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Abstract. This paper addresses a new data analysis method which is suitable to
cluster flight data and complement current exceedance-based flight data monitor-
ing programmes within an airline. The data used for this study consists of 296
simulated approaches from 4.5 NM to 1 NM to the runway threshold, flown by 74
participants (both pilots and non-pilots) with either a conventional sidestick or a
gamepad in the future flight simulator at Cranfield University. It was clustered and
analysed with the use of Kohonen’s Self-Organising Maps (SOM) algorithm. The
results demonstrate that SOM can be a meaningful indicator for safety analysts to
accurately cluster both optimal and less-optimal flying performance. Thismethod-
ology can therefore complement current deviation-based flight data analyses by
highlighting day-to-day as well as exceptionally good performance, bridging the
cap of current analyses with safety-II principles.
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1 Introduction

Flight data analysis has become an important part of each airline’s safety management
system (SMS) to the extent that establishing a flight data monitoring (FDM) programme
is nowadays mandatory for aircraft operators over 27 tons as per ICAO regulations [1].
Airlines and regulators collect a vast amount of data, but only a small portion of it is
typically analysed in depth [2]. This is due to the fact that only events which are con-
sidered “abnormal” are analysed, leaving most of the data to be stored without further
use. This data about everyday performance can, however, contain useful safety informa-
tion for airlines, both in terms of trend analyses and learning about exceptionally good
performance [3]. Many studies have already been published about different algorithms
and data analysis methods to derive new learning opportunities from existing data [4].
This study focuses on the use of self-organising maps (SOM) to cluster flight data col-
lected during a simulated approach. Different performance metrics were then collected
to assess the clustering performance and the possibilities of deriving new knowledge
from the existing data.
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2 Relative Work

This study focuses on applying self-organising maps, which is a machine learning algo-
rithm, to flight data analysis methods. Many studies which focus on data analysis algo-
rithms and techniques, especially about data clustering, have been published in the past.
This study aims to contribute to the previous research in this field.

Airlines typically use FDM to analyse their daily safety performance. Various flight
parameters (over 1000 different parameters for modern aircraft such as the Airbus A350
or Boeing 787) are recorded, downloaded, and processed by flight data analysts. Flight
data analyses as of today mostly focus on capturing deviations from acceptable range of
parameters, such as unusually high or low airspeeds for a specific flight phase, markers
of an unstable approach (e.g. the aircraft not being fully configured for landing below a
specific height) and dual pilot inputs. The data is usually also classified within a safety
matrix to analyse trends both in terms of event frequency and severity [5, 6]. Some
recent developments now also include performing big data analyses to monitor ongoing
trends within an airline, consistent with a safety-II approach [3]. Deviations from an
acceptable range of parameters can help airlines to monitor their pilots’ proficiency and
take mitigation measures such as specific training exercises if required [7]. As experts
may accept minor deviations (that are within the acceptable range) in order to leave
cognitive space for other objectives, an understanding of how these deviations interact
with safety performance can prove very beneficial for airlines with pilots from diverse
backgrounds featuring different piloting techniques, exposure to different equipment
types, cultural values, and perspectives on individual safety objectives [8]. However,
most analysis methods used in flight operations remain focused on identifying threshold
exceedances,which leads to roughly only 3 to 5%of the data being analysed [9]. The 95%
left could, however, lead to additional information about daily operations and normal
occurrences, consistent with safety-II principles [10]. Furthermore, it heavily relies on
the correct setting of the threshold for the exceedance event detection. If the detection
threshold is too narrow, many events would be flagged, resulting in many false positives.
Conversely, a too wide threshold would flag few events or no events at all, leading to
many false negatives. Finally, it also relies on the supposition that a specific incident
could occur. Unimagined potential incidents are hard to notice in the best case if no
detection method has been designed previously [11]. Analysing flight data is not only
done during everyday operation but also during the design stage of a new technology,
such as using a touchscreen as means of flight control [12, 13].

Much previous research has demonstrated the benefits of adding machine learning
to current flight data analyses. Machine learning can be defined as a programme’s abil-
ity to increase its performance with experience, i.e. through learning from the data it
is fed with [14]. Machine learning can be divided into two categories: supervised and
unsupervised learning. Supervised learning involves knowing the correct solution for a
given dataset, whereas unsupervised learning involves not knowing any solution for a
specific dataset [9]. Previous research about machine learning in flight analysis com-
prises Bayesian networks [15], local outlier probability [11], Multiple Kernel Anomaly
Detection (MKAD) [16] and clustering [17, 18] to cite a few.

