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Abstract. Smart locks can be used to improve door security. However,
code- (e.g., PIN and passwords) and biometric-based (e.g., fingerprints
and faces) authentication methods in smart locks can be spotted, limit-
ing their usability in real life. In this study, we present an authentication
method that uses a gesture to open a door (opening gesture). In this
method, the user performs their own opening gesture to open a door,
then authentication is performed based on the unique behavioral char-
acteristics of their opening gesture. This design may have the following
merits. First, the user can design their opening gesture in a way that
reflects their preferences, making the gesture easily memorable. Second,
it is difficult to imitate the movements since they inherently contain indi-
viduality. Finally, an opening gesture, unlike a biometric features such as
a face or fingerprints, can be changed if it is duplicated by an attacker.
To examine the idea of our authentication method, we asked partici-
pants to design their own opening gestures and perform them for data
collection. Capacitive sensors, pressure sensors, and an IMU were used
to measure the movements of the gestures. The results showed that a
Random Forest with 11 gestures could reach an average precision rate
of 0.816 and an average FAR of 0.015. Our shoulder hacking experiment
with 8 participants showed that our system archived a FAR of 0.000 for
the imitated gestures by nonusers. These showed resistance to imitation
by attackers.

Keywords: motion-based authentication · door · behavioral
biometric · inertial measurement unit · touch pressure · capacitive
sensing · personal characteristic

1 Introduction

Smart locks can be used to improve door security. However, code- (e.g., PIN
and passwords) and biometric-based (e.g., fingerprints and faces) authentica-
tion methods in smart locks can be spotted, limiting their usability in real life
[30]. Knowledge-based methods are vulnerable to shoulder hacking [10]. While
biometric-based methods are the potential to be duplicated for abuse. For these
reasons, users might hesitate to use these authentication methods [10,13].
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In this study, we present an authentication method that uses a gesture to
open a door (opening gesture). In this method, the user performs their own
opening gesture to open a door, then authentication is performed based on the
unique behavioral characteristics of their opening gesture. This design may have
the following merits. First, the user can design their opening gesture in a way
that reflects their preferences, making the gesture easily memorable. Second, it
is difficult to imitate the movements since they inherently contain individual-
ity. Finally, an opening gesture, unlike a biometric features such as a face or
fingerprints, can be changed if it is duplicated by an attacker.

To examine the idea of our authentication method, we asked participants to
design their own opening gestures and perform them for data collection. With
these data, we examined the performance of our authentication method. The
results showed resistance to imitation by attackers. The contributions of our
work can be summarized as follows:

– We analyzed user-defined opening gestures to elicit common features, finding
Code-Length, Number-of-Fingers, and Finger-Identity to be the most pre-
ferred.

– The user and nonuser performance showed that there may be a trade-off
between imitation resistance and overall authentication accuracy.

– Opening gestures were found to be feasible for interaction, and were an effi-
cient, accurate, and private authentication technique for the doorknob.

2 Related Research

Currently, widely commercialized products adopt two major authentication
methods: code- and biometric-based, which are simple to use and can achieve
high authentication performance. To improve the performance of authentication,
researchers have proposed leveraging a wider range of features [10,13,22]. For
example, capacitance can identify users based on their hand shapes on touch
screens [9], while bioimpedance differences across users’ forearms have been
explored [7]. Pressure sensors have been utilized to recognize users based on
their touch force on an object [15,16]. Another approach recognizes users by
extracting their motion characteristics with an inertial measurement unit (IMU)
[5,12,17]. Since these sensors are inexpensive compared to sensors used for fin-
gerprint, face, or iris recognition [3,4,6], we combine these sensors to achieve
more robust and inexpensive authentication. In this section, we mainly reviewed
authentication methods leveraging capacitive sensing, pressure sensing, and IMU
sensing.

There are challenges with code- and biometric-based methods. Code-based
authentication is prone to shoulder hacking when used in public. Memorable
passwords are often easy to break, while it is difficult to remember secure pass-
words [20]. Biometric-based authentication relies on the user’s unique physical
characteristics, thereby ensuring high security. However, users may hesitate to
use such technology due to privacy concerns, since immutable biometric fea-
tures carry significant risks when duplicated [22]. To meet to these challenges,
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researchers have proposed a motion-based authentication method (e.g., [2,28]).
It leverages dynamic biometric features of gestures to improve code memorabil-
ity. In this section, we compare our work with research on authentication that
utilizes biometrics features.

