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Abstract. This paper presents Z3VR, an interactive simulation of Kon-
rad Zuse’s Z3 computer in a Virtual Reality (VR) environment, intended
to give users the full experience of working with this historically signif-
icant machine. The paper explores other Z3 simulations and VR pro-
gramming environments and draws comparison to Z3VR in terms of their
accuracy and interface approach, where applicable. It details the creation
of the project in various aspects and lessons learned from implementing
and testing the VR user interface. It further evaluates how effective the
project is as an educational tool in terms of teaching users about some
concepts of low-level programming, and proposes future work to be done
on Z3VR for higher usability and potential application in museums.
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1 Introduction

Virtual Reality (VR) is a technology that excels in creating immersive and engag-
ing experiences, and which lends itself to letting users see and interact with places
and objects they would otherwise not be able to. The Z3 computer, initially built
by Konrad Zuse in 1941, is a prime candidate for such an environment. Clear
historical significance aside, this machine is remarkable in both its accessible
user interface and the numerous ways in which it mirrors modern processor and
computer design. Among others, these characteristics make it a great example
to teach users about the history of computing and low-level programming in a
way that the skills learned can be translated into modern machine languages.

It should also be noted that, aside from other existing simulations (see Related
Work), there is currently no possibility to work with the machine or even see it in
person. The only full physical recreation at the Deutsches Museum in Munich is
inaccessible at this time, as such this project aims to fill this gap by providing an
immersive environment in which the Z3 can be seen from all angles and interacted
with as if it were a real device. The main target demographic of the project is
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people in their late teens and above, with at least marginal interest in computer
science. Various interfaces are provided to make programming the machine as
accessible as possible while trying to maintain immersion and historical accuracy.

The aim of this paper is to analyze the implemented VR interface in terms
of its usability and to evaluate its effectiveness in teaching basic low-level pro-
gramming concepts by analyzing data from play tests.

2 Related Work

Serious games have shown to be an effective approach to teaching in various
fields [4]. By letting users participate in an immersive experience and giving
them an active role in interacting with the subject matter, engagement and
learning are amplified greatly. VR allows us to push the immersion aspect even
further by fully enveloping users in interactive environments.

VR as a medium for serious applications and learning environments is a flour-
ishing area of development [3,6], especially as the drop in cost of the necessary
hardware in recent years has made it accessible for general audiences outside
of research and military applications [3]. Serious games and applications using
VR technology have successfully been used for teaching in a wide selection of
disciplines, ranging from areas like public speaking [10,12] to physical assem-
bly tasks [11], physics [26], virtual shopping [5,7,22] and even medical proce-
dures [18]. And while VR is a cost-effective alternative to training in a physical
environment, it also presents the unique opportunity to show places and objects
which are normally inaccessible, be it because of insurmountable distances like
different celestial bodies [1,2] or the content shown is in the past. Various prior
works have dealt with the digital reconstruction of historical artefacts, such as
underwater archaeological sites [13], reassembled ancient Greek statues [14], or
the evolving state of historic buildings through the centuries [8]. In light of
these examples, teaching programming, a traditionally text-heavy endeavour,
may seem like an unusual application of this technology. However, Z3VR is far
from the first project to experiment in this field [9,19–21].

The following will first cover the current extent of simulations of the Z3,
followed by an examination of VR applications with similar goals to Z3VR in
terms of historical simulations and teaching programming.

2.1 Previous Z3 Simulations

There have been various simulations and emulations of the Z3, with varying
degrees of accuracy. How the Z3 operates has been covered in detail by Rojas
et al. [17], for this section it’s only necessary to know that it was programmed
through punched tape, operated on two binary floating point registers, and it
both received and displayed numbers through a console unit in a decimal floating
point format.
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2D and Terminal Simulations. A simulation by Mike Riley, published on
their website1, presents the user with an application window, interactive buttons
and display fields mimicking the layout of the machine’s console. Different tabs
at the top of the window let users write programs, see the state of memory,
and view debugging information. Riley’s implementation executes faithfully the
algorithms used to compute the various operations. The registers are abstracted
as unsigned integers, and all the algorithmic steps as described by Rojas et al. [17]
are taken to compute the results. The code for this was a valuable resource for
checking the correctness of Z3VR’s implementation of the arithmetic unit.