Self-organising Maps (SOM), often used as a synonym for Kohonen’s Self-
OrganisingMap is a part of a broader type ofmachine learning techniques called artificial
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neural networks (ANN), which has not been researched extensively in conjunction with
flight data analysis. ANNs are designed to simulate the sensory processing of the human
brain. It simulates a network of model neurons, which can ‘learn’ many different types
of problems, especially classifications [19]. The SOM algorithm specifically maps the
data pattern from an input space (the original data patterns) into a n-dimensional space,
known as the output space (Fig. 1). The mapping aims at preserving the topological
relations between both spaces. In order to ease visualisation, the output space is usually
one or two-dimensional. To map the output space, the SOM algorithm uses a neigh-
bourhood function, which is responsible for the interactions between the different units.
Therefore, SOM can be used effectively for clustering tasks and performs similarly to
k-means clustering [20]. SOM are able to extract stabilised phases of flight as well as
transient changes in flight parameters. Furthermore, SOM can handle large datasets,
which makes them well-suited to analyse flight data and an interesting alternative to
k-means clustering [21, 22].

Fig. 1. SOM structure of size X times Y based on an input vector x. The winner neuron is in red,
the neighboring neurons are in green and the other neurons in blue [23]

3 Methodology

3.1 Data Source

The dataset consists of 296 simulated approaches flown in an engineering flight simulator
called the Future Systems Simulator at Cranfield University [24].

74 participants (55 males, 18 females, 1 preferred not to say) were asked to fly four
approaches and landings. Table 1 displays the participants’ demographical data. The
first two approaches were performed with the use of a sidestick, the first one without any
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turbulence and the second onewith simulated turbulence. The following two approaches,
again with and without turbulence, were performed this time with a gamepad. The
participants were asked to follow a standard three-degree descent path while tracking the
runway, assisted with the instrument landing system (ILS) through the use of the Flight
Director (FD). Additionally, participants could follow the cues displayed to them by the
precision approach path indicator (PAPI), while the auto throttle (ATHR) would control
the engine thrust to maintain a constant approach speed. For the purpose of this study,
the following parameters were considered: the anonymous participant ID, the altitude,
calibrated airspeed (CAS), deviation in altitude from the three-degree glideslope, aircraft
pitch, presence of a disturbance (turbulence) and the mean of controlling the aircraft
(sidestick or gamepad).

Table 1. Participants’ demographics

Age M = 31.7 (SD = 10.37)

Number of active pilots 33

Number of non-pilots 41

Active pilots’ number of flight hours M = 1034 (SD = 2483)

Active pilots’ simulator hours M = 114 (SD = 248)

3.2 Research Procedure

The dataset was first cleaned to only keep the last 4.5 NM to 1 NM to the runway
threshold. Asmost participants were not trained pilots, flying the last 1NM to the runway
threshold and landing the aircraft as per standard operating procedures (SOPs) turned
out to be challenging and led to high data variability within the last section of the
flight. Therefore, it was removed in addition to 22 different approaches, where the data
featured too many inconsistencies. The data was also discretised and interpolated for
every 0.05 NM by the distance to the threshold. A new variable called ‘�GP’ was
created, which measures the participants’ ability to track the three-degree glideslope
given by the PAPI. It represents the difference in altitude from the aircraft’s altitude
compared to the reference altitude corresponding to an ideal 3-degree glide path. It has
been determined as follows:

GP = tan(3) × xthr × 6076.12 + CHthr

�GP = Altitude − GP

The following parameters were used: xthr , representing the aircraft distance to the
runway threshold inNMandCHthr – the crossing height, which is 50 ft above the runway
threshold height.

The data was then divided into two sets: one for approaches flown with the sidestick
and one for the approaches flown with the gamepad. The root mean square error was
calculated for each �GP, both of the sidestick dataset (RMSES) and of the gamepad
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dataset (RMSEG). Each dataset was clustered by corresponding �GP variable using
the self-organising map (SOM) algorithm to compare the participants’ performance.
Following the clustering,Welch ANOVAs, and subsequent Games Howell post-hoc tests
were conducted on each cluster’s RMSE to assess the clustering performance. Python
3.10.11 was used to conduct the analysis.