2.1 Authentication Methods Leveraging Capacitive Sensing

The capacitive touch screen is the most common interaction interface on today’s
mobile devices. Due to its sensitivity to the human body, many researchers have
tried to leverage it for authentication. CapAuth [9] authenticates user based
on the contact area on which they place their fingers on the screen. Bodyprint
[14] uses the capacitive touch screen of smartphones as an image scanner to
authenticate the users based on the contact features of different body parts
(e.g., ear, palm, and finger). These methods rely on static biometric features for
authentication, which may be insecure if they were duplicated [22].

Dynamic biometric features have been tried to solve this concern. Rilvan et
al. [26] used the frames of capacitance data while swiping on a capacitive touch
screen for authentication. Feng et al. [8] extracted features from gestures on a
capacitive touch screen to perform authentication by combining these data with
additional IMU sensor glove information. Similar to Bodyprint, BioTouch [31]
utilizes a capacitive touch screen on a smartphone for image scanning, authen-
ticating users based on the touch motion feature of the finger. These methods
using capacitive sensing illustrate the feasibility of motion-based authentication.
Similarly, we employ opening gestures that were private and potentially efficient,
given their execution feasibility.

2.2 Authentication Methods Leveraging Pressure Sensing

Pressure sensing is widely used for authentication because it can be unique to
users, and thus difficult to imitate. Abbas et al. [1] proposed a user authenti-
cation method based on behavioral biometrics during the interaction of tapping
on simple shapes (circle, square, rectangular, triangle, cross, and check-mark),
utilizing 25 features, including coordinates, duration, distance, and velocity and
employing supervised learning. Use the Force [15] explicitly combines touch pres-
sure with pin code, significantly expanding the code space and achieving higher
security. Pelto et al. [24] created more intricate and personalized touch dynam-
ics for authentication by enabling users to simultaneously touch the screen of
mobile devices with multiple fingers.

These methods improve the accuracy of traditional authentication technolo-
gies by utilizing touch pressure, while also limited hacking resistance. Notably,
no methods reviewed shoulder hacking. In contrast, we assess the resistance of
our method to shoulder hacking through experiments.

2.3 Authentication Methods Leveraging IMU Sensing

Other methods authenticate users by extracting their motion characteristics with
IMU sensors. Liu et al. [18] leveraged built-in IMU sensors on smartphones
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to gather biometric features from the vibrations of the user’s lower jaw and
attempt authentication. Feng et al. [8] performed authentication by extracting
features from IMU sensor glove information when touching the screen. Similar
to capacitive sensing, these methods using IMU sensing have demonstrated the
feasibility of motion-based authentication.

2.4 Authentication Methods Leveraging Opening Gesture

Code- and biometric-based methods can be spotted, limiting their usability in
real life [30]. Researchers have proposed dynamic authentication methods, which
track features continuously to avoid static authentication behavior. SmartHandle
[11] attempts authentication by attaching an IMU to a doorknob and collecting
the trajectory and speed of hand movements when opening a door. SenseHandle
[27] uses swept frequency capacitive sensing and an acoustic sensor in addition
to a IMU to capture interactions when opening a door for authentication. In
contrast to these systems, we attempt to use pressure, capacitive, and inertial
sensing for opening gesture authentication.

3 Exploring the Design Space of Opening Gestures

In this section, we ask participants to design opening gestures for authentication
in real-life scenarios, exploring the design space of practical opening gestures.
Additionally, we evaluate the authentication performance of data collected from
the participants.

3.1 Participants

We recruited 10 participants from the same laboratory as the authors (all male,
M = 23.3 y.o., SD = 2.06 y.o.) as volunteers. Of the participants, nine were
right-handed, and one was ambidextrous. Regarding the direction in which their
door opens at home, six answered that it opens to the left, while four answered
that it opens to the right.

3.2 Hardware

The door that was used had a doorknob with a width of 135 mm, a diameter of
15 mm, and a shaft diameter of 20 mm. The height from the floor to the center
of the shaft was 1000 mm, and the door opened it opens to the left (Fig. 1a). We
wapped the doorknob with copper tape as electrodes to measure its capacitance.
A capacitor was charged through a digital output pin of a microcomputer with
a 1 MΩ resistor in series. On the discharge (measurement) side, the copper tape
was connected in parallel with the charging side, featuring a 1 kΩ resistor in
series, and linked to a digital input pin of the microcomputer for capacitance
measurement. The capacitance was determined by measuring the time required
for charging. The door was conductive and magnetic. The doorknob part was
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Fig. 1. Hardware installation on the door handle. (a) Front view and sensor placement.
(b) Example of gesture demonstration.

nonconductive and nonmagnetic, but considering the influence of the door itself,
we wrapped it with insulating tape before wrapping it with copper tape. A
pressure sensor (Alpha’s MF01A-N-221-A04) was installed at the center of the
top of the doorknob handle. An IMU (Akizuki Tsusho’s AE-LSM9DS1-I2C) was
installed at the center of the top of the doorknob shaft. Arduino Uno R3 was used
as a microcomputer to receive data from each sensor and to measure capacitance.

3.3 Procedure

Similar to code-based authentication, opening gestures are designed by individ-
ual users. Therefore, similar to existing research [29,30], we asked the partic-
ipants to freely design their preferred opening gestures for authentication and
analyzed the features they exploited in the design of their own opening gestures.

After explaining our idea to the participants, they were asked to design
opening gestures. The instruction was, “Please design opening gestures for
authentication in this scenario that you would like to use in real life.” To
inspire participants to design their own opening gestures, we introduced them to
seven features frequently used in other gestures and pressure-based interaction
methods [19,21,25], such as Code-Length (number of times to turn the door-
knob), Touch-Pressure, Number-of-Fingers (for grasping the doorknob), Touch-
Duration, Finger-Identity (order of the fingers used to touch the doorknob),
Gripping-Hand (e.g., both hands or right hand) and Touch-Location. During
the design, the participants were encouraged to include any other features they
liked and were free to test their gestures until they were satisfied. After this,
the participants were asked to reveal their gestures by demonstrating them to
the experimenter and noting them in the questionnaire. They were also asked
to describe the features they had used in their designs in the questionnaire.
Then, each participant performed the gestures they designed 20 times (Fig. 1b),
which involved performing them 10 times, taking a 60-seconds break, and then
performing them another 10 times.
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3.4 Results

In total, we collected 11 opening gestures (9 participants × 1 gesture +1 partic-
ipant × 2 gestures). Table 1 and Fig. 2 show the gestures that were noted in the
questionnaire. Although the participants were allowed to use any features they
liked, almost half of the gestures (designed by P1, P3, P4, P6, and P10) were
based on opening motions without many distinctive features.

Table 1. Opening gestures designed by the participants. Note that P2 designed two
gestures.

Participant Opening Gesture

P1 Placing the thumb on the shaft and turning normally

P2 Grasping the doorknob with the left hand and turning it once. Grasp-
ing the doorknob firmly with the left hand and turning it downward

P3 Turning the doorknob using the little finger, ring finger, and middle
finger

P4 Turning the doorknob for roughly 0.5 s with enough grip strength for
turning it, with the fingers other than the thumb of the right hand,
placing each finger between its second and third joints on the handle

P5 Touching the inside of the lever, then touching the outside and turn-
ing it once

P6 Grasping the doorknob by the left hand, with the thumb under the
doorknob, and then turning it quickly

P7 Grasping the doorknob from the little finger to the index finger and
then turning it

P8 Without thinking, turning the doorknob with the right hand in the
shape of a thumb-up

P9 Grasping the doorknob, turning it once, returning it to its original
position, and turning the doorknob again

P10 Holding the knob with the base of the fingers other than the thumb
and turning it with the thumb in a neutral position in the air

There was an average of 4.00 features (SD = 1.10) used in the design of
eash gesture. Figure 3a shows the number of gestures that were leveraged each
feature. In total, Code-Length was the most frequently used feature (used by all
participants). Meanwhile, roughly half of the gestures leveraged Touch-Pressure,
Number-of-Fingers, Finger-Identity, Gripping-Hand, and Touch-Location. In
comparison, Touch-Duration was only used in a few gestures.

We analyzed the distribution of the features in the gestures, as shown in
Fig. 3b. Because Finger-Identity and Touch-Location were dependent on other
features, we did not analyze these two features. As shown in Fig. 3b, the Code-
Length of 90% of gestures was only 1, implying that the participants favored
short gestures. Of the Touch-Pressure 75% included a neutral grip, suggesting
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Fig. 2. Gestures designed by the participants.

that participants were not very concerned with pressure. Similarly, 100% of the
Touch-Duration was 0.5 s, suggesting that participants were not very concerned
about the duration. Regarding Number-of-Fingers, 86% of gestures leveraged
four or more fingers, while 14% leveraged three fingers suggesting that the par-
ticipants preferred opening gestures with a stable grip. Half of the Gripping-Hand
gestures were performed with either hand, suggesting that both the left and right
hands could be used to turn the doorknob. However, the participant who did
not mention the hand for gestures opened the door with their left hand in this
experiment, since the doorknob used was a left-opening type.

3.5 Feature Visualization

Eleven sensors (a capacitive sensor, a pressure sensor, three axis acceleration
sensors, three axis gyro sensors, and three axis magnetic sensors) were used to
measure the motion of the opening gestures (Fig. 1a). Similar to Ohmura et al.
[23], we obtained a feature vector of 56 dimensions (11 sensors × 5 features
+ 1 duration feature), with fatures being the mean, variance, standard devia-
tion, kurtosis, and skewness of 11 sensors, and the duration of the gestures. The
principal component analysis (PCA) showed that the cumulative contribution
rate exceeded 50% after the fourth principal component (Fig. 4). Among the
56 features, we extracted 31 by selecting those with an absolute value of main
component scores of 0.2 or higher (Fig. 5). Another PCA was performed on the
31 extracted features. Figure 6 shows the results of dimension reduction down
to the second principal component to examine how the participant data were
distributed. As this figure shows, the data were spread out for each participant,
suggesting the possibility that these 31 features could discriminate between par-
ticipants.
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Fig. 3. Analysis of the features used in the gestures in Table 1. (a) The number of
gestures with different features. (b) Distribution of the features.

3.6 Machine Learning

The results of 10-fold cross-validation using Random Forest with 31 features
are summarized in Table 2. G1 denotes the gesture designed by P1. Since P2
designed two gestures, G2-1 and G2-2 are shown. This table shows that even
similar gestures (G3, G4, G6, G10) can be classified with a precision rate of
0.94 or higher. This also shows that complex gestures (G1, G2-2, G5) can be
classified with a precision rate of 0.87 or higher. However, some gestures (G2-1,
G7, G8) were shown to be inaccurate, with a precision rate of 0.48 or lower. In
the future, these inaccurate gestures should be analyzed.

4 Experiment: Shoulder Hacking

To explore whether it is possible to reject gestures made by nonusers, we con-
ducted another experiment to examine the vulnerability of opening gestures to
shoulder hacking.
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Fig. 4. Cumulative contribution rate changes.

Fig. 5. PCA performed on 56 features. We plotted 31 features whose absolute value of
principal component score was 0.2 or more. The numbers in parentheses are the scores
of the third and fourth principal components.
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Fig. 6. PCA performed on 31 extracted features. G1 denotes the gesture designed by
P1. Since P2 designed two gestures, G2-1 and G2-2 are shown.

Table 2. Authentication performance. Gesture G1 denotes the gesture designed by
P1. Since P2 designed 2 gestures, G2-1 and G2-2 are shown.

Gesture G1 G2-1 G2-2 G3 G4 G5 G6 G7 G8 G9 G10 Average

Precision rate 0.875 0.483 1.000 1.000 1.000 1.000 0.941 0.250 0.700 0.727 1.000 0.816

F-measure 0.778 0.571 0.963 0.974 0.919 1.000 0.865 0.187 0.467 0.516 0.750 0.726

FAR 0.010 0.077 0.000 0.000 0.000 0.000 0.005 0.046 0.015 0.015 0.000 0.015

4.1 Participants

We recruited eight participants from the same laboratory as the authors (all
male, M = 22.8 y.o., SD = 0.66 y.o.) as volunteers. Six were right-handed, one
was left-handed, and one was ambidextrous.

4.2 Procedure

The same door used in Sect. 3 was used to collect the data. The experiment
consisted of the following two phases.