A different project named pipZuseZ3 2 runs entirely in a terminal and expects
the name of a text file containing a Z3 program as an argument on startup. As
such there is no option to simulate manual operations through the console. Since
the program terminates after the instruction sequence has ended, the simulated
machine’s memory is not persistent, making programs that operate on the results
of prior executions difficult. Furthermore, there is no option to create looping
programs (possible on the real machine by sticking both ends of the punched tape
program together), and the simulation does not implement the Z3’s exception
handling.

VRML Simulation. The prior work closest to Z3VR in terms of Z3 simula-
tions is the 3D simulation of the machine available on the Konrad Zuse Internet
Archive [15,16] (Fig. 1). It was constructed using the Virtual Reality Modeling
Language (VRML)3, used for displaying simple interactive 3D scenes embed-
ded in web pages. Within it, users are presented with a scene featuring the Z3
machine and can navigate using the mouse via tank controls, or by switching
between preset perspectives. The console can be interacted with by clicking on
the buttons, and it mimics the real machine by displaying values and exceptions
through illuminating the appropriate fields. Outside of the 3D view, the web
page also features a section where users can write a program to be run, though
this also does not offer the option of looping programs. Unfortunately, while the
console interaction and programming both work as expected, the machine itself
behaves in strange ways. Some of the buttons’ functions seem to be swapped,
and some don’t appear to do anything at all. These issues are likely caused by
incompatibilities with the software required to run this now unsupported format,
and attempts at unpacking the VRML file to try and fix these were unsuccessful.

These three projects are currently the only publicly available simulations of
the Z3. Since all of them are either non-functional due to unsupported formats or
do not accurately represent the user interface, there is no possibility to accurately
experience working with the Z3 (in an immersive way) - something Z3VR aims
to change.

1 http://www.historicsimulations.com/ZuseZ3.html, accessed 13.8.2023.
2 https://sourceforge.net/projects/pipzusez3, accessed 13.8.2023.
3 https://www.web3d.org/content/vrml97-functional-specification-and-vrml97-

external-authoring-interface-eai, accessed 14.8.2023.

http://www.historicsimulations.com/ZuseZ3.html
https://sourceforge.net/projects/pipzusez3
https://www.web3d.org/content/vrml97-functional-specification-and-vrml97-external-authoring-interface-eai
https://www.web3d.org/content/vrml97-functional-specification-and-vrml97-external-authoring-interface-eai
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Fig. 1. VRML scene, navigable 3D scene to the left, programming view to the right

2.2 Other VR Simulations and Learning Environments

To put Z3VR into context, it’s worth taking a brief look at other VR applica-
tions intended to simulate old computers or provide learning environments for
programming.

ENIAC-VR. A remarkably similar project, only found after Z3VR’s comple-
tion, is ENIAC-VR [25], presented at the MuC 2020 (Fig. 2). It had the same goal
of providing an immersive virtual environment for users to experience program-
ming one of the first computers, namely the ENIAC. This was extended further
by including a guided tour which details the historical context and significance
of the machine, as well as a Maintenance mode, in which users are instructed on
how to spot and fix issues with the machine, which were a frequent occurrence
on the real counterpart.

It features an introduction similar to Z3VR, which guides users by explicitly
telling them what actions to perform to arrive at their first program, involving
plugging in cables and turning knobs to a specific setting. Given the vastly higher
number of interactable components, and far more complex programming model,
ENIAC-VR makes heavier use of text-based instructions (Fig. 2), though it is
difficult to imagine a purely visual or gesture-based tutorial similar to Z3VR’s
that could convey this level of information density effectively.

Block-Based Programming Environments. A notable commonality
between the majority of VR experiences aimed at teaching programming is that
the programming itself is usually done through the Block-Based approach pop-
ularised through services like Scratch4. This system has shown to be an effective
tool for introducing students to programming while achieving a higher level of

4 https://scratch.mit.edu/, accessed 14.1.2024.

https://scratch.mit.edu/
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Fig. 2. Screenshot of the introduction to ENIAC-VR, text labels guide the user

engagement than traditional text-based programming [24]. A further common
aspect is that the programs are often used to navigate a character through a
level in much the same way as Karel the Robot5, another established application
for teaching basic programming.

