCs, is of crucial importance in biological
applications (characterization of phenotypes, etc.).
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Notation. A terminal component of the SRT is the set of markings associated
with a leaf of the SRT. Observe that by definition of the SRT for all m, m′ in
a terminal component, Tm = Tm′ .

Here we establish reversibility inside terminal components of the SRT of a
bounded marked CPN. In the context of CPNs, reversibility can be stated as
follows: Let m be a marking of a terminal SRT component and m′ be lim-
reachable from m, then m is lim-reachable from m′. To prove this, let us recall
the following proposition from linear programming theory about duality.

Proposition 10. Let A be a real matrix of dimension K × L and 1 ≤ k ≤ K.
Then the following statements are equivalent:

– ∃v ∈ R
K
+ v · A ≤ 0 ∧ v[k] > 0

– � ∃w ∈ R
L
+ A · w ≥ 0 ∧ (A · w)[k] > 0

Let us consider B = −At with dimension of A being now L × K. Then we
get another formulation for the duality property obtained by combining trans-
position and additive inversion.

Proposition 11. Let B be a real matrix of dimension L × K and 1 ≤ k ≤ K.
Then the following statements are equivalent:

– ∃v ∈ R
K
+ B · v ≥ 0 ∧ v[k] > 0

– � ∃w ∈ R
L
+ w · B ≤ 0 ∧ (w · B)[k] < 0

Using Proposition 10, one can reformulate the characterization of the bound-
edness of a marked CPN stated by Theorem 3.

Notation. Let N be a CPN, C be its incidence matrix and T ′ ⊆ T . Then CT ′

denotes C reduced to the columns of T ′.

Theorem 4. Let (N ,m0) be a marked CPN. Then (N ,m0) is bounded iff there
exists w ∈ R

P
+ such that w · CTm0

≤ 0 ∧ [[w]] = P .

Proof. Let us recall the characterization of Theorem 3. (N ,m0) is bounded iff
there does not exist v ∈ R

T
+ such that C · v � 0 and [[v]] ⊆ Tm0 , which

is equivalent to the assertion that there does not exist v ∈ R
Tm0
+ such that

CTm0
· v � 0. This is also equivalent to: “For all p ∈ P , there does not exist

v ∈ R
Tm0
+ such that CTm0

· v ≥ 0 ∧ (CTm0
· v)[p] > 0.”

Applying Proposition 10, this is also equivalent to the following statement:
“For all p ∈ P , there exists wp ∈ R

P
+ such that wp · CTm0

≤ 0 ∧ w[p] > 0.”
Setting w =

∑
p∈P wp, this is equivalent to:

There exists w ∈ R
P
+ such that w · CTm0

≤ 0 ∧ [[w]] = P . ��
The next lemma implies that, starting from a marking of a terminal compo-

nent, the inequality of Theorem 4 is in fact an equality; that will be stated by
Theorem 5 below.
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Lemma 3. Let (N ,m0) be a bounded marked CPN such that for all m ∈
lim−RS(N ,m0), Tm = Tm0 . There does not exist w ∈ R

P
+ such that:

w · CTm0
� 0.

Proof. Due to Proposition 1, there exists m1 ∈ RS(N ,m0) such that,
for all p ∈ •Tm0 , m1(p) > 0. Thus for all t ∈ Tm0 , {t} ∈ FS(N ,m1).
Since FS(N ,m1) is closed under union, any subset of Tm0 belongs to FS(N ,m1).
Hence lim−RS(N ,m1) = {m ∈ R

P
+ | ∃v ∈ R

Tm0
+ ∧ m = m1 + CTm0

· v}.
Assume by contradiction that there exists w ∈ R

P
+ and t ∈ Tm0 such that:

w · CTm0
≤ 0 and (w · CTm0

)[t] < 0.

Let α = sup(v[t] | v ∈ R
Tm0
+ ∧ m1 + CTm0

· v ≥ 0). Since w · CTm0
≤ 0 and

(w · CTm0
)[t] < 0, α is finite. Due to linear programming theory,

there is some v such that m1+CTm0
·v ≥ 0 and v[t] = α. Let m = m1+CTm0

·v.
Then m ∈ lim−RS(N ,m1) ⊆ lim−RS(N ,m0) and t /∈ Tm, a contradiction. ��
Theorem 5. Let (N ,m0) be a bounded marked CPN such that Tm = Tm0 for
all m ∈ lim−RS(N ,m0). Then there exists w ∈ R

P
+: w ·CTm0

= 0 ∧ [[w]] = P .

Proof. Since (N ,m0) is bounded, there exists w ∈ R
P
+ such that w · CTm0

≤ 0
and [[w]] = P . By Lemma 3, there is no w such that w · CTm0

� 0.
Hence w · CTm0

= 0. ��
Let m0 be a marking of a terminal component of the SRT of a bounded

marked CPN. While Theorem 5 states that, when restricted to Tm0 , there is a
place invariant whose support is P , one has by the following theorem that there
is a transition invariant whose support is Tm0 .

Theorem 6. Let (N ,m0) be a bounded marked CPN such that for all m ∈
lim−RS(N ,m0), Tm = Tm0 . Then there exists v ∈ R

T
+ such that CTm0

· v =
0 ∧ [[v]] = Tm0 .

Proof. Let t ∈ Tm0 . Lemma 3 implies that there does not exist w ∈ R
P
+ such

that w ·CTm0
≤ 0 and (w ·CTm0

)[t] < 0. Applying Proposition 11, there exists vt

such that CTm0
·vt ≥ 0 and vt[t] > 0. Let v =

∑
t∈Tm0

vt. Then CTm0
·v ≥ 0 and

[[v]] = Tm0 . If CTm0
·v � 0 then, due to Theorem 3, CTm0

would be unbounded,
a contradiction. So CTm0

· v = 0. ��
The next theorem establishes reversibility inside terminal components of the

SRT of a bounded marked CPN.

Theorem 7. Let (N ,m0) be a bounded marked CPN such that for all m ∈
lim−RS(N ,m0), Tm = Tm0 . Then for all m ∈ lim−RS(N ,m0),
lim−RS(N ,m) = lim−RS(N ,m0).
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Proof. Let m be an arbitrary marking in lim−RS(N ,m0), there exists v ∈ R
Tm0
+

such that m = m0 + CTm0
· v. Due to Theorem 6, there exists v′ ∈ R

T
+ such

that CTm0
· v′ = 0 ∧ [[v′]] = Tm0 .

There exists some n ∈ N such that for all t ∈ Tm0 , nv′[t] > v[t]. Thus
v′′ = nv′ − v ≥ 0, [[v′′]] = Tm0 and m0 = m + CTm0

· v′′. Since Tm0 is the
maximal element of FS(N ,m), then using Theorem 2, m0 ∈ lim−RS(N ,m). ��

One could ask whether this result could be strenghtened with reachability
instead of lim-reachability. The next proposition shows that this is not the case.

Proposition 12. There exists a bounded marked CPN such that for all m ∈
RS(N ,m0), Tm = Tm0 and there exists m′ ∈ RS(N ,m) with m /∈ RS(N ,m′).

Proof. Consider the marked CPN of Fig. 3 with x = 2. Any reachable marking
m can be written as m = ap1 + bp2 with 0 < a + 2b ≤ 1, hence Tm = T .

Then m
bt2

a+b
2 t1−−−−−−→ m′ with m′ = a+b

2 p2. Since the total number of tokens cannot
increase, m /∈ RS(N ,m′). ��

4.3 Building the Symbolic Reachability Tree

In order to build the SRT, we need to specify a finite representation of the sets
Rv and the intermediate sets (see Sect. 4.1) that allows us to check emptyness.
To do so, we introduce existential formulas of linear inequalities whose variables
are either place markings denoted by m(p) for p ∈ P , or additional variables in
a countable set X. Such a formula can be written as:

ϕ = ∃x1 . . . ∃xn

∨

i≤m

∧

j≤ni

∑

k≤n

ai,j,kxk +
∑

p∈P

ai,j,pm(p) �i,j bi,j

where for all i, j, k and p, ai,j,k, ai,j,p, bi,j ∈ Q and �i,j ∈ {≤, <,≥, >,=}.
Φ(N ) is the set of such formulas. Given a formula ϕ, [[ϕ]] denotes the set of

markings that satisfy ϕ. The emptyness of [[ϕ]] can be decided in polynomial
time w.r.t. the size of ϕ by solving the m linear programs corresponding to the
clauses of the external disjunction.

Following the definition of the SRT, one observes that given a formula ϕ, our
problem boils down to compute a formula ϕ∗ such that [[ϕ∗]] = closure([[ϕ]]) and
given a border edge tr to compute a formula ϕtr such that [[ϕtr]] = succ(tr, [[ϕ]]).

Proposition 13. Let N be a CPN and ϕ ∈ Φ(N ). Then one can compute a
formula ϕ∗ ∈ Φ(N ) such that [[ϕ∗]] = closure([[ϕ]]) and given a border edge tr
a formula ϕtr ∈ Φ(N ) such that [[ϕtr]] = succ(tr, [[ϕ]]).

Proof. Let ϕ ∈ Φ(N ). Then ϕ∗ is defined by:

∃m′ ∈ R
P
+ ϕ[m′/m] ∧ ∃v ∈ R

T
+ m = m′ + C · v

∧
∨

P ′→∗P ′′

∨

T ′∈FS(N ,P ′)

[[m′]] = P ′ ∧ [[m]] = P ′′ ∧ [[v]] = T ′
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Here the new variables are m′ that must fulfill m′ ∈ [[ϕ]] and the Parikh
vector v of an infinite sequence from m′ to m. The second line ensures that
Tm = Tm′ and that combined with the state equation of the first line such an
infinite sequence exists (by the characterization of lim-reachability).

Let ϕ ∈ Φ(N ) and tr = P ′ T ′
−→ P ′′ be a border edge. Then ϕtr is defined by:

∃m′ ∈ R
P
+ ϕ[m′/m] ∧ ∃v ∈ R

T
+ m = m′ + C · v

∧ [[m′]] = P ′ ∧ [[v]] = T ′ ∧ m = ∧[[m]] = P ′′

The new variables are m′ that must fulfill m′ ∈ [[ϕ]] and the Parikh vector
v of a repeated discounted sequence from m′ to m. The second line combined
with the state equation of the first line ensures the existence of such a repetitive
discounted sequence (due to their characterization). ��

Using Proposition 13, we can associate with every vertex v a satisfiable for-
mula ϕv ∈ Φ(N ) such that Rv = [[ϕv]]. The whole construction is performed
in exponential time for two reasons. First the number of vertices of the SRT
may be exponential. Then, due to the disjunctions indexed over some subset of
places P ′, P ′′ and over FS(N , P ′), the size of the formulas may also be exponen-
tial. Fortunately these two factors are independent yielding a single exponential
bound.

5 Conclusion

In order to analyze the qualitative behaviour of CPNs, we have focused on the
mode of a marking: i.e., the subset of transitions fireable in the future. To do so,
we have introduced transfinite firing sequences and two finite abstractions: tra-
jectories (sequences of decreasing modes) and signatures (trajectories enlarged
by witnessing markings). We have shown that w.r.t. these abstractions, trans-
finite sequences generate more behaviours than infinite sequences, but within
transfinite sequences, those of ordinal less than ω2 were expressive enough.

The symbolic reachability tree (SRT) we have introduced captures all possible
signatures of a CPN. We have established that the set of markings associated
with the leafs of the SRT satisfy reversibility, a desirable property corresponding
e.g. to attractors of biological systems.

From an algorithmic point of view, we have shown that the trajectory prob-
lem is NP-complete. In addition, we have designed an exponential time building
of an effective representation of the SRT.

Several lines of future work remain to be explored. From a theoretical point
of view, we plan to study transfinite sequences with infinite length (as opposed
to those studied here): investigation of fairness properties, transfinite sequences
with multiple accumulation points, etc. On a more abstract level, the relations
between CPN models with other existing dynamic models for biological networks
are a major issue; we also hope to gain new perspectives for the control of the
long-term behaviour (e.g. in cellular reprogramming [17] and medical therapies).
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18. Paulevé, L., Kolcák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract,
and scalable modeling of biological networks. Nat. Commun. 11(1), 4256 (2020)

19. Takai-Igarashi, T.: Ontology based standardization of Petri net modeling for sig-
naling pathways. In Silico Biol. 5(5–6), 529–536 (2005)

https://doi.org/10.1007/978-3-030-31304-3_1
https://doi.org/10.1007/978-3-030-31304-3_1


Hilbert Composition of Multilabelled
Events

Elvio G. Amparore(B) , Susanna Donatelli , and Lea Terracini
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Abstract. Any language for modelling concurrent and distributed sys-
tems features some sorts of composition and synchronization. This is
usually beneficial in the design and verification of complex models. The
focus of the paper is on events, like events in Discrete Events Dynamic
Systems, or transitions in Petri nets, in which events are labelled with
multisets of (conjugated) symbols.

We propose a novel synchronization approach that is based on a well-
grounded mathematical theory. Using a simple and intuitive pairwise
composition with regular labels, we show that the synchronization gen-
erates a set of events that is equivalent to a set of Hilbert bases of poly-
hedral convex cones. Such connection with the theory of Hilbert bases
allows us to prove several useful properties of the composition, as well
as an effective algorithm to compute such synchronizations. Finally a
calculus of events, named Hilbert Calculus of Events, is formulated, for
which basic properties are proved.

Keywords: Event synchronization · Petri Box Calculus · Graver
basis · Hilbert basis

1 Introduction

Composition is a central aspect of Discrete Events Dynamic Systems (DEDS)
modelling. Whether it is realized through a formally defined calculus and associ-
ated properties, or whether it is just a graphical composition in a tool (or, better,
both), whether the underlying formalism are Petri nets or process algebras, it is
often essential to model and verify large systems.

Synchronization of transitions in Petri nets has often been inspired by
CSP [9], as in [5], or by the action/co-action paradigm of CCS [11], as in the Petri
Box Calculus (PBC) [3]. PBC actually goes beyond the standard CCS synchro-
nization by allowing transition labels to be multisets of (conjugated) symbols, for
reasons that we shall review in Sect. 1.1. PBC transition synchronization is given
in terms of a pairwise composition rule that, under some conditions,generates
infinite nets. A later attempt to produce a finite set is presented in [2]. The pro-
duced set is indeed finite, but it may not produce some relevant synchronization
(see [1], pag. 13, for an example).

In this paper we address the following research question:
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Is it possible to define a synchronization of events labelled with multisets
of symbols that produces a finite set of events and for which we can prove
essential properties (like commutativity and associativity) and which is
meaningful from a modelling point of view?

The main contribution of this paper is to define such synchronization through
a bounded pairwise composition of events, provide an algorithm for the compu-
tation of the synchronized events and to prove the finiteness and uniqueness of
the computed set through a parallel with the computation of the Hilbert basis
of a monoid.

To do so, the paper first reviews some previous work (Sect. 1.1) and gives the
basic definitions used throughout the paper (Sect. 2), and then defines the syn-
chronization operator hc (Sect. 3). The hc operator adds to a set of events a set
of synchronized events and Sect. 4 provides a finite procedure to compute them,
and proves its relationship with the Graver basis of a monoid of events. Section 4
also compares the proposed hc operator with the synchronization operators of
CCS and PBC. Section 5 defines the Hilbert Calculus of Events (HCE), which
includes parallel composition and restriction and we prove a few basic properties.

1.1 Previous Work

Although HCE deals with events independently of the high-level formalism for
defining them, our long-term goal is to define a calculus of Petri nets, therefore
this section on previous work, and the comparison in the paper, concentrates
mainly on Petri nets. Moreover we concentrate on the works for Petri net syn-
chronization that are directly connected with the presented approach. A wider
review of the net algebras proposed in the literature, also for colored nets, and an
identification of the Petri net tools that support compositionality can be found,
for example, in [1].

A first idea of algebra for Petri nets was presented in [10], based on composi-
tion of “head” and “tail” places. No transition synchronization is provided, but
a transition-based refinement is defined, in which a transition is substituted by
an expression of nets. The fundamental work on CSP [9] and CCS [11] has had a
large impact on the study of net algebras. An early proposal for CSP-like tran-
sition synchronization can be found in [5], while the main proposal of CCS-like
net algebra is PBC [4].

PBC is a complete algebra that operates on Petri net components, known
as Petri boxes, which are nets where places are labeled as either enter, exit
or internal and transitions are labelled by a multiset of actions and co-actions.
Place and transition composition operators are distinct. Places can be composed
as sequences or choices. Transitions are composed by synchronization over an
action a and its co-action â. Synchronization of an action a with its co-action â
produces the silent action τ . The operator is called sy: performing B sy a adds to
the Petri box B a new transition for each pair of transitions that include action
a and, respectively, â in their labels. Multiple nets can be composed by parallel
composition, followed by a synchronization.
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The choice of multiset labelling in PBC is motivated by the need to achieve
“multi-handshake” (or multi-way) synchronization. This synchronization is rel-
evant from a modelling point of view, as discussed in [4, Sec. 2.8 and Chap. 9],
for example to model an atomic operation on multiple variables. Although it is
enough to label transitions with a set of actions, to model multi-way synchro-
nization among three transitions requires that the label of the resulting transi-
tion is the sum (and not the union) of the labels of the transitions that have
been synchronized, which naturally gives rise to multiset labelling. As discussed
in [4, p. 21], if this is not the case commutativity of the synchronization is not
guaranteed, and (B sy a) sy b may be different from (B sy b) sy a.

Unfortunately, PBC synchronization can generate an infinite number of new
transitions, as in [3, Sec. 4.5], and, although only a finite subset of them can
be enabled for a given initial marking, this is clearly impractical. The work
in [2] proposes a different definition for sy a, which is guaranteed to be finite
as it is shown to be equivalent to the computation of the minimal semiflows
of the matrix that describes the labels of the transitions. This computation,
however, may result in generating only a subset of the possible synchronizations
(particularly, not all τ labelled transitions are generated). An example of this
problem is presented and discussed in [1, page 13].

This paper builds on our previous work [1], which proposes an open frame-
work for composition of Petri nets that can be instantiated to achieve various
patterns of composition, as, for example, CSP-like composition [5], and syn-
chronization of transitions as in PBC. Unlike PBC, in [1] the same composition
criteria is used for composing transitions and composing places. The composi-
tion algorithm in [1] exploits the ideas of [2], of modifying the Fourier-Motzkin
algorithm for minimal semiflows: proceeding by pairwise sums as PBC it ensures,
unlike the proposal in [2], that all τ interactions are generated. Unfortunately,
the generated set is not guaranteed to be finite.

Paper’s Contribution. This paper moves one step forward previous work by
concentrating only on synchronization of a set of events, and by placing this
operation in the context of the computation of the Graver basis of the monoid
generated by the linear combination of the set of events to be synchronized. A
Graver basis is a union of Hilbert basis of appropriate monoides and the mathe-
matical properties of the Hilbert bases of polyhedral convex cones are exploited
to prove finiteness and uniqueness of the set of synchronized events, as well as
some properties like associativity and commutativity, as well as the presence of
all the smallest synchronized events, which include all the τ interactions.

2 Definitions

In this section we provide the basic definitions for multisets, symbols, tags and
labels that are needed to define labelled events. Labels associated to events are
multisets of “symbols” and “conjugated symbols” (co-symbols for short). We
prefer to use the term symbol, instead of action (and co-action) as in CCS or
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PBC, since we plan to use in future work the proposed synchronization operator
to compose both Petri nets transitions and places.

Multisets. Given a discrete set A = {a1, a2, . . . , ak}, a multiset on A is a function
μ : A → N that assigns to each element a of A a non-negative cardinality value,
denoted with μ�a�. Let U(A) be the set of all multisets of A.

Let Σ = {a, b, c, . . .} be an alphabet of symbols. Given a symbol a ∈ Σ,
â denotes its co-symbol, with â �= a. As usual we define the complementary
operation ◦̂ as a bijective function that maps symbols with their corresponding
co-symbols and vice versa, so that ˆ̂a = a. Given Σ we can define the set of
tags V as the set of all symbols in Σ together with their co-symbols. So for
Σ = {a, b, c, . . .} we have V = {a, â, b, b̂, c, ĉ, . . .}. The notion of tag and co-tag
is as for symbols.

Labels. Let U(V) be the set of all natural multisets of tags. Elements of U(V) are
called labels. The empty label (empty multiset) is denoted by τ . A label l ∈ U(V)
is regular iff ∀a ∈ V : l�a� > 0 ⇒ l�â� = 0, i.e. a label is regular if it cannot
include simultaneously a tag and its conjugated: a + 2â + 2b is not a regular
label, while 2a + b̂ + 2ĉ is. Let U(V)reg be the set of all regular labels.

In this paper we shall consistently use plain letters to indicate multisets, and
bold letters for their representations as vectors. If we assume some indexing over
Σ, then any regular label l can be represented without loss of information by a
vector l in Z

|Σ| according to the relation l[a]
def= l�a� − l�â�. In this paper, with

a slight abuse of notation, we assume that a tag coincides with its index in the
vector, i.e. l[a] is the value of vector l for the index of tag a. From now on we
shall assume that labels are regular, unless otherwise stated1.

Let Eref be a set of basic events of reference, and let lab : Eref → U(V)reg be
an event labeling function that assigns a regular label to each basic event. We
indicate with Eref the set of basic labelled events: Eref = {〈e, l〉 : e ∈ Eref, and l =
lab(e)}.

Linear combination of events are called compound labelled event. We shall
use the term event for short hereafter to indicate both a labelled event from the
basic set Eref or a compound one, if there is no need to distinguish or no risk of
confusion. Let |Eref| = n and |Σ| = c. Since we assume label regularity, a basic
or compound event 〈e, l〉 can be represented by a vector [e|l] in N

n × Z
c, with

e being the composed events (or a singleton for basic events), and l the regular
label vector. Consequently, the set of labelled events Eref can be represented in
matrix form as [Eref|Lref], where Eref = Idn×n, the identity matrix of size n.

Given a set of labelled events E we can build on E the additive monoid
M ⊆ N

n × Z
c as the set of all possible linear combinations of the elements of E

with natural coefficients), defined by:

M def= {α · E | α ∈ N
n} (1)

1 Non regular labels will be considered only in the context of the comparison with
PBC, that allows a transition to be labelled with both a symbol and its co-symbol.
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E is then said to be an N-generator of M. Elements in M are also vectors of
the form [e|l] ∈ N

n × Z
c, where e is the vector representation of a multiset over

Eref, and
l = e · Lref (2)

with · the standard vector-matrix multiplication. Note that if Eref ⊆ E then any
non-negative integer vector e is in M, as long as its label l respects (2).

A consequence of (2) is that, for any pair [e1|l1], [e2|l2] ∈ M: (e1 = e2) ⇒
(l1 = l2). The vice versa is obviously not true, as the same label can be assigned
to different basic events or can be generated by different combinations of basic
events.

Elements in M can also be inductively defined as elementary combinations
of basic or compound events.

Definition 1 (Elementary combination). Given two events in vector form
[e1|l1] and [e2|l2] their elementary combination, denoted as [e1|l1] + [e2|l2], is
the event [e1 + e2|l1 + l2].

Obviously, elementary combinations respect Eq. (2).
We shall use E , with |E| = m, to represent a set of (compound) labelled

events, and [E|L] ∈ N
m×n × Z

m×c, its matrix representation. We can also write
L as L = E ·Lref. The matrices in Eq. 3 are an example of the notation used. The
basic events (left matrix) are e0 and e1, with the labelling function lab(e0) = {â}
and lab(e1) = {a, b}. The matrix on the right has three additional compound
events e2, e3 and e4 with coherent labelling (a labelling that respects Eq. (2)).
Note the slight abuse of notation as ei on a columns represents a basic event,
while row ei represents a labelled, possibly compound, event.

[Eref|Lref] =

e0 e1 a b[ ]
e0 1 0 −1 0
e1 0 1 1 1

[E|L] =

e0 e1 a b⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

e0 1 0 −1 0
e1 0 1 1 1
e2 1 1 0 1
e3 2 1 −1 1
e4 2 0 −2 0

(3)

We are interested in defining synchronization of events in terms of compound
events of interest.

3 Synchronization of Events

In this section we first define the synchronization set Hc(E), the set of events
generated from E by synchronization over the whole set of symbols Σ, to then
define E hcA, the synchronization of the events in E over a set of symbols A ⊆ Σ:
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3.1 The Synchronization Set Hc

We are interested only in compound events that are the result of a sequence of
elementary combination of events with joinable labels, according to the following
definition.

Definition 2 (Joinable labels). Two labels l1 and l2 are joinable, denoted as
l1 �� l2, iff ∃a ∈ Σ : l1[a] · l2[a] < 0.

The definition is trivially extended to joinable events, as any pair of events with
joinable labels. In the following we shall use the term “combination” to refer
to a generic elementary combination of events and “composition” to refer to
an elementary combination of joinable events. Note that in the left matrix in
Eq. (3), event e4 is the sum of e1 with itself, so it is a result of a combination,
but it is not the result of a composition. Indeed since we assume that labelling
is regular, an events can never be composed with itself.

To define the set of synchronized events of interest, that we shall call Hc(E),
we need first to define the subset J (E) of M(E) that correspond to a sequence
of events compositions. We drop the E specification when obvious from the con-
text. The generation of J from a set E of events corresponds to the recursive
application of the elementary composition of pairs of joinable events. The recur-
sion may not be finite. To define J it is convenient to introduce the notion of
degree of an element.

Definition 3 (Degree). The degree of [e|l] is: deg([e|l]) def=
n∑

i=1

e[i].

Note that since e ∈ N
n, it holds that deg([e1|l1] + [e2|l2]) = deg([e1|l1]) +

deg([e2|l2]), for any pair [e1|l1], [e2|l2] ∈ M. We can now define the set J of all
possible joined events: compound events that result from a sequence of compo-
sitions.

Definition 4 (Joined events). The set of joined events generated from a set
E of events is the set J =

⋃∞
i=1 J [i], where

J [i] =
{
[e|l] ∣∣ [e|l] ∈ E ∧ deg([e|l]) = i

} ∪{
[e1|l1] + [e2|l2]

∣∣ [e1|l1] ∈ J [j1], [e2|l2] ∈ J [j2]∧
1 ≤ j1, j2 < i ∧ (j1 + j2) = i ∧ l1 �� l2

} (4)

Obviously J ⊆ M, and it may not be finite.
To illustrate the construction of J let us first consider some examples.

Figure 1 shows four examples of composition of multilabelled events. Boxes rep-
resent labelled events in vector form, identified as vi for ease of reference. Vertical
alignment indicates elements of equal degree. Arrows allows to identify the pair
of events that generate the newly composed ones. For the time being, let’s ignore
the distinction of dotted/solid boxes and lines.
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Fig. 1. Simple composition examples.

Example 1. Figure 1(A) is a case of a finite set J produced from two events e1,
with lab(e1) = a and e2, with lab(e2) = 2â (thus labels appears as 1 and −2
in v1 and v2, respectively). Composing e1 with e2 (both of degree 1) produces
the labelled event represented by vector v3, of degree 2. Composition of v1 with
v3 produces the τ -labelled event represented by vector v4, of degree 3. No more
compositions are possible, and therefore J is finite.

Example 2. Figure 1(B) is instead a composition example in which the J set is
infinite. The only difference w.r.t. Fig. 1(A) is the labelling of the two elementary
events (the tag cardinality is increased by one). This small difference in the
labelling is enough to produce an infinite set J , as indeed vector v7 has the same
labelling as v3 but it is built on a larger set of events, so the same compositions
that leads from v3 to v7 can be repeated indefinitely, but each composition
produces an event of larger degree, so the J set is infinite.

Example 3. Figure 1(C) shows an example of a multi-way synchronization real-
ized through two different tags. This is a standard example to show the need for
labels defined over sets. Assuming again that the tags are a and b, in the order,
and the events are named e1, e2, and e3, with lab(e1) = a, as depicted in vector
v1, lab(e2) = {â, b} (vector v2), and lab(e3) = b̂ (vector v3). The composition
generates the full synchronization of the three events (the τ labelled event of
vector v6), as well as the single synchronizations over a (vector v4) and over b
(vector v5). No additional compositions are possible, so the J set is finite.
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Example 4. Figure 1(D) is an example of the use of a multiset over a single tag
for a three-ways synchronization. This is a standard example to show the need for
labels defined over multisets. Using a single tag there are three different ways of
obtaining a full synchronization (a τ event), one corresponds to a real three-ways
synchronization, as in Example 3 (Fig. 1(C)), while the other two correspond to
synchronizing with multiple copies of the same event.

The objective of the composition is to select, among all elements of J , a
finite subset Hc which is representative of the whole set. We shall then discuss
if the choice is really representative of the whole set, both mathematically and
from a modelling point of view.

Note that Hc should not only be finite, but should be computable in a finite
number of steps: we need to identify an algorithm that generates Hc in a finite
number of steps, of course without generating the (possibly infinite) set J .

The first step is to define a notion of reducibility of an event with respect to
an events or a set of events.

Let’s recall that the elements of M have a non-negative e component. We
can then define a notion of reducibility among two elements of M as:

Definition 5 (Reducibility among elements). Given two elements
[e1|l1], [e2|l2] of monoid M, we say that [e1|l1] reduces [e2|l2], written as
[e1|l1] � [e2|l2], if

[e1|l1] � [e2|l2] def= e1 ≤ e2 ∧ |l1| ≤ |l2| ∧ l1 � l2 ≥ 0

where � is the vector Hadamard product (component-wise multiplication), 0 is
the vector of all zeros, |◦| is the vector of absolute values, and a ≤ b is true iff
a[i] ≤ b[i], for all elements i.

The trivial extension to sets is:

Definition 6 (Reducibility against a set). An element [e|l] of monoid M
is reducible by S ⊆ M if ∃[e1|l1] ∈ S: [e1|l1] � [e|l].

Consequently, we say that an element [e1|l1] is irreducible by [e2|l2], if either
l1 and l2 have different signs for the same tag, or they have the same sign but
the condition e1 ≤ e2 ∧ |l1| ≤ |l2| does not hold. To identify Hc we shall use
the following definition of irreducibility against a set. S ⊆ M as:

Definition 7 (Irreducibility against a set S). An element [e|l] ∈ M is
irreducible in S, S ⊆ M, if there is no element [e1|l1] ∈ S s.t. [e1|l1] � [e|l].
Obviously, if [e, l] is reducible on a set S, then it is surely reducible also on
any of its supersets. Vice versa, if [e, l] is irreducible against a set S, then it is
irreducible against any subset of S.

Definition 8 (Irreducible event). An event [e|l] ∈ M is irreducible, if it is
irreducible against the whole set M: there is no element [e1|l1] ∈ M: [e1|l1] �
[e|l].
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We can now define the set Hc of the synchronized events, a subset of the set
of joined events J . In the next section we shall indeed prove that Hc is finite,
unique and computable in a finite number of steps.

Definition 9. The set of synchronized events Hc is the subset of elements of J
that cannot be reduced by any other element of J :

Hc =
{
[e|l] ∈ J ∣∣ �[e′|l′] ∈ J , [e′|l′] �= [e|l] ∧ [e′|l′] � [e|l]} (5)

Clearly Hc ⊆ J ⊆ M. As for the set J , we shall write Hc(E) to make explicit
that the set of synchronized events is computed starting from the set E of events.

Example 5. Let’s consider again the example in Fig. 1(B), in which only 7 ele-
ments of J are depicted. Clearly v3 reduces v7, since they have the same label
and e3 ≤ e7, e3 �= e7 (so the same labelling is achieved with a smaller number
of elementary events). Similarly, v3 reduces v6, as e3 ≤ e6, labels have the same
sign, and |l3[a]| < |l6[a]|. Note that the composition of v7 with v4 produces
the reducible element [6 4|0] that can be reduced by v5. The reader can verify
that, in this example, all elements with dotted boxes are reducible and that
composition of a reducible event with another event (whether reducible or not)
produces another reducible event, so that Hc = {v1,v2,v3,v4,v5}, the set of
events depicted with solid boxes.

Significance of Hc, Part 1. The objective of the synchronization is, as in CCS
and in PBC, to create, when possible, events that are fully synchronized (τ -
labelled). As in CCS and PBC, for the sake of future compositions, also partially
synchronized events are of interest. The choice of considering the Hc set as a
good representative of all possible (infinite) events that are created through
successive synchronizations is coherent with the idea of keeping the events that
achieve a smaller (or equal) label with a smaller number of event compositions.
Indeed being irreducible means that there is no other event that has a smaller
label with a fewer number of composition of the basic events. We shall later see
an additional modelling interpretation once we have established what are the
mathematical properties of the Hc set.

Note that Hc (that we claim is a finite set) is defined by irreducibility w.r.t.
J (often an infinite set). So the above definition is not a constructive one, and
the next section takes care of assessing finiteness and uniqueness of Hc to later
provide an algorithm that computes Hc directly from the set of events E , without
building J .

Synchronization of E over a Subset of Labels A. Given Definition 9, we
can generalize it as a synchronization of the events in E over the set of labels
A ⊆ Σ, denoted as E hcA. This is simply achieved by taking the Hc set using a
projection of the label matrix L over the columns corresponding to the labels A.

Let πA(L) be the projection of L over the columns of A. Let πA(E) =
[E|πA(L)] denote the matrix representation of the set E with labels projected on
A. We can then define E hcA as the set of events of M defined as follows.
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Definition 10. Let [E′|L′] = Hc(πA(E)), then

E hcA = [E′|E′ · Lref] (6)

E hcA is therefore defined over all labels, not just A, since the unprojected
matrix of labels (with all the labels, not just A) are obtained back using Eq. (2).

Example 6. Let’s go back to the example of Fig. 1(C) and consider the effect
of the synchronization over the first tag of the label, that we have called a.
Considering

E = {v1,v2,v3}
we get E hc a = E ∪ {v4}, E hc b = E ∪ {v5}, and (E hc a) hc b = E ∪ {v4,v5,v6}.
The reader can easily verify that, in this example, synchronization over a followed
by synchronization over the second tag of the label, b, is equal to synchronization
over b followed by a which it is also equal to the synchronization over the whole
set of symbols Σ.

4 Computation of the Synchronization Set

We now connect Definition 9 with its fundamental mathematical structure, which
allows us to define its properties. As we shall see, Hc is the Graver basis of M.

4.1 Hilbert and Graver Basis

Let’s recall that Eq. (1) defines M as the additive monoid generated by the linear
combination with natural coefficients of the elements in E . Let’s also recall that,
for each [e|l] in M, and therefore in J , the e component is non-negative.

Let then σ ∈ {+1,−1}c be a vector of c signs, and let Mσ ⊆ M be the
corresponding set of elements of M in the orthant induced by σ defined as:

Mσ = {[e|l] ∈ M | e ≥ 0 ∧ l � σ ≥ 0}

Note that σ only defines c signs, as, by definition, the first n components of the
elements in M are non-negative. Note also that, if [e1|l1] � [e2|l2] there is (at
least) a vector of signs σ such that [e1|l1], [e2|l2] ∈ Mσ .

Definition 11. A subset Hσ ⊆ Mσ is a Hilbert basis of Mσ iff it is a N-
generating2 set of Mσ and it is minimal w.r.t. set inclusion [8], i.e., no proper
subset of Hσ is a generating set of Mσ .

Theorem 1. For a given Mσ , the Hilbert basis Hσ (the set of non-decomposable
compound events) is finite and unique.

2 A N-generating set generates elements as linear combinations with coefficients in N.
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Proof. The proof relies on the well-known Gordan’s Lemma [13, p. 315] that
states that a sufficient criteria for the finiteness/uniqueness of Hσ is that Mσ

is contained in a pointed polyhedral convex cone. M is surely a polyhedral
convex cone, since it is N-generated, but in principle it is not pointed. Let R

σ =
{[x|y] | x ∈ R

m
≥0, y ∈ R

c,y·σ ≥ 0} be an orthant of R, which is a pointed convex
cone. Observe that Mσ ⊂ R

σ . Now consider the set Q = span([Eref|Lref]) ∩ R
σ .

Such set is a pointed convex cone, since r1, r2 ∈ Q ⇒ r1 + r2 ∈ Q and for any
λ ≥ 0, r ∈ Q ⇒ λr ∈ Q. Since Mσ can be alternatively defined as Q∩Z

m+c, we
conclude that Mσ is contained in a pointed convex cone, and thus it is pointed.
Therefore the Hilbert basis Hσ of Mσ is finite and unique. ��

When the Hilbert basis is unique, it can be equivalently characterized as the
set of all nonzero irreducible elements of the monoid [13], a property that we
recall in the following.

Property 1 (From [13]). For a given Mσ , if the Hilbert basis Hσ is unique, then
Hσ = {[e|l] : [e|l] is irreducible in Mσ}

Using an orthant decomposition [6] of M, we can define the Graver basis [6]
G of M as

G =
⋃

σ∈{±1}m

Hσ (7)

i.e., for every orthant R
σ , the set G ∩ R

σ is the unique Hilbert basis for Mσ .
Moreover, we can define the Hilbert basis H0 as the set of all the irreducible

elements with l = 0, defined as:

H0 =
⋂

σ∈{±1}m

Hσ (8)

The set H0 is therefore the N-generating set for the submonoid of M consisting
of all the elements of M having l = 0.

4.2 An Algorithm to Compute Hc as the Graver Basis of M
Before proceeding to present an algorithm for the computation of Hc, let us go
a bit more deeply on the relationship between Graver bases and Hilbert bases.
A Graver basis G is a notion associated to a lattice L which is Z-generated from
a set of vectors (as in (1) but with α defined over Z

n). The projection over an
orthant of a lattice is not a lattice any longer, but a monoid, and the Graver
basis of a lattice is defined as the union of the Hilbert bases of the monoids
generated by projection over all orthants. Properties are typically defined for an
Hilbert basis (as we shall soon see), but the algorithms in the literature address
the Graver basis computation (since the latter is more efficient than computing
the Hilbert basis of each orthant separately) from which the Hilbert basis of
a specific orthant can be obtained by intersection. The definition in Eq. (7) is
therefore slightly more general than the usual one, since we consider a Graver
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basis of a monoid, and not of a lattice. In our context we call Graver basis of a
monoid M the union of the Hilbert basis of the orthants of M.

Consider Algorithm 1, which is a modified version of the Pottier Euclidean
algorithm in n-dimensions [12] for the computation of the Graver basis.

Algorithm 1: Computation of Hc(E)
1 Let E be a finite set of irreducible elements that are a N-generators of M;
2 Define a set F that initially contains E
3 for increasing values of d > 0 do

4 Consider all pairs [e1|l1], [e2|l2] ∈ F with l1 �� l2 and
deg([e1|l1]) + deg([e2|l2]) = d , i.e. have joinable labels and the elementary
sum is d.

5 If there is no element [e′|l′] ∈ F : [e′|l′] � [e1 + e2|l1 + l2], then add
[e1 + e2|l1 + l2] to F and continue searching pairs.

6 Once all elementary sums of degree d have been tested, increase d by one
and continue.

7 The cycle ends when d > 2 · max
(
deg([e|l]) ∣

∣ [e|l] ∈ F
)

8 return F

Algorithm 1 differs from the Pottier algorithm because it considers a set of
N-generators (instead of Z-generators) and considers a graded order [7] for the
loop. Therefore, we prove again a set of properties for this algorithm.

Consider a set E that is assumed to be initially irreducible. Let F (E) be the
set returned by Algorithm 1 on input E .

Theorem 2. F (E) ⊆ J (E).

Proof. Trivial, since F (E) is initialized by E and any element that is added to
F at line 5 has joinable labels, as checked at line 4. ��
Theorem 3. G = F (E).

Proof. This proof is an adaptation of the proof (ii) in [12, pag. 41]. We want to
prove that any element [e|l] ∈ M \ {0} can be written as a sum of elements

[e|l] = [e1|l1] + . . . + [ek|lk], [e1|l1], . . . , [ek|lk] ∈ F (E) (9)

such that
∀ i ≤ k : [ei|li] � [e|l] (10)

which, by Property 1, is equivalent to stating that G ⊆ F (E). We shall later take
care of proving equality.

Since E is a N-generator of M, and E ⊆ F (E) by line 2, it is always possible
to find a sum that satisfies (9). Consider one such sum.

With
(
l
)+ we denote the vector of non-negative elements of l, and with

(
l
)−

the opposite of the non-positive elements of l. Then [e|l] = [e|(l)+−(
l
)−]. Given
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a sum (9), if
(
l
)+ =

(
l1

)+ + . . . +
(
lk

)+ (and consequently
(
l
)− =

(
l1

)− + . . . +(
lk

)−), then (10) holds and we are done, since we are assuming that the k terms
belong to F (E).

Therefore let’s consider the case when there exists two terms, say [e1|l1] and
[e2|l2], for which:

[e1 + e2|
(
l1 + l2

)+] < [e1 + e2|
(
l1

)+ +
(
l2

)+] (11)

and
deg([e1|l1]) + deg([e2|l2]) ≤ deg([e|l]) (12)

(we only write the plus side, since the minus follows). We then have two cases:

– k > 2: the inequality of degrees in (12) is strict.
– k = 2: the (12) is an equality, but the quantity

(
l1 + l2

)+ is strictly smaller
than

(
l1

)+ +
(
l2

)+.

In both cases, we can proceed by induction on [e1 + e2|l1 + l2] and rewrite it as
a new sum for which (9) and (10) hold. Let

[e1 + e2|l1 + l2] = [ek+1|lk+1] + . . . + [eh|lh] (13)

be such rewriting. Since (10) holds, we have
(
l1 + l2

)+ =
(
lk+1

)+ + . . . +
(
lh

)+ (14)

Therefore we have a new rewriting of [e|l] that satisfies (9)

[e|l] = [e3|l3] + . . . + [eh|lh] (15)

and by Eq. (11) and Eq. (14) we conclude that
(
l
)+ ≤ (

l3
)+ + . . . +

(
lh

)+
<

(
l1

)+ + . . . +
(
lk

)+
This chain of rewritings is therefore finite, and it terminates with a rewriting
(15) satisfying also (10). In that case:

1. either k > 1, hence [e|l] is reducible and can be written in terms of elements
of F (E);

2. or k = 1, hence [e|l] was added to F by Algorithm 1, either because [e|l] ∈ E
(line 2) or because [e|l] = [e1|l1] + [e2|l2] (line 5).

We now prove that G = F (E), so there is no element of F (E) that is not in
G. We recall that there are no reducible events in the input set E . Assume by
contradiction that there is instead a [e, l] in F (E), but not in G, which means that
[e, l] is reducible. Let [e′, l′] be the event that reduces [e, l] ([e′, l′] � [e, l]), with
[e′, l′] �= [e, l]. By definition of �, deg([e′, l′]) ≤ deg([e, l]). Let’s consider first
the case deg([e′, l′]) < deg([e, l]). Since Algorithm 1 proceeds in a graded order,
and since the operation at line 5 generates new elements with grade d, when
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[e, l] is added to F (line 5) all irreducible elements of G with a degree strictly
smaller than d are already in F , and therefore a reducible element [e, l] would
not pass the test at line 5 and it would not be added to F , which contradicts
the hypothesis.

We consider instead the case in which deg([e′, l′]) = deg([e, l]), and [e, l] is
tested at line 5 before [e′, l′] is inserted in F . By definition of �: e′ ≤ e and, by
hypothesis, their degrees are equal, so e′ = e. But this implies that also l′ = l,
so the vectors are equal, which, again, contradicts the hypothesis. ��

We can now state the relation between the set of irreducible joined events
Hc(E) and the set F (E) computed by Algorithm1 that forms the Graver basis
of M.

Theorem 4. Hc(E) = F (E).

Proof. By Definition 9, Hc(E) is the set of irreducible events of J w.r.t. J itself.
By Theorem 3 F (E) is the Graver basis of M, that is to say the set of irreducible
elements of J w.r.t. M. But if an element is irreducible against a set, it is
also irreducible against any subset. Therefore, since F (E) ⊆ J by Theorem 2, it
follows that Hc(E) = F (E). ��
Corollary 1. Hc(E) = G. Therefore, by Theorem1, Hc(E) is finite and unique.

Corollary 2. E ⊆ Hc(E) when E is irreducible.

Significance of Hc(E), Part 2. The fact that Hc(E), the set of synchronized events
of interest, is a Graver basis for M leads to another interesting interpretation
of this set. By definition (Definition 11) any element of Mσ can be expressed
as a sum of elements of Hσ , that is to say with labels of the same sign. As
a consequence the events in Hσ can be used to “emulate” the synchronization
behaviour of any element in Mσ . We illustrate this concept through a simple
example: let v1 : [100|10], v2 : [010|01], and v3 : [110|11] = v1 + v2. Clearly
v1 and v2 are irreducible, while v3 is not since v1,v2 � v3. They all belong to
the same orthant. Now consider the synchronization of these events with a new
event v4 : [001|−1−1]. Clearly v3 does not add anything to the resulting set,
since the same result can be obtained by synchronization (i.e. by the elementary
combination) (v1 + v4) + v2, or vice versa by (v2 + v4) + v1.

4.3 Comparison with CCS and PBC

We shall now compare the hc operator for event composition with the action and
co-action synchronization of CCS [11] and of the Petri Box Calculus (PBC) [3].
The reason of the choice of CCS and PBC for comparison is that synchronization
in CCS and PBC, as with hc, is by pairs (pairs of action and co-action in CCS,
pairs of transitions in PBC and pairs of events in hc).

In CCS an agent may evolve through an action a, or its co-action â, or
through the silent action τ . With the terminology of this paper we can say that
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events in CCS are labelled with a single tag or with τ . The result of composing
an agent that can do a with an agent that can do â is a new agent that can do
either a, â, or τ .

PBC goes beyond the CCS synchronization by allowing to label transitions
with multisets of tags, with the additional freedom that both a symbol and its
co-symbol can appear in the label of a single transition, possibly with different
cardinalities. Let’s recall that, instead, hc assumes that all events are labelled
with regular labels.

In PBC events are labelled with multisets of tags, and the composition of an
event labelled 2a with one labelled 2â also result in a τ event, with no further
composition possible, but the composition of an element labelled 2a with one
labelled 3â results in an element labelled â that can be further composed with
the already generated events. When more tags are present in a single label,
the composition may lead to an infinite number of new events. The reader can
find in [3, sec. 4.5] the PBC definition of transition synchronization that can be
intuitively be described as:

Repeatedly choose a, â–pairs of labeled transitions, and each time create
a new composed transition from them. Label this new transition with the
union of their labels minus a single a, â–pair.

(16)

In PBC, when composing over a symbol a, only the portion of the label that
refer to a or â is affected. Moreover e1 and e2 may actually be the same element,
if such an element is labelled with both a and â (i.e. if it has a non-regular
label). In contrast hc sums up the labels: in {[e1|l1], [e2|l2]} hc a is the label a
that drives the synchronization: so a new event is created only if l1[a] > 0 and
l2[a] < 0, or vice versa, but the label of the new event hc is the sum over all
symbols. Note that when PBC and hc work on labels of the form a (or â) as in
CCS, the result for CCS, PBC and for hc is the same.

The composition of PBC may result in a finite (Example 7) or an infinite
set of new transitions. The latter happens every time there is a single transition
labeled with both a and â (Example 8), or when composing two transitions that
are labelled, respectively, with n copies of tag a and m copies of tag â, with
n,m > 1 (Example 9). Even when a synchronization over a produces a finite set,
it is possible that some of the composed transitions become labelled with a label
b and its conjugated, leading to an infinite set of composed transitions if at a
later stage another PBC synchronization over b is performed (Example 11). In
the examples we shall indicate with ET = {〈ti, li〉} the set of labelled transition
on which the synchronization is applied, and with ET sy a the set of transitions
produced by the PBC synchronization over the symbol a.

Example 7. If ET = {〈t1, a〉, 〈t2, â〉}, then ET sy a = ET ∪{〈t1 + t2, τ〉}. The same
set is computed by the hc operator.

Example 8. If ET = {〈t1, a + â〉}, the PBC synchronization of transition t1 com-
poses with itself producing 2t1, labelled again with a + â. The set E ′ = ET sy a
is therefore the infinite set

{〈ct1, a + â〉 ∣∣ c ≥ 1
}
, because any c1t1 can compose
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with any c2t1 resulting in (c1 + c2)t1, always with label a + â. This example is
not possible for hc because the label of t1 is not regular.

Example 9. If ET = {〈t1, 2a〉, 〈t2, 2â〉}, then ET sy a is the infinite set ET ∪
{〈t1 + t2, a + â〉, 〈t1 + 2t2, 2â〉, 〈2t1 + t2, 2a〉, . . .}, i.e. containing all elements

〈c1t1 + c2t2, (c1 − c2 + 1)a + (c2 − c1 + 1)â〉, with c1, c2 ∈ N and |c1 − c2| ≤ 1

The set computed by hc is instead the finite set ET ∪ {〈t1 + t2, τ〉. Note that no
τ -labelled transition is ever created by the sy operator

Example 10. We now consider a three-ways synchronization as in Example 3.
Let ET = {〈t1, a〉, 〈t2, â + b〉, 〈t3, â〉} then (ET sy a) sy b = {〈t1, a〉, 〈t2, â + b〉,
〈t3, b̂〉, 〈t4, b〉, 〈t5, â〉, 〈t6, τ〉}. Therefore hc and sy produce the same set of tran-
sitions/events. The same is true for the variant in Example 4.

Example 11. If ET = {〈t1, a+b〉, 〈t2, â+b̂〉}, then ET sy a = ET ∪ {〈t1+t2, b+b̂〉}.
This means that a successive composition over b will lead to an infinite net.
For ET hc a we get instead ET ∪ {〈t1 + t2, τ〉}. To compare this case with PBC
from a practical point of view, let us consider a synchronization over action a
followed by a synchronization over b. If we interpret a and b as a single request
of two distinct resources, and â and b̂ as the availability of such resources, then
hc produces a single τ transition, while sy of PBC produces first a single tran-
sition labelled with both a request for a resource b and its availability, and
the successive synchronization over b produces an infinite set. Note that in this
example (ET hc a) = (ET hc b) since even if it is a that drives the composi-
tion, the full label of the two events are summed (the same for b). Moreover
(ET hc a) hc b = (ET hc b) hc a = (ET hc a).

The observation that, in PBC, a single transition with a non-regular label
always generates an infinite composition set, is what lead us to the choice of
defining hc only over events with regular labels and to ensure that the applica-
tion of the operator only produces events with regular labels. As we have seen,
regularity is a necessary condition for finiteness, but it is not sufficient, and this
justifies the notion of irreducibility introduced for the hc definition.

5 A Hilbert Calculus of Events

We now complete the synchronization operator with a parallel composition and
a restriction to get a calculus of events, that we name the Hilbert Calculus of
Events (HCE). Note that the calculus does not have a sequential composition,
since the focus of this paper is only on synchronization, a required basis for later
defining, in future work, a calculus for Petri nets.

E ::= Eref set of basic events
| E ‖ E concurrent union
| E hcA synchronization
| E rsA restriction

(17)
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Basic Events Eref . A set of basic (non composed) events, expressed in matrix
form as [Eref|Lref] and having Eref = Id.

Concurrent Union E ‖ E. Given E1 = [E1|L1] and E2 = [E2|L2], defined over
the same set of symbols Σ and disjoint sets of events. E12 = E1 ‖ E2 is the new
set of events defined (in matrix form) as

[E12|L12] =
[
E1 0 L1

0 E2 L2

]
and [Eref

12 |Lref
12 ] =

[
Eref

1 0 Lref
1

0 Eref
2 Lref

2

]
(18)

Synchronization E hcA. The set of events defined by Eq. (6).

Restriction E rsA. The restriction operator removes from E all the events
whose labels include either a or â, for any a ∈ A.

E rsA =
{〈e, l〉 ∣∣ 〈e, l〉 ∈ E and ∀a ∈ A : l[a] = 0

}
In matrix form, restriction eliminates the rows of [E|L] having at least a

non-zero entry in the columns of the tags in A.

5.1 Basic Properties of the Hilbert Calculus of Events

Concurrent Union Properties

E1 ‖ E2 ≡ E2 ‖ E1 [commutative]
E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3 [associative]

Synchronization Properties

(E1 hcA) hcB ≡ E1 hc (A ∪ B) [associative over tags]
(E1 hcA) hcB ≡ (E1 hcB) hcA [commutative]
(E hcA) hcA ≡ E hcA [idempotent]

E hcA ⊆ E hc(A ∪ B) [synchronization over subsets]

Restriction Properties

(E rsA) rsB ≡ (E rsB) rsA [commutative]
(E rsA) rsA ≡ E rsA [idempotent]
(E1 ‖ E2) rsA ≡ (E1 rsA) ‖ (E2 rsA) [distributive over ‖ ]

Composition Properties

(E1 ‖ E2) hcA ≡ (
(E1 hcA) ‖ (E2 hcA)

)
hcA [propagates through ‖]

(E hcA) rsB ≡ (E rsB) hcA such that ∀ [e|l] ∈ E ,(∃a ∈ A : l[a] �=0 ⇒ ∀b ∈ B : l[b]=0
)

and
(∃b ∈ B : l[b] �=0 ⇒ ∀a ∈ A : l[a]=0

)
[non-interfering synchronization and restriction commute]
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Fundamental Property of HCE. HCE operators are deterministic and pre-
serve finiteness and irreducibility.

We now proceed to prove the above properties. Some are trivial (like the ones
for the concurrent union, which is akin to a set union), but others require more
formal proofs.

Theorem 5 (hc is associative w.r.t. tags).
Let A,B ⊆ Σ. Then (E hcA) hcB = E hc(A ∪ B).

Proof. The proof stems from the idea illustrated by the “project and lift” app-
roach of Hemmecke [7], that the computation of the Hilbert basis of a monoid
can be performed “one variable at a time”, by working on a sequence of increas-
ingly larger projections of the monoid. Let M be a monoid on Z

n+c, and let σ
be a vector of n+c signs. Let πj(Mσj ) be the projection of Mσ over the first
j variables of the orthant of sign σj , the first j signs of σ, and Hj the Hilbert
basis of πj(Mσj ).

Lemma 2.2 of [7] ensures that, when j is greater than the rank of the gen-
erator matrix of the monoid3, Gj+1 =

⋃
[e|lj ]∈Hj

[e|lj , lj+1] is a generator set for
πj+1(Mσj+1) if lj+1 is chosen such that [e|lj , lj+1] ∈ πj+1(Mσj+1). Such choice
of lj+1 is trivial in our context since it is uniquely determined by e using (2).
We can therefore compute the Hilbert basis of πj+1(Mσj+1) starting from Gj .
By iterating over j, and considering all possible σ, when j + 1 = n + c what we
get is an iterative method for computing the Graver basis of M one variable at
a time. Of course in our context we can start with j = n, that is to say with
the Hilbert bases of πn(Mσn), to compute Gn+1. Since n is the upper bound of
the rank of the generator matrix (because of Eq. 2), we can apply Lemma 2.2 as
reported above.

To show the application of Lemma 2.2 of [7] on our context, for ease of
notation, let us now assume that there are only two tags a and b, with A = {a}
and B = {b}. As usual n is the number of columns, so we can start with j = n+1,
and can compute the Hilbert basis of πn+1(Mσn+1) and obtain from it the set
Gn+2 of generators for πn+2(Mσn+2) which is exactly Mσ . Since the Hilbert
basis of Mσ corresponds to the set of vectors obtained by synchronization over
all tags, we get (E hc a) hc b = E hc(a ∪ b). The extension over label sets and for
all orthants thus unfolds. ��

As a consequence of Theorem 5, the hc operator is commutative w.r.t. the
order of application to subsets of symbols:

Corollary 3. Let A,B ⊆ Σ. Then (E hcA) hcB = (E hcB) hcA.

Proof. Trivial, since (E hcA) hcB = E hc(A ∪ B) and (E hcB) hcA = E hc
(B ∪ A) ��
Corollary 4. Let A,B ⊆ Σ. Then E hcA ⊆ E hc (A ∪ B).
3 The expression for Gj+1 is different when j is smaller than the rank of the generator

matrix, but this is not reported here since it is not of interest for our proof.
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Proof. Immediate consequence of the proof of Theorem 5. ��
Theorem 6 (Synchronization propagates through ‖).
(E1 ‖ E2) hcA =

(
(E1 hcA) ‖ (E2hcA)

)
hcA

Proof. Let SL = (E1 ‖ E2) hcA, and let SR =
(
(E1 hcA) ‖ (E2 hcA)

)
hcA. Since,

by Corollary 2, E1 ⊆ (E1 hcA) and E2 ⊆ (E2 hcA), it easily follows that SL ⊆ SR.
We now prove that SR does not have more elements than SL. Suppose that an
element [e|l] ∈ SR \ SL exists. Surely, such element [e|l] is irreducible w.r.t.
the columns A and it is not present in (E1 ‖ E2) hcA (i.e. SL). But Corollary 1
ensures that SL is a Graver basis with all the irreducible elements w.r.t. the
columns A, resulting in a contradiction. ��
Theorem 7 (Non-interfering synchronization and restriction com-
mute). Given that there are no two elements of E that are labelled with both
an element from A and an element from B, formally stated as: ∀ [e|l] ∈ E ,(∃a ∈ A : l[a] �=0 ⇒ ∀b ∈ B : l[b]=0

)
and

(∃b ∈ B : l[b] �=0 ⇒ ∀a ∈ A : l[a]=0
)
,

we have that (E hcA) rsB ≡ (E rsB) hcA.

Proof. The proof stems from the fact that the set of events over which hcA
operates is disjoint from the set of events over which rsB operates, and hcA
does not add B labels, as well as rsB does not remove A labels. ��
Theorem 8. HCE operators preserve finiteness and irreducibility.

Proof. The only operation of the calculus that generates new elements (elements
that are not already part of the operands) is the synchronization. But the set
produced by hc is an union of Hilbert bases, which by Theorem 1 is surely finite,
unique and made by irreducible events, proving the statement. ��
Theorem 9. HCE is a finite and deterministic calculus of irreducible events.

Proof. Basic events are irreducible by definition, because Eref = Id. Concurrent
union treats the set of events as disjoint. Restriction only removes events. As
before, the only operation of HCE that generates new elements is the synchro-
nization, and it may only generate irreducible elements (see Corollary 2) and is
unique (i.e. deterministic), proving the theorem. ��

From Theorem 8 and Theorem 9 follows the fundamental property of HCE.

6 Conclusions

In this paper we propose a novel approach for event synchronization that works
by combining pairs of multilabelled events to match symbols and co-symbols.
The objective of the synchronization is to produce a finite set of irreducible
synchronized events. The rational behind irreducibility is the need to minimize
the number of unmatched tags (non τ tags in the label of the synchronized
events), through the minimum number of event compositions. We have provided
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an interpretation of the proposed synchronization from a modelling point of
view, also through a number of examples of basic synchronization patterns.

We establish a direct connection between the pairwise synchronization pro-
cedure and the theory of Hilbert bases. We prove that the synchronization algo-
rithm that performs such pairwise compositions under the constraint of irre-
ducibility and following a graded order is actually computing a set of Hilbert
bases (i.e. a Graver basis) for the monoid representing all possible combinations
of events.

This connection allows us to formulate several properties for the composition,
and for a novel calculus of events that we named Hilbert calculus of events. A
brief comparison of HCE with the well known compositional calculus CCS, PBC
and the calculus of Anisimov, is also provided.

The Hilbert calculus of events only deals with event synchronization and
misses, for instance, sequential compositions of events. Therefore in this form it
is useful as a sub-calculus inside other formalisms. As a future work, we plan
to propose a calculus of Petri nets where nets are composed over places and
transitions following the rules defined for HCE. The well-grounded mathematical
structure of the Hilbert bases should ease the task of proving relevant properties
for the Petri net calculus.
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Abstract. Relational structures like partial orders that are based on acyclic rela-
tions capturing a ‘before’ relationship, can provide versatile frameworks for the
modelling and verification of a wide class of concurrent systems behaviour. There
are also relational structures with an acyclic ‘before’ (strong precedence) rela-
tionship and a possibly cyclic ‘not later than’ (weak precedence) relationship,
which can be used for more general concurrent behaviours. However, in each
of these cases, the execution model is based on sequences or step sequences of
executed actions, where actions are assumed to be executed instantaneously. In
this paper, we drop this restriction and consider executions modelled by interval
orders, where actions are assumed to be executed non-instantaneously. For this
execution model, we introduce new relational structures which can capture both
strong precedence and weak precedence. This is achieved, in particular, thanks
to a novel notion of acyclicity where any mixed cycle of strong and weak prece-
dence is allowed, provided that it contains at least two consecutive weak prece-
dence relationships.

Keywords: interval order · concurrency · relational structure · causality ·
closure · precedence · weak precedence · acyclicity

1 Introduction

Faithful behaviour capture and effective verification techniques of concurrent systems
usually require analyses of relationships, such as causality and independence, between
the events (occurrences of actions) involved in a system run. As explained below, there
is already ample evidence that such an approach greatly improves the practical design,
construction, and verification of complex software and hardware concurrent systems.
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Background. At the heart of the approach to modelling concurrency semantics fol-
lowed in this paper is the view, that everything an observer can report about a run of
a concurrent system is that it comprises a (finite) set of events together with a set of
statements about the mutual relationships between these events.

Consider, for example, a system given by a process expression E = (a.b.c+ d)‖e
describing two concurrent processes, a.b.c+d and e, where the first process is a choice
between executing either action d or actions a, b, c sequentially. Assume further that in
this case all actions are executed atomically and never at the same time (as in a majority
of process algebras and temporal logics). As a result, the only meaningful statement
about the relationship between events x and y is that x was observed before y (we denote
this by x ≺ y) or y was observed before x (denoted by y ≺ x). Moreover, if x is executed
before y, then x will be observed before y. Suppose now that a run of E has executed
a, b, c, and e. Then, knowing the construction of E, we have that e is executed in
parallel with a.b.c, while we can expect that any observer of this run will for sure report
that a ≺ b and b ≺ c, together with other statements about the (observed) precedence
of executed actions. However, no matter what these additional statements are, a report
(i.e., an observation made by a single observer) cannot comprise statements which form
a cycle, such as a ≺ b ≺ c ≺ a or b ≺ e ≺ b, as this would contradict the physical nature
of the concurrent run. Moreover, it should be clear that some of the statements can
be derived from those already made, e.g., , a ≺ c follows from a ≺ b and b ≺ c due
to the transitivity of the ‘happened before (preceded)’ relationship. To summarise, the
observer’s report would comprise two kinds of precedence relationships: (i) those which
result from the construction of the expression (i.e., a ≺ b and b ≺ c); and (ii) additional
relationships which do not violate the graph-theoretic acyclicity of the report. Note that,
by the expression E, for a run executing d and e, an observer will report d ≺ e or e ≺ d.
We would treat these observations separately from the ones above, as we consider this
a different run. In other words, observations are not concerned with choice or conflict
between events.

The above discussion is an informal justification of the following two key principles
of reports which can be supplied for a given run (or execution) of a concurrent system
with atomic and non-simultaneous actions:

– each report is an acyclic relation; and
– any acyclic extension of a report is also a valid report.

It is then remarkable that these two rather meagre principles provide the basis for a wide
range of methods and techniques. In particular, there are two special kinds of reports
with clear semantical meaning:

– saturated reports, i.e., those which are complete in the sense that they cannot be
extended (no relationship can be added) without violating acyclicity; and

– closed reports, i.e., those which comprise all implied relations and cannot be
extended without reducing their set of saturated extensions

It follows that in the sequential case, saturated reports are nothing but total orders
(often called interleavings, represented as sequences of executed actions), and closed
reports are partial orders (often called causal partial orders). For our initial example,
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there are four observations (viz. a ≺ b ≺ c ≺ e, a ≺ b ≺ e ≺ c, a ≺ e ≺ b ≺ c, and
e ≺ a ≺ b ≺ c) and a unique causal partial order (with a ≺ b, b ≺ c, and a ≺ c). Moreover,
the four reports are all the saturated extensions of the causal partial order, which in turn
is the intersection of these reports. Hence, this causal partial order can be used as an
unambiguous representation of a concurrent history comprising the four interleavings.

Motivating Example. Representing concurrent runs through sequences or step
sequences of actions implicitly assumes that these actions are executed instantaneously.
Steps are then sets of ‘simultaneously’ executed actions (i.e., they happen together) and
so here simultaneity is a transitive relation. However, when actions take time, runs need
to be represented as interval orders.1 As argued by Wiener in 1914 [33] — and later,
more formally, in [14] — any execution that can be observed by a single observer must
be an interval order and so the most precise qualitative observational semantics is based
on interval orders, where simultaneity is not guaranteed to be transitive.

An interval order representing a system run is a partial order where each element
(event) e can be thought of as corresponding to a finite interval I(e) on the real (time)
scale. In such a representation, two events, e and f , are ordered iff the end of the first
interval I(e) is less than the beginning of the second interval I( f ). As a consequence,
two events, g and h, are unordered iff the corresponding intervals, I(g) and I(h), overlap
(fully or partially). One then interprets the relationship between e and f - with the end
of I(e) before the beginning of I( f ) - as precedence, and the relationship between g
and h - with I(g) and I(h) overlapping - as simultaneity. As an example, in the analysis
of concurrent programs, it is quite natural to assume that different threads of control
are totally independent unless some synchronisation mechanisms are used. And, due to
software and hardware optimisations used in practice, one needs to take into account
some interleavings at the level of single thread computation [3].

Let us consider the following concurrent program fragment:

init : x = y = 0
a : x = x+1 b : x = x+2

c : y = x

Is it possible to finish the calculation with x = 1 and y = 2? If we assume that the
executions of the statements a, b, c are instantaneous, or that simultaneity is transitive
(like in the case of the sequential or step sequence execution semantics), the answer
is no. However, if we assume that the second thread works simultaneously with the
first one (i.e., at the same time on different machine/processor/core), this outcome is
possible. In such a case, we can resort to the interval order execution semantics. Here,
the handling of x is as follows: if b has begun and a begins before b finishes, then a starts
with x = 0; and if then a finishes after b, it resets x from 2 to 1. And y gets through c the
then current value of x when it begins. In terms of the corresponding intervals, I(b) is
to the left of I(c), and I(a) overlaps with both I(b) and I(c). Hence b precedes c, while
a and b as well as c and a are unordered.

1 While in small examples one might consider changing the granularity of events, for more
involved situations this would lead to an exponential explosion of possibilities obscuring the
structure of the run.
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The Approach Followed in This Paper. Dealing with the semantics of concurrent
systems purely in terms of their individual executions, using e.g., sequences, step
sequences, or interval orders, is far from being computationally efficient in terms both
of behaviour modelling and of validation. To address this shortcoming, more involved
relational structures have been introduced, aiming at a single succinct and faithful rep-
resentation rs of (often exponentially large) sets RS of closely related individual exe-
cutions all having the same executed events. Examples include causal partial orders for
sets of sequences, and invariant order structures for sets of step sequences. Succinctness
is usually achieved by retaining in rs (through intersection) only those relationships
which are common to all executions in RS. Faithfulness, on the other hand, requires
that all potential executions which are extensions of rs belong to RS. Structures like rs,
referred to as invariant structures represent concurrent histories and both desired proper-
ties (succinctness and faithfulness) follow from generalisations of Szpilrajn’s Theorem
by which a partial order is the intersection of all its total order extensions. Although an
invariant structure rs provides a clean theoretical capture of the set RS, to turn them into
a practical tool (as, e.g., in [24]) one needs to be able to derive them directly from single
executions using the relevant structural properties of the concurrent system. This brings
into focus relational structures with acyclic relations on events (e.g., dependence graphs
introduced in [23] and analysed in detail in [10]), which yield invariant structures after
applying a suitable closure operation (e.g., transitive closure).

The approach sketched above has been introduced and investigated in [12,13] as a
generic model that provides general recipes for building analytic frameworks based on
acyclicity. It starts from a class R of relational structures (such as acyclic relations),
which are compared w.r.t. the information they convey (expressed by the relation �
with rs′ � rs if rs is obtained from rs′ by adding new relationships, i.e., rs is more
concrete than rs′). Then the maximal relational structures (such as total orders) Rmax ⊆
R represent individual executions. Invariant structures (like causal partial orders) are
the closed relational structures Rclo ⊆ R representing all executions conforming to
a more abstract concurrent history. A crucial aspect of this generic approach is that
after specifying the set R of relational structures for an application specific class of
concurrent behaviours (e.g., those based on relevant invariant relationships between
events together with a suitable notion of acyclicity), the development of a complete
framework is basically automatic. All what remains to be done, is to define a suitable
notion of closure for the structures in R and to provide a convenient representation of
the closed structures (e.g., in an axiomatic form).

Related Work. The framework based on causal partial orders has been widely used
both in theoretical investigations (e.g., [5,22,30]), tool building (e.g., [7,24]), and appli-
cations (e.g., in [1,31]. The established approach — at first formulated for cases where
system runs are represented as sequences (total orders) of executed actions — was
extended to situations when reports of executions are step sequences (i.e., sequences of
sets of actions that happen together) represented by stratified orders. A comprehensive
theory of both cases, i.e., sequences and step sequences, has recently been published
in the monograph [13]. The framework resulting from considering executions as step
sequences (stratified orders) has already been successfully utilized in computational
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biology [26], digital graphics [25], and model checking [18]. Still, the (step) sequence
frameworks can only be used if event simultaneity is transitive, i.e., all observations of
a concurrent system can be represented by stratified orders.

The use of relational structures to model concurrency phenomena originates from
[20,21,30], and, in the version used here, from [14]. The initial investigations on the
processes of concurrent systems with interval order semantics can be found in [15,16].
Interval orders were also used to investigate communication protocols in [2], in a set-
ting consistent with sending/receiving as intervals boundaries from [19]. In subsequent
works, interval semantics (called ST-semantics) was taken into account in the research
on Petri nets with read arcs [32] and general discussions on distributability of concur-
rent systems [9].

Recall that our approach is based on reports that are observations of runs, meaning
that choices have been made and thus conflicts resolved. As event structures involve
conflicts between events, they are not directly relevant to this paper and we do not com-
pare our approach with Winskel’s event structures [34]. We would also like to point at a
fundamental difference between the approach pursued in this paper, and Allen’s Inter-
val Algebra [4], which employs 13 base relations to capture the possible relationships
between two intervals. In essence, the latter approach is semantically close to real-time
semantics whereas the former is more abstract. For similar reasons, the interval order
semantics used in this paper and the ‘interval semantics’ or ‘interval time semantics’ of,
e.g., [27,29], are incomparable.

Contribution of This Paper. Although the case of interval order runs has received
some attention in the literature, the state-of-the-art is still far from being satisfactory,
and this paper aims to address this. More precisely, following the general approach
formalised in [12,13], we will capture concurrent histories which are based on two
invariant relationships between non-instantaneous events, namely precedence and weak
precedence, intuitively corresponding to the ‘earlier than’ and ‘not later than’ positions
in individual executions. As a result, the present paper deals with concurrent histories
obeying the pattern that whenever a concurrent history comprises two executions with
event e preceding event f in one, and f preceding e in the other, then this concurrent
history also comprises an execution in which e and f are simultaneous, i.e., happen-
ing/existing at the same time (this pattern is referred to as paradigm π3 in the classifica-
tion of different kinds of models of concurrency from [13,14]). Inhibitor nets, Boolean
networks, reaction systems, and membrane systems are examples of concurrent system
models with an execution semantics that adhere to paradigm π3 [13,17].Thus, while
preserving paradigm π3, in this paper we move from the transitive simultaneity exhib-
ited in the stratified order semantics of step sequences to an interval order semantics
where simultaneity is not necessarily transitive.

The main contributions of the paper are:

– a novel (and central to the whole approach) concept of acyclicity tailored for con-
current histories composed of interval orders adhering to paradigm π3, and the defi-
nition of combined interval structures;

– an axiomatisation of interval poset structures, and the proof of their maximality
among all combined interval structures;
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– the proof of the closedness of invariant combined structures among all combined
interval structures;

– a proof of the generalization of Szpilrajn’s theorem for invariant combined structures
carried out within the general framework (‘roadmap’) described in [12].

Structure of This Paper. First, after a preliminary section, we introduce a new con-
cept of acyclicity (called cis-acyclicity) that defines combined interval structures (CI-
structures), the relational structures (with precedence and weak precedence relation-
ships) that underpin the proposed framework. In Sect. 4, the maximal CI-structures,
called interval poset structures (IP-structures) are fully characterised. (Note that IP-
structures play the same role as the total or stratified orders for frameworks where
actions are instantaneous.) Moreover, the suitability of IP-structures to model interval
order behaviours is demonstrated. Next, an axiomatisation of the closed CI-structures,
called invariant combined structures (IC-structures), and the structure closure operation
for CI-structures are provided.

2 Preliminaries

For two binary relations, R and Q, over a set Δ ,

– R◦Q = {(x,z) ∈ Δ ×Δ | ∃y : xRy∧ yQz} is the composition of Q and R.
– R0 = idΔ = {(x,x) | x ∈ Δ} is the identity relation over Δ .
– R+ = R1 ∪R2 ∪R3 ∪ . . . , where R1 = R and Ri = Ri−1 ◦R, for i > 1, is the transitive

closure of R.
– R∗ = R0 ∪R+ is the reflexive and transitive closure of R.
– R is acyclic if its transitive closure is irreflexive (R+ ∩R0 = ∅).

In this paper, a relational structure is a triple rs = 〈Δ ,≺,�〉, where Δ is a finite set
(the domain of rs) and ≺ and � are two irreflexive2 binary relations over Δ . Given a
relational structure rs, we may use Δrs, ≺rs, and �rs to denote its components.

For nonempty sets of relational structures R, S ⊆ R, and rs,rs′ ∈ R:

– rs′ is an extension of rs, denoted rs � rs′, if Δrs = Δrs′ , ≺rs⊆≺rs′ and �rs⊆�rs′ .
– extS (rs) = {rs ∈ S | rs � rs} are the extensions of rs in S .
– Rmax = {rs ∈ R | extR(rs) = {rs}} are the maximal structures in R.
– maxR(rs) = extRmax(rs) are the maximal extensions of rs in R.
– Rdom is the set of all nonempty subsets of R consisting of relational structures with

the same domain. If RS ⊆ R is such that Δ is the domain of all rs ∈ RS, then
⋂

RS = 〈Δ ,
⋂

rs∈RS

≺rs,
⋂

rs∈RS

�rs〉

is the intersection of RS.
– R is intersection-closed if

⋂
RS ∈ R, for every RS ∈ Rdom.

2 We use irreflexive (‘strict’) relationships between events.
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– If R is intersection-closed, then

Rclo = {rs ∈ R | rs =
⋂

maxR(rs)}

are the closed structures in R, and cloR : R →Rclo where cloR(rs) =
⋂

maxR(rs),
for all rs ∈ R, is the structure closure of R.

The following result allows to deal with the closure operation and closed relational
structures without referring to intersections of the maximal extensions of structures.

Proposition 1 (Prop.7.8 in [13]). Let R be an intersection-closed set of relational
structures, S ⊆ R, and f : R → S be a monotonic (i.e., rs � rs′ =⇒ f (rs) � f (rs′))
and non-decreasing (i.e., rs � f (rs)) function. Moreover, for all rs = 〈Δ ,≺,�〉 ∈ S
and x �= y ∈ Δ , we have:

– f (rs) � rs.
– If x �≺ y (or x �� y), then there is rs ∈ maxR(rs) such that x �≺rs y (resp. x ��rs y).

Then f is the structure closure of R, i.e., S = Rclo and f (rs) = cloR(rs), for every
rs ∈ R.

Let 〈Δ ,≺〉, where Δ is a set and ≺ an irreflexive binary relation over Δ . Then:

– 〈Δ ,≺〉 is a partial order if ≺ is transitive.
– 〈Δ ,≺〉 is a total order if x ≺ y or y ≺ x, for all x �= y ∈ Δ .
– 〈Δ ,≺〉 is a stratified order if there is a partition Δ1, . . . ,Δn of Δ such that ≺ is equal

to
⋃

1≤i< j≤n Δi ×Δ j.
– 〈Δ ,≺〉 is an interval order if x ≺ y∧ z ≺ w implies x ≺ w∨ z ≺ y, for all x,y,z,w ∈ Δ .

All total orders are stratified, all stratified orders are interval, and all interval orders are
partial.

The adjective ‘interval’ derives from Fishburn’s Theorem [8]: A countable partial
order (Δ ,≺) is interval iff there exists a total order (Y,�) and two injective mappings
β ,ε : Δ → Y such that, for all x,y ∈ Δ , β (x)� ε(x) and x ≺ y ⇐⇒ ε(x)� β (y).
Intuitively, the mappings β and ε can then be interpreted as specifying the ‘beginnings’
and ‘endings’ of intervals corresponding to the events in Δ .

The relevance of interval orders in concurrency theory follows from an observation,
credited to Wiener [33], that any execution of a physical system that can be observed
by a single observer is an interval order. Hence the most precise observational seman-
tics should be defined in terms of interval orders or suitable representations thereof
(cf. [14]). Note that interval order executions are typically generated after splitting each
action in the model of a concurrent system into a begin and end action and, after execut-
ing the modified model using sequential semantics, deriving the corresponding interval
orders by applying Fishburn’s Theorem. However, this can also be done directly [28],
i.e., without splitting actions.

Example 1. Consider again the program fragment from the Introduction. Each of its
possible computations is modelled by a partial order in Fig. 1. The first three are total
orders corresponding to purely sequential observations. In the next two stratified orders,
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Fig. 1. Possible partial orders modelling a concurrent computation, cf. Example 1.

the execution is given as a sequence of sets of (unordered) actions that may be perceived
as executed simultaneously. The last execution is represented by an interval order which
is neither total nor stratified. In this case, the execution in the second thread is sequential
while a (being independent from both b and c) is observed as starting before b finishes
and ending after c starts. This can be seen also in the interval-based representation in
the rightmost diagram of Fig. 1. �

3 Behavioural Acyclicity in Interval Executions

As mentioned in the Introduction, the first (and crucial) step in the development of
a relational structure semantics for a class of concurrent behaviours is the choice of
a right notion of ‘behavioural acyclicity’. Intuitively, this means that by following any
sequence of events while time progresses, one should never reach the first event. Hence,
for example, if a relational structure only records execution precedence between events,
then behavioural acyclicity becomes the standard notion of acyclicity. In the case of
the combined interval structures (or CI-structures) studied in this paper, the notion of
behavioural acyclicity is much more involved. The reason is that the two relations, ≺
and � in a relational structure rs = 〈Δ ,≺,�〉 represent here two different notions of
precedence between events, namely e ≺ f states the standard precedence between the
two events (e occurred before f ), while e � f states the weak precedence between them
(e did not occur later than f , or, equivalently, e occurred before or simultaneously with
f ). Although it is expected that ≺ must be acyclic, and � can allow cycles (as two or
more events can occur simultaneously), it is also necessary to state what kinds of mixed
cycles are disallowed and so also what kinds of mixed cycles are allowed.

The next definition provides a graph-based capture of the mixed paths inferred from
≺ and � which need to be taken into account in order to identify inadmissible cycles in
CI-structures as well as to define the closure operation for CI-structures.

Definition 1 (cis-path and cis-cycle). A combined interval structure path (or cis-path)
of a relational structure rs = 〈Δ ,≺,�〉 is a sequence π = x1k1x2 . . .xn−1kn−1xn (n ≥ 2)
such that the following hold:

– x1, . . . ,xn ∈ Δ and k1, . . . ,kn−1 ∈ {1,2};
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– ki = 1 =⇒ xi ≺ xi+1 and ki = 2 =⇒ xi � xi+1, for every 1 ≤ i < n; and
– there is no j < n−1 satisfying k j = k j+1 = 2.

We denote this by π ∈ cispathsk1kn−1
rs (x1,xn). Also, π is called a cis-cycle if x1 = xn.

Remark 1. Intuitively, cis-paths are the only paths in the combined graph of the rela-
tions ≺ and � that can lead to new relationships between events, and so need to be taken
into account when constructing the closure of a CI-structure. It may come as a surprise
that paths like x2y2z (i.e., x � y � z) are irrelevant. This is because weak precedence
is not transitive in the interval setting (unlike in the models based on step sequences
from [13]). Indeed, it is possible to assign execution intervals to x, y, and z so that
x � y � z and x �� z as follows: I(x) = [3,5], I(z) = [0,2], and I(y) = [1,4]. Then, x
starts before y finishes and y starts before z finishes. However, x does not start before z
finishes as it starts only after z finishes. �

To ease the presentation, we introduce notations for different groups of cis-paths:

cispathsi j,kl
rs (x,y) = cispathsi j

rs(x,y)∪ cispathskl
rs(x,y)

cispathsi j,kl,mn
rs (x,y) = cispathsi j

rs(x,y)∪ cispathskl
rs(x,y)∪ cispathsmn

rs (x,y)
cispathsrs(x,y) =

cispaths11
rs (x,y)∪ cispaths12

rs (x,y)∪ cispaths21
rs (x,y)∪ cispaths22

rs (x,y) .

Two cis-paths, π ∈ cispathsi j
rs(x,y) and π ′ ∈ cispathsmn

rs (y,z), can be concatenated to
yield the sequence π �π ′ = ππ ′′, where π ′′ is such that π ′ = yπ ′′. We then have:

Proposition 2. Let x,y,z belong to the domain of a relational structure rs. If j = 1 or
m = 1, then cispathsi j

rs(x,y)� cispathsmn
rs (y,z) ⊆ cispathsin

rs(x,z).

We are now ready to introduce the concept of behavioural acyclicity that will be
used to define CI-structures. Real-life behaviours are ‘acyclic’ due to the underlying
time vector which precludes re-visiting the past. Bearing this in mind, the essence of cis-
acyclicity can be explained using the following simple example involving three events:
x � y ≺ z � x. Within the concurrency models discussed in [13], such a cyclic behaviour
seems illogical as it suggests that x occurred before itself. However, this view is based
on the implicit assumption that events are instantaneous, or that their duration is not
taken into account. When we accept that events can take time to complete, the picture
changes and the cycle x � y ≺ z � x is not a source of logical or temporal inconsistency.
Indeed, similarly as in Remark 1, it is possible to assign execution intervals to x, y, and
z so that x � y ≺ z � x, e.g., I(x) = [1,4], I(y) = [0,2], and I(z) = [3,5]. Then, in the
interval semantics, event x is in a weak precedence relationship with both y and z, viz.
z � x � y. As a result, it is possible for x to start before y finishes, and for z to start
before x finishes. Hence, x can be simultaneous, i.e., overlap in time, with both y and z.

Definition 2 (cis-acyclicity). A relational structure rs is cis-acyclic if
⋃

x∈Δrs

cispaths11,12,21
rs (x,x) = ∅ . (1)
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Fig. 2. Relational structure of Example 2.

In other words, cis-acyclicity requires that any cis-cycle includes exactly one pair
of consecutive weak precedence relationships. (Note that, by definition, a cis-cycle
includes at most one pair of consecutive weak precedence relationships.) Hence, cycles
in

⋃
x∈Δrs

cispaths22
rs (x,x) are allowed as are any cycles outside

⋃
x∈Δrs

cispathsrs(x,x).

Example 2. Consider the following relational structure with six events as in Fig. 2:

rs = 〈{a,b,c,d,e, f },{〈c,d〉,〈c,e〉,〈d,a〉,〈g,b〉},{〈a,b〉,〈b,c〉,〈c,d〉,〈e, f 〉,〈 f ,g〉〉 .
It includes a − b − c − d − a (a cis-cycle derived from b2c1d1a2b ∈ cispaths22

rs (b,b),
i.e., a cycle constructed using a path which has its first element equal to its last element)
and the cis-cycle b− c− e− f −g−b (derived from f 2g1b2c1e2 f ∈ cispaths22

rs ( f , f )),
with a common weak precedence arc 〈b,c〉. (Note also that b2c2d1a2b is not a cis-path
as it involves two consecutive weak precedence relationships.) In both cis-cycles one
can find precedence arcs, and in the first one even two in a row. However, both of these
cis-cycles show also two consecutive weak precedence arcs: a � b � c and e � f � g,
respectively. This is why rs is a cis-acyclic relational structure. �

According to the definition of cis-acyclicity of rs, by adding a new relationship
〈x,y〉 to ≺ or � (and forming in this way an extended relational structure rs′) one can
push rs outside the class of cis-acyclic relational structures only by creating a new cis-
path belonging to cispaths11,12

rs′ (x,x) or cispaths21
rs′(x,x), respectively (or, equivalently,

a new cis-path in cispaths11,21
rs′ (y,y) or cispaths12

rs′(y,y)). Moreover, if rs is a maximal
cis-acyclic relational structure, then any new relationship added to ≺ or � makes the
new relational structure non-cis-acyclic. Hence, we have the following, where here and
later ≺〈x,y〉 and �〈x,y〉 respectively denote ≺ ∪{〈x,y〉} and � ∪{〈x,y〉}:

Proposition 3. Let rs = 〈Δ ,≺,�〉 be a cis-acyclic relational structure, and x �= y ∈ Δ .

– If 〈Δ ,≺,�〈x,y〉〉 is not cis-acyclic, then cispaths11
rs (y,x) �= ∅.

– If 〈Δ ,≺〈x,y〉,�〉 is not cis-acyclic, then cispathsrs(y,x) �= ∅.

Moreover, if rs is a maximal cis-acyclic relational structure, then

– If x �≺ y, then 〈Δ ,≺〈x,y〉,�〉 is not cis-acyclic.
– If x �� y, then 〈Δ ,≺,�〈x,y〉}〉 is not cis-acyclic.
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Fig. 3. Axioms IP:2–4. The arc that cannot occur is crossed out.

The above result deals with cases when cis-acyclity is lost after adding new rela-
tionships. The next proposition identifies cases when such additions are harmless.

Proposition 4. Let rs= 〈Δ ,≺,�〉 be a cis-acyclic relational structure and x,y,z,w ∈ Δ .

1. x ≺ y implies that 〈Δ ,≺,�〈x,y〉〉 is cis-acyclic.
2. x ≺ y ≺ z implies that 〈Δ ,≺〈x,z〉,�〉 is cis-acyclic.
3. x ≺ y � z ∨ x � y ≺ z implies that 〈Δ ,≺,�〈x,z〉〉 is cis-acyclic.
4. x ≺ y � z ≺ w implies that 〈Δ ,≺〈x,w〉,�〉 is cis-acyclic.
5. x � y ≺ z � w �= x implies that 〈Δ ,≺,�〈x,w〉〉 is cis-acyclic.

Proof. In each case below, we apply Proposition 3 to infer the existence of some cis-
path π , and then obtain a contradiction with the cis-acyclicity of rs.

(1) Otherwise, there is π ∈ cispaths11
rs (y,x), and so π1y ∈ cispaths11

rs (y,y).
(2) Otherwise, there is π ∈ cispathsrs(z,x), and so π1y1z ∈ cispaths11,21

rs (z,z).
(3) Otherwise, there is π ∈ cispaths11

rs (z,x), and so y2π1y ∈ cispaths21
rs (y,y) or

y1π2y ∈ cispaths12
rs (y,y).

(4) Otherwise, there is π ∈ cispathsrs(w,x), and so π1y2z1w ∈ cispaths11,21
rs (w,w).

(5) Otherwise, there is π ∈ cispaths11
rs (w,x), and so π2y1z2w ∈ cispaths12

rs (w,w). ��
We end this section with an immediate result which also introduces two new nota-

tions, pre(≺,�) and wpre(≺,�), in preparation for a characterisation of the structure
closure mapping introduced later.

Proposition 5. Let rs = 〈Δ ,≺,�〉 be a relational structure and x,y ∈ Δ .

1. cispaths11
rs (x,y) �= ∅ iff 〈x,y〉 ∈ pre(≺,�) =≺ ◦(≺ ∪(� ◦ ≺))∗.

2. cispathsrs(x,y) �= ∅ iff 〈x,y〉 ∈ wpre(≺,�) = (≺ ∪(� ◦ ≺))+ ∪ (≺ ∪(� ◦ ≺))∗◦ �.
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4 Combined Interval Structures

The definition of combined interval structures is now straightforward.

Definition 3 (combined interval structure). A combined interval structure (or CI-
structure) is a cis-acyclic relational structure. The set of all CI-structures is denoted by
CIS.

Note that CIS is intersection-closed.
As we remarked in the Introduction, by fixing a class of relational structures, we

have already determined all the individual executions and invariant structures of the
model being developed. However, we still have quite a number of steps before the job
can be considered as successfully completed. In the rest of this paper, we provide direct
characterisations of both maximal and closed CI-structures, as well as a direct definition
of the closure operation for CI-structures.

4.1 Maximal Combined Interval Structures

In this subsection, our goal is two-fold. First, we want to characterise the maximal CI-
structures through a suitable set of axioms given below. The second is to demonstrate
that such structures — intended to represent individual interval executions — are in fact
interval orders in disguise.

Definition 4 (interval poset structure). Interval poset structures (or IP-structures) IPS
are triples ips = 〈Δ ,≺,�〉 such that ≺ and � are finite binary relations on a finite set
Δ . Moreover, for all x,y,z,w ∈ Δ , it is required that:

x �� x : IP:1 x ≺ y ⇐⇒ y �� x �= y : IP:3
x ≺ y =⇒ x � y : IP:2 x ≺ y ∧ z ≺ w =⇒ x ≺ w ∨ z ≺ y : IP:4

Axioms IP:2–4 are illustrated in Fig. 3. Note that the last axiom is the defining property
of interval orders. Moreover, as shown next, no axiom in IP:1–4 is redundant.

Proposition 6. The set of axioms in Definition 4 is minimal.

Proof. Let rs1, . . . ,rs4 be the following relational structures with x,y,z,w all distinct
(see Fig. 4):

rs1 = 〈{x},∅,{〈x,x〉}〉 rs3 = 〈{x,y},{〈x,y〉},{〈x,y〉,〈y,x〉}〉
rs2 = 〈{x,y},{〈x,y〉},∅〉 rs4 = 〈{x,y,z,w},{〈x,y〉,〈z,w〉},{〈x,y〉,〈z,w〉}〉 .

None of these relational structures is an IP-structure. Moreover, each rsi satisfies all the
axioms in Definition 4 except for IP:i. Hence, dropping any of the axioms IP:1-IP:4
would lead to a strictly larger set of structures satisfying the remaining axioms. ��

IP-structures are not only maximal CI-structures, as we prove in Theorem 1, but
also are closely related to interval orders, which provides a justification for some of the
terminology used.
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Fig. 4. Relational structures in Proposition 6.

Example 3. Consider again the relational structure rs from Example 2. One can extend
it to an IP-structure rs′ by adding five precedence arcs, 〈g,a〉,〈g,c〉,〈g,d〉,〈g,e〉 and
〈c,a〉, and filling the gaps of missing weak precedence arcs according to axioms IP:2
and IP:3. The resulting structure (without weak precedence arcs and with weak prece-
dence arcs from � \ ≺ drawn for clarity in gray) is depicted on the left of Fig. 5. The
right side shows the relationship between rs′ and the corresponding interval order illus-
trated as a set of time intervals. �

Apart from verifying the correctness of the axiomatisation of the maximal CI-struc-
tures, the next result justifies the claimed suitability of CI-structures to model interval
order behaviours. The latter follows after extending each interval order ipo to a rela-
tional structure 〈Δipo,≺ipo,�ipo〉, where

�ipo= {〈x,y〉 | x �= y ∈ Δipo ∧ y �≺ipo x}
is a derived relation capturing the ‘not later than’ relationship at the level of interval
orders. Intuitively, 〈Δipo,≺ipo,�ipo〉 is an ‘ipo in disguise’.

Theorem 1. CISmax = IPS= {〈Δipo,≺ipo,�ipo〉 | ipo a finite interval order}.

Proof. We observe that the second equality follows directly from the definitions.
(IPS ⊇ CISmax) Let cis = 〈Δ ,≺,�〉 ∈ CISmax. We show that the axioms hold.

– Case 1: IP:1 and IP:2. The first axiom clearly holds, and the second one holds by
Proposition 4(1), as cis is maximal.

Fig. 5. CI-structure (left) and its interval representation (right) in Example 3.
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– Case 2: IP:3 (=⇒). We first observe that x �= y follows from IP:1–2. Suppose next
that x ≺ y and y � x. Then x1y2x ∈ cispaths12

cis(x,x), a contradiction with the cis-
acyclicity of cis.

– Case 3: IP:3 (⇐=). By contradiction. Suppose that x �≺ y �� x �= y. Then, by the
maximality of cis and Proposition 3, cispathscis(y,x) �= ∅ and cispaths11

cis(x,y) �=
∅. Hence, by Proposition 2, cispaths11,12

cis (x,x) �= ∅, a contradiction with the cis-
acyclicity of cis.

– Case 4: IP:4. Assume x ≺ y and z ≺ w. If x = w then, by Proposition 4(2) and the
maximality of cis, z ≺ y. Similarly, if z = y, then x ≺ w. If x �≺ w �= x and z �≺
y �= z, then, by the maximality of cis and Proposition 3, cispathscis(w,x) �= ∅ and
cispathscis(y,z) �= ∅. Hence, by applying Proposition 2 three times, we obtain that
cispaths11,12

cis (x,x) �= ∅, contradicting the cis-acyclicity of cis.

(IPS ⊆ CISmax) Let ips = 〈Δ ,≺,�〉 ∈ IPS.
Suppose that ips /∈ CIS. Then there is x ∈ Δ and a cis-cycle π = x1k1 . . .kn−1xn ∈

cispaths11,12,21
ips (x,x) (note that x = x1 = xn). Moreover, we can choose x and π in such

a way that n has the smallest possible value. Suppose, without loss of generality, that
k1 = 1 and consider three cases.

– Case 1: n = 2. Then π = x1x, contradicting IP:1–2.
– Case 2: n = 3 and k2 = 2. Then we obtain a contradiction with IP:3.
– Case 3: n= 3 and k2 = 1, or n> 3. Then there is 1< j < n such that k j = 1, and so, by

IP:4, x1 ≺ x j+1 or x j ≺ x2. If x1 ≺ x j+1, then x11x j+1 . . .kn−1x1 ∈ cispaths11,12
ips (x,x).

Moreover, if x j ≺ x2, then x2k2 . . .x j1x2 ∈ cispaths11,21
ips (x2,x2). In either case, we

obtain a contradiction with the choice made.

Hence ips ∈ CIS. To show ips ∈ CISmax, suppose that x �= y ∈ Δ and consider two cases.

– Case 1: x �≺ y and ips′ = 〈Δ ,≺〈x,y〉,�〉 ∈ IPS ⊆ CIS. Then, by the cis-acyclicity of
ips′, y �� x. Hence, by IP:3, x ≺ y, a contradiction.

– Case 2: x �� y and ips′′ = 〈Δ ,≺,�〈x,y〉}〉 ∈ IPS ⊆ CIS. Then, by IP:3, y ≺ x, contra-
dicting the cis-acyclicity of ips′′. ��
In order to single out IP-structures extending CI-structures, we will use the function

cis2IPS : CIS → 2IPS such that cis2IPS(cis) = extIPS(cis), the extensions of cis in IPS,
for every cis ∈ CIS.

4.2 Closed Combined Interval Structures

We should now re-iterate the point made in the Introduction and Preliminaries that by
defining the intersection-closed domain of CI-structures, we have already determined
the derived domains of the maximal CI-structures CISmax and closed CI-structures CISclo

as well as the closure mapping cloCIS : CIS → CISclo. That is, we have:

– CISmax = {cis ∈ CIS | extCIS(cis) = {cis}}.
– CISclo = {ics ∈ CIS | ics =

⋂
maxCIS(ics)}.

– cloCIS(cis) =
⋂

maxCIS(cis), for every cis ∈ CIS.
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However, the above set-theoretic definitions would reveal a fundamental drawback
if someone wanted to apply them, e.g., to gain insights into the subtle relationships
between events involved in concurrent behaviours. We have therefore already provided
an order-theoretic characterisation of the maximal CI-structures in Theorem 1, and in
the rest of this paper we provide order-theoretic characterisations for the other two
notions.

We start by adapting axioms from [14] (some of which one can find also in [21])
that will subsequently provide an axiomatisation of the closed CI-structures. Axioms
IC:2–6 are illustrated in Fig. 6.

Definition 5 (invariant combined structure). Invariant combined structures (or IC-
structures) ICS are triples ics = 〈Δ ,≺,�〉 such that ≺ and � are finite binary relations
on a finite set Δ . Moreover, for all x,y,z ∈ Δ , it is required that:

x �� x : IC:1 x � y ≺ z ∨ x ≺ y � z =⇒ x � z : IC:4
x ≺ y =⇒ x � y �� x : IC:2 x ≺ y � z ≺ w =⇒ x ≺ w : IC:5

x ≺ y ≺ z =⇒ x ≺ z : IC:3 x � y ≺ z � w �= x =⇒ x � w : IC:6

Proposition 7. The set of axioms in Definition 5 is minimal.

Proof. Let rs1, . . . ,rs6 be the following relational structures with x,y,z,w all distinct
(see Fig. 7): rs1 = 〈{x},∅,{〈x,x〉}〉, rs2 = 〈{x,y},{〈x,y〉},∅〉,

rs3 = 〈{x,y,z},{〈x,y〉,〈y,z〉},{〈x,y〉,〈y,z〉,〈x,z〉}〉
rs4 = 〈{x,y,z},{〈x,y〉},{〈x,y〉,〈y,z〉}〉
rs5 = 〈{x,y,z,w},{〈x,y〉,〈z,w〉},{〈x,y〉,〈y,z〉,〈x,z〉,〈y,w〉,〈z,w〉,〈x,w〉}〉
rs6 = 〈{x,y,z,w},{〈y,z〉},{〈x,y〉,〈y,z〉,〈x,z〉,〈y,w〉,〈z,w〉}〉

None of these relational structures is an IC-structure. On the other hand, each rsi satisfies
all the axioms in Definition 5 except for IC:i. ��

IP-structures are also IC-structures (i.e., IPS ⊆ ICS). This is seen by observing that
ips ∈ IPS satisfies all the axioms IC:1-6, namely: IC:1–2 are weaker versions of IP:1–
3; IC:3&5 are special cases of IP:4; and IC:4&6 follow from the fact that, respectively,
z �≺ x and w �≺ x, and so we can use IP:3.

The next result shows that the IC-structures are nothing but the closed CI-structures.
Moreover, the closure of CI-structures can be expressed directly using the two formulas
generating precedence and weak precedence relationships introduced in Proposition 5.

Theorem 2. The mapping cis2ics : CIS → ICS, for every cis ∈ CIS given by:

cis2ics(cis) = 〈Δcis,pre(≺cis,�cis),wpre(≺cis,�cis)\idΔcis〉

is the structure closure of CIS. Note: This means that ICS= CISclo and cis2ics = cloCIS.
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Fig. 6. Axioms IC:2–6. The arc that cannot occur is crossed out.

Fig. 7. Relational structures in Proposition 7.
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Proof.

Lemma 1. Let ics = 〈Δ ,≺,�〉 ∈ ICS and x �= y ∈ Δ .

1. cispaths11
ics(x,y) �= ∅ implies x ≺ y. (i.e., by Proposition 5, pre(≺,�) ⊆≺)

2. cispathsics(x,y) �= ∅ implies x � y. (i.e., by Proposition 5, wpre(≺,�) ⊆�)

Proof. (1) Let π be a shortest cis-path in cispaths11
ics(x,y). Then, by IC:3 and the defi-

nition of cis-path, if π = . . .ktm . . . , then k �= m. We have therefore the following two
cases.

– Case 1: π = x1y. Then x ≺ y.
– Case 2: π = x1z2w1t . . .y (possibly t = y). Then, by IC:5, π = x1t . . .y is a shorter

cis-path in cispaths11
ics(x,y), yielding a contradiction.

(2) Let π be a shortest cis-path in cispathsics(x,y). Then, by IC:3 and the definition
of cis-path, if π = . . .ktm . . . , then k �= m. We have therefore the following five cases.

– Case 1: π = x2y. Then x � y.
– Case 2: π = x1y. Then, by IC:2, x � y.
– Case 3: π = x1z2y or π = x2z1y. Then, by IC:4, x � y.
– Case 4: π = x1z2w1t . . .y (possibly t = y). Then, by IC:5, π = x1t . . .y is a shorter

cis-path in cispaths11
ics(x,y), yielding a contradiction.

– Case 5: π = x2z1w2t . . .y (possibly t = y). Then, by IC:6, π = x2t . . .y is a shorter
cis-path in cispaths11

ics(x,y), yielding a contradiction. ��
Lemma 2. Let rs = 〈Δ ,≺,�〉 ∈ ICS and x �= y ∈ Δ .

1. x �≺ y implies 〈Δ ,≺,�〈y,x〉〉 ∈ CIS.
2. x �� y implies 〈Δ ,≺〈y,x〉,�〉 ∈ CIS.
3. x �� y �� x implies 〈Δ ,≺,� ∪{〈x,y〉,〈y,x〉}〉 ∈ CIS.

Proof. (1) Otherwise, by Proposition 3, cispaths11
rs (x,y) �= ∅. Hence, by Lemma 1(1),

x ≺ y. As a result, we obtained a contradiction.
(2) Otherwise, by Proposition 3, cispathsrs(x,y) �=∅. Hence, by Lemma 1(2), x � y.

As a result, we obtained a contradiction.
(3) Let rs′ = 〈Δ ,≺,�〈x,y〉}〉 and rs′′ = 〈Δ ,≺,�〈x,y〉 ∪〈y,x〉}〉.

If rs′ /∈ CIS, then, by Proposition 3, cispaths11
rs (y,x) �= ∅. Hence, by Lemma 1(1), y ≺ x,

and so (by IC:2) y � x, yielding a contradiction. Hence rs′ ∈ CIS.
If rs′′ /∈ CIS, then, by Proposition 3, there is π ∈ cispaths11

rs′(x,y). If π ∈ cispaths11
rs (x,y),

then, by Lemma 1(1), x ≺ y and so (by IC:2) x � y, yielding a contradiction. If π /∈
cispaths11

rs (x,y), then π = . . .x2y . . . . Hence cispaths11,12
rs (x,x) �= ∅, and so rs /∈ CIS,

yielding a contradiction. ��
We can now proceed with the proof proper. We first observe that cis2ics is well-

defined, since the axioms IC:1–6 hold for ics = cis2ics(cis), where cis ∈ CIS, which
follows from a straightforward application of Propositions 2 and 5 together with the
cis-acyclicty of cis. We then observe that Proposition 1 can be applied. Clearly, CIS
is intersection-closed and cis2ics is both monotonic and non-decreasing. Suppose now
that ics = 〈Δ ,≺,�〉 ∈ ICS. Then cis2ics(ics)� ics, which follows from Lemma 1. Sup-
pose next that x �= y ∈ Δ and consider two cases.
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– Case 1: x �≺ y. Then, by Lemma 2(1), rs′ = 〈Δ ,≺,�〈y,x〉〉 ∈ CIS. Hence, there is
rs ∈ maxR(rs′) ⊆ maxR(rs) such that x �≺rs y.

– Case 2: x �� y. Then, by Lemma 2(2), rs′ = 〈Δ ,≺〈y,x〉,�〉 ∈ CIS. Hence, there is
rs ∈ maxR(rs′) ⊆ maxR(rs) such that x ��rs y. ��

Example 4. Consider again the relational structure rs from Example 2. It is easy to see
that rs is not closed. However, since rs is cis-acyclic, one can apply the mapping cis2ics.
The result is depicted in Fig. 8. To improve clarity, weak precedence arcs induced by
strong precedence arcs according to axiom IC:2, are omitted while pairs of opposite
weak dependence arcs are depicted as double-headed arcs.
In contrast to the relational structure rs′ discussed in Example 3, there are only eight
precedence arcs - all four of them that are not present in rs are implied by axiom IC:3
(e.g., 〈c,a〉) or by the axiom IC:5 (e.g., 〈g,e〉). The remaining arc 〈g,c〉 is here weak
and obtained using axiom IC:4. Finally, an example of a weak precedence arc implied
by axiom IC:6 is 〈b, f 〉 (since b � c ≺ e � f ). �

Fig. 8. Relational structure of Example 4.

We have therefore succeeded in providing order-theoretic characterisations of the
maximal CI-structures, the closed CI-structures, and the closure for CI-structures. We
will now re-state some of the results developed for the generic setup developed in [13].

Theorem 3. Let cis ∈ CIS.

1. cis2IPS(cis) = cis2IPS(cis2ics(cis)) �= ∅.
2. cis2ics(cis) =

⋂
cis2IPS(cis).

3. cis ∈ ICS iff maxCIS(cis) = maxCIS(rs) implies rs = cis, for every rs ∈ extCIS(cis).

Proof. Given Theorems 1 and 2, all the parts follow from Prop.7.1 and 7.5 in [13]. ��
Example 5. Figure 9 shows four maximal extensions of rs from Example 3, which are
also extensions of cis2ics(rs) from Example 4.
If we consider events e and d, one can find two maximal extensions where they have
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opposite precedence relationships. Hence, they cannot be precedence-related in rs nor in
cis2ics(rs). On the other hand, in cis2ics(rs), f � a. Hence, there is a maximal extension
in which f weakly precedes a.
We can treat the maximal extensions of rs depicted in Fig. 9 as different schedules of
a fragment of a concurrent program, and one can compute their ‘widths’ and ‘lengths’.
The lengths of these executions are four or five, while the widths are three and four.
The second interval order has the minimal width and maximal length, while the fourth
one has the maximal width and minimal length. The most interesting is the third case,
where both parameters are minimal. �

Fig. 9. CI-structures (left) and their interval representations (right) in Example 5.
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5 Concluding Remarks

In this paper, we extended the general approach from [12,13] to deal with the semantics
of concurrent systems to execution models where actions are not instantaneously exe-
cuted. Our aim was to capture concurrent histories based on two invariant relationships
between events, namely precedence and weak precedence, intuitively corresponding to
the ‘earlier than’ and ‘not later than’ positions in individual executions. To provide a
solution, we introduced a novel concept of cis-acyclicity and three new classes of rela-
tional structures, viz. the combined interval structures (CI-structures), interval poset
structures (IP-structures), and invariant combined structures (IC-structures), as well as
a structure closure operation for the CI-structures.

Together with other results presented in this paper, Lemma 2(3) explains why the
model of concurrent histories provided by IC-structures adheres to paradigm π3. In
essence, it guarantees that if an IC-structure has two maximal extensions, ips and ips′,
such that x ≺ips y and y ≺ips′ x then it also has a maximal extension ips′′ such that
x �ips′′ y �ips′′ x. It is worth noting that concurrent histories defined by IC-structures
do not necessarily obey the pattern that a concurrent history has an execution in which
two events, e and f , are simultaneous if and only if it also contains two executions such
that e precedes f in one, and f precedes e in the other. This pattern is referred to as
paradigm π8 in the classification of [13,14]. It thus strengthens π3. An example of an
IC-structure adhering to π3 but not to π8 is 〈{e, f },∅,{〈e, f 〉,〈 f ,e〉}〉 which only has
one maximal extension (itself) where e and f are simultaneous.

As far as applications are concerned, the resulting framework has the potential of,
e.g., alleviating the state space explosion problem, which is one of the most challenging
problems in the verification of concurrent systems. In the case where events are instan-
taneous one can use the causal partial order semantics and the unfolding based model
checking [7,24]. We expect that order-theoretical axiomatisations of the IP-structures
and IC-structures can be used to develop efficient verification algorithms for the case of
non-instantaneous events in concurrent systems adhering to paradigm π3.

As an idea of the planned future work, consider again Example 1 and Fig. 1. The six
partial orders given there correspond to the maximal CI-structure extensions of the sin-
gle closed CI-structure 〈{a,b,c},{〈b,c〉},∅〉. The possible final values of the variables
x and y are as follows: (3,3) for the two leftmost total orders, (3,2) for the rightmost
total order, and (1,2) for the rightmost stratified order and the interval order. For the
remaining case of the leftmost stratified order, it is hard to predict the final values, as
the two threads write to the same variable simultaneously (in overlapping intervals).
To exclude such a situation without placing further restrictions on the two concurrent
threads, we will investigate the possibility of adding mutexes, similarly to the case of
invariant order structures from [11].

Another idea of the planned work is related to the theory of traces [6]. Traces that
can be interpreted as sets of interval orders and represent concurrent histories — called
interval traces — were proposed and discussed in [16]. Though [16] analysed their rela-
tionship with interval relational structures from [14,15], the relationship with the struc-
tures proposed in this paper is yet to be developed. Such a development will necessarily
require a suitable notion of dependence CI-structures corresponding to the dependence
graphs in the theory of traces [10]. The existing treatment of paradigm π3 in [13,14]
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does not provide means of defining such structures. However, a class of CI-structures
with elements labelled by action names can provide the required device, providing a
further justification of the framework proposed in this paper.
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Abstract. There are various semantics for Petri nets. Some semantics
can express concurrency well, others are good at modelling conflicts. Yet,
every semantics has its drawbacks. State graphs explode in size when
there is concurrency. Sequential and partial languages explode in size
if there is conflict. In our previous paper on token trail semantics, we
introduced the concept of the net language of a marked Petri net. The
net language is a set of labelled nets so that we can specify both conflict
and concurrency very naturally. We proved that the token trail seman-
tics faithfully covers state graphs, sequential languages, and partial lan-
guages. In this paper, we show token trail semantics covers synchronous
net morphisms and prove the net language of a Petri net includes all
its finite unfoldings. Furthermore, we show that a Petri net simulates
the state-transition behaviour of all labelled nets of its net language and
prove the step language of a Petri net is the union of the step languages
of all labelled nets of its net language. Finally, we present an algorithm
and an implementation deciding the net language inclusion problem.

Keywords: Token trail semantics · Net language · Petri net ·
Labelled net · Net morphism · Unfolding · Simulation

1 Introduction

Petri nets (see for example [6,15,30,34]) have a formal semantics, an intuitive
graphical representation, and can express both conflict and concurrency between
the occurrences of actions. Petri nets model actions with transitions, local states
with places, and the dependencies between actions and local states with weighted
directed arcs. Petri nets model a state by marking each place with tokens. Firing
a transition models the execution of an action and changes the state of the Petri
net. A transition can fire only if its preconditions are marked with tokens. If it
fires, it consumes the tokens from its preconditions and it marks its postcondi-
tions with new tokens. This firing rule is very intuitive and easy to formalize.
Based on this firing rule we find different semantics of Petri nets in the liter-
ature. Every semantics has its own advantages and disadvantages in different
applications.
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Repeatedly processing the firing rule creates firing sequences. The set of all
firing sequences is called the language of a Petri net. This language is very easy
to work with, but it cannot express concurrency of actions. Moreover, a firing
sequence cannot directly specify conflict. The reachability graph of a Petri net
is its set of reachable states with all possible transitions. In contrast to firing
sequences, the state graph can very conveniently express conflict, merging, and
looping of sequences of actions. But again, a state graph cannot express concur-
rency. If there is concurrency, there is the so-called state space explosion where
the number of global states grows exponentially in the number of local states. To
express concurrency, we can extend firing sequences and state graphs to steps,
i.e. multisets of transitions firing concurrently. Using steps we can specify con-
current sets of actions, but still, the number of global states explodes just like
in a regular state graph. Furthermore, sequences of steps are rather technical,
thus it is neither easy nor intuitive to specify behaviour using combinations of
sequences of steps. Partially ordered runs and process nets [10,22,33,39] can
directly express concurrency. In both semantics a run is still a firing sequence,
but the sequence is a partial, not a total order. These runs can easily model
concurrent behaviour, but just like firing sequences, they cannot directly specify
conflict. The partial language of a Petri net contains a run for every combi-
nation of conflicting options. Branching processes [39] extend runs by an addi-
tional conflict relation. This semantics can specify concurrency, but it can also
merge identical prefixes of runs. Unlike state graphs, once split, local states can-
not merge. Therefore, these structures fan-out and it is hard to keep track of
the relations between the different conflict-free sets of partially ordered nodes.
Moreover, since branching processes cannot merge states, they are not able to
directly specify looping behaviour.

Neither of the above-mentioned semantics provide a nice graphical represen-
tation of the behaviour of a Petri net if it contains both conflict and concurrency.
Thus, in our previous work [7] we followed Wolfgang Reisigs claim ”the semantics
of a net is a net” [35] and defined the net language of a marked Petri net as a set
of marked labelled nets. We showed that this semantics is a true meta-semantics
because it covers the previously mentioned semantics. In [7] we proved that if a
labelled net is a sequence, a state graph or a partial order, this labelled net is in
the net language of a marked Petri net if and only if there is a related matching
firing sequence, reachability graph or enabled partially ordered run.

However, the definition of the net language is not restricted to labelled nets
modelling firing sequences, state graphs or runs. If there is a valid token trail, any
labelled net can be part of a net language. In this paper, we build upon the results
of our previous work, and further investigate the formal relation between a Petri
net and its net language. We show that token trail semantics covers synchronous
net morphisms. Thus, the net language contains all finite unfoldings of a marked
Petri net. Furthermore, we show that a Petri net simulates the state-transition
behaviour of all labelled nets of its net language. This proves, that the labelled
step language of any labelled net of the net language is in the step language of
the Petri net. Additionally, we prove that the step language of a Petri net is
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the union of all labelled step languages of its net language. Moreover, we show
that net language inclusion is distinct from step language inclusion. Finally, we
introduce an algorithm and its implementation which decides the net language
inclusion problem.

2 Preliminaries

We denote the non-negative integers as N. Let f be a function and B be a
subset of the domain of f . We write f |B to denote the restriction of f to B.
Let b be an element of B. We write f |b to denote f |{b}. Let A be a set, we
denote the cardinality of A by |A|. We call m : A → N a multiset and write
m =

∑
a∈A m(a) ·a to denote multiplicities of elements in m. Let m′ : A → N be

another multiset. We write m ≤ m′ iff ∀a ∈ A : m(a) ≤ m′(a) holds. We write
N

A to denote the set of all multisets of A. Let B be a set, we call α : A×B → N

a multirelation from A to B. Let a ∈ A, b ∈ B, we denote α(a, b) as αab.
The application of α to m : A → N is the multiset α(m) : B → N so that
∀b ∈ B : α(m)|b =

∑
a∈A αab · m(a) holds. We can depict a multirelation α as a

|A| × |B| matrix of non-negative integers. Thus, the application of α to m is the
multiplication of m, depicted as a row vector of size |A|, and the α-matrix. We
model distributed systems by Petri nets with arc weights [6,15,16,30,34]. These
nets are also called Place/Transition nets in the literature.

Definition 1 (Petri Net). A Petri net is a tuple (P, T,W ) where P is a finite
set of places, T is a finite set of transitions so that P ∩ T = ∅ holds, and
W : (P ×T )∪(T ×P ) → N is a multiset of directed arcs. A marking of (P, T,W )
is a multiset m : P → N. Let m0 be a marking. N = (P, T,W,m0) is a marked
Petri net and we call m0 the initial marking of N .

Petri nets have a simple firing rule. Let N = (P, T,W,m) be a marked Petri
net and t ∈ T be a transition. We denote ◦t =

∑
p∈P W (p, t) · p the weighted

pre-set of t. We denote t◦ =
∑

p∈P W (t, p) · p the weighted post-set of t. We call
a multiset of transitions u : T → N a step. We extend the notation of weighted
pre- and post-sets of transitions to their multisets as ◦u =

∑
t∈u u(t) · ◦t and

u◦ =
∑

t∈u u(t) · t◦. A step u is enabled in marking m if m ≥ ◦u holds. All
transitions of an enabled step can fire concurrently. Firing a step changes the
marking m to m′ = m − ◦u + u◦. If u is enabled in m and firing u changes m to
m′, we write m

u−→ m′. We call a sequence of steps u1 . . . un enabled in marking
m if there is a sequence of markings m1 . . . mn so that m

u1−→ m1
u2−→ . . .

un−−→ mn

holds. The set of all enabled step sequences in the initial marking of N is the
step language L(N) of N . This step semantics is equivalent to various partial
order semantics [9,23,26,36].

Figure 1 depicts a marked Petri net. Transitions are rectangles, places are
circles, the multiset of arcs is depicted as weighted arcs, and the initial marking
is depicted by black dots called tokens. In the initial marking, only transition A
is enabled. When it fires, it consumes the token in place p1 and produces one
token in p2, two tokens in p3 and one token in p4. Figure 2 depicts this new
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Fig. 1. A marked Petri net N . Fig. 2. N after firing A.

marking. In the new marking the step B +C is enabled. Firing B +C consumes
one token from p2, p4, and p5 and produces one token in p6 and in p7.

In this paper, we model the behaviour of a distributed system by labelled nets.
This is kind of similar to applications using occurrence nets [19,31] or labelled
workflow nets [1,2] to model behaviour. However, we use general labelled nets.

Definition 2 (Labelled Net). A labelled net is a tuple (C,E, F,A, λ) where
(C,E, F ) is a Petri net, the set of places C is sometimes called conditions, the
set of transitions E is sometimes called events, A is a finite set of actions, and
λ : E → A is a total labeling function. Let m0 be a marking of (C,E, F ), we call
(C,E, F,A, λ,m0) a marked labelled net.

Obviously, we can turn every Petri net (P, T,W ) into a labelled net by defin-
ing the set of actions as T and using the identity as the labelling function.
Whenever we say a Petri net is a labelled net, we use this interpretation.

Let L = (C,E, F,A, λ,m0) be a marked labelled net. We call a sequence of
multisets of actions v1 . . . vn enabled in marking m0 iff there is a sequence of
steps u1 . . . un enabled in (C,E, F,m0) with ∀i : vi = λ(ui). Remark, here we
extend the labelling function to steps. The set of all sequences of multisets of
actions enabled in (C,E, F,m0) is the (labelled) step language L(L) of L.

To define the net language of a Petri net, we introduced the rise and the level
of a transition in [7].

Definition 3 (Rise of a Transition). Let N = (P, T,W,m) be a marked
Petri net and t ∈ T be a transition. The level of t in marking m, denoted as
t��(m), is the weighted sum of tokens t��(m) :=

∑
(p,t)∈W W (p, t) · m(p) in the

pre-set of t. Similarly, we define t��(m) :=
∑

(t,p)∈W W (t, p) · m(p) the sum of
tokens in the post-set of t in m. Using these notions, we define the rise t�(m)
of a transition t in marking m as t�(m) := t��(m) − t��(m).

As an example, we compute the rise of all transitions of Fig. 2 using the
depicted marking m. X��(m) = 3 because there are 3 tokens in the places p3, p5,
and p6. X��(m) = 2 because there are 2 tokens in p2 and p5. Thus, X�(m) = −1.
The level B��(m) = 1 and B��(m) = 0. Therefore, the rise B�(m) = −1. The
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rise C�(m) = −2. The rise of transition D is 0. Due to the arc weights, the rise
of transition A is A�(m) = (1 + 2 · 2 + 1) − 0 = 6.

We use level and rise to define a token trail marking of a labelled net and
the net language of a marked Petri net [7].

Definition 4 (Token Trail, Net Language). Let N = (P, T,W,m0) be a
marked Petri net, L = (C,E, F, T, λ,mi) be a marked labelled net, and p ∈ P
be a place of N . A marking m of L is a token trail for p iff the following three
conditions hold.

(I) ∀e ∈ E : e��(m) ≥ W (p, λ(e)),
(II) ∀e ∈ E : e�(m) = W (λ(e), p) − W (p, λ(e)), and

(III)
∑

c∈C mi(c) · m(c) = m0(p).

We call L enabled in N iff for every p ∈ P there is a token trail mp in L. We
call the set of all enabled labelled nets the net language N (N) of N .

Figure 3 depicts the marked Petri net of Fig. 1 without the places p3 and p5.
In the initial marking, we can only fire transition A. After firing A, we can fire
transitions C concurrently to the loop of B and X. At the end, transition D
synchronises the two concurrent parts.

Fig. 3. The Petri net from Fig. 1 without places p3 and p5.

Figures 4, 5, 6, and 7 depict four different marked labelled nets of the net
language of the marked Petri net from Fig. 3. Figure 4 depicts an acyclic, conflict-
free labelled net modelling a partial order. In [7] we proved, that a labelled net
modelling a partial order of the partial language of the marked Petri net is
in its net language, if and only if, the modelled partial order is in the partial
language of the marked Petri net. Figure 5 depicts a concurrency-free labelled
net modelling a state graph. In [7] we proved, that a labelled net modelling a
state graph is in the net language of a marked Petri net, if and only if, the
modelled state graph is a sub-graph of the reachability graph of the Petri net.
Petri nets depicted in Fig. 6 and F. 7 model neither a partial order, nor a state
graph. Figure 6 depicts a labelled net with both conflict and concurrency. The
Petri net of Fig. 7 even contains a loop.
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Fig. 4. A partial order net.

Fig. 5. A state graph net.

Fig. 6. A labelled net containing both conflict and concurrency.

Fig. 7. A labelled net containing a loop.
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Fig. 8. Token trails of Fig. 6 for all places of the Petri net from Fig. 3.
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Figure 8 depicts six copies of the labelled net of Fig. 6, each marked with a
token trail for one of the places of Fig. 3. Lets consider the token trail mp2 for
p2 as an example. The level of the transition labelled with A is 0. This satisfies
A��(mp2) = 0 ≥ W (p2, A) = 0, i.e. Condition (I). All transitions labelled B
have the same level B��(mp2) = 1 ≥ W (p2, B) = 1. The level of the remaining
transitions is 0, thus, the token trail satisfies Condition (I) for all the transitions.
The transition labelled A has a rise of 1. This satisfies A�(mp2) = 1 = W (A, p2)−
W (p2, A) = 1 − 0, i.e. Condition (II). All transitions labelled B have rise −1.
Thus, B�(mp2) = −1 = W (B, p2) − W (p2, B) = 0 − 1 holds. X�(mp2) = 1 =
W (X, p2)−W (p2,X) = 1−0. The transitions labelled C and D have a rise of 0.
Transitions C and D are not connected to p2 in the Petri net. Thus, the token
trail satisfies Condition (II) for all the transitions. Finally, the weighted sum of
the token trail mp2 and the initial marking mi of the labelled net of Fig. 6 is
0 because mp2 and mi mark disjoint sets of places. Accordingly, the place p2
contains no tokens in its initial marking in Fig. 3, thus Condition (III) holds as
well. Altogether, mp2 is a token trail for p2.

All markings depicted in Fig. 8 also happen to be token trails for the labelled
net of Fig 7.

The net language of a marked Petri net contains many labelled nets. For
example, the net language includes every labelled net modelling a firing sequence,
a part of the reachability graph, or any enabled partially ordered run. Roughly
speaking, in [7] we showed that L(N) ⊆ N (N) holds and that the net language is
kind of a meta-semantics for Petri nets. Yet, the net language contains additional
labelled nets modelling behaviour using conflict, concurrency, merging of local
states (Fig. 6) and loops (Fig. 7).

3 Petri Nets And Their Net Language

Token trails establish a relation between a Petri net and a labelled net. In our
previous work [7], we proved that this relation aligns with the established Petri
net semantics. Still, the definition of a net language includes not only these
special cases but covers general labelled nets with merging conflicts, loops, arc-
weights, and distributed initial markings. In Figs. 6 and 7, as well as in our
previous paper [7], we introduced meaningful examples of enabled labelled nets
modelling the behaviour of a marked Petri net. We also claim that it is very
natural to model the behaviour of a Petri net in terms of labelled nets. To further
investigate the relation between a marked Petri net and its net language, we, in
this paper, look at well-established formalisms namely at net homomorphisms
and net morphisms.

Petri nets are a fundamental mathematical model of computation, like finite
and infinite state machines, but with an explicit concurrency structure [38].
While we often look at Petri nets as models of distributed systems, they also have
an algebraic structure, since they are equivalent to 2-sorted algebras on multisets
[38]. In [38], Glynn Winskel derives various combinators from the mathematical
structure of Petri nets, to compose their behaviour. At the time, other formalisms
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were used to compose concurrent systems [11,21,28,38]. Due to his belief about
the fundamental nature of Petri nets, the aim of Winskel was to derive these
operations not from some other calculus but from the mathematical structure
of Petri nets themselves. To achieve this, he replaced an older definition of net
morphisms [12] with a new one. We first discuss net morphisms informally and
then give the formal definition.

A net morphism is a special case of a net homomorphism. A net homomor-
phism is a pair of multirelations (η, β) between two Petri nets. The application
of the multirelation β to markings (multisets of places) of one Petri net maps
them to markings of the other Petri net, thus it effectively maps states of one
Petri net to states of the other Petri net. Similarly, the application of the mul-
tirelation η to steps (multisets of transitions) in one Petri net maps them to
steps of transitions in the other Petri net. A pair of multirelations (η, β) is a net
homomorphism only if the mappings satisfy two conditions, (i) β maps the initial
marking of one Petri net to the initial marking of the other Petri net and (ii)
both η and β preserve pre- and post-sets of elements. A net morphism is simply
a homomorphism, where the multirelation η is a total or a partial function, i.e.
it maps each transition of one Petri net to one or no transition of the other Petri
net. Unlike in the Definition 1 of this paper, Winskel allows for Petri nets where
the sets of places and transitions are infinite [38].

Definition 5 (Net Homomorphism, Net Morphism).
Let N = (P, T,W,m0) and N ′ = (P ′, T ′,W ′,m′

0) be marked Petri nets. A net
homomorphism from N ′ to N is a pair of multirelations (η, β) with η : T ′ ×
T → N and β : P ′ × P → N which satisfies (i) β(m′

0) = m0 and (ii)
∀u ∈ N

T ′
: ◦η(u) = β(◦u) ∧ η(u)◦ = β(u◦). A net homomorphism is called

finitary if for every transition t′ ∈ T ′, the multiset η|t′ is finite.
A net morphism from N ′ to N is a net homomorphism (η, β) where η is a

partial function. A net morphism is called synchronous if η is a total function.

Petri nets with homomorphisms form a category [38], where Petri nets with
morphisms or synchronous morphisms form subcategories [38]. Winskel defines
compositions as operations in these categories and shows that finitary homomor-
phisms and morphisms preserve the initial marking. Additionally, if m

u−→ m′ in

N ′, then β(m)
η(u)−−−→ β(m′) in N , thus, finitary homomorphisms preserve reach-

able markings [38].
In the new context of net morphisms, we reexamine our Definition 4 and

identify two multirelations. The labelling function λ maps steps in the labelled
net to steps in the Petri net. The second multirelation is determined by the
token trail markings and its structure hides in Condition (III). We call this
multirelation S and if mp is a token trail marking of the labelled net, with a
set of places C, for a place p ∈ P , then the values of the multirelation S are
∀c ∈ C,∀p ∈ P : Scp = mp(c). As a first result of this paper, we prove by
counterexample that while the pair of these two multirelations (λ, S) relates a
marked labelled net to a marked Petri net, they form neither a net morphism
nor a net homomorphism.
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Fig. 9. A marked Petri net con-
taining a parallel split.

Fig. 10. A labelled net modelling the sequence
of actions A B C.

Figure 9 depicts a marked Petri net. After firing A, the remaining two tran-
sitions B and C can fire concurrently. Figure 10 depicts a labelled net which
models the sequential firing of actions A, B and C. Because the firing sequence
A B C is obviously in the sequential language of the Petri net from Fig. 9, the
labelled net is in the net language of the Petri net. With an arbitrary but fixed
ordering of the nodes of both nets, we can write the multirelations S and λ as
matrices. Figure 11 depicts these matrices. The matrix depicted on the left side
represents the multirelation S. The values Scipj

in the matrix (multirelation)
are determined by the values of the token trail marking mpj

(ci) for place pj of
the Petri net of Fig. 9 and the place ci of the labelled net of Fig. 10. Thus, the
j-th column of matrix S (a marking of the labelled net) is a token trail for place
pj of the Petri net. The second matrix represents the labelling function λ. Each
row relates to a transition of the labelled net and each column to a transition of
the Petri net. In this simple example, this function is the identity.

Fig. 11. Matrix representation of the multirelations S and λ.

λ is a total function, so if these mutlirelations form a homomorphism, it would
be a synchronous morphism as well. It is easy to see that the multirelation S
satisfies condition (i) of Definition 5 because when we apply it to the initial
marking c1 of the labelled net it maps it to the initial marking S(c1) = p1 of
the Petri net. Now, we examine condition (ii). It requires that for all steps u
of the labelled net, ◦λ(u) = S(◦u) and λ(u)◦ = S(u◦) holds. We take u = e2.
First, we evaluate S(◦u) and S(u◦). For the pre-set, we get ◦e2 = c2. We apply
the multirelation S to c2 and get the multiset of places S(c2) = p2 + p3 of the
Petri net. This is intuitive because the place c2 of the labelled net of Fig. 10
models the state of the Petri net of Fig. 9 after transition A fires. For the post-
set, we get e2◦ = c3. Again, we apply the multirelation S to c3 and get the
multiset of places S(c3) = p3 +p4 of the Petri net. This matches our expectation
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because the condition c3 of Fig. 10 models the state of the Petri net of Fig. 9
after both A and B fired. Now, we check if the multirelation λ preserves the
pre- and post-set. The application of the multirelation λ maps the step e2 in
the labelled net of Fig. 10 to the step λ(e2) = B in the Petri net of Fig. 9.
The weighted pre-set of this step is ◦B = p2, the weighted post-set of this
step is B◦ = p4. Clearly, condition (ii) of Definition 5 does not hold, since
S(◦u) = p2 +p3 = p2 = ◦λ(u) and S(u◦) = p3 +p4 = p4 = λ(u)◦. Therefore, the
pair of multirelations is neither a net homomorphism nor a net morphism. This
example shows the fundamental difference between net morphisms and token
trails. In a net morphism pre- and post-sets must always match. In a token trail,
a single place can model a distributed state.

In the following theorem, we prove the converse direction. Namely, every
synchronous net morphism defines a token trail.

Theorem 1. Let N = (P, T,W,m0) and N ′ = (C,E, F,mi) be marked Petri
nets. If (λ, S) is a synchronous morphism from N ′ to N , the labelled net L =
(C,E, F, T, λ,mi) is in the net language of N and ∀p ∈ P the marking mp of L
with ∀c ∈ C : mp(c) = Scp is a token trail for p.

Proof. First we show, for all p ∈ P , mp is a token trail for p.
(λ, S) is a homomorphism, thus ∀u ∈ N

E : S(◦u) = ◦λ(u) holds. Obviously,
∀e ∈ E : S(◦e) = ◦λ(e) holds as well. Fix arbitrary p ∈ P , e ∈ E, we get

e��(mp) =
∑

(c,e)∈F F (c, e) · mp(c) by Definition 3

=
∑

c∈◦e F (c, e) · mp(c) by application of S to ◦e

= S(◦e)|p by homomorphism (ii)

= ◦λ(e)|p
= W (p, λ(e)).

Thus, for all p, mp satisfies ∀e ∈ E : e��(mp) ≥ W (p, λ(e)), i.e. Condition (I)
of Definition 4.

Again, (λ, S) is a homomorphism, thus ∀u ∈ N
E : S(◦u) = ◦λ(u) ∧ S(u◦) =

λ(u)◦ holds. Obviously, ∀e ∈ E : S(◦e) = ◦λ(e) ∧ S(e◦) = λ(e)◦ holds as well.
Fix arbitrary p ∈ P , e ∈ E, we get

e�(mp) = e��(mp) − e��(mp) by Definition 3

=
∑

(e,c)∈F F (e, c) · mp(c) − ∑
(c,e)∈F F (c, e) · mp(c)

=
∑

c∈e◦ F (e, c) · mp(c) − ∑
c∈◦e F (c, e) · mp(c) by applications of S

= S(e◦)|p − S(◦e)|p by homomorphism (ii)

= λ(e)◦|p − ◦λ(e)|p
= W (λ(e), p) − W (p, λ(e)).

Thus, for all p, mp satisfies ∀e ∈ E : e�(mp) = W (λ(e), p) − W (p, λ(e)), i.e.
Condition (II) of Definition 4.

(λ, S) is a homomorphism, thus S(mi) = m0 holds. We get ∀p ∈ P :∑
c∈C mi(c) · mp(c) = S(mi)|p = m0(p), i.e. Condition (III) of Definition 4.
There is a token trail mp for every place p of N and L ∈ N (N) holds. ��
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All synchronous net morphisms respect the token trail constrains. Whenever
there is a synchronous net morphism (λ, S) from a Petri net N ′ to a Petri net N ,
we simply use λ as a labelling function, the set of transitions of N as the set of
actions, and consider N ′ to be a labelled net. Theorem 1 states, this labelled net
N ′ is in the net language of the Petri net N .

In the following, we deduce Corollary 1 directly from Theorem 1 to show,
that token trails cover unfoldings. An unfolding is a Petri net and a folding
morphism representing executions of a Petri net. A folding morphism is a net
morphism with additional constrains [32,38,39]. The folding morphism relates
the semantics of the unfolding to the original Petri net [32]. Using unfoldings,
we can easily model concurrency, but conflict introduces branching alternatives
to model all possible non-sequential executions of a net [32]. Thus, branching
processes [39] are prohibitively large, or infinite in size [32]. Therefore, other,
more sophisticated, unfolding techniques exist which fold local states to get a
more compact representation [32]. Examples of such techniques are unravel nets
[13,14,32], merged processes [25,32], and trellis processes [18,32]. Most recently,
spread nets were introduced as a higher-level abstraction, that unifies these tech-
niques in a single theoretical unfolding framework [32]. Anyways, all the above-
mentioned semantics, like branching processes, unravel nets, merged processes,
trellis processes, and spread nets all use folding morphisms and therefore respect
the token trails semantics.

Corollary 1. Any finite unfolding of a Petri net N is in the net language of N .

Proof. An unfolding comes with a folding morphism (λ, S). The multirelation λ
is the labelling function relating transitions of the unfolding to the transitions
of the Petri net N . Theorem 1 applies. ��

Remark, Corollary 1 covers finite unfoldings. In his work, Winskel guarantees
that for safe Petri nets of infinite size net morphisms still have a meaningful def-
inition, which does not break because of infinite sums [38]. Since our motivation
for the token trails semantics is to model and specify behaviour of Petri nets
with labelled nets, which are created by people, or algorithms, our definition
currently does not account for Petri nets of infinite size. We think, our theory
could be generalised, but leave this open for future work.

Originally, Winskel introduced his new definition of homomorphisms,
because, unlike the previous definition [12], it preserves the behaviour of Petri
nets [38]. Since the token trails semantics covers net morphisms, and not the
other way around, we do not inherit this property for free. In Theorem 2 we
prove, that we can derive the same property from the, apparently weaker, con-
strains enforced by the net language definition. In automata theory the relation
we are going to prove is called simulation [29].

Theorem 2. Let L = (C,E, F, T, λ,mi) be a marked labelled net and N =
(P, T,W,m0) be a marked Petri net. If L is in the net language of N (a token
trail mp exists for every p ∈ P ) and we define a multirelation S : C × P → N as
∀p ∈ P,∀c ∈ C : Scp = mp(c), which maps a marking m of L to a marking S(m)
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of N with S(m) =
∑

p∈P

∑
c∈C m(c) · mp(c) · p, then for all markings m ∈ N

C

and all steps u ∈ N
E the following holds.

(A) If a step u is enabled in marking m, then the step λ(u) is enabled in marking
S(m).

(B) If firing an enabled step u in marking m produces the marking m′, then
firing the step λ(u) in S(m) produces the marking S(m′).

(C) The initial marking m0 of N is S(mi).

Proof. We prove (A). Step u is enabled in m, therefore m ≥ ∑
e∈u u(e) ·◦e holds.

We fix a place p ∈ P . For the image S(m) we get the following.

S(m)|p =
∑

c∈C m(c) · mp(c) by implication premise

≥ ∑
e∈u u(e)

∑
c∈◦e ◦e(c) · mp(c) see proof Theorem 1

=
∑

e∈u u(e) · e��(mp) by Definition 4 (I)

≥ ∑
e∈u u(e) · W (p, λ(e))

=
∑

e∈u u(e) · ◦λ(e)|p.
Thus, for all steps u and all places p, S(m) satisfies the firing condition

S(m) ≥ ∑
e∈u u(e) · ◦λ(e) and therefore the step λ(u) is enabled in S(m).

We prove (B). m
u−→ m′, therefore m′ = m − ◦u + u◦ holds. For the image

S(m′) we get the following.

S(m′) = S(m − ◦u + u◦)
=

∑
p∈P

∑
c∈C(m(c) − ◦u(c) + u◦(c)) · mp(c) · p

=
∑

p∈P

∑
c∈C m(c) · mp(c) · p

−∑
p∈P

∑
c∈C ◦u(c) · mp(c) · p

+
∑

p∈P

∑
c∈C u◦(c) · mp(c) · p

= S(m)
−∑

e∈u u(e) · ∑
p∈P

∑
c∈C ◦e(c) · mp(c) · p

+
∑

e∈u u(e) · ∑
p∈P

∑
c∈C e◦(c) · mp(c) · p see proof Theorem 1

= S(m) +
∑

e∈u u(e) ·
(
−∑

p∈P e��(mp) · p +
∑

p∈P e��(mp) · p
)

= S(m) +
∑

e∈u u(e) · ∑
p∈P e�(mp) · p by Definition 4 (II)

= S(m) +
∑

e∈u u(e) · ∑
p∈P (W (λ(e), p) − W (p, λ(e))) · p

= S(m)
−∑

e∈u u(e) · ∑
p∈P W (p, λ(e)) · p

+
∑

e∈u u(e) · ∑
p∈P W (λ(e), p) · p

= S(m) − ∑
e∈u u(e) · ◦λ(e) +

∑
e∈u u(e) · λ(e)◦

= S(m) − ◦λ(u) + λ(u)◦.

Thus, S(m′) = S(m) − ◦λ(u) + λ(u)◦ and S(m)
λ(u)−−−→ S(m′) holds.

Finally, Proposition (C) follows immediately from Definition 4 (III) and the
definition of S. ��
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A Petri net can simulate the states and state-transitions of all the labelled
nets in its net language. Therefore, token trails, just like homomorphisms, pre-
serve the behaviour of nets.

Obviously, if a marked Petri net can simulate all the steps of a marked labelled
net, then the step language of the Petri net is a super set of the labelled step
language.

Corollary 2. Let a marked labelled net L be in the net language of a marked
Petri net N , then L(L) ⊆ L(N) holds.

Proof. We prove by induction on the reachability graph of L. Due to (C), the
initial marking of L maps to the initial marking of N . Due to (A), for every
marking m of L the set of enabled labelled steps is a subset of the set of enabled
steps in S(m) of N . Due to (B) this property is preserved when any step fires. ��

The converse of Corollary 2 does not hold. We demonstrate this with a
counter example. Figure 12 depicts a labelled net similar to the labelled net
of Fig. 6. The step language of this net consists of two maximal step sequences
ABCD and ABX(B + C)D. This step language is obviously included in the
step language of the Petri net from Fig. 1. Figure 12 is not in the net language
of Fig. 1, because there is no token trail for the place p3 of Fig. 1. We will show
how to decide if there is a token trail for some place in the next section. Token
trail semantics is different from labelled step language inclusion.

Fig. 12. Counter example to the converse of Corollary 2.

Finally, in our third theorem, we now prove that the union of the step lan-
guages of all labelled nets in a net language is the step language of its Petri
net.

Theorem 3. Let N be a marked Petri net. L(N) =
⋃

L∈N (N) L(L) holds.

Proof. We construct a synchronous net morphism from N to N . We simply map
places and transitions using identity functions. We get N ∈ N (N) because of
Theorem 1. Thus, L(N) ⊆ ⋃

L∈N (N) L(L) holds.
Assume L(N) �

⋃
L∈N (N) L(L) holds. There is a labelled net L ∈ N (N)

with L(L) \ L(N) = ∅. This contradicts Corollary 2. ��
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Summing up, a net language contains all the labelled nets, which can be sim-
ulated by its marked Petri net. Moreover, we now understand, that the Petri net
model is an upper bound on the behaviour of its net language, i.e. any labelled
net modelling more behaviour, cannot be included in the net language. This is an
important difference between the token trail semantics and unfoldings. Unfold-
ings always unfold the behaviour completely with respect to some property [32].
Labelled nets of a net language can also model parts of the complete behaviour
of a Petri net. This makes modelling and specification of behaviour with labelled
nets easier, because we can use multiple smaller nets and example runs instead of
one complex structure. Finally, we understand that the concept of net language
inclusion is fundamentally different from the concept of step language inclusion.
A Petri net must not only be able to reproduce the enabled step sequences of
its net language but must also reflect the state space structure of the labelled
nets of its net language. Additionally, we showed that the token trail seman-
tics covers, but is not equal to the notion of unfoldings and the notion of net
homomorphisms as defined by Winskel.

4 Solving Net Language Inclusion

We introduced the net language in [7] and discussed its properties in the last
section. We claim it is very natural to model the behaviour of a Petri net as a set
of labelled nets [7,8]. For example, in the domain of business process modelling,
modelling languages like workflow nets [1,2] and BPMN [17,37] allow labelling
of activities. If we want to specify behaviour of a system using labels, we need
to decide if a labelled net is in the net language of a Petri net model. We will
tackle this net language inclusion problem in this section.

To decide net language inclusion, we need to decide the token trail problem.
Let N = (P, T,W,m0) be a marked Petri net, p ∈ P be a place of N , L =
(C,E, F, T, λ,mi) be a marked labelled net. Is there a marking m of L so that
m is a token trail for p? Obviously, if we can decide the token trail problem for
all places of a marked Petri net, we can decide net language inclusion.

Fig. 13. The labelled net from Fig. 6 with identifiers.

As an example, we consider the labelled net from Fig. 13 as a specification
of behaviour. The Figure depicts the labelled net from Fig. 6, but includes an
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identifier for every node. We already know, this net is in the net language of the
Petri net from Fig. 3, because the six token trails for each of the places of the Petri
net are depicted in Fig. 8. To show that the labelled net from Fig. 6 is not in the
net language of the more complex Petri net from Fig. 1 we look at the place p3 and
formalise the conditions of Definition 4 as a set of equations. Transition X from
Fig. 1 has one in-going arc from place p3. The only transition in the labelled net
depicted in Fig. 13 labelled with X is e3. From condition (II) we get that a token
trail marking m for p3 must satisfy e�

3 (m) = W (X, p3)−W (p3,X) = 0−1 = −1.
Rewriting e�

3 (m) using the rise definition, we get m(c5) − m(c4) = −1. This
matches our intuition, because transition e3 has a rise of −1 in the token trail
marking m if there is one less token in c5 than in c4. Transition B is not connected
to the place p3, therefore all transitions labelled B must have a rise of 0. We apply
condition (II) to all three transitions to get m(c2) = m(c4) = m(c5) = m(c6).
Again, e3 labelled X implies m(c4) = m(c5)+1. Obviously, both cannot be true
at the same time and there is no token trail for p3. The labelled net from Fig. 13
is not in the net language of the Petri net from Fig. 1.

This result also makes sense on a semantics level. The labelled net from
Fig. 13 specifies, that both, skipping the loop and executing the loop, reaches
the same local state c6. This is obviously not the case for the Petri net from
Fig. 1, because the place p3 tracks the number of executed loops.

We use the same argument to show that the labelled net from Fig. 12 is not
in the net language of Fig. 1. We get the conflicting equations for a token trail for
p3, by analysing the constrains imposed by transitions B and X of the labelled
net. By the same argument with local states, we get that in the labelled net from
Fig. 12, the execution of the firing sequences AB, and ABXB lands in the same
state, which is not the case for the Petri net from Fig. 1.

After these two examples, we show how to decide the token trail problem in
general. We rewrite Definition 4 using vectors and matrices and form a system
of linear equations and inequations. Let N = (P, T,W,m0) be a marked Petri
net, p ∈ P be a place, L = (C,E, F, T, λ,mi) be a marked labelled net. We fix
an arbitrary ordering of C and E. We write I to denote the |E| × |C| matrix
with elements ijk = F (ck, ej), we write O to denote the |E| × |C| matrix with
elements ojk = F (ej , ck), we write wI to denote a column vector of length |E|
where the value of the j-th element is W (p, λ(ej)), we write wO to denote a
column vector of length |E| where the value of the j-th element is W (λ(ej), p),
we write mᵀ

i to denote the row vector of size |C| where the value of the k-th
element is mi(ck). We rewrite conditions (I), (II) and (III) of Definition 4 to
create the following set of linear equations and inequations. The column vector
x of size |C| represents a token trail for p if and only if it is a non-negative
integer solution of this system.

(1) I · x − wI ≥ 0
(2) (O − I) · x − wO + wI = 0
(3) mᵀ

i · x − m0(p) = 0
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The value of the k-th element of a non-negative integer solution vector x of
the system is the number of tokens in place ck of a token trail marking for p.
Notice, that the values of the two w vectors depend on the place p.

Fig. 14. The matrices I and O of the labelled net of Fig. 13, the vectors wI and wO

for the place p3 of the Petri net of Fig. 1, and the vector mi in its column form.

As an example, we show these matrices and vectors, for the place p3 of the
Petri net from Fig. 1 and the labelled net from Fig. 13. We use the numbering of
the places and transitions of Fig. 13 to determine the ordering for the matrices
and vectors depicted in Fig. 14. The first two matrices model the flow relation F
of the labelled net from Fig. 13. The j-th row represents the transition ej , and
the k-th column represents the place ck of the labelled net. The entries in the I
matrix represent weights of arcs that connect places to transitions, the entries in
the O matrix represent weights of arcs that connect transitions to places. The
first two vectors depicted in Fig. 14 relate the transitions of the labelled net to
the transitions of the Petri net from Fig. 1. The j-th entry in each vector is the
arc weight that connects the fixed place p3 with the transition λ(ej) of the Petri
net that shares a label with the transition ej of the labelled net. The vector wI

contains the weight of the arc which leads from p3 to the transition λ(ej), the
vector wO contains the weight of the arc in the opposite direction. Notice, that
in this case, the 2nd, 4th, and 5th entries of these vectors must always have the
same value, regardless of the fixed place p, since the transitions e2, e4 and e5
share the same label. The final vector depicted in Fig. 14 represents the initial
marking mi of the labelled net of Fig. 13. The k-th entry contains the number
of tokens in the initial marking of the place ck. If we run a solver and try to
compute a non-negative integer solution for the system of Fig. 14, we will get
no solution. This is true, because of our arguments from the beginning of this
section.
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To decide the net language inclusion problem, we simply iterate over all places
of the marked Petri net N and solve the token trail problem for each place using
our system of inequations. Notice, that for each place only the two vectors wI

and wO change. If there is a token trail for every place, the labelled net is in the
net language of the marked Petri net. If there is no solution for one of the places,
we can decide net language inclusion early because the labelled net will not be
part of the net language. Alternatively, we can always iterate over all the places
and return the sets of all valid and all invalid places. Additionally, if the answer
to the inclusion problem is positive, we can return the multirelation S that maps
the states of the labelled net to the states of the Petri net. We can construct it
by combining the solution vectors x from every iteration into a single matrix.

Solving a general integer linear program is a well-known NP-hard problem
[24]. However, Petri nets in practical applications produce sparse matrices, fur-
thermore the separation of the constrains (1), (2) and (3) into three distinct sets
creates a natural block-structuredness of our problem. Integer programming with
these properties can be solved in fixed polynomial and fixed-parameter tractable
time [27]. We hope to show a better upper bound for the token trail problem in
future research. If we restrict token trails to partial orders, they are equivalent
to compact token flows [3,7,8]. In fact, token trails are kind of the generalised
version of compact tokenflows on arbitrary labelled nets. We can solve the com-
pact tokenflow problem for partial orders in polynomial time [3,5]. In the future,
we hope to get similar results for token trails.

5 A Tool For Calculating Token Trails

As a proof of concept, we implemented the algorithm as part of our previous
work on token trails [7]. The tool is part of the I Petri nets web tool
kit and its updated version is available at www.fernuni-hagen.de/ilovepetrinets/

fox. By clicking the symbol a user can select files containing a Petri net and
a labelled net. Files can also be drag-and-dropped onto the symbol either
from the client computer, or from the examples section of the tool website. The
tool supports files in the standard PNML file format, as well as, a JSON format
specific to the I Petri nets website. As soon as, we load a marked Petri
net and a labelled net, the tool runs the net language inclusion algorithm and
constructs the related systems of linear inequations for each place of the Petri
net. We use an integer linear programming solver, to find a non-negative integer
solution of this system. The tool marks all valid places green and all invalid
places red. If all places of the model are green, then the labelled net is in the net
language of the marked Petri net. Additionally, if we click on a green place, it is
highlighted in the Petri net, and the related token trail marking is displayed in
the labelled net.

Figure 15 depicts a screenshot of our tool. The Petri net displayed in the
top part is the net from Fig. 1. The labelled net displayed in the bottom part
is the net from Fig. 13. We can clearly see that six of the places are valid and

www.fernuni-hagen.de/ilovepetrinets/fox
www.fernuni-hagen.de/ilovepetrinets/fox
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therefore coloured green, the remaining two places are invalid. As discussed in
the previous section, the labelled net is not in the net language of the Petri net.
Finally, we see that the place p2 of the Petri net has a slightly darker colour.
This means it is currently selected and the marking depicted in the labelled net
is a token trail for p2. The depicted token trail marking is the same as in Fig. 8.

Fig. 15. Screenshot of the tool

6 Conclusion

In [7], we introduced the token trail semantics for Petri nets and discussed its
relation to step semantics [20], branching processes [39], tokenflows [23], and
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compact tokenflows [3]. In this paper, we added the discussion on net morphisms
[38] and unfoldings [32]. We extend the results of [7] and show that, the net
language contains all labelled nets, which can be simulated by the marked Petri
net. We now understand that the Petri net model is an upper bound of the
behaviour of the net language and any labelled net modelling more behaviour,
is not included in the net language. We show that the concept of net language
inclusion is fundamentally different from the concept of step language inclusion.
A Petri net must not only be able to reproduce the enabled step sequences of
its net language but must also reflect the state space structure of the labelled
nets of its net language. Additionally, we show that the token trail semantics
covers, but is not equivalent to the notion of unfoldings and the notion of net
homomorphisms as defined by Winskel [38]. Here, token trails can represent a
distributed state of the model in a single place of the labelled net. Altogether,
the net language is a meta-semantics for the existing language- and state-based
semantics of Place/Transition nets with atomic firing. It allows us to model and
represent the behaviour of a Petri net as a set of labelled nets. We argue that
this representation is comprehensive, intuitive, and simple to use.

Additionally, we presented a tool deciding the net language inclusion prob-
lem. Using this approach, we can model behaviour in terms of sets of general
labelled nets and see if a marked Petri net model fulfils this specification. We
see a lot of application for our semantics in the domains of business process
modelling and process mining.

We see directions for future work both in foundational theory, as well as, in
application. We would like to generalise the token trails semantics to labelled
nets of infinite size, as well as, extend it to support various extensions of Petri
nets, such as silent transitions, and inhibitor arcs. Additionally, we would like
to generalise the existing compact tokenflow regions theory [4] to labelled nets.
We offer a first glimpse at this generalisation in our previous work [8].
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Abstract. We present a new language semantics for real-time concur-
rency. Its operational models are higher-dimensional timed automata
(HDTAs), a generalization of both higher-dimensional automata and
timed automata. We define languages of HDTAs as sets of interval-timed
pomsets with interfaces. As an application, we show that language inclu-
sion of HDTAs is undecidable. On the other hand, using a region con-
struction we can show that untimings of HDTA languages have enough
regularity so that untimed language inclusion is decidable.
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1 Introduction

In order to model non-interleaving concurrency, models such as Petri nets [46],
event structures [45], configuration structures [51,52], or higher-dimensional
automata (HDAs) [26,47,48] allow several events to happen simultaneously. The
interest of such models, compared to other models such as automata or transition
systems, is the possibility to distinguish concurrent and interleaving executions;
using CCS notation [44], parallel compositions a ‖ b are not the same as choices
a.b + b.a.

Semantically, concurrency in non-interleaving models is represented by the
fact that their languages do not consist of words but rather of partially ordered
multisets (pomsets). As an example, Fig. 1 shows Petri net and HDA models
which execute the parallel composition of a.c and b; their language is generated

Fig. 1. Petri net and HDA models for a.c ‖ b.
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Fig. 2. Taxonomy of some models for time and concurrency

by the pomset [ a→c
b ] in which there is no order relation between a and b nor

between b and c. However, these models and pomsets use logical time and make
no statements about the precise durations or timings of events.

When we consider models for real-time systems, such as for example timed
automata [3] which can model precise durations and timings of events, the dis-
tinction between concurrency and interleaving is usually left behind. Their lan-
guages are sets of timed words, that is, sequences of symbols each of which is
associated with a timestamp that records when the associated event took place.

In this article, our goal is to propose a language-based semantics for concur-
rent real-time systems. Our aim is to combine the two semantics above, timed
words for interleaving real time and pomsets for non-interleaving logical time.

Another such proposal was developed in [12], where, going back to [11], lan-
guages of time Petri nets [43] are given as sets of pomsets with timestamps on
events, see also [18–20,34]. Nevertheless, this creates problems of causality, as
explained in [20] which notes that “[t]ime and causality [do] not necessarily blend
well in [...] Petri nets”.

We put forward a different language-based semantics for real-time concur-
rency, inspired by recent work on interval-order semantics of higher-dimensional
automata [5,26–28,32]. We use pomsets with interval timestamps on events, that
is, every event has a start time and an end time, and the partial order respects
these timestamps.

Our operational models for real-time concurrent systems are higher-dimen-
sional timed automata (HDTAs), a simultaneous extension of timed automata
[2,3] and higher-dimensional automata [26,47,48] (which in turn generalize (safe)
Petri nets [49,50]), see Fig. 2. These have been introduced in [25], where it is
shown among other things that reachability for HDTAs may be decided using
zones like for timed automata. We adapt the definition of HDTAs to better
conform with the event-based setting of [26] and introduce languages of HDTAs
as sets of pomsets with interval timestamps.

This article is organised as follows. We begin in Sect. 2 by recalling timed
automata and expressing their language semantics using two perspectives: delay
words and timed words. In Sect. 3, we revisit higher-dimensional automata and
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their languages, again focusing on two complementary perspectives, of step
sequences and pomsets with interfaces. In Sect. 4 we recall the definition of
higher-dimensional timed automata and give examples.

The following sections present our proper contributions. In Sect. 5, we present
two formalisms for languages for real-time concurrency: interval delay words and
timed pomsets with interfaces, generalizing the dual view on languages of timed
automata and of HDAs and showing their equivalence. Then in Sect. 6, we define
languages of higher-dimensional timed automata using the formalisms previously
introduced, and prove two main results: language inclusion is undecidable for
higher-dimensional timed automata, but untimed language inclusion is decidable.
We refer to the long version [4] for proofs of our results.

2 Timed Automata and Their Languages

Timed automata extend finite automata with clock variables and invariants
which permit the modeling of real-time properties. For a set C (of clocks), Φ(C)
denotes the set of clock constraints defined as

Φ(C) � φ1, φ2 ::= c �� k | φ1 ∧ φ2 (c ∈ C, k ∈ N, �� ∈ {<,≤,≥, >}) .

Hence a clock constraint is a conjunction of comparisons of clocks to integers.
A clock valuation is a mapping v : C → R≥0, where R≥0 denotes the set of

non-negative real numbers. The initial clock valuation is v0 : C → R≥0 given by
v0(c) = 0 for all c ∈ C. For v ∈ R

C
≥0, d ∈ R≥0, and R ⊆ C, the clock valuations

v + d and v[R ← 0] are defined by

(v + d)(c) = v(c) + d v[R ← 0](c) =

{
0 if c ∈ R,

v(c) if c /∈ R.

For v ∈ R
C
≥0 and φ ∈ Φ(C), we write v |= φ if v satisfies φ.

A timed automaton is a structure (Σ,C,Q,⊥,�, I, E), where Σ is a finite
set (alphabet), C is a finite set of clocks, Q is a finite set of locations with initial
and accepting locations ⊥,� ⊆ Q, I : Q → Φ(C) assigns invariants to states,
and E ⊆ Q× Φ(C)×Σ × 2C ×Q is a set of guarded transitions. We will often
take the liberty to omit Σ and C from the signature of timed automata.

Timed automata have a long and successful history in the modeling and
verification of real-time computing systems. Several tools exist such as Uppaal1
[13,14,41], TChecker2, IMITATOR3 [6,7], and Romeo4 [35,42], some of which
are routinely applied in industry. The interested reader is referred to [1,16,40].

The operational semantics of a timed automaton A = (Q,⊥,�, I, E) is the
(usually uncountably infinite) transition system �A� = (S, S⊥, S�,�), with � ⊆
S × (Σ ∪ R≥0)× S, given as follows:
1 https://uppaal.org/.
2 https://www.labri.fr/perso/herbrete/tchecker/.
3 https://www.imitator.fr/.
4 https://romeo.ls2n.fr/.

https://uppaal.org/
https://www.labri.fr/perso/herbrete/tchecker/
https://www.imitator.fr/
https://romeo.ls2n.fr/
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S = {(q, v) ∈ Q× R
C
≥0 | v |= I(q)}

S⊥ = {(q, v0) | q ∈ ⊥} S� = S ∩ �× R
C
≥0

� = {((q, v), d, (q, v + d)) | ∀0 ≤ d′ ≤ d : v + d′ |= I(q)}
∪ {((q, v), a, (q′, v′)) | ∃(q, φ, a,R, q′) ∈ E : v |= φ, v′ = v[R ← 0]}

Tuples in � of the first type are called delay moves and denoted �d, tuples of
the second kind are called action moves and denoted a�.

The definition of � ensures that actions are immediate: for any
(q, φ, a,R, q′) ∈ E, then A passes from (q, v) to (q′, v′) without any delay. Time
progresses only during delays (q, v) � (q, v + d) in locations. A path π in �A� is
a finite sequence of consecutive moves of �:

π = (l0, v0) � (l1, v1) � · · · � (ln−1, vn−1) � (ln, vn) (1)

It is accepting if (l0, v0) ∈ S⊥ and (ln, vn) ∈ S�.
The language semantics of timed automata is defined in terms of timed words.

There are two versions of these in the literature, and we will use them both.
The first, which we call delay words here, is defined as follows. The label of
a delay move δ = (q, v) � (q, v + d) is ev(δ) = d. That of an action move
σ = (l, v) a� (l′, v′) is ev(σ) = a. Finally, the label ev(π) of π as in (1) is

ev((l0, v0) � (l1, v1)) · · · ev((ln−1, vn−1) � (ln, vn)).

Delay words are elements of the quotient of the free monoid on Σ ∪ R≥0

by the equivalence relation ∼ which allows to add up subsequent delays and to
remove zero delays. Formally, ∼ is the congruence on (Σ ∪ R≥0)∗ generated by
the relations

dd′ ∼ d + d′, 0 ∼ ε. (2)

The delay language L(A) of the timed automaton A is the set of delay words
labeling accepting paths in �A�:

L(A) = {ev(π) | π accepting path in �A�} ⊆ (Σ ∪ R≥0)∗/∼

Any equivalence class of delay words has a unique representative of the form
d0a0d1a1 . . . andn+1 in which delays di ∈ R≥0 and symbols ai ∈ Σ alternate.

The second language semantics of timed automata is given using words with
timestamps, which we will call timed words here. In the literature [1,16,40]
these are usually defined as elements of the free monoid on Σ × R≥0 in which
the real components form an increasing sequence. Formally, this is the subset
TW′ ⊆ (Σ × R≥0)∗ given as

TW′ = {w = (a0, t0) . . . (an, tn) | ∀i = 0, . . . , n− 1 : ti ≤ ti+1}.
The notions of delay words and timed words do not match completely, as

delay words allow for a delay at the end of a run while timed words terminate
with the last timestamped symbol. In order for the language semantics to better
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match the operational semantics, we prefer to allow for these extra delays. Let
TW ⊆ (Σ × R≥0)∗ R≥0 be the subset

TW = {w = (a0, t0) . . . (an, tn) tn+1 | ∀i = 0, . . . , n : ti ≤ ti+1}.
Concatenation in TW is defined by shifting timestamps.

For w = (a0, t0) . . . (an, tn) tn+1, w′ = (a′
0, t

′
0) . . . (a′

n, t′n) t′n+1 ∈ TW:

ww′ = (a0, t0) . . . (an, tn)(a′
0, tn+1 + t′0) . . . (a′

n, tn+1 + t′n)(tn+1 + t′n+1).

The monoids (Σ ∪ R≥0)∗/∼ and TW are then isomorphic via the mapping

d0a0d1a1 . . . andn+1 �→
(a0, d0) (a1, d0 + d1) . . . (an−1, d0 + · · ·+ dn) (d0 + · · ·+ dn+1),

and the timed language of a timed automaton A is the image of its delay language
L(A) under this isomorphism.

3 Higher-Dimensional Automata and Their Languages

Higher-dimensional automata (HDAs) extend finite automata with extra struc-
ture which permits to specify independence or concurrency of events. We focus
in this section on the languages of HDAs and refer to [26,32] for more details.

3.1 Higher-Dimensional Automata

An HDA is a set X of cells which are connected by face maps. Each cell has
a list of events which are active, and face maps permit to pass from a cell to
another in which some events have not yet started or are terminated.

We make this precise. A conclist (concurrency list) over a finite alphabet Σ
is a tuple U = (U, ���, λ), consisting of a finite set U (of events), a strict total
order ��� ⊆ U × U (the event order),5 and a labeling λ : U → Σ. Let � denote
the set of conclists over Σ.

A precubical set on a finite alphabet Σ,

X = (X, ev, {δ0A,U , δ1A,U | U ∈ �, A ⊆ U}),
consists of a set of cells X together with a function ev : X → �. For U ∈ � we
write X[U ] = {x ∈ X | ev(x) = U}. Further, for every U ∈ � and A ⊆ U there
are face maps δ0A,U , δ1A,U : X[U ]→ X[U \A] which satisfy

δν
A,Uδμ

B,U\A = δμ
B,Uδν

A,U\B (3)

for A∩B = ∅ and ν, μ ∈ {0, 1}.6 The upper face maps δ1A transform a cell x into
one in which the events in A have terminated; the lower face maps δ0A transform
5 A strict partial order is a relation which is irreflexive and transitive; a strict total

order is a relation which is irreflexive, transitive, and total. We may omit the “strict”.
6 We will omit the extra subscript “U ” in δν

A,U from here on.
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x into a cell where the events in A have not yet started. (3) expresses the fact
that these transformations commute for disjoint sets of events.

A higher-dimensional automaton (HDA) A = (Σ,X,⊥,�) consists of a finite
alphabet Σ, a finite precubical set X on Σ, and subsets ⊥,� ⊆ X of initial and
accepting cells. The dimension of A is dim(A) = max{|ev(x)| | x ∈ X}.

3.2 Pomsets with Interfaces

The language semantics of HDAs is defined in terms of ipomsets which we define
now; see again [26,32] for more details. First, a partially ordered multiset, or
pomset, over a finite alphabet Σ is a structure P = (P,<, ���, λ) consisting of
a finite set P , two strict partial orders <, ��� ⊆ P × P (precedence and event
order), and a labeling λ : P → Σ, such that for each x �= y in P , at least one of
x < y, y < x, x ��� y, or y ��� x holds.7

A pomset with interfaces, or ipomset, over a finite alphabet Σ is a tuple
(P,<, ���, S, T, λ) consisting of a pomset (P,<, ���, λ) and subsets S, T ⊆ P
of source and target interfaces such that the elements of S are <-minimal and
those of T are <-maximal. Note that different events of ipomsets may carry the
same label; in particular we do not exclude autoconcurrency. Source and target
events are marked by “•” at the left or right side, and if the event order is not
shown, we assume that it goes downwards.

An ipomset P is interval if its precedence order <P is an interval order [33],
that is, if it admits an interval representation given by functions σ−, σ+ : P → R

such that σ−(x) ≤ σ+(x) for all x ∈ P and x <P y iff σ+(x) < σ−(y) for all
x, y ∈ P . We will only use interval ipomsets here and hence omit the qualification
“interval”. The set of (interval) ipomsets over Σ is denoted iPoms.

For ipomsets P and Q we say that Q subsumes P and write P � Q if there
is a bijection f : P → Q for which

(1) f(SP ) = SQ, f(TP ) = TQ, and λQ ◦ f = λP ;
(2) f(x) <Q f(y) implies x <P y;
(3) x �<P y, y �<P x and x ���P y imply f(x) ���Q f(y).

That is, f respects interfaces and labels, reflects precedence, and preserves essen-
tial event order. (Event order is essential for concurrent events, but by transi-
tivity, it also appears between non-concurrent events. Subsumptions ignore such
non-essential event order.)

Isomorphisms of ipomsets are invertible subsumptions, i.e., bijections f for
which items (2) and (3) above are strengthened to

(2′) f(x) <Q f(y) iff x <P y;
(3′) x �<P y and y �<P x imply that x ���P y iff f(x) ���Q f(y).

Due to the requirement that all elements are ordered by < or ���, there is at most
one isomorphism between any two ipomsets. Hence we may switch freely between

7 The event order is needed to identify concurrent events, see [26,32] for details.
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ipomsets and their isomorphism classes. We will also call these equivalence classes
ipomsets and often conflate equality and isomorphism.

Serial composition of pomsets [37] generalises to a gluing composition for
ipomsets which continues interface events across compositions and is defined as
follows. Let P and Q be ipomsets such that TP = SQ, x ���P y iff x ���Q y
for all x, y ∈ TP = SQ, and the restrictions λP |TP

= λQ|SQ
, then P ∗ Q =

(P ∪Q,<, ���, SP , TQ, λ), where

– x < y if x <P y, x <Q y, or x ∈ P \ TP and y ∈ Q \ SQ;
– ��� is the transitive closure of ���P ∪ ���Q;
– λ(x) = λP (x) if x ∈ P and λ(x) = λQ(x) if x ∈ Q.

Gluing is, thus, only defined if the targets of P are equal to the sources of Q as
conclists.

An ipomset P is a word (with interfaces) if <P is total. Conversely, P is
discrete if <P is empty (hence ���P is total). Conclists are discrete ipomsets
without interfaces. A starter is a discrete ipomset U with TU = U , a terminator
one with SU = U . The intuition is that a starter does nothing but start the
events in A = U − SU , and a terminator terminates the events in B = U − TU .
These will be so important later that we introduce special notation, writing A↑U
and U↓B for the above. Discrete ipomsets U with SU = TU = U are identities
for the gluing composition and written idU . Note that idU = ∅↑U = U↓∅. The
empty ipomset is id∅.

3.3 Step Sequences

Any ipomset can be decomposed as a gluing of starters and terminators [28,39].
Such a presentation is called a step decomposition. If starters and terminators
are alternating, the step decomposition is called sparse. [32, Prop. 4] shows that
every ipomset has a unique sparse step decomposition.

We develop an algebra of step decompositions. Let St,Te, Id ⊆ iPoms denote
the sets of starters, terminators, and identities over Σ, then Id = St ∩ Te. Let
St+ = St \ Id and Te+ = Te \ Id. The following notion was introduced in [5].

Definition 1. A word P1 . . . Pn ∈ (St∪Te)∗ is coherent if the gluing P1∗· · ·∗Pn

is defined.

Let Coh ⊆ (St∪Te)∗ denote the subset of coherent words and ∼ the congru-
ence on Coh generated by the relations

I ∼ ε (I ∈ Id),
S1S2 ∼ S1 ∗ S2 (S1, S2 ∈ St), T1T2 ∼ T1 ∗ T2 (T1, T2 ∈ Te).

(4)

Here, ε denotes the empty word in (St ∪ Te)∗, not the empty ipomset id∅ ∈ Id.

Definition 2. A step sequence is an element of the set SSeq = Id.Coh/∼.Id.

The identities in the beginning and end of step sequences are used to “fix”
events in the source and target interfaces, i.e., which are already running in
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the beginning or continue beyond the end. For example, •a•.•a• denotes an event
labeled a which is neither started nor terminated. Technically we only need these
identities when the inner part (in (St∪Te)∗/∼) is empty (and even then we would
only need one of them); but we prefer a more verbose notation that will be of
interest when we introduce time, see Definition 12.

Lemma 3. Every element of SSeq has a unique representative I0P1 . . . PnIn+1,
for n ≥ 0, with the property that (Pi, Pi+1) ∈ St+ × Te+ ∪ Te+ × St+ for all
1 ≤ i ≤ n− 1. Such a representative is called sparse.

Proof. Directly from [32, Prop. 4].

Concatenation of step sequences is inherited from the monoid (St∪Te)∗ where
I0.w.In · I ′

0.w
′.I ′

m is defined iff In = I ′
0. Concatenations of sparse step sequences

may not be sparse.

Remark 4. SSeq forms a local partial monoid [29] with left and right units
idU idU , for U ∈ �, and (UV )W = U(V W ) when the concatenation is defined.
Local partial monoids may admit many units and are equivalent to categories:
here, the objects are the conclists in � and the morphisms from U ∈ � to V ∈ �
are the step sequences idUw idV . We refer to [29] for more details.

For a coherent word P1 . . . Pn ∈ Coh ⊆ (St∪Te)∗ we define Glue(P1 . . . Pn) =
P1∗· · ·∗Pn. It is clear that for w1, w2 �= ε, w1 ∼ w2 implies Glue(w1) = Glue(w2).
That is, Glue induces a mapping Glue : SSeq→ iPoms.

Lemma 5 ([32, Prop. 4]). Glue : SSeq→ iPoms is a bijection.

See below for examples of step sequences and ipomsets.

3.4 Languages of HDAs

Paths in an HDA X are sequences α = (x0, φ1, x1, . . . , xn−1, φn, xn) consisting
of cells xi of X and symbols φi which indicate face map types: for every i ∈
{1, . . . , n}, (xi−1, φi, xi) is either

– (δ0A(xi),↗A, xi) for A ⊆ ev(xi) (an upstep)
– or (xi−1,↘A, δ1A(xi−1)) for A ⊆ ev(xi−1) (a downstep).

Downsteps terminate events, following upper face maps, whereas upsteps start
events by following inverses of lower face maps.

The source and target of α as above are src(α) = x0 and tgt(α) = xn. A
path α is accepting if src(α) ∈ ⊥X and tgt(α) ∈ �X . Paths α and β may be
concatenated if tgt(α) = src(β). Their concatenation is written α∗β or simply αβ.

The observable content or event ipomset ev(α) of a path α is defined recur-
sively as follows:

– if α = (x), then ev(α) = idev(x);
– if α = (y ↗A x), then ev(α) = A↑ev(x);
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Fig. 3. HDA of Example 7. The grayed area indicates that a and b may occur concur-
rently, i.e., there is a two-dimensional cell, u in this instance

– if α = (x ↘A y), then ev(α) = ev(x)↓A;
– if α = α1 ∗ · · · ∗ αn is a concatenation, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn).

Note that upsteps in α correspond to starters in ev(α) and downsteps correspond
to terminators.

For A ⊆ iPoms, A↓ = {P ∈ iPoms | ∃Q ∈ A : P � Q} denotes its subsump-
tion closure. The language of an HDA X is L(X) = {ev(α) | α accepting path
in X}. A language is regular if it is the language of a finite HDA. It is rational

if it is constructed from ∅, {id∅} and discrete ipomsets using ∪, ∗ and + (Kleene
plus) [27]. Languages of HDAs are closed under subsumption, that is, if L is
regular, then L↓ = L [26,27]. The rational operations above have to take this
closure into account.

Theorem 6 ([27]). A language is regular if and only if it is rational.

Example 7. The HDA of Fig. 3 is two-dimensional and consists of nine cells:
the corner cells X0 = {l0, l1, l2, l3} in which no event is active (for all z ∈ X0,
ev(z) = ∅), the transition cells X1 = {e1, e2, e3, e4} in which one event is active
(ev(e1) = ev(e4) = a and ev(e2) = ev(e3) = b), and the square cell u where a
and b are active: ev(u) = [ a

b ]. When we have two concurrent events a and b with
a ��� b, we will draw a horizontally and b vertically. Concerning face maps, we
have for example δ1ab(u) = l3 and δ0ab(u) = l0.

This HDA admits several accepting paths, for example

α1 = l0 ↗ab u ↘ab l3, α2 = l0 ↗a e1 ↗b u ↘b e4 ↘a l3,

α3 = l0 ↗a e1 ↘a l1 ↗b e3 ↘b l3, α4 = l0 ↗b e2 ↘b l2 ↗a e4 ↘b l3,

where ev(α1) = [ a•
b• ]∗[ •a

•b ] = ev(α2) = a•∗[ •a•
b• ]∗[ •a•

•b ]∗•a = [ a
b ], ev(α3) = a•∗•a∗

b•∗•b = ab, and ev(α4) = b•∗•b∗a•∗•a = ba. Its language is {[ a
b ]}↓ = {[ a

b ] , ab, ba}.
Observe that α1 and α2 induce the coherent words w1 = [ a•

b• ] [
•a
•b ] and w2 =

a• [ •a•
b• ] [ •a

•b• ] •b such that w1 ∼ w2 and s = id∅w1id∅ is their corresponding sparse
step sequence with Glue(s) = [ a

b ].
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Fig. 4. HDTA of Example 9.

4 Higher-Dimensional Timed Automata

Unlike timed automata, higher-dimensional automata make no formal distinction
between states (0-cells), transitions (1-cells), and higher-dimensional cells. We
transfer this intuition to higher-dimensional timed automata, so that each cell
has an invariant which specifies when it is enabled and an exit condition giving
the clocks to be reset when leaving. Semantically, this implies that time delays
can occur in any n-cell, not only in states as in timed automata; hence actions
are no longer instantaneous.

Definition 8. A higher-dimensional timed automaton (HDTA) is a struc-
ture (Σ,C,Q,⊥,�, inv, exit), where (Σ,Q,⊥,�) is a finite higher-dimensional
automaton and inv : Q → Φ(C), exit : Q → 2C assign invariant and exit condi-
tions to each cell of Q.

As before, we will often omit Σ and C from the signature.
The operational semantics of an HDTA A = (Q,⊥,�, inv, exit) is a (usually

uncountably infinite) transition system �A� = (S, S⊥, S�,�), with the set of
transitions (moves) � ⊆ S × (St ∪ Te ∪ R≥0)× S given as follows:

S = {(q, v) ∈ Q× R
C
≥0 | v |= inv(q)}

S⊥ = {(q, v0) | q ∈ ⊥} S� = S ∩ �× R
C
≥0

� = {((q, v), d, (q, v + d)) | ∀0 ≤ d′ ≤ d : v + d′ |= inv(q)}
∪ {((δ0A(q), v), A↑ev(q), (q, v′)) | A ⊆ ev(q), v′ = v[exit(δ0A(q))← 0] |= inv(q)}
∪ {((q, v), ev(q)↓A, (δ1A(q), v

′)) | A ⊆ ev(q), v′ = v[exit(q)← 0] |= inv(δ1A(q))}
Note that in the first line of the definition of � above, we allow time to

evolve in any cell of Q. As before, these are called delay moves and denoted
�d for some delay d ∈ R≥0. The second line in the definition of � defines the
start of concurrent events A (denoted �A) and the third line describes what
happens when finishing a set A of concurrent events (denoted �A). These are
again called action moves. Exit conditions specify which clocks to reset when
leaving a cell.
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Fig. 5. HDTA of Example 10

Example 9. We give a few examples of two-dimensional timed automata. The
first, in Fig. 4, is the HDA of Fig. 3 with time constraints. It models two actions, a
and b, which can be performed concurrently. This HDTA models that performing
a takes between two and four time units, whereas performing b takes between
one and three time units. To this end, we use two clocks x and y which are reset
when the respective actions are started and then keep track of how long they
are running.

Hence exit(l0) = {x, y}, and the invariants x ≤ 4 at the a-labeled transitions
e1, e4 and at the square u ensure that a takes at most four time units. The
invariants x ≥ 2 at l1, e3 and l3 take care that a cannot finish before two time
units have passed. Note that x is also reset when exiting e2 and l2, ensuring that
regardless when a is started, whether before b, while b is running, or after b is
terminated, it must take between two and four time units.

Example 10. The HDTA in Fig. 5 models the following additional constraints:

– b may only start after a has been running for one time unit;
– once b has terminated, a may run one time unit longer;
– and b must finish one time unit before a.

To this end, an invariant x ≥ 1 has been added to the two b-labeled transitions
and to the ab-square (at the right-most b-transition x ≥ 1 is already implied),
and the condition on x at the top a-transition has been changed to x ≤ 5. To
enforce the last condition, an extra clock z is introduced which is reset when b
terminates and must be at least 1 when a is terminating.

Note that the left edge is now unreachable: when entering it, x is reset to
zero, but its edge invariant is x ≥ 1. This is as expected, as b should not be able
to start before a. Further, the right b-labeled edge is deadlocked: when leaving it,
z is reset to zero but needs to be at least one when entering the accepting state.
Again, this is expected, as a should not terminate before b. As both vertical
edges are now permanently disabled, the accepting state can only be reached
through the square.
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Fig. 6. Different types of language semantics: below, for languages of timed automata;
middle, for languages of HDAs; top, for languages of HDTAs. Vertical arrows denote
injections, horizontal arrows bijections.

5 Concurrent Timed Languages

We introduce two formalisms for concurrent timed words: interval delay words
which generalize delay words and step sequences, and timed ipomsets which
generalize timed words and ipomsets. Figure 6 shows the relations between the
different language semantics used and introduced in this paper.

5.1 Interval Delay Words

Intuitively, an interval delay word is a step sequence interspersed with delays.
These delays indicate how much time passes between starts and terminations of
different events.

Definition 11. A word x1 . . . xn ∈ (St∪Te∪R≥0)∗ is coherent if, for all i < k
such that xi, xk ∈ St∪Te and ∀i < j < k : xj ∈ R≥0, the gluing xi ∗xk is defined.

Let tCoh ⊆ (St ∪ Te ∪ R≥0)∗ denote the subset of coherent words. Let ∼ be
the congruence on tCoh generated by the relations

dd′ ∼ d + d′, 0 ∼ ε, I ∼ ε (I ∈ Id),
S1S2 ∼ S1 ∗ S2 (S1, S2 ∈ St), T1T2 ∼ T1 ∗ T2 (T1, T2 ∈ Te).

Again, ε denotes the empty word in (St ∪ Te ∪ R≥0)∗ above. That is, successive
delays may be added up and zero delays removed, as may identities, and suc-
cessive starters or terminators may be composed. Note how this combines the
identifications in (2) for delay words and the ones for step sequences in (4).

Definition 12. An interval delay word (idword) is an element of the set

IDW = Id.tCoh/∼.Id.

Lemma 13. Every element of IDW has a unique representative I0d0P1d1 . . .
PndnIn+1, for n ≥ 0, with the property that for all 1 ≤ i ≤ n, Pi /∈ Id and for
all 1 ≤ i ≤ n − 1, if di = 0, then (Pi, Pi+1) ∈ St+ × Te+ ∪ Te+ × St+. Such a
representative is called sparse.
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Fig. 7. Tipomsets T1 (left) and T2 (right) of Example 15

This is analogous to Lemma 3, except that here, we must admit successive
starters or terminators if they are separated by non-zero delays (see Example 21
below for an example).

With concatenation of idwords inherited from the monoid (St ∪ Te ∪ R≥0)∗,
IDW forms a partial monoid (successive identities are composed using ∼). Con-
catenations of sparse idwords are not generally sparse. The identities for con-
catenation are the words idU idU ∼ idU 0 idU for U ∈ �.

5.2 Timed Ipomsets

Timed ipomsets are ipomsets with timestamps which mark beginnings and ends
of events:

Definition 14. Let P be a set, σ−, σ+ : P → R≥0, σ = (σ−, σ+), and d ∈ R≥0.
Then P = (P,<P , ���, S, T, λ, σ, d) is a timed ipomset (tipomset) if

– (P,<P , ���, S, T, λ) is an ipomset,
– for all x ∈ P , 0 ≤ σ−(x) ≤ σ+(x) ≤ d,
– for all x ∈ S, σ−(x) = 0,
– for all x ∈ T , σ+(x) = d, and
– for all x, y ∈ P , σ+(x) < σ−(y) =⇒ x <P y =⇒ σ+(x) ≤ σ−(y).

The activity interval of event x ∈ P is σ(x) = [σ−(x), σ+(x)]; we will always
write σ(x) using square brackets because of this. The untiming of P is its under-
lying ipomset, i.e., unt(P ) = (P,<P , ���, S, T, λ). We will often write tipomsets
as (P, σ, d) or just P .

Example 15. Figure 7 depicts the following tipomsets:

– T1 = ({x1, x2, x3}, <1, ���, {x1, x3}, {x1}, λ1, σ1, 3) with
• <1 = {(x3, x2)}, ��� = {(x1, x2), (x1, x3)},
• λ1(x1) = a, λ1(x2) = d, λ1(x3) = c, and
• σ1(x1) = [0, 3], σ1(x2) = [1.5, 3], σ1(x3) = [0, 1.5]

– T2 = ({x4, x5, x6}, <2, x4 ��� x5 ��� x6, {x4}, ∅, λ2, σ2, 4) with
• <2 = ∅, λ2(x4) = a, λ2(x5) = b, λ2(x6) = c, and
• σ2(x4) = [0, 2], σ2(x5) = [0.5, 3.5], σ2(x6) = [1, 3].
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Fig. 8. Gluing T1 ∗ T2, see Example 17

Note that in T1, the d-labeled event x2 is not in the terminating interface as
it ends exactly at time 3. Further, the precedence order is not induced by the
timestamps in T1: we have σ+

1 (x3) = σ−
1 (x2) but x3 <1 x2; setting <1 = ∅ instead

would also be consistent with the timestamps. For the underlying ipomsets,

unt(T1) =
[

•a•

•c → d

]
, unt(T2) =

⎡
⎣•a

b
c

⎤
⎦ .

We generalize the gluing composition of ipomsets to tipomsets.

Definition 16. Given two tipomsets (P, σP , dP ) and (Q,σQ, dQ), the gluing
composition P ∗Q is defined if unt(P ) ∗ unt(Q) is. Then, P ∗Q = (U, σU , dU ),
where

– U = P ∗Q and dU = dP + dQ,
– σ−

U (x) = σ−
P (x) if x ∈ P and σ−

U (x) = σ−
Q(x) + dP else,

– σ+
U (x) = σ+

Q(x) + dP if x ∈ Q and σU (x) = σ+
P (x) else.

The above definition is consistent for events x ∈ TP = SQ: here, σ−
U (x) =

σ−
P (x) and σ+

U (x) = σ+
Q(x) + dP .

Example 17. Continuing Example 15, Fig. 8 depicts the gluing of T1 and T2,
which is the tipomset T = ({x1, x2, x3, x5, x6}, <, ���, {x1, x3}, ∅, λ, σ, 7) with

– < = {(x3, x2), (x2, x5), (x3, x5), (x2, x6), (x3, x6)},
– ��� = {(x1, x2), (x1, x3), (x1, x5), (x5, x6), (x1, x6)},
– λ(x1) = a, λ(x2) = d, λ(x3) = c, λ(x5) = b, λ(x6) = c,
– σ(x1) = [0, 5], σ(x2) = [1.5, 3], σ(x3) = [0, 1.5], σ(x5) = [3.5, 6.5], and σ(x6) =
[4, 6].

In this example, events x1 and x4 have been glued together. Thus

unt(T ) = unt(T1) ∗ unt(T2) =

⎡
⎢⎢⎣

•a

d b•c

c

⎤
⎥⎥⎦ .

Here, dashed arrows indicate event order, and full arrows indicate precedence
order.
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The next lemma, whose proof is trivial, shows that untiming respects gluing
composition.

Lemma 18. For all tipomsets P and Q, P ∗ Q is defined iff unt(P ) ∗ unt(Q)
is, and in that case, unt(P ) ∗ unt(Q) = unt(P ∗Q). ��
Definition 19. An isomorphism of tipomsets (P, σP , dP ) and (Q,σQ, dQ) is an
ipomset isomorphism f : P → Q for which σP = σQ ◦ f and dP = dQ.

In other words, two tipomsets are isomorphic if they share the same activity
intervals, durations, precedence order, interfaces, and essential event order. As
for (untimed) ipomsets, isomorphisms between tipomsets are unique, hence we
may switch freely between tipomsets and their isomorphism classes.

Remark 20. Analogously to ipomsets, one could define a notion of subsumption
for tipomsets such that isomorphisms would be invertible subsumptions. We
refrain from doing this here, mostly because we have not seen any need for it.
Note that as per Example 27 below, untimings of HDTA languages are not closed
under subsumption.

5.3 Translations

We now provide the translations shown in Fig. 6. First, the bijection between
idwords and tipomsets. Let I0d0P1d1 . . . PndnIn+1 be an interval delay word in
sparse normal form. Define the ipomset P = P1 ∗ . . . ∗Pn and let dP =

∑n
i=0 di.

In order to define the activity intervals, let x ∈ P and denote

first(x) = min{i | x ∈ Pi ∨ x ∈ Ii}, last(x) = max{i | x ∈ Pi ∨ x ∈ Ii}.

If first(x) = 0, then let σ−(x) = 0, otherwise, σ−(x) =
∑first(x)−1

i=0 di. Similarly,
if last(x) = n + 1, then let σ+(x) = dP ; otherwise, σ+(x) =

∑last(x)−1
i=0 di. Using

Lemma 13, this defines a mapping tGlue from idwords to tipomsets.

Example 21. Tipomset T of Example 17 is the translation of the following sparse
interval delay word:

[ •a•
•c• ] 1.5 [

•a•
•c ] 0 [ •a•

d• ] 1.5 [
•a•
•d ] 0.5 [ •a•

b• ] 0.5
[ •a•

•b•
c•

]
1
[ •a

•b•
•c•

]
1 [ •b•

•c ] 0.5 •b 0.5 id∅

Lemma 22. The mapping tGlue is a bijection between idwords and tipomsets.

Lemma 23. The vertical mappings i1, . . . , i4 of Fig. 6 are injective and com-
mute with the horizontal bijections.
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Fig. 9. Tipomset of accepting path in HDTA of Example 27

6 Languages of HDTAs

We are now ready to introduce languages of HDTAs as sets of timed ipomsets.
Let A = (Σ,C,L,⊥,�, inv, exit) be an HDTA and �A� = (S, S⊥, S�,�). A path
π in �A� is a finite sequence of consecutive moves s1 � s2 � · · · � sn, where
each si � si+1 is either si �di si+1, si �U si+1 or si �U si+1 for di ∈ R≥0 and
U ∈ �. As usual, π is accepting if s1 ∈ S⊥ and sn ∈ S�.

Definition 24. The observable content ev(π) of a path π in �A� is the tipomset
(P,<P , ���P , SP , TP , λP , σP , dP ) defined recursively as follows:

– if π = (l, v), then (P,<P , ���P , SP , TP , λP ) = idev(l), σP (x) = [0, 0] for all
x ∈ P , and dP = 0;

– if π = (l, v) �d (l, v + d), then (P,<P , ���P , SP , TP , λP ) = idev(l), σP (x) =
[0, d] for all x ∈ P , and dP = d;

– if π = (l1, v1)�U (l2, v2), then (P,<P , ���P , SP , TP , λP ) = U↑ev(l2), σP (x) =
[0, 0] for all x ∈ P , and dP = 0;

– if π = (l1, v1)�U (l2, v2), then (P,<P , ���P , SP , TP , λP ) = ev(l1)↓U , σP (x) =
[0, 0] for all x ∈ P , and dP = 0;

– if π = π1π2, then ev(π) = ev(π1) ∗ ev(π2).

Observe that by definition of �A�, the first item above is a special case of the
second one with d = 0.

Definition 25. The language of an HDTA A is

L(A) = {ev(π) | π accepting path of A}.
Remark 26. With a few simple changes to Definition 24 above, we can define the
observable content of an HDTA path as an idword instead of a tipomset. (By
Lemma 22 this is equivalent.) If we define ev((l, v)�d (l, v+d)) = d in the second
case above and use concatenation of idwords instead of gluing composition in
the last case, then ev(π) ∈ IDW. Thus, the language of an HDTA can be seen as
a set of tipomsets or as a set of idwords.

Example 27. We compute the language of the HDTA A of Fig. 5. As both vertical
transitions are disabled, any accepting path must proceed along the location
sequence (l0, e1, u, e4, l3). The general form of accepting paths is thus

π = (l0, v0) �d1 (l0, v0 + d1) �a (e1, v2) �d2 (e1, v2 + d2)

�b (u, v3) �d3 (u, v3 + d3) �b (e4, v4)

�d4 (e4, v4 + d4) �a (l3, v5) �d5 (l3, v5 + d5).
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Fig. 10. Two HDTAs pertaining to Remark 28

There are no conditions on d1, as both clocks x and y are reset when leaving
l0. The conditions on x at the other four locations force 1 ≤ d2 ≤ 4, 1 ≤
d2 + d3 ≤ 4, and 2 ≤ d2 + d3 + d4 ≤ 5. As y is reset when leaving e1, we must
have 1 ≤ d3 ≤ 3 and 1 ≤ d3 + d4, and the condition on z at l3 forces 1 ≤ d4. As
there are no upper bounds on clocks in l3, there are no constraints on d5.

To sum up, L(A) is the set of tipomsets

({x1, x2}, ∅, x1 ��� x2, ∅, ∅, λ, σ, d1 + · · ·+ d5)

with λ(x1) = a, λ(x2) = b, σ(x1) = [d1, d1 + · · ·+ d4] and σ(x2) = [d1 + d2, d1 +
d2 + d3], or equivalently the set of idwords

id∅ d1 a• d2 [
•a•
b• ] d3 [

•a
•b• ] d4 •b d5 id∅,

in which the delays satisfy the conditions above. As an example,

π = (l0, (0, 0, 0)) �5 (l0, (5, 5, 5)) �a (e1, (0, 0, 5)) �2 (e1, (2, 2, 7))

�b (u, (2, 0, 7)) �1 (u, (3, 1, 7)) �b (e4, (3, 1, 0))

�1.5 (e4, (4.5, 2.5, 1.5)) �a (l3, (4.5, 2.5, 1.5)) �2.5 (l3, (7, 5, 4))

is an accepting path whose associated tipomset is depicted in Fig. 9. Its interval
delay word is

id∅ 5 a• 2 [ •a•
b• ] 1 [ •a

•b• ] 1.5 •b 4.5 id∅

Note that unt(L(A)) = {[ a
b ]} which is not closed under subsumption.

Remark 28. We can now show why the precedence order of a tipomset cannot
generally be induced from the timestamps. Figure 10 shows two HDTAs in which
events labeled a and b happen instantly. On the left, a precedes b, and the
language consists of the tipomset ab with duration 0 and σ(a) = σ(b) = [0, 0].
On the right, a and b are concurrent, and the language contains the tipomset
[ a

b ] with the same duration and timestamps.

6.1 Language Inclusion is Undecidable

[25] introduces a translation from timed automata to HDTAs which we review
below. We show that the translation preserves languages. It is not simply an
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embedding of timed automata as one-dimensional HDTAs, as transitions in
HDTAs are not instantaneous. We use an extra clock to force immediacy of
transitions and write idw(w) for the idword induced by a delay word w below.

Let A = (Σ,C,Q,⊥,�, I, E) be a timed automaton and C ′ = C  {cT },
the disjoint union. In the following, we denote the components of a transition
e = (qe, φe, �e, Re, q

′
e) ∈ E. We define the HDTA H(A) = (L,⊥,�, inv, exit) by

L = Q  E and, for q ∈ Q and e ∈ E,

ev(q) = ∅, ev(e) = {�e}, δ0�e(e) = qe , δ1�e(e) = q′
e ,

inv(q) = I(q), exit(e) = Re, inv(e) = φe ∧ cT ≤ 0, exit(q) = {cT }.

Example 29. The HDTA on the left of Fig. 10 is isomorphic to the translation of
the timed automaton with the same depiction. (Because of the constraint x ≤ 0
in the accepting location, the extra clock cT may be removed.)

Lemma 30. For any q1, q2 ∈ Q and v1, v2 : C → R≥0, (q1, v1)
a� (q2, v2) is an

action move of �A� if and only if (q1, v′
1) �a (e, v′) and (e, v′) �a (q2, v′

2) are
moves of �H(A)� such that

– for all c ∈ C, v′
1(c) = v′(c) = v1(c) and v′

2(c) = v2(c);
– v′

1(cT ) ∈ R≥0 and v′(cT ) = v′
2(cT ) = 0.

In addition, idw(ev((q1, v1)
a� (q2, v2))) = ev((q1, v′

1) �a (e, v′) �a (q2, v′
2)).

Lemma 31. For any a ∈ Σ and d, d′ ∈ R≥0, d a d′ is the label of some path in
�A� if and only if d a• 0 •a d′ is the label of some path in �H(A)�.

Theorem 32. For any timed automaton A, L(H(A)) = {idw(w) | w ∈ L(A)}.
By the above theorem, we can reduce deciding inclusion of languages of timed

automata to deciding inclusion of HDTA languages. It follows that inclusion of
HDTA languages is undecidable:

Corollary 33. For HDTAs A1, A2, it is undecidable whether L(A1) ⊆ L(A2).

6.2 Untimings of HDTA Languages are (Almost) Regular

We revisit the notions of region equivalence and region automaton from [25] in
order to study untimings of languages of HDTAs. For d ∈ R≥0 we write !d" and
〈d〉 for the integral, respectively fractional, parts of d, so that d = !d"+ 〈d〉.

Let A = (Σ,C,L,⊥L,�L, inv, exit) be an HDTA. Denote by M the maxi-
mal constant which appears in the invariants of A and let ∼= denote the region
equivalence on R

C
≥0 induced by A. That is, valuations v, v′ : C → R≥0 are region

equivalent if

– !v(x)" = !v′(x)" or v(x), v′(x) > M , for all x ∈ C, and
– 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0, for all x ∈ C, and
– 〈v(x)〉 ≤ 〈v(y)〉 iff 〈v′(x)〉 ≤ 〈v′(y)〉 for all x, y ∈ C.
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[25] introduces a notion of untimed bisimulation for HDTA and shows that
∼= is an untimed bisimulation. An immediate consequence is the following.

Lemma 34. Let t = (l1, v1) � (l2, v2) be a transition in �A�. For all v′
1
∼= v1

there exists a transition t′ = (l1, v′
1) � (l2, v′

2) such that v′
2
∼= v2. ��

As usual, a region is an equivalence class of RC
≥0 under ∼=. Let R = R

C
≥0/∼=

denote the set of regions, then R is finite [3].

Definition 35. The region automaton of A is the transition system R(A) =
(S, S⊥, S�,�) given as follows:

S = {(l, r) ∈ L×R | r ⊆ �inv(l)�} ∪ {(l0⊥, {v0}) | l0 ∈ ⊥L}
S⊥ = {(l0⊥, {v0}) | l0 ∈ ⊥L} S� = S ∩ �L ×R

� = {((l0⊥, {v0}), idev(l0), (l0, {v0})) | l0 ∈ ⊥L}
∪ {((l, r), idev(l), (l, r′)) | ∃v ∈ r, v′ ∈ r′, d ∈ R≥0 : (l, v) �d (l, v′), v′ = v + d}
∪ {((l, r), U↑ev(l′), (l′, r′)) | ∃v ∈ r, v′ ∈ r′ : (l, v) �U (l′, v′)}
∪ {((l, r), ev(l)↓U , (l′, r′)) | ∃v ∈ r, v′ ∈ r′ : (l, v) �U (l′, v′)}

Extra copies of start locations are added in order to avoid paths on the empty
word ε. This construction is similar to the construction of an ST-automaton from
an HDA [5]. The region automaton of A is a standard finite automaton whose
transitions are labeled by elements of St ∪ Te. Its language is a set of coherent
words of (St ∪ Te)∗ [5].

Lemma 36. A path (l0, v0) � · · · � (lp, vp) is accepting in �A� if and only if
(l0⊥, r0) � (l0, r0) � · · · � (lp, rp) with vi ∈ ri is accepting in R(A).

Theorem 37. For any HDTA A, L(R(A)) = unt(L(A)).

By the Kleene theorem for finite automata, L(R(A)) is represented by a
regular expression over St ∪ Te. Since P0 ∗ P1 ∗ · · · ∗ Pn is accepted by A if
and only if the coherent word unt(P0)unt(P1) . . . unt(Pn) is accepted by R(A),
Theorems 6 and 37 now imply the following.

Corollary 38. For any HDTA A, unt(L(A))↓ is a regular ipomset language.

In [5] it is shown that inclusion of regular ipomset languages is decidable. Now
untimings of HDTA languages are not regular because they are not closed under
subsumption, but the proof in [5], using ST-automata, immediately extends to a
proof of the fact that also inclusion of untimings of HDTA languages is decidable:

Corollary 39. For HDTAs A1 and A2, it is decidable whether unt(L(A1)) ⊆
unt(L(A2)).
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7 Conclusion and Perspectives

We have introduced a new language-based semantics for real-time concurrency,
informed by recent work on higher-dimensional timed automata (HDTAs) and
on languages of higher-dimensional automata. On one side we have combined the
delay words of timed automata with the step sequences of higher-dimensional
automata into interval delay words. On the other side we have generalized the
timed words of timed automata and the ipomsets (i.e., pomsets with interfaces)
of higher-dimensional automata into timed ipomsets. We have further shown
that both approaches are equivalent.

Higher-dimensional timed automata model concurrency with higher-dimen-
sional cells and real time with clock constraints. Analogously, timed ipomsets
express concurrency by partial orders and real time by interval timestamps on
events. Compared to related work on languages of time Petri nets, what is new
here are the interfaces and the fact that each event has two timestamps (instead
of only one), the first marking its beginning and the second its termination.
This permits to introduce a gluing operation for timed ipomsets which gen-
eralizes serial composition for pomsets. It further allows us to generalize step
decompositions of ipomsets into a notion of interval delay words which resemble
the delay words of timed automata.

As an application, we have shown that language inclusion of HDTAs is unde-
cidable, but that the untimings of their languages have enough regularity to
imply decidability of untimed language inclusion.

Perspectives. We have seen that unlike languages of higher-dimensional
automata, untimings of HDTA languages are not closed under subsumption.
This relates HDTAs to partial higher-dimensional automata [23,31] and calls for
the introduction of a proper language theory of these models.

Secondly, higher-dimensional automata admit Kleene and Myhill-Nerode the-
orems [27,32], but for timed automata this is more difficult [8]. We are wondering
how such properties will play out for HDTAs.

Timed automata are very useful in real-time model checking, and our
language-based semantics opens up first venues for real-time concurrent model
checking using HDTAs and some linear-time logic akin to LTL. What would
be needed now are notions of simulation and bisimulation— we conjecture that
as for timed automata, these should be decidable for HDTAs— and a relation
with CTL-type logics. One advantage of HDTAs is that they admit a partial-
order semantics, so partial-order reduction (which is difficult for timed automata
[15,36]) should not be necessary.

Finally, a note on robustness. Adding information about durations and tim-
ings of events to HDTAs raises questions similar to those already existing in
timed automata. Indeed, the model of timed automata supports unrealistic
assumptions about clock precision and zero-delay actions, and adding concur-
rency makes the need for robustness in HDTAs even more crucial. It is thus
pertinent to study the robustness of HDTAs and their languages under delay
perturbations, similarly for example to the work done in [17,21,22].
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Robustness may be formalized using notions of distances and topology, see
for example [9,10,24,30,38]. Distances between timed words need to take permu-
tations of symbols into account [9], and it seems promising to use partial orders
and timed ipomsets to formalize this.
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Abstract. Classical Petri net synthesis is a method to generate a Petri
net from a labelled transition system. In this paper, by contrast, it is
assumed that a (finite) set of markings is given, and an algorithm is
described which generates a Petri net of some class having exactly this set
as its reachability set. A notion of T-monotonicity simplifying the prob-
lem is introduced, but it is also shown that for some non-T-monotonic
classes, the synthesis may nevertheless be solved algorithmically.
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1 Introduction: Place and Transition Synthesis

Those last years, several works have been dedicated to the synthesis of various
classes of place/transition Petri nets from a given labelled transition system [1–5].
The idea is to determine if a net of some class exists whose reachability graph is
isomorphic to the given LTS, to build one if the answer is positive, and otherwise, to
explain why if the answer is negative. This means that the set of transition names
is known and some places have to be found (and connected to the transitions) to
progressively restrict the reachability graph until the target has been reached (the
names of the places are irrelevant).

A symmetric kind of problem may be considered, where a reachability set is
given, meaning that the number of places is known (their names are irrelevant)
and it is asked if some net of a fixed class may be found which generates a
corresponding set of reachable marking. This means here that we have to find
transitions connected to the places in such a way that progressively the correct
reachability set of markings is obtained (here the names of the transitions are
irrelevant: only the way they are connected to the places is interesting). Again,
if we face an impossibility, we want to know why. If the construction works, we
have thus built a system of the adequate kind visiting all the configurations of
the given predefined set, and only them.
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The structure of the paper is as follows: after recalling the context, Sect. 3
presents a simple solution when no special constraint is imposed. The next
section considers the cases where a target class is searched for, which satis-
fies a T-monotonicity property, and several kinds of such net or system classes
are illustrated in Sect. 5. Then, several classes are considered that show how it
is possible to get rid of the T-monotonicity constraint. Some complexity issues
are discussed in Sect. 7, and a somewhat concrete example is described in the
penultimate section. The last section, as usual, concludes and suggests possible
future developments.

2 The Context

A labelled transition system with initial state, LTS for short, is a quadruple TS =
(S,→, T, ı) where S is the set of states, T is the set of labels, →⊆ (S × T × S)
is the transition relation, and ı ∈ S is the initial state.
A label t is enabled at s ∈ S, written s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→, in which case
s′ is said to be reachable from s by the firing of t, and we write s[t〉s′. Generalising
to any sequence σ ∈ T ∗, s[ε〉 and s[ε〉s are always true, with ε being the empty
sequence; and s[tσ〉s′, i.e., tσ is enabled from state s and leads to s′, if there is
some state s′′ with s[t〉s′′ and s′′[σ〉s′.
A state s′ is reachable from state s if ∃σ ∈ T ∗ : s[σ〉s′. The set of states reachable
from s is denoted by [s〉.

A (finite, place-transition, arc-weighted) Petri net is a triple PN =(P, T, F )
such that P is a finite set of places, T is a finite set of transitions, with P ∩T = ∅,
F : ((P ×T )∪ (T ×P )) → N is the flow function (F (p, t) is the weight of the arc
from p to t, and F (t, p) is the weigth of the arc from t to p in the net PN ).
The incidence matrix C of a Petri net is the integer place-transition matrix with
components C(p, t) = F (t, p) − F (p, t), where p is a place and t is a transition.
For any transition t ∈ T , we shall denote by F (., t) the P -vector such that for
any p ∈ P , F (., t)(p) = F (p, t), and similarly for C(., t) and F (t, .). For any place
p ∈ P and transition t ∈ T , if F (p, t) > 0 < F (t, p), there is a side-loop (or side
condition) between p and t, min(F (p, t), F (t, p)) characterising the level of the
side-loop (level 0 meaning no side-loop).

A marking is a mapping M : P → N, indicating the number of (black) tokens
in each place. Markings are provided with a partial order (M ≤ M ′ iff M(p) ≤
M ′(p) for each p ∈ P ). The latter may be promoted into a strict partial order
M � M ′ by requesting M ≤ M ′ and M �= M ′; it is then said that M is
dominated by M ′. Markings may also be added, subtracted and multiplied by an
integer. A Petri net system is a net provided with an initial marking (P, T, F,M0).

A transition t ∈ T is enabled at a marking M , denoted by M
t→, if M ≥

F (., t). If t is enabled at M , then t can occur (or fire) in M , leading to the marking
M ′ defined by M ′ = M +C(., t) and denoted by M

t→ M ′. The reachability set
of PN is the set [M0〉 of all markings reachable from M0; the reachability graph
RG of PN is the labelled transition system whose initial state is M0, whose
vertices are the reachable markings (the reachability set), and whose edges are



Petri Net Synthesis from a Reachability Set 225

{(M, t,M ′) | M
t→ M ′}. Many subclasses of Petri nets or Petri net systems may

be defined, based on the structure of the net and/or of its initial marking and/or
of its reachability graph. Some of them will be considered below.

An elementary property of Petri nets is the state equation which expresses
that, if M [σ〉M ′, then M ′ = M + C · Ψ(σ), where Ψ(σ) is the Parikh vector of
the firing sequence σ, which counts the number of occurrences of each transition
in the sequence.

A labelled transition system is PN-solvable if it is isomorphic to the reacha-
bility graph of a Petri net system (called the solution); it is C-solvable if there is
a solution in class C. The problem of finding a Petri net having a given reacha-
bility graph can be qualified as a place synthesis, since it corresponds to find, if
possible, places with some initial marking (respecting the needed constraints),
connected to the transitions labelling the given transition system, generating an
adequate reachability graph.

Let M be a set of (non-negative) vectors with index set P (so that here we
know the place set; usually, we shall assume P = {p1, p2, . . . , p|P |}) and M0 ∈ M
be a selected initial marking. Here, we shall assume that M is finite, say M =
{M0,M1, . . . , M|M|−1}, with M0 coming first, and that M0 is not dominated by
any marking in M (otherwise, the reachability set may not be finite and cannot

correspond to M, since (M0
σ−→ M ′ ∧M0 � M ′) ⇒ M0

σk

−→ M0+ k · (M ′ −M0)
for any k ∈ N). The problem is to find a (finite) set of transitions connected to the
places so that the corresponding Petri net system belongs to some chosen class
C and has M as reachability set. This will be called a transition-(C−)synthesis
from M, since places are known from the beginning and adequate transitions
have to be found, if possible. It is also possible to let M0 unfixed, and we may
try to find one (among the non-dominated ones) leading to an adequate solution,
but we shall not consider this variant here.

3 The Unconstrained Case

Since M is finite and M0 is not dominated in it, there is always a transition-
synthesis that may be obtained easily: for M ∈ M \ {M0}, we shall introduce a
transition tM such that F (., tM ) = M0 and F (t, .) = M . Then, we can see that
M0

tM−→ M and no tM ′ may fire from M , for any M ′ ∈ M \ {M0} (including
M), due to the assumption that M0 is not dominated in M.

This is illustrated by Fig. 1 where there is a single place p1, the desired
reachability set is M1 = {(5), (0), (1), (2), (3)}, and the initial configuration is
M0 = (5). The net built by means of the above procedure then has 4 transitions,
and its reachability graph has 4 arcs (with distinct labels).

Of course, this will in general not work if the considered problem targets
special net classes, i.e., if additional constraints are added, or if some optimisation
is searched for (in general, this may be reduced to satisfy some constraints; for
instance, if we want to optimise the number of transitions, we may search if some
solution exists with k transitions, but not with k − 1 transitions).
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Fig. 1. An unconstrained solution, starting from M1 = {(5), (0), (1), (2), (3)}.

4 A General T-Monotonic Constrained Schema

A subclass C of Petri net systems will be called T-monotonic if, whenever a
system (P, T, F,M0) belongs to it, so does any system obtained by dropping one
or more transitions from it. In particular, this means that (P, ∅, ∅,M0) is still in
C, and that if (P, T, F,M0) does not belong to C, neither does any extension of
it obtained by adding some transitions. We shall here (in this section) assume
we consider a T-monotonic class1 C of systems.

Typically, a T-monotonic class will be defined by a (conjunction of) con-
straints of the following kind:

1. ∑

t∈T

f(t, P ) ≤ k (1)

f(t, P ) being a non-negative weight function characterising the way transition
t is connected to the places in P , the total weight being bounded from above
by k. Clearly, if one or more transitions are dropped, the constraint is relaxed,
hence its T-monotonicity.

2. ∑

M∈M
g(M,T ) ≤ k (2)

g(M,T ) being a non-negative non-decreasing (in terms of T ) weight function
characterising the number of the arcs labelled by transitions from T around

1 Of course, we shall also assume that the membership to this class is decidable.
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marking M , the total weight being bounded from above by k. Clearly, if one
or more transitions are dropped, the reachability set may only be reduced (or
stay the same) and the constraint is relaxed, hence the T-monotonicity.

3. ⋂

t∈T

α(t, P ) (3)

α(t, P ) being a predicate restricting the way transition t is connected to the
places in P . Again, if one or more transitions are dropped, the constraint is
relaxed, hence the T-monotonicity.

4. ⋂

M∈[M0〉

⋂

t1,t2∈T

β(t1, t2,M) (4)

β(t1, t2,M) being a predicate restricting the way the pair of transitions t1 −
t2 behave at each reachable marking in M. If one or more transitions are
dropped, the reachability set may only be reduced (or stay the same) and
the constraint on the remaining pairs of transitions is preserved, hence the
T-monotonicity.

5. ⋂

p∈P

γ(p, T ) (5)

γ(p, T ) being a predicate restricting the way a place p is connected to the tran-
sitions in T , anti-monotonic in T (i.e., T1 ⊂ T2 ⇒ (¬γ(p, T1) ⇒ ¬γ(p, T2))).
If one or more transitions are dropped, since P is unchanged, the constraint
is preserved, hence the T-monotonicity.

We assume to start from a non-connected (unless |M| = 1) transition system
TS 0, composed of the node set M, without any transition and thus without any
(labelled) arc, so that [M0〉 = {M0}. We then execute the algorithm in Fig. 2.

The basic mechanism of this algorithm is shown schematically in Fig. 3.
Since this is only the skeleton of an algorithm, some comments need to be

added.
Ill-formed problems may, for example, include the following ones:

• some constraints are unknown;
• the place set is assumed to be bounded and P is too large;
• the reachability set is assumed to be bounded and M is too large;
• some marking(s) of M are not built on P ;
• the net is assumed to be safe (no place may receive more than one token) and

some M ∈ M is not a {0, 1}-vector;
• more generally, the net is assumed to be k-bounded (no place may receive

more than k tokens), and M(p) > k for some M ∈ M and p ∈ P .

Updating the transition set means adding transition t (together with F (., t)
and F (t, .)) to the Petri net under construction, and a problem must be launched
if this leads out of the target class C. Updating the arc set consists, for each
marking M ∈ M such that M ≥ F (., t), to add an arc M

t−→ M+F (t, .)−F (., t).
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Fig. 2. A general schema for synthesising a T-monotonic system.

Fig. 3. The general scheme. Updating means adding a transition from a previously
reachable marking M1 (before updating) to a newly reachable marking M2 (after updat-
ing). If for some reason this is not possible (i.e., some problem occurs), backtracking
will reject the triple M1

t−→ M2 and choose another one.
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Of course, a problem must be launched if (M +F (t, .)−F (., t)) �∈ M,2 or if some
added arcs do not fulfill the constraints of the target class, leading to wipe out
the last updates and to choose another triple.

Another kind of problem occurs if one has to choose another triple but no
new one is available (all the possibilities to extend the transition set have been
exhausted). Then wiping out the last updates occurs before adding new transi-
tions and arcs, so that wiping and choosing a new triple will occur at the previous
level of the while loop (and this can occur several times in a row). If this leads to
go before the first level of the while loop, this means that all possibilities to build
a solution have been exhausted; the algorithm will thus output “no solution has
been found” and stop.

If M2 > M1 (we may not have M2 = M1 since they belong to disjoint subsets
of markings), transition t may be executed as many times as we want and, since
M is finite, it is certain that during the arc updates we will reach a situation
where (M+F (t, .)−F (., t)) �∈ M. It is thus a good idea to browse M1 following a
non-increasing topological sort of [M0〉, and to browse M2 following an increasing
topological sort of M \ [M0〉, rejecting it if M1 � M2.

Even if we already know the marking M1 ∈ [M0〉 which is reachable and the
marking M2 ∈ M\ [M0〉 which we want to reach next, the choice of a transition
t effecting M1

t−→ M2 is not unique in general. For instance, Fig. 4 shows three
transitions t2, t

′
2, t

′′
2 , all of which lead from the state (5) to the state (2) in the

previous example (Fig. 1).

Fig. 4. Three transitions t2, t′
2, and t′′

2 , leading from M1 = (5) to M2 = (2). They
correspond, respectively, to X = (0), X = (1) and X = (2).

In general, we are free to choose a place-based integer vector X such that

F (., t) = M1 − X ≥ 0 and F (t, .) = M2 − X ≥ 0 (6)

because the state equation is satisfied with all of them. This choice allows dif-
ferent arc sets between t and the places of the net, as exemplified in Fig. 4. For
example, with X = (1), Equation (6) yields F (., t) = 4 and F (t, .) = 1, that is,
the transition t′2 shown in the middle of the figure. This choice is not completely
arbitrary, because X is bounded as follows:

0 ≤ X ≤ min(M1,M2) (7)

where the min operation is understood componentwise.3 This is because 0 �≤ X
creates a transition t which cannot be executed, while X �≤ min(M1,M2) leads
2 This is a kind of incoherence of t with respect to M.
3 Such that, for example, min((1, 2), (2, 1)) = (1, 1).
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to negative arc weights, which are disallowed in place/transition Petri nets. The
vector X controls the number and levels of the side-loops around t; if X is null,
we have the maximum number and levels of side-loops, while they all disappear
if X = min(M1,M2).

As a rule of thumb, the greater X is, the more permissive is t. For X = null,
a choice which was made implicitly in Sect. 3 (the unconstrained case), it is
certain that t cannot be iterated and does not lead out of the domain of target
markings M. In general, all X vectors (subject to (7)) have to be scanned
in the algorithm, in order to reach a given target. Nevertheless, some general
optimisation is possible: if, during an arc update with some choice of X, it has
been detected that t leads out of M, it is pointless to choose a larger X with the
same M1 and M2, since this will generate the same problem (choosing a larger
X means to choose a smaller F (., t), so that all arcs previously allowed will still
be allowed, including the ones leading out of M).

Since we considered a T-monotonic subclass, it may be observed that we
never need to continue to add transitions when [M0〉 = M. In other words,
if we have a solution and dropping a transition keeps the stopping condition
[M0〉 = M valid, the latter system is still a solution. Also, if there is a solution,
it is possible to get it by adding transitions one by one, as done by the algorithm.
And if adding a transition launches a problem, we need to backtrack since adding
more transitions will never lead to a solution of the adequate class. Finally, at
each round of the while loop, if we do not have to backtrack, [M0〉 strictly
increases, so that it is sure the algorithm stops, either with a solution or with
an error message. This provides a proof of the following result.

Proposition 1. Correctness for T-monotonic target classes If there
is a solution of M, the algorithm finds one and terminates.
Otherwise a failure message is produced before stopping.

5 Some Constraints, and Target Classes

We shall now consider several constraints that may be imposed on the result
of a synthesis, and their impact on the algorithm of the previous section. The
constraints considered in this section always lead to T-monotonic classes, and
they may be combined (together with their impacts). Some constraints concern
the net itself, while some other ones concern the reachability graph of the system
obtained by adding the initial marking specified by the problem.

5.1 Limited Net Size

We may search for synthesised nets with limited characteristics, leading to con-
straints of type (1).

For instance we may limit the number of transitions. Searching for a net with
at most k transitions is quite simple: when looping for completing the reachability
set, if [M0〉 �= M and the present number of transitions is k, we must go back, i.e.,
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wipe out the last updates and search for a new triple. This also allows to search
for an optimal solution in terms of the number of transitions: one simply has to
search for the minimal number of transitions allowing synthesis by dichotomy,
between 0 and kmax; the maximum number kmax of transitions to be considered
may be estimated a priori: kmax = |M| · (|M|− 1) since the latter is the number
of pairs of different markings to examine to extend the reachability set from
M0, but in general it will be far too large since, when searching for a transition
M1

t−→ M2, M1 and M2 are chosen in two disjoint subsets of markings, and we
should not consider a marking M2 dominating M1. Hence it is usually preferable
to proceed differently: we first search a solution without imposing a limit; if
there is no solution we may not have an “optimal” one; otherwise we may take
the number of transitions in the found solution as kmax and start the dichotomy.

We may also limit the number of connections from places to transitions
and/or from transitions to places by some integer bounds: when choosing a
triple (M1, t,M2), we may count the number of non-null weights F (p, t) and
F (t, p) and add them to the previous sums: if this exceeds one of the bounds, we
must backtrack and search for another t (and possibly also for other markings
M1 and M2). A refined version consists in adding the weights F (p, t) and/or
F (t, p), and again if a chosen limit is exceeded we have to go back and search
for another solution. Again also a dichotomic search allows to optimise the num-
ber of connections or the sum of weights; the maximum possible values may be
estimated a priori by examining the reachability set and Equation (7) for each
pair of marking, but this may be less than fully efficient, so that we may again
first search a solution without limitation and use its characteristics to start the
dichotomic search.

Figure 5 illustrates a solution for the same reachability set M1 as before,
with at most 2 transitions (as it turns out, 2 is the optimal case) instead of 4.
The algorithm detects this solution by trial and error. Starting with a transition
such as t0 or t1 in Fig. 1 will never lead to a solution with at most 2 transitions.
However, if the algorithm (clairvoyantly, so to speak) starts with M1 = (5) and
M2 = (3), and a transition t = t3 using X = (3), it turns out that not only
can (3) be reached from (5), but also (1) from (3), so that both (3) and (1) can
be added to the set of reachable states. After that, a next (again, clairvoyant)
iteration can add t = t2 (with X = (2)), by which (2) and (0) can be reached
from (5) and (3), respectively. In practice, of course, much backtracking can be
expected to take place before this solution is found. In this particular case, state
(0) can also be reached from (2) by the previously created transition t3, and this
is not problematic; but in general, when creating a new transition, it must be
checked whether or not this leads out of the set of markings allowed by M.
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Fig. 5. A solution of M1 = {(5), (0), (1), (2), (3)} with at most (in fact, exactly) 2
transitions.

5.2 Limited Reachability Graph

Instead of limiting the net size, we may want to limit the reachability graph size,
leading to constraints of type (2). Since the number of reachable states is fixed
(|M|), we simply have to bound the number of arcs (of the reachability graph).
This may be done when new arcs are added to the system, and if the limit is
exceeded, we need to go back. Optimal solutions may be obtained by dichotomy,
as before.

It may be observed that the solution for M1 in Fig. 5 is minimal in terms
of the size of the net, but not in terms of the reachability graph. Indeed, the
solution in Fig. 1 has less arcs in RG (and it is minimal in that respect since it
has 4 arcs and each marking except the initial one must have an arc leading to
it).

5.3 Pureness

If we want that the sought net is pure, i.e., there is no side-loops, this correspond
to a constraint of type (3) (as well as type (5). Then, when searching a transition
linking M1 to M2, we simply have to choose, for each place p:

• F (p, t) = M1(p) − M2(p) and F (t, p) = 0 if M1(p) > M2(p),
• F (p, t) = 0 and F (t, p) = M2(p) − M1(p) if M1(p) < M2(p),
• F (p, t) = 0 = F (t, p) if M1(p) = M2(p).

This amounts to choose a maximal vector X.
For instance, for the reachability set M1, the solution of Fig. 5 is pure (but

the one in Fig. 1 is not).

5.4 Plainness

If we want the sought net to be plain (sometimes also called ordinary [6]), i.e.,
such that for each transition t and place p, F (p, t) and F (t, p) are not larger
than 1, this also corresponds to a constraint of type (3) (as well as type (5).
Then, when searching to extend the reachability set from M0, we simply have
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to choose (if possible, otherwise backtracking is necessary) M1 and M2 so that,
for each place p, M1(p) − M2(p) ∈ {−1, 0, 1}. For the new transition t, we thus
have:

• F (p, t) = 1 and F (t, p) = 0 if M1(p) > M2(p),
• F (p, t) = 0 and F (t, p) = 1 if M1(p) < M2(p),
• F (p, t) = 0 = F (t, p) or F (p, t) = 1 = F (t, p) if M1(p) = M2(p).

The reachability set M1 (Fig. 5) has no plain solution, since M0 is at least 2
above any other required marking. This changes if we consider the reachability
set M2 = M1∪{(4)}. Then we have the solution represented in Fig. 6; it is plain
as requested, but also pure and minimal.

Fig. 6. A plain solution of M2 = {(5), (0), (1), (2), (3), (4)} = M1 ∪ {(4)}.

5.5 Persistence

Let us now assume that we search for a persistent net [7], i.e., such that, for
each M ∈ [M0〉 and t �= u ∈ T , if M

t−→ and M
u−→, then M

tu−→ and M
ut−→

(closing what is usually called a “diamond”). Such a constraint is of type (4). This
may easily be taken into account in the algorithm: when an arc M

t−→ M ′ is
built, if there is a previous arc M

u−→ M ′′, then we must have M ′ ≥ F (., u) and
M ′′ ≥ F (., t) (otherwise a problem must be launched). We may observe that, if
M ′ ≥ F (., u), when u was introduced, it was checked that M ′ u−→ M̃ ∈ M, so
that also (from the state equation) if M ′′ ≥ F (., t), we have M ′′ t−→ M̃ ∈ M.

Note that, strictly speaking, in order to stay in the persistent class of nets,
we should only check the markings reachable after the introduction of the new
transition; however we should then check all the pairs of (different) transitions.
Since we know from the beginning which markings should become reachable at
some point if the problem is solvable, it is preferable to check all the markings
in M in order to avoid to recheck again and again the pairs that were already
in the system. Then it is only necessary to check the pairs containing the newly
introduced transition t.

The example shown in Fig. 6 is trivially persistent since there is a single tran-
sition. The nets in Figs. 11 and 12 (depicted later) are also persistent since there
is no diamond to close. A more interesting case corresponds to the reachability
set M3 = {(1, 1), (1, 0), (0, 1), (0, 0)} with M0 = (1, 1). This leads to the (only)
solution N3 and the (diamond-shaped) persistent reachability graph in Fig. 7.
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Fig. 7. A persistent solution from M3 = {(1, 1), (1, 0), (0, 1), (0, 0)}.

As a negative example, let us consider the single-place synthesis problem

M4 = {(3), (0), (2)},with M0 = (3).

It is solvable by the Petri net shown in Fig. 8.

Fig. 8. A nonpersistent solution of M4 = {(3), (0), (2)}.

However, there is no persistent solution. To see this, note first that no tran-
sition can be inserted from (0) to (2), because that would create infinitely many
reachable markings. Moreover, no transition can be inserted from (2) to (0),
because that would also allow marking (1) to be reached from (3). Hence the
states (0) and (3) cannot be reached in any other way than as already shown
in Fig. 8, and the half-diamond shown in that figure cannot be closed to a full
diamond.

5.6 Choice-Freeness

Let us now assume that we search for a choice-free net [8], i.e., such that for
each p ∈ P and t �= u ∈ T , if F (p, t) > 0 then F (p, u) = 0 (meaning that
only one transition may take tokens from any place, which implies persistence).
This corresponds to a constraint of type (5), and may again easily be taken into
account in the algorithm: when a triple (M1, t,M2) is chosen, we must check
that, for each place p ∈ P , if F (p, t) > 0, then no previous transition u is such
that F (p, u) > 0 (otherwise, we have to search for another triple).

The systems in Figs. 6, 7, 11, and 12 are choice-free. From them, it could be
suspected that all persistent systems are choice-free. This is not true. Let us for
instance consider the reachability set M5 = {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)}
with M0 = (1, 1, 1), with three places. Depending on the way we consider the
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triples (M1, t,M2), we might obtain the (plain) system in Fig. 9, which is not
choice-free. But from the same reachability set, we may obtain (by chance or by
backtracking) a choice-free solution, where p3 is isolated.

Fig. 9. A persistent but not choice-free solution from M5.

5.7 Equal Conflict

Let us now assume that we search for an equal conflict net [9], i.e., such that
for any p ∈ P and t �= u ∈ T , if F (p, t) > 0 < F (p, u) then F (., u) = F (., t)
(meaning that whenever t is enabled, so is u; notice that choice-free nets are
trivially equal-conflict too). This again may easily be taken into account in the
algorithm: when a triple (M1, t,M2) is chosen, we must check that if, for some
place p ∈ P , F (p, t) > 0 and for some previous transition u, F (p, u) > 0, then
F (., t) = F (., u) (otherwise, we have to search for another triple).

It is also possible to consider a restricted form of equal conflictness, by
requesting that if for some p ∈ P and t �= u ∈ T , F (p, t) > 0 < F (p, u) then
F (p, u) = F (p, t), and for any other place p′ we have F (p′, t) = 0 = F (p′, u).
This again may easily be taken into account in the algorithm: when a triple
(M1, t,M2) is chosen, we need to check that, if for some place p ∈ P , F (p, t) > 0
and for some previous transition u, F (p, u) > 0, then F (p.t) = F (p, u) and
for any other place p′ we have F (p′, t) = 0 = F (p′, u) (otherwise, we have to
backtrack).

For instance, the system in Fig. 1 is equal-conflict (and so are the systems in
Figs. 6, 7, 11, and 12, since they are choice-free). By contrast, the systems N1 in
Fig. 5 and N5 in Fig. 9 are not equal-conflict.

5.8 Free-Choiceness

A net is (extended) free-choice [10] iff it is both plain and equal-conflict. Its
handling is thus obtained by combining the corresponding modifications of the
general algorithm.

Similarly, it is (restricted) free-choice iff it is plain and restricted equal-
conflict, and again its handling may be obtained by combining the corresponding
modifications of the general algorithm.
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Note that plain choice-free nets are also (restricted) free-choice. In particular,
the systems in Figs. 6, 7, 11, and 12 are restricted free-choice. Figure 10 exhibits
a different example, for the reachability set M6 = {(1, 1), (0, 1), (0, 0)} with
M0 = (1, 1).

Fig. 10. An (extended) free-choice solution from M6 = {(1, 1), (0, 1), (0, 0)}.

6 Beyond T-Monotonicity

We shall now consider some non-monotonic target classes, and see that they may
nevertheless be coped with by some modifications of the algorithm in Fig. 2.

6.1 Reversible Nets

A net (P, T, F ) is sometimes called reversible [11,12] if, for each transition u,
there is a reverse transition û such that ∀p ∈ P : F (p, û) = F (u, p) ∧ F (û, p) =
F (p, u). This class of nets is not T-monotonic, because if we drop transition
u, the companion û remains lonely. However, it is not too far from being T-
monotonic, since if we drop, not individual transitions, but pairs of companions
{u, û}, then the problem disappears. The other way round, in the algorithm
of Fig. 2, when a triple (M1, t,M2) is selected, the idea is to add both t and
its related transition t̂ to the transition set (and check both for coherence with
M). Note that in this case, all the members of M must be incomparable, i.e.,
∀M,M ′ ∈ M : M ≤ M ′ ∧M ≤ M ′ ⇒ M = M ′; indeed, if for instance M � M ′,

in any tentative solution, since there are evolutions M0
σ−→ M and M0

σ′
−→ M ′,

we also have an evolution M
σ̂−→ M0 (where σ̂ is obtained by reversing σ and

replacing each transition by its reverse one), hence an evolution M
σ̂σ′
−→ M ′,

and the firing sequence σ̂σ′ may be repeated as many times we want, leading to
infinitely many different (increasing) reachable markings, while M is assumed
to be finite. This check may be included in a “pre-synthesis” phase checking
quickly whether there is any hope that a solution exists (and explaining why it
is impossible in the negative case).

For instance, with two places p1 and p2 and the reachability set M7 =
{(1, 0), (0, 1)}, we get the (plain and pure) system represented in Fig. 11. Note
that if reversibility is not enforced, t̂ will not be included since, with t alone, all
the states in M7 are already visited.
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Fig. 11. A reversible solution from M7 = {(1, 0), (0, 1)}.

6.2 Reversible Graphs

Reversibility may also be defined at the level of a reachability graph [13] (hence at
the level of a Petri net system (P, T, F,M0), and not only at the level of an unini-
tialised Petri net): a reachability graph is reversible if ∀M ∈ [M0〉 : M0 ∈ [M〉.
In other works, this property is called cyclicity [14]. Of course, the reachability
graph of an initialised reversible net is reversible, but it may happen that an ini-
tialised non-reversible net has nevertheless a reversible reachability graph. Like
for reversible nets, and for a similar reason, all the states visited in a reversible
reachability graph must be incomparable. In a labelled transition system, sim-
ilarly to [M〉, we shall define 〈M ] as the set of states in [M〉 from which M
may be reached. A reachability graph is thus reversible while reaching M if
[M0〉 = M = 〈M0].

This class of systems is not T-monotonic, since if we drop one or more tran-
sitions from a Petri net system with a reversible reachability graph, it may well
happen that reversibility is lost. To mend the algorithm of Fig. 2 to cope with
this target class of systems, the idea is to apply the following modifications:
- the while loop becomes: While([M0〉 �= M or 〈M0] �= M);
- the choice of a triple (M1, t,M2) is based either on the conditions

M1 ∈ [M0〉 ∧ M2 ∈ M \ [M0〉 ∧ M1
t−→ M2

or on the conditions
M2 ∈ 〈M0] ∧ M1 ∈ M \ 〈M0] ∧ M1

t−→ M2.
In both cases the coherence of the newly introduced transition with M is checked
as usual (if M

t−→ M ′ with M ∈ M, then we must have M ′ ∈ M).
Figure 12 illustrates a possible result of this modified algorithm for the reach-

ability set M8 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. It may be noticed that the net N8

will not be produced by the unmodified algorithm, since, for instance, the latter
will stop before introducing t3.

6.3 Liveness

A Petri net system (P, T, F,M0) is called live [15] if ∀t ∈ T∀M ∈ [M0〉∃M ′ ∈
[M〉 : M ′ t−→. We may observe that reversible nets and systems are always live
(provided each transition occurs at least once in the reachability graph, which
is the case for all the systems constructed in this paper), but the reverse is not
true, as illustrated by the system in Fig. 13 (no arc allows to go back to M0).
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Fig. 12. A reversible reachability graph from M8 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Fig. 13. A live (strict free-choice) net which is not reversible.
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T-monotonicity is not fulfilled for this class, since dropping one or more
transitions may make M ′ in the previous formula unreachable. By contrast,
dropping a transition t with no effect (i.e., if M

t−→ M for some M ∈ [M0〉,
hence for any reachable marking enabling t), or a duplicate transition t (i.e., if
there is some transition u �= t such that F (., t) = F (., u) and F (t, .) = F (u, .)) is
harmless; and useless transitions (i.e., which are never enabled in [M0〉) should
never occur. From the constraints (6) and (7), and the finiteness of M, this
means that we only have to consider finitely many transitions in our transition
syntheses.

In the algorithm, we need to reach a situation where [M0〉 = M, but it may
happen that we need to continue to add transitions (as long as they do not lead
out of the initially specified set of markings). This is the case, for instance, if
we consider two places and the set of markings {(0, 1), (1, 0)} with M0 = (0, 1).
Reachability can be solved by adding a single transition from (0, 1) to (1, 0), but
the resulting net is not live. Adding another transition from (1, 0) to (0, 1) yields
a (reversible, hence) live net solving this synthesis problem.

Once we have built the reachability graph of a bounded system, it is not
complicated to check if it is live or not. Indeed, with classical algorithms such
as Tarjan’s [16] (see also https://en.wikipedia.org/wiki/Tarjan’s_strongly_
connected_components_algorithm), the search for the strongly connected com-
ponents of the reachability graph,4 and especially the terminal ones5 is efficient
(linear in the size of nodes and arcs). We may then see that a bounded Petri net
system is live if and only if each transition is enabled at some marking in each
terminal strongly connected component of its reachability graph.

When [M0〉 = M, the idea is thus, while the system is not live, to (try to)
add a transition M1

t−→ M2 where M1 belongs to a terminal strongly connected
component missing to enable some transition constructed up to now, and M2

is out of this component (of course, backtracking may be necessary during the
extension, and possibly to go before the completion of [M0〉).

If we consider for instance the system in Fig. 13, the first part of the algo-
rithm (making M reachable) may add successively transitions t3, t6, t7, t1, t2,
then stops since all the needed markings are reached (and only them). The
resulting system is not live since all the strongly connected component of the
reachability graph are singletons, and no transitions are allowed from the ter-
minal ones {(0, 0, 1, 0, 0, 1, 0)} and {(0, 0, 0, 1, 0, 0, 1)}. If we add now t4, some
markings are gathered in a (non-terminal) strongly connected component, but
(0, 0, 0, 1, 0, 0, 1) still has no output arc. Finally, if we add t5, all the markings but
M0 are gathered in a terminal strongly connected component and all transitions
are allowed somewhere in it.

4 i.e., the maximal subsets of nodes S such that ∀M1, M2 ∈ S∃σ ∈ T ∗ : M1
σ−→ M2.

5 i.e., such that M1 ∈ S ∧ M1
σ−→ M2 ⇒ M2 ∈ S.

https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
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7 Some Complexity Considerations

Every one of the problems described in the previous sections gives rise to a
decision problem:

• Given: A finite set of n places, a finite set of markings M, a designated
marking M0 ∈ M and a set P of properties.

• To decide: Does there exist a finite place/transition net N with properties
P such that the reachability set of (N,M0) is exactly M?

where P means any of the above constraints, or a combination thereof (no con-
straint / having at most k transitions / plain / pure / ... / live).

Every problem of this kind is in NP. This can be seen by considering
a straightforward nondeterministic guess-and-check algorithm. The size of a
marked Petri net (N,M0) solving M can be bounded from above as follows.
From the analyses above, it occurs that, in each case considered in the present
paper,6 if there is a solution, then there is one with at most |M| · (|M| − 1)
transitions and, from the bounds (6) and (7), their weights to/from each place
p are bounded by maxM∈M M(p). Hence we may assume that the net to be
checked satisfies those characteristics, so that its size is polynomial in the size
of the problem. Still polynomially in the size of the problem, we may check that
this net generates exactly M as reachability set (by constructing the reachability
graph),7 and satisfies property P.8

In the case “no constraint” the algorithm presented in Sect. 3 exhibits a solu-
tion which is in fact linear in the size of the problem, but we suspect that if
constraints are added, the problem becomes more complex.

8 A Slightly Larger Case Study

In an art gallery, two groups of visitors are to be led around from the entry point
(the start) to the exit point (end). There is also a breakpoint in between where
snacks and prosecco are served. The groups may take different routes, but they
should also meet at break time, and no group is allowed to proceed to the end
point before the other group has arrived for a break. Thus, we have six places:
p1, p2, p3 for the first group (p1 for start, p2 for break, p3 for end), and similarly,

6 This would not be true if, for instance the constraints on the target class request
that the number of transitions is 2|M|.

7 For each marking M ∈ M and each transition t, we may check if t is enabled by M
and leads to a marking in M, and check that all markings in M are reachable from
M0.

8 This is even true for liveness since, as seen above, we only have to construct the ter-
minal strongly connected components of the reachability graph and to check whether
all of them contain all transitions.
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p4, p5, p6 for the second group. The allowed markings are

M =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
1
0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
1
0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

with M0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠

In addition, we want the solution to be graph-reversible, because the next day,
and the days after that, more groups will visit the museum. Since an uncon-
strained solution already has 6 transitions and is not live, we aim for around 7
(or maybe some more) transitions. Figure 14 shows a solution with 7 transitions,
as it can be obtained by the algorithm described in this paper.

Fig. 14. A solution for the art gallery.

9 Concluding Remarks and Perspectives

We showed how to build a place-transition Petri net of some subclass with a
given reachability set. We specifically considered T-monotonic classes, but we
also adapted the strategy to some non-T-monotonic targets.

Our approach, which seems to be novel, opens up a variety of avenues for
possible future research. For instance, many other constraints could be con-
sidered (such as acyclic nets and acyclic reachability graphs, T-restricted nets,
asymmetric-choice nets). The techniques we developed are rather brute-force and
it should be possible to search for more effective, dedicated algorithms, depending
on the desired constraints (presently, most of the time, the algorithms are expo-
nential). In addition, more pre-synthesis analyses would be welcome. Another
possible and desirable extension of the problem proposed in this paper is to take
into account infinite reachability sets, for instance ones specified finitely in the
form of a linear or a semi-linear set. Also, it could be possible to search for
approximate solutions if no exact ones are available, and explore what could be
said if the reachability set is only partly known.
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Abstract. This paper considers verification of timed models handling
additional quantities progressing linearly such as distance of moving
objects to a target. We introduce a variant of Petri nets called trajectory
nets where some places are standard control places containing tokens, and
other places contain a trajectory of an object. We give a semantics for this
model, and propose an abstraction of sets of equivalent trajectories into
symbolic domains. These domains cannot be represented by Difference
Bound Matrices, but one can compute in polynomial time a symbolic rep-
resentation of successor configurations. Furthermore domains are closed
under this successor relation, and the set of domains of a trajectory net
is finite. A consequence is that, when the control part of a trajectory net
is bounded, reachability, coverability and verification of safety properties
involving distances are PSPACE-Complete.

1 Introduction

Some properties of cyber-physical systems such as transport networks call for
the verification of quantitative properties addressing time, but also continuous
values such as distances. A typical example is safety of metro networks, where one
wants to guarantee safety headways, or bound the number of trains in tunnels
to guarantee safe evacuation of passengers in case of power failure. Models such
as timed automata [3] or time Petri nets [20] only address time, and cannot be
used to handle such problems. Models that can address both time and continuous
values such as distances rapidly have the expressive power of hybrid automata [2],
for which most problems become undecidable.

This paper introduces trajectory nets, a model tailored for the analysis of
safety properties of systems involving both time and distances such as metro
networks. Trajectory nets are a variant of time Petri nets, where some places are
dedicated to control, and other places depict object movements with simplified
representations called trajectories. Configurations assign an integral number of
token to control places, and a trajectory, representing the remaining time and
distance to the end of a trip to a subset of trajectory places. Dealing with
trajectories allows to define properties that address both distances and time.
Verification of a safety property of the form “At each instant, less than K trains
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are in a tunnel” amounts to a reachability question for sets of configurations
depicting forbidden positions of objects.

As a first contribution of this paper, we define trajectory nets and give their
semantics in terms of configurations, discrete events (end of progress of a trajec-
tory, creation of a new one) and timed moves. As in many continuous models,
the set of possible configurations is infinite. This comes on one hand from the
unboundedness of the discrete contents of control places, and on the other hand
from the continuous representation of trajectories. We show that in their full
generality, trajectory nets can simulate a two-counters machine, and are hence
Turing Powerful. As a consequence, safety properties relying on coverability or
reachability of a configuration are undecidable.

As a second contribution of the paper, we show that the continuous part
of configurations can be represented symbolically by sets of linear inequalities
called domains. Abstracting time with regions and zones in timed automata [3] or
domains in variants of Petri nets [5,14,18] is a standard approach. However, for
trajectory nets, domains have to abstract away two types of continuous values:
time and distance. They define sets of solutions that cannot be represented
with the usual zones, and cannot be encoded by Difference Bound Matrices.
Nevertheless, we show that we can compute in polynomial time a successor
relation on domains, that domains are closed under this relation, and that the
set of reachable domains of a given trajectory net is finite. A consequence is that,
for trajectory nets with bounded control places, one can compute a sound and
complete symbolic abstraction of the timed behaviour called a state class graph,
and use it to verify properties of the original model. We then show that checking
coverability, reachability and safety properties involving distances are PSPACE-
Complete problems for bounded trajectory nets. For space reasons, some proofs
are only sketched, but can be found in a long version of this work [15].

2 Preliminaries

In the rest of the paper, we will denote respectively by R,Q,N the sets of reals,
rationals, and non-negative integers. We will denote by R

≥0,Q≥0 the sets of
positive reals and rationals, and by IQ the set of intervals of the form [a, b] or
[a,∞) where a, b ∈ Q. Let X = {x1, · · · , xn} be a set of variables. A linear
constraint over X with rational coefficients (or simply constraint for short) is an
expression of the form a1 · x1 + a2 · x2 + · · · an · xn ≤ b, where b is a rational
value and a′

is are rational coefficients (which can have value 0). A constraint is
two-dimensional if it has at most two variables with non-zero coefficients.

A valuation for a set of variables X is a map μ : X → R. We will say that a
valuation μ satisfies a linear constraint C(X)::=

∑
ai ·xi ≤ b iff replacing every

xi by its valuation μ(xi) in C(X) yields a tautology.
A system of linear constraints over a set of variables X is a set of linear

constraints. It is two-dimensional iff all its constraints are two-dimensional, i.e.
all its linear inequalities are of the form ai · xi ≤ bi, or ai · xi − bj · xj ≤ ci,j .
A valuation satisfies a system S iff it satisfies all linear constraints in S (i.e.
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systems are conjunctions of constraints over X). A valuation that satisfies S is
called a solution for S. We will denote by �S� the set of solutions for S and say
that S is satisfiable iff �S� �= ∅. Slightly abusing our definition, we will sometimes
adopt a compact notation and write a ≤ expr ≤ b instead of a conjunction of
constraints of the form −expr ≤ −a and expr ≤ b.

A two-dimensional system S involving only inequalities of the form ai ≤
xi, xi ≤ bi, or xi − xj ≤ ci,j is called a zone. It can be encoded by a Differ-
ence Bound Matrix (DBM for short) [10], that is a matrix DBS indexed by
x⊥, x1, · · · , xn, where variable x⊥ is a dummy variable representing value 0. In a
DBM DBS , a cell DBS [xi, xj ] holding value bi,j encodes inequality xi −xj ≤ bi,j

and a constraint of the form xi ≤ bi is represented by an entry DBS [xi, x⊥] = bi.
Alternatively, zones and DBMs can be represented with constraint graphs, i.e.
weighted graphs whose vertices are variables x⊥, x1, · · · , xn, and whose edges
(xi, wi,j , xj) are weighted by wi,j = DB[xi, xj ]. DBMs and their graph represen-
tations allow for efficient polynomial algorithms to check satisfiability, compute
canonical forms, intersections... (see [6] for a survey). For instance, checking non-
emptiness of �S� amounts to verifying that the constraint graph for S does not
contain negative cycles.

3 Trajectory Nets

This section describes a new model called trajectory nets that can represent
movements of objects in a one-dimensional space. This model can describe
conveyors, metro networks,. . . and refers to positions of objects. We show in
Sect. 6 how to address safety properties that depend on simultaneous positions of
objects. As explained in introduction, such properties are useful for metro oper-
ators to guarantee that passengers can be safely evacuated in a short amount of
time in case of power failure. This means setting a limit on the number of trains
that are positioned on a dangerous zone (tunnel, bridge. . . ) at any instant, and
verifying that this limit is never exceeded. Granting such properties means that
one is able to refer to positions of trains.

Petri nets are a rather straightforward choice to model transport networks.
Stations and track segments between stations can be represented with places,
arrivals and departures of vehicles with transitions, and the structure of the
network itself is depicted by the flow relation of the net. Addressing trips and
dwells durations can be done via a time(d) extension of Petri nets. For instance,
one can use time Petri nets [20], that assign a static interval [αs

t , β
s
t ] to every

transition to represent possible durations of dwells in stations and of trips from
one station to the next one. A standard semantics of Time Petri nets is to keep
track at each instant of the time remaining before firing of each enabled transi-
tion. However, time(d) variants of Petri nets cannot handle real valued variables
beyond timing information related to transitions or tokens, and are hence not
expressive enough to address properties referring to positions of vehicles.

Consider, for instance, the pictures in Fig. 1. These diagrams are standard
representations of metro trajectories called space-time diagrams. They represent
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Fig. 1. Space time diagrams: trains positions are needed to address safety issues

trips with functions mapping time elapsed with the remaining distance to the
next station. The two diagrams on the left represent movements of two trains
train1, train2 traveling respectively on a track from a station S1 to a station S2,
and from a station S5 to a station S6. The track segments represented on these
diagrams contain dangerous zones, symbolized by red areas. The remaining trip
duration for train1 and train2 is 100 in both diagrams, but one can easily notice
that train1 moves faster than train2. From this situation, both trains cannot be
simultaneously in their danger zone in the future, because train2 already exited
this area. So, knowing durations of trips does not suffice to distinguish two
trajectories or detect dangers. Now consider the two space-time diagrams on the
right of Fig. 1. The two trains represented will enter and leave their danger zone.
However, as train3 is fast, it will leave its danger zone before train4 enters it.
These two examples illustrate the fact that addressing safety of moving objects
requires to consider more information than a remaining trip duration for each
object. A model such as Time Petri nets [20] is hence not precise enough. A
solution is to work with hybrid models, that can handle variables representing
evolution of objects positions. It is however well known that most problems are
undecidable for hybrid automata [4]. In the rest of this section, we introduce a
new model that can address time and distance, without reaching the expressive
power of hybrid automata. This model contains transitions that represent objects
arrivals or departures, standard places holding tokens, and a new type of place
containing space-time diagrams representing forecast trajectories of objects.

Definition 1. A Trajectory net is a tuple N = (P, T, F, I,H) where P = PT �
PC is a set of places. We distinguish a set PT of trajectory places, and a set PC

of control places. T = {σ1, . . . σ|T |} is a set of transitions, F ⊆ P × T ∪ T × P is
a flow relation. The function I : PT → IQ associates a rational interval [αs

p, β
s
p]

to every trajectory place p ∈ PT , and the function H : PT → Q associates a
rational distance to every trajectory place.
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The rational value H(p) ∈ Q
≥0 is called the initial distance of p, and is the

length of the physical space represented by p. The rational interval I(p) = [αs
p, β

s
p]

defines the range of possible durations of trips in that physical space. Trajectory
places in PT are holders for trajectories, and control places are standard places
containing tokens, used to allow or forbid firing of transitions. The flow relation
of a trajectory net follows the usual terminology of Petri nets. A pair (p, σ) ∈ F
from a place p ∈ PC to a transition σ means that σ needs a token in place
p to fire. Similarly a pair (p, σ) ∈ F with p ∈ PT means that σ can fire only
if place p contains a trajectory with remaining trip duration (resp. remaining
distance to destination) equal to 0. On the other hand, a pair (σ, p) ∈ F indicates
that firing of transition σ will produce a fresh token (or a fresh trajectory)
in place p. We denote by •(σ) = {p ∈ P | (p, σ) ∈ F} the preset of σ, i.e.
the set of places from which σ consumes a token or a trajectory when firing,
and by (σ)• = {p ∈ P | (σ, p) ∈ F} the postset of σ, i.e., the set of places
where tokens or trajectories are added when firing σ. In the rest of the paper,
to simplify semantics, we consider trajectory nets where |•(σ) ∩ PT | ≤ 1 and
|(σ)• ∩ PT | ≤ 1. Slightly abusing notations, we will hence write p = •(σ) ∩ PT

instead of {p} = •(σ) ∩ PT , and similarly for (σ)• ∩ PT .
Figure 2 shows the basic elements of trajectory net: two trajectory places

p1, p2 represented by large circles, two control places p3, p4, represented by small
circles, a transition σ represented by a rectangle. The flow relation is represented
as usually in Petri nets with arrows connecting places and transitions. On this
example, we have •(σ) = {p1, p3} and (σ)• = {p2, p4}. Place p3 contains a token,
and place p1 a trajectory.

Fig. 2. Basic elements of a trajectory net: places, transitions, trajectories.

Definition 2. Let p ∈ PT be a trajectory place, and I(p) = [αs
p, β

s
p] be the

interval depicting the possible duration of a movement in place p. A trajectory
in p is a pair of real numbers trp = (Tp, tp), where Tp ∈ [αs

p, β
s
p] denotes the

initial duration of a movement in the physical space represented by place p and
tp ≤ Tp is the current remaining trip time in that place. A trajectory trp is
progressing if tp > 0 and is blocked otherwise.

As the initial distance H(p) is fixed for every trajectory place p ∈ PT , choos-
ing non deterministically an initial duration Tp of a trajectory in interval [αs, βs]
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Fig. 3. A Trajectory (Tp, tp) in a place p with H(p) = 800m and I(p) = [60, 85]. We
have Tp = 76 and tp = 34. The blue cone represents all initial trajectories in p for
possible initial values for Tp ∈ I(p). The red area represents a danger zone (e.g. a
tunnel) between distance 400 to 600, that needs to be considered for safety. (Color
figure online)

amounts to choosing a speed for an object. A consequence is that Tp and tp pro-
vide information on the speed vp and remaining distance dp of an object following
trajectory (Tp, tp). We have vp = H(p)

Tp
, and dp = tp · H(p)

Tp
. Given a trajectory

place p ∈ PT , we denote by T ∇(p) the set of all trajectories that may appear in
p, that is the set of all pairs T ∇(p) = {(Tp, tp) | Tp ∈ [αs

p, β
s
p]∧0 ≤ tp ≤ Tp}. We

assume that represented objects have a constant speed v = H(p)/Tp during their
trip, which allows us to represent their trajectories as segments. The semantics
of a trajectory net is defined in terms of configurations, that assign an integral
number of tokens to control places in PC , and a trajectory to a subset of places
in PT . We explicitly differentiate blocked and progressing trajectories.

More formally, a configuration is a triple C = (M,B, T ), where M : PC → N

is a marking of control places, B ⊆ PT is a subset of trajectory places containing
blocked trajectories, and T : PT →

⋃

p∈PT

T ∇(p) associates a progressing trajec-

tory to a subset of places in PT . For consistency, we require that T (p) ∈ T ∇(p).
Given a marking, we will write M ≥ •(σ) iff M(p) ≥ 1 for every p ∈ •(σ) ∩ PC .
We will denote by M − •(σ) the marking M ′ such that M ′(p) = M(p) for every
place p �∈ •(σ)∩PC and M ′(p) = M(p)−1 for every place p ∈ •(σ)∩PC . We will
denote by M + (σ)• the marking M ′ such that M ′(p) = M(p) for every place
p �∈ (σ)• ∩ PC and M ′(p) = M(p) + 1 for every place p ∈ (σ)• ∩ PC .

We represent a configuration C = (M,B, T ), with the following graphical
convention: we draw M(p) tokens (black dots) in each control place p ∈ PC ,
and for a trajectory place p ∈ PT we represent trajectory T (p) = (Tp, tp) by
a dashed segment with coordinates [(0,H(p)); (Tp, 0)] representing the initial
trajectory of an object, and a thick segment with coordinates [(0, dp); (tp, 0)]
representing the remaining displacement. Figure 3, shows a possible trajectory
in a place p ∈ PT with H(p) = 800m, and I(p) = [60, 85]. The trajectory
represented is (Tp, tp) with Tp = 76s and tp = 34s. The object moving in the
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physical space represented by p initially started a trip of duration 76s and of
length 800m, represented by the dashed segment. The speed of this object is
vp = 800/76 = 10.52 m/s. As the remaining trip duration is tp = 34 s, one can
easily compute the remaining distance to go for this object, namely dp = 357 m.
The remaining trip is represented by the thick segment in the diagram. Similarly,
in Fig. 2, let H(p1) = 500 m, and I(p1) = [40, 50]. Place p1 contains a trajectory
(Tp1 , tp1) with Tp1 = 46 s and tp1 = 25 s. The remaining distance to go for this
object is dp1 = 271, 73 m, and its speed is vp1 = 10.87 m/s.

The semantics of a trajectory net is defined in terms of timed and discrete
moves from a configuration to the next one. The system starts in an initial
configuration C0 = (M0, B0, T0) such that B0 = ∅, and for every p such that
T0 is defined, T0(p) = (T 0

p , t0p) with T 0
p = t0p ∈ [αs

p, β
s
p]. The main idea of the

semantics is that a transition σ can fire if the control places in the preset •(σ)
allow firing of σ and the objects in the trajectory places of •(σ) have reached
their final destination. In other terms, all trajectories in the preset of a fired
transition must be blocked.

Upon firing of a transition σ, control tokens in •(σ) ∩ PC are consumed,
blocked trajectories in •(σ) ∩ PT are deleted, and new trajectories in (σ)• ∩ PT

and new tokens in control places of (σ)• ∩PC are created. We adopt an exclusive
semantics w.r.t. trajectory places, i.e. a transition σ can fire only if the trajec-
tory places in (σ)• are empty. When modeling metro networks, this semantics
is appropriate to represent a fixed block policy, where tracks are divided into
exclusive blocks that can contain at most one train at any instant1. Upon firing,
for each place p ∈ (σ)• ∩ PT new trajectories are sampled: their initial duration
Tp is a value chosen non deterministically in [αs

p, β
s
p] and we set T (p) = (Tp, Tp).

On the other hand, elapsing time allows for the progress of existing trajectories.
However, we consider an urgent semantics, that allows elapsing δ > 0 time units
in a configuration C only if no discrete move can occur in C.

Discrete Moves: Discrete moves are either the blocking of a trajectory or the
firing of a transition. Blocking a trajectory trp = (Tp, tp) in place p is possible
only if tp = 0, and consists in deleting trp, and adding p to the list of places con-
taining a blocked trajectory. Formally, it is defined by the following operational
semantics rule:

p ∈ PT

T (p) = (x, 0) for some x ∈ [αs
p, β

s
p]

T ′(pi) =
{

T ′(pi) if pi �= p
is undefined otherwise

B′ = B ∪ {p}
C = (M,B, T )

block p−→ C ′ = (M,B′, T ′)

We will say that a transition σ is firable in a configuration C = (M,B, T )
iff M ≥ •(σ), the trajectory in •(σ) ∩ PT is blocked, and the place depicting

1 Though this fixed block semantics may seem very constrained, many metro networks
in the world are operated this way.
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the physical space needed to perform action σ is free, that is, ∀p ∈ (σ)• ∩ PT ,
p �∈ B and T (p) is undefined. The effect of a firing σ is the consumption of all
tokens in •(σ) ∩ PC , the production of a new token in each place of (σ)• ∩ PC ,
the deletion of the blocked trajectory in •(σ) ∩ B, and the creation of a new
trajectory T (p′) = (Tp′ , Tp′) in place p′ = (σ)• ∩ PT with Tp′ ∈ [αs

p′ , βs
p′ ]. We

will write M [σ〉M ′ when M ′ is the marking obtained after firing of σ from M ,
i.e. when M ′ = M − •(σ) + (σ)•. Then, the firing of a transition σ is formally
defined by the following operational semantics rule:

M ≥ •(σ) ∧ M [σ〉M ′

∀p ∈ (σ)• ∩ PT , p �∈ B ∧ T (p) is undefined
•(σ) ∩ PT ⊆ B ∧ B′ = B \ •(σ)

T ′(p) =
{

(Tp, Tp), withTp ∈ [αs
p, β

s
p] if p = (σ)• ∩ PT

T (p) otherwise
C = (M,B, T ) σ−→ C ′ = (M ′, B′, T ′)

When a new trajectory is added in a trajectory place, we necessarily have
dp = H(p). As H(p) is constant, choosing Tp is equivalent to choosing a speed
vp for a vehicle, and memorizing this initial choice. Then, knowing tp allows to
compute dp after several timed moves.

Timed Moves: The effect of time elapsing is to reduce the remaining trip
time of progressing transitions. Elapsing δ time units is allowed if this duration
does not exceed remaining trip time of any progressing trajectory. As in Time
Petri nets [20], we adopt an urgent semantics, that is we forbid time progress if a
discrete event can occur. Time progress of δ is hence forbidden if some transition
is firable, or if a trajectory gets blocked less than δ time units after the current
date. For a given description of trajectories T , we denote by T + δ the function
that associates the pair (T + δ)(p) = (Tp, tp − δ) with place p if T (p) = (Tp, tp).

0 < δ ≤ min{tp | ∃Tp, (Tp, tp) ∈ T (PT )}
∀σ ∈ T, σ is not firable

C = (M,B, T ) δ−→ C ′ = (M,B, T + δ)

Obviously, our semantics enjoys time additivity, i.e. if C1
δ1−→ C2 and C2

δ2−→
C3, then C1

δ1+δ2−→ C3. Notice also that timed and discrete moves are exclusive. It
is hence natural to describe runs of a trajectory net as an alternation of timed and
discrete moves. A run of a trajectory net from a configuration C0 = (M0, B0, T0)
is a sequence ρ = (M0, B0, T0)

δ0−→ (M0, B0, T0 + δ0)
e1−→ (M1, B1, T1) · · · of

timed and discrete moves, where each move (Mi, Bi, Ti)
δi−→ (Mi, Bi, Ti +δi) is a

legal timed move, and each (Mi, Bi, Ti)
ei−→ (Mi+1, Bi+1, Ti+1) is a legal discrete

move, that is a blocking of a trajectory, (Mi, Bi, Ti)
block p−→ (Mi+1, Bi+1, Ti+1) or

a firing of a transition (Mi, Bi, Ti)
σi−→ (Mi+1, Bi+1, Ti+1).

We will write (M,B, T ) ∗−→ (M ′, B′, T ′) if there exists a sequence of discrete
and timed moves leading from (M,B, T ) to (M ′, B′, T ′). Without loss of gener-
ality, we assume that a net starts in an initial configuration C0 = (M0, B0, T0)
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Fig. 4. A trajectory net and its untimed abstraction into a Petri net.

without blocked trajectories, i.e. such that B0 = ∅. We also assume that
the trajectories of all trains are at their beginning, i.e. for every p ∈ PT

where T0(p) is defined, we have T0(p) = (T 0
p , T 0

p ) for some T 0
p ∈ [αs

p, β
s
p],

and that all trains still have some remaining time before being blocked, i.e.
T 0

p > 0. We will denote by Reach(C0) the set of reachable configurations, i.e.
Reach(C0) = {(M,B, T ) | C0

∗−→ (M,B, T )}. We will say that a trajectory
net is bounded iff, there exists an integer K such that for every configuration
(M,B, T ) in Reach(C0), and for every place p ∈ PC , M(p) ≤ K.

We will address reachability problems, i.e. study whether a particular config-
uration (M,B, T ) is reachable. Now, asking whether a configuration (M,B, T ) is
reachable refers to the exact position of objects, and is a too precise question. To
cope with this problem, we transform contents of trajectory places into markings
as follows: given a configuration C = (M,B, T ) we define a complete marking
MC that associates an integral number of tokens to each place in P , such that
MC(p) = M(p) if p ∈ PC , and MC(p) = 1 if p ∈ PT and T (p) is defined or if
p ∈ B. We then differentiate three decision problems:

– exact reachability: for a given configuration C, does C ∈ Reach(C0) ?
– boolean reachability: for a given configuration C, is there a configuration C ′ ∈

Reach(C0) such that MC = MC′?
– coverability: for a given configuration C, is there a configuration C ′ ∈

Reach(C0) such that MC ≤ MC′?

Coverability can be used to check that at a given instant, two trains cannot
occupy rail sections that require mutual exclusion. Note however that cover-
ability is not fine enough to define safety properties involving distances. For
instance, one cannot use coverability to check existence of configurations where
two objects are simultaneously in a critical area (a red zone similar to those in
the diagrams of Fig. 1). As explained at the beginning of this Section, this is a
standard property to ensure in metro networks to guarantee passengers safety.
In Sect. 6, we will show that we can address such properties involving distances.

Reachability is decidable for timed automata, using an abstraction of clock
values and building a region automaton [3]. Reachability and coverability are
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undecidable in general for time Petri nets [16]. Coverability is decidable for
timed-arc Petri nets [1,13], but reachability remains undecidable [23]. For a weak
interpretation of TPNs semantics, [22] shows that the set of reachable markings
of a TPN N coincides whith the set of reachable markings of an untimed version
of N . It is well known that coverability [21] and reachability [19] are decidable
for Petri nets, and hence also for TPNs with a weak semantics.

Inspiring from [22], we can easily transform a trajectory net N = (P = PC ∪
PT , T, F, I,H) and its initial configuration C0 = (M0, B0, T0) into a standard
untimed Petri net U(N ) = (P ′, T, F ) where P ′ = PC ∪ {pU | p ∈ PT } replaces
every trajectory place by a standard place, with initial marking MU

0 = MC0 .
However, in general U(N ) allows more markings and more runs than N . Consider
the example of Fig. 4, with configuration C0 = (M0, B0, T0) with M0(p3) =
1,M0(p4) = M0(p5) = 0, T0(p1) = (1, 1), T0(p2) = (2, 2), and its translation
to a standard Petri net U(N ) on the right of the Figure. One can see from this
example that in the initial configuration C0, transition σ1 is firable, but transition
σ2 will never fire. On the other hand, in U(N ), both transitions σ1 and σ2 can
fire from MC0 . This example shows that erasing time makes some new markings
reachable. Hence we cannot rely on a simple untiming of a trajectory net to
address reachability or coverability. We can further show that trajectory nets
are powerful enough to model a two-counter machine, yielding undecidability of
most problems.

Theorem 1. Reachability, boolean reachability and coverability are undecidable
for trajectory nets.

Proof (Sketch). We can simulate the behavior of an unbounded two-counter
machine with an unbounded trajectory net. Control places can represent coun-
ters. From a configuration, urgency can be used to distinguish two behaviors: fire
immediately a particular transition if a counter place is filled, or wait and fire a
different transition if this counter place is empty. This is sufficient to encode a
zero test [22]. The complete encoding is provided in [15]. ��

A standard way to recover decidability of reachability and coverability in
timed extensions of Petri nets is to restrict to bounded nets, and define a sym-
bolic abstraction of timing information allowing a finite partition of the space of
configurations. For time Petri nets, where time is measured by clocks attached
to enabled transitions, [5] defines an abstraction called state classes, that are
equivalence classes for sets of configurations with identical markings and equiv-
alent constraints on the values of clocks. These constraints are called domains,
and can be compared to zones or regions of timed automata [3]. In the next
section, we consider state classes and domains for trajectory nets, and give a
sound abstraction of continuous values appearing in configurations.

4 Domains

In this section we define domains for trajectory nets. Domains are a way to
define symbolically the value of initial and remaining trajectory durations with
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positive real valued variables. For a given configuration C = (M,B, T ), we have
two types of trajectories: blocked trajectories, and progressing ones. For blocked
trajectories, the remaining running time is known (it is 0), and the initial time is
of no use to define a position of an object: it is at distance 0 w.r.t the end of the
represented space. For progressing trajectories, i.e. trajectories in a place p ∈ PT

for which T (p) is defined, we have T (p) = (Tp, tp). As already mentioned in
Sect. 3, we only need these two variables Tp and tp to compute the speed or the
current position of an object, which are important information when considering
some safety properties.

Definition 3 (Domains). Let N be a trajectory net, with set of trajectory
places PT . Let P ⊆ PT represent places with progressing trajectories. Then, a
domain for N with progressing trajectories in P is a set of inequalities D over
variables VD = {Ti, ti | i ∈ P}, of the form:

α1
i ≤ Ti ≤ β1

i for all i ∈ P (1)

α2
i ≤ ti ≤ β2

i for all i ∈ P (2)

ti − tj ≤ γ3
ijfor all i �= j (3)

α4
i ≤ Ti − ti ≤ β4

i for all i ∈ P (4)

α5
ij ≤ Ti − ti + tj ≤ β5

ijfor all i �= j (5)

−Ti + ti + Tj − tj ≤ γ6
ijfor all i �= j (6)

where each type of inequality (1 − 6) appears exactly once in D for each i ∈ P
and for each pair of distinct places i, j ∈ P , and α1

i , α
2
i , α

4
i , α

5
i . β1

i , β2
i , β4

i , β5
i

γ3
ij , β

5
ij , γ

6
ij are either constant values, −∞, or +∞.

Domains in Definition 3 are systems of linear inequalities, but inequalities
of type (5) involve expressions with three variables, and inequalities of type (6)
use expressions with four variables. Consequently, our domains are not two-
dimensional, and differ from the domains proposed by [5]. Further, they cannot
be encoded using DBMs. We will however show in the rest of the paper
that these domains can be efficiently manipulated in polynomial time. Following
the definitions of Sect. 2, we will say that a valuation μ : VD → R for VD is a
solution for D iff replacing variables Ti, ti in VD by their values μ(Ti), μ(ti) yields
a tautology, and denote by �D� the set of all solutions for D. Slightly abusing our
notation, we will write T ∈ �D� when the valuation μT that associates variables
{Ti, ti} with their respective values in T is a solution of D. We will say that
two domains D1,D2 are equivalent iff �D1� = �D2�. Even if two domains are
equivalent, they may have different representations. Indeed, consider a single
pair of variables T1 = t1 whose values lie in the interval [3, 4]. We can represent
the constraint on T1, t1 as D1 = {3 ≤ T1 ≤ 12; 0 ≤ T1 − t1 ≤ 0; 0 ≤ t1 ≤ 4}.
However the domain D2 = {0 ≤ T1 ≤ 4; 0 ≤ T1 − t1 ≤ 0; 3 ≤ t1 ≤ 20} represents
the same set of solutions. We can show that a canonical form for domains exists
(Proposition 1), and can be computed in polynomial time (Proposition 2).
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Definition 4. Let D = {ai ≤ expri ≤ bi} be a domain of the form given in
Definition 3. Then, the canonical form for D is a domain D∗ = {a∗

i ≤ expri ≤
b∗
i }, where a∗

i is the smallest value taken by expri in �D�, and b∗
i is the largest

value taken by expri in �D�.

Proposition 1. The canonical form of a domain D is unique and preserves
�D�.

Proof (Sketch). A domain D is a set of inequalities of the form ai ≤ expri, and
exprj ≤ bj . A solution μS ∈ �D� is a map that associates a real value with every
variable ti (resp. Ti). Let μS(expri) be the value obtained by replacing every vari-
able ti by μS(ti) and Ti by μS(Ti) in expri. The values a∗

i = min
μS∈�D�

μS(expri)

and b∗
j = max

μS∈�D�
μS(exprj) are unique, so D∗ is uniquely defined. Every expres-

sion of the form ai ≤ expri ≤ bi can be equivalently rewritten as a∗
i ≤ expri ≤ b∗

i

because a∗
i ≤ μ(expri) ≤ b∗

i for every μ ∈ �D�, and we have ai ≤ a∗
i ≤ b∗

i ≤ bi.
A complete proof is given in [15]. ��

As all domains over a fixed set of progressing trajectories have the same
types of inequalities, and differ only by the constants used, a direct consequence
of Proposition 1 is that two domains D,D′ are equivalent if and only if D∗ = D′∗.

Proposition 2. The canonical form for a domain D can be computed in
PTIME.

Proof. We perform the following linear transformation: xi = Ti −ti and yi = −ti
to get a new set of inequalities:

α1
i ≤ xi − yi ≤ β1

i

−β2
i ≤ yi ≤ −α2

i

yj − yi ≤ γ3
ij

α4
i ≤ xi ≤ β4

i

α5
ij ≤ xi − yj ≤ β5

ij

−xi + xj ≤ γ6
ij

Notice that our linear transformation is bijective. Hence, for any solution
μ : {Ti, ti} → R in the original domain, there exists a unique solution μ′

such that μ′(xi) = μ(Ti) − μ(ti), μ′(yi) = −μ(ti) and for any solution μ′ :
{xi, yi} → R in the new domain, there exists a unique solution μ such that
μ(Ti) = μ′(xi) − μ′(yi), and μ(ti) = −μ′(yi). Hence there is a bijection between
the two domains.

Observe that this new domain is of dimension 2. It can hence be encoded as
a DBM or a constraint graph, and finding a canonical form for this new domain
can be done by computing the shortest paths in the constraint graph. The cost
of this calculus is in O(n3) for n variables. The optimal bounds obtained for the
domain over variables {xi, yi} are bounds for expressions of the form xi − yi,
xi − yj , etc. that directly encode expressions of the original domain D (for
instance xi − yi = Ti, and xi − yj = Ti − ti + tj). The sharp bounds obtained
for the new domain can hence be immediately used as optimal bounds for D,
except for the expression of the form −(β2

i )∗ ≤ yi ≤ −(α2
i )

∗, where we need a
sign inversion to obtain (α2

i )
∗ ≤ ti ≤ (β2

i )∗.
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For a domain D addressing properties of k trajectories, the linear transfor-
mation of D is in O(k2), as we have 3·k+3·k2 inequalities D, and performing the
transformation for each inequality takes constant time. Computing the canonical
form of the new domain can be done in O(k3) time using the Floyd-Warshall
algorithm, as the new domain has 2 · k variables. Hence, the canonical form of
D can be computed in O(k3). Note that the constants obtained in the canonical
form are linear combinations of αs

i and βs
i with integer coefficients. ��

Let N be a trajectory net, and let P ⊆ PT be the set of places containing
progressing trajectories in initial configuration C0. The initial domain D0 for N
and P is the set:

D0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T 0
i ≤ Ti ≤ T 0

i for all i ∈ P
T 0

i ≤ ti ≤ T 0
i for all i ∈ P

ti − tj ≤ ∞ for all i �= j
0 ≤ Ti − ti ≤ 0 for all i ∈ P
−∞ ≤ Ti − ti + tj ≤ ∞ for all i �= j
−Ti + ti + Tj − tj ≤ ∞ for all i �= j

Let μ0 be the valuation such that μ0(Tp) = μ0(tp) = T 0
p for every place

where T0 is defined. Obviously, �D0� = {μ0}. The initial domain D0 meets the
requirements of Definition 3. To show that the form of domain of Definition 3
is sufficient to represent all domains of a net, it remains to show that the effect
of a transition firing, or of a trajectory blocking after some delay δ as proposed
in the semantics of Sect. 3 can be encoded through algebraic operations (vari-
able changes, unions of inequalities and projections) that preserve the types of
inequalities considered in Definition 3.

4.1 Successors After Firing a Transition

Let D be a domain with set of progressing trajectories P . We want to compute
the set of constraints on variables attached to progressing trajectories of the net
after firing a transition σ. Let p = •(σ)∩PT and p′ = (σ)• ∩PT . First, σ can fire
only if p is an empty place (a trajectory in p was formerly blocked), and p′ is also
empty. According to our semantics, adding a trajectory in p′ means sampling a
new trip duration Tp′ ∈ [αs

p′ , βs
p′ ] and adding in p′ a new progressing trajectory

(Tp′ , Tp′). The sampled value is totally independent from the values of variables
in D, so the new set of constraint on progressing trajectories after firing of σ is
the set:
SuccF (D,σ) = D ∪ {αs

p′ ≤ Tp′ ≤ βs
p′} ∪ {αs

p′ ≤ tp′ ≤ βs
p′} ∪ {0 ≤ Tp′ − tp′ ≤ 0}

∪ {tp′ − ti ≤ ∞ | i ∈ P} ∪ {ti − tp′ ≤ ∞ | i ∈ P}
∪ {−∞ ≤ Tp′ − tp′ + ti ≤ ∞ | i ∈ P}
∪ {−∞ ≤ Ti − ti + tp′ ≤ ∞ | i ∈ P}
∪ {−Tp′ + tp′ + Ti + ti ≤ ∞ | i ∈ P}
∪ {−Ti + ti + Tp′ + tp′ ≤ ∞ | i ∈ P}

One can immediately notice that if D is a domain, then so is SuccF (D,σ).
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4.2 Successors After Blocking a Trajectory

Blocking a progressing trajectory trp = (Tp, tp) from a configuration occurs after
elapsing δ = tp time units, and is allowed if δ is the minimal duration among
all progressing trajectories. We hence have to consider transformations on a
domain D occurring after a sequence of timed and discrete moves of the form
C

δ−→ C ′ block p−→ C ′′. Remark, from the semantics that δ = tp, so blocking of trp

can occur only if tp = min{tj | ∃pj ∈ PT , T (pj) = (Tj , tj)}. This requirement
can be easily translated into a new constraint: trajectory trp can be blocked
from some configuration satisfying domain D iff Dp≤∗:: = D ∪ {tp ≤ tj | j �=
p ∧ (Tj , tj) is a progressing trajectory} is satisfiable.

As a blocked trajectory does not constrain any more possible durations of
other trajectories, the domain capturing the remaining constraints in configura-
tion C ′′ is the projection on remaining variables once tp time units have elapsed.
To obtain this set of constraints, we proceed as follows:

– We make a variable change. Let t′j denote a variable representing the new
value of remaining travel time of trajectory j after elapsing tp time units.
Then we have t′j = tj − tp. We hence replace every variable tj by t′j + tp in
every inequality of Dp≤∗. Let us call D′ this new domain.

– We eliminate variables Tp and tp from domain D′. This elimination can be
done in polynomial time using the well-known Fourier-Motzkin algorithm
(see [15] and [9]).

– We replace every occurrence of a variable t′j by an unprimed variable tj to
obtain a successor domain SuccB(D, p), and we compute its canonical form.

Proposition 3. Let D be a domain of a trajectory net N , and let D′ be a system
of linear inequalities that is a successor of D via construction of SuccB(D, p) or
SuccF (D,σ). Then D′ is a domain of N .

Proof (Sketch). SuccF (D,σ) trivially satisfies this property, as it only adds con-
straints of the form αS

i ≤ Ti ≤ βS
i , αS

i ≤ ti ≤ βS
i , and Ti = ti. The proof for

SuccB(D, p) is more involved, as it requires eliminating variables for the blocked
trajectory. Yet, during elimination, some inequalities are unchanged. For other
inequalities, for instance when eliminating tp, combining expressions of the form
exprj ≤ tp and tp ≤ exprk to obtain a new expression exprj ≤ exprk during the
elimination process either produces tautologies, or new expressions that are of
the form of inequalities in Definition 3. A complete proof is given in [15]. ��

5 Soundness, Completeness, Finiteness

Now that we have defined domains for trajectory nets, and shown that we can
effectively compute a canonical representation for SuccF (D,σ) the set of con-
straints that hold after firing a transition σ and SuccB(D, p) the constraints
that hold after blocking a trajectory in place p when starting from a domain D,
we can define state classes.
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Definition 5. A state class of a trajectory net N is a triple SC = (M,B,D),
where M is a marking, B is a subset of trajectory places with blocked trajectories,
and D is a domain of N in canonical form.

We can define a symbolic transition relation among state classes as follows:

– (M,B,D)
Block p−→S (M,B′,D′) if B′ = B ∪ {p}, and D′ is the canonical repre-

sentation of SuccB(D, p), and
– (M,B,D) σ−→S (M ′, B′,D′) if M [σ〉M ′, B′ = B\•(σ), and D′ is the canonical

representation of SuccF (D,σ).

We will write (M,B,D) −→S (M ′, B′,D′) if either (M,B,D)
Block p−→S (M ′,

B′,D′) or (M,B,D) σ−→S (M ′, B′,D′). We will denote by ReachS(M0, B0,D0)
the set of state classes that can be built inductively from the initial sate class
D0 by application of the symbolic transition relation −→S .

Definition 6. The state class graph of a trajectory net N is the transition sys-
tem SC(N ) =

(
ReachS(M0, B0,D0),−→S , (M0, B0,D0)

)
.

Notice that SC(N ) is defined even if ReachS(M0, B0,D0) is not finite. We
will say that a configuration C = (M,B, T ) matches with a state class SC =
(M ′, B′,D) iff M = M ′, B = B′ and T ∈ �D�.

Definition 7. A symbolic run of N is a sequence of state classes of the form
ρS = (M0, B0,D0)

e0−→ (M1, B1,D1)
e1−→ . . . such that for every index i ≥ 0,

ei ∈ {Block pi, σi} and (Mi, Bi,Di)
ei−→S (Mi+1, Bi+1,Di+1).

Proposition 4 (Soundness). Let ρS = (M0, B0,D0)
e0−→ (M1, B1,D1)

e1−→
. . . be a symbolic run of a trajectory net N . Then, there exists a run ρ =
(M0, B0, T0)

δ0−→ (M0, B0, T0 + δ0)
e0−→ (M1, B1, T1) . . . of N such that for every

i ≥ 0, (Mi, Bi, Ti) matches with (Mi, Bi,Di).

Proposition 5 (Completeness). Let ρ = (M0, B0, T0)
δ0−→ (M0, B0, T0 +

δ0)
e0−→ (M1, B1, T1) . . . be a run of a trajectory net N . Then, there exists a

symbolic run ρS = (M0, B0,D0)
e0−→ (M1, B1,D1)

e1−→ . . . of N such that for
every i ≥ 0, (Mi, Bi, Ti) matches with (Mi, Bi,Di).

The proofs for Propositions 4 and 5 are obtained by induction on the length
of runs, and are detailed in [15].

Theorem 2. Let N be a bounded trajectory net, with initial configuration C0.
Then the set of canonical domains that can be computed inductively from D∗

0 is
finite.

Proof (sketch). A domain is defined by a set of inequalities. The number of
inequalities depend only on the number of progressing trajectories, and these
inequalities involve constants. We can prove that constants appearing in canoni-
cal domains of a trajectory net are linear combinations of constants appearing in



Symbolic Domains and Reachability for Nets with Trajectories 259

D0 and the bounds of intervals [αs
p, β

s
p]. It was also proved (see [5]) that the num-

ber of linear combinations of a finite set of constants in a rational interval [A,B]
is finite. It remains to show that this type of bounding interval exists for the
values of constants α1

i , β
1
i , α2

i , β
2
i , γ3

ij , α
4
i , β

4
i , α5

ij , β
5
ij , γ

6
ij appearing in domains of

trajectory nets. This interval is [−2 ·Cmax, 2 ·Cmax], where Cmax is the maximal
value appearing in an interval [αs

p, β
s
p]. So, we get that constants in domains can

take a finite number of values, and a finite number of inequalities can appear in
domains. Let us denote by I0 this set of possible inequalities. The set of possible
domains is finite, since each domain is a subset of I0 (all proof details are given
in [15]). ��

Following Theorem 2, we can give an upper bound on the number of state
classes in SC(N ). Let us first compute the size of I0. Assuming that we consider
only domains in canonical form, every constraint in I0 is of the form a ≤ expr ≤
b, with −2 · Cmax ≤ a and b ≤ 2 · Cmax. Assuming that all αs

i and βs
i are

rational numbers with a common denominator d, there exists at most 4 ·Cmax.d
possibilities for values of a and b in expressions. Similarly, expression expr are of
the form given in Definition 3, and there are hence 3 · (|PT |+ |PT |2) expressions.
The size of I0 is hence 12 · Cmax · d · (|PT | + |PT |2), and each domain is a subset
of inequalities from I0. This gives an upper bound on the number of domains,
which is in O(2|I0|). In a state class, component B is a subset of trajectory
places, and hence there are at most 2|PT | possible values for B. Last, for a K
bounded trajectory net, the number of possible markings for control places is in
O(|PC |K+1) [12]. The number of state classes is hence in O(2|I0|+|PT | · |PC |K+1).

6 Reachability, Coverability, Safety

An important property of the state class graph is that all solutions for domains
that are reachable in SC(N ) are also reachable in N . This immediately gives an
algorithm to check coverability or reachability properties.

Theorem 3. Given a state class (Mn, Bn,Dn) reachable from initial state class
(M0, B0,D0), and a solution Tn ∈ �Dn�, there exists a run in the original tra-
jectory net that ends in configuration (Mn, Bn, Tn).

Proof (Sketch). As for Proposition 4), we can use an induction on the length of
paths in the state class graph. (See details in [15]). ��

Theorem 4. Reachability, boolean reachability, and boolean coverability are
decidable in PSPACE for bounded nets

Proof. These problems can be solved by a non-deterministic exploration of the
state class graph. Let us first consider reachability of a given configuration
(M,B, T ). Assume that a state class (M,B,D) such that T ∈ �D� is reach-
able in SC(N ). Then, according to Theorem 3, there exists a run of N reaching
(M,B, T ). Consider now the boolean reachability and coverability problems. Let
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sc=(M,B,D) be a reachable state class. One can notice that the boolean mark-
ing MC is identical for every configuration C matching sc. We hence denote this
marking by Msc, and compute it by assigning a token to a place pi ∈ PT iff Ti, ti
are variables used in D or if pi ∈ B. Then, deciding reachability (resp. cover-
ability) of a marking M consists in finding a state class sc such that Msc = M
(resp. Msc ≥ M).

As shown in Sect. 5, the size of the state class graph is exponential w.r.t. the
number of places and w.r.t. the value on constants appearing in intervals attached
to trajectory places. Encoding a state class can be done in log(|SC(N )|) hence in
polynomial space, and reachability questions can be addressed in nlogspace w.r.t.
the size of the graph. At each step of an exploration reaching a particular state
class SCi = (Mi, Bi,Di), checking M = Mi, B = Bi, M = MSCi

or M ≤ MSCi

can be done in linear time w.r.t the number of places, and checking T ∈ �Di�
can be done in linear time w.r.t the number of inequalities in D by replacing
every variable by its value in each inequality. As the number of inequalities in
canonical domains is quadratic w.r.t. the number of trajectory places, checking
T ∈ �Di� can be done in PTIME. Hence, reachability boolean reachability, and
coverability can be checked in NPSPACE, which is equivalent to PSPACE by
Savitch’s theorem [24]. ��

Remark 1. Notice that a trajectory net without trajectory places is a Petri net
(transitions can fire as soon as their preset is filled, after any delay). Hence,
reachability and coverability in trajectory nets are at least as hard as reachability
and coverability in 1-safe Petri nets. These problems are known to be PSPACE-
Complete [7,11].

Corollary 1. Reachability, boolean reachability, and boolean coverability for
bounded nets are PSPACE-Complete.

Proof. PSPACE membership is proved by Theorem 4. As highlighted in
Remark 1, a reachability or a coverability problem for 1-safe nets is also a
reachability/coverability problem for trajectory nets (with empty set of trajec-
tory places). As these two problems are PSPACE-Complete [7,11], we get the
result. ��

6.1 Extending Coverability to Safety Properties

Reachability is often a too precise question and one is usually interested in prop-
erties that address ranges of values for positions of objects. Let us get back to
the case study introduced in Sect. 3, namely avoidance of simultaneous danger-
ous situations in a metro network. Metro networks can be easily represented by
trajectory nets: trajectory places represent track portions between two stations,
or a finer partition of a physical network into track portions called blocks, tran-
sitions symbolize departures, arrivals etc. Obviously, metro networks have very
strict safety requirements that must be guaranteed by physical equipments such
as signals and brakes. Safety issues also appear at the operational level. At any
instant, evacuation of passengers should be feasible with the lowest risks, and
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for that reason, operators want to avoid situations where more than K trains
are in tunnels or on bridges.

Addressing such safety properties is neither a reachability nor a coverability
question: it requires that at any instant, all trajectories of trains avoid a set of
unsafe positions. Let p ∈ PT be a trajectory place, of length H(p), and assume
that the track portion represented by p contains a tunnel. We can easily define
two values ds

p and de
p defining respectively the position of the entry and exit of

the tunnel in that track (for instance, in Fig. 3, we have ds
p = 600 and de

p = 400).
Let T p = (Tp, tp). The function gives us the initial duration Tp of a trip from a
station to the next one, the remaining time tp before the end of this trip, but
we can also compute the position dp of the considered train on the track. We
have assumed that all objects moving in a trajectory net have a constant speed
during the whole duration of a trajectory, sampled when the object enters a
place. Hence, H(p)

Tp
= dp

tp
at any instant, and a train in place p is in a tunnel iff

the following property Tunnel(p) is satisfied:

Tunnel(p)::= de
p ≤ H(p) · tp

Tp
≤ ds

p

Now assume that we want to avoid a situation where trains in a set of places
X = {p1, . . . , pK} ⊆ PT are in tunnels at the same instant. It means that we
have to avoid any configuration that satisfies the property Unsafe(X), where
Unsafe(X)::=

⋃

pi∈X

Tunnel(pi).

The domains computed in the state class graph SC(N ) are symbolic rep-
resentations of configurations reached immediately after discrete moves. It can
be the case that, after each discrete move, all trains are located before a tunnel
in their respective track segment. Verifying safety of a train network does not
amount to verifying that �D ∪ Unsafe(X)� = ∅ for sets of places X containing
tunnels and for every reachable domain D. We need to consider how config-
urations depicted in D evolve when elapsing time, i.e., build symbolic repre-
sentations of configurations reached an arbitrary duration after a discrete move.
Hence, we introduce time closure S↓ = (M,B,D↓) of a state class S = (M,B,D).

Definition 8 (Time Closure). Let S = (M,B,D) be any state class having a
set of places with progressing trajectories Ppr ⊆ PT . We introduce variables δ (to
represent the timed move) and t′i for all i ∈ Ppr (to represent time remaining in
trajectories after a timed move of duration δ). The time closure of S is a 3-tuple
S↓ = (M,B,D↓) with D↓ defined as:

Case I: No transition is firable from the given marking M and set of blocked
trajectories B, and hence timed moves are allowed by the semantics of trajectory
nets. We have D↓ = D ∪ {0 ≤ δ ≤ ti | i ∈ Ppr} ∪ {t′i = ti − δ | i ∈ Ppr}

Case II: There exists a firable transition for the given marking M and set of
blocked trajectories B, and hence timed moves are not allowed. We hence have
D↓ = D ∪ {δ = 0} ∪ {t′i = ti | i ∈ Ppr}.

The time closure of a state class S = (M,B,D) is a symbolic representa-
tion of possible configurations reachable after timed moves of arbitrary duration
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δ, including the configurations in domain D (i.e., when δ = 0). As explained
above, a property of interest for metro networks is that no more than K trains
are in a tunnel at any given instant. We denote by Unsafe′(X) the set of
inequalities obtained by replacing, for every place p ∈ X variable tp by t′p
in Unsafe(X). A state class S = (M,B,D) is safe for places p1, . . . pK iff
�D↓ ∪ Unsafe′(p1, . . . pK)� = ∅. Verifying that a state class is safe for every
subset of places of size K amounts to asking that �D↓ ∪ Unsafe′(X)� = ∅ for
every subset X ⊆ PT of places of size K containing tunnels. Notice that the set
of all X’s can be enumerated in log(|PT |) space.

Remark 2. Non-emptiness of D↓ ∩Unsafe′(X) implies existence of a configura-
tion violating the safety property, because all configurations in a state class D
are reachable, and hence all configurations in D↓ too. Hence, checking safety for
all state classes of SC(N ) guarantees that the trajectory net does not violate
the safety property. This gives us a method to check safety of a metro network
modeled with a trajectory net using its state class graph.

Let X = {p1, . . . , pK}. The constraint Unsafe′(X) can be rewritten as{
de

pi
≤ H(pi)·t′

i

Ti
≤ ds

pi
| pi ∈ X

}
and as every Ti is a positive value, simplified

to get
{
de

pi
· Ti ≤ H(pi) · t′i ≤ de

pi
· Ti | pi ∈ X

}
. One can immediately observe

that this set contains only linear inequalities of dimension 2 involving Ti and t′i.
Let us now consider D↓, defined for a set of places P of progressing trajectories.
It obtained by replacing ti by t′i + δ. It is hence a set of constraints of the form:

α1
i ≤ Ti ≤ β1

i for all pi ∈ P

α2
i ≤ t′i + δ ≤ β2

i for all pi ∈ P

t′i − t′j ≤ γ3
ijfor all pi, pj ∈ P with i �= j

α4
i ≤ Ti − t′i + δ ≤ β4

i for all pi ∈ P

α5
ij ≤ Ti − t′i + t′j ≤ β5

ijfor all pi, pj ∈ P with i �= j

−Ti + t′i + Tj − t′j ≤ γ6
ijfor all pi, pj ∈ P with i �= j

Remark 3. Checking emptiness of D↓ �
{
de

pi
· Ti ≤ H(pi) · t′i ≤ ds

pi
· Ti | pi ∈ X

}

can be done by elimination of variables one after another, and stopping as soon
as an inequality is unsatisfiable, or when all variables are eliminated. We can use
a variable change as in Proposition 2, and get an equivalent system of dimension
2. Hence, checking satisfiability of D↓ � Unsafe′(p1, . . . , pK) can be done in
PTIME.

Proposition 6. Checking a safety property for a bounded trajectory net is
PSPACE-complete.

Proof. N violates a safety property of the form “no more than K trains in
a tunnel” iff there exists a reachable configuration C = (M,B, T ) such that
T |= Unsafe(X) for some subset of places X = {p1, . . . pK} with tunnels.
According to Remark 2, this holds only if there exists a reachable state class
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S = (M,B,D) such that �D↓ ∪ Unsafe′(X)� �= ∅. We know from the decision
procedures for reachability and coverability that exploration of all state classes
can be done in PSPACE. Then, for each state class S = (M,B,D) reached, we
need to compute D↓ enumerate all subsets X of K places containing tunnels and
with a progressing trajectory, and check emptiness of D↓ ∪Unsafe′(p1, . . . , pK).
Enumeration of subsets of places of size K can be done in log(PT ) space. Fol-
lowing Remark 3, (un)satisfiability of D↓ ∪Unsafe′(p1, . . . pK) can be verified in
PSPACE. The hardness comes from a reduction of the coverability problems for
1-safe nets: if C is a set of places to cover in a 1-safe Petri net N , one can design
a trajectory net NT with one additional trajectory places pT,c per place in C and
such that •(pT,c) = •(c), (pT,c)• = (c)• and set zones to avoid as the whole length
of these places. Reaching a configuration with objects in X = {pT,c | c ∈ C} in
NT amounts to covering C in N . ��

7 Conclusion

We have considered an extension of Petri nets enhanced with time and linear
functions depicting trajectories of moving objects. Most problems for this model
are undecidable in general. However, as soon as the control part is bounded,
the behaviour of the model can be abstracted to a finite state class graph, and
coverability, reachability, and safety properties addressing distance issues can be
decided in PSPACE. Finiteness of the state class graph of trajectory nets comes
from bounds on the values of variables, and from the particular structure of
domains, that are conjunctions of linear inequalities with at most 4 variables, and
coefficients in {1,−1}. This structure is preserved by projection, and hence by the
successor relation among state classes. Preliminary work shows that domains for
trajectory nets are a form of regular polyhedra, that can be encoded by Totally
Unimodular Matrices (TUM). This needs to be formally proved, but it would
explain why our domains have interesting closure and algorithmic properties.
An interesting research direction is to consider extensions of trajectory nets that
preserve this nice and efficient domain structure.

As future work, several extensions of the model can be considered. We have
defined a restricted model, mainly tailored to represent metro networks. The
first restriction is that transitions have at most one trajectory place in their
preset and in their postset. This last restriction was used to simplify notations
and reading, and can be easily relaxed: one can imagine firing rules consuming
several blocked trajectories, and similarly producing several new trajectories in
the postset of a transition. The techniques shown in this paper easily adapt. It
should also be possible to consider trajectories in 2D or 3D spaces.

The second restriction imposes that trajectories are simple linear functions,
i.e. the speed of an object is sampled once, and remains constant until a trajec-
tory gets blocked. One could easily improve trajectories using piecewise linear
functions depicting behavior of objects moving at varying speeds (this is the
model proposed in [17], Chapter 5). This would be useful to describe accelera-
tion and braking phases. We conjecture that this extension still allows to work
with TUMs, as long as trajectory places contain at most one trajectory.



264 L. Hélouët and P. Contractor

More involved improvements would be to consider trajectories specified by
polynomials, or to allow more than one trajectory per place. The single tra-
jectory restriction makes sense when modeling metro networks for instance, as
many cities implement a fixed block traffic management policy, where tracks are
partitioned in exclusive blocks that must be occupied by a single train at any
instant. However, this type of management is progressively replaced by moving
block policies, that allow several trains in a track segment provided they main-
tain safety distances. Relaxing the single trajectory restriction is also needed to
model other situations such as road traffic. First experiments seem to show that
a definition of domains for these two extensions require polynomial inequalities,
i.e. expressions of the form P (X) ≤ c, where P (X) is a multivariate polynomial.
It is known that such domains are closed under projection [25]. However, vari-
able elimination has a doubly exponential complexity [8]. Further, we conjecture
that finiteness of domains does not hold any more in this new setting.
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Abstract. Model checking is a powerful technique for software verifi-
cation. However, the approach notably suffers from the infamous state
space explosion problem. To tackle this, in this paper, we introduce a
novel symbolic method for encoding Petri net markings. It is based on
the use of generalised intervals on vectors, as opposed to existing meth-
ods based on vectors of intervals such as Interval Decision Diagrams.
We develop a formalisation of these intervals, show that they possess
homomorphic operations for model checking CTL on Petri nets, and
define a canonical form that provides good performance characteristics.
Our structure facilitates the symbolic evaluation of CTL formulas in
the realm of global model checking, which aims to identify every state
that satisfies a formula. Tests on examples of the model checking contest
(MCC 2022) show that our approach yields promising results. To achieve
this, we implement efficient computations based on saturation principles
derived from other symbolic model checking techniques.

1 Introduction

In the ever-evolving landscape of computer science and software engineering, the
correctness and reliability of software systems remain paramount concerns. In
response to these challenges, the discipline of model checking has emerged as a
powerful tool in the arsenal of software verification and validation.

Model checking [8] is a formal verification technique used to ensure that a
system adheres to its specifications and requirements. However, although model
checking is a trustworthy and robust method, it is confronted with a variety of
challenges. One of the most significant ones is the state space explosion prob-
lem [11,18]. This problem arises when dealing with complex software or hardware
systems, where the number of possible states and transitions within a model
grows exponentially with its size. The task becomes more challenging when the
objective is to identify all states that adhere to a given property, as opposed to
merely determining the validity of the property within a specific configuration.
Moreover, our objective is to address the issue of global model checking, namely,
to identify all states that fulfill a CTL (Computation Tree Logic) [9] formula.

While various techniques have been developed to mitigate the state space
explosion problem, such as Decision diagrams [1,13,14], abstractions [10],
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partial order reduction [20], and many others, it has become evident that
this challenge will persist as models become more sophisticated. Therefore, the
quest for innovative methods to address this issue remains a compelling area of
research. As always, each new approach inevitably brings its own set of advan-
tages and disadvantages compared to existing techniques.

This paper focusses on a symbolic method inspired by [21] that proposes to
encode sets of markings in Petri net models with vectors that act as boundaries
on the markings, similar to intervals. As markings are essentially vectors of
values, and fireability of transitions are lower constraints and their negation are
upper constraints, intervals seem to be a suitable choice for representing the
satisfiable states of a CTL formula. However, expressing intervals on vectors is
complicated, since vectors are not always comparable. We introduce such notions
and demonstrate that, for non-total orders, we require additional information
such as a set of lower and upper bounds, rather than a single bound as in
intervals of natural numbers. Merely efficiently representing sets of markings is
insufficient; we therefore also define homomorphic operations (w.r.t. union) on
the symbolic structure to directly perform model checking on it.

Thanks to this encoded structure and operations, we can efficiently maintain
the same structure and remain in the symbolic domain, without the need to
decode it to perform computation over the encoded values. Furthermore, we
introduce a canonical form incorporating optimisations to make it efficient to
use in the context of CTL model checking. We tested our approach on examples
from the model checking contest [16], yielding very promising results.

The paper is organised as follows: firstly, in Sect. 2, we provide an overview
of our project. Next, in Sect. 3, we present the complete formalism of our sym-
bolic structure. In Sect. 4, we demonstrate the connection between this symbolic
structure and Petri nets to apply CTL model checking. Finally, Sect. 5 presents
our results using this technique.

2 Informal Presentation

In the context of Petri nets, as illustrated in Fig. 1, the states of a model are
represented using markings. A marking can be viewed as a vector where each
place is associated with a natural number that indicates the number of resources.
In our example, (3, 1) is the current marking of the Petri net.

Model checking Petri nets consists in being able to answer queries such as
“How many resources are required at each place to make t0 fireable ?”. Two
perspectives on the problem are possible from this question. The first seeks all
states that satisfy the query, namely global model checking [22]. The second
checks whether a specific state satisfies the query, corresponding to local model
checking. Obviously, because it computes the entire state space for a query, global
model checking also provides an answer for any given state, making it more
general than the local approach. In particular, such a space is often infinite,
meaning that a simple explicit enumeration of all states is impossible, as would
be the case for the property of making t0 fireable.
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Our approach uses a new structure called symbolic vector, described by a
couple (a, b), where a and b represent sets of markings. To belong to (a, b), a
given marking must include (given a partial order relation on vectors) all the
markings in a and none of the markings in b. This is a generalisation of the inter-
val concept to vectors. Indeed, membership in a natural number interval [a, b]
can be expressed as ∀x ∈ N, a ≤ x ≤ b, which can equivalently be formulated as
∀x ∈ N, a ≤ x ∧ b �< x. The latter definition aligns with the conceptual frame-
work of symbolic vectors, albeit in this case, the focus is on vectors rather than
natural numbers. The latter definition shares the same idea as symbolic vector,
excepts that we work on vectors instead of naturals. In the example in Fig. 1, the
symbolic vector encoding all solutions of t0 being fireable is ({(2, 0)}, ∅). This
couple includes an infinite number of markings, such as (2, 0) or (3, 4) and so on.
Let us assume that we do not want to include markings greater than or equal
to (8, 9); we would get the symbolic vector ({(2, 0)}, {(8, 9)}). In this refined
version, valid markings could be (7, 7) or (10, 8), whereas invalid markings could
be (8, 9) or (10, 9). Therefore, based on an inclusion and exclusion set, we can
encapsulate sets of markings. In addition to this structure, we leverage homo-
morphic operations to perform computations directly on the symbolic structure,
rather than on each element of the set individually. For example, the action of
adding 1 to p0 for all markings in ({(2, 0)}, ∅) can be done in a single step,
leading to ({(3, 0)}, ∅), rather than having to iterate over each element in the
set to increment it.

Fig. 1. Petri net with two places and one transition

Although symbolic vectors are a first step in encoding sets of markings, they
are not sufficient to represent all possible sets, similar to intervals of natural
numbers that cannot encode all sets of natural numbers. To address this limita-
tion, a set of intervals is required. For instance, the set of naturals {1, 2, 3, 7, 8}
is encoded as {[1, 3], [7, 8]}, necessitating two intervals. However, constructing a
symbolic version for sets poses a greater challenge. Indeed, a symbolic represen-
tation is often linked to the task of finding a canonical form, as failing to do so
may result in redundancy and other issues that diminish the efficiency of the
approach. For example, the set {[1, 4], [2, 5], [3, 6]} could be reduced to {[1, 6]}
in natural numbers. Due to the non-explicit representation, the uniqueness set
rule is not sufficient to preserve the uniqueness of the symbolic set. In fact,
[1, 4] �= [2, 5] and [1, 4] ∩ [2, 5] �= ∅. Each interval in this example is distinct,
but all share values with the others. The standard approach to constructing a
canonical form in this context is to merge intervals whenever possible.

Unlike sets of intervals, creating a symbolic representation for sets of mark-
ings poses a more substantial challenge, primarily due to the non-strict partial
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order on its elements. Although all intervals can be compared to each other, the
same is not true for markings. Besides, a symbolic vector itself is an intricate
structure that also needs to be canonised. Consequently, additional constraints
are necessary to manage canonicity of a symbolic vector set.

By combining a symbolic encoding for sets of markings and encoding the
evaluation process to be applied to symbolic vector sets, we are able to compute
CTL formulas for global model checking, i.e. to determine all the markings of a
net that satisfy a formula. It should be noted that the necessary operations for
doing CTL model checking are mainly set operations and a pre operation. All
of them are defined as homomorphisms on symbolic vector sets.

3 Symbolic Structure for Sets of Vectors

This section formalises the structures known as symbolic vector and symbolic
vector set. Symbolic vectors serve as the initial encoding layer for Petri net
markings, whereas sets of symbolic vectors constitute the set that incorporates
them. We present all of their respective definitions, properties, and canonical
form.

3.1 Symbolic Vectors

Definition 1 (Non-strict partial order). Let a, b ∈ Q be two elements. A
non-strict partial order is a homogeneous relation ⊆f on a set Q, such that
it verifies the following properties; reflexivity: a ⊆f a; antisymmetry: if a ⊆f

b ∧ b ⊆f a then a = b; transitivity: if a ⊆f b ∧ b ⊆f c then a ⊆f c.

Notice that two values can potentially not be compared, i.e. neither a ⊆f b nor
b ⊆f a are in the relation.

Definition 2 (Inclusion relation on vectors). Let qa, qb ∈ Qn be two ele-
ments such that Qn is the set of vectors of size n ∈ N. The non-strict partial
order on two vectors of the same size, namely the inclusion of vectors, is a rela-
tion defined as qa ⊆f qb ⇔ ∀p ∈ P, qa(p) ≤ qb(p).

We use the notation ∀p ∈ P, q(p) where q ∈ Qn to iterate over the elements of
our tuple. This parallels a function structure, where each tuple location serves as
the domain and the associated value functions as its codomain. From the previous
definition, the derivations of the definitions for �⊂f ,=f , �=f can be inferred. In
addition, for the remainder of the article, we assume the same definition of Qn.

Definition 3 (Symbolic vector). Let Qn be a set of vectors such that there
exists a non-strict partial order ⊆f on its elements. A symbolic vector is defined
as: (a, b) ∈ SV, where a, b ∈ P(Qn). A vector that belongs to it, noted ∈sv:
Qn × SV, is defined by the relation (q ∈sv (a, b)) ⇔ ∀qa ∈ a, qa ⊆f q ∧ ∀qb ∈
b, (qb �⊂f q ∧ qb �=f q). We assume that �∈sv is its negation.
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A symbolic vector relies on set theory and the definition of a non-strict partial
order relation for elements inside it. For a vector q to be accepted by such a
structure, all elements of a must be included in q and none of the elements of b
must be included in it. Note that the whole relation may be seen as a sequence
of conjunctions (∧) where each predicate must be true.

Remark 1. Note that the theory of symbolic vectors could be generalised to any
structure with a non-strict partial order. However, for simplicity and a clear
focus on Petri nets, we will describe it directly for vectors, the structure used
to represent markings. Moreover, one advantage of vectors of totally ordered
values is that there exists a lexicographic order on them that can be used as
a total order. Nevertheless, it can help construct the canonical form, but this
order alone is not useful in establishing the fireability condition.

Definition 4 (Underlying set of vectors). Let sv ∈ SV be a symbolic vector.
The set of underlying vectors of a symbolic vector is a function uf : SV → P(Qn)
such that uf(sv) = {q ∈ Qn | q ∈sv sv}.

Fig. 2. Visualisation of the symbolic vec-
tor ({(1, 0), (0, 1)}, ∅).

Fig. 3. Visualisation of the symbolic vec-
tor ({(1, 0), (0, 1)}, {(2, 3), (4, 1)}).

In Fig. 2, we present an initial example visualising the underlying set of vec-
tors from ({(1, 0), (0, 1)}, ∅). Vectors in the dot pattern satisfy only one of the
conditions, while those in the hatch pattern satisfy both simultaneously. This
illustrates that the left vectors must all be included, denoted by the “and” oper-
ator. In contrast, when adding multiple constraints, as shown in Fig. 3 with the
chequerboard pattern, the “or” operator comes into play, making a solution
invalid if it includes (2, 3), (4, 1), or both simultaneously. Therefore, the valid
vectors are those belonging to the hatch pattern. Note that, while we bounded
the domain size for the graphical representation, the hatch pattern symbolises
an infinite number of solutions. Moreover, while this visualisation is effective for
a vector of size 2, it needs adaptation for varying vector lengths. Nevertheless,
the fundamental concept remains consistent across different vector sizes.

Definition 5 (Intersection of two symbolic vectors). Let sv = (a, b),
sv′ = (c, d) ∈ SV be two symbolic vectors. The intersection between two symbolic
vectors, noted ∩sv : SV × SV → SV, is defined as: sv ∩sv sv′ = (a ∪ c, b ∪ d).



274 D. Morard et al.

The intersection takes the conditions of each symbolic vector to combine
them. Thus, to belong to their intersection, a new vector must belong to a and
c, but not to b and d. Furthermore, the intersection is the only operation on
symbolic vectors that gives a symbolic vector as an output by combining two of
them. Similarly to intervals, the difference or union may return a set of intervals
instead of a single interval.

Lemma 1. Let sv, sv′ ∈ SV, then uf(sv ∩sv sv′) = uf(sv) ∩ uf(sv′).

In the following, we assume that fε ∈ Qn is the zero vector such that all its
values are set to 0.

Definition 6 (Join). Let us assume p ∈ P(Q) be a set of vectors. The join
function, which finds the least upper bound of a set of vectors, written as join :
P(Qn) → P(Qn), is defined as join(∅) = {fε} and join(p) = {qjoin}, p �=
∅, such that ∀q ∈ p, (q ⊆f qjoin∧ � ∃q′ ∈ P(Q), q′ ⊆f qjoin ∧qjoin �=f q′ ∧q ⊆ q′).

The join operation has its origins in lattice theory and has been adapted
for direct application on vectors. For example, join({(1, 1), (9, 9)}) = {(9, 9)} or
join({(1, 3), (7, 2), (4, 4)}) = {(7, 4)}. Note that join returns a singleton. Addi-
tionally, when the input is an empty set, it returns a vector filled with zeros,
representing the global least upper bound, ensuring its inclusion in all vectors.

Lemma 2. Let sv = (a, b) ∈ SV. Then, uf(a, b) = uf(join(a), b).

Thanks to Lemma 2, we can treat a as a singleton, which is an important
simplification. However, the same idea cannot be applied to b. Indeed, the reduc-
tion of the set a capitalises on the ‘and ’ relation between vectors, while b cannot
achieve the same simplification due to the ’or ’ relation.

Definition 7 (Empty symbolic vector). Let sv = (a, b) ∈ SV be a sym-
bolic vector and {qa} = join(a)1. An empty symbolic vector is defined as
sv ∈ ∅sv ⇔ ∃qb ∈ b, qb ⊆f qa, where ∅sv is the set of all empty symbolic
vectors. Furthermore, when expressing sv �∈ ∅sv, we assume its negation.

In fact, addressing emptiness in symbolic vectors is a crucial challenge. Given
their infinite number, there is considerable potential for redundancy, necessitat-
ing the ability to identify them for the development of a future canonical form.
For example, uf({(3, 3)}, {(1, 1)}) = uf({(0, 0)}, {(0, 0)}) = ∅.

Definition 8 (Canonicity of symbolic vectors). Let sv = (a, b) ∈ SV be a
symbolic vector. sv is canonical if and only if:

1. a = {qa} is a singleton.
2. sv �∈ ∅sv ∨ sv = ({fε}, {fε}).
3. ∀qb, q

′
b ∈ b, qb �= q′

b, qb and q′
b are not comparable.

4. ∀qb ∈ b,∀p ∈ P, qa(p) ≤ qb(p).

1 If a = ∅, then join(a) = {fε}, where qa is included in all markings of b.
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To ensure the canonicity of a symbolic vector, several conditions must be
satisfied, each contributing to its unique representation. Firstly, we rely on the
join function described in Definition 6 as the initial condition, which ensures
that a is always expressible as a singleton. Secondly, addressing the issue of
multiple possible expressions for an empty symbolic vector, a deliberate decision
has been made to maintain a single representation, namely ({fε}, {fε}). Thirdly,
the vectors in the set b must not be encapsulated within a vector in the same
set, since the most inclusive vector already encapsulates all constraints. For
example, uf({(1, 1)}, {(4, 4), (5, 5)}) = uf({(1, 1)}, {(4, 4)}), because (4, 4) ⊆f

(5, 5). Lastly, the fourth condition ensures that each value of qa serves as a
minimum bound for each value of each vector in b.

Example 1. uf({(2, 0, 5)}, {(4, 0, 2)}) = uf({(2, 0, 5)}, {(4, 0, 5)}). Both vectors
have the same underlying representation. Although (4, 0, 2) �=f (4, 0, 5), the min-
imum vector is (2, 0, 5), which forces each component to be greater than or equal
to it to be accepted. Therefore, as long as the value of the third component is
less than or equal to 5 for the right part, the underlying set remains equivalent.
Furthermore, by imposing the minimum value of qa in b, all vectors in b are
inherently included in a, i.e. ∀qb ∈ b, qa ⊆f qb.

Theorem 1 (Unicity of the representation). Let sv, sv′ ∈ SV be two
canonical symbolic vectors. Then, uf(sv) = uf(sv′) ⇔ sv = sv′.

3.2 Symbolic Vector Sets

As mentionned before when using intervals, union is not an internal operation
of intervals. The same occurs for symbolic vectors. We then need the following
definitions and properties that are based on the previous definition of symbolic
vectors and can be seen as extensions that work on sets.

Definition 9 (Symbolic vector sets). A symbolic vector set, belonging to
P(SV), is a set containing exclusively symbolic vectors. A vector that belongs to
it, noted ∈svs: Qn × P(SV), is defined by the relation (q ∈svs svs) ⇔ ∃sv ∈
svs, q ∈sv sv. We assume �∈svs as its negation. An empty symbolic vector set is
defined as: svs ∈ ∅svs ⇔ ∀sv ∈ svs, sv ∈ ∅sv, where ∅svs is the set of all empty
symbolic vector sets. Besides, ∅ ∈ ∅svs.

Definition 10 (Underlying vectors of set). The set of underlying vectors
of a symbolic vector set is a function, noted ufsvs : P(SV) → P(Qn), such that:

ufsvs(svs) =
⋃

sv ∈ svs

(uf(sv))

Similarly to uf , we unfold the result of each symbolic vector to obtain the
final vector set.

Definition 11 (Union & intersection). Let svs, svs′ ∈ P(SV) be two sym-
bolic vector sets. The union and intersection between two symbolic vector sets,
noted ∪svs,∩svs : P(SV) × P(SV) → P(SV), are defined as: svs ∪svs svs′ =
svs ∪ svs′ and svs ∩svs svs′ =

⋃
sv∈svs

⋃
sv′∈svs′ sv ∩sv sv′.
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Union for symbolic vector sets is simply set union. The intersection of two
symbolic vector sets is the combination of the intersection between all the sym-
bolic vectors of sv and sv′.

Lemma 3 (Commutativity). Let svs, svs′ ∈ P(SV) be two symbolic vector
sets and ∗ ∈ {∪svs,∩svs} Then, svs ∗ svs′ = svs′ ∗ svs.

Before introducing the difference between two symbolic vector sets, we for-
malise the difference of two symbolic vectors.

Definition 12 (Difference of symbolic vectors). Let sv = (a, b), sv′ =
(c, d) ∈ SV be symbolic vectors. The difference between two symbolic vectors,
noted \sv : SV × SV → P(SV), is defined as sv \sv sv′ = {sv1 ∈ SV | qc ∈
c, sv1 = (a, b ∪ {qc})} ∪svs {sv2 ∈ SV | qd ∈ d, sv2 = (a ∪ c ∪ {qd}, b)}.

We remove all the values that are common to both symbolic vectors. c and d
are used as upper and lower bounds, respectively. Note that in the construction
of the new set we have b ∪ {qc} and a ∪ c ∪ {qd} instead of {qc} and {qd}. The
omission of c in the construction of the latter could cause a problem when qc �≤ qd.
This is crucial to preserve the initial condition in addition to the new bounds,
preventing acceptance of values that were not part of the original conditions.

Example 2. Let us illustrate with an example:

({(1, 1)}, {(9, 9)}) \sv ({(4, 4)}, {(7, 2), (5, 6)})
= {({(1, 1)}, {(9, 9)} ∪ {(4, 4)})} ∪svs {({(1, 1)} ∪ {(4, 4)} ∪ {(7, 2)}, {(9, 9)})}

∪svs {({(1, 1)} ∪ {(4, 4)} ∪ {(5, 6)}, {(9, 9)})}
= {({(1, 1)}, {(4, 4)}), ({(7, 4)}, {(9, 9)}), ({(5, 6)}, {(9, 9)})}

The last step involves simplifications, ensuring that each symbolic vector adheres
to the canonical form. This primarily involves using join for the left component
of each symbolic vector. Then, we verify that there are no comparable vectors
in b, as exemplified by {(9, 9)} ∪ {(4, 4)}, reduced to {(4, 4)}. Note that this
operation may introduce redundancy in the resulting symbolic vector set. The
vector (7, 6) belongs to ({(7, 4)}, {(9, 9)}) and ({(5, 6)}, {(9, 9)}).

Lemma 4. Let sv, sv′ ∈ SV. Then, ufsvs(sv \sv sv′) = uf(sv) \ uf(sv′).

Definition 13 (Difference). Let svs = {sv1, . . . , svn}, svs′ ∈ P(SV), n > 1
and sv, sv′ ∈ SV. The difference between two symbolic vector sets, noted \svs :
P(SV) × P(SV) → P(SV), is defined inductively as:

svs \svs ∅svs = svs, ∅svs \svs svs = ∅svs

{sv} \svs {sv′} = sv \sv sv′

{sv} \svs {sv1, . . . , svn} = (sv \sv sv1) \svs {sv2, . . . , svn}
{sv1, . . . , svn} \svs svs′ = {sv1} \svs svs′ ∪svs {sv2, . . . , svn} \svs svs′
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The difference is carried out recursively by taking each left symbolic vector
and applying the difference with each right symbolic vector. Moreover, since the
result of \sv is a new set, we need to invoke \svs.

Definition 14 (Negation). Let svs ∈ P(SV) be a symbolic vector set and
sv ∈ SV be a symbolic vector. The respective negation of both structures, noted
¬svs : P(SV) → P(SV) and ¬sv : SV → P(SV), are defined as: ¬sv(sv) =
({fε}, ∅) \sv sv and ¬svs(svs) = {({fε}, ∅)} \svs svs.

Lemma 5. Let svs, svs′ ∈ P(SV) and ∗ ∈ {∪,∩, \} be operations. Then,
ufsvs(svs)∗ufsvs(svs′) = ufsvs(svs∗svssvs′) and ufsvs(¬svssvs) = ¬ufsvs(svs).

Definition 15 (Symbolic vector set relations). Let svs, svs′ ∈ P(SV) be
symbolic vector sets and q ∈ Qn be a vector. Each of the relations ⊆svs, �⊂svs

,=svs, �=svs ⊆ P(SV) × P(SV) and ∈svs ⊆ SV × P(SV) are defined as follows:

– svs ⊆svs svs′ ⇔ svs \svs svs′ ∈ ∅svs

– svs �⊂svs svs′ ⇔ svs \svs svs′ /∈ ∅svs

– svs =svs svs′ ⇔ (svs ⊆svs svs′) ∧ (svs′ ⊆svs svs)
– svs �=svs svs′ ⇔ (svs �⊂svs svs′) ∨ (svs′ �⊂svs svs)
– q ∈svs svs ⇔ ∃sv ∈ svs, q ∈sv sv

The general set relations are expanded to directly work on sets of symbolic
vectors. Their constructions are based on the operations described previously.

3.3 Canonicity of Symbolic Vector Sets

Establishing a canonical form for symbolic vector sets involves several condi-
tions, some of which mirror those seen in interval sets. Among these conditions
is the aim to prevent overlap between intervals, which corresponds to avoiding
the inclusion of the same value in two distinct symbolic vector sets. Addition-
ally, another scenario may arise when two intervals share no values, but can be
merged into a single one. For instance, the two intervals [1,4] and [5,7] in natural
numbers can be combined into [1,7]. Therefore, symbolic vector sets must take
into account these conditions.

However, addressing the aforementioned cases is insufficient to guarantee
future canonicity due to the non-strict partial order of its elements. Figure 4
depicts a scenario in which two symbolic vectors do not share values and cannot
be merged. Despite this, two different sets exist, resulting in an equivalent final
underlying set of vectors. The issue arises because the value within the symbolic
vector ({(4, 4)}, ∅) may be included in both symbolic vectors. The visualisa-
tion in Fig. 4b offers an initial explanation of this phenomenon. The nodes are
arranged according to their vectors, with the lowest at the bottom and the largest
at the top. Vector (4,4) serves as a join point where the two symbolic vectors
share the above values. Moreover, vector (4,4) can be moved over both excluding
sets to transfer the constraint, leading to two different representations for the
same underlying set. Thus, it is imperative to establish a deterministic rule for
selecting the symbolic vector that should encompass the constraint. To address
this, we introduce a total order on symbolic vectors.
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Fig. 4. Illustration of the canonical issue encountered with the non-strict partial order
on its vectors, where ({(4, 4)}, ∅) is potentially contained in both symbolic vectors.

Definition 16 (Lexicographic ordering). Let q = (x1, . . . , xn), q′ =
(y1, . . . , yn) ∈ Qn. The lexicographic ordering, noted ≤f : Qn × Qn → B, is
defined as:

() ≤f () = true

(x1, . . . , xn) ≤f (y1, . . . , yn) =

⎧
⎪⎨

⎪⎩

true x1 < y1

false y1 < x1

(x2, . . . , xn) ≤f (y2, . . . , yn) x1 = y1

Lemma 6. ≤f defines a total order on Qn.

Using this new relation, we can determine the symbolic vector that should
incorporate the constraint. Referring to the previous illustration in Fig. 4, we
opted to retain the constraint in the larger symbolic vector. Consequently, the
selected form among these two alternatives is {({(2, 4)}, ∅), ({(4, 2)}, {(4, 4)})}.

This relation enables us to establish the criteria that determine when two
symbolic vectors are deemed shareable, implying the capability to transfer the
constraint to the right symbolic vector if necessary.

Definition 17. Let sv = (a, b), sv′ = (c, d) ∈ SV be two symbolic vectors, and
{qa} = join(a), {qc} = join(c) be the simplifications of a and c. Additionally,
let {qmax} = join({qa, qc}) denote the join vector of qa and qc. The shareable
function on two symbolic vectors, noted shareablesv : SV × SV → B, is defined
as:

if sv ∈ ∅sv ∨ sv′ ∈ ∅sv, shareablesv(sv, sv′) = true

if sv �∈ ∅sv ∧ sv′ �∈ ∅sv

shareablesv(sv, sv′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

if qa ≤f qc⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if � ∃qb ∈ b, (qb ⊆f qmax ∧ qb �=f qmax)
∧ � ∃qd ∈ d, qd ⊆f qmax

true

else false

else Symmetrical case
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The function shareablesv is designed to determine when two symbolic vectors
have a shareable component. Checking shareability involves examining whether
there exists a gap between two symbolic vectors. By building qmax, we seek the
first value that is potentially shared between two symbolic vectors and will then
be the minimum vector of the shared symbolic vector. Therefore, if a tuple of b
or d is lower than qmax, this implies that sharing is not possible. This is similar
to having a gap between two intervals such as [1, 4] and [7, 9].

As illustrated in Fig. 4a, a scenario arises in which two symbolic vectors are
shareable. In this case, the shareability should be considered true only when the
shared component is not on the correct symbolic vector. The condition qb �=f

qmax guarantees this, ensuring that the vector with the lowest lexicographic order
does not contain the constraint. In other words, only the largest symbolic vector
will be constrained by qmax. This prevents overlap between the two structures.

The purpose of shareablesv extends beyond the mentioned scenario. These
conditions also encompass situations of overlapping and mergeability. In essence,
when the function evaluates to true, it signifies that the symbolic vector set is
non-canonical.

Example 3. Let us look at the following examples:

shareable(({(1, 1)}, {(5, 5)}), ({(3, 3)}, {(7, 7)})) = true (1)
shareable(({(1, 1)}, {(3, 3)}), ({(3, 3)}, {(7, 7)})) = true (2)
shareable(({(1, 1)}, {(3, 3)}), ({(5, 5)}, {(7, 7)})) = false (3)

In case (1), the overlap is evident, while in case (2) there is no overlap, but
it could still be subject to merging. Both cases return true when invoking
shareablesv, whereas case (3) does not allow for any simplification.

We have all the necessary elements to formally define the canonical form of
a symbolic vector set, as follows.

Definition 18 (Canonicity of symbolic vector sets). Let svs ∈ P(SV) be
a symbolic vector set. svs is canonical if and only if:

1. ∀sv ∈ svs, sv is canonical.
2. svs �∈ ∅svs ∨ svs = ∅

3. ∀sv, sv′ ∈ svs, sv �= sv′, shareablesv(sv, sv′) = false

Based on this definition, three conditions must be met to guarantee canonic-
ity. The initial condition stipulates that all elements within a symbolic vector set
must be canonical. The second condition requires a unique form for the empty
symbolic vector set. Lastly, the condition we examined previously becomes signif-
icant. When shareablesv is evaluated to be true, a portion of the largest symbolic
vector can be transferred to the smaller one between sv and sv′. However, it is
important to note that the shared part might already partially or entirely exist
within the smaller symbolic vector. This could occur in cases where one symbolic
vector overlaps another. In such instances, the larger symbolic vector would be
either entirely removed or adjusted to exclude the portion already present in the
smaller symbolic vector.
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Theorem 2 (Unicity of the representation). Let svs, svs′ ∈ P(SV) be two
canonical symbolic vector sets. Then, ufsvs(svs) = ufsvs(svs′) ⇔ svs = svs′.

Remark 2. For the sake of brevity and simplicity, we omit the formal description
of canonical homomorphisms for ∪svs, ∩svs, \svs, and ¬svs. We assume their
existence because, formally, they can be viewed as a canonisation of classical
set operations and are intended to be used implicitly. Note that this work is
a synthesis of the thesis in [19]. Furthermore, the complete theory is described
there, including additional definitions and properties, as well as all the canonical
operations and proofs related to them.

4 Petri Net Model Checking Using Symbolic Vector Sets

This section aims to describe the relation and application between CTL model
checking and Petri nets using symbolic vector sets.

4.1 Encoding Markings Using Symbolic Vector Sets

Definition 19 (Capacity Petri net). A Petri net with capacities is a tuple
Σ = 〈P, T, in, out, w, k,m0〉 where P is the set of finite places, T is the set of
finite transitions, in ⊆ (P ×T ) and out ⊆ (T ×P ) are the sets of input and output
arcs linking places and transitions, w : (in ∪ out) → N

+ is the function labeling
each arc with a weight, k : P → N

+ ∪ {∞} binds each place with a value that
cannot be exceeded, and m0 ∈ M represents the initial marking, belonging to the
set of all markings M . We assume that w is total, returning 0 when the relations
in or out are not defined. Formally, w(p, t) = 0 if (p, t) /∈ in and w(t, p) = 0
if (t, p) /∈ out. Furthermore, N

+ = N \ {0}. Operators and relations on N are
extended to N

+ ∪ {∞}. A marking is denoted by a vector (n1, . . . , nm) where
n1, . . . , nm ∈ N,m = |P |, in which each tuple location is connected to a place
that indicates the number of resources. Vectors can be seen as functions of finite
domain m : P → N. A transition t ∈ T is enabled for the marking m ∈ M iff
∀p ∈ P,w(p, t) ≤ m(p) ≤ k(p) − w(t, p), where ∞ − n = ∞, n ∈ N and l ≤ ∞ is
true for l ∈ N ∪ {∞}. When a transition is enabled, it may be fired, resulting in:
fire(m, t) = m′ ⇔ ∀p ∈ P,m′(p) = m(p) − w(p, t) + w(t, p).

We define a function, λin : T → M , called input marking, such that
∀p ∈ P, λin(t)(p) = w(p, t). λin returns a marking that contains the required
number of tokens to enable a transition. In the following, the definition Σ =
〈P, T, in, out, w, k,m0〉 is assumed for a Petri net.

To apply CTL model checking on a model, a particular operation called pre
is necessary. This operation is used to calculate the execution trace of a model
backwards, step by step [25]. In the context of a Petri net, the pre operation
serves as the inverse or opposite of the fire operation. This operation computes
the set of predecessor markings for a given transition, representing the state space
before the firing of the transition. In our approach, encoding the operation pre
is crucial to construct the state space symbolically. The choice of Petri nets with
finite capacity is crucial to ensure the decidability of our system.
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Definition 20 (Reversible). Let t ∈ T be a transition and m ∈ M be
a marking. The reversibility of a transition t for a marking m is defined as
rev(t,m) ⇔ ∀p ∈ P,m(p) ≤ k(p) − w(p, t). In addition, the operation that com-
putes its application, noted pret : M × T → M , is defined as:

∀p ∈ P, pret(m, t)(p) =

{
w(p, t) if m(p) ≤ w(t, p)
m(p) + w(p, t) − w(t, p) else

pret may be seen as the reverse fire operation for a given transition. How-
ever, even if there are not enough tokens in the post-places, the operation is
still applied, and the minimum amount of tokens is put in the in-places. Hence,
the targeted transition is always fireable the next time allowing to explore all
satisfiable states, related to global model checking. Our objective is not to com-
pute the reachable configurations from a given marking, but to capture all the
initial configurations satisfying a property. Thus, even if a transition does not
influence a place, it should still be considered in the list of all valid initial config-
urations. To define the general pre operation that operates on a set of markings,
it involves applying the pret operation to each marking with every transition
and combining the results using the union operation.

Definition 21 (Operation presv). Let sv = (a, b) ∈ SV be a symbolic vector.
The operation presv : SV → P(SV) is defined as:

presv(a, b) =

{
∅ if ∃t ∈ T,∃q ∈ (a ∪ b),¬rev(t,m)⋃

t∈T (prei(a, t), pree(b, t)) else

prei, pree : P(M) × T → P(M)
prei(∅, t) = {λin(t)}, pree(∅, t) = ∅

prei(a, t) = pree(a, t) =
⋃

m ∈ M

{pret(m, t)}, if a �= ∅

The operation presv is designed to operate on each marking within the sym-
bolic vector individually, computing its corresponding pret. Note that if one of
the markings is not reversible (¬rev(t,m)), the entire operation is not applied
and returns ∅. Moreover, it preserves the capacity of Petri nets.

Definition 22 (Operation presvs). Let svs ∈ P(SV). Operation presvs :
P(SV) × T → P(SV) is defined as: presvs(svs) =

⋃
sv ∈ svs presv(sv).

Lemma 7. Let svs ∈ P(SV) be a symbolic vector set and sv ∈ SV be a symbolic
vector. Additionally, we assume the decoded version of the pre operation on
markings, where pret is computed directly on each marking for each transition.
Then, pre(uf(sv)) = uf(presv(sv)) and pre(ufsvs(svs)) = ufsvs(presvs(svs)).

Remark 3. Our approach is adaptable to models beyond Petri nets. For models
other than Petri nets, encoding “pre” is necessary to apply model checking for
CTL. It remains an open question whether this is always possible with symbolic
vector sets. In some cases, it can be necessary to have an infinite number of
symbolic vectors, such as a Petri net representing even or odd numbers of tokens.
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4.2 Global Model Checking of Petri Nets with Symbolic Vector
Sets

In tackling the global model checking problem, our focus has been on address-
ing CTL formulas. We briefly introduce the corresponding formalism and the
satisfaction relation.

Definition 23 (CTL definition and satisfaction). Let AP be a set of atomic
propositions and ap ∈ AP . The set of CTL formulas over AP, noted φ ∈ CTL,
is defined as: φ ::= ap | ¬φ | φ ∨ φ | EX φ | EG φ | E[φ U φ]. We assume the
usual CTL extended syntax: AX φ, EF φ, AF φ, AG φ, and A[φ U φ].

Let Σ = 〈P, T, in, out, w, k,m0〉 be a Petri net, m ∈ M be a marking and
t ∈ T be a transition. The satisfaction relation is denoted as |=⊆ Σ × M ×
CTL and its definition based on the standard literature [9] (Σ is omitted in the
final notation). Furthermore, the set of atomic propositions for our Petri nets is
AP = {isF ireable(t) | t ∈ T} such that: m |= isF ireable(t) ⇔ t is enabled for
m ⇔ λin(t) ⊆f m.

isF ireable(t) is intended to observe the firing of transitions in Petri nets. We
have assembled all the necessary components to provide the evaluation semantics
of CTL formulas as the computation of a symbolic vector set. This semantics
has been revisited on the basis of [21].

Definition 24 (Evaluation of a CTL formula). Let φ, ψ ∈ CTL, ap ∈
{isF ireable(t) | t ∈ T}, and Σ = 〈P, T, pre, post, w, k,m0〉 be a Petri net. The
evaluation of a CTL formula as a symbolic vector set is noted � � : CTL →
P(SV). The function is defined as follows:

p̃resvs(�φ�) = ¬svspresvs(¬svs�φ�) �¬φ� = ¬svs�φ�

�true� = {({fε}, ∅)} �φ ∨ ψ� = �φ� ∪svs �ψ�

�isF ireable(t)� = {({pret(t)}, ∅)} �EX φ� = presvs(�φ�)
�EG φ� = νY.�φ� ∩svs (presvs(Y ) ∪svs p̃resvs(Y ))

�E[φ U ψ]� = μY.�ψ� ∪svs (�φ� ∩svs presvs(Y ))

Remark 4. The semantics of evaluation closely resemble those of a Kripke struc-
ture. However, due to the left-total relation on Kripke structure arcs (i.e., each
state has at least one arc starting from it), sink states are nonexistent. The
semantics need to be adapted to account for this, expanding its scope. For
instance, the evaluation of EG in a Kripke structure could be simplified as fol-
lows: νY.�φ� ∩ presvs(Y ), which does not require the computation of p̃resvs(Y )
and the union application. Furthermore, a Petri net without sink states could
also benefit from this advantage.

Theorem 3. Let φ ∈ CTL be a CTL formula and m ∈ M a marking. Then,
m |= φ ⇔ m ∈svs �φ�.
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The theorem asserts that the satisfaction of a CTL formula for a given mark-
ing can be determined by evaluating the formula and verifying whether the mark-
ing belongs to it. This feature enables us to perform exhaustive computations
to identify all states that satisfy a given formula. The perspective of computing
�φ� aligns with the challenge of global model checking, where the focus extends
beyond a single configuration. This approach guides the remainder of the article.

4.3 Use Case: Mutual Exclusion

Fig. 5. Petri net modelling the mutual exclusion problem.

Figure 5 illustrates a Petri net example containing the well-known mutual exclu-
sion problem. Markings are displayed using the order: (p0, p1, p2, p3, p4). Avoid-
ing mutual exclusion in this Petri net can be expressed by the property:
∀m ∈ M,m |= ¬(EF isF ireable(t3) ∧ isF ireable(t4)), computed as follows:

�EF isF ireable(t3) ∧ isF ireable(t4)� = μY.{({(0, 0, 0, 1, 1)}, ∅)} ∪svs presvs(Y )
(1) = {({(0, 0, 0, 1, 1)}, ∅)}
(2) = {({(0, 0, 0, 1, 1)}, ∅), ({(0, 1, 1, 1, 0)}, ∅), ({(1, 0, 1, 0, 1)}, ∅)}
(3) = {({(0, 0, 0, 1, 1)}, ∅), ({(0, 1, 1, 1, 0)}, ∅), ({(1, 0, 1, 0, 1)}, ∅),

({(1, 1, 2, 0, 0)}, ∅), ({(0, 1, 0, 2, 0)}, ∅), ({(1, 0, 0, 0, 2)}, ∅)}
In the fixpoint computation of EF, we have omitted the detailed steps and
provided the final result of each step. The result does not change after step
(3). Hence, a marking that is part of �EF isF ireable(t3) ∧ isF ireable(t4)� is
considered not safe from the mutual exclusion problem. For example, (1, 1, 1, 0, 0)
is a valid marking, whereas (1, 1, 2, 0, 0) is not. This result also yields an infinite
number of valid markings. Note that when the capacity of places is unbounded,
the computation may not terminate if the solutions diverge. Conversely, if all
places are bounded, the computation always concludes.

4.4 Optimisation Through Saturation

Similarly to methods such as decision diagrams that encounter a peak [7,13]
effect, the construction of symbolic vector sets is subject to the same challenge.
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While computing the solution iteratively through the fixed-point, intermediate
solutions are generated. However, among these steps, some of the intermediate
solutions will converge to the same solution. Thus, we end up working with more
objects than necessary to obtain the final solution.

To address this issue, we propose a solution called saturation, which effec-
tively mitigates the peak effect during computation.

Fig. 6. Saturated algorithm of the evaluation of EF φ

Figure 6 is the pseudo-code summarising this notion for the CTL temporal
operator EF. svsRes is the symbolic vector set storing the solution that will
evolve, initialised with the previous evaluation of φ (line 3). weights is an array
that compiles all weight labels from a Petri net, sorted from the smallest to the
largest (line 4). The functions collectLabelWeights and sorted are given.

To streamline our approach, we consider the capacity k as a uniform bound
for all places. The idea is to iterate on k (using n) starting from 1 (line 2) and
compute the intermediate results of the CTL formula for a lower k. Subsequently,
the result of the previous step is leveraged to compute the next one, creating an
iterative process (from line 5 to 16).

From line 7 to 10, we have the computation of fixed-point for EF. The
main difference from the common evaluation is the use of presvsn

. This function
defined earlier in Definition 22 has been complemented by the index n. This
index specifies the current capacity used when computing presvs. It ensures that
symbolic vectors cannot contain markings with a value greater than n.

Upon completing the computation of the fixed-point for a given capacity, we
compare the new result svsRes with the previous one stored in svsCap (line 6).
Furthermore, if the result of two consecutive iterations for two different capacities
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remains unchanged (line 11), we inspect the weights collected previously (line
4) to determine whether any of them is capable of generating a marking greater
than the current capacity n but less than k (line 12). The function first serves
as a filter that attempts to extract a weight from the array weights such that its
value is greater than n. Here, w is the variable that iterates through each value
of weights. If the function fails to find such a value, it returns nil. This means
that no transition in the net is capable of altering the final result. Then, the
break statement (line 13) is executed to exit the loop and return svsRes (line
17). If such a weight is found, we update the corresponding capacity (line 14),
allowing the potential discovery of new symbolic vectors in the next iteration.
On the other hand, if condition line 11 does not hold, n is incremented by one
(line 15). Note that if the value of weight is greater than k, the condition of the
loop while will also terminate. For example, consider an arc of a transition that
requires 6 tokens with k = 9. If svsRes remains unchanged for n = 2 and n = 3,
and the only other transition available also demands 6 tokens for an arc, we can
update n to 6. In fact, if no new transition is available under such conditions,
the creation of new markings is not possible.

To make this pseudo-code work for other CTL temporal operators, it is
enough to update line 9 for the corresponding CTL operation. In addition, line
10 and 11 should be modified for the operations EG and AG due to the greatest
fixed-point, requiring the elements of both relations to be swapped.

5 Benchmarks and Results

This section is dedicated to examining the results obtained with our tool, namely
SVSKit, which is a Swift library available on GitHub. Our library implements
the theory developed in this article. All the showcased examples are sourced
directly from the model checking contest for the year 2022. However, our tool is
presented from the perspective of global model checking. All tests were conducted
on a MacBook Pro computer equipped with a 3.2 GHz CPU and 32 GB of RAM.

5.1 Circadian Clock: A General Model

The Petri net of the circadian clock model, originally defined in [23], consists of
14 places, 16 transitions, and 58 arcs. Several places in this net are associated
with a variable value N , which can be adjusted according to specific objectives.
In our system, N can be considered as the number that determines the capacity
of each place. In addition, increasing this value raises the system’s complexity.

In Table 1, we compare the calculation of a reachability property both with
and without saturation, for various capacities. Saturation optimisation is instru-
mental in making symbolic vector sets practical for Petri nets of reasonable size.
It is worth noting that without saturation, the time complexity grows exponen-
tially, reaching over 5 h for a capacity of 6. In contrast, with saturation enabled,
the time remains constant starting from capacity 2 and above. The use of sat-
uration allows us to build symbolic vector sets step by step with the minimum

https://github.com/damdamo/SVSKit
https://mcc.lip6.fr/2022/
https://mcc.lip6.fr/2023/pdf/CircadianClock-form.pdf
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Table 1. Comparison of a reachability property computation (EF φ) for the
circadian clock model, with and without the use of saturation.

Capacity Saturated Time (s) Peak SV number Final SV number

1 true 1.9 29 26

false 1.9 29

2 true 3.2 29

false 45 86

6 true 3.2 29

false 19000 954

of information required. This can be observed in the Peak SV number column,
where the saturated solution remains consistently below 29 and does not exhibit
significant growth. Moreover, the final solution consistently comprises 26 sym-
bolic vectors for all capacities, indicating that increasing it should not signifi-
cantly alter the computational complexity.

We have implemented the query reduction optimisation discussed in [5]. In
fact, because the CTL formulas for the competition are generated randomly, we
are interested in simplifying them before evaluating them. Furthermore, only the
reduction rules concerning global model checking have been reused, which does
not require any initial marking.

Table 2. Progression of the prior EF reachable property from Table 1 across varying
capacities, assuming the saturation by default.

Capacity Marking number (∼) Final SV number Time (s)

100 1.1 × 1028 26 3.2

10000 1.0 × 1056

1000000 1.0 × 1084

∞ ∞

In Table 2, we observe the behaviour when we assume saturation by default
and only vary the capacity. This result aligns with the previous finding, indicat-
ing that changing the capacity no longer significantly impacts the efficiency of
the computation. The primary result affected by this change is the number of
markings encoded by the symbolic vector set. Although the count of symbolic
vectors remains consistent across all rows, the decoded version can still change.
This is because capacity is not taken into account in the creation of symbolic
vectors, and will only appear when decoding the set of symbolic vectors.

In addition, the table offers an approximate count of markings, calculated
without the need to decode the structure. Note that this number is related to the
number of initial markings satisfying the CTL formula and not to the number of
reachable markings from a given configuration. Thus, we can efficiently handle

https://mcc.lip6.fr/2022/pdf/CircadianClock-form.pdf
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markings until, potentially, infinity if the result converges. The earlier conver-
gence occurs, the more efficient the computation becomes, enabling the capture
of the Petri net’s evolution at the earliest possible stage thanks to saturation.

Table 3. Computation of CTL fireability formulas for the circadian clock model with
N = 100 000. Each CTL formula is numbered in # from 00 to 15, following the order
provided in competition resources. ∗ column contains the local answer of each formula
of the competition, where F and T stand for false and true, respectively. “nb” is the
abbreviation for “number”.

# Time(s) SV nb Marking nb ∗ # Time(s) SV nb Marking nb ∗
00 11 1 2.0 × 1060 F 08 3.8 3 1.0 × 1060 F

01 1.7 0 0 F 09 0.15 17 1.0 × 1070 T

02 1.7 1 3.0 × 1060 F 10 4 20 1.0 × 1060 F

03 0.06 0 0 F 11 1350 1 1.0 × 1084 F

04 20.5 17 1.0 × 1070 T 12 0.28 6 1.1 × 1070 T

05 2.4 1 1.0 × 1070 T 13 1.4 9 2.0 × 1065 T

06 418 686 1.0 × 1084 T 14 11.4 29 1.0 × 1070 T

07 6.6 4 1.0 × 1070 F 15 23.8 40 1.0 × 1060 F

In the context of the model checking contest, the same model is provided with
varying initial markings, each time increasing the number of tokens. The most
challenging scenario for the circadian clock model is when N is set to 100 000,
which means that several places in the Petri net contain such a number of tokens.

In the CTL fireability category, three tools participated in 2022: Great-
SPN [3], ITS-Tools [26], and Tapaal [15]. None of these tools managed to pro-
duce responses to all queries within the 60-min time limit, underscoring the
challenging nature of the task. The best tool for this execution was Tapaal,
which was able to answer 9 out of 16 queries2. In contrast, our results in Table 3
show that our symbolic technique successfully addressed all queries in approx-
imately 30 min. Furthermore, we computed the complete set of valid solutions
and checked whether the initial marking of the model belongs to the resulting
symbolic vector set. By focussing on a specific configuration, new optimisations
become available, such as the on-the-fly technique [4], structural reduction [6],
or stubborn reduction [28]. It should be noted that while our tool was not tested
under identical conditions, the setup was not significantly different3.

Nevertheless, our present implementation of canonical symbolic vector sets
faces scalability challenges. Efficiency hinges on the implementation of canoni-
cal operations, exhibiting a worst-case complexity of O(n!). Our implementation
strategy involves moving each element from one set to the other. Throughout
2 The results can be found here, by looking for the CircadianClock table.
3 Each execution on the virtual machine for the MCC was limited to a maximum of

16 GB, 2.4 GHz, and 4 cores.

https://mcc.lip6.fr/2022/pdf/CircadianClock-form.pdf
https://mcc.lip6.fr/2022/index.php?CONTENT=results/CTLFireability.html&TITLE=Results_for_CTLFireability
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this process, we must ensure that each moved element does not conflict with
elements in the other set. Additionally, when conflicts arise, the lexicographi-
cal order determines the symbolic vector that will contain the shared portion.
Obtaining this shared part entails merging it with the lowest symbolic vector and
subtracting it from the greatest symbolic vector. This subtraction may result in
the creation of new symbolic vectors, requiring the canonical union to be reap-
plied to each of them, causing a deeper level of recursion.

In addition, most operations rely on canonical union. Hence, we restricted
our testing to a relatively small-sized Petri net due to these limitations. Despite
the inherent complexity, our method allows us to compute formulas that even
the most proficient tools find challenging. This approach already demonstrates
its viability in specific scenarios, and we are confident that further refinement
can address the mentioned issue and enhance its capabilities.

6 Background and Related Works

The original framework, initially introduced as Predicate structures in [21],
remained stagnant for almost 30 years without further development. In its initial
version, performance limitations rendered it nearly unusable or, at the very least,
non-competitive. Building on this foundation, we have expanded and enhanced
it by introducing new operations, a novel canonical form, and optimisations.

In the realm of techniques addressing the state-space explosion problem in
model checking, our method resembles symbolic model checking approaches.
Decision diagrams [1,12–14,27] are the prevailing methods in symbolic model
checking, employing various types of data encoding and optimisations [2,7,17,
24]. These representations enhance the efficiency of data representation and
leverage homomorphisms for symbolic processing. In contrast to our approach,
based on encapsulation akin to intervals, decision diagrams exploit shared repre-
sentations, allowing common components to be shared among different entities
when encoding a set. Moreover, our representation can handle certain infinite
representations, a capability not universally shared by decision diagrams. Among
the big family of decision diagrams, Interval decision diagrams (IDDs) [24]
appear to be the most closely related to our work. However, symbolic vector
sets generalise intervals for vectors, while IDDs consist of vectors of intervals.

7 Conclusion

In this paper, we introduce a novel structure termed symbolic vector set. Along-
side this structure, we present homomorphic operations, canonical form, and
saturation optimisation to enhance computational efficiency. Using this app-
roach, we encode Petri net markings and employ the symbolic representation for
CTL formula evaluation. Our initial results are promising, indicating potential
avenues for further explorations and analysis. We believe that our current imple-
mentation can be improved, particularly by enhancing the canonical operations.

Our work opens up several research directions. Exploring our approach within
the realm of local model checking holds promise. Additionally, exploring models



Symbolic Model Checking Using Intervals of Vectors 289

beyond Petri nets is another line of research, contingent upon our ability to con-
struct the pre operation symbolically for the model. One of the most promising
directions for our research is to integrate our method with other symbolic model
checking methods, such as decision diagrams. We believe that both approaches
are orthogonal and could mutually benefit from each other.
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Abstract. We study networks of processes that all execute the same
finite protocol and communicate synchronously in two different ways: a
process can broadcast one message to all other processes or send it to
at most one other process. In both cases, if no process can receive the
message, it will still be sent. We establish a precise complexity class for
two coverability problems with a parameterised number of processes: the
state coverability problem and the configuration coverability problem. It
is already known that these problems are Ackermann-hard (but decid-
able) in the general case. We show that when the protocol is Wait-Only,
i.e., it has no state from which a process can send and receive messages,
the complexity drops to P and PSpace, respectively.

Keywords: Parameterised Networks · Broadcast · Verification

1 Introduction

Verification of Distributed Systems. The ubiquity of distributed and concurrent
systems in nowadays applications leads to an increasing need to ensure their
correct behaviour. Over the last two decades, the verification of such systems
has become a crucial research direction in the field of computer science. Indeed,
analysing distributed systems has proven to be challenging. One difficulty is due
to the numerous interleavings caused by the concurrent behaviour of the system
entities, that make the design and modelling of these systems very complex.
Moreover, the number of agents is often not known a priori; in that case, verifying
all possible behaviours of such a system amounts to analyse it for any number
of agents, i.e. an infinite number of times. The unpredictability of the number
of participants in a system makes classical techniques such as model-checking
impractical and requires some new techniques.

Parameterised Verification. Addressing the challenge of unbounded entities
involves designing schematic programs or protocols intended for implementation
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by multiple identical processes and parameterised by the number of entities.
While in general parameterised verification is undecidable [2], several realis-
tic restrictions enable automatic verification. Among them, one can highlight
systems where entities have no identity, and systems with simple communica-
tion mechanism. Several papers have considered synchronous communication
means, as rendez-vous [3,4,9,10,12] and broadcast [5,8]. Note that, surprisingly,
parameterised verification, when decidable, is sometimes significantly easier than
the same problem with a fixed number of entities [6]. In all those models,
all the entities execute the same program which is modelled as a finite-state
automaton.

Wait-Only Non-Blocking Broadcast Protocols. In [10], the authors have studied
the complexity of several parameterised verification problems in the context of
non-blocking rendez-vous. This communication mechanism, motivated by Java
Threads programming, involves at most two processes: when a process sends a
message, it is received by at most one process ready to receive the message, and
both processes jointly change their local state. However, when no process is ready
to receive the message, the message is sent anyway and lost, and only the sender
changes its local state. This is in contrast with classical rendez-vous as studied
for instance in [9], where a sender is prevented to send a message if no process
can receive it. The model proposed in [10] allows to capture some behaviour of
the Threads: when a Thread is suspended in a waiting state, it can be woken
up upon the reception of a notify message sent by another Thread, but the
sender is not blocked if no Thread is suspended; it simply continues its execu-
tion and the notify message is lost. However, this fails to capture the behaviour
of what occurs when a Thread sends a notifyAll message that will be received
by all the suspended Threads waiting for that message. This, as already high-
lighted in [4], is modelled by the broadcast mechanism, in which a message sent
by a process will be received by all the processes ready to receive it. Observe
that broadcast is also a non-blocking means of communication. In this work
we consider Non-Blocking Broadcast protocols, that allow for both broadcast
and non-blocking rendez-vous. One important problem in parameterised verifi-
cation is the coverability problem: is it possible that, starting from an initial
configuration, (at least) one process reaches a bad state? With classical rendez-
vous mechanism, this problem is in P [9], while with non-blocking rendez-vous,
it is Expspace-complete [10]. For protocols enabling both broadcast and non-
blocking rendez-vous, the problem is decidable [7] and Ackermann-hard [1,8,15].
In this work we study the coverability problem for a syntactic restriction of
the protocols, introduced in [10], namely Wait-Only protocols, in which there
is no state from which a process can both send and receive a message. In this
context, when processes communicate with non-blocking rendez-vous only, the
coverability problem is in P [10].

Our Contributions. We show that the coverability problem for Wait-Only Non-
Blocking Broadcast protocols is P-complete, and that the configuration cover-
ability problem is PSpace-complete. This last problem asks whether it is possible
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to cover a given configuration (and not simply a bad state) from an initial state.
Note that both problems are in P when forbidding broadcasts [10], however, in
this work, the P-membership proof is less involved and the PSpace-membership
proof uses a different technique. Due to lack of space, some proofs can be found
on the extended version available in [11].

2 Model and Verification Problems

We denote by N the set of natural numbers. For a finite set E, the set N
E

represents the multisets over E. For two elements s, s′
∈N

E , we denote by s + s′

the multiset such that (s+s′)(e)=s(e)+s′(e) for all e∈E. We say that s′ is bigger
than s, denoted s ⪯ s′ if and only if s(e)≤ s′(e) for all e ∈E. If s ⪯ s′, then s′

− s is
the multiset such that (s′

− s)(e)= s′(e)− s(e) for all e ∈E. Given a subset E′
⊆E

and s ∈ NE , we denote by ||s||E′ the sum Σe∈E′s(e) of elements of E′ present in
s. The size of a multiset s is given by ||s|| = ||s||E . For e ∈ E, we use sometimes
the notation e for the multiset s verifying s(e) = 1 and s(e′) = 0 for all e′

∈E∖{e}
and, to represent for instance the multiset with four elements a, b, b and c, we
will also use the notations �a, b, b, c� or �a, 2 · b, c�.

2.1 Networks of Processes Using Rendez-Vous and Broadcast

We now present the model under study in this work. We consider networks of
processes where each entity executes the same protocol given by a finite state
automaton. Given a finite alphabet Σ of messages, the transitions of a protocol
are labelled with four types of actions that can be executed by the processes
of the network. For m ∈ Σ a process can (1) send a (non-blocking) rendez-vous
over the message m with !m, (2) send a broadcast over m with !!m, (3) receive a
rendez-vous or a broadcast over m with ?m and (4) perform an internal action
with τ (assuming τ � ∈Σ). In order to refer to these different actions, we denote
by !Σ the set {!m | m ∈ Σ}, by !!Σ the set {!!m | m ∈ Σ} and by ?Σ the set
{?m | m ∈ Σ}. Finally, we use the notation OpΣ to represent the set of labels
!!Σ∪!Σ∪?Σ ∪ {τ} and ActΣ to represent the set of actions !!Σ∪!Σ ∪ {τ}.

Definition 1. A Non-Blocking Broadcast protocol P (NB-Broadcast protocol)
is a tuple (Q,Σ, qin, T ) such that Q is a finite set of states, Σ is a finite alphabet,
qin is an initial state, and T ⊆Q × OpΣ ×Q is the transition relation.

In this work, we are in particular interested in studying some syntactical
restrictions on such protocols. We say that a protocol is Wait-Only when for all
q∈Q, either {q′ | (q, α, q′)∈T with α∈?Σ}=∅, or {q′ | (q, α, q′)∈T with α∈!!Σ∪!Σ∪
{τ}} = ∅. We call a state respecting the first or both conditions an active state
and a state respecting the second condition a waiting state. In the following, we
denote by QA the set of active states of P and QW its set of waiting states.

If the protocol does not contain any broadcast transition of the form
(q, !!m, q′), we call it a Non-Blocking Rendez-vous protocol (NB-Rendez-vous
protocol).
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Fig. 1. Example of a protocol denoted Pdashed (we note P the protocol Pdashed without
the dashed arrow between q2 and q3)

Example 1. An example of protocol is depicted on Fig. 1. We name P the proto-
col drawn without the dashed arrow between q2 and q3, and Pdashed the complete
protocol. Note that P is a Wait-Only protocol, indeed each state is either an
active state (qin, q2, q3, q5 and q6), or a waiting state, (q1 and q4). However,
Pdashed is not a Wait-Only protocol, since q2 is neither an active state nor a
waiting state as it has an outgoing transition labelled with an action !!c, and an
outgoing transition labelled with an action ?a.

We shall now present the semantics associated to protocols. Intuitively, we
consider networks of processes, each process being in a state of the protocol
and changing its state according to the transitions of the protocol with the
following assumptions. A process can perform on its own an internal action τ
and this does not change the state of the other processes. When a process sends
a broadcast with the action !!m, then all the processes in the network which
are in a state from which the message m can be received (i.e. with an outgoing
transition labelled by ?m) have to take such a transition. And when a process
sends a rendez-vous with the action !m, then at most one process receives it: in
fact, if there is at least one process in a state from which the message m can
be received, then exactly one of these processes has to change its state, along
with the receiver (while the other processes do not move), but if no process can
receive the message m, only the sender performs the action !m. This is why we
call this communication mechanism a non-blocking rendez-vous.

We move now to the formal definition of the semantics. Let P = (Q,Σ, qin, T )
be a protocol.

A configuration C over P is a non-empty multiset over Q, it is initial when-
ever C(q) = 0 for all q ∈Q∖{qin}. We note C the set of all configurations over P ,
and I the set of all initial configurations over P .

For q ∈Q, we denote by R(q) the set {m ∈Σ | there exists q′
∈Q, (q, ?m, q′) ∈

T} of messages that can be received when in the state q. Given a transition
t= (q, α, q′) ∈T , we define the relation

t
−→ ⊆C ×C as follows: for two configurations

C,C ′ we have C
t
−→ C ′ iff one of the following conditions holds:

(a) α = τ , and C(q) > 0 and C ′
= C − �q� + �q′�;

(b) α=!!m, and C = �q1, q2, . . . , qn, q� for some n ∈ N, and C ′
= �q′

1, q
′
2, . . . , q

′
n, q′�

where for all 1 ≤ i ≤ n, either m ∉R(qi) and q′
i = qi, or (qi, ?m, q′

i) ∈ T ;
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(c) α=!m, and C(q)> 0, and (C − �q�)(p)= 0 for all p ∈Q such that m ∈R(p), and
C ′
= C − �q� + �q′�;

(d) α=!m and C(q) > 0 and there exists p ∈ Q such that (C − �q�)(p) > 0 and
(p, ?m, p′) ∈ T for some p′

∈Q, and C ′
= C − �p, q� + �q′, p′�.

Observe that when C
t
−→ C ′, we necessarily have ||C|| = ||C ′||.

The case (a) corresponds to the internal action of a single process, the case
(b) to the emission of a broadcast hence all the processes that can receive the
message have to receive it. The case (c) corresponds to the case where a process
sends a rendez-vous and there is no process to answer to it, hence only the sender
changes its state. The case (d) corresponds to a classical rendez-vous where a
process sends a rendez-vous and another process receives it. Note that for both
the broadcast and the rendez-vous, the absence of a receiver does not prevent a
sender from its action. We call non-blocking our semantics because of the case
(c), which contrasts with the broadcast model of [8] for instance, where this case
is not possible.

We write C → C ′ whenever there exists t ∈ T such that C
t
−→ C ′, and denote

by →∗ [resp. →+] the reflexive and transitive [resp. transitive] closure of →. An
execution ρ is then a finite sequence of the form C0

t1
−−→ C1

t2
−−→ . . .

tn
−−−→ Cn, it is

said to be initialized when C0 is an initial configuration in I.

Example 2. We consider the protocol P of Fig. 1. We have then the following
execution starting at the initial configuration �qin, qin, qin� with three processes:

�qin, qin, qin�
(qin,!!a,q1)
−−−−−−−−−−→ �q1, qin, qin�

(qin,!b,q4)
−−−−−−−−−−→ �q2, q4, qin�

(qin,!b,q4)
−−−−−−−−−−→ �q2, q4, q4�

(q2,!!c,q1)
−−−−−−−−−→ �q1, q5, q5�

(q5,!!a,q6)
−−−−−−−−−−→ �q3, q6, q5�.

It corresponds to the following sequence of events: one of the agents broadcasts
message a (not received by anyone), then another agent sends message b which
leads to a rendez-vous with the first agent on q1, the last agent sends message
b which is not received by anyone (the sending is possible thanks to the non-
blocking semantics), the agent in state q2 broadcasts message c which is received
by the two other agents, and finally, one of the agents in q5 broadcasts letter a
which is received by the process on q1.

Remark 1. Observe that internal transitions labelled by τ can be replaced by
broadcast transitions of the form !!τ . Since no transition is labelled by ?τ , when
τ is broadcasted, no process is ready to receive it and the semantics is equivalent
to the one of an internal transition. Observe also that since τ ∈ActΣ , transforming
internal transitions into broadcasts keeps a protocol Wait-Only.

Following this remark, we will omit internal transitions in the rest of this work.

2.2 Verification Problems

We present now the verification problems we are interested in. Both these prob-
lems consist in ensuring a safety property: we want to check that, no matter the
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number of processes in the network, a configuration exhibiting a specific pattern
can never be reached. If the answer to the problem is positive, it means in our
context that the protocol is not safe.

The state coverability problem StateCover is stated as follows:

StateCover

Input: An NB-Broadcast Protocol P and a state qf ∈Q;
Question: Do there exist C ∈ I and C′

∈ C such that C →∗ C′, and C′(qf ) > 0 ?

When the answer is positive, we say that qf is coverable by P . The sec-
ond problem, called the configuration coverability problem ConfCover, is a
generalisation of the first one where we look for a multi-set to be covered.

ConfCover

Input: An NB-Broadcast Protocol P and a configuration Cf ∈ C;
Question: Do there exist C ∈ I and C′

∈ C such that C →∗ C′, and Cf ⪯ C′ ?

Remark 2. Note that if P is a Wait-Only protocol and its initial state qin is a
waiting state, then no state besides qin is coverable and the only coverable con-
figurations are the initial ones. Hence, when talking about Wait-Only protocols,
we assume in the rest of this work that the initial state qin is always an active
state.

Example 3. In the protocol P of Fig. 1, configuration �q3, q6� is coverable as
�qin, qin, qin�→∗ �q3, q6, q5� (see Example 2) and �q3, q6� ⪯ �q3, q6, q5�.

Results. We summarize in Table 1 the results on NB-Broadcast protocols, where
our results appear in red. Note that for what concerns the lower bounds for
NB-Broadcast protocols, they have been proved in [15] [Fact16, Remark 17]
for Broadcast protocols with a classical “blocking” rendez-vous semantics, i.e.
where a process requesting a rendez-vous cannot take the transition if no process
answers the rendez-vous. However, it is possible to retrieve the lower bound for
NB-Broadcast protocols without rendez-vous by using the fact that “blocking”
rendez-vous can be simulated by broadcast as shown in [1,8].

Table 1. Coverability in NB-Broadcast protocols

Type of protocols StateCover ConfCover

NB-Broadcast Decidable [7] and Ackermann-hard [1,8,15]
NB-Rendez-vous ExpSpace-complete [10]
Wait-Only NB-Rendez-vous in P [10], P-hard
Wait-Only NB-Broadcast P-complete PSpace-complete

In the rest of this work, we will focus on Wait-Only NB-Broadcast protocols
which we name Wait-Only protocols for ease of notation.
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3 Preliminary Properties

Wait-Only protocols enjoy a nice property on coverable states. The property
makes a distinction between active states and waiting states. First, we show that
when an active state is coverable, then it is coverable by a number of processes
as big as one wants, whereas this is not true for a waiting state. Indeed, it is
possible that a waiting state can be covered by exactly one process at a time,
and no more. However, we show that if two active states, or if an active state
and a waiting state are coverable, then there is an execution that reaches a
configuration where they are both covered.

This property relies on the fact that once the active state has been covered
in an execution, it will not be emptied while performing the sequence of actions
allowing to cover the second (waiting state), since no reception of message can
happen in such a state. As we will see, this phenomenon can be generalised to a
subset of active states.

Example 4. Going back to the protocol P of Fig. 1, consider the active state q2.

It is coverable as shown by the execution �qin, qin�
(qin,!!a,q1)
−−−−−−−−−−→ �q1, qin�

(qin,!b,q4)
−−−−−−−−−−→

�q2, q4�. From this execution, for any integer n ∈ N, one can build an execution
leading to a configuration covering �n · q2�. For instance, for n = 2, we build the
following execution:

�qin, qin, qin, qin�
(qin,!!a,q1)
−−−−−−−−−−→ �q1, qin, qin, qin�

(qin,!b,q4)
−−−−−−−−−−→ �q2, q4, qin, qin�

(qin,!!a,q1)
−−−−−−−−−−→ �q2, q4, q1, qin�

(qin,!b,q4)
−−−−−−−−−−→ �q2, q4, q2, q4�.

Furthermore each coverable waiting state is coverable by a configuration that
also contains q2. For instance, �q2, q4� is coverable as shown by the above exe-
cution.

Note that when considering Pdashed, which is not Wait-Only, such an execution
is not possible as the second broadcast of a should be received by the process on
q2. In fact, q2 is coverable by only one process and no more. This is because q1 is
coverable by at most one process at a time; every new process arriving in state
q1 will do so by broadcasting a, message that will be received by the process
already in q1. Then any attempt to send two processes in q2 requires a broadcast
of a, hence the reception of a by the process already in q2. For the same reason,
in Pdashed, �q1, q2� is not coverable whereas q1 is a coverable waiting state and
q2 a coverable active state.

Before stating the main lemma of this section (Lemma 1), we need an
additional definition. For each coverable state q ∈ Q, let minq be the mini-
mal number of processes needed to cover q. More formally, minq = min{n |
n∈N, there exists C ∈C s. t. �n.qin�→∗C and C(q)>0}. Note that minq is defined
only when q is coverable.

Lemma 1. Let P = (Q,Σ, qin, T ) be a Wait-Only protocol, A= {q1, . . . , qn}⊆QA

a subset of coverable active states and p ∈QW a coverable waiting state. Then,
for all N ∈ N, there exists an execution C0 →

∗ Cm such that C0 ∈ I, and {N ·
q1, . . . , N · qn, p} ⪯ Cm. Moreover, ||C0|| =N.

∑n
i=1 minqi +minp.
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The proof of this lemma relies on the two following properties on executions
of Wait-Only protocols:

Lemma 2. Given an initialized execution C0
t1
−−→ C1

t2
−−→ . . . ...

tk
−−→ Ck and

another initial configuration C ′
0, we can build an execution Ĉ0

t1
−−→ Ĉ1

t2
−−→

. . . ...
tk
−−→ Ĉk with Ĉ0 =C0 +C ′

0. For all 0 ≤ i ≤ k, Ĉi(q) =Ci(q) for all q ∈Q∖{qin},
and Ĉi(qin) = Ci(qin) + C ′

0(qin).

This property comes from the fact that qin is an active state. Hence, if we
start from a bigger configuration, we can take exactly the same transitions as in
the initial execution, the additional processes will stay in the initial state.

Lemma 3. Given an initialized execution C0
t1
−−→ C1

t2
−−→ . . . ...

tk
−−→ Ck, given

some M ≥1, for all configurations (not necessarily initial) C̃0 such that C̃0(qin)≥

M.C0(qin), we have the execution C̃0
t1
−−→ . . .

tk
−−→ C̃k in which, for all 0 ≤ i ≤ k:

C̃i(q) ≥ C̃0(q) + Ci(q) for all q ∈ QA∖{qin}, C̃i(q) ≥ Ci(q) for all q ∈ QW and
C̃i(qin) ≥ (M − 1).C0(qin) + Ci(qin).

This last property states that, if one mimicks an initialized execution from
another (non initial) configuration, the processes already present in active states
(different from the initial state) will not move during the execution.

Proof of Lemma 1. Let N ∈N. Using these two properties, we can now prove the
lemma. We start by proving that there exists an execution C0 →

∗ Cm such that
for all q ∈A, Cm(q) ≥N and ||C0|| =N.

∑n
i=1 minqi . We prove it by induction on

the size of A. If A = ∅, the property is trivially true. Let n ∈ N, and assume the
property to hold for all subsets A⊆QA of size n. Take A={q1, q2, . . . , qn+1}⊆QA

of size n + 1 such that all states q ∈ A are coverable and let A′
= A∖{q1}. Let

C0
t1
−−→ C1

t2
−−→ . . . ...

tk
−−→ Ck be an execution covering q1 with ||C0|| = minq1 . Let

C ′
0

t′
1
−−→ C ′

1

t′
2
−−→ . . .

t′
m
−−−→ C ′

m be an execution such that for all q′
∈A′, C ′

m(q′)≥N and
||C ′

0||=N.
∑n+1

i=2 minqi (it exists by induction hypothesis). We let CN
0 =�(N.minq1)·

qin� and C ′′
0 = C ′

0 + CN
0 . Thanks to Lemma 2, we can build an execution C ′′

0

t′
1
−−→

C ′′
1

t′
2
−−→ . . .

t′
m
−−−→ C ′′

m, with C ′′
m(q) = C ′

m(q) for all q ∈ Q∖{qin} and C ′′
m(qin) =

C ′
m(qin) + CN

0 (qin) = C ′
m(qin) +N.minq1 . So, for all q′

∈ A′, C ′′
m(q′) = C ′

m(q′) ≥N

and ||C ′′
0 || = ||C ′

0|| + ||CN
0 || =N.

∑n+1
i=2 minqi +N.minq1 .

Now that we have shown how to build an execution that leads to a config-
uration with more than N processes on all states in A′ and enough processes
in the initial state, we show that mimicking N times the execution allowing to
cover q1 allows to obtain the desired result. Let C0,1 =C ′′

m. We know that for all
q′
∈A′, C0,1(q′) ≥N , and C0,1(qin) ≥N.minq1 . Since ||C0|| =minq1 , using Lemma

3, we can build the execution C0,1
t1
−−→ . . .

tk
−−→ Ck,1 with Ck,1(qin)≥ (N −1).minq1 ,

Ck,1(q′) ≥C0,k(q′) +Ck(q′) ≥N for all q′
∈A′ and Ck,1(q1) ≥C0,k(q1) +Ck(q1) ≥ 1.

Iterating this construction and applying each time Lemma 3, we obtain that
there is an execution C0,1

t1
−−→ . . .

tk
−−→ Ck,1

t1
−−→ . . .

tk
−−→ Ck,2 . . .

t1
−−→ . . .

tk
−−→
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Ck,N−1
t1
−−→ . . .

tk
−−→ Ck,N with Ck,i(qin) ≥ (N − i).minq1 , Ck,i(q′) ≥N for all q′

∈A′

and Ck,i(q1) ≥ Ck,i−1(q1) + 1 ≥ i. Observe that to obtain that Ck,i(q1) ≥ i from
Lemma 3, we use the fact that q1 ∈QA. Hence, Ck,N (q1) ≥N and Ck,N (q′) ≥N
for all q′

∈A′ and we have build an execution where Ck,N (q)≥N for all q ∈A and
||Ck,N || = ||C ′′

0 || =N.
∑|A|

i=1 minqi , as expected.
At last, take a subset A={q1, . . . , qn}⊆QA of coverable active states. Let C0→

∗

Cm be an execution such that Cm(q) ≥N for all q ∈A and ||C0|| =N.
∑n

i=1 minqi .
Let p ∈QW a coverable state and C ′

0→
∗ C ′

k such that C ′
k(p) ≥ 1 and ||C ′

0|| =minp.
By Lemma 2, we let Ĉ0 = C0 + C ′

0 and we have an execution Ĉ0 →
∗ Ĉm with

Ĉm(q) = Cm(q) for all q ∈ Q∖{qin}, and Ĉm(qin) = Cm(qin) + C ′
0(qin). Hence,

Ĉm(q) ≥ N for all q ∈ A and Ĉm(qin) ≥ C ′
0(qin), and note that ||Ĉm|| = ||Ĉ0|| =

||C0|| + ||C ′
0|| =N.

∑n
i=1 minqi +minp. Then, with C̃0 = Ĉm, by Lemma 3, we have

an execution C̃0 →
∗ C̃k with C̃k(q) ≥ C̃0(q) +Ck(q) ≥ C̃0(q) ≥N for all q ∈A, and

C̃k(p) ≥ Ck(p) ≥ 1, and ||C̃0|| = ||Ĉ0|| =N.
∑n

i=1 minqi +minp. ��

4 StateCover for Wait-Only Protocols is P-Complete

4.1 Upper Bound

We present here a polynomial time algorithm to solve the state coverability
problem when the considered protocol is Wait-Only. Our algorithm computes in
a greedy manner the set of coverable states using Lemma 1.

Given a Wait-Only protocol P = (Q,Σ, qin, T ), we compute iteratively a set
of states S ⊆ Q containing all the states that are coverable by P , by relying
on a family (Si)i∈N of subsets of Q formally defined as follows (we recall that
ActΣ=!!Σ∪!Σ):

S0 = {qin}
Si+1 = Si ∪ {q | there exists q′

∈ Si, (q
′, α, q) ∈ T, α ∈ ActΣ}

∪ {q′
2 | there exist q1, q2 ∈ Si, q

′
1 ∈Q, a ∈Σ s. t. (q1, !a, q′

1) ∈ T and (q2, ?a, q′
2) ∈ T}

∪ {q′
2 | there exist q1, q2 ∈ Si, q

′
1 ∈Q, a ∈Σ s. t. (q1, !!a, q′

1) ∈ T and (q2, ?a, q′
2) ∈ T}

Intuitively at each iteration, we add some control states to Si+1 either if they
can be reached from a transition labelled with an action (in ActΣ) starting at
a state in Si or if they can be reached by two transitions corresponding to a
communication by broadcast or by rendez-vous starting from states in Si. We
then define S =

⋃
n∈N Sn. Observe that (Si)i∈N is an increasing sequence such that

|Si|≤ |Q| for all i ∈N. Then we reach a fixpoint M ≤ |Q| such that SM =SM+1 =S.
Hence S can be computed in polynomial time.

The two following lemmas show correctness of this algorithm. We first prove
that any state q ∈ S is indeed coverable by P . Moreover, we show that minq the
minimal number of processes necessary to cover q ∈Q is smaller than 2|Q|.

Lemma 4. If q ∈S, then there exists C ∈I and C ′
∈C such that C→∗ C ′, C ′(q)>0

and ||C|| ≤ 2|Q|.
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Proof. Let M ∈N be the first natural such that SM =SM+1. We have then SM =S
and M ≤ |Q|. We prove by induction that for all 0 ≤ i ≤M , for all q ∈ Si, there
exists C ∈ I and C ′

∈ C such that C →∗ C ′, C ′(q) > 0 and ||C|| ≤ 2i.
As S0={qin}, the property trivially holds for i=0, since �qin�∈I and �qin�(qin)>

0.
Assume now the property to be true for i <M and let q ∈ Si+1. If q ∈ Si, then

by induction hypothesis, we have that there exists C ∈ I and C ′
∈ C such that

C →∗ C ′, C ′(q) > 0 and ||C|| ≤ 2i
< 2i+1. We suppose that q ∉ Si and proceed by a

case analysis on the way q has been added to Si+1.

1. there exists q′
∈Si and t= (q′, α, q) ∈T with α ∈ActΣ . By induction hypothesis,

there exists an execution C →∗ C ′ such that C ′(q′) > 0 and ||C|| ≤ 2i. But we
have then C ′ t

−→ C ′′ with C ′′(q)>0, and consequently as well C→∗ C ′′. This is
true because of the “non-blocking” nature of both broadcast and rendez-vous
message in this model. Hence there is no need to check for a process to receive
the message to ensure the execution C →∗ C ′′.

2. there exist q1, q2 ∈Si and q′
1 ∈Q and there exists a∈Σ such that (q1, !a, q′

1), (q2,
?a, q) ∈ T . By induction hypothesis, we have that there exists C1, C2 ∈ I and
C ′

1, C
′
2 ∈ C such that C1 →

∗ C ′
1 and C2 →

∗ C ′
2 and C ′

1(q1) > 0 and C ′
2(q2) > 0

and ||C1|| ≤ 2i and ||C2|| ≤ 2i. Note furthermore that by definition q1 is in QA

and as (q2, ?a, q) ∈ T , q2 do not belong to QA. Hence q1 � =q2. By Lemma 1,
we know that there exist C ∈ I and C ′

∈ C such that C →∗ C ′ and C ′(q1) > 0
and C ′(q2) > 0. Furthermore, recall that minqi for i ∈ {1, 2} is the minimal
number of processes needed to cover qi, by Lemma 1, ||C||≤minq1 +minq2 . By
induction hypothesis, minq1 +minq2 ≤ 2

i
+ 2i, hence ||C|| ≤ 2i+1.

We then have C ′ (q1,!a,q′
1)

−−−−−−−−−→ C ′′ with C ′′
=C ′
−�q1, q2�+�q′

1, q�. Hence C→∗ C ′′

with C ′′(q) > 0.
3. there exist q1, q2∈Si and q′

1∈Q and there is some a∈Σ such that (q1, !!a, q′
1), (q2,

?a, q) ∈ T . As above, we obtain the existence of an execution C →∗ C ′ with
C ′(q1) > 0 and C ′(q2) > 0, and ||C|| ≤ 2i+1. Then C ′

= �q1, q2, . . . , qk� and

C ′ (q1,!!a,q′
1)

−−−−−−−−−−→ C ′′ with C ′′
= �q′

1, q, . . . , q
′
k� with, for all 3≤ j ≤k, either a ∉R(qj)

and qj = q′
j or (qj , ?a, q′

j) ∈ T . In any case, we have C →∗ C ′′ with C ′′(q) > 0.

So, for any q ∈S, q ∈SM and we have an execution C→∗ C ′ with C ∈ I such that
C ′(q) > 0 and ||C|| ≤ 2M

≤ 2|Q|. ��
We now prove the completeness of our algorithm by showing that every state

coverable by P belongs to S.

Lemma 5. If there exists C ∈I and C ′
∈C such that C→∗ C ′ and C ′(q)>0, then

q ∈ S.

Proof. We consider the initialized execution C0
t1
−−→ C1

t2
−−→ . . .

tn
−−−→ Cn with

C = C0 and Cn = C ′. We will prove by induction on 0 ≤ i ≤ n that for all q such
that Ci(q) > 0, we have q ∈ Si.

For i = 0, we have C0 = �||C|| · qin�, and S0 = {q0}. Hence the property holds.
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Assume the property to be true for i < n, and let q ∈Q such that Ci+1(q) > 0.
If Ci(q) > 0, then by induction hypothesis we have q ∈ Si and since Si ⊆ Si+1, we
deduce that q ∈Si+1. Assume now that Ci(q) = 0. We proceed by a case analysis.

1. ti+1=(q′, !a, q) or ti+1=(q′, !!a, q) for some a∈Σ and q′
∈Q. Since Ci

ti+1
−−−−→ Ci+1, we

have necessarily Ci(q′)>0. By induction hypothesis, q′
∈Si, and by construction

of Si+1, we deduce that q′
∈ Si+1.

2. ti+1=(q1, !a, q′
1) or ti+1=(q1, !!a, q′

1) with q′
1 � =q. Since Ci(q)=0 and Ci+1(q)>0,

there exists a transition of the form (q2, ?a, q) with q1 � =q2 (because q1∈QA and
(q2, ?a, q) ∈ T hence q2 ∉QW ). Consequently, we know that we have Ci(q1) > 0
and Ci(q2)>0. By induction hypothesis q1, q2 belong to Si and by construction
of Si+1 we deduce that q ∈ Si+1. ��
The two previous lemmas show the soundness and completeness of our algo-

rithm to solve StateCover based on the computation of the set S. Since this
set of states can be computed in polynomial time, we obtain the following result.

Theorem 1. StateCover is in P for Wait-Only protocols.

Furthermore, completeness of the algorithm along with the bound on the
number of processes established in Lemma 4 gives the following result.

Corollary 1. Given a Wait-Only protocol P=(Q,Σ, qin, T ), for all q∈Q coverable
by P , then minq the minimal number of processes necessary to cover q is at most
2|Q|.

4.2 Lower Bound

We show that StateCover for Wait-Only protocols is P-hard. For this, we
provide a reduction from the Circuit Value Problem (CVP) which is known to
be P-complete [14]. CVP is defined as follows: given an acyclic Boolean circuit
with n input variables, one output variable, m boolean gates of type and, or, not,
and a truth assignment for the input variables, is the value of the output equal
to a given boolean value? Given an instance of the CVP, we build a protocol
in which the processes broadcast variables (input ones or associated with gates)
along with their boolean values. These broadcasts will be received by other
processes that will use them to compute boolean value of their corresponding
gate, and broadcast the obtained value. Hence, different values are propagated
through the protocol representing the circuit, until the state representing the
output variable value we look for is covered.

Take for example a CVP instance C with two variables v1, v2, and two gates:
one not gate on variable v1 denoted g1(v1,¬, o1) (where o1 stands for the output
variable of g1), and one or gate on variable v2 and o1 denoted g2(o1, v2,∨, o2)
(where o2 stands for the output variable of gate g2). Assume the input boolean
value for v1 [resp. v2] is ⊺ [resp. ]. The protocol associated to C is displayed
on Fig. 2. Assume the output value of C is o2, we will show that q2

⊺
[resp. q2

�
]

is coverable if and only if o2 evaluates to ⊺ [resp. ]. Note that with the truth
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assignment depicted earlier, o2 evaluates to , and indeed one can build an
execution covering q2

�
with three processes:

�3.qin�→ �2.qin, q20�→ �qin, q10 , q
2
0�

(qin,!!(v1,⊺),qin)
−−−−−−−−−−−−−−−→ �qin, q1

�
, q20�

(q1
�
,!!(o1,�),q1

�
)

−−−−−−−−−−−−−−→ �qin, q1
�
, q21�

(qin,!!(v2,�),qin)
−−−−−−−−−−−−−−−→ �qin, q1

�
, q2
�
�

Fig. 2. Protocol for a CVP instance with two variables v1, v2, two gates g1(¬, v1, o1)
and g2(∨, o1, v2, o2), and input ⊺ for v1 and � for v2 and output variable o2. Depending
on the truth value of o2 to test, the state we ask to cover can be q2� or q2⊺.

Together with Theorem 1, we get the following theorem.

Theorem 2. StateCover for Wait-Only protocols is P-complete.

This reduction can be adapted to Wait-Only NB-Rendez-vous protocols, which
leads to the following theorem, proving that the upper bound presented in [10]
is tight.

Theorem 3. StateCover for Wait-Only NB-Rendez-vous protocols is P-hard.

5 ConfCover for Wait-Only Protocols is PSpace-Complete

We present here an algorithm to solve the configuration coverability problem for
Wait-Only protocols in polynomial space.

5.1 Main Ideas

For the remaining of the section, we fix a Wait-Only protocol P = (Q,Σ, qin, T )
and a configuration Cf ∈ C to cover, and we let K = ||Cf ||. The intuition is the
following: we (only) keep track of the K processes that will cover Cf . Of course,
they might need other processes to reach the desired configuration, if they need
to receive messages. That is why we also maintain the set of reachable states
along the execution. An abstract configuration will then be a multiset of K
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states (concrete part of the configuration) and a set of all the reachable states
(abstract part of the configuration). Lemma 1 ensures that it is enough to know
which active states are reachable to ensure that both the concrete part and the
active states of the abstract part are coverable at the same time. However, there
is a case where this abstraction would not be enough: assume that one of the
K processes has to send a message, and this message should not be received
by the other K − 1 processes. This can happen when the message is received
by a process in the part of the configuration that we have abstracted away. In
that case, even if the (waiting) state is present in the set of reachable states,
Lemma 1 does not guarantee that the entire configuration is reachable, so the
transition to an abstract configuration where none of the K − 1 processes has
received the message might be erroneous. This is why in that case we need to
precisely keep track of the process that will receive the message, even if in the
end it will not participate in the covering of Cf . This leads to the definition of
the ⇒switch transition below.

This proof is structured as follows: we present the formal definitions of the
abstract configurations and semantics in Sect. 5.2. In Sect. 5.3, we present the
completeness proof, Sect. 5.4 is devoted to prove the soundness of the construc-
tion. In the latter, we also give some ingredients to prove an upper bound on
the number of processes needed to cover the configuration. In Sect. 5.5 one can
find the main theorem of this section: it states that the ConfCover problem
is in PSpace and if the configuration is indeed coverable, it presents an upper
bound on the number of processes needed to cover it. In Sect. 5.6, we prove that
this lower bound is tight as the problem is PSpace-hard.

5.2 Reasoning with Abstract Configurations

We present the abstract configurations we rely on. Let us fix K = ||Cf ||. An
abstract configuration γ is a pair (M,S) where M is a configuration in C such
that ||M ||=K and S⊆Q is a subset of control states such that {q∈Q | M(q)>0}⊆S.
We call M the M -part of γ and S its S-part. We denote by Γ the set of abstract
configurations and by γin the initial abstract configuration γin=(�K ·qin�, {qin}).
An abstract configuration γ=(M,S) represents a set of configurations �γ�={C∈C |
M ⪯ C and C(q) > 0 implies q ∈ S}. Hence in �γ�, we have all the configurations
C that are bigger than M as long as the states holding processes in C are stored
in S (observe that this implies that all the states in M appear in S).

We now define an abstract transition relation for abstract configurations. For
this matter, we define three transition relations ⇒step,⇒ext and ⇒switch and let
⇒ be defined by ⇒step ∪⇒ext ∪⇒switch. Let γ = (M,S) and γ′

= (M ′, S′) be two
abstract configurations and t = (q, α, q′) be a transition in T with α=!a or α=!!a.
For κ ∈ {step, ext, switch}, we have γ

t
⇒κ γ′ iff all the following conditions hold:

– S ⊆ S′, and,
– for all p ∈ S′

∖S, either p = q′ or there exist p′
∈ S and (p′, ?a, p) in T , and,

– one of the following cases is true:
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• κ= step and M
t
−→M ′. This relation describes a message emitted from the

M -part of the configuration;
• κ = ext and q ∈ S and M + �q�

t
−→M ′

+ �q′�;
• κ = ext and there exists (p, ?a, p′) in T such that q, p ∈S and M + �q, p�

t
−→

M + �q′, p′� (note that in that case M = M ′). The relation ext hence
describes a message emitted from the S-part of the configuration;

• κ = switch and q ∈ S and α=!a and there exists t′ = (p, ?a, p′) ∈ T such that
�p� ⪯M and �q′� ⪯M ′ and M − �p� =M ′

− �q′� and M + �q�
t
−→M ′

+ �p′�.
This relation describes a sending from a state in the S-part of the abstract
configuration leading to a rendez-vous with one process in the M -part,
and a"switch" of processes: we remove the receiver process of the M -part
and replace it by the sender.

Note that in any case, q, the state from which the message is sent, belongs
to S. We then write γ

t
=⇒ γ′ whenever γ

t
⇒κ γ′ for κ ∈ {step, ext, switch} and we

do not always specify the used transition t (when omitted, it means that there
exists a transitions allowing the transition). We denote by ⇒∗ the reflexive and
transitive closure of ⇒.

Fig. 3. A Wait-Only protocol P ′.

Example 5. We consider the Wait-Only protocol P ′ depicted on Fig. 3 with set
of states Q′. We want to cover Cf = �q3, q3, q6� (hence K = 3). In this example,
the abstract configuration γ = (�q2, q2, q4�, {qin, q1, q2, q4, q5, q6}) represents all
the configurations of P ′ with at least two processes on q2 and one on q4, and no
process on q3 nor q7.

Considering the following abstract execution, we can cover Cf :

γin
(qin,!!τ,q4)
===========⇒step (�q4, qin, qin�, {qin, q4})

(qin,!!τ,q4)
===========⇒step (�q4, q4, qin�, {qin, q4})

(qin,!!a,q1)
===========⇒step (�q5, q5, q1�, {qin, q1, q4, q5})

(q5,!!c,q6)
==========⇒ext (�q5, q5, q2�, Q′

∖{q3, q7})
(q2,!b,q3)
==========⇒step (�q5, q5, q3�, Q′)

(q5,!!c,q6)
==========⇒step (�q6, q5, q3�, Q′)

(q2,!b,q3)
==========⇒switch (�q3, q5, q3�, Q′)

(q5,!!c,q6)
==========⇒step (�q3, q6, q3�, Q′)
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It corresponds for instance to the following concrete execution:

�qin, qin, qin� + �qin, qin�→+ �q4, q4, qin� + �q4, qin�
(qin,!!a,q1)
−−−−−−−−−−−→ �q5, q5, q1� + �q5, qin�

(qin,!!a,q1)
−−−−−−−−−−−→ �q5, q5, q1� + �q5, q1�

(q5,!!c,q6)
−−−−−−−−−−→ �q5, q5, q2� + �q6, q1�

(q2,!b,q3)
−−−−−−−−−→ �q5, q5, q3� + �q7, q1�

(q5,!!c,q6)
−−−−−−−−−−→ �q6, q5, q3� + �q7, q2�

(q2,!b,q3)
−−−−−−−−−→ �q3, q5, q3� + �q7, q7�

(q5,!!c,q6)
−−−−−−−−−−→ �q3, q6, q3� + �q7, q7�

The M -part of our abstract configuration �q6, q5, q3� reached just before the
⇒switch transition does not correspond to the set of processes that finally cover
Cf , at this point of time, the processes that will finally cover Cf are in states
q2, q5, and q3. But here we ensure that the process on q6 will actually receive
the b sent by the process on q2, leaving the process on q3 in its state. Once this
has been ensured, process on q6 is not useful anymore, and instead we follow the
process that was on q2 before the sending, hence the ⇒switch transition.

The algorithm used to solve ConfCover, is then to seek in the directed
graph (Γ,⇒) if a vertex of the form (Cf , S) is reachable from γin.

Before proving that this algorithm is correct, we establish the following prop-
erty.

Lemma 6. Let (M,S) and (M ′, S′) be two abstract configurations and S̃ ⊆ Q

such that S ⊆ S̃. We have:

1. �(M,S)� ⊆ �(M, S̃)�.
2. If (M,S)⇒ (M ′, S′) then there exists S′′

⊆Q such that (M, S̃)⇒ (M ′, S′′) and
S′
⊆ S′′.

Proof. The first point is a direct consequence of the definition of ��. For the
second point, it is enough to take S′′

= S′
∪ S̃ and apply the definition of ⇒. ��

5.3 Completeness of the Algorithm

In this subsection we show that if Cf can be covered then there exists an abstract
configuration γ = (Cf , S) such that γin ⇒

∗ γ. We use C≥K to represent the set
{C ∈ C | ||C|| ≥K} of configurations with at least K processes and C=K the set
{C ∈ C | ||C|| =K} of configurations with exactly K processes. This first lemma
shows the completeness for a single step of our abstract transition relation (note
that we focus on the M -part, as it is the one witnessing Cf in the end).

Lemma 7. Let C,C ′
∈ C≥K and t ∈ T such that C

t
−→ C ′. Then for all M ′

∈ C=K
such that M ′

⪯C ′, there exists M ∈ C=K and S′
⊆Q such that (M,S)⇒ (M ′, S′)

with S = {q ∈Q | C(q) > 0}, C ∈ �(M,S)� and C ′
∈ �(M ′, S′)�.
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Proof. Let M ′
∈ C=K such that M ′

⪯ C ′. We assume that t = (q, α, q′) with α ∈
{!a, !!a}. We let S ={p∈Q | C(p)>0} and S′

=S ∪{p∈Q | C ′(p)>0}. By definition
of S and S′, for all p ∈ S′

∖S, either p = q′ or there exists p′
∈ S and (p′, ?a, p)

in T . In fact, let p ∈ S′
∖S such that p � =q′. Since C

t
−→ C ′, we have necessarily

that there exist p′
∈Q such that C(p′) > 0 (hence p′

∈ S), and (p′, ?a, p) in T . We
now reason by a case analysis to determine M ∈C=K such that (M,S)⇒ (M ′, S′)
and C ∈ �(M,S)�. The different cases are: (i) α=!!a, (ii) α=!a and the message
is not received, (iii) α=!a and the message is received by a process. Because of
space constraints, we present here only case (iii) as it exhibits the most different
abstract behaviours. The two other cases can be found on [11].

(iii) if α=!a and the message is received by a process (i.e. it is a rendez-vous),
denote by (p, ?a, p′) the reception transition issued between C and C ′. Using
the definition of →, we get C ′

= C − �q, p� + �q′, p′�. We consider the four
following disjoint cases:
– M ′(q′)=0 and M ′(p′)=0. Since �q′, p′�⪯C ′ and M ′

⪯C ′, we get that C ′
=M ′
+

�q′, p′�+M2 for some multiset M2. We deduce that C=M ′
+�q, p�+M2. This

allows us to deduce that M ′
⪯C and consequently C ∈�(M ′, S)�. Moreover,

M ′
+ �p, q�

t
−→M ′

+ �q′, p′� and q, p ∈ S. Hence (M ′, S)
t
⇒ext (M ′, S′).

– M ′(q′)=0 and M ′(p′)>0. In that case C ′
=M ′

+�q′�+M2 for some multiset
M2. Let M=M ′

−�p′�+�p�. We have then C=C ′
+�q, p�−�q′, p′�=M ′

+�q′�+
M2 +�q, p�−�q′, p′�=M ′

+M2 −�p′�+�p�+�q�=M +�q�+M2. This allows
us to deduce that M ⪯C and consequently C ∈�(M,S)�. Furthermore q ∈S

and M + �q�
t
−→M ′

+ �q′�. Hence (M,S)
t
⇒ext (M,S′).

– M ′(q′)>0 and M ′(p′)=0. In that case C ′
=M ′

+�p′�+M2 for some multiset
M2. Let M=M ′

−�q′�+�p�. We have then C=C ′
+�q, p�−�q′, p′�=M ′

+�p′�+
M2 +�q, p�−�q′, p′�=M ′

+M2 −�q′�+�p�+�q�=M +�q�+M2. This allows
us to deduce that q ∈S and M ⪯C and consequently C ∈ �(M,S)�. We also
have �p�⪯M and �q′�⪯M ′ and M−�p�=M ′

−�q′� and M+�q�
t
−→M ′

+�p′�.
Hence (M,S)

t
⇒switch (M ′, S′). Observe that we need to use the ⇒switch

transition relation in this case. Assume that C(s) > 0 for some state s ∈ S
such that (s, ?a, s′)∈T , and that any configuration in C=K such that M ⪯C
contains such state s. Then, applying⇒step to such a multiset M will take
away the process on state s and will lead to an abstract configuration with
M ′
⪯̸ C ′.

– M ′(q′)>0 and M ′(p′)>0. In that case C ′
=M ′

+M2 for some multiset M2.
Let M =M ′

−�p′, q′�+�p, q�. We have then C=C ′
+�q, p�−�q′, p′�=M +M2.

This allows us to deduce that M ⪯ C and consequently C ∈ �(M,S)� and
that M

t
−→M ′. Hence (M,S)

t
⇒step (M ′, S′). ��

The two previous lemmas allow us to establish completeness of the construc-
tion, by a simple induction on the length of the considered execution.

Lemma 8. Let Cin ∈ I and C ∈ C≥K such that Cin →
∗ C. For all M ∈ C=K such

that M ⪯ C there exists S ⊆Q such that C ∈ �(M,S)� and γin⇒
∗ (M,S).
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5.4 Soundness of the Algorithm

We now prove that if we have γin ⇒
∗ (M,S) then the configuration M can be

covered. We first establish that the S-part of a reachable abstract configuration
stores only states that are reachable in a concrete execution.

Lemma 9. If γ = (M,S) is an abstract configuration such that γin ⇒
∗ γ, then

all states q ∈ S are coverable.

Proof. We suppose that we have γin = γ0⇒ γ1⇒ . . .⇒ γn = (M,S) and we prove
this lemma by induction on n, the length of the abstract execution.

Case n = 0: In that case (M,S) = γ0 = (K · �qin�, {qin}), as qin is trivially
coverable, the property holds.

Case n> 0: We assume that the property holds for all 0≤m<n and consider
the abstract execution γ0

t1
==⇒ γ1

t2
==⇒ . . .

tn
==⇒ γn where γ0 = γin and γi = (Mi, Si) for

all 0 ≤ i ≤ n. Let p ∈ Sn. If p ∈ Sn−1, then by induction hypothesis, p is coverable.
Otherwise, p∈Sn∖Sn−1, and let tn=(q, α, q′) with α∈{!a, !!a | a∈Σ}. By definition
of ⇒, q ∈ Sn−1 and

– either q′
=p, and by induction hypothesis, there exists an initialized execution

C0→
∗ C with C(q) > 0 and in that case, C0→

∗ C
t
−→ C ′ for a configuration C ′

such that C ′(p) > 0 and p is coverable.
– or α ∈ {!a, !!a} for some a ∈Σ and (p′, ?a, p) ∈ T , with p′

∈ Sn−1. By induction
hypothesis, both q and p′ are coverable, with q ∈QA and p ∈QW . By Lemma
1, there exists an execution C0→

∗ C such that C(q)≥1 and C(p′)≥1. We then
have C

tn
−−−→ C ′ with C ′(p) > 0 (if α=!a then the process on p′ can receive the

message a and move to p, and if α=!!a then the process on p′ will necessary
receive the broadcast and move to p), and p is coverable. ��
The next lemma establishes soundness of the algorithm. Moreover, it gives an

upper bound on the minimal number of processes needed to cover a configuration.

Lemma 10. Let (M,S) be an abstract configuration such that γin⇒ γ1⇒ . . .⇒
γn = (M,S). Then, there exist Cin ∈ I, C ∈ C such that M ⪯ C and Cin →

∗ C.
Moreover, ||Cin|| = ||C|| ≤K + 2|Q|

× n.

Proof. We reason by induction on n, the length of the abstract execution.
Case n = 0: The property trivially holds for C = �K · qin�.
Case n> 0: We assume that the property holds for all 0≤m<n and consider

the abstract execution γ0
t1
==⇒ γ1

t2
==⇒ . . .

tn
==⇒ γn where γ0 = γin and γi = (Mi, Si) for

all 0 ≤ i ≤ n. By induction hypothesis, we know that there exist Cin ∈ I, Cn−1 ∈ C
such that Mn−1 ⪯Cn−1 and Cin→

∗ Cn−1 and ||Cin|| = ||Cn−1|| ≤K + 2|Q|
× (n− 1).

If Mn =Mn−1 then the property holds. Assume now that Mn � =Mn−1. We let
tn = (q, α, q′) with α=!a or α=!!a. By definition of ⇒, we know that Sn−1 ⊆ Sn

and that q ∈ Sn−1. Thanks to Lemma 9, q is coverable. We now perform a case
analysis:
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– Assume γn−1
tn
⇒step γn. Then Mn−1

tn
−−−→ Mn, and since Mn−1 ⪯ Cn−1, we have

Cn−1 =Mn−1 +M for some multiset M .
• If α=!!a, then Mn−1 + M = �q1, . . . qK−1, q� + �p1, . . . , pL� and Mn =

�q′
1, . . . q

′
K−1, q

′� where for all 1≤ i≤K −1, either (qi, ?a, q′
i) ∈T or a ∉R(qi)

and qi = q′
i. For each 1 ≤ i ≤ L, define p′

i as p′
i = pi if a ∉R(pi) or p′

i is such
that (pi, ?a, p′

i) ∈T . If we let M ′
= �p′

1, . . . , p
′
L� and Cn =Mn +M ′, we have

by definition that Cn−1
tn
−−−→ Cn with Mn ⪯ Cn.

• If α=!a and (Mn−1 − �q�)(p) > 0 for some p ∈ Q such that (p, ?a, p′) ∈ T

(i.e., a rendez-vous occurred), it holds that Mn−1 +M
t
−→Mn +M and we

choose Cn =Mn +M .
• If α=!a and (Mn−1 −�q�)(p)=0 for all p ∈Q such that a ∈R(p) (i.e. it was a

non-blocking sending of a message), then either there exists (p, ?a, p′) ∈ T
such that M(p)>0, either for all p ∈Q such that M(p)>0, a ∉R(p). In the
first case, a rendez-vous will occur in the execution of tn over Cn−1, and we
have Mn−1+M

tn
−−−→Mn+M−�p�+�p′�. We then let Cn=Mn+M−�p�+�p′�.

In the latter case, Mn−1 +M
tn
−−−→Mn +M and with Cn =Mn +M . In both

cases, we have , Cn−1
t
−→ Cn and Mn ⪯ Cn.

In all cases, we have Cin →
∗ Cn−1 → Cn and ||Cin|| = ||Cn|| = ||Cn−1|| ≤ K +

2|Q|
× (n − 1) ≤K + 2|Q|

× n.
– Assume γn−1

tn
⇒extγn or γn−1

tn
⇒switchγn. As q is coverable, from Lemma 1, there

exists an execution Cq
in→

∗ Cq such that Cq
in ∈I and Cq(q)>0 and ||Cq

in||≤2|Q|.
From Lemma 2, we have the following execution: Cin +Cq

in→
∗ Cin +Cq. Next,

from Lemma 3, by taking M = 1 and C̃0 = Cin + Cq, we have an execution
Cin +Cq

→
∗ Cn−1 +C ′q where C ′q(q) > 0. We deduce that Cn−1 +C ′q

=Mn−1 +

�q� +M for some multiset M . We now proceed with a case analysis:
• Case γn−1

tn
⇒ext γn where Mn−1 + �q�

tn
−−−→Mn + �q′�. By definition of →, we

also have Mn−1 + �q�+M →Mn + �q′�+M ′ for some multiset M ′. Letting
Cn =Mn + �q′�+M ′ gives us that that Cin +Cq

in→
∗ Mn−1 + �q�+M →Cn.

• Case γn−1
tn
⇒switch γn: by definition of ⇒switch, we know that there exists

(p, ?a, p′) ∈T with p ∈Sn−1 such that Mn−1 =M ′
+ �p� and that M ′

+ �p�+

�q�
tn
−−−→M ′

+�q′�+�p′� and Mn=M
′
+�q′�. Furthermore, by definition of→,

we have M ′
+�p, q�+M→M ′

+�p′, q′�+M . Hence setting Cn=M
′
+�p′, q′�+

M =Mn + �p′� +M gives us that that Cin +Cq
in→

∗ Mn−1 + �q� +M →Cn,
with Mn ⪯ Cn.

In both cases, we have shown that there exists Cn such that Mn ⪯ Cn and
Cin +Cq

in →
∗ Cn. Furthermore we have that ||Cn|| = ||Cin +Cq

in|| ≤K + 2|Q|
×

(n − 1) + 2|Q|
≤K + 2|Q|

× n. ��

5.5 Upper Bound

Using Lemmas 8 and 10, we know that there exists C ∈ I and C ′
∈ C such that

C→∗C ′ and Cf ⪯C
′ iff there exists an abstract execution γin⇒γ1⇒· · ·⇒γn with

γn=(Cf , S) for some S⊆Q, hence the algorithm consisting in deciding reachability
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of a vertex of the form (Cf , S) from γin in the finite graph (Γ,⇒) is correct.
Note furthermore that the number of abstract configurations |Γ | is bounded by
|Q|||Cf ||

× 2|Q|. As the reachability of a vertex in a graph is NL-complete, this
gives us a NPSpace procedure, which leads to a Pspace procedure thanks to
Savitch’s theorem.

Theorem 4. ConfCover is in PSpace.

Remark 3. Thanks to Lemma 10, we know that γin⇒ γ1⇒ · · ·⇒ γn with γn =

(Cf , S) iff there exists Cin ∈I, C ∈C such that Cf ⪯C and Cin→
∗ C and ||Cin||=

||C|| ≤ K + 2|Q|
× n. But due to the number of abstract configurations, we can

assume that n ≤ 2|Q|
× |Q|||Cf || as it is unnecessary in the abstract execution

γin ⇒ γ1 ⇒ · · ·⇒ γn to visit twice the same abstract configuration. Hence the
configuration Cf is coverable iff there is C ∈I and C ′

∈C such C→∗ C ′ and Cf ⪯C
′

and ||C|| = ||C ′|| ≤K + 2|Q|
× 2|Q|

× |Q|||Cf ||.

5.6 Lower Bound

To prove PSpace-hardness of the ConfCover problem for Wait-Only proto-
cols, we reduce the intersection non-emptiness problem for deterministic finite
automata, which is known to be PSpace-complete [13]. The PSpace-hardness
in fact holds when considering Wait-Only protocols without any (non-blocking)
rendez-vous transitions, i.e. transitions of the form (q, !a, q′).

Let A1, . . . ,An be a list of deterministic finite and complete automata with
Ai=(Σ,Qi, q

0
i , {qf

i },Δi) for all 1≤i≤n. Observe that we restrict our reduction to
automata with a unique accepting state, which does not change the complexity
of the problem. We note Σ∗ the set of words over the finite alphabet Σ and Δ∗

i

the function extending Δi to Σ∗, i.e., for all q ∈Qi, Δ∗
i (q, ε)=q, and for all w ∈Σ∗

and a ∈Σ, Δ∗
i (q, wa) =Δi(Δ∗

i (q, w), a).
We build the protocol P with set of states Q, displayed in Fig. 4 where

Pi for 1 ≤ i ≤ n is a protocol mimicking the behaviour of the automaton Ai:
Pi = (Qi, Σ, q0i , Ti), with Ti ={(q, ?a, q′) | (q, a, q′)∈Δi}. Moreover, from any state
q ∈

⋃
1≤i≤n Qi, there is an outgoing transition (q, ?go, qfail). These transitions are

depicted by the outgoing transitions labelled by ?go from the orange rectangles.
Note that P is Wait-Only as all states in Pi for all 1≤ i≤n are waiting states

and the only active states are qin and qs. We show that
⋂

1≤i≤n L(Ai) � =∅ if and
only if there is an initial configuration C ∈ IP and a configuration C ′

∈ CP such
that C →∗ C ′ and Cf ⪯ C ′ with Cf = �qf

1 , . . . , qf
n�.

The idea is to synchronize (at least) n processes into simulating the n
automata. To this end, we need an additional (leader) process that will broadcast
a message go, which will be received by the n processes, leading each of them to
reach a different automaton initial state. Then, the leader process will broadcast
a word letter by letter. Since the automata are all complete, these broadcast
will be received by all the processes that simulate the automata, mimicking an
execution. If the word belongs to all the automata languages, then each process
simulating the automata ends the simulation on the unique final state of the
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Fig. 4. Protocol P for PSpace-hardness of ConfCover.

automaton. Note that if the leader process broadcasts the message go a second
time, then all the processes simulating the automata stop their simulation and
reach the state qfail.

6 Conclusion

We have proved that when extending the model presented in [10] with broadcasts,
StateCover for Wait-Only protocols remains in P, and is even P-complete. We
also explained how to retrieve a P lower bound for the model of [10] for both
problems restricted to Wait-Only protocols. However ConfCover for Wait-
Only protocols is now PSpace-complete. In the future, we wish to study not
only coverability problems but extend the analysis of this model to liveness prop-
erties. We also wish to expand this model with dynamic creations of messages
and processes in order to take a step closer to the modelling of Java Threads
programming, where Threads can dynamically create new objects in which they
can synchronize with notify and notifyAll messages.
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Abstract. A modular Petri net is built from individual Petri nets, the
instances, which have disjoint sets of internal transitions and interface
transitions. Whereas internal transitions represent the internal behav-
ior of an instance, interface transitions are used to synchronize behavior
between instances. For a modular Petri net, we can use the modular state
space as an implicit representation of its reachability graph. This concept
has also been examined in [3] and [6]. The modular state space is the
entirety of local reachability graphs that present the internal behavior
of the instances and a synchronization graph that keeps record of the
synchronized behavior. In this paper we present a data structure and a
construction algorithm for the modular state space. Our conceptualiza-
tion is a generalization of the work of [3], and we have emphasized the
differences in our approach. Furthermore, we describe how reachability-
set-based properties can be verified in the modular state space. For the
evaluation of properties, we aggregate information from the local reacha-
bility graphs and then combine the aggregated information when inspect-
ing the synchronization graph. This way, we can evaluate deadlock free-
dom more efficiently and can for the first time propose a method to
evaluate the reachability of state predicates. In addition, we emphasize
the capability of modular state spaces to cope with modular Petri nets
where some modules are structurally equal. In fact, when a module is
used in more than one instance, its local reachability graph needs to be
represented only once. This leads to a state space reduction that is not
fully covered by the exploitation of symmetries.

Keywords: Petri nets · Modular · Verification and Model Checking
using Nets · Regular Paper

1 Introduction

Large Petri net models are typically constructed as a composition of modules,
place-disjoint subnets composed by transition fusion. For the composed system,
we can build the modular state space [3,6], an implicit representation of the
reachability graph. The exploration of the local state spaces of the modules
(local reachability graphs) is coordinated by a global synchronization structure
(synchronization graph) such that exactly the reachable behavior of the Petri
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Fig. 1. Modular Version of a Channel Model.

net is depicted. The modular state space is always finite if the composed Petri
net is bounded. For a first impression, consider the following example for which
the notation is presented hereafter.

Example 1. Figure 1 describes a modular version of a channel model. On the left,
[N1,m01] describes a sender that executes some local activity t11 before passing
the token into the channel, [N2,m02]. As transition t12 and t21 are fused, their
firing is synchronized and the token is only produced on p21, if it was present on
p12 before. On the right, the receiver [N3,m03] can execute an internal activity
t31 after the token arrived by firing fused transitions t23 and t32.

In verification, we can benefit from the modular structure of a Petri net -
an idea that has been intensely studied as compositional verification [1,5,7,12].
Here, the local state spaces of the modules have to be given and finite. Then,
compositional minimization tries to condense the local state spaces individually
before aggregating them into some explicit or implicit representation of the global
state space of the composed system. It has been observed [4] that the local state
spaces may suffer from their own state explosion whereas sometimes only a tiny
fraction is realizable in the composed system. However, for Petri nets, we may
observe an extreme case of this phenomenon: Modules with an infinite local state
space can be composed into a Petri net with a finite number of states. Consider
[N2,m02] of the just introduced Example 1. As transition t21 has no preplace in
[N2,m02], the module by oneself has an infinitely many states. The limitation
to finite state modules is a severe burden if we try to automatically separate a
Petri net into modules to make compositional verification applicable.

In this paper, we reconsider modular state spaces and make the following
contributions. First, we introduce a fresh conceptualization of the modular state
space in differentiation to existing work (Sect. 3). The synchronization graph
refers to segments of the local reachability graphs that abstract local markings
that are only connected with internal transitions. In [3], a segment is constructed
as the forward closure only regarding internal transitions from a generator ; a set
of local markings. They claim the generator to be strongly connected via inter-
nal transitions. We drop the requirement that a generator needs to be strongly
connected. This way, segments become larger, and we obtain a smaller synchro-
nization graph whereas our local reachability graphs are equally large as in [3].
As verification algorithms mainly refer to the synchronization graph, a smaller
synchronization graph increases efficiency. Additionally, we propose an inter-



314 J. Gaede et al.

leaved algorithm for constructing a modular state space (Sect. 3). Second, due
to our modifications, we need to re-establish results concerning the use of mod-
ular state spaces for verification. In Sect. 4 we demonstrate that we can verify
the reachability of state predicates on modular state spaces. We can handle even
state predicates that refer to places in different modules. We also present an
efficiency-enhancing approach for the verification of state predicates and dead-
locks in the modular Petri net. As our third contribution, we propose to exploit
the fact that a composition may involve several instances of structurally iden-
tical modules. We propose to compute only one local state space in this case,
yielding additional reduction. We outline our approach to replicated modules in
Sect. 5.

2 Preliminaries

We build the modular state space for a Petri net system that contains multiple
Petri net systems as components. We define a module as a template for those
components.

Definition 1 (Module). A module is a place/transition Petri net Ni =
[Pi, Ti, Fi,Wi] for some i ∈ N where the set of transitions Ti is partitioned into
the subsets Ti|internal of internal transitions and Ti|interface of interface transi-
tions.

As all Petri nets, modules are only structures without behavior. Based on this
we introduce instances as Petri net systems with behavior.

Definition 2 (Instance). An instance is a Petri net system [Nj ,m0j ] where
Nj is a module and m0j is the initial marking of Nj for some j ∈ N. A marking
in general is a mapping m : Pj → N.

Instances form the components of our composition. Whenever we refer to con-
stituents of an instance we refer to the constituents of the included module. A
marking is denoted as a multiset of marked places in this work. Interface tran-
sitions of the instances describe actions that may be synchronized with those of
other instances. We define fusion vectors that formalize those synchronizations.

Definition 3 (Fusion Vector, Support). Let {[N1,m01], . . . , [N�,m0�]} be a
set of instances. A fusion vector f ∈ (T1|interface∪{⊥})×. . .×(T�|interface∪{⊥})
is a vector of interface transitions of the instances or ⊥. For j ∈ {1, . . . , �},
instance [Nj ,m0j ] participates in fusion vector f with interface transition t, if
f [j] = t for t ∈ Tj|interface. If f [j] = ⊥, [Nj ,m0j ] does not participate in the
fusion. For fusion vector f , the support supp(f) = {t | f [j] = t} of f is the
nonempty set of contained interface transitions.

This definition ensures that a fusion vector contains at most one transition per
instance. Next, we introduce the modular structure as a blueprint for our com-
position.
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Definition 4 (Modular Structure). A modular structure is a tuple M =
[I,F ], where I = {[N1,m01], . . . , [N�,m0�]} is a set of instances with pairwise
disjoint modules and F ⊆ (T1|interface ∪{⊥})× . . .× (T�|interface ∪{⊥}) is a set
of fusion vectors.

With reference to Example 1, the modular structure M = [I,F ] of the depicted
Petri net has the set of instances I = {[N1,m01], [N2,m02], [N3,m03]} and the
set of fusion vectors F = {f1 = [t12, t21], f2 = [t23, t32]}. A modular structure
provides all necessary information we need to build a modular Petri net that is
basically a Petri net system composed of instances guided through fusion vectors.
To implement the synchronization by fusion vectors properly, we introduce a
fresh fusion transition for each fusion vector that inherits the environments of
its support transitions.

Definition 5 (Modular Petri Net, Fusion Transition). Let M = [I,F ]
be a modular structure.

From M, we can derive a Petri net system N = [P, T, F,W,m0], where

– P =
⋃

j∈{1,...,�} Pj,
– T =

⋃
j∈{1,...,�} Tj|internal ∪{tf | f ∈ F}, where tf is the fusion transition for

f ∈ F ,
– F =

⋃
j∈{1,...,�}(Fj ∩ (Pj × Tj|internal ∪ Tj|internal × Pj)) ∪ {(p, tf ) | f ∈

F , (p, f [j]) ∈ Fj} ∪ {(tf , p) | f ∈ F , (f [j], p) ∈ Fj}

– W (t, p) =

⎧
⎪⎨

⎪⎩

Wj(t, p) for (t, p) ∈ Fj and t ∈ Tj|internal

Wj(t∗, p) for (t∗, p) ∈ Fj and t∗ ∈ supp(f),
f ∈ F , t = tf , j ∈ {1, . . . , �}

– W (p, t) =

⎧
⎪⎨

⎪⎩

Wj(p, t) for (p, t) ∈ Fj and t ∈ Tj|internal

Wj(p, t∗) for (p, t∗) ∈ Fj and t∗ ∈ supp(f),
f ∈ F , t = tf , j ∈ {1, . . . , �}

– m0 =
⋃

j∈{1,...,�} m0j

We call N the modular Petri net for M.

Note that interface transitions that do not occur in the support of any fusion
vector are no constituent of N . However, if we insist an interface transition
t ∈ Tj|interface to be a constituent of N anyway, we add fusion vector f with
supp(f) = {t} to F . An interface transition can be part of more than one
fusion set. This results in multiple fusion transitions that have the same influence
locally, but may cause different effects in other instances. The initial marking
of N is well-defined since the domains of all initial markings m0j are pairwise
disjoint. The weight function is also well-defined since a fusion vector permits
at most one transition t∗ per instance. Consider again Example 1. The interface
transitions t12 and t21 are fused to fusion transition tf1 that inherits pre- and
postplaces of t21 and t21. The procedure is similar for t23 and t32. The set of
places and the internal transitions of an instance stay unaffected. The behavior
of a Petri net system N = [P, T, F,W,m0], whether instance or modular Petri
net, can be described as follows.
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Definition 6 (Activation of a Transition). Let m be a marking and t ∈ T

be a transition of N . Marking m activates transition t (denoted as m
t−→) iff,

∀p ∈ P : W (p, t) ≤ m(p). If m does not activate t we denote this with m 
 t−→.

Note that a fusion transition is activated if and only if all support transitions
are activated themselves.

Definition 7 (Transition Rule). For t ∈ T of N let Δt as Δt(p) = W (t, p)−
W (p, t), for all p ∈ P be a |P |-indexed vector. Transition t fires in marking m

and leads to marking m′ (m t−→ m′) if m
t−→ and m′ = m + Δt.

We can extend the transition rule to a sequence of transitions ω ∈ T ∗, i.e. m
ε−→ m

and m
ωt−→ m′′ if m

ω−→ m′ t−→ m′′. A marking m′ is reachable from marking m,
if we can find a sequence ω ∈ T ∗ such that m

ω−→ m′, denoted as m
∗−→ m′. Two

markings m,m′ are strongly connected, if and only if m
∗−→ m′ and m′ ∗−→ m. In

short, we write m ↔ m′. For Petri net system N and a set M of markings, we
can calculate the reachability set RS(M) of markings that are reachable from
any marking in M . We define RS(M) = {m′ | m

∗−→ m′,m ∈ M}.

Definition 8 (Reachability Graph). The reachability graph of N is the
directed, labeled graph R = [V R, ER], where V = RS({m0}) and (m, t,m′) ∈ ER

iff m
t−→ m′ for t ∈ T .

Based on the strong connectedness of markings, the reachability graph decays
into strongly connected components (SCCs). We call an SCC terminal, if it has
no outgoing edges.

3 Modular State Space

During model checking on modular Petri net N the well-known state explosion
problem also may occur. Our goal is to introduce the modular state space as an
implicit representation of the state space of N that is based on the component
structure and permits verification algorithms to take advantage of that. An intu-
itive way of building the modular state space is to generate the state spaces of the
instances independently and then remove the actually non-reachable behavior
due to composition. As instances become a component of a modular Petri net,
their interface transition behavior can be narrowed down by fusion with other
interface transitions. This is basically the proceeding compositional verification
[1,5,7,12]. However, potentially unnecessary calculation are at the expense of
runtime and even worse: Components may have an infinite number of states.
With compositional model checking methods, we chance to get lost in unbounded
behavior that cannot occur in the context of the composition. We present an
approach for generating a modular state space avoiding this.
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3.1 Conceptualization of the Modular State Space

In the following, let R = [V R, ER] be the reachability graph of the modular Petri
net N = [P, T, F,W,m0] based on M = [I,F ] and Rj = [V R

j , ER
j ] be the reach-

ability graph of instance [Nj ,m0j ] for j ∈ {1, . . . , �} according to Definition 8,
where ER

j = ER
j|internal ∪ ER

j|interface such that an edge is in ER
j|internal resp. in

ER
j|interface if the labelling transition is internal resp. interface.

A modular state space contains two main concepts: the local reachability
graph and the synchronization graph. A local reachability graph represents the
behavior of an instance in the context of a modular structure. It contains pro-
jections of the reachable markings of N to the places of the according instance.

Definition 9 (Projection). Let m ∈ RS({m0}). For instance [Nj ,m0j ] for
j ∈ {1, . . . , �} of N , let πj(m) = m ∩ (Pj × N) be the projection of marking m
to instance [Nj ,m0j ].

We call those projections local markings of an instance. We build one local
reachability graph per instance.

Definition 10 (Local Reachability Graph). Let [Nj ,m0j ] be an instance
for j ∈ {1, . . . , �}. The local reachability graph is defined as Lj = [V L

j , EL
j ]

where

– V L
j = {πj(m) | m ∈ V } and

– EL
j = EL

j|internal ∪ EL
j|interface with

• (πj(m), t, πj(m′)) ∈ EL
j|internal iff (m, t,m′) ∈ ER, t ∈ Tj|internal

• (πj(m), t, πj(m′)) ∈ EL
j|interface iff (m, tf ,m′) ∈ ER, f [j] = t, f ∈ F

The local reachability graph decays into locally strongly connected components
(LSCCs), equivalence classes of local markings that are reachable from each
other via internal transitions. The reachability graph of an instance is an over-
approximation of its local reachability graph.

Lemma 1 (Relation between Rj and Lj). Let Rj = [V R
j , ER

j ] be the reach-
ability graph and Lj = [V L

j , EL
j ] be the local reachability graph of instance

[Nj ,m0j ] for j ∈ {1, . . . , �}. The local reachability graph is a subgraph of the
reachability graph, i.e. V L

j ⊆ V R
j , EL

j|internal = ER
j|internal and EL

j|interface ⊆
ER

j|interface.

The proof follows from the construction. For firing a fusion transition the infor-
mation about the activation of its support transitions must be shared between
the instances. As local markings that are connected with internal transitions
only have the same set of activatable interface transitions, we abstract them
into segments.

Definition 11 (Segment). In Lj = [V L
j , EL

j ] of [Nj ,m0j ] for j ∈ {1, . . . , �},
a segment is a set of local markings O ⊆ V L

j , which is forwardly closed in the
following way: If m ∈ O and (m, t,m′) ∈ EL

j|intern, then m′ ∈ O.



318 J. Gaede et al.

Fig. 2. State Space L1, L2, L3 and S for a Channel Model (cf. Fig. 1).

For a set of local markings M ⊆ V L
j , let

•
M be the smallest segment that contains

M , i.e. the closure of M regarding internal transitions. We call set M a generator

of
•

M . Markings in a segment do not necessarily need to be connected or strongly
connected, as the elements of the generator are not required to be connected. We
define the successor segment for a fixed segment and a fixed interface transition.

Definition 12 (Successor Segment). Let O be a segment of Lj of [Nj ,m0j ]
for j ∈ {1, . . . , �} and t ∈ Tj|interface be an interface transition. The successor

segment is defined as O+t =
•

M , M = {m′ | m ∈ O, (m, t,m′) ∈ EL
j|interface}.

As we only permit one interface transition per instance in a fusion vector, the
successor segment is unambiguous. We may abuse this notation for successor
segments of fusion transitions, i.e. O

+tf

j = O+t for tf ∈ T where f ∈ F and
f [j] = t. For f [j] = ⊥, O+tf = O. After abstracting local markings to segments,
we lift the activation of interface transitions from a local marking to a tuple of
segments.

Definition 13 (Global Activation). Let O be a segment of Lj of [Nj ,m0j ]
with j ∈ {1, . . . , �}. An interface transition t ∈ Tj|interface is activated in O

(denoted by O
t−→), if there is m ∈ O such that m

t−→. Let tf the correspond-
ing fusion transition for f ∈ F . Fusion transition tf is globally activated in
<O1, . . . , O�>, if for all instances [Nj ,m0j ] with f [j] = t, it holds that Oj

t−→ for
j ∈ {1, . . . , �}.
A vertex in the synchronization graph is an �-tuple of segments from the local
reachability graphs L1, . . . , L�. Edges are drawn in case of globally activated
fusion transitions.

Definition 14 (Synchronization Graph). The synchronization graph S =
[V S , ES ] is inductively defined as follows:
Base: <{ •

m01}, . . . , { •
m0�}> ∈ V S

Step: if v = <O1, . . . , O�> ∈ V S and tf is globally activated in v, then v′ =
<O

+tf

1 , . . . , O
+tf

� > ∈ V S and (v, tf , v′) ∈ ES.
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Algorithm 1. Generating the Segment for a Given Set of Markings
1: procedure buildClosure(j: instance index, M : set of markings)
2: Unprocessed ← M, O = ∅
3: while Unprocessed �= ∅ do
4: m ← choose from Unprocessed
5: Unprocessed ← Unprocessed \{m}
6: O ← O ∪ {m}
7: V L

j ← V L
j ∪ {m} � all explored markings are added to Lj

8: for all t ∈ Tj|internal : m
t−→ do � explore internal transitions

9: m′ ← m + Δt
10: EL

j ← EL
j ∪ {(m, t, m′)}

11: if m′ /∈ O then
12: Unprocessed ← Unprocessed ∪{m′}
13: end if
14: end for
15: end while
16: return O
17: end procedure

As an example, consider the modular state space in Fig. 2 for the modu-
lar Petri net depicted in Example 1. Note, that if we would calculate the local
reachability graphs separately, L2 is infinite due to transition t21 without pre-
place in [N2,m02]. To avoid this, we now provide a procedure to calculate mod-
ular state space interleaved such that the above-mentioned definitions hold. The
main procedure computeModularStateSpace (Algorithm 3) calls two subproce-
dures, buildClosure (Algorithm 1) and processInterfaceTransition (Algorithm 2)
that are used to build the local reachability graphs for all instances.

Algorithm 2. Firing an Interface Transition
1: procedure processInterfaceTransition(j: instance index, O: segment, t: inter-

face transition)
2: M ← ∅ � M is the generator of O+t

3: for all m ∈ O do
4: if m

t−→ then
5: m′ ← m + Δt
6: M ← M ∪ {m′} � adding m′ to M
7: V L

j ← V L
j ∪ {m′}, EL

j ← EL
j ∪ {(m, t, m′)}

8: end if
9: end for

10: return M
11: end procedure
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Algorithm 3. Computing the Modular State Space
1: procedure computeModularStateSpace(M = [I, F ]: modular structure)
2: V S ← ∅, ES ← ∅ � initialize synchronization graph
3: for all j ∈ {1, . . . , �} do
4: V L

j ← ∅, EL
j ← ∅ � initialize local reachability graphs

5: end for
6: for all j ∈ {1, . . . , �} do
7: Oj ← buildClosure(j, {m0j}) � compute initial segments
8: end for
9: Unprocessed ← {<O1, . . . , O�>}

10: V S ← {<O1, . . . , O�>} � initial vertex of synchronization graph
11: while Unprocessed �= ∅ do
12: <O1, . . . , O�> ← choose from Unprocessed
13: Unprocessed ← Unprocessed \ <O1, . . . , O�>
14: for all f ∈ F : tf is globally activated in <O1, . . . , O�> do
15: for all j ∈ {1, . . . , �} do � compute successor segments
16: if f [j] = t then � if instance participates in f
17: newGenerator ← processInterfaceTransition(j, Oj , t)

18: O
+tf

j ← buildClosure(j, newGenerator)
19: else � instance does not participate in f

20: O
+tf

j ← Oj

21: end if
22: end for
23: ES ← ES ∪ {(<O1, . . . , O�>, tf , <O

+tf

1 , . . . , O
+tf

� >)}
24: if < O

+tf

1 , . . . , O
+tf

� >/∈ V S then

25: V S ← V S ∪ {< O
+tf

1 , . . . , O
+tf

� >}
26: Unprocessed ← Unprocessed ∪{< O

+tf

1 , . . . , O
+tf

� >}
27: end if
28: end for
29: end while
30: end procedure

3.2 Differentiation from Existing Approaches

The concept of modular state spaces is not new. In [3], the definition of the
modular state space seems similar to ours, however there are dissimilarities that
we want to state in this subsection. In [3] the set of local markings that generates
a segment is locally strongly connected. This property leads to the fact that less
local markings can be used as one generator. As a result, [3] might get more and
smaller generators and consequently more and smaller segments as we might
generate with our more liberal approach. The number of segments has a direct
influence on the size of the synchronization. By dropping the requirement of
locally strongly connectedness to our generators we usually generate fewer, but
never more segments. This results in a smaller synchronization graph than [3]
while keeping our local reachability graphs equally large. The following example
demonstrates how non-strongly connected generators affect size and structure of
the synchronization graph. For the comparison, we have adapted the notation
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Fig. 3. Influence of Strongly Connectedness on Synchronization Graph Size.

from [3] for their solution: Given a marking m = m1 . . . m�, m�c denotes the cross
product of LSCCs for every mj with j ∈ {1, . . . , �}.

Example 2. Consider M = [I,F ] with I = {[N1,m01], [N2,m02] and [N3,m03]}
and F for that the modular Petri net N is depicted in Fig. 3a. This token from
p11 is passed from instance to instance, but each instance has two competing
transitions for the incoming token. In both cases the token is passed further
to the next instance, but the decision is recorded by producing an additional
token. Those tokens have no effect on the further behavior of N ; unless they
ensure, that the terminal segments of each local reachability graph have non-
locally-strongly connected generator elements. According to our definition, those
generators form can one segment together. The modular state space of N is
shown in Fig. 3a. If we build the modular state space according to [3], non-
locally-strongly connected generator markings lead to different segments. In the
worst case, the strongly-connectedness property leads to an exponential number
of states in the synchronization graph. As you can see in Fig. 3b, firing three
fusion transitions results into 13 states in the synchronization graph, whereas in
our notation the synchronization graph only has 4 vertices.

According to our definition of the synchronization graph S = [V S , ES ], a
synchronization graph edge (v, tf , v′) ∈ ES is labeled with the name of the
according fusion transition tf . This edge occurs once; regardless of which and
how many local markings of the segments activate tf . The definition of the
synchronization graph according to [3] is in contrast to this. The edges in the
synchronization graph are labeled with a triple (m, tf ,m′), where m and m′ are
source and target marking of firing tf . If there would be another marking in the
segment or successor segment for an instance that activated tf , this would result
in an additional edge. The following example shows how the synchronization
graph edge notation of [3] can lead to a swiftly increasing number of edges.



322 J. Gaede et al.

As later we want to use the synchronization graph as the structure to verify
properties on, we aim to keep it as small as possible.

Example 3. Consider M = [I,F ] with I = {[N1,m01] and [N2,m02]} and F =
{f1 = [t13, t23]}. The according modular Petri net N is depicted in Fig. 4a. We
can either immediately fire fusion transition tf1, or each instance itself consumes
one, two, three or four tokens before and stores them onto p11 resp. p21. From
there, the tokens can be returned to p11 and p21 anytime. Each firing of tf1
deletes a token in each instance. When tf1 has fired five times, all tokens are
deleted and the net is stuck in a deadlock state. Building the modular state
space according to our definition results into two isomorphic local reachability
graphs L1 and L2. Figure 4b shows L1, where repeatedly firing tf1 leads to
ever decreasing segments. Note that tf1 is activated in multiple markings in
a segment. Our synchronization graph has a linear structure, as you can see in
Fig. 4c. The synchronization graph in style of [3] that is depicted in Fig. 4d. Their
local reachability graphs will look the same as ours, whereas no interface edges
are recorded. In initial synchronization graph vertex (5p125p22)�c there exist 25
markings that activate tf1, i.e. all combinations of local markings in the segments
O11 and O21. So, from (5p125p22)�c we initiate 25 edges. This pattern continues
through the whole synchronization graph. So, in total this synchronization graph
contains of 55 edges compared to our synchronization graph with 5 edges.

3.3 Modular State Space vs. Actual State Space

Now we demonstrate that the reachability graph of a modular Petri net can be
fully reconstructed from the modular state space. Before the main theorem for
completeness we present two lemmata that help us to formulate the proof. The
first one states that we can deduce the reachability of segment markings from
the reachability of generators given.

Lemma 2 (Generator-Induced Reachability). Let Lj = [V L
j , EL

j ] be the
local reachability graph of instance [Nj ,m0j ] and Mj ⊆ V L

j be given for j ∈
{1, . . . , �}. If all markings in M1 × . . . × M� are reachable, so are all markings

in
•

M1 × . . . ×
•

M�.

The proof of this lemma follows directly from the fact that building the closure
•

Mj only uses internal transitions of [Nj ,m0j ] that are independent of each other,
as their pre- and postplaces are disjoint. Sequences of internal transitions can
arbitrarily be interleaved without affecting the resulting marking.

The second lemma explains how conclusions on the reachability of mark-
ings can be drawn in the synchronization graph. It benefits from the fact, that
although the interface transitions of a fusion vectors are fused, their individual
influence is restricted to their respective instances.
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Fig. 4. Modular Petri Net N and Modular State Space.

Lemma 3 (Successor Segment Reachability). Let S = [V S , ES ] be a syn-
chronization graph. Let v = <O1, . . . , O�> ∈ V S be a vertex in S. If all mark-
ings in O1 × . . . × O� are reachable and (v, tf , v′) ∈ ES, then all markings in
v′ = O

′
1 × . . . × O

′
� are reachable.

Proof. Let f ∈ F be the fusion vector to fusion transition tf . Firing tf in
<O1, . . . , O�> ∈ V S requires global activation of tf . This implies that for every
instance [Nj ,m0j ] for all j ∈ {1, . . . , �} with f [j] = t, m

t−→ m′ with m ∈ Oj

and m′ ∈ O′
j is possible (cf. Algorithm 2). For instance [Nj ,m0j ] we define Mj

as a set of markings generated in this manner - the generator of O′
j . As the

effect of processing t is restricted to [Nj ,m0j ], all markings in M1 × . . . × M�

are reachable. The just introduced Lemma 2 on generator-induced reachability

justifies that all markings in O′
1 × . . . × O′

� are reachable as O′
j =

•
Mj .

With those two lemmata we now proceed with the following theorem:
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Theorem 1 (State Space Reconstruction from Modular State Space).
The behavior of a modular Petri net N is fully depicted by a modular state space.

Proof. We proof this by constructing a graph out of the modular state space
and show that it is isomorphic to the reachability graph.

1. Construction of Graph G = [V G, EG]:
We construct G = [V G, EG] with EG =

⋃
j∈{1,...,�} EG

j|internal ∪EG
interface out

of S and Lj for j ∈ {1, . . . , �} such that
– V G =

⋃
<O1,...,O�>∈V S O1 × . . . × O�;

– EG
j|internal = {(m1 × . . . × mj−1 × mj × mj+1 × . . . × m�, tj ,m1 × . . . ×

mj−1 × m′
j × mj+1 × . . . × m�) | <O1, . . . , O�> ∈ V S , m1 ∈ O1, . . . ,m� ∈

O�, (mj , tj ,m
′
j) ∈ EL

j|internal};
– EG

interface = {(m1 × . . . × m�, tf ,m′
1 × . . . × m′

�) |
(<O1, . . . , O�>, tf , <O

′
1, . . . , O

′
�>) ∈ ES ,m1 ∈ O1, . . . ,m� ∈ O�,

m′
1 ∈ O′

1, . . . ,m
′
� ∈ O′

�, tf is fusion transition of fusion vector f ∈ F ,
and (mj , t,m

′
j) ∈ EL

j|interface if f [j] = t or mj = m′
j if f [j] = ⊥ for all

j ∈ {1, . . . , �}}.
2. Graph G = [V G, EG] is isomorphic to reachability graph R = [V R, ER]:

Implication: As a reachability graph is always connected from an initial mark-
ing we show that we can reconstruct every finite path σ = m0t1m1 . . . tnmn

of R in G, i.e. every occurring marking also appears in V G and every edge
appears in EG. The proof is an induction over the length of σ.

Base: m0.
By construction every projection of the initial marking to an instance πj(m0)
appears in the initial segment of Lj for all j ∈ {1, . . . , �}. These initial segments
form the initial vertex the synchronization graph V S and thus, m0 appears in
V G.

Step: For 0 ≤ i ≤ n, assume mi−1 appears in V G.
If mi−1 ∈ V G, then there is a vertex <O1, . . . , O�> ∈ V S , such that mi−1 ∈
O1 × . . . × O�. Now, let mi−1timi be part of σ. Transition ti might be

a) an internal transition to instance [Nj ,m0j ]:
As all of its preplaces are located in Pj , the influence of ti is restricted to
Nj . For j′ 
= j ∈ {1, . . . , �} it holds that πj′(mi) = πj′(mi−1). Firing of ti in
mi−1 implies that (πj(mi−1), ti, πj(mi)) ∈ EL

j|internal and πj(mi) ∈ V L
j (cf.

Algorithm 1). By construction of G, (mi−1, ti,mi) ∈ EG and mi ∈ V G.
b) a fusion transition for fusion vector f ∈ F :

Firing of ti in mi−1 implies that all support interface transitions of f are
activated in the projections πj(mi−1) for instance Nj . Therefore, we can exe-
cute Algorithm 2, the successor markings πj(mi) form the new generator of
the successor segment and are added to V L

j . The edges (πj(mi−1), ti, πj(mi))
are added to EL

j as well. Thus, marking mi appears in V G and the edge
(mi−1, ti,mi) in EG.
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Replication: We need to show that the graph G does not contain unreachable
behavior, i.e. every behavior in G can somehow be found in R. Starting with
the initial vertex <{ •

m01}, . . . , { •
m0�}> of S, {m0j} with j ∈ {1, . . . , �} is the

generator of the initial segment
•

m0j of every local reachability graph Lj . The
only marking in {m01}× . . .×{m0�} is m0 per definition. With Lemma 2 we can
deduce that all markings in { •

m01} × . . . × { •
m0�} are reachable markings of the

modular Petri net, thus occur in R. Algorithm 1 ensures that only the according
internal edges are recorded in EL

j for instance [Nj ,m0j ] and nothing else. The
other vertices of S emerge from building the closure of generators produced by
Algorithm 2 for each instance. In this way, only realizable interface edges are
recorded in EL

j for each instance [Nj ,m0j ]. Additionally, fusion transition edges
are recorded in ES . Assume now to have a vertex v ∈ V S that only covers
reachable markings and an edge (v, tf , v′) ∈ ES . Then, Lemma 3 describes that
only reachable markings evolve that all occur in R.

Concluding, the modular state is a complete representation of the state space of
N .

4 Verification in the Modular State Space

In the following, we want to verify standard properties in the modular state
space of modular Petri net N = [P, T, F,W,m0] based on a modular structure
M = [I,F ]. The modular state space with S and Lj for j ∈ {1, . . . , �} is built
as just described. We consider properties that can be verified regarding the set
of reachable markings only. First, we check the existence of a reachable marking
that fulfills some state predicate, a comparison of a weighted marking sum and
some integer. The reachability of a specific marking can easily be expressed as
the reachability of a state predicate that describes this marking.

Definition 15 (State Predicate, Support). Let N be a Petri net system
with the place set P = {p1, . . . , pn}. We define ϕ : ap1m(p1)+ . . .+apk

m(pk) ≤ a
where ap1 , . . . , apk

, a ∈ Z as an atomic state predicate. An atomic state predi-
cate is true for a marking m, if the inequality is holds for m. For atomic state
predicate ϕ the support supp(ϕ) includes all occurring places in ϕ. A state pred-
icate is a conjunction of atomic state predicates ϕ :

∧n
i=1 ϕi and is true, if every

atomic state predicate ϕi is true. For short, within a state predicate ϕ the atomic
state predicate ϕi can be written as si(m) ≤ ai.

This definition gives a canonical form for state predicates in which every
kind of state predicate can be transformed. Verifying a state predicate ϕ in the
modular state space depends on the instance affiliation of the occurring places
in formal sums. Let ϕi : si ≤ ai be an atomic state predicate with i ∈ {1, . . . , n}.

I. In ϕi, all occurring places are from the same instance: Assume
supp(ϕi) ⊆ Pj for instance [Nj ,m0j ], j ∈ {1, . . . , �}. The verification of ϕi can
be accomplished on the local reachability graph Lj as it contains all relevant
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Fig. 5. Modular Petri net N .

places for ϕi. In state predicate ϕ :
∧n

i=1 ϕi, multiple atomic state predicates may
refer to the same instance. Therefore, we split ϕ such that ϕ :

∧�
j=1 ϕj , where

ϕj :
∧n

i=1,vis(ϕi)⊆Pj
ϕi. While computing the modular state space, we check

whether we can find a vertex of the synchronization graph that covers a marking
that satisfies all atomic propositions. Consider vertex v = <O1, . . . , O�>. For
j ∈ {1, . . . , �}, we mark segment Oj if it contains a marking mj that satisfies ϕj .
We also mark segment Oj if it is not relevant for any atomic state predicate. The
state predicate is true, if and only if there exists a vertex <O1, . . . , O�> ∈ V S

where every segment Oj is marked.
II. In ϕi, all occurring places are not from the same instance: If ϕi

is not restricted to one instance, we split the formal sum si(m) according to the
instance affiliation of the places: si(m) =

∑
j∈{1,...,�} sij(mj) where sij(mj) =

∑
p∈Pj

apmj(p) is the subsum that regards only places in instance [Nj ,m0j ]
and mj = πj(m) for j ∈ {1, . . . , �}. Then ϕi holds if and only if there is a
marking m such that

∑
j∈{1,...,�} sij(mj) ≤ ai. While computing the modular

state space, we calculate sij(mj) for every marking mj ∈ Lj . Over all atomic
state predicates ϕ1, . . . , ϕn of ϕ, every marking mj ∈ V L

j gives a vector �cmj
=

(s1j(mj), . . . , snj(mj)).
For the verification of the ϕ, we proceed as follows when traversing the syn-

chronization graph: Consider vertex <O1, . . . , O�>. For every segment Oj ⊆ V L
j ,

for every marking mj ∈ Oj , we collect the vectors �cmj
in Cj = {�cmj

| mj ∈ Oj}.
Subsequently, the set Cj can then be reduced by vectors that are larger than

some other vector contained - if a marking of the modular Petri net containing
mj ∈ V L

j satisfies ϕ, this marking containing m′
j ∈ V L

j with �cm′
j

≤ �cmj
satisfies

ϕ a fortiori. Vector �cm′
j

contributes smaller (at least not bigger) values to every
formal sum. Let Cmin

j = {�cmj
∈ Cj | ∀�cm′

j
∈ Cj : �cm′

j

< �cmj

} for segment Oj be
the set of minimal vectors of sum values for every ϕi. Note that multiple vectors
might produce the same value, and we cannot find the one smallest vector, as
they are partially incomparable. If there exists some selection �c1 ∈ Cmin

1 , . . . ,�c� ∈
Cmin

� such that for all i ∈ {1, . . . , n} it holds that
∑

j∈{1,...,�} sij ≤ ai, then the
state predicate ϕ :

∧n
i=1 ϕi is true in this vertex <O1, . . . , O�>. If we cannot find

such a selection for any vertex of the synchronization graph, the state predicate
is false. We will underline this with an example.

Example 4. Consider M = [I,F ] with I = {[N1,m01], [N2,m02]} and F =
{f1 = [t13, t21]}, where N is depicted in Fig. 5. We want to verify state predicate
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ϕ : p11 + p12 ≤ 1 ∧ p12 + p21 ≤ 0 ∧ p11 + p21 + p22 ≤ 1, containing three atomic
state predicates. At first, we consider the initial vertex of the synchronization
graph <O11, O21> where O11 =

•
p11 = {p11, pp12} and O21 =

•
p22 = {p22}. For

segment O11, the set of minimal vectors is Cmin
1 = {(1, 0, 1), (1, 1, 0)}, as (1, 0, 1)

and (1, 1, 0) are incomparable. Analogously, the Cmin
2 = {(0, 0, 1)} for the only

marking p22. In Cmin
1 ×Cmin

2 , we cannot find a combination, i.e. marking of the
modular Petri net, that fulfills all three atomic state predicates. So we proceed to
<O12, O22> and calculate Cmin

1 = {(0, 0, 0)} and Cmin
2 = {(0, 0, 0)} - the lowest

vector of values the instance [N2,m02] adds to every atomic state predicate.
When we now sum the sums of the instances with each other, we get (0, 0, 0)
which fulfills all the state predicate.

A deadlock is a marking where no transition is activated. In a modular Petri net,
we need to consider both, the local behavior of the instances and the synchro-
nized behavior, to detect a deadlock. First, we define sets of activated transitions
for a given local marking.

Definition 16 (Activated Transitions). Let mj be a local marking of
instance [Nj ,m0j ] for j ∈ {1, . . . , �}. The set actj|internal(mj) ⊆ Tj|internal

describes the internal transitions that are activated in m. Analogously, the set
actj|interface(mj) ⊆ Tj|interface describes the interface transitions that are acti-
vated in mj.

Theorem 2 (Deadlock). In N , a deadlock is reachable if and only if the
synchronization graph contains a vertex <O1, . . . , O�> ∈ V S, such that

– Segment Oj contains marking mj with actj|internal(mj) = ∅ for all j ∈
{1, . . . , �} and

–
⋃

j∈{1,...,�} actj|interface(mj) does not include supp(f) of any fusion vector
f ∈ F .

Proof. Let md be a deadlock marking of N . As md is reachable, there exists
<O1, . . . , O�> ∈ V S , such that md ∈ O1 × . . . × O�. For every j ∈ {1, . . . , �} let
mj = πj(md) ∈ Oj in Lj . For all instances [Nj ,m0j ], no internal transition can
be activated in mj . Furthermore,

⋃
j∈{1,...,�} actj|interface(mj) cannot include

supp(f) of any fusion vector f , since otherwise tf would be activated in md. Now
assume that the two conditions are satisfied for a local marking mj ∈ Oj for all
j ∈ {1, . . . , �} from vertex <O1, . . . , O�> ∈ V S . We can construct a deadlock
marking such that md = ∪j∈{1,...,�}mj of N , where no internal transitions is
activated, and every fusion vector contains a disabled interface transition in md.

Detecting deadlocks can easily be implemented in our concept of the modular
state space. By exploring Lj , we can identify markings that do not activate
internal transitions (candidate markings). Then, traversing the vertices of the
synchronization graph, for a vertex <O1, . . . , O�>, we check, whether each seg-
ment Oj contains at least one candidate. If we find such a vertex where each
segment contains at least one candidate, we check all combinations of candi-
dates, whether their activated interface transitions are the support of a fusion
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vector; firing a fusion transition would be the only way to escape the poten-
tial deadlock. For the latter check, we can again reduce the number of com-
binations that need to be checked. First, it is sufficient to traverse the set of
activated interface transitions actj|interface(mj) of any candidate mj ∈ Oj .
Second, if for two candidates of a segment mj ,m

′
j ∈ Oj for j ∈ {1, . . . , �}

it holds that actj|interface(mj) ⊂ actj|interface(m′
j), we do not need to con-

sider actj|interface(m′
j). The reason is that if any marking m1 . . . m′

j . . . m� is a
deadlock, so is m1 . . . mj . . . m�, because it activates even less transitions. So,
for every segment, we collect the smallest set of activated interface transitions
actj|interface(mj) of all candidates. Then, we join those sets and compare it with
the given support of the fusion vectors of our modular Petri net. If the union does
not cover the support of any fusion vector, the considered vertex is a deadlock
vertex. We consider a transition as dead, if it is not activated in any reachable
marking. For verification in the modular Petri net, we distinguish internal and
fusion transitions. The deadness of a fusion transition can be analyzed based on
the synchronization graph.

Theorem 3 (Dead Transitions). A fusion transition is dead if and only if
it does not appear in any edge of the synchronization graph. Let t ∈ Tj|internal

be an internal transition of [Nj ,m0j ] with j ∈ {1, . . . , �}. Transition t is dead,
if and only if for all m ∈ V L

j : m 
 t−→.

The proof follows from the construction. Knowing the maximum number of
tokens that a place can hold, may minimize the storage space to store markings.
For modular Petri nets, the main advantage for this property arises from the
disjointness of the place sets of the instances, so the bounds of a place can be
calculated based on the local reachability graph.

Theorem 4 (Boundedness). Let p ∈ Pj be a place of [Nj ,m0j ] for j ∈
{1, . . . , �}. For p, the upper bound of tokens is ub(p) = max{m(p) | m ∈ V L

j }
and the lower bound of tokens is lb(p) = min{m(p) | m ∈ V L

j }.

5 Handling Replications

Similar structures in a Petri net system cause similar behavior that does not
need to be calculated multiple times. Exploiting this, the symmetry method [9]
aims to find isomorphisms of the Petri net system and calculates their behav-
ior only once. Therefore, net structures need to be identical. If structures are
largely similar but differ in some nodes we cannot apply the symmetry method.
Although the structures behave the same mostly, we need to calculate their
state spaces individually - at the expense of efficiency. We want to introduce
a more robust method to handle those similar structures with small deviations
that avoids multi-calculations of the same states. Therefore, we consider similar
structures as different instances of the same module. When building the mod-
ular state space, the local state space is then only explored once per module
and shared between its instances. First, we need to adapt the Definition 2 of
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instances and assign an ID to an instance to distinguish between instances of
the same module. Those IDs do not need to be consecutive for instances of the
same module.

Definition 17 (R-Instance). An r-instance is a Petri net system [Ni, j,m0j ]
of module Ni, where Ni is a module for i ∈ N, j ∈ N is an instance identifier
and m0j is an initial marking of Ni.

Two r-instances are twins if they uprise from the same module - they have
the same module structure but may have different initial markings. Defining an
r-modular structure and r-modular Petri net with twin r-instances is straightfor-
ward. For an r-modular structure, we do not require the modules to be disjoint as
the unambiguous assignment of places and transitions to r-instances is realized
through the instance identifiers. As announced above, we want to generate one
local reachability graph for twin r-instances - The local reachability graph of the
module. Before defining that, we need to make a small adjustment: Markings of
twin r-instances are not defined over the same set of places, technically. To allow
r-instances to still share markings we define a to-module-mapping that maps the
marking of an r-instance place to a module place marking.

Definition 18 (To-Module-Mapping for R-Instances). For r-instances
I = {[Ni1 , 1,m01], . . . , [Ni�

, �,m0�]} of an r-modular Petri net, we define a to-
module-mapping μ : ((Pij

× {1, . . . , �}) → N) → (Pij
→ N) for every j ∈

{1, . . . , �}, such that μ(m((p, j)) = m(p).

This to-module-mapping notation for markings is sometimes abused for the com-
ponents of the r-instances following the same principle, i.e. μ((x, j)) = x for
x ∈ (Tij

∪ Pij
). The local reachability graph of a module contains those μ-

markings.

Definition 19 (Local Reachability Graph of a Module). Let Ni be a
module for i ∈ N that The local reachability graph of Ni is defined as Li =
[V L

i , EL
i ], where

– V L
i = {μ(πj(m)) | m ∈ V, [Ni, j,m0j ] ∈ I}

– EL
i = EL

i|internal ∪ EL
i|interface with

• (μ(πj(m)), μ(t), μ(πj(m′))) ∈ EL
i|internal iff (m, t,m′) ∈ E

for t ∈ ⋃
[Ni,j,m0j ]∈I Tj|internal

• (μ(πj(m)), μ(t), μ(πj(m′))) ∈ EL
i|interface iff (m, tf ,m′) ∈ E for f [j] =

t, f ∈ F , [Ni, j,m0j ] ∈ I.

By accumulating the local reachability graphs of twin r-instances, none of their
behavior gets lost.

Corollary 1 (Relation between Li and Lj). Let Li = [V L
i , EL

i ] be the local
reachability graph of module Ni and Lj = [V L

j , EL
j ] be the local reachability graph

of r-instance [Ni, j,m0j ] for i ∈ N and j ∈ {1, . . . , �}. The local reachability graph
Lj is isomorphic to the induced subgraph of Li by the set of nodes {μ(mj) | mj ∈
V L

j }. This subgraph is forwardly closed regarding internal transitions, i.e. for all
t ∈ Ti|internal, (mj , t,m

′
j) ∈ EL

i implies that (mj , t,m
′
j) ∈ EL

j .
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The proof for this lemma follows from the definitions and from the fact that
internal transitions of distinct r-instances cannot prohibit each other from firing.
Note, that the subgraph is only forwardly closed regarding internal transitions.
Different r-instances of one module can take part in different fusion sets. So their
interface behavior may differ, while when twin instances reach the same state,
the upcoming internal behavior is equivalent. Building segments and successor
segments for r-instances follows the same criteria as building them for instances
described in Definition 11 and Definition 12. We also use the notation global
activation Definition 13) here. A vertex in the synchronization graph remains
an �-tuple of segments, where � is the number of r-instances. Finally, the syn-
chronization graph S = [V S , ES ] is defined as in Definition 14. However, for
r-instance [Ni, j,m0j ] with i ∈ N and j ∈ {1, . . . , �} we can extract its segment
structure from the local reachability graph Li of its underlying module - Every
segment of the local reachability graph Lj of [Ni, j,m0j ] is as well a segment
of Li. Mind that not every segment of Li necessarily is a segment of Lj as it
contains all segments of all twin instances. The replicated modular state can
be constructed as described in Sect. 3. Regarding the verification in Subsect. 4,
we can transfer the results on reachability, state predicates, deadlock and dead
fusion transitions directly into the replicated modular state space. The theorems
of dead internal transitions and bounds need to be refined.

Theorem 5 (Dead Internal Transition in the Replicated Modular
State Space). Let [Ni, j,m0j ] with i ∈ N, j ∈ {1, . . . , �} be an r-instance
of an r-modular structure. An internal transition t ∈ Ti × {j} is dead to the
r-instance if for all m ∈ V L

i : m 
 t−→, or if for all vertices <O1, . . . , O�> in the
synchronization graph, it holds for all m ∈ Oj : m 
 t−→.

The same argumentation and example fit for the upper and lower bounds of
tokens. Bounds observed just in the local reachability graph of the module can
be used as a first approach. For precise bounds, we need to consider the syn-
chronization graph as well.

Definition 20 (Boundedness in the Replicated Modular State Space).
Let [Ni, j,m0j ] with i ∈ N, j ∈ {1, . . . , �} be an r-instance of a modular structure.
Let p ∈ Pi × {j} be a place of [Ni, j,m0j ]. For p, the upper bound of tokens is
ub(p) = max{m(p) | m ∈ Oj ,∀<O1, . . . , O�> ∈ V S} and the lower bound of
tokens is lb(p) = min{m(p) | m ∈ Oj ,∀<O1, . . . , O�> ∈ V S}.

To demonstrate the advantages of replicated modularization consider the
well known 10 dining philosophers. In our version, a philosopher takes the
forks one by one but releases them synchronously. Nine of the philosophers
start picking up their left fork first and their right fork afterwards. The tenth
philosopher breaks the symmetry by taking the right fork before the left fork.
For 10 dining philosophers, we build an r-modular structure M = [I,F ]
with I = {[N1, 1,m01], [N1, 2,m02], [N1, 3,m03], [N2, 1,m01]} of the modules
depicted in Fig. 6 and F = {f1 = {(tr.c, 1), (nt.t, 2)}, f2 = {(r.c, 1), (nr.t, 2)},
f3 = {(tr.c, 2), (nt.t, 3)}, f4 = {(r.c, 2), (nr.t, 3)}, f5 = {(tr.c, 3), (nt.s, 4)}, f6 =
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Fig. 6. R-Modular Petri Net Model for Dining Philosophers.

{(r.c, 3), (nr.s, 4)}, f7 = {(tr.d, 4), (nt.t, 1)}, f8 = {(r.d, 4), (nr.t, 1)}}. The local
reachability graph L1 for N1 consists of 24 markings, the local reachability graph
L2 for N2 consists of 5 markings. The synchronization graph consists of 16 states.
In total the modular state space has 45 vertices. In comparison, the full state
space contains 5741 markings and can be reduced to 165 states if deadlock pre-
serving stubborn sets [11] are used. The numbers correspond to the LoLA tool
[10]. Symmetry reduction is not available since the single philosopher (modeled
in N2) breaks the symmetry.

6 Conclusion and Future Work

We proposed a new perspective and construction algorithm for the modular state
space of a modular Petri net. The main difference to [3] is the nature of segments.
Our segments are generated from a not necessarily locally strongly connected
set of markings. This way, segments may become larger and the synchroniza-
tion graph may get smaller. Nevertheless, the coarser structure still permits the
verification of interesting properties.

We proposed a method for verifying the reachability of state predicates on
a modular state space. For every segment of every local reachability graph,
information is collected and then combined when the synchronization graph is
inspected. This way, the verification approach corresponds to the structure of
the modular state space. The local information can be computed independently
(and even concurrently) for each module.

We showed that several instances of one and the same module may share a
single local reachability graph. This yields a reduction that, in non-modular veri-
fication, would be addressed by the symmetry method. However, our approach to
replication does not require the whole Petri net to be symmetric. Consequently,
our method may very well be more robust than the symmetry method concerning
non-symmetrical arrangement of identical instances to an overall system.

In future work, we need to re-establish results on the verification of more
complex properties such as liveness, reversibility, or the verification of proper-
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ties specified in temporal logic. To make the method more applicable, it is also
necessary to combine modular state spaces with other state space reduction
methods, most prominently the stubborn set method [11], or symbolic model
checking [2]. Similar ideas of symbolic model checking on composed models has
already been discussed in [8]. In a completely different branch of research, we
propose to study the separation of a flat Petri net into modules to make the
method applicable to arbitrary Petri nets.
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Abstract. A modular Petri net is composed of multiple individual Petri
nets, the modules, by fusing their interface transitions. Internal transi-
tions are not related to other modules. Their behavior is recorded in
local reachability graphs for each module. The behavior of interface tran-
sitions is recorded in a single synchronization graph, linking the local
reachability graphs together to form the modular state space. Our notion
of modular state spaces is similar to previous proposals [5,6,17] but drops
a few assumptions for the sake of additional compression.

In this paper, we study the verification of temporal logic properties
using the modular state space. For linear time properties, we re-establish
a result from [10] for our revised concepts. In our proof, we use completely
different arguments and generalize the result to non-regular linear time
properties. Modular state spaces do not easily permit the verification of
branching time properties and there is no existing result on this matter.
We demonstrate, however, that CTL properties can very well be verified
after applying a certain refinement to the modular state space.

Keywords: Petri nets · Modular · Model Checking · CTL ·
Computation Tree Logic · LTL · Linear Time · Verification and model
checking using nets · Regular Paper

1 Introduction

A Modular Petri net is composed of multiple components, the modules. Model-
ing tools like CPN Tools [20] already support modular or hierarchical models.
Translations from other models to Petri nets, e.g. [1,12] often compose small
building blocks to larger units. For nets that do not have a user-defined modular
structure, proposals exist to automatically separate them into modules [4]. In
this paper, we assume transition fusion as the composition operation, similarly
to [6]. We expect that instances of a module behave similarly, so we can have just
one copy of the data structures related to a module, saving computation time.
The modular structure of a Petri net introduces the modular state space [5,6,17].
The modular state space consists of local state spaces, one for each module, and
a single global synchronization graph. By computing multiple smaller graphs
instead of the potentially large reachability graph, the impact of the state explo-
sion problem can be reduced. The local state spaces are basically the projection
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of the reachability graph of the Petri net to a module. It differs from the reach-
ability graph of the module in general. There exist bounded modular Petri nets
that are composed of unbounded modules. By exploring the local state spaces
and the synchronization graph together, the local state space is always finite as
long as the actual reachability graph of the modular Petri net is also finite. This
way of exploration is the main difference to compositional verification techniques
[3,8,11,19], which explore local state spaces independently, assuming them to
be finite, before composing them into a global structure.

In the local state space, segments can be identified as the internal behavior of
a module between two consecutive firings of interface transitions. We generalize
assumptions from [6], allowing for wider applicability of the method.

A vertex in the synchronization graph is a tuple of segments, one for each
module. Unlike [6,10], segments in our approach are not necessarily connected
from a single marking. An edge in the synchronization graph describes an inter-
face transition. Thus, the synchronization graph describes how segments of mod-
ules synchronously move to another.

In the sequel, we analyze how temporal logic properties like Linear Temporal
Logic (LTL) [14] or Computation Tree Logic (CTL) [7] can be verified in the
modular state space. For this, we introduce updated definitions in Sect. 2. In
Sect. 3, we re-establish the result of [10] concerning the verification of linear time
properties. This new consideration is necessary due to changes in the basic data
structure. Our result, however, is more general than [10]. While their proof relied
on Büchi automata, restricting their result to regular linear time properties,
our proof carries over to non-linear time properties. In Sect. 4, we discuss the
verification of CTL properties. The authors of [13] also discussed this, but did
not provide proofs for their results and do not go into detail. Our result concerns
the preservation of CTL properties between the actual reachability graph of the
modular Petri net and the synchronization graph.

2 Preliminaries

2.1 Net Components

Definition 1 (Module). A place/transition Petri net N = [P, T, F,W ], con-
sisting of places P , transitions T , arcs F and weight function W , where T is
partitioned into subsets Tinternal of internal transitions and Tinterface of inter-
face transitions is called a module.

Contrary to a full Petri net definition, modules are only structures without
behavior. For this, we introduce instances as Petri net systems with behavior.

Definition 2 (Instance). An instance is a Petri net system [N,m0] where
N is a module and m0 is the initial marking of N . In general, a marking is a
mapping m : P → N.

Now, instances can be composed along their interface transitions, which is
described through fusion vectors.
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Definition 3 (Fusion Vector). Let {[N1,m01], . . . , [N�,m0�]} be a set of
instances. A fusion vector f ∈ (T1|interface ∪ {⊥}) × . . . × (T�|interface ∪ {⊥})
is a vector of interface transitions of the instances or the ⊥-symbol. If f [j] = t
for t ∈ Tj|interface, then instance [Nj ,m0j ] participates in this fusion with t. If
f [j] = ⊥, then instance [Nj ,m0j ] does not participate in this fusion.

The above definition is similar to fusion sets defined in [6,10]. The defini-
tions for modules and instances allow for multiple instances to be of the same
underlying module. By using vectors instead of sets and explicitly marking non-
participating instances with ⊥, we remove ambiguities. We further rule out that
multiple interface transitions of the same instance participate in the same fusion.
With this, we can define our “blueprint” for a modular Petri net, a system com-
posed of instances through fusion vectors.

Definition 4 (Modular Structure). A modular structure is a tuple M =
[I,F ], where

– I = {[N1,m01], . . . , [N�,m0�]} is a set of instances with disjoint modules and
– F ⊆ (T1|interface ∪ {⊥})× . . . × (T�|interface ∪ {⊥}) is a set of fusion vectors.

A modular Petri net is obtained by gluing together the ingredients of a mod-
ular structure to a flat Petri net.

Definition 5 (Modular Petri Net). From a modular structure M = [I,F ],
we can derive a Petri net system N = [P, T, F,W,m0], where

– P =
⋃

j∈{1,...,�} Pj,
– T =

⋃
j∈{1,...,�} Tj|internal ∪ {tf | f ∈ F}, where tf is a freshly introduced

fusion transition for fusion vector f ,
– F =

⋃
j∈{1,...,�}(Fj ∩ (Pj × Tj|internal ∪ Tj|internal × Pj))

∪ {(p, tf ) | f ∈ F ,∃j ∈ {1, . . . , �} : f [j] = t, (p, t) ∈ Fj}
∪ {(tf , p) | f ∈ F ,∃j ∈ {1, . . . , �} : f [j] = t, (t, p) ∈ Fj},

– W (t, p) =

{
Wj(t, p) for (t, p) ∈ Fj and t ∈ Tj|internal

Wj(t∗, p) for (t∗, p) ∈ Fj and t∗ = f [j], f ∈ F , j ∈ {1, . . . , �} ,

– W (p, t) =

{
Wj(p, t) for (p, t) ∈ Fj and t ∈ Tj|internal

Wj(p, t∗) for (p, t∗) ∈ Fj and t∗ = f [j], f ∈ F , j ∈ {1, . . . , �} ,

– m0 =
⋃

j∈{1,...,�} m0j.

We call N the modular Petri net for M.

Interface transitions of the individual instances are combined into fusion
transitions of the modular net. Interface transitions, which are not present in
a fusion vector, are not represented in the modular Petri net. Their behavior
can be neglected, since they do not participate in the composition. In theory,
they can still be added by introducing a fusion vector in which they participate,
but all other instances do not with any transition. Since only one transition
participates in a fusion vector per instance, the weight function is well-defined.
Further, the domains of all initial markings m0j for j ∈ {1, . . . , �} are pairwise
disjoint, making the initial marking also well-defined.
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2.2 Modular Behavior

Naturally, we are interested in the semantics of a modular structure and how this
relates to the behavior of the corresponding modular Petri net. In particular, we
want to be able to describe the modular state space without constructing the
composed state space in the background. For this, we introduce the notions of
local reachability and synchronization.

Local Reachability. Since the modular structure is defined through a set of
instances, we describe their behavior as local reachability. Since instances are
Petri net systems at their core, we can use existing notions for Petri nets to
describe their behavior. This typically includes the activation and firing of tran-
sitions.

Definition 6 (Transition Activation). Let m be a marking and t ∈ T be
a transition of Petri net N . Transition t is activated or fireable in marking m

(denoted by m
t−→) iff, ∀p ∈ P : W (p, t) ≤ m(p). If m does not activate t we

denote this by m � t−→.

Definition 7 (Firing Rule). Let t ∈ T be a transition of Petri net N . First,
we define Δt : P → N ∪ {0} as Δt(p) = W (t, p) − W (p, t) for all p ∈ P , where
we assume W (x, y) = 0 for (x, y) /∈ F for convenience. t fires in m and leads to
marking m′ (denoted m

t−→ m′) if m
t−→ and m′ = m + Δt.

One can see that this firing rule can be extended to transition sequences
ω ∈ T ∗, saying m

ε−→ m for the empty sequence and m
ωt−→ m′′, if m

ω−→ m′ t−→ m′′.
Similarly, since we use ⊥ in fusion vectors like transitions, we say m

⊥−→ m. By
extension, we define that marking m′ is reachable from marking m (denoted
m −→ m′), if a sequence ω ∈ T ∗ exists such that m

ω−→ m′.
With this, we can define the state space of an instance. This follows similar

notions regarding reachability graphs, but we make one restriction to produce
the local reachability graph. First, we can calculate the reachability set RSN (M)
for a given Petri net system N and a set of markings M . We define RSN (M) =
{m′ | m −→ m′,m ∈ M}.

Definition 8 (Projection). Let m ∈ RS({m0}) be a reachable marking of a
modular Petri net N . For a given instance [Nj ,m0j ] for j ∈ {1, . . . , �} of N , let
πj(m) = m ∩ (Pj × N) be the projection of m to [Nj ,m0j ].

Definition 9 ((Local) Reachability Graph). The reachability graph of a
Petri net system N = [P, T, F,W,m0] is the directed labeled graph R = [V R, ER],
where V R = RSN ({m0}) and (m, t,m′) ∈ ER iff m

t−→ m′ for some t ∈ T .
Given a modular structure M = [I,F ] and its corresponding modular Petri

net N , we can define the local reachability graph Lj = [V L
j , EL

j ] for an instance
[Nj ,m0j ] with j ∈ {1, . . . , �} based on R:

– V L
j = {πj(m) | m ∈ V R}
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– EL
j = EL

j|internal ∪ EL
j|interface with

• (πj(m), t, πj(m′)) ∈ EL
j|internal iff (m, t,m′) ∈ ER, t ∈ Tj|internal

• (πj(m), t, πj(m′)) ∈ EL
j|interface iff (m, tf ,m′) ∈ ER, f [j] = t, f ∈ F

Projecting the behavior of the modular Petri net to the instance restricts
its behavior to just the one relevant to the composed system. Since we disallow
arbitrary firing of interface transitions through the projection, we can also handle
instances whose state space would be infinite in the standalone case, but finite in
the composed case. Despite that, handling local reachability graphs that remain
infinite after this restriction are still infeasible to handle, which is why we restrict
ourselves to finite local reachability graphs.

Synchronization Graph. In addition to describing the behavior of singular
instances we want to reason about the composed system without generating its
full state space. As seen in Definition 5, the global behavior of the modular Petri
net (the behavior not fully described through a single instance) is generated
through fusion transitions. Per this same definition, a fusion transition can only
fire if every interface transition in the corresponding fusion vector can fire. In a
similar vein, an interface transition can therefore only appear in a local reacha-
bility graph if the corresponding fusion transition can fire. This means, at some
point, every interface transition of a fusion vector needs to be activated for this
to happen. These points of synchronization of the instances are captured in the
synchronization graph.

At this point we can introduce a simple abstraction. For a single instance,
it does not matter which marking from other instances activates their relevant
interface transition, only that it can be independently activated. Independently
here simply means without the help of other instances (through interface tran-
sitions). Therefore, we can abstract from single markings to sets of markings
reachable through just internal transitions. We call those sets segments.

Definition 10 (Segment). Let Lj = [V L
j , V L

j ] be the local reachability graph
of instance [Nj ,m0j ] for j ∈ {1, . . . , �}. A segment is a set of markings O ⊆ V L

j ,
which is forwardly closed in the following way:
If m ∈ O and (m, t,m′) ∈ EL

j|internal, then m′ ∈ O.

For a set of markings M ⊆ V L
j , let M̊ be the smallest segment that contains

M , i.e. the closure of M regarding internal transitions. We call set M a generator
of M̊ .

Markings in a segment are not necessarily connected or strongly connected, as
generators of a segment are not required to be connected. This is the main differ-
ence from previous approaches [5,6,17], which require generators to be strongly
connected. We drop this requirement, allowing for coarser segments. Segments
can lie arbitrarily to each other, i.e. they can intersect, be disjoint or contain
each other.

Segments describe internal behavior of an instance between occurrences of
interface transitions. For a fixed interface transition and a fixed segment, we
define the successor segment.
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Definition 11 (Successor Segment). Let O be a segment of the local reach-
ability graph Lj of instance [Nj ,m0j ] and t ∈ Tj|interface be an interface transi-
tion. The successor segment is defined as

O+t = M̊ , where M = {m′ | m ∈ O, (m, t,m′) ∈ EL
j|interface}

As we permit only one interface transition per instance in a fusion vector, the
successor segment is unambiguous. From time to time, we will abuse the notation
for a fusion transition tf ∈ T where f ∈ F is a fusion vector as O+tf = O+f [j]

for f [j] �= ⊥ and O+tf = O for f [j] = ⊥ for j ∈ {1, . . . , �}.
After abstracting the markings of an instance to segments, the next step is

to abstract the activation of interface transitions, from a single marking in the
reachability graph of the modular Petri net to a tuple of segments for every
instance.

Definition 12 (Global Activation). A fusion transition tf for fusion vector
f ∈ F is globally activated in a tuple of segments <O1, . . . , O�> if for all
instances [Nj ,m0j ] with j ∈ {1, . . . , �} and f [j] �= ⊥, there exists a mj ∈ Oj

with mj
f [j]−−→.

With this abstraction, we are ready to define the synchronization graph.
A vertex in the synchronization graph is an �-tuple of segments of the local
reachability graphs, one per instance.

Definition 13 (Synchronization Graph). The synchronization graph S =
[V S , ES ] of modular structure M = [I,F ] is inductively defined as follows:
Base: < ˚{m01}, . . . , ˚{m0�}> ∈ V S

Step: if v = <O1, . . . , O�> ∈ V S and fusion transition tf for fusion vector f ∈ F
is globally activated in v, then v′ = <O

+tf

1 , . . . , O
+tf

� > ∈ V S and (v, tf , v′) ∈ ES.

The graphs in Fig. 1b depict the above definitions applied to the modular
structure in Fig. 1a. Markings are written in multiset notation, while segments
are depicted through dotted borders.

Since we assumed local reachability graphs of the modules to be finite, the
synchronization graph will in turn also be finite. Based on these definitions,
the modular state space is well-defined for a given modular structure. Since the
modular Petri net resulting from that modular structure is also well-defined
(per Definition 5), a modular structure producing finite local reachability and
synchronization graphs would also produce a finite reachability graph of the
modular Petri net.

In the following we shall write N = [P, T, F,W,m0] as a modular Petri net, S
for the synchronization graph of the underlying modular structure and R for the
corresponding reachability graph. When relating markings m of R to vertices
v = <O1, . . . , O�> of S in the following sections, we shall write m ∈ v to mean
m ∈ O1 × . . . × O�.
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Fig. 1. Example net and modular state space

3 Verifying Linear Time Properties

A linear time property is defined as a set of traces. Intuitively, a trace may
be seen as a run of the system, abstracted to values of a given set of atomic
propositions.

Definition 14 (Traces, Reduced Form, Stuttering). Let AP be a finite
set of atomic propositions. A trace is an infinite sequence over the alphabet
2AP . For a trace A0A1A2 . . ., its reduced form is the finite or infinite sequence
A0Ai1Ai2 . . . such that the values ij are precisely the indices where Aij−1 �= Aij

,
in ascending order. A trace with a finite reduced form is called diverging. Two
traces with the same reduced form are called stutter equivalent. A property where,
for each contained trace, all stuttering equivalent traces are contained as well, is
called stutter invariant.

Linear time properties can be specified using linear time temporal logic
(e.g. LTL [14]), or using one of various classes of automata that accept infinite
sequences (e.g. Büchi automata, Streett automata, Rabin automata or parity
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automata [18]). Our subsequent results do not depend on the way of specifi-
cation, nor on the particular algorithm for checking a property, so we skip the
formal introduction of these concepts.

A linear time property holds in a Petri net if the set of traces that can be
realized in the Petri net is included in the property. In a Petri net, we can
distinguish between state based traces, where atomic propositions are related
to markings, and action based traces, where atomic propositions are related to
transitions. For simplicity, we consider only state based traces. There, we assume
that there is a mapping function eval : V R → 2AP mapping a marking m to the
atomic propositions that hold in m.

Further, we can extend our notion of projection to define the projection
πΓ (ω) of a transition sequence ω to a set of transitions Γ ⊆ T :

1. πΓ (ε) = ε (empty sequence stays empty),
2. πΓ (ωt) = πΓ (ω), if t /∈ Γ (remove unwanted transitions),
3. πΓ (ωt) = πΓ (ω)t, if t ∈ Γ (keep wanted transitions).

Definition 15 (Realizable Trace, Visible Transition). Let N be a Petri
net and mapping eval be as described above. Let ω = t1t2 . . . be an infinite tran-
sition sequence or a finite sequence of length k that leads to a deadlock marking.
Trace A0A1A2 . . . is induced by ω iff, assuming m0

t0−→ m1
t1−→ m2 . . ., we have

Ai = eval(mi) if ω is infinite or ω is finite and i ≤ k, and Ai = eval(mk),
if ω is finite and i > k. A trace is realizable if it is induced by an executable
firing sequence. A set of transitions Γ is a set of visible transitions if all pairs of
transitions sequences ω1 and ω2 with πΓ (ω1) = πΓ (ω2) induce stutter equivalent
traces.

The intuition behind visible transitions is that their firing can directly change
the value of atomic propositions. They therefore describe the “relevant” behavior
of the system w.r.t. a property. Stutter equivalence describes this for traces, and
the definition above translates this to transition sequences.

In the remainder of this section, we present results that relate
realizable traces to stutter equivalent traces in the modular state space. This
way, the modular state space can be used for verifying linear time properties.
We avoid the term “trace equivalence” since the modular state space as a whole
is not a transition system.

We develop our results bottom-up and start with a lemma concerning tran-
sitions in the synchronization graph.

Lemma 1 (Transition Lemma). Let v
tf−→ v′ be a transition in S with v =

<O1, . . . , O�> and v′ = <O′
1, . . . , O

′
�>. Let m′

j ∈ O′
j for j ∈ {1, . . . , �}. Then

there exist markings mj ∈ Oj and a sequence ω ∈ T ∗
internal such that

⋃
j mj

tf ω−−→⋃
j m′

j.

Proof. Consider instance [Nj ,m0j ] and some marking m′
j with j ∈ {1, . . . , �}.

For f [j] = ⊥, we can simply choose mj = m′
j . Otherwise, O′

j is induced by
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firing t = f [j] from Oj . By construction, we then have nonempty sets Pre =
{mpre | mpre ∈ Oj ,mpre

t−→} and Post = {mpost | ∃mpre ∈ Pre,mpre
t−→ mpost}.

Furthermore, O′
j is the closure of Post, so there exists a marking m∗

j ∈ Post and

a sequence ωj ∈ T ∗
j|internal of internal transitions with m∗

j

ωj−→ m′
j . Let mj be the

marking in Pre holding mj
t−→ m∗

j . Since internal transitions of different instances

are independent and tf is enabled in
⋃

j mj , we have
⋃

j mj
tf−→ ⋃

j m∗
j

ω1ω2...ω�−−−−−−→⋃
j m′

j . �
By induction, we can lift this lemma to finite transition sequences.

Corollary 1 (Finite Trace Lemma). Let t1t2 . . . tn be a path in S starting in
< ˚{m01}, . . . , ˚{m0�}> leading to node v and let m ∈ v. Then there exist sequences
ω0, . . . , ωn ∈ T ∗

internal such that m0
ω0t1ω1t2ω2...tnωn−−−−−−−−−−−−→ m.

Proof. (Sketch) We apply the transition lemma repeatedly. We start with vertex
v and its predecessor, obtaining ωn for tn first. We proceed backwards until we
finally derive ω1 for t1. Finally, we observe that every marking in the initial
segment is reachable from the initial marking by internal transitions. This way,
we obtain ω0. �

Since the proof of the finite trace lemma proceeds backwards (starting from
the final vertex), it cannot be trivially extended to infinite traces. For proving a
result for infinite traces, we need to argue with the finiteness of a modular state
space and apply an argument that resembles the proof of König’s Graph Lemma
[9].

Lemma 2 (Infinite Trace Lemma). Let t1t2 . . . be an infinite path in S start-
ing in < ˚{m01}, . . . , ˚{m0�}>. Then there exist sequences ω0, ω1, . . . ∈ T ∗

internal

such that m0
ω0t1ω1t2ω2...−−−−−−−−→.

Proof. For every i ∈ N, applying of the finite trace lemma to the prefix t1t2 . . . ti
of the given infinite transition sequence asserts the existence of ωi0, . . . , ωii such
that m0

ωi0t1ωi1...tiωii−−−−−−−−−−→. Without loss of generality we may assume that every
subsequence ωxy is cycle-free, i.e. does not visit any marking twice. We now
define, for every k ∈ N ∪ {−1}, an infinite set Ψk and a transition sequence ωk.
Base: Let ω−1 = ε (the empty sequence) and Ψ−1 = {(ωi0, ωi1 . . . ωii) | i ∈ N}.
Ψ−1 is obviously infinite.
Step: Let k ∈ N. We define ωk and Ψk assuming that ωj and Ψj are already
defined for all j < k. Since we assume N to be bounded, there are only finitely
many reachable markings and thus only finitely many cycle-free paths. Since
Ψk−1 is by assumption infinite, there exists a transition sequence ωk such that
ωk = ωik for infinitely many elements (ωi0, ωi1, . . . , ωik, . . . , ωii) ∈ Ψk−1. Fix
such ωk and let Ψk = {(ωi0, ωi1, . . . , ωik, . . . , ωii) | (ωi0, ωi1, . . . , ωik, . . . , ωii) ∈
Ψk−1, ωik = ωk}. By choice of ωk, Ψk is still infinite. Furthermore, our construc-
tion asserts that, for all j < k and all (ωi0, ωi1, . . . , ωii) ∈ Ψk, ωij = ωj . Since
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all the ωxy have been chosen according to the finite trace lemma, every element
remaining in Ψk proves that m0

ω0t1ω1...tkωk−−−−−−−−−→. For k1 < k2, trace ω0t1ω1 . . . tk1ωk1

is a prefix of trace ω0t1ω1 . . . tk2ωk2 . An infinite sequence of ascending (w.r.t. pre-
fix) finite transition sequences has a limit which is an infinite transition sequence.
Consequently, the infinite sequence ω0t1ω1t2ω2 . . . is executable from m0 in N
as well. �

With the finite and infinite trace lemmas, we can map paths in the synchro-
nization graph to paths in the reachability graph of a modular Petri net. The
reverse mapping follows from the construction of a modular state space.

Lemma 3 (Projection Lemma). Let ω be a finite or infinite sequence of
transitions in N . If m0

ω−→ then πTfusion
(ω) is a path in S.

We will not discuss the construction in this paper, but since Definitions 9 and
13 for the local reachability and synchronization graphs are similar to definitions
for usual reachability graphs, the construction and mapping can easily be derived
from there.

Next, we proceed to reestablish and generalize the main result of [10]. That
result states that properties definable in the temporal logic LTL, where fusion
transitions form a set of visible transitions, can be verified using the modular
state space. We extend this result to arbitrary linear time properties, includ-
ing properties that are not ω-regular (i.e. not recognizable by a finite Büchi
automaton). LTL can only specify ω-regular properties. The next results use the
assumption that fusion transitions form a set of visible transitions. As briefly
described in the previous section, this assumption can be enforced by inserting
new fusion vectors containing just a visible, internal transition.

Every executable infinite sequence ω in N with only finitely many occurrences
of fusion transitions generates a diverging trace. Using the projection lemma, the
fusion transitions form a finite path to a vertex <O1, . . . , O�> in the synchro-
nization graph. The suffix of ω beyond the last occurrence of a fusion transition
consists of internal transitions where those internal transitions that belong to
instance [Nj ,m0j ] do not leave the corresponding segment Oj for j ∈ {1, . . . , �}.
Assuming boundedness of N , this can only happen if there is a cycle of internal
transitions in at least one of the Oj , or there exist markings mj in Oj such that⋃

j mj is a deadlock marking in N . This observation is formalized in the next
definition.

Definition 16 (Diverging State). A vertex <O1, . . . , O�> in S is called a
diverging state if one of the following conditions holds:

(1) There exist markings mj ∈ Oj and nonempty sequences ωj ∈ T+
j|internal such

that mj
ωj−→ mj for j ∈ {1, . . . , �}, or

(2) There exist markings mj ∈ Oj for j ∈ {1, . . . , �} such that
⋃

j mj is a
deadlock marking in N .

If only fusion transitions are visible, then all markings that correspond to the
same vertex of the synchronization graph satisfy the same atomic propositions.
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Lemma 4 (Uniformity Lemma). Let m,m′ ∈ v for some vertex v ∈ V S.
Assuming visible transitions to only be fusion transitions, then m and m′ satisfy
the same atomic propositions, such is evalR(m) = evalR(m′).

Proof. Since m and m′ lie in the same vertex of the synchronization graph, apply-
ing the finite trace lemma to m and m′ can obtain sequences ω and ω′ such that
m0

ω−→ m, m0
ω′
−→ m′ and πTfusion

(ω) = πTfusion
(ω′). Since the fusion transitions

are the only visible ones, πTvisible
(ω) = πTvisible

(ω′) holds. Per Definition 15, ω
and ω′ induce stutter equivalent traces. This results in evalR(m) = evalR(m′).

�
The uniformity lemma justifies the next definition.

Definition 17 (Evaluation of Vertices in the Synchronization Graph).
The function evalS : V S → 2AP maps vertices v to satisfied atomic propositions
and is defined as evalR(m) for any marking m ∈ v.

Using the extended evaluation function, we can define the set of traces that
are realized in the modular state space.

Definition 18 (Traces Realized in the Modular State Space). Let N =
[P, T, F,W,m0] be a modular Petri net where the fusion transitions form a set of
visible transitions with respect to a linear time property Θ. Let θ = A0A1A2 . . .
be a trace using the atomic propositions of Θ. θ is realizable in the modular state
space of N if one of the following conditions holds:

(1) There exists an infinite path v0v1v2 . . . in S such that evalS(vi) = Ai for all
i, or

(2) There exists a finite path v0v1 . . . vn in S such that vn is a diverging state
and evalS(vi) = Ai for all i with 0 ≤ i ≤ n and Ai = An for all i with i > n.

Now we are ready to prove that linear time properties are preserved in the
modular state space.

Theorem 1 (Verification of Linear Time Properties). Let N be a modular
Petri net and Θ a linear time property where fusion transitions of N form a set of
visible transitions. Then, any trace θ of Θ is realized in N iff a stutter equivalent
trace θ′ is realized in the modular state space of N .

Proof. Implication: Let θ be realized in N , say, using an infinite or deadlocking
sequence ω and let ωF = πTfusion

(ω). Using the projection lemma, ωF defines a
path in the synchronization graph as well. By Definition 17, this sequence realizes
a trace that is stutter equivalent to θ. If ωF is finite, it leads to a diverging state
of the synchronization graph since it ends in a deadlock or an infinite sequence
with only internal transitions. Again, ωF realizes a stutter equivalent trace.
Replication: Let, in the first case, ω be an infinite path in the synchroniza-
tion graph. The infinite trace lemma yields a corresponding stutter equivalent
transition sequence in N . In the second case, let ω be a finite sequence in the
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synchronization graph that ends in a diverging state. Assume, in the first sub-
case, that divergence is caused by a deadlock state. Then the finite trace lemma
yields a corresponding path in N that ends in that deadlock state too and thus
realizes a stutter equivalent trace. If, in the second subcase, divergence is caused
by an internal cycle in any instance, the finite sequence lemma yields a sequence
to a marking that enters this cycle (and enters arbitrary markings in the other
instances). The assumed cycling sequence can be executed indefinitely in N since
internal transitions do not depend on other instances. Since internal transitions
are all invisible by assumption, that infinite sequence stutters in the same way
as in Definition 18. �

With Theorem 1, we can verify many linear time properties using the modular
state space. The result does not depend on the particular verification algorithm
to be used. In fact, we may turn the synchronization graph into a labeled transi-
tion system using the extended eval function. The conditions regarding diverging
states can be integrated by adding a self-loop to every such vertex. The result
in [10] relies on Büchi automata as representation of properties, so it does not
extend to non-regular properties.

4 Verifying CTL Properties

We aim to find results about CTL [7] verification in the modular state space
similar to the results obtained through Theorem 1 concerning linear time prop-
erties. To verify properties in the modular state space, we have to check how
obtained results translate to the regular state space of the modular Petri net.
Such preservation of CTL properties between systems is provided through bisim-
ulation [2,16] relations. In the following, we take the liberty to define such rela-
tions on reachability graphs of Petri nets instead of general transition systems.

4.1 Relation Between Modular Petri Nets and Modular Structures
for CTL

Normally, bisimulation relations are defined between two transition systems,
our modular structure however is not such. Since we are interested in model
checking the complete modular Petri net, we analyze CTL preservation between
the reachability graph of the modular Petri net and its synchronization graph,
since the latter represents the global behavior of the system.

As we will see in Fig. 2 below, bisimulation relations can not be found for our
use case with sensible results. Therefore, we will instead focus on weak bisimula-
tions [2,15,16], that preserve CTLX , the subclass of CTL without the X oper-
ator. Since not every possible action in a transition system influences atomic
propositions of a formula, this is not very restrictive in practical scenarios. At
the basis of weak bisimulation again lie visible transitions. While properties in
CTL are not directly defined over traces like for linear time properties, we can
still apply that notion. When talking about “visible” and “invisible” transitions
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in the general sense in the following, we mean (in)visible in relation to a property
Θ without explicitly naming Θ. Further, since the synchronization graph is akin
to a reachability graph, we can also substitute it for the following definition.

Definition 19 (Weak Bisimulation). Let R,R′ be two reachability graphs
for two Petri nets N,N ′ with corresponding functions eval and eval′, where the
nets share transition labels, i.e. TN = TN ′ . Let T = TN for simplicity. A relation
σ ⊆ V R × V R′

is a weak bisimulation relation iff

i) σ(m,m′) implies eval(m) = eval′(m′),
ii) σ(m,m′) and m

t−→ m1 for some t ∈ T implies a m′
1 with m′ t=⇒ m′

1 and
σ(m1,m

′
1),

iii) σ(m,m′) and m′ t−→ m′
1 for some t ∈ T implies a m1 with m

t=⇒ m1 and
σ(m1,m

′
1),

where t=⇒ denotes ω1−→ . . .
t−→ . . .

ω2−→ when t is visible and ω−→ when t is invisible
for ω, ω1, ω2 ∈ T ∗

invisible.

Two reachability graphs R,R′ are further weakly bisimular iff a weak bisim-
ulation relation σ exists, such that σ(m0,m

′
0) holds.

Fig. 2. Counterexample for (weak) bisimulation

Like in the previous section, we restrict visible transitions to simply be fusion
transitions of the modular Petri net. Unfortunately, this restriction alone is not
enough to satisfy Definition 19. This can be seen through Fig. 2. There, the
modular Petri net is made up of two instances [N1, a] and [N2, ∅] with one fusion
vector f = (t12, t22). Figure 2 also shows the local reachability graphs and the
synchronization graph. We choose tf to be a visible transition to have some
relevant behavior in the net. Let σ ⊆ V R × V S now describe a relation where
σ(a,<O11, O21>) holds. Since t11 is activated in a, <O11, O21> also needs a
valid transition sequence in the synchronization graph in order to satisfy Def-
inition 19 for σ. Since t11 is invisible (and tf is not), the only valid transition
sequence is the empty sequence, implying σ(b,<O11, O21>). But tf is activated
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in <O11, O21>, while b is a deadlock marking. Therefore, Definition 19 cannot
hold for σ. Ignoring our restriction from before, when every transition is visible,
weak bisimulation is equivalent to normal bisimulation. Since weak bisimulation
does not hold in the general case, bisimulation also does not hold, supporting
our earlier argument. To deal with weak bisimulation in the general case, we
will discuss a possible refinement of the synchronization graph in the following
section with the aim to satisfy Definition 19.

4.2 Refinement in the Synchronization Graph

As implied by Fig. 2, weak bisimulation requires σ(m, v) for any marking m
and vertex v with m ∈ v. Since every m ∈ v therefore needs to be able to
activate visible transitions activated in v, weak bisimularity generally does not
hold, since our definition of segments does not require that. We aim to refine the
synchronization graph to allow this based on local strong connectivity.

Definition 20 (Local Strong Connectivity). Let Lj = [V L
j , EL

j ] be the local
reachability graph of an instance [Nj ,m0j ] for j ∈ {1, . . . , �}. Two markings
m,m′ ∈ V L

j are locally strongly connected (we write m ∼Lj
m′), iff m

ω−→ m′

and m′ ω′
−→ m, where ω, ω′ ∈ T ∗

j|internal. Relation ∼Lj
is an equivalence rela-

tion. The equivalence classes are named locally strongly connected components
(LSCCs).

Since LSCCs are bounded by internal transitions, a single LSCC is either fully
in a segment or not included at all. Because of this, a segment can unambiguously
be described by its LSCCs. Since segments can overlap, an LSCC can also be
included in multiple segments.

The idea for the refinement is then as follows: Instead of defining the syn-
chronization graph over segments, we define subsegments as its base. A segment
decays into subsegments, while the local reachability graph can be partitioned
into subsegments. For a subsegment it should hold that all markings in the sub-
segment can activate the same interface transitions, perhaps with some internal
transitions firing before. Additionally, firing an interface transition from a sub-
segment should always lead to the same successor subsegment. This is needed,
since generators of segments are not required to be strongly connected, there-
fore not every marking of a generator has to be in the same subsegment. This
restriction should similarly hold for internal transitions that leave a subsegment.
Since internal transitions are assumed to be invisible anyway, we can however
weaken the restriction here: When leaving a subsegment through firing an inter-
nal transition, the successor subsegment should be reachable from all markings
in the subsegment through an arbitrary sequence of internal transitions.

Definition 21 (Subsegment). Let L = Lj for j ∈ {1, . . . , �} be the local
reachability graph of some instance. Let {O1, . . . , Or} be the set of segments of
L. Every Segment Ox for x ∈ {1, . . . , r} decays into a set of qx subsegments
{Ux1, . . . , Uxqx

}, such that the following holds:
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i) {Ux1, . . . , Uxqx
} is a partition of Ox

ii) Let m be a marking of subsegment Uxa ⊆ Ox for a ∈ {1, . . . , qx}. If there

is a fusion vector f ∈ F such that m
ω1f [j]ω2−−−−−→ m1 where m1 ∈ Ux′b ⊆ Ox′

with x′ ∈ {1, . . . , r}, b ∈ {1, . . . , qx′} and ω1, ω2 ∈ T ∗
j|internal, then for every

marking m′ ∈ Uxa, there is a m′
1 ∈ Ux′b and ω′

1, ω
′
2 ∈ T ∗

j|internal such that

m′ ω′
1f [j]ω′

2−−−−−→ m′
1.

iii) Let m be a marking of subsegment Uxa ⊆ Ox for a ∈ {1, . . . , qx}. If m
ω−→ m1

where m1 ∈ Uxb ⊆ Ox with b ∈ {1, . . . , qx} and ω ∈ T ∗
j|internal, then for

every marking m′ ∈ Uxa, there is m′
1 ∈ Uxb and ω′ ∈ T ∗

j|internal such that

m′ ω′
−→ m′

1.

In the above, Definition 21ii deals with the first restriction on subsegments,
that every fireable interface transition should be fireable from every marking in
the subsegment. Definition 21iii deals with the second restriction, that succes-
sor subsegments reached through internal transitions should also be reachable
from every marking of the subsegment, albeit not necessarily through the same
sequence.

Even with this restriction, subsegments are not equal to segments in [5,6,17].
We form different requirements for subsegments. Therefore, subsegments may
not generally be coarser than segments defined in [5,6,17] and vice versa.

Lemma 5 (LSCCs are Subsegments). Let Lj for j ∈ {1, . . . , �} be the
local reachability graph of an instance [Nj ,m0j ]. Any LSCC of Lj is a valid
subsegment.

Proof. The proof for this lemma is trivial. Local strong connectivity partitions
the local reachability graph. If an interface transition is activated in one marking
m, it is fireable in every marking strongly connected to m, so we can perform the
transition to the successor subsegment. The same holds for internal transitions.

�
We can advance this fact to the following.

Lemma 6 (Closure of Subsegments). Let Lj for j ∈ {1, . . . , �} be the local
reachability graph of an instance [Nj ,m0j ]. Subsegments of Lj are closed with
respect to local strong connectivity.

Proof. Let t be an interface transition or an internal transition that occurs
between two subsegments. Assume marking m

ωt−→ with ω ∈ T ∗
j|internal and

another marking m′ that is locally strong connected to m. We can extend ω to
ω′′ = ω′ω for ω′ ∈ T ∗

j|internal with m′ ω′
−→ m and thus, m′ belongs to the same

subsegment as m. �
This means that an LSCC either lies completely within a subsegment or not at

all. Based on this, we can partition every local reachability graph of the instances
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into subsegments. As allured to before, the set of LSCCs is a valid partition as
well. In the worst case, the refined synchronization graph is the LSCC graph of
the modular Petri net, where a vertex constitutes an LSCC. Even though this is
intuitive, this might cause too many and too small subsegments. More partitions
lead to a more complex synchronization structure that is at the expense of the
efficiency of the verification. Therefore, the subsegment partitions should be as
coarse as possible.

We reuse the wording of global activation (cf. Definition 12) for subsegments
and eliminate misunderstandings by adding the context of a global activation in
a tuple of segments for the synchronization graph and a tuple of subsegments for
the refined synchronization graph respectively. A fusion transition tf is globally
activated in a tuple of subsegments <U1, . . . , U�>, if for all instances [Nj ,m0j ]

with f [j] �= ⊥ and j ∈ {1, . . . , �}, there exists a mj ∈ Uj such that mj
f [j]−−→.

With the concept of subsegments we can now introduce the refined synchro-
nization graph. A vertex in the refined synchronization graph is an �-tuple of
subsegments of the local reachability graphs, one per instance.

Definition 22 (Refined Synchronization Graph). Based on a subsegmen-
tal partitioning, the refined synchronization graph S∗ = [V S∗

, ES∗
] is inductively

defined as follows:
Base: <U({m01}), . . . , U({m0�})> ∈ V S∗

, where U({m0j}) ⊆ ˚{m0j} is the sub-
segment containing m0j for j ∈ {1, . . . , �}.
Step: Let v = <O1, . . . , O�>, v′ = <O

+tf

1 , . . . , O
+tf

� > ∈ V S be vertices and
(v, tf , v′) ∈ ES an edge of S (Definition 13). Further, let u = <U1, . . . , U�> ∈
V S∗

be a vertex of S∗ such that Uj ⊆ Oj for j ∈ {1, . . . , �}. Assuming that

i) Fusion transition tf for fusion vector f ∈ F is globally activated in u and
for all j ∈ {1, . . . , �}, U ′

j ⊆ O
+tf

j is a subsegment with m ∈ Uj and m′ ∈ U ′
j

such that m
f [j]−−→ m′. Then, u′ = <U ′

1, . . . , U
′
�> ∈ V S∗

and (u, tf , u′) ∈ ES∗
.

ii) For instance [Nj ,m0j ] with j ∈ {1, . . . , �} there is a transition t ∈ Tj|internal,
subsegment U ′

j ⊆ Oj and markings m ∈ Uj and m′ ∈ U ′
j such that m

t−→ m′.
Then u′ = <U1, . . . , Uj−1, U

′
j , Uj+1, . . . , U�> ∈ V S∗

and (u, τ, u′) ∈ ES∗
.

In the definition above, subpart 22i conserves all the edges of the synchro-
nization graph in the refined version. The new vertices contain the subsegments
reached by the interface transitions of every instance. Subpart 22ii adds the edges
between subsegments that result from splitting segments to the refined synchro-
nization graph. Here, only one subsegment changes, namely the one where the
corresponding segment was partitioned. The edge is then labeled with τ , since
subpart 21iii does not define one single internal transition.

Figure 3 shows the refinement applied to the simple modular structure
depicted in Fig. 1a. Subsegments are drawn using dashed lines. While many
subsegments are comprised of single LSCCs, U11 and U12 show that dropping
the restriction for strongly connected segments can allow for coarser refinement.
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Fig. 3. Refinement applied to example from Fig. 1

4.3 Relation Between Modular Petri Nets and the Refined Modular
Structure for CTL(X )

With the definitions introduced in the previous section, we can discuss if and
how they allow for CTL preservation between a modular Petri net and its mod-
ular structure. As in Sect. 4.1, we already find that CTL cannot be preserved,
so we now discuss the subclass CTLX . The goal then becomes finding a relation
between the reachability graph of a modular Petri net and the refined synchro-
nization graph of the underlying modular structure that proves weak bisimula-
rity.

Definition 23 (Relation Between R and S∗). Let u ∈ V S∗
and m ∈ V R.

Then σ∗ ⊆ V R ×V S∗
is a relation between S∗ and R defined as σ∗(m,u) ⇔ m ∈

u.

In the following, we will show how this relation proves weak bisimularity
between the two graphs, assuming visible transitions of formulae to be fusion
transitions only. We will discuss if the refined synchronization graph can imi-
tate transition firings of the reachability graph and vice versa in terms of weak
bisimularity for Definition 19.

Lemma 7 (Reachability Imitation Lemma). Let u = <U1, . . . , U�> ∈
V S∗

and m ∈ V R with σ∗(m,u) according to Definition 23. Let m
t−→ m′ be a

transition in R, then there exists a u′ = <U ′
1, . . . , U

′
�> ∈ V S∗

where the following
holds:

– u
t−→ u′ if t is a fusion transition

– u
τ−→ u′ or u′ = u if t is an internal transition

– σ∗(m′, u′)



350 L. Zech and K. Wolf

Proof The proof is divided into two parts: Assuming t to be a fusion transition
(1) and assuming t to be an internal transition (2). The proof is further illustrated
in Fig. 4.

(1) Since σ∗(m,u) holds, πj(m) ∈ Uj holds for all j ∈ {1, . . . , �}. Since m
t−→

holds, πj(m)
tj−→ also holds for every j with tj = f [j] �= ⊥ where f is the

fusion vector corresponding to t. Therefore, u
t−→ holds. Per Definition 22i,

since πj(m)
f [j]−−→ πj(m′), there exists a vertex u′ = <U ′

1, . . . , U
′
�> with

πj(m′) ∈ U ′
j and u

t−→ u′ in the refined synchronization graph. Then, m′ ∈
U ′
1 × . . . × U ′

�, and therefore σ∗(m′, u′), also holds.
(2) Similarly to above, πj(m) ∈ Uj holds for j ∈ {1, . . . , �}. Since t is internal

to just one instance, we can fix j to where t ∈ Tj|internal holds. Assuming
πj(m′) ∈ Uj , we can simply set u′ = u and σ∗(m′, u′) holds because of the
definition of σ∗ (cf. Definition 23). Assuming πj(m′) ∈ U ′

j where Uj �= U ′
j , a

vertex u′ = <U1, . . . , Uj−1, U
′
j , Uj+1, . . . , U�> exists in the refined synchro-

nization graph with u
τ−→ u′ per Definition 22ii. Further, σ∗(m′, u′) holds

since m′ ∈ u′. �

Fig. 4. Illustration for Lemma 7

Figure 4 illustrates the above proof. The imitated transition in the reachabil-
ity graph and other assumptions from the lemma are seen through solid lines.
The proof matter is noted through dotted lines. Dashed lines illustrate how we
can derive the latter from the former.

Similarly to the above, we can find a lemma regarding the imitation of actions
of the refined synchronization graph through the reachability graph.

Lemma 8 (Refined Imitation Lemma). Let u = <U1, . . . , U�> ∈ V S∗
and

m ∈ V R with σ∗(m,u) according to Definition 23. Let u
t−→ u′ be a transition

in S∗ with u′ = <U ′
1, . . . , U

′
�>, then there exists a marking m′ ∈ V R where the

following holds:

– m
ω1tω2−−−−→ m′ if t is a fusion transition with ω1, ω2 ∈ T ∗

internal

– m
ω−→ m′ if t is an internal transition with ω ∈ T ∗

internal

– σ∗(m′, u′)
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Proof. This proof is also divided into two parts: Assuming t to be a fusion
transition (1) and assuming t to be an internal transition (2). The proof is
further illustrated in Fig. 5.

(1) First, πj(m) ∈ Uj holds for all j ∈ {1, . . . , �}. Since t is globally enabled in u,

there exist markings m1j ∈ Uj and m′
1j ∈ U ′

j with m1j
f [j]−−→ m′

1j for fusion
vector f corresponding to t per Definition 22i. According to Definition 21ii,

there exists a marking m′
j ∈ U ′

j with πj(m)
ω1jf [j]ω2j−−−−−−−→ m′

j and ω1j , ω2j ∈
T ∗

j|internal. Since internal transitions of different instances do not interact
with each other, the transition sequence ω11 . . . ω1�tω21 . . . ω2� leads to m′ =⋃

j m′
j starting in m. Since m′ ∈ u′, σ∗(m′, u′) holds.

(2) For an internal transition t, u
τ−→ u′ holds in the refined synchronization

graph and u′ = <U1, . . . , Uj−1, U
′
j , Uj+1, . . . , U�> for some j ∈ {1, . . . , �}.

Per Definition 22ii, Uj and U ′
j lie in the same segment and there exist mark-

ings m1j ∈ Uj and m′
1j ∈ U ′

j such that m1j
t−→ m′

1j . Per Definition 21iii, there
exists a marking m′

j ∈ U ′
j such that πj(m) ω−→ m′

j with ω ∈ T ∗
j|internal. Since

ω does not interact with other instances, ω leads to m′ = m′
j ∪ ⋃

a�=j πa(m)
for a ∈ {1, . . . , �}. Therefore, m′ ∈ u′ and σ∗(m′, u′) holds. �

Fig. 5. Illustration for Lemma 8

Similarly to before, in Fig. 5 solid lines indicate assumptions from the lemma,
while dotted lines indicate proof matter and dashed lines derivatives from the
assumptions through definitions.

The previous lemmas deal with transition imitation of the reachability graph
through the refined synchronization graph and vice versa, which align with the
requirements for weak bisimulation for Definition 19. In addition to that, evalS∗

needs to be defined. This can be done akin to evalS in Definition 17. While
that definition only applies to the unrefined synchronization graph, it can easily
be extended to the refined synchronization graph. Since Uj ⊆ Oj for a given
vertex in the refined synchronization graph <U1, . . . , U�> and its corresponding
vertex in the synchronization graph <O1, . . . , O�> for j ∈ {1, . . . , �}, one can
also define evalS∗ like evalS . Finally, weak bisimularity is then provided through
Definitions 22 and 23 for S∗ and σ∗ respectively. This leads to the following
theorem.
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Theorem 2 (Weak bisimularity through σ∗). Let R = [V R, ER] be the
reachability graph of a modular Petri net and let S∗ = [V S∗

, ES∗
] be the refined

synchronization graph of the underlying modular structure. Weak bisimularity
holds through σ∗ for a formula Θ ∈ CTLX , whose visible transitions are only
fusion transitions.

Corollary 2 (CTLX preservation through the refined synchronization
graph). Let N = [P, T, F,W,m0] be a modular Petri net with its reachability
graph R based on modular structure M = [I,F ] and let S∗ be the refined syn-
chronization graph of M. Then R and S∗ satisfy the same formulae from CTLX ,
i.e. for some formula Θ ∈ CTLX

R � Θ ⇔ S∗ � Θ

holds.

Proof. The proof follows from Theorem 2 and the proof for CTLX preservation
from [2]. �

5 Conclusion

Based on a new view of the modular state space, we analyzed the verification
of temporal logic properties under these new conditions. By generalizing the
possible behavior between two consecutive firings of interface transitions, we
have gained a greater abstraction. We could re-establish the preservation of
LTL properties and generalize the result to non-regular linear time properties.
Similarly, we have shown that CTLX properties are preserved as well after some
refinement, while still not requiring strongly connected subsegments.

While we restrict ourselves to properties with only visible interface transi-
tions, properties where internal transitions are visible can be verified as well. We
simply need to declare these transitions as interface transitions and introduce
singleton fusion vectors. Of course, the additional interface transitions may cause
a combinatorial explosion in the synchronization graph. It is therefore desirable
to have results that permit the verification of such properties without changing
the set of interface/fusion transitions. Such results are a natural field for future
research.

The obvious next step would be to implement the methods. While the preser-
vation allows standard model checking algorithms to be used, the construction
of the modular state space is not implemented yet. Further, a method to split a
plain Petri net into modules would allow for broader applicability.
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Abstract. In the last decade, there has been a significant shift towards
the use of machine learning (ML) within the technology industry. One
prominent ML algorithm is the Tsetlin Machine (TM), where it uses a
collection of learning automata to learn new patterns through propo-
sitional logic. While TMs are considered computationally simpler and
more efficient than neural networks (NNs), there is difficulty in how TMs
can be better understood by industrial practitioners. Although many
approaches help demonstrate the benefits of TMs, there is however no
approach that helps better explain the behaviour of TMs, e.g. how the
TM’s decision is influenced by the initial states of their learning automata
and how the TM’s learning is determined by the calculations made from
its inference and feedback components. In this paper, we present the
concept of event-driven TMs, where we model the complete behaviour
of TMs using 1-safe Petri nets. The key aspects of Petri nets are their
flexibility to model many types of specifications including distributed
systems and concurrent systems, and their rich support from many well-
established tools including Petrify, MPSat, and Workcraft. To
highlight the benefits of our approach, we conduct a simple experiment
where we showcase our Petri net specifying the complete behaviour of
a TM, analyse its behaviour through a set number of epochs, and most
importantly evaluate its accuracy.

Keywords: Petri nets · Tsetlin Machine · Learning Automata ·
Workcraft · Machine Learning

1 Introduction

The use of Artificial Intelligence (AI) has recently seen a significant increase
within many areas of application ranging from large classification problems, such
as management of high-dimensional data, to automated control processes and
synthetic mediums, such as self-driving cars and audio synthesis respectively.
Although AI is shown to be beneficial, the energy cost required to use this
technology is extremely high and requires a large amount of resources. As a
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result, it is paramount that the designer not only improves the accuracy of
their AI solutions like machine learning (ML) algorithms, but also optimises its
performance and reduces its energy costs as a whole.

One prominent ML algorithm is the Tsetlin Machine (TM) [9], which is a type
of learning automaton collective that uses a team of Tsetlin Automata (TAs) [19]
to learn new patterns through propositional logic. With recent developments in
TMs, they show great promise as they have high accuracy with relatively good
performance and low energy costs, while solving several large classification prob-
lems [2,3,5] and seeing use in areas like circuit design [12,14] and financing [4].

However, despite the TM’s growing potential, there is still difficulty in how
they can be understood by practitioners from industry, when compared to more
traditional ML algorithms like neural networks (NNs). Although the aforemen-
tioned works help demonstrate the benefits of TMs, there is currently no app-
roach that helps explain the behaviour of TMs, e.g. how the initial states of TAs
affect the calculations of the TM’s clauses and how the TM’s guess impacts the
feedback process that influences the training process of its TAs.

In this paper, we introduce the concept of event-driven TMs by proposing
the use of Petri nets [16] to model the complete behaviour of TMs. Here, we
surmise why Petri nets are a good tool for modelling TMs and why TMs are a
good application for Petri nets to enter the world of ML.

Firstly, let us consider why Petri nets for modelling TMs. Petri nets are
a very flexible model that can express many types of specifications including
distributed systems, concurrent systems, asynchronous circuits, and even poten-
tially ML algorithms. One key aspect as to why Petri nets should be used is due
to the TM’s training process that is based on Finite State Machines (FSMs) [8],
which are naturally discrete-event based. In particular, the events in FSMs are
based on rules that derive from Boolean logic, where they are similar to the ML
algorithm’s inference procedure that is also based on Boolean logic. Addition-
ally, some operations like the accumulation of votes in class sums can be easily
represented using operation semantics, which are also natural for Petri nets. In
fact, the whole process of computing the classification and reinforcing the TA
states is essentially discrete-event driven, as the idea of multiple features, mul-
tiple clauses being calculated independently, and the ensemble of TAs that are
evolving in parallel, all naturally extends to the concepts of concurrency and
causality that can be easily captured by Petri nets.

Now, let us consider why TMs for enabling ML-based Petri nets. What makes
TMs a particularly interesting model for Petri nets is how they establish the
necessary bridge for Petri nets to enter the world of ML, due to the above points.
Additionally, the relatively transparent behavioural discrete-event semantics of
TMs makes them a convenient application use case for Petri nets, and the level
of detail in modelling TMs using Petri nets is significantly higher than what can
be achieved with modelling deep NNs, due to the latter essentially operating
more like a “black” box with some potentially obscure internal behaviour that
cannot be easily captured with the standard Petri net representation.

By considering the above points and their impact on modelling ML processes,
one can see that the challenge of an explainable ML algorithm or AI can be
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potentially resolved using the various automation and visualisation tools that
are available in the arsenal of Petri net analysis.

Thus, the main contribution of this work is as follows:

– A step-by-step approach on how event-driven TMs can be modelled using
Petri nets (Sect. 3) where we provide the blueprint Petri nets of the TM’s
inference component (Sect. 3.2) and feedback component (Sect. 3.3).

– An analysis of the TM Petri net’s size and behaviour including a visual
methodology of using another Petri net specifying a measurement recorder to
collect the analytical data during simulation in Workcraft (Sect. 3.4).

– A simple experiment that demonstrates how the TM Petri net learns the
pattern of a given dataset before we analyse its behaviour and evaluate its
average running accuracy against a reference TM between each epoch, with
discussion on some potential benefits of our approach (Sect. 4).

2 Preliminaries

Before we show how event-driven TMs can be modelled using Petri nets, it is
important that we first cover the necessary background in TMs and some of the
available features in the Workcraft toolset that are used in this work.

2.1 Tsetlin Machines

TM [9] is a ML algorithm that uses a collection of learning automata to learn new
patterns through propositional logic. Like many other ML algorithms, there are
two major stages that contribute to the TM’s learning: inference and feedback.
The former is the process of running data points into the ML algorithm to
calculate some output, e.g. a single numerical score, while the latter is the process
of how the ML algorithm learns from this output based on the user’s desired
outcome before adjusting its parameters for the next calculation.

To help understand the procedures involved in the TM’s inference and feed-
back components, Fig. 1 illustrates a Petri net specifying a simplified overview
of the multi-class TM architecture. Note that a more detailed overview of the
multi-class TM architecture can be found in Sect. 3.

Firstly, before inferencing, a set of datapoints is fed into the TM as shown
with the transition labelled “Load data”. Note that these datapoints may be in
raw data format (i.e. raw features) meaning they must be converted into Boolean
literals, which are required by TMs as their input. To convert these raw features
(either integer or floating point values), they are passed through a Booleaniser
component that compares it with a user specified threshold to generate a Boolean
feature (i.e. a single bit Boolean value of 0 or 1). These Boolean features are then
converted into Boolean literals to also contain their complement, as using both
the feature and complement allows the Boolean literal space to represent every
possible value that each Boolean feature can acquire [13].

Once the TM begins inferencing as shown with the transition labelled “Begin
Inference”, the Boolean literals are fed into every class, such that each clause
receives this literal and calculates some output until all clauses have calculated
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Fig. 1. Simple Petri net view of the Multiclass TM’s procedure.

an output before the class sum is calculated. These are shown in the dashed area
labelled “Calculation of Clause outputs and Class sum” that comprises the class’
operation, where the transition labelled “Compute output” produces a token to
each transition labelled “Clause 1..N” before merging at the transition labelled
“Class sum”. When the class sums of every class is calculated, they are fed into an
argmax component as shown with the transition labelled “Argmax” to calculate
the final classification that is used to determine whether the class(es) will receive
feedback (i.e. a penalty or reward action) or not (i.e. an inaction).

After the final classification has been calculated, the TM can begin feedback.
Here, the feedback process begins by selecting the expected class and a random
class to receive feedback, as shown with the transition labelled “Select expected
class and random class”. Note that the chance of these classes receiving feedback
depends on a probability check based on their class sum, where, if feedback is
given, we iterate through each clause of the class and determine the type of
feedback to be given depending on whether the class is the expected one, the
polarity of the clause, and the current state of the corresponding TA.

2.2 Tsetlin Automata

TAs are a class of the finite reinforcement automaton [19], where it produces
an exclude output (i.e. 0) for states below the midpoint and an include output
(i.e. 1) for states above the midpoint as shown in Fig. 2. For TAs to transition
between states, it must receive either a penalty action or a reward action from
the TM’s feedback component. Continued reward actions in the end states (i.e.
state 1 and state 2n) causes the TA to saturate, while penalty actions in one
of the midstates (i.e. state n or state n ` 1) causes the TA to transition across
the decision boundary and invert its output from exclude to include or vice
versa [20]. Note that the TM’s team of TAs comprises the TAs of each Boolean
literal and are randomly initialised to one of the midstates.
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1 2 n n+1 n+2 2n... ...

Action 1 (exclude) Action 2 (include)

Reward
Penalty

Fig. 2. Overview of a TA.

The logic of the TM’s feedback can be decomposed into three stages: FB1,
FB2 and FB3. FB1 focuses on feedback at the TM level, while FB2 focuses on
feedback at the clause level and FB3 focuses on feedback at the TA level [20].
FB1 and FB2 are assigned either types none, T1 and T2, where the latter two
are based on the Type I and Type II feedbacks that are shown as the transi-
tions labelled “Type I” and “Type II” respectively in Fig. 1, while FB3 determines
whether a TA receives a penalty, reward, or inaction as shown in the dashed area
labelled “Feedback actions” comprising the corresponding transitions. Addition-
ally, each feedback stage’s output is the next stage’s input (e.g. FB1’s output is
FB2’s input) until the FB3’s output is the input of the corresponding TA.

By referring to the above paragraph and the TM’s payoff matrix [9], we
can create the following truth table [20] shown in Table 1 where it includes the
feedback type (i.e. the output of FB2), the TA’s state, the clause’s output, the
literal’s value and the TA’s next action (i.e. the output of FB3). The values in
this truth table can be defined as T1 being Type I feedback, T2 being Type
II feedback, inc(0) and inc(1) being exclude and include respectively, c(0) and
c(1) being clause output 0 and clause output 1 respectively, x(0) and x(1) being
literal value 0 and literal value 1 respectively, ps “ 0 ” 1

s and ps “ 1 ” s´1
s , I

being inaction, R being reward, P being penalty, and ˆ being a don’t care.

Table 1. TM’s Payoff matrix

FB2 none T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T2 T2 T2
inc ˆ 1 1 1 1 0 0 0 0 0 0 1 0 0
c ˆ 0 0 1 1 0 0 1 1 1 1 ˆ 1 0
x ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 0 1 1 ˆ 0 ˆ
ps ˆ 0 1 0 1 0 1 1 0 0 1 ˆ ˆ ˆ
FB3 I P I I R R I I R I P I P I

2.3 WORKCRAFT Toolset

Workcraft [1] is a visual framework that provides rich support for the design
automation of many interpreted graph models including FSMs, Petri nets, and
Signal Transition Graphs [6,18]. Workcraft has a graphical front-end that
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supports the design, editing, and simulation of these interpreted graph models,
as well as an established back-end of tools including Petrify [7] and MPSat [11]
for the verification and circuit synthesis of these integrated graph models. Addi-
tionally, Workcraft uses a plugin-based architecture that allows new plugins
and new back-end tools to be easily integrated within the framework. Moreover,
Workcraft supports a host of design features for its integrated models, where
some are even exclusive to Petri nets and STGs.

One of the design features used throughout this work are “proxy places”
or proxies for short. Proxies are places that have been “graphically collapsed”,
where their original arc connections that connect to and from transitions are
condensed and are replaced with a simple text block of the place’s name as shown
in Fig. 3. Note that proxies are purely visual and do not change the behaviour of
the Petri net, as the original place still exists semantically and is only visually
disconnected from the rest of the Petri net. This allows the designer to easily
model their Petri net without creating too many overlapping arc connections,
and to easily keep track of specific places without traversing the whole Petri net,
e.g. a proxy corresponding to when a system enters its critical section. Moreover,
proxies can even simplify the design of a Petri net to ensure that they remain
comprehensible, and enables the ability to analyse several metrics of the Petri
net, e.g. the total number of tokens gained by firing a repeated action.

(a) Petri net without proxies. (b) Petri net with proxies.

Fig. 3. Visual comparison of non-proxies with proxies.

3 Design of Event-Driven Tsetlin Machines

In this section, we present how event-driven TMs can be modelled using Petri
nets. Some initial work on representing asynchronous behaviour of TMs using
Petri nets has been carried out in [20], where these Petri nets superficially mod-
elled partial tiles that comprise the TM’s clause calculation and the TM’s class
sum, before their results are merged to generate the final classification output.

For this work, our Petri nets are modelled to the level of multi-class TMs [9,
13], where we focus on how the TM’s inference and feedback components can be
designed hierarchically by modelling each operation as smaller segments before
composing them [15] to the component level and subsequently to the TM level.

We then analyse the size and behaviour of our TM Petri net, where for the
former we calculate the sizes of each Petri net segment and compare them to
used segments of our TM Petri net, and for the latter we create another Petri
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net that specifies a measurement recorder to capture analytical behaviour of the
TM Petri net during simulation in Workcraft.

For simplicity purposes, our example will be based on a two-class TM learning
the pattern of a two-input XOR gate using the dataset {00, 01, 10, 11} where
each TM contains two clauses, each clause contains four TAs, and each TA
contains six states (i.e. three exclude states and three include states).

3.1 Architecture of Multi-class Tsetlin Machine

To help understand how each TM component can be modelled as a Petri net,
Fig. 4 provides a more detailed overview of the multi-class TM interface.

Figure 4(a) shows the loading of datapoints into the TM, where these data-
points may be raw features that must be converted into Boolean features through
a Booleaniser component and then subsequently into Boolean literals to pro-
duce the feature’s binary and complement values. Note that Boolean literals are
required as inputs for the TM as explained in Sect. 2.1.

Figure 4(b) shows how the Booleanised data and the state values of the team
of TAs are used to calculate the outputs of each TM’s clauses, where an OR
expression of each Boolean literal and the value of the literal’s corresponding
TA is first composed before an AND expression of every OR expression’s value
is composed to produce the clause output.

Figure 4(c) shows the team of TAs, where these TAs produce an exclude
output for states below the midpoint and an include output for states above the
midpoint. These TAs may transition between states by receiving either a penalty
action or a reward action from the feedback component, where continued reward
actions in the end states cause the TAs to saturate and penalty actions in one
of the midstates cause the TAs to transition across the decision boundary and
invert its output from exclude to include or vice versa [20].

Figure 4(d) shows how a TM class comprises many clauses that produce votes,
which are split into a group of positive clauses and a group of negative clauses,
such that the former votes in favour of the class and the latter votes against the
class. Note that a majority vote gives an indication of class confidence, which is
used to classify the input data and influence future decisions of the TAs through
the feedback component [9], and that the composition of each clause is controlled
by a vector of exclude bits, where these bits are parameters that are learned by
the TAs. Additionally, the inclusion of inhibition in the voting system enables
non-linear decision boundaries in the inference process.

Figure 4(e) shows how the class sums are fed into the argmax mechanism to
determine the class with the most votes to be subsequently used in the classifica-
tion process, where the winning class is used as the TM’s guess to be compared
with the expected value by the feedback component.

Figure 4(f) shows the whole feedback procedure, where Fig. 4(f)(i) shows the
selection process of the TM classes to receive feedback, Fig. 4(f)(ii) shows the
determination process of the feedback type, Fig. 4(f)(iii) shows the decision tree
of Type I feedback to combat false negatives, and Fig. 4(f)(iv) shows the decision
tree of Type II feedback to combat false positives.
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Fig. 4. Detailed overview of the Multi-class TM interface. (a) Data Vector. (b) Clause
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component where (i) Select classes for learning. (ii) Determine feedback type. (iii) Type
I decision tree. (iv) Type II decision tree.
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3.2 Inference Component

By referring to Fig. 4, let us first model the TM’s inference component starting
from the loading of data to the argmax of the class sums. For simplicity, we will
assume that the data fed into the TM has already been converted into Boolean
features through the Booleaniser component [13].

Firstly, by following Fig. 4(a), we can model the loading of datapoints as
individual transitions labelled 00, 01, 10 and 11, where we then connect them to
and from the places that determine the order of how datapoints are loaded (i.e.
from 00 to 11), when the next datapoint gets loaded (i.e. the place named “load-
Vector”) and the expected value (e.g. firing transition 01 marks a token at the
place corresponding to the expected value 1). We then connect each “loading”
transition to the two places that represent the Boolean features bf1 and bf2,
which are connected to the transitions that subsequently convert them into the
Boolean literals b1 and b2 (i.e. litX1 and litX2 respectively) and the comple-
ments b̄1 and b̄2 (i.e. litCX1 and litCX2 respectively). This results in the Petri
net segment shown in Fig. 5, where we can fire the transitions labelled 00, 01,
10 and 11 to mark a token at the places that correspond to each feature’s value,
and convert them into literals by firing the subsequent transitions that mark a
token at the places corresponding to the feature’s value and complement.

Fig. 5. Petri net segment specifying the loading and conversion of datapoints.

Next, by following Fig. 4(b), we can model the clauses of a TM. For simplicity,
we will only show the Petri net segment for one clause, as this segment can be
repeated for every clause with the exception that each clause’s polarity alternates
from their neighbour, e.g. if the polarity of clause i is positive (negative) then
the polarity of clause j is negative (positive).

As part of the clause design, we must first follow Fig. 4(c) and create the TAs
for every Boolean literal, where each TA has exactly three exclude states and
three include states. This can be modelled by creating the same number of places
to represent the exclude and include states, and marking a token to either places
exc3 and inc4 to determine whether the TA is in state n or state n`1. Note that
this initialisation is completed by another set of transitions before the datapoints
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are loaded, such that the set of transitions contains all possible combinations
of every TAs’ initial state. Additionally, the penalty and reward actions can
be modelled by creating several transitions labelled penalty and reward, and
connecting them to the places that lead closer to a decision boundary change
(i.e. from exc3 to inc4 and vice versa) and saturation of rewards (i.e. from exc3
to exc1 for excludes and from inc4 to inc6 for includes) respectively. Moreover,
the TA’s inaction can be explicitated by creating a transition labelled inaction.

Note that places fb3_in and fb3_out are used to determine whether the
TA receives a reward, penalty or inaction based on the provided feedback and
are connected to and from their respective transitions, while places inExc and
inInc are connected to and from the mid-state places exc3 and inc4 and are
used to conveniently determine the TA’s current state for clause calculation.

This results in the Petri net segment shown in Fig. 6, where we model the
TA for the Boolean literal x1, such that it is initialised to be in the include state
as indicated by the token marked at place inc4.

Fig. 6. Petri net segment specifying a TA of a Boolean literal.

Now, returning to Fig. 4(b), we can model the clause’s calculation using the
value of each literal and the inverted value of each literal’s TA state, which
results in the Petri net segment shown in Fig. 7.

Figure 7(a) shows the OR computation block for every Boolean literal com-
prising the literal’s value and the literal’s TA value, which has been inverted
through the transition labelled INV. This OR computation block contains the
total number of possible combinations (i.e. four transitions) where each transi-
tion is connected to and from the respective places that produce the values of
an OR’s truth table, e.g. an OR-transition connected from places x1_i0 and
NOT (x1.TA) “ 0 leads to a token being marked at place x1_o0.

Figure 7(b) shows the AND computation block involving the four OR compu-
tation blocks that comprise the truth table of all possible combinations leading
to 0 (i.e. fifteen transitions), while Fig. 7(c) shows another AND computation
block involving the four OR computation blocks that comprise the truth table
of all possible combinations leading to 1 (i.e. one transition).

After repeating the above steps to create n clauses, we follow Fig. 4(d) and
create the transitions that correspond to the class sum by totalling the clause
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Fig. 7. Simplified view of a Petri net segment specifying a clause. (a) OR computa-
tion block for literals and their respective TA’s inverted value. (b) AND computation
block for OR calculations resulting 0. (c) AND computation block for OR calculations
resulting 1.

Fig. 8. Simplified view of Petri net segment specifying a multiclass TM. (a) Structure
of a singular TM class. (b) Structure of a two-class TM with a collapsed view of classes.
(c) Argmax transitions comprising the truth table of all class vote possibilities.

calculations, which leads to a vote count between ´n/2 to n/2. This results in
the Petri net segment shown in Fig. 8(a) where the outputs of our two clauses
are connected to the four class sum transitions that add a token to either places
v_n1 (for ´1), v_0 (for 0) and v_1 (for 1).

Finally, by following Fig. 4(e), we can repeat the above step to create m TM
classes, which results in the Petri net segment shown in Fig. 8(b). The set of
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transitions corresponding to the argmax function can then be modelled, which
results in the Petri net segment shown in Fig. 8(c) where three transitions corre-
spond to when class 0 has the highest vote count, three transitions correspond
to when class 1 has the highest vote count, and three transitions correspond to
a random selection as both classes have the same vote count.

3.3 Feedback Component

By completing the Petri net of the TM’s inference component, we can begin
modelling the TM’s feedback component by referring to Fig. 4(f), where we start
from the probability calculations of receiving feedback to the transitions that
correspond to the payoff matrix shown in Table 1.

Firstly, following Figs. 4(f)(i) and (f)(ii), several transitions are created for
each class and their clauses, where each transition marks a token at the place to
fire one of the transitions labelled C1= 0, C1= 1, C2= 0 or C2= 1, depending
on if the class is expected (i.e. C1) or random (i.e. C2) and if it receives feedback
(i.e. 1) or not (i.e. 0). This results in the Petri net segment shown in Fig. 9(a).

If feedback is provided then this leads to the set of transitions, which com-
prise all the possibilities of whether Type I feedback or Type II feedback is
provided to the clause, depending on its polarity. Otherwise, this leads to the
set of transitions that provide no feedback and simply completes the feedback
process for the current clause, where either the next class’ clause or the next
class is considered. This results in the Petri net segment shown in Fig. 9(b) for
the former, and the Petri net segment shown in Fig. 9(c) for the latter.

Note that in TMs, the probability functions C1 and C2 use randomly gen-
erated real numbers, which cannot be easily specified using Petri nets. So, for
each clause in every class, we will assume that the chance of this clause receiving
feedback or not is handled by an external application.

Next, using Figs. 4(f)(iii) and (f)(iv), we can model the transitions for Type
I feedback and Type II feedback. For simplicity, we will split the operations for
both feedbacks when the clause output is 0 and when the clause output is 1.

Following Fig. 4(f)(iii), if Type I feedback is provided and the clause output
is 0, then the probability function S1 “ (rand() ď (1s )) is ran leading to either
of the following for each literal:

– If the literal’s TA is in the include state then the probability for the TA to
receive a penalty is ps “ 0 and the probability to receive an inaction is ps “ 1,
as shown in Fig. 10(a).

– If the literal’s TA is in the exclude state then the probability for the TA to
receive a reward is ps “ 0 and the probability to receive an inaction is ps “ 1,
as shown in Fig. 10(b).

Note that places cx1r, cx2r, cnx1r, cnx2r, cx1p, cx2p, cnx1p, cnx2p, cx1i,
cx2i, cxn1i and cxn2i are all common places used by the transitions correspond-
ing to Type I and Type II feedbacks, where a token is marked to determine a
reward, penalty or inaction for the TAs in the current clause.
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Fig. 9. Petri net segment specifying the probability calculations of the TM’s feedback
component. (a) Transitions corresponding to the probability functions C1 and C2.
(b) Transitions corresponding to the operations of C1 = 1 and C2 = 1. (c) Transitions
corresponding to the operations of C1 = 0 and C2 = 0.

Fig. 10. Petri net segment for Type I Feedback when clause output is 0. (a) Reward or
inaction transitions if the TA is in the exclude state. (b) Penalty or inaction transitions
if the TA is in the include state.
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Again, following Fig. 4(f)(iii), if Type I feedback is provided and the clause
output is 1, then any of the following happens for each literal:

1. If the literal’s TA is in the include state then the probability function S2 “
(rand() ď ( s´1

s )) is ran, such that the probability for the TA to receive a
reward is ps “ 1 and the probability to receive an inaction is ps “ 0, as
shown in Fig. 11(a).

2. If the TA is in the exclude state then the aforementioned probability function
S1 is ran, which leads to either of the following:

– If the literal’s value is 0 then the probability for the TA to receive a
reward is ps “ 0 and the probability to receive an inaction is ps “ 1, as
shown in Fig. 11(b).

– If the literal’s value is 1 then the probability for the TA to receive a
penalty is ps “ 1 and the probability to receive an action is ps “ 0, as
shown in Fig. 11(c).

Fig. 11. Petri net segment for Type I Feedback when clause output is 1. (a) Reward or
inaction transitions if the TA is in the include state. (b) Reward or inaction transitions
if the TA is in the exclude state and literal is 0. (c) Penalty or inaction transitions if
the TA is in the exclude state and literal is 1.

Now, following Fig. 4(f)(iv), if Type II feedback is provided and the clause
output is 0, then the TAs of the current clause all receive an inaction regardless of
their state and the values of their literals. This results in the Petri net segment
shown in Fig. 12, where the appropriate transition is fired to go to the next
clause, the next class, or the next datapoint.
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Fig. 12. Petri net segment for Type II Feedback when clause output is 0.

Again, following Fig. 4(f)(iv), if Type II feedback is provided and the clause
output is 1, then any of the following happens for each literal:

– If the literal’s TA is in the include state then the TA receives an inaction
regardless of the literal’s value, as shown in Fig. 13(a).

– If the TA is in the exclude state then:
• The TA receives an inaction if the literal is 1, as shown in Fig. 13(b).
• The TA receives a penalty if the literal is 0, as shown in Fig. 13(c).

Fig. 13. Petri net segment for Type II Feedback when clause output is 1. (a) Inaction
transitions if the TA is in the include state. (b) Inaction transitions if the TA is in the
exclude state and literal is 1. (c) Penalty transitions if the TA is in the exclude state
and literal is 0.

Now, by also completing the Petri net of the TM’s feedback component, we
can compose our two Petri nets together and create the necessary transitions
to reset the TM for the reading the next datapoint, such that the tokens in the
places corresponding to the features’ values, literals’ values, clause outputs, class
sums and argmax output are emptied. Note that due to the large resulting size
of the composed model, we decided to not include it to help preserve space.
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3.4 Analysis of the Composed Petri Net’s Behaviour and Scalability

When we verifying our TM Petri net segments and our composed TM Petri net
using Workcraft, they are all verified to be 1-safe, reversible, and deadlock-
free. This, in particular, is useful as this allows further extensions to our work,
where we can convert our TM Petri nets into STGs for subsequent synthesis into
speed-independent asynchronous circuits. However, this also means that our TM
Petri net is unrestricted meaning it can run indefinitely. This can be resolved
by adding a place that corresponds to the TM’s epochs, but this will also cause
the TM Petri net to become unsafe. Thus, we decided to not include epochs in
our blueprint designs of the TM Petri nets. Note that if one wishes to include
epochs, they can add a place with k tokens, where k P N is the user’s desired
number of epochs, and connect it to the first loading transition shown in Fig. 5.

To show that our TM Petri net is correctly learning the provided pattern and
that their accuracy increases per epoch, we create another Petri net specifying a
measurement recorder that can visually collect analytical data of the TM Petri
net to measure its complexity and even some custom properties. This results in
our measurement recorder Petri net shown in Fig. 14, where we collect analytical
behaviour of our composed TM Petri net by recording the actions taken at each
datapoint for each clause per class, before we calculate the accuracy of our TM
Petri net per epoch.

To help understand the structure of our measurement recorder Petri net, let
us consider the three main components: the top column, the left score sheet
and the right score sheet. The top column displays the current epoch and the
currently loaded datapoint, based on which places are marked. The left score
sheet records the guesses made at each datapoint followed by the actions given
to the TAs in each class’ clause for the current epoch and loaded datapoint, while
the right score sheet records the total number of guesses made at every data point
followed by the total number of actions received by the TAs in each class’ clause,
based on the total number of epoch iterations. Note that the counters for places
labelled “No feedback” is incremented when no feedback is given (i.e. when c1= 0
or c2= 0), places labelled “0 (exc)” and “(1 (inc)” is incremented based on the
TA’s current states, and places labelled “R”, “P” and “I” is incremented when a
transition labelled reward, penalty or inaction is fired within the TA respectively.

Also, to show that our TM Petri net scales linearly with respect to the number
of components (i.e. the Petri net segments of TAs, clauses, and TM classes) that
is required, we calculate the sizes of the blueprint Petri net segments (i.e. singular
TM components) shown in Table 2 and the sizes of the used Petri net segments
for our composed TM Petri net (i.e. n TM components) shown in Table 3, before
comparing them. Note that in Table 2, the TA component contains six states (i.e.
three include states and three exclude states), the clause component contains
four TAs, and the TM class component contains two clauses. Additionally, the
components named “Type I Clause 0”, “Type I Clause 1”, “Type II Clause 0” and
“Type II Clause 1” are all part of the whole feedback module and also contain
one clause. Moreover, we did not include the size of the inference’s datapoint
loader nor the size of the feedback’s input reset mechanism, as they not only
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Fig. 14. Petri net of Measurement Recorder.

depend on a non-uniform number of features but also a non-uniform number of
datapoints that do not follow a set structure, which may result in inaccurate
size representations, e.g. we may have many features but very few datapoints or
many datapoints but very few features. Note that the scalability of datasets is
discussed as part of our future work in Sect. 5, where we consider other types of
datasets like images.

When evaluating Tables 2 and 3, we can see that our composed TM Petri
net scales well and grows relatively linear to the number of components that
are required, e.g. the total size of a single TA is 103 while the total size of the
sixteen TAs used in our TM Petri net is 1648 which is exactly a scale factor
of 16. Also, in some instances, the actual size of some of the used components
required less than the expected size, e.g. the total size of the “Type I Clause 1”
feedback component for one clause is 173, whereas for four clauses this is 428.
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Table 2. Sizes of the blueprint Petri net segments

Component Transitions Places Arcs Total Size

TA 13 10 80 103
Clause 92 70 472 634
TM 188 144 960 1292
Type I Clause 0 17 4 84 105
Type I Clause 1 37 16 120 173
Type II Clause 0 1 1 8 10
Type II Clause 1 13 4 72 89

Table 3. Sizes of the used Petri net segments for final design

Component Transitions Places Arcs Total size

TAs (x16) 208 160 1280 1648
Clauses (x4) 368 280 1888 2536
TMs (x2) 389 293 1959 2641
Type I Clause 0 (x4) 68 4 336 408
Type I Clause 1 (x4) 76 16 336 428
Type II Clause 0 (x4) 4 1 32 37
Type II Clause 1 (x4) 52 4 288 344

4 Benchmark

In our experiment, we used Workcraft to simulate our composed TM Petri net
and analysed its behaviour using our measurement recorder shown in Sect. 3.4.
The size of our TM Petri net includes two classes that each contain two clauses,
where each clause contains four TAs that corresponds to the four Boolean literals
converted from the two Boolean features of every datapoint.

For our simulation, we completed 100 epochs and recorded the guess (i.e.
the winning TM of the argmax function), the state of every TA, and the feed-
back provided to every TA at each datapoint per epoch. The former is used to
determine the accuracy of our TM model by comparing it to the expected value,
while the latter two are used to help understand the behaviour of our TM Petri
net and the action taken at a specified datapoint and/or epoch. For each epoch,
our TM Petri net required approximately 272 to 423 steps to complete, where
the former step counter corresponds to when feedback is always not given and
the latter step counter corresponds to when feedback is always given.

This led to the results shown in Fig. 15, where we calculated the average
running accuracy for our TM Petri net. Note that we also include the average
running accuracy of an XOR-based TM demo [17], where we use this TM as
a reference to see how the behaviour of our TM Petri net correlates with the
behaviour of the reference TM. To ensure fairness, we changed the parameters



Design of Event-Driven Tsetlin Machines Using Safe Petri Nets 375

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

A
cc
ur
ac
y

TM Petri net
Reference TM

Fig. 15. Correlation between the Running Average Accuracy of the TM Petri net and
the Running Average Accuracy of the Reference TM per Epoch.

of reference TM to match the TM Petri net’s parameters in the Workcraft
simulation (e.g. the same initial states for the TAs). One exception is that the
TM Petri net cannot match the probability checks of the reference TM due to
the use of a random number generator, so we assume that the outcome of the TM
Petri net’s probability checks are what the TM would have decided at runtime.

In our graph, we included the accuracy of the TM ranging from 0% to 100%
in normalised form (i.e. 0.0 to 1.0) on the left and the number of epochs of the
TM (i.e. the number of completed iterations) on the bottom. The blue plot is
the recorded average running accuracy of our TM Petri net, while the red plot
is the recorded running accuracy of the reference TM. Note that the average
running accuracy is calculated by summing the total accuracy and dividing it
by the epoch (e.g. at epoch 20, our average running accuracy is Acc1`...`Acc20

20 ).
When analysing our experimental results, we can see that the behaviour of

our TM Petri net matches the behaviour of the reference TM. In particular, we
can see that the accuracy of both TMs decreases within the first 10 epochs, as
they are required to fix the states of the TAs that were contradictory due to the
randomly set initial states. But, after epoch 11, we can see how the accuracy for
both TMs sharply increase due to more rewards from correct guesses, until the
70th epoch where the accuracy begins to stabilise around 75%.

An important observation from our results is that, rather than comparing
the two TMs, we can see how our TM Petri net correctly imitates the reference
TM, based on the correlating accuracy and even the behaviour. In fact, because
our TM Petri net is 1-safe (with the removal of the measurement recorder),
we can even convert our TM Petri net into another model to enable further
extensions to the work (e.g. we can convert our TM Petri net into an STG for
subsequent synthesis into an asynchronous circuit). Furthermore, we also show
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that TMs are also 1-safe, deadlock-free and reversible, meaning TMs are correct
by construction and can even be designed using another formal model like FSMs.

5 Conclusion

In this paper, we cover how we can broaden the understanding of TMs to indus-
trial practitioners by proposing the concept of event-driven TMs, where we model
TMs using Petri nets.

Here, by considering the discrete-event based behaviour of TMs and the
various automation and visualisation tools available for Petri nets, we surmise
why Petri nets are a good tool for modelling and analysing TMs and why TMs
are a good bridge for Petri nets to enter the world of ML.

During the modelling of our event-driven TMs, we show how TMs can be
designed hierarchically using Petri nets, where we create the Petri nets of both
the TM’s inference and feedback components in stages, before composing them
into the complete TM Petri net.

We then create a Petri net that specifies a measurement recorder, which we
use to analyse the behaviour of our TM Petri net and record several metrics
including the current epoch, the current loaded data point, the states of the TAs
and the feedback given to each class’ clause.

We also analyse the size of our TM Petri net, where we show that it scales
well and grows linearly to the number of components (i.e. the blueprint Petri
net segments) that are required.

In our experiment results, we show how the behaviour of our TM Petri net
correlates with the behaviour of a reference TM, where the accuracy of the TMs
decrease as it fixes the TAs’ states before it sharply increases due to subsequent
rewards from correct guesses. We also show that our TM Petri net is 1-safe,
deadlock-free and reversible, meaning the TMs are correct by construction and
can be easily designed using another formal model like FSMs.

Future Work

While further steps have been made towards the design of event-driven TMs,
there are still several improvements that can be made to our approach.

Firstly, we consider the development of a new feature and/or plugin for
Workcraft, where the process of building a TM Petri net can be automated by
importing a file that contains the TM’s parameters (e.g. epochs, classes, clauses,
TAs, and literals). This, in turn, simplifies the building process and even scales
up the design of our TM Petri nets.

Secondly, we consider a dynamic approach in loading the TM’s datapoints
rather than the static approach used in our example to support other data types
like images and to further scale up our TM Petri nets. Note that some initial
investigations for this are underway as we analyse how a set of places and a set
of complementary places can be used to represent a pixel of an image.
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Thirdly, we consider the modelling of a random number generator at the level
of Petri nets to support the probability functions used to determine if the TAs
receive feedback or not, as Workcraft’s simulation does not support the use of
random number generators, meaning the choices made to provide feedback had
an equal chance. Note that some initial investigations for this are also underway
as we explore how a set of transitions can be enabled in proportion to the value
of s to mimic the probability functions s1 and s2, and how places can be used
to represent individual digits that can be concatenated to generate some form
of a randomised real number.

Finally, we consider how the parametric scaling of our TM Petri nets can be
reached or even potentially optimised, by adopting some of the ideas from the
Coloured Petri net formalism [10].
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Abstract. We propose efficient techniques for detecting isomorphism
between nets, i.e., for identifying, in large collections of (safe) Petri nets
or Nested-Unit Petri Nets, all the nets that are identical modulo a per-
mutation of places, a permutation of transitions, and/or a permutation
of units. Our approach relies upon the successive application of diverse
algorithms of increasing complexities: net signatures, net canonizations,
and characterization of isomorphic nets in terms of isomorphic graphs.
We implemented this approach in a complete tool chain that we success-
fully assessed on four collections, the largest of which comprises 241,000+
nets with many duplicates.

1 Introduction

The present work deals with large collections of Petri nets developed for non-
regression testing or software competitions. Building and properly maintaining
on the long run such collections, which gather hundreds or thousands of nets,
requires a substantial amount of work. A common problem is the presence of
duplicates, i.e., multiple occurrences of nets that are identical or very similar.
Duplicates may be present for three reasons: (i) the collection consists of nets
sent by different contributors; (ii) the collection is managed by several persons,
who may insert the same net independently; (iii) duplicates may arise from
transformations applied to existing models, e.g., conversion of colored Petri nets
to P/T nets, removal of dead places or dead transitions [3], etc.

In practice, duplicates are undesirable for at least four reasons: (i) they waste
disk space and backup storage, especially when nets are encoded in XML-based
formats (such as the standard PNML format [11]), which are particularly ver-
bose; (ii) they waste processor time in redundant calculations, which may be
expensive due to state-space explosion issues; (iii) they may introduce biases in
benchmarking experiments and software competitions by increasing the weight
of certain nets unduly; (iv) their presence often raises time-consuming questions
and debates between users and administrators of net collections.

The present article addresses this problem by proposing methods and tools to
detect duplicates that may be present in existing net collections, and to prevent
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L. M. Kristensen and J. M. van der Werf (Eds.): PETRI NETS 2024, LNCS 14628, pp. 379–401, 2024.

https://doi.org/10.1007/978-3-031-61433-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61433-0_18&domain=pdf
https://doi.org/10.1007/978-3-031-61433-0_18


380 P. Bouvier and H. Garavel

duplicates from being created when new nets are inserted in collections under
construction.

The classes of nets considered are one-safe P/T nets and NUPNs (Nested-
Units Petri Nets) [7], an extension of Petri nets with the concept of units, which
provide for modularity and hierarchy. Non-safe P/T nets are also partially sup-
ported in the sense that, for such nets, our approach produces over-approximated
results, i.e., reports a superset of duplicates, possibly including false positives.

To formalize the problem, we consider that two nets are duplicates if there
exist a bijective mapping between their places, their transitions and, in the
case of NUPNs, their units. This mapping should preserve the arcs, the initial
markings, and, in the case of NUPNs, the root units, the nesting of units, and
the location of places in units. Such a definition extends the classical notion of
graph isomorphism to Petri nets and NUPNs, keeping in mind that Petri nets
are directed bipartite graphs, which NUPNs extend with a tree of units.

The detection of duplicates therefore amounts to the efficient partition of
a set of nets according to such a net isomorphism relation. To the best of our
knowledge, there is little prior work on this problem, probably because the con-
struction of large net collections is a recent phenomenon.

The present article is organized as follows. Section 2 gives preliminary def-
initions. The next sections introduce the various approaches we developed for
detecting duplicates: Sect. 3 exposes how the problem can be reduced to graph
isomorphism; Sect. 4 presents the concept of net signatures; and Sect. 5 dis-
cusses the idea of net canonization. Section 6 presents the integration of all these
approaches in a coherent tool chain. Section 7 gives experimental results obtained
on four collections of Petri nets and NUPNs. Finally, Sect. 8 gives a few conclud-
ing remarks.

2 Definitions

2.1 Petri Nets and Nested-Unit Petri Nets

We briefly recall the usual definitions of Petri nets and refer the reader to classical
surveys, e.g., [13], for a more detailed presentation of Petri nets.

Definition 1. A (marked) Petri Net is a 4-tuple (P, T, F,M0) where:

1. P is a finite, non-empty set; the elements of P are called places.
2. T is a finite set such that P ∩T = ∅; the elements of T are called transitions.
3. F is a subset of (P × T ) ∪ (T × P ); the elements of F are called arcs.
4. M0 is a non-empty subset of P ; M0 is called the initial marking.

Notice that the above definition only covers ordinary nets (i.e., it assumes all
arc weights are equal to one). Also, it only considers safe nets (i.e., each place
contains at most one token), which enables the initial marking to be defined as a
subset of P , rather than a function P → N as in the usual definition of P/T nets.
We now recall the basic definition of a NUPN, referring the interested reader to
[7] for a complete presentation of this model of computation.
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Definition 2. A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple
(P, T, F,M0, U, u0,�, unit ) where (P, T, F,M0) is a Petri net, and where:

5. U is a finite, non-empty set such that U ∩ T = U ∩ P = ∅; the elements of
U are called units.

6. u0 is an element of U ; u0 is called the root unit.
7. � is a binary relation over U such that (U,�) is a tree with a single root u0,

where (∀u1, u2 ∈ U) u1 � u2
def= u2 � u1; intuitively1, u1 � u2 expresses that

unit u1 is transitively nested in or equal to unit u2.
8. unit is a function P → U such that (∀u ∈ U \ {u0}) (∃p ∈ P ) unit (p) = u;

intuitively, unit (p) = u expresses that unit u directly contains place p.

We now recall a few usual definitions for ordinary safe nets.

Definition 3. Let (P, T, F,M0) be a Petri Net.

– A marking M is defined as a set of places (M ⊆ P ). Each place belonging to
a marking M is said to be marked or, also, to possess a token.

– The pre-set of a transition t is the set of places •t def= {p ∈ P | (p, t) ∈ F}.
– The post-set of a transition t is the set of places t• def= {p ∈ P | (t, p) ∈ F}.
– The pre-set of a place p is the set of transitions •p def= {t ∈ T | (t, p) ∈ F}.
– The post-set of a place p is the set of transitions p• def= {t ∈ T | (p, t) ∈ F}.
Because NUPNs merely extend Petri nets by grouping places into units, Petri-
net properties (including the standard firing rules for transitions) are preserved
when NUPN information is added. Thus, all the concepts of Definition 3 for
Petri nets also apply to NUPNs. The next definition provides useful notations
used throughout this article.

Definition 4. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN.

– u1 � u2
def= (u1 � u2) ∧ (u1 �= u2) is the strict nesting partial order.

– disjoint (u1, u2)
def= (u1 �� u2) ∧ (u2 �� u1) characterizes pairs of units neither

equal nor nested one in the other.
– places (u) def= {p ∈ P | unit (p) = u} gives all places directly contained in u;

these are called the local places (or proper places) of u.
– places∗(u) def= {p ∈ P | (∃u′ ∈ U) (u′ � u) ∧ (unit (p) = u′)} gives all places

transitively contained in u or its sub-units.
– subunits (u) def= {u′ ∈ U | (u′ � u) ∧ (�u′′ ∈ U) (u′ � u′′) ∧ (u′′ � u)} gives all

units directly nested in u.
– subunits∗(u) def= {u′ ∈ U | (u′ � u)} gives all units transitively nested in u.
– leaf (u) def= (subunits (u) = ∅) characterizes the units having no nested sub-

unit, i.e., the minimal elements of (U,�).

1 � is reflexive, antisymmetric, transitive, and u0 is the greatest element of U for �.



382 P. Bouvier and H. Garavel

– depth (u) is the length of the longest chain u � ... � u0 of nested units from
u to the root unit u0. In particular, depth (u0) = 0.

– height (u) is the length, plus one, of the longest chain un � ... � u of nested
units from any leaf unit un to u. In particular, leaf (u) ⇔ height (u) = 1.

– width (u) is the number of leaf units contained in {u} ∪ subunits∗(u).
– A trivial NUPN is such that width (u0) equals the number of places card (P ),

meaning that the net carries no more NUPN information than a Petri net;
in a trivial NUPN, each unit has a single local place, except the root unit u0,
which has either zero or one.

Finally, a NUPN N is said to be unit safe [7] iff its underlying Petri net
(P, T, F,M0) is one-safe and, in any reachable marking M , all the places of
M are contained in disjoint units.

2.2 Graph and Net Isomorphisms

We first recall the classical definitions of graph and graph isomorphism.

Definition 5. A vertex-colored directed graph (or colored graph for short) is a
3-tuple (V,E, c) such that: V is a set of vertices, E ⊆ V ×V is a set of (directed)
edges, and c : V → N is a function associating for each vertex a natural number
representing a color. If the relation E is symmetric, then the graph is said to be
undirected.

Definition 6. Two colored graphs G = (V,E, c) and G′ = (V ′, E′, c′) are iso-
morphic iff there exists a bijection πv : V → V ′ such that:

– (∀v1, v2 ∈ V ) (v1, v2) ∈ E ⇔ (πv(v1), πv(v2)) ∈ E′.
– (∀v ∈ V ) c(v) = c′(πv(v)).

We then define the concept of net isomorphism used throughout this article.

Definition 7. Let N = (P, T, F,M0, U, u0,�, unit ) and N ′ = (P ′, T ′, F ′,M ′
0,

U ′, u′
0,�′, unit ′) be two NUPNs. N and N ′ are said to be isomorphic iff there

exist three bijections πp : P → P ′, πt : T → T ′, and πu : U → U ′ such that:

– (∀(p, t) ∈ P × T ) (p, t) ∈ F ⇔ (πp(p), πt(t)) ∈ F ′.
– (∀(t, p) ∈ T × P ) (t, p) ∈ F ⇔ (πt(t), πp(p)) ∈ F ′.
– (∀p ∈ P ) p ∈ M0 ⇔ πp(p) ∈ M ′

0.
– u′

0 = πu(u0).
– (∀u1, u2 ∈ U) u1 � u2 ⇔ πu(u1) �′ πu(u2)—or, expressed in an equivalent

way: (∀u1, u2 ∈ U) u1 ∈ subunits (u2) ⇔ πu(u1) ∈ subunits ′(πu(u2)).
– (∀p ∈ P ) unit ′(πp(p)) = πu(unit (p)).

Alternative definitions of net isomorphism can be found in the literature. The
definition given in [10] takes into account places, place labels, transitions, tran-
sition labels, and arc weights, but not the initial marking. In [5,6] and [8], a less
general definition of net isomorphism is given, in which only places are consid-
ered: two isomorphic Petri nets may have their places permuted but must have
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identical transitions. In [1,4], and [2], two nets are said to be isomorphic iff their
marking graphs are isomorphic; notice that the left-to-right implication of this
behavioural definition is also ensured by our purely structural Definition 7.

Finally, we recall the notion of disjoint union on sets and functions.

Definition 8. Let S and S′ be two disjoint sets. Let f and f ′ be two functions
respectively defined on S and S′.

– S � S′ denotes the set union S ∪ S′, knowing that S ∩ S′ = ∅.
– f � f ′ denotes the function union of f and f ′, i.e., the function defined on

S �S′ such that (f � f ′)(x) = f(x) if x ∈ S and (f � f ′)(x) = f ′(x) if x ∈ S′.

3 Net Isomorphism in Terms of Graph Isomorphism

Our first approach expresses net isomorphism in terms of graph isomorphism, a
problem for which software tools are available [9].

3.1 Theoretical Aspects

Definition 9. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. We associate
to N a colored directed graph GN = (V,E, c) such that:

– V
def= P � T � U .

– E
def= F �{(p, u) ∈ P ×U | u = unit (p)}�{(u, u′) ∈ U ×U | u ∈ subunits (u′)}.

– (∀v ∈ V ) c(v) def= 0 if v ∈ P \ M0, 1 if v ∈ M0, 2 if v ∈ T, or 3 if v ∈ U .

The function N → GN is an injection, but not a surjection (as not every graph
corresponds to a NUPN). The following definition computes the inverse function.

Definition 10. Let G = (V,E, c) be the colored directed graph associated to
some NUPN via Definition 9. Let NG

def= (P, T, F,M0, U, u0,�, unit ) be defined
as follows:

– P
def= {v ∈ V | c(v) ≤ 1}.

– T
def= {v ∈ V | c(v) = 2}.

– F
def= E ∩ ((P × T ) ∪ (T × P )).

– M0
def= {v ∈ V | c(v) = 1}.

– U
def= {v ∈ V | c(v) = 3}.

– u0 is the unique element such that (u0 ∈ U) ∧ (E ∩ ({u0} × U) = ∅).
– � is the reflexive transitive closure of the relation E ∩ (U × U).
– unit is the function p �→ u such that (p, u) ∈ E ∩ (P × U).

It is easy to see that NG is a NUPN, i.e., that: P , T , and U are pairwise disjoint;
M0 is not empty and contained in P ; and � is a tree with a single root u0.
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Proposition 1. Two NUPNs N and N ′ are isomorphic iff their corresponding
graphs GN and GN ′ are isomorphic.

Proof. Let G
def= GN = (V,E, c) and let G′ def= GN ′ = (V ′, E′, c′). By dou-

ble implication. Direct: Let N = (P, T, F,M0, U, u0,�, unit ) and let N ′ =
(P ′, T ′, F ′,M ′

0, U
′, u′

0,�′, unit ′). If N and N ′ are isomorphic, there exist three
bijections πp, πt, and πu satisfying the conditions of Definition 7. The function

πv
def= πp � πt � πu is a bijection from V to V ′ and satisfies both conditions of

Definition 6: it preserves the edges (proven by disjunction of cases, depending
whether each edge of E belongs to P×T , T×P , U×P , or U×U) and preserves the
colors (also proven by disjunction of cases, depending whether each vertex of V
belongs to P \M0, M0, T , or U). Converse: Let NG = (P, T, F,M0, U, u0,�, unit )
and let NG′ = (P ′, T ′, F ′,M ′

0, U
′, u′

0,�′, unit ′). If G and G′ are isomorphic,
there exists a bijection πv : V → V ′ satisfying the two conditions of Defini-
tion 6. The second condition, the bijective nature of πv, and the definitions of
c and c′ in Definition 9 imply that card (P ) = card (P ′), card (T ) = card (T ′),
card (M0) = card (M0), and card (U) = card (U ′). Let πp

def= πv|P , πt
def= πv|T ,

and πu
def= πv|U be the restrictions of πv to P , T , and U , respectively. Because

πv is a bijection, πp is an injection from P to P ′, and even a bijection since
card (P ) = card (P ′); similarly, πt is a bijection from T to T ′ and πu a bijection
from U to U ′. The six conditions of Definition 7 then follow from the combined
assumptions of Definition 6 and Definition 9.

3.2 Practical Aspects

To assess on concrete examples the efficiency of the approach presented in
Sect. 3.1, we selected the two reference tools dedicated to graph isomorphism,
nauty and Traces2 [12] because of their high reputation of efficiency. These
tools, which provide both an API and a command-line interface, can put a graph
under canonical form or decide whether two graphs are isomorphic (i.e., iff their
respective canonical graphs are identical).

As for benchmark, we selected the 1387 (non-colored) Petri Nets and NUPNs
used for the 2022 edition of the Model Checking Contest, knowing that duplicates
are present in this collection. Using a Python script implementing Definition 9,
each net was translated to a graph in nauty/Traces input format. We ran
our experiments in parallel on the French Grid’5000 testbed3, allocating to each
model a dedicated server with 96 GB RAM and one hour of wallclock time.

The results were disappointing: nauty managed to put 310 graphs under
canonical form (success rate: 22.4%) but failed on all other models, either due
to lack of memory (on 8 graphs) or by hitting the one-hour timeout (on 1069
graphs). Furthermore, no duplicate was detected.

To improve these results, we did additional attempts in two directions: (i)
devising alternative translations to the one of Definition 9, taking advantage
2 https://pallini.di.uniroma1.it.
3 https://www.grid5000.fr.

https://pallini.di.uniroma1.it
https://www.grid5000.fr
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of the specificities of nauty to get as much performance as possible, and (ii)
experimenting also with Traces, which is more recent and slightly faster (by a
few percents, as we observed) than nauty.

Rather than assigning to vertices four colors only (i.e., {0...3} in Defini-
tion 9), one may increase the number of colors to better distinguish between
the various vertices vp associated to all places p ∈ P . For instance, one may

choose c(vp)
def= depth (unit (p)), together with c(v) def= height (u0) if v ∈ T

and c(v) def= height (u0) + 1 if v ∈ U—keeping in mind that, for each u ∈ U ,
depth (u) < height (u0). With such colors, the information that a place p belongs
to the initial marking M0 can be expressed differently, e.g., by adding a looping
arc (vp, vp) to E (noticing that E contains no arcs from P to P ) or by adding a
special vertex v0 with a unique color and an arc (vp, v0).

Another idea is to reduce the number of vertices by no longer associating a
vertex to each unit (i.e., V

def= {v0} � P � T ). In this approach, the root unit
u0, the function unit , and the relation � can be encoded by extra arcs, e.g.,
by adding an arc (v0, vp) for each place p ∈ places (u0), and by adding an arc
(vp, vp′) for each pair of places p and p′ such that unit (p) ∈ subunits (unit (p′)).

Because Traces does not support directed graphs, we adapt the translation
of Definition 9 by associating two unique vertices vp and v′

p to each place p ∈ P ,

assigning distinctive colors to vp and v′
p (e.g., c(vp)

def= 2 × depth (unit (p)) and

c(v′
p)

def= c(vp) + 1), and adding an edge {vp, v
′
p} to express that both vertices

are related to the same place. As before, a unique vertex vt is associated to each
transition t ∈ T . Then, each arc (t, p) ∈ F is represented by an edge {vt, vp} and
each arc (p, t) ∈ F is represented by an edge {v′

p, vt}.
We implemented these ideas in five different translations, which we assessed

on the aforementioned benchmark (2022 edition of the Model Checking Con-
test). In the most effective approach, nauty managed to put 498 graphs under
canonical form (success rate: 35.9%) but failed due to lack of memory (on 15
graphs) or by hitting the one-hour timeout (on 874 graphs). Again, no duplicate
was detected.

Thus, even if net isomorphism can theoretically be expressed in terms of
graph isomorphism, this does not seem to be a practical solution. We now present
alternative approaches specifically tailored for Petri nets and NUPNs.

4 Net Signatures

Our second approach is based on the idea of net signature, which borrows from
the concepts of hash and checksum functions.

Definition 11. A net signature (or signature for short) is a function sig defined
on Petri nets or NUPNs, such that, for any two nets N and N ′, if N and N ′

are isomorphic, then sig(N) = sig(N ′).

In practice, one uses the contraposition of this implication: two nets having
different signatures are not isomorphic. The reverse implication is not required:
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two nets having the same signature are not necessarily isomorphic (there is a
risk of collision between their signatures).

Proposition 2. If sig is a signature, then for any net N and any permutation
π of places, transitions, and/or units, sig(π(N)) = sig(N).

To discriminate as many nets as possible, a signature should be extensive enough
to contain all information that is invariant by permutations, but it should also
be fast to compute. We now introduce a few definitions upon which an effective
signature can be built.

4.1 Multiset Hashing

Multisets are an extension of sets and may contain several instances of each
element. We note multisets {| ... |} to distinguish them from (normal) sets, noted
{...}. Given a NUPN N = (P, T, F,M0, U, u0,�, unit ), two examples of multisets
are {| card (•t) | t ∈ T |} and {| height (u) | u ∈ U |}. To check the equality of such
multisets, the lengths of which can be fixed or variable, we adopt a hash-based
approach that converts each multiset into a (fixed-size) digest, such that the
equality of two multisets implies the equality of the two corresponding digests.
Thus, the chosen hash function is not assumed to be perfect (hash collisions may
exist among digests). Yet, it is desirable that this function returns a result inde-
pendent from the order of elements (multisets are not lists). A simple solution
would be to sort the elements of a multiset and concatenate them to form a bit
string on which some standard (cryptographic or not) hash function would be
applied. However, this approach is slow (due to sorting, at least) and produces
hash results that are not meaningful to humans. We thus adopt an alternative
approach based on the following hash function, which does not require sorting
and returns a tuple, many fields of which can be easily checked by inspection.

Definition 12. Let a digest be a 5-tuple of natural numbers.

– Let D
def= N

5 denote the set of digests.
– For d ∈ D, let d.card, d.min, d.max, d.sum, and d.prod denote, respectively,

each of the five components of d.
– Let 5H : (multiset of N) → D be the hash function defined as follows:

5H(∅) def= (0, 0, 0, 0, 1) and, for any natural n ≥ 1, 5H({|x1, ..., xn |}) def=
(n,min(x1, ..., xn),max (x1, ..., xn), x1 + ...+xn, (2x1 + r)× ...× (2xn + r)/2),
where r is the constant 2, 654, 435, 769.

– Let 5M : (multiset of D) → D be the “hash-merge” function defined
as follows: 5M(∅) def= (0, 0, 0, 0, 1) and, for any n ≥ 1, 5M({| d1, ..., dn |})
def= (d1.card + ... + dn.card,min(d1.min, ..., dn.min),max (d1.max, ..., dn.max),
d1.sum + ... + dn.sum, (2 × d1.prod + 1) × ... × (2 × dn.prod + 1)/2).

Function 5H handles multisets of natural numbers, whereas function 5M, at a
higher level (“hash of hashes”), handles multisets of digests. Both functions can
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be computed by induction on the size n of their input multisets: there is no
need for preliminary sorting, as all the operations involved in 5H and 5M are
commutative and associative. In practice, the fields of D are implemented using
machine integers, so that all arithmetical calculations are done modulo, e.g.,
232 or 264. All components of D, but prod, are readable by humans and express
meaningful properties of the corresponding multiset. Instead, prod uses a form
of multiplicative hashing4 that seeks to enhance dispersion for large multisets.
Notice that, all factors of prod being odd, their product never becomes zero, even
under modular arithmetic; the final division of this product by two eliminates
the least significant bit, which is always equal to one.

4.2 Signature Function

We can propose a particular sig function defined on NUPNs; this function sup-
ports ordinary, safe Petri nets as a particular case (i.e., trivial NUPNs).

Definition 13. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. We define
sig(N) to be a fixed-size tuple, each component of which is a natural number or
a digest computed from N . The components are divided into three parts, respec-
tively based on the places, transitions, and units of N . These parts, noted (h1, ...),
(k1, ...), and (l1, ...), are defined below (see Definition 18, 19, and 20).

4.3 Attributes for Places and Transitions

The definition of our signature function relies on various attributes computed
for each place and transition of the net. These attributes contain information
that helps differentiating the various places (resp. transitions). At first sight, all
places are seemingly alike (except those of the initial marking), but they can be
distinguished using local information (e.g., the number of arcs and transitions
connected to them) as well as global information (e.g., their distance to other
remarkable places of the net: initial places, sink places, etc.).

Definition 14. Let N = (P, T, F,M0) be a Petri net. A set of places p0, ..., pn
and a set of transitions t1, ..., tn are said to be a chain of length n from p0 to pn
iff (∀i ∈ {1, ..., n}) (pi−1, ti) ∈ F ∧ (ti, pi) ∈ F . Given two places p and p′, the
distance from p to p′ is defined as the length of the shortest chain from p to p′;
if no such chain exists, this distance is equal to card (P ) + 1.

Definition 15. To each place p, one associates three attributes:

– distance1(p) is defined as the minimal distance from p to any place of the
initial marking M0.

– distance2(p) is defined as the minimal distance from any place of the initial
marking to p.

4 https://stackoverflow.com/questions/1536393/good-hash-function-for-
permutations.

https://stackoverflow.com/questions/1536393/good-hash-function-for-permutations
https://stackoverflow.com/questions/1536393/good-hash-function-for-permutations
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– distance3(p) is defined as the minimal distance from p to any sink place (i.e.,
any place p′ such that p′• = ∅).

Definition 16. To each transition t, one associates three Boolean attributes and
six attributes of type D:

– decreasing(t) def= (card (•t) > card (t•))
– conservative(t) def= (card (•t) = card (t•))
– increasing(t) def= (card (•t) < card (t•))
– for i ∈ {1, 2, 3}, input distance i(t) def= 5H({| distance i(p) | p ∈ •t |})
– for i ∈ {1, 2, 3}, output distance i(t) def= 5H({| distance i(p) | p ∈ t• |})

Definition 17. To each place p, one associates seven natural-number attributes
and sixteen attributes of type D:

– nb loops(p) def= card (•p ∩ p•)
– nb decreasing input transitions(p) def= card ({t ∈ •p | decreasing(t)})
– nb conservative input transitions(p) def= card ({t ∈ •p | conservative(t)})
– nb increasing input transitions(p) def= card ({t ∈ •p | increasing(t)})
– nb decreasing output transitions(p) def= card ({t ∈ p• | decreasing(t)})
– nb conservative output transitions(p) def= card ({t ∈ p• | conservative(t)})
– nb increasing output transitions(p) def= card ({t ∈ p• | increasing(t)})
– pred nb input places(p) def= 5H({| card (•t) | t ∈ •p |})
– pred nb output places(p) def= 5H({| card (t•) | t ∈ •p |})
– succ nb input places(p) def= 5H({| card (•t) | t ∈ p• |})
– succ nb output places(p) def= 5H({| card (t•) | t ∈ p• |})
– for i ∈ {1, 2, 3}, pred input distance i(p) def= 5M({| input distance i(t) | t ∈ •p |})

and pred output distance i(p) def= 5M({| output distance i(t) | t ∈ •p |})
– for i ∈ {1, 2, 3}, succ input distance i(p) def= 5M({| input distance i(t) | t ∈ p• |})

and succ output distance i(p) def= 5M({| output distance i(t) | t ∈ p• |})

4.4 Signature Part Based on Places

The first part of our signature function is defined as follows.

Definition 18. Let N = (P, T, F,M0) be a Petri net. The place-based part of
the sig(N) function of Definition 13 is a tuple (h1, ..., h16) of natural numbers
or values of type D. The components of this tuple are the following:

– h1
def= card (P ), i.e., the number of places.

– h2
def= 5H({| distance1(p) | p ∈ P |}).

– h3
def= 5H({| distance2(p) | p ∈ P |}).
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– h4
def= 5H({| distance3(p) | p ∈ P |}).

– h5
def= 5H({| nb loops(p) | p ∈ P |}).

– h6
def= 5H({| nb decreasing input transitions(p) | p ∈ P |}).

– h7
def= 5H({| nb conservative input transitions(p) | p ∈ P |}).

– h8
def= 5H({| nb increasing input transitions(p) | p ∈ P |}).

– h9
def= 5H({| nb decreasing output transitions(p) | p ∈ P |}).

– h10
def= 5H({| nb conservative output transitions(p) | p ∈ P |}).

– h11
def= 5H({| nb increasing output transitions(p) | p ∈ P |}).

– h12
def= 5H({| pair(card (•p), card (p•)) | p ∈ P |}), where pair : N × N → N is a

pairing function that maps two natural numbers to a single one.
– h13

def= 5M({| pred nb input places(p) | p ∈ P |}).
– h14

def= 5M({| pred nb output places(p) | p ∈ P |}).
– h15

def= 5M({| succ nb input places(p) | p ∈ P |}).
– h16

def= 5M({| succ nb output places(p) | p ∈ P |}).

The following components are excluded from the place-based part of the signature:
h2.card, h3.card, ..., h12.card (because they are all equal to h1); h14.card (which
is equal to h13.card); h16.card (which is equal to h15.card); and h12.sum (which
a linear combination of h6.sum, ..., h11.sum).

4.5 Signature Part Based on Transitions

The second part of our signature function is defined as follows.

Definition 19. Let N = (P, T, F,M0) be a Petri net. The transition-based part
of the sig(N) function of Definition 13 is a tuple (k1, ..., k3) of natural numbers
or values of type D. The components of this tuple are the following:

– k1
def= card (T ), i.e., the number of transitions.

– k2
def= 5H({| card (•t) | t ∈ T |}).

– k3
def= 5H({| card (t•) | t ∈ T |}).

The following components are excluded from the transition-based part of the sig-
nature: k2.card and k3.card (because they are equal to k1); k2.sum (which is equal
to h9.sum+h10.sum+h11.sum); and k3.sum (which is equal to h6.sum+h7.sum+
h8.sum).

4.6 Signature Part Based on Units

The third part of our signature function is defined as follows.

Definition 20. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. The unit-
based part of the sig(N) function of Definition 13 is a tuple (l1, ..., l13) of natural
numbers or values of type D. The components of this tuple are the following:
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– l1
def= card (U), i.e., the number of units.

– l2
def= 5H({| card (subunits (u)) | u ∈ U |}).

– l3
def= 5H({| card (subunits∗(u)) | u ∈ U |}).

– l4
def= 5H({| card (places (u)) | u ∈ U |}).

– l5
def= 5H({| card (places∗(u)) | u ∈ U |}).

– l6
def= 5H({| card (places (u) ∩ M0) | u ∈ U |}).

– l7
def= 5H({| card (places∗(u) ∩ M0) | u ∈ U |}).

– l8
def= 5H({| depth (u) | u ∈ U |}).

– l9
def= 5H({| height (u) | u ∈ U |}).

– l10
def= 5H({|width (u) | u ∈ U |}),

– l11
def= 5H({| in(u) | u ∈ U |}), where in(u) def=

∑
t∈T card (•t ∩ places (u)).

– l12
def= 5H({| out(u) | u ∈ U |}), where out(u) def=

∑
t∈T card (t• ∩ places (u)).

– l13
def= 5H({|mix(card (subunits (u)), card (subunits∗(u)), card (places (u)),

card (places∗(u)), card (places (u) ∩ M0), card (places∗(u) ∩ M0), depth (u),
height (u),width (u), in(u), out(u) |}, where mix : N

11 → N is a generalized
pairing function.

The following components are excluded from the unit-based part of the signature
because their presence would be redundant: l2.card = l1, l2.min = 0, l2.sum =
l1 − 1, l3.card = l1, l3.min = 0, l4.card = l1, l4.sum = card (P ), l5.card = l1,
l6.card = l1, l6.min ≤ 1 and l6.max ≤ 1 if N is unit safe, l7.card = l1, l7.min ≤ 1
if N is unit safe, l7.max = card (M0), l8.card = l1, l8.min = 0, l9.card = l1,
l9.min = 1, l9.max = l8.max + 1, l10.card = l1, l10.min = 1, l11.card = l1,
l12.card = l1, and l13.card = l1.

5 Net Canonization

Our third approach relies on an idea derived from the concept of normal form.

Definition 21. A net canonization (or canonization for short) is a function
can defined on Petri nets or NUPNs, such that, for any two nets N and N ′, if
can(N) = can(N ′), then N and N ′ are isomorphic.

The reverse implication is not required: two isomorphic nets do not have neces-
sarily the same image by canonization. In the sequel, we propose a particular can
function defined as the composition of three successive permutations of units,
places, and transitions. Units are permuted first, because in a non-trivial NUPN,
there are less units than places (in a trivial NUPN, card (U) ≤ card (P ) + 1);
transitions are permuted last, because there are usually more transitions than
places in a net.

Definition 22. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. We assume
in this section that P (resp. T , U) is the natural range {1, ..., card (P )} (resp.
{1, ..., card (T )}, {1, ..., card (U)}) and that each place p (resp. each transition t,
each unit u) is represented by a unique number noted #p (resp. #t, #u).
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– Let πu[N ] : U → U denote a permutation of the units of N ; the definition we
chose for πu[N ] is given below in Sect. 5.1.

– Let πp[N ] : P → P denote a permutation of the places of N ; the definition we
chose for πp[N ] is given below in Sect. 5.2.

– Let πt[N ] : T → T denote a permutation of the transitions of N ; the definition
we chose for πt[N ] is given below in Sect. 5.3.

– Let N1 be the NUPN obtained by permuting the units of N with πu[N ].
– Let N2 be the NUPN obtained by permuting the places of N1 with πp[N1].
– Let N3 be the NUPN obtained by permuting the transitions of N2 with πt[N2].

Finally, we define can to be the function that maps N to N3.

5.1 Unit Sorting

The unit-permutation function πu[N ] mentioned in Definition 22 is defined as
follows.

Definition 23. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. For each unit
u, one builds a tuple m(u) def= (m1(u), ...,m35(u)) of natural numbers or values
of type D. The components of this tuple are the following:

– m1(u) def= depth (u).
– m2(u) def= card (subunits (u)).
– m3(u) def= card (places (u)).
– m4(u) def= card (places (u) ∩ M0).
– m5(u) def= card (subunits∗(u)).
– m6(u) def= card (places∗(u)).
– m7(u) def= card (places∗(u) ∩ M0).
– m8(u) def= height (u).
– m9(u) def= width (u).
– m10(u) def= 5H({| distance1(p) | p ∈ places (u) |}).
– m11(u) def= 5H({| distance2(p) | p ∈ places (u) |}).
– m12(u) def= 5H({| distance3(p) | p ∈ places (u) |}).
– m13(u) def= 5H({| nb loops(p) | p ∈ places (u) |}).
– m14(u) def= 5H({| nb decreasing input transitions(p) | p ∈ places (u) |}).
– m15(u) def= 5H({| nb conservative input transitions(p) | p ∈ places (u) |}).
– m16(u) def= 5H({| nb increasing input transitions(p) | p ∈ places (u) |}).
– m17(u) def= 5H({| nb decreasing output transitions(p) | p ∈ places (u) |}).
– m18(u) def= 5H({| nb conservative output transitions(p) | p ∈ places (u) |}).
– m19(u) def= 5H({| nb increasing output transitions(p) | p ∈ places (u) |}).
– m20(u) def= 5M({| pred nb input places(p) | p ∈ places (u) |}).
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– m21(u) def= 5M({| pred nb output places(p) | p ∈ places (u) |}).
– m22(u) def= 5M({| succ nb input places(p) | p ∈ places (u) |}).
– m23(u) def= 5M({| succ nb output places(p) | p ∈ places (u) |}).
– m24(u) def= 5M({| pred input distance1(p) | p ∈ places (u) |}).
– m25(u) def= 5M({| pred output distance1(p) | p ∈ places (u) |}).
– m26(u) def= 5M({| succ input distance1(p) | p ∈ places (u) |}).
– m27(u) def= 5M({| succ output distance1(p) | p ∈ places (u) |}).
– m28(u) def= 5M({| pred input distance2(p) | p ∈ places (u) |}).
– m29(u) def= 5M({| pred output distance2(p) | p ∈ places (u) |}).
– m30(u) def= 5M({| succ input distance2(p) | p ∈ places (u) |}).
– m31(u) def= 5M({| succ output distance2(p) | p ∈ places (u) |}).
– m32(u) def= 5M({| pred input distance3(p) | p ∈ places (u) |}).
– m33(u) def= 5M({| pred output distance3(p) | p ∈ places (u) |}).
– m34(u) def= 5M({| succ input distance3(p) | p ∈ places (u) |}).
– m35(u) def= 5M({| succ output distance3(p) | p ∈ places (u) |}).

The following components are excluded from m(u): m10(u).card, m11(u).card,
..., m18(u).card (because they are all equal to m3(u)); m21(u).card (which is
equal to m20(u).card); m23(u).card (which is equal to m22(u).card); m24(u).card,
m28(u).card, and m32(u).card (which are all equal to m20(u).sum); m25(u).card,
m29(u).card, and m33(u).card (which are all equal to m21(u).sum); m26(u).card,
m30(u).card, and m34(u).card (which are all equal to m22(u).sum); and
m27(u).card, m31(u).card, and m35(u).card (which are all equal to m23(u).sum).

Definition 24. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. The function
πu[N ] mentioned in Definition 22 is defined to be any permutation π : U → U
such that (∀u, u′ ∈ U) #u ≤ #u′ ⇒ m(π(u)) � m(π(u′)), where � is the
lexicographic order over tuples; thus, π sorts all units u by increasing values of
m(u).

In practice, one can obtain a unique permutation π by extending the tuple m(u)
with an extra component m36(u) def= #u. Doing so guarantees that π is a stable
sort, i.e., does not permute indistinguishable units needlessly.

5.2 Place Sorting

The place-permutation function πp[N ] mentioned in Definition 22 is defined as
follows.

Definition 25. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. For each place
u, one builds a tuple n(p) def= (n1(p), ..., n27(p)) of natural numbers or values of
type D. The components of this tuple are the following:
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– n1(p) def= #(unit (p)).
– n2(p) def= distance1(p).
– n3(p) def= distance2(p).
– n4(p) def= distance3(p).
– n5(p) def= nb loops(p).
– n6(p) def= nb decreasing input transitions(p).
– n7(p) def= nb conservative input transitions(p).
– n8(p) def= nb increasing input transitions(p).
– n9(p) def= nb decreasing output transitions(p).
– n10(p) def= nb conservative output transitions(p).
– n11(p) def= nb increasing output transitions(p).
– n12(p) def= pred nb input places(p).
– n13(p) def= pred nb input places(p).
– n14(p) def= succ nb input places(p).
– n15(p) def= succ nb input places(p).
– n16(p) def= pred input distance1(p).
– n17(p) def= pred output distance1(p).
– n18(p) def= succ input distance1(p).
– n19(p) def= succ output distance1(p).
– n20(p) def= pred input distance2(p).
– n21(p) def= pred output distance2(p).
– n22(p) def= succ input distance2(p).
– n23(p) def= succ output distance2(p).
– n24(p) def= pred input distance3(p).
– n25(p) def= pred output distance3(p).
– n26(p) def= succ input distance3(p).
– n27(p) def= succ output distance3(p).

The following components are excluded from n(p): n12(p).card and n13(p).card
(because they are equal to n6(p) + n7(p) + n8(p)); n14(p).card and n15(p).card
(because they are equal to n9(p)+n10(p)+n11(p)); n16(p).card, n20(p).card, and
n24(p).card (which are all equal to n12(p).sum); n17(p).card, n21(p).card, and
n25(p).card (which are all equal to n13(p).sum); n18(p).card, n22(p).card, and
n26(p).card (which are all equal to n14(p).sum); and n19(p).card, n23(p).card,
and n27(p).card (which are all equal to n15(p).sum).

Definition 26. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. The function
πp[N ] mentioned in Definition 22 is defined to be any permutation π : P → P such
that (∀p, p′ ∈ P ) #p ≤ #p′ ⇒ n(π(p)) � n(π(p′)), where � is the lexicographic
order over tuples; thus, π sorts all places p by increasing values of n(p).

In practice, an extra component n28(p) def= #p can be added to tuple n(p) to
obtain a unique permutation π that is also a stable sort.
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5.3 Transition Sorting

The transition-permutation function πt[N ] of Definition 22 is defined as follows.

Definition 27. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. For each tran-
sition t, one builds an tuple o(t) def= (o1(t), o2(t)) of natural numbers or values of
type D. The components of this tuple are the following:

– o1(t)
def= 5H({|#p | p ∈ •t |}), noticing that o1(t).card = card (•t).

– o2(t)
def= 5H({|#p | p ∈ t• |}), noticing that o2(t).card = card (t•).

Definition 28. Let N = (P, T, F,M0, U, u0,�, unit ) be a NUPN. The function
πt[N ] mentioned in Definition 22 is defined to be any permutation π : T → T such
that (∀t, t′ ∈ T ) #t ≤ #t′ ⇒ o(π(t)) � o(π(t′)), where � is the lexicographic
order over tuples; thus, π sorts all transitions t by increasing values of o(t).

In practice, an extra component o3(t)
def= #t can be added to tuple o(t) to obtain

a unique permutation π that is also a stable sort.

5.4 Unique Sorting

As mentioned above, the reverse implication of Definition 21 is not guaranteed:
the canonization function can, applied to two isomorphic nets, may return dif-
ferent results. This is especially the case when the nets contain fragments that
are locally symmetric (e.g., circular rings, complete subgraphs, etc.), for which
several permutations exist. In other cases, however, the reverse implication may
hold.

Proposition 3. Let N and N ′ be two NUPNs. If each of the three permutations
πu[N ], πp[N1], and πt[N2] mentioned in Definition 22 to compute can(N) is unique
i.e., if lexicographic order � over the tuples m, n, and o (see Definition 24, 26,
and 28) defines three total order relations, then N and N ′ are isomorphic iff
can(N) = can(N ′).

Proof. Let N = (P, T, F,M0, U, u0,�, unit ) and N ′ = (P ′, T ′, F ′,M ′
0, U

′, u′
0,�′,

unit ′) be two isomorphic NUPNs. Let (πp, πt, πu) be the three bijections of Def-
inition 7 relating N and N ′. First: for each u ∈ U and i ∈ {1, ..., 35}, one can
prove that mi(u) = m′

i(πu(u)) by combining Definition 7 and Definition 23; if
πu[N ] is unique, then πu[N ′] is unique too, and the two NUPNs N1 and N ′

1

obtained from N and N ′ by applying πu[N ] and πu[N ′], respectively, are iso-
morphic and related by the three bijections (πp, πt, id), where id is the identity
function on N. Second: for each p ∈ P and i ∈ {1, ..., 27}, one can prove that
ni(p) = n′

i(πp(p)) by combining Definition 7 and Definition 25; similarly, the two
NUPNs N2 and N ′

2 obtained from N1 and N ′
1 by applying πp[N1] and πp[N ′

1],
respectively, are isomorphic and related by the three bijections (id , πt, id). Third:
for each t ∈ T and i ∈ {1, 2}, one can prove that oi(t) = o′

i(πt(t)) by combining
Definition 7 and Definition 27; similarly, the two NUPNs N3 and N ′

3 obtained
from N2 and N ′

2 by applying πt[N2] and πt[N ′
2], respectively, are related by the

three bijections (id , id , id). Therefore, can(N) = can(N ′).
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6 Implementation

We implemented these ideas in a software tool chain that combines: (i) tools
specifically developed for the purpose of the present article; (ii) tools already
developed at Inria Grenoble, which we extended for the same purpose; and (iii)
third-party tools that we reused without modification.

Our tool chain takes as input a collection of nets and determines which ones
are isomorphic. It accepts Petri nets and NUPNs given in the standard PNML
format [11] or in the “.nupn” format5 (conversion from PNML to “.nupn” format
can be done using the Pnml2nupn translator6). Our tool chain implements all
the approaches presented in Sects. 3–5, ordered by increasing complexities; the
tool chain stops as soon has all the duplicates in a collection have been found.
All steps of the tool chain have been carefully validated using miscellaneous
techniques that cannot be presented here by lack of space.

6.1 File Deduplication

The first and simplest way to search for duplicates in a collection of nets is
to search for identical files. Among the many tools for this purpose, we selected
Fdupes7 which is a fast, reliable Unix command-line tool; the alternative (seem-
ingly faster) tool Jdupes8 is also a good option.

Obviously, this approach is very limited. For instance, inserting an extra
space in a PNML file may prevent two isomorphic nets from being detected
this way. There is thus a clear trade-off between the flexibility of a net format
and the ability to detect duplicates using mere file comparison. In this respect,
the “.nupn” format is preferable to PNML because it is more stringent: places,
transitions, and units are named using natural numbers instead of alphanumeric
identifiers; lexical tokens must be separated using exactly one space; blank lines
are forbidden, as well as trailing spaces before end of lines, etc. For this rea-
son, our toolchain employs the “.nupn” format rather than PNML. In practice,
translation from PNML to “.nupn”, followed by an invocation of Fdupes, is
often sufficient to detect duplicates that do not involve permutations.

6.2 Pre-canonization

Even if the “.nupn” format is more stringent than PNML, it still offers a degree
of flexibility that allows a given net to be expressed under different forms, even in
absence of any permutation of places, transitions, or units. To address this prob-
lem, the Nupn Info tool9 has been extended with a “-precanonical-nupn”
option that takes as input a net in “.nupn” format and produces as output the

5 https://cadp.inria.fr/man/nupn.html.
6 http://pnml.lip6.fr/pnml2nupn.
7 https://github.com/adrianlopezroche/fdupes.
8 https://github.com/jbruchon/jdupes.
9 https://cadp.inria.fr/man/nupn info.html.

https://cadp.inria.fr/man/nupn.html
http://pnml.lip6.fr/pnml2nupn
https://github.com/adrianlopezroche/fdupes
https://github.com/jbruchon/jdupes
https://cadp.inria.fr/man/nupn_info.html
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same net in which: (i) all places (resp. transitions and units) are renumbered
starting from zero; (ii) all lists of places (resp. transitions and units) are sorted
by increasing numbers; (iii) all labels of places (resp. transitions and units) are
deleted; and (iv) all pragmas are removed. After putting all nets under such
pre-canonical form, Fdupes is invoked to detect duplicate files.

6.3 Signatures

We extended the Cæsar.bdd tool10 with a “-signature” option that computes
the signature (as defined in Sect. 4) of a net given in “.nupn” format. Written
in C, the computation is fast (0.12 s per net on average) and always succeeds. A
shell script identifies classes of nets with the same signatures.

To check the correctness of signatures, we developed a Python script that,
given a NUPN N = (P, T, F,M0, U, u0,�, unit ), generates random permutations
πp : P → P , πt : T → T , and πu : U → U . Since the “.nupn” format requires
that places of the same unit have contiguous numbers in a range, each gener-
ated function πp only permutes places within their units, i.e., for each p ∈ P ,
unit (πp(p)) = unit (p), without loss of generality. The Nupn Info tool (with
options “-place-permute”, “-transition-permute”, and “-unit-permute”)
is then invoked on N to produce as output a permuted NUPN; when applying
πp, πt and πu to permute P , T , and U , Nupn Info updates F , M0, u0, �, and
unit to enforce the constraints of Definition 7. Finally, we validated Proposi-
tion 2 by checking, on tenths of thousands of NUPNs and tenths of millions of
random permutations, that the signatures of the original and permuted nets are
identical.

6.4 Canonization

We further extended the Cæsar.bdd tool with three new options
(“-unit-order”, “-place-order”, and “-transition-order”) that compute,
for a net given in “.nupn” format, all the tuples m(u), n(p), and o(t) defined
in Sect. 5. Cæsar.bdd then invokes the Unix “sort” command to sort these
tuples lexicographically and performs, for the “-unit-order” option only, fur-
ther calculations that may help distinguishing units having the same m(u) value.
An Awk script is then invoked to transform these results into permutations of
units, places, or transitions, and report whether such permutations are unique
or not. The input net and the three permutations are then given to Nupn Info,
which produces as output a canonized net. A new option “-canonical-nupn”
that automates all these steps, including the three invocations to Cæsar.bdd,
was added to Nupn Info. Written in C and Awk, canonization is generally fast
(8 s per net on average) but took, in the two worst cases, 8 min and 90 min
on two nets of the Model Checking Contest having the largest number of places
(143,908 and 537,708 places respectively). Finally, Fdupes is invoked to detect
file duplicates in the set of canonized nets.

10 https://cadp.inria.fr/man/caesar.bdd.html.

https://cadp.inria.fr/man/caesar.bdd.html
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To increase confidence in our implementation of canonization, we checked
on each net that canonization is idempotent, meaning that two successive
invocations of Nupn Info with its “-canonical-nupn” option produce the
same output as one single invocation. Also, for tenths of thousands of NUPNs
N = (P, T, F,M0, U, u0,�, unit ), we generated tenths of millions of random per-
mutations πp, πt, and πu, and verified that: (i) for each i ∈ {1, ..., 35}, for each
u ∈ U , mi(u) = m′

i(πu(u)), where m′ is the tuple of Definition 23 computed on
the net obtained from N by applying πu, πp, and πt; (ii) for each i ∈ {1, ..., 27},
for each p ∈ P , ni(p) = n′

i(πp(p)), where n′ is the tuple of Definition 25 com-
puted on the net obtained from N by applying πp and πt; and (iii) for each
i ∈ {1, 2}, for each t ∈ T , oi(t) = o′

i(πt(t)), where n′ is the tuple of Definition 27
computed on the net obtained from N by applying πt; the nets are permuted
using Nupn Info and the tuples m, m′, n, n′, o, and o′ are computed using
Cæsar.bdd.

6.5 Graph Isomorphism

As mentioned in Sect. 3.2, we selected the Traces software, which is deemed
to be a reference tool for graph isomorphism. We developed a Python script
that converts a net in “.nupn” format to a colored graph (see Sect. 3), and then
invokes Traces to put this graph under canonical form. To process a collection,
our script is first invoked on each net of the collection; Fdupes is then used
to detect duplicate files among the canonized graphs. This detection may be
incomplete since Traces sometimes aborts or times out on large graphs.

We validated our implementation as follows: when two nets N and N ′ have
been found isomorphic via their associated graphs GN and GN ′ , Traces produces
two bijections π and π′ that map the vertices of GN and GN ′ to the vertices
of their respective canonical graphs (which are identical). Let πv

def= π′−1 ◦ π;
from πv, we compute three bijections πp, πt, and πu as explained in the proof of
Proposition 1, easily adapted to our optimized translation mentioned in Sect. 3.2;
we finally check that (πt ◦πp ◦πu)(N) = N ′. We also cross-checked the results of
the net-canonization approach with those of the graph-isomorphism approach by
validating Definition 21, i.e., if two NUPNs N and N ′ satisfy can(N) = can(N ′),
then their associated graphs GN and GN ′ should be found isomorphic by Traces
(when this tool can handle them).

6.6 Tool Chain

The five approaches of Sects. 6.1 to 6.5 are successively applied, in this order.
Each approach only considers the problems not solved by prior approaches, and
one stops as soon as all problems have been solved. Figure 1 depicts the appli-
cation of our tool chain to a collection of 10 nets named from ‘a’ to ‘j’. Some
approaches (identical files, pre-canonization, canonization, and graph isomor-
phism) detect certain nets that are isomorphic: we represent this information
using solid boxes that gather isomorphic nets. Other approaches (signatures,
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Fig. 1. Pipelined application of our 5 approaches to a collection of 10 nets

canonization when the assumptions of Proposition 3 hold, and graph isomor-
phism) detect certain nets that are not isomorphic: we represent this information
by partitioning the collection into dashed boxes (using the partition-refinement
idea), such that all nets belonging to distinct dashed boxes are pairwise non-
isomorphic.

7 Experiments

We assessed our tool chain on four collections of nets listed in Table 1 below:

– Collection 1 : 244 Petri nets (without NUPN structure) made available by the
University of Zielona Góra11;

– Collection 2 : 1387 Petri nets obtained by taking all the (non-colored) models
used for the 2022 edition of the Model Checking Contest12; 44% of these nets
have initial places with more than one tokens and/or arcs with multiplicity
greater than one, whereas 50% of these nets are non-trivial unit-safe NUPNs;

– Collection 3 : 16,200 unit-safe NUPNs from diverse origins, containing few
duplicates, gathered at Inria Grenoble to be used in scientific experiments;

– Collection 4 : 241,657 unit-safe NUPNs (135 GB of disk space) produced at
Inria Grenoble by removing, using Fdupes, all identical files from a larger
set of 840,838 NUPNs that was obtained after extending collection 3 with
additional NUPNs and applying numerous permutations to all these nets;
therefore, collection 4 contains many duplicates (i.e., isomorphic NUPNs).

As mentioned above, our experiments were performed on the Grid’5000 testbed,
each server having an Intel Xeon Gold 5220 (2.2 GHz) processor, 96 GB RAM,
and running Linux Debian 11 with a shared NFS filesystem. To reduce the
variability in results, each server was executing only one experiment at a time.

The results of applying our tool chain to these four collections are displayed
in Table 2 below. After each step of the tool chain, we give three figures: dupl. is
the percentage of nets that can be removed, since they were found isomorphic to

11 http://www.hippo.iie.uz.zgora.pl (retrieved on January 23, 2023).
12 http://mcc.lip6.fr.

http://www.hippo.iie.uz.zgora.pl
http://mcc.lip6.fr
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Table 1. Numerical statistics about the four net collections used in experiments

collection 1 collection 2 collection 3 collection 4

avg. max. avg. max. avg. max. avg. max.

#places 15.4 200 2,801.5 537,708 345.8 131,216 740.8 131,216

#trans 11.8 51 10,798 1,070,836 7,998.1 16,967,720 15,645 16,967,720

#arcs 34.2 400 83,384 25,615,632 71,217.9 146,528,584 113,102.9 146,528,584

#units — — 1,970 537,709 123.4 78,644 270.4 78,644

height — — 15.4 2,891 4.3 2,891 6.3 2,891

width — — 1,959.1 537,708 117.6 78,643 259.9 78,643

other nets that will be kept in the collection; uniq. is the percentage of nets found
to be unique in the collection after removing all duplicates; unkn. is the remaining
percentage of nets whose status is not yet determined13. Notice that the values
of dupl. and uniq. in Table 2 increase from top to bottom, as each line builds
upon the cumulated successes reported in upper lines; thus, the contribution of
each approach can be obtained as the difference between the percentage given
on the corresponding line and the percentage given on the previous line.

The main finding is that our tool chain was conclusive for 99%–100% of each
collection. More detailed remarks can be made:

Table 2. Results obtained by our tool chain on the four net collections

collection 1 collection 2 collection 3 collection 4

dupl. uniq. unkn. dupl. uniq. unkn. dupl. uniq. unkn. dupl. uniq. unkn.

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

identical files 4.10 0.00 95.90 0.00 0.00 100.0 0.00 0.00 100.0 0.00 0.00 100.0

pre-canonizat 4.10 0.00 95.90 — — — 0.17 0.00 99.83 22.35 0.00 77.65

signatures 4.10 86.88 9.02 0.00 98.56 1.44 0.17 92.87 6.96 22.35 0.12 77.53

canonization 5.74 91.39 2.87 0.58 98.84 0.58 2.26 94.87 2.87 79.44 4.74 15.82

graph isomor. 6.97 93.03 0.00 0.58 99.42 0.00 2.79 97.20 0.01 90.05 9.01 0.94

– The simple application of Fdupes detected 10 duplicate files in collection 1.
– Pre-canonization detected 54,018 duplicates in collection 4; pre-canonization

was not applied to collection 2 in order to preserve those “.nupn”-format
pragmas giving information about multiple arcs and multiple initial tokens.

– Signatures massively identified unique nets in collections 1–3, but had no
impact on collection 4, in which each net has at least one duplicate.

– Canonization was effective, both in identifying duplicate and unique nets.

13 Our success statistics could be slightly improved by considering that, among each
set of n > 0 nets with undetermined status, there is at least one unique net.
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– Use of graph isomorphism (with a one-hour timeout) clarified the case of most
nets whose status remained unknown after canonization.

– Interestingly, our tool chain detected 17 duplicates in collection 1 and eight
duplicates in collection 2; for the latter, one duplicate is certain (the corre-
sponding nets are one-safe) and seven are uncertain, but very likely.

8 Conclusion

Starting from the concrete problem of finding duplicate models in large collec-
tions of Petri nets or NUPNs, we devised three approaches for the detection
of isomorphic nets: reduction to graph isomorphism, net signatures (an over-
approximation), and net canonization (an under-approximation).

These approaches, which draw on the careful examination of thousands of
concrete benchmarks, have been fully implemented in an efficient tool chain,
the successive steps of which are ordered by increasing complexity. To process
large collections of nets, the calculations can easily be distributed on computer
clusters or grids, as most steps deal with individual nets. Only the detection of
identical files is not easy to parallelize, but did not cause bottlenecks, since the
tool we selected is fast enough.

We assessed our tool chain on four collections ranging from 244 to 241,657
nets and containing either few or many duplicates. We observed a success rate
of 99%–100% in the detection of isomorphic nets.

The present work could be pursued in, at least, two directions: (i) one could
try shortening the component lists used in signatures and canonization to retain
only those components that are most effective in practice; (ii) one could extend
the proposed approaches to support wider classes of nets, such as non-safe Petri
nets (these are currently handled using over-approximations) and colored nets.

Acknowledgements. Our experiments have been performed using the French
Grid’5000 testbed.
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Abstract. This paper describes an interactive tool to remotely debug,
control, and monitor controllers designed using IOPT Petri nets. The
controllers run on physical hardware devices using code automatically
generated from a Petri net model. A web-based user interface allows
remote controllers to analyze, test, and debug, present a graphical view
of the original Petri net model, and mark an evolution in quasi-real-time.
Debugging capabilities include execution pausing, step-by-step execution
and continuous execution, and the definition of break-points associated
with transition firing. Users may remotely force values on input signals
and inspect the values of output signals to test conditions that would
otherwise require physical interaction with the hardware systems. The
tool records the evolution of all signals and state variables. These are
presented as waveforms, and the respective data can be exported, allow-
ing posterior analysis with external tools of systems running at high-
speed execution rates, The tool is already integrated into the IOPT-
Tools framework, runs in a standard web browser, and does not require
additional software installation. The tool employs a lightweight protocol
based on HTTP to communicate with the code running on the embed-
ded controllers. The protocol was designed to minimize CPU, memory,
and bandwidth resources. Thus, the controller code generated automati-
cally by the IOPT-Tools framework includes a minimal HTTP server for
communication with the debugger tool running on a browser. The paper
presents an example of an application employing a simple car-park con-
troller model.
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1 Introduction

Graphical specification languages play an important role in systems specifica-
tion and modeling. Additionally, the so-called formal languages also have the
advantage of precise semantics, which, besides fostering additional reflection of
the system requirements and behaviors, also allow automatic executable code
generation. Creating models can help modelers better understand the system’s
behavior and identify potential issues before they arise. Code generation allows
the use of the models as high-level programming languages. Another benefit of
visual specification languages is that they can help developers communicate more
effectively with other team members and stakeholders. Visual models are often
easier to understand than written descriptions, so they can help share ideas and
collaborate on complex projects.

The visual representation of Petri nets is especially appealing as it allows a
readable representation of resources, conditions, concurrency, and synchroniza-
tion. However, to create controllers, it is also essential to be able to generate
executable code from those specifications. This can save time and reduce the
risk of errors, which is especially important in developing controllers, where
even small mistakes can have significant consequences.

The IOPT-Tools framework [1] is a set of freely available tools that allow the
specification of discrete event controllers using a non-autonomous class of Petri
nets, named IOPT nets, for Input-Output Place-Transition Petri nets [2]. Those
tools include an editor, state-space generator, code generator, and simulator.
Additionally, after deployment of the generated code (for the controller), testing
the controller in real-time can be helpful. To that end, a tool named “remote
debugger” was added to the IOPT-Tools framework. This new tool, here pre-
sented, communicates with a local micro HTTP server added to the controller-
generated code to force values in the input signals, replacing the values read
from the input pins and observing the values in the output pins. This way, it is
now possible to test the code already running in real-time, allowing exploration
of different scenarios and even stress tests regarding random or malicious inputs.

The structure of the paper is as follows. Section 2 presents the related work.
Section 3 briefly presents the IOPT Petri nets class and Sect. 4 the IOPT-Tools
framework where the presented debugger was integrated. The remote debugger
tool is presented in Sect. 5, and Sect. 6 illustrates its application to a car-park
controller. Finally, Sect. 7 concludes.

2 Related Work

The IOPT-Tools framework provides a unique set of free tools to create models
for discrete event controllers from which code can be generated and deployed
to multiple low-cost controllers (e.g., Arduino) and single-board computers. The
explicit modeling of input and output signals, which are assigned to physical
pins, provide an intrinsic and automatic back annotation and, consequentially, a
detailed visualization of all controller states, signals, and execution steps. More
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specifically, the Petri net model, from which the runtime code was generated,
visually represents the controller behavior at runtime: the model is also a code
visualizer. The model also provides an interface to force input signal changes,
allowing different scenarios to be tested.

Remote debuggers are a relatively common tool, especially when applied
to low-resource machines like PLC and embedded computers. An example is
the work in [3] that presents building a GDB-based PLC debugger with an
embedded CPU using a specific PLC protocol instead of GDB’s remote serial
protocol (RSP). Other works also rely on GDB to debug remote machines (e.g.,
[4,5]). Yet, these debuggers, even when a GUI is made available, are text-based
and do not visually represent the controller behavior, as there was no initial
model from which the running code was generated. In [6], an Arduino debugger
also relies on GDB, and the debug functionality is based on a program library
that is added to the user application. As mentioned, in the IOPT-Tools remote
debugger, an HTTP server is added to the controller code.

Sometimes, Petri nets are used to visualize distributed systems without the
running code having been generated from the Petri net model used for visual-
ization (e.g., [7,8]). The debugger presented here is specific to this class of Petri
nets. It allows real-time visualization for markings, signals, and events in the
same model that generated the code, hence completing the model-driven devel-
opment with the possibility of visually debugging the generated code using the
original model.

3 IOPT Nets and Their Deployment

The IOPT Petri net class [2] was created to support embedded system controller
design. To that end, IOPT nets add some non-autonomous elements to place/-
transition Petri nets (e.g., [9]): in addition to places, transitions, and arcs, IOPT
nets also include the concepts of input and output signals (which can be Boolean
or multi-valued signals) and events, that enable the communication of a Petri
net model with the environment, and allow the use of priorities in transitions as
one way to resolve conflicts and avoid non-determinism.

For the development of embedded controllers, explicit modeling of the depen-
dencies on the environment and execution determinism assumes paramount
importance. The firing rule, as in other non-autonomous nets (e.g., [10]) adds the
concept of “ready” for a transition to fire and a maximal step semantics (in order
to assure a deterministic execution at the physical controller level). Therefore,
for a transition to fire, it must be not only enabled, by the marking in its input
places as in place/transition nets, but also ready. A transition is ready if and
only if it meets two conditions: (1) its associated guards, which are functions
of the input signal values, are true; (2) its associated input events, which are
functions of changes in the input signal values, are also true. Then, according to
the maximal step semantics, all enabled and ready transitions will fire in each
step. Also, contributing to a-priori conflicts arbiters, test-arcs can be used to
check if a place is marked, but do not remove tokens.
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When a controller developed using an IOPT model is deployed on an embed-
ded hardware platform, the signals and events are associated with analog or
digital input and output pins to read data from external switches and sensors
or to control LEDs, actuators, motors, or user interface widgets. Then, these
signals and events interact with the Petri net nodes in a bidirectional way:
input signals and input events are used to inhibit the firing of transitions;
expressions may be associated with places to assign values to output signals
depending on the net marking; output signals can also be changed by output
events when a transition fires.

4 IOPT-Tools

The IOPT-Tools framework is a cloud-based integrated development environ-
ment that supports all embedded system controller development steps. It con-
tains a set of tools that enable model edition, simulation, model-checking, auto-
matic code generation for several hardware targets, and remote debugging of
the resulting controllers. All tools offer a web interface, are available online at
http://gres.uninova.pt, and do not require any software installation.

The tools include an extensible graphical editor for model design and edi-
tion (see Fig. 1). In addition to the standard Petri net edition functionality, it
is possible to associate events and assign physical input and output hardware
pins to each external signal. It is also possible to execute external plug-ins, for
instance, to split models into several distributed sub-systems, as well as applying
a net-addition operation, allowing the composition of models.

Fig. 1. IOPT-Tools Editor.

A Simulator tool enables the execution of IOPT models directly on the web
browser. The user interacts with the models by changing the values of input and
output signals and events and observing the system state evolution according to
these changes: transitions fire, producing changes in place marking, resulting in

http://gres.uninova.pt
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new values associated with output signals and events. The simulator may execute
the models step-by-step, continuously at predefined execution speeds that may
be automatically stopped by assigning breakpoints to specific transitions.

In addition to the simulator, a model-checking sub-system based on a state-
space generator is available. This tool automatically detects deadlock conditions
and calculates the maximal bound for each place, which is useful for automatic
code generation tools. The resulting state-space graphs can be visualized graph-
ically, but when the number of states grows to many thousands or millions, it
is possible to define queries to automate property checking. For instance, it is
possible to automatically search for states that correspond to problematic fault
conditions, check the reachability of certain desired states, etc.

When a model has been successfully simulated and model-checked, a set of
automatic code generators produces code to run on several types of hardware
platforms and implement the model behavior. At this point, there are auto-
matic generators that produce software code in the C/C++, Matlab, and PLC
Instruction List languages. Another automatic code generator produces VHDL
hardware descriptions to run on FPGA and ASIC chips.

Finally, the Remote Debugger tool presented in this paper allows the remote
debugging and monitoring of controllers deployed on embedded boards running
the code produced automatically by the C code generator. This code has been
tested on several embedded boards, including Arduino, Raspberry Pi 1-4, Red-
Pitaya, Intel Edison, Coral-dev-board, and other boards based on the Linux
operating system.

5 The Remote Debugger Tool

The Remote Debugger tool is a web-based application used to monitor, debug,
and troubleshoot embedded and cyber-physical system controllers deployed on
remote hardware boards that run code generated automatically from an IOPT
Petri net model [11–13]. In a typical application, the controller board is con-
nected to external hardware components and physical devices, containing sen-
sors to read information from these devices and actuators to control physical
systems that are represented in an IOPT model as input and output signals.

Due to the distributed nature of modern cyber-physical systems, a complete
system may contain multiple boards located at different remote locations, con-
nected through local area networks or Internet connections, supporting debug-
ging and monitoring from a single location. The chosen communication pro-
tocol is based on HTTP and JSON standards, as these technologies are well-
supported on all web browsers, and most firewalls do not usually filter the HTTP
protocol. The “C” code produced automatically by the IOPT-Tools framework
includes a minimalist HTTP server and infrastructure to support remote debug-
ging.

When the Remote Debugger tool connects to an embedded board, it opens
two communication channels. This first connection sends commands to the
board, including debug instructions like step-by-step execution, undo execution
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steps, define breakpoints, force the value of input and output signals, system
resets, and read the system state. The second channel monitors the system evo-
lution in quasi-real-time, reporting any changes in the system status and I/O
signals and events.

After connecting and authenticating into a remote board, the debugger tool
immediately presents the system status, displaying the corresponding IOPT
Petri net model, including the instantaneous values of place marking and input
and output signals, along with information about which transitions are ready to
fire. Figure 2a) presents the Remote Debugger tool running on a web browser.
The remote debugger offers a user interface almost identical to the IOPT Simu-
lator tool, except that the models run on physical devices instead of being just
simulated on the browser.

Fig. 2. Remote Debugger Simulator.

In the same way as the Simulator tool, the toolbox contains buttons to pause
execution, step-by-step execution, and perform continuous execution. The evo-
lution of the system state is reflected in the model’s graphical representation,
employing different colors to depict marked places, enabled signals and events,
and even the transitions that are enabled and ready to fire on the next execution
step. A form on the right presents the same information using numeric values.

As the controller boards typically run at high-speed execution rates, thou-
sands of steps per second, it is impossible to monitor all state evolution details
visually. However, the second communication channel transmits all information
to the debugger, which stores it internally. This information may be visualized
as graphical waveforms (Fig. 2b)) or exported as CSV files for later processing
on spreadsheets or other analysis software. In the same way, when the system
evolves at high-speed execution rates, it may not be possible to detect faulty
situations visually. To help solve this problem, the user may assign breakpoints
to specific transitions that pause execution when they fire. The user may also
navigate through the saved execution history, moving back and forth to replay
«interesting» execution sequences slowly.
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Fig. 3. System Architecture.

Figure 3 presents a deployment diagram containing an overview of the pro-
posed system architecture, including a server running the IOPT-Tools frame-
work, the developer’s personal workstation running a web browser, and an
embedded board where the controller is deployed. The IOPT-Tools web server
manages all back-end operations, including storing the web applications and
IOPT model files, performing automatic code generation, and running the model-
checking subsystem. Other tools, such as the model editor, model simulator,
and remote debugger, are executed directly on the user’s web browser using
Javascript and AJAX technologies. Finally, the C code produced by the auto-
matic code generator is deployed on an embedded board connected to physical
hardware devices (the controlled system). All three computer systems, the server,
user workstation, and embedded board, must be connected through a local net-
work or the Internet.

The C code produced automatically is divided into two parts: code that
implements the IOPT model semantics and a small web server that communi-
cates with the remote debugger and may also be used to support the creation of
remote web user interfaces. To support remote debugging, the semantics execu-
tion code also contains functionality to pause execution, run a specific number
of steps, check transition breakpoints, and force input and output values.

As the C code produced by the automatic code generator may be deployed
into very diverse embedded single-board computers, the code is usually down-
loaded from the server to the developer’s workstation to be compiled using the
target board-specific tool-chain and produce binary files to run on the boards.
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However, the embedded-board development tools may also be installed on the
server to produce the binary files or executed directly on the embedded board.
For example, an “Arduino-cli” tool may be used to compile C code and upload
binary files directly from the server to Arduino boards. Furthermore, target
boards based on the Linux operating system, such as Raspberry Pi SBCs, can
locally compile and run their own code.

The Remote Debugger tool requires the cooperation of three systems running
simultaneously: the user must log into the server, open the desired model, and
run the debugger tools. This step is necessary as the debugger application and the
IOPT model file are stored on the server. Next, the Remote Debugger application
running on the user’s web browser connects to the embedded board by specifying
a URL containing the board address and a password. As soon as the Remote
Debugger has retrieved the model information from the server, the debugging
session proceeds with the user’s web browser interaction and the code running
on the embedded board.

6 Using the Remote Debugger Tool

This section summarizes the deployment of controller code with support for the
remote debugger and an application example where IOPT-Tools and the remote
debugger were used to develop a remote laboratory.

6.1 Automatic Generation of Controllers Supporting Remote
Debugging

After model edition, simulation, and verification, the code can be automatically
generated just by pressing the “C Code” button. However, before generating the
code, it is required to ensure that the model input and output signals will be
connected to the board pins, and to achieve it, it is required to specify a “Phys-
ical I/O Nr” for each signal. The automatically generated code, which supports
diverse boards and remote debugging, is downloaded in a ZIP file containing
multiple files. To implement not only the controller (left part of Fig. 4) but also
an HTTP server that supports remote debugging (right part of Fig. 4), the fol-
lowing steps must be carried out. For Arduino boards:

• To implement the HTTP server used by the remote debugger, edit file
net_types.h and uncomment the definition “#define HTTP_SERVER”;

• The default IP address is 192.168.1.177 and the default password is “1234”;
• To define the Arduino Ethernet IP address, edit “net_server.h” and change

the ARDUINO_IP_ADDR macro. It is important to note that commas must
separate the numbers (,) instead of dots (.);

• To define the password, change the “PASSWORD” definition in the file
“net_server.h”;

• The default port addresses are 80 and 81 (definitions “SYNCPORT” and
“FEEDPORT” in “net_server.h” file). “SYNCPORT” is used to send com-
ments to the board, whereas “FEEDPORT” is used to monitor the board;
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• The file “net_main.c” must be renamed to “<PROJ>.ino”, where <PROJ>
is the Arduino project folder name.

For embedded boards based on the Linux operating system (including Rasp-
berry Pi boards):

• Linux-based boards use the files “http_server.h” and “http_server.c” instead
of “net_server.h” and “net_server.cpp”;

• To implement the HTTP server used by the remote debugging, uncomment
the -DHTTP_SERVER line on the “Makefile”, or if the “Makefile” is not used,
add this definition to the file “net_types.h”;

• The default port address is 8000. To change the port, edit “http_server.h”
and change the “DEF_PORT” definition.

• To define the password, change the “PASSWORD” definition in the file
“http_server.h”;

• A “Makefile” is supplied to simplify the project compilation (in the project
directory, run the “make” command);

• After compilation, the code can be executed, implementing a controller that
supports remote debugging.

As an example, a Raspberry Pi running the controller of a car parking lot
can be remotely monitored and controlled through the Remote Debugger tool
of IOPT-Tools using the model “INDIN07_park1in1out” available in the area
“atpn2024” (password “atpn2024”) and following further instructions available
at http://gres.uninova.pt/boards.html.

Fig. 4. From isolated operation to remote monitoring and operation of controllers.

6.2 Remote Monitoring and Operation: A Remote Laboratory
Using Arduino Boards

This section presents an example of an application where the IOPT-Tools with
the remote debugger were used to develop a remote laboratory. This laboratory
has two Arduino boards, as Fig. 5 illustrates. Both Arduino boards have HTTP
servers connected to two instances of the remote debugger web clients running
on web browsers), meaning both can be remotely monitored and controlled.

In the presented scenario (Fig. 5), Arduino2 is running the controller of a car
parking lot, whereas Arduino1 will be used to emulate the behavior of the car

http://gres.uninova.pt/boards.html
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parking lot under control. Arduino1 outputs, which its remote user will force, are
connected to Arduino2 inputs to emulate the car parking lot sensors’ changed
state. Arduino2 outputs, which are used to actuate on the car parking lot, are
connected to Arduino1 inputs to be monitored by its remote user. It is important
to note that it is possible to remotely monitor and control the controller of the
car parking lot just using one Arduino (Arduino2); however, with this solution,
it is possible to do it without interfering with the execution of the controller of
the car parking lot.

This remote laboratory can be remotely monitored and controlled through
the Remote Debugger tool of IOPT-Tools using the model “PN24_ParkSensors”
for Arduino1 and the model “PN24_park” for Arduino2, both available in the
area “atpn2024” (password “atpn2024”) and following further instructions avail-
able at http://gres.uninova.pt/boards.html.

Fig. 5. Remote Debugger for the support of remote laboratories.

7 Conclusions

The freely available web-based IOPT-Tools already allow the creation, verifica-
tion, and testing of Petri net models for discrete event controllers. From those
models, generating code ready to run on multiple platforms, namely single-board
computers and low-resource controllers, is also possible. The presented tool adds
an important testing capability to IOPT-Tools as the same model can now be
used to test and visualize the generated code execution in those platforms. The
tool explicitly allows direct real-time actuation and the corresponding visual
mapping between the model and physical controller states, thus providing an
additional important form of testing.

http://gres.uninova.pt/boards.html
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Abstract. Ideally, safety-critical systems should be designed to avoid
or be resilient in handling failures that may occur during their lifetime.
For dependability purposes, IEC 62551 provides guidance on using the
Petri net formalism for modeling and analysis of systems. Another con-
cept that has been considered to ensure the reliability of systems and
contribute to their overall safety is the digital twin (DT). A DT is a
virtual counterpart that is seamlessly linked to a physical asset, both
relying on data exchange for mirroring each other. DT has been used for
the tracking, management, maintenance, and optimization of different
systems. In some implementations, the DT emphasizes only the geo-
metric models and their animation. To fully benefit from their usage,
considering associated behavioral models is of paramount importance to
allow full validation of the system. This paper proposes the application
of Input-Output Place-Transition Petri Nets (IOPT-nets) to model and
deploy both the physical and the virtual entities of the DT, contributing
to a comprehensive use of Petri nets in the development of systems. The
case study presented concerns the development of digital twins for power
wheelchair systems using the IOPT-Tools framework to specify, validate,
and implement it.

Keywords: Digital Twin · Petri Net · Real-Time Information ·
Reliability Analysis · Remote Monitoring and Control

1 Introduction

Modern systems are becoming more complex, requiring appropriate techniques
to verify and validate their dependability, especially with regard to safety-critical
systems (SCSs) [1]. A SCS is a system where non-desired properties can cause
serious harm to people or the environment. In other words, a system is considered
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safety-critical based on the results of its failures1 [2] which often stem from
human actions.

The SCS covered in this paper pertains to a power wheelchair system. This
type of system is particularly relevant, as it promotes the mobility of individ-
uals with physical disabilities and involves the interaction of different actors:
users, caregivers, therapists, technicians, etc. In addition to the complexity of
developing these systems, challenges arise when using and maintaining them. In
particular, many users have the misconception that wheelchairs do not require
maintenance; and maintenance typically occurs with users seeking assistance
only after a problem arises.

In order to minimize the risks and possible negative outcomes associated
with power wheelchairs (PWCs) and SCSs in general, it is important to tackle
faults during both the systems development phase and their operation. In this
context, it is desirable to ensure the overall reliability2 of the systems, as it
can also contribute to improving their functional safety3. For PWCs, this allows
them to be properly maintained and helps extend their lifespan, ensuring that
they remain safe for the user.

IEC 61508 [3] is an international standard that facilitates the development of
safety-related systems (also critical), and refers to the use of Petri nets (PNs) to
model relevant aspects of system behavior, and to assess and possibly improve
safety and operational requirements through analysis and re-design. There is also
IEC 62551 [4] that focuses on dependability analysis techniques using exclusively
Petri nets.

The application of these standards can also be supported by advances in
digital technologies, strongly triggered by the Industry 4.0 (I4.0). I4.0 delves deep
into connectivity, real-time data acquisition and processing, and digitization,
allowing the connection of physical objects, people, and the internet.

In this realm, a concept that has been gaining prominence is the digital twin
(DT) [5], which has brought a new approach to face various challenges [6] by
creating always connected physical and virtual twins. A DT is a virtual counter-
part seamlessly linked to a real physical asset or prototype (e.g. product, service,
or machine), both sharing the same properties, characteristics, and behavior
by means of data and information [7] (see Fig. 1). The benefit of creating and
manipulating virtual copies lies in the ease of anticipating challenges, detecting
problems, and increasing efficiency of the systems.

With respect to digital twin implementation, this is a complex task, with
several approaches and models available to realize all its capabilities [8]. Geo-
metric models are commonly used for their visual appeal, but their practicality
is limited without corresponding models that define the behavior and rules of
the DT.

1 A failure is the consequence of an error caused by a fault.
2 Reliability is the ability of a system to perform the function for which it was designed.
3 Safety is the system’s ability to behave safely in the presence of unacceptable failures.
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Fig. 1. DT conceptual model with VS1-VSn representing multiple virtual spaces asso-
ciated with a real space [7].

In view of this, this paper proposes the creation of digital twins using Petri
nets. Specifically, the class of non-autonomous Input-Output Place-Transition
Petri net (IOPT-net) [9] is used to model and deploy both the physical and
virtual entities of a DT. The objective is to fully leverage IOPT-nets in the
development of systems through the digital twin concept: while Petri nets offer
a formal structure for modeling and analysis, the digital twin enables real-time
simulation and control. In this sense, one can benefit from the Petri nets body of
knowledge, namely using model checking fully automatic techniques in aspects
related with verification of properties of the system, namely through the con-
struction of the associated reachability tree [10,11].

The case study presented then concerns the development of a digital twin for
a power wheelchair. The main focus is on monitoring and controlling the behavior
of the motors used to drive and accommodate different seating positions, as is
found in many wheelchairs. The Input-Output Place-Transition Tools (IOPT-
Tools) framework [12] was used to support the DT design through IOPT-net
models, as well as its validation, implementation, and remote operation.

The paper has the following structure: Sect. 2 introduces basic concepts
related to IOPT-nets; Sect. 3 delves into the digital twin concept and how to
use IOPT-nets to enable it; Sect. 4 shows the case study and presents some dis-
cussion around the proposal; and finally, in Sect. 5, conclusions and future work
are presented.

2 Preliminaries

Formal definitions of the IOPT-nets class can be found in [9]. The Input-Output
Place-Transition net is a class of low-level Petri net that was extended from the
well-known Place-Transition net (P/T-net) [13] to allow the modeling of sys-
tems capable of interacting with the environment. The IOPT-net is, therefore,
a non-autonomous class in which the behavioral models of the systems can be
conditioned through input and output signals or events. The following charac-
teristics of a IOPT-net stand out:
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– Inputs: An input signal can be boolean or integer, allowing to set the default
value, and limits to an integer. An input event is boolean and requires an edge
value (up or down) and a threshold to trigger the event when the associated
signal changes accordingly.

– Transitions: A transition can have associated events, guard expressions (with
places and signals as operands), priorities, and action rules that can change
the values of the output signals.

– Places: For a place, an initial value for its marking can be defined. It can also
have action rules to change the output signals’ values.

– Outputs: Outputs have the characteristics of the inputs and can have defined
limits for signals.

– Arcs: Arcs are weighted and can be normal arcs or test (read) arcs.

Considering this, at each execution step, all enabled transitions can be fired if
their input events and guards are verified; but when multiple transitions compete
for the same tokens, priorities and test arcs can prevent some of them from
firing. Upon firing, the output signals’ values may change due to the occurrence
of output events or actions defined at transitions or places. The state of the net
is then given by the marking of all places and the values of the output signals.

Figure 2 shows a simple IOPT-net model with 2 places (P1 and P2), 2 transi-
tions (T1 and T2), 1 input signal (IS), 1 input event (IEu), 2 output events (OEu
and OEd) and 2 output signals (OS and OS2). In this model, T1 can fire if IEu
occurs with IS going from 0 to 1. If T1 fires, P1 becomes unmarked, P2 becomes
marked, and both OS and OS2 become equal to 1; OS due to the occurrence of
OEu, and OS2 due to the action rule “OS2 = 1” in P2. So, T2 can fire if the guard
“G: IS = 0” is true. If T2 fires, OEd will occur making OS equal to 0; and since P2
is unmarked, OS2 returns to 0. The net then returns to its initial state.

Fig. 2. A simple IOPT-net model.

The IOPT-Tools is a free, cloud-based tool framework accessible online at
http://gres.uninova.pt/IOPT-Tools/, that supports the creation of system con-
trollers specified with the IOPT-net formalism. This framework supports all
stages of system development, including design, verification, validation, imple-
mentation, and even allows for remote debugging of deployed systems. The pro-
vided tools encompass an interactive graphical editor of IOPT-net models, a

http://gres.uninova.pt/IOPT-Tools/
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simulator, a state-space generator with a query engine for searching properties,
an automatic code generator for software or hardware platforms, and a remote
debugger [14–17].

3 IOPT-Nets Enabling Digital Twins

The concept of digital twin is sometimes mistaken for digital model (DM) or
digital shadow (DS); but the distinction between the three becomes evident
when it comes to the data flow between the physical entity and the virtual
counterpart [18] (Fig. 3). While DM lacks data interaction between both entities,
and DS presents an automatic one-way data flow from the physical entity to the
virtual counterpart; in the DT there is an automatic and bidirectional data flow,
to and from the physical entity. Here, changes that occur in both the physical
entity (PE) and the virtual entity (VE) directly lead to changes in the other [19].

Fig. 3. Data flow in Digital Model, Digital Shadow, and Digital Twin [18].

Therefore, DM is suitable when the intention is to have static representations
of physical objects; DS is used for monitoring and tracking their conditions; but
DT takes it a step further. VE not only receives real-time data from a physical
object, but can also send commands back to influence its behavior.

According to [20], the digital twin can support the representation of a physical
entity through a virtual entity if it reproduces the relevant attributes of the PE
in the context, ensures the entanglement of entities, and maps the PE values
to the VE in time. Another relevant proposal presented in [21] highlights the
physical entity and the virtual entity interacting with services; and services are
said to be a vital element of the digital twin. On the one hand, the creation of
the DT involves the use of several services and, on the other hand, its operation
revolves around various platform services to facilitate simulation, verification,
monitoring, optimization, and more.
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Consequently, the development of a digital twin focuses on physical-digital
mapping, data flow and connectivity, and provision of end-user services. Below
its is explained how IOPT-nets enable digital twin and support each of these
aspects, together with IOPT-Tools.

3.1 Modeling of Physical and Virtual Entities

Two lifecycles for the DT are described in [22]: one in which the PE and the
VE are conceived at the same time, and designers can model them with the
same characteristics, properties, functions, and models; and another where an
unknown PE already exists, but the VE has to be implemented. This proposal
focuses on the first scenario.

If VE fails to accurately mirror its physical counterpart, it will not accurately
represent the true state of the physical system. Consequently, this can result in
inaccurate measurements being fed into the VE, causing it to deviate from the
intended representation of the PE. This is common in complex and dynamic sys-
tems. However, Petri nets offer precise syntax and semantics that can effectively
address these challenges. Despite the fact that different models can be consid-
ered for the VE to reproduce the PE, such as geometric, physical, behavioral,
and rule models [8], it is the behavioral modeling that drives the virtual entity.
It focuses on representing how the different components of the PE behave and
interact dynamically, as well as how the PE responds to external changes.

In order to ensure the accuracy of the physical-digital mapping, IOPT-nets
are used to model the behavior of the PE and VE. For this purpose, the specifica-
tion of a single IOPT-net model is considered. This model can then be designed
in the IOPT-Tools Editor, and its PNML representation can later be used to
support the deployment of both the PE and VE (see Fig. 4).

Fig. 4. One IOPT-net model can cover both PE and VE specifications.

This approach is advantageous because it can guarantee consistency through-
out the DT lifecycle; allows entities to evolve and align seamlessly due to the
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precise syntax and semantics of Petri nets. For the PE, the IOPT-net model
can effectively represent it and its physical interactions, meeting functional and
safety requirements. For the VE, the model supports dependability issues, being
used to monitor and analyze the state of the PE once deployed and predict its
behavior, empowering users to make informed decisions.

After supporting the modeling of physical and virtual entities, the IOPT-
Tools framework can also facilitate their implementation. In the real space, PE
can be deployed on different platforms using the IOPT-Tools automatic code
generators [16] that transforms the PNML file from the IOPT-net model into
software code for microcontrollers or hardware descriptions for FPGAs. In the
virtual space, VE and its connection to PE are deployed using the IOPT-tools
remote debugger [17], fed by the same PNML.

3.2 Cognition and Control of the Physical World

The one-to-one connection between the real space and the virtual space in the
DT is essentially established to allow the VE to monitor and/or control the PE.
From the perspective of the VE, particularly in the context of safety-critical
systems, the objective is not just to observe and anticipate PE behavior; it also
intended that it can issue commands to the real space when necessary, enhancing
the remote intervention capacity of the VE over PE.

As a result, it is crucial to cognize and control the elements that relate to
the PE in real space, namely sensors and actuators, respectively. The sensors
continuously produce input signals to the PE, conveying commands to the model
or readings of real-world conditions. Actuators, in turn, convert the model’s
output signals into tangible actions or changes in the environment.

The IOPT-nets support this particular feature of DT through their inputs
and outputs. Each signal can be assigned a GPIO number for deployment pur-
poses, with integer range signals representing analog values, and boolean signals
representing digital values. Upon implementation, the automatic code gener-
ator [16] associates the inputs and outputs of the IOPT-net model with the
platform pins, allowing the PE to interact with the environment. This way, the
PE is able to read sensors, command the status of mechanical actuators or read
button/switch values, and control displays/LEDs to communicate with the users.

When the VE intends to exert control over the PE, such as affecting an
actuator on the asset, this can be done by the VE forcing the values of the
inputs and outputs. This involves overriding the actual values read or written
by the GPIO pins. When the VE issues a new input, the PE evolves toward the
desired state or behavior. This underscores another important aspect, which is
ensuring connectivity and data flow between the PE and VE.

3.3 Connectivity and Data Flow

The continuous synchronization between the PE and VE is then driven by the
real-time or near-real-time data flow, guaranteed by the connection between real
and virtual spaces.
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When an IOPT-net-based system is deployed, IOPT-Tools provides a remote
debugger [17] that facilitates interaction with these systems from another loca-
tion. This proves particularly useful in the case of models running on devices
that are not locally accessible; and it also enables and introduces remote opera-
tion capabilities to the DT deployed with IOPT-nets, providing the VE with a
way to mirror and interact with the PE in execution.

To elaborate, an HTTP server is defined in the automatically generated code
for the PE, which establishes the connection with the remote debugger where the
VE is located (see Fig. 5). The remote debugger initiates two HTTP connections
with the platform: a data channel to receive notifications about changes in the PE
state, whenever they occur; and a parallel control channel to send commands
from the VE. These connections allow the transmission of JSON objects to
support monitoring and control.

By capturing all changes in the PE, including changes in input and output
signals, changes in net marking, autonomous events, and fired transitions, the
VE graphically mirrors this information in the IOPT-net model, continuously
presenting the evolution of the PE. This can be used to inspect the PE at any
time and identify when eventual problems occur. On the VE side, the remote
debugger also includes a tracing mechanism with step-by-step execution and
breakpoint definition, along with the ability to remotely force the value of input
and output signals in the PE.

Fig. 5. Connectivity and data flow between the real and virtual spaces in an IOPT-
net-based DT.

3.4 Provision of End-User Services

The IOPT-Tools have been mentioned in the different phases of the development
of the digital twin (see Fig. 4 and Fig. 5). The editor, the automatic code gener-
ator [16] and the remote debugger [17] can be seen as services and an integral
part of the DT.

As a matter of fact, by using the same PNML representation for PE and VE,
the designed IOPT-net model can power multiple IOPT tools for DT end-user
services. Other services (tools) can therefore be considered: the simulator [14]
and the state-space generator [15] (see Fig. 6).
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Specifically, the simulator [14] can be used to execute and debug the PE/VE
model, relying on the token-game and the semantics of the IOPT-net class (see
Sect. 2). It allows to manipulate the values of the input signals at each execution
step and observe the evolution of the net, along with the resulting markings
and outputs. This is similar to what happens with the remote debugger, but the
analysis is done offline against the PE connection.

On the other hand, during each PE and VE connection, the remote debugger
enables a history recording mechanism, saving the evolution of the net. This
recorded history can be replayed later using the simulator, allowing for a more
in-depth examination of PE conditions.

Combined with the state-space generator [15], these tools serve the dual
purpose of: verifying and validating the desirable requirements for PE/VE; and
check if the model can reach undesired states that may represent dangerous
situations, to resolve them before implementation. This approach also provides a
means for the VE to offer feedback on the dependability of the PE, and contribute
to the refinement of the entities, supporting their redesign.

Fig. 6. Framework for the modeling and deployment of digital twins using IOPT-nets.

Ultimately, an IOPT-net-based digital twin can support:

– A precise way for a VE to represent and mirror a PE throughout its lifecycle;
– Real-time monitoring and analysis of a PE to support its design, maintenance,

control, etc.;
– Preventive maintenance based on VE simulations and model-checking that

can predict situations in which a PE is likely to fail;
– Informed decision-making about the operation and maintenance of a PE,

potentially reducing downtime and costs;
– Remote access for human interaction with a PE, allowing interaction from

remote locations via VE;
– Intelligent control via VE over PE, providing instructions and control signals

when necessary.
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4 Digital Twin of a Power Wheelchair: A Case Study
and Discussion

The case study presented in the following is within the scope of research that
has been carried out to apply the digital twin to power wheelchairs [23–25]. The
case study can significantly contribute to the dissemination of best practices in
the field, benefiting stakeholders across the sector. By modeling the intricate
interactions within power wheelchairs, Petri nets offer a structured approach to
evaluating system performance under various circumstances, including normal
operation, failure conditions, and emergency situations. The use of DT in this
context provides for a continuous remote connection between power wheelchairs
and their digital counterparts ideally implemented in service centers of companies
in the sector. The aim would be to support regular inspections, prompt repairs,
and adjustments of wheelchair parameters.

4.1 Case-Study

Figure 7 presents a diagram for the case study referred to.

Fig. 7. A digital twin of a power wheelchair supported by IOPT-Tools.

The physical entity here focuses on the main elements that allow the
wheelchair to move or change seating positions, and that significantly impact
the wheelchair’s overall functionality, safety, and user experience; specifically:

– Analog joystick;
– Right and left drive motors;
– Actuator for seat elevation;
– Actuator for backrest recline;
– Actuator for footrest elevation;
– Mode change button;
– Seat position change button.
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Figure 8 presents the interface for cognition/control in the PWC DT, that is,
the inputs and outputs of the model specifying PE and VE. From top to bottom:
joystick signals “x” and “y”; “mode” signal and events to switch between driving
and position change; “position” signal and events for change between positions;
and 5 output signals for each motor and actuator, “r” (right), “l” (left), “b”
(backrest), “s” (seat), and “f” (foot).

Fig. 8. Inputs and outputs of the IOPT-net model that implements the PWC DT.

Based on these signals and events, the model in Fig. 9 was designed to control
the behavior of a drive motor, in this case, the left one (for the right motor, it
is similar). For each drive motor, there are 3 possible actions: either the motor
stops, moves forward, or moves backward. To control this, the net’s initial mark-
ing is for motor to start from a standstill, and then different guards were defined
to reflect the user’s driving intent.

Here, the evolution of the net and the firing of transitions then depend on
the values of the “x” and “y”. In case of motion, there are 4 action rules at
the places to set the value of the output signal for motor speed control. The
action rules are the same for each place, as they only depend on the values of
“x” and “y”; they are based on work presented in [26]. If the intention is to stop
the motor, the net returns to its initial state, and the motor assumes its default
value, which is 0.

A similar model is shown in Fig. 10. In this case, it models an actuator to
change the backrest position (similar for controlling the seat and footrest). The
difference in relation to the previous model is the fact that this model is for limit
switch motors. The guards are simpler, as are the action rules, which assign the
value 1 or −1 to the output signal. This is because regardless of the joystick
throw, the speed of these actuators is not variable for safety reasons. The net
does not present initial marking, as it is actually part of model from Fig. 12,
whose evolution can lead to the marking of places in Fig. 10.

The last sub model being presented (see Fig. 11) controls the way the
wheelchair operates: in driving mode or seating control mode. For this reason,
the place “X stop” of each motor and actuator is shown.
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Fig. 9. IOPT-net sub model for PWC DT: left drive motor control.

Fig. 10. IOPT-net sub model for PWC DT: power seat actuator control.

Fig. 11. IOPT-net sub model for PWC DT: operating mode control.
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If both the right and left motors are stopped, the user can adjust the seat
elevation by selecting “mode” (“seat” occurs); then, the user can also adjust the
lying position, by clicking “position” (“lie” occurs) to act on the actuators to
recline the backrest and to elevate the footrest. To drive again, the user needs to
stop the actuators and deselect “mode” (“drive” occurs). This control enables
the joystick to serve different purposes, while ensuring users do not change their
seat position while driving as this would be unsafe.

Thus, the main model is presented in Fig. 12, and consists of 2 models in
Fig. 9, 3 models in Fig. 10, and the model in Fig. 11.

Fig. 12. IOPT-net model that implements the PWC DT.

To ensure the functioning of the model of Fig. 12 and the implementation
of the DT, two phases of validation were undertaken. First, using the IOPT-
Tools simulator to verify and validate the model’s evolution by manipulating
the inputs. In this phase, the state-space generator was also used to confirm
that the model was deadlock-free. Future interest lies in exploring additional
behavioural properties such as safety, boundedness, liveness, and reversibility.

Further validation involved a physical experiment using the automatic code
generation tool to produce the C code of the model. The code was used to
deploy the PE, built and compiled using a Raspberry Pi 3 Model B V1.2 board.
The board also established a secure communication with the remote debugger
through an HTTPS connection with user authentication.

Figure 13 shows the VE in the remote debugger, showing the state of the PE
running on the platform with the IP address 192.168.1.254:9000. The state of the
PE in this case showed that the wheelchair was in drive mode. The movement
was related to a left spin in the backward direction, as the right motor was
stopped and the left motor was moving backwards, producing “l” equal to −3.
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Fig. 13. Remote debugger interface: left spin in the backward direction.

This visual representation of the state of the PE could provide information about
its operation while being located remotely in another location.

It was also possible to force its state by controlling the inputs remotely, as
well as forcing the net to restart and return to its initial state (see Fig. 14).

Fig. 14. Remote debugger interface: forcing the initial state.

After this, it was possible to accomplish the deployment of the PWC DT and
validate the proposal.

4.2 Discussion

There are users who have used the same power wheelchair for longer than the
recommended 5 years; and chronic use of wheelchairs leads to wear and tear,
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affecting their overall performance. To ensure the longevity and reliability of
power wheelchairs, a systematic and comprehensive approach to maintenance is
required, with both preventive and corrective measures.

In this way, there have been efforts to remotely connect the latest models of
power wheelchairs with service centers of some companies in the sector. They use
specialized software applications to collect and analyze data about wheelchair
usage and performance. This data provides valuable insights into the wheelchair’s
condition and can be used to improve remote diagnostics [27–30]. However, they
have limited control over the wheelchairs themselves. In many cases, they trust
clients and caregivers to follow technicians’ instructions on how to proceed.

The proposed solution and case study aim to bridge this gap by leveraging the
concept of a digital twin for power wheelchairs. From enhancing customization
to optimizing maintenance, a digital twin can revolutionize wheelchair design
and management. It can simultaneously monitor and provide feedback on the
wheelchair’s condition and the environment in which it operates, as well as
enabling technicians to take action when necessary. In that sense, they can also
empower users with tailored solutions that promote their full participation in
society, ultimately contributing to sustainability.

The case study presented focuses on a single wheelchair, but in a real-world
scenarios, companies may seek to extend the application of DT to the various
wheelchairs they manage. The architecture illustrated in Fig. 15 showcases how
service providers can use DT for real-time connectivity with multiple power
wheelchairs.

Fig. 15. Scenario of multiple power wheelchair digital twins.

Specific applications in this context could be:

– Real-time tracking of power wheelchair locations;
– Data collection on each user’s driving style and use;
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– Tips on safe and efficient power wheelchair driving;
– Access wheelchair data and information on how to optimize its performance;
– Sending instructions or updates directly to the power wheelchair;
– Establish a maintenance schedule and perform pre-diagnostics;
– Generation of cost simulations based on required maintenance;
– Based on the information from used wheelchairs, configure new or replacement

wheelchairs;
– Automatic reports on power wheelchair usage and maintenance.

For that purpose, and based on the work presented, IOPT-nets and IOPT-
Tools will continue to be taken into consideration. They have proven to be ade-
quate for modeling and deploying digital twins. However, additional complexity
may arise when dealing with even more intricate situations. An example might
be the case of a wheelchair with more power seat functions; or even the scenario
of Fig. 15. This cases would lead to the exponential growth of net elements and
pose challenges in managing safety requirements.

As such, an extended IOPT-net class with high-level characteristics may be
considered in the future. This may have the potential to reduce modeling com-
plexity and support data processing. For example, as with colors, it is possible to
distinguish between different processes, even if their sub nets have been folded
into a single sub net. In this view, it would be possible to aggregate the activity
of 3 or more actuators in the case of one wheelchair; or 3 or more wheelchairs in
the view of their company.

5 Conclusion and Future Work

This paper proposes the use of Petri nets to model and deploy digital twins for
safety-critical systems, with a specific focus on power wheelchairs. This approach
is particularly beneficial for power wheelchair systems and their users, as it allows
for real-time monitoring and control of the system’s behavior, thereby enhancing
safety and reliability. Nevertheless, it can also be considered for a variety of
safety-critical systems in different areas.

A digital twin can simply be composed of 3 elements: a real space, corre-
sponding to the physical world where physical entities exist; a virtual space
where virtual entities can mirror the PEs; and a bidirectional path that allows
data synchronization between the two spaces. A primary goal when enabling dig-
ital twin is for the VE to represent the PE as faithfully as possible. For that, VE
needs to perceive, respond, and adapt to the changing PE and its environment,
to promote insights in the evolution and performance of the PE and control the
physical world.

The IOPT-nets were used to enhance the advantages of DT applied to model
PE/VE behavior and interaction with the environment. In particular, in addition
to dealing with concurrency, conflicts, synchronization, and resource sharing,
their non-autonomous characteristic based on inputs and outputs could give
support to the different stages in the development of a DT: modeling of PE and
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VE, cognition and control of the physical world, connectivity and data-flow, and
the provision of end-user services.

In fact IOPT-nets benefit from automated tools that support all phases of
development, which is an advantage compared to other formalisms and state-
oriented model languages. The IOPT-Tools framework was used for the design,
verification, validation, implementation, and remote debugging of PE/VE. Using
the simulator and the state-space generator it was possible to debug and validate
the model, where most errors were detected in the early design stages. The
automatic code generator allowed for PE implementation and ensured code free
of errors. And the remote debugger enabled the PWC DT with PE continuous
monitoring and control.

The IOPT-nets and IOPT-Tools framework have been shown to be effective
in the formal modeling and analysis of DT, and real-time simulation and control
of PE. However, there are possible limitations to this approach when dealing
with more complex systems. To address these, an extended IOPT-net class with
high-level characteristics will be considered for future work.

In addition to behavioral modeling, future work intends to use IOPT-nets
also in the modeling of VE rule models to make DT able to reason, judge,
evaluate. And a more complex case study will be undertaken, focusing on spe-
cific aspects such as obstacle navigation, wheelchair activity tracking, accessible
route planning, emergency assistance, user health logs, wheelchair maintenance
records, and training and education. This will provide valuable insights into the
practical applications and benefits of the proposed Petri net and Digital Twin
integration for dependability proposes.

Acknowledges. The authors of this manuscript would like to thank the reviewers for
the thoughtful comments and efforts they have put into improving it.

References

1. Singh, L.K., Rajput, H.: Dependability analysis of safety critical real-time systems
by using Petri nets. IEEE Trans. Control Syst. Technol. 26(2), 415–426 (2018).
https://doi.org/10.1109/TCST.2017.2669147

2. Rausand, M.: Reliability of Safety-Critical Systems. Wiley, New York (2014).
https://doi.org/10.1002/9781118776353

3. IEC 61508:2010 CMV. https://webstore.iec.ch/publication/22273. Accessed 16 Jan
2024

4. IEC 62551:2012. https://webstore.iec.ch/publication/7191. Accessed 16 Jan 2024
5. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art.

IEEE Trans. Industr. Inf. 15(4), 2405–2415 (2019). https://doi.org/10.1109/TII.
2018.2873186

6. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, chal-
lenges and open research. IEEE Access 8, 108952–108971 (2020). https://doi.org/
10.1109/ACCESS.2020.2998358

7. Grieves, M.W.: Product lifecycle management: the new paradigm for enter-
prises. Int. J. Prod. Dev. 2(1/2), 71–84 (2005). https://doi.org/10.1504/IJPD.2005.
006669

https://doi.org/10.1109/TCST.2017.2669147
https://doi.org/10.1002/9781118776353
https://webstore.iec.ch/publication/22273
https://webstore.iec.ch/publication/7191
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1504/IJPD.2005.006669
https://doi.org/10.1504/IJPD.2005.006669


430 C. Lagartinho-Oliveira et al.

8. Tao, F., Zhang, M., Nee, A.Y.C.: Five-dimension digital twin modeling and its key
technologies. Digit. Twin Driven Smart Manuf. 63–81 (2019). https://doi.org/10.
1016/B978-0-12-817630-6.00003-5

9. Gomes, L., Barros, J.P.: Refining IOPT Petri nets class for embedded system
controller modeling. In: Proceedings of the IECON 2018 - 44th Annual Conference
of the IEEE Industrial Electronics Society, pp. 4720–4725. IEEE (2018). https://
doi.org/10.1109/IECON.2018.8592921

10. Girault, C., Valk, R.: Petri Nets for Systems Engineering - A Guide to Model-
ing, Verification, and Applications. Springer, Heidelberg (2002). https://doi.org/
10.1007/978-3-662-05324-9

11. Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux, O.H.
(eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351–362. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91268-4 18

12. Pereira, F., Moutinho, F., Costa, A., Barros, J.P., Campos-Rebelo, R., Gomes, L.:
IOPT-tools - from executable models to automatic code generation for embedded
controllers development. In: Bernardinello, L., Petrucci, L. (eds.) PETRI NETS
2022. LNCS, vol. 13288, pp. 127–138. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06653-5 7

13. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 15

14. Pereira, F., Gomes, L.: Cloud based IOPT Petri net simulator to test and debug
embedded system controllers. In: Camarinha-Matos, L.M., Baldissera, T.A., Di
Orio, G., Marques, F. (eds.) DoCEIS 2015. IAICT, vol. 450, pp. 165–175. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16766-4 18

15. Pereira, F., Moutinho, F., Gomes, L., Ribeiro, J., Campos-Rebelo, R.: An IOPT-
net state-space generator tool. In: Proceedings of the INDIN 2011 - 9th IEEE Inter-
national Conference on Industrial Informatics, pp. 383–389. IEEE (2011). https://
doi.org/10.1109/INDIN.2011.6034907

16. Pereira, F., Moutinho, F., Gomes, L.: A syntax-independent code generation tool
for IOPT-Petri net. In: Proceedings of the PN4TT 2023 - Algorithms Theories for
the Analysis of Event Data and Petri Nets for Twin Transition. CEUR-WS (2023).
https://ceur-ws.org/Vol-3424/paper6.pdf

17. Pereira, F., Melo, A., Gomes, L.: Remote operation of embedded controllers
designed using IOPT Petri-nets. In: Proceedings of the INDIN 2015 - 13th IEEE
International Conference on Industrial Informatics, pp. 572–579. IEEE (2015).
https://doi.org/10.1109/INDIN.2015.7281797

18. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in man-
ufacturing: a categorical literature review and classification. IFAC-PapersOnLine
51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

19. Singh, M., Fuenmayor, E., Hinchy, E.P., Qiao, Y., Murray, N., Devine, D.: Digital
twin: origin to future. Appl. Syst. Innov. 4(2), 36 (2021). https://doi.org/10.3390/
asi4020036

20. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on
technical features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–
1824 (2020). https://doi.org/10.1109/JPROC.2020.2998530

21. Qi, Q., et al.: Enabling technologies and tools for digital twin. J. Manuf. Syst.
58(B), 3–21 (2021). https://doi.org/10.1016/j.jmsy.2019.10.001

22. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, char-
acteristics, applications, and design implications. IEEE Access 7, 167653–167671
(2019). https://doi.org/10.1109/ACCESS.2019.2953499

https://doi.org/10.1016/B978-0-12-817630-6.00003-5
https://doi.org/10.1016/B978-0-12-817630-6.00003-5
https://doi.org/10.1109/IECON.2018.8592921
https://doi.org/10.1109/IECON.2018.8592921
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-3-319-91268-4_18
https://doi.org/10.1007/978-3-031-06653-5_7
https://doi.org/10.1007/978-3-031-06653-5_7
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-319-16766-4_18
https://doi.org/10.1109/INDIN.2011.6034907
https://doi.org/10.1109/INDIN.2011.6034907
https://ceur-ws.org/Vol-3424/paper6.pdf
https://doi.org/10.1109/INDIN.2015.7281797
https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.3390/asi4020036
https://doi.org/10.3390/asi4020036
https://doi.org/10.1109/JPROC.2020.2998530
https://doi.org/10.1016/j.jmsy.2019.10.001
https://doi.org/10.1109/ACCESS.2019.2953499


Using Petri Nets for Digital Twins Modeling and Deployment 431

23. Lagartinho-Oliveira, C., Moutinho, F., Gomes, L.: Digital twin in the provision
of power wheelchairs context: support for technical phases and conceptual model.
Computers 11(11), 166–180 (2022). https://doi.org/10.3390/computers11110166

24. Alves, A., Lagartinho-Oliveira, C., Moutinho, F., Gomes, L.: ROS-based digital
twin for power wheelchair. In: Proceedings of the ONCON 2022 - 1st Industrial
Electronics Society Annual On-Line Conference. IEEE (2022). https://doi.org/10.
1109/ONCON56984.2022.10127002

25. Lagartinho-Oliveira, C., Moutinho, F., Gomes, L.: Support operation and main-
tenance of power wheelchairs with digital twins: the IoT and cloud-based data
exchange. In: Camarinha-Matos, L.M., Ferrada, F. (eds.) DoCEIS 2023. IFIPAICT,
vol. 678, pp. 191–202. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
36007-7 14

26. Faria, B.M., Ferreira, L., Reis, L.P., Lau, N., Petry, M., Soares, J.C.: Manual con-
trol for driving an intelligent wheelchair: a comparative study of joystick mapping
methods. In: Proceedings of the IROS 2012 - Workshop on Progress, Challenges
and Future Perspectives in Navigation and Manipulation Assistance for Robotic
Wheelchairs (2012). https://paginas.fe.up.pt/∼niadr/PUBLICATIONS/LIACC
publications 2011 12/pdf/OC59 Manual Control Driving IW Comparative
Study Joystick Mapping Methods.pdf

27. Mylinx Resources Hub. https://www.dynamiccontrols.com/resource-hub/mylinx-
resources-hub. Accessed 29 Jan 2024

28. MyPermobil App. https://permobilwebcdn.azureedge.net/media/v5vgqmbp/
mypermobil brochure uk 200525 web.pdf. Accessed 29 Jan 2024

29. Fleet Management. https://permobilwebcdn.azureedge.net/media/tyen1e5w/
fleet-management-brochure.pdf. Accessed 29 Jan 2024

30. Interactive Assist. https://www.quantumrehab.com/quantum-electronics/inter
active-assist.asp. Accessed 29 Jan 2024

https://doi.org/10.3390/computers11110166
https://doi.org/10.1109/ONCON56984.2022.10127002
https://doi.org/10.1109/ONCON56984.2022.10127002
https://doi.org/10.1007/978-3-031-36007-7_14
https://doi.org/10.1007/978-3-031-36007-7_14
https://paginas.fe.up.pt/~niadr/PUBLICATIONS/LIACC_publications_2011_12/pdf/OC59_Manual_Control_Driving_IW_Comparative_Study_Joystick_Mapping_Methods.pdf
https://paginas.fe.up.pt/~niadr/PUBLICATIONS/LIACC_publications_2011_12/pdf/OC59_Manual_Control_Driving_IW_Comparative_Study_Joystick_Mapping_Methods.pdf
https://paginas.fe.up.pt/~niadr/PUBLICATIONS/LIACC_publications_2011_12/pdf/OC59_Manual_Control_Driving_IW_Comparative_Study_Joystick_Mapping_Methods.pdf
https://www.dynamiccontrols.com/resource-hub/mylinx-resources-hub
https://www.dynamiccontrols.com/resource-hub/mylinx-resources-hub
https://permobilwebcdn.azureedge.net/media/v5vgqmbp/mypermobil_brochure_uk_200525_web.pdf
https://permobilwebcdn.azureedge.net/media/v5vgqmbp/mypermobil_brochure_uk_200525_web.pdf
https://permobilwebcdn.azureedge.net/media/tyen1e5w/fleet-management-brochure.pdf
https://permobilwebcdn.azureedge.net/media/tyen1e5w/fleet-management-brochure.pdf
https://www.quantumrehab.com/quantum-electronics/interactive-assist.asp
https://www.quantumrehab.com/quantum-electronics/interactive-assist.asp


CosyVerif: The Path to Formalisms
Cohabitation

Étienne André1 , Jaime Arias1(B) , Benoît Barbot2 ,
Francis Hulin-Hubard3, Fabrice Kordon3 , Van-François Le1,

and Laure Petrucci1

1 LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, Villetaneuse, France
arias@lipn.univ-paris13.fr

2 Univ Paris Est Creteil, LACL, 94010 Creteil, France
3 Sorbonne Université, CNRS, LIP6, Paris, France

Abstract. More and more model checking approaches rely nowadays
on several inputs, potentially expressed in different formalisms. Tools
implementing these usually include only the expected formalisms. Thus,
such tools are ad-hoc and lack extensibility and interoperability features,
especially when new formalisms are needed.

The challenge is then to design a generic and easy way for several
formalisms to cohabit in such verification software. Creation, exchange,
and interoperability between formalisms would be facilitated, thus saving
numerous development efforts.

The originality of the CosyVerif platform lies in its capability to easily
and rapidly gather diverse formalisms within a same framework, and to
provide extension facilities to integrate new ones.

1 Introduction

The CosyVerif platform (http://www.cosyverif.org) is a meta-tool, in the form
of a web platform, which allows to put to work and synchronise several tools for
the analysis of formal models, such as Petri nets or automata. It is a distributed
open-source environment, which features capabilities to easily and rapidly gather
diverse formalisms in a same framework, and to provide extension facilities to
integrate new ones.

Requirements. A wide palette of tools for model checking concurrent systems
exists nowadays. Each of these implements its own algorithms from models
expressed in a dedicated format. Therefore such tools are often ad-hoc and lack
interoperability features.

Several Petri net tools successfully rely on PNML (Petri Net Markup Lan-
guage) [17,19], which provides a normalised format that allows for using multiple
tools on the same models. This is key to the MCC (Model Checking Contest) [22]
for participating tools. However, PNML only handles variants of Petri nets, while
models to be used together may be expressed in several different formalisms, e.g. a
Petri net and a property expressed as an automaton. The current command-line
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verification tools often expect several files as input, not necessarily of the same
nature. Both tools experimented with in Sect. 4 are in this category.

A challenge is then to design a generic and easy way for formalisms to cohabit
within a single verification platform. Creation, exchange, and interoperability
between formalisms would then be greatly facilitated, thus saving extensive
development efforts. Moreover, using a shared Graphical User Interface (GUI)
to manipulate all formalisms lowers not only the development effort but also the
learning curve for the modeller, who only has a single GUI to master.

At this stage, this interoperability between formalisms is achieved at the
syntactic level, provided that the semantics is consistent among the tools that
share it. A direct advantage is to establish a hierarchy between formalisms that
reuse other ones; this is of particular interest for Petri nets and their variants,
as well as networks of automata.

Cohabitation of models can take the form of a set of modules to be handled
together. Several well-known model checking software enable modules. Great-
SPN [2] and Cosmos [11] require a Petri net and an automaton modelling a
temporal logic formula. In IMITATOR the different modules are not standalone,
but do collaborate by sharing e.g. synchronised transitions.

CPNTools [1] allows for analysing Hierarchical Coloured Petri Nets with
several modules (named pages). UPPAAL [4] is dedicated to networks of timed
automata. These latter tools have their own ad-hoc GUI and implementation;
they do not provide easy extensibility.

Several verification tools deal with generic formalisms. IOPT-Tools [26] gen-
erates various output codes (C, VHDL, Simulink, . . . ); this multi-formalism app-
roach does not concern various inputs, but addresses code generation. ePNK [21]
allows for Petri net tools plugins, in different flavours, thanks to the PNML
transfer format [18,20]. However, it does not support formalisms other than
Petri nets. ITS-Tools [23,27] also handles numerous inputs from various tools,
thanks to an internal generic representation (Instantiable Transition Systems)
suitable for model-checking, but does not provide a GUI.

Outline. Section 2 presents the main features provided by the CosyVerif platform,
in particular the use of heterogeneous modules. Then, Sect. 3 details the tool
architecture and its flexibility for welcoming new formalisms or analysis tools.
Two tools serve in Sect. 4 as examples which exhibit different characteristics.
Finally, Sect. 5 summarises and provides directions for future work.

2 Desired Features Provided by CosyVerif

An open and extensible verification platform should provide the user with facil-
ities to model his/her project and analyse it. It should furthermore provide a
verification tool with easy means for new formalism dialect and tool integration.
We now discuss those that are already supported by CosyVerif.
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Flexibility for the User with Zero-Install. The web-based GUI of CosyVerif
advantages are twofold. First, drawing models only requires a web browser to
connect to the platform. Our laboratory provides a free-access server (https://
cosyverif.lipn.univ-paris13.fr) for trials. Second, it is multi-platform, so it can
be used with usual operating systems, on a computer, a laptop, a tablet or even
a smartphone. Currently, CosyVerif is distributed as a Docker image for easy
deployment either locally on a machine or on a server.

Different Formalisms as Modules. As detailed further in Sect. 3, a compositional
model can be designed, by gathering a collection of models within the same
project. These models can be expressed in similar or different formalisms. The
collection bases on already existing formalisms that can be used for standalone
models or as part of a project.

Handling Compositionality. For the moment, compositionality is kept simple,
mainly by using inclusion of formalisms and models. A new formalism allows
for describing the links between the different modules in the project. It can be
seen as an additional formalism or language meant for this specific purpose. For
example, networks of Parametric Timed Automata, as used by IMITATOR (see
Sect. 4), is a collection of PTAs together with a set of synchronised transitions,
which pairs labels of transitions in the different modules.

Creation of New Formalisms. Users can define their new formalisms in the FML
(Formalism Markup Language) format, which was introduced in [7]. A FML
description typically bases on an existing one for similar but simpler models.
For example the FML for Symmetric Petri Nets uses the one for Place/Transi-
tion nets. Models themselves are stored in GrML (Graph Markup Language) [7],
an XML-like language to describe models according to a FML formalism defi-
nition. The designer of a new formalism also has the possibility to parametrise
the associated graphics. For example, the current version of CosyVerif supports
ADTrees (Attack-Defense Trees) [24] in which the different types of nodes look
similar to electronic gates (see such a model in Fig. 6). The reader can find some
FML files created by the community in [3].

Interface with Command-Line (CLI) Tools. CLI tools can be embedded as plu-
gins in CosyVerif’s computation engine. Thus, verification can be launched using
either the standalone CLI version or via the platform’s GUI. Moreover, export to
some tools ad-hoc input language is provided (e.g. Roméo [25], IMITATOR [6]).

Asynchronous Computation. Users can launch a verification and continue work-
ing on the platform, without waiting for the result (which may come after a
lengthy period of time). When the computation is completed, the user can access
the results of these finished jobs.

Distinct Editing and Computation Engines. As will be shown in Sect. 3, the plat-
form implements a client/server paradigm. Thus the editing and computation
are separate and can run on different machines.

https://cosyverif.lipn.univ-paris13.fr
https://cosyverif.lipn.univ-paris13.fr
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3 Architecture

CosyVerif is constituted of the following two separated components that commu-
nicate which each other using http requests.

– CosyDraw: it is a web-based graphical user interface written in Javascript
for the design of models (e.g. Petri nets, automata, ADTrees). At any time,
users can send their models to Alligator for their analysis.

– Alligator: it is an application that provides a wide range of tools as web ser-
vices (e.g. prod, IMITATOR, Cosmos, adt2amas). The number of tools can
be easily extended thanks to the fact that Alligator handles them as plug-
ins. The server containing Alligator also provides functionalities such as user
management and file storage (e.g. models, formalisms).

– 3rd-party tools: they are connected to Alligator, thanks to dedicated drivers
(which usually require limited development effort). This is similar to a MDE
approach as implemented in Eclipse/EMF, but with much less dependencies
to the metamodels; conversion is completely handled by the driver (the tool
may thus keep its own internal representation).

Figure 1 shows the architecture of CosyVerif. Each component can be installed
locally and used offline, or can connect to an external host where one or both
of them have been deployed. For the sake of facilitating the installation, each
component is also distributed as a Docker image.

Fig. 1. Architecture of CosyVerif

3.1 Specification of a Formalism

A formalism is a structured document (XML) that has to comply with the
Formalism Markup Language (FML). The elements (i.e. XML tags) supported
by FML are given in Fig. 2. It allows for specifying any type of node (e.g. places
and transitions of a Petri net) and arcs to connect them (e.g. inhibitor arcs,
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Fig. 2. FML schema

read arcs). It also allows for specifying the different types of attributes related
to the model (e.g. name of the model) and to the different types of elements
(e.g. number of tokens in a place).

A formalism can be defined as abstract to be later extended by another
formalism. An abstract model cannot be used by the user to create a model.
FML allows to include the definition of another formalism (abstract or not) thus
permitting the definition of complex formalisms in a compositional and easy way.

FML allows also to define the types of hierarchies permitted by a hierarchical
formalism by specifying which types of nodes and arcs can contain references to
other elements. The type of the referenced element can also be specified. Finally,
formalisms containing modules of the same (e.g. network of Timed Automata)
or hybrid type (e.g. stochastic Petri net) can also be specified with FML.

We present the FML of an automaton in Listing 1.1. As we can see, the model
has a name and an author (lines 2 and 3), it has a node of type state (line 4)
with a name (line 6), and an arc of type transition (line 5) with a label (line 7).
Finally, a state can be an initial state (line 11) and a final state (line 12).

1 <formalism name="Automaton" xmlns="http:// cosyverif.org/ns/formalism">
2 <leafAttribute name="name" defaultValue="" refType="Automaton"/>
3 <leafAttribute name="author" defaultValue="" refType="Automaton" />
4 <nodeType name="state"/>
5 <arcType name="transition"/>
6 <leafAttribute name="name" defaultValue="" refType="state"/>
7 <leafAttribute name="label" defaultValue="" refType="transition"/>
8 <leafAttribute name="initialState" />
9 <leafAttribute name="finalState" />

10 <complexAttribute name="type" refType="state">
11 <child refName="initialState" minOccurs="0" maxOccurs="1"/>
12 <child refName="finalState" minOccurs="0" maxOccurs="1"/>
13 </complexAttribute >
14 </formalism >

Listing 1.1. FML for an automaton
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Fig. 3. GrML schema

3.2 Creating a Model

Once a formalism is defined (i.e. an FML), it is possible to create instances
of it (i.e. models). A model is a structured document (XML) written using
the Graph Markup Language (GrML) that is shown in Fig. 3. As we can see, a
model contains nodes and arcs. The arcs make it possible to connect the nodes.
Attributes are attached to the model as well as to all elements of the model.
These attributes define information about the model (e.g. title, authors) or the
elements (e.g. name, arc valuation, number of tokens).

The schema allows to manage hierarchical models and composition can be
done with elementary references. The formalismUrl, nodeType, and arcType
attributes allow the tool to independently determine the structure of the format
that is used as well as the different types of elements that constitute the model.

Fig. 4. Example of a Petri net

In Listing 1.2, we present the GrML of the Petri
net model shown in Fig. 4. As we can see, it is com-
posed of two places (lines 7, and 11) where p1 has
one token (line 8) and p2 has zero tokens (line 12).
It also has one transition (line 15), and two arcs
with valuation 1 (lines 20 and 23). Finally, it con-
tains the name, the version, and the authors of the model (lines 3 to 5).

1 <model formalismUrl="http:// formalisms.cosyverif.org/pt-net.fml"
2 xmlns="http:// cosyverif.org/ns/model">
3 <attribute name="name">Example </attribute >
4 <attribute name="version">0.1</attribute >
5 <attribute name="author">CosyTeam </attribute >
6
7 <node id="1" nodeType="place" x="220" y="328">
8 <attribute name="marking">1</attribute >
9 <attribute name="name">p1</attribute >

10 </node>
11 <node id="2" nodeType="place" x="408" y="324">
12 <attribute name="marking">0</attribute >
13 <attribute name="name">p2</attribute >
14 </node>
15 <node id="3" nodeType="transition" x="330" y="323">
16 <attribute name="name">t</attribute >
17 </node>
18
19 <arc id="4" arcType="arc" source="1" target="3" order="0">
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20 <attribute name="valuation">1</attribute >
21 </arc>
22 <arc id="5" arcType="arc" source="3" target="2" order="0">
23 <attribute name="valuation">1</attribute >
24 </arc>
25 </model>

Listing 1.2. GrML for the Petri net in Fig. 4

3.3 Analysing a Model

To show the generality of CosyDraw, we have defined the FML for the Attack-
Defense Tree (ADTree) formalism [24]. Figure 6 shows the model of the case
study treasure hunters presented in [9]. We can observe on the left-hand side
of Fig. 6 that CosyDraw dynamically loads the different gates (i.e. type of nodes)
as well as their visual appearance, both specified in the FML.

Fig. 5. Selecting an instance of Alligator

In order to analyse this kind of mod-
els, we added the tool adt2amas [10] as
a service of the Alligator instance hosted
by the Laboratoire d’Informatique de
Paris Nord (see Fig. 5). Figure 7a shows
that the queried instance of Alliga-
tor provides three services for ADTree
models. For the sake of simplicity, we
show in Fig. 7b only the service EAMAS
translator that encodes an ADTree
model in a multi-agent system. This
window shows all the information and the inputs of the service (in this case
only the model to be analysed). In section output, CosyDraw collects the results
produced by Alligator. Running a service is a non-blocking process called job.
This means that users can continue modifying their models and return later to
this window to check the results. For instance, in Fig. 7b two files were generated
and can be downloaded: an IMITATOR file and a LATEX file.
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Fig. 6. Case study treasure hunters [9]

Fig. 7. Analysing ADTree models in CosyVerif
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4 Case Studies: IMITATOR and Cosmos

4.1 IMITATOR

IMITATOR [6] is a parametric timed model checker taking as input models of real-
time systems with timing parameters (i.e. unknown timing constants). The tool
takes as inputs 1) a model in the form of a network of parametric timed automata
(NPTA) [5], augmented with discrete global variables, stopwatches, multi-rate
clocks, and some other useful features, and 2) a property expressed using a subset
of TCTL. IMITATOR then synthesizes a set of parameter valuations (in the form
of a non-convex symbolic constraint) satisfying the property.

Fig. 8. FML for an NPTA

To illustrate CosyVerif in action, we
draw the NPTA model CoffeeDrinker
found in the IMITATOR benchmarks [8].
To achieve this, we first defined the FML
specifying a NPTA by extending existing
formalisms (see Fig. 8). As we can observe
at the bottom of the paper of Fig. 9a,
the model is composed of two automata:
machine and researcher. For lack of
space, in Fig. 9b we show only the IMITA-
TOR service to compute the set of param-
eter valuations for which some location is reachable. In this example, we syn-
thesize the parameters for which the location mad in the automaton researcher
is reached, or the location cdone in the automaton machine is reached and
the number of sugar cubes is less than 3 (i.e. loc[researcher] = mad ||

Fig. 9. CoffeeDrinker NPTA model drawn on CosyVerif
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loc[machine] = cdone && nb_sugar < 3). Checking the output file generated
by the IMITATOR service, we got 8 convex sets of solutions. One of them is
p_button > 0 & p_coffee > 0 & p_add_sugar >= 15.

4.2 Cosmos

Cosmos [12] is a statistical model checker for stochastic Petri nets against a spec-
ification given as a linear hybrid automaton. The automaton is used to specify
both qualitative and quantitative measures over traces of the net. Internally, Cos-
mos computes a synchronised simulation of both the Petri net and the automa-
ton. Cosmos takes as input the Petri net, the automaton, the synchronisation
information between the two, and the property (i.e. a HASL logic formula [12]).

Taking advantage of CosyVerif’s flexibility, we wrote the FML for Cosmos that
is composed of two modules of different natures: the FML of stochastic Petri
nets (SPN) and the FML of linear hybrid automata (LHA). Figure 10a shows the
SPN modelling the shared memory system presented in [13]. Figure 10a shows
the Petri net model, and Fig. 10b shows the automaton, both of them needed by
Cosmos.

We ran the Statistical Model Checker provided by the Cosmos service with
width=0.01 as parameter. With these inputs, Cosmos performs simulations until
the confidence interval for the HASL formula has a width smaller than 0.01.

Fig. 10. Stochastic Petri net model of a shared memory system in CosyVerif
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5 Conclusions

We presented here the main features of CosyVerif that enables cohabitation
between different types of formalisms. This is achieved through a modular struc-
ture embedding several models, within a same project. CosyVerif also provides
extensibility at different levels: formalisms, GUI, verification tools integration.
It supports graph-based formalisms, but could as well embed some languages
within a single global attribute.

However, for the moment, the modularity is achieved at one level only. Its
extension to a fully hierarchical modular structure is under development. Struc-
tural verification of formalisms constraints remains limited. More sophisticated
semantical rules, such as consistency checks, could be added.

CosyVerif is used in summer schools and Master level courses. Thus, to
improve the portability of the Petri net models designed on the platform, an
export to PNML must be added from an older version of CosyVerif.

The working plans for property verification are extensive. First, CosyVerif
could propose some level of compatibility with lower level models by discarding
some attributes (e.g. from Symmetric Petri Nets to place/transition nets). Sec-
ond, there is a lack of generic formalism for expressing properties and sharing
results between tools. This is both a theoretical and practical challenge, which
is tackled in [14–16] for software verification. Third, a nice addition would be—
when possible—to present a schematic view of results on the initial model in the
GUI by e.g. adding colours or labels to highlight solutions.
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