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Foreword

This year we celebrate 40 years since the establishment of the HCI International (HCII)
Conference, which has been a hub for presenting groundbreaking research and novel
ideas and collaboration for people from all over the world.

The HCII conference was founded in 1984 by Prof. Gavriel Salvendy (Purdue
University, USA, Tsinghua University, P.R. China, and University of Central Florida,
USA) and the first event of the series, “1st USA-Japan Conference on Human-Computer
Interaction”, was held in Honolulu, Hawaii, USA, 18–20 August. Since then, HCI Inter-
national is held jointly with several Thematic Areas and Affiliated Conferences, with
each one under the auspices of a distinguished international Program Board and under
one management and one registration. Twenty-six HCI International Conferences have
been organized so far (every two years until 2013, and annually thereafter).

Over the years, this conference has served as a platform for scholars, researchers,
industry experts and students to exchange ideas, connect, and address challenges in the
ever-evolving HCI field. Throughout these 40 years, the conference has evolved itself,
adapting to new technologies and emerging trends, while staying committed to its core
mission of advancing knowledge and driving change.

As we celebrate this milestone anniversary, we reflect on the contributions of its
founding members and appreciate the commitment of its current and past Affiliated
Conference Program Board Chairs and members. We are also thankful to all past
conference attendees who have shaped this community into what it is today.

The 26th International Conference on Human-Computer Interaction, HCI Interna-
tional 2024 (HCII 2024), was held as a ‘hybrid’ event at the Washington Hilton Hotel,
Washington, DC, USA, during 29 June – 4 July 2024. It incorporated the 21 thematic
areas and affiliated conferences listed below.

A total of 5108 individuals from academia, research institutes, industry, and
government agencies from 85 countries submitted contributions, and 1271 papers and
309 posters were included in the volumes of the proceedings that were published just
before the start of the conference, these are listed below. The contributions thoroughly
cover the entire field of human-computer interaction, addressing major advances in
knowledge and effective use of computers in a variety of application areas. These papers
provide academics, researchers, engineers, scientists, practitioners and students with
state-of-the-art information on the most recent advances in HCI.

The HCI International (HCII) conference also offers the option of presenting ‘Late
Breaking Work’, and this applies both for papers and posters, with corresponding
volumes of proceedings that will be published after the conference. Full papers will
be included in the ‘HCII 2024 - Late Breaking Papers’ volumes of the proceedings to
be published in the Springer LNCS series, while ‘Poster Extended Abstracts’ will be
included as short research papers in the ‘HCII 2024 - Late Breaking Posters’ volumes
to be published in the Springer CCIS series.
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I would like to thank the Program Board Chairs and the members of the Program
Boards of all thematic areas and affiliated conferences for their contribution towards
the high scientific quality and overall success of the HCI International 2024 conference.
Their manifold support in terms of paper reviewing (single-blind review process, with a
minimum of two reviews per submission), session organization and their willingness to
act as goodwill ambassadors for the conference is most highly appreciated.
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Preface

The goal of the Adaptive Instructional Systems (AIS) Conference, affiliated to the HCI
International Conference, is to understand the theory and enhance the state of prac-
tice for a set of technologies (tools and methods) called adaptive instructional systems
(AIS). AIS are defined as artificially intelligent, computer-based systems that guide
learning experiences by tailoring instruction and recommendations based on the goals,
needs, preferences, and interests of each individual learner or team in the context of
domain learning objectives. The interaction between individual learners or teams of
learners and AIS technologies is a central theme of this conference. AIS observe user
behaviors to assess progress toward learning objectives and then act on learners and
their learning environments (e.g., problem sets or scenario-based simulations) with the
goal of optimizing learning, performance, retention, and transfer of learning to work
environments.

The 6th International Conference on Adaptive Instructional Systems (AIS 2024)
encouraged papers from academics, researchers, industry, and professionals, on a broad
range of theoretical and applied issues related to AIS and their applications. The focus of
this conference on instructional tailoring of learning experiences highlights the impor-
tance of accurately modeling learners to accelerate their learning, boost the effectiveness
of AIS-based experiences, and precisely reflect their long-term competence in a variety
of domains of instruction.

The content for AIS 2024 centered on design processes and aspects, individual
learner differences, and applications of AISs. More specifically, several works focused
on Human-Centered Design, examining facets such as personality traits, improved self-
awareness, human performance, learner engagement, trust and acceptance of AISs, as
well as the establishment of communities of practice. In addition, a number of papers
focused on design strategies and guidelines, discussing topics such as cognitive simula-
tions, gamification, anddesignbasedondata intelligence and learner analytics. In the area
of individual differences in adaptive learning, contributions elaborated on competency-
based training, learner control, knowledge states of learners, stress and coping with
task difficulty, as well as identifying individual differences as a predictor of usage of
AISs. Finally, a selected number of papers focused on applications of AISs demon-
strating issues of high practical value across different domains, such as math courses,
architecture and design, simulation-based training, and content improvement services.

One volume of the HCII 2024 proceedings is dedicated to this year’s edition of the
AIS Conference and focuses on topics related to Designing and Developing Adaptive
Instructional Systems, Adaptive Learning Experiences, and AI in Adaptive Learning.

The papers in this volume were accepted for publication after a minimum of two
single-blind reviews from the members of the AIS Program Board or, in some cases,
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from members of the Program Boards of other affiliated conferences. We would like to
thank all of them for their invaluable contribution, support and efforts.

July 2024 Robert A. Sottilare
Jessica Schwarz
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Beyond Standalone Systems: Creating
an Ecosystem of Adaptive Training Services

Brice Colby(B) , Eric Tucker, and Tim Siggins

Soar Technology, Inc., Ann Arbor, MI 48105, USA
brice.colby@soartech.com

Abstract. This paper explores the development and initial evaluation of SoarTech
Adaptive Training Services (STATS), a modular ecosystem designed to address
the limitations of traditional intelligent tutoring systems (ITSs). By adopting Gib-
bon’s [1] layers theory, STATS introduces a structured, service-based approach
to ITSs, enhancing adaptability and efficiency. The paper reviews the historical
evolution of ITSs, highlighting the shift from rigid architectures to modular, flex-
ible designs. Through a case study in a basic electricity and electronics course,
STATS demonstrates its practical application and potential for personalized learn-
ing. Initial feedback from 18 participants indicates positive responses towards the
system’s effectiveness and efficiency, though usability challenges, particularly in
interface navigation, were identified. The study underscores the importance of
modular design in overcoming the historical challenges of ITS development, such
as domain dependence and siloed research. Future directions for STATS include
deeper exploration of its layers, exploration of ethical considerations in algorith-
mic decision-making, and the exploration of interoperability as STATS leverages
services from other frameworks like GIFT [2]. This research contributes to the
ongoing discourse on the necessity of modular, adaptable ITSs in meeting diverse
educational needs and advancing the field of intelligent tutoring.

Keywords: Intelligent Tutoring · Adaptive Training · Service-oriented
Architecture

1 Introduction

The quest for individualized instruction has been a driving force in intelligent tutoring
research, aimed at creating systems that canmatch the efficacy of human tutors.However,
the adoption of adaptive training technologies is constrained by inflexible architectures
and a lack of shared knowledge in the field. Vassileva [3] and Nkambou, Bourdeau, and
Psyche [4] have highlighted the challenges of domain dependence and siloed research,
which limit the broader application of intelligent tutoring. Nye [5] argues for a shift
towards a modular, services-based ecosystem to overcome these limitations, enabling a
more tailored approach to intelligent tutoring.

This paper introduces SoarTech Adaptive Training Services (STATS), a solution
developed in response to these challenges and in alignment with Nye’s call for a services

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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approach. STATS is grounded in Colby’s [6] framework for the design and development
of individual services, expanding on the traditional architectures of intelligent tutoring
systems (ITSs).

The paper begins by outlining the historical context that has led to the current push for
a services-based approach, reviewing relevant research and initiatives such as Cognitive
Tutor’s CT+A [7] and GIFT [2]. The focus of this paper is to provide a conceptual
(rather than technical) overview of STATS’ architecture with a high level explanation
of its services. A case study is presented where STATS is applied to a basic electricity
and electronics course, illustrating its practical application. The paper concludes with
a forward-looking discussion on the future trajectory of STATS, including evaluation
strategies, the integration of Large Language Models (LLMs) for content creation, and
addressing interoperability challenges with other services, among other issues.

1.1 Historical Context

To better understand the need for intelligent tutoring services, it would be beneficial
to understand the evolution of intelligent tutoring throughout its generations. Nkambou
et al. [4] introduced 3 distinct generations: 1970–1990, 1990–2010, 2010–Present.

First Generation (1970–1990). The first generation of ITSs was characterized by the
transition from basic computer-assisted instruction (CAI) to more sophisticated systems
incorporating elements of artificial intelligence (AI). Early CAI systems, largely linear in
their approach, evolved to include branching programs that considered student responses,
leading to more personalized learning paths [7]. The introduction of generative CAI,
capable of creating and solving its own problems, marked a significant advancement [8,
9]. However, these systems still lacked the adaptive intelligence necessary to emulate
the effectiveness of one-on-one human tutoring, as evidenced by Bloom’s 2-sigma effect
[10]. The integration of artificial intelligence (AI) into CAI, initiated by Carbonell’s
SCHOLAR, laid the foundation for the first ITS, focusing on replicating the personalized
guidance of human tutors [11].

Second Generation (1990–2010). This generation was marked by a push for estab-
lishing a scientific foundation for the broader field of artificial intelligence in education
(AIED), advocated by Self [12]. This time period saw the creation of specialized con-
ferences and journals dedicated to ITSs, reflecting a growing academic interest and
community engagement in the field. Indeed, during this period, Colby [13] found 65
unique systems being developed across 31 domains. Despite the proliferation of ITSs, a
lack of standardized architecture led to diverse and incompatible systems. The common-
ality found among them, as Wenger [14] noted, was the four-component architecture:
domain, tutor model, student model, and the interface. Yet, the diversity in architecture
led to fragmented development and siloed research, underscoring the need for a more
unified approach in ITS design.

ThirdGeneration (2010–Present). As these ITSsmatured, they began to pioneer novel
approaches for adaptive instruction, inching closer to achieving the gold standard (i.e.,
Bloom’s 2-sigma effect). Ameta-analysis conducted by VanLehn [15] showed two note-
worthy findings. First, the 2-sigma effect sizewas overstated. VanLehn found that human
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tutors were actually closer to 0.79 in terms of learning gains when compared to no tutor-
ing. Second, VanLehn found that some ITSs are much closer to approximating human
tutors than previously thought for specific domains. In his review, ITSs had an effect size
of 0.76 when compared to no tutoring – a significant milestone for the AIED community.

Building on these advancements, Nye [16] proposed a paradigm shift for the field of
ITSs, advocating for a transition towards amodular, services-based ecosystem. This shift
was driven by the recognition that ITSs could benefit from a more flexible and inter-
operable framework, allowing for the integration of various educational technologies
and methodologies. Nye suggested that ITSs should evolve from being comprehensive,
standalone systems to becoming part of a broader ecosystem of reusable infrastructure
and platforms [16]. This approach would enable ITSs to draw from a diverse range
of services, much like how a basic blog site might utilize authentication services from
multiple sources like Google or Facebook.

However, the transition to a services-based ecosystem is still in its early stages, and
it remains to be seen how fully ITSs and AIED will embrace this new paradigm. Despite
this, the direction proposed by Nye is seen as an existential necessity for the future of
ITSs, emphasizing the need for systems that are not only effective, but also flexible and
capable of integrating with an ever-evolving technological landscape.

Third Generation: Steps Towards Modularity. Let’s consider two approaches to
introducingmodularity in ITSs. The first approach involves augmenting existing systems
for enhanced modularity, while the second entails developing a new architecture with a
primary focus on modular design. Two examples illustrate these approaches:

1. CTAT to CT+A (augmentation approach): Holstein et al. [6] noted that new and effec-
tive student modeling techniques rarely make the transition from research to practical
application. To address this issue, they took an existing authoring tool, CTAT, and
extended it to include a modularized student model. While this effort allows authors
to add new variables to the student model, it underscores the complexities of adapting
systems not initially designed for modularity. Despite progress, CT+A’s limitations,
including the need for significant re-architecting, underscore the challenges of this
augmentation approach

2. GIFT (new architecture approach): GIFT [2] was developed with a focus on overcom-
ing the architectural limitations of previous ITSs, which were not inherently designed
for modularity. GIFT’s innovative design, featuring independent yet interconnected
modules (e.g., domain, pedagogical, and learner modules), addresses the tutoring
process comprehensively. GIFT supports domain independence and adapts to diverse
contexts, showcasing its alignment with the evolving educational technology land-
scape. Crucially, GIFT also addresses the issue of siloed research by facilitating the
integration of best practices across all modules, exemplifying the shift towards more
collaborative and interoperable intelligent tutoring services.

GIFT represents a significant evolution in ITSs, marking a transition from standalone
systems to an integrated, adaptable framework. It sets a precedent for future ITS devel-
opments, emphasizing the need for systems that are not just effective, but also flexible
and capable of integrating within a broader, ever-evolving ecosystem of educational
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technologies. STATS both builds upon and diverges from GIFT, primarily in its ecosys-
tem architecture. While GIFT is grounded in extensive ITS research, STATS adopts an
external perspective, rooted in instructional design principles.

2 STATS Overview

STATS leverages Gibbons’ [1] layers theory, which adopts an architectural approach to
instructional design. According to this theory, instructional products are composed of
components, similar to a building’s structure,which age at varying rates. It advocates for a
modular approach, enabling updates or replacements with minimal impact on the overall
system. This modular design allows ITS developers or end-users to enhance or modify
parts without disrupting the overall service. STATS is structured around seven functional
layers (see Fig. 1): content, data management, strategy, control, message, representation,
and media-logic, each serving a distinct function essential to every instructional artifact.
Each layer also has sublayers that are representative of specific services that would need
to be created to provide intelligent tutoring.

Next, we briefly present each layer, their sublayers, and examples of research that
can be used as the basis for creating new services.

2.1 The Content Layer

The content layer encompasses much of the domain model within a traditional ITS,
divided into two sublayers: knowledge representation and learning objects. Knowledge
representation involves capturing the domain knowledge in formats such as ontologies,
production rules, and constraints [13]. This sublayer deals primarily with the overall
structure of the domain knowledge. Learning objects represent the basic units of learn-
ing, including facts, concepts, procedures, and principles [17], structured in a way that
they can be independent units of instruction. This dual structure provides a foundation
for conceptualizing the basic learning unit of an intelligent tutor, coupled with the struc-
ture needed to organize and communicate content effectively. Research in this area has
focused on developing tools and methodologies for automating the creation of these
components, and reducing the time it takes to create content, which has traditionally
been the main bottleneck of ITS development [5].
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Fig. 1. The layers, sublayers, and their relation to each other. Adapted from [1].

2.2 The Data Management Layer

The data management layer is further subdivided into 4 sublayers: data storage, student
and tutor models, and detectors. The purpose of a data storage service is straightforward:
the data collected by the training environment needs to be stored. The student model
matches ITSs’ traditional student model in that it is a cognitive model representing
what a student knows or can do. The tutor model (not to be confused with the tutor
or pedagogical model of the traditional ITS architecture) parallels the student model.
This model analyzes the effectiveness of instructional strategies and content delivery
for each student, taking cues from their interactions and performance in the training
environment. This allows STATS to determine the success of teaching methods and
know when to pivot, ensuring each student’s educational path is optimally tailored to
their needs. Finally, STATS uses detectors to interpret data from the student and tutor
models, identifying key learner states such as engagement, effort, and understanding or
measuring tutor performance metrics (e.g., the effectiveness of remediation given this
student profile).

2.3 The Strategy Layer

The strategy layer is the intelligence of an intelligent tutor, facilitating adapta-
tion across three sublayers: micro-adaptation, macro-adaptation, and meta-adaptation.
Micro-adaptation refers to problem-based adaptation to address immediate learning



8 B. Colby et al.

needs. Macro-adaptation involves planning and sequencing to align learning goals.
Meta-adaptation allows swapping between different environments or services to lever-
age unique instructional properties of various tools. These sublayers work in concert
to refine learning theories into actionable instructional strategies and tactics, translat-
ing learning goals into tailored courses that are executed and adapted in real-time. An
arbiter service makes adaptation decisions based on input from data passed to it from the
detectors. For example, if a detector identifies a student as being historically high per-
forming but currently struggling with a concept, the arbiter service will follow a nuanced
decision-making process. Rather than applying a straightforward, one-size-fits all rule, it
will evaluate the student’s current situation, considering historical performance, current
struggles, and potential learning paths. It will then suggest a path forward that leads to
the best outcomes.

2.4 The Control Layer

The control layer describes the mechanisms by which a learner communicates with and
navigates the system. By categorizing controls into domain-specific, generic, instruc-
tional, and system controls, this layer ensures that learners can communicate their needs,
navigate the instructional content, and personalize their learning environment. Perhaps
more importantly, it also allows the system to have more options in providing adap-
tations to learners as the system can now adapt the controls a learner uses. Domain
controls are those that are specific to a particular domain, enabling interaction with the
content. Generic controls are ubiquitous tools that can be utilized across various systems
and domains. Instructional controls reflect the current instructional goals, strategies, and
tactics (e.g., facilitating social learning through group work tools). System controls are
for managing system functions, allowing for customization and adaptability to meet
learner preferences.

2.5 The Message Layer

Message services answer the question, “What needs to be communicated to the student
and howwill it be communicated?”Communication comes from three channels: the data,
strategy, and content services. The data channel answers these questions by sharing the
underlying models (e.g., a skillometer), enabling students to be responsible for their own
progress or even influence teaching practices/system responses. The strategy channel
concerns itself with how pedagogy is communicated to the learner. For example, how is
flag feedback presented to the student (e.g., flag feedback vs. text. The content channel
is concerned with how the content is displayed to the student (e.g., text vs. video vs.
image). Being able to adapt the messages communicated to the student allows us to vary
the level of interventions applied.

2.6 The Representation Layer

The control and message layers are brought together in the representation layer. This is
what the learner sees and interacts with. Typically, these three layers are so intertwined
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that separating them becomes challenging. Researchers typically develop the interface
with the strategy baked in, focusing heavily on the representation layer while neglecting
the distinct affordances, roles, and designs of the control and message layers [13]. This
approach results in a rigid interface that lacks modularity. STATS separates controls and
messages from the interface to provide a more customizable learning experience.

2.7 The Media-Logic Layer

The media-logic layer is the glue that brings all the services together within this ecosys-
tem and is the delivery method. By way of analogy, the traditional media-logic in a
classroom is a human teacher. A teacher knows different instructional strategies, tracks
data, knows how content is related, and interacts with the students. A technological app-
roach needs to consider two things. First, it needs to consider what the delivery platform
will be for providing the training. The delivery can range from the web, mobile app,
simulations, and more. The constraints and affordances of each delivery platform can
have significant impacts on the rest of the layers. Second, determining how the different
layers or services communicate with each other is vital in ensuring interoperability. In
our use case, STATS is embedded in a virtual training environment (the media-logic)
that has its own data storage, control, message, and representation services. STATS fills
in the adaptive training gaps by providing student and tutor modeling, detectors, and
micro- and macro-adaptations, thus showing how our services can be interoperable in
unique training environments.

3 Methods

As was mentioned previously, STATS has been embedded in a virtual training environ-
ment that uses high-fidelity 3D simulations for a basic electricity and electronics domain.
The initial prototype has been field tested. Feedback was collected from 18 participants
through a focus group where they completed a survey aimed at level one of Kirkpatrick’s
evaluation model [18]. No demographic or personal identifiable information was gath-
ered as part of this process. The survey included nine Likert-scale questions, with three
questions each for the following categories: effectiveness, efficiency, and usability. Five
open-ended questions were also included to capture qualitative feedback about their
experience. The questions that were asked were:

1. Understanding the material. The adaptive training helped me understand the
material as well as or better than the teacher-led instruction.

2. Skills mastery. The adaptive training prepares me for practical application as wee
as or better than the teacher-led instruction.

3. Content relevance. The adaptive training provided content that felt relevant and
tailored to my personal learning needs.

4. Learningpace.The adaptive training allowedme to learn atmyownpace efficiently.
5. Enough opportunities. There were enough opportunities to practice the content for

me to feel confident with the material.
6. Adaptivity. The adaptivity (e.g., providing remediation) responded well to my

learning needs.
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7. System navigation. The adaptive training interface was easy to navigate and use.
8. Content presentation. The content presented in the adaptive training was clear,

visually appealing, and easy to comprehend.
9. Using the system. I would want to use this training environment in the future.
10. Like best. What features did you like best about this training program?
11. Like least. What features did you like least about this training program?
12. Improve. How would you improve this training program?
13. Professional development. Would you like to use this training tool for your

professional development? Why?
14. Other comments. Do you have any other comments you’d like to share?

The participants spent approximately one hour going through various lessons relating
to alternating currents or direct currents in the virtual training environment with STATS
providing live adaptations. The hour was split with 10 min spent getting the participants
set up and familiar with the environment, 40 min spent interacting with the lessons, and
10 min for the participants to fill out the surveys. These participants had already been
exposed to the content in their coursework. Some participants had already done well in
the course whereas some were being held back to repeat the content.

At this stage of development, STATS offered two primary modes of adaptations:
acceleration and remediation. As students answered questions, the student model would
calculatemastery proficiency levels with respect to individual concepts. Detectors would
then determine if the student was a high-skill or low-skill level student for that concept.
If the student was deemed high-skill, STATS would accelerate the participants through
the content, skipping practice opportunities as they had already mastered the content.
If the student was struggling to reach mastery, they would receive targeted remediation
for the concept they were on. Note, that while the interventions seem straightforward
and rules-based, STATS’ architecture can handle multiple interventions. For example,
if a student state is low-skill, they could receive remediation, or STATS could use a
lighter touch to intervene by providing targeted feedback like a hint. The limited use of
interventions during this prototype phase was to demonstrate initial adaptive training for
an audience generally unfamiliar with concepts like mastery or adaptations.

4 Results

Overall, the results from the participants were positive. The participants found the adap-
tive training environment to be effective, efficient, and usable. The following figure (see
Fig. 2) shows the responses for the Likert-scale questions (questions 1–9 as listed above):

For the effectiveness measures, 89% of participants agreed that the adaptive training
helped them better understand the content, 78% felt that the adaptive training prepared
them for practical application, and 89% agreed that the adaptive training presented
tailored content for their needs.

For the efficiency measures, 94% of participants agreed that the adaptive training
helped them learn at their own pace, 89% agreed that the adaptive training gave them
enough practice to feel confident with the content, and 89% agreed that the adaptive
training responded to their needs.



Beyond Standalone Systems 11

Fig. 2. The spread of student responses for the Likert-scale questions asked. The name of the
question corresponds with the list above.

For the usability measures, 61% agreed that the interface was easy to navigate and
use, 89% agreed that the content was clear, well-designed and simple, and 89% agreed
that they would want to use this system in the future.

The one concerning area was the interface being easy to navigate and use, with only
61% in agreement with that question. The qualitative responses provided some good
insight into where some potential issues are with the interface. For example, navigating
between lessonswas difficult, interactingwith the virtual equipment (e.g., themultimeter
or the calculator) created some bugs, and overall unfamiliarity with operating in the
virtual environment made for a steeper learning curve than expected.

Overall, the data indicates a strong endorsement of the adaptive training environ-
ment’s effectiveness and efficiency, with a majority of participants recognizing its bene-
fits in terms of personalized learning and pace adjustment. However, the usability of the
interface presents an area for improvement, particularly in navigation and interaction
with virtual tools. These insights suggest that while the adaptive training system meets
educational objectives, enhancing user experience through interface optimization could
further increase its effectiveness and user satisfaction. Future iterations of the system
will focus on addressing these usability concerns, streamline navigation, and refining
virtual interactions to ensure a more intuitive and seamless learning experience. This
feedback will be invaluable in guiding the next development phase, aiming to create a
more user-friendly and accessible adaptive training environment.

5 Limitations

This study’s methodology presents several limitations that should be considered when
interpreting the results. First, the sample size of 18 participants, though adequate for a
preliminary investigation, may not provide the statistical power necessary to generalize
findings across a broader population. Additionally, the participants’ prior experience
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with the content could bias their interactions with the adaptive training environment,
potentially skewing results. The study’s focus on a specific domain (basic electricity
and electronics) may also limit the applicability of findings to other educational con-
texts or subjects. Furthermore, the prototype phase of the adaptive training environment
meant that only a limited range of adaptive interventions and content were tested, which
my a not fully represent the system’s capabilities or the user’s experience with a fully
developed system. Finally, the lack of demographic information and the varied back-
grounds of participants could introduce unaccounted variables that would affect the
study’s outcomes.

6 Future Directions

The development and initial evaluation of STATS provide a compelling use case for the
creation and implementation of amodular ecosystemof intelligent tutoring services. This
approach not only enhances the adaptability and efficiency of educational technologies,
but also opens up numerous avenues for future research and development. Below are
outlined future directions that could significantly advance the field.

Additional work should be done to detail STATS’ approach to each layer. For exam-
ple, work has been started with relation to the content layer to utilize LLMs to assist
with the content design workflow. The use of LLMs could streamline the creation of
educational materials, making the process more efficient and less of a bottleneck. Addi-
tionally, exploring the potential of incorporating LLMs as virtual agents within a training
environment could provide learners with interactive, responsive, and personalized con-
tent delivery. Another example includes our development of the tutor model that was
described above. Introducing a dedicated tutor model service to track the effectiveness
of interventions could profoundly impact adaptive training performance. Key questions
to explore include the ethical considerations in algorithmic decision-making, such as
whether the system should prioritize optimal outcomes for students or encourage explo-
rationof alternative learningpaths. This exploration into the content layer and tutormodel
is just a starting point; addressing STATS’ approach to all the layers and potential ser-
vices systematically will be crucial for the comprehensive development and refinement
of this ecosystem of intelligent tutoring services.

This study provides valuable insights into the implementation and initial evaluation
of STATS within a virtual training environment. As the project continues to mature and
develop, additional studies will need to be conducted to evaluate the higher levels of
Kirkpatrick’s evaluation model [18], namely to determine if students actually learn in
the adaptive training environment, if the learning transfers into behavioral changes, and
if the adaptive training affects greater learning outcomes like pass rates or reduced time
to learn.

A key challenge for a modular ecosystem like STATS is ensuring interoperability
between different services and layers. Future directions should include alignment with
recognized interoperability standards. A tangible approach would involve leveraging
services from modular frameworks like GIFT [2], demonstrating the potential for cross-
project collaboration and application. This strategy not only underscore the versatility
of STATS, but also sets a precedent for the broader adoption and adaptability of modular
educational technologies.
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7 Conclusion

The exploration of STATS within a virtual training environment underscores the signifi-
cant potential of a modular ecosystem to provide individualized, efficient, and effective
instruction. The positive participant feedback highlights our approach’s strengths in
content delivery and adaptability, aligning with the evolving needs of modern learn-
ers. However, the identified usability challenges present critical areas for improvement,
particularly in enhancing interface navigation and interaction. The study’s findings rein-
force the importance of transitioning from traditional ITS architectures to more flexible,
modular designs, as advocated by recent research. Future developments of STATS will
focus on addressing these usability concerns, addressing our approaches to the broader
STATS ecosystem, and exploring interoperability with other frameworks like GIFT. The
journey towards fully realizing the potential of modular ecosystems is ongoing, but each
iteration brings us closer to the ideal of truly adaptive, learner-centered education.
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Abstract. An important prerequisite to trend-aware authoring is that
scenarios be authorable and inspectable by instructors but also machine-
readable such that authoring tools can assist with integrating real-world
patterns into training. In this research, we use a semi-structured app-
roach to authoring flight training scenarios in which textual descrip-
tions of related scenario elements (i.e., happening at roughly the same
time) are grouped together and assigned training objectives and phases
of flight. This same representation can be used to represent real-world
emergencies allowing their integration into scenarios for more realistic
training. Such a representation is sufficient to support a recommender
that ranks possible insertion points for real-world emergencies using con-
straints (i.e., the phase of flight of the emergency must match the phase
of flight of the insertion point) and a ranking score. Our ranking score
is currently based on matching training objectives associated with the
emergency with training objectives in the scenario (i.e., training the same
skills but using a more realistic example). The recommender is integrated
into the scenario editor such that instructors can see the ranked injection
points and modify the scenario by selecting one of these points.

Keywords: Authoring · Scenario-based training · Recommender

1 Introduction

Scenario-based training offers a powerful tool for trainees to practice skills in
simulated or narrative analogs of a real situation, which should increase the
transfer of these skills to real-life tasks. However, developing training scenarios
and ensuring that they train the intended skills remains challenging and labor
intensive. Stacy and Freeman [7] suggest Training Objective Packages (TOPs) as
a way to address the challenge of creating opportunities for training objectives
during live and simulated exercises. A TOP encodes the conditions necessary for
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the trainee to meet the training objective and how to measure and assess trainee
performance.

Formal representations such as TOPs can enable better record-keeping for
scenarios (e.g., knowing which competencies they train) and promote reusabil-
ity. Different TOPs can be introduced into the same base scenario to train dif-
ferent skills. However, reusability does not ensure relevance: training scenar-
ios are often static (infrequently updated) until replaced at significant cost. A
scenario that fails to reflect changes in training needs or operational problems
erodes the advantages of scenario-based training to transfer to real-life situ-
ations. In this paper, we will explore a potential solution to faster scenario
updates, by integrating data from real-world trends, events, and emergencies
into a scenario-authoring approach inspired by TOPs. Although this research
remains exploratory, our design-based investigation suggests trend-based recom-
mendations can be aligned to real-life training plans and in some cases can offer
a quick, drop-in replacement for less relevant training activities.

2 Background

Training Objective Packages (TOPs) are one type of a broader category of rep-
resentation designed to determine when a training objective can be trained and
how performance should be measured. As noted, a TOP specifies: a) necessary
conditions for the trainee to meet the training objective and b) how to assess
performance on the training objective. Conditions are encoded as “behaviour
envelopes” specifying boundaries on conditions, such as spatial or temporal coor-
dinates [7].

A related approach [4] builds upon the Total Learning Architecture [1], a
U.S. Department of Defense (DoD) standard for learning ecosystems, by intro-
ducing experience events (xEvents). Like TOPS, xEvents encode the conditions
under which training objectives may be achieved. TOPS and xEvents can be
seen as attempts to improve upon Master Scenario Event Lists (MSELs) in
which authors use spreadsheet or word processor documents to outline a plausi-
ble sequence of events for a training exercise. It is difficult to trace the origins of
MSELs as they appear without citation in training across a variety of organiza-
tions (e.g., military, police and other emergency responders) in which teams must
work together to accomplish goals in environments which are often unpredictable
(e.g., [6] describes best practices for authoring MSELs for US Homeland Security
exercises). MSELs have the advantage of being human-readable and thus under-
standable by instructors, role-players, simulation controllers and trainees. There
is generally a clear connection between events (e.g., clearing a room) and train-
ing objectives (e.g., practice room clearing) whereas machine-readable scripts
for virtual and constructive entities are black boxes in which training objectives
may not be represented or included in decision making. The goal of TOPs and
xEvents is to retain the ability for instructors to author and inspect this data
while using a machine-readable format to facilitate integration with simulators
as well as authoring tools.
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Authoring tools are particularly important because they can assist instruc-
tors in modifying scenarios and in particular introducing new elements based
on lessons learned from the field. Scenarios based on real problems can boost
trainee engagement and generally training offers the strongest advantage when
it aligns closely to the problems and conditions for applying the skills in real sit-
uations (e.g., [5] discusses the importance of realistic radio simulations mirroring
problems that arise on the battlefield). There needs to be a constant updating
of scenarios based on current conditions and emergencies from the field because
real-life needs change over time. For example, pilots might train to land an air-
craft in the desert for years, but suddenly missions are needed in arctic conditions
or where rain storms are frequent. These high-level changes are reflected in spe-
cific issues and signals: a different warning code or light might appear to signal
that a landing is unsafe and must be aborted.

Unfortunately, there is often a substantial lag between trends changing in
the field and instructors tuning practice to better reflect real-life. Experts must
first recognize trends and lessons learned from the field, and bundle them into
reports. Then course developers and instructors must review these reports and
find “teachable moments” such as a real-life malfunction that can be used to prac-
tice emergency procedures. Due to the many steps in the process, such updates
are infrequent and often limited to major changes (e.g., new equipment models).
This could be improved through the use of authoring tools to update training
based on real-life “teachable moments”.

3 Domain: Flight Training Based on Incident Trends

As part of a broader research effort called TOPMAST (Training Operational
Performance via Measure Automation and Scenario-generation Technology), we
investigated approaches to speeding up the process for updating training sce-
narios based on observations from the field, with an emphasis on aviation train-
ing. Aircraft are particularly well-suited to a trends-based approach, because
they have a well-defined taxonomy of issues (e.g., fault codes), they have mul-
tiple types of trends (e.g., aircraft versions, flight routes, subsystem updates),
and require operators to quickly diagnose and react to emergencies to maintain
safety.

In this work, we studied Navy flight instructors who took a MSEL-style
approach to authoring using word processors to generate scenario outlines (e.g.,
events that should occur and rough time guidelines) and only providing scenario-
level training objectives. To address this challenge, we developed a scenario editor
for flight training that explicitly represents the structures of these flights starting
with individual scenario elements. Figure 1 shows an example with details specific
to the aircraft obscured or scrambled in the case of fault codes.

1. Event: a normal flight event (e.g., communications, achieving takeoff) or an
emergency (a fault code or description of the problem) which is listed under
Event Sequence. Faults are highlighted in red and indented.
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Fig. 1. Sample time point in TOPMAST scenario editor

2. Expected Crew Action (e.g., performing a checklist, responding to com-
munications, manipulating controls) which is listed under Instructor Notes
using round bullet points.

3. Simulator Manipulation: how the instructor triggers or resolves an emer-
gency in the simulator which is listed under Instructor Notes using arrow
bullet points.

4. Instructor Action: (e.g., giving verbal instructions to trainees) which is
listed under Instructor Notes using square bullet points.

5. Teaching Point: item to discuss with trainees which is listed under Teaching
Points.
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Figure 1 also shows how scenario elements are grouped into a row and
assigned a time point (e.g., after approximately 1 h and 15min these scenario
elements should occur). These rows are associated with a phase of flight which in
this case is the landing approach. The scenarios under study typically assumed
the presence of two trainees, with one having principal responsibility for control
and safety of flight. Mid-way through the block of instruction, trainees would
switch responsibilities, meaning that each scenario had two versions (one for stu-
dent A, one for B). The student B version allows practice of the same training
objectives but includes variations so that it is not a complete repetition. The
scenario editor also includes a form in which authors specify initial conditions
such as weather and aircraft state.

Following the guidance of our subject matter experts, we used the term “learn-
ing objective” in the scenario editor to reflect instructor expectations. In Fig. 1,
we see scenario elements annotated with learning objectives (presented as hyper-
links) by the subject matter experts. Each learning objective is assigned a code
prefixed by “LO” and authors use a drop-down menu with the full learning-
objective names when annotating. In this paper, we will continue to use the
term “training objective” to reflect their role as training goals (i.e., “the trainee
should be able to do X”).

In some cases, the mapping of scenario elements to training objectives is
straight-forward and one-to-one (e.g., the crew action of completing the descent
checklist is linked to the training objective of completing the descent checklist).
In other cases such as a malfunction event, the scenario element can be linked to
a set of training objectives (e.g., general troubleshooting, managing navigation
issues, executing wave-off procedures). In current practice, the scenarios are well-
defined, have clear training objectives, are limited in number, and static (i.e.,
training objectives for a course are rarely updated based on real-life events or a
real-time data feed).

The overall TOPMAST system is designed to be a force multiplier. It is
both a scenario library management system and a scenario generator. We envi-
sion that TOPMAST will support a set of official (approved) scenarios as well as
allowing the creation of variants to keep training relevant and fresh, and mitigate
the “gouge” whereby trainees effectively skip the decision-making process hav-
ing memorized how to respond to scenario events. Version tracking will ensure
that variants do not overwrite official scenarios and that the provenance of each
scenario is known and preserved.

4 Recommender: Adding Real-World Events to Scenarios

To update training, data sources must be available to track real-world events.
Data from the field typically is either an equipment log file or a written haz-
ard/accident report. Equipment logs have the potential to be directly trans-
formed into structured representations (e.g., database tables). However, although
aircraft manufacturers may collect and archive such logs they are currently not
readily available to training developers. Hazard/accident reports are distributed
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Fig. 2. Sample Read Board card in the TOPMAST scenario editor

widely and unlike equipment logs indicate causality and lessons to be learned.
Each emergency needs to be described using the same format as the scenario
(e.g., events, expected crew actions, teaching points, training objectives and
phases of flight) which is currently done by subject matter experts. However,
advances in natural language processing such as large language models (LLMs)
should enable automation of the information extraction process for this domain,
due to its relatively well-defined ontology of fault codes, events, and actions.

Once a new real-world emergency is authored in this way, it appears in the
scenario editor’s read board (Fig. 2). Once an author clicks “Create New Event”
to add this emergency to the scenario library, the TOPMAST recommender
system identifies and ranks “injection” points for this emergency into a library
of training scenarios. Currently we analyze each row of the scenario (i.e., sce-
nario elements occurring at roughly the same time) as a possible injection point,
assuming the phase of flight of the emergency matches that of the scenario row.
Such injections into a pre-existing scenario ensure the same skills are addressed
but in more realistic conditions.

We then generate an injection score, currently the number of overlapping
training objectives between the scenario row and the emergency. Such an app-
roach is sufficient for matching real-world emergencies to scenario events that
exercise the same training objectives. In future work, we intend to explore includ-
ing expected crew actions, teaching points and related events in the injection
score calculation. For an emergency occurring across two phases of flight, pos-
sible insertion points are constrained to these boundary points in the scenario
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Fig. 3. Annotated mockup of recommender interface

library; injection scores for these boundary points can be calculated separately
for each phase of flight and then summed.

Currently our recommender considers rows in isolation as possible locations
to inject an emergency (i.e., only supports cause and effect in the same row).
Once the author picks an injection point, the recommender appends the emer-
gency elements to the row, which the author may need to modify subsequently.
For example, in some cases the real-world emergency can serve as an explana-
tion for an instructor-triggered fault and should immediately precede it (e.g., a
fault in the navigation system could explain why the flight computer triggered a
wave-off). In other cases, the real-world emergency should serve as a replacement
for a fake event (e.g., a navigation sensor error triggers a wave-off instead of a
vehicle blocking the runway). We will address this issue in future work by allow-
ing authors to identify causal links (e.g., all crew and instructor actions related
specifically to the vehicle on the runway) and enforcing the use of consistent
vocabulary for checklists and procedures. In some cases background knowledge
will be needed (e.g., fault A often causes fault B) to infer when a real-world
event might be linked to a pre-existing scenario element.

The recommender is integrated into the scenario editor such that instructors
can see the ranked injection points and modify the scenario by selecting one of
these points. The interface is still a work-in-progress. Figure 3 is a mockup of how
the interface would present an emergency impacting two phases of flight (i.e.,
approach and landing). The recommender maintains the set of common training
objectives between the emergency and each injection point such that an author
can inspect them before clicking the “add” button to inject the emergency.

5 Discussion: Scaling Up Trend-Aware Authoring

Training objective packages (TOPs) [7] are a general approach to authorable,
machine-readable scenario representations. TOPs represent both the necessary
scenario conditions for a trainee to achieve a training objective as well as the
criteria for achieving that training objective. Our flight instructors took an app-
roach similar to a Master Scenario Event List and used our authoring tool to
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specify a sequence of events annotated with training objectives. The conditions
for a particular event and associated training objective are assumed to be the
accomplishment of all the previous events (i.e., there is no representation of
causal links between events).

In the context of Navy air training, a potential resource for this missing
information is the Naval Air Training and Operating Procedures Standardization
(NATOPS) manual for the target aircraft. Electronic versions of some NATOPS
manuals have been available since 2002 [3] but focus on supporting pilots (e.g.,
quick access to emergency procedures) rather than representing knowledge for
machine use. The rows of a scenario group related elements (e.g., a system fault
may be in the same row as the corresponding wave-off) but in some cases, a
minor malfunction may not cause an emergency until a phase of flight such as
“approach” in which precise control and navigation are critical.

The introduction of flight recorder data would also present a number of
opportunities. Stacy et al. [8] discuss a tool to analyze flight recorder data from
an emergency and author a corresponding scenario event list. The availability of
such data would also allow analysis of trends to suggest real-world malfunctions
that are more frequent and identify possible training gaps. A trends-based app-
roach would allow a human expert or a computational model to analyze data
from many flights to measure malfunction frequencies and how they co-occur
and vary based on conditions. This is especially critical with a newer aircraft as
it could lead to changes in procedures and training such that early corrective
actions can prevent more serious consequences.

Large language models (LLMs) such as GPT-4 have been used for natural
language processing and common sense reasoning tasks [2] and could potentially
aid the human author by processing text and making connections (e.g., event
A causes event B). Newer LLMs could also help to extract real-life trends from
noisier data sources (e.g., flight logs, mission reports). It may even be possible
to suggest modified scenarios by having LLMs modify a standard flight to meet
new training objectives.

Another opportunity would be the ability to integrate authoring tools such as
TOPMAST with the simulator. Currently scenarios include guidance for instruc-
tors on how to manipulate the simulator to introduce faults to test trainees and
then resolve those faults when the trainees have performed the appropriate proce-
dures. Ideally, TOPMAST could serve as both an authoring tool and simulation
controller such that it could handle such details and allow the instructor to focus
on observing and guiding the trainee. More complex logic could be introduced
to make the scenarios adapt to individual trainees (e.g., giving more difficult,
realistic challenges to high performing trainees).

6 Conclusion

This paper describes an effort to introduce machine-readable, instructor-
authorable scenarios to flight training currently using scenario outlines authored
with word processors. A semi-structured approach was taken in which related
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scenario elements (i.e., happening at roughly the same time) were given textual
descriptions, grouped together and assigned training objectives and phases of
flight. This same representation can be used to encode real-world emergencies
allowing their integration into scenarios for more realistic training. Such a rep-
resentation is sufficient to support a recommender that ranks possible insertion
points for real-world emergencies using constraints (i.e., the phase of flight of the
emergency must match the phase of flight of the insertion point) and a ranking
score. Our ranking score is currently based on matching training objectives asso-
ciated with the emergency with training objectives in the scenario (i.e., training
the same skills but using a more realistic example).

The recommender is integrated into the scenario editor such that instructors
can see the ranked injection points and modify the scenario by selecting one of
these points. Our subject matter experts indicated that this type of tool would
be beneficial over the current approach of using a word processor to add real-
world emergencies to the scenario outlines. Although aircraft equipment logs
are not available at this time, it is an important issue to address in the future
as instructors must now review hazard/accident reports and select represen-
tative emergencies rather than the recommendation system directly measuring
trends and associated conditions (e.g., weather, equipment readings). Another
important future consideration is integration with the simulators used in train-
ing which must be configured to trigger emergencies matching their real-world
counterparts.
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Abstract. The current paper aims at qualifying the distribution of aca-
demic papers related to verification and validation of Adaptive Instruc-
tional Systems (AIS) and Adaptive software (ASOFT). For the purpose
of the literature review, the theme of software verification and validation
is divided into three sub-themes: 1) software verification, 2) empirical
validation, and 3) model and simulation validation. In order to maintain
the paper broad objectives, the approach will apply text mining tech-
niques to analyze the literature. The corpus contained 33 546 documents
extracted from Scopus (January 2024) in 5 document sets that were ana-
lyzed using TF-IDF vectors to measure cosine similarity between docu-
ments. The similarity distributions as well as the statistical tests indi-
cate a difference in attention given to verification and validation issues
between publications in AIS and ASOFT. The more important difference
between the two sets of documents is the role given to software verifi-
cation. The stronger emphasis on empirical, and model and simulation
validation in the AIS literature points to the high dependency of con-
sidering human factors in the success of adaptive instructional systems.
In regard to software verification in AIS, the few publications address-
ing this issue in comparison to publications looking at tutoring software
engineering techniques indicate a possible research and practical gap to
explore. The brief overview of the extended number of publications in
software verification of ASOFT did not provide an immediate and clear
set of methods and techniques that could be applied in the context of
AIS. A further analysis could look in more depth in the ASOFT literature
or at the AI development engineering literature.

Keywords: Adaptive Instructional Systems · Verification and
Validation · Adaptive Software · Literature Review · Text Mining
Literature Review · Software Verification · Empirical Validation ·
Modelling and Simulation
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tutoring systems, intelligent mentors, recommender systems, and intelligent
instructional media [38]. These systems dynamically adapt to individual learn-
ers, employing mechanisms that respond to specific goals, needs, preferences,
and interests in alignment with educational objectives [40]. For instance, learner
models within AIS can predict and respond to learner behaviour, enhancing the
system’s ability to personalize learning. The primary objective of AIS is to opti-
mize learning outcomes, engagement, and retention through this personalization.
A key component of AIS is the use of adaptive instructional agents [4], software
entities that actively engage with both the learner and the learning environ-
ment. These agents, often using artificial intelligence, are crucial in realizing
the allocated learning objectives by modifying instructional strategies based on
real-time assessments of learner progress and needs.

Verification and validation (V&V) are critical processes in the development
and implementation of every software systems, including adaptive instructional
systems. Verification ensures that a system is built correctly according to its spec-
ifications and requirements. In the context of AIS, this means ensuring that the
system accurately identifies learners’ knowledge states, preferences, and learn-
ing styles, and adapts its instructional strategies accordingly. Validation, on the
other hand, involves ensuring that a system is fulfilling its intended purpose and
meeting the needs of its users. For AIS, this means assessing whether the adap-
tive mechanisms enhance learning outcomes. The relevance of V&V methods for
AIS cannot be overstated. As these systems increasingly influence educational
outcomes and potentially critical applications, ensuring their reliability, effective-
ness, and safety becomes essential for the advancement of personalized learning
and the development of more effective and reliable educational technologies.

The current paper aims at qualifying the distribution of academic papers
related to verification and validation of adaptive instructional systems. One
objective is to provide a high-level view of the literature on the topic, and a
second object is to identify possible research gaps. As a means to help identify
gaps, the review will include and compare results about adaptive instructional
systems to results about adaptive software. Adaptive software is a more generic
class of software which dynamically modifies at runtime its own internal struc-
ture and hence its behaviour in response to changes in its operating environment
[20]. Adaptive software includes dynamic and context-aware software, autonomic
computing, adaptive user interface, as well as software controlling autonomous
systems.

These objectives faces two challenges. A first challenge is the large amount
of learning technologies covered under the umbrella of adaptive instructional
systems (intelligent tutoring systems, intelligent mentors, recommender systems,
and intelligent instructional media). A second challenge, related to the breadth of
adaptive instructional systems, is the difficulty of formulating a document search
strategy to retrieve documents that does not result in either a too small or too
large set of relevant documents. A small set would lack meaningful coverage,
while a large set would demand a significant effort by human experts to sort,
analyze and synthesize documents.
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In order to address the coverage and search strategy challenges, the app-
roach will apply text mining techniques to analyze the literature [30,42,43].
This approach allows for quantitatively reproducible review on a large volume
of literature compared to expert systematic reviews. The current approach uses
a simple text mining technique to represent every document as a vector of terms
with associated numerical “Term Frequency-Inverse Document Frequency” val-
ues (TF-IDF) [31]. Based on these vectors, documents are compared to one
another using a cosine similarity measure. The detail of this technique is pre-
sented in the methodology section.

2 Problem Statement

The current paper aims at qualifying the distribution of academic papers related
to verification and validation of adaptive instructional systems, and to compare
this distribution to the publications on verification and validation of adaptive
software. This review will provide a high level view of the literature, and identify
possible research gaps.

Figure 1 shows (A) the number of publications per year from a query on
Scopus (https://www.scopus.com/) using the AIS search string of Listing 1.1,
and (B) the number of publications using (“’validation” OR “verification”) added
to the same search string. As the figure indicates, the quantity of publications
over the years for the whole field is much larger than the publications related
to verification or validation. The years 2014 to 2016 are particularly low in this
respect. Understanding the conditions that might have impacted the drop of
publications during those years is beyond the scope of the current paper.

Fig. 1. Number of publications per year related to (A) Adaptive instructional systems,
and (B) Verification or validation and Adaptive instructional systems. The data was
obtained from Scopus (https://www.scopus.com/) in January 2024 with the AIS search
string of Listing 1.1 for figure (A), and with (“verification” OR “validation”) added to
the AIS search string for figure (B).

For the purpose of the literature review, the theme of software verification and
validation is divided into three sub-themes: 1) software verification, 2) empirical

https://www.scopus.com/
https://www.scopus.com/
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validation, and 3) model and simulation validation. Each sub-theme focuses on a
distinct aspect of ensuring that software systems perform as expected and meet
users needs.

Software verification involves checking the software to ensure that it is cor-
rectly implementing the specified requirements. Verification activities typically
include reviews, inspections, and static analysis of computer code. The goal is
to test that the software product is built correctly according to the design and
requirements, often summarized by the question: “Are we building the product
right?”.

Empirical validation involves testing the software in a real-world or realis-
tic setting to gather empirical data about its performance and intended use.
Empirical validation aims to demonstrate that the software works in practice,
addressing the question: “Does the software do what the user needs?” Empirical
validation consists of conducting experiments, collecting data, or using obser-
vational studies to determine whether the empirical results support or refute a
claim being tested.

Model and simulation validation involves testing that a computational model
or simulation accurately reflects the real-world system that is meant to represent.
Models and simulations are essential for adaptive systems as they allow to answer
questions like: “How will the software perform under expected and unexpected
conditions?”. Validation of models and simulations aims to ensure that a model
or simulation can be used reliably for its intended purposes.

3 Review Scope

The text mining literature review objectives are to provide an overview of the use
of verification and validation methods across a range of adaptive instructional
systems such as intelligent tutors, and recommender systems, but also how veri-
fication and validation methods are applied to adaptive software in general. One
objective of this comparison between V&V in AIS and adaptive software is to
identify possible gaps in AIS V&V.

The scope of each of these adaptive technology types is defined by the search
strings used to retrieved documents, which will form part of the document corpus
set. Listing 1.1 presents the search string for each of the adaptive technology
types.

A set of verification and validation (V&V) method types was broadly defined
to capture different perspective 1) software verification, 2) empirical validation
with human participants such as usability studies and experimental data collec-
tion, and 3) modelling and simulation including learner models (learning ana-
lytics), and simulated learners. Listing 1.2 presents the search string for each of
verification and validation methods explored in the current study. The single key-
word “software verification” provided a sufficient number of relevant documents.
Too many documents were retrieved when adding other keywords like “software
testing” to the search string, and too few documents were retrieved when seeking
documents relevant to software verification in the context of software users or
learners.
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Listing 1.1. Search strings for adaptive technology types (AIS: Adaptive instructional
systems; ASOFT: Adaptive software).

AIS (" adaptive instruction *"

OR "intelligent instruction *"

OR "intelligent tutor *"

OR (" intelligent system *" AND "tutor *")

OR (" recommender"

AND (" learning"

AND (" student" OR "learner ")))))

ASOFT (" adaptive software"

OR "adaptive user interface *"

OR "context -aware software"

OR "autonomic computing"

OR (" autonomous system *" AND "software "))

Listing 1.2. Search strings for V&V method types (VER: software verification; EMP:
data collection of human performance and learning; and ModSim: modeling and sim-
ulation).

VER (" software verification ")

EMP (" methodology"

AND (" participants" OR "subjects"

AND ("male" OR "female "))

AND "results"

AND ("user stud*" OR "experiment"

OR "data collection "))

ModSim ((" interface model *" OR "student model *"

OR "learner model*" OR "domain model *"

OR "teacher model*" OR "pedagogical model *"

) AND "simulation ")

4 Methodology

4.1 Research Questions

Given the scope defined for the adaptive technology and verification and vali-
dation method types, the text mining literature review aims at answering the
following two questions:

Q.1 What is the distribution of academic publications for three sub-themes of
verification and validation being 1) software verification, 2) empirical vali-
dation, and 3) modelling and simulation in the domain of adaptive instruc-
tional systems and adaptive software?

Q.2 Given the observed distribution, are there any trends and research gaps
that can be identified?
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4.2 Data Collection

The data collection was performed at the end of January 2024 on the Scopus
document database (https://www.scopus.com/) using the five search strings pre-
sented in Sect. 3 (Listings 1.1 and 1.2). The search strings were applied to the
documents title, abstract, and keywords. All documents had to be in English,
with no limitation regarding the publication dates. The retrieved document
records were exported in the BibTeX format by groups of 2 000 or less records at a
time. Prior to processing the BibTeX records to extract terms, duplicated entries
(identical DOI or title), and records with no authors were deleted. Records dele-
tion was performed only within and not across each of the five document sets.
Table 2 presents the number of document records per set for a total of 33 546
document records in the whole corpus.

4.3 Data Extraction

After duplicated and without authors records were removed from the document
record sets, each BibTeX record title, abstract, keywords, and author keywords
were concatenated before tokenization. Tokens were generated by splitting the
concatenated string into words, trimming words of special characters, removing
punctuation, and stop words using English words from stopwords-iso (https://
github.com/stopwords-iso/stopwords-iso). The list of tokens were added to a
Common Lisp structure representing a document record with other properties
such as the total number of tokens, individual token counts, and the number of
times a document was cited.

4.4 Text Mining Method

The text mining method in the literature review analysis is based on the tech-
nique known as the “Term Frequency-Inverse Document Frequency” (TF-IDF)
calculation. For each document the frequency (TF) of each token is calculated
and normalized by the length of the document to prevent bias towards longer
documents. The equation for calculating term frequencies is given in Eq. 1.

TF (t, d) =
Number of times token t appears in a document d

Total number of tokens in the document
(1)

The Inverse Document Frequency (IDF) calculates the inverse frequency for
each token across all document sets. IDF measures how important a term is
across the entire collection of document sets by giving higher scores to terms that
are rare across documents. The equation for calculating the inverse document
frequencies is given in Eq. 2.

IDF (t,D) = log
(

Total number of documents D

Number of documents with term t in it

)
(2)

The TF-IDF value is the product of the TF by the IDF for each token in each
document to produce an TF-IDF score. This score represents the importance of a

https://www.scopus.com/
https://github.com/stopwords-iso/stopwords-iso
https://github.com/stopwords-iso/stopwords-iso
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term in a document relative to its importance across all documents. The equation
for calculating a TF-IDF value is given in Eq. 3.

TF-IDF(t, d,D) = TF (t, d) × IDF (t,D) (3)

where t represents a token (word),
d represents a document in the corpus, and
D represents the corpus of documents.

Using these equations, a document is converted into a vector of its TF-IDF
scores. Each dimension of the vector corresponds to a unique token in the entire
corpus (the collection of all document sets), and the value in each dimension is
the TF-IDF score of the token in that document. For tokens not present in a
document, the corresponding value in the vector is zero. For the current text
mining analysis, each document TF-IDF vector was normalized by dividing each
dimension of the vector by the vector’s magnitude. The equations to normalize
a vector and calculate its magnitude are given in Eqs. 4 (magnitude) and 5
(normalization). Normalized vectors have a unit length, which allows the cosine
similarity to effectively measure the angle between vectors.

‖A‖ =

√√√√ n∑
i=1

a2
i (4)

Vnorm =
V

‖V‖ =
(

v1
‖V‖ ,

v2
‖V‖ , . . . ,

vn
‖V‖

)
(5)

Once a document is represented as a TF-IDF vector, it can be compared
for its similarity to another document vector using a pairwise cosine similarity
calculation. This pairwise comparison can be extended to compare document
sets by applying the cosine similarity calculation between each pair of documents
(one from each set). Cosine similarity measures the cosine of the angle between
two vectors and is a commonly used metric for comparing documents in high-
dimensional space. The cosine similarity ranges from −1 (exactly opposite) to 1
(exactly the same), with 0 indicating no similarity. The equation for calculating
the cosine similarity is given in Eq. 6.

Cosine Similarity(A,B) =
A · B

‖A‖ × ‖B‖ (6)

where A and B are TF-IDF vectors,
A · B is the dot product of vectors A and B,
and ‖A‖ and ‖B‖ are the magnitudes of vectors A and B respectively.

4.5 Analysis Procedure

The text mining procedure consists of two separate analyses: 1) pairwise docu-
ment record sets comparaison using cosine similarity (Eq. 6), and 2) classification
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of document records with highest similarity scores in categories relevant to the
research questions. This second step did not use text mining techniques and is
explained later in the current section.

Using text mining methods, in addition to comparing every document to
documents from its own set to measure internal similarity, source sets (soft-
ware verification (VER), empirical validation (EMP) and modelling and simula-
tion (ModSim)), were compared in a pairwise fashion with the two target sets:
Adaptive instructional systems (AIS) and Adaptive software (ASOFT). Assum-
ing that every document record is already represented as a normalized TF-IDF
vector, the steps in carrying the analysis are:

1. Keeping intact every document TF-IDF vectors, create an aggregated docu-
ment set vector with the arithmetic mean of every vector dimensions of every
documents in the set.

2. Calculate the cosine similarity between the aggregated source vector and
every document vector of the target set.

3. Use the Kruskal-Wallis H test to determine if there are statistically significant
differences in the distribution of cosine similarity scores across the different
target document sets when compared to the source set. The Kruskal-Wallis
test is a non-parametric method that does not assume a normal distribution
and is suitable for comparing two or more groups. The null hypothesis (H0)
is that the median similarity scores are the same across all groups. Given the
large number of documents, the alpha threshold is set to 0.001.

4. If the Kruskal-Wallis test indicates significant differences, a Dunn’s post-hoc
test is performed to identify which specific document sets have significantly
different similarity scores when compared to the source set. Dunn’s test com-
pares the pairwise differences between groups with a correction for multiple
comparisons, such as the Bonferroni correction. Dunn’s test will provide p-
values for each pair of comparisons. Significant p-values indicate that the
similarity distribution between those sets and the source set is significantly
different.

5. Select documents with high-similarity scores for content and classification
analysis, 600 documents (100 for each V&V-Adaptive sets combination) were
selected.

6. Classify (content analysis) high-similarity score documents using the cate-
gories provided in Table 1. Documents that did not fit into one of these cat-
egories were classified as “other”. The classification activity does not involve
text mining techniques.

7. Analyze the document classification frequencies, briefly describe the content
of documents within each category.
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Table 1. Classification categories for content analysis of high-similarity adaptive
instructional systems (AIS) and adaptive software (ASOFT) target documents in rela-
tion to the source document of: 1) verification (VER), 2) validation by empirical studies
(EMP), and 3) validation of modelling and simulation (ModSim). Documents were clas-
sified as either “directly” or “indirectly” addressing the verification and validation of
AIS/ASOFT software. Documents that did not fit into one of these categories were
classified as “other”.

Source
Set

Direct application of V&V
Document classification criteria

Indirect application to V&V
Document classification criteria

VER
Software
verifica-
tion

Verification of AIS/ASOFT:
The document is about
verification/testing of
AIS/ASOFT, or a generic
verification method

AIS/ASOFT for verification:
The document is about AIS as a
tutor for verification or software
engineering; The document is
about ASOFT verification of
autonomous devices

EMP
Empirical
validation

Empirical studies of AIS/A-
SOFT:
The document is about data
collected for the purpose of
AIS/ASOFT validation

Literature review of AIS/A-
SOFT:
The document is about a
literature review for the purpose
of AIS/ASOFT validation or
identification of research
directions

ModSim
Models
and simu-
lations
validation

Validation of AIS/ASOFT mod-
els and simulations:
The document is about
processes and methodologies for
validating AIS/ASOFT models
and simulations against the
real-world systems they
represent

AIS/ASOFT models and simu-
lations, but no reference to vali-
dation:
The document is about
AIS/ASOFT models and
simulations (architecture,
systems, or development)
without reference to their
validation

5 Results

5.1 TF-TDF Values

Figure 2 presents (A) the distribution of TF-IDF vector values on any dimen-
sion, and (B) within document sets similarity values. For plotting purposes, the
logarithm of the TF-IDF values was used to reduce the distance between low
and high TF-IDF values.

A Kruskal-Wallis test was used to assess the variability of TF-IDF values
across all vector dimensions per document set (Fig. 2(A)). The test revealed
significant differences in the distributions of TF-IDF values between the five
document sets (H(4) = 40879.29, p < 2.2e − 16), leading to the rejection of the
null hypothesis that there is no difference in the median TF-IDF values. In the
subsequent analysis to further explore the specific pairwise differences among the
document sets following a significant Kruskal-Wallis test, Dunn’s post-hoc tests
were conducted with Bonferroni correction to adjust for multiple comparisons.
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Fig. 2. (A) Distribution of the logarithm of TF-IDF values across all vector dimensions
per document set; and (B) Distribution of internal document similarity values between
every document of a given set compared to the mean vector of all documents in a set.
Acronyms are: Adaptive instructional systems (AIS), Adaptive software (ASOFT),
software verification (VER), empirical validation (EMP) and modelling and simulation
(ModSim).

The comparison between the AIS document set and the ASOFT document set
yielded a p-value of 0.011. Given our predetermined alpha level of 0.001, this
p-value exceeds the threshold required to declare statistical significance.

Table 2 list the highest 25 token TF-IDF values per corpus set. The table also
gives for each set; 1) the number of document records, 2) the number of unique
tokens (vector dimension), and 3) the total number of tokens. The number of
tokens cited in a document was weighted by the number of times the document
was cited in order to give more weight to highly cited tokens in the corpus
set. The whole corpus contained 114 382 unique tokens and 3 709 395 tokens
including repetitions and multiplication by citation counts. Document records
with no citations were assigned a count of 1.

5.2 Within Document Sets Similarity

Figure 2(B) presents a box plot of the internal similarity distribution within
every document set. A Kruskal-Wallis test was used to assess the variability of
within similarity distributions between the group of sets. The test revealed sig-
nificant differences in the distributions of internal similarity scores between the
sets (H(4) = 9304.51, p < 2.2e − 16). Subsequent Dunn’s post-hoc tests, with
Bonferroni correction for multiple comparisons, indicated that the null hypoth-
esis could be rejected on all pairwise comparisons, all with very low p values.

5.3 Between Document Sets Similarity

Figure 3(A) shows the distribution of similarity values for all six combination of
V&V types: verification (VER), empirical validation (EMP), and validation with
modelling and simulation (ModSim); by adaptive technology types: adaptive
instructional systems (AIS), and adaptive software (ASOFT).
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Table 2. Highest 25 token TF-IDF values per corpus set. Token counts (TC) were
weighted by the number of times a citation was cited.

Corpus set Highest 25 TF-ITF tokens/words values

AIS
9 419 documents
31 035 tokens
876 902 tokens count

learning, tutoring, intelligent, students, student,
knowledge, systems, recommendation, learners,
recommender, educational, elearning, education,
learner, adaptive, tutor, teaching, model,
training, feedback, online, personalized,
cognitive, instruction, data

ASOFT
5 987 documents
28 106 tokens
575 132 tokens count

autonomic, computing, software, autonomous,
systems, adaptive, user, management,
self-adaptive, architecture, service, cloud,
adaptation, applications, runtime, control,
services, approach, framework, network,
interfaces, distributed, application, requirements,
development

VER
2 386 documents
15 440 tokens
214 386 tokens count

verification, software, testing, checking, formal,
program, validation, programs, code, tools,
model, analysis, specification, safety, logic,
development, techniques, tool, approach,
systems, hardware, requirements, abstraction,
correctness, properties

EMP
9 892 documents
65 374 tokens
1 453 275 tokens count

participants, health, subjects, study, data, care,
patients, studies, women, clinical, trials,
methodology, methods, age, activity, interviews,
effects, healthy, trial, medical, training, blood,
analysis, treatment, social

ModSim
5 525 documents
34 311 tokens
589 700 tokens count

model, simulation, interface, modeling, domain,
models, numerical, time-domain, simulations,
method, frequency, power, modelling, non-linear,
time, energy, flow, finite, wave, dynamics,
proposed, analysis, phase, surface, control

A Kruskal-Wallis test was used to assess the variability of similarity distribu-
tions between each V&V types and adaptive technology types. The test revealed
significant differences in the distributions of similarity scores among the sets
(H(5) = 449.92, p < 2.2e−16). Subsequent Dunn’s post-hoc tests, with Bon-
ferroni correction for multiple comparisons, indicated that the null hypothesis
that there is no difference in the distribution of similarity values was rejected
on all pair comparisons, all with very low p values. The box plot of Fig. 3(A)
shows that the combination verification methods and of adaptive software has
the highest similarity distribution among the other combinations.

5.4 Content Analysis

Content analysis was performed by extracting the 100 most similar documents
in the similarity comparison between source and target sets. Source document
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Fig. 3. (A) Distribution of similarity values for all six combination of V&V types
(VER, EMP, and ModSim) by adaptive technology types (AIS, and ASOFT). (B) Fre-
quency counts following the content analysis of highly-similar documents. Acronyms
are: Adaptive instructional systems (AIS), Adaptive software (ASOFT), software veri-
fication (VER), empirical validation (EMP) and modelling and simulation (ModSim).

sets were defined as referring to verification and validation methods. The target
documents were either the set of document under adaptive instructional systems
or adaptive software. Table 1 presents the criteria for classifying a document has
having either a direct, or an indirect verification and validation relation to the
software object. Document records that did not satisfy one of those two labels
were classified as “other”.

Figure 3(B) shows a bar chart giving the count of documents being either in
a direct or indirect relationship to the verification and validation themes. Direct
relation being when the verification and validation methods are being applied
to either an adaptive instructional system or an adaptive software. The figure
shows a higher number of verification ASOFT documents than AIS documents
directly addressing the issue of software verification. This result is congruent
with the distribution of high-similarity documents presented in Fig. 3(A). AIS
validation by empirical means, or of model and simulation show a higher number
of documents addressing theses issues than for ASOFT. Keeping in mind the
subjective classification with its limitations, the analysis indicates that the subset
of AIS classified literature shows a diminishing order of attention from empirical
validation, to model and simulation validation, and finally software verification.
The order for ASOFT is software verification, empirical verification, and last,
model and simulation validation.

A Chi-squared statistic of χ2 = 148.7 with 10 degrees of freedom was
obtained on the contingency table behind Fig. 3(B). The p-value for this test
was <2.2e−16, which is below the significance level of 0.001. Listing all refer-
ences in each categories is beyond the scope and available space of the current
paper. However, the next paragraphs provide a sense of the high-similarity values
and most recent documents revealed by the content analysis.
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Software Verification and Adaptive Instructional Systems. Among the
100 high-similarity AIS documents with the software verification set, very few
were addressing directly the issue of verifying AIS software. This short list
includes the application of formal methods in human-computer interaction to
adaptive instructional systems [9], formal semantic model for verification of
property preservation in model-driven agent-based software development [18],
mixture of software engineering techniques for verification, and both qualitative
and quantitative techniques for validation [2], and verification of an ITS multi-
agent plans based on model checking and Petri nets [8]. The group of indirect
references to verification issues are mostly about learning software engineer-
ing techniques. The tutoring applications include ensuring source code quality,
detecting anomalies, and identifying potential improvements [35], representation
of code with attentional neural network for tutoring programming [17], develop-
ment of procedural knowledge for analyzing and refactoring code [15,27], recom-
mendation for fault prediction [7], tutor for the semantics of logic programs and
deductive databases [3], and an intelligent tutoring system for learning security
[21].

Software Verification and Adaptive Software. The ASOFT documents
had the larger number of high-similarity documents with the software verification
set. This result is congruent with the distribution of high-similarity documents
presented in Fig. 3 (A). Example of publications directly addressing the issue of
software verification includes domain-specific language for tracing expressions for
both static formal verification and runtime verification [11], design and verifica-
tion of self-adaptive software using finite state machines [25], runtime verification
of probabilistic systems [13], and automatic construction of tests for evaluating
code correctness [16].

Empirical Verification and Adaptive Instructional Systems. Example
of publications about the empirical validation of AIS include evaluating the role
of artificial intelligence in surgical skills training [10], evaluation of a neural net-
work algorithm to dynamically identifies learning difficulties [29], comparison
of personalized content with non-adaptive material [34], and video recommen-
dation system for algebra [26]. The body of AIS literature related to empirical
validation also contains a number of literature reviews [1,5,12,23,45].

Empirical Verification and Adaptive Software. Example of publications
about the empirical validation of ASOFT include measuring user experience
of adaptive user interfaces using EEG [14], assessing walking ability using a
robotic gait trainer [28], non-intrusive stress detection in off-the-shelf desktop
environments [46], and emotion recognition using sensor data fusion [48].

Modelling and Simulation and Adaptive Instructional Systems. Exam-
ple of publications about models and simulations validation of AIS include latent
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variable modelling for tracking learning flow during computer-interactive artifi-
cial tutoring [22], differentiated learning environment for children with learning
disabilities [44], dynamics of self-regulation, emotion, grit, and student perfor-
mance in cyber-learning environments [24], and knowledge level tracking with
data-driven student models and collaborative filtering [6].

Modelling and Simulation and Adaptive Software. Example of publica-
tions about models and simulations validation of ASOFT include: model-based
adaptive user interface based on context and user experience [19], evaluation
metrics of an adaptive user interface with Bayesian user models [32], usabil-
ity evaluation of adaptive web interface using user goal achievements [33], and
ontology-based approach for user interface adaptation [41].

6 Discussion

TF-TDF Values. The main result from the text mining analysis of the TF-
IDF values distribution is that the group of five document sets have different
distributions, but that among those sets, the distribution of AIS and ASOFT
TF-IDF values did not differ significantly, which suggests that the two sets are
topically less diverse than the other document sets. This does not mean that
AIS and ASOFT use the same words, but that the variability of words between
the sets is not statistically different.

Table 2 by listing the token/words with the highest TF-IDF values gives an
indication of the topical content of each document set. Overall the text mining
method seems to be able to capture the general content of each set. However,
the current TF-IDF method is limited and other methods could lead to a better
model of the corpus set content. It is also worth mentioning that the tokenizer
algorithm employ in the current study did not unify singular and plural word
forms which adds to the number of tokens.

Within Document Sets Similarity. Overall the low median similarity values
for all document sets, indicates a high variability of topic/tokens within each set.
In spite of the verification document set (VER) having the highest (0.188), and
the empirical studies (EMP) having the lowest (0.098) median similarity values,
all document sets have low internal similarity. So in spite of the token/words
having high TF-TDF values listed in Table 2, there are many other tokens/words
and concepts being present in the title, abstract and keywords of the corpus that
are not shared among documents.

Between Document Sets Similarity. The results obtained by comparing
between document sets similarities hinges the most on the the main objectives
of this study. The text mining literature review intended to answer the following
two questions:
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Q.1 What is the distribution of academic publications for three sub-themes of
verification and validation being 1) software verification, 2) empirical vali-
dation, and 3) modelling and simulation in the domain of adaptive instruc-
tional systems and adaptive software?

Q.2 Given the observed distribution, are there any trends and research gaps
that can be identified?

The similarity distributions of Fig. 3(A) and (B), as well as the statistical
tests on the distribution indicate a difference in attention given to verification
and validation issues between publications in adaptive instructional system (AIS)
and adaptive software (ASOFT). Software verification being addressed more in
the literature on adaptive software than in the literature on adaptive instruc-
tional systems. This result is supported by both the similarity measures and the
conceptual analysis.

On the other hand, the emphasis on empirical, and modelling and simulation
validation seems stronger in the AIS than in the ASOFT literature. However, the
difference in this case does not appear to be as important than in the case with
software verification. The stronger emphasis on empirical, and model and sim-
ulation validation in the AIS literature certainly points to the high dependency
of considering human factors in the success of adaptive instructional systems.

In regard to software verification in adaptive instructional systems, the few
AIS publications addressing this issue in comparison to publications looking at
tutoring software engineering techniques indicate a possible research and prac-
tical gap to explore. The brief overview and superficial conceptual analysis of
the extended number of publications in software verification of ASOFT did not
provide an immediate and clear set of methods and techniques that could be
applied in the context of AIS. A further analysis could look in more details at
the literature on runtime verification methods as well as the AI development
engineering literature, the verification or AI systems [17,35,47], and on the use
of simulation and testing for complex autonomous systems verification [37].

7 Conclusion

Even if software engineering, qualitative and quantitative techniques have been
used for the verification intelligent tutoring systems for some time [2,8,9,18],
the amount of research addressing the issue of verification in AIS appears under
represented in the literature. To address these challenges, V&V methods for
adaptive systems may need to incorporate more iterative, continuous, and mul-
tifaceted approaches, such as using simulation environments, incorporating user
feedback loops, applying runtime verification and validation, and ensuring trans-
parency and explainability for automated adaptive decision-making processes.

As instances of a human-centred artificial intelligence systems, adaptive
instructional systems are also facing issues of reliability, safety, and trustwor-
thiness, which can be addressed through: 1) reliable systems based on sound
software engineering practices, 2) safety culture through business management
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strategies, and 3) trustworthy certification by independent oversight [36]. Cur-
rent technical challenges affecting adaptive instructional systems research and
development include data availability, data quality, personalization, interoper-
ability, scalability, and explainability [39]. These challenges are similar to those
faced by other types of autonomous systems like self-driving cars, where complex-
ity is inherent in environment perception, data interpretation, decision-making,
and knowledge management [37]. This complexity affects both the reliability
and trustworthiness of autonomous systems. Sifakis and Harel argue that tradi-
tional model-based techniques are defeated by the complexity of the problem,
while solutions based on end-to-end machine learning fail to provide the neces-
sary trustworthiness. They propose a hybrid design approach combining model-
based and machine learning techniques, using simulation and testing for complex
autonomous systems verification and validation [37].
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Abstract. Persuasive messages and communications are powerful tools for influ-
encing individuals’ behaviours in a specific manner. A range of persuasive strate-
gies are employed to construct persuasive messages to make them more effec-
tive. In this research, we investigated the persuasiveness of messages constructed
based on three persuasive strategies (social comparison, commitment and consis-
tency, and self-monitoring) in encouraging students to engage actively with their
learning management system (LMS) in a real university course-based setting. We
constructed persuasive messages based on the strategies and then conducted a
survey study among university students who use LMS for a course to evaluate the
messages in terms of perceived persuasiveness measured using four factors: moti-
vational, effective, appropriate, and convincing. Our results suggest that messages
exploiting the three strategies could be used to influence student engagement with
online systems and that message content significantly impacts persuasiveness.
Also, the results showed that messages employing the self-monitoring strategy
were more persuasive, followed by commitment and consistency, and then social
comparison. This study’s findings shed light on the varying degrees of effective-
ness of the three persuasive technology strategies in education. Additionally, the
research highlights the importance of tailoring persuasive messages to specific
target audiences and behaviours. The implications of these findings for persuasive
technology design and research are discussed.

Keywords: Persuasive Strategies · Persuasive Messages · Social Comparison ·
Commitment and Consistency · Self-Monitoring · Student Engagement · Online
Learning · Persuasive Technology

1 Introduction

Online learning has become a prevalent and convenient mode of education in the 21st
century, especially in higher education. However, online learning also poses many chal-
lenges and barriers for students, such as a lack of motivation, engagement, interac-
tion, feedback, and support. To overcome these challenges and enhance students’ online
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learning outcomes, persuasive technology can be a useful and effective approach. Per-
suasive technology (PT) is the use of interactive systems to influence human attitudes
and behaviours [1]. Persuasion, in its various forms, plays a vital role in influencing
human attitudes, decisions, and behaviours across diverse domains, from marketing and
advertising to public health campaigns and educational initiatives. In the domain of
education, persuasive technology can be used to design and deliver persuasive mes-
sages that aim to motivate and persuade students to adopt desirable learning behaviours
and outcomes. However, not all persuasive messages are equally effective. Different
PT strategies may have different effects on different target audiences and behaviours.
Therefore, it is important to understand how to design and evaluate persuasive messages
based on the characteristics and preferences of the target users and the goals and contexts
of the target behaviours.