Fig. 3. A program in VR-OCKS, instructions are represented as cubes in a line

In VR-OCKS by Segura et al. [19] the code blocks which represent actions
of the player character and concepts like loops are represented as literal blocks
in the 3D scene which the user can pick up and place in a specific order (Fig. 3)
to navigate their character around obstacles throughout a level. An earlier work
by Vincur et al. [21], Cubely, presents effectively the same concept, but in the
style of a popular video game franchise.

5 https://xkarel.sourceforge.net/eng/, accessed 14.1.2024.

https://xkarel.sourceforge.net/eng/
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Z3VR took a similar approach to programming, as the programs are not
written by the user in the traditional way, but are assembled from pre-set parts.
However, an obvious difference is that Z3VR’s pieces are merely textual entries in
a 2D list, as will be detailed in the next section, and due to a lack of conditionals
or finite loops in the Z3 instruction set, there are no “meta blocks” which contain
a series of other pieces within them.

Fig. 4. A Program within Zenva Sky (Screenshots taken from https://www.youtube.
com/watch?v=hMqiroApt2I, accessed 5.9.2023)

Zenva Sky also takes a similar approach to the prior two applications, how-
ever, in this case the user’s programs control a vehicle in which they themselves
are sitting [9]. Users have buttons in front of them that correspond to each pos-
sible instruction, and when they press them, they are added to an instruction
list not unlike the one in Z3VR (Fig. 4). The game consists of a series of levels
with increasing difficulty, in which the vehicle is used to reach an exit. Later the
game is complicated by introducing locked doors and boolean inputs that the
vehicle can activate, in combination with logic gates to open the doors.

In the first levels, the focus is on introducing the various logic gates; in later
levels, the movement system is expanded with loops. The connection between
the puzzles and their appearance in the code is shown by a screenshot of the
corresponding Python6 code in front of the user after each level.

A drastically different approach to teaching programming is provided by
Thinkercise, a project by Theethum et al. [20]. The gameplay, seemingly inspired
by Beat Saber7, consists of hitting incoming coloured blocks with the correct
hand, pictured in Fig. 5. Questions about Python (See Footnote 6) are regularly
shown, with an upcoming set of three blocks being labelled with one possible
answer each and the user being tasked with punching the correct one.

6 https://www.python.org/, accessed 6.9.2023.
7 https://www.beatsaber.com/, accessed 14.1.2024.

https://www.youtube.com/watch?v=hMqiroApt2I
https://www.youtube.com/watch?v=hMqiroApt2I
https://www.python.org/
https://www.beatsaber.com/
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Fig. 5. Thinkercise gameplay, a programming question is presented while colored
cubes approach the user (Screenshot from https://youtu.be/RFNkRtcWwas, accessed
14.1.2024)

This application is designed for users with at least rudimentary understand-
ing of Python code, because the questions focus on advanced concepts of pro-
gramming. Additionally, Thinkercise prompts the users to enter their weight
to determine approximately how many calories they have burned during their
session, adding a secondary motivation for users in addition to the educational
aspect.

This project is far more gamified than Z3VR, and the focus of the training is
on deepening existing programming knowledge rather than acquiring new skills.

3 Recreating the Z3 in VR

The following provides a quick introduction to the Z3 itself, to give context to
all the VR interfaces which had to be implemented for it.

3.1 Z3

The Z3 was a programmable calculating machine operating on binary float-
ing point numbers, completed by the engineer Konrad Zuse in 1941 [17]. Its
operational model is effectively Reverse Polish Notation8: a mathematical oper-
ation requires first giving the operands and then the operator. The machine had
instructions for receiving a number input through the console, displaying an out-
put, accessing memory, and all four basic mathematical operations plus taking
the square root. Calculations could be done in a “manual mode” by inputting
numbers and pressing operation buttons. Alternatively, a reading unit could
automatically run through a program stored on 3 5mm film stock with holes
punched into it to encode instructions. The memory could only be accessed
through such a program.

