
Moving Beyond Physiological Baselines: A New
Method for Live Mental Workload Estimation

Torsten Gfesser(B) , Thomas E. F. Witte , and Jessica Schwarz

Fraunhofer FKIE, Fraunhoferstr. 20, 53343 Wachtberg, Germany
{torsten.gfesser,thomas.witte,

jessica.schwarz}@fkie.fraunhofer.de

Abstract. The analysis of physiological data can provide valuable information on
the mental state of users interacting with a technical system, such as an intelligent
tutoring system. By obtaining live estimations of mental workload a learning
systemcan adapt, e.g., the level of difficulty of tasks to the learners needs.However,
the analysis and interpretation of physiological data usually requires a baseline
recording at a rested state prior to or after a task limiting their practical value.
Additionally, the baseline of a physiological measure cannot be considered as a
stable value but varies between days and even within a day interpersonally, so the
validly calibrated data of a baseline become invalid over time limiting its value
for long term use cases.

This paper proposes a new method for near real time mental workload esti-
mation. A machine learning model which predicts the mental workload based on
the heart rate variability (HRV) derives metrics without the necessity of base-
line recordings. First, a machine learning model is trained on a dataset of pre-
viously collected physiological data and corresponding mental workload ratings.
Subsequently, physiological measures are collected continuously from a partici-
pant throughout tasks. The model is then used to predict the participant’s mental
workload in real time based on the HRV data.

The results of our pilot study show first empirical support, that the proposed
analysis technique is able to estimate mental workload in near real time with an
accuracy of 90%.

As this technique does not depend on baseline recordings it has the potential
to be specifically valuable in applied settings such as adaptive training systems or
to monitor the mental health of workers in safety-critical industries. The method
could also be extrapolated for the analysis of other physiological measures in
future research.

Keywords: Mental Workload · Baseline · Real Time · Physiological · HRV ·
Artificial Intelligence

1 Introduction

Live estimation of mental states, such as mental workload, is an important requirement
for the design of adaptive technical systems that adapt their behavior to the current
state of the user. As an example, adaptive systems may use live detection of mental
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workload to support the operator, if a critically high level of mental workload, has
been detected. In the learning context such information could be used by an adaptive
training system to specifically provoke states of high workload to train the learner how
to cope with critical conditions. Measuring mental workload by physiological measures
such as heart rate, heart rate variability, or pupil size is one of the most prominent
approaches in this context. Benefits compared to e.g., subjective ratings are that most of
these measures can be recorded continuously during a task without disturbing the user
and data can be analyzed in near real time. However, physiological reactions can differ
strongly between and even within individuals depending on the fitness level, caffeine
consumption, and physical activity among others. A common approach to account for
inter- and intraindividual differences is recording a baseline at the beginning or at the end
of a task in a relaxed state and comparing recorded data during a task with the baseline
value. However, in real-world applications baseline recordings are not always a suitable
method as there is often not enough time for a baseline recording. Also, if baselines must
be recorded regularly to be able to work with a technical system, this can be disturbing
and often lowers the user acceptance of the system.

In this paper we introduce a newmethod for live mental workload estimation without
baseline recordings, making it more applicable for real-world settings.We used the heart
rate variability (HRV) as a physiological measure to develop this method, because it is
considered as an established indicator of mental workload and stress.

Section 2 gives an overviewonprior studies onHRVassessment. Section 3 introduces
our new method for live analysis, also describing the data used for validation. Section 4
describes theAIClassifier, whichwas trained for the live analysis ofmentally demanding
tasks based on the calculated metrics from Sect. 3. This paper ends with a discussion,
the limitations of the method as well as conclusions and future developments.

2 Heart Rate Variability as an Indicator of Mental Workload

Mental workload refers to the amount of mental effort and resources required to perform
a specific task, encompassing cognitive processing, attention, and effort exerted by an
individual while engaging in a task [1]. It is a measure of the cognitive and perceptual
demands of a task, influenced by factors such as task complexity, time pressure, and
environmental conditions [2]. Heart rate variability (HRV) analysis measuring the vari-
ation of time intervals between heartbeats is a valuable method for assessing autonomic
function of the cardiovascular system. As such it is often used as a potential biomarker
for various health conditions [3] and for predicting mental workload in various settings.

The HRV can be calculated using various methods, including time-domain and
frequency-domain. In time-domain analysis, parameters such as SDNN (standard devia-
tion of NN intervals) and RMSSD (root mean square of the differences between adjacent
NN intervals) are commonly used [4]. Frequency-domain methods involve the use of
spectral analysis, such as fast Fourier transform and autoregressive model, to calculate
parameters like high frequency and low frequency components [5]. The Task Force of the
European Society of Cardiology recommends the use of SDNN and RMSSD as widely
adopted measures of HRV [4].