Persuasive messages intend to change or reinforce the target user’s attitude or
behaviour toward a certain issue or action. Persuasive messages can use various strate-
gies and techniques to influence the target user, such as PT strategies, argumentation,
emotion, humour, and storytelling. They can also be delivered through variousmedia and
channels, such as text, audio, video, multimedia, web, mobile, and social media. Several
researchers have examined the effects of persuasive messages in various domains. For
example, Goh et al. [2] investigated the influence of persuasive messages on students’
self-regulated learning (measured using theMotivated Strategies for Learning Question-
naire). The findings from the evaluation of the messages revealed that they improved
students’ self-regulated learning. Anagnostopoulou et al. [3] applied persuasive mes-
sages that exploit three PT strategies (suggestion, social comparison, self-monitoring)
and tailored them based on users’ persuadability profiles to influence them to change
their mobility behaviour and choose more sustainable options. The findings of the study
revealed instances of behaviour change.

Persuasive technology has beenwidely applied to influence people for specific goals.
In that respect, successful persuasive messaging interventions revealed their effective-
ness at motivating behaviour change. However, there is still a gap in knowledge on how
to employ the three persuasive strategies explored in this study in constructing persua-
sive messages for improving student engagement in education and learning contexts. To
advance research in this area, this study answers the following research questions:

RQ1: What types of persuasive messages could be applied to improve student
engagement? Do students perceive all the messages as being persuasive?

RQ2: Do the perceived persuasiveness factors, namely motivational, effective,
appropriate, and convincing, differ among messages employing various persuasive
strategies?

RQ3: Do the overall perceived persuasiveness of the messages differ among the
persuasive strategies?

Our findings advance existing knowledge in the area of persuasive messaging inter-
vention by offering the following main contributions. First, we constructed persuasive
messages based on three PT strategies: social comparison, commitment and consistency,
and self-monitoring. Second, we conducted a survey among university students to eval-
uate the messages in terms of perceived persuasiveness, using four factors. Third, we
compared the perceived persuasiveness of each message to determine whether messages
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differ in their persuasiveness. Finally, we evaluate the persuasiveness of messages in
each strategy and show that they differ significantly in their overall persuasiveness.

The rest of this paper is organized as follows: Sect. 2 provides related work. Section 3
describes the methodology of this study, including message construction, survey design,
data collection, and data analysis. Section 4 presents the results of this study, including
statistical analysis. Section 5 discusses the findings and their implications for persuasive
technology design and research. Section 6 suggests some directions for future work and
Sect. 7 presents the conclusion.

2 Related Work

In this section, we present a brief overview of the persuasive strategies and application
of persuasive messaging interventions.

2.1 Persuasive Strategies

Researchers have explored the impact of various persuasive strategies in different
domains [4, 5]; however, not all the strategies are relevant and applicable to the educa-
tion domain. In this paper, we focus on three PT strategies widely used and studied in
persuasive technology that are relevant and applicable to the education domain: social
comparison, commitment and consistency, and self-monitoring. The social compari-
son and self-monitoring strategies were selected from Oinas-Kukkonen’s twenty-eight
design principles [6], while commitment and consistency was selected from the eight
persuasive strategies developed by Cialdini [7].

Social comparison is a persuasive technology strategy that uses information about the
behaviour or performance of others to influence the target user [8]. Social comparison can
be classified into two types: upward and downward. Upward social comparison is when
the target user compares themselveswith otherswho are better or superior in some aspect.
Downward social comparison is when the target user compares themselves with others
who areworse or inferior in some aspect. Themainmechanismbehind social comparison
is social influence [9]. Social influence is the process by which the target user’s thoughts,
feelings, or actions are affected by the presence or actions of others. Social influence
can operate through different principles, such as conformity, compliance, obedience,
normative pressure, and information pressure. It can also trigger different psychological
processes in the target user, such as motivation, competition, cooperation, emulation,
and imitation.

Previous research has shown that a persuasive system that implemented social com-
parison as a visualization using assessment grades of students inspired them to improve
their engagement in learning activities [10]. Social comparison can be used to design
persuasivemessages that aim to change or reinforce the target user’s attitude or behaviour
toward a certain issue or action.

Commitment and consistency is a persuasive strategy that increases the target user’s
sense of obligation and responsibility to perform a behaviour [7]. Previous research has
revealed the effectiveness of commitment and consistency strategies in various domains.
For instance, Guéguen and Jacob [11] conducted experiments demonstrating how small
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initial commitments can lead to larger, more significant commitments over time, a phe-
nomenon known as the “foot-in-the-door” technique. In the environmental domain, stud-
ies by Katzev and Wang [12] have revealed that commitment strategy could provide
desired and lasting changes across a wide range of environmental behaviours. A per-
suasive message that reminds students of their commitment to education and learning
and the benefits of fulfilling it could reinforce their initial commitments to study and
succeed.

Self-monitoring as a strategy helps the target user track and evaluate their behaviour
and performance [6]. Self-monitoring can be based on various types of user data, such
as activity, time, location, and mood. It can use different methods and techniques to
collect and display user data, such as sensors, logs, messages, dashboards, and graphs.
The main mechanism behind self-monitoring is feedback. Feedback is the information
that the target user receives about their behaviour or performance concerning a goal or
a standard. Feedback can affect the target user’s awareness, motivation, and learning. It
can also affect the target user’s self-regulation, self-efficacy, and self-improvement. The
main effect of self-monitoring on persuasivemessages is that it can increase the perceived
persuasiveness of themessages by enhancing the goal setting and attainment of the target
user [13]. Goal setting is the process by which the target user specifies a desired outcome
or state. Goal attainment is the process by which the target user achieves or approaches
the desired outcome or state. Self-monitoring can increase goal setting by enabling the
target user to define and refine their goals based on their data. Self-monitoring can
increase goal attainment by enabling the target user to monitor and adjust their progress
and performance based on their data. It could improve learners’ awareness, motivation,
self-regulation, self-efficacy, and self-improvement for online learning. Research in the
domain of persuasive technology has demonstrated the potential of self-monitoring to
drive behavioural change [14, 15]. Mobile applications and wearable devices, such as
fitness trackers, use self-monitoring to encourage physical activity, healthier eating, and
other positive behaviours.

While these three persuasive strategies—social comparison, commitment and consis-
tency, and self-monitoring—have been explored in various contexts, their application and
effectiveness in the specific context of university students’ engagement and behaviours
remain relatively unexplored. This research aims to bridge this gap by investigating
how these strategies can be employed through persuasive messages to positively engage
and influence university students. By building upon and extending the existing body of
knowledge, this study provides insights into the persuasiveness of these strategies in the
education domain.

2.2 Persuasive Messages

One of the most compelling aspects of persuasive messages is their ability to shape opin-
ions, influence decisions, and evoke emotions. The messages are carefully constructed,
using language, visuals, and psychological techniques to appeal to the target audience’s
needs, desires, and values. They tap into the humanmind, fostering a sense of connection
and understanding between the sender and receiver, ultimately prompting the desired
response. In the advertising domain, persuasive messages are the driving force behind
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the success of countless brands. They create narratives that engage customers, form-
ing bonds and loyalty. Political campaigns rely on persuasive messages to sway voters,
employing strategies that tap into voters’ concerns and aspirations. In interpersonal rela-
tionships, persuasive messages can resolve conflicts, build trust, and motivate positive
change.

The success of persuasive messages centers on several key elements. First and fore-
most, they must be clear, concise, and tailored to the intended audience. Understanding
the audience’s values, beliefs, and emotions is fundamental to constructing a relevant
message. Moreover, credibility plays a vital role in the effectiveness of persuasive mes-
sages. When the sender is perceived as trustworthy and knowledgeable, the audience
is more likely to be influenced. Research has shown that persuasive message interven-
tions could be utilized to inspire people for a specific task. For example, Kaptein et al.
[16] in a study to reduce snacking tailored persuasive messages to participants based
on their susceptibility to persuasive strategies. The study reported a higher decrease in
snack consumption in the tailored group than in the randomized messages group. Hirsh
et al. [5] investigated the influence of persuasive messages in advertising and suggested
that adapting the messages to people’s personality traits has the potential to increase
the impact of the messages. The effect of persuasive messages in motivating drivers to
register for National Health Service Organ Donor was explored by Sallis et al. [17].
Persuasive messages were added to the prompt that drivers receive at the end of road tax
payment transactions online. The messages increased registration in the experimental
group than in the control.

In summary, persuasive messaging has gained popularity as a novel approach for
encouraging behaviour change. The effectiveness of many persuasive interventions
depends on the use of appropriate strategies for a specific user group and context.
Employing an unsuitable strategy can serve as a significant obstacle to change [16].
Thus, in this paper, we compare the persuasiveness of three strategies in the education
context to determine their suitability for students’ education and learning.

3 Study Design and Methods

Our studywas designed to offer insights about the ability of persuasivemessages employ-
ing three distinct strategies in motivating students to actively engage with the Learning
Management System (LMS) for their educational needs.

To achieve our research objectives, we first constructed sets of persuasive messages
for the three persuasive strategies that we selected. Second, we developed a survey
to evaluate the persuasiveness of the messages. We adopted the perceived persuasive-
ness scale for measuring the persuasiveness of messages. The scale is a 5-point Likert
scale [18] that measures the persuasiveness of messages based on four factors motiva-
tional, effective, appropriate, and convincing. Third, university students taking a course
that used LMS for course content were recruited for this study. A total of 48 students
participated in this study.
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3.1 Persuasive Message Creation

We constructed 18 messages aimed to promote student engagement with learning activ-
ities. Six messages were constructed to reflect social comparison, 7 messages employed
commitment and consistency, and 5 messages employed self-monitoring. The construc-
tion of the messages closely imitates how the strategies were operationalized in persua-
sive systems and messages in the literature [3, 18, 19] and they relate to the learning
context. The message content and format varied according to the assigned strategy. The
messages are shown in Table 1.

The messages are aimed to influence the students’ learning behaviours, such as 1)
logging in to the LMS regularly and checking the course updates, announcements, and
feedback; 2) accessing and studying the course materials, resources, and multimedia
content; 3) completing the course assignments, quizzes, and exams on time and with
quality; 4) participating in course lab sessions, discussion forums, and chats with peers
and instructors; and 5) reviewing course progress and grades.

Table 1. Persuasive Messages grouped according to PT Strategies

Category Messages Persuasiveness Mean

Social Comparison 70% of your peers in this course
performed more learning activities than
you this week to improve their
programming skills and academic
performance

2.80

Unlock your full potential for this
course! 80% of the high-achieving
classmates actively engage with
learning contents, lab sessions, and
assignments to stay ahead in their
studies

4.12

This week many of your peers
increased their interaction with course
materials and discussion forums to gain
a deeper comprehension of the subject
matter

2.81

The top 10% of your peers with
excellent grades interact and engage
with course materials and discussion
forums on this platform regularly.
Increase your interaction with course
materials and discussion forums to
enhance your knowledge and grade

3.69

(continued)
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Table 1. (continued)

Category Messages Persuasiveness Mean

See how your peers are excelling
academically (getting 90% and above
in assignments) by actively engaging
with course materials, lab sessions, and
discussion forums. You can catch up
with them by increasing your
engagement with learning activities

2.36

Your frequency of access to this course
materials, lab sessions, and discussion
forum is below the class average.
Increasing your access and engagement
with the materials will greatly enhance
your knowledge and grade

2.09

Commitment and Consistency By registering for this course, you have
committed to improving your
knowledge and skills in programming,
so you should devote reasonable time
every week to study for this course and
perform your assignments

2.14

Based on your activities on U-cursor, it
appears that you were not very
committed to this course. Increasing
your engagement with this course
materials, hands-on lab sessions, and
assignments will help you to improve
your programming skills and academic
performance

3.47

As you want to perform well in this
course, you should show your
commitment by accessing and studying
your course materials and starting to
work on your assignments early on
rather than scrambling at the last minute

3.10

By embracing this platform’s course
materials, assessments, and discussions,
you can actively participate in your
learning journey, resulting in higher
grades and a well-rounded
understanding of the subject matter

4.12

(continued)
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Table 1. (continued)

Category Messages Persuasiveness Mean

While merely attending classes may
yield average results, utilizing the
platform’s tools and activities
empowers you to take charge of your
education, deepen your understanding,
and ultimately achieve remarkable
academic achievements

3.22

Your activities on this platform are
investments in your future success. By
embracing the platform’s opportunities
for discussion, practice, and additional
learning materials, you will be able to
bridge any knowledge gaps and elevate
your performance to new heights

4.34

Do not settle for mediocre grades when
you can unlock your full potential. By
dedicating time to explore the course
materials, discussion forum, and
hands-on lab sessions for this course,
you can supplement your classroom
learning, reinforce key concepts, and
significantly boost your academic
performance

2.79

Self-Monitoring We noticed that your activities for this
course dropped since the previous
week. By dedicating time to explore the
course materials, the discussion forum,
and the hands-on lab sessions for this
course, you can enhance your
understanding, improve your grades,
and develop valuable skills that will set
you apart from your peers

3.61

Your average activity level for this
course is low. Utilize more course
materials on this platform and engage
in discussion forums and hands-on lab
sessions to enhance your understanding
and grades

2.53

(continued)
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Table 1. (continued)

Category Messages Persuasiveness Mean

Think of your grades as a reflection of
your past efforts. By improving your
learning activities for this course, you
will be able to bridge any knowledge
gaps and elevate your performance to
new heights

4.25

You are doing great! Remember, each
slight increase in engagement with your
learning activities brings you closer to
bridging any knowledge gaps and
elevating your performance

4.58

Remember, every assignment
completed, every concept grasped, and
every challenge overcome is a
testament to your dedication and
resilience. Keep going!”

4.64

3.2 Participants Recruitment

Our study received ethics approval from the University of Chile and the University
of Saskatchewan ethics board. Forty-eight participants who used LMS for a course
were recruited from the University of Chile. Our participants were at least 18 years
old at the time of data collection; 12 were female (25%), 30 were male (62.5%) and
other genders were 6 (12.5%). The average age of the participants is 19.6 years. The
participants did not receive any compensation for participation. The persuasivemessages
were translated and validated in Spanish by experts to ensure that they conveyed the
desired meanings. An online survey about the messages was created on a LMS and
the participants were asked to rate the 18 messages based on their ability to encourage
them to engage in their learning content on the LMS. After reading each message, the
participants answered a questionnaire that measured their perceived persuasiveness of
the message. The participants rated the perceived persuasiveness of the messages on
four factors: motivational, effective, appropriate, and convincing.

3.3 Analysis

The main aims of this study are: 1) to examine the persuasiveness of the messages in
encouraging students to improve their engagement in learning activities. 2) to investigate
whether overall persuasiveness and the factors differ amongmessages employing various
persuasive strategies. To achieve this,we usedwell-known statistical analysis techniques.
The various steps taken to analyze our data include:

1. Wecalculated the average score for the four factors of persuasiveness for eachmessage
and we computed the overall persuasiveness based on the average of the four factors.
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2. We evaluate the overall and constructs level reliability of our data using the intraclass
correlation coefficient (ICC) [20, 21] to validate the messages.

3. To evaluate and compare the persuasiveness of the messages based on strategies,
we ran the Friedman test, which is the non-parametric counterpart to the repeated-
measures ANOVA (Analysis of Variance); i.e., it is commonly used in perform-
ing repeated-measures ANOVA on the same samples when data is not normally
distributed. The latter was verified through the Shapiro-Wilk test.

4 Results

Based on themean of persuasiveness factors, the last twomessages on the social compar-
ison and the first message on commitment and consistency were removed from further
analysis as their average rating for each factor was below the median of the rating scale.
Thus, a total of 15 messages qualified for further analysis. Figure 1 presents the overall
persuasiveness of messages according to the strategies employed in their design. The
intraclass correlation coefficient (ICC) was computed in SPSS using a 95% confidence
interval, average measure, absolute agreement, and 2-way random-effects model with
48 raters across 15 messages. An excellent degree of reliability was found for overall
and construct-level persuasiveness measurements. The average measure ICC for overall
persuasiveness was .988 with a 95% confidence interval from .983 to .992 (F(59,2773)
= 82.50, p < .0001). For constructs’ reliability, the average measure of ICC for the
persuasiveness of social comparison messages was .983 with a 95% confidence interval
from .968 to 993 (F(15, 705) = 58.81, p < .001). The average measure of ICC for the
persuasiveness of commitment and consistency messages was .981 with a 95% confi-
dence interval from .969 to 991 (F(23, 1081) = 57.91, p< .001). The average measure of
ICC for the persuasiveness of self-monitoring messages was .992 with a 95% confidence
interval from .986 to 996 (F(19, 893) = 121.66, p < .001).

Fig. 1. Overall Persuasiveness of the Messages according to PT Strategies
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Comparing the Persuasiveness of Messages Based on the Strategies. The results of
the Friedman test show significantmain effects of strategy type (χ2(2)= 78.0, p< .0001)
for overall persuasiveness. This means that there are significant differences between the
messages in the three strategies with respect to persuasiveness. The results of Post hoc
analysis with Wilcoxon signed-rank tests and Bonferroni correction for multiple com-
parisons revealed significant differences in messages in terms of overall persuasiveness
between Commitment and Social Comparison (p < .043), Self-Monitoring and Social
Comparison (p < .0001), and Self-Monitoring and Commitment (p < .0001).

Furthermore, Friedman test results reveal significant main effects of strategy type
for the persuasiveness factors of the messages:

• motivational (χ2(2) = 62.09, p < .001), effective (χ2(2) = 31.70, p < .001),
appropriate (χ2(2) = 61.46, p < .001), and convincing (χ2(2) = 73.08, p < .001).

• The results of a post-hoc test using Bonferroni correction for multiple comparisons
revealed significant differences in messages in terms of persuasiveness factor moti-
vational between Self-Monitoring and Social Comparison (p < .0001), and Self-
Monitoring and Commitment (p< .0001). The difference between Commitment and
Social Comparison was not significant (p = .248).

• For the effective factor, significant differences exist between Self-Monitoring and
Social Comparison (p< .0001), and Self-Monitoring and Commitment (p< .0001).
The difference between Commitment and Social Comparison was not significant (p
= .1000).

• For the appropriate factor, significant differences exist between Self-Monitoring and
Social Comparison (p< .0001), and Self-Monitoring and Commitment (p< .0001).
The difference between Commitment and Social Comparison was not significant (p
= .554).

• For the Convincing factor, significant differences exist between Self-Monitoring and
Social Comparison (p< .0001), Self-Monitoring and Commitment (p< .0001), and
Commitment and Social Comparison (p < .0001).

5 Discussion

In this section, we discuss the implications of our findings, the effectiveness of each
strategy, and the broader significance of our research in promoting positive behavioural
changes among students.Our studyfindings reveal the effectiveness of the three strategies
in influencing university students’ engagement. The findings showed that the difference
in the persuasiveness of themessages among the strategies is statistically significant. The
messages based on self-monitoring are the most persuasive, followed by commitment
and then social comparison. This means that empowering students with tracking of their
academic progress, time management, and goal achievement, will play a crucial role
in improving their motivation levels. This is consistent with some previous studies that
found self-monitoring to be an effective persuasive strategy for behaviour change [14,
15]. The personalized nature of self-monitoring will allow students to set and track their
own goals, which in turn, will boost their self-determination and intrinsic motivation.

Commitment and consistency emerged as another impressive persuasive strategy.
Our finding is in line with prior research demonstrating the efficacy of commitment and
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consistency principles in fostering behavioural change [18]. Commitment and consis-
tency increases users’ sense of obligation and responsibility to perform the behaviour,
which can strengthen their motivation and accountability. Messages encouraging stu-
dents to make small initial commitments to their academic goals and consistently adhere
to them demonstrated a remarkable impact. This suggests that by nurturing a sense of
personal commitment, students weremore likely to persist in their academic endeavours.

The persuasiveness of PT strategies is context and domain-dependent. Previous stud-
ies have shown that social comparison canbe apowerful persuasive strategy for behaviour
change [22, 23]. The social comparisonmessages that demonstrate learning progress and
academic success of peers or embrace desirable study habits are particularly effective in
motivating students to improve their engagement. However, the social comparison mes-
sages used in this study are the least persuasive among the three strategies. One possible
explanation for this finding is that students will be more inspired by self-monitoring and
commitment messages than social comparison messages.

The findings of this research hold several practical implications for educational
institutions and those seeking to influence student behaviour positively. By tailoring
persuasive messages to incorporate self-monitoring, commitment and consistency, and
social comparison, educators and policymakers can developmore effective interventions
to enhance student engagement and academic performance. The implications of these
findings for persuasive technology design and research are as follows:

1. Persuasive technology designers should consider using self-monitoring and commit-
ment strategies to design persuasive messages that aim to improve students’ online
learning outcomes. These strategies can increase students’ motivation, feedback,
accountability, and self-regulation for online learning.

2. Persuasive technology researchers should further investigate the factors that influence
the effectiveness of different persuasive technology strategies on different target audi-
ences and behaviours. These factors may include users’ characteristics, preferences,
goals, contexts, and emotions.

This research demonstrated that persuasive messages can be a useful and effective
approach for improving students’ engagement in online learning. By using these three
strategies to design and deliver persuasive messages, online learning systems can influ-
ence students’ attitudes and behaviours toward education and learning. This can enhance
students’motivation, engagement, interaction, feedback, and support for online learning.
This can also improve students’ learning processes and outcomes regarding knowledge
acquisition, skill development, and performance achievement.

6 Limitations

One limitation of our research study is that it was not conducted over a long-term
period, preventing a comprehensive assessment of the effects of the persuasive strate-
gies employed. Additionally, the selection of participants from a highly specific pool
introduces a limitation as it may limit the generalizability of our findings to broader pop-
ulations. Another limitation is the relatively small sample size of 48 participants, which
may constrain the statistical power and generalizability of our results. Furthermore,
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our study relies on self-reported measures of persuasiveness for motivational appeal,
which may not fully capture the actual effectiveness of the messages, particularly when
implemented over an extended period within persuasive education systems. Although
self-reporting is the predominant way of assessing persuasiveness, we acknowledge
that the actual persuasiveness of the messages may differ when used for a long time in
persuasive education systems.

7 Future Work

The main directions for future work are:

1. Designing and conducting experiments with the messages to determine their real
effectiveness.

2. Conducting more studies with larger and more diverse samples of online learners
from different institutions and contexts. This can increase the external validity and
generalizability of the findings.

3. Exploring different message delivery modes (e.g., audio, video, multimedia) and
different message exposure times (e.g., multiple times, spaced intervals). This can
examine the optimal design and timing of the messages for different target audiences
and behaviours.

4. Using more subjective and qualitative measures of online learning outcomes (e.g.
interaction logs and physiological measures). This can capture the students’ per-
ceptions, experiences, and reflections on their online learning behaviours and
outcomes.

8 Conclusion

This research constructed and evaluated persuasive messages based on three persua-
sive technology strategies: social comparison, commitment and consistency, and self-
monitoring. The target behaviour was to improve students’ engagement with their learn-
ing management system (LMS). The research conducted a survey among university
students to measure their perceived persuasiveness in terms of four factors: motiva-
tional, effective, appropriate, and convincing. The research found that some of the mes-
sages could effectively promote students’ engagement in education and learning. Also,
the findings from the research revealed that self-monitoring was the most persuasive
strategy, followed by commitment and consistency, and then social comparison. The
messages could be adapted to create a significant positive effect on students’ attitudes
and intentions to adopt target behaviour.
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Abstract. The rapid advancement of digital technologies has reshaped
educational environments, presenting both opportunities and challenges
in enhancing student engagement and communication. Despite these
technological strides, a critical gap remains in facilitating effective
and respectful discourse, escalated by the rise of toxic discourse. This
paper introduces the Receptivity, a novel educational technology concept
designed to bridge this gap through an innovative, color-coded feedback
system that allows teachers and students to communicate emotional and
cognitive states in real time, fostering a respectful and inclusive con-
versational climate. Grounded in human-centered design principles and
the concept of reflexivity in student engagement, Receptivity emphasizes
the importance of immediate, non-intrusive feedback mechanisms. Our
methodology employs an iterative development process, incorporating
direct user engagement and expert consultations to refine the app’s func-
tionalities. Preliminary testing indicates that Receptivity enhances the
quality of educational discussions, promoting a more adaptive learning
environment. This work contributes to the discourse on digital behav-
ior change interventions and student engagement, offering a fresh per-
spective on leveraging technology to improve educational outcomes. The
paper discusses the implications of Receptivity for teaching and learning
practices, highlighting its potential to transform educational experiences
through enhanced communication and reflexivity.

Keywords: Human-Centered Design · Adaptive Instruction ·
Real-Time Feedback · Digital Discourse · Inclusive Communication ·
Student Engagement

1 Introduction

In the Digital age, educational technologies have evolved to address challenges
in learning environments, yet gaps in promoting effective and respectful com-
munication persist. The Receptivity app emerges as a novel solution, specifically
designed to bridge these gaps by introducing an innovative approach to feedback
and engagement in educational settings. Unlike existing technologies that pas-
sively facilitate communication, Receptivity actively empowers users—teachers
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and students alike—to express their emotional and cognitive states through a
simple, yet powerful, color-coded signaling system. This system addresses the
urgent need for immediate, non-intrusive feedback mechanisms.

The rise of toxic discourse, both online and offline, presents a significant
challenge in educational contexts, often leading to confrontational exchanges
that undermine the quality of discussion. This issue is particularly detrimental
where respectful dialogue is essential for effective learning and teaching. Rec-
ognizing this, our research focuses on mitigating the negative impacts of such
toxic discourse, promoting a healthier conversational climate that is conducive
to learning. The Receptivity app’s design is informed by the gaps identified in
current educational technologies, offering a real-time feedback system that is
absent elsewhere.

Parallel to our focus on mitigating toxic discourse in educational environ-
ments, Warner et al. [17] investigate the efficacy of proactive content modera-
tion through a mobile keyboard application across different communication plat-
forms. Their study highlights the impact of design decisions—timing, friction,
and AI model presentation—on user engagement and moderation effectiveness.
This work emphasizes the potential of integrated digital tools not only to reduce
toxicity but also to serve as educational instruments by prompting users to reflect
on their communication choices.

The Receptivity app not only aims to reduce toxicity but also serves as an
educational tool, encouraging users to reflect on their communication choices,
thereby enhancing the inclusivity and productivity of discussions. This is sig-
nificant as it fosters respectful interactions, reduces conflict, and encourages
meaningful participation across a diverse spectrum of users, including those from
minority communities who may be disproportionately affected by toxic discourse.

This work contributes to the existing body of research by providing a prac-
tical application of theories in student engagement and digital communication
enhancement. It extends the concept of ‘intentional causality’ in learning, where
students actively shape their engagement through the app, and addresses a gap
in current educational technology by presenting a novel, real-time feedback sys-
tem that enhances the reflexivity of learners. By aligning with recent advances
in digital behavior change interventions and the human-centered design app-
roach, Receptivity offers a fresh perspective on fostering engagement through
technology in educational settings.

2 Related Work

In the realm of educational research, student engagement has long been acknowl-
edged as a pivotal element in determining both the effectiveness of teaching
methodologies and the depth of student learning. Traditional views of engage-
ment have primarily centered on the visible, interactive aspects of the learning
environment, emphasizing collaborative classroom dynamics as key drivers of
student involvement [10]. This perspective, while invaluable, often overlooks the
subtle, internal cognitive mechanisms that influence a student’s engagement tra-
jectory.
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Recent shifts in educational theory, however, have brought a newfound focus
on the concept of reflexivity in student engagement. This shift, largely influ-
enced by the work of Peter Kahn [9], pivots from an external, interaction-based
view to an introspective, self-driven perspective. Kahn’s concept of “intentional
causality” posits that true engagement is a product of a student’s deliberate
and conscious efforts to align their personal cognitive processes with their edu-
cational environment. Applying Margaret Archer’s theories of reflexivity, Kahn
is optimistic about measures that cultivate the right kind of student “self-talk,”
which encourages students to engage in a mental dialogue that positively influ-
ences their learning behaviors [1,9,18]. This theoretical evolution underscores
the importance of internal cognitive and emotional processes in shaping student
engagement, thus offering a more holistic understanding of what it means to be
truly engaged in learning.

Building upon the concept of reflexivity in student engagement, the work
of Rivera Muñoz et al. [13] introduces a compelling exploration into adaptive
learning technologies. They demonstrate the transformative potential of these
technologies for personalizing the educational journey in higher education. By
adapting learning paths, resources, and activities to meet the individual needs
and preferences of students, adaptive learning systems fill a crucial gap in pro-
viding immediate, adaptive feedback mechanisms. This personalization not only
caters to the diverse learning styles and paces of students but also aligns with the
introspective, self-driven perspective of student engagement, further enhancing
the quality of learning outcomes.

The integration of digital technologies into educational settings marks a peda-
gogical revolution, paralleling theoretical advancements in educational research.
The exploration of wearable technologies, such as those studied by Bauer et
al. [3], and mobile applications designed to enhance cognitive skills, as shown
by Asiri et al. [2], underscore the capacity of technology to create adaptive, per-
sonalized learning environments. This technological progression facilitates not
only enhanced learning outcomes but also improved emotional well-being among
learners, as indicated by Chen et al. [5] through the use of biometric data track-
ing.

Recent studies also emphasize the importance of personalizing feedback
mechanisms in educational technologies. For instance, research exploring feed-
back strategies in the context of fraction arithmetic tasks has revealed that
learner characteristics, including gender, knowledge level, and motivation, sig-
nificantly influence how students respond to different types of feedback [14].
This finding supports the development of adaptive educational technologies that
consider learner profiles to optimize engagement and learning outcomes.

Building on this foundation, the significance of addressing mental health
through technological interventions becomes apparent. Research on mobile tech-
nologies for supporting mental health in youths [12] emphasizes the potential
of these applications to improve access to mental health resources, particularly
for underrepresented groups. This aligns with the Receptivity app’s objectives,
demonstrating the importance of incorporating emotional and cognitive con-
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siderations into educational technology to promote a healthier, more inclusive
conversational climate.

Similarly, the utilization of peer-to-peer feedback mechanisms in residency
programs shows the value of incorporating diverse feedback sources to enhance
learning outcomes. These studies reveal that peer feedback, despite potential
barriers such as insufficient training and perceived negative consequences, pro-
vides unique and valuable insights into the learning process, complementing
traditional assessment methods [6].

Additionally, the impact of nonverbal communication on educational expe-
riences further enriches our understanding of engagement and learning environ-
ments. Studies highlight how nonverbal cues, from teacher gestures to the phys-
ical setup of classrooms, significantly influence student perceptions and engage-
ment [4,8]. Integrating insights from this research into educational practices can
substantially enhance teacher-student interactions, making the case for a mul-
tifaceted approach to education that leverages both digital technology and an
understanding of nonverbal communication to foster more effective and engaging
learning experiences.

The research by Evmenova et al. [7] on designing a smartwatch application
for young adults with intellectual and developmental disabilities (IDD) presents
an innovative approach to fostering inclusivity in post-secondary education. By
focusing on wearable technology, the study not only addresses the specific needs
of students with IDD but also enhances their learning participation and inde-
pendence. This aligns with the broader educational goal of utilizing technology
to create adaptive and responsive learning environments, thereby supporting
all students’ educational experiences effectively. This integration emphasizes the
critical role of technology in enhancing educational inclusivity and supporting
diverse learner needs.

Our paper seeks to contribute to this innovative intersection of reflexivity-
focused educational theory and digital technology. We present a detailed explo-
ration of the engagement effects of a novel technological intervention—a Color-
Coded Non-Verbal Feedback (CNVF) system. This system is designed to elicit
and incorporate students’ reflexive responses concerning their comprehension
levels and preferences in lecture pacing and content delivery. By doing so, we aim
to operationalize the theoretical concept of reflexivity in a practical, technology-
driven context.

This research not only aims to enrich the theoretical discourse on student
engagement but also endeavors to empirically demonstrate the transformative
potential of integrating reflexive pedagogical approaches with cutting-edge dig-
ital tools. Through this, the study aspires to contribute significantly to the
evolving narrative of student engagement in the digital age, offering insights
and practical implications for educators, technologists, and theorists alike.
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3 Methodology

3.1 Design Principles

The development of Receptivity was deeply informed by human-centered design
principles, a framework that emphasizes the importance of tailoring technological
solutions to the needs, capabilities, and contexts of end-users [11]. In the case of
Receptivity, the primary users are teachers and students, groups that demand
a tool that not only facilitates but also enriches the quality of conversations
in digital and educational environments. The human-centered design approach
adopted in our project guides every aspect of application development, from
conceptualization to deployment.

We followed an iterative development process that involved direct engage-
ment with end-users to ensure that the app’s features met their actual needs.
Our initial conceptualization was followed by prototyping, and we continuously
sought user feedback and expert consultations to inform each iteration. This
process was vital in refining the app’s color-coded feedback system, which is a
distinctive feature designed to enable participants to express their readiness to
engage in discussions, thereby promoting a more inclusive conversation environ-
ment.

At the core of our design process was an application that transcends the mere
functionality of facilitating discussions, aiming instead to enhance the inclusivity
and productivity of these conversations. This goal was pursued by closely adher-
ing to the design principles articulated by Donald Norman, which advocate for
an empathetic and user-oriented approach to technology development [15]. How-
ever, we ensured that each aspect of Receptivity supported a practical purpose
in addition to enriching the user experience in meaningful ways, rather than just
incorporating these principles into a checklist.

To address the real-world challenges faced by users in engaging in respectful
and constructive dialogue, especially on contentious topics, we focused on fea-
tures that address the principle of usefulness. The app’s color-coded signaling
system, for example, was designed to meet the practical need for a simple yet
effective way for participants to express their readiness to engage in various levels
of discourse, thus facilitating a more inclusive environment for conversation.

As part of the overall goal of ensuring user inclusion, both usability and
accessibility were considered equally important. Recognizing the diversity of our
user base in terms of age, technological proficiency, and physical abilities, we
prioritized an intuitive interface design. This was achieved through iterative
testing and refinement, ensuring that navigation and interaction with the app
remain straightforward for all users, including those with disabilities. The design
process was imbued with an understanding that technology should adapt to its
users, not the other way around.

The desirability of the app was also a key consideration, reflecting our belief
that engagement with technology is significantly influenced by the user’s emo-
tional response to it [16]. Investing in a visually pleasing design and ensuring that
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the user experience is emotionally satisfying will foster a positive relationship
between the app and its users, encouraging sustained engagement.

In ensuring the findability of features within the app, we addressed the need
for an interface that allows users to quickly locate and use the functionalities
they need without frustration or confusion. This aspect of design is crucial for
maintaining the flow of conversation and ensuring that the technology serves as
a seamless facilitator of discourse.

In the development of Receptivity, we ensured the application’s credibility
and trustworthiness. Given the sensitivity of privacy and data security, our app-
roach was to engineer an application that inherently respects user privacy and
autonomy. Central to achieving this was the decision to minimize the collection
of personal data. Users are only required to choose a username, a process that
empowers them to control their identity within the app. To further enhance the
privacy of our users, we assign a unique user ID to each account, an approach
that preserves user anonymity while enabling us to maintain the integrity of the
app’s functionality.

Understanding the potential need for users to participate in discussions
without revealing their identity, we incorporated a feature that allows users
to anonymize their responses. This functionality is pivotal in providing a safe
space for open and honest signaling, particularly on sensitive or divisive topics.
By design, this approach places Receptivity at the forefront of privacy-conscious
applications, ensuring that the app is a trusted tool for fostering respectful and
inclusive conversations.

Our application was designed with a human-centered approach to not only
achieve its objectives but also align with users’ needs and values.

3.2 Development Process

The development of Receptivity was characterized by an iterative, human-
centered approach, heavily reliant on continuous engagement with teachers and
students. This process was not linear but cyclical, allowing for constant refine-
ments based on users’ feedback and expert consultations. Each stage of devel-
opment served as a foundation for the next, ensuring that the application not
only met its intended goals but also addressed the needs of its users in real-world
scenarios.

The Receptivity project began with a conceptualization phase, where the
idea originated from a recognized need to improve the quality of discourse in
educational settings. This phase involved literature reviews, and preliminary
discussions with educators and students to identify the main challenges and
opportunities for enhancing classroom and digital discussions. The goal was to
gather a broad spectrum of perspectives on the existing discourse dynamics and
the role technology could play in facilitating more respectful and constructive
interactions. Through this exploratory process, we identified the critical need
for a simple, intuitive mechanism that would allow participants to signal their
readiness to engage in discussions at varying levels of intensity and sensitivity
(Fig. 1).
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Fig. 1. Early-stage interface of the Receptivity app, depicting the initial design of the
Host and Audience Views with the color-coded feedback mechanism.

With a clear understanding of our users’ needs, we moved into the prototyp-
ing phase. Early versions of Receptivity were developed, focusing on the core
functionality of the color-coded signaling system. These prototypes were subject
to internal testing, where the project team could interact with the app. This
stage was crucial for identifying any technical issues early on and ensuring that
the basic concept was sound and functional.

As prototypes became more refined, we initiated a series of feedback sessions
involving teachers and students. These were not one-off meetings but part of a
continuous feedback loop that allowed us to gather insights and suggestions for
improvements directly from those who would ultimately use the app. Teachers
provided invaluable input on how the app could be integrated into classroom set-
tings to enhance engagement and inclusivity and the students offered perspective
on the usability of the app and its potential to ease discussions in class. This
feedback was instrumental in refining the app’s features and interface, ensuring
that Receptivity was both effective in its objectives and user-friendly.

Parallel to students’ and teachers’ feedback sessions, we engaged in expert
consultations. These collaborations involved specialists in education, technology,
and human-computer interaction. The experts contributed their knowledge and
experience, challenging our assumptions and helping us to navigate the complex
landscape of digital communication tools. This collaborative effort was vital in
ensuring that Receptivity’s development was not only informed by its immediate
users but also grounded in the latest research and best practices in technology
design and educational theory.

The development process of Receptivity was inherently iterative. Each round
of feedback and testing led to refinements and sometimes significant changes to
the application’s design and functionality. This iterative approach allowed us to
adapt flexibly to new insights and challenges as they arose, ensuring that the
final product was not only technologically robust but also resonant with the
needs and expectations of its users.
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3.3 Testing Protocol

The Receptivity app’s development was characterized by a structured testing
protocol that aimed to evaluate its functionality, usability, and educational
impact. This protocol was designed as a multi-phase approach, incorporating
both alpha and beta testing cycles, to systematically identify areas for improve-
ment and ensure the app’s effectiveness in enhancing communication within
educational settings. Despite the comprehensive nature of these initial testing
phases, plans for a more detailed user study are in place to further explore the
app’s contributions to educational technology.

The alpha testing phase served as the app’s first line of scrutiny, focusing pri-
marily on internal evaluations with the development team and selected experts
in technology and education. This phase aimed to identify technical issues, bugs,
and potential usability challenges. Feedback obtained during alpha testing was
critical for making significant refinements to Receptivity’s design and function-
ality. Key areas of focus included the responsiveness of the color-coded feedback
system, the app’s stability across different devices, and the intuitiveness of the
user interface. Modifications made in response to alpha testing feedback set the
foundation for the subsequent beta testing phase.

Beta testing expanded the evaluation of Receptivity to include a broader
and more diverse audience of end-users, specifically educators and students. This
phase was instrumental in assessing the app’s real-world usability and its impact
on educational communication. Methods used during beta testing included dis-
tributed test releases to select classrooms, structured feedback sessions, and
usability surveys. The feedback gathered from these sessions was invaluable for
identifying user-specific needs and preferences, enabling further refinement of
the app’s interface and features. Beta testing also provided initial insights into
how the color-coded feedback mechanism facilitated classroom interaction and
engagement.

Alongside user testing, the Receptivity development team engaged with inter-
disciplinary experts, including scholars in mobile app development, communi-
cation, cultural studies, and educational technology. This expert feedback was
solicited through a combination of structured interviews, demo sessions, and
review meetings. Experts provided critical assessments of the app’s design coher-
ence, educational value, and technological innovation. Their contributions were
pivotal in validating the app’s conceptual underpinnings and ensuring that it
adhered to high standards of academic and technological rigor.

The insights garnered from the alpha and beta testing phases, complemented
by expert feedback, have laid a solid foundation for the next stages of Recep-
tivity’s development. Plans are underway for a comprehensive user study that
will employ both quantitative and qualitative research methods to evaluate the
app’s effectiveness more systematically. This study will aim to measure the app’s
impact on student engagement, classroom dynamics, and educational outcomes.
The development team intends to use the findings from this study to make
data-driven improvements to Receptivity, ensuring that it continues to meet the
evolving needs of its users in educational settings.
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4 Implementation

4.1 App Overview

The Receptivity application presents a user-centric design aimed at enhanc-
ing interaction and engagement in educational settings. The interface showcases
a color-coded feedback system, central to its design, which allows students to
instantly communicate their comprehension and engagement levels with educa-
tors. The system uses three colors: red to signal a need to pause for questions,
yellow for a request to repeat or slow down the content, and green to indicate
that the audience is ready to proceed. This design translates complex emotional
and cognitive feedback into a simple, universally understandable format.

4.2 Host and Audience Interface

The application features two main views: the Host view for educators and the
Audience view for students.

In the Host view, educators can see aggregate feedback from the audience,
which is quantified in real-time percentages. This aids educators in making data-
driven decisions about lecture pacing and content depth. Educators can also
monitor a list of feedback from their audience, displayed as a list with color-coded
indicators against each participant’s name. This feedback, represented by red,
yellow, and green colors, reflects the students’ requests to pause for questions,
slow down, or proceed with the lecture, respectively. The Host view also provides
the option to switch to ‘Discussion Mode’ or ‘Poll Feedback’, adding layers of
interaction within a teaching session.

The Audience view allows individual students to provide their feedback,
which contributes to the collective input displayed on the Host’s screen. The
interface is intentionally minimalistic to ensure clarity and ease of use during
active engagement. Students participate in the feedback process by selecting
their responses, which are then aggregated in the Host view and Audience view.
Students can also anonymize their responses. This ensures a safe space for stu-
dents to express their needs without the pressure of public identification. The
option to anonymize responses even further safeguards students’ privacy and
encourages genuine feedback.

Receptivity enhances classroom engagement by offering features such as a
simplified entry process for users with a straightforward interface for joining or
hosting sessions via only session IDs and a username of their choice. Another
feature worth mentioning is the participant list. In both Host and Audience
views, this list provides a transparent overview of the class’s feedback in real-
time, fostering a sense of community and collective learning. Furthermore, users
can Hide/Unhide Group Feedback which allows them to either view the group’s
overall feedback or focus on individual inputs. This option not only caters to
diverse instructional styles and preferences but also empowers students to pro-
vide their feedback independently, without the influence or pressure of seeing
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others’ responses. This encourages genuine individual input, free from potential
bias or conformity, and promotes an environment where every student’s voice
can be heard and considered on its merit (Fig. 2).

Fig. 2. Receptivity Application Interface showcasing the Lecture Mode of Host and
Audience Views with real-time color-coded feedback system.

4.3 Technical Details and Accessibility

From a technical standpoint, Receptivity has been meticulously engineered to
be both responsive and intuitive. The app’s infrastructure supports real-time
data collection and analysis, ensuring immediate reflection of feedback in the
lecture dynamic. Accessibility considerations have been paramount; the app’s
contrast and color choices have been optimized for visibility, including for those
with color vision deficiencies. Furthermore, the touch targets are designed to
be easily selectable, catering to users with varied motor skills, and the app’s
functionality remains consistent across different devices and screen sizes.

5 Discussion

This study presents the Receptivity as an innovative concept designed to enhance
communication and engagement in educational settings through a novel color-
coded feedback system. The development and implementation of Receptivity
app were informed by a human-centered design approach, focusing on address-
ing the challenges of toxic discourse and the need for immediate, non-intrusive
feedback mechanisms in educational environments. The iterative design process,
grounded in direct engagement with teachers and students, ensured that the
app was responsive to the real-world needs of its users, leading to the creation
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of a tool that not only facilitates but actively enriches the quality of educational
discussions.

Receptivity addresses a significant gap in current educational technologies by
offering a real-time feedback system that empowers users to express their emo-
tional and cognitive states effectively. This system directly tackles the issues of
toxic discourse and the lack of immediate feedback mechanisms, which have been
identified as substantial barriers to effective communication in educational set-
tings. By enabling participants to signal their readiness to engage in discussions
at various levels, Receptivity fosters a more inclusive and respectful conversa-
tional climate. This approach aligns with the findings of Warner et al. [17], who
highlighted the importance of design decisions in enhancing user engagement
and moderation effectiveness.

The theoretical foundation of Receptivity is built upon the concept of reflex-
ivity in student engagement, which suggests that true engagement arises from
a student’s intentional alignment of their cognitive processes with their educa-
tional environment. The color-coded feedback system operationalizes this con-
cept by allowing students to actively shape their engagement, promoting a form
of “intentional causality” in learning. This mechanism not only facilitates a more
adaptive learning environment but also encourages students to reflect on their
own learning processes, thereby deepening their engagement and participation
in the educational discourse.

The implementation of Receptivity in educational settings has significant
implications for teaching and learning practices. By providing educators with
real-time, aggregate feedback on student comprehension and engagement lev-
els, the app enables more informed decision-making regarding lecture pacing
and content depth. This dynamic interaction between teachers and students can
lead to more tailored and effective educational experiences, ultimately enhancing
learning outcomes. Moreover, the ability of students to anonymize their responses
encourages honest and open feedback, contributing to a safer and more inclusive
learning environment.

While the development and initial testing of Receptivity have shown promis-
ing results, there are limitations to the current study that must be acknowledged.
The testing protocol, though comprehensive, has yet to include a structured user
study that quantitatively and qualitatively assesses the app’s impact on educa-
tional outcomes. Future research should focus on conducting such a study to
provide empirical evidence of Receptivity’s effectiveness in enhancing student
engagement and educational communication. Additionally, exploring the app’s
scalability and adaptability across different educational contexts and cultures
would offer valuable insights into its broader applicability and potential for global
impact.

6 Conclusion

Receptivity represents a significant advancement in the integration of digital
technologies in education, offering a practical solution to the challenges of
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engagement and communication in learning environments. By leveraging the
principles of human-centered design and the theoretical framework of reflexivity,
the app holds the potential to transform educational practices, fostering envi-
ronments that are more inclusive, respectful, and conducive to learning. As the
educational landscape continues to evolve, tools like Receptivity will play a cru-
cial role in shaping the future of student engagement and participation in the
digital age.
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Abstract. Ensuring safety and proficiency in aviation requires effective training
and maintenance of pilot skills. Pilots must maintain currency, implying regu-
lar flight, though some critical elements (e.g. emergency procedures) are rarely
practiced in-flight. Simulator sessions are employed for safe practice and training.
Simulators provide more opportunities for pilots to experience sophisticated train-
ing without safety risks and dependencies on for example weather and logistics.
While human assessors currently evaluate pilot performance, a simulator can pro-
vide rich data for assessments, utilizing learning analytics for individual insights.
Simulator data (and potentially aircraft data) is not regularly used yet in training
to gain insights in performance. Furthermore, current training planning lacks con-
sideration for individual needs, relying on fixed intervals and syllabi. This study
aims to investigate how simulator data can be used to assess performance and if it
provides valid statements about pilot performance. Thereafter, the data is used to
develop a skill retentionmodel accommodating personal differences. The research
involves Chinook helicopter pilots from the Royal Netherlands Air Force, using
simulator data to create tailored performance metrics for maneuvers. The ongoing
study investigates the integration of simulator data into training assessments and
aims to contribute valuable insights into pilot performance and skill retention. This
paper presents the preliminary findings in the development of learning analytics
within this context.

Keywords: Performance Assessment · Evidence-Based Training · Pilot
Performance

1 Introduction

1.1 Related Work

Defence organizations are increasingly more focused on (operational) readiness, driven
by a growing sense of urgency due to recent geo-political events, compelling them to
be fully prepared for potential conflicts. In 2022, NATO leaders agreed on a new NATO
Force Model [1, 21, 22]. This new model proposes a larger pool of high readiness forces
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to improveNATO’s ability to react in quick response. NATOmembers are commissioned
to improve their operating methods in order to adhere to the new NATO Force Model. A
critical component is the readiness of personnel. Readiness extends across every level
of the organization, involving everyone from the military pilot, trained for specific goals
and proficiency levels, to the commander, who requires thorough assessment reports and
extensive data to make informed decisions regarding deployments and missions. Readi-
ness can be subdivided into personnel, training, equipment on hand (i.e. amount) and
equipment status (i.e. usability). Readiness can be assessed on an individual (e.g. pilot),
team (e.g. unit) and collective level (e.g. joint forces) [2]. However, several divisions of
readiness are available and can change per country and operational command.

Several studies from the RAND Corporation indicated that the current readiness
assessment system falls short in effectively measuring the force’s capacity to fulfill
forthcoming mission requirements [2, 3, 23]. Investment in training assets is mentioned
to help address the gaps in readiness assessment, specifically [2]:

• Mission Training through Distributed Simulation (MTDS)
• More simulators and new synthetic threat environments
• Aggregated force readiness measurement
• Adaptive, proficiency-driven training

The research investigates the utilization of data, particularly simulator data, for adap-
tive, proficiency-driven training. This field of research is known as learning analytics
[4]. It involves the development of performance metrics to evaluate pilot performance.
Thesemetrics, in addition to instructor observations, help to outline trainee performance,
leading to a more comprehensive assessment of readiness on an individual level.

Following this, the study explores the possibility of modeling performance over
time based on the results of performance metric, which is called skill retention [5].
The integration of performance metrics and learning process modeling aims to optimize
training by selecting and scheduling training tasks based on the individual needs of
the trainee. This improves effectiveness of training and resource efficiency to meet
the required proficiency level. Thereafter, results from a whole unit or force can be
aggregated and analyzed from a commander’s perspective, providing a comprehensive
view of the readiness of the operating commands.

This paper presents the proposed method and initial development of performance
metrics, along with preliminary results derived from the training session data. However,
it does not delve into the modeling of skill retention. The performance metrics are
crucial for modeling skill retention, and additional repeated measures are necessary.
As data collection is ongoing, results will be published at a later stage. The research
involves Chinook helicopter pilots from the Royal Netherlands Air Force (RNLAF),
using simulator data to create tailored performance metrics for specific maneuvers. In
the following section, we describe the Learning Analytics that may be applied to achieve
this enhanced level of retention training and readiness.
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1.2 Learning Analytics and Performance Metrics

Learning analytics is defined as the measurement, collection, analysis, and reporting of
data on learners within their specific contexts. The primary objective is to comprehend
and optimize the learning process and the learning environment [4].

The application of learning analytics further distinguishes itself based on the levels
at which it operates. At one level, the focus is on individual (or team) learning processes,
where performance is analyzed, providing valuable insights for self-evaluation, feed-
back, and performance assessment. Another level involves the analysis of data from large
groups, offering valuable insights at the organizational level. Management can leverage
these insights for improving learning trajectories and decision-making. In terms of mili-
tary organizations, the management application is layered frommanagers of operational
units responsible for training up to the commanders who decides on deployment and
missions.

While the distinction between application at an individual or group level is well-
known, another distinction is proposed between learning analytics within a training
session and between multiple training sessions. Within the specific time frame of a
single training session, learning analytics leverages data to provide insights into the
performance of an individual. By extrapolating this functionality over multiple training
sessions, aspects like skill retention can be addressed. While both types rely on similar
data, distinct algorithms and analyses are required to effectively capture and assess
performance trends over the course of time. For initial training, this could span weeks
or months, while in continuation training, it may extend over months, years or even
decades.

Types of Learning Analytics. A training session occurs with its own context, both
foreseen (e.g. training scenario) and unforeseen (e.g. weather). Assessment of perfor-
mance is highly dependent on this context and therefore learning analytics should be
adjusted and fine-tuned for every context [6]. Military operators determine their actions
based on the context, where a specific action may be correct in one context but improper
in a slightly different one. The distinctions between contexts can involve subtle nuances
but result in significant differences in desired behavior, particularly in critical situations.
Regarding assessment, an instructor possesses the experience, knowledge and ability to
recognize these differences based on their expertise and experience. An analytical model
in learning analytics is less sensitive for the context and therefore it is important to pro-
vide sufficient context when interpreting the results. Models frequently tend to either
overgeneralize or undergeneralize. Hence, it is crucial to determine the intended goal for
using a performance metric and ensure its validity in that particular context. While there
is currently no consistent framework for various types of learning analytics in military
training, four distinct categories can be identified from the context of formal education:
descriptive, diagnostic, predictive, and prescriptive analytics [4]. When applied to the
training of a military operator, the definition slightly shifts from formal education.

Descriptive Analytics. Descriptive analytics offers insights into what takes place in the
training scenario (e.g. visualizations of aircraft positioning relative to other objects).
Descriptive analytics can be utilized in real-time and during an after-action review.
Nevertheless, the insights presented by descriptive analytics still need interpretation



Enhancing Military Helicopter Pilot Training Through Learning Analytics 75

from the user since they solely describe what occurs and do not assess or assign value
to the observed behavior. Descriptive analytics aids instructors in gaining awareness of
aspects that may be challenging to observe directly. During an after-action review, it
serves to replay events and reconstruct potential causes of both success and mistakes.
Its primary application is within a training session.

Diagnostic Analytics. Diagnostic analytics offer insights into why something happened
[4]. Unlike descriptive analytics, diagnostic analytics involves a degree of assessment.
The conclusiveness of the assessment varies for each analytic. The least conclusive form
involves indicating abnormal behavior, such as a pilot deviating from procedures. This
indication does not categorically state correctness or incorrectness; instead, it highlights
an event that is potentially interesting for reflection. An example of a diagnostic analytic
with high conclusiveness is a model that grades the execution of a turn based on the
prescribed procedures. These analytics can help an instructor focus attention on intrigu-
ing events or on competencies that are complex to assess (letting the analytics handle
simpler competencies). For effective use, high conclusiveness must be granted validity.
The examples are mainly useful within a training session.

A diagnostic analytic can be applied in a context beyond specific actions, such as
assessing the execution of a turn. This involves the assessment of competencies. Vatral
et al. [7] developed a method in which diagnostic analytics, grading specific actions
or performance indicators, are utilized to grade competencies. The results of multiple
specific metrics relevant to a competency are combined to generate a competency score.
The competency framework can be multi-layered, where competencies from a lower
level can also be combined to create a higher-level competency score. The methodology
expresses the score of a metric between 0 and 1, and this score is further categorized into
three states (below, at, or above expectation) for a metric or competency score. Bayesian
modeling is employed to combine these scores into a higher-level competency score [7].
This Bayesian scoring method is applied within a training session. However, there is
also potential to use such approach between training sessions for long-term competency
assessment.

Another approach for long-term competency assessment between training sessions is
the use of the Elo rating system [8]. The Elo rating system, originating from competitive
gaming, quantifies the skill level of a trainee. Each participant is assigned a numerical
rating for each competency, and after each training session, the ratings are adjusted based
on the outcome. Every training task or scenario is also provided by a numerical rating per
relevant competency, which is the complexity level. The updating mechanism of the Elo
rating system involves a dynamic adjustment of players’ skill ratings after each match.
The extent of the adjustment is determined by the outcome of the training session and
the difference between the trainee’s skill rating and the complexity of the training tasks.
A lower-rated trainee gains more from performing well in higher-rated training tasks,
while a higher-rated trainee experiences a smaller rating increase when performing well
against lower-rated training tasks. The difference between the skill rating of the trainee
and the complexity level of the task is utilized to calculate a probability of thewin chance,
expressed as a percentage, indicating the likelihood of a good performance by the trainee
given the task’s complexity. The adjustment, determined by a logistic function, ensures
a dynamic and continuous reflection of changes in trainee’s skill levels over time. The
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updating mechanism of the Elo rating system is visualized in Fig. 1. For a positive
and effective learning curve, it is advisable to choose training tasks that align with the
player’s skill rating. This dynamic adjustment allows for the continuous assessment and
monitoring of players’ long-term competency, reflecting their evolving skill levels as
they engage in more training sessions over time [8].

Fig. 1. A visualization of the updating mechanism of the Elo rating system.

Predictive Analytics. Predictive analytics are used to make estimates of future behavior.
It combines historic data to identify patterns in the data and with the use of mathemat-
ical models and algorithms relationships between various variables can be captured in
order to forecast trends [4]. These analytics are mainly useful between training ses-
sions, for example in the prediction of skill retention. Anticipating when proficiency
might diminish is advantageous for scheduling subsequent training sessions [9]. Vari-
ous methodologies are employed to predict skill retention. The Predictive Performance
Equation (PPE) adopts a theory-based approach, establishing a mathematical model
based on: (1) the power law of learning, indicating that performance improves with
practice; (2) the power law of forgetting, which suggests that performance declines
over time since practice occurred; and (3) the spacing effect, emphasizing the bene-
fits of distributed practice over time [9]. Another approach involves the utilization of
machine learning algorithms, particularly those involving reinforcement learning and
regression [10]. These approaches can also be integrated into hybrid models, where they
complement each other [10].
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Prescriptive Analytics. Prescriptive analytics provide recommendations and advice by
utilizing historical data, such as scores, to identify training needs and relate them to
various training options [4]. These analytics are frequently integrated into recommender
systems, which can vary in their objectives and the techniques used to generate recom-
mendations [11]. Recommendation systems can be applied across various time frames,
as illustrated by the following examples. Firstly, a recommendation on very short notice
involves the real-time adaptation of training scenarios based on the performance and
mental state of the trainee. Performance, assessed by evaluator and/or other analytics,
and mental state, determined by measures of brain activity, are used as inputs to adjust
the scenario’s complexity. For instance, a fighter pilot may encounter more or fewer
adversary aircraft based on their performance [12]. Secondly, historical performance
data can be utilized to construct the next scenario in a training. In the Pilot Training Next
research program, historical assessment data and the scenarios constructed by instruc-
tors based on that data are provided to an Artificial Intelligence (AI) model. The model
suggests the next training scenario by emulating the instructor’s scenario construction
process, considering the individual needs of each trainee, derived from the data [13].
The third example occurs on a similar timeline to the Pilot Training Next example. By
employing the Elo rating system, competency scores are generated and updated over
time. Competency scores that lag behind in development are identified, and subsequent
training activities are recommended to address those underperforming competencies at
a complexity level that matches the trainee’s skill level. To facilitate this, an Experience
Index is formulated, detailing which competencies are trained by each training task and
at what complexity level [8].

Measures in Military Exercises. The utilization of analytics or measures is not
entirely novel in the military domain. During military exercises, measures are frequently
employed to obtain amore objective assessment of task execution. Two types ofmeasures
are defined: Measures of Effectiveness (MoE) and Measures of Performance (MoP). An
MoE describes the desired outcomes, such as the mission objective, while an MoP char-
acterizes the performance of an action irrespective of the overarching mission goal.
These measures are established beforehand and evaluated afterward. Evaluation can be
based on operator observations and opinions during debriefs, but outcomes can also be
determined based on data [14]. The types of analytics mentioned in the previous section,
primarily descriptive and diagnostic analytics, could also serve as input for determining
the outcomes for MoE and MoP.

2 Methodology for Performance Metrics and Competency Scores

For modelling and optimizing retention training, our proposed method makes use of
the methodology and results of Vatral et al. [7], which described the Generalized Intel-
ligent Framework for Tutoring (GIFT). This research uses the Generalized Intelligent
Framework for Tutoring (GIFT). GIFT is pioneering in the development of AI-based
Augmented and Intelligent Tutoring Systems (IAAR-ITS) environments [7, 19, 20].
The research employs a competency-based approach, breaking down complex tasks into
competencies and subtasks through cognitive task analysis, resulting in a layered com-
petency profile. Each subsequent layer in the hierarchy further decomposes the complex



78 D. Thijssen et al.

task, specifying subtasks until the level of observable behavior and actions is reached.
The bottom layer of the profile is made measurable through performance metrics [7, 20].

Subsequently, performance metrics developed for the bottom layer of the profile,
representing observable behavior. The exact method for developing the analytics is not
generic, as creating analysis models is context-dependent. The performance metrics are
described in detail in Sect. 3.4. The layered competency profile allows scores at the
bottom to be aggregated to higher layers. Figure 2 depicts the interactions between the
different layers precisely, illustrating how a subordinate component can contribute to
multiple superior components. The multi-layered competency profile that is shown is
only a placeholder and will be defined at a later stage. A distinct visualization can be
made for each maneuver or task [7, 20]. The orange boxes indicate that assessments
scores of instructors can also be included in this method. This was not part of the initial
methodology [7, 20].

Fig. 2. An overview of the interaction between the performance metrics (left box) and the multi-
layered competency profile (right box) for the brown-out maneuver.

A performance metric can thus contribute to multiple competencies [7, 20]. Watz
et al. describe a criterion-based approach for developing learning analytics, defining rules
and cut-off points with experts to convert measurements into assessments. An effective
analysis model can be created with sufficient data and a well-defined concept of success.
Watz et al. also investigate aggregating underlying components to higher-level ones,
combining various measurements, both subjective and objective, into a performance
score through a weighted average. Initial weights are assigned by experts and can later
be refined using machine learning techniques [6]. However, Vatral et al. use a different
method to aggregate scores of underlying components to higher-level ones [7, 20].

The result of a performance metric at the lowest level of the framework is a continu-
ous number between zero and one, with three labels specified: (1) below expectation for a
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score below 0.4, (2) at expectation for a score between 0.4 and 0.9, and (3) above expecta-
tion for a score above 0.9. The continuous number can be based on a percentage or score.
A continuous score between zero and one is used because Bayesian network models are
employed to generate assessments for higher levels in the hierarchy. Bayesian networks
are probabilistic models, used for predictions, representing relationships between vari-
ables. They consist of nodes representing variables and directed arrows indicating causal
relationships between variables. Each node has a probability distribution representing
the likelihood of each possible outcome of that variable, given the values of the vari-
ables it is linked to. These probability distributions are updated usingBayesian inference,
using new data to calculate the likelihood of each possible explanation and determining
which explanation is most likely. For each competency, the probability of the state (i.e.
below-, at- and above-expectation) is calculated [7]. The Bayesian network model in
this research consists of four models:

1. Three state competency model: the likelihood of a competence status given the result
of a performance metric (i.e. below-, at- or above-expectation).

2. Transition model: determining the likelihood of a competence status changing after
a training event (e.g., from below- to at-expectation).

3. Conditional model: assessing the likelihood of the higher-level competency having
the same status as the underlying competencies.

4. Prior model: evaluating the probability of the team having a certain status based on
prior knowledge and experience.

The method enables personalized training sessions by updating predictions within
each session, optimizing training duration to maximize learning gains while min-
imizing diminishing returns. Additionally, it integrates into a larger ecosystem for
evidence-based, data-driven trainee assessments across various scenarios and environ-
ments, ensuring consistent and reliable trend analysis regardless of training location or
instructor.

3 Method

3.1 Experiment Design and Data Collection

Experiment Design. The experiment involved two groups of pilots: one conducting
sorties every three months and the other every six months. The data collection period
spans two years. These time intervals were selected to allow sufficient time for skill
decay to occur. The discrepancy in time between the two conditions is implemented to
explore differences in pilot performance after a specified duration. It is presumed that
other flight experiencesmay impact the skill retention process. Therefore, in consultation
with Subject Matter Experts (SME), three maneuvers are selected that are infrequently
performed, or alternative procedures are employed to minimize the influence of other
flight experiences. Additionally, the total number of flight hours and flight hours over
the past year are recorded to assess whether these factors influence performance.
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The three maneuvers performed are: brown-out landings in sandy environments,
autorotation in case of engine failure, and instrument flying with cockpit instruments
only. Variations were applied to the scenarios for each maneuver, but deviations from
the proposed schedule resulted in scenarios being flown at different times or not at all.

The brown-out scenarios are the same for every training session. Four attempts are
made in each training session. Participants are required to land to helicopter as close to a
certain point as possible. This point is between two lamps within a formation of lamps,
called inverted Y. Therefore, the brown-out maneuver only differs in timing (refresh
training after three or six months).

Five scenarios are developed for the autorotation maneuver, conducted in an open
field which provides plenty of landing spots. The scenarios vary in the location where
they are conducted. Each training session involves one of these five scenarios. Addi-
tionally, two more complex scenarios are created, set above forests where fewer suitable
landing spots are present, challenging pilots to make rapid and appropriate decisions.
One complex scenario is included in training sessions four and eight for the three-month
condition, and sessions two and four for the six-month condition. The simple scenario
is repeated twice within a training session, while the complex scenario is executed only
once.

Instrument flying is conducted in both a simple and complex scenario during every
training session. The simple scenario alternates between two options for each session,
while there are eight unique scenarios available for the complex scenario. Each type of
scenario is performed once in each session. Besides that, the instrument flying differs in
timing (refresh training after three or six months).

Data Collection. The data collection consists of saving simulator data and a question-
naire filled in by the participant. The simulator exports data in the DIS-protocol, which
provides location, orientation and several speed parameters. The DIS-data is eventually
converted to a CSV-file (see Sect. 3.4).

The questionnaire is filled out by the trainee after every training session. The first part
is filled out before the training sessions starts. The following information is requested
before the training session:

• The total amount of flight hours (rough approximation);
• The percentage of the total amount of flight hours on the CH-47FMYII CAAS (rough

approximation);
• The total amount of flight hours in the last twelve months (rough approximation);
• Whether or not the participant is a staff pilot;
• Karolinska Sleepiness Scale (KSS) [17];
• A rating on self-efficacy on each maneuver between one and ten.

The following information is requested after the training session:

• A rating of perceived cognitive load on each maneuver between one and seven;
• A rating of perceived success on each maneuver between one and seven;
• A question whether the perceived cognitive load and/or success differed between the

scenarios within a training session (including space to elaborate on their experience).
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3.2 Apparatus

The research is conducted using the Transportable Flight Proficiency Simulator (TFPS).
This high-fidelity simulator is utilized by CH-47 pilots of the RNLAF primarily for
training (emergency) procedures. Efforts are underway to integrate the TFPS with other
simulators, such as a second TFPS, AH-64 simulator, and Rear Crew Trainers (RCT).
Consequently, tactical training will also be incorporated into the simulator’s usage [15]
(Fig. 3).

Fig. 3. The Transportable Flight Proficiency Simulator (TFPS) built by NAVAIR [16].

The pilots undertake a specially designed sortie for the research, featuring three
maneuvers: brown-out, autorotation, and instrument flying. During the brown-out
maneuver, pilots perform a landing in a sandy environment where the final phase of the
landing lacks outside visuals due to swirling sand, potentially causing disorientation.
While standard procedures typically involve using the autopilot, this research employs a
more manual procedure. An autorotation, an emergency maneuver, is executed when the
engines malfunction. Pilots initiate a steep dive to convert altitude into kinetic energy
for the rotor head. As the ground approaches, this kinetic energy is utilized to reduce
vertical speed and safely land the helicopter. Instrument flying restricts pilots to utilizing
only the instruments within the cockpit, without relying on visual cues from outside.
This practice is particularly valuable in low-visibility conditions such as nighttime or
foggy weather. Arrival routes are flown using only cockpit instruments in this research
setting.

3.3 Participants

Participant in this research were CH-47 pilots of the RNLAF. The complete population
of active CH-47 pilots in the RNLAF is approximately sixty pilots, from which twenty
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pilots are only flying minimally due to other job responsibilities. In the present research
26 pilots are selected to participate. The participants are equally divided between the
two conditions. As of the current report, eighteen training sessions have been completed.
Specifically, one participant completed two sessions, while another completed three.
Thirteen participants each completed one session. Unfortunately, data collection failed
during three sessions.

3.4 Data Analysis

This paragraph describes the various activities performed for data analysis, all of which
are conducted using Python.

DIS-Converter. The DIS protocol is primarily designed for connecting simulators and
does not inherently support the development of learning analytics. To enable analysis, a
software module was developed to convert DIS data into a CSV file format suitable for
analysis. This module extracts key information such as timestamp, coordinates (i.e. x,
y, z), orientation (i.e. pitch, roll, yaw), and various speed variables from each DIS mes-
sage, organizing them into rows in the CSV file. This CSV file containing the extracted
variables can then be utilized for the development of learning analytics.

Dashboard for Labeling. In each sortie, the three maneuvers are performed multiple
times (i.e. attempt), and this data is recorded in one session per person. To create separate
CSV files for each attempt, data extraction and labeling is necessary. While exploring
automatic data labeling approaches, itwas deemed that the effort to develop such software
outweighed the time it would save. Instead, a dashboard was developed to visualize the
altitude over time for each training session. The dashboard is depicted in Fig. 4. This
visualization enabled the user to identify the different maneuvers and attempts based
on their knowledge of the experiment. Users could then manually add starting and
ending points to the timeline on the dashboard. After data collection, the recordings
were processed through the dashboard, and the starting and ending points were used

Fig. 4. Dashboard developed for data labeling, displaying time (x-axis) and altitude (y-axis) with
starting (orange) and end points (green) to distinguish maneuvers. (Color figure online)
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to generate distinct CSV files for each maneuver. Although the dashboard provided a
solution for data labeling in a specific format with a specific goal, the lack of integrated
data labeling tools or solutions in training devices remains a recurring issue [18].

Learning Analytics. Performance metrics were identified partly by consulting flight
and training manuals, as they detail the execution of maneuvers and required speeds,
among other factors. Also, the available data types, such as position and orientation of
the helicopter, are considered. The design of the metrics was further refined through
consultation with a simulator instructor, a qualified CH-47 pilot.

The performance metrics are listed below in Table 1. Each metric is accompanied
by its relevance to specific maneuvers and a brief description of how it is computed.
The performance metrics yield continuous scores, such as the distance in meters for the
metric “distance to inverted Y.” These scores are then normalized to a range between
zero and one using predefined cut-off points, such as the distance at which a landing
is deemed out-of-bounds. Subsequently, these normalized scores can be categorized as
below, at, or above expectation levels. However, specific cut-off points are not disclosed
due to classification reasons.

Table 1. The performance metrics with its relevance to the maneuver and a basic description on
how they are computed.

Performance metric Relevant maneuver Computation

Distance to inverted Y Brown-out The pilots must land the helicopter at
a specific location (the inverted y).
The distance is calculated between
the inverted y and the location the
helicopter came to a standstill

Rate of Descent during
Touchdown

Brown-out
Autorotation

The moment of touchdown is
determined. Thereafter, the vertical
speed at that moment is compared to
the cut-off points

Ground Speed 100’ Brown-out
Autorotation

During landing the ground speed
should decrease. The ground speed
as reviewed at 100 ft. and 50 ft. in
relation to the cut-off points

Glide Slope Brown-out
Autorotation

The glide slope in the last ten
timesteps is compared to the cut-off
points

(continued)
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Table 1. (continued)

Performance metric Relevant maneuver Computation

Pitch Orientation Brown-out
Autorotation

The pitch in the last ten timesteps is
compared to the cut-off points

Drift Brown-out
Autorotation

The roll and yaw in the last ten
timesteps are compared to the cut-off
points

Decision Making - Distance
versus Time

Autorotation The pilot must decide based on
available landing sites between
maximizing flight time or covering
more distance with remaining kinetic
energy after engine failure. Each
option corresponds to a preferred
speed range, determined by specific
cut-off points

Correlation actual and suggested
flight path of the approach

IFR Every approach has a suggested
flight path that must be followed.
The correlation between the actual
and suggested flight path is
calculated indicating the adherence
to the approach

Deviation from localizers IFR In an approach the pilot must adhere
to a maximum and minimum altitude
and wide based on so-called
localizers. The absolute margins
decrease when the runway is
approached. The
deviation/adherence from these
minimum and maximum are
calculated at several moments in the
approach

4 Results

The paper presents preliminary results, with ongoing data collection and analysis.
Although the analysis is still in progress, the initial version of three performancemetrics,
applied to the brown-out maneuver, is presented here. The algorithms have been applied
to a dataset comprising fifteen training sessions. However, data from three sessions are
corrupted, and efforts are underway to address this issue. Additionally, not all training
sessions completed the planned four brown-out attempts. The preliminary results are
presented in Table 2.

The results provide insight in the item discrimination of the performance metrics.
Item discrimination is the measure of how well an item (e.g. test question, performance
metric) can distinguish between those who perform well and those who do not. The
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Table 2. Preliminary results for three brown-out maneuver performance metrics: scores catego-
rized as below (0), at (1), and above (2) expectation. Mean scores are presented due to balanced
category intervals, alongside standard deviation (SD) and response count (N).

Mean SD N

Distance to Inverted Y Attempt 1 0.25 0.62 12

Attempt 2 0.33 0.65 12

Attempt 3 0.11 0.33 9

Attempt 4 0.63 0.92 8

Rate of Descent during Touchdown Attempt 1 1.67 0.78 12

Attempt 2 1.75 0.62 12

Attempt 3 1.33 0.87 9

Attempt 4 1.13 0.83 8

Pitch Orientation Attempt 1 0.58 0.90 12

Attempt 2 1.70 0.72 12

Attempt 3 1.22 0.83 9

Attempt 4 1.00 0.76 8

metric of ‘distance to inverted Y’ seems to have a poor item discrimination based on the
low mean score. Approximately 80% of the attempts were labelled below expectation.
This is also indicated by the relatively low standard deviation compared to the two other
performance metrics.

5 Discussion

Thepreliminary results are limited; thus, it is premature to drawconclusions regarding the
validity of the performance metrics or the pilots’ performance. Nonetheless, this phase
has provided valuable insights into the development and implementation of learning
analytics in helicopter pilot training.

5.1 Design and Development Process of Performance Metrics

During development and computation of the performance metrics several challenges
occurred. First, it was challenging to create a consistent algorithm to handle unexpected
data, such asmissing attempts or prematurely endedmaneuvers (e.g., go-arounds). Addi-
tionally, obtaining conditional informationnecessary for computingperformancemetrics
proved challenging. For instance, determining the exact moment of touchdown of the
helicopter must be derived from simulator data, as there was no explicit label or variable
provided. Establishing a consistent method to determine touchdown and similar infor-
mation posed difficulties. Therefore, this version represents an initial attempt and may
require refinement in subsequent iterations. These challenges align with the data label-
ing issue outlined by Bessey et al. [18]. Frequently, datasets lack standardized labeling,
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such as consistent start and stop times or event identification. Addressing this labeling
problem enhances the data’s utility and reduces the analysis workload. Possible solutions
may include real-time labeling tools for simulator operators or classifier algorithms for
automated data labeling, such as identifying maneuvers or helicopter touchdowns.

5.2 Item Discrimination and Validity

The preliminary results showed that item discrimination could be a potential problem
regarding the validity of the performance metrics. In the continuation of this research
it can be beneficial to statistically investigate the item discrimination, for example with
the item-response theory.

Adjustments could enhance the usefulness of the performance metrics, such as
improving item discrimination and validity. One planned adjustment is transitioning
the outcome of the metric from a categorical to a continuous variable. For instance,
consider the metric “distance to inverted Y,” which measures the distance between the
touchdown point and the intended landing spot. Currently, true/false statements check
whether the distance belongs to the criteria of below, at and above expectation, resulting
in a categorical variable. The true/false-statements reduces the variability massively in
comparison to a continuous variable. To generate a continuous variable, the distance
could be related to a minimum distance indicating perfect execution and a maximum
distance indicating poor performance. This approach could yield a continuous variable
ranging from zero to one, with values then categorized as below, at, or above expectation,
aligning with suggestions by Vartral et al. (e.g. at expectation for a score between 0.4
and 0.9) [7, 20].

Furthermore, a review of the cut-off points could be considered. If a significant
number of participants’ attempts are consistently classified as below expectation for
example, adjusting the cut-off points to enhance item discrimination might be advanta-
geous. However, from an operational standpoint, altering established cut-off points could
be undesirable. Doing so could potentially lead to either accommodating incompetent
pilots if requirements are relaxed or losing competent pilots if requirements are made
more stringent.

Additionally, it is important to assess whether the performance metrics accurately
label performance compared to assessments made by instructors. In future phases of this
research, training sessions will be organized wherein trainees are evaluated using the
performance metrics alone, by an instructor, and by an instructor aided by the perfor-
mance metrics. Examining the correlation between these three assessments can provide
insights into the validity of the performance metrics.