8 https://en.wikipedia.org/wiki/Reverse Polish notation, accessed 1.9.2023.

https://youtu.be/RFNkRtcWwas
https://en.wikipedia.org/wiki/Reverse_Polish_notation


130 L. Moersler et al.

Interaction with the machine happens almost exclusively through the console
unit, which features a keyboard for number inputs and manual operation, and a
light matrix for displaying results and exceptions. Fortunately, Zuse specifically
set out to design his machines to be as user-friendly as possible [27], and working
with the console is a simple process. A short introduction in which users are
shown which buttons to press is enough to teach them how everything works
within a few minutes.

3.2 Implementation

The project was implemented within the Unity3D game engine9, which pro-
vides an OpenXR10 API allowing the application to be used with VR hardware.
Behaviours of objects within the engine are primarily governed by C# scripts.
In Z3VR, each of the machine’s separate units and peripherals has one script of
that kind attached to emulate its function, with references to others allowing for
communication where necessary.

The arithmetic unit is simulated on an algorithmic level, with the sets of
relays representing numbers being abstracted as numerical values. The algo-
rithms are executed within C# coroutines, which allows simulating the machine’s
speed (or lack thereof) by timing out the coroutine for the duration of a real Z3
processor cycle after each simulated one.

Aside from negligible technical details, a potentially inaccurate aspect of the
simulated Z3 is its behaviour in various edge cases, which is largely undocu-
mented. Z3VR implements a watchdog which monitors the current state of the
machine and the upcoming instruction, and throws a generic exception on the
machine’s console if an invalid program sequence is detected. This system has
shown to be a valuable aid for new users, as it prevents them from accidentally
putting the machine in an invalid state. Such a system only requires a check of
how many registers are currently filled and what the next operation expects, and
as such is feasible to have been implemented on the real machine, but confirming
this would require an extensive deep dive into its electrical plans.

An extra safeguard that clears both registers if a new program is inserted
was certainly not part of the Z3’s design, but was also necessary to stop users
from putting the machine in an invalid state.

3.3 Interface

Programming in VR is a unique challenge which has been previously tackled
through block-based programming for the most part as shown in the related
work. Z3VR took a similar approach, but with some alterations. The require-
ments for creating Z3 programs both simplify and restrict the possibilities for

9 https://unity.com/, accessed 30.8.2023.
10 https://www.khronos.org/openxr/, accessed 30.8.2023.

https://unity.com/
https://www.khronos.org/openxr/
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the programming interface. On the one hand, as the Z3 had no if-statements
or jump instructions, there is no need for complex systems that allow nested
or branching scopes. On the other hand, since these programs are not used to,
for instance, guide a character to the end of a level, they must be able to get
arbitrarily long, so blocks that have to be physically assembled by hand would
quickly become very cumbersome. The implemented interface will be detailed in
the following.

In the real world, the Z3 was mainly programmed on paper. “Calculating
plans” (Rechenpläne) were written by hand, with tables to keep track of which
variables and constants are in which memory cell, and annotations describing
what number inputs were expected at which time. These plans were then trans-
lated to punched film, though notes about the program had to be included to
tell the operator how to use it properly. Such notes were especially important if
a calculation required the sequenced execution of several programs in a specific
order.

Z3VR provides interfaces and interactive elements to emulate this process
without forcing the user to write anything by hand, and to and to minimize
typing. These systems are introduced step by step to not overwhelm the users.
At the beginning, users are placed in a bare scene in which they receive a quick
introduction to the movement system and all types of interactions needed.

Interactable objects in Z3VR can be categorized as such:

– Push buttons → Physical buttons that gradually retract when the user
places their virtual finger on them. As soon as a threshold value is reached,
they fully engage and trigger whatever they are linked to. Examples include
the console keyboard and the lever buttons of the film puncher.

– Grabbables → Objects that can be picked up using the trigger button and
carried around. They are unaffected by gravity and can be placed anywhere
or put into specialised deposits, which can have various functions. Examples
include sticky notes and program films.

– Openables → Grabbables that can be opened by tilting them such that
their spine points downwards. These include an info/trivia book and program
folders.

– 2D UI buttons → Standard Unity UI buttons on world space canvases. A
raycast visualised by a laser pointer attached to each hand acts as the user’s
cursor, with the trigger button acting as the click action. This laser is only
visible when aiming at the canvas.