3.3 Statistical Tools Used

The SOM algorithm requiring the Python ‘MiniSom’ package was used. The SOM are
a type of Artificial Neural Networks (ANN) which convert nonlinear statistical relation-
ships on higher dimensions into a low-dimensional discretised representation map. The
map consists of output neurons, usually arranged in a two-dimensional grid and trying
to preserve topological relations. SOM and k-means algorithms are identical when the
radius of the neighbourhood function in the SOM is equal to 0 [20]. The maximum
number of clusters which can be obtained is equal to the number of output neurons. To
obtain the optimal number of clusters, the Silhouette score was applied. It is equal to
S = bi−ai

max ai,bi
, where a represents the mean cluster centroid distance and b the average

nearest cluster distance for every sample i. The Silhouette score is a measure of how
similar an object is to its own cluster versus the other clusters. It returns a value between
−1 and 1, 1 being the best clustering. For each clustering, a variable optimisation algo-
rithm was used, which calculated the SOM σ and learning rate for the best Silhouette
score over 10′000 iterations. The optimal grid dimension corresponds to C = 5

√
N ,

where C corresponds to the number of neurons and N the number of samples in the
dataset [25]. For the size of the used dataset, it corresponds to a 3 × 3 grid. To analyse
the SOM performance, several metrics were used: the normalised quantization error, the
topographical error, the trustworthiness, and the neighbourhood preservation. The quan-
tization error represents the mean difference between the input samples and the winning
neurons. It is equal to QE(M ) = 1

n

∑n
i=1

∥
∥xi − wc(xi)

∥
∥, n representing the number of

data points and wcxi the weight vector of the best matching unit in the map for the data
point xi. The quantization error was then normalized by calculating the average quanti-

zation error for each node as follows: NQE =
⎧
⎨

⎩

1
N

∑N
j=1

( 1
n

∑n
i=1‖∅(xi) − xi‖
norm

(
wj

)

)

1 if no data point matches the unit
, k

corresponding to the number of vectors mapped of each unit. The topographical error
is equal to TE = 1

n

∑n
i=1 di where n is the number of input vectors and di the dis-

tance between the best matching and second-best matching units. The trustworthiness is
equal toM1(k) = 1− 2

Nk(2N−3k−1)

∑N
i=1

∑
xj∈Uk (xi)

(
r(xi, xj

) − k). The neighbourhood

preservation is equal to M2(k) = 1 − 2
Nk(2N−3k−1)

∑N
i=1

∑
xj∈Vk (xi)

(
r∧(xi, xj

) − k). In
both formulas, N represents the data set. Uk(xi) represents the data points which are k
closest to the input space xi and Vk(xi) the data points which are the k closest to xi in
the output space. r(xi, xj) represents the rank of xj when the data points are ordered by
distance from xi and r^(xi,xj) represents the rank of xj when ordered by distance in the
projection. The elbow method was used to determine the optimal k value. As the data
does not show variance homogeneity (pBartlett < 0.05 for both sidestick and gamepad
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clustering datasets), a Welch ANOVA and Games Howell post-hoc test were used to
determine the clustering performance.

4 Results and Discussion

4.1 Sample Characteristics

A total of 278 approaches from 4.5 NM to 1 NM to the runway threshold were analysed
through the SOM clustering methodology. Focus was set on analysing the participants’
vertical performance, i.e. their ability to maintain a stable descent path according to a
standard3° descent. The clusteringof the participants’ trackingof the 3-degree glideslope
making it possible to assess the participants’ manual flying skills both in terms of good
performance and common errors. The flight parameters look as displayed in Fig. 2.

Sidestick Gamepad

Fig. 2. Deviations from the glideslope expressed from the distance to the runway threshold with
the sidestick and gamepad as means of control.

4.2 Clustering of the Deviation from the 3 Degrees Glideslope for Approaches
Flown with a Gamepad

The variables shown in Table 2 were used to optimise the SOM algorithm to cluster the
approaches flown with a gamepad. The Silhouette score indicates a moderately strong
clusteringperformancewith anoptimised cluster number of four clusters [26]. The results
from Table 3 demonstrate that SOM can be a meaningful tool to cluster the gamepad
flight data. Although the NQE remains fairly high, indicating that some data points do
not match the unit’s weight vector [27], the topographic structure of the original data is
well-preserved on the map [28, 29].

The approaches flown with a gamepad grouped by cluster are displayed in Fig. 3,
which shows the CAS, deviation from the three degrees glideslope and pitch. The trials
with disturbance appear to have been more difficult for some participants, as clusters
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Table 2. Sigma, learning rate and corresponding silhouette score used as parameters for the SOM
processing.

SOM parameters Value

σ 0.62

Learning Rate 0.03

Resulting silhouette Score 0.34

Table 3. Clustering metrics obtained by the SOM algorithm.

SOM metrics Value

Normalised quantization error 0.40

Topographic product 0.02

Trustworthiness 0.90

Neighbourhood preservation 0.94

Fig. 3. Calibrated airspeed, deviation from the three-degree glideslope and corresponding pitch
outputs for each cluster.