5.3 Limitations and Future Research

One limitation of the research is the inconsistent attendance of participants, largely due
to high operational demand, resulting in deviations from the proposed training schedule.
This variability in the number and timing of training sessions significantly diverges from
the initial plan. It is anticipated that this deviation may impact the statistical significance
within tests and could potentially hinder the development of skill retention models.
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One limitation of the research stems from the use of univariate analysis rather than
multivariate analysis [7, 20]. The performance metrics in this study rely solely on DIS-
data, which, while valuable, may be limited in capturing the full scope of activities.
Future research should explore incorporating additional data types to enhance analysis.

Considerable knowledge and experience are being accumulated in regard to learning
analytics, providing insights for developing new types and applications of performance
metrics. It is crucial to establish amodular and expandable environment for thesemetrics,
addressing aspects such as model and algorithm storage, version management, and the
incorporation of feedback to refine results from previous iterations. Future research
should focus on investigating the architecture of such an environment to support ongoing
advancements in the field.

Acknowledgments. This study is part of the Adaptive Learning Ecosystem program, funded by
the Dutch Ministry of Defense (grant number L2201).

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Wolting, J.:NAVOverandert huidigeForceModel.DefensieMagazine -Landmacht 07Artikel
8 (2022). https://magazines.defensie.nl/landmacht/2022/07/08_nieuwe-nato-force-model

2. Emmi, Y., et al.: How Training Infrastructure Can Improve Assessments of Air Force Readi-
ness. RAND Corporation, Santa Monica (2023). https://www.rand.org/pubs/research_briefs/
RBA992-1.html

3. Emmi, Y., et al.: Air Force Readiness Assessment: How Training Infrastructure Can Provide
Better Information for Decisionmaking. RAND Corporation, Santa Monica (2023). https://
www.rand.org/pubs/research_reports/RRA992-2.html

4. Society for Learning Analytics Research. https://www.solaresearch.org/about/what-is-lea
rning-analytics/

5. Chittaro, L., Van der Pal, J., Oprins, E., Van Puyvelde, M., Taylor, H., Rankin, K.: Skill
Fade and Competence Retention: A Contemporary Review. Brussels: North Atlantic Treaty
Organization - Science and Technology Organization (2023)

6. Watz, E., Neubauer, P., Kegley, J., Bennet, W.: Managing learning and tracking performance
across multiple mission sets. In: I/ITSEC (2018)

7. Vatral, C., Biswas, G., Naveeduddin, M., Goldberg, B.: Automated assessment of team
performance using multimodal Bayesian learning analytics. In: I/ITSEC (2022)

8. Thijssen, D., Bosma, R.: Recommendation system in an integrated digital training environ-
ment for the 5th generation air force. In: I/ITSEC (2022)

9. Walsh, M.M., Gluck, K.A., Gunzelmann, G., Jastrzembski, T., Krusmark, M.: Evaluating the
theoretic adequacy and applied potential of computational models of the spacing effect. Cogn.
Sci. 42(S3), 644–691 (2018). https://doi.org/10.1111/cogs.12602

10. Sense, F., et al.: Combining cognitive and machine learning models to mine CPR training
histories for personalized predictions. Int. Educ. Data Min. Soc. (2021)

11. Uddin, I., Imran, A., Muhammad, K., Fayyaz, N., Sajjad, M.: A systematic mapping review
on MOOC. IEEE Access (2021)

https://magazines.defensie.nl/landmacht/2022/07/08_nieuwe-nato-force-model
https://www.rand.org/pubs/research_briefs/RBA992-1.html
https://www.rand.org/pubs/research_reports/RRA992-2.html
https://www.solaresearch.org/about/what-is-learning-analytics/
https://doi.org/10.1111/cogs.12602


88 D. Thijssen et al.

12. Tillema, G., Roza, M.: Data-driven and personalized training as a service infrastructure &
technologies. In: I/ITSEC 2023, Orlando (2023)

13. Forrest, N.: Conceptualization and Application of Deep Learning and Applied Statistics for
Flight Plan Recommendation. Air Force Institute of Technology, Ohio (2020)

14. Civil-Military Cooperation Centre of Excellence. Measures of effectiveness (MoE) and mea-
sures of performance (MoP). CIMIC Handbook (2020). https://www.handbook.cimic-coe.
org/

15. Royal Netherlands Aerospace Centre. Case: Multi-Ship Multi-Type Helicopter Simulation
Training Capability (n.d.). https://www.nlr.org/case/case-multi-ship/

16. Berry, T.: Transportable Flight Proficiency Simulator [Photograph]. Vertical Magazine:
Bron (2021). https://verticalmag.com/press-releases/u-s-and-international-crew-members-
train-on-flight-simulators-in-germany/

17. Akerstedt, T., Gillberg, M.: Subjective and objective sleepiness in the active individual. Int.
J. Neurosci. 52, 29–37 (1990)

18. Bessey, A., Waggenspack, L., Schreiber, B., Bennet, W., Jr.: Tackling the human performance
data problem: a case for standardization. In: I/ITSEC (2022)

19. Goldberg, B., et al.: Forging competency and proficiency through the synthetic training
environment with an experiential learning for readiness strategy. In: I/ITSEC (2021)

20. Vatral, C., Naveeduddin, M., Biswas, G., Goldberg, B.: GIFT external assessment engine for
analyzing individual and team performance for dismounted battle drills. In: Ninth Annual
GIFT Users Symposium (2021)

21. Twigt, A.: Task Force Defensienota 22 wil samen het verschil maken. De Vliegende Hol-
lander (2023). https://magazines.defensie.nl/vliegendehollander/2023/09/06_successen-van-
tf-22_slot

22. Monaghan, S., Wall, C., Morcos, P.: What Happened at NATO’s Madrid Summit? [Critical
Questions] (2022). http://tinyurl.com/444wthkm

23. Walsh, M., Taylor, W.W., Ausink, J.A.: Independent Review and Assessment of the Air Force
Ready Aircrew Program: A Description of the Model Used for Sensitivity Analysis. RAND
Corporation, Santa Monica (2019)

https://www.handbook.cimic-coe.org/
https://www.nlr.org/case/case-multi-ship/
https://verticalmag.com/press-releases/u-s-and-international-crew-members-train-on-flight-simulators-in-germany/
https://magazines.defensie.nl/vliegendehollander/2023/09/06_successen-van-tf-22_slot
http://tinyurl.com/444wthkm


Augmented Intelligence for Instructional
Systems in Simulation-Based Training

Joost van Oijen(B)

Royal Netherlands Aerospace Centre, Amsterdam, The Netherlands
Joost.van.Oijen@nlr.nl

Abstract. Augmented Intelligence is a design pattern for a human-centered col-
laboration model of people and artificial intelligence (AI), where machines assist
humans in tasks such as data analysis, information retrieval, decision-making, and
task execution. In this study, the concept of Augmented Intelligence is applied
within the context of an instructional system for simulation-based training. Here,
the collaboration between human andmachine is focused on the role of the instruc-
tor, which is to guide the learning process of one or more trainees toward some
learning objective. We identify different levels of machine support to assist an
instructor in this role during an adaptive training cycle. Additionally, two design
aspects are discussed that contribute to increased levels of intelligence, namely
the challenge of domain alignment to empower automation capabilities, and the
benefits of simulation-based task environments to deliver AI-enabled approaches.
Examples are discussed in the context of military training.

Keywords: Augmented Intelligence · Instructional system · Simulation ·
Training

1 Introduction

Simulation-based training is increasingly used as a method for training professionals on
skills, abilities, and competencies in domains such as the military, aviation, or health-
care. Simulated task environments offer an interactive learning environment for trainees
to experience representative real-world scenarios, while commonly being more cost-
effective compared to live training. As in live training, simulation-based training is often
instructor-led and supervised, where instructors prepare training scenarios, observe and
assess trainee performanceduring training, provide feedback, andplan follow-up training
needs and activities.

In current practice, instructors have little technological support for guiding
simulation-based training processes. However, the increasing demand for data-driven,
personalized and adaptive training has yielded promising research on supportive instruc-
tional technologies in areas such as learning analytics, human performance modelling,
recommendation algorithms, and scenario generation. Fully automated approaches for
adaptive training, such as Adaptive Instructional Systems (AIS), exclude the need for an
instructor. However, these are often a bridge too far when considering complex domains
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such as military training, which regularly involves learning complex knowledge, skills
and abilities in dynamic task environments. The role of the human instructor cannot eas-
ily be disregarded as it brings rich knowledge about the task domain, individual learners,
and instructional strategies that can be complex to model. Also, subjective insights may
be based on years of experience, and an objective truth of ‘adequate’ trainee performance
may not always be quantifiable by amachine. In this view, intermediate approaches seem
more feasible, wherein machines support instructors for some instructional processes,
while instructors retain control over others. In this paper we explore such different forms
of instructional support using the concept of Augmented Intelligence.

Augmented Intelligence is “a design pattern for a human-centered partnership model
of people and artificial intelligence (AI) working together to enhance cognitive perfor-
mance, including learning, decision-making and new experiences.” [1]. As a human-
centered design, it aims to play an assistive role, combining strengths of both human and
machine, while enhancing human intelligence rather than replacing it [2]. When applied
to the context of instructor-led training, Augmented Intelligence can be used as a design
pattern for implementing intelligent instructional systems to assist human instructors
in their observation, assessment, decision-making, and task execution during adaptive
training.

This paper presents a design pattern for developing Augmented Intelligence for
instructional systems in the context of simulation-based training. The approach is based
on progressive levels of machine support that can be considered for implementing an
instructional system, illustrating some of the challenges for automation, as well as bene-
fits for a human instructor. In addition, two design perspectives are highlighted that con-
tribute to increased levels of intelligence. The first one addresses the problem of domain
alignment, which relates to the grounding of (instructional) knowledge, required to tailor
machine algorithms to operate in a particular task domain. The second one addresses
the role of simulation-based task environments to enable AI approaches for enhanced
machine support in instructional systems. Through advances in AI technologies and the
need for data-driven solutions, (human-in-the-loop) simulations can play a central role
in data provision and delivering AI-based approaches. Finally, we conclude the paper
by summarizing the ideas presented with a future outlook.

2 Levels of Machine Support

In an instructional system, the role of an instructor is to guide the learning process
of one or more trainees by tailoring instruction to optimize learning in the context
of some learning objective. In the view of Augmented Intelligence, we consider the
fulfillment of this role as a collaborative effort between human and machine, where
the machine supports the human in its task. This concept is visualized in Fig. 1. In the
figure, five levels of machine support are identified within an adaptive training cycle.
These levels correspond to an instructor’s ability to observe, measure and assess trainee
performance, develop instructional plans, and instigate these through adaptations of the
task environment.

A collaborative execution of the adaptive training process is shaped by a division of
labor between the human instructor and the machine. The level of machine support is



Augmented Intelligence for Instructional Systems 91

Activity
Perception

Level 1

Performance
Assessment

Level 3

Adaptation
Level 5

Instructional
Planning

Level 4

data instructions
INSTRUCTOR

TRAINEE

Simulation-based
Task Environment

Instructional System

measures evaluations

plans

Performance
Measurement

Level 2

information

ROLE-PLAYERS

Fig. 1. Augmented Intelligence for an instructor role in an adaptive training cycle, conceptualized
through different levels of machine support1

considered to be flexible, depending on the application. At one end, themachine provides
no support and the instructor performs all levels by itself. At the other end, the machine
performs all levels and the instructor would be out of the loop, in which case the machine
acts as a true AIS. In between these extremes, the machine provides support for one or
more levels, and communicates its results through some human machine interface (such
as a dashboard or instructor operating station). The instructor can combine objective
data obtained from automated processes with its own subject insights to implement
remaining levels. Below we first describe each level in more detail, followed by an
outline of illustrative related work.

2.1 Levels of Support

Level 1: Activity perception. At this level, the machine is able to observe the training
environment and the trainee’s behaviors and activities in that environment. By translating
data that can be acquired from the simulation into meaningful, semantic information
associated with the task domain, the human instructor can be supported in building
situation awareness. When the machine can monitor distinct training tasks or activities
as they are being performed, it enables the instructor to observe what tasks the trainee
is undertaking, such that it can concentrate on relevant measurements to determine how
the trainee is performing on those tasks.
Level 2: Performance measurement. At this level, the machine is able to extract and
compute relevant performance metrics from the observed data. These metrics serve

1 Note that the instructor role could also be seen as being fulfilled by the trainee itself, hereby
suggesting self-guided training, as opposed to instructor-led training.
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as quantifiable measures or indicators of task performance, required for consequent
evaluation of trainee performance. Through the provision of such objective data, the
human instructor can acquire data-driven insights that it can use as actionable information
for making informed decisions: it can combine these insights with its own subjective
insights in order to form of overall performance assessment.
Level 3: Performance assessment.At this level, themachine is able to assess and evaluate
a trainee’s performance on a task, based on some performance standard as a reference.
A performance standard is an objective, predetermined notion of proficiency for a task
that a trainee is expected to achieve. It can be represented by certain criteria, thresholds,
or expert models of performance that can be used as a benchmark for comparison.
An assessment is then the result of a comparison between measured performance and
the performance standard. Objective assessments can be used by the human instructor
(possibly augmented with its own subjective assessments) to update learner profiles,
refine training needs, and plan instructional activities.
Level 4: Instructional planning. At this level, the machine is able to plan instructional
activities, based on a trainee’s assessed progression towards some learning objective.
Instructional plans may relate to follow-up training schedules or scenarios, or to in-
session adaptations such as direct interventions (e.g. scaffolding or feedback strategies
to guide learning) or indirect interventions (e.g. change task complexity through envi-
ronment adaptations). Personalized strategies may be used that take into account aspects
such as learning preferences or measured learner engagement. Machine-based instruc-
tional plans can be used by the human instructor as recommendations or decision support
on when and how to adapt training.
Level 5: Adaptation. At this level, the machine is able to realize instructional plans
through instructions that configure, modify or interact with the training environment. In
simulation-based training, this includes for instance the ability to generate or configure
new training scenarios, to adapt the behavior of possible virtual role-players, or to provide
direct feedback to the trainee. The human instructor can be provided with appropriate
control interfaces to realize such changes in the training environment.

2.2 Related Work

Throughout all levels of support, increased technological progress is seen for automated
approaches, driven by the increased demand for more data-driven, personalized, and
adaptive training solutions. Simulation-based training is particularly suited as it provides
a training environment that canbe effectively created, observed, and controlled.However,
fully end-to-end systems like AISs are still rare in simulation-based training, especially
in complex domains such as military training. In this domain, related research and
technology are more often dedicated to individual levels of support. Below, we touch
upon related research in this context for illustrative purposes.

To support perception at Level 1, military standards such as Distributed Interactive
Simulation (DIS) have been developed to represent raw simulation data as real-time,
domain-specific information about military entities and events in a simulation environ-
ment [3]. Additionally, standards such as the Experience API (xAPI) have been utilized
in simulation-based training to infer trainee activities from synthetic environments [4].
In line with activity recognition, model tracing techniques have been proposed to track
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activities and contexts in real-time, based on known hierarchical task models of the
trainee [5], hereby enabling context-based measurements at Level 2.

Performance measurement at Level 2 is a well-addressed topic. Specifically for
simulation-based training, a systematic review of methodologies and best practices for
computer-assisted performancemeasurement is provided in [6]. In specific domains such
as fighter pilot training, performance measurement has been extensively researched to
measure technical and non-technical skills, including task proficiency, teamwork, com-
munication and situation awareness [7, 8]. Within this domain, measurement tools such
as PETS [9] provide a framework to develop and deliver performance metrics, and has
been used e.g. to support subject matter experts in evaluating training effectiveness [10]
or to assess AI pilots to support training [11].

Closely related in research is performance assessment at Level 3, which can be
automated when some ‘absolute’ measure of desired performance can be known. It is
often recognized that fully automated assessment is not feasible in many domains and
that human judgement cannot easily be replaced, giving rise to partial automation or
assessment aids. Though, several studies on automated assessment exist. For instance,
in [12], a system was evaluated that assessed performance based on observed examples
of good and bad performance in tactical air engagement scenarios, showing a high degree
of agreement with a human grader; and in [13], an automated assessment method for
training simulators was investigated where assessment rules are learned from observing
experts and students performing training tasks. A broad review on systems and trends
for automated after action review in military training is given in [14].

After assessments are made, instructional planning at Level 4 caters the planning of
teaching activities for follow-up training or in-session interventions. For instance, in [15],
methods are explored to tailor personalized training programs for maintaining currency,
based on measured or predicted skill decay; in [16], a recommendation system has been
proposed that recommends optimal training tasks based on training needs and measured
trainee competency levels; and in [17], real-time difficulty adjustments are implemented
through the adjustment of AI opponent behavior, based on measured trainee proficiency.

Finally, for adaptation at Level 5, (semi-)automated approaches have been explored
to relieve instructors from the often resource intensive manual activity of scenario con-
struction. For instance, in [18], generative techniques are leveraged to generate training
scenarios alignedwith learning objectives and individual learner characteristics; whereas
in [19], semi-automated methods are used that allow an instructor to direct the genera-
tion process to reflect its own preferences. Implementing adaptive strategies are strongly
guided by instructional design principles on how, when and what to adapt [20].

2.3 Concluding

The identification of different levels of machine support presented in this section guides
the design of increased automation while considering the human role in the process. The
levels of support that can be provided for a particular application depends not only on
the available technology and algorithms to fulfill particular levels but also on the ability
to the capture required domain and instructional knowledge associated with those levels
in machine language. For instance, a fully automated instructional system requires a
machine understanding of the task domain, instructional needs andmeans throughout the
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system. In the next section, we discuss this challenge. Finally, a successful deployment
lies in the trustworthiness of the system to provide validated automated aids, as well as
the human instructor’s acceptance of and trust in the system.

3 Domain Alignment

In the previous section, different levels ofmachine supportwere identified for an adaptive
training process.Oneof the challenges for implementing increased levels of support is the
tailoring and alignment of machine algorithms to operate in a particular (instructional)
task domain. This is also known as domain alignment and is the process of adapting or
tailoring algorithms to perform well on a specific domain or task. For an instructional
system, this relates to the problem of how to incorporate, ground, and align domain
knowledge throughout the system, such that algorithms can be semantically aligned
across the processes of an adaptive training cycle. The domain alignment problem for
an adaptive training process is shown in Fig. 2. In the figure, domain alignment is
conceptualized through top-down requirement drivers for domain-specific knowledge
that is needed to implement different levels of support. This is explained using an example
below, where the different knowledge concepts are shown in italic.
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Fig. 2. Domain alignment in an adaptive training process. The solid arrows represent information
flows; the dashed arrows represent top-down requirement drivers.

3.1 An Example

Consider a competency-based training for a fighter pilot, designed to train specific techni-
cal or non-technical skills through whole-task or part-task training (e.g. specific mission
types or tactical engagements). The training objectives specify a set of competencies
or skills that can be trained through different training tasks in a simulated environment.
Job-specific competencies, skills and tasks may originate from a pilot’s competency
profile or training needs analysis. The training objectives drive the scope of the task
domain, which encompasses the (expert) knowledge about the tasks to be trained. These
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are the tasks that (1) trainees should have the opportunity to master during training, and
(2) instructors should be able to observe, measure and assess. The ability to assess a
training task requires a performance standard as a reference of desired performance.
Associated are performance metrics that should be measurable to compare against this
standard. These, in turn, drive requirements for the kind of information that should be
observable from the simulation data in order to compute them.

When the trainee has been assessed on a task and has shown sufficient mastery, the
training design may be updated to prioritize other training tasks for follow-up training.
Alternatively, the same task may be trained but different complexity. The training design
drives the requirements for the kind of scenarios that should be supported in the simulated
task environment for the trainee to experience. Theneed for in-session adaptations further
drives the requirements for adaptive variables to be supported.

The example illustrates two key aspects of domain alignment. First, it shows how
requirements for domain knowledge can be derived from a top-down analysis, starting
from instructional objectives, all the way down to what is needed from a simulation
environment in terms of data acquisition, scenario elements, and adaptation options.
Second, it shows the dependencies between knowledge concepts across different levels
of support. When these concepts can be computationally grounded and interconnected,
this promotes alignment between supporting algorithms throughout the system.

3.2 Approaches

Related work that involves domain alignment can be distinguished between bottom-up
and top-down oriented approaches. Bottom-up approaches focusmore on data strategies,
infrastructures, architectures, standards, and tools to manage, represent, and communi-
cate domain-related knowledge within learning ecosystems. For instance, in [21], the
authors discuss the need for data-driven learning analytics and explore architectures
and infrastructures for data management that help organizations transform performance
data into actionable insights. Further, data strategies have been proposed that focus on
standards to promote uniform integration of learning technologies. For instance, ADL’s
Total Learning Architecture (TLA) defines data standards for concepts such as observ-
able activity data from learners; training session meta-data; competency definitions; and
learner profiles [22]. Finally, standardization efforts are undertaken within the AIS com-
munity on the definition and interoperability of components in an AIS system, including
components to manage domain knowledge, track learner data, plan instruction, and pro-
vide user interfaces [23, 24]. Such initiatives are supported by frameworks such as GIFT
that provide tools, methods, and standards for developing AISs [25].

Top-down approaches focus more on the collaborative process between instructional
designers and engineers on how tomodel instructional design concepts. For instance, the
need for a human-centered design approach is argued to orchestrate so-called actionable
learning analytics [26]. It focuses on three principles, namely (1) the use of learning
design to derive needs for algorithmic learning analytic (LA) solutions, (2) grounding
educational theories in LA solutions, and (3) facilitating stakeholder involvement in the
design process to reflect the needs and values of instructors and trainees. Advances in
AI technologies also benefit human-centered approaches. For instance, large language
models (LLM) can play a role in knowledge acquisition, elicitation and organization of
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acquired knowledge in computational forms [27]. Further, their potential is reviewed to
support personalization and teacher activities related to generating automatic feedback,
personalized learning tasks, learning content (such as scenarios), and recommenders
[28].

In conclusion, effective domain alignment empowers automation capabilities in
instructional systems. The grounding of domain-specific knowledge and its semantic
alignment throughout the system not only requires suitable data strategies and infras-
tructures, but also necessitates a collaborative effort between instructional designers and
engineers, matching instructional needs with technological solutions.

4 Simulation-Based Task Environments

Simulation-based training can deliver tailored training programs for trainees in specific
task domains. Compared to live task environments, simulated task environments offer
several benefits for leveraging AI-enabled approaches in instructional systems, partic-
ularly for developing learner models of performance and expert models of behaviors.
Figure 3 illustrates this notion.
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Fig. 3. Behavior models in a mixed human-agent, simulation-based task environment.

In the figure, the simulation environment is shown as a mixed human-agent environ-
ment that can be populated with human actors and agent actors. For human actors (e.g.
trainees), human-in-the-loop simulations can effectively measure and capture learner
data, which is needed to develop human learner models of performance. For agent
actors, simulations can be used to learn and deploy expert models of behaviors for var-
ious purposes (as will be described). For both type of actors, the simulation mediates
in the generation of behavior data, where this data can consequently be used for data-
driven AI approaches in the development of either learner or expert models. Below, we
elaborate on these principles, referencing illustrative related research.
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4.1 Learner Models of Performance

Humanperformancemodels are used in instructional systems tomeasure, track or predict
skill development of learners over time. Human-in-the-loop simulations can acquire the
learner data required to develop such (personalized) models. To give some examples,
in [29], learner data is collected from trainees across a series of team training sessions
in order to measure team performance progression over time. Bayesian inference is
used to propagate measures from domain-specific performance metrics to higher-level
teamwork competencies. In [15], learner data is collected to develop a predictive model
of skill decay, which is used for time-based scheduling of future training sessions to
maintain personnel currency of complex skills. In related research, agents are used to
simulate human learning on a task. The envisioned application was to employ simulated
learners to computationally derive an optimal part-task training design for humans on
the task [30].

4.2 Expert Models of Behavior

Expertmodels in simulation-based task environments represent computationalmodels of
performance. Traditionally expert models have often been hand-crafted using rule-based
techniques. More recently, through advances in areas such as deep reinforcement learn-
ing, expert behaviors can also be learned by agents in complex task environments [31].
Expert models of behavior are used for a variety of purposes in instructional systems.
For instance, in [32], expert models of fighter pilot behaviors are trained using rein-
forcement learning from human feedback (RLHF), where tacit expert preferences are
encoded in human-readable form and used for automated assessment or demonstration
learning. Alternatively, expert models are used to represent embodied agents as virtual
role-players. For instance, in [33], agents are trained to support adaptive team training
and influence learning engagement in simulation-based training. Embodied agents can
also assume a tutoring role, exhibiting teaching activities such as through prompting or
using other social learning methods [34].

4.3 The Role of Data

To support the development of data-driven AI approaches for behavior models, such
as described above, the simulation plays a central role in collecting and generating
(learner) behavior data. The simulation can be agnostic to whether such data is gener-
ated by human actors or agent actors. Regarding human learner data, an issue often faced
is that the amount of (historical) data that can be obtained from regular training sessions
is insufficient for training AI algorithms. To address this, researchers have resorted to
alternative approaches. One approach is an organizational one that focuses on human
data collection strategies. This includes, for instance, the organization of dedicated data
collection sessions with students or experts [35], or outsourcing to a broader audience
using (semi-)public online (serious) games to harvest player behaviors [15]. An alterna-
tive approach is a technological one and uses synthetic data to address the data scarcity
problem. For instance, data augmentation methods have been developed to generate new
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representative behavior data from limited human data samples [36, 37]. Backwards, syn-
thetic agents have been used to generate synthetic data as representative human data,
for instance to investigate data-driven behaviour modelling for demonstration learning
[38], or to develop activity recognition algorithms for human behaviors [39].

In conclusion, it is seen that simulation-based task environments enable the devel-
opment of data-driven AI approaches, mediating in human data collection, synthetic
data generation, and providing interactive machine learning environments. Their role in
supporting performance modelling and embodied tutoring in simulation-based training
further empowers automation capabilities in instructional systems.

5 Conclusion

In this paper, we positioned the concept of Augmented Intelligence for instructional
systems as a design pattern for increased instructor support through automation in
simulation-based training. We started by identifying different levels of machine intelli-
gence to support the role of an instructor during an adaptive training cycle. These levels
range frommore low-level support, such as measuring trainee performance and adapting
the task environment, to more high-level support, such as performance assessment and
planning instructional action, in correspondence to training objectives. The design pat-
tern provides guidance on implementing increased levels of support while recognizing
the human role in the process.

Next, we discussed two design perspectives that foster increased levels of support.
The first one highlights the need for effective domain alignment, relating to the grounding
of domain knowledge to allow machine understanding of the task domain and instruc-
tional needs. Key is an alignment of bottom-up approaches that lay the infrastructural
foundation for managing knowledge throughout the system, with top-down approaches
that focus on the role of instructional designers in the design process.

The second perspective highlights the role of simulation-based task environments to
driveAI-enabled approaches for developing behaviormodels. Human performancemod-
els support the measurement or prediction of trainee performance, whereas expert mod-
els support training through capabilities of automated assessment, virtual role-players,
demonstration learning, or social learning strategies. Simulation-based task environ-
ments facilitate AI-based approaches for these models through data collection, data gen-
eration, and delivering interactive machine learning environments within the respective
task domain.

When projecting on future developments, advances in AI will be instrumental in
enhancingAugmented Intelligence for instructional systems. Recent trends in generative
AI, large language models, or human-directed reinforcement learning show innovative
approaches to cater to effective domain alignment, empowering instructional designers
to collaborate in the design process, concerning delivering fit-for-purpose training envi-
ronments, scenarios, interpretable learning analytics, and personalized instruction. In
parallel, continued advances in immersive and digital twin technologies are blurring the
line between simulated and real-world task environments, such that instructional aids
for simulation-based training will become more aligned with, and accessible to mixed
reality training environments.
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Abstract. Due to the sheer breadth of content covered and large enrollment num-
bers in fundamental chemistry courses at the University of Central Florida (UCF),
instructors and course designers often look for ways to accommodate a high
degree of learner variability—in terms of interest, background, and content knowl-
edge—to enhance the potential for student success. One way to accomplish this is
through incorporating an adaptive instructional system (AIS), such asCanvasMas-
tery Paths (MP), into the course design and implementation processes: a method
ultimately aimed at improving student learning outcomes through the develop-
ment and delivery of flexible, robustly aligned content–assessment sequences. In
the current study, four (4) MP course modules on the topics of Measurements,
Atomic Theory, Quantum Mechanics, and Molecular Polarity were created, with
two optional surveys administered at the completion of the modules to gather
insight into students’ sentiments toward and perceived learning impact from MP.
Overall, students felt like they had a better understanding of the course material
and that MP had improved their attitude toward general chemistry.

Keywords: Canvas Mastery Paths · adaptive learning · chemistry education ·
mixed-methods research

1 Introduction

Since the advent of adaptive instructional systems (AISs), instructors have been able to
better meet the distinct needs of students by way of AIS’s inherent capacity to dynami-
cally modify the learning experience and provide immediate, tailored feedback on for-
mative activities [1–3]. AISs help lessen students’ perturbations, keep learners engaged
with thematerial, and enhance their ability to absorb course content efficiently—features
which are especially relevant for students learning chemistry [1, 4].
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Students who take general (fundamental) chemistry courses often possess varying
levels of requisite knowledge for the course, which can be challenging for instructors
to accommodate within the context of a ‘live’ semester/in real-time [1]. However, an
AIS’s ability to calculate individual students’ level of subject matter understanding and
create personalized educational experiences from that information reduces the ill effects
of any pre-existing, content-specific knowledge gaps on the part of the learners [1, 5].
The unique attributes of AISs, therefore, make these systems especially suitable for
chemistry instructors with large course enrollments (N > 100) by allowing them to
give assignments that permit students to evaluate their own performance through instant
feedback at the question and content levels [4].

While a wide variety of AISs exist in the marketplace, the Canvas learning man-
agement system was chosen for this study, as it provides educators and institutions a
robust platform to deliver online course materials and assess student learning through
built-in features, like Mastery Paths (MP). MP is designed to provide pathways for each
student—depending on their subject-matter proficiency—so that those who exhibit low
performance in a given area are provided automated, scaffolded instruction to step them
through the learning materials, while students with a strong grasp of the content are
able to move forward to the next topic in the learning path at an accelerated pace [6,
7]. MP also provides an added layer of learning and interaction data that offers the
course instructors insights into student mastery and trajectory through the content and
assessment pathways.

Cognitive Load Theory. While developing the MP learning modules, cognitive load
theory (CLT) was used as a framework to design and develop the content. CLT refers
to the level of demand required by one’s working memory when encountering new
information. To enhance learning, the transfer of items from working memory to long-
termmemorymust be at peak efficiency. In this study, three types of cognitive loads were
considered: intrinsic cognitive load, extraneous cognitive load, and germane cognitive
load [8].

Intrinsic Cognitive Load Refers to the Inherent Complexity of Processing New
Information. Since the goal for this course design was to simplify rather than com-
plicate the transmission of new information, the researchers looked for ways to reduce
intrinsic load by utilizing AIS features that allow for the creation of learning scaffolds,
while ‘chunking’ the content contained within those scaffolds to facilitate cognitive pro-
cessing [9–11]. ‘Chunking’ is an instructional method that can be described as breaking
content in small, digestible units of information to prevent students from being mentally
overwhelmed [10]. ‘Scaffolding’ is another technique used by the researchers to reduce
the chances of overburdening students’ working memory. These strategies were applied
to aid students in reaching their learning goals. Through scaffolding student learning
pathways through the AIS (MP), students were able to solve content-related problem
sets in a manageable way, while gaining more competence and confidence to complete
future pathways without as much prompting and scaffolding.

Extraneous cognitive load refers to unnecessary or distracting information in the
working memory [11], and the research team recognizes that extraneous cognitive load
is something to be reduced, as it distracts from a student’s working memory and hinders
the processing of new information.
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Germane cognitive load refers to the mental resources required for the construction
of new schema or the long-term storage of knowledge [12, 13], so to maximize the
deep processing of new information, the researchers made sure to interleave any novel
concepts with those learned prior.

Research Questions. This mixed-methods study investigates the following research
questions (RQ):

1. Whatwas the students’ perception ofCanvasMastery Paths based on their experiences
with the modules?

2. What impact did the Mastery Path activities have on students’ perceived learning of
and attitude toward chemistry?

3. What aspects of Mastery Path activities did students find the most useful?

2 Methods

InstitutionalReviewBoard. The surveyswere administered through theCanvasLearn-
ing Management System and approved by the University of Central Florida Institutional
ReviewBoard (STUDY00004338). The descriptions of the survey design and participant
numbers are detailed below.

2.1 Study Setting

This study was conducted at The University of Central Florida (UCF), one of the largest
public universities by enrollment in the nation. UCF is a Hispanic-Serving Institution
with a diverse student body. Currently, the university’s student population is 43.5%
White, 29.2%Hispanic/Latino, 9.2%Black, 7.5%Asian, 4.6% International, 4.6%Mul-
tiracial, 1.2% Not Specified, 0.1% Native Hawaiian/Other Pacific Islander, and 0.1%
American Indian/Alaska Native. University enrollment by gender is reported as binary:
45.2% Male, 54.7% Female, and 0.06% not specified.

Data was collected over two semesters, Fall 2022 and Spring 2023, in a large general
chemistry course, referred to at UCF asChemistry Fundamentals I. Both course offerings
were taught by the same instructor and were structured similarly. The course was taught
using a flipped classroom format, and studentswere providedwith various low- and high-
stakes assessments (Table 1). Course meeting times included three 50-min in-person
meeting times each week and mandatory enrollment to a discussion course. To facilitate
active learning in these large enrollment courses, Fall 2022 (n= 373) and Spring 2023 (n
= 445) semesters, undergraduate learning assistants were integrated into the classroom
activities to help reduce the student-to-instructor ratio. The discussion consisted of a
recitation session and the completion of virtual lab experiments (accounting for 10% of
the student’s grade). Prior to coming to class, students would watch online lecture videos
and complete a low-stakes quiz based on the material covered in the video (accounting
for 10% of their grade, with their two lowest attempts dropped). During the in-person
meeting times, students would work in small groups to complete a weekly worksheet
(participation accounting for 5% of their grade). In addition, students had high-stakes
summative weekly quizzes (15% of their grade with their lowest attempt dropped),
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exams (40% of their grade with the lowest exam replaced by the final), and a cumulative
final exam (20% of their grade). In addition, students had access to additional student
success resources, including supplemental instruction, weekly recitation sessions held
by a graduate student, optional MP learning modules, and weekly office hours held by
the course instructor.

Table 1. Overview of the course grading scheme

Grade
distribution
(%)

0% 5% 10% 10% 15% 20% 40%

Course
Activity

MP
learning
modules

Group
worksheets
and in-class
participation

Recitation
sessions
and virtual
labs

Practice
quizzes

Summative
quizzes

Final
exam

Unit
exams

2.2 Participants

Participantswere students enrolled inChemistry Fundamentals I, in Fall 2022 and Spring
2023 semesters. Two types of surveys were administered to students enrolled in the
courses. Module surveys were offered at the end of each of the four MP modules during
both Fall 2022 and Spring 2023 (n = 173) to gauge student perception of the indi-
vidual MP modules. An end-of-semester survey was distributed to students enrolled in
the Spring 2023 course that interacted with an MP module (n = 69) to gather overall
perception of MP. The MP was not graded, and student participation was voluntary
with the option to discontinue working on the MP modules at any time throughout the
semester. Student demographic information from the two courseswas obtained fromuni-
versity data. Race/ethnicity and gender data are from the time of admission. Compiled
demographic of students enrolled in the two semesters in terms of race/ethnicity: 43%
White, 33% Hispanic/Latino, 9% Black, 8% Asian, 6% Multiracial, and 1% Not Spec-
ified/Other and gender: 34% Male and 66% Female. The authors recognize the terms
used for race/ethnicity and gender may not represent the identity of the participants; the
terms reflect available institutional data.

2.3 Mastery Path (MP) Modules

The four chemistry topics selected for the MP modules chosen for this study were Mea-
surements, Atomic Theory, Quantum Mechanics, and Molecular Polarity. These topics
were selected based on feedback from students in prior semesters. The modules were
designed as ungraded practice to help prepare students for higher-stakes assessments.

2.4 Surveys

Module Surveys. A survey was distributed at the end of the four MP modules and was
available to students who completed the entire MP. These module surveys contained
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free-response questions (What information in the module did you find useful? and What
would you change about the module?) and one ranking question about perceived time
spent on each module (How long do you feel it took to complete the module?). The
student-facing language described the MP modules as “Mastery Challenges” and is
reflected below in the survey questions and responses. The data from the free response
questions were analyzed through thematic analysis, with both coders independently
identifying recurring participant responses. The two coders met and formed a codebook
for each question. These codebooks were then used to code all subsequent responses
with a 20–25% overlap between coders. Gwett’s AC1 score [14] was used to determine
interrater reliability (IRR), and the researchers set a threshold of 0.85. For any reliability
falling below the threshold, coders met to discuss differences, and those responses were
reanalyzed. The IRR ranged from 0.88–0.99.

End-of-Semester Survey. The end-of-semester survey was distributed in the Spring
2023 semester to gather feedback from participants about their overall experience with
MP. This survey contained twelve Likert-scale questions (Fig. 1) with a scale of 1
(strongly disagree) to 5 (strongly agree). The survey was adapted from prior literature
regarding online homework systems [4].

3 Results

3.1 What Information in the Mastery Challenge Did You Find Useful?

The final codebook included five codes (see Table 2) related to the information students
found the most useful in the MP. Students found many aspects of MP helpful, with
the most frequent themes being Practice Problems and Examples and Content-Related
Topics. The frequency of responses can be found in Fig. 1. These codes were consis-
tent for each of the four individual MPs. These modules also helped students reflect on
their understanding of their strengths, weaknesses, and areas for improvement, with one
student saying, “I found that it made me seriously consider the conversion of measure-
ments in my formulas… I am now taking more time to carefully look at the wording of
problems so as to not output the incorrect response.” In addition to the practice, students
expressed the usefulness of the supplementary resources they received from their com-
pleted assessments. Students also voiced their appreciation of the MP layout and overall
module structure.
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Table 2. Codebook for “What information in the Mastery Challenge did you find useful?”

Code Definition Example code

Practice Problems and
Examples

A mention or reference to
practice problems, examples,
and explanations found in MP

“The extra practice on the ice
cube and sandbox questions
were incredibly useful”

Content Related Topics Students’ comments
mentioning content related to
topics

“the pneumonic for khdbdcm
was really helpful”
“I thought that the tables where
most useful, especially when
referring to conversions”

Metacognition Reflects students’ own
understanding of their
strengths, weaknesses, and
areas for improvement

“I found that it made me
seriously consider the
conversion of measurements in
my formulas… I am now taking
more time to carefully look at the
wording of problems so as to not
output the incorrect response”

Assessments Any mention of an MP quiz or
test

“I liked the practice tests”
“The quizzes help me”

Layout/Overall Module
Structure

Students’ comments regarding
the MP layout and overall
module structure

“I found the layout of the
mastery challenge helpful”
“I liked how it is organized so
that we have to complete each
part before we procced on to the
next part”

Fig. 1. Top 5 most prevalent codes for: “What information in the Mastery Challenge did you find
useful?”. AC1 score of 0.8875.
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3.2 What Would You Change About the Mastery Challenge Module?

The final codebook included five codes (see Table 3) related to what students would
change in the MP. The most frequent code was Nothing to Change, with one student
quoted as saying, “Nothing, I honestly believe it’s perfect for some good practice.” The
nextmost prominent codeswereFeedback,Layout/Overall Module Structure,Additional
Practice, and More Examples (Fig. 2). While most students did not want to change
anything about the MP, some of them mentioned aspects of MP that they would like
to see improved. For instance, the second most frequent code for this question shows
that students would like to see more feedback when they got a question wrong. Another
common theme related to changes to the layout/overall module structure, with some
mentioning the length of content was too long. Although the practice problem and
example code were the predominant codes that students found useful about MP (Fig. 1),
two codes emerged, showing that students would like even more worked-out examples
and additional practice with the material (Fig. 2).

Table 3. Codebook for “What would you change about the Mastery Challenge module?”

Code Definition Example code

Nothing to change Student says that nothing about
MP needs to be changed

“I would change nothing”
“Nothing, I honestly believe it’s
perfect for some good practice”

Feedback Mentioned of wanting feedback
or explanation to incorrectly
answered problems

“If there were step by step
solutions to the problems that
we get wrong”
“An explanation to the questions
wrong”

Layout/Overall Module
Structure

Students’ comments regarding
the MP layout and overall
module structure

“The length, it was a little
longer and a little more reading
than I thought”

Additional Practice Students mention additional
practice problems or reference
to more quiz questions

“More sig fig problems on the
quizzes with multistep”
“I would include more practice
problems”

More Examples Students mention desire for
more worked out examples

“more worked out examples”
“I think it’d be helpful to have
corresponding worked problems
available after taking some of
the quizzes. So students can
review examples of questions
they struggled with and find out
how they went wrong on their
own”
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0 10 20 30 40 50 60

More examples

Addi�onal prac�ce

Layout/ Overall Module Structure

Feedback

Nothing to Change

Counts

Measurements Atomic Thoery Quantum Numbers Molecular Polarity

Fig. 2. Top 5 most prevalent code for “What would you change about the Mastery Challenge
module?”. The AC1 score for this data was 0.9947.

3.3 End-of-Semester Survey

Analysis of the Likert scale questions in the end-of-semester survey indicates that 79.7%
(n= 55) of students strongly agreed or agreed that they had an overall positive experience
with MP, and 50.7% (n= 35) of students believed that MP helped improve their attitude
toward chemistry. In addition, 42.0% (n= 29) of students strongly agreed or agreed that
by completing MP modules, they received higher scores on their exams, and 65.2% (n
= 45) believed that completing MP made them think more about chemistry. Regarding
students’ feelings towards MP, 60% of respondents strongly disagreed or disagreed with
the statement that these modules were a waste of time. Overall, MP led to improved

Fig. 3. Student responses to end-of-semester Likert-scale survey questions
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attitudes toward chemistry, and students perceived that they received higher scores due
to completing these modules.

In addition, 80.9% (n = 55) of students strongly agreed or agreed that the home-
work assignments inMPwere relevant to the content covered during course lectures, and
69.6% (n= 48) agreed that the assignments were worth their effort (Fig. 3). This exhibits
one of the hallmarks of MP functionality—the instructor’s ability to customize the con-
tent and questions delivery. MP also integrates seamlessly with the course curriculum,
which is one of the primary reasons students said they would not change anything about
the MP modules. Figure 1 supports this finding, showing that a majority of students
stated that they found the Practice Problems and Examples and Content-Related Topics
to be the two most useful aspects of the MP platform.

4 Discussion

4.1 RQ1: What Was the Students’ Perception of Canvas Mastery Paths Based
on Their Experiences with the Modules?

Analysis of the Likert scale questions in the end-of-semester survey (Fig. 1) indicated
that 79.7% (n = 55) of students either strongly agreed or agreed that their experience
with MP was an overall positive one, despite 65.2% (n = 45) of students saying that
they found the MP homework assignments to be challenging.

AISs have been shown to improve the course performance of students enrolled in
general chemistry, however, a common grievance students have with these platforms is
the time spent to achieve the desired results [4]. This was not seen as much of an issue
with MP in this study, as 63.8% (n = 44) of students expressed that the MP homework
assignments were not a waste of their time (Fig. 3), and the majority of students spent,
on average, between 0–2 h per module (Fig. 4). Time spent was also not one of the
prevailing criticisms that students stated they had with the platform, with one student
describingMP as “easy to go through in a reasonable amount of time” (Fig. 4). However,
this could also be due to these MP modules not being graded and being voluntary.

4.2 RQ2: What Impact Did the Mastery Path Activities have on Students’
Perceived Learning of and Attitude Toward Chemistry?

Students who utilized theMPmodules generally felt they had a better grasp of the course
material and that MP had improved their attitude toward general chemistry. MP made
students feel “more comfortable with the material,” with 50.7% (n = 35) saying the
platform helped to elicit a more positive attitude towards general chemistry (Fig. 3).
Students additionally found that the online homework assignments made them think
more about chemistry and led them to have an improved attitude towards chemistry and
achieve higher exam scores. Apropos of students’ learning comprehension, one student
said, “I feel like I strengthened my understanding of the important topics of this unit.”
Although 63.8% (n = 44) of the students revealed that the MP homework assignments
helped to further their understanding of general chemistry concepts, only 42.7% (n =
29) of students felt that this enhanced comprehension led to better course performance
(Fig. 3).
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Fig. 4. Student responses for perceived time spent on MP modules

4.3 RQ3: What Aspects of Mastery Path Activities Did Students Find the Most
Useful?

Students found the additional practice, the module content, and the mode in which this
content was presented to be the most helpful. Students also implied that they were able
to use MP to help identify their strengths and weaknesses, with 63.8% (n= 44) of them
saying they were able to use the MP questions to learn from their mistakes (Fig. 1 and
3). To better understand the student’s perspective, one student is quoted as saying: “I
figured out the topics that I need to get more help on before the exam in the upcoming
weeks.” For some students, this translated to improved course performance, as 42.7%
(n = 29) of students agreed or strongly agreed that they received higher exam scores
because of the platform (Fig. 3). While students found the MP modules to be a helpful
resource, they stated that they would have liked to see more feedback and explanations
when they got a question wrong. Overall, students found the MP to be a useful tool, and
69.6% (n= 48) thought it was worth the effort to complete, with a large majority stating
that the practice problems and examples and content-related topics were the two most
useful aspects of the MP platform.

5 Conclusion (and Future Work)

In a higher education market saturated with educational technology designed to offer
personalized learning experiences to students, any combination of interoperable tools
can be curated, combined, and deployed within a very short time frame with the intent
to support student learning. This study, however, highlights the benefits of using a sin-
gular tool that doubles as a learning management system (LMS, Canvas in this case) and
adaptive learning platform, reducing potential technical (single platform) and financial
(no added cost) barriers for students. While MP does not operate from sophisticated
machine learning algorithms, the tool allows instructional designers and instructors to
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build pedagogically-sound, empirically-based educational experiences that promote stu-
dent mastery through the use of automated content and assessment pathways that bridge
learning gaps between the most and least adept student populations—creating efficien-
cies for those who possess adequate prior knowledge and introducing scaffolds for those
who need further support to reach subject matter proficiency—fostering learning equity
and student achievement.

To expand on this study, the research team plans to investigate if students who
progress further into the MP have a better understanding of the chemistry content. The
group additionally plans to examine if students who participated in MP show increased
performance on topics covered in the course assessments.
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Abstract. Self-regulated learning (SRL), or the ability for a learner to monitor
and change their cognitive, affective, metacognitive, and motivational processes,
is a critical skill to enact, especially while learning about difficult topics within
an intelligent tutoring system (ITS). Learners’ enactment of SRL behaviors dur-
ing learning with ITSs has been extensively studied within the human-computer
interaction field but few studies have examined the extent to which learners’ SRL
behaviors quantitatively demonstrate a functional system (i.e., equilibrium of
repetitive and novel behaviors). However, current analytical approaches do not
evaluate how the functionality of learners’ SRL behaviors unfolds as time on
task progresses. This paper reviews two analytical approaches, both based within
categorical auto-recurrence quantification analysis (aRQA), for examining how
learners’ SRL complex behaviors emerge during learning with an ITS. The first
approach, binned categorical aRQA, segments learners’ SRL behaviors into bins
and performs categorical aRQA on the SRL behaviors enacted within those bins
to produce metrics of complexity that demonstrate how learners’ functionality of
their SRL systems change over time. The second approach, cumulative categorical
aRQA, continuously calculates complexity metrics as learners enact SRL behav-
iors to identify the evolution of learners’ functional SRL. These two approaches
allow researchers to identify how the functionality of SRL behaviors change over
time in relationship to the occurrences within the ITS environment. From this
discussion, we provide actionable implications for contributing to how learners’
SRL functionality can be visualized and scaffolded during learning with an ITS.

Keywords: Self-regulated Learning · Categorical auto-Recurrence
Quantification Analysis · Intelligent Tutoring System · Complexity

1 Introduction

Self-regulated learning (SRL) is critical for successful learning with intelligent tutoring
systems (ITSs) as learners are required to define the task and set goals to accomplish
the task, enact cognitive and metacognitive strategies to achieve set goals, and mod-
ify strategies to complete the task more efficiently [1–5]. In deploying SRL behaviors
(i.e., enactment of cognitive and metacognitive SRL strategies), learners can enhance
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their understanding of instructional materials throughout the ITS, thereby increasing
their domain knowledge [6–9]. However, learners typically have difficulty accurately
and effectively engaging in SRL [10] due to several factors such as learners’ limited
knowledge in the strategies they could deploy [5, 11]. As such, several studies have
aimed to understand how learners should be engaging in SRL during learning with an
ITS (e.g., [7, 12, 13]) but most of these studies investigate how learners transition across
specific strategies without evaluating the overall emergent behavior of SRL. This tradi-
tional micro-level approach limits our understanding of how learners should be enacting
macro-level SRL behaviors throughout the entire task. To address this limitation, the
current study describes two analytical approaches to examining SRL through a Com-
plex Systems Theory (CST) approach. These approaches can be used to evaluate the
extent to which the behaviors of a system (i.e., SRL behaviors) display an emerging
balance between novel and repetitive behavioral patterns. These methods have to poten-
tial to significantly expand our understanding of how learners should be deploying SRL
behaviors over time while learning with an ITS, provide contributions for developing
learner models informing the scaffolds within these environments, and extend beyond
ITS environments and SRL into other aspects of human-computer interaction.

2 Examining Complexity in Self-regulated Learning

Self-regulated learning (SRL) is a critical skill that refers to learners’ ability to monitor
and change their own cognitive, affective, metacognitive, and motivational processes
during a learning task [4, 5]. Across the several models and frameworks of SRL [5,
14–17], SRL has been touted as cyclical and recursive phases in which learners set goals
and plans, deploy strategies to achieve those plans, and reflect on the effectiveness of
those strategies to then modify future plans and strategies to achieve the overall goal.
Underlying these models are the assumptions that SRL is multidimensional where there
aremultiple componentswhichneed to interact to produceSRLbehaviors and temporally
unfolding in which SRL evolves over time [7]. From the traditional models of SRL, we
posit that SRL is a complex system as defined by Complex Systems Theory (CST),
providing us the opportunity to incorporate concepts (e.g., far-from-equilibrium) and
quantitative methodologies (e.g., auto-recursive quantification analysis) for interpreting
how learners have and should deploy SRL behaviors over time while learning.

2.1 Complex Systems Theory

Complexity science is an interdisciplinary framework that is typically applied within the
more naturalistic sciences, such as thermodynamics [18], combustion [19], physics [20],
animal behavior [21], etc. to explain how systems operate [22, 23]. Within complexity
science, Complex Systems Theory (CST) is defined as the study of abstract principles
which explain the organization and behavior of a system [22, 24, 25]. CST states that
a system can be considered complex if it characterizes self-organization [26], interac-
tion dominance [27], and emergence [28] in which the behavior of a system cannot be
attributed to a single component, rather it is the interaction and feedback/feedforward
processes of these components that give rise to nonlinear system behavior [25, 29].
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Past studies have argued that SRL can be considered a complex system defined
through CST as SRL behaviors are not dependent on a single controller to dictate behav-
iors, SRL comprises of multiple components that must interact with each other, and the
overall SRL behavior exhibited by learners cannot be attributed to a single component
[30, 31]. For example, a component of SRL is a single SRL strategy such as planning.
However, for SRL to occur, planning must be interacting or paired with other compo-
nents of SRL such as control processes, the presence of goal setting, or enactment of
other SRL strategies. As such, one may not say that SRL occurs when a single strat-
egy is present, rather SRL behaviors arise when several SRL strategies are enacted to
monitor, control, and change one’s learning processes (see [32]). However, questions
arise as to how to determine when learners’ SRL systems demonstrate behaviors that
are desirable for learning outcomes. In other words, how should learners’ SRL systems
demonstrate behaviors that are conducive to learning and how should the complexity of
these behaviors change over time?

2.2 Far-From-Equilibrium

Within CST are several concepts which allow researchers to identify the extent to which
system-level behaviors demonstrate healthy, functional systems. One such concept is
far-from-equilibrium which defines the health of a system by its fluctuation between
stable and chaotic states [33]. Specifically, a healthy functional system will demonstrate
a balanced deployment of stable and chaotic states where the more removed from a
stable state the system becomes, a functional system will periodically revert back to its
initial stability. Conversely, an unhealthy dysfunctional system will exist consistently in
either extremely stable or extremely chaotic states [34]. The extent to which a system
can be labeled as either functional or dysfunctional is dependent upon how studies can
capture and measure the complexity of learners’ SRL systems.

2.3 Methods for Capturing Complexity in SRL

The application of a complex systems lens to SRL research is in the understanding of
how intricate combinations of factors result in emergent phenomena [35–37]. In other
words, how can micro-level variables (e.g., a single click) combine to produce unpre-
dictable but commonly occurring outcomes at the macro-level (e.g., making a metacog-
nitive judgements). Central to this approach is the understanding that SRL behaviors
cannot be readily reduced to the description or analysis of the individual system com-
ponent behaviors [38, 39]. This has implications for the methodological and analytical
approaches that research can take to studying complex systems. Koopmans [39] outlines
three major priorities of complex (dynamical) system research including the study of
complex processes, the study of behavior stability and changes over time, and the study
of qualitative transformations. Across these research priorities, we have seen multiple
methodological approaches to address questions about the applicability of a complex sys-
tem’s lens to SRL research. Some of these methods include qualitative approaches (e.g.,
ethnography), while others are quantitative approaches aimed at addressing the structure
of variable networks (e.g., social network analysis), the dynamics of communications
(e.g., orbital decomposition), the dynamics of states (e.g., state space grids, transition
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matrices), time-series based predictions (e.g., fractional differencing), and recurrence of
patterns in behaviors (e.g., recurrence quantification analysis). These approaches within
educational research tend to focus primarily on behaviors of individuals (e.g., clicks
within a learning environment; [30]) but can also be applied to social processes such as
communication (e.g., [40]) or interactions between individuals (e.g., [41]). In this study,
we utilize a type of recurrence quantification analysis (categorical aRQA) to examine
the evolution of the recurrence of learner behavioral patterns as indicators of (un)healthy
SRL systems.

3 Categorical Auto-recurrence Quantification Analysis

Auto-recurrence quantification analysis (aRQA) is a method that captures internal non-
linear changes within both continuous as well as categorical time series [42]. For the
purposes of this paper, we focus on categorical aRQA to identify repetitive patterns
within learners’ single time series (hence ‘auto’) with the overall goal of quantifying
the extent to which a time series exemplifies a balance between novel and repetitive
behaviors. By using categorical aRQA, categories of actions or the semantic meaning
of behaviors can be analyzed, including the sequences in which learners engage in self-
regulatory strategies during a learning task. Within categorical aRQA, learners’ time
series of events that occurred during a learning session can be plotted against itself. We

Fig. 1. Example categorical aRQA plot in which a learner’s SRL actions within MetaTutor are
mapped on the X and Y axes.
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use Fig. 1 as our first example of an auto-recurrence plot. A recurrence plot is a structured
two-dimensional matrix in which a time series is represented on both the X and Y axes.
At the intersection of the X and Y axes within the matrix, a black dot represents the times
at which the action the learner engages in on the X time series matches that of the action
on the Y time series. Non-matching actions remain as a white indicator. Recurrence plots
incorporate three main components: (Fig. 1A) recurrent point; (Fig. 1B) diagonal line
representing a behavioral pattern; and (Fig. 1C) vertical and horizontal recurrent point
structures representing repetitive behaviors.

From the structure of a recurrence plot, several metrics can be calculated including
(but not limited to) recurrence rate, percent determinism, entropy, laminarity, and trap-
ping time which all provide different insights into learners’ time series data [43–45].
Each metric allows researchers insight into the complexity of system behaviors. Recur-
rence rate is the proportion of repetitious events across the full recurrence plot where
the density of the recurrent points on the plot are quantified. Recurrence rate provides
insight into how many similar states are present within the system and can be used to
understand how recurrent, or repetitive, events within a time series changes over time.
Percent determinism refers to the proportion of recurrent points on diagonal structures.
Determinism is the degree of predictability a system demonstrates. If a system shows
greater determinism through longer diagonal structures within the recurrence plot (i.e.,
greater percent determinism), the system behaviors demonstrate greater predictability,
or stability, whereas shorter diagonal structures in the plot denote a greater degree of
chaos, or instability. Entropy is the measure of the complexity displayed by determin-
istic structures within a recurrence plot. Similar to percent determinism, entropy refers
to the probability that the recurrence plot will display diagonal line structures where a
greater entropy value corresponds to greater complexity within a system. Laminarity is
defined as the frequency distribution of repetitious events on vertical or horizontal line
structures across all recurrence points, denoting the deterministic characteristics of a
system. Finally, trapping time is the length of the vertical structures on a recurrence plot,
calculating the average number of events that a system spends within a certain state.

Within recent literature, there has been a surge in the use of categorical aRQA
to identify the functionality of learners’ SRL systems as they engage in a learning
task. For example, Li et al. [31] examined how learners engaged in SRL behaviors
during clinical problem-solving using aRQA on log-file data. Another study by Dever
et al. [30] used aRQA on learners’ log files and eye gaze behaviors to identify how
learners engaged in SRL processes during learning about microbiology with a game-
based learning environment. Dever et al. [12] also examined how learners differing in
the amount of scaffolding received by pedagogical agents influenced how they deployed
functional SRL strategies calculated using aRQA.

Across all three examples, aRQA has been applied to each learner’s full time series
to evaluate system complexity, making metrics only available post-hoc, or after they
have finished with their task. While this allows researchers to understand how learners
have deployed SRL during a learning session from a complexity view, the disadvantage
to this analytical methodology is that learning is a process that evolves over time. As
such, analyses examining learning processes should be reflective of learning dynamics.
While a few studies have used RQA methods to track regularity across time [46], only
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one study to the authors’ knowledge has been published that attempts to evaluate how
learners’ aRQA metrics change over time within SRL. A study by Poquet et al. [41]
examined how learners’ recurrent SRL behavior changed over time and how learners
could be profiled based on these fluctuations in behavior. This study used latent growth
curve modelling on aRQAmetrics that were calculated on undergraduate learners’ event
logs within an online learner management system after a period of one week across
several weeks within a semester. While this study is the closest to understanding how
learners’ complexity metrics change over time, aRQA is still evaluated post-hoc, after
a full week of learning activities and after a full semester. Because of this, the nuanced
fluctuations as learners engage in learning processes such as SRL are not captured. We
propose examining the fluctuations of these metrics by re-calculating aRQA in (near)
real-time during ITS interactions to understand emerging SRL complexities.We propose
two methods for calculating emerging SRL system complexity during a single learning
task: (1) binning actions (e.g., Actions 1–10, 11–20, 21–30, etc.) to perform aRQA after
a pre-determined number of actions have occurred or when a learning phase has been
completed (i.e., binned categorical aRQA); and (2) re-calculating aRQA metrics when
a new action is performed, inclusive of all prior actions (i.e., cumulative categorical
aRQA).

4 Analytical Approaches for Examining Emerging Complexity

To compare our two analytical method approaches, we used a sample of learners who
completed MetaTutor, an ITS about the human circulatory system (see [1]). Within
MetaTutor, learners were required to interact with pedagogical agents who prompted
them to engage in SRL strategies as they learned with instructional materials. There
were several SRL strategies a learner could enact or be prompted to use including note
taking, content evaluations, summarizing, inferencemaking, prior knowledge activation,
monitoring progress towards goals, judgments of learning, feelings of knowing, and

Fig. 2. Recurrence plots of Participants A and B for full time series.
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planning. From the undergraduate studentswho learnedwithMetaTutor, two participants
were selected based on their normalized change scores where the participant with the
highest learning gain (Participant A) demonstrated the greatest increase in their human
circulatory knowledge from pre- to post-test after interacting with MetaTutor where
the other participant (Participant B) had the lowest learning gain (i.e., demonstrated
negative learning gains; see Fig. 2). These participantswere selected to serve as examples
of how binned and cumulative categorical aRQA can be used to examine emerging
complexities in learners’ SRL processes, discuss research questions that can be used to
better understand how SRL should unfold over time, and provide actionable implications
for transforming how learnermodels interpret learners’ SRL strategies and how scaffolds
can be used to assist learners in deploying functional SRL.

4.1 Binned Categorical aRQA

A binned categorical aRQA approach fragments a time series into bins (see Fig. 3). For
each of these bins, new aRQA metrics can be calculated and compared. This approach
allows researchers to describe the complexity of a learner’s SRL system in terms of how
system changes because of phases (e.g., orientation vs. reflection phases) or events that
occur (e.g., pedagogical agent prompting). For example, within SRL literature, learners
should cyclically enact forethought, performance, and reflection phases throughout the
learning task [47]. Actions which occur throughout these phases can be used within
aRQA analyses to identify the functionality of the behavior displayed in each phase and
how this transforms as learners move from one SRL phase to another. Another example
may be the SRL actions themselves that are enacted within learning phases such as the
processes required in scientific reasoning including information-gathering, hypothesis
generation, and hypothesis testing [48]. In applying this binning method, researchers
could better understand how learners deploy SRL strategies within each of these phases
and how this changes over time.

In Fig. 3, we arbitrarily created bins of a static size, but future iterations of this
method coulddeterminebins basedoff environmental phases (i.e., SRLstrategies enacted
to achieve subgoal 1 versus subgoal 2) or theoretical phases as described above. The
aRQAmetrics calculated from each bin can be used to compare learners’ degree of com-
plexity and functionality across bins. For example, Participant A demonstrated visually
functional system behaviors across each bin, potentially contributing to their greater
learning gains. In contrast, Participant B demonstrated a visually functional system in
the first and last bins but demonstrated a highly repetitive system within their second
bin, possibly contributing to their lower learning gains. From this example, using this
binning method allows researchers to begin to understand at which phase or state of
learning learners demonstrate dysfunctional system behaviors and how this relates to
learning outcomes to provide implications for scaffolding emerging SRL complexity.

By using a binned categorical aRQA analytical approach, researchers can ask: (1)
how do interventions implemented at different time periods influence learners’ demon-
stration of SRL complexity? (2) do learners’ SRL complexity change as a result of a
specific event within the ITS?; (3) duringwhich phase of learning do learners with higher
learning gains differ from learners with lower learning gains? Advantages to a binned
categorical aRQA approach include an ability for researchers to understand how phases
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Fig. 3. Binned categorical aRQA recurrence plots and corresponding metrics.

of a learning process influence how learners demonstrate functional SRL behaviors. In
this, we can evaluate the competencies of learners’ SRL strategy use within a learning
context while also evaluating learners’ competence in transitioning across SRL phases.

However, this approach is heavily contextualized to the environment itself in which
researchers will need to have already predetermined how the environment dictates how
learners engage in the learning process. For example, a theoretically-based binned cate-
gorical aRQA approach assumes that for a certain number of actions learners are engag-
ing in a single learning phase where the transition to the next learning phase is uniform
across learners. While this could be challenging, the environmental affordances, such
as the agency of learners, would need to be mapped to the theoretical model or frame-
work for this approach to be successful. Additionally, this approach also ignores the
assumption of parallel processing where learners could be engaging in multiple phases
of learning simultaneously.

4.2 Cumulative Categorical aRQA

A cumulative categorical aRQA approach uses learners’ first ten actions to calculate
metrics, with each action thereafter being used to re-calculate aRQA. This approach can
calculate learners’ emerging complexity in their system behaviors where as the learner
progresses through a task, the trends in aRQAmetrics that are continuously re-calculated
can show how a learner’s behaviors demonstrate increasingly functional, dysfunctional,
or unstable functionality.
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As an example, we used a cumulative categorical aRQA analytical approach to
understand how Participant A and B’s recurrence rate and percent determinism changed
over time. There are several interpretations researchers can glean from this approach.
For example, Participant A (who had greater learning gains) demonstrated a more level
approach to their overall recurrence rate and percent determinism scores than Partici-
pant B (who had lower learning gains) which can be confirmed with a growth modeling
approach. Researchers can identify the rapidity in which stability of cumulative aRQA
metrics are reached as well as the magnitude of change in these metrics. In comparing
the change across these metrics between more successful and less successful learners,
researchers can begin to understand how a functional system displays emerging com-
plexity through this approach. With a cumulative categorical aRQA approach, we can
ask: (1) to what extent do learners display an emerging SRL complexity?; (2) at what
time do learners display a shift from nonfunctional to functional SRL behaviors?; (3)
does the stability of learners’ complexity of SRL behaviors indicate greater functional
behaviors? (Fig. 4).

Fig. 4. Cumulative categorical aRQA %RR (left) and %DET (right) as time progresses on task
for Participants A (high learning gains) and B (low learning gains).

The major advantage of using this cumulative categorical aRQA approach is that
each re-calculation of aRQA metrics accounts for the full history of learners’ actions
which addresses the assumption that SRL unfolds over time. In addition, this approach
can be used without contextualization to the environment in which SRL is occurring as
it is the overall system behavior that is of interest, rather than the specific strategies or
phases of learning.

5 Future Directions for Research

Our paper addresses several major conceptual, theoretical, methodological, analytical,
and educational issues related to self-regulated learning and learning with intelligent
tutoring systems [1, 49]. First, treating complexity in self-regulated learning refers to
recognizing and managing the various factors, variables, and intricacies involved when
individuals actively monitor and regulate their learning. The first significant step is to
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assume and understand conceptually that the complexity in SRL can arise from several
sources, including cognitive factors such as the mental processes involved in learning,
such as attention, memory, and problem-solving, which contribute to the complexity.
Learners must navigate and regulate their cognitive processes effectively. Also included
are metacognitive factors, which involve awareness and control of one’s thinking pro-
cesses that are quite demanding cognitively andmay induce extraneous cognitive load on
learners [5]. Often neglected are motivational factors that are likely to fluctuate through-
out learning but are rarely captured given the over-reliance on self-report and lack of
sophisticated tools to examine the temporal unfolding of motivational states over longer
time dimensions (e.g., changes over minutes, hours, days) that impact a learners’ evolv-
ing sense of self and impact factors like interest, perceived competence, and the perceived
value of the learning task. Lastly, complexity also emerges when we con-sider the role of
emotional states, such as dealing with confusion, frustration, and boredom that require
emotion regulation strategies to continue to engage in productive learning, reasoning,
and problem-solving. Treating complexity in self-regulated learning involves under-
standing, addressing, and optimizing these various factors. It includes the development
of skills and strategies that enable learners to adapt to different situations and challenges.
By acknowledging and addressing the complexity inherent in self-regulated learning,
educators and learners can enhance the learning processes’ effectiveness and efficiency,
expanding the theoretical assumptions about the dynamics of SRL processes that unfold
in (near-)real-time during learning-system interactions. Future research should empiri-
cally test assumptions about the dynamics of various SRL processes to determine when,
how, and why changes will occur, by how much, if they recur (or not), give a myriad of
affordances provided by intelligent tutoring systems.

Our study also highlights the significant benefits of using complex system theory
analytical approaches such as auto-recurrence quantification analysis (aRQA) to mea-
sure the complexity of self-regulatory learning processes during learning with intelli-
gent tutoring systems [7]. We also highlight several productive areas for future research.
First, our analytical techniques allow researchers to capture dynamic intricate interac-
tions between various components and thus present analyses of temporal patterns and
recurrent structures in the self-regulatory learning process, providing insights into how
different elements interact over time. As such, we need to better understand the nature of
each SRL process and its subprocesses (e.g., metacognitive judgments such as content
evaluations vs. judgment of learning [JOLs]; see [6, 50]) and the internal (e.g., learners’
cognitive system) and external conditions (e.g., scaffolding provided by the intelligent
tutoring system’s pedagogical agents) under which they are triggered and how they are
monitored and regulated by the learner and system. Second, they can capture, identify,
and quantify nonlinear patterns of SRL processes, which are crucial for understand-
ing the adaptive and evolving nature of self-regulatory processes in the learner. Future
research must determine how to provide learners with intelligent, adaptive individual
scaffolding based on the dynamics of each SRL process and their unique fluctuation over
time. Third, we can detect phase transitions, such as when complex systems undergo
phase transitions (e.g., planning, enactment to reflection), where there is a qualitative
change in the system’s behavior, indicating shifts in the learner’s strategies or cognitive
states. However, future research needs to capture how phases of SRL change not only



126 D. A. Dever et al.

temporally and sequentially but also whether they may last longer for certain learners
when they return to previous phases to support learners’ SRL and why. Fourth, a signif-
icant advantage of our analytical approach is the ability to quantify adaptability—i.e.,
learning is an adaptive process, and aRQA provides a means to quantify the adaptabil-
ity of self-regulatory strategies. By analyzing recurrence patterns, researchers can gain
insights into how learners adjust their strategies in response to challenges or changing
task demands, such as reactions to pedagogical agents’ scaffolding, the complexity of
instructionalmaterials, etc. Thiswill require future research to focus onusingmultimodal
trace data to capture, isolate, and examine SRL processes at a fine-grained level of preci-
sion. Fifth, we can assess system robustness and stability since complex systems theory
emphasizes the importance of robustness and stability. As such, aRQA provides infor-
mation on the system’s stability, helping to identify periods of effective self-regulation
and potential vulnerabilities in the learning process. Again, multimodal trace data will
be key in pinpointing these periods and generating behavioral signatures that intelligent
tutoring systems can use as triggers to pedagogically intervene. Sixth, our approach
allows for a holistic under-standing of the complexity of SRL by allowing researchers to
examine patterns of recurrence at multiple levels and across different dimensions of self-
regulatory learning; analytical approaches such as aRQA allow researchers to consider
the complex interplay of cognitive, metacognitive, motivational, and emotional factors.
A major emphasis for future research is to decipher and determine if these patterns,
both within and across SRL processes, are correlational or causational in nature. Lastly,
our approach allows researchers to develop more sophisticated, intelligent tutoring sys-
tems that are capable of measuring, modeling, tracking, and therefore providing more
effective individualized scaffolding and feedback due to their ability to make inferences
about multimodal trace data about the complexity of self-regulatory learning process-es.
This will enhance their predictive modeling and forecasting of quantitative and qualita-
tive changes in learners’ SRL knowledge, strategies, and skills. In summary, applying
complex system theory analytical approaches like aRQA to study self-regulatory learn-
ing processes with intelligent tutoring systems provides a nuanced and comprehensive
understanding of the dynamic, nonlinear, and adaptive nature of learning. These insights
can inform future learning technologies, embed more sophisticated pedagogical inter-
ventions, and contribute to developing more effective intelligent tutoring systems [3,
51].
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Abstract. The analysis of physiological data can provide valuable information on
the mental state of users interacting with a technical system, such as an intelligent
tutoring system. By obtaining live estimations of mental workload a learning
systemcan adapt, e.g., the level of difficulty of tasks to the learners needs.However,
the analysis and interpretation of physiological data usually requires a baseline
recording at a rested state prior to or after a task limiting their practical value.
Additionally, the baseline of a physiological measure cannot be considered as a
stable value but varies between days and even within a day interpersonally, so the
validly calibrated data of a baseline become invalid over time limiting its value
for long term use cases.

This paper proposes a new method for near real time mental workload esti-
mation. A machine learning model which predicts the mental workload based on
the heart rate variability (HRV) derives metrics without the necessity of base-
line recordings. First, a machine learning model is trained on a dataset of pre-
viously collected physiological data and corresponding mental workload ratings.
Subsequently, physiological measures are collected continuously from a partici-
pant throughout tasks. The model is then used to predict the participant’s mental
workload in real time based on the HRV data.

The results of our pilot study show first empirical support, that the proposed
analysis technique is able to estimate mental workload in near real time with an
accuracy of 90%.

As this technique does not depend on baseline recordings it has the potential
to be specifically valuable in applied settings such as adaptive training systems or
to monitor the mental health of workers in safety-critical industries. The method
could also be extrapolated for the analysis of other physiological measures in
future research.

Keywords: Mental Workload · Baseline · Real Time · Physiological · HRV ·
Artificial Intelligence

1 Introduction

Live estimation of mental states, such as mental workload, is an important requirement
for the design of adaptive technical systems that adapt their behavior to the current
state of the user. As an example, adaptive systems may use live detection of mental

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Sottilare and J. Schwarz (Eds.): HCII 2024, LNCS 14727, pp. 130–146, 2024.
https://doi.org/10.1007/978-3-031-60609-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60609-0_10&domain=pdf
http://orcid.org/0009-0008-5908-3193
http://orcid.org/0000-0001-9937-0762
http://orcid.org/0000-0003-3942-4057
https://doi.org/10.1007/978-3-031-60609-0_10


Moving Beyond Physiological Baselines 131

workload to support the operator, if a critically high level of mental workload, has
been detected. In the learning context such information could be used by an adaptive
training system to specifically provoke states of high workload to train the learner how
to cope with critical conditions. Measuring mental workload by physiological measures
such as heart rate, heart rate variability, or pupil size is one of the most prominent
approaches in this context. Benefits compared to e.g., subjective ratings are that most of
these measures can be recorded continuously during a task without disturbing the user
and data can be analyzed in near real time. However, physiological reactions can differ
strongly between and even within individuals depending on the fitness level, caffeine
consumption, and physical activity among others. A common approach to account for
inter- and intraindividual differences is recording a baseline at the beginning or at the end
of a task in a relaxed state and comparing recorded data during a task with the baseline
value. However, in real-world applications baseline recordings are not always a suitable
method as there is often not enough time for a baseline recording. Also, if baselines must
be recorded regularly to be able to work with a technical system, this can be disturbing
and often lowers the user acceptance of the system.

In this paper we introduce a newmethod for live mental workload estimation without
baseline recordings, making it more applicable for real-world settings.We used the heart
rate variability (HRV) as a physiological measure to develop this method, because it is
considered as an established indicator of mental workload and stress.

Section 2 gives an overviewonprior studies onHRVassessment. Section 3 introduces
our new method for live analysis, also describing the data used for validation. Section 4
describes theAIClassifier, whichwas trained for the live analysis ofmentally demanding
tasks based on the calculated metrics from Sect. 3. This paper ends with a discussion,
the limitations of the method as well as conclusions and future developments.

2 Heart Rate Variability as an Indicator of Mental Workload

Mental workload refers to the amount of mental effort and resources required to perform
a specific task, encompassing cognitive processing, attention, and effort exerted by an
individual while engaging in a task [1]. It is a measure of the cognitive and perceptual
demands of a task, influenced by factors such as task complexity, time pressure, and
environmental conditions [2]. Heart rate variability (HRV) analysis measuring the vari-
ation of time intervals between heartbeats is a valuable method for assessing autonomic
function of the cardiovascular system. As such it is often used as a potential biomarker
for various health conditions [3] and for predicting mental workload in various settings.

The HRV can be calculated using various methods, including time-domain and
frequency-domain. In time-domain analysis, parameters such as SDNN (standard devia-
tion of NN intervals) and RMSSD (root mean square of the differences between adjacent
NN intervals) are commonly used [4]. Frequency-domain methods involve the use of
spectral analysis, such as fast Fourier transform and autoregressive model, to calculate
parameters like high frequency and low frequency components [5]. The Task Force of the
European Society of Cardiology recommends the use of SDNN and RMSSD as widely
adopted measures of HRV [4].

Literature shows that there is a negative correlation between the SDNN and sub-
jective mental workload [6], which also applies to the RMSSD [7]. Delliaux et al. [8]
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and Radüntz et al. [9] have focused on characterizing the impact of mental workload
on cardiovascular function using HRV non-linear indexes and inherent timescales of
cardiovascular biomarkers, providing insights into the relationship between HRV and
mental workload. Their results indicate that mental workload significantly lowered the
non-linear dynamics of RR interval [8] and that the assessment of mental workload
using cardiovascular biomarkers’ inherent timescales provide valuable insights into the
physiological responses associated with varying levels of cognitive demand [9]. Also,
Forte et al. [10] concluded in their systematic review about the relationship between
HRV and cognitive functions, that HRV is closely linked to cognitive function. Veltman
and Jansen [11] emphasized the differentiation of mental effort measures and its con-
sequences for adaptive automation, highlighting the importance of HRV in assessing
cognitive workload. The physiological basis of HRV as a reflection of autonomic ner-
vous system activity and its role in emotion regulation further supports its relevance in
adaptive systems, as highlighted by Witte et al. [12].

Veltman and Gaillard [13] concluded that HRV is a sensitive index for mental work-
load when tasks are highly demanding, emphasizing its relevance in assessing cognitive
demand during complex tasks. Research by Cinaz et al. [14] and Shao et al. [15] has
focused on the use of HRV in monitoring mental workload levels during office-work
scenarios and human-robot interaction, respectively, highlighting the versatility of HRV
in diverse domains and environments. Shao et al. [15] conducted a comparison analysis
of different time-scale HRV signals, demonstrating the applicability of HRV in evalu-
ating cognitive demand during interactive tasks. This supports the notion that HRV can
discern fluctuating task demands and attenuate during mentally straining workloads, as
stated by Nardolillo et al. [16].

The findings from these studies collectively highlight the potential of HRV as a
valuable physiological marker for assessing mental workload during software tasks,
providing insights into cognitive demand and adaptive responses in various task
environments.

2.1 Physiological Baselines

One of the most commonmethods to account for intra- and interindividual differences in
physiological measures, such as HRV, is to use baselines. This method is considered as
the gold standard for analyzing HRV and other physiological measures, where the “tonic
level measured immediately prior to stimulation is referred to as the baseline, the level
of activity against which we compare the phasic response to a stimulus” [17]. A baseline
can be obtained by taking the average of HRV values over a specified time interval, such
as five minutes, under resting or non-stressful conditions before or after a task [18]. This
baseline can then be used to compare it against HRV values collected during physical
or mental tasks. The method of obtaining a baseline is visualized in Fig. 1.
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Fig. 1. Baseline for HRV obtained in the first five minutes (300 s) in comparison to the HRV
mean of the task condition.

2.2 Challenges of Live HRV Analysis

While HRV is a valuable health metric, it has certain peculiarities that make it difficult to
establish a definitive baseline that is valid over long periods. When it comes to baseline-
measurements the respective physiological variable should be stable across the analyzed
period. Regarding short-term measurements, Tarkiainen et al. [19] conducted a study on
the stability over time of short-termHRV, indicating that most short-termHRVmeasures
were highly stable over time in laboratory conditions. They further conclude, that their
SDNN obtained during 40-min recordings was more stable than the SDNN obtained
during 5-min periods and the SDNN showed large variability in consecutive recordings.
The stability and variance of HRV appear to vary depending on the period of recording.

Baseline measurements compare a short period of HRV values to another period of
HRV values, similar to a consecutive recording. However, baseline measurements are
implying that the physiological variable is stable in variance across time, regardless of
the period. This assumption is important because it enables the comparison of the par-
ticipant’s response to a stimulus and their initially recorded baseline level. Physiological
measurements can result in chaotic timeseries [20] violating this assumption. Chaotic
timeseries refers to a type of time series data that exhibits chaotic behavior, character-
ized by instability, unpredictability, and sensitivity to initial conditions [21]. Without
stability, there may be no anchor point in the psychophysiological data that could serve
as a good baseline.

HRV baselines can become less valid over time because the range of values being
evaluated can change. This may be the case when comparing consecutive recordings
of short-term HRV. Individual HRV values vary greatly. Age, gender, health status, and
even psychotropic substances like caffeine intake can influence the HRV. Secondly,
intrapersonal homeostasis is a factor of influence, causing natural fluctuations even
without external stimuli [22]. That means that a fixed baseline can shift throughout the
day based on the current physical state of the individuum. Comparing absolute values,
like the baseline, across individuals or even comparing someone’s current HRV to their
ownbaseline, or any pastmeasurements, can therefore bemisleading. If theHRVchanges
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too much without external factors, there is a high chance of false positives (false alarms
e.g., false classification of tasks as mentally demanding) or false negatives (misses,
missed detections of mentally demanding tasks). This case is visualized in Fig. 2 where
according to the initial baseline, huge parts of the following values would be classified as
significantmentally demanding.A valid and reliable baselinemust thereby shift based on
the current physiological change, that is not related to external factors. It has to migrate
with it as a measure, like normalizations do. A change in the current physiological state
must be recognized and the shift of the baseline and a shift due to physiological or
cognitive impact factors has to be differentiated.

Fig. 2. HRV values from one participant over a period of around 55 min, where the first five
minutes are serving as the baseline. The test criterion by which HRV is classified as mentally
demanding is HRV values below the first standard deviation (-1σ) based on the baseline values.

The condition of the participant is usually unknown when the baseline is taken. If the
subject is too excited at the beginning, then the HRVmay only increase over time. If the
subject is too relaxed at the beginning, then the HRV may initially lose altitude rapidly.
This is called the law of initial value, where the magnitude of a response to a stimulus
depends on the starting level of the measured variable [23]. For example, if a participant
already has a very low HRV, which would also be measured as a baseline, then HRV-
lowering stimuli may no longer be noticeable. However, if the participant has a very
high HRV at the beginning, it may be that the entire test period is significantly below
the initial value and therefore the effects of individual stimuli are no longer recognized.

Small or finer oscillations in the data are completely ignored when physiological
baselines only compare the mean of a few conditions. Oscillations within a condi-
tion, based on single stimuli, will vanish through the calculation of means for whole
experimental phases.

HRV is often used in retrospective analysis, where at least the values of the recorded
timespan are completely available for state-of-the-art time series analysis techniques,
such as removing possible trends or seasonality from the data. But without knowing the
future data, an online or real time method, can only rely on the current data and data
recorded in the past. Future data can’t be forecasted because of the chaotic nature of
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the HRV time series, as stated previously in this section. So, all useful metrics must be
calculated based on the latest and passed HRV values.

The stated challenges are mostly valid for detailed live analysis with only HRV as a
parameter. Therefore, several approaches like the multifactorial RASMUS Framework
from Schwarz and Fuchs [24], use a combination of multiple parameters to provide more
robust user state analyses.

Hoover et al. [25] tried to detect changes in mental workload based on real-time
monitoring of HRV. Their original intent was to determine whether a change in task
caused a change in HRVmeasurement. Using sub-Gaussian functions, they were able to
successfully detect change points based on a change in tasks. This provided insight that
mentally demanding tasks can be identified by changes in HRV. Further, they conclude
that their method can successfully detect changes that are quite subtle.

However, to the best of our knowledge literature does not suggest a profoundmethod
for the live classification of short or ultra-short fluctuations of a single physiological
parameter, like the HRV.

3 Introducing a NewMethod for Live Mental Workload Estimation

In this section we present a new method to enable a more detailed analysis of HRV
fluctuations that may be useful e.g., for an efficient live analysis of workload in adaptive
systemdesign or for the evaluation of applications and tools in and outside of a laboratory.
Our method aims at eliminating the need for regular baselines and providing a metric
that is stable over time periods for classifyingmental demanding fluctuations in the HRV.

3.1 Re-analysis of Data from a Prior Study

A prior study conducted by Bruder and Schwarz [26] was used to develop the method
of this paper by re-analyzing the data, where the HRV was calculated as a rolling 300
Heartbeat SDNN. A HRV baseline was calculated for each participant based on the first
120 s. During that time, the mental workload was kept low to moderate. This baseline
was further used as a test criterion where a HRV value lower than one standard deviation
from the baseline distribution will be classified as critically high and a value greater
than one standard deviation as critically low mental workload when coinciding with a
performance decrement. Figure 3 visualizes the concept and classification based on the
data of one participant from the original study.

The initial study of the authors was followed by a validation study which confirmed
that their used method is temporally valid and, moreover, could distinguish between
three different conditions named baseline, high workload, and monotony. Workload
assessment was based in this study on a combination of HRV and four other workload
indicators (the number of tasks, number of mouse clicks, pupil diameter, and respiration
rate) to compensate for inaccurate classifications of single indicators. The method pro-
posed in this paper aims at developing this approach further by providing HRV-based
live classifications of even short-term mentally demanding tasks, thus increasing the
accuracy of this classifier.
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Fig. 3. The classification of low, none and high mental demand based on a two-minute baseline,
where a HRV value lower than 1σ will be classified as critically high and a value greater than 1σ
as critically low mental workload.

3.2 Experimental Setting

For the evaluation of the method provided in this paper, we utilized the existing data
from the previous study conducted by Bruder and Schwarz [26] about the evaluation of
diagnostic rules for real time assessment ofmentalworkloadwithin a dynamic adaptation
framework. The framework was operationalized for an air traffic surveillance task.

The original study involved a sample of 15 participants (8 males, 7 female) aged
between 20 and 51 years (M = 31.26 ± 8.27). A multisensory chest strap (Zephyr
BioHarness 3) was used to collect data on HRV and respiration rate. Pupil diameter was
recorded with an eye tracker placed underneath the monitor.

Participants began with a ten-minute training session where the examiner clarified
task completion for each subtask. Following this, they engaged in a 45-min experimental
test divided into three continuous phases, punctuated with a survey when a performance
decrement on one of the tasks had been detected. In this survey, participants rated their
perceived mental workload and other mental states. The experiment’s duration therefore
varied based on user performance, with additional workload ratings recorded both after
training and at the experiment’s conclusion to establish individual baselines [26].

3.3 Concept for a Live Analysis of Cognitive Workload

Steps for live analysis of the HRV data are normalizing the incoming HRV values and
calculating additional metrics such as the slope of the ascending and descending HRV.
Finally, the normalized HRV and metrics are used to be classified using a pre-trained
machine learning model. The whole data flow is shown in Fig. 4. The steps specifically
of the live classification will be explained in detail in the following section.
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Fig. 4. The processing of incoming HRV values towards the prediction of mentally demanding
tasks.

3.4 Live Normalization for Non-stationary Timeseries

It is important to normalize the HRV for comparability even of the same subject, because
of the unpredictability of the futureHRVvalues and regarding to the intraday differences.

In our method, we estimate a rolling normal distribution with a maximum likelihood
estimation (MLE) based on the last 60 HRV values. The calculated mean from the distri-
bution serves as the current plateau of the HRV, fromwhich a new gradient will relatively
be measured. Mathematically, the distribution means from the last 60 HRV values will
be subtracted from the incoming HRV values, to get the relative value compared to the
last minute in our case.

HRV = {hrv1, hrv2, . . . , hrvn}

Rolling Mean = 1

60

∑n

i=n−59
HRV i

HRVNormalized = {hrv1 − Rolling Mean, hrv2 − Rolling Mean, . . . , hrvn − Rolling Mean}

This normalization forces the values to move around a center of 0 for each subject,
which acts detrending, so it removes trends in the time series. Figure 5 plots the HRV
values from one subject over a period of around 53 min with the normalized HRV values
below.

3.5 Online Change Point Detection

The second step is to recognize a change in the incoming flow of HRV values. Whenever
there is a significant change, we must mark the position of that change point.

A comparison of two single values, so the last past value and the newest, won´t be
accurate in case of slightly fluctuating values. To address this problem, we always take
the last twenty HRV values, where the first ten values are compared with a Wilcoxon
rank sum test to the latest ten values, formulated as:

HRVNormalized = {hrv1, hrv2, . . . , hrvn}
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Fig. 5. Original HRV values and the normalized HRV values below.

HRVGroup1 = {hrvn−20, hrvn−19, . . . , hrvn−10}

HRVGroup2 = {hrvn−9, hrvn−8, . . . , hrvn}

W = WilcoxonRankSum(HRVGroup1,HRVGroup2)

This is visualized in Fig. 6 are grouped colored in blue. In most cases, one or both
groups do not meet the test assumptions of parametric inference statistical tests, such as
the assumption of normal distribution. Therefore, the two groups are compared using a
non-parametric Wilcoxon rank sum test with a fixed 5% alpha significance level.

Fig. 6. Calculation of change points based on the previous 1–10 values (Group 1) and the newest
11–20 values (Group 2).

In our method, the test criterion of the rank sum test will always be tested twice as
one-sided tests for lower and greater significant difference. If the latest ten values are
significantly greater, than an ascending changepoint will be reported. If significantly
lower, a descending changepoint will be reported.

WLower = WilcoxonRankSum(HRVGroup1,HRVGroup2)

Descending Changepoint =
{
True if WLower is < 0.05 α

False otherwise
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WGreater = WilcoxonRankSum(HRVGroup1,HRVGroup2)

Ascending Changepoint =
{
True if WGreater is < 0.05 α

False otherwise

If there are two or more change points, each following the same direction, e.g., all
lower or all higher, the series of all such change points is cached until the series is broken
by a new change point with a different direction. The cached series then forms a single
ascent or descent to be able to calculate a slope over the entire ascent or descent series.

After a change point has been detected, a dead time of 10 HRV values starts in order
to avoid that the already significant range of values is compared again. Figure 7 visualizes
the dead time, where the first group of ten values was significantly different compared to
the second group of ten values. So, a new change point was identified between the first
and second groups. To avoid a new comparison of the first group, no group comparison
is carried out as long as ten new values are available. After that, for each new value, the
groups are calculated as specified in the paragraphs above.

Fig. 7. Dead time in the change point detection.

3.6 Calculating the Slopes

The third step is to calculate the slopes between the change points. Every time a new
change point is detected, we can calculate the slope between the previous change point
and the new one, as well as the slope over an entire series of ascent or descent change
points. Figure 8 visualizes the calculated slope between two descending change points.

Fig. 8. Two visualized slopes between three change points. Red dotted lines are descending
change points, green dotted lines are ascending change points. The red line is the ascending slope
between two change points, followed by a yellow line indicating no slope. (Color figure online)
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3.7 Feeding the Classifier

When a new slope has been calculated, we add the slope, its height and length to the
previously normalized HRV values for the whole length of the calculated slope. For the
length of the latest slope all normalized HRV values, the slope itself with its length and
height will be passed to the classifier. For each normalized HRV value, the classifier will
then predict if it is part of a mentally demanding sequence.

4 Artificial Intelligence Classifier Training

In this section, we describe how we trained the classifier, starting with the data we
used, the model architecture, the training process, model evaluation, and finally further
analysis.

4.1 Training Data and Preprocessing

For our study, we examined the video data of all participants from the study of Bruder and
Schwarz [26] and annotated five different tasks. Participants were required to complete
three surveillance tasks called NRTT, Unknown Track, andWarn/Engagement. Figure 9
shows the three different tasks and their associated areas.

Fig. 9. Original Task User Interface, showing 1) a non-real-time track (NRTT) to process, 2) a
new unknown track to classify and 3) a hostile track entering the self-protection zone that must
be warned or further engaged if it proceeds to get closer.

The Non-Real-Time Tracks (NRTT) are displayed with information about a track
that must be created manually, with specific information such as classification, speed,
and direction, all of which must be entered into a form. Unknown tracks sometimes
appeared as yellow symbols on the map, and the participant had to classify them within
a form according to their position, speed, and direction. In the third task, hostile tracks,
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marked as red symbols on the map, were moving towards our position in the center of
the map. When these tracks crossed the first line, the participant had to manually warn
the track by clicking a warn button to the right. If an enemy track crossed Fig. 10 on the
right.

We annotated the surveys as a separate task and task-independent parts of the video,
such as the start of the experimental software, as other. Visualizes all of a participant’s
tasks and their processing times. The three monitoring tasks could occur simultaneously
which made the first half of the experiment mentally more demanding than the second
half.

Fig. 10. Visualized time slots from one participant of all five different annotated classes.

Wemarked the three surveillance tasks asmentally demanding taskswhichwas coded
as 1, whereas the periods surrounding these tasks were coded 0. The stated statistical
model was defined as:

Mentally demanding Task ∼ normalized HRV + Slope + Length of Slope + Height of Slope + ε

The calculation of the predictors as well as the criterion was based on the steps as
described in paragraph 2.

We split the data into 70% training data and 30% test data for model validation
afterwards. The training data consists of 70% of the dataset, which is around 6:52 h of
training material, coded in 22.109 data rows. In contrast, the test data consists of 30%
of the dataset, which is around 2:57 h of evaluation material, coded in 9.476 data rows
that will only be used afterwards for the purpose of evaluation.

4.2 Model Architecture

We have chosen a modified version of the Decision Tree Classifier algorithm called
Extra Trees Classifier written in python v.3 from the package scikit-learn [27] in v.1.3.2.
This package implements the Extra Trees Classifier as a meta estimator that fits several
randomized decision trees on various sub-samples of the dataset and uses averaging to
improve the predictive accuracy and controls over-fitting, indicating its robust predictive
capabilities in healthcare applications [28].

The hyperparameters were optimized using a grid search, resulting in a best fit with
the parameters n_estimators = 100 and max_features = 3.

With respect to possible class imbalance, we also calculated the class weights for the
two possible states of the criterion, which were 0.839 for non-critical tasks and 1.236
for critical tasks. These class-weights were given to the following machine learning
algorithm.
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4.3 Training and Evaluation

Based on the test dataset, consisting of 30% (2:57 h) of the whole dataset, the classifier’s
discrimination accuracy is 90.78%, which is based on 8.603 right classified cases in
contrast to 873 wrong classifications, as shown in the confusion matrix in Fig. 11.

Fig. 11. a) Confusion Matrix based on test data. b) Receiver operating characteristic curve for
the same test data.

A Receiver Operating Characteristic curve (ROC) is a graphical plot that illustrates
the trade-off between the true positive rate (TPR) and the false positive rate (FPR) at
different threshold settings, which is shown in Fig. 11 for our model evaluated with the
test dataset. The calculated Receiver Operating Characteristic Area Under the Curve
(ROC AUC) score indicates the ability of a model to distinguish between positive and
negative examples across all possible classification thresholds. A ROC AUC score of
100% indicates a perfect model, while a score of 50% indicates a model that is no
better than random guessing. Our trained model reaches an ROC AUC score of 94.02%,
indicating that the model is very good in distinguishing between mentally demanding
sequences in the HRV and sequences without. The ROC AUC score of our model is
suggesting that the model is highly effective at identifying the true positive and true
negative cases, also reflecting the results of the confusion matrix.

Feature importance measures the relative contribution of each feature to the classifi-
cation accuracy of a machine learning model, which is a crucial aspect of understanding
how amachine learning model works and can be used to improve its performance. It also
shows howmuch information a specific feature adds to amodel, which can help to decide
whether the adding or deletion of a feature can optimize a model. In this study, we inves-
tigated the feature importance of the used predictors for predicting mental demanding
sequences in the HRV. The four classes of features were the normalized HRV, the slope,
its length and height. We found that the most important features are the normalized HRV
the slope itself and the length of the slope, which are together accountable for 92.10% of
the model’s accuracy. This suggests that the height of an ascending or descending HRV,
with a feature importance of 7.90%, is not as essential for predicting mental demanding
tasks as the length of that slope with a feature importance of 26.96%. The slope itself,
which is combining the length and height, has a feature importance valued with 26.49%.
The normalized HRV has the highest feature importance with 38.65%.
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Because of the partial redundancy of the predictors slope, length, and height, it may
be sufficient to just use the slope and the normalized HRV values. In a further analysis,
we trained a second model for testing with the normalized HRV and the slope as the
only two predictors. Figure 12 shows the accuracies and ROC-AUC scores for different
combinations of predictors.

Normalized
HRV

Normalized
HRV + Slope

Normalized
HRV + Slope
+ Length

Normalized
HRV + Slope
+ Height

Normalized
HRV + Slope
+ Length +
Height

Accuracy 77.01% 80.67% 83.85% 86.44% 90.78%
ROC-AUC 83.16% 82.25% 89.26% 90.79% 94.02%

70.00%

80.00%

90.00%

100.00%

Accuracy ROC-AUC

Fig. 12. Accuracies and ROC-AUC scores for different combinations of predictors.

The further analysis indicates, that the normalizedHRVexplainsmost of the variance
regarding mentally demanding tasks. Furthermore, the height of the slope seems to
explain more variance than the length, but in the use of both features, variance of the
height was lower as stated in the paragraphs before. In comparison to the model using
just the normalized HRV + Slope the additional use of the predictors length or height
increases the ROC-AUC score, therefore improving the model in identifying the true
positive and true negative cases for up to ~8%.

In summary, our trained model detects mentally demanding tasks with a high accu-
racy of 90.78%. The ROC-AUC score of 94.02% shows that the model can distinguish
positive and negative cases very well. The analysis shows that it appears possible to run
the model with fewer predictors than features, thus reducing complexity.

5 Discussion

5.1 Benefits of Live HRV Analysis

Heart rate variability (HRV) analysis has long provided valuable insights into health and
well-being. However, traditional methods often rely on establishing individual baselines,
making them cumbersome and limiting.

Our live analysis reduces the complexity by tracking HRV fluctuations in near real
time, enabling the identification of changes duringmentally demanding tasks. This elim-
inates the need for lengthy baseline measurements, saving time in research settings and
making the technology applicable outside of lab environments. Without spending time
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establishing baselines, a system could start adapting to new situations faster, poten-
tially leading to quicker and more optimal responses. Adapting without baselines could
allow the system to learn and improve continuously, incorporating new information and
experiences without needing to re-establish a static starting point.

In conclusion, our live HRV method indicates that real time classifications of short-
time mentally demanding tasks based on HRV is possible. Additionally, our method
eliminates the need for baseline measurements what offers significant advantages for
real time applications like adaptive systems.

5.2 Limitations

Several limitations need to be considered regarding the overall use of HRV for mea-
suring cognitive workload in general, and for the described method without a baseline
specifically. One major limitation is that HRV is altered by many confounding variables,
like body movement, general stress level, and psychoactive substances like caffeine.
Discriminating whether a HRV change is caused, for example by physiological activity,
homeostasis, or cognitive workload by analyzing the raw data, is difficult [29]. Context
information are usually needed as a co-variable to address that issue. Those data are not
always possible to collect. The applicability of HRV as a sole parameter tomeasure CWL
is restricted because of that. To address the issue of discriminating different cofounding
factors, the experiment was performed in a highly controlled laboratory environment.
That limits the possible extrapolation of the results to field studies, or productive systems.

Another limitation is an increased data noise because the tasks for the training of the
modelweremanually annotated, based onvideomaterial captured during the experiment.

Also, the described method was only used for a binary classification of cognitive
workload, where multiple mentally demanding tasks at the same time where merged
together. Usually, multiple tasks have to be monitored and performed independently,
and some tasks are interrupted by others. The allocation of cognitive workload load due
to specific tasks in that scenario has to be further investigated in future work and is a
limitation of the results.

6 Conclusion and Future Developments

This study has demonstrated the potential of using heart rate variability (HRV) as a
marker of cognitive workload, showing the way for further exploration and practical
applications.

While this study successfully estimated mentally demanding tasks with an accuracy
above 90%, future research can delve deeper into understanding the real time changes
in HRV within single tasks or specific task types. This level of granularity could reveal
which tasks or specific segments within tasks are most demanding, allowing for tar-
geted interventions or workload balancing. Additionally, investigating the impact of
multitasking on HRV could provide valuable insights into its unique cognitive demands.

Integrating other physiological metrics beyond HRV, such as pupil dilation, could
potentially enhance the accuracy and comprehensiveness of workload assessment. Com-
bining multiple physiological measures might create a more robust and nuanced under-
standing of cognitive state. While other physiological metrics, like pupil dilation, share
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some similar connections to mental and emotional states as HRV, further research is
needed to establish other metrics like the HRV as a reliable standalone measure for the
intended method. It’s important to note that replacing HRV with another physiological
measure requires careful consideration of their specific functionalities and limitations
within the given method’s context.

Determining the optimal level of accuracy required for different applications is cru-
cial. For instance, adaptive systems requiring real time adjustments might demand high
accuracy, while workload evaluationmight be tolerant of somemargin of error. Tailoring
the model’s complexity and resource requirements to specific use cases will optimize its
practicality and efficiency.

Future research could focus on differentiating mental and physical activities solely
based onHRVdata. This could enable applications likemonitoringmental fatigue during
physical exercise or distinguishing between cognitive stress and physical exertion in real
time.

This study represents a step forward in utilizing HRV in live analysis to assess
cognitive workload. Future research along the proposed avenues can refine and broaden
this understanding, leading to impactful applications across various domains.
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Abstract. Adaptive training (AT) is a promising avenue for training across multi-
ple domains pertinent to warfighters, as it can adjust instruction and task difficulty
based on the learner’s real-time performance. Despite these benefits, such adap-
tations may elevate learner stress, hindering performance and learning. Coping
strategiesmay be used tomitigate learner stress, but there is limited extant research
comparing adaptive andmaladaptive coping strategies in an adaptive training envi-
ronment. This study explores the relationship between stress and task performance
in the context of an adaptive training system that dynamically adjusted task dif-
ficulty based on real-time performance. Participants completed a radio frequency
signal detection task in which they had to classify and report signals quickly and
accurately. Participants were also instructed on adaptive ormaladaptive stress cop-
ing strategies that either focused on the task itself (problem-focused) or on their
emotions (emotion-focused). Results suggest that task engagement is related to
performance and changes in micro-adaptive difficulty. Distress and worry, how-
ever, did not consistently relate to task performance or micro-adaptive difficulty.
Problem-focused coping helped maintain task performance regardless of whether
the strategy was adaptative or maladaptive. Maladaptive, emotion-focused cop-
ing led to the worst performance outcomes. Limitations and future directions are
discussed.
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1 Introduction

Enhancing warfighter performance remains a central focus within Naval science
(Williams, 2017), and training is imperative for effective task performance (Proctor &
Vu, 2006). One possible training avenue is through adaptive training (AT). Difficulty
micro-adaptations involve adjusting task difficulty based on a learner’s real-time task
performance (Landsberg et al. 2011). A concern with this approach is that increasing
task difficulty might also increase operator stress, which, in turn, can negatively impact
task performance and operator well-being (Hancock & Warm, 1989). In this paper, we
explore the relationship between stress coping strategies, self-reported stress, and task
performance in the context of an adaptive training system that dynamically adjusted task
difficulty based on real-time performance.

1.1 Adaptive Training

Adaptive training (AT) systems are computer-based instructional systems that surpass
standardized protocols by tailoring training at an individual level (Hancock et al. 2009).
This training format holds promise for warfighter training as it can expedite learn-
ing by excluding already mastered material and facilitate swift progress toward higher
proficiency levels (Goodwin et al. 2017).

There are three primary approaches to AT:macro-adaptation, micro-adaptations, and
Aptitude Treatment Interaction (ATI) adaptations (Landsberg et al. 2011; Park & Lee,
2003). Macro-adaptations tailor the training based on broad characteristics of the learner
such as their general ability to meet learning objectives measured prior to instruction
(Park & Lee, 2003). In contrast, micro-adaptations adjust the instruction based on the
learner’s real-time performance or emotional state (Park & Lee, 2013). Finally, ATI
adaptations match the instructional techniques to the learner’s abilities or attributes
such as learning styles or motivation (Park & Lee, 2003). Although ATI adaptations
provide an even more tailored approach than macro-adaptations, aptitudes are typically
measured pre-task, and the importance of certain aptitudes may change as the task
progresses (Park & Lee, 2003). A hybrid approach that combines elements of micro-
adaptivity and ATIs is one proposed solution to these limitations. A hybrid approach
bases initial instruction on learner aptitudes and later uses real-time performance data as
the instruction progresses (Park & Lee, 2003; Tennyson & Rothen, 1977; Van Buskirk
et al. 2014). Becausemicro-adaptations rely on on-taskmeasurements, theymay bemore
sensitive to the learner’s needs throughout the instruction compared to macro-level and
ATI adaptations (Park & Lee, 2003).

While micro-adaptations can be delivered through one-on-one instructions (Lands-
berg et al. 2011), they can also be implemented through computer-based instructional
systems that use algorithms and models to deliver appropriate instruction based on real-
time assessments of the learner’s performance (Landsberg et al. 2011). In essence, the
algorithms deliver the right instruction for the learner at the right time. This can be deci-
sions like selecting appropriate feedback for the learner at an appropriate level of detail,
selecting a new lesson for a learner, or adjusting other elements of the task (e.g., making
a scenario more difficult or reducing event rates). However, these types of systems may
be more costly to implement due to additional processing requirements (Landsberg et al.
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2011). Additionally, prior research suggests that any change in workload can increase
stress and have a negative effect on performance (Cox-Fuenzalida, 2007; Helton et al.
2008). Thus, it is plausible that micro-adaptations may serve as a source of stress that
may impair performance.

1.2 Stress

Stress is an interactive property of the immediate environment that induces an internal
response from the individual that can be externally manifested given the magnitude
of the stress and the individual’s appraisal of it (Hancock & Szalma, 2008). Research
has shown that stress has detrimental effects on task performance and operator well-
being (Hancock & Warm, 1989). High stress levels have been found to impair operator
judgment and lead to behavioral regressions (Barthol & Ku, 1959; Staal, 2004). Because
military training aims to properly equip personnel with behaviors that enhance safety and
efficiency, regression to incorrect or inefficient behavior would be undesired and likely
a risk to safety. Therefore, understanding the impacts of stress on operator performance
is a primary interest for maintaining optimal performance within military operations.

Given the critical role stress plays in performance, researchers have developed var-
ious assessment methods. Physiological measures of stress (e.g., Heart Rate Variabil-
ity, blood pressure) allow for continuous assessment and real-time monitoring of stress
(Hughes et al. 2019). However, suchmethods cannot capture the subjective experience of
stress, are highly subject to individual differences and task parameters, and may be more
costly to implement (Hughes et al. 2019). On the other hand, subjective measures such
as the The Dundee Stress State Questionnaire (DSSQ; Matthews et al. 1999) provides
a low cost alternative to measure the subjective stress experience. The DSSQ assesses
three dimensions of stress: task engagement, distress, and worry. Task Engagement (TE)
is characterized by the level of motivation an individual possesses to accomplish a given
task, along with the intensity of energy and concentration directed toward that task
(Matthews et al. 1999). TE is positively associated with performance on vigilance tasks
(Matthews et al. 1999;Matthews et al. 2013). Distress is characterized by both mood and
cognitive factors: high tension, unhappiness, low confidence, and low control. Worry,
however, is cognitive and can be measured by levels of cognitive interference, self-focus
of attention, self-esteem, and concentration (Matthews et al. 1999).

1.3 Stress Regulation Strategies

In addition to training individuals on the task itself to improve performance, training
individuals to better manage their emotions and stress can also improve performance
and operator well-being. Research has identified two primary stress coping strategies:
problem-focused and emotion-focused coping. Problem-focused strategies involve solv-
ing the problem at hand through strategies such as seeking advice, gathering informa-
tion, and generating steps to solve the problem (Lazarus & Folkman, 1984). In contrast,
emotion-focused strategies involve regulating one’s thoughts and emotional response to
the stressor (Lazarus & Folkman, 1984). Examples of emotion-focused coping strate-
gies include avoidance, self-blame, and cognitive reappraisal. Cognitive reappraisal is
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the process of re-interpreting the situation to change one’s emotions towards it (Mar-
roquín et al. 2017), and previous research suggests that it effectively reduces negative
emotions (Gross, 2002).

Both problem-focused and emotion-focused coping can be considered adaptive or
maladaptive depending on the specific strategy employed. Adaptive coping strategies are
associated with greater well-being and are known to promote healthier, safer behaviors
(Marroquín et al. 2017). For example, problem-solving, seeking social support, and
cognitive reappraisal are all adaptive strategies. On the other hand,maladaptive strategies
are more likely to lead to unsafe behaviors and are generally detrimental to well-being
and performance (Marroquín et al. 2017). Examples of maladaptive strategies include
rumination and emotional suppression. Emotional suppression involves attempting to
retrain one’s expression of negative emotions (Gross, 2002). Suppression can reduce
the physiological arousal associated with stress, but it may be ineffective at reducing
negative emotions (Gross & Levenson, 1993). Maladaptive strategies may be effective
at managing stress in short-term, uncontrollable, and stressful situations, but they are
detrimental in chronically stressful situations (Suls & Fletcher, 1985).

Despite the breadth of research on adaptive and maladaptive coping strategies, there
is little research directly comparing these strategies in domains relevant to warfighters.
Additionally, it remains unclear whether emotion or problem-focused coping have dif-
ferent effects on stress and in complex cognitive tasks. Matthews and Falconer (2000)
compared adaptive, task-focused strategies (e.g., planning) with maladaptive emotion-
focused strategies (e.g., self-criticism) and avoidance strategies (distracting oneself).
The results suggested that task-focused strategies are the most optimal for performance.
However, the study did not include maladaptive, task-focused and adaptive, emotion-
focused strategies, making it challenging to draw conclusions about the best strategy for
cognitive tasks.

1.4 The Present Study

The goal of the current research was to explore the relationship between stress, perfor-
mance, and stress-coping strategies in a radio frequency (RF) detection adaptive training
system that included micro-adaptive difficulty algorithms. We focused on stress in this
paper, recognizing that the task itself can be considered the proximal and prime stressor
(Hancock&Warm, 1989).Additionally, past research suggests that changes inworkload,
such as those produced by micro-adaptative difficulty, may be another source of stress
(Cox-Fuenzalida, 2007; Helton et al. 2008). We hypothesized that participants using
adaptive stress coping strategies would perform better on the experimental task and
report less stress than those using maladaptive coping strategies. In addition to address-
ing these hypotheses, we were interested in comparing the effect of problem-focused
and emotion-focused coping mechanisms on stress and performance given the limita-
tions of past research (e.g., Matthews & Falconer, 2000). As the naming conventions of
the constructs we are investigating may cause confusion, we reiterated the operational
definitions we are using in this study in Table 1.
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2 Method

2.1 Participants

Participants were recruited from an online research participation system at a large, south-
eastern university. Participants were 18 or older and had normal or corrected-to-normal
vision and audition. A total of 75 participants were recruited through an online partici-
pant pool and paid $100 for their participation. Data was missing from one participant,
resulting in a final sample size of N = 74.

Table 1. Operational definitions used in the present study.

Construct Definition

Micro-adaptive difficulty Adjustments in scenario difficulty based on the real-time
measurement and assessment of performance

Adaptive stress coping strategy Stress coping strategy that not only reduces stress but is
also beneficial for task performance

Maladaptive stress coping strategy Stress coping strategy that reduces stress but hinders task
performance

Stress coping focal mechanism The focus of a coping strategy that could be either focused
on the task or problem at hand or focused on one’s
emotional or physical reaction to the stressor

2.2 Experimental Design

We used a 2× 2× 6mixed design. The between-subjects variables were coping strategy
(adaptive or maladaptive coping) and the coping focal mechanism (problem-focused or
emotion-focused). The within-subjects variable was scenario (pretest, scenarios 2, 3,
and 4, posttest, and transfer). We randomly assigned participants to one of four cop-
ing and focal mechanism groups: adaptive, problem-focused coping (n = 18); adaptive,
emotion-focused coping (n = 20); maladaptive, problem-focused coping (n = 19); and
maladaptive, emotion-focused coping (n = 17). We instructed participants in the adap-
tive, problem-focused group to use the task interface to manage their stress (Chao et al.
2019). Specifically, we instructed them to use a “cheat sheet” that helped them com-
plete the task. We trained participants in the adaptive, emotion-focused coping group
on cognitive reappraisal. Specifically, we instructed them to re-interpret their stress as a
beneficial learning experience that would help them perform better in the future (Mar-
roquín et al. 2017). Participants in the maladaptive, problem-focused condition were
instructed to other-blame the interface (Domaradzka & Fajkowska, 2018; Garnefski
et al. 2001). Other-blame involves blaming another person or the environment for the
negative circumstances (Garnefski et al. 2001). In the present study, participants criti-
cized the system’s interface by identifying aspects that impeded their performance. At
the end of the study, participants had the opportunity to share their thoughts on the
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interface. In the maladaptive, emotion-focused condition participants were instructed
on emotional suppression. They were told to ignore their stress and focus on the task
instead (Marroquín et al. 2017).

2.3 Experimental Task

Participants. Completed a radio frequency (RF) detection task, in which they had
to classify signals quickly and accurately. The signals differed in parameters related to
their frequency, pulse type, and scan type. Participants used a two-screen setup to submit
reportswhen signals began and ceased emitting alongwith classification reports based on
their parameters. Participants analyzed these signals on the first screen, which displayed
signal waveforms and other data, and submitted their reports on the second screen. The
task was designed to be temporally demanding, as new signals entered the environment
while participants were still attending to old ones. Participants completed five scenarios
(micro-adaptive difficulty was only present for scenarios two (S2), three (S3), and four
(S4)). Micro-adaptive difficulty algorithms determined the real-time adjustment to the
number of signals in S2, S3, and S4 based on real-time assessment of performance. Each
scenario started at a default number of signals, and this number increased, decreased, or
stayed the same based on the participant’s performance. Lastly, participants completed
a transfer task in which they identified and reported on target signals amidst many
distractor signals.

2.4 Materials

DSSQ. Stress was measured using the Dundee Stress State Questionnaire (DSSQ),
a validated instrument designed to measure multiple dimensions of stress responses
within various contexts (Matthews, et al. 1999). The DSSQ is a structured self-report
questionnaire containing 30 items, organized into subscales that capture distress, worry,
and task engagement. Scores for each subscale range from 0 to 30.

Performance. We used accuracy and timeliness of the reported signals to assess per-
formance. Accuracy was the percentage of signal parameters correctly inputted in the
report, and timeliness was the percentage of signals reported within the required time-
frame. The accuracy and timeliness of reported signals dictated how many events were
present and changed the task’s difficulty. We computed a change in difficulty score to
examine participants’ micro-adaptive difficulty experience (in S2, S3, and S4 scenarios
only). This calculation will be discussed in more detail in the results section.

2.5 Procedure

After providing informed consent, participants completed a comprehensive demograph-
ics questionnaire. Following this, they navigated a self-guided PowerPoint presentation
explaining key terminology and concepts related to the experimental task and instructing
them on their coping strategy. Participants then completed a guided instructional phase
with a virtual instructor. An experimenter was present to answer questions and intervene
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when needed. The instructional phase introduced the signal detection and classification
concepts as well as how to use the interface. After the instructional phase, participants
completed five, 10-min scenarios. Participants watched a brief video prior to each sce-
nario instructing them on their coping strategy (see Table 2). The content was excised
from the initial, longer-form training video. The videos re-iterated key actions regard-
ing how to cope (e.g., remember to disregard feelings, etc.) Participants completed the
DSSQ after each scenario. Additionally, participants completed a 10-min transfer sce-
nario consisting of an advanced signal detection task. They were required to identify and
report only six specified target signals out of many distractor signals. After the transfer
task and its corresponding DSSQ, we debriefed the participants and compensated them
for their participation.

Table 2. Content of coping trainings.

Strategy Video Script

Adaptive, problem-focused “If you find yourself feeling stressed, overwhelmed, or
experiencing any other emotions during the session, remember
that you can always use the interface for support. Specifically,
you can access a helpful guide about critical task information.
You can use this feature of the interface for help at any time.”

Adaptive, emotion-focused “If you find yourself feeling stressed…remember that you are
still learning, and your performance will improve with
practice and time.”

Maladaptive, problem-focused “If you find yourself feeling stressed…remember any and all
of these problematic design features of the interface as you
will be asked to describe them later.”

Maladaptive, emotion-focused “If you find yourself feeling stressed…remember to disregard
and not think about them so that you can successfully
concentrate on your duties instead.”

3 Results

3.1 Performance Metrics

Accuracy. A mixed-model Analysis of Variance (ANOVA) was conducted to examine
the effect of coping strategy and focal mechanism on accuracy across the five scenarios
and transfer scenario. There was a significant main effect of scenario on accuracy, F(5,
350) = 2.74, p = .019, ηp

2 = .04. Least Significant Difference (LSD) pairwise com-
parisons tests show that accuracy was lower at S1 (M = 39.01, SD = 30.01) compared
to S3 (M = 49.56, SD = 31.11), S4 (M = 49.16, SD = 28.86), S5 (M = 49.82, SD =
32.47), and transfer (M = 51.20, SD = 28.44; ps < .05) (see Fig. 1).

There was also a significant two-way interaction between coping strategy and coping
focal mechanism on accuracy, F(1, 70) = 8.90, p = .004, ηp

2 = .11. LSD pairwise
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comparisons show that, for the emotion-focused groups, the adaptive group (M = 54.55,
SD = 31.40) had higher accuracy than the maladaptive group (M = 30.91, SD = 27.20;
p < .001) as seen in Fig. 2.

Fig. 1. Mean accuracy across scenarios. Error bars are ±1 standard error. *p < .05.

Fig. 2. Mean accuracy in the coping strategy and focal mechanism groups. Error bars are ± 1
standard error. ***p < .001.

Timeliness. A mixed-model ANOVA was conducted to examine the effect of coping
strategy and focal mechanism on the percentage of signals reported on time across the
five scenarios and transfer scenario. There was a significant main effect of scenario on
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timeliness, F(5, 350) = 18.24, p < .001, ηp
2 = .21. LSD pairwise comparisons show

that the timeliness was significantly lower at S1 (M = 12.43, SD = 22.13) compared
to S2 (M = 19.96, SD = 24.30), S3 (M = 23.25, SD = 27.43), S4 (M = 21.51, SD =
22.91), and S5 (M = 20.17, SD = 24.83; ps < .01). As can be seen in Fig. 3, timeliness
significantly decreased at the transfer scenario (M = 2.15, SD= 2.59), and this valuewas
lower compared to all other scenarios (ps> .001). Additionally, note that the percentage
of signals reported on time was quite low across all scenarios (i.e., never surpassing
30%).

Fig. 3. Mean timeliness across scenarios. Error bars are ±1 standard error. †S1 is lower than S2,
S3, S4, and S5 (**ps < .01). ‡Transfer is lower than all other scenarios (***ps < .001).

Change in Difficulty. We computed a change in difficulty score to examine partici-
pants’ micro-adaptive difficulty experience. Change in difficulty was the percentage of
presented signals to the maximum possible number of signals. Scenarios S2, S3, and
S4 could present up to five additional signals for participants to analyze depending on
their real-time task performance. The default for S2 was five, and the default for S3 and
S4 was six. The means were centered around zero to account for when participants may
have received less than the default number of signals. The value was also converted to a
percentage so it could by compared across scenarios. Negative values indicate that fewer
than the default was given (decreased difficulty) and positive values indicate that more
than the default was given (increased difficulty). Zero indicates that there was no change
in difficulty.

�Difficulty = 100% ∗ [(Number of Signals /(Default + 5)) − (Default/(Default + 5))]
Amixed-model ANOVAwas conducted to examine the effect of coping strategy and

focal mechanism on the average difficulty change across the micro-adaptivity scenarios
(S2, S3, S4). There was a significant main effect of scenario, F(2, 140) = 7.45, p <

.001, ηp
2 = .10. Change in difficulty was significantly lower at S2 (M = + 89%, SD =
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17.3%) than at S4 (M = + 16.7%, SD = 20.5%; p< .001), as seen in Fig. 4. The change
in difficulty was also significantly lower at S3 (M = + 10.0%, SD = 24.7%) than at S4
(p = .001).

Fig. 4. Mean percentage change in difficulty in the scenarios with micro-adaptive difficulty, S2,
S3, and S4. Error bars are ±1 standard error. ***p < .001.

There was a significant two-way interaction between scenario and focal mechanism,
F(2, 140)=4.19,p= .017,ηp

2 = .06. In the problem-focused coping condition, difficulty
was significantly higher in S4 (M = +22.9%, SD = 18.1%) compared to S2 (M = +
9.9%, SD = 16.3%) and S3 (M = + 99%, SD = 23.5%; ps < .001) as seen in Fig. 5.

There was also a significant two-way interaction between focal mechanism and
coping strategy on the average percentage change in difficulty, F(1, 70) = 8.84, p =
.004, ηp

2 = .11. LSD pairwise comparisons show that, for emotion-focused coping, the
change in difficulty was significantly higher in the adaptive group (M = + 17.2%, SD
= 20.0%) than the maladaptive group (M = 0.2%, SD = 20.0%; p = .003) as seen in
Fig. 6.

There was also a significant three-way interaction between scenario, coping strategy,
and coping focal mechanism on the average percentage change in difficulty, F(2, 140)
= 3.91, p = .022, ηp

2 = .05 (see Fig. 7). In S2, the change in difficulty was significantly
higher in the maladaptive-problem focused group (M = +14.2%, SD = 15.7%) than
the maladaptive-emotion focused group (M = 0.5%, SD = 15.2%; p = .017). In S3,
the adaptive-emotion focused group (M = +20.5%, SD = 24.1%) had significantly
higher difficulty than the adaptive-problem focused group (M = + 3.5%, SD = 26.3%;
p = .029). Also, in S3, the maladaptive-problem focused group (M = +16.3%, SD
= 20.7%) had a significantly higher change in difficulty than the maladaptive-emotion
focused group (M = −2.7%, SD = 21.7%; p = .018). In S4, the maladaptive-problem
focused group (M = +21.1%, SD= 18.7%) once again had a significantly higher change
in difficulty than the maladaptive-emotion focused group (M = +2.7%, SD = 23.1%;
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Fig. 5. Mean percentage change in difficulty for each coping strategy and focal mechanism
groups. Error bars are ±1 standard error. **p < .01.

p = .006). Additionally, the change in difficulty for adaptive, problem-focused was
significantly higher in S4 (M = +24.7%, SD = 17.6%) than S2 (M = +5.6%, SD =
16.9%) and S3 (M = +3.5%, SD = 26.3%; ps < .001).

Fig. 6. Mean change in difficulty for focal mechanism groups across micro-adaptive difficulty
scenarios, S2, S3, and S4. Error bars are ±1 standard error. **p < .01.
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Fig. 7. Mean percentage change in difficulty for each of the four experimental groups in the
scenarios with micro-adaptive difficulty, S2, S3, and S4. Error bars are ±1 standard error. *p <

.05. **p < .01, ***p < .001.

We followed-up the adaptive, problem-focused results with additional analysis to
examine how participants’ use of the cheat sheet may have contributed to the pattern of
results. A repeated measures ANOVA was used to analyze how the number of times the
cheat sheet was opened and the amount of time (in seconds) it was open changed over
time. There were no significant differences in the number of time participants opened
the cheat sheet. However, the data suggest a trend in which participants opened the cheat
sheet fewer times in S4 (M = 2.89, SD = 3.38) than in S2 (M = 3.67, SD = 3.12) or S3
(M = 4.67, SD = 5.14). There was a significant main effect of scenario on seconds the
cheat sheet was open, F(2, 34) = 3.46, p = .043, ηp

2 = .17. LSD pairwise comparisons
suggest that participants opened it for less time in S4 (M = 13.62 s, SD = 31.36 s) than
S4 (M = 13.61 s, SD = 17.57 s). Pearson correlations also reveal that, for S3, change
in difficulty was strongly negatively correlated with the number of times the cheat sheet
was opened, r(16) = −.80, p < .001, and how long it was opened for, r(16) = −.65,
p < .004. This was also the case in S4. Change in difficulty was strongly negatively
correlated with the number of times it was opened, r(16) = −.69, p = .002, and how
long it was opened for, r(16) = −.72, p = .001. Thus, the more participants used the
cheat sheet and the longer they used it for, the more their difficulty decreased.

3.2 DSSQ

Task Engagement. A mixed-model ANOVA was conducted to examine the effect of
coping strategy and focal mechanism on TE across the five scenarios and transfer sce-
nario. There was a significant main effect of scenario, F(5, 355) = 6.31, p < .001, ηp

2

= .08. LSD pairwise comparisons show that TE was significantly higher at S1 (M =
25.71, SD = 4.74) compared to all other scenarios (ps < .05). TE at S2 (M = 24.65, SD
= 5.48) was higher than at S4 (M = 23.52, SD = 6.51; p = .028) and transfer (M =
23.33, SD = 6.27; p = .028). TE was also higher at S3 (M = 24.43, SD = 6.29) than at
S4 (p = .012) and transfer (p = .024). See Fig. 8 below.
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Fig. 8. Mean Task Engagement across scenarios. Error bars are ±1 standard error. *p < .05. †S1
is sig. Higher (ps < .05) than all other scenarios.

Pearson’s correlations were run to examine the relationship between TE and the
performance metrics. TE was significantly positively correlated with accuracy in the
transfer scenario (r(72) = .23, p < .05). TE was also significantly positively correlated
with timeliness during S2, r(72)= .25, p= .032. Finally, TE was significantly positively
correlated with the change in difficulty in S2, r(72) = .23, p = .046; S3, r(72) = .32, p
= .006; and S4 r(72) = .29, p = .013.

Distress. Amixed-model ANOVAwas conducted to examine the effect of coping strat-
egy and focal mechanism on the Distress DSSQ subscale across the five scenarios and
transfer scenario. There was a significant main effect of scenario, F(5, 355) = 38.02, p

Fig. 9. Mean Distress across scenarios. Error bars are ±1 standard error. ‡S1 is sig. Higher than
S2, S3, S4, and S4 (p < .001). †Transfer is sig. Higher (ps < .01) than all other scenarios.
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< .001, ηp
2 = .35. As can be seen in Fig. 9, LSD pairwise comparisons indicate that

Distress was significantly higher at S1 (M = 18.19, SD = 6.04) than at S3 (M = 15.49,
SD = 7.10), S4 (M = 13.51, SD = 6.72), and S5 (M = 12.83, SD = 6.62; ps < .001).
Distress at S2 (M = 18.01, SD = 7.00) was significantly higher than at S3, S4, and
S5 (ps < .001). Distress at S3 was significantly higher than at S4 and S5 (ps < .001).
Finally, Distress at the transfer (M = 20.33, SD = 7.56) scenario was higher than all
other scenarios (ps < .01).

There was also a significant main effect of coping focal mechanism on distress, F(1,
71)= 4.02, p= .049, ηp

2 = .05. Distress was significantly higher in the problem-focused
group (M = 17.68, SD= 6.18) than the emotion-focused group (M = 15.14, SD= 7.28),
as seen in Fig. 10.

Next, we examined Pearson’s correlations to investigate the relationship between
Distress and the performance metrics. Distress was significantly negatively correlated
with timeliness in S2, r(72) = −.29, p = .012.

Worry. Amixed-modelANOVAwas conducted to examine the effect of coping strategy
and focal mechanism on theWorry DSSQ subscale across the five scenarios and transfer
scenario. There was a significant main effect of scenario, F(5, 355) = 7.79, p < .001,
ηp

2 = .10. Worry was significantly higher at S1 (M = 6.69, SD = 4.84) than S2 (M =
5.32, SD = 4.76; p < .003). Worry was significantly lower during the transfer scenario
(M = 4.40, SD = 4.78), compared to S1, S2, and S3 (M = 5.09, SD = 4.74; ps < .05),
see Fig. 10 below. Worry was not significantly correlated with accuracy, timeliness, or
change in difficulty.

Fig. 10. Mean Worry across scenarios. Error bars are ± 1 standard error. *p < .05, **p < .01.
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4 Discussion

4.1 Coping Strategies and Stress

We predicted that adaptive coping strategies would be associated with less stress than
maladaptive strategies. Contrary to our prediction, there was no difference in TE depen-
dence on coping strategy and focal mechanism. TE was highest during the first scenario,
but decreased as time went on. TE was consistently related to the change in difficulty
metric, as well as accuracy and timeliness in certain scenarios. Distress also tended
to decrease over time; however, there was an increase in Distress during the transfer
scenario. Distress was only correlated with timeliness in the second scenario and was
not correlated with changes in difficulty. Also contradicting our prediction, participants
in maladaptive groups did not experience more Distress than those in adaptive groups.
However, we did find that participants in the problem-focused group were overall more
distressed than those in the emotion-focused group. Worry was generally low through-
out all scenarios, although it also decreased over time. Contrary to our predictions, there
was no difference in Worry between any of the coping strategy groups. Worry was
also not correlated with any performance metric or change in difficulty. Our findings
for stress and performance are somewhat consistent with prior research. As expected,
Task Engagement was correlated with performance (Matthews et al. 1999). It is possible
that TE improved performance in the task and therefore, increased difficulty adaptations
accordingly. Alternatively, performance may have improved due to other factors, and the
resulting increase in difficulty may have made the task more engaging. Further research
would be necessary to investigate the causal relationship between these variables.

Contrary to prior research (Matthews et al. 1999) and with the exception of scenario
2, Distress was not correlated with performance. Notably, this was the first scenario
in which participants were introduced to micro-adaptive difficulty where nearly half of
all participants experienced a change in workload (40.0% experienced an increase in
signals and 9.3% a decrease). Although participants’ level of distress did not change
with changes to micro-adaptive difficulty, their distress may have had an influence on
performance due to the task change. These results are interesting in light of prior research
suggesting that changes in workload may increase stress and have a negative effect on
performance (Cox-Fuenzalida, 2007; Helton et al. 2008).

4.2 Impact of Coping Strategies on Performance

We predicted that adaptive coping strategies would lead to better performance than
maladaptive coping strategies. There was an interaction between coping strategy and
coping focal mechanism on accuracy. Contrary to our prediction and to prior research
(e.g., Brown et al. 2005;Matthews&Falconer, 2000), themaladaptive, problem-focused
strategy did not impair performance. However, we did find the anticipated pattern for
the emotion-focused coping groups such that the maladaptive, emotion-focused group
performed worse than the adaptive, emotion-focused group. Potentially, the specific
maladaptive, problem-focused strategy we used did not have the intended maladaptive
effect. Participants in this group were instructed to blame the interface by identifying
features that impeded performance. This strategy, known as other-blame, is typically
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used in the context of blaming another person (e.g., Garnefski et al. 2001) rather than
a non-social agent such as the interface used in the present study. Some research has
examined other-blame in interaction with social robots (Groom et al. 2010), but instead
examines the attribution of blame, rather than its potential as a stress coping strategy.
Thus, other-blame may only be a maladaptive strategy when used in response to social
agents.

Additionally, we observed increases in accuracy between the first and third scenario.
This may reflect the commonly observed trend in which learning improves rapidly early
on, with decreases in improvement over time (Newell & Rosenbloom, 1981). Although
Distress was generally not related to performance in the present study, it is unclear
whether it might have had a negative impact on performance in a longer study or if it
may impact well-being in the long run (Matthews et al. 1999).

4.3 Relationship Between Coping Strategies and Micro-adaptive Difficulty

The results suggest that coping strategies may impact participants’ experience with
the micro-adaptive difficulty. Overall, the change in difficulty increased in the fourth
scenario, suggesting that performance improved over time. Analysis of the interaction
between scenario and coping focal mechanism suggests that this increase in difficulty
may be attributed to the adaptive, problem-focused group. It is particularly interesting
that participants in this group experienced relatively low difficulty until the last adaptive
scenario, where their change in difficulty increased considerably. Participants in this
group may have taken longer to effectively use their adaptive strategy of utilizing the
“cheat sheet” in the interface, but, when they did use it, performance improved. Perhaps
participants relied more on the cheat sheet in earlier scenarios. Because the cheat sheet
prevents them from viewing the interface, using it could have caused them to miss
more incoming signals or direct more attentional resources to utilizing the tool, rather
than reporting signals. The observed trend that participants used the cheat sheet fewer
times and for less time in S4 supports this interpretation, as well as the strong negative
correlations between cheat sheet use and change in difficulty.

Additionally, there was an interaction between coping strategy and coping focal
mechanism. On average, the maladaptive, emotion-focused group experienced a lower
change in difficulty compared to the maladaptive, problem-focused group. Specifically,
this group did not receive anymore signals than the default number. This suggests that the
effect of the coping strategy may be moderated by the coping focal mechanism. Simply
being a maladaptive strategy did not sufficiently impact a change in difficulty. Only the
maladaptive, emotion-focused group was unable to “adapt upward.” A similar pattern
of data emerged for accuracy, where this group showed decreased accuracy compared
to the other groups.

4.4 Limitations and Future Directions

One limitation of the present research is that the entire study took place within approxi-
mately two hours. Prior research suggests that while maladaptive coping strategies may
be effective in abbreviated experiences, they may not be effective in prolonged periods
of stress (Suls & Fletcher, 1985). Thus, a shorter time on task may not be long enough to
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elicit the negative effects of coping in a maladaptive, problem-focused group. Another
limitation could be the operationalization of the maladaptive, problem-focused strategy.
Future research could explore other types of maladaptive, problem-focused strategies
that are more appropriate for this type of task. In this study we used one type of cop-
ing strategy for each experimental group. Alternatively, including multiple strategies
within each condition might reveal different patterns or results. Future research could
also examine the effects of coping strategies across multiple sessions to investigate their
impact on long-term retention of task-relevant skills and knowledge.

4.5 Conclusions

Our findings provide new insight into the relationship between stress, and performance in
a task that utilizesmicro-adaptive difficulty.We also present novel findings on the impact
of stress coping strategies in a micro-adaptive training environment. Task engagement
was positively correlated with some performance measures and a change in difficulty,
whileDistresswas not consistently related to thesemeasures.Contrary to our predictions,
the maladaptive, problem-focused coping strategy did not impede performance. These
findings provide a foundation for future research investigating dimensions of stress and
their predictive relationship with performance on military tasks using micro-adaptive
training. These findings might also inform the development of stress regulation training.
It would be advantageous to further analyze the role of stress in related contexts to
determine whether the observed results extend to similar tasks.
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Abstract. This paper investigates the empirical measurement of student growth
in relation to institutional learning outcomes, focusing on academic develop-
ment supported through applied learning. The research specifically examines the
impact of service-learning participation on practical, affective skills, and presents
a method for directly measuring learning using rubric data, avoiding the use of
proxies or indirectmeasures. It highlights the possibility of scaling course design to
enhance learning outcomes, including self-paced remediation. The authors empha-
size the importance of service-learning as a means to cultivate global citizenship
and describe the potential for learning analytics to facilitate student success in
other domains. This approach is tested in a public university setting and consid-
ers the unique challenges posed by its diverse student populations. The findings
suggest that well-designed applied learning and service-learning programs can
enhance student learning outcomes, aligning with institutional goals. The study
concludes by advocating for the focused integration of ML and AI tools in edu-
cation to tailor learning experiences to individual student needs in alignment with
desired program outcomes.

Keywords: Learning Analytics · Applied Learning · Direct Measures

1 Introduction

How can education support student learning and growth that has direct applications
for engaged participation in community and social life? Our paper operationalizes this
question through an empirical lens, measuring student learning directly, rather than con-
sidering it as an abstract theoretical construct, or attempting to measure it imprecisely
with proxies. We argue that through intentional, rigorous, course designs aligned with
institutional objectives, educators can directly observe, and better facilitate student cog-
nitive development. Furthermore, such an approach may be scaled using sophisticated
machine learning (ML) and artificial intelligence (AI) platforms to improve student
learning outcomes within a term (e.g., through self-paced remediation), and thereby
simultaneously contribute to both learning as well as gains in institutional indicators of
success, such as improved persistence and reduced time to graduate. The Shriver Center
(the Center) at UMBC is a community engagement hub celebrating its 30th anniversary
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of leadingmeaningful social change through transformational higher education and com-
munity partnerships. In advancement of this interconnected vision, the Center serves as
a bridge joining the campus and broader regional community through engaged scholar-
ship and applied learning designed to address community-identified needs. Specifically,
the Service-Learning&Community Engagement (SLCE) team facilitates undergraduate
and graduate student semester-long, zero credit practicum courses. Through this curricu-
lum, students engage in supervised weekly service with a school district, non-profit, or
government agency for an average of three hours per week. This framework provides
students the opportunity to engage in three written reflections on their engagement,
supporting metacognition to connect their service with their learning.

Measuring student learning ultimately measures student achievement across a span
of time. The academic success of learners and their ability to define their metacognition
is a priority of universities, especially as the enrollments of underrepresented students
increases (Gregg, 2019). An essential component of this work is assessment of student
learning. Utilizing Bloom’s taxonomy of educational objectives, evaluation of the devel-
opment of knowledge is a core component of our practicum experience (Bloom et al.,
1956). Reflective practice facilitated through the Center is a central tool in connecting
knowledge to experience through real-world application. The purpose of this case study
is to demonstrate the value of direct measurement of student learning in a structured
applied learning course.

2 Literature Review

This research investigates growth aligned with student learning outcomes in an applied
learning course as a particular example of how institutions might support intentional
course design as ameans of scaling direct measures of learning across domains. Not only
is this specific course relevant on its own as an example of service-learning programming
supporting learner development, but it is also relevant to the broader community. This
methodology may be used as a prototype describing how aligning and embedding direct
outcome measurement within a course and across an institution might facilitate direct
measurement of growth, which in turn can be used to ethically intervene in support of
student success at scale.

2.1 Education Assessment

In 2020, the Center implemented a new rubric to standardize assessment criteria to
measure achievement growth. This holistic rubric focused on gaining an overall impres-
sion of the students’ thought processes and was used as the measurement tool for every
example in our study. The use of rubrics across education keeps assessment of student
growth uniform and standardized. Nine studies found students achieved higher cogni-
tive achievement with the combination of a rubric and teacher feedback (English et al.,
2022). Micro and macro level conditions affect the implementation of the assessment
tool, including human condition. There is still room for academia to explore the use of
ML and AI in grading interpersonal reflection.
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2.2 Learning Analytics

EDUCAUSE’s Director Learning Initiative Malcolm Brown (2011) surveyed and sum-
marized the landscape of the burgeoning community of practice convened for the inau-
gural International Conference on Learning Analytics and Knowledge (LAK11). In
defining this field, he states “At its core, learning analytics (LA) is the collection and
analysis of usage data associated with student learning. The purpose of LA is to observe
and understand learning behaviors in order to enable appropriate interventions” (Brown,
2011).

In other words, LA is data-informed action. What an administrator or practitioner
knows is only as important as what they can do with the information to benefit learner
outcomes. In turn, emphasis shifts from an academic interest in investigating relation-
ships between variables to something much more substantial. Specifically, if we can
accurately predict a student’s academic pathway, what behavioral modification inter-
vention might we ethically take in order to improve their chances of success? That’s not
a simple question to dig into, because not only does it require valid and reliable predic-
tors, but also a means to positively influence an individual’s unique learning trajectory.
One potentially powerful option to improve learner outcomes is the use of behavioral
nudging.

Thaler and Sunstein (2009) define nudge as “any aspect of the choice architecture
that alters people’s behavior in a predictable way without forbidding any options or
significantly changing their economic incentives” (p. 6). Behavioral nudging presents
an innocuous option to improve student outcomes. Thaler and Sunstein describe good
“choice architecture” implemented through “libertarian paternalism.” In an academic
setting, we can intentionally design learning environments that help students make good,
empirically grounded choices, and we establish means for monitoring and evaluating
growth in these areas. Perhaps data indicate that it is difficult for a student to be successful
unless they show up to class regularly and engage (as is typically the case in undergradu-
ate settings)? In response, we might adjust our existing course policy to reward students
for in-class participation. If they don’t attend class, we could send them notifications
highlighting what choices successful students make, or empathetically offer additional
support. Learners can still choose to ignore the nudges, just as one can walk past healthy
fruit and vegetable choices at the beginning of the line in the cafeteria. At a popula-
tion level, however, these design adjustments can reduce negative outcomes, or increase
the likelihood of socially preferable ones, like choosing to grab an apple instead of a
bag of potato chips or reflecting on one’s experiences through a service-learning. The
key is in not making the decision for the individuals, but rather providing scaffolding
for the learners in the form of external motivation, which will help them develop their
own intrinsic motivation. As a learner progresses through a course and academic career,
that scaffolding can be slowly scaled back and removed leaving intact the now fully
developed, self-directed learner.

However, finding approaches tomove the needle on institutionally valuedmeasures is
difficult under the best circumstances; at an exceptionally heterogeneous university, this
proposition becomes even more complicated to realize. Students come to our university
from all conceivable backgrounds, which is something we rightly pride ourselves on.
Our diversity makes us stronger and helps break down the barriers that may be imposed
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at other institutions. At the same time, such equal representation also means we must be
very intentional in the design of the scaffolding we employ. Simply nudging students to
attend class, for example, may not be the best solution to discernibly increase persistence
or reduce time to graduation. Perhaps such indirect indicators of success are not the best
metrics to use in evaluating and supporting student success? After all, if our mission
is learning, then shouldn’t that be what we measure? Unfortunately, that’s not always
expedient, and institutions may nudge students in support of more easily measurable
outcomes for which their funding is based (Penniston, 2023).

Through intentional design, we can gather multiple direct measures of growth, and
thereby not only monitor student trajectories in relation to a given construct, but also
intervene, or nudge, if there are deviations from successful patterns. For our current
service-learning context, that intervention strategy might involve in-term adjustments
at the service placement, while in a chemistry course, nudging may direct students to
self-paced remediation of foundational concepts. The key, therefore, is in architecting
courses that produce direct measures of learning that can be leveraged to inform nudging
strategies early enough in a semester to help improve a student’s chances of success.
Although we may not be able to claim causality given such a design, we can inform
an approach to intervene based on growth observed in the given construct, rather than
relying solely on proxies (e.g., clicks on content).

2.3 Applied Learning

As service-learning practitioners and scholars, we are passionate about the transfor-
mational opportunity to change how students achieve learning goals. Students spend
a significant amount of time practicing teamwork, problem solving, and communica-
tion skills with peers and community members with varied lived experiences. Applied
learning is a general term that encompasses various types of applied learning, from
research, to internships, to co-ops. Within that broad framework, this paper focuses on
community engaged learning, and specifically service-learning, which is a particular
pedagogy that balances, as implied by the term’s hyphenation, student community ser-
vice and learning as an outcome of these experiences. Unless otherwise specified (e.g.
the word choice of a given author), the authors will use this terminology throughout the
paper. Applied learning is a particular pedagogy intended to make metacognition more
relevant and long-lasting to transferable environments such as class discussion, gradu-
ate research, and career exploration (Carnegie Classification of Institutions of Higher
Education, 2023; Kolb, 1984).

Kolb’s theory of integrating new information through the practice of reflection while
practicing in concrete, experiential activities inform our curriculum (Kolb, 1984). The
transfer of these new skills leads to student success across many domains, indicating
deeper learning. Bloom et al.’s (1956) taxonomy summarizes how learning some skills
is more difficult than others. To facilitate increasing complexity of cognition, process-
ing knowledge is the lowest level of required skill. When students successfully repeat
definitions or specific facts on a quiz, they are likely not demonstrating comprehen-
sion. Whereas when students are thinking critically about new information based on
the prompts on social issues we provided, they are in a higher-level analysis category.
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This category of the taxonomy is called synthesis (Bloom et al., 1956). While work-
ing with our community partners, undergraduate students are challenging prior beliefs
and assumptions in real time while supporting a common mission driven by the experts
within the site partnerships. The way they synthesize new information varies by student.

Traditionally, pedagogues, researchers, and evaluators have assessed learning
through indirect measures, such as term grades. For example, Gregg (2019) found a
statistically significant retention increase for college sophomores and juniors if they
had participated in service-learning during their first year. In a similar vein, Penniston’s
(2014) research concluded a statistically significant four-year graduation rate for pro-
gram participants. Applied learning is a practice of metacognition that is goal oriented.
Previous theory on the best practices of facilitating reflection support adaptation after
the introduction of new material (Gibbs, 1988). Highlighted in this cycle, more experi-
mentation and review of an experience promotes engagement with learning; students are
critically analyzing with their peers, alongside doing and thinking about what they are
doing live in the moment. While they reconsider previous actions, they learn appropriate
behaviors and cognitions for the future.

Previous empirical evidence supports the argument that service-learning is one of the
high impact pedagogies that has a positive effect on graduation rates (Kuh, 2008; Gregg,
2019; Penniston, 2014; Lockeman&Pelco, 2013; Brownell & Swaner, 2009). Shea et al.
(2023) and Hatcher et al. (2004) stressed the integration of classroom related academic
content as being a core component of the experience. Applied learning experiences are
the most successful when reflection is an integrated part of the curriculum. Regularly
scheduled reflection assignments are more valuable than a single, summative reflection
product (Hatcher, 2004). Throughout the practice of critically looking inward, written
reflection creates a summary of learning, essentially “datalizing” changes in values,
perspectives, and identities of students. Throughout our coursework, we are preparing
students to engage in socially conscious reflective practice supporting internal adjustment
preparedness to think, learn, and problem solve.

The environment where students learn in our case study includes community cen-
ters, neighborhood clinics, schools, places of worship, and campus buildings. Youth
who have interactions with possible role models are more likely to have more posi-
tive mental and physical health outcomes (Ahea, 2016; Torres et al., 2021). Increased
engagement in reflection oriented, hands-on learning improves active participation and
social skills, positively benefiting the academic and personal well-being of college stu-
dents (Hartman & Anderson, 2022; Torres et al., 2021). Mentorship is a significant asset
when facilitating the cognitive learning process. While working with experienced peers,
students begin assuming an active role in their internal and external processing of the
world around them. With 40% of our participants identifying as first year students, there
are university expectations to operate programs that retain students. Through reflection,
program leaders help students consider the benefits and harms of their entry into com-
munities, and to critically examine such things as their own implicit biases on the nearby
local metropolitan city. With college educated students entering marginalized spaces,
there are also power dynamics that need to be examined specifically to not reinforce
harm. More stratification by income status hurts communities, especially if universities
are becoming more unequal gatekeepers to social mobility. Notably, we have partners
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from many different backgrounds in our community, so more strata, which goes to the
earlier discussion about intentional design of the experiences. Engaging in a process to
improve social capital through emotional and attitudinal trial and error happens in real
time while practicing teamwork and leadership skills in partnership with a community
partner. Barriers to continued engagement in this work may include need for financial
compensation, or perceived threat to financial stability, instead of participating in unpaid
engagement opportunities in their field of choice. As described above, students will be
transformed by this process of “learning by doing” because there is a natural and insepa-
rable link between knowledge and experience (Gibbs, 1988). Our goal with this research
is to assess their growth.

2.4 Direct Measures

For our current research, we look at direct measures of learning using rubric data to
evaluate cognitive growth. Positive learning outcomes have been found for programs
that incorporate feedback loops between graded assessments (Ahea et al., 2016). In our
methodology, the loop is time based: students receive feedback before they have written
another reflection, so they may make adjustments and gain clarification of expectations.
In our assessment of learning, we did not use multiple choice or quiz form examinations.
Rather, the use of long-form essay questions allowed for an open-ended response unique
to the student’s beginning, middle, and end of semester motivations and transference.

3 Methods

For this research, we drew from the undergraduate student population at an R1 STEM-
focused institution, and the population is restricted to students who enrolled in a 10
to 30-h, 13-week practicum experience across four semesters post COVID-19 vaccine
availability. Throughout 2020, most students enrolled in the practicumwere not required
to participate in in-person site placements, so data from that period was excluded. Many
students, however, supported their hyper local communities through food distribution,
elder wellness checks, and social media engagement in current events. Beginning fall
2021, our institution resumed in-person activities followingmasking protocols that grad-
ually decreased in alignment with approved rules of quarantine in event of virus expo-
sure. Our students worked with organizations prioritizing early childhood development,
healthcare, policy, law, climate action, technical literacy, food justice, and animal advo-
cacy. Deliverables varied, but expectations of engagement included teaching, mentor-
ing, scholarship, and the delivery of creative products like digital stories. Program staff
guided all students through orientation and training, goal setting, action, reflection, and
evaluation.

The data set used for this analysis included 1536 total records, consisting of enroll-
ments in a zero-credit undergraduate practicum course for the four successive primary
terms beginning fall 2021 (i.e., fall 2021, spring 2022, fall 2022, and spring 2023). The
date range corresponds with when the adoption of course rubrics aligned with insti-
tutional functional competencies. Of these cases, two-thirds (1,032) represent students
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enrolling in more than one of these sections, meaning that there are 504 unique students
enrolled in one or more practicum during this four-semester time frame.

To analyze our data, we reviewed the scores across three written reflections, dis-
tributed within the same academic term, where students had practiced and received
feedback on their metacognitive growth. Reflections were assessed with a rubric by
three instructors, within several days or weeks of the assignment’s submission. Each row
on the rubric included measures aligned with the university’s functional competencies,
which are the key affective skill measures at the top of our institutional hierarchy used for
evaluating student success. Noting the four categories of our reflection rubric the assess-
ment crosswalk was developed in alignment with the course’s learning outcomes. The
first of these outcomes to “increase awareness of community assets and needs,” which
directly challenges students to prioritize the knowledge, skills, and abilities of other
community members. Positioned fifteen minutes from a major mid-Atlantic city with
significant racial and economic stratification, the ability to thrive in contexts requiring
cross cultural collaboration with people from different lived experiences is a highly valu-
able, employable skill set. To support this growth, students were paired with and worked
for partner organizations within the community. They then observed, reflected upon,
and conceptualized historic and current socio-political tensions. It’s critical through this
process for leadership to promote a growth rather than deficit mindset among fami-
lies from minoritized backgrounds. Simultaneously, leadership must avoid inculcation
centered on charity, salvation, or doing for, but rather to enhance social responsibility
through grassroots democratic engagement by doing with. This is at the heart of guided
reflection: making sure students take away the right lessons. The backgrounds and dif-
fering opinions at each placement require perspective-taking and intercultural awareness
skills. Experiential learning deepens relationships with peers and community. We do not
ask students to excel in these outcomes from the onset of the course, but we do expect
growth across the term in these four constructs of global citizenship, internal reflection,
leadership, and professionalism.

Two data sets were combined to visualize our student data in an accurate and com-
prehensive way. Looking to collect data during the activity, we collected the reflection
scores from our learning management system (LMS) and integrated the unique student
demographic data from our institutional data metrics. While there are rich qualitative
opportunities for this data set, our focus was on direct measurement of student growth
aligned with four primary constructs:

• Construct 1, Global Citizenship: demonstrate awareness of community partnership
and perspective-taking.

• Construct 2, Internal Reflection: self-awareness of growth in placement, even amidst
challenging value tensions and flexible career pathway examination.

• Construct 3, Leadership: skill development and organizational collaboration.
• Construct 4, Professionalism: student’s ability to follow timemanagement deadlines

and writing prompt instructions.

We calculated traditional descriptive statistics while reviewing the direct measures
of performance, the reflection grades, which were based on ordinal measures: Exceeds
Expectations, Meets Expectations, or Didn’t Meet Expectations. After analysis, our
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measurement of our grading rubric demonstrated 98% of students scored proficient on
written reflection metrics.

Nearly 80% of total enrollments in this sample are students who entered the uni-
versity as first-time freshman, with only 15% transfer student enrollment. Given that
approximately half of the undergraduate population is composed of transfer students,
we see that there’s an underrepresentation of these students. The “first year experience”
in American universities is designed to provide “traditional” students with opportunities
to explore campus, develop communities of practice, build peer networks, and engage in
campus life. However, this structure often means that students who transfer to the uni-
versity after their first year may face challenges in accessing these established resources
and integrating into pre-formed social networks (Brownell & Swaner, 2009). Notably,
around 40% of all of these applied learning experiences take place during students’
freshman year. In turn, transfer students are one of the groups our institution, as well
as many others, focus on to intentionally foster these connections that are associated
with academic success, including by connecting them to applied and service-learning
experiences within the greater community, such as those experiences represented by the
data in this analysis.

Fig. 1. Illustrates student enrollment in the course by ethnicity. Students of color tend to have
greater representation in applied learning courses than they do in the general student population.
For example, in 2023, African American students represented 20% of the population and White
students 28% (University of Maryland, Baltimore County, n.d.)

Higher Education has a duty to study and support programming that increases stu-
dents’ sense of belonging and proof of economic return on investment (Brownell &
Swaner, 2009). At our institution, 29% of students received Federal Pell grants, and over
60% identify with a non-white ethnicity (University of Maryland – Baltimore County,
2024). Operating as a minority serving institution, we believe in the need for systemic
changes that promote retention and graduation while improving social capital for his-
torically marginalized communities. From our total number of students, including the
66% of students who engaged in multiple semesters, we observed the highest racial
participation group to be students of color. We provide an example in Fig. 1. Programs
that are affirming to identity are positive drivers that create safe spaces to learn and
practice skills. Our partner organizations also have high representations of black and
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African American families. Extensive research in youth development supports models
that include volunteers with a shared background to the community they are partnering
with (Augustine et al., 2022).

4 Analysis

The data for this analysis provide some limitations, as well as opportunities. In regard to
the former,we did not have a readily available comparison group, and quasi-experimental
design is difficult to operationalize. In this case study, we did not observe the same
learning outcomes for a random sample of students who have not participated in our
service-learning course. Applied learning students are self-selected rather than randomly
assigned, which inherently creates bias in the data. Figure 2, below, shows an over-
all increase in student proficiency across the semester for each individually measured
construct, as indicated by the rubric values (i.e., R1, R2, and R3).

Fig. 2. Student measures of metacognition associated with Community Engagement increases
across the semester.

Students demonstrated similar patterns across Constructs 1–3 “Global Citizenship,”
“Internal Reflection,” and “Leadership,” with 1–2% growth during the term. Construct
4, “Professionalism,” shows the lowest overall scores, but also the highest gains (5%).

An observed semester-long increase in student proficiency across various constructs,
per rubric evaluations, suggests adaptability of a similar approach to other diverse qual-
itative data types. Despite current reliance on manual coding, integration of ML and AI
tools shows potential for advancement. These tools are crucial in course design, helping
align learning objectives, assessments, and content, thus enhancing student outcomes.
Importantly, they focus on direct learning measures, providing actionable intelligence
and preventing institutional biases that might overlook student interests. In the future,
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leveraging ML and AI with similar course and data gathering design might enable insti-
tutions to adapt effectively to learners’ unique needs and ensure educational strategies
align with student learning outcomes as primary indicators of success.

5 Discussion

There’s potential for this project to serve as a template for larger data-gathering initiatives
designed to leverage direct measurement of learning. There are also some limitations. To
begin, since we didn’t have a traditional control group, we weren’t able to fully account
for social maturation or the endogeneity associated with student self-selection to enroll
in these courses.

We’re also not accounting for variation in grading. Maybe instructors tended to rate
each successive reflection higher not out of merit, but because that’s standard practice
as the term progresses? Although these rubrics were developed in collaboration with
our institution’s Faculty Development Center, we can’t say for certain that human bias
didn’t impact the scoring. However, rubric use is intended to reduce the impacts of
arbitrary grading, and even if caprice was impacting our estimates of lift, there is no
reason safeguards could not be incorporated in other contexts to address this concern
moving forward, including training on rubric scoring, anonymous submissions, and blind
scoring.

In the sample, the academic level of students represented most frequently was first-
time freshman. We found no significant difference between academic level and overall
performance after an ANOVA comparison. The Center partners with predominantly
humanities faculty to integrate applied learning into course design, and reflection is a
graded activity. Thismotivation could drive participation in directmeasurement and skew
toward first-year students. This suggests the program should engage in more recruitment
of sophomore, junior, and senior students so the benefits of applied learning can be
repeated. Barriers to engagement could include internships and research, which are
more likely to be paid experiences. The highest number of reflections included in our
sample came from fall 2022, followed by spring 2023. The t value of the evaluations
was quite high, indicating with statistical significance that the number of submissions
varied greatly. Data collection during staff transitions could have impacted these results.
Another issue, as one may infer from reading this narrative, or in harkening back to
their own experiences, is collecting direct measures of learning is exceptionally time
consuming and requires a great deal of academic rigor. Good rubrics, unfortunately,
do not grow on trees. They take time to develop and align, must be customized to
the context and assignment, and can be arduous to deploy in the wild. But rigorously
designing courses to gather accurate direct measures of growth can ultimately help us
support student success.

Moving forwardML andAImight be integrated and leveraged through the full life of
the experience, from conception, to deployment, to iterative monitoring and evaluation.
Such a holistic approach would represent a win for both institutions of higher education
and the students they serve. For example, one might imagine a scenario whereby an AI
platform might ingest certain LMS data to autonomously grade assignments based on
rubric parameters, and then curate a list of students for targeted outreach, or perhaps the
AI itself might support content remediation through self-paced learning?
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To achieve these ends, it’s been argued that, in higher education, there’s a need to
emphasize course design to help align teaching with broader educational goals (Fritz,
Hawken & Shin, 2021), from unit-level objectives to institutional competencies (Pen-
niston, 2023). This approach, considered a best practice, not only helps in scaling edu-
cational interventions, but also in enhancing the quality of insights for instructors and
administrators. Kuh’s research on impactful practices to retain students includes many
opportunities for collaboration (Kuh & Schneider, 2008). Service-learning is similarly
designed to foster problem solving skills and self-reflection after exposure to novel ideas
and values.

Systematically identifying behavioral inflection points allows us the opportunity to
intervene – nudge – to influence the given outcome, in this case learning. Such an app-
roach embracing top-down design with bottom-up alignment moves beyond superficial
engagement metrics to focus on empirically measurable learning. Such a learner-centric
paradigm in course design also allows for more precise identification of learning gaps,
as may be illustrated in a chemistry course, for example, by enabling targeted interven-
tions like self-paced study modules for specific topics like ionic bonds. Students in the
practicum may be co-enrolled in courses in our College of Arts, Humanities, and Social
Sciences. A future direction we want to explore is to integrate with more academic
courses in the two other Science, Technology, Engineering, and Math Colleges.

6 Conclusion

The current project measures student growth aligned with institutional goals. With our
university’s 2026 accreditation fast approaching, prioritizing community engaged learn-
ing in strategic planning is essential, as illustrative stories directly from students learning
while partnering with non-profit, school, and government agencies could lead to deeper
understandings of career preparation phenomenon. A self-aware student is a successful
student along their academic trajectory. At the same time, this research also represents a
proof of concept for how we might generate and extract meaningful metrics of student
learning at scale to support academic success across an institution.
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Abstract. In this study, an adaptive instructional systemwas developed to explore
the impact of automation transparency on learning outcomes in an assembly task.
Participants were instructed on an assembly process for 8 unique shapes. The sys-
tem assigned either adaptive instruction, tailoring restudy based on learner per-
formance, or static instruction, providing a fixed amount of restudy. Transparency
was implemented in the form of text-based feedback provided to the learner. Par-
ticipants either received transparent feedback with explanations regarding why the
system assigned restudy of concepts, or general feedback without explanations.
While adaptive instruction and automation transparency did not show a consis-
tent performance improvement in the assembly task, they appeared to influence
participants’ perceptions of the training. The findings and implications will be
discussed.

Keywords: Adaptive Instructional Systems · Automation Transparency ·
Learning · Adaptive Instruction

1 Introduction

The development of computerized training has had a profound impact on education
and skill development. It offers unparalleled accessibility, enabling learners to access
educational content anytime, anywhere, and at their own pace. The scalability of com-
puterized training allows for reaching diverse and large audiences, and, additionally,
provides valuable insights into learner progress, enabling continuous improvement in
instructional strategies.Moreover, it facilitates interactive and engaging learning through
multimedia elements and real-time feedback, enhancing comprehension and retention.
The adaptive nature of computerized training tailors learning experiences to individual
needs, promoting personalized and efficient skill acquisition. These benefits of com-
puterized training are made possible through applying empirically supported learning
strategies known to promote retention and skill acquisition, as well as implementing
system design techniques that promote compliance with the automated training system.
The impact of computerized training seamlessly extends to Adaptive Instructional Sys-
tems (AIS), automated training systems recognized for their capacity to tailor instruction
to learners’ proficiency levels and deliver a similar caliber of training to individualized
human tutoring (Metzler-Baddeley & Baddeley, 2009; Ma, et al., 2014).
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1.1 Adaptive Instructional Systems

Adaptive Instructional Systems (AIS) have been characterized in the literature as auto-
mated training systems capable of adapting to a learner’s proficiency level through
altering instruction to provide an optimal level of support and challenge (Durlach &
Lesgold, 2012; Landsberg et al., 2012). This adaptation is achieved by automatically
measuring learner behavior, analyzing it to create a model of the learner’s competency,
and then using this model to customize learning content for individualized and optimal
learning experiences (Durlach, 2019).

This type of tailored training reduces the imposed cognitive load on learners, elim-
inating the need for them to accurately assess their own performance while adjusting
their study methods accordingly (Mayer, 2014; Sweller & Chandler, 1991). Modern AIS
can implement various instructional strategies similarly to how a human tutor adapts
their training approaches for skilled versus novice learners. As outlined in a review
by Durlach & Ray (2011), these methods include adjusting content difficulty based on
learner responses, modifying the spacing of content presentation, implementing “mas-
tery criteria” to allow learners to focus on yet-to-be-mastered concepts, and incorporating
metacognitive prompts for self-correction.

The present study aims to focus solely on error-sensitive feedback, which allows
the system to inform users not only about their current learning performance but also
the rationale behind the system’s decision to reassign content presentations. However,
the term “feedback”, in this case, can range from general performance information
to detailed corrective information. When implementing error-sensitive feedback into a
training system, developers must consider the most appropriate information to include
in feedback to ensure that it is helpful to the learning process. Literature in this area
emphasizes the importance of task-focused feedback rather than feedback directed solely
at learners’ abilities (Kluger & DeNisi, 1996). In other words, performance benefits are
more likely to be seen when corrective feedback offers insight into how to improve one’s
performance rather than simply stating an applicable score or other metric. This idea
is especially relevant when considering the current domain-knowledge of the learner,
as the Feedback Principle of Multimedia Learning posits that for novice participants,
explanatory feedback recommending a change in task strategy over performance-focused
feedback should produce better learning outcomes whereas the opposite is true of expert
participants (Johnson & Priest, 2014).

1.2 Automation Transparency

Adaptive Instructional Systems (AIS) fall within the framework of Parasuraman et al.’s
(2000) Levels of Automation, characterized by their ability to gather information from
learners, assess the learners aptitudes, and then manipulate the instruction based on that
assessment. When designing automated systems, careful consideration must be given
to how users will interact with the system and, specifically, calibrate their compliance
with the system (Parasuraman & Riley, 1997). The amount of transparency provided by
such systems, defined as the amount of information provided to users about the decision-
making process, significantly influences user compliancewith automation (Sargent et al.,
2023). Transparency is vital in allowing users to develop accurate mental models of the
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agent (Bhaskara et al., 2020). Recent research, including a meta-analysis by Sargent
et al. (2023), indicates a strong positive effect of transparency on performance, with the
understanding that it is implemented in a task-appropriate way.

Frameworks for implementing transparency exist, such as Chen’s model (2014),
which conceptualizes transparency based onEndsley’s (1995) levels of situational aware-
ness. This model includes implementing transparency by providing the user with: the
purpose of the agent, the process of the agent, and the performance of the agent. While
typically applied to automated systems supporting operators with shared goals, this
model has yet to be applied to AIS in the education domain. In the context of AIS,
Chen’s model can be adapted to provide transparency to learners, offering insights
into the system’s goal, process, and expected performance outcomes. This application
of transparency ensures that learners understand the system’s objectives, the rationale
behind recommendations for restudy, and the expected impact on learning outcomes.

Despite the importance of automation transparency, research on the role of automa-
tion transparency in educational technologies is limited. Putnam and Conati (2019)
conducted a pilot study exploring user attitudes toward transparency in an AIS designed
to teach constraint satisfaction problems. Participants interacting with the AIS expressed
preferences for receiving explanations along with their performance feedback. This pilot
study addressed the Kirkpatrick and Kirkpatrick’s (2016) first level of training effective-
ness, Reaction, indicating positive reactions from participants. The current study builds
upon this previous research by focusing on Kirkpatrick and Kirkpatrick’s (2016) Level 2
of training effectiveness – Learning. This level assesses the degree to which participants
acquire intended skills and knowledge. The study sets the stage for a more comprehen-
sive evaluation of transparency effects on learning outcomes in AIS, extending beyond
user reactions to exploring the impact on skill acquisition.

1.3 The Current Study

The goal of the present study is to examine the impact that implementing transparency
into an adaptive training system has on learning outcomes. Additionally, this study aims
to assess how system transparency shapes users’ perceptions of their knowledge and
their attitudes toward the system itself. To empirically investigate these research goals,
a simple adaptive training system for a shape assembly task was developed. This task
was adapted from an assembly task used in previous research (Clegg et al., 2022). Adap-
tivity was introduced by incorporating error-sensitive feedback and assigning restudy
for missed concepts. Transparency was manipulated through the delivery of text-based
reasoning for assigning participants to restudy concepts they had missed. This form
of transparency, chosen for its alignment with all three components of transparency in
Chen et al.’s (2014) model, was considered easily interpretable for the learners, making
it well-suited for the task at hand. With these research goals in mind, three hypotheses
are tested:

1. Participants in the adaptive instruction conditions are expected to demonstrate
superior learning performance compared to those in static instruction conditions
(Metzler-Baddeley & Baddeley, 2009).
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2. Learning performance is anticipated to be higher in transparent conditions than in non-
transparent conditions, aligningwith the observedperformance benefits of automation
transparency in other task domains (Bhaskara et al., 2020; Sargent et al., 2023).

3. Transparency is predicted to result in more positive perceptions of training, as
indicated by previous research (Putnam & Conati, 2019).

2 Methods

2.1 Participants

A total of 60 (32 Male, 27 Female, 1 Non-Binary) Undergraduate Psychology students
participated in this study for partial, optional course credit. Of the sample, 97% were
between ages 18 to 24, 2% between 25–34, and 2% were over age fifty-five.

2.2 Study Design

The current study utilized a 2 (Instruction type: Adaptive or Static) X 2 (Transparency
level: Transparent or Non-transparent) between-subjects yoked design to assess differ-
ences in learned content. Participants were randomly assigned to either an adaptive
or static, preset, instruction with either transparent feedback related to the system’s
assessment of the user or standard performance feedback with no transparency.

Yoking Conditions. To reduce the confound of restudy, participants in the static con-
dition were assigned to the same number of presentations as another participant in the
adaptive condition. The first 30 participants were run in adaptive conditions, because
their sequences (the amount of content restudied) provided the yoking input for the
remaining 30 participants in the static conditions.

2.3 Materials

Stimuli. A set of 8 shapes adapted from Clegg et al., (2022) consisting of 4 to 9 com-
ponents that attach as 3 to 8 possible positions to other parts. Figure 1 shows an example
of one shape.

Participant Perceptions Questionnaire. Participants filled out a brief questionnaire
gauging their perceptions of the training. This questionnaire also captured partici-
pants’ self-assessments of their learning experience through their rated confidence in
remembering the assembly process for each shape.
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Fig. 1. Example of a shape that participants were instructed to build.

2.4 Procedure

Participants accessed the experiment via a Qualtrics survey on a computer, granting con-
sent before receiving instructions. Participants engaged in an assembly task involving
eight distinct shapes. The order in which the shapes were presented was randomized
for each participant. For each shape, their learning process began with passive exposure
through a 30-s assembly video, followed by a training phase focused on three key learn-
ing objectives: understanding the sequence of bars to construct each shape, identifying
the attachment points for each piece, and mastering their proper placement. In the adap-
tive conditions, restudy was tailored to each participant’s individual performance, while
in static conditions, restudy was determined by another participant’s study schedule
(yoked participant). Following the completion of the training phase, participants were
tested on all three learning objectives for each of the eight shapes. In adaptive instruction
conditions, participants restudied items they answered incorrectly during training, while
in static instruction conditions, restudy was based on an adaptive participant’s schedule.
For transparent conditions, participants received feedback explaining the system’s deci-
sion to assign restudy, whereas non-transparent conditions received generic feedback.
Table 1 provides examples of feedback in each condition. Following the completion
of the training phase, participants underwent testing on the three learning objectives
without feedback. Figure 2 illustrates examples of each learning objective.
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Table 1. Examples of feedback given to each condition.

Adaptive & Transparent Feedback
“You responded to 2 of 3 questions incorrectly.
Your areas for improvement are Attachment
Points and Order of Assembly of each shape.
The system has assigned restudy of these
concepts based on your performance”

Static & Transparent Feedback
“The system has assigned restudy for
generally difficult concepts to improve your
performance on the test”

Adaptive & Non-Transparent Feedback
“You will now restudy areas that need
improvement”

Static & Non-Transparent Feedback
“You will now restudy areas that are
generally difficult”

Fig. 2. Example of an incomplete shape and the items for each learning objective that participants
were shown. Question 1 captures the learning objective of order of assembly, question 2 captures
attachment points, and question 3 captures placement.

3 Results

3.1 Restudying

Participants in the adaptive conditions were assigned an average of 12.60 (SE = 1.23)
items to restudy out of 48 possible items. In examining whether transparent feedback
could lead to fewer cases of restudy, an Independent Samples t-test revealed no significant
difference in the amount of items studies between the adaptive conditions (t(29)=−1.20,
p = 0.24, d = -0.43). Participants in the Adaptive-Transparent condition restudied an
average of 14 (SE = 1.62). Items, while those in the Adaptive Non-Transparent group
restudied an average of 11 (SE = 1.62) items. Due to the yoked design, participants
assigned to static instruction did not differ from the adaptive conditions in the number
of items restudied.
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3.2 Overall Learning Performance

Number of Shapes Correctly Built. Participants were scored on the number of shapes
they were able to correctly build on the test. The test consisted of 6 items examining
the steps in the build process they had received training on. Performance was assessed
by whether participants responded to all 6 items for each shape correctly or had one or
more errors. The average amounts of shapes correctly built at test for each condition are
reported in Table 2. Nomain effect of adaptative condition (F(1,56)< 1), nor transparent
condition (F(1,56)< 1) was observed. There was also no significant interaction between
adaptive condition and transparency on the number of shapes correctly built (F(1,56)
< 1). Planned contrasts revealed a non-significant difference between instruction types
in non-transparent conditions (t(28) = 0.66, p = 0.52, d = 0.21) as well as in the
transparent conditions (t(28) = 0.33, p = .75, d = 0.14), indicating that regardless of
whether transparency was present or absent, instruction type did not significantly affect
the number of shapes correctly built. These results indicate that H1, predicting higher
learning performance in transparent conditions was not supported.

Table 2. Means and standard errors for Number of Shapes Correctly Built as a function of a
2(Adaptive Condition) X 2(Transparent Condition) design.M and SE represent mean and standard
error, respectively.

Transparent Condition

Non-transparent Transparent

Adaptive Condition M SE M SE

Adaptive 5.27 0.48 4.93 0.60

Static 4.80 0.52 4.67 0.55

Improvement from Pre-test to Post-test. To analyze the change in performance from
initial training performance to test performance, participant gain scores were calculated
using the following formula: ([Post-Test Score – Pre-Test Score]/[Total Score – Pre-
Test Score]). Analyzing gain scores normalizes learning performance to account for
the participant’s scores at pre-test and room for improvement at test. Average gain
scores between conditions are reported in Table 3. in A 2 (Adaptive Condition) by 2
(Transparency condition) ANOVA was used to determine if there were any significant
differences in learning gains. There was no main effect of adaptive condition (F(1,56)
< 1), nor was there a main effect of transparent condition (F(1,56) < 1). There was
also no significant interaction between adaptive and transparent interventions (F(1,56)
= 2.62, p = 0.11, η2 = 0.04). These results indicate that H2, predicting higher learning
performance in transparent conditions was not supported.

However, when limiting the analyses to include only participants assigned to condi-
tions that received transparent feedback, a one-tailed independent samples t-test revealed
that the impact of instruction type on learning gains was significant t(28) =−1.75, p =
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.05, d = −0.64). This trend was not observed in the non-transparent conditions t(28 =
0.51, p = .61, d = 0.19), this shows a positive influence of adaptivity on learning gains,
only when participants are given some indication that the system is in fact adapting to
their performance.

Table 3. Means and standard errors for Gain Score as a function of a 2(Adaptive Condition) X
2(Transparent Condition) design. M and SE represent mean and standard error, respectively.

Transparency Condition

Non-transparent Transparent

Adaptive Condition M SE M SE

Adaptive 36.96 9.91 56.60 8.91

Static 43.33 7.61 33.63 9.65

3.3 Performance in Learning Objectives

Order. Isolating test performance by the 16 test items related to the learning objective
of Order (selecting the bar that came next in the sequence), participants in the Adaptive-
Transparent condition correctly responded to an average of (SE = 1.02) items, the
Adaptive-Non-transparent averaged 13.7 (SE = 0.70), the Static-Transparent condition
averaged 13.5 (SE = 0.77), and Static Non-transparent averaged 13.70 (SE = 0.49). A
between-subjects ANOVA showed no significant main effects of transparency (F(1,56)
< 1), nor instruction type (F(1,56) < 1) and no significant interaction (F(1,56) < 1).

Attachment Point. Isolating test performance by the 16 test items related to the learn-
ing objective of Attachment Point (selecting the correct hole the bar uses to attach),
participants in the Adaptive-Transparent condition correctly responded to an average of
13.9 (SE = 0.73) items, theAdaptive-Non-transparent averaged 13.9 (SE = 0.61), Static-
Transparent averaged 14.2 (SE = 0.47), and Static Non-transparent averaged 14.30 (SE
= 0.37). A between-subjectsANOVAshowed no significantmain effects of transparency
(F(1,56) < 1), nor instruction type (F(1,56) < 1) and no significant interaction (F(1,56)
< 1).

Location. Isolating test performance by the 16 test items related to the learning objec-
tive of Location (where the bar is placed on the shape), participants in the Adaptive-
Transparent condition correctly responded to an average of 14 (SE = 0.78) items, the
Adaptive-Non-transparent condition averaged 15.10 (SE = 0.41), Static-Transparent
condition averaged 14.3 (SE = 0.55), and Static Non-transparent averaged 14.50 (SE =
0.41). A between-subjects ANOVA showed no significant main effects of transparency
(F(1,56) < 1), nor instruction type (F(1,56) < 1) and no significant interaction (F(1,56)
< 1).
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3.4 Perceptions of Training

Enjoyment. Participants were asked to rate their enjoyment of the training on a 7-
point Likert scale, with 1 being “Strongly Disagree” and 7 being “Strongly Agree”.
Overall, participants rated their enjoyment of the training fairly negatively, with the
highest ratings in the Adaptive-Transparent condition (M = 2.80, SD = 1.15), followed
by the Static-Transparent condition (M = 2.60, SD = 0.91), then the Adaptive-non-
transparent condition (M = 2.40, SD = 0.83) and the Static-Non-transparent conditions
(M = 2.33, SD = 0.72). There was no main effect of Adaptive condition (F(1,56) <

1) nor Transparency condition (F(1,56) < 1). There was also no significant interaction
(F(1,56) < 1). This indicates no meaningful difference in participants enjoyment of the
training, regardless of whether it was tailored to their performance or if they were given
transparent feedback.

PerceivedSystemAccuracy. Participants also ratedhowaccurately the systemwas able
to assess their performance. Surprisingly, participants rated the system is most accurate
in the Static-Non-transparent condition (M = 2.67, SD = 0.98), followed by the Static-
Transparent condition (M = 2.53, SD = 0.64), then Adaptive-Non-transparent condition
(M = 2.40, SD = 0.51), and finally the least accurate in Adaptive-Transparent condition
(M = 1.80, SD= 0.68). Therewas a significant effect of both adaptive condition (F(1,56)
= 7.22, p < .01, η2 = 0.11) and transparency condition (F(1.56) = 3.89, p < .05, η2
= 0.11). No significant interaction was found (F(1,56) < 1). The system was actually
rated as the least accurate in the adaptive-transparent condition, perhaps indicating that
increased transparency in adaptive instruction could cause an unwanted decrement to
perceptions of accuracy.

4 Discussion

Overall, there was not sufficient evidence to support the hypothesis that participants
would show greater learning performance in the adaptive instruction conditions than in
the static instruction conditions. Specifically, there was a lack of effects found between
adaptive and static instruction in the overall test performance as well as minimal differ-
ences in learning gains from pre-test to post-test. Interestingly, though, when limiting
analyses to include only conditionswith transparency, adaptive instruction lead to greater
learning gains than static instructions. This could be interpreted to mean that perhaps
automated systems benefit from the inclusion of transparency, but the effects do not hold
in traditional instructional systems. In other words, transparency only provides perfor-
mance benefits when it is providing increased insight into an actual process the system is
engaging in. Moreover, if this effect of adaptivity is only present in transparent systems,
it may indicate that adaptive instruction is most beneficial to learning when learners
understand how the system is responding to their performance.

The findings from this study did fail to replicate the robust effects of adaptive training
that is seen in the literature. This could be due to mismatched instructional techniques
implemented by the system to the optimal instructional techniques for this assembly task.
Reviews of adaptive training system recommend careful consideration when determin-
ing the adaptive interventions implemented and their appropriateness for the task domain
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(Durlach & Lesgold, 2012). Perhaps assigning a single restudy attempt was not a suffi-
cient adaptation for training in the shape building task. Also, the feedback presented to
the participants in this experiment may have been too simplistic and could instead have
offered more insight into helpful strategies for encoding each step. A similar explanation
can be given to the weak effects of transparency. In reviews of transparency interventions
(see Bhaskara et al., 2020) there are several manipulations of system transparency. The
present study only examined only text-based reasoning for assigning restudy during the
training itself. It is possible that providing an pre-task description of how the system
adapts and displays feedback would have produced different results.

When assessing participants’ perceptions of training, there was no difference in the
reported enjoyment of the training between conditions. However, some evidence was
shown to support that adaptive instruction and transparency influence perceptions of
how accurate the system is at understanding performance. Surprisingly, the adaptive
conditions were rated as significantly less accurate in assessing participants’ learning
performance than the static condition. When transparency was added to these condi-
tions, perception of accuracy also lowered by a marginally non-significant difference,
suggesting that using transparency to explain the reasoning of adaptive interventions can
sometimes be detrimental to a learner’s perceptions of the system. Of course, this is in
direct contrast to the findings reported in Putnam and Conati (2019). This discrepancy
in findings highlights a need for further examination into how to best implement trans-
parency into adaptive instructional systems to elicit positive perceptions and, in turn,
promote more positive learning outcomes.

5 Conclusion

While the addition of transparency to adaptive instructional systemsmay not consistently
impact learning performance, it has the potential to impact user perceptions of the system.
Despite empirical reviews indicating performance benefits from transparent systems,
more research is required to discern parameters influencing whether transparency aids or
hinders task performance in adaptive instructional systems. These insights offer initial
considerations for designing and implementing transparency in adaptive instructional
systems, underscoring the need for further exploration of parameters influencing its
impact on task performance.
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Abstract. Complex tasks impose varying demands on performers. When task
demands change, stress increases, and performers must cope with this change in
stress. Previous research indicates that people generally regulate this stress by
coping in three ways: focusing on the task, focusing on their emotions, or dis-
engaging from the task [1]. With all three approaches, performers’ stress will
decrease; however, performance decrements typically follow with emotion-focus
or avoidance strategies. Previous research identifies task-focused coping (TFC) as
an adaptive stress regulation technique, whereas emotion-focused coping (EFC)
and avoidance coping (AC) are maladaptive techniques for performance [2]. This
distinction has implications for a wide variety of human performance contexts,
as training on the task and training stress regulation techniques are two interre-
lated means for improving performance [3, 4]. The present work examined how
learners coped with a stressful, unfamiliar, complex task and how this affected
their task performance. Results suggested that higher TFC was associated with
higher accuracy and higher EFC was associated with lower accuracy and slower
reaction times. Further analyses indicated that EFC indirectly harms accuracy and
timeliness through its influence on slower reaction times. Training interventions
that address learners’ poor reaction times may serve as beneficial countermea-
sures when learners employ maladaptive stress coping techniques. Implications
of these findings for adaptive training systems and future research directions will
be discussed.

Keywords: Adaptive Training · Adaptive Instructional Systems · Stress Coping
Strategies · Stress and Human Performance

1 Introduction

1.1 Stress and Human Performance

Performance under stress is a function of the individual and their environment, and these
two elements interact to influence performance outcomes [5]. Lazarus and Folkman’s
transactional theory of stress [6] emphasizes the importance of the dynamic nature of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Sottilare and J. Schwarz (Eds.): HCII 2024, LNCS 14727, pp. 189–203, 2024.
https://doi.org/10.1007/978-3-031-60609-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60609-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-60609-0_14


190 B. L. Schroeder et al.

an individual’s interactions with their environment or task. First, individuals execute a
primary appraisal to determine how stressful the environment is. A secondary appraisal
followswherein they determinewhat resources they have available to copewith the stress
identified in the primary appraisal. The outcome of these two appraisals is the selection
and execution of a coping strategy to manage perceived stress while performing the task.
This process is iterative, and re-appraisal occurs over time as the individual continues to
interact with the environment.

In the context of training, this theory of stress considers the trainingmaterial, the way
the material is delivered to the trainee, and the means by which the trainee interacts with
the training content. When learning something unfamiliar, the trainee will first appraise
the training material to evaluate how stressful it will be to learn. Then, they will evaluate
the resources available to them (e.g., prior knowledge, reference material, an instructor,
etc.) to determine how they should cope with the training. Researchers have suggested
that trainees may appraise the task as a challenge or a threat depending on the outcome of
the primary and secondary appraisals [7]. Specifically, they argue if the task is perceived
to be more stressful than the trainee has resources to cope with it, they will perceive
the task as a threat. If the opposite is true, they will perceive the task as a challenge. As
this is an iterative process, it is possible for training environments to shift from threat
to challenge or challenge to threat over the duration of training. No two learners will
have the same appraisal of their training environment, as individual differences (such
as personality, cognitive ability, or emotional intelligence, to name a few) can influence
the appraisal process and selection of coping strategies [8, 9].

1.2 Coping with Task Stress

When an environment or task has been appraised, there are a few coping strategies that
trainees can select to manage the appraised stressors. These techniques can be adap-
tive (beneficial for task performance) or maladaptive (detrimental to task performance).
Matthews and Campbell [1] identified three coping strategies based on clinical stress
literature: task-focused coping (TFC), emotion-focused coping (EFC), and avoidance
coping (AC). Importantly, these coping strategies are not mutually exclusive – individ-
uals can engage in any of these coping strategies to varying extents simultaneously.
TFC, also known as problem-focused or direct coping, is characterized by actions taken
to succeed on the task, such as planning a strategy, remembering task procedures, or
increasing one’s concentration on the task. This technique is considered adaptive for
performance [2] as it helps reduce perceived stress by making progress on the task. EFC
serves to reduce stress by focusing on one’s emotions and can include worrying about
what to do, self-blame for poor performance, or trying to minimize one’s emotional
reactions to stressors. Although EFC reduces perceived stress, it is maladaptive for task
performance [1]. AC manifests through task disengagement, daydreaming, or pretend-
ing the task is unimportant. Like EFC, AC is also maladaptive for task performance [2].
Though detrimental to performance, maladaptive strategies are effective at regulating
emotional experiences and, as a result, prove very tempting for overwhelmed operators
who often use them.

For human performance, Matthews and Campbell [1] argued the need for proper
identification of coping strategies and developed the Coping Inventory for Task Stressors
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(CITS). When properly identified, they asserted that countermeasures (i.e., some kind
of aid or intervention) could be employed to mitigate the negative effects of maladaptive
coping, particularly when learners are under high demand. Unfortunately, empirical
research is lacking on potential immediate countermeasures for maladaptive coping in
human performance contexts. We suspect there are a few reasons for this. Primarily, it
is likely that countermeasures would be highly task specific. Someone who is coping
maladaptively while driving may need a different countermeasure than someone who
is performing a maintenance task. Second, much of the focus on coping interventions
involves longer-term training, such as cognitive-behavioral workshops or consults with
therapists (see Kent et al., 2018 for a systematic review [10]). In human performance
contexts, it may not always be possible to commit the time investments necessary to
execute the aforementioned interventions. We contend that immediate countermeasures
may be better for improving human performance. For example, a countermeasure that
effectively reduces one’s maladaptive coping should benefit performance in real-time.

1.3 Implications for Adaptive Instructional Systems

Adaptive instructional systems (AIS) adapt training content to meet the specific training
needs of each individual user, such as adjusting difficulty over time [11–13]. However, if
anAIS is further able to detectwhen a learner is employing amaladaptive coping strategy,
it could issue coping strategy countermeasures or other interventions to the learner as
soon as it is detected and potentially mitigate any detrimental training effects due to
this coping strategy. We posit that there may be two primary ways to improve training
outcomes via such interventions. First, countermeasures that lead learners to switch to an
adaptive coping strategy may mitigate the detrimental effects of maladaptive strategies
on training. Second, it may be possible to provide interventions that specifically target
the performance elements that suffered due to the employment of maladaptive coping
strategies.

As trainees select coping strategies as part of an iterative process (according to
Lazarus& Folkman’s transactional model), these interventions could affect ongoing task
appraisals to where perceived stress decreases. It follows that this could lead learners to
re-appraise threats as challenges, which should improve performance on the task.

1.4 The Present Study

The present work examines coping with stress in an instructional system that trains radio
frequency (RF) signal identification. The first goal was to examine whether expected
relationships between performance and individual differences in coping were present in
the experimental task. This yielded one hypothesis for each of the three stress coping
strategies:

• H1: TFC will be positively associated with performance, such that higher TFC is
associated with higher accuracy and faster Report Timeliness.

• H2: EFC will be negatively associated with performance, such that higher EFC is
associated with lower accuracy and slower Report Timeliness.
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• H3: AC will be negatively associated with performance, such that higher AC is
associated with lower accuracy and slower Report Timeliness.

To test these hypotheses, we examined performance with RF signal Report Accuracy
(how accurately all components of the RF signal were identified) and Report Timeliness
(how quickly an RF signal report was submitted from the time the signal first appeared
in the scenario). A more detailed description of the RF signal task is provided in the
method section.

Next, we sought to explore behavioral variables associated with performance and
individual differences in coping that could be potential targets for maladaptive coping
countermeasures. Previous research suggests that different coping strategies employed
by drivers can affect their behavior (e.g., longitudinal control [14]). Therefore, coping
strategies may be associated with behavioral variables in the present task. We examined
how long it took participants to click on an RF signal after it first appeared, and once
they had selected that RF signal, how long it took them to analyze and classify the
signal before submitting their report. We contend that these behavioral data account for
attentional and processing elements of performance that complement the analysis of
accuracy and timeliness.

For adaptive instructional systems, consideration for how learners are coping with
the demands of their learning objectives could be informative for understanding how best
to adapt or personalize the training experience. Understanding the implications of these
coping strategies on performance as well as operators’ cognitive and affective states can
provide a useful basis for determining effective countermeasures to reduce the use of
maladaptive approaches.

2 Method

2.1 Participants

We collected data from 76 participants (42 males, 34 female) who completed a military-
style RF detection task. The average age of our participants was 21.05 (SD = 2.80).
Participants were recruited from a large university in the southeastern United States and
were paid $30 for 2 to 2.5 h of time to complete this study.

2.2 Testbed

Participants learned how to perform an RF signal identification and classification task
using a simulated testbed comprising two side-by-side screens.

The first screen displayed RF signal information such as frequency and detection
time. In addition, participants could tune the display to individual RF signals, allowing
them toview livewaveformsona real-timedisplay and takevarious signalmeasurements.
The waveform audio was also played as an additional means of alerting participants to
the signals currently present in the environment. These data were collected and analyzed
by the participant to classify the type and threat priority of the signal.

The second screen was a reporting interface participants used to prepare and submit
their classification reports for each signal using the signal parameter data collected
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from the first screen. Participants were instructed to identify and classify all signals.
However, they were also instructed to prioritize certain types of signals and report them
before attending to low-priority signals. Reports submitted via this interface were graded
for the timeliness of the submission and the accuracy of the signal identification and
classification information.

2.3 Procedure

Instructional Session. Participants began the research study with an informational
presentationwhich acquainted themwith the topic area (i.e., radar theory, radio frequency
parameters, and signal characteristics) and instructed them how to perform the RF signal
classification task on the testbed. Additionally, participants were trained to prioritize
reports on signals having specific characteristics. Next, they practiced a scenario one-
on-one with an experimenter, who first demonstrated how to use the interface and submit
reports before passing control to the participant for them to complete the scenario on their
own. During the entirety of this practice session, the participant was permitted to ask
the experimenter questions, and the experimenter provided feedback to the participant.
Experimenters had a “common questions and issues” document for their reference when
providing feedback to participants and answering their questions.Afterward, participants
completed a quiz on the material from the informational presentation and the procedures
from the one-on-one practice scenario. The experimenter reviewed their responses with
them to ensure they understood the terminology and task procedures before beginning the
experimental task. Participants were instructed to consider the accuracy and timeliness
components of their reports equally.

Radio Frequency Identification Task. Following the instructional session, partici-
pants completed five 10-min scenarios. In each training scenario, participants detected
new signals as they came in and classified them based on their parameters. New signals
continued to appear over time, and participants experienced time pressure relating to
attending to multiple new signals, requiring them to perform an initial evaluation of
each signal in order to prioritize them and submit reports accordingly. While signals
presented with both auditory and visual components, participants were taught to use the
former primarily as alerts to the onset of a new signal and the latter for actual parameter
classification. Participants input their signal classification information into the reporting
interface and submitted reports after completing classification.

The following steps reflect the general process participants followed during these
RF classification scenarios:

1. Monitor the environment for newly appearing signals, using both auditory and visual
cues.

2. When a new signal appears, click on it in the RF signals list to perform an initial
visual inspection of its waveform and other parameters.

3. If no other higher-priority unclassified signals are present, assign an ID number to
this signal and initiate a report in the reporting interface.

4. Using the waveform in the RF signals display, take measurements and classify signal
parameters; enter these elements into the reporting interface.
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5. Once the report is complete, submit it in the reporting interface.

During these steps, participants were also responsible for continuously monitoring
the environment to determine if higher-priority signals appeared, which may require
more immediate attention than their current task. Specific prioritization rules were pro-
vided during the instructional phase. On average, each of the 5 scenarios featured 15
new signals that participants were responsible for classifying.

Each report was assessed for performance through timeliness (time delta between
signal onset and report submission; lower is better) and accuracy (correctness of each
report element). In addition, we recorded behavioral data, such as how long participants
took to click on a signal after onset (Click Time) and howmuch time they spent analyzing
signals after assigning them ID numbers and before completing and submitting their
reports (Analysis Time). It is important to note that participants were free to switch to
another signal at any point after clicking on a given signal or even assigning it an ID
number and beginning classification; as such, the total Analysis Time for a particular
signal may include participant actions on other signals. Likewise, a participant’s Click
Time for a given signal may be inflated because they attended to other tasks between its
onset and their click. These context switches have a variety of potential causes, including
correct reprioritization of signal classifications or simply inspecting other signals in the
interface. Additionally, Report Accuracy is measured entirely independently of Report
Timeliness. Therefore, these behavioral data are necessary but insufficient components
for proper Report Accuracy and Report Timeliness, but they are still useful potential
indicators of attentiveness and timeliness.

Stress-Coping Questionnaire. At the end of each scenario, we assessed participants’
stress-coping techniques with Matthews and Campbell’s Coping Inventory for Task
Stressors (CITS) [2] to determine to what extent they employed TFC, EFC, and AC
during training. CITS is a 21-item questionnaire where participants self-report usage of
items such as “Blamed myself for not knowing what to do” (EFC) and “Was careful
to avoid mistakes” (TFC) using a 5-point Likert scale. Participants indicated the extent
to which they used each strategy with a 0 for “not at all” to a 4 for “extremely.” Each
subscale (TFC, EFC, and AC) had 7 questions which yielded a range of values of 0–28
when all 7 items were summed.

Due to existing research linking these coping strategies with cognitive task perfor-
mance, we examined how they impacted Report Accuracy and timeliness in this RF
signal detection task. The following analyses examine learner performance on their final
scenario.

3 Results

3.1 Planned Analyses

First, we examined the descriptive statistics and correlations among our variables in three
conceptual blocks: performance (Report Accuracy, Report Timeliness), stress coping
strategy usage (TFC, EFC, AC), and behavioral data (Click Time, Analysis Time; see
Table 1 for descriptive statistics). There were significant correlations among all three
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groups of variables, such that performance was positively correlated with TFC (r = .29,
p= .011 for Report Accuracy) and negatively correlated with EFC (r =−.40, p< .001
for Report Accuracy). Report Accuracy was negatively correlated with Click Time (r =
−. 40, p < .001) and Analysis Time (r = −.41, p < .001), but these relationships were
positive for Report Timeliness (r = .30 for Click Time and r = .48 for Analysis Time,
both ps< .01). However, the only significant relationship between coping measures and
behavioral data was with EFC and Click Time (r = .31, p = .006; see Table 2). These
analyses offer partial support for H1 and H2, such that TFC was positively associated
with accuracy, and EFC was negatively associated with accuracy. However, we did not
identify any significant associations between performance and AC.

Table 1. Descriptive Statistics for Analyzed Variables

Variable M SD Min Max

Report Accuracy (percent) 75.00 28.80 0.00 100.00

Report Timeliness (seconds) 87.10 42.47 40.00 251.00

TFC (0–28) 23.17 4.08 12.00 28.00

EFC (0–28) 6.63 6.06 0.00 24.00

AC (0–28) 4.32 4.74 0.00 19.00

Click Time (seconds) 33.32 29.29 10.17 189.90

Analysis Time (seconds) 81.35 43.02 27.51 243.92

Table 2. Correlation Coefficients for Analyzed Variables

Variable 1 2 3 4 5 6 7

1. Report Accuracy –

2. Report Timeliness −.15 –

3. TFC −.29* .01 –

4. EFC −.40** .12 −.07 –

5. AC −.19 .15 −.32** .34** –

6. Click Time −.41** .30** −.07 .31** .06 –

7. Analysis Time −.32** .48** −.02 .21 .01 .79** –

Note. * p < .05, ** p < .01; Pearson’s r coefficients displayed.
Listwise N = 76

3.2 Exploratory Analyses

As our behavioral measures were correlated with EFC and performance, we considered
exploring the nature of the interrelatedness among these variables. Report Accuracy
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and Report Timeliness are assessed upon submission of an RF signal report. Prior to
submitting a report, learnersmust first click on theRF signal, and then analyze that signal.
The time it takes to click on a signal and the time it takes to analyze that signal directly
affect how timely that RF signal report will be. This is logical; however, it is unclear how
these variables would be related to Report Accuracy. Nevertheless, theory suggests that
EFC alters how one interacts with a task, which consequently affects task performance.
To explore this idea, we examined whether EFC indirectly affected performance because
of its influence on these behavioral variables through mediation analysis.

To conduct these analyses, we used Hayes’s [15] PROCESS Macro version 4.1 for
SPSS. We analyzed this as a serial mediation model, where the X variable was EFC,
the first mediator was Click Time, the second mediator was Analysis Time, and the Y
variables were our performance metrics (Report Accuracy and Report Timeliness, in
two separate analyses).

The first analysis on performance accounted for 25.1% of the variance explained
in Report Accuracy, such that EFC was both a direct and indirect predictor of Report
Accuracy. Higher EFC predicted lower Report Accuracy, but higher EFC also increased
Click Time, which partially explained the negative association with accuracy (regression
model statistics are provided in Table 3, tests of total, direct, and indirect effects are
provided in Table 4, and a path diagram with coefficients is displayed in Fig. 1).

Table 3. RegressionModel Coefficients for EFC Predicting Report Accuracy through Click Time
and Analysis Time

Variable B (SEB) 95%CIB β t

Constant (out of 100%) 94.74 (6.54) 81.71, 107.78 14.49**

EFC −1.36 (0.50) −2.34, -0.37 −0.29 −2.73**

Click Time (secs) −0.32 (0.16) −0.65, 0.01 −0.34 −1.95

Analysis Time (secs) 0.01 (0.10) −0.19, 0.21 0.02 0.11

Note. ** p < .01,* p < .05.Model statistics: F(3, 72) = 8.04, p = .0001, R2 = 0.251

The second analysis onperformance accounted for 24.7%of the variance explained in
Report Timeliness, such that EFCwas an indirect predictor of Report Timeliness. Higher
EFC indirectly predicted lower Report Timeliness because of its significant positive
association with Click Time, which was significantly associated with Analysis Time,
which led to slower report times (regression model statistics are provided in Table 5,
tests of total, direct, and indirect effects are provided in Table 6, and a path diagram with
coefficients is displayed in Fig. 2).
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Table 4. Total, Direct, and Indirect Effects for Report Accuracy Model

Effect of EFC on Timeliness B (SEB) 95%CIB β t

Total Effect −1.82 (0.49) −2.81, −0.84 −0.39 −3.70**

Direct Effect −1.36 (0.50) −2.35, −0.37 −0.29 −2.73**

Indirect through Click Time −0.49 (0.28) −1.14, −0.06 −0.11 See note*

Indirect through Analysis Time −0.004 (0.05) −0.14, 0.08 −0.001 See note

Indirect through both Mediators 0.02 (0.18) −0.34, 0.39 0.005 See note

Note.** p < .01,* p < .05; estimated effect sizes of indirect effects were determined using 5,000
bootstrap samples to generate 95% confidence intervals. Bootstrapped confidence intervals were
used to determine the significance of indirect effects as per Hayes’ [15] recommendation.

Fig. 1. Path Diagram for Report Accuracy. Standardized regression coefficients are indicated on
each path. Significant indirect effect is indicated with red arrows.

Table 5. Regression Model Coefficients for EFC Predicting Report Timeliness through Click
Time and Analysis Time

Variable B (SEB) 95%CIB β t

Constant (secs) 47.48 (9.75) 28.05, 66.91 4.87**

EFC 0.46 (0.74) −1.02, 1.93 0.07 0.62

Click Time (secs) −0.30 (0.25) −0.79, 0.19 −0.21 −1.23

Analysis Time (secs) 0.56 (0.15) 0.26, 0.86 0.64 3.75**

Note. ** p < .01,* p < .05. Model statistics: F(3, 72) = 7.90, p = .0001, R2 = 0.248
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Table 6. Total, Direct, and Indirect Effects for Report Timeliness Model

Effect of EFC on Timeliness B (SEB) 95%CIB β t

Total Effect 0.93 (0.79) −0.65, 2.50 0.13 1.17

Direct Effect 0.46 (0.74) −1.02, 1.93 0.07 0.62

Indirect through Click Time −0.46 (0.56) −0.35, 1.88 −0.07 See note

Indirect through Analysis Time −0.18 (0.30) −0.79, 0.47 −0.03 See note

Indirect through both Mediators 1.10 (0.67) 0.07, 2.66 0.16 See note*

Note.** p < .01,* p < .05; estimated effect sizes of indirect effects were determined using 5,000
bootstrap samples to generate 95% confidence intervals. Bootstrapped confidence intervals were
used to determine the significance of indirect effects as per Hayes’ [15] recommendation.

Fig. 2. Path Diagram for Report Timeliness. Standardized regression coefficients are indicated
on each path. Significant indirect effect is indicated with red arrows.

4 Discussion

4.1 Summary of Results

We found partial support for our hypotheses with TFC and EFC, where TFC and Report
Accuracywere positively associated (H1) andEFCandReportAccuracywere negatively
associated (H2). We did not observe any significant relationships between AC and any
performance or behavioral measures. Surprisingly, we did not observe any significant
relationships between Report Timeliness and any of the coping measures. This is unex-
pected, as this task poses high temporal demand, and timeliness is a major component of
successful performance (participants were instructed that timeliness and accuracy were
of equal weight). It is possible that participants focused more heavily on accuracy than
timeliness, but without self-report data assessing their priorities, we cannot determine
why these relationships failed to replicate what has been observed in previous research.

Interestingly, EFCwas the only copingmeasure associatedwith any of the behavioral
variables. As theory suggests that coping strategy selection affects individuals’ behaviors
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and consequently their performance, we examined the extent to which EFC directly and
indirectly affected Report Accuracy and Report Timeliness on the RF identification task.
In essence, our analysis supports that EFC’s effects on task performancemanifest through
its effect on Click Time, which itself affects accuracy, or through its secondary effect on
Analysis Time, which itself affects timeliness. Our interpretation of these exploratory
analyses is provided in the next section.

4.2 What Do Click Time and Analysis Time Represent?

Click Time and Analysis Time may seem obvious to be so highly correlated; however,
these two time measurements are completely independent. As a reminder, Click Time
was calculated by measuring the time that a participant clicked on a signal minus the
onset time of that signal. If they determined that signal was a priority, they would assign
it an ID number. Analysis Time was calculated from the time they assigned the signal
an ID number to the time that they submitted a report for it. The time a participant takes
to click on a signal has no specific bearing on the time it takes them to subsequently
analyze it and complete their report; they are two separate intervals of time that factor
into the overall timeliness of a report submission.

As such, we posit that Click Time perhaps serves as an indication of the participant’s
attentional capabilities and procedural understanding of the task. For example, it might
be that a participant is slow both to attend to new signals and to analyze them due to
overall unfamiliarity with the task or the interface, or it might reflect a general inability
to prioritize and task-switch properly throughout the task.

We suspect that Analysis Time may represent a performance efficiency. Its zero-
order correlation was negative for accuracy and positive for timeliness, which suggests
that participants who spent less time analyzing signals had higher overall performance.
Participants who have learned the details of the task (e.g., how to submit accurate reports
and when to submit them) may require less time to identify different signal characteris-
tics to complete their reports. Conversely, participants who do not know what to do may
languish in the analysis phase which increases their Analysis Time. This could further
contribute to delays in Click Time on subsequent signals. We suspect that individual dif-
ferences in cognitive load, training material encoding quality, or even working memory
capacity may relate to this variable.

Taken together, theremay be an external factor that could explainwhy these variables
are so highly correlated. Some measure of perceptual speed may partially explain the
high correlation between these two variables. In this task, someone who is slow to rec-
ognize new signals may also be slow to complete a subsequent analysis of those signals.
Ultimately, improved data collection and data resolution capabilities are necessary to
comprehensively understand how many behavioral components contribute to timeliness
and accuracy.

4.3 Other Behavioral Variables to Consider

From these interpretations, we suggest that there are additional behavioralmeasurements
that explain the variance in Report Timeliness. Report Timeliness is not simply the
combination of Analysis Time and Click Time, and the timeliness of a report for a
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given signal may be impacted by the participant’s ability to appropriately prioritize and
attend to other concurrent signals. While TFC reflects increased focus on succeeding
on the task, this might not specifically manifest as submitting reports earlier. High TFC
may be accompanied by behaviors such as mentally planning a strategy or recalling
task procedures, which may distract from or otherwise slow the completion of the task.
We do note that TFC was positively correlated with Report Accuracy and that EFC
was negatively correlated; in previous studies employing similar RF detection tasks, we
have observed accuracy/timeliness tradeoffs such that participants who complete more
reports on time tend to do so less successfully andvice versa [16].During the instructional
phase, participants were instructed to assign equal weight to the accuracy and timeliness
components of their reports. Certainly, many of these findings are impacted by the
specific task participants learned to perform, and further study is needed to determine if
and how these results generalize to other tasks and domains.

4.4 Limitations and Future Research

Additionally, there are a few limitations of our data collectionmethods that are important
to note. The specific RF signal simulation we used in our testbed is limited in the exact
data it provides, and wewere unable to obtain timing information about participant inter-
actions in this interface beyond signal clicks and ID number assignments. In particular,
the simulator exposes no timing details of signal measurements made in the real-time
waveform displays. Furthermore, the complex and dynamic nature of this task, withmul-
tiple signals appearing that participants were responsible for classifying and prioritizing
and with two displays with which they interacted, poses challenges for appropriately
tracking time spent on a specific signal. A large Click Time for a given signal, which
indicates that a participant spent a long time between its onset and their click in the RF
signals list, could reflect that the participant overlooked this new signal due to focusing
on another more important signal (suggesting TFC) or that they intentionally ignored
it (suggesting AC). More fine-grained timing measurements relating to a participant’s
classification of signals, especially considering the multitasking nature of this task, may
improve our understanding of how their employed coping strategy affected their Report
Timeliness. Improvements in our ability to assess behavioral data from participants are
under way and will continue in future research with this testbed.

Ultimately, future research with this task should investigate a targeted intervention
to reduce Click Time, which could serve as a useful countermeasure for the maladaptive
effects of EFC. For example, an AIS could determine an appropriate threshold for Click
Time, and if that threshold is exceeded, deliver targeted feedback to train a participant
how to attend to new signals more quickly. According to our analyses, such interventions
may even further reduce Analysis Time, which may have further indirect benefits for
performance. Interventions that train learners how to notice new signals coming in, or
identify how they can reduce their time spent in other areas to prioritize addressing new
signals could be beneficial.
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4.5 Conclusion

We examined how learner stress-coping strategies in a complicated RF signal detection
task related to their task performance, and affected their task behaviors. We saw that
higher TFC was associated with higher accuracy, and higher EFC was associated with
lower accuracy and slower report times. Stress-coping, particularly EFC, could be a
valuable individual difference variable to integrate into the research and design of AISs.

When considering that individual differencemeasures may affect performance, AISs
may benefit from the implementation of a hybrid adaptation approach (e.g., aptitude-
treatment interaction (ATI) approach combined with micro-adaptation) as discussed by
Park and Lee [17]. As EFC can change over time as part of the transactional process, a
micro-adaptive ATI approach could be the best use of this individual difference measure
to offset potential performancedecrements [18]. For instance, if you candetect a learner is
using anEFCorAC strategy, anAIS could intervene by providing tips or feedback to help
the learner adjust to a TFC strategy, or reduce the usage of EFC or AC. At present, such
an approach would be limited to the use of post-scenario subjective questionnaire data,
but in the future, real-time measurements of these variables or physiological correlates
may be feasible to trigger ATI adaptations.

In the context of AISs in general, we return to the potential of identifying stress-
coping strategies for the purposes of both reducing the usage of maladaptive strategies
and for reducing negative performance outcomes associated with maladaptive strategies.
It may not always be possible to assess stress-coping techniques in real time through tra-
ditional questionnaires, particularly in highly time-sensitive, dynamic tasks. Indeed, as
shown in this RF signal identification task, the impacts of maladaptive coping strategies
on performance may not always be immediately apparent. When they are, such as the
observed zero-order correlations between coping strategy and Report Accuracy, targeted
countermeasures to guide participants toward an adaptive coping strategy can be effec-
tive at improving training. When they are not, such as the observed indirect correlations
between EFC and Report Timeliness via Click Time and Analysis Time, interventions
that aim to address these specific behavioral correlates may have a greater impact. As
such, understanding the real-time behavioral correlates of these coping techniques for a
given task may still inform preventive, tailored training interventions that can achieve
these goals, and such correlates may be relatively simple to collect. In future work, we
plan to investigate countermeasures to promote adaptive coping strategies in such train-
ing contexts as well as address participant behaviors that indirectly reflect maladaptive
strategies to prevent detrimental training outcomes.

The present work represents a foray into the investigation of live countermeasures
for maladaptive stress responses in human performance contexts. We believe that the
challenge for understanding how to implement live countermeasures and how to under-
stand their effects on performance lies in understanding a variety of factors. Researchers
must first understand their impact on performance, subjective perceptions of stress, and
individual differences in coping, as well as low-level behavioral data that links perfor-
mance outcomes to these measures. It is highly likely that it may not be as easy to reduce
maladaptive coping as it is to change behaviors like click time or analysis time. It may
also be the case that causing a change in those behaviors induces no effect on perfor-
mance outcomes when maladaptive coping stays unchanged. Understanding the nature
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of these underpinnings of human performance and their comingling influences will be
critical to effectively implementing countermeasures in AISs.
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Abstract. Adaptive training provides the capability to enable individualized
learning and keep users in the Zone of Proximal Development. However, when an
individual should adapt is still an open area of research. This paper discusses find-
ings from a recent driving-based simulation in which trainee state was assessed
by multiple means. Modalities of measurement included real-time physiological
information (heart rate and fNIR data) used to assess mental workload, subjective
ratings of workload from participants after each trial (NASA TLX), and perfor-
mance data on key components related to the execution of the scenario tasks. These
methodswere used in tandem to adapt the difficulty of the simulation environment.
Results show that measures with high sample rates, such as average miles per hour
and reported relative oxygenated hemoglobin (HbO2) readings, outperformed less
temporally sensitivemeasures, such as task response correct percentages or NASA
TLX ratings. These findings emphasize that the granularity of the measurement
method should align with the system’s desired sensitivity in adapting to mental
workload. More granular measures should be used when needing to adapt more
frequently and/or to smaller changes in workload. Empirically supported methods
that lack high temporal or spatial resolution are unlikely to suffice for applications
that require rapid adaptation.

Keywords: Adaptive Training · Performance Measures · State Measures ·
Game-based Simulation

1 Introduction

Adaptation is the hallmark of a high-quality educator. Skilled instructors frequently
assess their students, formally and informally, to gauge their level of understanding and
current emotional and mental state. These skilled instructors that adapt their own strate-
gies, providing extra emphasis on key points or may introduce a discussion exercise to
recapture attention or address student skill deficiencies. Not all educators adapt well to
the dynamic of the audience, instructional tutoring software even less so. Software-based
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systems such as Adaptive Instructional Systems (AIS) are uniquely able to tailor instruc-
tion to its user, improving the efficiency and effectiveness of the knowledge acquisition
process. AIS, and similar software-based solutions, can balance the mental workload
demand by dynamically adjusting the task difficulty, keeping trainees within the Zone of
ProximalDevelopment [1]. The capability of developing highly adaptive systems ismore
feasible than ever—particularly within game engines [2]. AnAIS can adapt between trial
sessions to accommodate rapid skill change and ensure that the instruction difficulty is
matched to student skill level. These features are highly desirable but designing a sophis-
ticated AIS that is capable of responding appropriately to an individual’s complex skill
state is no simple task. A common struggle during the development of an AIS is dis-
cerning what data to use and how different datapoints should be factorially weighted, or
if weighted is warranted at all. Included factors will vary, but most sophisticated AISs
will incorporate estimations about the user’s mental workload in their algorithm. Con-
sidering the growth of automation across job fields, more training and learning systems
will have to train skills such as monitoring, sense-making, and human-agent teaming.
These skills rely heavily on a user’s mental state and the ability to juggle many sources
of information at once, making the measurement of mental workload more important
than ever before.

Mental workload, though conceptualized as a cohesive concept, can be measured by
a multitude of means such as subjective assessments, objective performance data, and
physiological indicators. Research suggests advantages associated with using a combi-
nation of these measures [3], but how these related ratings compare in different task
scenarios requires further study (e.g., [4]). Implementations of adaptive systems with
multiple measures of mental workload are rare due to the inherit difficulty in develop-
ment. This paper discusses the considerations of utilizing a diverse arsenal of mental
workload measures in AIS design, within the context of an adaptive training simulator
designed in collaboration with AFRL’s Gaming Research Integration for Learning Labo-
ratory (GRILL®). This paper also reflects on converging and divergingmeasures ofmen-
tal workload and closes with empirically supported considerations when implementing
similar measures within different adaptive instructional systems.

2 Methods

2.1 Participants

A total of 28 participants were recruited from the Dayton Metropolitan Area. All par-
ticipants were 18 years or older, a U.S. citizen, and had normal or corrected hearing.
Participants were compensated $40 for participating. Demographic information, expe-
rience with driving, hobbies, and whether they had recently consumed any stimulants
such as nicotine or caffeine was collected following consent to participate in the study
and prior to beginning the study. The overall median age was 25.5 years old (18 – 68).
The sample consisted of 19 males and 9 females. A total of 75% (N = 21) of participants
identified as Caucasian, followed by Asian 14.29% (N = 4), African American 7.14%
(N = 2), and other 3.57% (N = 1).

Participants’ weekly experience and comfort with driving was sampled prior to the
study. Participants’ weekly driving experiencewas distributed between 35.71% (N= 10)
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having less than 5 h but more than none, and 64.29% (N= 18) with equal to or more than
5 h of weekly driving experience. The amount of anxiety that participants experience
while driving varied between 35.71% (N= 10) experience no anxiety, 35.71% (N= 10)
experience only a little anxiety, 25% (N= 7) experience some anxiety, and 3.57% (N=
1) experience quite a lot of anxiety while driving.

Participants’ exercise and video game habits were also sampled prior to the study.
The majority of participants indicated they exercised a few times per week (57.14%, N
= 16), while the others indicated exercising either a few times per month (17.86%, N
= 6), a few times per year (14.29%, N = 4), or never / rarely (10.71%, N = 3). Most
of the participants currently played video games (71.43%, N = 20). The top three most
popular gaming platforms that participants regularly used was PC 60.71% (N = 17),
followed by Nintendo 25% (N = 7), and Mobile 21.43% (N = 6). The most popular
genres of games that participants most regularly played included: Shooters 42.86% (N
= 12), Casual 35.71% (N = 10), Action 32.14% (N = 9), Role-playing 32.14% (N =
9), Strategy 32.14% (N = 9), and Adventure 28.57% (N = 8).

Half of the participants consumed some form of a normal amount of caffeine during
the day prior to participating in the study and it did not impact their physiological metrics
or task performance during the study. None of the participants consumed nicotine prior
to participating in the study.

2.2 Driving-Based Adaptive Research Testbed (DART)

The data was collected from the dual task experimental testbed, the Driving-based
Adaptive Research Testbed (DART). The DART was developed at and is hosted by
the GRILL®. The DART acts similarly to traditional AISs; it adapts the difficulty of the
task based on the user’s state and their previous performance. The DART was initially
designed with two goals in mind. First, an engineering goal intended to demonstrate that
Unreal Engine can receive live-streamed physiological data related to mental workload
and that it can dynamically update the environment and tasks based on the user state.
Second, a scientifical goal to determine what physiological responses are most effec-
tive to adapt a simulation environment to based on performer state. This testbed dually
challenges its users, requiring them to drive through a simulated hostile terrain using
a mock-HMMWV while simultaneously engaging in various cue discrimination tasks.
The DART uses multiple measures of mental workload, including the NASA-TLX [5],
a functional near-infrared (fNIR) sensor developed by BionicaLabs called NIRSense,
and a Polar H10 Heart Rate Monitor sensor for tracking blood flow and heart rate (HR),
and performance metrics from the simulated tasks themselves.

2.3 Experimental Design and Procedure

The experiment consisted of a short Qualtrics survey (5 min) followed by training and
a longer behavioral task (45 min) that consisted of three phases. Participants completed
all steps on site. After consenting to participate, participants were outfitted with a fNIR
sensor developed by BionicaLabs called NIRSense, and a Polar H10 Heart RateMonitor
sensor for tracking blood flow and heart rate. Participants were then asked to complete a
short demographic Qualtrics survey. After completing the Qualtrics survey, participants
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reviewed an instructional slide deck for the behavioral task for controlling the vehicle.
Participants were then informed that their driving performance score during the experi-
mental task would be based on how well they managed to stay on the road and the speed
they maintained while doing so. Participants were reassured that they would be returned
to the road automatically should they drive off after 5 s or they could also choose to reset
themselves at any given time by selecting a specific button. Participants were then asked
to drive along a 3-min straight road driving baseline for physiological metrics, and then
given more instructions for the secondary cognitive task that would be performed while
driving.

2.4 Auditory n-Back

The cognitive task was a form of the classic n-back task [6]. Participants in this case were
required to perform a 2-back auditory memory tasks. Letters were played aloud through
the participant’s headset every 2.5 s in a random order. Participants were instructed to
press either of the paddles on the steering wheel when a letter matched the same letter
played 2 letters back. Participants were shown a video demonstrating the task and given
the chance to do a practice run. If the participants had no questions, they began the
n-back task.

Participants were tasked with driving along a series of different levels of road curvi-
ness while completing an auditory 2-back task. Participants completed one 2-min seg-
ment with 46 n-back letters played with the first trial on a “medium” level difficulty or
somewhat curvy road. Then, participants completed five additional 2-min trials (12-min
total). After each trial, the adaptation algorithm would run and determine whether to
make the roads easier (straighter) or harder (more curved) to drive. Before beginning
the next trial, participants would fill out mental workload prompts from the NASA-TLX
[5]. The total duration of this phase was 14 min.

2.5 Measures of Performance and State

Multiple measures of workload were collected in the DART simulation environment as
well as several additional physiological sensors. Measures were chosen based on their
past success in previous experimental studies and their ability to distinguish between
good and bad performance. All the selected measures are sensitive to increasing work-
load, but to different degrees. Seemingly redundant measures were included to account
for these differences in sensitivity.

Two types of physiological sensorswere used tomeasureworkload.Mentalworkload
was captured using an fNIR sensor, a lightweight optical brain monitoring device. fNIRs
have been used in previous research with n-back related tasks and have been found
to reliably discriminate different workload levels [7, 8]. The fNIRS sensor reported
relative oxygenated hemoglobin (HbO2) and derived hemoglobin difference (HBD)
levels. In pilot testing, users were exposed to both high workload and low workload
scenarios to determine the average change in the fNIR sensor levels. This allowed us to
determine a sufficient threshold for adaptation for the selected experimental task. The
other physiological sensor used was a Polar H10, a chest strap heart rate sensor. While
fNIRsdoderive heart rate information, thePolarH10was also utilized as amore validated
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and standard sensor for heart rate information. Heart rate sensor data also has been used
in previous experimental studies and demonstrated sensitivity to increased workload
levels in n-back tasks [9]. In addition, the NASA-TLX collected a subjective measure
of workload, serving as a non-sensor based/non-performance dependent comparison
metric.

Driving performance measures included the average miles per hour (Avg MPH)
driven and times off road (TOR). During pilot testing, many users attempted to regulate
their own workload by reducing the difficulty of driving by slowing down. As a result,
users were instructed tomaintain aminimum driving speed of 45miles an hour. The road
within the DART was designed to be like a one lane road. Participants were instructed
to stay on the road and not deviate. The program tracked the amount of time that at least
one of the wheels was off the road. The wheel physically rumbled when the participant
deviated from the road to remind them to correct their course. These two driving per-
formance metrics have been used in previous experimental studies [9, 10]. Users were
transferred back to the road they if they lost control of the vehicle or if they themselves
manually inputted that they wanted to reset on the road. Resets was also tracked as a
driving performance metric.

N-back performance is commonly calculated as the number of letters correctly
responded to or incorrectly responded to [8, 11]. The number of letters that resulted
in correct rejections, false alarms, misses, and hits were tracked across all the 46 n-back
letters presented in the experiment. Responses were sorted by type and then combined
into to create a percent-correct metric that represented how many letters were hits and
correct rejections.

2.6 DART Adaptation

The initial versionofDARTutilized for this study included a rule-based algorithm.DART
assessed user’s state and performance to adapt the difficulty of the task appropriately.
DART included two kinds of potential adaptations including providing scaffolded levels
of multimodal cueing or changing the physical environment road to becomemore or less
difficult via the curviness of the road. Heart rate-based, rule adaptations were adapted
based on findings form [9], with the remaining thresholds determined by pilot testing
due to the unique design of the DART testbed. This made it difficult to utilize previous
driving performance metrics and relative nature of fNIR data. The matrices and logic
for the rule-based adaptation are described below in Table 1.

If the HR was 4bpm higher than baseline or HbO2 was greater than the sum of the
current HbO2 and absolute value of the baseline HbO2, the state was marked as stressed.
2If the number of times the vehicle went off road remained below 15 and the Avg MPH
was greater than 45, performance was marked as good. 3If the percentage of n-back
letters correctly responded to was greater than or equal to 75%, the performance was
marked as good. Any other conditions than listed in each category resulted in a low or
poor marking.
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Table 1. Adaptation Logic.

Adaptation Stress Level1 Driving Performance2 N-back Performance3

Harder High Good Good

Easier High Poor Good

Harder Low Good Good

Harder Low Poor Good

Easier High Good Poor

Easier High Poor Poor

Harder Low Good Poor

Easier Low Poor Poor

3 Results

3.1 Common Indicators of Performance

A correlation matrix was constructed to better understand the relationship between the
selected measures (see Fig. 1). All driving performance measures were statistically sig-
nificantly correlated with one another. Time off road (TOR) was significantly correlated
with the Avg MPH (p < .01) and the number of Resets (p < .05). The Avg MPH and
the number of Resets was also significantly correlated (p< .05). These findings suggest
that these performance indices are all appropriate measures of the driving task and have
some degree of convergent validity.

Multiple of the physiologicalmeasureswere statistically significantly correlatedwith
one another. As one would expect, the reciprocal fNIR measures, HBD and HbO2, were
negatively correlated with the reciprocal Polar measures, HR and RRInt, respectively (p
< .01). The fNIR sensor’s derived HR measure significantly correlated with the Polar’s
ECG HR (p < .05), adding merit to the derived approach of measuring of heart rate.

TOR was significantly positively related to fNIR HbO2 (p < .05), and significantly
negatively related to its reciprocal, HBD (p < .05). fNIR HbO2 was also significantly
positively correlatedwith the two other driving performancemeasures, number of Resets
(p< .05) and AvgMPH (p< .05). Measures from the Polar H10 sensor were not signif-
icantly correlated with any of the performance measures, yet fNIR HR was statistically
significantly positively correlated with TOR (p < .05). The NASA TLX and n-back
performance did not significantly correlate with any measure.

3.2 MANOVA

Aone-waymultivariate ANOVAwas conducted to determine whether there was a differ-
ence in the task performancemeasures (AvgMPH, n-back accuracy, Resets, TOR), phys-
iological measures (fNIR HbD, fNIR HbO2, HR, HRV), and the subjective NASA-TLX
measure based on n-back task difficulty (Easy vs. Hard).

The multivariate result was statistically significant for n-back task difficulty (Pillai’s
Trace= .60, F(10,77)= 11.57, p< .001), indicating a difference in themeasures between
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Fig. 1. Measure Correlation Matrix – N-Back Easy and Hard Trials

the Easy and Hard n-back task difficulty levels. The univariate F-tests showed that there
was a significant difference between the Easy and Hard n-back task difficulty for Avg
MPH (F(1,86) = 39.88, p < .001), fNIRS HbD (F(1,86) = 9.49, p = .002), fNIRS
HbO2 (F(1,86)= 16.30, p< .001), and TOR (F(1,86)= 11.63, p< .001). However, the
remaining variables were not statistically significant (see Table 2 and 3).

Table 2. MANOVA Results.

Value F df P

Wilks’ lambda 0.3396 11.57 10, 77 0.000

Pillai’s trace 0.6004 11.57 10, 77 0.000

Hotelling’s trace 1.5028 11.57 10, 77 0.000

Table 3. Univariate Analyses.

Easy Hard F df p

M SD M SD

Average
MPH

67.34 13.58 50.29 11.72 39.88 1, 86 0.000

Time Off
Road

19.07 8.80 12.28 9.77 11.64 1, 86 0.000

Road Resets 1.07 1.39 0.93 2.38 0.11 1, 86 0.746

N-back %
Correct

87.61 12.57 91.02 6.24 2.65 1, 86 0.107

Polar HR 77.83 12.21 79.84 14.10 0.51 1, 86 0.477

(continued)



The Power of Performance and Physiological State 211

Table 3. (continued)

Easy Hard F df p

M SD M SD

Polar RR
Int

793.75 140.65 773.20 131.40 0.50 1, 86 0.481

fNIR HR 65.54 10.51 68.57 10.64 1.80 1, 86 0.183

fNIR HBD −0.0003 0.0008 0.00002 0.0002 9.49 1, 86 0.002

fNIR HBO2 0.001 0.001 −0.00007 0.0006 16.31 1, 86 0.000

TLX 12.66 4.74 12.39 3.02 0.11 1, 86 0.744

As can be seen in Table 3, participants drove faster during the Easy n-back difficulty
level than in theHard level. Participants also experienced a greater change inHbD during
the Easy level than compared to theHard level. AvgMPH, TOR,HbO2 andHBDwere all
statistically significant as can be seen in the univariate analysis. The n-back and NASA
TLX results were non-significant.

4 Discussion

Adaptive instruction is a highly desired component of training and learning, and has
been, ever since the empirical data about its benefits first emerged (e.g., [11]). Most of
the publications following this trend highlight the benefit of an adaptive system over a
non-adaptive system. Few, however, make comparisons between one adaptive system
and another. Even fewer provide recommendations for how to build and evaluate one’s
own system [12]. This is, in part, because of the notion that adaptive frameworks should
be designed and tailored specifically to the specific system in use for the particular effort.
While this concept is an effective best practice from a practical execution standpoint,
the practice does not provide scientists much insight into which measures to choose
to positively impact performance or mental workload across studies. This conundrum
is only exaggerated when measures, that are expected be related, correlate in only one
scenario, and then do not correlate in subsequent or related experiments. This happens
all too often in studies that utilize measures of workload (e.g., [4]). The DART was
designed to alleviate some of this confusion by acting as an all-in-one system that could
be modified to test different adaptive conditions. While we do not offer a panacea, this
experiment has provided further evidence that the relationship of common workload
measures can vary across types of tasks.

This paper articulates the findings of a simulation-based effort inwhichmental work-
load was assessed by multiple means. These methods include real-time measurement of
physiological information related to mental workload, subjective ratings of perceived
workload from the participant after each trial, and performance data on key compo-
nents related to the performance tasks. These methods were used in tandem to adapt the
difficulty of the simulation environment.
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The following discussion focuses on the relationships that are important to consider
when developing adaptive systems that use measures related to mental workload as the
source for modification. The meaningful trends in the data that are the most prominent
are presented below.

4.1 fNIR

fNIR sensors provide a relatively streamless alternative for collecting neurophysiological
information. fNIR sensors also derive heart rate information and significantly correlate
with standard chest strap sensors like the Polar H10. This sensor’s relative simplicity has
beenmet with skepticism but the results from this study support the notion that fNIR data
can be used as a mental workload measure. The fNIR HbO2 data collected significantly
correlated with all the driving task performance measures. These findings lead to the
conclusion that the fNIR HbO2 is the prime candidate for measuring workload in a
driving task. The fNIR HR data also significantly correlated with TOR when the Polar
H10 did not. The authors believe that this is in part due to the higher sensitivity of the
fNIR sensor. These findings lead to the recommendation others interested in adaptive
driving systems should consider using fNIR because of its high temporal resolution, low
invasiveness, and its relative ability to capture the mental demands during this type of
task.

However, the fNIR sensor did not correlate with our chosen n-back performance
metric, percent correct. While this was initially surprising, as other studies have found
relations between physiological data and n-back performance [8, 13], this difference
might be related to how different researchers quantified n-back performance, using only
“missed targets” instead of percent correct (e.g., [7]). One might suspect that the finding
of this study is the result of a temporal miss-match, but that does not explain why the n-
back did not correlate with any other measure. Further research is needed to understand
what n-backmetrics might best be representative of high workload such as reaction time,
d-prime, or a sub-measure of performance such as missed targets.

4.2 Adaptation and Measure Relationship

Participants varied in how they balanced increasing difficulty of task demands. This is
expected when no primary task is given; participants were tasked with balancing both
tasks. Some, however, choose to focus primarily on the driving task while others pri-
oritized the arguably more cognitively intense n-back. This finding raises the question:
which performancemeasure should the adaptive algorithm use—and subsequently, what
to adapt. If a participant is struggling with the audio-response task, they could choose to
ignore their performance on that task and instead continue to keep their driving perfor-
mance excellent, allowing their physiological data to suggest that they are unbothered.
Based upon the current rule-based adaptation logic, this would lead the adaptive algo-
rithm to incorrectly suggest increasing the difficulty and make the roads more difficult.
However, driving for that individual is not the skill that needs attention. Considering
the MANOVA uncovered that driving performance metrics and physiological state met-
rics were both significant, each of those metrics actually reflect different aspects of the
trainee state. One might suggest that because of this, the adaptive logic should be split
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and adapt driving with driving performance, while the level of n-back would adapt the
difficulty of the n-back task, and the pacing of the tasks with the stress level. Future
research aims to adapt the environment based upon the state measures to determine if
this approach provides more tailored adaptive experiences.

However, future research should be cautioned that the measures described here may
not be representative enough to enable a task split adaptive system. Someof themeasures,
including heart rate variability and oxygenation data from fNIRs, were used in this study
as more general measures of workload. These measures do not allow for clearly parsing
apart which task is causing the strain. Further research will continue to identify measures
that provide the greatest insight into the trainee state and which measures could enable
such a complex task split adaptive design.

4.3 Limitations

One limitation of the study was a potential lack of granularity in difficulty levels. Most
participants (n= 14) ended up in the Easy or theHard level, with little variability after the
second trial. This is the primary reason that “Medium” difficulty was not represented in
the analyses. Assuming that these participants were assigned the appropriate difficulty,
this may suggest that more difficulty options should be included. This can be done
either by adding more levels of difficulty but at the cost of development complexity.
Alternatively, the system could switch to a continuous difficulty spectrum step-based
adaptation strategy instead (see [14] for review). Step-based adaptation may be too
volatile in a multi-tasking environment such as the DART. The authors choose to stay
within the trial-based adaptation out of concern of over-correcting and based on our
pilot data; however, the pilot participants did not represent as wide of a range of ability
as later sampled. Future researchers should consider airing on the side of caution and
include more levels of difficulty, especially when beginning with a limited pilot sample
to prevent floor and ceiling effects.

Another limitation was the weighting of workload measures. There is broad con-
sensus about the benefits of adapting based on workload; however, there are far fewer
examples of instantiations or formulas that proclaim the appropriate balance of factors.
The equation used in this experiment came from a handful of pilot-tests and general
recommendations from across the literature. An alternative explanation to the lack of
variability in trial difficulty could be caused by an imbalanced weighting of workload.
Further fine tuning of the formula may still be required after collecting more data or a
switch to more data-driven methods in which a model is trained to adapt.

5 Conclusion

Designers of adaptive instructional systems have long sought clarity, both in the context
of the tutoring or traditional education-sense, and in the training simulators realm. AISs,
and similar systems, offer desirable benefits, but are rarely implemented due to their
complexity.While different from other, more typical AISs, the insights from the DART’s
development and data collection efforts may assist future implementations of adaptive
instruction by providing findings on the various factors impacting AIS effectiveness.
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This paper has covered the findings from the actualized implementation of an adap-
tive system, DART, and share considerations for researchers designing systems with
similar interest areas. The conclusions provide insights into the structure of metrics that
enable adaptive training, and present considerations for future AIS design. This work
contributes to other, relatable adaptive instruction topics, includingwhen a system should
adapt, the appropriate number of difficulty options, considerations when using multiple
tasks, and the relationship between different measures of mental workload.
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Abstract. The paper explores the opportunities and challenges for metaverse
learning environments with AI-Assistants based on Large Language Models. A
proof of concept based on popular but proprietary technologies is presented that
enables a natural language exchange between the user and an AI-based medi-
cal expert in a highly immersive environment based on the Unreal Engine. The
answers generated by ChatGPT are not only played back lip-synchronously, but
also visualized in the VR environment using a 3D model of a skeleton. Usability
and user experience play a particularly important role in the development of the
highly immersiveAI-Assistant. The proof of concept serves to illustrate the oppor-
tunities and challenges that lie in the merging of large language models, metaverse
applications and educational ecosystems, which are self-contained research areas.
Development strategies, tools and interoperability standards will be presented to
facilitate future developments in this triangle of tension.

Keywords: Large Language Models · LLM · AI-Assistants · Virtual Assistants ·
Virtual Reality ·Metaverse · Education · Learning Technologies · Interoperability

1 Introduction

AI-based Assistants can already answer learners’ technical questions, provide explana-
tions, guide interactive exercises, and offer personalized recommendations based on user
interactions. They also suggest customized content and exercises, act as virtual instruc-
tors, and assist with questions. Moreover, they provide feedback on given answers,
identify knowledge gaps, and track learning progress. To ensure the quality of the learn-
ing experience, these bots should generate appropriate content such as learning media,
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quizzes and exercises tailored to the learners’ needs. The enormous potential of process-
ing large amounts of data through generative artificial intelligence has become widely
recognized in education, particularly with the advances of technologies from OpenAI
(such as ChatGPT1, GPT-42, DALL-E3 and Sora4). The challenges lie in making tech-
nology transparent and user-friendly. From a technical perspective, this requires data
sovereignty, vendor openness and diversity. Proprietary cloud solutions have limitations
in terms of data control and access. Open-source alternatives and federated learning offer
promising approaches to address these challenges.

At the same time, there are many areas of application in which the explanation of
relationships in a classic learningplatform“in2D”or text formappearsmore complicated
than illustrating the same relationships in the real world. This is usually the case when
complex objects, such as machines, buildings, or the human body, need to be presented
and explained. As access to these objects can sometimes be very expensive (e.g., in the
case of large machines) - they may even break in the process - or it is not even possible
to gain an insight into the relationships between the various components, as is the case
with living bodies, there are many 3D simulations in suitable virtual and augmented
realities.

The metaverse is more than the sum of AR and VR. Thereby, metaverse refers to a
multi-vendor environment and not necessarily toMeta’sMetaverse. Three features of the
metaverse clearly distinguish it from normal AR and VR applications: “shared”, “per-
sistent”, and “decentralized”. “Shared” means, that people can interact with others using
a new identity; a social world is created with social connection and interaction. “Persis-
tent” means that this world cannot simply be restarted; it continues to run and thus learns
from the interactions that take place in it over time. It means that experience inside can-
not be paused or restarted. Additionally, decentralized technologies (e.g., blockchains)
are needed to ensure that economic activities can be safely conducted and that personal
property and logs in the metaverse will not be modified by others. AR and VR are used
to present the content of the metaverse, and AI enables this parallel world to follow the
rules defined by the creator. In the metaverse, AI is mainly used for arbitration (solving
conflicts), simulation (enabling non-human avatars characteristics to act like humans),
and decision-making (following rules pre-defined by the creator) in the metaverse [1].

In this paper, we show the potential and challenges that arise when AI-Assistants
are introduced directly in metaverse learning environments. The integration of standards
from the educational domain as well as standards from the metaverse world will, among
others, play a critical role to effectively integrate Large Language Models into virtual
education ecosystems and enhance learning in the digital space.

Froma non-technical view,many aspects should be considered to successfully imple-
ment such a future-oriented technology and gain user acceptance in a variety of appli-
cation scenarios. Studies have shown that considering the learners emotion in a virtual
learning environment can be beneficial for the learning outcomes, users’ motivation,
and perceived usability [2]. In this paper, we not only introduce the technology and its

1 ChatGPT: https://chat.openai.com/.
2 GPT-4: https://openai.com/gpt-4/.
3 DALL-E 3: https://openai.com/dall-e-3/.
4 Sora - Creating video from text: https://openai.com/sora/.

https://chat.openai.com/
https://openai.com/gpt-4/
https://openai.com/dall-e-3/
https://openai.com/sora/
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functionality but also discuss the implications and possibilities it offers for training. For
instance, we explore additional application scenarios, such as how it can be combined
with user state analysis to support individual needs adaptively, and how this technol-
ogy can complement competency-based education in many ways. We also investigate
human-centered design, methods to test its usability, and how to evaluate the system.

The paper is structured as follows: First, the scientific literature from the areas of
metaverse, LLM-based AI-Assistants and virtual training is analyzed in the context of
the fusion of these three topics. Then the possibilities and added values of merging the
technologies are discussed and afirst proof of concept of anAI assistant in a lecture hall of
amedical study program is presented. The development of this still proprietary prototype
is explained and followed by a detailed discussion of why the future of sustainable
developments lies in a loose coupling of components, interoperability standards and the
interchangeability of technologies instead of permanently relying on monolithic, non-
transparent, and proprietary technology stacks. The paper concludes with a summary
and an outlook.

2 Related Work

The work operates at the intersection of a triangle of tension between artificial intel-
ligence, educational ecosystems and metaverse applications. While AI in educational
ecosystems is a recent but heavily researched area, there are many new developments
around Large Language Models (LLMs), and thus implicitly also their potentials and
challenges for education. However, the use of LLM-based AI-Assistants for educational
environments has hardly been researched yet.

2.1 MetaHumans

Over the past years, major technology companies have demonstrated significant interest
in virtual technologies, particularly virtual character, and face capture technologies [3,
p. 154–155]. Epic Games5 being one of the leading companies and early investors in the
virtual sector developed their own solution for the effortless creation of photo-realistic
digital humans, called MetaHumans, using Unreal Engine6. These can be described as
high-fidelity digital human models, allowing for a high level of immersion and photo-
realism. MetaHuman models include a full model of a person, including the body and
the head, with the latter being able to express many emotions and poses. Additionally,
Epic Games provided a MetaHuman Creator framework enabling users to easily create,
shape and fine-tune their avatars [3]. With the Unreal Engine itself, users can effortlessly
acquire the asset in a fully rigged and prepared state, enabling seamless animation and
motion capture. The asset offers users an array of performance capture tools to enhance
the animation and realism of digital humans in whatever virtual environment [3].

5 Epic Games: https://www.epicgames.com/site/en-US/home/.
6 MetaHumans: https://www.epicgames.com/site/en-US/news/announcing-metahuman-creator-
fast-high-fidelity-digital-humans-in-unreal-engine/.

https://www.epicgames.com/site/en-US/home/
https://www.epicgames.com/site/en-US/news/announcing-metahuman-creator-fast-high-fidelity-digital-humans-in-unreal-engine/
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2.2 Metaverse Applications for Training

Several papers have already discussed the benefits of using virtual reality for training
certain professions, including [4–6], whereVR seems to have a great potential to enhance
the learning process. A similar development can be seen in the AI field, with large
language models, such as ChatGPT, having a big impact on the future of learning [7–
9]. Several online platforms offer an immersive virtual training experience, both for
onboarding processes as well as for developing and acquiring new skills. Mursion7

specialized in virtual reality simulations to foster interpersonal competencies, is offering
an environment wherein users engage and interact to refine their skills through practice.
Alternatively, STRIVR8 provides a wide range of training modules covering domains
such as customer service and safety protocols, employing virtual reality technology.
Through this approach, STRIVR aims to enhance learning retention and encourage user
engagement. Labster9 primarily serves as the educational domain, with a focus of virtual
laboratory simulations. These immersive virtual labs encourage and motivate students
to conduct experiments and explore scientific concepts, within a secure environment.

The possibilities of learning in the metaverse go beyond these applications if we con-
sider the characteristics of shared, persistent, and decentralized, as mentioned above. An
illustrative example is language learning: In the metaverse, the goal of language learning
is more than a course or learning activity; instead, it is to provide learners with a differ-
ent life, a living environment in which English is used for working, learning, socializing
and entertainment as if they were native English speakers. The two learning experiences
(i.e., VR and the metaverse) are very different [1]. However, because research on the
metaverse is still in its infancy, we need to use the results from research with VR and
AR as a basis.

Studies comparing a variety of learning media often show no difference in the effec-
tiveness of the training using VR as media or another learning media. Especially in
the medical sector, where patients could be hurt and training resources may be rare or
expensive, research focused on different learning scenarios where training can benefit
by using VR technology. For example, Gurusamy et al. [10] summarized 23 studies in
a review for the field of laparoscopy alone, which compared either VR with video, VR
with a classic laparoscopy trainer or VR with no training. In this review, the authors
concluded that training with VR achieves at least as good results as training with video
trainers and recommend the use of VR as a supplement to classic laparoscopy trainers.
Torkington et al. [11], who compared the learning outcomes of VR trainers with the clas-
sic laparoscopy trainer, found no differences in performance between the two learning
media. Altun and Schulz [12] compared training with VR to two other learning media
(paper instructions, video instructions) in the context of learning how to solve a Rubik’s
Cube and found no disadvantages of using VR regarding learning outcomes, sustainable
learning outcomes, learning transfer, usability, or workload.

All of them adopt immersive technologies to drive training and skill develop-
ment. However, they do not integrate AI-based assistants, which enables dynamic and
personalized guidance and better tailoring to each user’s needs.

7 Mursion: https://www.mursion.com/team/.
8 STRIVR: https://www.strivr.com/why-strivr/.
9 Labster: https://www.labster.com/.

https://www.mursion.com/team/
https://www.strivr.com/why-strivr/
https://www.labster.com/
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2.3 LLM-Based AI-Assistants

Artificial intelligence-based tutoring agents (bots) are playing a significant role inmodern
education and training. The introduction of AI-Assistants for 2D learning environments
is a greater challenge, as there are many prerequisites to be met. According to Altun
et al. [13] these include:

1. Methodological prerequisites: What is the task and how can the success of the AI be
measured? The goal, the methodology and the evaluation framework must be tailored
to each other.

2. Organizational prerequisites: Stakeholders must be identified, picked up, taken seri-
ously, and trained. The necessary processes must be initiated or established for
this.

3. Didactic prerequisites: An AI does not replace the teacher but should assist with
certain tasks. AI functions must be very well embedded in the didactic setting.

4. Content requirements: Appealing and varied digital content must be available, well-
described by metadata, and interoperable.

5. Technical requirements: Ideally, interoperable data and services should be integrated
using common interfaces and format standards.

AI tools are transforming the approach to academics, as learning in virtual envi-
ronments enhances students’ performance and motivation, offering an interactive and
engaging learning experience. Among these, one of the most popular chatting bots is
the ChatGPT, a conversational AI tool based on the GPT-3 large-scale language model,
developed by OpenAI10. This natural language model is a conversational agent that dia-
logues with a user. Using machine learning, it generates responses from user text inputs,
mimicking human conversation. The GPT-3 language model is trained on diverse inter-
net text data, including books and other publicly available data [14]. ChatGPT demon-
strated the capacity to comprehend users’ input, enabling almost any topic consultation
between the bot and the user [7]. By asking a series of questions (prompts), themodel can
help identify potential problems and recommend appropriate action, including facilitat-
ing access to healthcare information [8]. Thereby, ChatGPT’s huge potential as virtual
learning assistant has already been shown for educational settings [15].

Several strategies have emerged to steer the generation of LLMoutputs, which can be
roughly divided into (1) fine-tuning LLMs and (2) prompt engineering. The fine-tuning
of a model can be described as the continuation of an LLM training by providing a
(possibly self-created) dataset on which the LLM is further trained on. Prompt engineer-
ing focuses on methods of how prompts can be strategically modified to guide LLMs
towards an expected behavior. Currently, different approaches like [16] are discussed
for harnessing prompt engineering within general chat-based learning content. Further-
more, these techniques are also explored within subject-specific approaches, e.g., within
prompt engineering in medical education [17].

While these strategies focus on refining a prompt directly by users, another approach
is tomodify prompts programmatically, for example, by addingmore context information
to a prompt. One field that follows this approach is Retrieval Augmented Generation

10 OpenAI: https://openai.com/.

https://openai.com/
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(RAG), where semantically fitting chunks of information are retrieved from specified
documents and are included within the context information of a user prompt to generate
an answer. While this approach introduces new possibilities of adaptivity of learning
content by, for example, including insights from learning analytics into the prompts to
further adapt the content to learners needs, it is currently still in preliminary development
in the education domain.

2.4 Usability and User Experience

Usability and user experience are decisive success criteria for high-immersive appli-
cations. Usability forms the basis for a user’s interaction that is satisfactory. In the
best-known definition of usability by Nielsen [18], terms such as learnability, efficiency,
memorability, errors, and satisfaction are central. User experience (UX) reflects the expe-
riences, sensations and feelings of a person while using a product [19] and therefore
includes concepts such as the so-called “joy of use”.

Usability focuses on the problems, frustrations and barriers that can occur when
using a product and attempts to eliminate these. UX, on the other hand, deals with the
(3) positive effects of using or owning a product. Positive emotions such as joy or pride
play a role here. These differences also result in a difference in the researchmethodology.
While usability mainly uses qualitative methods (e.g., interviews), quantitative methods
(e.g., questionnaires) are often used to record user experience. In summary, it can be
said that UX should be seen as a complement to usability. A high usability does not
guarantee that a product will be perceived as good, although usability is often seen as a
prerequisite for a positive user experience.

In the ongoing development of the metaverse, UX is crucial because it determines
how people interact with and perceive virtual environments. A good user experience can
make a virtual world feel immersive and engaging, while a poor user experience can
make it feel confusing or frustrating to use [20].When designing themetaverse, there are
several factors to consider that can affect the user experience, including the physical and
virtual environment, the user’s goals and motivations, and the hardware and software
used. Bisset Delgado names three big challenges for UX design in the metaverse: (1)
The first challenge is the need to design for a new and rapidly evolving medium. The
metaverse is still in its early stages of development, and there are many unknowns and
uncertainties about how it will evolve and what users will expect from it. Additionally,
(2), because the metaverse will be accessed through a variety of devices (including VR
headsets, ARglasses, and smartphones), there is a need to design themetaverse for awide
range of platforms. As a third factor (3), it will be a challenge to design immersive and
interactive environments that can be difficult to predict and control, because users will be
able to move freely and interact with the environment in ways that are not possible in the
physical world [21]. To meet these challenges appropriately, proven methods from VR
andAR researchmust be combined to create newmethods.AI-based avatars allowhighly
immersive dialogs in which users can have almost free and human-like conversations
with the bots. First game technologies already show non-player characters that are based
on large language models and practically play a role by sticking to a given script like
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a human actor11. While in principle attempts are made to create the highest possible
user acceptance through more realistic virtual avatars, the uncanny valley effect can
also occur, for example, in which more realistic-looking figures in virtual realities are
sometimes less accepted than more abstract figures. We make some suggestions for
dealing with challenges later in this article.

2.5 Opportunities of Virtual AI-Assistants for Education

By combining high-fidelity, hyper-realistic human models, together with the growing
abilities of large language models, a highly realistic virtual training experience can be
created, allowing for easy, cheaper, and more effective training of personnel for many
job professions. In contrast to normal text-based learning through online research, we
wanted our users to be able to walk around a digital world representing familiar locations
depending on the scenario of the virtual training.

However, it is very important to mention that AI-Assistants should only be used in
the metaverse where the metaverse itself benefits existing training. For example, a pure
transfer of classroom learning, where the user sits at a desk in front of a computer or
book or listens to a PowerPoint presentation in a lecture hall, to virtual reality should
be avoided. Of course, familiar locations, such as offices or training rooms, can still
be presented to strengthen the emotional connection and immersion based on familiar
environments. However, it should always be investigated which interactions with the
environment offer added value in the metaverse.

Virtual AI-Assistants can play to their strengths where VR environments can, except
that the integration of AI-based avatars in VR means that practical knowledge can be
presented more flexibly and interactively. Thereby, AI-Assistants are always available,
so users don’t have to wait for answers from human experts. Currently, they are not yet
able to react emotionally to the user’s input, which can be both a blessing and a curse.
For this reason, they should not be seen as a replacement for human teachers, but as a
useful addition that needs to be well integrated into an existing teaching setting - e.g.,
for specific exercises or as a temporary assistant for the human tutor.

Examples would include a fire department for ongoing firefighters, an operating
theater for future surgeons, or maybe even more complicated or dangerous training
grounds, such as a space station, military camp, or an airplane. For our project, we have
chosen an example of medical training inside a university classroom. The environment is
full of high-quality props and assets, allowing for a better understanding of complicated
topics.

3 Realization of a Proof of Concept

With an initial proof of concept, we wanted to highlight the characteristics and benefits
of virtual training with AI-bots and showcase its feasibility with a proprietary tech stack
consisting of an Unreal Engine based Metaverse experience using MetaHuman models
and a connection to ChatGPT.

11 ConvAI - Conversational AI for Virtual Worlds: https://convai.com/.

https://convai.com/
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We allow the user to join our virtual training environment, being represented as a
MetaHumanmodel, and learnmedical subjects by asking questions to aVirtual Assistant
(VA), called Gavin (see Fig. 1). The VA is a realistic-looking, non-player character
(NPC) at who the user can look at, speak to, and ask questions related to the scenario
of the virtual training. The logic inside of the VA was implemented using a pipeline
of different APIs, including the conversion of text-to-speech, speech-to-text, ChatGPT-
based comprehension, and creation of text messages. Additionally, the VA supports
lip-speech synchronization and additional animations, such as gestures or neck rotation.

Fig. 1. MetaHuman models of the Player (right) and the Virtual Assistant Gavin (left).

Next to the virtual assistant stands a skeleton 3Dmodel of the human body.WhenVA
Gavin is asked about certain bones, he can interact with the environment and highlight
bones on the skeleton. With the use of syntax and text analysis, a simple environmental
awareness of the VA was implemented, enabling the VA to highlight specific bones of
a skeleton located next to him. By doing so, we are making an example of the usage of
teaching props for easier visualization of complex topics, such as human anatomy. This
is intended to demonstrate how separate services (such as the Large Language Model
in the cloud) can generate answers that can in turn be followed up in virtual reality. A
short video of the proof of concept can be found online12.

3.1 The Environment, MetaHuman Models and Player Controller

As the main game engine, we have used the Unreal Engine 5.1 created by Epic Games.
It is a modern, flexible, and artists-friendly game engine, which allows for the develop-
ment of next-generation, realistic video games and 3D projects. We have heavily used
one of its prominent features, the blueprint programming, providing visual nodes for
creating projects without the need for deep programming knowledge. While code can
be seamlessly exchanged between blueprint and C++ programming, we opted for the

12 See the video of the proof of concept: https://www.youtube.com/watch?v=exFRG7l8cjw.

https://www.youtube.com/watch?v=exFRG7l8cjw
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latter only to implement the reading of custom environment variables from the operating
system; and for all other components, blueprint programming has proven to be sufficient.
For source control, we used Perforce’s Helix Core13 mostly due to its support for bigger
binary files (often used in game development).

The virtual environment of our Metaverse experience was created solely using the
above-mentioned Unreal Engine (UE), allowing for easy arrangement of in-game assets.
The assets themselves have been taken from multiple sources. High-quality, realistic
objects, including indoor walls, windows, doors, and some of the classroom props were
added to increase immersion (but have no function beyond that) and primarily sourced
from Quixel Bridge Megascans14, which is a pre-installed extension to UE. The remain-
ing assets were obtained from freely available third-party projects that were uploaded
to the Unreal Engine Marketplace. With the above-mentioned assets, we were able to
create a hyper-realistic scene (environment), including the inside of a university’s med-
ical classroom, and the main lobby, functioning as the joining room for the players and
featuring instructions and in-game controls. The classroom was designed to look like
a replica of a life-like medical classroom, including the blackboard, human skeleton,
desks, and other classroom decorations.

MetaHuman Models. One of the most important assets was the use of the MetaHuman
(MH) models. We have represented both the player and the virtual assistant with the
MH models mentioned, available at Quixel Bridge Megascans. When uploaded to UE,
the MH models contain several assets’ layers, including skeletal meshes, textures, and
meshes, and are possible to be scripted and/or animated. Overall, all human models in
our project make use of MH technology, combined with high-quality, free animations
for third-party services.

Fig. 2. The logging blackboard, located in the
classroom.

Fig. 3. The skeleton teaching prop, with the
bones of an arm being highlighted
(humerus, ulna, and radius).

Logging Blackboard. The goal of the board is to display the latency for each of the
API calls, giving feedback on the players’ actions, and being vital for keeping user
engagement and focus (see Fig. 2). The board is an object with a TextRender component,
and a custom board tag attached. By default, it displays a note encouraging the user to

13 Helix Core: https://www.perforce.com/products/helix-core/.
14 Quixel Bridge Megascans: https://quixel.com/bridge/.

https://www.perforce.com/products/helix-core/
https://quixel.com/bridge/
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press the R key to start recording. When pressed it logs the future API calls, i.e., the
required time (in seconds) it took for each call to finish. The logging is done by simply
appendingmore text to the currently displayed text. Time difference calculation has been
done with the GetRealTimeSeconds node, subtracting the current time and one before
the call. Finally, when finished and after a fixed time interval, the board is cleared back
to the default note.

Skeleton Teaching Prop. The replica of a human skeleton serves as an example of a
training prop; thus, how virtual assets can be used for immersive and effective learning.
The skeleton is built from several individually named bones (such as an atlas, patella,
skull, or sternum), with an option to highlight each set of bones individually (see Fig. 3).
Each set of bones has a custom tag attached, making it easy to search them within the
scene. When a highlight is turned on, a custom material is applied to the bone, and the
Render CustomDepth Pass option is set to true. Finally, the script part of the highlighting
is done using a special syntax, therefore by analyzing the assistant’s replies.

Player Controller. Wehave used the default player blueprint from a default Third Person
project demo in the UE. It was further extended by the addition of the MetaHuman
model and an option to switch to the first-person camera by pressing the V key, overall
increasing the immersive feel of the experience. The player movement supports only
keyboard and mouse input, with key binds set in the Input section in the UE’s Projects
settings screen. The mentioned key binds include simple movement (A, S, D and W)
and camera rotation (mouse movement and scroll wheel), and other player actions,
including the above-mentioned camera toggle. Finally, the animations for the player
(thus the MetaHuman model) have been created with the use of Live Retarget Mode
inside of the player’s blueprint, re-targeting the animation from the mesh bones of the
default player model to the MetaHuman model.

Fig. 4. The main blueprint pipeline of the virtual assistant. (Purple: processed within the Unreal
Engine; green: services from OpenAI; blue: service from MS Azure). (Color figure online)
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3.2 Virtual AI-Assistant

The Virtual Assistant Gavin consists of several functions, executing API calls in a
fixed order. The main pipeline can be seen in Fig. 4. Additionally, two main anima-
tion blueprints are attached to the VA object - responsible for the MetaHuman body and
face animations.

Player Voice Recording. Firstly, the player’s voice from a microphone is recorded. The
voice is saved into a.wav file and propagated further into the pipeline. Additionally, in
this section, the logging board gets cleared and starts logging the times.

Speech-to-Text (OpenAI’s Whisper). For the Speech-to-Text we have used the Ope-
nAI API Plugin15, implementing an Unreal Engine interface for calling OpenAI APIs.
The.wav sound file is passed toOpenAI’sWhisper16 which transcribed the player’s voice
into a text. The text is then fed as input to the AI service.

Large Language Model (ChatGPT). We have selected the GPT-3.5- turbo model for
the chat function (chat settings of temperature 1.0 and max tokens 250), once again
implemented with the use of the OpenAI API Plugin. At the beginning, an array of chat
messages is initialized, with a startingmessage explaining the function and requirements
to the AI model. The array keeps track of the chat history and is fed in whole at each
following question, making sure the AI model remembers the previous questions and
information. The virtual assistant should have a basic understanding of the environment
surrounding him, namely the skeleton prop located next to him. This is done by teaching
the LLM the location of the skeleton with the use of simple text and the startingmessage.

“You are a medical teacher called Gavin. You are 35 years old and are an expert in
medicine. The responses need to be short and no longer than 2 sentences. Behave
to me as if I was a student and do not mention anything that suggests you are a
language model or AI. There is a human skeleton to your left, whenever a student
asks you anything related to human bones you mention that the bone can be seen on
the skeleton. When mentioning any skeleton bone add at the very end of the message
a single symbol #, following a list separated by a comma of the following bone
names: atlas, axis, clavicle, feet, femur, fibula, hands, hipbone, humerus, patella,
radius, ribs, scapula, skull, spine, sternum, tibia, ulna or thoracic vertebra. If the
name is not on the list, choose one of the closest bones from the list. Do not put
any more text after the syntax, do not put more than one # symbol, and remember
to always update the list at the end when asked a new question.”

After calling the AI service, a response is received with a # symbol at the end of the
message, followed by the names of the bones to highlight. The message is then cut into
parts at the place of the # symbol, with the first part propagated to the text-to-speech
component. The second part is a comma separated list of bones’ tags, which is then
parsed into an array and used to find bone objects in the scene. A new material is then
attached to the selected bones for a fixed period, making them visible to the player.

15 OpenAI API Plugin for Unreal: https://github.com/KellanM/OpenAI-Api-Unreal/.
16 Whisper: https://openai.com/research/whisper/.

https://github.com/KellanM/OpenAI-Api-Unreal/
https://openai.com/research/whisper/
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Text-to-Speech (Azure Cognitive Services). For the text-to-speech component, we have
used Microsoft’s Azure Cognitive Services API17 and the free Unreal Engine plugin
called AzSpeech - Voice and Text18. The response text from the Chat AI is propagated
to the Azure API which outputs a reference to a generated sound wave object. For the
voice, we have used the en-US-BrandonNeural voice option.

Lip-sync (MetahumanSDK). The lip-sync animation is created with the use of the
MetahumanSKD plugin19. Additionally, we have selected the eye movement mode
mocap option, generating additional eye movements in addition to mouth movement.
As a result, an animation asset for the player’s MetaHuman model is created.

Sound and Animations. The last step in the VA pipeline is to play the generated sound
and animation. The sound is quite simple and uses the “Play Sound 2D” node, play-
ing together with the animation. Playing the animations is more complex and used the
Animation Montages from the UE. For each of the dynamic (playing at runtime) ani-
mations a designated slot is required inside the animation blueprint. During the runtime
a reference to an animation asset is assigned to the slot, finally playing the requested
animation. In addition to the discussed lip synchronization, we also include three other
animations: neck rotation, idle animation, and hand gestures. The neck rotation makes
the virtual assistant face the player when inside his proximity. Idle animation moves the
body of the VA a little, making him look like he’s breathing (instead of keeping a static
T-pose). Lastly, we support a list of short animations featuring hand movement. The
animation is picked randomly from a list and triggered whenever the VA is replying to
the player’s question (for our project, we use only a single animation inside the list). All
the above-mentioned animations are then blended inside the VA’s face and MetaHuman
body animation blueprints, allowing the model to play multiple animations at once and
making VA’s behavior more natural and immersive.

4 Preliminary Findings of the Proof of Concept

The main goal of the proof of concept was to create an end-to-end high-immersive pro-
totype in which the user can interact in a virtual environment with a realistic LLM-based
avatar, which can respond autonomously to the user’s questions and uses its environment
to illustrate its answers. Technically, the end-to-end integration of the various compo-
nents could be fully demonstrated. However, there are a few fundamental aspects that
stand in the way of a fully immersive experience.

The correctness of the responses is again hard to assess, but generally positive.While
the answers of the AI and the highlighting of the bones are correct most of the time,
they can get odd and inaccurate with more questions asked. This is true, due to the
new questions being appended to old ones, creating more noise in answers. This can

17 Cognitive Services: https://azure.microsoft.com/en-gb/products/cognitive-services.
18 AzSpeech: https://www.unrealengine.com/marketplace/en-US/product/azspeech-async-text-

to-voice-and-voice-to-text/.
19 Metahuman SDK for Unreal Engine: https://www.unrealengine.com/marketplace/en-US/item/

66b869fa0d3748e78d422e59716597b6/.

https://azure.microsoft.com/en-gb/products/cognitive-services
https://www.unrealengine.com/marketplace/en-US/product/azspeech-async-text-to-voice-and-voice-to-text/
https://www.unrealengine.com/marketplace/en-US/item/66b869fa0d3748e78d422e59716597b6/
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also lead to highlighting the wrong bones on the skeleton or losing the correct syntax,
not highlighting the bones at all. Finally, situations like the recording being not clear
enough, and speech getting converted to the wrong text or different language, can create
artifacts in the further pipeline components. In addition to the known limitations of
LLMs (such as discriminatory biases, the hallucination of wrong information, the lack
of explainability of the generated answers, or security concerns, e.g., in regard to prompt
injection attacks [22]), which have already been demonstrated by various publications
of large language models, the lack of expertise (which needs to be tackled by fine-tuning
or retrieval-augmented strategies) due to the lack of sufficient information in the original
training data [23]) and the still limited scope of action (this is only related to the skeleton
next to Gavin) are particularly noticeable in our prototype.

In addition, Gavin takes a comparatively long time to respond to a user’s question.
The responsiveness of the VA’s replies can be better evaluated, with the overall delays
depending on the individual component of the API pipeline. The average response time
for components (in order of recording, speech-to-text, chat AI, text-to-speech, and lip-
sync) can be seen in Table 1. It can be noticed, that most time during the processing is lost
during the lip synchronization (skipping the recording time), counting roughly as 51%
of the overall delay. The fastest component is the text-to-speech from Azure Cognitive
Services, approximating around 9% of the total delay. Additionally, we observe that
ChatGPT’s response times depend on the requested information, if they were already
known during the initialization phase, answers tend to be quicker.

Our virtual assistant consists of several cooperating, decoupled components, exe-
cuted one after another. From our evaluation, we can assess that the overall answer delay
for the virtual assistant can get often quite long, with the lip-sync part taking the most
time. In interpersonal communication, the answers are rather quick and engaging, thus
the delays should be kept at the lowest possible levels, making it easier for the user to be
entertained and stay focused. According to ITU-T Rec. P.1305 [24], a “mouth-to-ear”
delay in speech application of less than 150 ms leads to transparent interactivity.

While we tried to achieve the lowest delays, the result varies and depends onmultiple
factors, including the internet connectivity and bandwidth, API’s resources availability,
time of the day, or the length and complexity of questions. While it is impossible to
exactly predict the length of queries, more work could be done to further minimize the
delay. Additionally, we did not compare the execution times of our components to their
counterparts available on the market and open-source alternatives which allow for on-
premise hosting. Therefore, possibly exchanging one or more components can speed
up the answer times of the VA. A comprehensive analysis could be done, to find the
most performant component for each of the tasks. Finally, each of the functions can
be achieved by following multiple solutions for the implementation and deployment
(either self-deployed locally or through cloud API calls). For example, it is possible to
create a lip-sync animation from text or sound files. Moreover, one can prepare parts of
it beforehand and stitch them together later or generate it from scratch during run-time,
thus generally dealing with a compromise between performance and the visuals. Each
of the components could be analyzed in a similar fashion, regarding its implementation
and deployment strategies, and their best solutions could be chosen.
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Table 1. Average response times (in seconds) for individual components, with each question
asked 5 times.

5 Challenges and Recommendations

Complex interconnected AI-systems are likely to exceed the maintenance capabilities of
one organization. Relying on a one-fits-all solution with no or only proprietary interfaces
would not be sustainable at a certain point, since the number of additional functions and
modifications would make it very difficult to maintain and expand those monolithic
systems. In service-oriented architectures (SOA), services can either be integrated as
flexible Software-as-a-Service (SaaS) solutions (e.g., cloud-based), or hosted entirely
or in part on premise, usually when deeper integration with existing systems is needed.
This results in a shift towards a Best-of-Breed (BoB) strategy, especially in the education
domain [25] which describes the strategy to utilize the best possible component to take
care of a specific problem. Compared to monolithic approaches, BOB strategies tend to
be more complex during the initial setup phase. A leading system, such as a middleware
or the blueprint pipeline in our Proof of Concept, must be defined, which takes care of
the orchestration of all other services [26]. This can also be supported by abstraction
frameworks (e.g., LangChain20 for LLMs).

AI, educational ecosystems and metaverse are three very different topics, each with
dedicated subject matter experts. The modular nature of the Best-of-Breed strategy

20 LangChain: https://www.langchain.com/.

https://www.langchain.com/
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allows several focused developer teams from different organizations to work on dif-
ferent parts of the overall system in parallel. The entire system, as well as parts of it,
can be better operated and maintained, or quickly replaced if necessary. This leads to
parallelizable, scalable systems. However, for the corresponding services to offer users
transitions that are as seamless and imperceptible as possible, the servicesmust exchange
information efficiently. To achieve this, all services involved must agree on a common
understanding of the exchange mechanisms, data formats and semantics. For example,
the proprietary syntax for marking bones from the proof of concept would hardly be
reusable if the relevant services were replaced. For this reason, it is highly advisable
to use established interoperability standards when opting for the Best-of-Breed strategy
when developing educational AI-Assistants for VR environments.

5.1 Learning Technologies

The support of common standards and open specifications from education plays an
essential role in the context of educational AI-Assistants, without which sustainable
use in educational ecosystems is hardly conceivable. To date, hardly any educational
standards have been supported by LLMs. On the one hand, different input data must be
able to be processed and interpreted by the LLM, such as learning content (accessible
via LTI or cmi5) from curated sources, their pedagogical and didactic metadata (e.g.
according to the IEEE LOM standard) in terms of findability and interpretation, didactic
contexts (as a common cartridge) aswell as user interactions (as xAPI) for the description
of user behavior and profiles. This is needed so that LLMs can also access the knowledge
that has already been uploaded to the learning platforms.

On the other hand, the same AI-Assistants should be re-usable for learning manage-
ment systems (e.g., as textual chatbots) as well as for VR environments for direct user
interaction. Launch mechanisms such as LTI (Learning Tools Interoperability) and cmi5
(a protocol based on xAPI) are suitable for the integration into learning platforms. The
support of these standards by LLMs must be realized via corresponding adapters.

5.2 Large Language Models

The use of sophisticated, but proprietary cloud services, such as the ones from OpenAI,
in training scenarios faces significant challenges: First and foremost, these solutions
are only offered as black-box services in the cloud, with training content and user data
transferred via commercial interfaces on a pay-per-use basis. How copyright-protected
content and personal data of the users is (further) processed by the content publishers and
educational institutions is not transparent and is the sole responsibility of the provider.
However, with ChatGPT having been available to the public for just over a year (as of
January 2024),many promising free or even open-source alternatives have been released,
enabling on-premise hosting, which enables the use of LLMs in domains with higher
requirements for data security and privacy. This is particularly relevant for scenarios
involving sensitive user prompts or documents processed within Retrieval Augmented
Generation (RAG) strategies. OS Models also enable the use of LLMs within offline
environments or networks with connection restrictions and eliminate the reliance on
outside services. Benchmark results and surveys [27] indicate that models like LLama 2
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byMeta21 (not open-source, but free to use) or Mistral byMistralAI22 are catching up to
their closed-sourced counterparts or even surpass them in some cases. Their deployment
is, however, accompanied by its own caveats, which can be partly attributed to their
hardware requirements.

Since these models and the local server infrastructures of educational institutions are
not designed for processing large and all-encompassing information, federated learning
emerges as a viable solution for specific use cases. Here, the respective specialized
knowledge bases are trained separately and can be used individually or linked for larger
use cases. As this field of application is still very young and hardly researched, there is
currently minimal experience in the context of specific educational areas.

5.3 Metaverse Enablers

The voice integration of LLM-based AI-Assistants in the VR environments can be real-
ized via various speech-to-text (e.g., OpenAIWhisper, Mozilla DeepSpeech23) and text-
to-speech (e.g., OpenTTS24, Mozilla TTS25, Mimic26) technologies on an open-source
basis. Open standards such as WebXR27, OpenXR28 and glTF29 enable the integration
of generated interactive content and voicebots in VR applications. WebXR, a key ini-
tiative of the W3C Immersive Web Working Group, is an API designed to empower
developers in seamlessly creating immersive experiences across various XR devices
directly in the browser. This capability opens virtual learning assistant applications to a
broader audience. Notably, Meta Quest devices and the new Apple Vision Pro support
WebXR technology, further expanding the reach and accessibility of these immersive
experiences. OpenXR offers a uniform interface for system-independent development
and glTF optimizes the transmission of 3D content. They enable the seamless integra-
tion of virtual experiences, 3D models and interactive content. These standards make
learning in the digital space open, effective, and more engaging.

5.4 User Acceptance as Key Driver

In the area of AI-supported learning in the metaverse the assessment of usability and
user experience is particularly difficult. Morales et al. did not find any evaluation studies
on metaverse user experience in their literature review [28]. There are still many open
questions regarding the use of AI in learning environments, especially in the metaverse:
Do additional factors such as explainability play a role in the UX-perception of AI-
supporting learning? How does the initial user’s trust or distrust in the AI-support influ-
ence the “joy of use” and the willingness to use the product in general? How do the new

21 Llama: https://ai.meta.com/llama/.
22 Mistral: https://mistral.ai/.
23 Mozilla DeepSpeech: https://github.com/mozilla/DeepSpeech/.
24 OpenTTS: https://github.com/synesthesiam/opentts/.
25 MozillaTTS: https://github.com/mozilla/TTS/.
26 Mimic: https://mycroft.ai/mimic-3/.
27 WebXR: https://immersiveweb.dev/.
28 OpenXR: https://www.khronos.org/openxr/.
29 Graphic Language Transmission Format: https://www.khronos.org/gltf/.
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characteristics of the metaverse (“shared”, “persistent” and “decentralized”), that make
the difference between existing VR and AR applications and the metaverse, change the
user’s experienceof thismedium?HowcangeneralUsability/UX-guidelines be adjusted
to these new products? Some existing guidelines, as for example recommendations for
front size, may differ for applications in VR.

In addition, the rapid development of hardware and software leads to poor compara-
bility of usability between products and is accompanied by high demands on the systems.
Despite the relevance of AI-supported learning applications and learning applications in
VR, no design guidelines for interaction in such a system have yet been defined. How-
ever, there are initial efforts to expand the guidelines for AI systems in general30. Due
to the novelty of the system, there is no experience in evaluating its usability and user
experience. Nevertheless, to some extent, usability guidelines can be transferred from
other application areas. For example, many of the design guidelines in DIN EN ISO
9241 apply to AI-supported learning applications as well as to VR applications. How-
ever, these guidelines may need to be re-examined for this specific application purpose
and tailored to the needs and context of the relevant application.

Therefore, the authors of this paper suggest a hands-on approach where existing
guidelines are being used in the design-process in a meaningful way wherever possible.
For the evaluation of such a system we recommend using a mixed-method approach
[29] with quantitative and qualitative methods. Depending on the application context,
the evaluation should not only focus on usability aspects, but also on other factors such
as (sustainable) learning outcomes, organizational benefits, and user’s motivation.

For the use case of learning in the metaverse, stakeholders in this area must be given
special considerationwhen researching theUX.Stakeholders in the learning environment
might be, for example, teachers, learners, authors, technical support staff, etc., each
of whom has their own specific requirements for the learning environment. In future,
individual roles or at least aspects of individual roles may also be replaced by intelligent
agents, as in our use case. The potential of such applications is huge. For example, it
enables new ways of reflection, an important component of learning according to the
principle of complete action. According to the principle of complete action, a good
learning situation consists of the phases of informing or analyzing, planning, deciding,
implementing, monitoring, or evaluating and reflecting31. While interacting with an
intelligent agent in the metaverse, learners could obtain feedback on their work in a
protected space before submitting it to the teacher. Especially when there is a shortage
of specialists in the field of education, safe learning environments can be created in
which learners can try things out and make mistakes to learn from them.

Didactic principles, such as the principle of complete action,must be considered from
the outset to provide users with a good UX in the learning environment and to make
learning effective. The guiding principle of “didactics first” should lead to the meaning
and purpose of a learning environment being seen as a key factor in the decision for a
particular learning environment and its development.

30 AI: First New UI Paradigm in 60 Years: https://www.nngroup.com/articles/ai-paradigm/.
31 School curriculum for vocational schools (German): https://schucu-bbs.nline.nibis.de/nibis.

php?menid=171.

https://www.nngroup.com/articles/ai-paradigm/
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In the context of combining these systems with user-state-assessment [30] additional
factors should be considered. Does the system compliment the user-state in a beneficial
way? Barriers to the use of user-state-assessment can also be the acquisition costs of
equipment or the feeling of beingmonitored. Themeasurementmethods should therefore
be easy to use and as unobtrusive as possible. The use of body values to adapt the learning
environment to the user state is particularly useful when a special user state is required
to learn how to act in a particularly challenging situation, such as landing an aircraft
under stress or the actions of emergency services under fire or during a flood. However,
too much realism should not be used at all costs - especially when it comes to simulating
stressful or dangerous situations - as this can also lead to a lower acceptance or even
blunting of real situations. The metaverse offers many new possibilities for creating
learning situations that are dangerous or costly in real life. The user experience is crucial
for learning success, especially in the above-mentioned critical contexts.

6 Summary

While high-quality training in real life is very important, virtual training offers different
advantages, such as higher immersion with experiences not possible in real life, lower
costs and needed equipment, better availability, easier visualization, or no exposure
to dangers. This can be crucial while training for certain professions or the training
equipment is so expensive the training can happen only once. AI-based outputs, such
as those recently often generated by large language models, can relieve the burden on
teachers and, thus, that LLM-based AI-Assistants at the same time respondmore quickly
to individual questions from students, especially when no experts are available.

We presented an end-to-end proof of concept based on currently very popular tech-
nologies such as ChatGPT and the Unreal Engine and used this example to demonstrate
added value and challenges. We particularly advocate the use of the best-of-breed strat-
egy [25] to allow individual functions to be developed as independently as possible by
experts from the domains of education technologies, LLMs and metaverse applications.
To this end, interoperable technologies, interfaces, and standards from the respective
areas should be reused as much as possible.

In summary, the combination of education and technology is having a transforma-
tive impact. Chatbots and the metaverse offer innovative ways to personalize learning
content, foster collaboration and enable deeper understanding. The integration of tech-
nology standards optimizes this experience and reshapes the educational landscape in a
sustainable way. However, it is important to emphasize that technology serves as a tool,
while the pedagogical approach and human interaction remain essential for learning.
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Abstract. GenerativeAI (GenAI) has the capability to revolutionize evenmodern
processes and framework implementations. In 2021 we presented the Reasoning
about Multiple Paths and Alternatives to Generate Effective Forecasts (RAM-
PAGE) process framework to support hypothesis generation for counterfactual
forecasting and intelligence analysis [1]. This framework provided a structure
to organize and order analysis methods to maximize the number and quality of
hypotheses generated to improve forecasts.Different instantiations ofGenAI could
be used to improve the results of each stage in this framework. Adding GenAI to
implementations of the RAMPAGE framework would greatly expand the number
and quality of hypotheses than analysts can generate, which would lead to better
forecasts. In this paper, we present examples of how GenAI tools could be used
to enhance the RAMPAGE framework.

Keywords: Generative AI · Intelligence Analysis · learning tools · hypothesis
generation

1 Introduction

The best use of technology is to extend human potential. Advances in artificial intel-
ligence, machine learning, and natural language processing have led to the creation of
Generative AI (GenAI) tools and the integration of these tools into many fields including
teaching and learning. While the role of technology in teaching and learning is not new,
the integration of GenAI holds promise [2].

In a systematic review ofGenAI in education published in 2023,Wang,Wang, and Su
[3] analyzed 27 academic articles published between 2020 and 2023, using an “inductive
grounded approach the coding revealed four technological affordances: accessibility,
personalization, automation, and interactivity; and five challenges: academic integrity
risk, response errors and bias, over-dependence risk, the widening digital divide, and
privacy and security.” The technological affordances inform our recommendations to
support intelligence analysis with these tools. The challenge of academic integrity risk
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and widening the digital divide are nominal issues for this work as we are using the
tool to generate alternate hypotheses outside of an academic setting. Response errors
and bias, over-dependence risk, and privacy and security present significant issues that
need to be considered because of the nature of the context, extending the hypothesis for
intelligence analysts. To combat these challenges, we encourage users to incorporate the
integration of GenAI as an extension of their capability, not as a replacement for their
not a replacement of their labor.

When used to support teaching and learning, GenAI tools can become thought part-
ners to extend the process of inquiry. To apply this integration of GenAI this paper will
extend the role of Intelligence analysis and the process of developing the skill related
to generating alternative hypotheses using a framework developed in part by two of the
authors of this paper (McDermott and Whitaker).

2 RAMPAGE Framework

The Reasoning About Multiple Paths and Alternatives to Generate Effective Forecasts
(RAMPAGE) process was originally developed as part of the Forecasting Counterfactu-
als in Uncontrolled Settings (FOCUS) program run by IARPA. The RAMPAGE process
was designed to be a flexible framework to support intelligence analysts, while being
somewhat agnostic to the particular methods used. The key to the RAMPAGE pro-
cess is hypothesis generation. In general, hypothesis generation is the foundation of all
analytical methods. However, hypothesis generation is also greatly affected by human
biases and cognitive limitations, including framing bias and confirmation bias [4–7].
These biases and limitations lead to neglect of key regions of the possible hypothesis
space. The RAMPAGE process created an order for when to use which types of methods
to maximize multi-path reasoning (MPR). Multi-path reasoning uses iterative, conver-
gent broadening and narrowing hypothesis assessment through four cognitive processes:
framing and contextualization, down-collect, conflict and corroboration, and hypothesis
exploration [8]. The goal of MPR is for the hypotheses generated to relate to inde-
pendent parts of the hypothesis space and to differentiate potentially valid alternative
explanations rather than dismiss alternate hypotheses too early. The RAMPAGE pro-
cess brings analysts through each of these four cognitive processes in discrete stages.
The RAMPAGE framework is designed to support independent analysis and differen-
tiation through selecting iterative broadening and narrowing methods. When using the
RAMPAGE process, it is expected that each analyst works independently with minimal,
strategic idea sharing. In the original framework, there are five stages, but the fifth stage
was an artificial add-on based on the needs of the FOCUS program, so we only consider
the first four stages in this paper.

The first stage is the Information Gathering and Evaluation stage, which is when
initial data is collected and distributed to analysts. The ways in which information is
presented have profound effects on how analysts will explore the hypothesis space.
Controlling how much information an analyst can access at a given time will influence
the kinds of hypotheses they generate. Order of presentation can help to overcome
problems with anchoring bias by ensuring different analysts will anchor to different
parts of the hypothesis space. Similar effects can be achieved by presenting analysts
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with all of the information but with different initial questions to answer. In this stage, a
key piece is also to evaluate the quality of different evidence sources to establish which
evidence should be given the most weight when generating hypotheses.

The second stage, The Multi-Path Generation stage, is where analysts create their
initial formal hypotheses. When done in conjunction with the data being distributed into
different conceptual bins, the analyst would receive a set of data, review and check the
quality of the evidence, andgenerate hypotheses basedon the available data before adding
more data. During this stage, the goal is to maintain independence and build and evaluate
hypotheses working on the subsets of data or specific questions. This stage involves
both an initial generation method to maximize the number of independent hypotheses
under consideration and an initial narrowing method to focus on the most likely or most
informative hypotheses (i.e., best differentiate between parts of the hypothesis space).

The third stage is Problem Visualization. The goal of problem visualization is to
assist the analyst in visualizing the hypothesis space, helping them to identify gaps in
their knowledge or possibilities they had not considered. This visualization can take
on many forms from creating a “mind map” picture of how information is related to
creating a comparative matrix of the leading hypotheses. This stage can be treated as it’s
own independent stage or a process used throughout the other stages to support broader
analysis.

The fourth stage, the Multi-Path Reasoning stage, is where analysts broaden their
outlook by considering a range of different perspectives on the analysis. These perspec-
tives could include different roles within the scenario, such as a health official versus
a head of state, or roles external to the scenario, such as how would a game developer
imagine this scenario into a game. The change in perspective could also involve new
ways of evaluating different hypotheses, such as trying to identify malleable factors and
the effects of changing those factors or assuming that the best supported hypotheses
are catastrophically wrong and identifying what alternative would offer answers that
avoided this catastrophic interpretation.

3 Generative AI Enhancements

GenerativeAI programs, such asChatGPT andBing’s Copilot, are powerful tools to sup-
plement human knowledge.While GenAI programs have several limitations, including a
lack of actual cognitive processing to check their responses, the tool can quickly consol-
idate and organize information, develop examples, and visualize information. Here we
consider how existing GenAI tools could be used to support intelligence analysis using
the RAMPAGE framework. We used both Chat GPT and Bing’s Copilot as examples to
illustrate how the tools can be used.

3.1 Stage 1: Information Evaluation Enhancements

The key to stage 1 is to evaluate the quality and reliability of available evidence. GenAI
can be used in this stage to test assumptions, identify potential cognitive biases, and
provide information about important considerations for evaluating evidence. GenAI can
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also optimize the order of presentation to address problems with anchoring bias. GenAI
can also suggest different anchors to parts of the hypothesis space.

Below is an example of using Chat GPT to identify important considerations for
evaluating evidence. The list could be used as what would essentially be a checklist of
considerations for each piece of evidence. Given specific types of evidence, Chat GPT
could even create a list more specifically relevant to that particular type of evidence.
Analysts could also ask questions about existing evidence or to get a quick understanding
of a topic or area of expertise that is unfamiliar to them.
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3.2 Stage 2: Multi-path Generation Enhancements

The goal of stage 2 is to identify as many hypotheses as possible. GenAI can help to
develop a large number of hypotheses quickly. For instance, ChatGPT can be directly
prompted to provide hypotheses for a given scenario or for a very specific aspect of a
scenario or piece of evidence (see example below). While these hypotheses are likely
to be the more common or obvious hypotheses, this easily collates the hypotheses the



244 A. F. McDermott et al.

GenAI can create from available knowledge. Analysts can build on these hypotheses to
develop more creative hypotheses with the initial hypotheses already identified for them.
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GenAI tools can also prompt analysts with additional questions to ask. For instance,
Bing’s Copilot, which is built on ChatGPT, provides 3 possible next inquiries after each
prompt response. This can be a double-edged sword, as the GenAI could lead an analyst
down a particular way of thinking, preventing them from developing other hypotheses,
but it can also guide them to questions they may not have otherwise asked. The power
of using GenAI for this is that it is easy to go back and explore multiple paths, avoiding
narrowing of the hypotheses under consideration too soon.

3.3 Stage 3: Problem Visualization Enhancements

The goal of stage 3 is to visualize the information. In previous instances of the RAM-
PAGE framework, this has meant either creating a mind map or creating comparison
matrices. Ultimately, this stage is about changing how an analyst perceives the problem
by representing it in a visual format. This could take a multitude of forms, including
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pictures or vignettes of particular events, mind maps, or Kanban-style boards group-
ing evidence with hypotheses. Tools like Bing’s Copilot supply relevant images when
requesting intelligence analysis scenarios, for example. Tools like Taskade can either
use existing text or generate text based on prompts and then turn the text into a variety of
visualizations, including amindmap, task board, or even a calendar. Below are examples
of the mind map and task board for the steps to learn to ride a bike (Figs. 1 and 2).

Fig. 1. Example of a mind map from Taskade

Fig. 2. Example of a task board from Taskade
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3.4 Stage 4: Multi-Path Reasoning Enhancements

The goal of stage 4 is to again broaden the hypothesis space by incorporating differ-
ent perspectives and considerations. As shown with the following prompt, ChatGPT
can provide multiple relevant perspectives for a given scenario. It can also develop
counterfactuals or assist in a pre-mortem analysis.
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4 Conclusion

GenAI tools can provide supports for intelligence analysis that enable analysts to think
more broadly.

When providing guidance or creating hypotheses in the early stages of analysis
in the RAMPAGE framework, GenAI can do the easy work, providing reminders of
considerations when evaluating evidence or generating the most obvious hypotheses for
a given scenario. This frees the analyst to focus on the tasks that require greater creativity
or more careful and specific analysis that GenAI cannot use big data to complete.

GenAI also has a particular strength in providing different ways to understand or
see the same information. ChatGPT was able to literally provide multiple perspectives
that may be relevant to a given scenario. It can also be used to explore counterfactuals
and assist in multi-path reasoning activities, such as pre-mortem analysis. Even using
different GenAI tools leads to very differently formatted answers. For example, Chat-
GPT provided answers in lists and bullet points based on our prompts, while Bing’s
Copilot would create summarizing paragraphs with sources cited. Copilot also has the
option to control the type or tone of answers, selecting between more creative, more
precise, or balanced between the two (the default setting). GenAI visualization tools,
such as Taskade, provide novel visualizations that do not require analysts to have any
visual art talents or familiarity with visualization software. These visualizations can
highlight factors and relationships between pieces of evidence that might not otherwise
be considered.

As a note of caution, currently available GenAI tools may not be entirely suitable for
intelligence analysis, given their open availability and access to only generally available
information. However, by highlighting examples of how GenAI could be incorporated
into an intelligence analysis process, these lessons could be used to develop GenAI
systems with similar capabilities that meet the needs of the intelligence and defense
communities. They can be used as tools to develop intelligence analysis training and
assist students in practicing analysis skills.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.
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Abstract. With the fast and radical transformation of how both students and
instructors can access information brought on by the development of generative
AI, it is critical to develop best practices around how generative AI is used to
support instruction and learning rather than being a detriment. In this paper, we
examine how generative AI could be integrated into the Exercisable Learning-
theory and EVidence-based Andragogy for Training Effectiveness (ELEVATE)
framework developed by Stanney, Skinner, and Hughes [1] to inform adaptive
approaches to instruction. Originally developed for designing eXtended Reality
(XR) training experiences, the ELEVATE framework incorporates learning theo-
ries from behaviorism, cognitivism, and constructivism into a cohesive framework
based on theDreyfus andDreyfus [2] skill acquisitionmodel and Bloom’s Revised
Taxonomy [3]. The ELEVATE framework offers guidance for developing appro-
priate expectations and forms of instruction for students at 5 proficiency levels:
novice, advanced beginner, competent, proficient, expert. The ELEVATE frame-
work identifies language for appropriate learning objectives and types of learning
activities that would be appropriate for students of different proficiency levels.

Keywords: Generative AI · adaptive learning · adaptive instruction

1 Introduction

The COVID-19 pandemic brought the quality of teaching and learning into focus and
increased demand, both immediately to helpwith emergency remote teaching and longer-
term improvement in pedagogical and andragogical practices [4]. This has placed a
greater demand on instructional designers at learning and teaching centers at colleges
and universities, as well as on individual instructors as they develop new courses or
improve existing ones. Many instructors have never received training in instructional
design and are unfamiliar with the process an instructional designer uses to help develop
a course. Instructional designers are, of course, not experts in the material being taught
in each course they help develop. Both instructional designers and course instructors
need tools that can reduce the time it takes to develop a course, while maintaining or
improving the quality of those courses.
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Generative AI (GenAI), including ChatGPT, is having a significant impact on edu-
cation, revolutionizing the way teaching and learning take place. ChatGPT specifically
can generate coherent and contextually relevant responses, which makes it a valuable
tool for instructional designers and course instructors seeking to engage with students
in a more dynamic and interactive manner. ChatGPT can provide instant explanations,
answer questions, and offer personalized feedback, enhancing the learning experience
for students. Moreover, it serves as a versatile resource for instructors, helping them cre-
ate interactive lessons, generate educational content, and offer additional support outside
the traditional classroom setting. As ChatGPT continues to evolve, it has the potential to
foster a more inclusive and adaptive learning environment, catering to individual needs
and promoting a collaborative approach to education.

Tools like Chat GPT can be used to extend the relationship between the teaching
and the learning by articulating the scaffolding of ready relevant instruction. For this
paper, we are focusing on supporting and facilitating human thought and work in the
context of designing instructional resources. While GenAI, such as ChatGPT is useful
for automation, this paper will demonstrate a path for enhancing the connection between
developing instructional resources by integrating specific language compiled by Stanney
et al. in the ELEVATE Framework [1].

2 ELEVATE Framework

The ELEVATE framework incorporates learning theories from behaviorism, cogni-
tivism, and constructivism into a cohesive framework based on the Dreyfus and Dreyfus
[2] skill acquisition model and Bloom’s Revised Taxonomy [3]. The ELEVATE frame-
work offers guidance for developing appropriate expectations and forms of instruction
for students at 5 proficiency levels: novice, advanced beginner, competent, proficient,
expert. The ELEVATE framework identifies language for developing/applying appro-
priate learning objectives and types of learning activities that would be appropriate for
students of different proficiency levels.

3 ChatGPT

The generative AI, ChatGPT, is a web-based tool with a usable interface including a
task bar to input a prompt, the option to generate alternate responses, copy generated
responses, and like/dislike the generated text, all with clearly identified icons. ChatGPT
is a large language model (LLM) that uses vast amounts of available data to process
language and respond to requests or prompts from users. ChatGPT also introduces itself:
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ChatGPT is a language model developed by OpenAI, based on 
the GPT (Generative Pre-trained Transformer) architec-
ture. It is designed to generate human-like text based on 
the input it receives. The model has been trained on a 
diverse range of internet text, allowing it to understand 
and generate coherent responses across various topics.

Integrating ChatGPT into higher education for instruc-
tional design, especially in developing learning objec-
tives, involves leveraging its natural language under-
standing and generation capabilities. Here are some ways 
it could be used:

1. **Generating Learning Objectives:**
- ChatGPT can assist educators in generating clear and 

concise learning objectives for their courses. Educators 
can provide information about the subject, target audi-
ence, and desired outcomes, and ChatGPT can suggest well-
phrased learning objectives.

2. **Providing Examples and Context:**
- When developing learning objectives, providing con-

crete examples and contextual information is crucial. 
ChatGPT can help in generating illustrative examples and 
contextual explanations to enhance the understanding of 
learning objectives.

3. **Reviewing and Refining Objectives:**
- Educators can use ChatGPT as a tool for reviewing 

and refining learning objectives. The model can offer 
suggestions, identify potential issues, and help in en-
suring that the objectives are measurable, specific, and 
aligned with educational goals.

4. **Creating Instructional Materials:**
- ChatGPT can assist in generating content for in-

structional materials, such as course outlines, lesson 
plans, and supplementary materials. This can save educa-
tors time and provide additional resources to support the 
learning objectives.

Prompt: What is chatgpt and how can it be integrated in 
higher education to design instruction, specifically de-
veloping learning objectives?

Response:  
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5. **Answering Student Queries:**
- In an online learning environment, ChatGPT can be 

integrated to answer students' questions related to the 
learning objectives. It can provide additional explana-
tions, clarify concepts, or direct students to relevant 
resources.

6. **Feedback and Assessment:**
- ChatGPT can assist in developing feedback for as-

sessments and assignments. It can provide model answers, 
suggest improvement areas, and offer constructive feed-
back aligned with the learning objectives.

When integrating ChatGPT or similar language models into 
higher education, it's important to consider the follow-
ing:

- **Ethical Use:** Ensure that the use of AI models 
aligns with ethical guidelines and respects privacy and 
data security.

- **Human Oversight:** While AI can be a valuable tool, 
it should not replace human oversight. Educators should 
review and adapt the suggestions provided by the model to 
ensure they align with educational goals and standards.

- **Iterative Process:** Instructional design is often an 
iterative process. Educators should view ChatGPT as a 
tool that aids in the process, allowing for refinement 
and improvement over time.

- **Explainability:** Ensure that learning objectives and 
content generated by the model are easily understandable 
by students.

Overall, ChatGPT can be a valuable assistant in the in-
structional design process, providing support in generat-
ing, refining, and implementing learning objectives in 
higher education.

While a number of articles discuss the extensive problems presented by GenAI,
including ChatGPT, in education some positive integrations have been identified. Kas-
neci, E. et al. [5] identify the benefit large language models can have in “assisting
teachers in the creation of [inclusive] lesson plans and activities… Generate questions
and prompts that encourage the participation of people at different knowledge and abil-
ity levels, and elicit critical thinking and problem-solving, … generate targeted and
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personalized practice problems and quizzes, which can help to ensure that students are
mastering the material” (p.3).

In a systematic review,Wang,Wang and Su [6] reported a critical analysis of techno-
logical affordances, challenges, and future directions ofGenAI. Extending the evaluation
of the technological affordances of chatbots by Huang et al. [7], Wang, Wang and Su
[6] conducted a content analysis of 27 articles, revealing four categories of technologi-
cal affordances of GenAI. These include accessibility, personalization, automation, and
interactivity. Of the four areas, personalization and interactivity are two areas that require
specific language to generate the appropriate prompt. This paper addresses the gap of
language to include for better fit for personalization and interactivity.

4 Incorporating ChatGPT in Instructional Design

The role of technology in teaching and learning continues to evolve. While learning
objectives may exist in a course, the state of the knowledge, skills, and abilities (KSA)
of individual students is largely unknown. This may be due to exposure, practice, time
between exposure and practice,memory, cognitive load, injury, or even the language used
to sequence mapped content. Given well informed language, Generative AI can be inte-
grated as a tool to provide scaffolding for learners, enablingmore individualized/adaptive
instruction.

4.1 Role of ChatGPT

GenAI LLMs are particularly good at tasks that require access to large amounts of
information and can be used to assist instructors in their course design. ChatGPT can
be an excellent source for developing or improving learning objectives, instructional
activities, and even assessment resources. For example, ChatGPT can write learning
objectives clearly, since it is able to pull from many examples of learning objectives.

However, ChatGPT certainly cannot replace a human instructor in course design.
The role of the instructor comes into play when reviewing the content of these learning
objectives or other GenAI responses. LLMs are great at using language but do not have
any inherent ability to apply logic. Instructors need to make sure any responses from
a GenAI program make sense and are accurate. GenAI should be treated as a tool to
support instructors.

4.2 Prompt Engineering

Appropriate prompt engineering is the key to unlocking the power of GenAI tools like
ChatGPT. Prompts are the requests you make to the chatbot, and how well formulated
they are will determine the usefulness of the answers. Bad prompts have a few charac-
teristics [8]. The first one is assuming the GenAI is capable of completing any intelligent
activity. GenAI tools are built on language models, which means they know how to cre-
ate coherent linguistic responses. They do not have mathematical or logical reasoning
capabilities, so creating mathematical prompts or logical puzzles are unlikely to produce
accurate responses. The second is providing vague prompts that are either too big of a
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question to answer (such as “What is the meaning of life?”) or too specific (such as
“What are the exact details of OpenAI’s business plan?”). The third is providing mis-
leading prompts or prompts that are actually asking multiple questions at the same time
(such as “Please explain the principles of generative AI, describe its history, and discuss
its applications in business and education”).

According to Microsoft, a prompt has five components:

These components include instructions, primary content, examples, cues, and sup-
porting content. Instructions guide the model on what to do, primary content is
the main text being processed, examples demonstrate desired behavior, cues act as
jumpstarts for the output, and supporting content provides additional information
to influence the output [9].

The first and most obvious component is the instructions for the GenAI program.
These instructions must be clear and specific, minimizing room for different interpre-
tations [9, 10]. It is important to remember that these are language models, so using
analogies and descriptive language improve the models ability to understand the instruc-
tions, unlike more traditional search or chatbots. Instructions can be supplemented with
cues and examples to indicate where the model should start and what form the response
should take. It’s also important to include with the discussion, a way for the GenAI to
respond if it does not find a satisfactory response. Adding this to the instructions helps to
reduce the chances of getting false or nonsensical answers, although it does not eliminate
that possibility [9].

The primary content is the content that you want answers about, such as learn-
ing objectives for learning a specific topic. In this case, creating learning objectives is
the instruction and the primary content is whatever the topic is. This content can be
expounded upon using supporting content, such as the important concepts within the
specified topic. Just like with humans, these language models can interpret the same
requests differently, depending on the wording or order of the content and instructions.
Given this attribute, it can be beneficial to make the same request multiple times with
different wording and either use the response that best captures what you desired or
pull from multiple responses. Here are two generic prompts for developing learning
objectives for a course using the ELEVATE [1] framework:

Generic prompt for an existing course:

Develop learning objectives to differentiate teaching and
learning using the following learning objectives [insert
current LO] that address [LO terms by Proficiency Level]
for [specific population]. 

Generic prompt for a new course:

Develop learning objectives for [identify topic] that
differentiate teaching and learning that address [LO
terms by Proficiency Level] for [specific population].
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These two prompts are examples of “zero-shot prompting” that does not include
supporting information or cuing. A “few-shot prompting” would add examples of learn-
ing objectives. On their own, both zero-shot and few-shot prompting have very limited
application [11]. The LLM GenAI programs are designed to be conversational, and this
should guide your approach to interacting with them. One key aspect of this is that com-
plex requests should be broken down into smaller requests, but those requests can be
in context, so the GenAI can understand that the multiple requests are related [10]. The
prompts provided above would be most useful within a larger context, using “chain-of-
thought” reasoning, where you walk through chains of reasoning [11]. In this example,
the prompts would be part of a conversation that already established what the population
of interest knows and what the proficiency level means.

4.3 Developing ELEVATE Learning Objectives

Creating prompts that include the affordances curated by the ELEVATE framework will
assist designers of learning to vary teaching and learning with the support of GenAI.
Using this technique to identify language and craft appropriate prompts to create learning
objectives and activities for every proficiency level is a game changer. It can be difficult
and time consuming to design courses or learning activities for students at different
proficiency levels. This can lead to “one size fits all” design or developing the course for
only the lowest proficiency levels. While this can be a valid approach for introductory
courses, all courses will include students with different KSAs and different interests or
reasons for taking the course. Using the ELEVATE framework to understand the possible
proficiency levels and how to design learning activities for them and combining this with
GenAI’s power to produce large numbers of examples, can bring differentiated, adaptive
teaching approaches into reach.

The table below includes other criteria provided by ELEVATE that can be used to
develop prompts that may improve the opportunity to efficiently and effectively improve
connections between students and the desired content (Table 1).

Table 1. Terms for Prompt Engineering. (Extracted From Table 3 ELEVATE-XR Stanney et al.,
2023)

Learning Objectives Learning Activities

Novice Remember:
Facts, Concepts, Procedures

Define, Describe, Identify, Arrange,
Label, List, Match, Name, Recall

Advanced Beginner Understand:
Facts, Concepts, Procedures

Compare, Classify, Differentiate,
Imitate, Explain, Translate, Interpret

Competent Apply:
Facts, Concepts, Procedures

Demonstrate, Employ, Examine,
Execute, Illustrate, Manipulate, Use

Proficient Analyze:
Facts, Concepts, Procedures

Deconstruct, Differentiate, Deduce,
Organize, Relate, Structure

Expert Evaluate/Create:
Facts, Concepts, Procedures

Assess, Contrast, Critique, Invent,
Hypothesize, Validate

Below is an example of a prompt to generate differentiated learning objectives for
different levels of proficiency and the response.
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Prompt: 

Write versions of the learning objective "Design and de-
velop a mobile application to provide users with some us-
able and useful capability." using
•Novices are focused on absorbing declarative knowledge,
but they lack schemas and thus are inclined to extraneous
processing. As a result, they tend to find it difficult
to determine the essential parts of learning material.
Novices thus learn best with focused, guided (e.g., step-
by-step instruction) scenarios that support following
rules, discriminating relevant situational features, pri-
oritizing important information, and organizing
knowledge.  
•Advanced beginners start to understand the context of a
situation, can quickly access the particular rules that
are relevant to a specific task and/or context, and for-
mulate organizing principles into maxims. However, they
still lack an understanding of how to filter incoming in-
formation based on relevance and thus can become easily
overwhelmed. Those at the advanced beginner stage thus
learn best with increasingly complex scenarios that re-
quire application of rules and choosing a course of ac-
tion, connecting new knowledge with existing knowledge,
integration of extraneous information, provision of spe-
cific and targeted feedback, and techniques to manage
stress.  
•At the third stage, the competent individual no longer
struggles with basic rules, is able to develop intuition
to guide their decision-making, and has the ability to
devise personalized rules to formulate plans. Learning at
the competent stage can be facilitated by the provision
of authentic, complex scenarios and inverse problems
(i.e., those that require calculating from a set of ob-
servations and causal factors that produced them) that
foster self- produced them) that foster self-reflection,
consideration of “why” decisions are made, and autonomy
but with supportive feedback when needed.
•At the fourth level, the proficient individual can see
the big picture, know which cues and information to focus
on, and have an intuitive sense of the goal given the
situation. Learning can be facilitated at this stage
through provision of complex, unique scenarios that fos-
ter goal-setting, solving problems in novel and imagina-
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tive ways, managing multiple distractions and emotional
stimuli, self-reflection, and use of intuition.
•The expert no longer needs rules and can work intui-
tively, knowing what’s important and what’s not, what to
do, and what the expected outcome is in any given situa-
tion. Learning at the expert stage can be facilitated by
providing scenarios that deal with uncertainty during de-
cision-making and challenge one’s understanding, reflect-
ing on a situation while engaging metacognitive knowledge
and regulatory control processes that foster the discov-
ery of new knowledge and sharing knowledge with others

ChatGPT:

**Novice Level:**
Design and develop a mobile application aimed at novices,
emphasizing the absorption of declarative knowledge
through focused, guided scenarios. Implement step-by-step
instructions, support rule-following, and facilitate the
discrimination of relevant situational features. Priori-
tize the organization of knowledge and the identification
of essential learning material. Provide novices with a
learning environment that helps them understand and fol-
low rules effectively.

**Advanced Beginner Level:**
Create a mobile application tailored for advanced begin-
ners, focusing on scenarios that enhance their under-
standing of contextual situations. Develop features that
allow quick access to relevant rules and encourage the
formulation of organizing principles into maxims. Help
users at this level filter incoming information based on
relevance, manage overwhelming situations, and apply
rules to choose appropriate courses of action. Provide
targeted feedback, connect new knowledge with existing
knowledge, and introduce techniques for stress manage-
ment.

**Competent Level:**
Design a mobile application for competent individuals,
acknowledging their proficiency in basic rules. Foster
the development of intuition for decision-making and the
ability to devise personalized rules and plans. Facili-
tate learning through authentic, complex scenarios and
inverse problems that promote self-reflection, considera-
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tion of "why" decisions are made, and autonomy. Offer
supportive feedback when needed, creating an environment
that challenges learners while respecting their compe-
tence.

**Proficient Level:**
Develop a mobile application for proficient individuals
who can see the big picture and have an intuitive sense
of goals in various situations. Provide complex, unique
scenarios that foster goal-setting, creative problem-
solving, and the ability to manage multiple distractions
and emotional stimuli. Encourage self-reflection and the
use of intuition to make informed decisions. Create a
learning environment that challenges users at the profi-
cient level and stimulates novel and imaginative think-
ing.

**Expert Level:**
Create a mobile application tailored for experts who no
longer rely on rules and can work intuitively. Design
scenarios that deal with uncertainty during decision-mak-
ing, challenging their understanding and reflecting on
situations. Engage metacognitive knowledge and regulatory
control processes to foster the discovery of new
knowledge. Encourage the sharing of expertise with others
through collaborative features. Provide an environment
that respects the expertise of users at the expert level
and stimulates continuous learning and knowledge shar-
ing.

ChatGPT and other GenAI programs can be used to generate large numbers of
examples and suggestions for learning objectives and learning activities, a task that can
be quite time consuming for an instructor. Now, the instructor can choose from the
responses provided by ChatGPT and bring their expertise to bear in selecting which
activities best align with the class and the learning goals, even altering the suggestions
to better suit the class without having to come up with activities.

5 Conclusion

This paper provides an example of how to use GenAI tools to support human efforts to
develop effective learning experiences. Rather than treating GenAI as a tool for automa-
tion or for replacing human effort, this paper aimed to demonstrate that GenAI can be
used to enhance and extend human capabilities, increasing the effectiveness of course
authors. Incorporating the terms identified by the ELEVATE framework into specific
prompts in ChatGPT enables course authors to extend the opportunity for learning to
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more students with greater ease. The ELEVATE framework fromStanney and colleagues
[1] neatly combines several learning theories into an actionable tool to develop ready,
relevant learning. It provides guidance for understanding students with different levels
of experience and how to develop learning objectives and activities that are appropriate
for each experience level. ChatGPT brings the power of LLM GenAI to produce many
examples of such learning objectives and activities. By combining their power, course
authors can pick from many options the learning objectives and activities that best fit
their course. Rather than creating a course or activity from scratch or based on a few
results from an internet search or polling colleagues, the course author can essentially
choose from a menu of options generated according to their specifications.
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Abstract. Assessing teams and providing feedback on scenario-based
training typically requires human observers or scenario-specific metrics
crafted by experts, due to the complexity of general-purpose automated
tools to assess team performance. Machine learning can help infer team
performance patterns, but labeled data for a specific training scenario
is often sparse. To address this issue, the Semi-Supervised Learning
for Assessing Team Simulations (SLATS) project investigated the fea-
sibility of semi-supervised learning and transfer learning which leverages
training data from related scenarios to classify performance on a target
scenario with the same metrics but a different terrain context. To this
approach, we analyzed performance of teams in the first-person shooter
Team Fortress 2 (TF2). TF2 teams for the “Capture Point” mode were
classified into archetypes based on the performance of the team and the
performance of individual members of the team across the corpus: novice,
weak link, team of experts, and expert team. To investigate the feasibility
of transfer learning, we isolated matches from two of the most frequent
maps/terrains. Results found that leveraging data from the source map
always improved classification F1-scores compared to relying solely upon
target (test) map training data. The greatest benefits were observed when
target data was limited (0 to 42 target examples). While further research
is required to explore the effectiveness of transfer learning across train-
ing scenarios that are more dissimilar (e.g., different simulations, rather
than just different maps), these results offer a promising direction to
help bootstrap team assessments on new training scenarios by leveraging
data from earlier, comparable scenarios. However, efficiently calculating
reusable metrics for model features based on low-level scenario events
and logs remains a challenge that requires further research.

Keywords: Semi-supervised learning · Transfer learning · Team
training

1 Introduction

Assessing teams and providing feedback on scenario-based training is tradition-
ally ad-hoc, due to a lack of general-purpose automated tools to assess team
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. A. Sottilare and J. Schwarz (Eds.): HCII 2024, LNCS 14727, pp. 261–271, 2024.
https://doi.org/10.1007/978-3-031-60609-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60609-0_19&domain=pdf
http://orcid.org/0000-0002-5902-9196
http://orcid.org/0000-0002-0438-3868
https://doi.org/10.1007/978-3-031-60609-0_19


262 B. D. Nye et al.

performance. In many cases, the gold standard remains live observers with a vir-
tual control panel or physical scorecard to record performance outcomes. While
standards such as xAPI have facilitated the development of general-purpose data
analytics [1], the patterns that represent expert versus novice performance can
vary substantially based on scenario difficulty or objectives. Machine learning
can help infer these patterns, but labeled data for a specific training scenario is
often sparse.

To address this issue, the Semi-Supervised Learning for Assessing Team Sim-
ulations (SLATS) project investigated the feasibility of transfer learning which
leverages training data from related scenarios to classify performance on a tar-
get scenario (i.e., same metrics but different conditions). This work aligns to
efforts such as the Army’s Synthetic Training Environment, which should enable
scenario-based team training such as battle drills to be conducted in simulated
environments with individual and team actions logged using the xAPI standard
[4]. The SLATS project was driven by three goals:

1. Classify Team Performance: Automate or semi-automate activities that
an observer-trainer might need to perform during or after a training scenario,
to enable greater opportunities for team training (e.g., reducing cost and
expertise bottlenecks). While not all abilities of a human observer or trainer
can be replicated in an automated system, sufficient data should exist in
a simulation to identify common errors that should be flagged as areas for
improvement.

2. Diagnose Performance Issues: Develop a set of key team metrics and data
views that aggregate lower-level scenario-specific assessments into actionable
and interpretable insights. The use-cases of strongest interest are to produce
metrics for: individual feedback, team feedback, scenario adaptation (for a
future simulation), and instructor review/assessment.

3. Generalized Framework: Develop a re-usable set of metrics and tools that
can be applied to assess team training in a variety of scenarios, leveraging
industry and standards for recording performance and learning events.

In this paper, we investigate the potential of transfer learning to help achieve
these goals. Analyses on an existing large corpus of team game scenarios (Team
Fortress 2) are presented. We also present context on the overall machine learning
pipeline used by SLATS, with an emphasis on how effectively these models could
facilitate diagnostic feedback and generalization to new types of simulations.
The results presented indicate that transfer learning offers an effective way to
improve assessment for scenarios in a similar training system, but that the ability
to generalize models broadly remains a challenge.

2 Background

2.1 Assessment Methodologies for Team Training

While scenario-based assessments have been explored in many educational con-
texts, assessments to support both team and individual learning remain challeng-
ing and are traditionally scenario-specific and labor intensive. Given the difficulty
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to develop such computer-based assessments, they are frequently not used even
when the training itself delivered using computer-based training. For example,
large organizations such as the Army still rely primarily on live observer-trainers
to watch the exercise and manually determine feedback and after-action-review
items (e.g., sustain vs. improve priorities), limiting training feedback to times
where human experts are available. However, effective training requires many
practice opportunities; it is not feasible for a large number of teams to practice
toward expert performance when experts must facilitate each session.

Team training is substantially more complex than individual training,
because learners may vary not just by skill level but also by the types of skills
they are expected to know (e.g., specialization). Research on team assessment
and performance has proposed role-based models for team behavior to address
these issues [2,3]. There may also be differences in team versus individual perfor-
mance. Metrics development has looked at distinguishing between i) individual
tasks, ii) team tasks (outcomes), and iii) teamwork (process), in projects such
as the Surveillance Scenario Team Tutor [3] and Squad Overmatch [5].

Smith-Jentsch, Johnston, and Payne [9] break teamwork into four categories:
information exchange (domain-relevant content of communications), communi-
cation delivery (e.g., clarity, brevity, using proper terminology and language),
supporting behavior (back-up behavior to correct errors or fill gaps), and leader-
ship (adapting priorities and guidance to changes in the situation). Integrating
across these frameworks, an ideal-world team assessment would account for: a)
propagation of errors (e.g., inability to complete a task due to a teammate’s
failure), b) external influences (e.g., good process/bad outcome), and c) back-up
behavior (e.g., assigning credit for successful performance to the proper individ-
ual). The models should also distinguish between task work (e.g., performance)
vs. teamwork (e.g., coordination). These behaviors imply that assessing teams
meaningfully requires capturing both team and individual metrics, with some
structure or data-derived inferences to determine how individual metrics relate
to higher-level team processes and outcomes.

2.2 Learning: Semi-supervised and Transfer Leaning

To address the cold start problem for scenario-based training data, we are using
a semi-supervised approach to build a classifier to detect engagement archetypes.
Given that labeled data is often hard to collect, semi-supervised methods lever-
age a small amount of labeled data to make better use of a larger set of unlabeled
data [10]. In earlier work by our group, the SMART-E project (Service for Mea-
surement and Adaptation to Real-Time Engagement) applied semi-supervised
learning for generalized, automated assessment of engagement by individual
learners. Research with SMART-E found that metrics were able to general-
ize across systems for engagement [7] and that semi-supervised learning offered
advantages for classifying and interpreting engagement archetypes such as dis-
tracted learners versus those racing through the content [8]. As such, a goal for
SLATS was to generalize this technique to assessing teams in scenarios.



264 B. D. Nye et al.

However, while investigating semi-supervised techniques, we recognized that
our semi-supervised approach was primarily helpful for an initial scenario where
archetypes were not yet well understood. Later scenarios should be much faster to
classify accurately if transfer learning can boost new scenario assessments based
on patterns in earlier well-analyzed scenarios. However, the benefit of transfer
learning depends on the similarity between the tasks [6]. Even for different maps
or variations of scenarios with the same objectives, different team behaviors
might be more successful overall.

3 Approach

The SLATS architecture is designed to process data in stages as shown in Fig. 1,
such that each subsequent stage only relies on the prior stage as a data source.
Raw events and logs are first produced by a training scenario, which are either
directly recorded as xAPI statements or processed through a log-file converter to
generate xAPI records. A log-cleaner function then fixes these raw logs to pro-
duce a second canonical xAPI log for processing (meaning that the raw xAPI
statements always exist for alternate cleaning or record checks). In the second
stage, the raw xAPI logs are analyzed to produce two types of metrics: direct
metrics and intermediate metrics. Direct metrics require xAPI log data to per-
form their calculations (e.g., number of deaths for a player that session), while
intermediate metrics can be calculated only based on other metrics (no xAPI
data needed). Metrics may be individual or team, with certain team metrics
being more likely to be intermediate (i.e., derived from the individual play-
ers). Metrics may either be custom functions or they may be determined by a
lightweight markup file which specifies certain functions and aggregations (e.g.,
average, min/max, etc.).

As shown in Stage 3, a team session vector can be specified, which specifies
the set of metrics that will be available as features for classifying team perfor-
mance. In the example analysis below, teams are classified only on team-level
metrics for easier interpretation, but this is not a requirement. A session vector
is calculated for each scenario sessions, both for labeled data (known archetypes)
and unlabeled data. In a multi-team match, each team will have its own session.

Classification occurs during the final stage. Following the approach described
for the SMART-E semi-supervised model [8], unlabeled sessions are clustered
based on their feature vectors. An alignment algorithm calculates the global
best-match between each cluster and the labeled data for each archetype. Then,
data for each cluster is assigned a candidate label based on the archetype which
aligned to it. This pooled data set includes both truly labeled data and cluster-
aligned data, which are used to train a machine learning model. Different clus-
tering algorithms and classifier types may be selected using parameters, with
Gaussian Mixture Models (GMM) clustering and Logistic Regression classifica-
tion used by default. This approach to pooling labeled and unlabeled data for the
classifiers increases accuracy versus using only unlabeled data for training and
exploratory analysis indicates benefits up to about four times as much unlabeled
data as labeled data (e.g., 20 labeled vs. 80 unlabeled).
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Fig. 1. SLATS Architecture Diagram

3.1 Team Archetypes

SLATS classifies teams into “archetypes” of performance that represent their
performance level and use such classifications to areas to practice next. Unlike
a traditional 0 to 100 score, we are instead interested in the development stage
of a team from a poorly-coordinated set of novices to a highly-effective expert
team. This is important for the ability to re-use metrics across different sce-
narios and simulations. For example, in one scenario it might be reasonable
for an expert team to have only 10 communicative actions, while in another,
an expert team might require 100. Moreover, metrics are not necessarily lin-
ear between archetypes: an expert gaming team might have fewer kills, because
they win decisively without an extended conflict. Manually filling in and updat-
ing scenario-specific parameters and weights would be time consuming for sce-
nario authors. To avoid this requirement, models were leveraged to estimate
and update parameters with the goal of being able to distinguish between dif-
ferent classes of team behavior. Different archetype categories may be specified
per-system that is registered in the SLATS framework. In the current work, we
focused on classifying:

1. Expert Team: Team is effective and composed of successful individuals.
2. Team of Experts: Team members are good at individual tasks, but the team

is not successful, such as due to poor communication or coordination.
3. Weak Link: Team members are good at individual tasks effectively, but the

team is not successful, such as due to poor communication or coordination.
4. Novice: Team performances is poor, which is also reflected by lack of success

or experience of its individual members.

Typically, a ground truth data set would be established based on expert
labeling of a small set of sessions of each category. However, in this case due
to the very large corpus of Team Fortress 2 (TF2) matches, we inferred labels
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based on knowledge about team performance and the individual performance of
each team member across all their known matches. Each team (unique combina-
tion of individuals) was characterized by its team performance and its predicted
performance based on a linear regression of team members’ statistics across all
their known matches (shooting, support, and survival).

Gold labels for teams were defined by the following heuristics, for the des-
ignated archetypes. While the broader SLATS project explored other archetype
categories, research on transfer learning focused on these categories.

1. Expert Team: Over 75th percentile team performance and all members over
60th percentile individual performance

2. Team of Experts: Under 75th percentile team performance despite all mem-
bers over 60th percentile individual performance.

3. Weak Link: Under 75th percentile team performance with at least one but
not all more members under 40th percentile individual performance.

4. Novice: Under 25th percentile team performance and all members under 40th

percentile individual performance

3.2 SLATS Diagnostics

While not the main focus of this paper, after a team was classified by SLATS
this result could be visualized in a web interface as shown in Fig. 2. When pro-
viding diagnostic feedback, we consider the generalizable metrics collected and
differentiate them by the individual vs. the team [9] and also the team expertise
level. Based on the anchor points of Novice and Expert Team as the lowest and
highest archetypes, respectively, a rank-order was inferred for the next-better
archetype to advance toward.

The team’s performance on each feature was shown as a bar chart. A green
bar indicates the team’s performance on a metric exceeds the typical team in
their archetype (red-dotted line) or the next-better archetype (yellow-dotted
line). A red bar indicates falling short of the typical standard for the current
archetype on that performance feature (e.g., worse than other novice teams).
As shown in the third bar “Survive”, the next-better archetype might be worse
than the current one on certain performance features. Suggested “Sustains” and
“Improves” recommendations are displayed below the bar chart. For more expert
team, areas to improve will typically be team metrics. However, for more novice
teams, areas to improve will more commonly be individual skills to practice.

3.3 Transfer Learning Analysis

To evaluate this approach, TF2 data was used as a proxy for future synthetic
battle training. Teams post log files of their matches to public online reposito-
ries and TF2 scenarios require balancing individual competencies (e.g., shooting
accuracy, taking cover) with teamwork competencies (e.g., capturing positions,
healing/support). We collected a corpus of TF2 matches using the same “mode”
(e.g., goal and rules), and classified teams in our corpus of TF2 matches into
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Fig. 2. SLATS Session Diagnostics User Interface (Color figure online)

four archetypes based on the performance of the team and the performance of
individual members of the team across the corpus as explained above.

The relationships between team and individual metrics are outlined in Fig. 3,
with individual metrics in orange and team metrics in blue. The feature vector
for a session had four values: Move (capture and hold points), Shoot (kill or
damage opponents), Support (heal or assist team member in a kill), and Survive
(heal self, avoid damage, and avoid death). The Move metrics included each
capture point as a distinct lower-level metric, so that performance was based on
the percentage of the session each point was held and the maximum number of
points they held at the same time. Team metrics were also normalized to average
across the number of players and converting to z-scores for each team session
metrics so they would be on comparable scales.

To investigate the feasibility of transfer learning, we isolated matches from
two of the most frequent maps/terrains for a game mode called “Control Point”
(Snakewater and Process). These matches require capturing and holding a set of
control points on the map to win. In each analysis, test data was drawn solely
from the target map and we explored the use of varying mixtures of training data
from the source and target maps. The SLATS architecture was configured to use
default classifier settings (GMM and Logistic Regression), with the expectation
that if transfer learning assists simpler models it should also benefit more data-
intensive models. A stratified random sample of sessions was selected from each
map, which ensured that all archetypes were represented and that only one
session per match was selected (i.e., avoiding two sessions from same match
but different teams). A total of 319 sessions were processed to generate session
feature vectors, with 246 Snakewater (Sn) and 73 Process (Pr) sessions prepared.
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Fig. 3. TF2 Metrics Aggregation Diagram

4 Results

Cross validation on entire session corpus of 319 sessions showed strong classifica-
tion results (5-fold CV; F1 = 0.97± 0.02). Table 1 shows the average F-1 scores
for each additional 14 training sessions from either a source map or the target
map (which also provides sessions used as test data).

Table 1. F-1 Scores (Avg. of 5-fold CV) for Team Classification based on Source and
Target map sessions

Source Training NSn Target Training NPr

0 14 28 42 56

0 N/A 0.867 0.865 0.895 0.962

14 0.912 0.917 0.945 0.954 0.969

28 0.900 0.959 0.969 0.949 0.987

42 0.936 0.989 0.976 0.967 0.980

56 0.942 0.969 0.980 0.960 0.960

70 0.933 0.939 0.949 0.969 0.987

84 0.962 0.980 0.960 0.987 0.980

94 0.953 0.969 0.966 0.939 0.967

Particularly when data is limited, including training samples from both maps
improves classification performance on the Target test sessions. These benefits
are most pronounced with fewer than 56 Target sessions (F-1 below 0.9 without
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Source sessions, but 0.912–0.954 with even just 14 Source sessions). A follow-up
analysis with greater randomization of samples confirmed these results, showing
that the average best-performance tended to be about F1 = .966 and that it
typically plateaued at approximately 72 samples (28 Source/42 Target).

5 Discussion

This research found that both semi-supervised learning and transfer learning
can improve classification of team performance. As shown in Fig. 2 for diagnosis,
archetype analysis enabled by the semi-supervised approach is helpful because
team performance is not just on a monotonic scale but in cases where some
metrics may decrease as teams improve overall. Transfer learning also showed
benefits for overcoming the cold start problem of limited data. However, gen-
eralizable metrics pipelines were challenging to design when relying on xAPI
standards-based approaches, which likely requires more specialized research in
this area.

Transfer Effectiveness. Leveraging data from the source map always improved
classification f1-scores compared to relying solely upon target map training data.
The greatest benefits were observed when target data was limited (0 to 42 target
examples). Although it was not always the case that more source data results
in higher performance, validation data could be used to find the ideal mixture
of source and target training data. While further research is required to explore
the effectiveness of transfer learning across training scenarios that are more dis-
similar (e.g., different simulations, rather than just different maps), these results
offer a promising direction to help bootstrap team assessments on new training
scenarios by leveraging data from earlier, comparable scenarios.

Improving Metrics Pipelines. Our work is complementary to research that
improves underlying assessment metrics, such as research on multi-modal assess-
ment of training scenarios [11]. Since SLATS archetypes are derived from align-
ing small amounts of labeled data with larger bottom-up clusters, the specific
assessment metric components can be replaced with more advanced measures
while following the same pipeline. In addition to more advanced metrics, more
efficient calculations of standards-based metrics are also needed. The sheer vol-
ume of data for a highly-logged scenario (e.g., TF2) posed challenges in this
research. Attempting to apply a standards-based approach for xAPI conversion
of each low-level action (e.g., every shot fired) resulted in very large xAPI learn-
ing stores. Processing metrics on such records required optimized queries and
database caching of results, which undermined the goal of easily generalizing
team assessment across different training systems. Research groups have inves-
tigated data streams and other techniques to optimize metrics [1], which may
offer a foundation for future work on reusable metrics.

Tradeoffs of Archetypes. The SLATS approach depends on interpretable
team archetypes, which can be benchmarked against real teams rather than
heuristic rules or cutoffs. However, training experts may not know or recognize
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distinct team archetypes for all training scenarios. In particular, the assump-
tion of an “expert” category assumes that as experts gain skills, they tend to
behave more and more similarly in comparable situations (i.e., converging on
the best approach to situations such as landing a damaged aircraft). However,
expert teams may also become more diverse in their behavior (e.g., developing
their own patterns of communication, developing teamwork patterns unique to
the strengths/weaknesses of individuals in the team). Thus, it may be difficult
to recognize expert teams in some scenarios because how they coordinate and
work together may differ, implying that additional archetypes might be required
when these distinctions are relevant for training.

6 Conclusions and Future Directions

Research on the SLATS framework indicates that transfer learning offers advan-
tages for team assessment, particularly when data is limited and relatively simple
models are leveraged. Future research is needed however to replicate these find-
ings with more advanced models, particularly models that could incorporate
data streams more directly for a high volume of data. For example, new classes
of neural network transformer models may be able to directly ingest event data
streams and produce meaningful assessments.

These findings suggest that outcomes-based assessment for training scenarios
and simulations may someday be automated usefully, not just for assessing team
performance but also for tracing individual poor task performance that may
need further practice. However, the current work did not model more complex
processes or delayed consequences that may occur in other scenarios (e.g., the
appropriate skill to practice if a small mistake early-on results in a large fail-
ure later). These types of assessments are important, as simulated assessments
should distinguish between a good process versus a good (or bad) outcome when
suggesting skills to study.

Finally, research on automatically generated formative assessments and diag-
noses for training scenarios warrants further pilot studies and evaluation research
to indicate how much these insights help guide and improve learning outcomes
and study processes. Despite growing interest in automated or partially auto-
mated assessment, data on effectiveness remains limited. As such, future work
should conduct studies to identify the benefits and limits of such feedback com-
pared to control conditions such as a Wizard-of-Oz model (i.e., feedback con-
trolled by a hidden human expert) or a system without formative assessments.
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Abstract. As digital education transcends traditional boundaries, e-
learning experiences are increasingly shaped by cutting-edge technolo-
gies like artificial intelligence (AI), virtual reality (VR), and adaptive
learning systems. This study examines the integration of AI-driven
personalized instruction within immersive VR environments, targeting
enhanced learner engagement-a core metric in online education effective-
ness. Employing a user-centric design, the research utilizes embodied AI
tutors, calibrated to individual learners’ emotional intelligence and cog-
nitive states, within a Python programming curriculum-a key area in
computer science education. The methodology relies on intelligent tutor-
ing systems and personalized learning pathways, catering to a diverse
participant pool from Virginia Tech. Our data-driven approach, under-
pinned by the principles of educational psychology and computational
pedagogy, indicates that AI-enhanced virtual learning environments sig-
nificantly elevate user engagement and proficiency in programming edu-
cation. Although the scope is limited to a single academic institution, the
promising results advocate for the scalability of such AI-powered educa-
tional tools, with potential implications for distance learning, MOOCs,
and lifelong learning platforms. This research contributes to the evolv-
ing narrative of smart education and the role of large language mod-
els (LLMs) in crafting bespoke educational experiences, suggesting a
paradigm shift towards more interactive, personalized e-learning solu-
tions that align with global educational technology trends.

Keywords: Adaptive Learning · Artificial Intelligence in Education ·
Immersive Virtual Environments · Learner Engagement · Personalized
Instruction

1 Introduction

The landscape of education has undergone a seismic shift in the past decade, with
e-learning emerging as a dominant force, reshaping how knowledge is accessed,
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imparted, and absorbed. This transformation has been significantly accelerated
by technological advancements, particularly in artificial intelligence (AI) and vir-
tual reality (VR). However, while these innovations have democratized access to
education, they have also brought to the fore new challenges, especially in terms
of learner engagement and the personalization of the educational experience.

Traditional e-learning systems often fall short in replicating the nuanced and
interactive dynamics of a traditional classroom, leading to issues such as reduced
student engagement, lack of personalized attention, and a one-size-fits-all app-
roach to education. The advent of immersive virtual environments, coupled with
the emergence of AI, offers a promising avenue to address these challenges [1]. By
integrating embodied AI tutors within these environments, there is potential to
revolutionize the e-learning experience, offering a more personalized, engaging,
and interactive learning journey for students.

The concept of embodied AI tutors in virtual environments is grounded in
the idea of creating an interactive, responsive educational experience that closely
mirrors human tutoring. These AI tutors are designed to adapt to individual
learners’ emotional and cognitive states, offering a customized learning path that
considers factors such as the learner’s pace, preferences, and current understand-
ing. This approach holds the promise of not only enhancing learner engagement
but also significantly improving learning outcomes.

Furthermore, the integration of AI tutors in immersive virtual environments
opens new horizons for e-learning. These environments can simulate real-world
scenarios, provide immersive experiences, and enable interactive learning activ-
ities that were previously unattainable in traditional e-learning setups. The vir-
tual setting, governed by an AI tutor, can dynamically adjust to the learner’s
needs, providing a rich, contextual, and adaptive learning environment.

This paper aims to delve into the feasibility, design, and impact of incorpo-
rating embodied AI tutors in immersive virtual environments for e-learning. We
explore the transformative potential of this technology in creating personalized
learning experiences and address the challenges and opportunities it presents.
Our research is particularly focused on understanding how these AI tutors can
adapt to various emotional, cognitive, and environmental factors to enhance the
overall learning experience.

As the digital age continues to evolve, the role of technology in education
becomes increasingly pivotal. This study contributes to the ongoing discourse
in this field, proposing a multifaceted approach to e-learning that leverages the
latest advancements in AI and VR to offer a more effective, engaging, and per-
sonalized educational experience.

2 Related Work

2.1 Virtual Reality in Education

In exploring the integration of advanced technological solutions in education,
significant emphasis has been placed on the transformative potential of VR [2].
Studies by Lege and Bonner, Freina and Ott, and Christou have collectively
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underscored VR’s capacity to enhance educational experiences through immer-
sive, interactive learning environments [3–5]. These works highlight VR’s role in
facilitating deeper engagement, improving spatial memory, and enabling access
to previously inaccessible learning scenarios. Despite the promising advance-
ments, they also note critical challenges, including the development of VR-
specific pedagogies, technological barriers, and the need for further research to
optimize VR’s educational impact. The insights from these studies provide a cru-
cial backdrop to our investigation into the use of embodied AI tutors in immer-
sive virtual environments, reinforcing the premise that while VR technologies
offer substantial benefits in creating engaging and effective learning experiences,
they necessitate careful integration with pedagogical strategies to realize their
full potential in education.

2.2 Ethical Considerations in AI-Driven Education

Transitioning from the technological advances in VR, it is crucial to consider the
ethical framework within which these innovations are applied, especially when
creating AI tutoring systems in virtual reality environments. The importance of
ethics in ensuring fair and responsible education outcomes cannot be overstated,
as highlighted by studies from Borenstein and Howard, Remian, Garrett et al.,
and Huallpa et al. [6–9]. These studies illuminate the complex ethical challenges
of AI education, including privacy, bias, accountability, and the need for ethi-
cal pedagogy, and emphasize the importance of designing AI tutoring systems
with a strong ethical framework that prioritizes student data protection, fairness
in adaptive learning, and a trustworthy and transparent environment. Incorpo-
rating these ethical considerations into the development of AI tutoring systems
aligns with responsible AI development principles and enhances the quality and
integrity of e-learning experiences.

2.3 Advancements in Intelligent Tutoring Systems (ITS)

Building on the ethical foundation, the quest for more effective and engaging
e-learning environments has led to significant research dedicated to the inte-
gration of AI and ITS. For instance, a systematic review by Chien-Chang et al.
highlights how AI and IT innovations within ITS are crucial for fostering sustain-
able education through personalized learning experiences and enhanced student
engagement [10]. Similarly, meta-analyses by Ma et al. and Kulik & Fletcher
provide compelling evidence that ITS, characterized by their adaptive learn-
ing capabilities, generally outperform traditional instructional methods, leading
to improved learning outcomes [11,12]. Ennouamani et al.’s work on adaptive
e-learning systems further underlines the transformative potential of personal-
ization in web-based education, a principle that underpins our exploration of
embodied AI tutors in immersive virtual environments [13].
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2.4 Emotional and Cognitive Adaptation in Learning

Further enriching the discourse on adaptive learning technologies, significant
research has explored the intricate dynamics between learners’ cognitive, moti-
vational, and emotional states and their learning experiences. For instance, stud-
ies on digital educational games have demonstrated the potential of inferring
and adapting to learners’ states to enhance engagement and learning effective-
ness [14]. Similarly, the AutoTutor system’s ability to detect and respond to affec-
tive and cognitive states underscores the viability and value of affect-sensitive
ITS in personalizing learning experiences [15]. Further, empirical investigations
into the impact of cognitive-affective states on learning with computer-based
environments reveal the critical importance of addressing these states to improve
educational outcomes [16]. These studies collectively highlight the foundational
role of adaptive technologies in creating more personalized, responsive, and effec-
tive e-learning environments.

2.5 Personalized Learning Pathways

In the evolving landscape of e-learning, personalized education emerges as a crit-
ical driver for enhancing engagement and learning outcomes. Studies by Reddy
et al., Shaw et al., Villatoro Moral and Crosseti, and Salinas and De-Benito illus-
trate the diverse methodologies and significant potential of personalized learning
pathways, ranging from intervention tracking applications to asynchronous plat-
forms guided by learning recommendation algorithms [17–20]. These pioneering
approaches lay the groundwork for our exploration into AI-driven personaliza-
tion within immersive virtual environments, where the dynamic adaptation to
learners’ emotional and cognitive states promises to further individualize learn-
ing experiences. By integrating real-time data on learner engagement and perfor-
mance, our AI tutoring system aims to not only accommodate individual learning
preferences and needs but also to foster a deeper, more effective learning process.

2.6 Large Language Models (LLMs) in Education

Moreover, the advent of LLMs has marked a significant shift in the educational
landscape, offering novel methods for achieving personalized learning, intelli-
gent tutoring, and effective educational assessments. These advanced AI sys-
tems extend beyond traditional educational tools, offering personalized learning
experiences, enhancing student engagement, and providing innovative solutions
to long-standing challenges in education. By leveraging the capabilities of LLMs,
educators and learners alike can explore new horizons in knowledge acquisition,
critical thinking, and creative problem-solving. The integration of these models
into educational frameworks signifies a shift towards more dynamic, interactive,
and learner-centered approaches, underscoring the profound impact of artificial
intelligence on the future of education.

Gan et al. delve into the realm of LLMs within the sphere of digital and
smart education, identifying them as pivotal in addressing traditional educa-
tional challenges such as individual learner differences and the allocation of
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teaching resources. The paper envisions EduLLMs as evolving tools that offer
novel methods for achieving personalized learning, intelligent tutoring, and effec-
tive educational assessments. By providing a comprehensive review of current
research status and applications, the work serves as a roadmap for educators,
researchers, and policymakers, guiding them towards a deeper understanding of
LLMs’ potential to revolutionize the education sector while also acknowledging
the technical, ethical, and practical challenges that lie ahead [21].

Mollick et al. scrutinize the dual-edged nature of LLMs in the educational
landscape, acknowledging their transformative capabilities alongside their inher-
ent risks and limitations. The discourse revolves around the delicate balance
between exploiting AI’s adaptive learning potentials and mitigating risks asso-
ciated with AI’s imperfections. The paper highlights the necessity for educators
to actively guide students in the judicious use of AI tools, fostering a learning
environment where AI assists rather than replaces the learning process. Through
practical guidelines and theoretical insights, the authors propose a framework
for integrating AI in education that encourages critical engagement with AI out-
puts, ensuring students remain critical thinkers and active participants in their
learning journey [22].

2.7 Emotional Intelligence and Prompt Engineering in LLMs

The exploration of Emotional Intelligence (EQ) in LLMs represents a signif-
icant advancement in the field of artificial intelligence, particularly in educa-
tional applications. Recent studies, have begun to investigate the capacity of
LLMs to understand and process human emotions, suggesting that these mod-
els can potentially engage in more empathetic and nuanced interactions. This
development holds promise for creating more engaging and supportive learning
environments, where AI tutors can respond to the emotional states of learn-
ers, thus facilitating a more personalized and effective educational experience.
Wang et al.’s research marks a significant leap in evaluating the EQ of LLMs,
specifically GPT-4. By conducting a psychometric evaluation, the study reveals
GPT-4’s ability to understand and interact with human emotions, outperform-
ing the majority of human participants in EQ assessments. This breakthrough
underscores the potential for LLMs to engage in emotionally intelligent dialogues,
paving the way for more empathetic and effective communication in educational
settings. The findings suggest a future where LLMs can provide not only aca-
demic support but also emotional guidance, enhancing the overall educational
experience by fostering a sense of understanding and connection between AI
tutors and learners [23].

Prompt engineering is a cutting-edge practice in the realm of artificial intel-
ligence, especially within the context of LLMs. This technique involves crafting
inputs (prompts) to an AI model to elicit specific outputs or behaviors, opti-
mizing the interaction between humans and AI [24]. In educational settings,
prompt engineering transcends mere technical manipulation; it becomes an art
form that blends content knowledge, critical thinking, and iterative design. By
effectively leveraging prompt engineering, educators and developers can tailor
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LLMs to provide personalized learning experiences, encourage creative problem-
solving, and facilitate a deeper engagement with the material. This approach not
only enhances the efficacy of AI in education but also democratizes the learning
process, allowing for a more inclusive and equitable educational landscape.

Cain extensively explores the innovative practice of prompt engineering
within the context of Large Language Models (LLM AI) in education. The
research delineates prompt engineering as a pivotal methodology, incorporat-
ing content knowledge, critical thinking, and iterative design. This approach is
posited as essential for harnessing LLM AI’s transformative potential, aiming to
foster a learning environment that is not only personalized and engaging but also
equitable. The paper advocates for the integration of LLM AI tools in educa-
tional settings, emphasizing their capacity to transform students and educators
from passive recipients to active creators of learning content, thereby promoting
a more dynamic and interactive educational experience [25].

In exploring the enhancement of learner engagement within e-learning envi-
ronments, our research aligns with innovative methodologies such as gamification
and data-driven strategies for engagement optimization. Studies by Rebelo and
Isáıas, Moubayed et al., and Atkins et al. have highlighted the effectiveness of
engaging students through gamification elements and the significant correlation
between engagement levels and academic performance [26–28]. These findings
validate our pursuit of personalized AI tutoring as a means to deepen engage-
ment and suggest that the adaptive capabilities of AI could represent the next
frontier in cultivating engaging and effective e-learning experiences. By integrat-
ing these insights, our study contributes to the evolving landscape of e-learning
technologies, where personalization and continuous engagement strategies are
paramount for enhancing learning outcomes.

3 Method

This study explores the use of adaptive AI tutoring systems in immersive virtual
environments, specifically in the context of Python programming education. The
research was conducted with ten graduate students from Virginia Tech and used
an experimental design to assess the effectiveness of our personalized AI tutor-
ing framework. The study focuses on the deployment of AI tutors, which are
designed to adapt their instructional strategies based on the unique emotional
and cognitive profiles of learners. This is achieved through the use of survey
data. We employed a data-driven approach to classify participants into distinct
emotional and cognitive clusters. This classification was pivotal for tailoring the
educational content to align with the unique needs and predispositions of learn-
ers, thereby maximizing the effectiveness of the AI tutoring system within an
immersive virtual environment.

The goal of the research is to evaluate the effectiveness of AI tutors in fos-
tering deeper learner engagement and enhancing knowledge acquisition. Addi-
tionally, the study aims to investigate the capacity of these tutors to provide a
personalized learning experience by adapting to the psychological profile of each
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student. The research seeks to contribute important insights into the potential
of AI and VR technologies to revolutionize e-learning, offering a more adaptive,
engaging, and personally resonant educational experience.

This study sought participants who were either current students or staff
members at Virginia Tech, ensuring a diverse range of experiences and per-
spectives within the educational context. A key requirement for participation
was proficiency in English to guarantee clear understanding and communica-
tion throughout the study. Importantly, prior programming experience was not
a prerequisite, allowing for a broad spectrum of knowledge levels among partici-
pants. This inclusivity aimed to mirror the varied backgrounds found in typical
e-learning environments, providing valuable insights into the adaptive AI tutor-
ing system’s effectiveness across different learner profiles.

3.1 Pre-study Procedures

Initial Survey: Before commencing the experimental sessions, an initial sur-
vey was administered to gather essential data on the participants’ emotional and
mental states. This survey was designed to measure various psychological dimen-
sions, including excitement, motivation, stress, anxiety, and overall engagement
with the prospect of attending a VR class. The objective was to establish a
baseline understanding of each participant’s psychological readiness and predis-
position toward learning in a virtual environment. This preliminary step was
crucial for tailoring the AI tutoring system to address the needs and emotional
states of learners, ultimately aiming to enhance the personalization and effec-
tiveness of the e-learning experience.

Clustering and Group Assignment: After the initial survey, which collected
self-reported data on emotional and mental states, we applied the k-means clus-
tering algorithm (k = 3) to categorize participants into three primary groups:
engaged and motivated, anxious and stressed, and distracted and disengaged.
The clustering was informed by an analysis of the survey responses, aiming to
capture a comprehensive snapshot of each participant’s readiness and suitability
for different learning approaches.

Pre-assessment and Content Adaptation: After clustering, participants
were subjected to a Python programming knowledge quiz. The design of this
quiz was intricately linked to their assigned cluster, ensuring that the questions
were appropriately challenging and aligned with their emotional and cognitive
state. For the engaged and motivated cluster, the quiz featured challenge-based
and problem-solving questions, demanding a deeper engagement with the mate-
rial. Meanwhile, participants in the anxious and stressed cluster encountered
questions with straightforward instructions, minimizing additional stress and
focusing on clarity. Those identified as disengaged or distracted were presented
with interactive and relatable questions, designed to spark interest and foster
engagement through relatable scenarios.
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3.2 Teaching Sessions

Tailored Instructional Design: The AI tutor, central to our study, was pro-
grammed to adjust its teaching strategies based on the cluster assignments.
Leveraging large language models, the tutor was capable of demonstrating per-
sonalized Python programming lessons in the virtual reality environment. This
adaptation extended to the depth of content delivery, the complexity of tasks,
and the nature of interactions, ensuring that each learner received an educational
experience that was not only personalized but also conducive to their learning
style and emotional disposition.

Python Lecture: The core of our experimental design involved conducting
30-min Python programming lectures tailored to the specific needs and emo-
tional states of participants, segmented into three distinct groups. Each group
received instruction through a virtual reality headset, ensuring an immersive
learning experience. The AI tutor, a central component of our study, was intri-
cately designed to deliver content in a manner that resonated with the emo-
tional and cognitive profiles of the learners. This approach was premised on the
hypothesis that personalized teaching strategies, informed by the understanding
of learners’ states, could significantly enhance engagement and learning effec-
tiveness [29]. Consequently, the AI tutor dynamically adjusted its instructional
methods, varying the complexity of the material and the interaction style to suit
the designated cluster of each participant group. This customization aimed to
optimize the educational encounter, enhancing both the absorption of Python
programming concepts and the overall user experience within the virtual envi-
ronment.

3.3 Post-session Assessment

Feedback Collection: Following the conclusion of the teaching sessions, par-
ticipants were invited to share their feedback through a survey. This feedback
mechanism was designed to capture participant perceptions, including overall
satisfaction with the teaching session, the relevance and utility of the course con-
tent, and the degree to which the session met the learning objectives. Addition-
ally, the survey sought to gauge the appropriateness of the course’s pace, ensuring
that the delivery was neither too rapid nor too sluggish for effective comprehen-
sion. This feedback was instrumental in assessing the qualitative impact of the
AI tutoring system, offering insights into its strengths and areas for refinement.

Knowledge Assessment: To quantitatively measure the educational outcomes
of our intervention, participants were subjected to pre- and post-session assess-
ments. These assessments were crafted to evaluate the participants’ Python pro-
gramming knowledge before and after exposure to the AI tutor’s personalized
instruction. By comparing the initial competencies with the post-session under-
standing, we aimed to ascertain the learning gains attributed to the adaptive
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tutoring approach. This comparison not only served as a direct indicator of the
AI tutor’s effectiveness in conveying programming concepts but also provided a
metric for assessing improvements in knowledge acquisition among participants.

4 System Design

Our system, developed using the Unity Game Engine, delivers an adaptive AI
tutoring experience for Python programming tailored to learners’ emotional
states. By recognizing states such as engagement, stress, or distraction, the sys-
tem provides personalized educational content within immersive virtual environ-
ments. Utilizing Unity’s extensive capabilities, we’ve crafted a versatile platform
that supports interactive learning through VR. The core of our system is an
Adaptive AI Tutor, which dynamically adjusts teaching strategies based on the
learner’s performance and emotional state, leveraging AI for responsive content
delivery. The Python programming curriculum is structured to cater to a wide
range of learners, featuring summary descriptions, illustrative coding examples,
and interactive exercises. Our adaptive mechanisms ensure content presentation
is modified in real-time, optimizing learning efficiency and engagement based on
the learner’s current state. However, creating a system that accurately identifies
and adapts to the learner’s emotional state presented unique challenges, includ-
ing the integration of AI for emotion recognition and maintaining a balance
between educational depth and engaging interactivity.

Anxious and Stressed Scenario: To alleviate learner anxiety, this setting
employs a straightforward design, emphasizing clarity and support to encourage
confidence in coding (Fig. 1a).

Engaged and Motivated Scenario: This environment is vibrant and
dynamic, designed to foster curiosity and sustained interest in learning through
interactive challenges and rewards (Fig. 1b).

Disengaged and Distracted Scenario: Targeting re-engagement, this envi-
ronment utilizes captivating narratives and relatable contexts to draw the
learner’s focus back to the educational content (Fig. 1c).

5 Result

The post-survey results depicted in Table 1 provide a comprehensive overview of
participants’ sentiments across various dimensions of the course experience. The
table categorizes respondents’ feelings into three main groups: Stressed, Disen-
gaged, and Engaged, allowing for a nuanced understanding of their perceptions.
By utilizing abbreviated labels such as OS (Overall Satisfaction), CC (Course
Content), LO (Learning Outcomes), and Pace (Pace of the Course), the table
streamlines data presentation without sacrificing clarity.
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(a) Disengaged Group

Learning Environment

(b) Engaged Group

Learning Environment

(c) Stressed Group Learn-

ing Environment

Fig. 1. The three environments for the three clusters.

Examining the data reveals intriguing patterns. Notably, respondents who
reported feeling “Very satisfied” displayed a remarkable level of contentment
across multiple aspects within the Engaged category. For instance, approximately
66.7% expressed high satisfaction levels with Overall Satisfaction, Course Con-
tent, and Learning Outcomes. Conversely, participants indicating dissatisfaction
(“Dissatisfied”) exhibited noteworthy discontentment, particularly within the
Stressed and Disengaged categories. Here, substantial proportions of respon-
dents reported dissatisfaction with Overall Satisfaction and Pace of the Course,
suggesting areas that may require improvement.

Furthermore, the table illustrates variations in respondent perceptions based
on their reported levels of satisfaction. For instance, while those expressing “Sat-
isfied” sentiments demonstrated relatively balanced perceptions across all cat-
egories, individuals who reported feeling “Neutral” showcased mixed feelings.
Despite indicating neutrality in some aspects, such as Overall Satisfaction and
Learning Outcomes, a considerable number of respondents within this group
expressed dissatisfaction with Course Content, suggesting potential areas for
enhancement.

Table 1. Post survey results. The numbers represent percentages.

Response Options Stressed Disengaged Engaged

OS CC LO Pace OS CC LO Pace OS CC LO Pace

Very satisfied 66.7 66.7 33.3 0 0 0 0 50 20 60 20 60

Satisfied 0 33.3 33.3 33.3 0 100 0 0 60 20 60 20

Neutral 0 0 33.3 0 50 0 100 0 20 20 20 0

Dissatisfied 33.3 0 0 66.7 50 0 0 50 0 0 0 0

Very dissatisfied 0 0 0 0 0 0 0 0 0 0 0 20

The assessment conducted before and after the teaching course reveals signif-
icant improvements in student engagement and understanding (Table 2). Prior
to the intervention, while all students were found to be correct in their responses
when stressed, only 50% of the responses were correct when students were disen-
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gaged. Notably, engagement was high with 86.7% of correct responses, suggesting
that a majority were motivated despite some missing responses (13.3%).

Following the teaching intervention, there was a marked improvement in
the students’ responses. Under stress, the rate of correct responses remained
constant at 100%. However, the most significant improvement was observed in
the previously disengaged cohort, where correct responses increased from 50% to
100%. This suggests that the intervention was highly effective in capturing and
maintaining the students’ attention. Furthermore, engagement levels increased
slightly but notably, with correct responses rising to 93.3%. Correspondingly,
the rate of missing responses decreased to 6.7%, indicating fewer instances of
inattention or lack of motivation post-intervention.

Table 2. Summary of responses before and after intervention.

State Stressed Disengaged Engaged

Before

Correct 100 50 86.7

Missing 0 50 13.3

After

Correct 100 100 93.3

Missing 0 0 6.7

These results suggest that the teaching course was successful in enhanc-
ing student engagement and reducing the rates of disengagement and missing
responses (Table 2). Such improvements may be attributed to the pedagogical
strategies employed during the course, which appeared to resonate well with the
students, thereby increasing their attentiveness and participation. According to
the table, the stressed group scored 100% on both pre and post-assessments.
However, it is important to note that the assessments for the stressed group
were designed to be less challenging to avoid inducing additional stress.

5.1 Positive Aspects

Participants appreciated various elements of the course, which contributed to a
positive learning experience:

– The use of straightforward and easy-to-understand coding examples was
highly valued.

– The relaxing, green environment was likened to learning Python in a park,
enhancing the enjoyment of the sessions.

– The structured progression from simple to complex concepts, along with
encouragement at the end of each topic, was commended.

– The novelty and interesting approach of the course/session were highlighted
as key strengths.
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Fig. 2. Responses Improvement

– Participants appreciated the ability to learn at their own pace and the avail-
ability of additional code samples.

– The combination of visual slides, audible explanations, and helpful code snip-
pets effectively facilitated learning.

5.2 Areas for Improvement

Feedback also identified several areas where the course could be improved to
enhance the learning experience:

– The slide design was seen as monotonous; adding visuals, cartoons, or colors
could increase engagement.

– A sense of isolation was reported due to the lack of a classroom atmosphere,
indicating a need for more interactivity.

– The user interface’s limitations, specifically the absence of a “back” button,
hindered the ability to review content.

– The resolution and uniformity of code snippets need attention to maintain
consistency across the course.

– Suggestions for increased interactivity included features allowing participants
to actively engage with the content.

– Obstructions by the robot arm and overly wordy slides were mentioned, along
with a recommendation for a preliminary screener test.

– The desire for more examples, particularly in unused screen areas, was
expressed.

– Incorporating gamification and adjusting the speech pace were suggested to
cater to diverse learning preferences.
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Incorporating the feedback from participants will be crucial in refining the
course to better meet learner needs and enhance overall satisfaction. Adjust-
ments to the course design, content delivery, and interactive elements are among
the key areas targeted for improvement.

6 Discussion

The findings of this study suggest that the use of adaptive AI tutors in immer-
sive virtual environments can significantly enhance engagement and knowledge
acquisition in e-learning settings. This supports the hypothesis that personalized
tutoring, attuned to the emotional and cognitive states of learners, contributes
positively to the educational experience. Participants who interacted with the AI
tutors tailored to their psychological profiles reported higher levels of satisfaction
and demonstrated notable improvements in post-intervention assessments.

The observed increase in correct responses and engagement metrics post-
intervention highlights the potential of adaptive AI tutors to address issues
related to disengagement and cognitive overload in e-learning. The results align
with prior research [30] suggesting that personalized, emotionally intelligent AI
can create more effective learning environments by providing customized support
and feedback.

The study’s implications extend beyond the immediate educational out-
comes. By demonstrating the feasibility and benefits of personalized AI tutors,
this research paves the way for developing more sophisticated, responsive e-
learning systems that cater to the diverse needs of students. The positive
response to the immersive, tailored environments reinforces the importance of
situating e-learning within contexts that resonate with learners’ psychological
states. However, the study is not without limitations. The sample size was rela-
tively small and restricted to a specific demographic, which may limit the gener-
alizability of the findings. Moreover, the study was conducted over a short period
(one session), and therefore, the long-term effects of AI tutoring on learning effi-
ciency and satisfaction remain unknown.

Feedback regarding the system’s design revealed a need for greater inter-
activity and visual appeal. Future development will focus on incorporating
more dynamic elements and personalization options to enhance user engage-
ment and reduce feelings of isolation. Moreover, the system’s user interface will
be improved to provide learners with more control over their learning experience,
such as the ability to review previous content easily.

Ethical considerations in AI-driven education remain paramount. This study
adhered to ethical standards by ensuring data privacy and bias mitigation. Prac-
tically, the deployment of AI tutors on a larger scale will necessitate addressing
technological barriers and ensuring educators are equipped to integrate these
systems effectively into their curricula.

Further research should explore the impact of adaptive AI tutoring across
diverse populations and educational contexts. Longitudinal studies are needed
to assess the long-term effectiveness of AI tutors and their impact on learners’
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motivation and self-efficacy. Additionally, future work should investigate the
scalability of AI tutoring systems and their integration with various pedagogical
approaches.

The integration of adaptive AI tutors in e-learning represents a promis-
ing advancement in educational technology. While the preliminary findings are
encouraging, ongoing research and development are essential to fully realize the
potential of AI tutors in enhancing educational outcomes and learner satisfac-
tion.

7 Conclusion

This study has highlighted the potential of adaptive AI tutors within immersive
virtual environments to enhance learner engagement and knowledge acquisition.
The tailored approach, responsive to the emotional and cognitive states of indi-
viduals, offers a significant improvement over traditional e-learning methods.
However, the results, while promising, are preliminary and based on a limited
sample from a single institution, suggesting the need for further research to
establish broader applicability and long-term effectiveness. As educational tech-
nologies advance, the insights provided by this study can inform the development
of more effective, personalized, and engaging e-learning experiences. The ongo-
ing exploration and refinement of AI tutors in education continue to offer an
exciting frontier for enhancing teaching and learning practices.
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28. Rebelo, S., Isáıas, P.: Gamification as an engagement tool in e-learning websites.
J. Inf. Technol. Educ. Res. 19, p833 (2020)

29. Grant, P., Basye, D.: Personalized Learning: A Guide for Engaging Students with
Technology. International Society for Technology in Education (2014)

30. Pratama, M.P., Sampelolo, R., Lura, H.: Revolutionizing education: harnessing the
power of artificial intelligence for personalized learning. Klasikal: J. Educ. Lang.
Teach. Sci. 5(2), 350–357 (2023)



Can Large Language Models Recognize
and Respond to Student Misconceptions?

Francis Smart1, Nathan D. Bos2(B), and Jaelyn T. Bos3

1 Michigan State University, East Lansing, USA
2 Johns Hopkins University, Baltimore, USA

NBOS@mitre.org
3 University of California, Santa Cruz, Santa Cruz, USA

Abstract. Expert human tutors can observe learner mistakes to understand their
misconceptions and procedural errors. Highly capable, but opaque large language
models have shown remarkable abilities across numerous domains, and may be
useful for adaptive instruction in a variety of ways. Working with publicly avail-
able data from the National Assessment of Educational Progress, (388 questions
selected from 4th, 8th and 12th grade math and science) we examined these three
questions:

1) Do language models find the same problems difficult as students do? We
found statistically significant, but small similarities in performance that differ
somewhat by model.

2) Do language models have the same pattern of errors as students? Our findings
reveal that, under the “minimal “ prompts, the models often mirror students in
choosing the same incorrect answers. However, this alignment decreases when
prompt models used “chain of thoughts”.

3) Can language models interpret and explain students’ wrong answers? We pre-
sented frequently-chosenwrong answers toNAEP items toGPT-4 and an expe-
rienced science teacher, and compared their explanations. There was a good
correspondence between these explanations, with 81% being fully or partially
in agreement.

Discussion focuses on how these capabilities can be used for test design and
adaptive instruction.

Keywords: Large Language Model · Difficulty Prediction · Distractor
Prediction · Distractor Analysis · Item Analysis · Question Difficulty · Large
Language Models ·Machine Learning · Natural Language Processing

1 Introduction and Previous Research

In this paper, we assess the potential for large language models (LLMs) to fill several
possible roles in adaptive instruction. LLMs produce human-like responses to many
(although far fromall) types of questions, and somehave scoredverywell on standardized
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tests. There is potential for these models to fill various roles in test construction, such
as serving as item-testing proxies and distractor writing and analysis tools. There is
also great potential for these systems to aid in instruction and provide individualized
feedback to students.

Prior research in the field of educational assessment and tutoring has focused on
various approaches to understanding student errors and providing targeted interven-
tions. Expert human tutors have long been recognized as valuable resources for identify-
ing and explaining student misconceptions and procedural errors. These tutors possess
the knowledge and experience to observe student mistakes and provide personalized
feedback to enhance learning outcomes. [1] Computer-based tutors have also been in
development for decades, and have demonstrated the value of immediate feedback and
scaffolding from such systems [2–4].

Alternatively, there is growing interest in exploring the potential of LLMs as tools
for understanding and explaining student error patterns. LLMs like GPT-4 and GPT 3.5
have demonstrated impressive capabilities in natural language processing and language
generation, opening up new possibilities for LLM application in the educational domain.

A significant body of research has explored the use of LLMs in educational settings.
These models have been widely explored in education for various purposes, including
generating automated questions [5–9], creating educational materials [10–12], scoring
student responses [13, 14], and providing feedback [15, 16].

Settles et al. [9] associated with the platform (Duolingo) successfully utilized LLMs
to generate a large number of linguistic items and then employed a second model to
predict item difficulty through the analysis of features such as word and sentence length,
word corpus difficulty, as well as the predicted Common European Framework of Ref-
erence. They do not directly report on “true” compared with “predicted” difficulties but
do report measures of internal consistency of 96% and test-retest reliability of 80%.

The potential of LLMs extends beyond these applications in the field of education.
Rae et al. [17] found that LLMs excel in various knowledge-based and problem-solving
tasks, even when they have not received specific training. Their study covered 152 tasks,
including 57 tasks relevant to education, such as High School Chemistry andAstronomy.
Similarly, Hocky andWhite [10] explored the proficiency of LLMs in solving specialized
chemistry coding challenges, highlighting their potential in interactive tutoring settings.

While LLMs offer significant advantages, other researchers have raised concerns
regarding their misuse. Rudolph et al. [18] emphasize the need for cautious implemen-
tation, as LLMs can be potentially misused to generate inauthentic student work or lead
to insincere responses from teachers. The authors suggests that the overuse of LLMs
in both generating and evaluating student work will increase the risk that students will
learn little and teachers will not be able to evaluate work, understand individual failings,
and adapt to student needs.

2 Methods

NAEP Item Selection. In this study, we analyzed 388 questions selected from the pub-
licly accessible National Assessment of Educational Progress (NAEP) Question Tool
(NAEP Question Tool, 2023). These questions are distributed into subsets consisting of
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300 Mathematics questions and 88 Science questions for grades 4, 8, and 12. The Math-
ematics items originated from assessments conducted in 1990, 1992, 1996, 2003, 2005,
2007, 2009, 2011, and 2013, whereas the Science items were from 2005, 2009, 2011,
and 2019. Our selection process started with an initial pool of 1171 Mathematics items
and 393 Science items, from which only multiple-choice questions were considered.

Language models have very limited visual reasoning abilities, despite some recent
progress in this area, [19] During the selection process, two raters reviewed and elim-
inated questions that were judged to be too dependent on visual information, such as
references to figures, graphs, drawings, charts, and maps. All questions had Sect. 508-
compliant descriptions intended to provide enough information to answer the questions
without visual aids. When we thought these text descriptors were adequate the items
were kept, but when using the visual description was judged to make the problem sig-
nificantly more difficult the items were excluded. Following these criteria, the item pool
was narrowed down to 369 Mathematics items and 93 Science items.

We also found an alarming number of mistakes in the 508 compliant descriptions,
where the text provided was insufficient to solve the problem or even misleading. Our
review uncovered 69 items (representing an error rate of 15%) that contained some
inaccuracies. Two examples:

Question ID:2009-12M2 #11 M181601. “Which of the following expressions is equal
to one over X plus 2 minus 2 over X plus 1?

• Commentary: There is dual ambiguity about what is in the numerator and what is
the denominator; multiple answers are possible.

Question ID:1992-8M15 #11 M049201. Description: “Shaded triangle inside a
square”. Question: “If the area of the shaded triangle shown above is 4 square inches,
what is the area of the entire square?”.

• Commentary: The geometric figure description is simply incomplete, not enough
information to answer the question.

Problematic Items Were Eliminated from Our Test Question Set. Responses to
questions were obtained from models through an API interface. Each question was sent
as a separate query. Each model was prompted to answer the same question three times
under two different prompt models: the “Minimal” prompt and the “Chain of Thought”
prompt.

Prompt Engineering. Using the right verbal prompts to frame problems and give
instructions to LLMs can make a large difference in performance [20]. The process
of finding high quality prompts is called prompt engineering. For all studies reported we
pre- experimented with different prompting strategies, and selected a method that gave
consistent and high-quality results. When prompt variants are present the results will be
presented in terms of largest effect (under the best prompt).

A very common and effective type of prompt, often used with problems that require
reasoning are “Chain of Thought” prompts. These instruct the models to solve problems
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step by step rather than immediately producing an answer, and were shown to greatly
improve performance on problems such as math story problems. [21].

Here is an example of a 4th Grade Math question from the NAEP, with the basic
prompts used in this study:

Mr. Garcia bought 5 dozen eggs at $0.89 per dozen. What was the total cost of the
eggs?

A. $ 4.05 B. $ 4.45 C. $ 5.89 D. $ 10.68.

• Minimal prompt: “What is the correct answer? Answer with only a single letter in
parenthesizes (letter)”.

• Chain of Thought prompt: “Solve this item listing the minimum steps required to
get to the solution. Finally list the solution as a letter in parentheses for example (Z).
Be concise”.

3 Results

Model Accuracy and Effects of Prompts.Table 1 Shows the languagemodels we used.
Score is the average percentage correct on the test questions. Note that the expected score
in the case of random choice is 0.25. The Spearman correlation with student percentage
correct is also shown, along with the p statistic of the correlation. Separate statistics are
shown for Minimal prompting (Min) and Chain-of-Thought prompting (COT).

Overall models had comparable accuracy to students. See Appendix A for more
detailed correlation results between models and students by grade and subject. Most, but
not all of the models displayed a relationship with the difficulty ratings (Easy, Medium,
Hard) given by NAEP. The main exception was GPT-4, which showed only a weak
correlation with difficulty, because of its high accuracy, correctly answering 95% of the
items.

Table 1. Model accuracy by prompt type, and correlation with item difficulty

Model Min COT Min COT

Score Score rho p-stat rho p-stat

Llama 7b 0.430 0.484 0.130 0.011 0.152 0.053

Llama 13b 0.532 0.521 0.137 0.007 0.142 0.071

Llama 70b 0.568 0.708 0.094 0.064 0.093 0.239

GPT 3.5 0.649 0.874 0.125 0.014 0.171 0.030

GPT 4 0.764 0.961 0.067 0.191 −0.018 0.823

Gemini-Pro 0.832 0.134 0.091

There was also a positive correlation between model size and accuracy. Models are
listed in the table in increasing size. We correlated the item scores with the knownmodel
parameters – 125 billion for GPT-3.5, an estimated 1 trillion for GPT-4, and 175 billion



292 F. Smart et al.

for Gemini-Pro, along with Llama’s various sizes of 7, 13, and 70 billion parameters.
There was a significant positive correlation of 0.15, indicating that larger models did
tend to score better.

The prompting regime appeared to make a large difference in model accuracy, as
can be seen in the increase in scores between columns 1 and 2. It also appears that larger
models benefitted more from the Chain of Thought prompting than smaller models.

3.1 Study 1: Do LLMs Find the Same Problems Difficult as Do Students?

We investigated whether Large Language Models (LLMs) could be used to anticipate
the difficulty level of test items by having the LLMs directly attempt to answer the
questions. These items were presented to the LLMs with both the item body and answer
options included.

There were several reasons to be interested in the results of this comparison. Lan-
guage models have shown remarkably good performance on a number of tests designed
for humans, but to what extent do they solve problems in the same way as humans?
The study of error patterns is frequently used to try to understand underlying thought
processes of humans; if language models showed similar error patterns this might indi-
cate similar processes. We also wanted to know whether more sophisticated LLMs—
those with a higher number of parameters—would behave like more adept test-takers.
More pragmatically, if language models find the same problems easy or difficult, their
performance could be used as indicators of item difficulty.

As was shown in Table 1, there was a small positive correlation between which
problems models got correct and how difficult NAEP rated the problems. Tables 2 and
3 show correlations between model results and student results by problem, by age and
subject area.

Table 2. Correlations between students and models with minimal prompting.

Model Science Math Grade 4 Grade 8 Grade 12 All

llama7b 0.107 0.128* 0.14 0.126 0.086 0.110*

llama13b 0.370*** 0.097 0.160* 0.119 0.118 0.137**

llama70b 0.249* 0.084 0.074 0.128 0.102 0.094

gpt35 0.331** 0.106 0.156* 0.059 0.167 0.127*

gpt4 0.172 0.076 0.178* −0.039 −0.022 0.067

As we saw in the previous analysis, there is some relationship between model accu-
racy and student accuracy. In general, model results were closer to student results in
science than math. Overall, however, this relationship was weaker than what would be
needed to use language models as student proxies using this method. We also thought
we might see a stronger interaction between model size and grade level—it would have
been very convenient if, for example, Llama13b could serve as a proxy for an 8th grader,
whereby GPT3.5 could serve as a proxy for a 12th grader. The relationships observed
here are statistically meaningful, but practically limited.
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Table 3. Correlations between students and models with chain of thought prompting.

Model Science Math Grade 4 Grade 8 Grade 12 All

llama7b 0.260* 0.174** 0.152 0.185* 0.199* 0.181***

llama13b 0.259* 0.194*** 0.142 0.212* 0.278** 0.186***

llama70b 0.277** 0.105 0.093 0.188* 0.072 0.123*

gpt35 0.153 0.175** 0.171* 0.171 0.144 0.166***

gpt4 0.017 0.076 −0.018 0.202* −0.006 0.064

Gemini Pro 0.424*** 0.059 0.134 0.133 0.004 0.105*

3.2 Study 2. Do Language Models Have the Same Pattern of Errors as Students?

Behavioral scientists have long used incorrect answers as windows into the unobservable
processes of problem solving. This study focused on wrong answer choices made by
students and language models on the NAEP. This analysis focuses on the choice of
wrong answers, which often reflect common misconceptions or procedural errors. We
initially conducted a correlation analysis of wrong answer choices between models and
students. The results were similar to the accuracy results—mostly significant but quite
small correlations. These pilot results are not shown.

We decided to focus on most often chosen distractors. We narrowed the question set
to questions the models got wrong and selected questions where students got 20% or
higher incorrect, to ensure there was some variance to study. We also eliminated a small
number of questions where two items tied for most-chosen.

If these answers were randomly distributed, there would be about 33% in each dis-
tractor choice. Student answers were clearly not randomly distributed: the most-chosen
distractors for each problem represented about 48% of the data. We then tested how
often models chose the most-chosen student distractor choices. Results are in Table 4.

Table 4. Model choice of students’ most-chosen distractor

Model Min Mean COT Mean Min p-stat COT p-stat Min = COT

Llama 7b 0.372 0.230 0.035 0.000 0.000

Llama 13b 0.419 0.215 0.000 0.000 0.000

Llama 70b 0.443 0.241 0.000 0.000 0.000

GPT 3.5 0.415 0.245 0.000 0.014 0.000

GPT 4 0.406 0.234 0.014 0.131 0.031
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The results of this analysis were more interesting than expected. With minimal
prompting, language models resembled students. Each model, when it got an answer
wrong, tended to pick the same wrong answer as students significantly more often than
chance. The statistical test was a two-way test against chance level prediction of 0.33.

Unexpectedly, after Chain of Thought prompting, this pattern reversed: model wrong
answers were significantly less likely to be the same as students’ wrong answers. To
confirm this difference, we did a paired test comparison, and confirmed that prompt
type led to a significant difference on most-chosen distractors. This has a number of
implications for adaptive instruction, which will be discussed.

3.3 Study 3. Can Language Models Interpret and Explain Students’ Wrong
Answers?

Can language models offer explanations for student errors akin to those provided by
teachers? Large Language Models can do more than answer multiple-choice questions,
they can also produce prose, often very lucid and articulate prose. An important job
of a teacher or tutor is explaining concepts, and an expert tutor or teacher can explain
concepts at the right level and from the right perspective to reach a learner who is having
difficulty. How well could a large language model perform that function?

For this analysis we narrowed the set of wrong answer choices to what we will call
“dominant distractors”. The criteria for a dominant distractor are that the problem accu-
racy has to be less than 80% (has enough wrong answers to support analysis) and one
distractor has to have received at least 40% of those incorrect answers. We hypothesized
that dominant distractors should represent common misconceptions or a specific pro-
cedural error. Addressing these specific gaps can be the key to helping students avoid
similar errors.

For this analysis, we recruited an experienced middle school science teacher, and a
current Ph.D. student in Ecology and Evolutionary Biology (the 3rd author) to review
72 dominant distractors and provide a best-guess explanation. We obtained GPT-4’s
explanations for the same set of dominant distractors.

Here are two examples of typical student mistakes.

Example Problem #1. What two gases make up most of the Earth’s atmosphere?

A. Hydrogen and oxygen
B. Hydrogen and nitrogen
C. Oxygen and carbon dioxide
D. Oxygen and nitrogen
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The correct answer is D, but C was a dominant distractor. Clearly this represents a
knowledge gap about the composition of the atmosphere, but why was that particular
option chosen so often?

Teacher’s explanation GPT-4 explanation

Nitrogen makes up the majority of earth’s
atmosphere. Students may recognize that CO2
is biologically important, but it comprises a
tiny fraction of the atmosphere

Students commonly know that both oxygen
and carbon dioxide are present in the Earth’s
atmosphere. Since they are aware that carbon
dioxide is considerably talked about due to its
role in global warming and environmental
issues, they might have presumed it to be one
of the major components, thereby choosing it
alongside oxygen

Example Problem #2. In a bag of marbles, 1/2 are red, 1/4 are blue, 1/6 are green, and
1/12 are yellow. If a marble is taken from the bag without looking, is it most likely to
be:

A. Red
B. Blue
C. Yellow
D. Green

The correct answer is A, the dominant distractor was C, which is the opposite of
correct. Why?

Teacher’s explanation GPT-4 explanation

Reversed understanding of numerator and
denominator of fraction and how they relate to
probabilities

Students might have chosen ‘yellow’ as the
answer due to a misconception about how
fractions work. In this case, they may not fully
understand that a smaller denominator in a
fraction does not imply a larger value. Thus,
they may have seen ‘1/12’ and assumed that
because ‘12’ is the largest number, this must
mean there are more yellow marbles. This is a
fundamental misunderstanding about what the
fraction represents specifically, that the
denominator represents the total number of
parts, and a larger denominator means each
part is smaller

After obtaining explanations from the teacher andGPT-4, the second author reviewed
these explanations and coded them as 2-full agreement, 1-partial agreement, or 3-
mismatch. In the mismatch category, both the teacher and the model might both be
correct or incorrect, there is no way to know without a source of ground truth, but their
explanations were different. Here is the observed agreement:



296 F. Smart et al.

Full Agreement 56% (N = 40)

Partial 25% (N = 18)

Mismatch 19% (N = 14)

We interpret the 81% of full or partial agreement as providing some evidence that
language models can ‘understand’ student mistakes and provide helpful explanations of
them. A few more observations follow.

The GPT-4 explanations did, infrequently, contain procedural errors themselves,
or scientific mis-statements, where the teachers’ did not appear to contain these. For
example, at one point in the second explanation listed, GPT-4 said ‘smaller denominator’
when it should have said ‘larger’. Using an LLM for feedback might itself require a
quality-enhancing prompt procedure.

One difference between the explanations that was noteworthy: the GPT-4 explana-
tions were considerably longer, as in the given examples, with an average word count of
11 for the teacher and 65 for the LLM. Sometimes these longer explanations contained
nuances that the teacher explanations did not. In problem 1, GPT elaborates on why
carbon dioxide might be more familiar to the student than nitrogen. In problem 2, GPT
notes that in addition to the procedural error, the student may simply be keying on the
larger number (12 vs 3), even though it is in the denominator.

The teacherwas not asked to produce long responses for this coding task, often opting
for a minimal explanation that conveyed the correct idea. Partially this was because they
knew therewas no actual student involved. But it is also a near-universal fact of education
that teacher attention is a scarce commodity, and teachers do not have time or attention to
provide the fullest, most complete feedback to every student on every problem. Attention
is less of a concern for a languagemodel, which can produce longer and sometimes more
complete explanations very quickly and on-demand. This points to some potential use
cases for LLMs, which will be discussed.

As a second part of the explanation analysis, we asked both the teacher and the LLM
to categorize the mistakes as misconceptions, procedural errors or knowledge gaps. We
found that the categorization scheme needs work: there was a lot of ambiguity in the
ratings (as reported by the 3rd author) and little agreement. In particular, there was
considerable disagreement as to what answers might represent a true misconception,
which would benefit from being directly addressed, versus a knowledge gap, which
would best be addressed by focusing on the correct answer.

4 Discussion

Large Language models, used in a standard way, appear to be mediocre proxies for
students. There are statistically significant similarities in both which problems they
find difficult, and what types of errors they make. These similarities might indicate
that, at least some of the time, large language models are not only reproducing human
performance, but using similar methods.
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Improving these abilitieswould provide useful tools for test development. Estimating
problem difficulty is an important part of test design. Distractor analysis is an impor-
tant part of test evaluation. Error patterns often offer clues to internal problem-solving
processes, and doing this in an automated way would have a number of applications.
However, we also note that the most advanced LLM used in this study, GPT-4, showed
the lowest correlation with student performance by reason of significantly outperform-
ing the students at all levels. This means that more advanced LLMs are not necessarily
better proxies for estimating problem difficulty. Another possible application of LLMs
in test design would be to use language models to generate effective distractors.

We also, as a tangential finding, found a large number of errors in the text alterna-
tives to visual figures in NAEP problems. These were mistakes that would prevent a
student from answering a problem correctly, or at all. Vision-impaired students depend
on alternative texts to be both accurate and helpful. Large Language models might be
employed to both help evaluate, and even help produce these text descriptions.

The most intriguing and unexpected finding was that language model distractor
choice are similar to students with minimal prompting, but statistically dissimilar with
chain of thought prompting. This finding suggests several follow-ups.

First, we wonder whether, if the step-by-step processes produced bymodels improve
the model answers, would these same steps be useful for students? Could adaptive
instruction systems mine model self-explanations for useful student hints?

Similarly, are there other methods of prompting that would lead models to be even
more similar to students? Are there methods that could usefully mimic students of
different ages, or different strengths and weaknesses?

Our study of model-generated feedback also suggests useful methods for automated
tutoring, similar to some that are already being employed. GPT-4 gave feedback similar
to an experienced science teacher. It also gave more feedback and was able to provide it
immediately. Rapid feedback given ‘in the moment’ may have great value, as opposed
to waiting for grading results. The task of returning comments with grading is also a
significant burden for teachers, and language models could make this process easier and
perhaps better.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.
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Appendix A. Detailed Language Model Performance by Subject
and Grade

Accuracy of Models Answering NAEP Items, Miminal Prompting

Grade Subject students llama7b llama13b llama70b gpt35 gpt4

4 Math 55.2% 40.6% 54.3% 52.7% 62.0% 75.9%

4 Science 60.7% 72.0% 80.0% 86.6% 92.0% 100.0%

8 Math 53.5% 36.6% 42.1% 45.9% 55.7% 70.9%

8 Science 54.4% 60.0% 65.3% 78.6% 85.3% 100.0%

12 Math 53.2% 45.9% 45.3% 48.0% 57.3% 57.3%

12 Science 45.1% 70.2% 71.6% 80.7% 82.4% 92.1%

Accuracy of Models Answering NAEP Items, Chain of Thought Prompting

Grade Subject students llama7b llama13b llama70b gpt35 gpt4 Gemini pro

4 Math 55.2% 45.1% 48.4% 68.1% 85.9% 96.6% 81.0%

4 Science 60.7% 65.3% 73.3% 85.3% 96.0% 93.3% 95.8%

8 Math 53.5% 36.4% 38.8% 59.2% 82.7% 96.4% 76.8%

8 Science 54.4% 52.0% 65.3% 76.0% 84.0% 92.0% 97.3%

12 Math 53.2% 33.7% 49.7% 56.3% 82.0% 93.4% 76.4%

12 Science 45.1% 54.0% 74.6% 78.8% 86.8% 94.7% 82.9%
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Abstract. This paper explores the pivotal role of knowledge management (KM)
in revolutionizing adaptive military training systems (AMTSs). As military orga-
nizations confront increasingly complex and dynamic operational environments,
traditional trainingmethodologiesmust evolve to cultivate the adaptivity, cognitive
flexibility, and real-time decision-making skills required to operate successfully.
KM is the process of capturing, organizing, storing, and sharing information and
expertise, and involves the creation of systems and practices to identify, create, rep-
resent, distribute, and enable the adoption of insights and experiences. In the case
of adaptive training, the goal of knowledge management is to improve efficiency,
promote innovation, and enhance decision-making through knowledge transfer
from training experiences to application in operational (work) experiences. The
integration of advanced technologies, such as artificial intelligence, virtual reality,
andmachine learning, necessitate a cohesiveKM framework. Case studies demon-
strate methods used in successful implementations, including cyber warfare pre-
paredness, urban warfare simulations, and personalized leadership development.
Challenges such as resistance to cultural change, security concerns, and resource
limitations are also discussed, alongside strategies for overcoming these barri-
ers. This paper emphasizes the intersection of adaptive training technologies and
KM, showcasing howAI-driven adaptivity tailors training experiences for efficient
skill acquisition. The paper also outlines future directions for research, including
the integration of emerging technologies, enhanced personalization, blockchain
for data security, and ethical considerations in responsible AI implementation.
The broader implications for human-computer interaction research and military
preparedness underscore the significance of KM in fostering a culture of con-
tinuous learning, collaboration, and informed decision-making within military
organizations.

Keywords: Knowledge Management · Adaptive Military Training · Cognitive
Flexibility · Artificial Intelligence

1 Introduction

We begin by providing an overview of the evolving landscape of military training sys-
tems, emphasizing the increasing complexity of contemporary warfare and the critical
need for adaptive training approaches. We highlight the challenges faced by traditional
training methodologies in keeping pace with rapidly changing technology and dynamic
operational environments encountered by military personnel.
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1.1 The Evolving Landscape of Military Training Systems

The landscape of military training systems has undergone a profound transformation in
response to the multifaceted demands of modern warfare. Traditional training methods,
characterized by static curricula and standardized exercises, are proving insufficient in
preparing armed forces for the intricacies of contemporary conflicts. The integration of
advanced technologies, such as artificial intelligence, virtual reality, and data analytics,
is reshaping the training paradigm, enabling a more dynamic and adaptive approach
that supports the tailoring of training scenario difficulty to match the capabilities of
trainees and maintain trainee engagement [1]. This evolution necessitates a reevaluation
of traditional structures to harness the full potential of emerging tools andmethodologies,
emphasizing the need for a cohesive and knowledge-driven framework.

1.2 The Complexity of Contemporary Military Operations

The nature of contemporarymilitary operations is marked by unprecedented complexity,
featuring asymmetrical threats, rapid technological advancements, and dynamic opera-
tional landscapes. In this environment, military forces must possess a diverse skill set
that extends beyond traditional military tactics. Adaptive training approaches become
imperative as they enablemilitary personnel to cultivate skills such as cognitiveflexibility
[2], rapid decision-making [3], and interdisciplinary collaboration [4]. The intricacies
of modern military operations demand training systems that can accurately simulate
the diverse scenarios representing real-world conditions, adapt to evolving threats, and
prepare soldiers for the unpredictable nature of 21st-centurymilitary operations. It is crit-
ically important for adaptive training systems to efficiently transfer required knowledge
gained during training to the operational or work environment.

1.3 Challenges Faced by Trainers Using Traditional Training Methodologies

Traditional military training methodologies face significant challenges in meeting the
demands of contemporary warfare. Rigidity in curricula and the inability to simulate the
complexity of evolving real-world scenarios limit the effectiveness of these approaches
in supporting operational mission objectives [5]. Trainers and simulation developers
often struggle to provide realistic and dynamic training environments, hindering the
development of critical skills such as adaptivity and rapid decision-making.Additionally,
the static nature of traditional training fails to address the individualized learning needs
of military personnel, making it difficult to prepare them for the diverse challenges they
may encounter in modern operational settings.

1.4 Rapidly Changing Technology and Dynamic Operational Environments

The accelerating pace of technological advancements and the ever-changing nature of
operational environments pose formidable challenges tomilitary training systems. Tradi-
tionalmethodologies, whichmay have once been effective, struggle to keep pacewith the
introduction of cutting-edge technologies and the evolving tactics employed by adver-
saries [6]. The dynamic nature of contemporary conflicts requires training systems to
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adapt swiftly, incorporating the latest advancements to ensure that military personnel are
equipped with themost relevant skills. This rapid evolution underscores the necessity for
adaptive training approaches that integrate KM and emerging technologies to maintain
a state of readiness in the face of unpredictable and rapidly changing circumstances.

2 Military Training Paradigms

This section explores the historical progression of military training paradigms, examin-
ing traditional models and their limitations in addressing the diverse skill sets required
by modern armed forces. We emphasize the growing importance of adaptivity, cog-
nitive flexibility, and real-time decision-making skills, underscoring the necessity for
innovative approaches to training that integrate cutting-edge technologies.

2.1 Historical Progression of Military Training Paradigms

The historical evolution ofmilitary training paradigms reflects the shifting nature of war-
fare and the evolving needs of armed forces. Traditionally, training methods were often
rooted in rigid discipline, emphasizing standardized drills and hierarchical structures.
Over time, as warfare became more complex, training paradigms adapted to incorporate
a broader range of skills. The transition from classical formations and linear tactics to the
development of combined arms tactics marked a significant shift in training approaches.
The historical progression reflects a continual effort to align trainingmethodologies with
the strategic and technological advancements of the times. In other words, as threats
evolve so should training methods to ensure high efficiency in transferring knowledge
(successful experiences) to application in operational environments.

2.2 Traditional Training Models and Their Limitations

Traditional military training models, often characterized by fixed curricula and repet-
itive exercises, face limitations in preparing modern armed forces for the diverse and
dynamic challenges of contemporary warfare. These models tend to focus on specific
skill sets and scenarios, lacking the adaptivity required for the unpredictable nature
of 21st-century conflicts. The rigid nature of traditional training can result in a dis-
connect between the skills emphasized in training and the multifaceted demands of
real-world missions. As armed forces increasingly engage in asymmetrical warfare and
complex peacekeeping operations, the inadequacies of traditional models become more
pronounced, highlighting the need for a more versatile and adaptive training paradigm.

2.3 The Growing Importance of Adaptiveness, Cognitive Flexibility,
and Real-Time Decision-Making Skills

In the face of evolving threats and operational landscapes, there is a growing recognition
of the importance of certain skills that extend beyond traditional battlefield tactics.
Adaptiveness, cognitive flexibility, and real-time decision-making skills have become
critical components of military preparedness.
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Adaptiveness is the ability of an entity or system to adjust and thrive in changing
conditions or environments bymodifying its behavior, structure, or functions in response
to varying conditions with the goal of achieving better performance or outcomes [7].
Cognitive flexibility is the ability to switch between concepts, and to think aboutmultiple
concepts simultaneously [8] and involves adapting to changing conditions, adjusting to
new information, and shifting one’s thinking between different tasks or perspectives
[9]. Real-time decision-making skills involve the ability to make effective and timely
decisions in dynamic and rapidly changing conditions. Individuals with strong real-
time decision-making skills can quickly analyze information, assess the situation, and
choose the most appropriate course of action based on their ability to rapidly process
information, think critically, prioritize options, and assess risk [10].

Modern armed forces must navigate unpredictable scenarios that demand quick and
informed decisions. The ability to adapt to changing circumstances, think critically, and
make rapid decisions is paramount. Recognizing the significance of these skills has led
to a paradigm shift in training philosophies, with an increased emphasis on cultivating
mental agility and flexibility in addition to physical prowess.

2.4 Innovative Approaches to Training that Integrate Cutting-Edge Technologies

The contemporary military landscape necessitates innovative approaches to training that
seamlessly integrate cutting-edge technologies. Traditional models struggle to incorpo-
rate the complexities of modern warfare, where technological advancements play a
pivotal role. The integration of artificial intelligence, virtual reality, and simulation tech-
nologies offers the potential to create realistic and dynamic training environments. These
technologies enable armed forces to simulate diverse scenarios, from cyber threats to
urban warfare, providing a more holistic approach to skill development. The necessity
for innovation lies in the ability to bridge the gap between theoretical training and the
practical application of skills in complex and evolving operational settings.

3 KM in Military Training

Focusing on the pivotal role of KM, this section delves into how effective information
capture, organization, and dissemination can enhance military training outcomes. We
discuss the potential of KM systems in preserving institutional knowledge, fostering
collaboration, and providing timely access to relevant information, thereby contributing
to the adaptivity of military training programs.

3.1 What is KM?

KM is amultidisciplinary approach to identifying, capturing, organizing, and utilizing an
organization’s collective knowledge to achieve its objectivesmore effectively [11].KMat
the organizational level seeks to transfer knowledge to itsmembers so that knowledge can
be applied in training and the resulting firsthand knowledge and skills can be transferred
to effective use in operational environments encountered in the future. KM involves
the systematic process of creating, acquiring, organizing, storing, and disseminating



304 R. A. Sottilare

information and expertise within an organization. The goal of KM is to enhance the
organization’s ability to learn, adapt, and innovate by making the right information
available to the right people at the right time. Key components of KM include [12]:

• Knowledge Creation: The generation of new knowledge through innovation,
research, and experience. This involves converting individual and collective insights
into explicit knowledge that can be shared and utilized.

• Knowledge Capture: The process of identifying and collecting relevant information
and expertisewithin an organization. This can include documentation, lessons learned
from past experiences, and insights gained through various activities.

• Knowledge Organization: Structuring and categorizing knowledge in a meaning-
ful way to facilitate easy retrieval and understanding. This can involve creating
taxonomies, databases, and other classification systems.

• Knowledge Storage: The secure and accessible storage of explicit knowledge within
databases, repositories, or other information systems. This ensures that information
is readily available to those who need it.

• Knowledge Retrieval: The ability to search for and retrieve relevant knowledge
when needed. This involves having efficient systems in place to access and apply
the knowledge stored within an organization.

• Knowledge Sharing: The process of disseminating knowledge among individuals
and teams. This can include formal training programs, mentorship, collaborative
platforms, and communication channels that encourage the exchange of information.

• Knowledge Application: The practical use of knowledge to solve problems, make
decisions, and drive innovation. This involves translating knowledge into action for
the benefit of the organization.

Effective KM contributes to improved decision-making, increased organizational
agility, enhanced innovation, and the preservation of institutional memory. It is particu-
larly crucial in dynamic and knowledge-intensive environments where staying competi-
tive requires constant learning and adaptation. KM is applied in various sectors, includ-
ing military operations, business, healthcare, education, and government, to leverage
intellectual capital and create a culture of continuous improvement.

3.2 The Pivotal Role of KM in Training

KM plays a pivotal role in revolutionizing military training by facilitating the efficient
capture, organization, and dissemination of critical information. In contemporary war-
fare, where information is a valuable asset, effective KM systems are essential for
ensuring that military personnel are equipped with the most relevant and up-to-date
knowledge. These systems provide a structured approach to handling information, pro-
moting seamless collaboration, and enabling the integration of new insights into training
methodologies and curricula. The role of KM in training extends beyond simple data
storage. KM serves as the backbone for adaptive training approaches, enabling armed
forces to stay agile in response to evolving threats and operational requirements. KM as
a tool in operational environments should also be duplicated in training environments to
provide necessary scenario realism.
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3.3 Information Capture, Organization, and Dissemination

The effectiveness of military training outcomes is intrinsically linked to the efficiency of
information capture, organization, and dissemination. KM systems enable the system-
atic collection of data from various sources, ranging from historical mission reports to
real-time intelligence feeds. The organized structuring of this information ensures that
it is readily accessible to trainers and trainees alike. By facilitating the dissemination
of relevant knowledge, training programs can be tailored to address specific challenges,
incorporating lessons learned from past experiences. This targeted and informed app-
roach enhances the overall effectiveness of military training, fostering a more responsive
and adaptive force capable of meeting the demands of modern warfare.

3.4 Preserving Institutional Knowledge, Fostering Collaboration, and Enhancing
Access to Relevant Information

KM systems offer immense potential in preserving institutional knowledge within mil-
itary organizations. These systems act as repositories for accumulated wisdom, lessons
learned, and best practices from past operations. By capturing and codifying this institu-
tional knowledge, military training benefits from the collective experiences of seasoned
personnel, ensuring that valuable insights are not lost over time.Additionally, KM fosters
collaboration by providing a platform for sharing expertise and facilitating communica-
tion among dispersed units. Timely access to relevant information becomes a cornerstone
of decision-making, allowing military personnel to make informed choices based on a
comprehensive understanding of the operational landscape. In essence, KM systems not
only preserve the legacy of institutional knowledge but also empower armed forces to
continuously adapt and excel in dynamic and challenging environments.

4 Integration of KM with Adaptive Training Technologies

Here, we examine the intersection of adaptive technologies and KM within military
training systems.We discuss the incorporation of artificial intelligence (AI) andmachine
learning (ML) to create personalized and dynamic training environments. This section
explores how these technologies can leverageKM to tailor training experiences, allowing
for more efficient skill acquisition and improved readiness.

4.1 The Nexus of Adaptive Training Technologies and KM

The intersection of adaptive training technologies and KM represents a paradigm shift in
military trainingmethodologies. Adaptive training technologies, encompassing artificial
intelligence (AI), are increasingly integrated with KM systems to create a symbiotic
relationship. KM serves as the backbone for these technologies, providing a structured
repository for relevant military intelligence, historical data, and lessons learned. This
integration enables adaptive training systems to dynamically adjust scenarios based on
real-world insights, ensuring that training experiences are not only immersive but also
informed by the collective knowledge of the armed forces. This is especially true in
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adaptive training systems that seek to use generative AI such as large language models
(LLMs) likeChatGPT to create streamsofmilitary communications or drive the real-time
perception-action cycle of intelligent computer-generated forces (CGFs) [13].

4.2 The Roles of AI and ML in Training Environments

The incorporation of AI and machine learning marks a transformative era in military
training. AI algorithms analyze vast amounts of data to identify patterns and generate
realistic simulations. ML adapts training scenarios based on individual and collective
performance, creating personalized experiences. This integration enhances the realism
of training exercises, allowing personnel to engage with diverse and dynamic scenarios,
from complex battlefield situations to cyber warfare challenges. The result is a train-
ing environment that not only replicates the complexities of modern warfare but also
leverages cutting-edge technologies to optimize skill development and readiness.

4.3 Leveraging KM to Enable Tailored Training Experiences

Adaptive training technologies leverage KM to tailor training experiences, optimizing
skill acquisition and enhancing overall readiness. KM systems act as repositories for
organizational intelligence, historical mission data, and expert insights. By integrating
this wealth of information with adaptive technologies, training programs can dynami-
cally adjust content based on the specific needs and performance of individual trainees or
units. This tailoring allows for a more efficient allocation of resources, focusing on areas
where improvement is needed and accelerating the development of crucial skills. The
result is a training ecosystem that is not only adaptive to emerging threats and scenarios
but also finely tuned to the unique requirements of each military unit, fostering a more
agile and prepared armed forces.

Figure 1 illustrates a cycle of training transfer that is facilitated by KM. In the figure,
required operational missions (green box) are driven by evolving threats which are doc-
umented through organizational intelligence and in turn drive benchmarking of training
scenarios (yellow box) that represent a large set of possible missions and threats. Knowl-
edge from training scenarios is captured from trainee communications and simulator data
include after action reviews (AARs). Benchmarking of operational scenarios (blue box)
represent knowledge gained during actual missions, and this knowledge is captured from
operational communications, telemetry, and mission debriefs. Both AARs and mission
debriefs capture lessons-learned (trainee or operator errors).

Knowledge and skills gained (proficiency; orange box) during training or operational
experiences are the result of training or mission assessments respectively. The accuracy
of these assessments is critical to accurately representing the current proficiency of
trainees/operators, and in determining next steps in their progression of training and
operational missions.

The transfer of training to operations is the process of applying knowledge and skills
that have been learned in one domain to another domain. For example, if you learn how
to play chess, you might transfer some of the strategic thinking and problem-solving
skills learned in chess to other games or tasks. In Fig. 1, transfer between training and
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operations (gold boxes) can be largely dependent on experience in a particular environ-
ment but may also be highly dependent on the semantic similarity of the environments
or the missions. Semantic similarity means the degree of likeness or similarity between
two items. In this case, we are examining the similarity in the training and operational
environments or missions. For example, similarity in the physical conditions of the train-
ing and operational environments can promote transfer of knowledge, and similarity in
tasks (even in very different physical environments) can also promote transfer.

Fig. 1. A Cycle of Training Transfer facilitated by KM

5 Case Studies: Implementing AMTSs

Drawing on three real-world examples, this section presents case studies showcasing
successful implementations of AMTSs with a strong emphasis on KM. We analyze the
impact of these systems on trainee performance,mission success, and long-term strategic
goals, providing empirical evidence of the benefits derived from integrating KM into
adaptive training methodologies.

5.1 Case Study 1: Cyber Warfare Training Enhancement with AI and KM

In this case study, an armed forces branch implemented an Adaptive Military Training
System focused on cyber warfare preparedness [14]. The system seamlessly integrated
artificial intelligence (AI) algorithms and KM solutions to enhance training effective-
ness. KM systems captured and organized the latest cyber threat intelligence, historical
attack patterns, and best practices. The AI-driven training platform utilized this knowl-
edge to dynamically generate realistic cyber scenarios, adapting difficulty levels based on
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individual trainee performance. This adaptive approach not only optimized skill devel-
opment but also allowed continuous updates to the training curriculum based on evolving
cyber threats, ensuring that military personnel were well-prepared for rapidly changing
cyber warfare landscapes.

5.2 Case Study 2: Virtual Reality Simulation for Urban Warfare Training

In this case study, a military organization employed an Adaptive Military Training Sys-
tem utilizing virtual reality (VR) simulations to support urban warfare scenarios [15].
KM played a critical role in aggregating intelligence on urban terrain, past urban warfare
missions, and lessons learned. This information was systematically organized and stored
in aKMsystem.TheVR training platform leveraged this repository to dynamically recre-
ate realistic urban environments, adapting scenarios based on trainee performance and
feedback. By integrating KM with adaptive technologies, the military achieved a train-
ing system that not only provided immersive experiences but also ensured that urban
warfare skills were honed through scenarios informed by the collective knowledge of
past missions.

5.3 Case Study 3: Personalized Leadership Training Using ML and KM

In this case study, a military organization implemented an AMTS focused on leader-
ship development [16]. The system incorporated machine learning algorithms and KM
solutions to tailor training experiences for aspiring leaders. The KM system captured
historical leadership success stories, organizational strategies, and lessons from lead-
ership challenges. Machine learning algorithms then analyzed trainee performance and
identified specific leadership skills requiring improvement. The training programdynam-
ically adjusted scenarios, incorporating real-world leadership challenges based on the
collective knowledge stored in the system. This adaptive approach not only personalized
leadership training but also ensured that future leaders were equipped with the insights
and skills needed to navigate complex operational environments effectively.

6 Challenges

In this section, we address the challenges and potential barriers associated with imple-
menting KM in AMTSs. We propose strategies to overcome these obstacles and dis-
cuss future directions for research and development in the pursuit of more effective
and responsive training approaches. Five barriers to effective KM solutions in AMTSs
follow:

6.1 Resistance to Cultural Change Challenge

One major challenge in implementing KM in AMTSs is resistance to cultural change
within the armed forces. Military organizations often have established traditions and
hierarchical structures that may resist the adoption of new KM practices. Overcom-
ing this challenge requires a comprehensive change management strategy. It involves
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fostering a culture that values continuous learning and knowledge sharing. Leadership
endorsement, clear communication about the benefits of KM, and incentives for partici-
pation can encourage personnel to embrace the cultural shift toward amore collaborative
and knowledge-driven environment.

6.2 Security Concerns and Data Protection Challenges

The sensitive nature of military information poses security concerns and challenges
in implementing KM systems. Ensuring data protection and preventing unauthorized
access to classified information is crucial. Implementing robust cybersecurity measures
and encryption protocols is essential. Developing access controls based on security
clearances, implementing secure cloud solutions, and conducting regular security audits
can help mitigate these concerns. Additionally, providing comprehensive training on
data security and reinforcing the importance of confidentiality can contribute to a secure
KM environment.

6.3 Integration with Legacy Systems Challenges

Military organizations often rely on legacy systems that may not easily integrate with
modern KM technologies. The challenge lies in seamlessly incorporating new systems
without disrupting existing operational workflows. Adopting an incremental approach
to integration is key. This involves identifying interoperability standards, developing
APIs (Application Programming Interfaces), and gradually migrating data from legacy
systems to more adaptive platforms. Collaboration with technology experts and phased
implementation can help ensure a smooth transition without compromising existing
operational capabilities.

6.4 Lack of User Engagement Challenge

If military personnel are not adequately trained on KM systems, or if the systems are not
user-friendly, there may be a lack of engagement, hindering the successful implemen-
tation of these systems. Prioritizing user-friendly interfaces and conducting thorough
training programs are essential. Providing ongoing support and emphasizing the practi-
cal benefits of KM in daily operations can increase user engagement. Feedback mech-
anisms should also be implemented to continuously refine and improve the usability of
the systems based on user experiences.

6.5 Limited Resources and Budget Constraints

Military organizations often operate within budget constraints and resource limitations.
Implementing KM systems may require significant financial investment and allocation
of resources. Strategic resource allocation and phased implementation can help address
budget constraints. Leveragingopen-source solutions, seekingpartnershipswith technol-
ogy providers, and prioritizing key functionalities can optimize resource usage. Making
a compelling case for the long-term cost-effectiveness and operational benefits of KM
can also garner support for the necessary financial investments.
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7 Future Directions

Future directions for KM research and development in the context of adaptive military
training approaches should focus on advancing technologies, refining methodologies,
and addressing emerging challenges. Here are key areas for consideration:

7.1 Integration of Advanced Technologies

As technology continues to evolve, research should explore the integration of emerging
technologies such as augmented reality (AR), natural language processing (NLP), and
advanced analytics into KM systems for adaptive training. AR can enhance realistic
simulation experiences, while NLP can improve the understanding and extraction of
information from unstructured data sources. Advanced analytics can provide valuable
insights into training effectiveness and identify areas for improvement.

7.2 Enhanced Personalization and AI-Driven Adaptivity

Future research should aim to enhance the personalization of adaptive training experi-
ences through artificial intelligence (AI). By leveraging machine learning algorithms,
KM systems can analyze individual and collective performance data to tailor training
scenarios based on specific needs and learning styles. This approach ensures that training
adapts in real-time, optimizing skill development and readiness for each trainee.

7.3 Blockchain for Secure KM

Exploring the potential applications of blockchain technology in KM within military
training systems is crucial. Blockchain can enhance data security, integrity, and trans-
parency, addressing concerns related to unauthorized access and data tampering. Imple-
menting decentralized and immutable ledgers for knowledge repositories can ensure
the trustworthiness of information critical for training scenarios and decision-making
processes.

7.4 Human-Centric Design and User Experience (UX)

Research efforts should focus on improving the user experience of KM systems to
encourage greater adoption and engagement among military personnel. Human-centric
design principles, usability studies, and feedback mechanisms can contribute to creating
intuitive interfaces andworkflows.Understanding the needs and preferences of end-users
is paramount for successful implementation and sustained use.

7.5 Interoperability and Collaboration Platforms

Future research should emphasize the development of interoperable KM systems that
facilitate seamless collaboration both within and across military organizations. Inte-
gration with existing military databases, communication platforms, and information-
sharing networks is essential for creating a cohesive and interconnected knowledge
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ecosystem. Collaboration platforms should enable real-time communication and infor-
mation exchange among military personnel, fostering a culture of continuous learning
and shared expertise.

7.6 Ethical Considerations and Responsible AI

As AI plays an increasingly prominent role in adaptive training, research should explore
ethical considerations and guidelines for responsible AI implementation. This involves
addressing bias in algorithms, ensuring transparency in decision-making processes, and
establishing frameworks for accountability. Emphasizing ethical AI practices withinKM
systems is crucial to maintaining trust and credibility in military training applications.

7.7 Long-Term Impact Assessment

Research efforts should focus on conducting comprehensive assessments of the long-
term impact of KM systems on military readiness and effectiveness. This involves eval-
uating the transferability of skills learned in adaptive training scenarios to real-world
operational success. Understanding the sustained benefits and challenges over extended
periods will provide valuable insights for refining and optimizing future KM strategies
in military training.

8 Conclusion

In conclusion, our key findings, underscore the significance ofKM in enhancingAMTSs,
and highlight the broader implications for human-computer interaction research and
military preparedness.

8.1 Findings

KM inAMTSs ensures that decision-makers have access to timely, accurate, and relevant
information. This is critical for training scenarios that simulate complex and dynamic
operational environments. Informed decision-making relies on a foundation of orga-
nized and up-to-date knowledge, enabling military personnel to navigate various chal-
lengeswith agility and precision.KMfacilitates continuous learning by capturing lessons
learned from past operations, historical data, and evolving intelligence. This wealth of
information is crucial for adapting training programs to stay abreast of emerging threats
and changing tactics. The adaptive nature of military training systems relies on the abil-
ity to integrate new knowledge seamlessly, ensuring that personnel are always prepared
for the latest challenges. KM enables the tailoring of training experiences to individual
and collective needs. By understanding the strengths, weaknesses, and learning prefer-
ences of military personnel, adaptive training systems can leverage KM to personalize
scenarios. This individualization optimizes skill development, enhances performance,
and contributes to a more resilient and adaptable military force.

KM systems play a vital role in preserving institutional memory within military
organizations. They capture the expertise of experienced personnel, document successful
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strategies, and store historical mission data. This institutional memory is invaluable for
passing on knowledge to new generations of military personnel, fostering a continuum
of learning and ensuring that the organization benefits from the collective wisdom of its
members. KM promotes collaboration and interconnectedness among military units and
personnel. Shared repositories of information facilitate communication, coordination,
and the exchange of expertise. This collaborative approach enhances the effectiveness of
adaptive training systems by fostering a culture of teamwork and leveraging the diverse
skills and insights of military personnel.

8.2 Broader Implications for Human-Computer Interaction Research
and Military Preparedness

The significance of KM in AMTSs underscores the importance of human-centric design
in technology interfaces. Human-Computer Interaction (HCI) research can contribute to
designing intuitive, user-friendlyKM systems that alignwith the cognitive processes and
preferences of military personnel. By prioritizing usability and user experience, HCI can
enhance the effectiveness and acceptance of these systems. KM integrated with adaptive
training often involves the use of artificial intelligence and decision support systems.HCI
research should address ethical considerations in the design and deployment of these
technologies, ensuring transparency, fairness, and accountability. Ethical considerations
are especially crucial inmilitary contexts where the consequences of AI-driven decisions
can have significant real-world impact.

The use of VR in AMTSs highlights the intersection of HCI with immersive tech-
nologies. HCI research can explore ways to optimize the user experience in virtual
training environments, considering factors such as realism, engagement, and cognitive
load. By understanding how military personnel interact with virtual simulations, HCI
can contribute to refining training methodologies and enhancing the transferability of
skills from virtual to real-world scenarios. The integration of AI in KM systems for mili-
tary training necessitates research on effective human-AI collaboration. HCI studies can
investigate howmilitary personnel interact with AI-driven decision support tools, ensur-
ing that these systems augment human capabilities rather than replace them. Designing
interfaces that facilitate seamless collaboration between humans and AI contributes to
more effective and trustworthy military training systems.

HCI research in the context of KM for military preparedness can extend to crisis
management and cognitive support.Understanding howmilitary personnel process infor-
mation, make decisions under stress, and interact with KM tools during high-pressure
situations is crucial. HCI can contribute insights into designing interfaces that support
cognitive resilience and enhance decision-making in challenging operational environ-
ments. Finally, the significance of KM in enhancing AMTSs extends beyond immediate
training objectives. It has broader implications for HCI research, shaping the design
of technology interfaces, addressing ethical considerations, and optimizing the collab-
oration between humans and advanced technologies. Ultimately, these advancements
contribute to improved military preparedness by cultivating a culture of continuous
learning, adaptivity, and informed decision-making within armed forces.
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Abstract. In 2011, the authors were part of a team of researchers working on
an intelligence analyst project, Heuristica, exploring the use of serious games to
teach intelligence analysts to recognize cognitive biases in their own decision-
making and in the decisions of those they observed, and to learn to use strategies
that would mitigate those biases. In this paper we provide an analysis of the
architecture and extend the design to include components built around a large
language model (LLM, e.g. ChatGPT). We call the new design Heuristica II. Our
analysis consists of envisioning updated components and preliminary explorations
of prompt structures that can be inserted into the components of the adaptive
instructional system to advance their capabilities. The updated design will take
into account lessons learned from the 2011 project and beyond. These explorations
reveal the capabilities of using LLMs for adaptive training but also highlight some
areas requiring improvement and caution.

Keywords: Generative AI · Adaptive Instructional Systems · Game-based
Training · Large Language Models

1 Introduction

In 2011, the authors were part of a team of researchers working on Heuristica, an immer-
sive 3D game developed to explore the use of serious games to train intelligence analysts
to recognize cognitive biases in their own decision-making and in the decisions of those
they observed, and to learn to use strategies that would mitigate those biases [1]. The
ultimate goal of Heuristica was to reduce errors due to bias in the analytical products
of the trainees. Our team’s approach applied intelligent tutoring techniques integrated
into the gaming environment that integrated teaching and learning theories and person-
alization techniques to model the learner’s progress and progress toward the learning
goals.

In recent years, the availability of generative AI tools and techniques—specifically
large language models (LLMs) with user-friendly, prompt-driven interfaces—has made
computationally accessible an enormous amount of broad human expert knowledge.
This has led us to consider how those tools could be applied to our approach, had they
been available in 2011, and additionally how this architecture and approach could be
extended in the future to improve learning systems by incorporating LLM capabilities.
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2 Technical Approach

2.1 Architectural Elements

In this paperwe provide an analysis of the architecture of our previous intelligent training
components that were developed as part of the serious game Heuristica and extend the
design to include components built around an LLM, specifically OpenAI’s ChatGPT
(based on [2]). We call the new design Heuristica II. The updated design builds upon
lessons learned since the completion of the 2011 project.

The Heuristica II gaming framework architecture will consist of a host Serious
Game augmented by a set of modular components for facilitating the training. These
training components will include a Student Modeler, a cognitive biases Curriculum
Model and aContent Selector. Due to the newly dynamic nature of the Content Selector
envisioned with the extensions from generative AI, we call this component the Content
Selector-Generator. The Student Modeler and the Content Selector-Generator will use
reasoning techniques that are guided by learning and teaching theories. A Critic will be
used to reason about the student’s knowledge based on activities in the game, including
the identification of cognitive biases exhibited in the student’s performance. These are
improved versions of the training components of the 2011 design. This paper will discuss
potential extensions to several of these components using the LLM.

The cognitive biasesCurriculumModelwill consist of an explicit representation of
the concepts and skills related to recognizing and mitigating cognitive biases as well as
the relationships and interconnections among them (represented as a semantic network).
This Curriculum Model will include the concepts that are to be taught or experienced
through the student’s interaction with the Serious Game.

The Student Modeler will monitor the activity of the student in the Serious Game,
infer and model his or her strengths and weaknesses (by analysis of the activities log
and the use of inferencing techniques guided by the learning theories) and update the
StudentModel to represent the current state of the student’s knowledge. In the extensions
to Heuristica II with generative AI, this paper discusses the use of an LLM to identify
the characteristics of content activities that would move the student to the next steps of
knowledge based on a personalized assessment.

The Critic will contain problem-solving knowledge to be used in evaluating the stu-
dent’s performance and identifying the level of mastery exhibited for skills and concepts
used in the activities. This information will be made available to the Student Modeler
and used to update the Student Model. We experiment with providing prompts to the
LLM to provide a critique of the student performance.

TheContent Selector-Generatorwill dynamically select scenarios and activities to
be presented in the SeriousGame to provide experienceswhich the student needs in order
to acquire the concepts and skills required. These scenarios and activities are based upon
a structure where each learning activity has associated with it a set of concepts or skills
(used to index the content in a content library) that are expected to be used by the student
in performing that activity. Guided by the teaching theory and the current state of the
Student Model, it dynamically retrieves and adapts a sequence of scenarios or activities
that the student needs to complete in order to master the cognitive biases curriculum.
The LLM will be presented with a request for puzzles, activities, or questions that are
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focused on the topics/concepts/skills needed by the student, based on the Student Model
results, and within the story and canon constraints of the game itself.

2.2 Generative AI-Based Improvements

To improve the Heuristica II architecture using an LLM, we experiment with prompts
using a human-on-the-loop, multi-step conversational approach. The preliminary design
is described in this section, and this initial analysis of this LLM-driven approach is
detailed in following sections. Figure 1 shows our proposed approach, built from both
the Heuristica intelligent tutoring system architecture and improvements from the more
recent GTRI Learner Assessment Engine (GLAsE) [3], with LLM improvements noted
in the blue submodules.

Fig. 1. Heuristica II system architecture with LLM-based improvements indicated

Our initial analysis and lessons learned from the difficulty in building solutions (and
the potential wins from increased capability in these areas) in the original project have
led us to focus on the following opportunities for generative AI to supply more adaptive
instruction.

Content Selection and Generation. The initial version of Heuristica required the gen-
eration of puzzles and problem-solving content, stories, and worked-out examples that
match the student’s needs for more practice and cognitive bias observations. This was
mostly performed by the team of humans with expertise in game design and in the cogni-
tive bias domain, which was expensive and time-consuming. The ability to dynamically
produce new activities in exactly the space where the student needs help would result
in more diversity of content, more interesting games, and more personalized training.
Later, we report on a preliminary investigation of ChatGPT in providing support for
automated content selection and generation.

Critic. For the original Heuristica, the student was required to provide solutions in a
very structured format (such as multiple choice or other selection approaches) due to
the limited ability of the Critic to understand, comment on, and score solutions based on
fixed rules. The LLM’s ability to ingest free-form text and provide natural, human-like
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responses allows the system to encourage the learner to think more deeply and respond
more completely to the learning activities. We do a preliminary investigation of the use
of ChatGPT to support the Critic by evaluating free-form text.

Student Modeling. There are a number of considerations that go into updating the
student proficiencies in each cognitive bias concept and sub-concept. For example, during
the Heuristica project we experimented with sliding windows that give more weight to
the student’s performance on more recent learning opportunities, giving consideration
to the fact the student should not be penalized for mistakes or lack of understanding of
concepts or problem-solving approaches in the distant past. The results of the sliding
window calculation can be used by generative AI to characterize the zone of proximal
development, or ZPD [4], with an emphasis on recent student scores.We do a preliminary
exploration to see how ChatGPT characterizes the state of the student’s proficiency in
a qualitative way for the instructor and for the student. This qualitative assessment of
the student’s current state of proficiencies is then available to the Content Selector-
Generator for specification and generation of learning activities for the student’s next
steps in learning. Extensions to scoring approaches and mechanisms is an area that
should be investigated carefully in further research projects.

All of these extensions to the intelligent tutoring components will require a careful
design of the appropriate prompts to result in the best responses from the generative AI
tools. At this stage in the development of these LLM-based improvements, a human-in-
the-loop is required to monitor the accuracy and appropriateness of the responses and
explanations provided. It is noted that the technology surrounding generative AI tools
is advancing rapidly; for this small effort we have experimented with ChatGPT.

3 Component Details

This section discusses some of the specific explorations and the reasoning behind these
prompt designs, as well as our thoughts and conclusions on these results.

3.1 The Critic

The Heuristica II exploration plan includes generative AI extensions of the Critic, driven
by the power that an automated analysis of free text solutions would bring to an instruc-
tional system in a serious game. In the original Heuristica, the Critic was limited in
its capability to reasoning about specific structured responses designed in advance by
human experts. It was designed to respondwith scores used to update the StudentModel.
In Heuristica, the student was given feedback about the correctness of their responses,
but the Critic provided only numeric scores primarily for the purpose of updating the
student model and did not generate a detailed explanation. In this project we wish to
explore the capability of providing more detailed explanations that will urge the student
to think more deeply about the concepts. If we are able to design prompts which explain
enough of the background to the generativeAI tool, it will allowmore free text entry from
the student, allowing the instructional system to request deeper thought from the stu-
dent on diagnosis and mitigation of the cognitive biases, and request explanations of the
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nuanced differences among the different cognitive biases. This preliminary exploratory
project takes a look at the degree to which the generative AI tool can supply a deeper
explanation as part of the feedback. In this section we discuss a chat that we engaged in
with ChatGPT to explore this issue.

A powerful potential use case for generative AI within the Critic component is the
evaluation of freeform natural-language responses provided by a student in response to a
test question within a learning activity. Should this capability be fully realized, it would
reduce the need for an artificially limited number of fixed choice (which are easy for
computers to evaluate) or for manual instructor evaluation. Toward this goal, we asked
ChatGPT to score a student’s answer that is incorrect, in that it does not cover the specific
bias instructed (anchoring bias), but rather is an example of a different bias (projection
bias, primarily).

Input Prompt
“Let's try a different angle. Let's say a trainee has been asked to provide an example 
of anchoring bias. The trainee provided the following answer, in quotes. Please 
score that answer and provide instructional feedback.

“Bob is evaluating political messaging for college freshmen (i.e. new voters) con-
cerning tax rates. He has always disliked paying high taxes, so he builds a message 
about how the estate tax hurts heirs after their parents have worked many hard years 
to build their equity. However, he fails to recognize that college students are not 
typically in a high tax bracket (and therefore don't generally pay much of their in-
come in taxes) and aren't expecting an inheritance anytime soon, so his message 
doesn't work for them.””

ChatGPT [5]
Score: 6/10

Instructional Feedback:
Your answer demonstrates an understanding of cognitive bias, but it seems to mix 

up anchoring bias with another type of bias, possibly confirmation bias or repre-
sentativeness bias. (removed additional text)

Key Learning Point:
Remember, anchoring bias is about the undue influence of an initial piece of in-

formation on subsequent thinking and decision-making. It's crucial to distinguish 
this from simply having a pre-existing belief or opinion, as in the case of confirma-
tion bias.

Overall, your response shows good effort in trying to apply the concept of cogni-
tive bias to a real-world scenario. With a clearer focus on how initial information 
(numeric or otherwise) disproportionately influences further analysis and decisions, 
your example could effectively demonstrate anchoring bias.”

In this case, ChatGPT correctly deducted points due to the answer not aligning well
with anchoring bias. However, it misidentified the bias best represented within the stu-
dent’s text, identifying it as confirmation bias and representativeness bias. Confirmation
bias is somewhat related, but it is not the most appropriate description of the student’s
example (projection bias). This first example of a ChatGPT response shows weakness
in its capabilities, at least as currently prompted. Later examples are much more aligned
with the intended capabilities.
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To explore how ChatGPT can evaluate alignment with the recognized bias in the
student’s example, we attempted a more direct prompt.

Input Prompt
“How well does the trainee's example describe projection bias?”

ChatGPT
“The trainee's example is a more accurate illustration of projection bias than the 
other biases previously discussed. Let's analyze it in the context of projection bias:

Projection Bias:
Definition: Projection bias is the tendency to project one's own thoughts, feel-

ings, or values onto others, assuming that others share the same perspectives or 
experiences. Analysis of the Trainee's Example:

Bob dislikes paying high taxes, and based on this personal sentiment, he builds a 
political message focused on the negative aspects of the estate tax.

He assumes that his perspective on taxes, particularly his views on the estate tax, 
will resonate with college freshmen, who are unlikely to have similar concerns. Bob 
projects his own financial concerns and viewpoints onto a demographic (college 
freshmen) that likely has different financial priorities and experiences.

Relation to Projection Bias:
The scenario demonstrates projection bias quite well. Bob is projecting his own 

dislike of high taxes onto college freshmen, a group that generally does not share 
the same financial concerns or experiences, especially regarding estate taxes.

The example effectively shows how Bob's personal feelings and experiences shape 
his approach to messaging, leading him to assume that these freshmen will have 
similar views or concerns.

Conclusion:
The trainee's example is a good representation of projection bias. It showcases 

how an individual can mistakenly assume that others share their personal viewpoints 
or experiences, influencing their decisions or actions in a way that may not be rele-
vant or effective for the intended audience. In this case, Bob’s personal views on 
taxation lead him to create a message that does not align with the actual interests or 
concerns of college freshmen.”

This direct approach resulted in an accurate critique of the student’s solution. Thus,
in the current state of the tool, used for this purpose, a human-in-the-loop may be needed
to provide a “hint” to ChatGPT, which can then elaborate and build useful instructional
feedback based on that hint.

In this interaction with the generative AI tool, the prompt did not supply the tool with
the definitions of the specific cognitive biases that we are using. This is a case where
supplying a prompt which included the specific definitions might have resulted in a more
satisfactory critique of the student’s response.

3.2 The Content Selector-Generator

Because of the large variety and diversity of content needed to provide an interesting
instructional game to teach a complicated nuanced set of concepts to be applied in
important decision-making situations, the value of good, valid content that could be
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provided by an automated assistant such as a generative AI tool might provide is huge.
The importance of a large variety of content is even more important if you consider the
possibility that the game might be replayed on multiple occasions as a refresher course.
As this is a new tool and approach, caution is warranted. Before inserting generative AI
produced learning opportunities into real training, much testing and vetting should be
done, and, although the goal is dynamic responses to student needs with new content, the
new content will need to be reviewed by experts to assure its validity and appropriateness
for teaching the given concepts. As preliminary examples of how this might be used and
the kind of content that might be produced, we provide the following discussion of
examples in this space.

There are several types of content that Heuristica used to allow students learning
opportunities within the immersive environment of the video game which followed the
story line of space cadets on a space station.

1. Definitions and motivations for the study of cognitive biases in general
2. Definitions of a particular cognitive bias
3. Activities that help distinguish among different cognitive biases, both showing

examples to students and asking the student to work through the differences
themselves.

4. Worked-out examples. One component of teaching students problem-solving, recog-
nition and understanding of important concepts is to provide them with worked
examples that explore different aspects of the concepts being presented. Here we
ask ChatGPT to generate some examples for us.

5. Recognizing biases and supplying mitigation through a diagnostic or puzzle-like
activity

6. Estimation activities

In order to encourage the student to think deeply about complex problem-solving
and decision-making situations, and in order to be more like situations in the real-world,
it is desirable for the student to participate in activities that include multiple types of
cognitive biases.

Below is an example of ChatGPT’s ability to generate new vignettes in a format
similar to one provided by the prompt.



Heuristica II: Updating a 2011 Game-Based Training Architecture 321

Input Prompt
“You are part of an adaptive learning system that interacts with intelligence analyst 
trainees to help them learn to recognize and mitigate their cognitive biases through 
worked-out examples. One such example is the following vignette in quotes.”

ChatGPT
“Of course, I can assist with that. Please provide the vignette you'd like me to work 
with.”

Input Prompt
“ “Joe is buying a car. In thinking about what he can afford, he selects a top price 
of $20,000. Notice that Joe selected a slightly arbitrary starting value based on in-
complete information. At the dealership a salesman says 'I would be willing to sell 
you this car for $18,000.' Notice the dealer (part of Joe’s decision environment) 
provided Joe with another value. Joe compares the two prices and decides that, be-
cause the dealer's amount is less, he will buy the car. Joe is making an anchoring 
error. He selected an initial value, which might or might not have been relevant. 
Because he held firmly to this value, even though other information about was avail-
able, anything less than that value seemed like a bargain. Joe could have avoided 
the error by comparing the cost and features of similar cars rather than relying 
solely on his original value . He could have used this feature/cost information to 
estimate the actual value of this car, and then negotiate the price from that point. 
Notice that if Joe had observed that he was anchoring, he should have employed this 
broader information search strategy and reduced the emphasis on his initial value. 
Joe needs to decide whether $18,000 is really a good price for that car.”

Assume that the trainee answered a question about this vignette correctly. Please 
provide an another, similar example in the same general format that instead involves 
an instance of projection bias.”

ChatGPT
“Certainly! Here's another vignette that illustrates the concept of projection bias in 
decision-making, structured in a similar format to the previous example: Vignette: 
"Samantha is a project manager tasked with selecting a new software tool for her 
company. She has been using a particular software for years and is very comfortable 
with it. When presented with various options for the new software, she instinctively 
favors the one that most closely resembles the software she's familiar with. In her 
mind, she believes that if she finds this type of software user-friendly and efficient, 
then her team will as well. Samantha's decision is influenced by projection bias. She 
assumes that her preferences, habits, and abilities are the same as those of her team 
members. Due to this, she projects her own experiences and expectations onto oth-
ers, potentially overlooking a tool that could be more beneficial for the team as a 
whole. To avoid this error, Samantha should have sought input from her team mem-
bers about their preferences and needs. By understanding the diverse experiences 
and skills of her team, she could make a more informed decision. Additionally, she 
should have considered the specific tasks and challenges her team faces, assessing 
each software option based on how well it addresses those needs, rather than her 
personal preference. Acknowledging projection bias would have led Samantha to a 
broader evaluation of the software choices, considering various user experiences 
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and requirements rather than relying on her own as a universal standard. This ap-
proach would help her select the most suitable software for her team’s diverse 
needs." In this example, the trainee is presented with a scenario that clearly demon-
strates projection bias, where Samantha mistakenly assumes that her team members 
share her preferences and experiences. This example can help the trainee recognize 
similar biases in their work, emphasizing the importance of considering diverse per-
spectives and needs in decision-making.”

ChatGPT successfully mimicked our vignette on anchoring bias to produce an exam-
ple of projection bias for the learner adapting our format to a new concept to be experi-
enced by the learner. Through a number of prompts and situations, ChatGPT was able to
successfully spin a number of stories and provide vignettes that fell within the concepts
that the prompt suggested. Other examples of content generated within the student’s
zone of proximal development (ZPD) are shown in a later section.

3.3 The Student Modeler

This project is exploring extensions of the StudentModeler through the use of generative
AI to apply the proficiency scores stored in the Student Model that have been updated
based on analysis of the student solutions by the Critic. The generative AI extensions
are used to explore the potential for ChatGPT to characterize the state of the student’s
proficiency in a qualitative way for the instructor and for the student. The extended
Student Model’s assessment of the student’s proficiencies is then passed to the Content
Selector-Generator (and through a prompt to the generative AI tool) for specification
and generation of learning activities for the student’s next steps in learning.

Because the approach that this system envisions for teaching students is not depth-
first, but rather introduces, defines and gives examples of all of the cognitive biases being
taught before going to the most advanced or complex decision-making scenarios, there
are generally several concepts which are ready for the student to explore next.

Below is an example of the generative AI tool being passed a snippet from the
Student Model and being asked to develop the characterization of the ZPD to identify
what activities the student should engage in next. The generative AI tool is then given
the following prompt:
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Input Prompt
“We are developing an immersive space ship tutoring game to teach intelligence 
analysts to recognize and mitigate cognitive biases which could result in analytic 
errors. The student should initially be presented with a description of cognitive bi-
ases in general and some examples of the effects and motivation for studying tech-
niques for recognizing and mitigating cognitive biases in decision-making. The pre-
scribed presentation for teaching about a cognitive bias is to begin with the defini-
tion of that cognitive bias, followed by some examples of scenarios where that bias 
is exhibited. These can include exercises where the student is given the opportunity 
to observe and recognize the bias in others and to perform problem-solving where 
they attempt to mitigate or avoid this bias in their own problem-solving. It is recom-
mended that the student is then given the opportunity to see a comparison of this 
cognitive bias with other cognitive biases that they have learned about. New activi-
ties here may include puzzles and decision-making where the student is asked to 
distinguish between to similar cognitive biases. In keeping with the activities of the 
space cadets in the immersive game, the activities should be consistent with the story 
line. We do not recommend that the teaching be depth first, that is it should not teach 
one cognitive bias to completion before going to the next, but rather should use spi-
ral techniques to visit each bias to some degree, later returning for more advanced 
activities in each bias, and for very advanced activities that require the student to 
reason about several different cognitive biases in a single problem-solving vignette 
or activity. The student proficiency in each concept is a value between 0 and 100 
Here is a curriculum Snippet with the related student proficiency score from which 
to Generate a characterization of the Student’s zone of proximal development. Cog-
nitive bias description and motivation 100 Anchoring bias Anchoring bias Examples 
50 Anchoring bias Simple problem-solving 0 Anchoring bias Advanced Problem-
solving containing reasoning about multiple cognitive biases 0 Projection bias Pro-
jection bias Definition 1 Projection bias examples 0 Projection bias Simple problem-
solving 0 Projection bias Advanced Problem-solving containing reasoning about 
multiple cognitive biases 0 Base-rate Neglect Base-rate Neglect Definition 10 Base-
rate Neglect Examples 50 Base-rate Neglect Simple problem-solving 0 Base-rate 
Neglect Advanced Problem-solving containing reasoning about multiple cognitive 
biases 0 Confirmation Bias Confirmation Bias Definition 100 Confirmation Bias Ex-
amples 100 Confirmation Bias simple problem-solving 75 Confirmation Bias Ad-
vanced Problem-solving containing reasoning about multiple cognitive biases 0
Please generate a characterization of the student’s zone of proximal development 
with a short explanation. Please suggest 3 activity types and their related concepts 
to teach within the student’s zone of proximal development.”

ChatGPT
“Based on the curriculum snippet you provided, the student's zone of proximal de-
velopment (ZPD) can be characterized as follows:

The student has a solid understanding of the description and motivation behind 
cognitive biases, as well as a good grasp of the definitions of each bias. They have 
some familiarity with examples of confirmation bias and base-rate neglect. How-
ever, their proficiency in recognizing and mitigating these biases in problem-solving 
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The generative AI tool has provided a useful characterization of the student’s needs
for next activities in the cognitive biases described through a description of the zone of
proximal development. It has provided, as was requested in the prompt a list of three
types of activities that will help move the student toward mastery in these concepts using
the teaching approach that was described in the prompt.

The next section contains a flow through the components that includes a more
extensive example of how the extended components interact with each other.

4 Concept of Operations Using the Extended Instructional
Components

The Curriculum Model defines a set of concept prerequisites which lay out constraints
on the ordering of content activities that should be experienced by the student. In order
to transmit some of this information about the thought process that is used to generate
the selection of the new content activity for the system to select (or in the new extensions
being exploredwith generativeAI) to generate,wewill describe in the prompt the activity
types that should be presented to the student. These will be used by the generative AI to
characterize the ZPD, which will be used to generate new content.

The student should initially be presented with a description of cognitive biases in
general and some examples of the effects and motivation for studying techniques for
recognizing and mitigating cognitive biases in decision-making. The prescribed presen-
tation for teaching about a cognitive bias in Heuristica II is to begin with the definition
of that cognitive bias, followed by some examples of scenarios where that bias is exhib-
ited. These can include exercises where the student is given the opportunity to observe
and recognize the bias in others and to perform problem-solving where they attempt to
mitigate or avoid this bias in their own problem-solving. It is recommended that the stu-
dent then be given the opportunity to see a comparison of this cognitive bias with other
cognitive biases that they have learned about. New activities here may include puzzles
and decision-making where the student is asked to distinguish between two similar cog-
nitive biases. In keeping with the activities of the space cadets in the immersive game,
the activities should be consistent with the story line.

The ZPD identified by the generative AI from analysis of the Student Model (in its
extension of the Student Modeler) will consider what should be taught next following
each branch of the CurriculumModel. We do not recommend that the teaching be depth-
first, that is, it should not teach one cognitive bias to completion before going to the next,
but rather should use spiral techniques to visit each bias to some degree, later returning
formore advanced activities in each bias. The student should later be given very advanced
activities that require the student to reason about several different cognitive biases in a
single problem-solving vignette or activity.

For this design, we are defining the interpretation of the student’s proficiency from
the scores stored in the StudentModel and the characterization of the ZPD for this student
at this snapshot of time be part of the extended StudentModeler. This information should
be then passed to the Content Selector-Generator for the generation of an activity to be
provided next to the student.
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Solutions provided by the student are passed as a prompt to the generativeAIwhich is
asked, in its role as part of the extended Critic, to score them and provide an explanation
for the score. These scores are then sent to the Student Modeler and used to update the
Student Model.

We provide here a sample flow of activity through the different components in
Heuristica II:

1. The student has been interacting with learning opportunities or activities related to
the space station story on Heuristica II. The Student Model contains the proficiency
scores for each concept in the curriculum at each stage of interaction with the game.

2. The generative AI is given the background, the basics of the immersive space station
game story and the philosophy of teaching about the cognitive biases as described
above as part of the prompt.

3. The generative AI tool is passed the snapshot of the current proficiency scores in the
Student Model and is asked to generate a characterization of the ZPD, describing
what activities in which concepts of the curriculum the student should experience
next. The generative AI could be asked to choose which of the concepts and activity
types in the ZPD it recommends for the student (there might be an activity for each
cognitive bias branch in the curriculum that is appropriate in the ZPD) and to explain
why it makes the recommendations.Wemight ask it to provide 3 recommended next
activities from within the ZPD.

4. At this point, with a human-in-the-loop setup, a human reads the recommendations
and sets up a prompt to continue the student’s learning in the game. The human may
choose to have the generative AI produce several activities that are consistent with
the student’s customized needs at this point in their learning.

5. The generative AI (as part of the extended Content Selector-Generator) is passed
this prompt and asked to generate activities consistent with the storyline of the game
that fall within the student’s current ZPD.

6. The student is given these activities and is asked to provide answers and explanations.
This ability of the tutoring system to interpret and respond to explanations in free
test is a new capability enabled by the generative AI tools.

7. The generative AI (as part of the Critic) is passed these solutions as a prompt and is
asked to score them.

8. Human-in-the-loop reviews these as a double-check
9. The Critic’s scores are passed to the Student Modeler and are used to update the

Student Model
10. The system then goes into the next iteration of these steps.

Here is a sample conversation with Chat GPT that takes us through the content
generation step of this iteration.



Heuristica II: Updating a 2011 Game-Based Training Architecture 327

Input Prompt
“We are developing an immersive space ship tutoring game to teach intelligence 
analysts to recognize and mitigate cognitive biases which could result in analytic 
errors. The student should initially be presented with a description of cognitive bi-
ases in general and some examples of the effects and motivation for studying tech-
niques for recognizing and mitigating cognitive biases in decision-making. The 
prescribed presentation for teaching about a cognitive bias is to begin with the def-
inition of that cognitive bias, followed by some examples of scenarios where that 
bias is exhibited. These can include exercises where the student is given the oppor-
tunity to observe and recognize the bias in others and to perform problem-solving 
where they attempt to mitigate or avoid this bias in their own problem-solving. It is 
recommended that the student is then given the opportunity to see a comparison of 
this cognitive bias with other cognitive biases that they have learned about. New
activities here may include puzzles and decision-making where the student is asked 
to distinguish between to similar cognitive biases. In keeping with the activities of 
the space cadets in the immersive game, the activities should be consistent with the
story line. We do not recommend that the teaching be depth first, that is it should 
not teach one cognitive bias to completion before going to the next, but rather 
should use spiral techniques to visit each bias to some degree, later returning for 
more advanced activities in each bias, and for very advanced activities that require 
the student to reason about several different cognitive biases in a single problem-
solving vignette or activity. The student proficiency in each concept is a value be-
tween 0 and 100 Here is a curriculum Snippet with the related student proficiency 
score from which to Generate a characterization of the Student’s zone of proximal 
development. Cognitive bias description and motivation 100 Anchoring bias An-
choring bias Definition 100 Anchoring bias Examples 50 Anchoring bias Simple 
problem-solving 50 Anchoring bias Advanced Problem-solving containing reason-
ing about multiple cognitive biases 0 Projection bias Projection bias Definition 
100 Projection bias examples 50 Projection bias Simple problem-solving 50 Pro-
jection bias Advanced Problem-solving containing reasoning about multiple cogni-
tive biases 0 Base-rate Neglect Base-rate Neglect Definition 100 Base-rate Neglect 
Examples 50 Base-rate Neglect Simple problem-solving 50 Base-rate Neglect Ad-
vanced Problem-solving containing reasoning about multiple cognitive biases 0 
Confirmation Bias Confirmation Bias Definition 100 Confirmation Bias Examples 
100 Confirmation Bias simple problem-solving 75 Confirmation Bias Advanced 
Problem-solving containing reasoning about multiple cognitive biases 0 Please 
generate a characterization of the student’s zone of proximal development with a 
short explanation. Please suggest 3 activity types and their related concepts to 
teach within the student’s zone of proximal development.”

ChatGPT
“Based on the curriculum snippet you provided, the student's zone of proximal de-
velopment (ZPD) can be characterized as follows:
The student has a solid understanding of the description and motivation behind cog-
nitive biases, as well as a good grasp of the definitions of each bias. They have some 
familiarity with examples of each bias and have practiced simple problem-solving 
related to these biases. However, they have not yet engaged in advanced problem-
solving that requires reasoning about multiple cognitive biases simultaneously.
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We break here in the middle of this ChatGPT response to point out that this char-
acterization of the GPT is accurate as intended in the representation of the Student
Model snapshot and would be helpful to an instructor or to the student to interpret their
proficiency and needed next steps. The rest of the ChatGPT conversation continues…
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ChatGPT has shown the capability of producing interesting vignettes that are con-
sistent with the space station story of the game and which engage the student in activities
that teach the cognitive biases characterized by the extended Student Model as within
the ZPD customized to the student.

5 Discussion

This exploration of extensions to the Heuristica tutoring components with generative
AI tools has allowed the student to provide free-form answers and explanations and
provided a much larger variety of content in the form of scenarios, vignettes, problem-
solving examples and puzzles customized to the student’s current proficiency and aligned
with the immersive video game storyline.
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The generation of teaching content is time-consuming and expensive. Having a large
variety of learning activities, enabled by the integration of the LLM into the system,
makes for a more interesting and flexible game, allowing it to be played more than once
and enabling periodic review for supplemental learning or refresher training.

Of the instructional components evaluated in this set of experiments, the most valu-
able capabilities are provided by ChatGPT as part of the Content Selector-Generator,
which can create stories that are consistent with the theme of the game while including
the learning concepts of greatest value to the student. ChatGPT, as currently prompted,
needs further study before it can act as a mechanism for the Critic to adjudicate stu-
dent responses without human-in-the-loop intervention. Improvements to the prompting
approach, or additional context describing the nature of the biases and their expression
through examples, will likely improve this capability. Additionally, as future LLMs grow
in capabilities, this type of higher-level comprehension may improve to the point that the
distinctions among the biases are recognizable by themodel without human intervention.

It has also been shown in the current version of ChatGPT (for example) that unclear
or inaccurate examples are sometimes generated. This underscores, in the current state of
generative AI, the necessity for checking and reformulating teaching content. Examples
are the projection bias analysis where ChatGPT did not recognize the specific typ of bias
that the student had incorrectly identified their vignette.

Finally, because the cognitive bias concepts being covered in this exploration consist
of knowledge that is available in the training sets of most popular LLMs, there was no
need to provide the model with the basic knowledge being taught. However, it is likely
that some training programswill cover content froma proprietary domain or cutting-edge
material not yet trained into the model. Either of these cases would require fine-tuning
an LLM or providing prompt-based information to fill in the knowledge missing from
the model prior to it being able to evaluate student responses and/or provide meaningful
guidance for training.

6 Conclusions and Next Steps

This has been a preliminary exploration of the capabilities of a single generative AI tool
being applied in a specific use case context. There is a need for a more thorough set of
tutoring component application designs and analysis as well as testing of the extended
learning systems by humans.

Next steps should include the design and development of guardrails, that is, auto-
mated analysis or human-in-the-loop analysis to ensure that student responses are ade-
quately and accurately critiqued and scored, and that content presented is accurately
labeled and appropriate.

TheHeuristica II exploration of capabilities has also shown the importance of careful
engineering of the prompts to enable appropriate generation of explanations and con-
tent, as well as the importance of providing a succinct description of the content and
background of the serious game and learning environment. Next steps should include the
design of structure for a thorough succinct description of the context and background.

This project has not focused on the scoring mechanisms or on experiments with the
sliding window for estimating the proficiency of the student in each curriculum concept.
This is an area ripe for future research.
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Abstract. Intelligent Tutoring Systems (ITSs) have significantly
enhanced adult literacy training, a key factor for societal participation,
employment opportunities, and lifelong learning. Our study investigates
the application of advanced AI models, including Large Language Models
(LLMs) like GPT-4, for predicting learning performance in adult literacy
programs in ITSs. This research is motivated by the potential of LLMs to
predict learning performance based on its inherent reasoning and com-
putational capabilities. By using reading comprehension datasets from
the ITS, AutoTutor, we evaluate the predictive capabilities of GPT-4
versus traditional machine learning methods in predicting learning per-
formance through five-fold cross-validation techniques. Our findings show
that the GPT-4 presents the competitive predictive abilities with tradi-
tional machine learning methods such as Bayesian Knowledge Tracing,
Performance Factor Analysis, Sparse Factor Analysis Lite (SPARFA-
Lite), tensor factorization and eXtreme Gradient Boosting (XGBoost).
While XGBoost (trained on local machine) outperforms GPT-4 in predic-
tive accuracy, GPT-4-selected XGBoost and its subsequent tuning on the
GPT-4 platform demonstrates superior performance compared to local
machine execution. Moreover, our investigation into hyper-parameter
tuning by GPT-4 versus grid-search suggests comparable performance,
albeit with less stability in the automated approach, using XGBoost as
the case study. Our study contributes to the field by highlighting the
potential of integrating LLMs with traditional machine learning models
to enhance predictive accuracy and personalize adult literacy education,
setting a foundation for future research in applying LLMs within ITSs.
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1 Introduction

Adult literacy education, particularly in reading comprehension, empowers indi-
viduals to fully participate in society, access better job opportunities, and engage
in lifelong learning [1,2]. Effective literacy education training programs are
designed to address the diverse needs of adult learners, incorporating strategies
that enhance reading skills, comprehension, and the ability to critically ana-
lyze texts [3,4]. Notably, the effectiveness of these programs often relies on the
accurate assessment and continuous improvement of personalized instructions to
meet learner needs [4,5]. In this context, the prediction of learning performance
is important, which can allow for the early identification of individuals who may
require additional support, enabling interventions that are precisely targeted to
enhance reading comprehension and literacy skills.

ITSs are one common form of personalizing instruction in adult literacy.
ITSs are computer-based systems that tracks and assesses learning progress and
further facilitates the adaptation of instruction to better meet learners’ needs [6–
8]. A significant component of one ITS is predicting learning performance based
on machine learning models to personalize instruction [9,10]. Learning perfor-
mance prediction relies on analyzing and modeling historical data, including
records of learners’ correctness in problem-solving attempts [11,12]. Advanced
machine learning models using these fine-grain data, alongside natural language
related to the problem-solving context in adult literacy education, could poten-
tially improve learner performance prediction and improve the personalization of
instruction. However, to unlock the potential of ITS in adult literacy education,
advanced AI models, such as multimodal machine learning models and LLMs,
to accurately predict the learning performance are under-explored.

Recent advancements in AI models, such as LLMs, have demonstrated
remarkable predictive capabilities, including mathematical reasoning [13,14] and
time series forecasting [15–17]. These achievements underscore the LLMs’ poten-
tials in understanding patterns in data relevant to learner modeling tasks. In
the domain of education, prior research also demonstrated the potentials of
leveraging LLMs for predictive analysis (e.g., predicting learning performance
in computer science education [18] and identifying at-risk learners [19]). Despite
these advances [18,19], the application of LLMs in enhancing predictive analyt-
ics within ITSs remains in its early stages. Motivated by the proven effectiveness
of LLMs in educational prediction tasks, our study explores the potential of
LLMs, specifically GPT-4 [20], in comparison with traditional methods such as
Bayesian Knowledge Tracing (BKT) [11,21], Performance Factor Analysis (PFA)
[22], Sparse Factor Analysis Lite (SPARFA-Lite) [23], tensor factorization [24]
and eXtreme Gradient Boosting (XGBoost) [25,26], for predicting learner perfor-
mance in the context of adult literacy education. The present study investigates
two Research Questions:
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RQ1: How effectively can the GPT-4 model, through specific prompting
strategies, predict learning performance in adult literacy programs compared
to existing benchmark models?
RQ2: How can GPT-4 augment traditional human-led efforts in enhancing
the prediction accuracy of learning performance in adult literacy lessons (e.g.,
Persuasive Text, Cause and Effect,Problems and Solution)?

Our study utilized the reading comprehension datasets collected from the
well-known ITS, AutoTutor, developed for the Center for the Study of Adult
Literacy (CSAL) [27]. Figure 1 illustrates the interface of the lessons developed
using CSAL AutoTutor. The datasets comprise attributes such as learner ID,
questions, attempts, and learners’ performance scores for each lesson. To answer
RQ1, we employed the widely-used models, including BKT, PFA, SPARFA-
Lite and XGBoost, comparing them with the GPT-4 model [20]. We assessed
model performance through five-fold cross-validation for all models, revealing
that the XGBoost model surpassed GPT-4 in predicting learning performance.
Interestingly, when prompted GPT-4 for model selection, GPT-4 itself recom-
mended XGBoost for predicting learning performance. Running the GPT-4-
selected XGBoost model on the GPT-4 platform yielded superior results com-
pared to its execution on a local machine. We then answered RQ2 by examining
the tuning of hyper-parameters by GPT-4 versus manual tuning. Specifically,
we prompted GPT-4 to optimize an XGBoost model for predicting learning
performance, focusing on enhancing its prediction capabilities. In parallel, we
manually adjusted the XGBoost model’s hyper-parameters, such as the number
of trees, learning rate, and maximum tree depth, through a grid-search method
on a local machine for comparison. Our findings indicated that while the GPT-
4-tuned hyper-parameters achieved performance comparable to that of manually
tuned models, they exhibited less stability than those optimized through manual
grid search.

Fig. 1. The interface of AutoTutor for the Center for the Study of Adult Literacy.
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2 Related Work

2.1 Adult Literacy Education in Intelligent Tutoring Systems

Adult literacy education has long advocated the computer aided adaptive learn-
ing technologies for their capacity to provide personalized and cost-effective
educational solutions [28]. These technologies are commonly applied in ITSs, as
previously mentioned. ITSs can offer personalized tutoring and adaptive instruc-
tions tailed to the individual learner, dynamically adjusting the difficulty levels
and contents of lessons based on the learner’s responses to questions and tasks
[8,29,30]. For instance, utilizing web-based applications, ITSs deploy computer-
based agents to deliver customized reading materials and learning tasks, ensuring
support is readily available for learners facing challenges [27,28,31]. The signif-
icant impact of ITSs lies in their ability to create an adaptive learning envi-
ronment that supports and responds to individual educational needs, thereby
empowering learners to advance at their own pace. Furthermore, ITSs tackle the
issue of scarce human tutoring and classroom resources for adult learners by
utilizing these systems to improve reading comprehension skills [28,32,33].

A notable ITS prototype is the previously mentioned CSAL AutoTutor,
specifically developed for enhancing reading comprehension. The CSAL Auto-
Tutor employs the trialogue design, which includes one human learner and two
computer agents (virtual tutor and virtual companion) (see Fig. 1) [27]. The
interaction between computer agents and learners including chat and talking
heads [34]. These agents guide learners towards their learning goals via con-
versation. The system assesses learners’ responses, provides feedback, matches
expectation and corrects misconceptions, which is considered the Expectation-
Misconception Tailing (EMT) principle [35]. Once all lesson expectations are
met, the tutoring session concludes.

Generally, AutoTutor has been shown to significantly enhance reading effec-
tiveness, with studies indicating an average learning gain of 0.8 standard devia-
tions over traditional teaching methods [7]. Fang et al. observed that AutorTu-
tor markedly benefits individuals with low literacy levels [5]. Shi et al. identified
AutoTutor as an effective and comprehensive tool for assessing and supporting
the improvement of adult literacy skills [36]. Additionally, research into indi-
vidual learning differences in reading comprehension within ITS environments
has shown that learning performance adheres closely to power-law functions,
demonstrating positive learning rates facilitated by AutoTutor [37].

2.2 Learning Performance Prediction

Learning performance prediction is an important task in the field of ITS in edu-
cation. By understanding the learner’s performance, ITS can accurately assess
learning states and offer tailored instructions to support learners throughout
learning process, particularly when they encounter difficulties with questions,
face early risks of failure, or experience wheel-spinning [38,39].
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The predictive task for learning performance utilizes historical records to pre-
dict future performance on questions, incorporating data from multiple attempts
[40–42]. Driven by the needs of high accurate model for learning performance
prediction, many previous works employed machine learning methods including
BKT, PFA, SPARFA-Lite and tensor factorization. Widely recognized predictive
models such as BKT [11,21] and PFA [12,22], leveraging Bayesian networks and
logistic regression for learner performance prediction respectively. BKT outlines
four probabilistic parameters: “known” (initial or prior knowledge), “slip” (incor-
rectly answering despite knowing the skill), “guess” (correctly answering without
knowing the skill), and “learn” (mastering a skill in subsequent practices) [21].
PFA, on the other hand, includes parameters that account for prior success and
failures in answering questions, skill difficulty reflecting the inherent challenge of
the skill, and individual learning rates indicating how fast the learner improve
in mastering knowledge [22,43]. Both methods have been utilized for predicting
learning performance owing to their stability, strong predictive performance, and
explainability [21,42,44]. SPARFA-Lite utilizes quantized matrix completion to
predict learner performance in knowledge tracing, representing the probability
of answering questions successfully based on three factors: 1) the learner’s under-
standing of latent concepts, 2) the relationship between questions and concepts,
and 3) the inherent difficulty of each question [45]. The tensor factorization
method structurally represents learner knowledge in a three-dimensional space,
incorporating critical factors such as learners, questions, and attempts to influ-
ence learning progress. This approach calculates probability estimates for learner
performance using mathematical tensor factorization.

2.3 Large Language Models in Education

LLMs, pre-trained on massive amounts of data, enabling them to generate
human-like text, answer questions, and perform reasoning tasks with unprece-
dented accuracy [46,47]. LLMs like ChatGPT have demonstrated remarkable
advancements in AI, driving revolutionary shifts in education applications
through enhancing instructional feedback [48–50], boosting student engagement
[51], and offering personalized learning experiences [52].

However, the applications of LLMs in enhancing predictive analytics within
ITSs remains in its early stages. Liu et al.’s investigation [53] on ChaGPT’s
effectiveness in logical reasoning, particularly in making prediction-based infer-
ences for multiple-choice reading comprehension and natural language inference
tasks, highlights its adeptness at complex educational reasoning challenges. Liu
et al. [18] has incorporated the ChatGPT for open-ended knowledge tracing in
computer science education, enabling enhanced prediction of code snippets for
open-ended response analysis. Susnjak [19] has attempted to integrate Chat-
GPT with machine learning models, enabling advanced predictive analytics to
assist at-risk learners through evidence-based remedial recommendations. Fur-
ther instances will not be elaborated upon. These cases highlight the advanced
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predictive capabilities of LLMs or their collaboration with machine learning
models for predictive tasks, inspiring further exploration of LLMs’ potential
in advancing educational predictive applications.

3 Methods

3.1 Dataset

In this study, we utilized datasets from AutoTutor lessons developed for the Cen-
ter for the Study of Adult Literacy (CSAL), which is public accessible online1

Our study was granted ethical approval with the Institutional Review Board
(IRB) number: H15257. As described in Subsect. 2.1, the CSAL AutoTutor
employs a trialogue interaction mode involving two computer agents, a tutor
agent and a virtual peer agent, to facilitate human learners’ acquisition of read-
ing comprehension skills through multiple-choice questions [27]. The selected
lessons for our analysis include “Persuasive Text” (Lesson 1), “Cause and Effect”
(Lesson 2), “Problems and Solution” (Lesson 3). Table 1 presents the basic statis-
tics about the dataset on learner performance, detailing information about the
learners, questions, and attempts for each lesson.

Table 1. Dataset from the CSAL AutoTutor lessons

Dataset Lesson Name # Learners # Questions Max. Attempt

Lesson 1 Persuasive Text 66 8 9
Lesson 2 Cause and Effect 68 9 9
Lesson 3 Problems and Solution 86 11 5

3.2 The Proposed LLM-Based Prediction Method

We developed a LLM-based framework to trace and predict learner performance,
as illustrated in Fig. 2. This framework includes three procedures: 1) encoding
for converting numerical value to contextual prompts, 2) the LLM component
for analyzing these prompts and executing predictions, and 3) decoding for out-
putting the prediction information and assessment along with interpretations.

Learning Performance Data. Learner performance on question-answering
tasks was recorded as binary data (labeled as correct or incorrect), to reflect the
learner’s success or failure in answering the questions. The records also captured
the number of attempts made by the learner. For instance, the performance of
the learner on the ith question during their jth attempt is recorded as 1 for a
correct answer and 0 for an incorrect one (this setting applies to the training
dataset, whereas, for the testing dataset, performance data are omitted to enable
1 AutoTutor Moodel Website: https://sites.autotutor.org/; Adult Literacy and Adult

Education Website: https://adulted.autotutor.org/.

https://sites.autotutor.org/
https://adulted.autotutor.org/
https://adulted.autotutor.org/
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Fig. 2. LLM-based prediction framework for learner learning performance.

future prediction). Our objective is to input these performance data into LLM
to identify data patterns and latent learning features such as initial knowledge
level and learning rate, aiming to predict the learner’s future performance based
on the learner’s historical attempts.

Encoding. Learning performance in binary indicator variables representing cor-
rect or incorrect responses can be compiled into a contextual prompt by inte-
grating numerical data with textual explanations. For example, the entry xl,i,j

could be represented as “The current learner l attempted to answer the ith ques-
tion titled as ‘...’ on their jth attempt. Their performance was observed as 1 or
0”. Essential considerations for this encoding process include: (a) Numerical to
Text Conversion: This involves the embedding of numerical value along with the
question contents and answers into a narrative or textual format. (b) Contextual
Integration: This aspect involves incorporating information related to the lesson
topic, content, and questions, along with knowledge gained from reading com-
prehension, to enrich understanding of both question and lesson material. This
enrichment process also facilitates tailoring and assessing reading comprehension
skills of the learner in the learning process.

LLM Component. The contextual prompt serves as input into the LLM com-
ponent for data analysis and modeling, aimed at predicting learner performance
on new or repeated question attempts. Two primary prediction strategies are
encompassed in this component: 1) leveraging the inherent reasoning, under-
standing, and computational capabilities of the GPT-4 model, e.g., the heuristic-
based approach; and 2) utilizing available machine learning models, which are
automatically selected and fine-tuned by the GPT-4 model for predictive tasks.
Through extensive analysis of trial experiments, the following assumptions are
included: (a) GPT-4 can be pre-trained in predictive task, (b) GPT-4 possesses
the capability to extract domain-specific knowledge from distinct questions and
attempts, (c) GPT-4 can uncover latent learning features within contextual per-
formance data, enabling the evaluation of learners’ reading comprehension skills,
and (d) Information inferred by GPT-4, alongside other computational models,
can be leveraged to discern trends, patterns, and predict learner learning per-
formance.
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Decoding. In the decoding phase, predictive outcomes regarding learning per-
formance are produced through a mechanism that employs either heuristic
approaches or machine learning models, which GPT-4 automatically selects
and implements. These predictions draw on an analysis of the learning per-
formance distribution integrated in previously mentioned contextual prompts.
For instance, it reformat output information into a structured format, such
as “{‘learner ID’:..., ‘Question ID’:..., ‘Attempt’:..., ‘Prediction’:..., ‘Assess-
ment’:...}”, efficiently conveying the prediction details. This procedure incre-
mentally increases the dimensionality of the data until it aligns with the original
input size of the test dataset.

3.3 Baseline Methods

This study will employ machine learning models specifically for predicting learn-
ing performance in education [54], as baselines. Below is a concise overview of
each selected method.

Bayesian Knowledge Tracing (BKT). BKT is a computational model used
to track and predict learners’ knowledge acquisition over time within educational
software, particularly within ITSs [21,55,56]. Fundamentally, BKT is based on
the principles of Bayesian probability which estimates the likelihood that a
learner has mastered a particular skill or concept at various points through-
out the learning process, adjusting these estimates in response to the learner’s
performance on related tasks or questions [55]. According to [11], the classic
BKT’s key parameters include the initial probability of mastering the skill, the
probability of acquiring knowledge the learner by transforming from the unmas-
tered state on one skill to master state, the probability of making incorrect
answer response by slipping in mastered state on a skill, and the probability
of making correct answer response by guessing in unmastered state on a skill.
BKT advanced this framework by incorporating customized parameters for each
learner and each skill into its modeling and predictions [55]. By updating these
parameters using Bayesian inferences based on each learner’s responses to ques-
tions over time, BKT refines its estimates of a learner’s knowledge state at a
particular time step as the learner responds to questions [11,55].

Performance Factor Analysis (PFA). The PFA utilizes logistic regression
to predict the learner’s performance on the questions by incorporating factors on
individual learning ability, skill-related features (e.g., difficulty), and the learner’s
previous success and failures [12,22,43,57,58]. Many studies have established
PFA as a competitive approach in predicting learner performance, acknowledging
the importance of individual differences across skills and learners [12,42,59]. In
our research, we have further refined the PFA model to better account for the
variability among individual learners.

Sparse Factor Analysis Lite (SPARFA-Lite). The SPARFA-Lite, a variant
of the Sparse Factor Analysis (SPARFA), employs matrix completion technique
to analyze quantified, graded learner performance on questions [23]. This model
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offers improved efficiency in automatically exploring the number of Knowledge
Components for predicting learner performance compared with the traditional
compared to the traditional Sparse Factor Analysis model [23].

Tensor Factorization: The tensor factorization method decomposed a three-
dimensional tensor (representing dimensions of learners, questions and attempts)
into a factor matrix for learners and latent features, and a factor ten-
sor that encompasses dimensions of latent features, questions, and attempts
[24,37,60,61]. The latent feature dimensions obtained through tensor decompo-
sition capture learner-specific characteristics such as learning abilities and per-
sonalities [60]. The factor tensor models the knowledge space related to learner
interactions with questions. Our prior studies have demonstrated its significant
efficacy in predicting learner performance, particularly within the adult liter-
acy domain [37,61]. Here, the rank-based constraint was applied to regulate the
factorization computing [24].

eXtreme Gradient Boosting (XGBoost): The XGBoost algorithm has
become an effective model for knowledge tracing, significantly enhancing pre-
diction performance [26,62]. At its core, XGBoost constructs an ensemble of
decision trees in a sequential manner [25,63]. In this process, each subsequent
tree is specifically trained to address and correct the residuals or errors made
by the preceding tree, effectively enhancing the model’s predictive accuracy over
iterations. Guided by a gradient descent algorithm, XGBoost optimizes a pre-
defined loss function, systematically reducing prediction errors. Its capability
to interpret input features, such as unique learners, questions, and attempts in
our study, enables an in-depth understanding of model predictions, enhancing
transparency and trustworthiness in predictive analytics.

3.4 Evaluation

We employed the recognized quantitative metric Root Mean Square Error
(RMSE), which aligned with peer studies [12,21,42,64,65]. RMSE provides a
measure of the square root of the average squared differences between predicted
and actual values [66]. Additionally, we conducted a five-fold cross-validation
to obtain RMSE values for comparative analysis. In our LLM-based prediction
method, specifically utilizing GPT-4, we allocated four out of five folds for train-
ing to enable the model to learn from historical data through contextual prompts.
The remaining fold was used for testing, to evaluate the accuracy of predictions
made by the trained GPT-4.

4 Results

4.1 Results on RQ1

We investigated the comparison of prediction performance between LLM-based
models and Baseline Methods. The result is shown in Table 2 which presents the
RMSE values of all models across three CSAL lessons, with lower value indicating
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better performance in prediction. It should be noted that all the RMSE scores
were obtained from models after adjusting their hyper-parameters.

Specifically, the XGBoost (selected by GPT-4) showcases an enhanced appli-
cation, leveraging GPT-4’s strengths in reasoning, computation, and automatic
tuning to refine outcomes. Aware of the potential for errors or instability in GPT-
4’s predictions, we established the reliability of our RMSE by conducting seven
repeated prediction runs for both the standard GPT-4 and the GPT-4 enhanced
with XGBoost, across each lesson. The outstanding predictive accuracy of the
XGBoost (selected by GPT-4) model led us to perform an extensive manual
grid search, documented in Table 2. This process entailed evaluating 1,296 com-
binations of hyper-parameters, including number of trees, learning rate, maxi-
mum tree depth, training instance subsample ratio, column subsample ratio per
tree, minimum loss reduction for further partitioning, and the minimum sum
of instance weight required in a child node. This rigorous hyper-parameter tun-
ing was aimed at further enhancing the model’s performance for each lesson, as
detailed in Table 3.

Table 2 presents the RMSE values of all models across three CSAL lessons,
with lower value indicating better performance in prediction. The RMSE value
of GPT-4, as shown in Table 2, surpasses that of most other models, demon-
strating only higher values when compared to XGBoost in Lessons 1 and Lesson
2. Notably, the RMSE value of XGBoost (selected by GPT-4) is the lowest
among all six models across the three lessons. This demonstrates the substan-
tial enhancement in predicting learning performance achieved through the inte-
gration of GPT-4 and XGBoost. Additionally, the XGBoost model outperforms
other traditional knowledge tracing models, including Individualized BKT, PFA,
SPARFALite, and Tensor Factorization, in the reading comprehension data. As
for the standard errors for the RMSE values, lower values indicate less variabil-
ity in the estimated RMSE values, thereby suggesting greater confidence in the
accuracy of the predictions. The standard errors for all RMSE values related
to GPT-4 and XGBoost (as chosen by GPT-4) fall within the range of [0.004,
0.009], indicating a relatively moderate variability in the prediction outcomes
across all models.

Table 2. Comparison of model performance using RMSE with the standard error from
five-folds cross validation

Models Lessons
Lesson 1
(RMSE)

Lesson 2
(RMSE)

Lesson 3
(RMSE)

BKT 0.4300.004 0.3750.009 0.3920.006

PFA 0.4400.015 0.4080.005 0.4070.012

SPARFA-Lite 0.6030.039 0.5220.017 0.4600.015

Tensor Factorization 0.4370.011 0.3850.009 0.3950.011

XGBoost 0.4120.010 0.3660.005 0.3840.011

GPT-4 0.4150.004 0.3700.007 0.3810.009

XGBoost (selected by GPT-4) 0.3980.008 0.3510.006 0.3810.008
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4.2 Results on RQ2

Table 3. Comparison of RMSE of hyper-parameter tuning methods for XGBoost
(Note: the Std. is the abbreviation of standard deviation).

Methods Lessons Mean Median Std. Min. