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Abstract. This study introduces a novel approach, combining the Whis-
per model with the AASIST architecture to enhance the detection per-
formance of deepfake audio. Termed Whisper+AASIST, our investiga-
tion demonstrates its competitive edge over existing models on the 2021
ASVspoof DF subset. Notably, it surpasses these models in the challeng-
ing In-the-Wild datasets. This innovative fusion signifies a significant leap
in deepfake audio detection, showcasing the effectiveness of synergistic
model architectures. Through a comprehensive analysis, we unravel the
potential of this hybrid approach in addressing evolving challenges within
the domain of deceptive audio content. The findings underscore the sig-
nificance of such inventive model combinations, providing a foundation
for further advancements in deepfake audio detection methodologies.
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1 Introduction

1.1 Motivation

The rapid advancements in generative artificial intelligence have significantly
transformed text-to-speech (TTS) and voice conversion (VC) technologies. These
cutting-edge technologies now enable the synthesis of speech so authentic that
distinguishing it from real human vocalizations has become a formidable chal-
lenge. While these advancements undoubtedly offer increased convenience in var-
ious sectors, they also raise critical concerns about societal stability and security.

Recently, two notable incidents involving deepfake audios resulted in signif-
icant financial losses for corporate entities [2,15]. These cases gained extensive
media attention and sparked widespread public debate. Concurrently, a report
by the U.S. Department of Defense highlighted the escalating threats posed
by advanced AI-generated content [20]. This report recommended two main
countermeasures: implementing proactive authentication methods during con-
tent creation, and developing passive detection strategies for analyzing content
post-production.

Considering the challenges in achieving broad implementation of authentica-
tion protocols in the near term, the importance of post-hoc detection techniques
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becomes increasingly evident. These methods are crucial for combating the rise
in fraudulent activities, creating a continuous dynamic between the creators of
generative AI and detection experts.

1.2 Research Question

– How effectively can the integration of OpenAI’s Whisper [14] pretrained-
transformer model enhance the deepfake audio detection capabilities of the
Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention
Networks (AASIST) architecture [5] so users can recognize the fake audios?

Fig. 1. The AASIST Architecture with Various Front Ends
Note: Panel (a) and (d) are adapted from June et al. [5], panel (b) is adapted from
Baevski et al. [1] and Tak et al. [18], and panel (d) is adapted from Radford et al. [14].

2 Related Works

2.1 Overview

Yi et al. [24] conducted an extensive review on deepfake audio detection tech-
nologies, categorizing them into three primary approaches:
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a) Traditional classification techniques, which include algorithms such as sup-
port vector machines [8] and Gaussian Mixture Models (GMM) [3].

b) Deep learning-based classifications, encompassing models like the Res2Net
[9] (a modified residual network), graph neural network (GNN) based GAT
[16], PC-DARTS [4] (a differentiable architecture search approach), and
transformer-based Rawformer.

c) Comprehensive end-to-end architectures, with prominent examples being the
graph attention network (GAN)-based AASIST [5] and transformer-based
SE-Rawformer [10].

Historically, advancements in audio analysis relied heavily on hand-crafted or
learnable features, primarily driven by traditional machine learning classifiers.
With the advent of advanced end-to-end architectures like AASIST, there has
been a paradigm shift towards integrating feature extraction and classification
into a cohesive system.

Despite their reliance on more basic feature extraction techniques, traditional
classifiers like GMM have maintained relevance due to their resilience, especially
under the constraint of limited training samples. GMM continues to be a bench-
mark model in the field, with an Equal Error Rate (EER) of 25.25% using linear
frequency cepstral coefficients (LFCC) features with ASVspoof 2021 DF data,
outperforming most deep learning methods [24]. Conversely, deep learning clas-
sifiers have shown variable effectiveness, largely dependent on the specificity of
their feature extraction methods.

In contrast, when leveraging XLS-R features extracted via wav2vec2.0 [1],
deep learning models generally surpass the performance of GMM. For instance,
the Attentive Filtering Network (AFN) utilizing XLS-R achieved an ERR of
14.15%, significantly lower than the GMM’s ERR of 28.49% with the same fea-
tures [24] with ASVspoof 2021 DF data.

End-to-end architectures like AASIST, while not outperforming the top deep
learning methods with XLS-R, still demonstrate significant effectiveness with an
ERR of 19.77% with ASVspoof 2021 DF data, positioning them competitively
among deep learning models using XLS-R features. However, prior work did not
focus on the interaction with end users.

2.2 State of the Art

The ASVspoof2021 DF subset [23] saw an initial 15.64% Equal Error Rate (EER)
by T23 [11]. Tak et al. later reached a 2.85% EER with AASIST using wav2vec
2.0 (Fig. 1 Panel b) [18], surpassing Martín-Doñas and Álvarez’s 4.98% EER [12].
Current SOTA EERs for In-the-Wild data are 24.73% for ASSERT+LPS and
34.81% for AASIST [24].

The field of deepfake audio detection, particularly in the context of the
ASVspoof 2021 DF dataset, has witnessed remarkable advancements in recent
years. This dataset, crucial for benchmarking, has enabled a clear evaluation of
various models’ capabilities in detecting fraudulent audio samples.
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One of the earliest benchmarks on this dataset was set by T23, who achieved
an EER of 15.64% [11]. This performance served as a significant indicator of the
challenges inherent in accurately identifying deepfake audios. However, subse-
quent developments have dramatically improved detection capabilities.

A pivotal advancement was achieved by Tak et al., who utilized the AASIST
architecture in conjunction with wav2vec 2.0 features. Their approach culmi-
nated in a substantially lower EER of 2.85%, as illustrated in Fig. 1 Panel b
[18]. This marked a significant leap from the previous benchmarks, underscoring
the effectiveness of integrating sophisticated neural network architectures with
advanced feature extraction techniques.

In comparison, Martín-Doñas and Álvarez achieved a 4.98% EER [12],
demonstrating the rapid progression of technological advancements in this
domain. Their work, while being surpassed by Tak et al., contributed valuable
insights into the optimization of deep learning methods for audio spoofing detec-
tion.

When considering ‘In-the-Wild’ data [13], a more challenging and variable
dataset, the current state-of-the-art performances indicate a more complex sce-
nario. ASSERT+LPS, a notable method in this category, achieved an EER of
24.73%, while AASIST recorded an EER of 34.81% [24]. These figures highlight
the ongoing challenges faced when dealing with more diverse and less controlled
audio samples, which more closely resemble real-world scenarios.

Overall, the continuous evolution in deepfake audio detection, as evidenced
by these performances on the ASVspoof 2021 DF dataset, indicates both the
progress made and the challenges that remain. As deepfake technologies grow
more sophisticated, the need for advanced detection methods, capable of han-
dling diverse and evolving threats, becomes increasingly crucial.

2.3 The AASIST Architecture

AASIST, introduced by Jung et al. [5], represents a significant advancement in
end-to-end audio processing models. Its primary innovation lies in the integration
of sinc convolution and a RawNet2-based encoder, coupled with sophisticated
graph learning techniques. This unique combination allows AASIST to excel in
both feature extraction and classification tasks, setting it apart from conven-
tional architectures. The model’s approach to handling waveform inputs, partic-
ularly its advanced representation processing components, has been pivotal in
enhancing its overall performance. These developments have been instrumental
in AASIST’s achievements in various benchmarks, as detailed in Sect. 2.2.

2.4 Whisper

Whisper, developed by OpenAI [14], is a state-of-the-art transformer-based
speech recognition model. It is distinguished by its extensive pretraining on an
enormous dataset comprising 680,000 h of diverse audio samples. This extensive
pretraining regime enables Whisper to offer robust performance across a wide
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range of languages and accents, significantly reducing the necessity for task-
specific fine-tuning. Its versatility and scalability make it an ideal candidate for
integration into various speech-related applications, ranging from transcription
to more complex tasks like speech synthesis and deepfake detection. Whisper’s
design embodies the cutting-edge advancements in the field of transformer-based
models, harnessing the power of large-scale datasets to achieve unprecedented
levels of accuracy and reliability in speech recognition.

3 Methods and Data

3.1 Methods

This study aims to enhance the AASIST architecture by incorporating elements
of OpenAI’s Whisper model [14] at the front end, as depicted in Fig. 1-(c). Ini-
tially, the AASIST framework employed SincNet filters on raw waveforms for
feature extraction (Fig. 1 Panel a), which later evolved to utilize wav2vec 2.0
as the feature extractor (Fig. 1-(b)). Model performance will be evaluated using
EER.

Whisper Model
The Whisper model, as outlined by OpenAI [14], is adept at processing raw
waveform inputs x1:L to generate a sequence of spectro-temporal representations
o1:N , where L represents the number of samples in the waveform. As depicted
in Fig. 1-(c), the Whisper-large-v2 variant, a specific configuration of the model,
includes a series of carefully designed layers to optimize audio processing. Ini-
tially, a preprocessing unit transforms the raw waveform into a log-Mel spectro-
gram. This transformation is crucial for capturing the essential frequency and
time characteristics of the audio input.

Following the preprocessing stage, the model incorporates two convolution
layers. These layers are instrumental in enhancing the local features of the spec-
trogram, making the subsequent processing by the transformer encoder more
effective. After these convolution layers, a position embedding layer is introduced
to encode the temporal information of the audio sequence, a critical aspect for
understanding the context in speech.

The core of the Whisper model comprises 32 transformer encoder layers.
These layers are the backbone of the model, responsible for capturing complex
patterns and relationships within the audio data. The transformer architecture,
known for its effectiveness in handling sequential data, allows the Whisper model
to process audio with remarkable accuracy and detail.

In our implementation, we omitted the decoder layers that are present in the
original Whisper model. These layers are primarily used for speech recognition
tasks, and since our focus is on utilizing the encoder-generated embeddings for
spoofing detection, they were not required. The length of the spectro-temporal
representation sequence, denoted as N , is set to 1500 for all Whisper model
variants, determined by the position of the embedding layers.
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Müller et al. [13] observed that the performance in spoofing detection is
notably enhanced when the waveforms are not truncated to 4-s subsamples. In
line with this finding, we chose to use a 30-s input sample for our experiments,
which is consistent with the default setting of the Whisper model.

Given that Whisper was initially pretrained exclusively on bona fide (gen-
uine) data [14], we hypothesized that its performance in spoofing detection could
be further enhanced by fine-tuning it with a mix of bona fide and spoofed in-
domain training data. Additionally, recognizing the limitations of our training
dataset, which consists of samples from the ASVSpoof2019 LA subset, we imple-
mented data augmentation techniques to account for potential deepfaking meth-
ods not present in the training data but likely encountered in the test data.

To address this, we introduced data augmentation for the training set, aiming
to enhance the model’s robustness and generalization capability. This strategy
is in line with the findings presented in the referenced papers [5,17]. We experi-
mented with three distinct variants of data augmentation:

No Data Augmentation (No DA): In this baseline approach, we trained the
model using the original dataset without any augmentation. This setup serves
as a control to gauge the effectiveness of the other augmentation techniques.

Coloured Additive Noise: Here, we introduced colored additive noise to the
training data. This type of noise is known to simulate a variety of real-world
acoustic environments, thereby preparing the model to handle diverse and chal-
lenging audio conditions.

Convolutive Noise + Impulsive Noise + Coloured Additive Noise: In
this comprehensive approach, we combined convolutive noise, impulsive noise,
and coloured additive noise. The inclusion of convolutive noise aims to repli-
cate the effects of different transmission channels and acoustic environments,
while impulsive noise mimics sudden, non-continuous disturbances. This com-
bination of noises presents a more rigorous training scenario, aiming to signif-
icantly enhance the model’s ability to generalize across various audio spoofing
techniques.

To explore the potential of fine-tuning and data augmentation, we imple-
mented two versions of the Whisper model: one using the original pretrained
version (Our Method 1), and another that underwent additional fine-tuning
with the mixed dataset (Our Method 2), incorporating the described data
augmentation strategies. These implementations are designed to assess how each
approach influences the model’s proficiency in detecting audio spoofing in varied
and potentially unseen scenarios.

Postprocessing
In the postprocessing stage, the spectro-temporal representations o1:N undergo
a sophisticated transformation via a RawNet2-based encoder. This encoder is
pivotal in extracting higher-level features from the input representations, which
are essential for the subsequent stages of audio analysis.

The RawNet2 encoder, as described in the paper by Jung et al. [6], is an
advanced deep neural network specifically designed to handle raw waveforms
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for robust speaker verification. It is characterized by its ability to process raw
audio data directly, bypassing the need for traditional handcrafted features. This
approach allows for a more nuanced extraction of speaker-specific characteristics,
directly from the waveform.

As the spectro-temporal representations pass through the RawNet2-based
encoder, they are transformed into a more refined feature map S ∈ R

C×F×T .
Here, C represents the number of channels, F denotes the number of spectral
bins, and T stands for the number of time frames. Each of these dimensions
plays a critical role:

Channels (C): This dimension captures various aspects of the audio signal,
allowing the network to analyze different features in parallel.

Spectral Bins (F): The spectral bins represent the frequency components of
the audio signal. By capturing a wide range of frequencies, the network can
discern subtle nuances in the audio.

Time Frames (T): The time dimension ensures that the temporal dynamics of
the speech signal are adequately represented. This is crucial for understanding
the context and progression of spoken words or sounds.

The RawNet2-based encoder employs several layers, including gated convo-
lutional layers and residual blocks, to effectively capture these dimensions. The
gated convolutions control the flow of information through the network, allowing
it to focus on the most relevant features. The residual blocks help in preserving
the integrity of the input signal while enabling deeper layers in the network to
learn complex patterns.

AASIST Backend
The feature map S derived from the RawNet2 encoder is fed into the AASIST
backend, as depicted in Fig. 1-(d). This backend is intricately designed to further
analyze the high-level features obtained from S. The initial phase in the AASIST
backend involves constructing two types of graphs: spectral (Gs ∈ R

Ns×ds) and
temporal (Gt ∈ R

Nt×dt). In these expressions, Ns and Nt denote the number of
nodes in the spectral and temporal graphs, respectively, while ds and dt represent
the dimensionality of each node within these graphs.

Subsequent to their creation, these spectral and temporal graphs are fused
to generate a unified spectro-temporal graph, denoted as Gst. This fusion is a
pivotal step in integrating the frequency and time-related information of the
audio signal, essential for effective spoofing detection.

The combined graph Gst then undergoes advanced processing through a het-
erogeneous stacking graph attention mechanism. This technique is crucial for
highlighting the most relevant features in the graph by weighting the connec-
tions between nodes based on their importance. Following this, a max graph
operation is applied, which serves to further refine the feature representations
by aggregating information from across the graph.

The final step in the AASIST backend is the application of a readout scheme.
This step is responsible for interpreting the processed graph data and categoriz-
ing the input audio as either bona fide or spoofed. The readout scheme plays a
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critical role in translating the complex graph-based representations into a final
decision, leveraging the rich information encoded within the spectro-temporal
graph.

Table 1. Results Comparison

Model ASVspoof 2021 DF In the Wild
EER% Related Work EER% Related Work

GMM+LFCC 25.25% a 37.49% a
LCNN 25.26% a 35.14% a
ASSERT 21.58% a 24.73% a
Res2Net 19.47% a 36.62% a
RawNet2 20.55% b 49.00%
ASSIST 19.77% a 34.81% a
Wav2Vec 2.0 + ASSIST + SL + DA 2.85% 10.49%
Our Method 1 (Base) + No DA 12.25% 36.79%
Our Method 1 (Base) + Colored DA 12.18% 37.52%
Our Method 1 (Base) + All DAs 12.51% 35.94%
Our Method 1 (Large V2) + No DA 9.62% 20.91%
Our Method 1 (Large V2) + Colored DA 8.67% 23.54%
Our Method 1 (Large V2) + All DA 10.60% 24.81%
Our Method 2 (Base) + Fine Tune + No DA 10.78% 25.98%
Our Method 2 (Base) + Fine Tune + Colored DA 9.62% 25.11%
Our Method 2 (Base) + Fine Tune + All DAs 10.68% 24.09%

Note: a. Yi et al. [24], b. Liu et al. [11], c.Tak et al. [18], and d. Martín-Doñas and
Álvarez et al. [12]. Those without related work are implemented by the authors.

3.2 Data

The model’s training leveraged the ASVspoof 2019 LA subsets [19,22], which
are part of the larger ASVspoof challenge, a benchmark for assessing the robust-
ness of automatic speaker verification systems against spoofing attacks. The
ASVspoof 2019 LA dataset, derived from the VCTK database [21], includes a
diverse set of bona fide and spoofed speech samples. It features 2,580 bona fide
and 22,800 spoofed speech samples from 20 speakers, providing a solid environ-
ment for training robust spoofing detection models.

For testing, the model was evaluated against two datasets: the ASVspoof
2021 DF dataset [23] and the In-the-Wild dataset [13]. The ASVspoof 2021
DF dataset, an extension of the ASVspoof 2019 database, includes additional
challenges such as compression changes and deepfake samples, reflecting the
evolving landscape of audio spoofing techniques. It comprises 22,617 bona fide
and 589,212 spoofed samples, recorded by 48 speakers.

In contrast, the In-the-Wild dataset, amassed in 2022, offers a different per-
spective by featuring real-world audio clips sourced from various online platforms
that have confused many social media users. This dataset emphasizes diversity
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and real-world applicability by including clips of public figures and other widely
circulated audio content. It consists of numerous samples, each representing a
unique instance of real-world audio, thus providing a realistic testbed for evalu-
ating the model’s performance in practical scenarios. It comprised of 19,963 boni
fide and 11,816 fake samples from 58 speakers.

The combination of these datasets presents a rigorous and comprehensive
testing ground. The ASVspoof sets, with their controlled yet diverse spoofing
techniques, offer a structured environment to assess the model’s detection capa-
bilities. Meanwhile, the In-the-Wild data introduces the complexity and variabil-
ity of real-world scenarios, testing the model’s generalizability and robustness
against unseen and potentially more sophisticated spoofing attacks.

3.3 Implementation Details

In our setup, audio data were standardized to approximately 30 s, equivalent to
480,000 samples, through cropping or concatenation. This uniformity is crucial
for maintaining consistency in input data.

For the training process, we utilized the Adam optimizer [7] with a fixed learn-
ing rate of 0.000001 to avoid overfitting with the pre-trained Whisper front-end.
Considering the substantial computational requirements of the Whisper-large-v2
model, our experiments were conducted in two computational environments: one
with 4 X NVidia V100 GPUs and another with 1 X NVidia A100 GPU. This
approach allowed us to balance resource availability with the model’s demands.

All models underwent training for 100 epochs, ensuring comprehensive learn-
ing and adaptation. To facilitate reproducibility in the research community, all
source codes used in our experiments have been made available as open-source
resources.

4 Results

Table 1 reveals a comprehensive comparison between our proposed methods and
several established baselines and state-of-the-art models in the field. The eval-
uation is conducted on two datasets: ASVspoof 2021 DF and In the Wild, each
posing distinct challenges for deepfake audio detection.

In the context of the ASVspoof 2021 DF dataset, traditional methods such
as GMM+LFCC and LCNN exhibit EERs of 25.25% and 25.26%, respectively,
while more advanced models like ASSERT and Res2Net achieve improved perfor-
mance with EERs of 21.58% and 19.47%. Notably, our baseline method, denoted
as Our Method 1 (Base), without any data augmentation, demonstrates com-
petitive performance with an EER of 12.25%. The introduction of colored data
augmentation (DA) slightly improves results, yielding an EER of 12.18%, while
the combination of all augmentation techniques results in an EER of 12.51%.
The Whisper large V2 model with colored data augmentation stands out as
particularly promising with an EER of 8.67%.
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In contrast, within the In-the-Wild dataset, the performance metrics vary.
The GMM+LFCC baseline achieves an EER of 37.49%, while LCNN and
ASSERT exhibit EERs of 35.14% and 24.73%, respectively. Our Method 1 (Base)
demonstrates an EER of 36.79%, with colored data augmentation providing a
marginal improvement to 37.52%. The combination of all data augmentation
techniques leads to an EER of 35.94%. The Whisper large V2 model, again
without data augmentation, performs exceptionally well with an EER of 20.91%.

Further improvements are observed with Our Method 2 (Base), incorporat-
ing fine-tuning and various data augmentation strategies. This model achieves
competitive results with an EER of 10.78% for ASVspoof 2021 DF and 25.98%
for In the Wild. Colored data augmentation and the combination of all augmen-
tation techniques yield EERs of 9.62% and 10.68% for ASVspoof 2021 DF, and
25.11% and 24.09% for In the Wild, respectively.

Despite achieving competitive performance, our proposed method did not
surpass the initial expectations, highlighting the complexity of deepfake audio
detection and the need for further exploration and refinement in future research
endeavors.

5 Discussion

Despite achieving competitive results, our efforts to optimize the Whisper model
through fine-tuning encountered a significant challenge due to limitations in our
existing GPU infrastructure. The NVidia V100 and A100 GPUs faced constraints
in allocating sufficient memory for the larger variants, namely the Whisper-
Large-V2 and even the Whisper-Medium model. Faced with this constraint,
we explored alternative approaches while still aiming to enhance the model’s
performance. In response, we conducted a fine-tuning experiment using the less
memory-intensive Whisper-base variant front-end in conjunction with AASIST.
This specific fine-tuning process aimed to investigate the potential viability of
the Whisper+AASIST architecture, serving as a proof of concept for a more
tailored and resource-efficient approach within the given constraints.

The decision to fine-tune the Whisper-base variant with AASIST was moti-
vated by the need to overcome memory limitations and optimize model perfor-
mance. The results of this fine-tuning experiment, as reflected in Our Method 2,
reveal promising outcomes. The Whisper model, with fine-tuning and different
data augmentation strategies, achieved competitive Equal Error Rates (EERs)
such as 10.78%, 9.62%, and 10.68% for various augmentation scenarios.

Although the integration of the Whisper+AASIST architecture led to an
enhancement in the performance of the original AASIST architecture, the mag-
nitude of this improvement, as observed in the results, falls short when compared
to the impact observed with the incorporation of the Wav2Vec 2.0 architecture.

Upon closer examination of the architectural variances between the Whisper
and Wav2Vec 2.0 encoders, it became evident that both models utilize the trans-
former architecture. However, a potential factor contributing to the lackluster
performance of the Whisper model could be its reliance on log-mel spectrograms,
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compared to the more versatile CNN filters used by Wav2Vec 2.0. This deviation
in approach may influence the comparative effectiveness of the two architectures.
Future research could explore whether including CNN as the first feature extrac-
tor, rather than the log-mel spectrogram used by Whisper, would lead to more
competitive results.

Unfortunately, resource constraints and time limitations prevented the fine-
tuning of the large-v2 variants of the Whisper model. This leaves open the pos-
sibility that a fine-tuned Whisper-largev2 model might yield substantial perfor-
mance improvement. Regrettably, our attempts were hindered by a shortage of
VRAM, affecting both NVidia 2 X A100 and/or 4 X V100. Despite these chal-
lenges, a more extensive exploration of the Whisper architecture could uncover
its true potential.

It is noteworthy to mention that the current performance, while not reaching
the desired level, is on par with the performance of the Wav2Vec 2.0 model prior
to fine-tuning, as documented by [18]. This comparison highlights the nuanced
nature of model performance and underscores the significance of considering
various factors, such as architectural differences and fine-tuning opportunities,
when evaluating and optimizing speech processing models. The ongoing evolu-
tion of the Whisper+AASIST architecture positions it as a potential avenue for
further exploration and refinement in the dynamic landscape of deepfake audio
detection.

6 Conclusion

While our attempts to incorporate the Whisper model into AASIST architecture
did not pan out as we would like, this exercise has provided valuable insights into
the capabilities and limitations of different speech processing architectures. Our
research demonstrates that even with resource constraints, innovative approaches
like fine-tuning less memory-intensive models can offer new avenues for per-
formance enhancement. The comparative analysis between the Whisper and
Wav2Vec 2.0 models highlights the importance of architectural choices and their
impact on model efficiency and effectiveness.

The findings of our study suggest that while the Whisper model shows
promise, its full potential may be unlocked only with the availability of more
powerful computing resources. This limitation underscores the need for ongo-
ing research and development in the field of speech processing, particularly in
optimizing models to function efficiently within the constraints of available hard-
ware.

In conclusion, our work contributes to the evolving narrative of speech pro-
cessing technology, emphasizing the significance of architectural decisions, the
balancing act between resource availability and model performance, and the
continuous quest for optimization in a rapidly advancing field. Future research
should focus on further exploring the capabilities of the Whisper model, par-
ticularly its large-v2 variant, and investigate alternative architectures and fine-
tuning strategies that could offer a more resource-efficient path to enhanced
performance in speech processing applications.
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