3, 6 and 7 are almost only composed of landings with disturbances and feature a com-
paratively higher RMSE (Fig. 3 and Table 4). The clusters are well-defined, the Welch
ANOVA indicates significant differences between clusters (F = 3015, p < 0.05). The
post hoc analysis shows significant differences in RMSE (p< 0.05) between the clusters
(Table 5). Cluster 5 displays the least RMSE, and cluster 6 displays the highest RMSE
(Table 4). The difference between experienced pilots and novices is less pronounced
than within the sidestick dataset. A cause for this can be the smaller experience gap in
using gamepads compared to flying with a sidestick.
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Table 4. Average RMSE by cluster

Cluster Average RMSE (ft)

1 159.86

2 118.35

3 416.70

4 272.86

5 73.89

6 794.47

7 169.14

8 103.91

9 130.37

Table 5. Summary of post-hoc results for the gamepad data

Cluster A Cluster B Mean RMSE difference (ft) Standard error P-value

1.0 2.0 41.51 1.38 <0.05

1.0 3.0 −256.84 3.82 <0.05

1.0 4.0 −113.0 2.81 <0.05

1.0 5.0 85.97 1.0 <0.05

1.0 6.0 −634.61 13.88 <0.05

1.0 7.0 −9.29 1.53 <0.05

1.0 8.0 55.95 0.91 <0.05

1.0 9.0 29.49 2.05 <0.05

2.0 3.0 −298.35 3.88 <0.05

2.0 4.0 −154.5 2.89 <0.05

2.0 5.0 44.46 1.19 <0.05

2.0 6.0 −676.11 13.9 <0.05

2.0 7.0 −50.79 1.66 <0.05

2.0 8.0 14.44 1.12 <0.05

2.0 9.0 −12.02 2.15 <0.05

3.0 4.0 143.85 4.59 <0.05

3.0 5.0 342.81 3.76 <0.05

3.0 6.0 −377.77 14.35 <0.05

(continued)
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Table 5. (continued)

Cluster A Cluster B Mean RMSE difference (ft) Standard error P-value

3.0 7.0 247.56 3.93 <0.05

3.0 8.0 312.79 3.74 <0.05

3.0 9.0 286.33 4.16 <0.05

4.0 5.0 198.96 2.73 <0.05

4.0 6.0 −521.61 14.11 <0.05

4.0 7.0 103.71 2.96 <0.05

4.0 8.0 168.95 2.7 <0.05

4.0 9.0 142.49 3.26 <0.05

5.0 6.0 −720.57 13.86 <0.05

5.0 7.0 −95.25 1.36 <0.05

5.0 8.0 −30.02 0.58 <0.05

5.0 9.0 −56.48 1.92 <0.05

6.0 7.0 625.32 13.91 <0.05

6.0 8.0 690.56 13.86 <0.05

6.0 9.0 664.1 13.98 <0.05

7.0 8.0 65.24 1.3 <0.05

7.0 9.0 38.77 2.25 <0.05

8.0 9.0 −26.46 1.88 <0.05

4.3 Clustering of the Deviation from the 3 Degrees Glideslope for Approaches
Flown with a Sidestick

The variables shown in Table 6 were used to optimise the SOM algorithm to cluster
the approaches flown with a sidestick. The Silhouette score showed moderately strong
clustering performance with an optimised cluster number of four clusters [26], although
lower than the one corresponding to the gamepad flight data. The results from Table 7
demonstrate that SOM can be a meaningful tool to cluster the sidestick flight data.
Although the NQE remains fairly high, indicating that some data points do not match the
unit’s weight vector [27], the topographic structure of the original data is well-preserved
on the map [28, 29]. Overall, the clustering result metrics are very similar compared to
the gamepad flight data, but the flying performance is better when participants flew with
the sidestick. This can be due to the difference in experience, as qualified pilots would
perform better than non-pilots with the sidestick whereas the overall flying performance
is lower with the gamepad (Table 8).

The approaches flown with a sidestick grouped by cluster are displayed in Fig. 4,
which shows the CAS, deviation from the three degrees glideslope and pitch. The trials
with disturbance appear to have been more difficult for some participants, as clusters
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Table 6. Sigma, learning rate and corresponding silhouette score used as parameters for the SOM
processing.

SOM parameters Value

σ 0.41

Learning Rate 0.63

Silhouette Score 0.35

Table 7. Clustering metrics obtained by the SOM algorithm.

SOM metrics Value

Normalised quantization error 0.25

Topographic product −0.003

Trustworthiness 0.90

Neighbourhood preservation 0.95

Fig. 4. Calibrated airspeed, deviation from the three-degree glideslope and corresponding pitch
outputs for each cluster.

3 and 7 are almost only composed of landings with disturbances and feature a com-
paratively higher RMSE, similar to the results of the gamepad landings (Fig. 3 and
Table 4). The clusters are well-defined, the Welch ANOVA indicates significant differ-
ences between clusters (F = 5272, p < 0.05). The post hoc analysis shows significant
differences in RMSE (p < 0.05) between the clusters (Table 9). Cluster 4 displays the
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least RMSE (Table 8) and cluster 2 displays the highest RMSE. The results are interest-
ing with regards to the participants’ experience, as both experienced pilots and novices
are present in cluster 4.

Table 8. Average RMSE by cluster

Cluster RMSE (ft)

1 148.56

2 382.99

3 278.28

4 66.92

5 105.20

6 132.85

7 336.90

8 190.00

9 274.14

Table 9. Summary of the post-hoc results for the sidestick data

Cluster A Cluster B Mean RMSE difference (ft) Standard error P-value

1.0 2.0 −234.43 5.27 <0.05

1.0 3.0 −129.72 8.1 <0.05

1.0 4.0 81.64 1.35 <0.05

1.0 5.0 43.36 1.32 <0.05

1.0 6.0 15.71 2.09 <0.05

1.0 7.0 188.34 2.5 <0.05

1.0 8.0 −41.44 1.5 <0.05

1.0 9.0 −125.58 2.75 <0.05

2.0 3.0 104.72 9.49 <0.05

2.0 4.0 316.07 5.13 <0.05

2.0 5.0 277.79 5.12 <0.05

2.0 6.0 250.14 5.37 <0.05

2.0 7.0 46.09 5.54 <0.05

2.0 8.0 193.0 5.17 <0.05

2.0 9.0 108.85 5.66 <0.05

3.0 4.0 211.36 8.01 <0.05

(continued)
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Table 9. (continued)

Cluster A Cluster B Mean RMSE difference (ft) Standard error P-value

3.0 5.0 173.07 8.0 <0.05

3.0 6.0 145.43 8.16 <0.05

3.0 7.0 −58.62 8.28 <0.05

3.0 8.0 88.28 8.03 <0.05

3.0 9.0 4.14 8.36 1.0

4.0 5.0 −38.28 0.5 <0.05

4.0 6.0 −65.93 1.69 <0.05

4.0 7.0 −269.98 2.18 <0.05

4.0 8.0 −123.08 0.87 <0.05

4.0 9.0 −207.22 2.47 <0.05

5.0 6.0 −27.65 1.67 <0.05

5.0 7.0 −231.7 2.16 <0.05

5.0 8.0 −84.8 0.82 <0.05

5.0 9.0 −168.94 2.45 <0.05

6.0 7.0 −204.05 2.7 <0.05

6.0 8.0 −57.15 1.81 <0.05

6.0 9.0 −141.29 2.94 <0.05

7.0 8.0 146.9 2.28 <0.05

7.0 9.0 62.76 3.24 <0.05

8.0 9.0 −84.14 2.55 <0.05

4.4 Limitations

Several limitations are present in this study. Firstly, there is a high variance within the
pilots’ experience, ranging from novice to expert, which distorts the data, compared to an
FDMdataset.Moreover, it can be difficult for non-pilots to follow the precision approach
indicator (PAPI) and ILS guidance for the first time. The control forces on the sidestick
are those of a generic aircraft which might also differ from some actual aircraft types.
Finally, the SOM algorithm parameters could be optimised, and a stronger algorithm
could be used for the clustering instead of theMiniSompackage,which is an introductory
package into SOM. This would provide a better overall clustering performance.

5 Conclusion

The clustering method through SOM provides useful information to analyse flight per-
formance beyond exceedance events. For these datasets, it shows that, in overall, the
flying performance is less susceptible to variability when flying with a sidestick com-
pared to flying with a gamepad. This might indicate that for a novice, the use of a
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gamepad is easier than the sidestick. However, experienced pilots perform better when
flying with the sidestick, as the average RMSEs for the sidestick data are lower than for
the gamepad. Based on the deviation from the glidepath clusters, it is also possible to
analyse the pilots’ pitch inputs on the flight controls and determine the effects of the
different flying techniques on the flight path. Furthermore, the results show that some
participants had more difficulty handling approaches with disturbances, both with the
sidestick and with the gamepad. A more detailed study could be accomplished with
further tuning of the SOM parameter to increase the clustering performance. The use of
SOM and clustering in general could prove beneficial for airlines to perform big data
and trend analyses in addition to a purely exceedance-based analysis and so take a step
further towards safety-II by considering the contexts behind detected exceedances which
may be influenced by previous experience levels and familiarity.
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