Other interactions produce a small haptic feedback in the respective con-
troller, to further enhance the immersion and responsiveness of the interface. Of
note is also that the user’s controllers are represented within the application as
hands attached to their body with arms using simple inverse kinematics. These
hands provide a rudimentary digital twin, and further act as an indicator for the
type of interaction. This is currently available when the user’s pose is changed
next to an interactable object. These poses include a pointing gesture with the
index finger extended near push buttons, a further opening of the hand near
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grabbing objects, and the manifestation of a laser pointer while aiming at a 2D
canvas to create an appropriate origin for the displayed laser.

The most common items that users will be interacting with are the program
films. They’re grabbables that open a 2D UI display of the program held within
when approaching them, shown in Fig. 6. This display also features two buttons
with which users can toggle to a plain text view (eye icon) and whether the
program should loop or not (∞). The plain text view translates the instruction
code names given by Zuse to a literal name describing what it does, for instance,
Ls1 becomes Add.

The book, referred to as the Info Book, provides extra information and trivia
about various things, including individual sections of the machine and back-
ground info about how and why film strips were used for programming. The
text within changes based on which marked section of the machine the user
points at while holding the book.

Fig. 6. Instruction list (middle) and sticky notes for name (top) and input (right)

Sticky notes were added as a simple and intuitive way to name programs
and metaprograms for saving, and to define the expected inputs of a program. A
large typewriter-style keyboard is provided to allow users to write on them. Even
if it is not an optimal interface for writing in VR, it was sufficient, as the content
of these notes is rarely more than one or two words. The program display that
opens when holding a punched film has an outlined box at the top. If a sticky
note is placed there, the program is saved under this name. The display also
allows users to add comments to input instructions using sticky notes. These
comments will appear within the Info Book if it is placed on the console while
running a program.

The Z3 does not have an instruction for immediate values, so the only way to
obtain constants is through user input. In addition, the machine has no way of
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telling which variables should be entered in which order, which can be arbitrary
depending on the program. The sticky notes were implemented to emulate the
hand-written notes used back then while being as simple to grasp and use as
possible. However, this system is not sufficient to communicate sequences of
programs to the operator, so program folders were added.

Fig. 7. Program folder containing three programs for approximating Pi

Program folders are used to store program films in a defined sequence. They
can be opened the same way as the Info Book and offer a clock-like arrangement
of boxes where programs can be placed, shown in Fig. 7. The number and posi-
tioning of these slots adjust automatically depending on the number of programs
included. The folders themselves can be named and saved as well, to make the
entries in the list of saved programs more compact.

Once the users has completed the interactive introduction, they are trans-
ported to the main scene, in which the Z3 is situated. At this point, the console
does not feature any of the operation buttons, and the only option the users
have is to start selecting a number by using the mantissa and exponent keys.
Once a number has been selected, a small tutorial will start, guiding the user
through their first calculation of A + B. There is no text telling them what to
do, instead translucent hands indicate the action to be performed, in this case
mainly pressing the operation buttons (Fig. 8). The next step does not start
until the previous one has been performed. The only text added to the console
is large numbers which reflect the currently selected number input and output
number in the format +1234 ∗ 105. This was added because some early testers
had difficulty recognising the small button labels. These help texts can be dis-
abled through the options menu. An additional aid in this respect is the option
to double the size of the keyboard, which users are reminded of by an additional
text on the console that disappears after the first number is entered.
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Fig. 8. Console introduction. A hand is shown telling the user to press the Add button.

This introduction system, internally titled Step Tutorials, has been imple-
mented as a finite state machine, in which each state defines which scene objects
should be enabled and disabled. Once the simple console introduction has been
completed, all the remaining operation buttons appear, and the next scene ele-
ment is shown to the user. This is indicated by a green arrow pointing to the
next tutorial, which only appears when the objectives have been achieved. This
indicator should be conspicuous but unobtrusive so as not to push the player
to the next station, but to encourage them to experiment with what they have
learnt previously.

The programming board (Fig. 9a) is the main utility for writing programs,
and implements the aforementioned simplified Block-Based programming. A
scroll view in the middle shows the current list of instructions, and the left-
hand side features buttons for each of the available operations. Clicking on one
of these operations will add it to the instruction list where the cursor is located
(indicated by <, can be moved by clicking on list entries). Further buttons allow
for toggling a plain text view and program looping, as well as instantiating a
punched film object with the current program.

As seen in Fig. 9a, some operations are greyed out. The watchdog is also used
here to determine which operations are valid. The columns for R1 and R2 show
the user which registers are filled after each instruction. If an invalid sequence
is created, whether by inserting or deleting an instruction in the middle of the
program, the invalid instruction will be marked red.

A film puncher is also present in the scene and an accurate reproduction of
the device used for creating programs for the real machine. It can be used to
punch films by hand in Z3VR as well, to get the full experience of programming
the Z3. Users press the lever buttons corresponding to the bits of the current
instruction code, then click the wheel on the right-hand side to advance to the
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next instruction (Fig. 9b). A list to the left of the puncher shows what instruc-
tions have been punched, so users can see if they’ve made a mistake right away.

Further interaction stations are placed in the scene to allow the removing,
saving or loading of programs.

Fig. 9. Programming stations

3.4 Visuals

Fig. 10. 3D recreation process

The Z3 model was recreated by extrapolating the position and orientation of
cameras from online photos through fSpy11, and importing these virtual cameras
11 https://fspy.io/, accessed 21.8.2023.

https://fspy.io/


136 L. Moersler et al.

into Blender12. Archived plans of the machine [28] revealed the height of the two
relay cabinets, so an almost complete reconstruction of the machine was possible.
(Fig. 10)

A notable detail of Z3VR is that the punched films have procedurally gener-
ated textures to reflect the program in them (visible in Fig. 6 behind the program
display). Also an offset is applied to the texture for every step by moving the
whole film forward by the length of one instruction.

3.5 Audio

Aside from greatly amplifying the immersion [23], audio provides feedback to
the user. This ranges from the immediate response of a clicking noise when a
button on the console is pressed, to the dozens of relays clacking away while
the machine is crunching numbers. A video by the Deutsches Museum13 was
sampled to retrieve audio of the console buttons and the Z3 itself at work, with
a short loop of the latter being played while the machine is calculating. To break
up this loop and give at least some indication of which instruction is being run,
an additional single-shot relay sound is played during memory access operations,
implying the activation of the address decoder. When running a program, a loop
of the pulse drum spinning is played while the machine waits for an input or is
displaying a result, and is stopped when a program ends.

4 Evaluation

Evaluation of the project was done in the form of two testing phases. During
these tests, each participant was guided through the application by the built-in
introduction guide. They were then given a task in the form of a mathematical
problem for which they had to create a Z3 program and were then given a
questionnaire. This consisted of the Standard Usability Scale (SUS) questions
supplemented with a few project-specific ones.

The first round of tests were run during development, just after a first draft
of the introduction system had been implemented. At this point, it consisted of
a series of text-bubbles, which the user could browse. All stations were present
in the scene from the start. Some of testers simply skipped all the bubbles and
were then left quite confused as to what to do.

To prevent this, the current version was introduced, which requires almost
no text and introduces one thing at a time without distracting the user with
unintroduced objects in the scene. The testing of this system was much smoother,
the testers could follow the instructions and the necessary intervention of the
test leader when the testers got stuck was much less frequent than in version 1.

Although the number of participants in each study was relatively small (n =
7, SD = 19.548 for version 1 and n = 15, SD = 12.308 for version 2), a clear

12 https://www.blender.org/, accessed 21.8.2023.
13 https://www.youtube.com/watch?v=aUXnhVrT4CI, accessed 21.8.2023.

https://www.blender.org/
https://www.youtube.com/watch?v=aUXnhVrT4CI
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(b) Version 2, n = 15

Fig. 11. Percentile distribution of SUS scores across the two introduction versions

improvement in usability is evident looking at Fig. 11, with a shift of the average
SUS score from 52.86 to 70.83. A two-sample t-test between the two data-sets
confirms a significant difference: t(20) = 2.64, p = 0.015

During the testing of the second introduction iteration, 80% of participants
chose to try and tackle the programming challenge. These were categorised into
three levels of difficulty, with most subjects choosing the easiest. Nearly all sub-
jects who took on a challenge completed it successfully, especially those who
stated that they had no previous experience with low-level programming, sug-
gesting that the introduction was successful in providing at least the minimum
necessary to solve simple equations with hardware-level instructions.

5 Future Work

There is still room for improvement in some parts of the user interface, and with
a few adjustments and additions, improving user-friendliness certainly seems
possible.

Gamification. While some testers have already found the project entertaining,
a separate game mode would be an interesting way to reward users for their
learning and give them a sense of fulfilment. One suggestion that came up was a
sort of “story mode” where the user is placed in an exaggerated scenario where
an electromagnetic pulse has rendered all transistor-based technology inoperable
and they must use the Z3 to calculate the trajectory of an incoming meteorite
or something similar.

The gamification can of course be much simpler and more reasonable, like an
interface in the scene supplying users with tasks (not unlike the challenges testers
received) and rewarding users if they complete them, perhaps by unlocking fur-
ther functionalities. Such a system could also be integrated into the introduction
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system, giving users very simple tasks at first and then incrementally increasing
the difficulty level to gradually imbue them with the mindset necessary to write
programs for the machine.

General Improvements. An interesting addition would be a toggle-able
abstract representation of the arithmetic unit that reflects the contents of the
registers at all times, with the option to watch the algorithms at work in slow
motion. Since the Z3’s arithmetic unit is virtually identical to that of any current-
day floating point processor [17], this would be a tremendous tool for teaching
users about modern computers as well.

Only few people enjoyed working with the film puncher. Some testers had dif-
ficulty making the logical connection between the instructions, which are coded
as bits, and the holes in the film, and of those who made the leap, only a few
punched the program on the board in front of them. Obviously some work needs
to be done on this interface to make it more accessible. One possibility would
be to add a more rigorous version of the console’s watchdog. A copy of the pro-
gram on the programming board could be displayed next to the puncher, with
commands that have not yet been punched greyed out and only the bit levers
corresponding to the next command could be pressed at all. This would more
clearly guide the user to press the correct levers and prevent them from acciden-
tally punching an invalid instruction, which unfortunately often happens with
virtual fingers that can easily slide over non-physical levers.

Address selection currently consists of a small text field below the instruction
list with a numerical 2D UI keyboard, seen in Fig. 9a. While there are extra but-
tons for retrieving and setting the address of written memory instructions, this is
still a very inconvenient system to use. A board containing sticky note deposits
for each of the 32 possible memory cells could be a far better approach, being
more accessible, more functional, better suited for VR specifically, and providing
yet another use for sticky notes. Users can place notes to label addresses as you
would on paper when planning a Z3 program by hand, to avoid keeping in mind
which address corresponds to which variable or constant. The board also serves
as a 2D UI, where clicking on a cell will transfer the corresponding address to a
small text display next to the two memory instructions, and select it for adding
either of those instructions to the program. While few testers tried programming
with memory accesses, a further trial with this system would still be interesting,
as the direct visualisation of the available memory might encourage its use.

Use in Musems. With some modifications Z3VR could be used as part of
exhibitions in museums. A cooperation with the Deutsches Museum (where the
real Z3 used to be on display) would be especially beneficial, as the real machine
will not be demonstrated anymore due to fire safety concerns, and a full rewiring
to fulfil requirements may not be possible14.

To facilitate the usage in museums, a separate “guided tour” mode may be
interesting. This would merely guide visitors around the different parts of the
14 “Die letzte Rechnung der Zuse Z3” https://youtu.be/TbW-qNxD1lE.

https://youtu.be/TbW-qNxD1lE
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machine with narrated descriptions and run some predetermined programs. The
occasional genuinely interested visitor could still have the option to switch to
the programming mode.

6 Conclusion

To return to the original research question: The current introduction system and
programming interfaces have been shown to be effective, but still offer potential
for further improvement. A follow-up study with more participants is needed
to further investigate the capabilities of Z3VR for teaching low-level program-
ming concepts. However, the test participants so far successfully applied what
they learned in the introduction and in their own experiments when solving the
math problems given to them, even those who stated that they had no previous
experience with low-level programming.
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