Data Collection. Three out of the eight participants (users) participated in
the data collection. As in Sect. 3.3, we asked the participants to freely design
their desired opening gestures for authentication.

After we had explained our idea to the participants, they were asked to
design opening gestures. The instruction was, “Please design opening gestures
for authentication in this scenario that you would like to use in real life.” To
inspire the participants to design their own opening gestures, we introduced
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them to the seven features mentioned earlier. In their designs, the participants
were encouraged to include any other features they liked and were free to test
their gestures until they were satisfied. After this, they were asked to reveal the
gestures by noting them in the questionnaire. They were also asked to enumer-
ate the features they had used in their design among the seven features in the
questionnaire. Then, each participant performed their designed gesture 20 times
(Fig. 1b), by performing it 10 times, taking a 60-s break, and then perform-
ing it another 10 times. The participants’ hand movements were video recorded
(Fig. 7).

Hacking. After the data collection, we conducted a hacking experiment. Five
participants (nonusers) who had not participated in the data collection took
part in this experiment, which was divided into two sessions.

In the first session, the participants were asked to watch a video (Fig. 7)
recorded during the data collection and imitate the three gestures designed by the
users. While imitating the gestures, they were asked seven features used in the
gestures by filling in the questionnaire used in Sect. 4.2. Then, each participant
performed each of the three gestures 20 times.

In the second session, the participants were asked to imitate the gestures by
watching the video and the seven features answered by the users in the data
collection. Then, the participants performed each of the three gestures 20 times.

Fig. 7. Example of a gesture video.

4.3 Results

In total, we collected three opening gestures (3 users × 1 gesture). Table 3 shows
the gestures designed by the users, that had been noted in the questionnaires.

We counted the features in these gestures (Fig. 8). Because Finger-Identity
and Touch-Location were dependent on other features, we did not count them.
As shown in Fig. 8b, nonusers could roughly estimate the users’ gestures. There
is no difference in the distribution of Code-Length, Number-of-Fingers, and
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Table 3. Opening gestures designed by the users in the data collection.

User Opening Gesture

U1 Quickly moving the doorknob down, standing for roughly 0.5 s, and then
attempting to open it by turning

U2 Holding the tip of the doorknob, touching it with the thumb in the shape of a
thumbs-up, turning it twice, and releasing

U3 Turning the doorknob with the thumb applying force to the thumb

Gripping-Hand, suggesting that these were easy to estimate by nonusers. The
Touch-Pressure was 3 (neutral) or higher by users, whereas 20% of Touch-
Pressure was 2 (slightly weak) by nonusers, suggesting that nonusers estimated
the pressure to be weaker. The Touch-Duration ranged from 1.0 to 2.0 s by the
users, while it ranged from 0.5 to 1.5 s by nonusers, suggesting that nonusers
estimated gestures to be shorter. However, Touch-Pressure and Touch-Duration
are subjective, with a possibility that the participant’s subjective and actual
pressure differed.

4.4 Feature Visualization

As in Sect. 3, we performed a PCA to examine how the participant data were
distributed. Figure 9 shows the results of dimension reduction down to the second
principal component. In this figure, U1 denotes the gestures designed by the users
#1. NU1 denotes the gesture imitated by the non-user. ‘only-video’ denotes the
first session, in which non-users watched only the gesture video. ‘video&info’
denotes the second session, in which nonusers watched the gesture video and
the features mentioned by the users. As Fig. 9 shows, the data were spread out
for each participant, suggesting the possibility that these features could classify
participants. In particular, U3 is scattered with the 1st principal component =
5.0 or higher, while nonusers gestures that imitate users (NU1-NU5 in Fig. 9c)
are classified with the first principal component = 5.0 or less. This indicates that
it may be difficult to imitate even if videos and features are open.

4.5 Machine Learning

We performed authentication by classifying between users and nonusers using
Random Forest. The results are summarized in Table 4. Due to an imbalance in
users and nonusers data, we used a Balanced Random Forest. The ratio of test
data to training data was 0.5, indicating that the results show the performance
of our system when a user registered their own gesture 10 times on the doorknob
of the user’s private room.

In this analysis, we conducted two simulations. The first is to test if nonusers
could open the door by imitating users’ gestures. To this end, we trained a model
with 10 users gestures and 200 non-users’ gestures imitating the users’ gestures
and the model with the rest of the data (U1 vs. NU1, U2 vs. NU2, and U3
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Fig. 8. Analysis of the features used in the designed gestures. (a) Distribution of the
features by the users in the first session. (b) Distribution of the features estimated by
the nonusers in the second session.

vs. NU3). The second simulation was to test if nonusers could open the door
by performing random gestures, including the ones where nonusers imitated
users’ gestures. To this end, we trained a model with 10 users’ gestures and 300
nonusers’ gestures and tested it with the rest of the data (U1 vs. all-NU, U2 vs.
all-NU, and U3 vs. all-NU).

The average accuracy and TAR by users and nonusers (U vs. NU) was 0.988.
All FARs were 0.000, showing that users were not misclassified as nonusers.
The average accuracy for nonusers authentication (U vs. all-NU) was 0.975.
The average FAR was 0.025, meaning that other users’ gestures imitated by
nonusers were misclassified as users’ gestures.
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Fig. 9. PCA performed on the extracted features. Dimensions were compressed to
the second principal component and displayed. (a) PCA on the data obtained when
nonusers imitated U1. (b) PCA when nonusers imitated U2. (c) PCA when nonusers
imitated U3.
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U1 vs. all-NU had the highest accuracy among all users. However, the U1 vs
NU1 accuracy was lower than that of U3 vs. NU3. U3 vs. NU3 had the highest
accuracy among other users, while U3 vs. all-NU had the lowest accuracy among
all users. This result shows a trade-off between imitation resistance and overall
authentication accuracy.

Table 4. Classification between users and nonusers.

Performance U1 vs. NU1 U2 vs. NU2 U3 vs. NU3 U1 vs. all-NU U2 vs all-NU U3 vs all-NU

Accuracy rate 0.982 0.982 1.000 1.000 0.980 0.946

Precision rate 1.000 1.000 1.000 – – –

Recall rate 0.800 0.800 1.000 – – –

F-measure 0.889 0.889 1.000 – – –

TAR 0.982 0.982 1.000 – – –

FAR 0.000 0.000 0.000 0.000 0.020 0.054

5 Discussion and Future Work

Opening Gestures in Authentication. In Sect. 3, we analyzed the opening gestures
based on users’ preferred features. In Sect. 4, we showed that our system has a
FAR of 0.000 for nonusers imitated gestures and an average FAR of 0.025 for
all nonusers gestures. Therefore, the opening gestures have the potential to be
used for authentication.

User-Designed Gesture Implications. In Sect. 3, Code-Length, Number-of-
Fingers, and Finger-Identity were the most preferred features when designing
opening gestures. This result not only supports the design of our system but
could also direct interaction techniques based on opening gestures (e.g., recog-
nizing persons entering/leaving and operating IoT devices to control lights or to
play music when a door is opened/closed).

Future Work. We showed Code-Length, Number-of-Fingers, and Finger-Identity
to be the most preferred features. However, there is a possibility that other fea-
tures (e.g., Touch-Pressure, Touch-Duration) might not align well with our sys-
tem. We plan to improve the system to sense other features during opening and
explore the feasibility of using these features. In addition, our participants were
highly homogeneous in terms of age. Validating the performance with added par-
ticipants is also needed. Furthermore, since opening gestures could change over
time, even if users intentionally intend to maintain them, a long-term evaluation
of our system is necessary.
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6 Conclusion

We presented an authentication method using opening gestures.
Analyzing the participants’ defined gestures showed that Code-Length,

Number-of-Fingers, and Finger-Identity were the features they preferred the
most. Our system was implemented on a door, testing its authentication perfor-
mance on data from 10 participants. Capacitive sensors, pressure sensors, and an
IMU were used to measure the movements of the gestures. The results showed
that a Random Forest with 11 gestures could reach an average precision rate of
0.816 and an average FAR of 0.015.

Our shoulder hacking experiment with 8 participants showed that our system
archived a FAR of 0.000 for the imitated gestures by nonusers. An average FAR
of 0.025 for all gestures was shown. For these reasons, the users and nonusers
performance also showed that there might be a trade-off between imitation resis-
tance and overall authentication accuracy.

In the future, we will use a system that senses more features to verify the
actual performance. Additionally, we will examine the system’s performance by
long-term evaluation, since opening gestures might change over time.
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