Literature shows that there is a negative correlation between the SDNN and sub-
jective mental workload [6], which also applies to the RMSSD [7]. Delliaux et al. [8]
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and Radüntz et al. [9] have focused on characterizing the impact of mental workload
on cardiovascular function using HRV non-linear indexes and inherent timescales of
cardiovascular biomarkers, providing insights into the relationship between HRV and
mental workload. Their results indicate that mental workload significantly lowered the
non-linear dynamics of RR interval [8] and that the assessment of mental workload
using cardiovascular biomarkers’ inherent timescales provide valuable insights into the
physiological responses associated with varying levels of cognitive demand [9]. Also,
Forte et al. [10] concluded in their systematic review about the relationship between
HRV and cognitive functions, that HRV is closely linked to cognitive function. Veltman
and Jansen [11] emphasized the differentiation of mental effort measures and its con-
sequences for adaptive automation, highlighting the importance of HRV in assessing
cognitive workload. The physiological basis of HRV as a reflection of autonomic ner-
vous system activity and its role in emotion regulation further supports its relevance in
adaptive systems, as highlighted by Witte et al. [12].

Veltman and Gaillard [13] concluded that HRV is a sensitive index for mental work-
load when tasks are highly demanding, emphasizing its relevance in assessing cognitive
demand during complex tasks. Research by Cinaz et al. [14] and Shao et al. [15] has
focused on the use of HRV in monitoring mental workload levels during office-work
scenarios and human-robot interaction, respectively, highlighting the versatility of HRV
in diverse domains and environments. Shao et al. [15] conducted a comparison analysis
of different time-scale HRV signals, demonstrating the applicability of HRV in evalu-
ating cognitive demand during interactive tasks. This supports the notion that HRV can
discern fluctuating task demands and attenuate during mentally straining workloads, as
stated by Nardolillo et al. [16].

The findings from these studies collectively highlight the potential of HRV as a
valuable physiological marker for assessing mental workload during software tasks,
providing insights into cognitive demand and adaptive responses in various task
environments.

2.1 Physiological Baselines

One of the most commonmethods to account for intra- and interindividual differences in
physiological measures, such as HRV, is to use baselines. This method is considered as
the gold standard for analyzing HRV and other physiological measures, where the “tonic
level measured immediately prior to stimulation is referred to as the baseline, the level
of activity against which we compare the phasic response to a stimulus” [17]. A baseline
can be obtained by taking the average of HRV values over a specified time interval, such
as five minutes, under resting or non-stressful conditions before or after a task [18]. This
baseline can then be used to compare it against HRV values collected during physical
or mental tasks. The method of obtaining a baseline is visualized in Fig. 1.
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Fig. 1. Baseline for HRV obtained in the first five minutes (300 s) in comparison to the HRV
mean of the task condition.

2.2 Challenges of Live HRV Analysis

While HRV is a valuable health metric, it has certain peculiarities that make it difficult to
establish a definitive baseline that is valid over long periods. When it comes to baseline-
measurements the respective physiological variable should be stable across the analyzed
period. Regarding short-term measurements, Tarkiainen et al. [19] conducted a study on
the stability over time of short-termHRV, indicating that most short-termHRVmeasures
were highly stable over time in laboratory conditions. They further conclude, that their
SDNN obtained during 40-min recordings was more stable than the SDNN obtained
during 5-min periods and the SDNN showed large variability in consecutive recordings.
The stability and variance of HRV appear to vary depending on the period of recording.

Baseline measurements compare a short period of HRV values to another period of
HRV values, similar to a consecutive recording. However, baseline measurements are
implying that the physiological variable is stable in variance across time, regardless of
the period. This assumption is important because it enables the comparison of the par-
ticipant’s response to a stimulus and their initially recorded baseline level. Physiological
measurements can result in chaotic timeseries [20] violating this assumption. Chaotic
timeseries refers to a type of time series data that exhibits chaotic behavior, character-
ized by instability, unpredictability, and sensitivity to initial conditions [21]. Without
stability, there may be no anchor point in the psychophysiological data that could serve
as a good baseline.

HRV baselines can become less valid over time because the range of values being
evaluated can change. This may be the case when comparing consecutive recordings
of short-term HRV. Individual HRV values vary greatly. Age, gender, health status, and
even psychotropic substances like caffeine intake can influence the HRV. Secondly,
intrapersonal homeostasis is a factor of influence, causing natural fluctuations even
without external stimuli [22]. That means that a fixed baseline can shift throughout the
day based on the current physical state of the individuum. Comparing absolute values,
like the baseline, across individuals or even comparing someone’s current HRV to their
ownbaseline, or any pastmeasurements, can therefore bemisleading. If theHRVchanges
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too much without external factors, there is a high chance of false positives (false alarms
e.g., false classification of tasks as mentally demanding) or false negatives (misses,
missed detections of mentally demanding tasks). This case is visualized in Fig. 2 where
according to the initial baseline, huge parts of the following values would be classified as
significantmentally demanding.A valid and reliable baselinemust thereby shift based on
the current physiological change, that is not related to external factors. It has to migrate
with it as a measure, like normalizations do. A change in the current physiological state
must be recognized and the shift of the baseline and a shift due to physiological or
cognitive impact factors has to be differentiated.

Fig. 2. HRV values from one participant over a period of around 55 min, where the first five
minutes are serving as the baseline. The test criterion by which HRV is classified as mentally
demanding is HRV values below the first standard deviation (-1σ) based on the baseline values.

The condition of the participant is usually unknown when the baseline is taken. If the
subject is too excited at the beginning, then the HRVmay only increase over time. If the
subject is too relaxed at the beginning, then the HRV may initially lose altitude rapidly.
This is called the law of initial value, where the magnitude of a response to a stimulus
depends on the starting level of the measured variable [23]. For example, if a participant
already has a very low HRV, which would also be measured as a baseline, then HRV-
lowering stimuli may no longer be noticeable. However, if the participant has a very
high HRV at the beginning, it may be that the entire test period is significantly below
the initial value and therefore the effects of individual stimuli are no longer recognized.

Small or finer oscillations in the data are completely ignored when physiological
baselines only compare the mean of a few conditions. Oscillations within a condi-
tion, based on single stimuli, will vanish through the calculation of means for whole
experimental phases.

HRV is often used in retrospective analysis, where at least the values of the recorded
timespan are completely available for state-of-the-art time series analysis techniques,
such as removing possible trends or seasonality from the data. But without knowing the
future data, an online or real time method, can only rely on the current data and data
recorded in the past. Future data can’t be forecasted because of the chaotic nature of



Moving Beyond Physiological Baselines 135

the HRV time series, as stated previously in this section. So, all useful metrics must be
calculated based on the latest and passed HRV values.

The stated challenges are mostly valid for detailed live analysis with only HRV as a
parameter. Therefore, several approaches like the multifactorial RASMUS Framework
from Schwarz and Fuchs [24], use a combination of multiple parameters to provide more
robust user state analyses.

Hoover et al. [25] tried to detect changes in mental workload based on real-time
monitoring of HRV. Their original intent was to determine whether a change in task
caused a change in HRVmeasurement. Using sub-Gaussian functions, they were able to
successfully detect change points based on a change in tasks. This provided insight that
mentally demanding tasks can be identified by changes in HRV. Further, they conclude
that their method can successfully detect changes that are quite subtle.

However, to the best of our knowledge literature does not suggest a profoundmethod
for the live classification of short or ultra-short fluctuations of a single physiological
parameter, like the HRV.

3 Introducing a NewMethod for Live Mental Workload Estimation

In this section we present a new method to enable a more detailed analysis of HRV
fluctuations that may be useful e.g., for an efficient live analysis of workload in adaptive
systemdesign or for the evaluation of applications and tools in and outside of a laboratory.
Our method aims at eliminating the need for regular baselines and providing a metric
that is stable over time periods for classifyingmental demanding fluctuations in the HRV.

3.1 Re-analysis of Data from a Prior Study

A prior study conducted by Bruder and Schwarz [26] was used to develop the method
of this paper by re-analyzing the data, where the HRV was calculated as a rolling 300
Heartbeat SDNN. A HRV baseline was calculated for each participant based on the first
120 s. During that time, the mental workload was kept low to moderate. This baseline
was further used as a test criterion where a HRV value lower than one standard deviation
from the baseline distribution will be classified as critically high and a value greater
than one standard deviation as critically low mental workload when coinciding with a
performance decrement. Figure 3 visualizes the concept and classification based on the
data of one participant from the original study.

The initial study of the authors was followed by a validation study which confirmed
that their used method is temporally valid and, moreover, could distinguish between
three different conditions named baseline, high workload, and monotony. Workload
assessment was based in this study on a combination of HRV and four other workload
indicators (the number of tasks, number of mouse clicks, pupil diameter, and respiration
rate) to compensate for inaccurate classifications of single indicators. The method pro-
posed in this paper aims at developing this approach further by providing HRV-based
live classifications of even short-term mentally demanding tasks, thus increasing the
accuracy of this classifier.
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Fig. 3. The classification of low, none and high mental demand based on a two-minute baseline,
where a HRV value lower than 1σ will be classified as critically high and a value greater than 1σ
as critically low mental workload.

3.2 Experimental Setting

For the evaluation of the method provided in this paper, we utilized the existing data
from the previous study conducted by Bruder and Schwarz [26] about the evaluation of
diagnostic rules for real time assessment ofmentalworkloadwithin a dynamic adaptation
framework. The framework was operationalized for an air traffic surveillance task.

The original study involved a sample of 15 participants (8 males, 7 female) aged
between 20 and 51 years (M = 31.26 ± 8.27). A multisensory chest strap (Zephyr
BioHarness 3) was used to collect data on HRV and respiration rate. Pupil diameter was
recorded with an eye tracker placed underneath the monitor.

Participants began with a ten-minute training session where the examiner clarified
task completion for each subtask. Following this, they engaged in a 45-min experimental
test divided into three continuous phases, punctuated with a survey when a performance
decrement on one of the tasks had been detected. In this survey, participants rated their
perceived mental workload and other mental states. The experiment’s duration therefore
varied based on user performance, with additional workload ratings recorded both after
training and at the experiment’s conclusion to establish individual baselines [26].

3.3 Concept for a Live Analysis of Cognitive Workload

Steps for live analysis of the HRV data are normalizing the incoming HRV values and
calculating additional metrics such as the slope of the ascending and descending HRV.
Finally, the normalized HRV and metrics are used to be classified using a pre-trained
machine learning model. The whole data flow is shown in Fig. 4. The steps specifically
of the live classification will be explained in detail in the following section.
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Fig. 4. The processing of incoming HRV values towards the prediction of mentally demanding
tasks.

3.4 Live Normalization for Non-stationary Timeseries

It is important to normalize the HRV for comparability even of the same subject, because
of the unpredictability of the futureHRVvalues and regarding to the intraday differences.

In our method, we estimate a rolling normal distribution with a maximum likelihood
estimation (MLE) based on the last 60 HRV values. The calculated mean from the distri-
bution serves as the current plateau of the HRV, fromwhich a new gradient will relatively
be measured. Mathematically, the distribution means from the last 60 HRV values will
be subtracted from the incoming HRV values, to get the relative value compared to the
last minute in our case.

HRV = {hrv1, hrv2, . . . , hrvn}

Rolling Mean = 1

60

∑n

i=n−59
HRV i

HRVNormalized = {hrv1 − Rolling Mean, hrv2 − Rolling Mean, . . . , hrvn − Rolling Mean}

This normalization forces the values to move around a center of 0 for each subject,
which acts detrending, so it removes trends in the time series. Figure 5 plots the HRV
values from one subject over a period of around 53 min with the normalized HRV values
below.

3.5 Online Change Point Detection

The second step is to recognize a change in the incoming flow of HRV values. Whenever
there is a significant change, we must mark the position of that change point.

A comparison of two single values, so the last past value and the newest, won´t be
accurate in case of slightly fluctuating values. To address this problem, we always take
the last twenty HRV values, where the first ten values are compared with a Wilcoxon
rank sum test to the latest ten values, formulated as:

HRVNormalized = {hrv1, hrv2, . . . , hrvn}
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Fig. 5. Original HRV values and the normalized HRV values below.

HRVGroup1 = {hrvn−20, hrvn−19, . . . , hrvn−10}

HRVGroup2 = {hrvn−9, hrvn−8, . . . , hrvn}

W = WilcoxonRankSum(HRVGroup1,HRVGroup2)

This is visualized in Fig. 6 are grouped colored in blue. In most cases, one or both
groups do not meet the test assumptions of parametric inference statistical tests, such as
the assumption of normal distribution. Therefore, the two groups are compared using a
non-parametric Wilcoxon rank sum test with a fixed 5% alpha significance level.

Fig. 6. Calculation of change points based on the previous 1–10 values (Group 1) and the newest
11–20 values (Group 2).

In our method, the test criterion of the rank sum test will always be tested twice as
one-sided tests for lower and greater significant difference. If the latest ten values are
significantly greater, than an ascending changepoint will be reported. If significantly
lower, a descending changepoint will be reported.

WLower = WilcoxonRankSum(HRVGroup1,HRVGroup2)

Descending Changepoint =
{
True if WLower is < 0.05 α

False otherwise
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WGreater = WilcoxonRankSum(HRVGroup1,HRVGroup2)

Ascending Changepoint =
{
True if WGreater is < 0.05 α

False otherwise

If there are two or more change points, each following the same direction, e.g., all
lower or all higher, the series of all such change points is cached until the series is broken
by a new change point with a different direction. The cached series then forms a single
ascent or descent to be able to calculate a slope over the entire ascent or descent series.

After a change point has been detected, a dead time of 10 HRV values starts in order
to avoid that the already significant range of values is compared again. Figure 7 visualizes
the dead time, where the first group of ten values was significantly different compared to
the second group of ten values. So, a new change point was identified between the first
and second groups. To avoid a new comparison of the first group, no group comparison
is carried out as long as ten new values are available. After that, for each new value, the
groups are calculated as specified in the paragraphs above.

Fig. 7. Dead time in the change point detection.

3.6 Calculating the Slopes

The third step is to calculate the slopes between the change points. Every time a new
change point is detected, we can calculate the slope between the previous change point
and the new one, as well as the slope over an entire series of ascent or descent change
points. Figure 8 visualizes the calculated slope between two descending change points.

Fig. 8. Two visualized slopes between three change points. Red dotted lines are descending
change points, green dotted lines are ascending change points. The red line is the ascending slope
between two change points, followed by a yellow line indicating no slope. (Color figure online)
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3.7 Feeding the Classifier

When a new slope has been calculated, we add the slope, its height and length to the
previously normalized HRV values for the whole length of the calculated slope. For the
length of the latest slope all normalized HRV values, the slope itself with its length and
height will be passed to the classifier. For each normalized HRV value, the classifier will
then predict if it is part of a mentally demanding sequence.

4 Artificial Intelligence Classifier Training

In this section, we describe how we trained the classifier, starting with the data we
used, the model architecture, the training process, model evaluation, and finally further
analysis.

4.1 Training Data and Preprocessing

For our study, we examined the video data of all participants from the study of Bruder and
Schwarz [26] and annotated five different tasks. Participants were required to complete
three surveillance tasks called NRTT, Unknown Track, andWarn/Engagement. Figure 9
shows the three different tasks and their associated areas.

Fig. 9. Original Task User Interface, showing 1) a non-real-time track (NRTT) to process, 2) a
new unknown track to classify and 3) a hostile track entering the self-protection zone that must
be warned or further engaged if it proceeds to get closer.

The Non-Real-Time Tracks (NRTT) are displayed with information about a track
that must be created manually, with specific information such as classification, speed,
and direction, all of which must be entered into a form. Unknown tracks sometimes
appeared as yellow symbols on the map, and the participant had to classify them within
a form according to their position, speed, and direction. In the third task, hostile tracks,
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marked as red symbols on the map, were moving towards our position in the center of
the map. When these tracks crossed the first line, the participant had to manually warn
the track by clicking a warn button to the right. If an enemy track crossed Fig. 10 on the
right.

We annotated the surveys as a separate task and task-independent parts of the video,
such as the start of the experimental software, as other. Visualizes all of a participant’s
tasks and their processing times. The three monitoring tasks could occur simultaneously
which made the first half of the experiment mentally more demanding than the second
half.

Fig. 10. Visualized time slots from one participant of all five different annotated classes.

Wemarked the three surveillance tasks asmentally demanding taskswhichwas coded
as 1, whereas the periods surrounding these tasks were coded 0. The stated statistical
model was defined as:

Mentally demanding Task ∼ normalized HRV + Slope + Length of Slope + Height of Slope + ε

The calculation of the predictors as well as the criterion was based on the steps as
described in paragraph 2.

We split the data into 70% training data and 30% test data for model validation
afterwards. The training data consists of 70% of the dataset, which is around 6:52 h of
training material, coded in 22.109 data rows. In contrast, the test data consists of 30%
of the dataset, which is around 2:57 h of evaluation material, coded in 9.476 data rows
that will only be used afterwards for the purpose of evaluation.

4.2 Model Architecture

We have chosen a modified version of the Decision Tree Classifier algorithm called
Extra Trees Classifier written in python v.3 from the package scikit-learn [27] in v.1.3.2.
This package implements the Extra Trees Classifier as a meta estimator that fits several
randomized decision trees on various sub-samples of the dataset and uses averaging to
improve the predictive accuracy and controls over-fitting, indicating its robust predictive
capabilities in healthcare applications [28].

The hyperparameters were optimized using a grid search, resulting in a best fit with
the parameters n_estimators = 100 and max_features = 3.

With respect to possible class imbalance, we also calculated the class weights for the
two possible states of the criterion, which were 0.839 for non-critical tasks and 1.236
for critical tasks. These class-weights were given to the following machine learning
algorithm.
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4.3 Training and Evaluation

Based on the test dataset, consisting of 30% (2:57 h) of the whole dataset, the classifier’s
discrimination accuracy is 90.78%, which is based on 8.603 right classified cases in
contrast to 873 wrong classifications, as shown in the confusion matrix in Fig. 11.

Fig. 11. a) Confusion Matrix based on test data. b) Receiver operating characteristic curve for
the same test data.

A Receiver Operating Characteristic curve (ROC) is a graphical plot that illustrates
the trade-off between the true positive rate (TPR) and the false positive rate (FPR) at
different threshold settings, which is shown in Fig. 11 for our model evaluated with the
test dataset. The calculated Receiver Operating Characteristic Area Under the Curve
(ROC AUC) score indicates the ability of a model to distinguish between positive and
negative examples across all possible classification thresholds. A ROC AUC score of
100% indicates a perfect model, while a score of 50% indicates a model that is no
better than random guessing. Our trained model reaches an ROC AUC score of 94.02%,
indicating that the model is very good in distinguishing between mentally demanding
sequences in the HRV and sequences without. The ROC AUC score of our model is
suggesting that the model is highly effective at identifying the true positive and true
negative cases, also reflecting the results of the confusion matrix.

Feature importance measures the relative contribution of each feature to the classifi-
cation accuracy of a machine learning model, which is a crucial aspect of understanding
how amachine learning model works and can be used to improve its performance. It also
shows howmuch information a specific feature adds to amodel, which can help to decide
whether the adding or deletion of a feature can optimize a model. In this study, we inves-
tigated the feature importance of the used predictors for predicting mental demanding
sequences in the HRV. The four classes of features were the normalized HRV, the slope,
its length and height. We found that the most important features are the normalized HRV
the slope itself and the length of the slope, which are together accountable for 92.10% of
the model’s accuracy. This suggests that the height of an ascending or descending HRV,
with a feature importance of 7.90%, is not as essential for predicting mental demanding
tasks as the length of that slope with a feature importance of 26.96%. The slope itself,
which is combining the length and height, has a feature importance valued with 26.49%.
The normalized HRV has the highest feature importance with 38.65%.
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Because of the partial redundancy of the predictors slope, length, and height, it may
be sufficient to just use the slope and the normalized HRV values. In a further analysis,
we trained a second model for testing with the normalized HRV and the slope as the
only two predictors. Figure 12 shows the accuracies and ROC-AUC scores for different
combinations of predictors.

Normalized
HRV

Normalized
HRV + Slope

Normalized
HRV + Slope
+ Length

Normalized
HRV + Slope
+ Height

Normalized
HRV + Slope
+ Length +
Height

Accuracy 77.01% 80.67% 83.85% 86.44% 90.78%
ROC-AUC 83.16% 82.25% 89.26% 90.79% 94.02%

70.00%

80.00%

90.00%

100.00%

Accuracy ROC-AUC

Fig. 12. Accuracies and ROC-AUC scores for different combinations of predictors.

The further analysis indicates, that the normalizedHRVexplainsmost of the variance
regarding mentally demanding tasks. Furthermore, the height of the slope seems to
explain more variance than the length, but in the use of both features, variance of the
height was lower as stated in the paragraphs before. In comparison to the model using
just the normalized HRV + Slope the additional use of the predictors length or height
increases the ROC-AUC score, therefore improving the model in identifying the true
positive and true negative cases for up to ~8%.

In summary, our trained model detects mentally demanding tasks with a high accu-
racy of 90.78%. The ROC-AUC score of 94.02% shows that the model can distinguish
positive and negative cases very well. The analysis shows that it appears possible to run
the model with fewer predictors than features, thus reducing complexity.

5 Discussion

5.1 Benefits of Live HRV Analysis

Heart rate variability (HRV) analysis has long provided valuable insights into health and
well-being. However, traditional methods often rely on establishing individual baselines,
making them cumbersome and limiting.

Our live analysis reduces the complexity by tracking HRV fluctuations in near real
time, enabling the identification of changes duringmentally demanding tasks. This elim-
inates the need for lengthy baseline measurements, saving time in research settings and
making the technology applicable outside of lab environments. Without spending time
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establishing baselines, a system could start adapting to new situations faster, poten-
tially leading to quicker and more optimal responses. Adapting without baselines could
allow the system to learn and improve continuously, incorporating new information and
experiences without needing to re-establish a static starting point.

In conclusion, our live HRV method indicates that real time classifications of short-
time mentally demanding tasks based on HRV is possible. Additionally, our method
eliminates the need for baseline measurements what offers significant advantages for
real time applications like adaptive systems.

5.2 Limitations

Several limitations need to be considered regarding the overall use of HRV for mea-
suring cognitive workload in general, and for the described method without a baseline
specifically. One major limitation is that HRV is altered by many confounding variables,
like body movement, general stress level, and psychoactive substances like caffeine.
Discriminating whether a HRV change is caused, for example by physiological activity,
homeostasis, or cognitive workload by analyzing the raw data, is difficult [29]. Context
information are usually needed as a co-variable to address that issue. Those data are not
always possible to collect. The applicability of HRV as a sole parameter tomeasure CWL
is restricted because of that. To address the issue of discriminating different cofounding
factors, the experiment was performed in a highly controlled laboratory environment.
That limits the possible extrapolation of the results to field studies, or productive systems.

Another limitation is an increased data noise because the tasks for the training of the
modelweremanually annotated, based onvideomaterial captured during the experiment.

Also, the described method was only used for a binary classification of cognitive
workload, where multiple mentally demanding tasks at the same time where merged
together. Usually, multiple tasks have to be monitored and performed independently,
and some tasks are interrupted by others. The allocation of cognitive workload load due
to specific tasks in that scenario has to be further investigated in future work and is a
limitation of the results.

6 Conclusion and Future Developments

This study has demonstrated the potential of using heart rate variability (HRV) as a
marker of cognitive workload, showing the way for further exploration and practical
applications.

While this study successfully estimated mentally demanding tasks with an accuracy
above 90%, future research can delve deeper into understanding the real time changes
in HRV within single tasks or specific task types. This level of granularity could reveal
which tasks or specific segments within tasks are most demanding, allowing for tar-
geted interventions or workload balancing. Additionally, investigating the impact of
multitasking on HRV could provide valuable insights into its unique cognitive demands.

Integrating other physiological metrics beyond HRV, such as pupil dilation, could
potentially enhance the accuracy and comprehensiveness of workload assessment. Com-
bining multiple physiological measures might create a more robust and nuanced under-
standing of cognitive state. While other physiological metrics, like pupil dilation, share
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some similar connections to mental and emotional states as HRV, further research is
needed to establish other metrics like the HRV as a reliable standalone measure for the
intended method. It’s important to note that replacing HRV with another physiological
measure requires careful consideration of their specific functionalities and limitations
within the given method’s context.

Determining the optimal level of accuracy required for different applications is cru-
cial. For instance, adaptive systems requiring real time adjustments might demand high
accuracy, while workload evaluationmight be tolerant of somemargin of error. Tailoring
the model’s complexity and resource requirements to specific use cases will optimize its
practicality and efficiency.

Future research could focus on differentiating mental and physical activities solely
based onHRVdata. This could enable applications likemonitoringmental fatigue during
physical exercise or distinguishing between cognitive stress and physical exertion in real
time.

This study represents a step forward in utilizing HRV in live analysis to assess
cognitive workload. Future research along the proposed avenues can refine and broaden
this understanding, leading to impactful applications across various domains.
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5. Gąsior, J.S., et al.: Normative values for heart rate variability parameters in school-aged
children: simple approach considering differences in average heart rate. Front. Physiol. 9,
342109 (2018)

6. Li,W.,Li,R.,Xie,X.,Chang,Y.: Evaluatingmentalworkloadduringmultitasking in simulated
flight. Brain Behav. 12(4), e2489 (2022)

7. John, A.R., et al.: Unravelling the physiological correlates of mental workload variations in
tracking and collision prediction tasks: implications for air traffic controllers. IEEE Trans.
Neural Syst. Rehabil. Eng. 30, 770–781 (2021)

8. Delliaux, S., Delaforge, A., Deharo, J.C., Chaumet, G.: Mental workload alters heart rate
variability, lowering non-linear dynamics. Front. Physiol. 10, 565 (2019)

9. Radüntz, T., Mühlhausen, T., Freyer, M., Fürstenau, N., Meffert, B.: Cardiovascular biomark-
ers’ inherent timescales in mental workload assessment during simulated air traffic control
tasks. Appl. Psychophysiol. Biofeedback 46, 43–59 (2020)

10. Forte, G., Favieri, F., Casagrande, M.: Heart rate variability and cognitive function: a
systematic review. Front. Neurosci. 13, 436204 (2019)

11. Veltman, J.A., Jansen, C.: Differentiation of mental effort measures: consequences for
adaptive automation (2003)



146 T. Gfesser et al.

12. De Witte, N.A., Sütterlin, S., Braet, C., Mueller, S.C.: Getting to the heart of emotion reg-
ulation in youth: the role of interoceptive sensitivity, heart rate variability, and parental
psychopathology. PloS One 11, e0164615 (2016)

13. Veltman, J.A., Gaillard, A.W.K.: Indices of mental workload in a complex task environment.
Neuropsychobiology 28, 72–75 (1993)

14. Cinaz, B., Arnrich, B., Marca, R.L., Tröster, G.: Monitoring of mental workload levels during
an everyday life office-work scenario. Pers. Ubiquit. Comput. 17(2), 229–239 (2013)

15. Shao, S., Wang, T., Li, Y., Song, C., Jiang, Y., Yao, C.: Comparison analysis of different time-
scale heart rate variability signals formental workload assessment in human-robot interaction.
Wireless Commun. Mob. Comput. 2021, 1–12 (2021)

16. Nardolillo, A.M., Baghdadi, A., Cavuoto, L.A.: Heart rate variability during a simulated
assembly task; influence of age and gender (2017)

17. Stern,R.M.,Ray,W.J.,Quigley,K.S.:Quigley, PsychophysiologicalRecording, vol. 59 (2001)
18. Ernst, G.: Methodological issues. In: Heart Rate Variability, pp. 51–118. Springer, London

(2014)
19. Tarkiainen, T.H.: Stability over time of short-term heart rate variability. Clin. Auton. Res. 15,

394–399 (2005)
20. Shaffer, F., Venner, J.: Heart rate variability anatomy and physiology. Biofeedback (Online)

41, 13 (2013)
21. Chen, Z., Chen, Z., Calhoun, V.: Blood oxygenation level-dependent functional MRI sig-

nal turbulence caused by ultrahigh spatial resolution: numerical simulation and theoretical
explanation. NMR Biomed. 26(3), 248–264 (2013)

22. Oladele, A.M., Tomomowo-Ayodele, S.O., Oluremi, O.Y., Olusola, A.M.: Health information
needs and its sources among rural dwellers in Egbedore local government areas of state of
Osun, Nigeria. Int. J. Humanit. Soc. Stud. 7(7) (2019)

23. Wilder, J.: Basimetric approach (law of initial value) to biological rhythms. Ann. New York
Acad. Sci. 98(4), 1211–1220 (1962)

24. Schwarz, J., Fuchs, S.: Validating a “Real-Time Assessment of Multidimensional User State”
(RASMUS) for adaptive human-computer interaction (2018)

25. Hoover, A., Singh, A., Fishel-Brown, S., Muth, E.: Real-time detection of workload changes
using heart rate variability. Biomed. Signal Proc. Control 7, 333–341 (2012)

26. Bruder, A., Schwarz, J.: Evaluation of diagnostic rules for real-time assessment of mental
workload within a dynamic adaptation framework. In: Sottilare, R., Schwarz, J. (eds.) Adap-
tive Instructional Systems. Lecture Notes in Computer Science(), vol. 11597. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22341-0_31

27. Pedregosa, F., et al.: Scikit-learn: machine learning in Python (2011). ArXiv:abs/1201.0490
28. Gupta, M.D., et al.: COVID 19-related burnout among healthcare workers in India and ECG

based predictive machine learning model: insights from the BRUCEE- Li study. Indian Heart
J. 73(6), 674–681 (2021)

29. Sammer, G.: Heart period variability and respiratory changes associated with physical and
mental load: non-linear analysis. Ergonomics 41(5), 746–755 (1998)

30. Bashiri, B., Mann, D.: Heart rate variability in response to task automation in agricultural
semi-autonomous vehicles (2014)

31. Chamchad,D., et al.:Using heart rate variability to stratify risk of obstetric patients undergoing
spinal Anesthesia (2004)

https://doi.org/10.1007/978-3-030-22341-0_31

	Moving Beyond Physiological Baselines: A New Method for Live Mental Workload Estimation
	1 Introduction
	2 Heart Rate Variability as an Indicator of Mental Workload
	2.1 Physiological Baselines
	2.2 Challenges of Live HRV Analysis

	3 Introducing a New Method for Live Mental Workload Estimation
	3.1 Re-analysis of Data from a Prior Study
	3.2 Experimental Setting
	3.3 Concept for a Live Analysis of Cognitive Workload
	3.4 Live Normalization for Non-stationary Timeseries
	3.5 Online Change Point Detection
	3.6 Calculating the Slopes
	3.7 Feeding the Classifier

	4 Artificial Intelligence Classifier Training
	4.1 Training Data and Preprocessing
	4.2 Model Architecture
	4.3 Training and Evaluation

	5 Discussion
	5.1 Benefits of Live HRV Analysis
	5.2 Limitations

	6 Conclusion and Future Developments
	References


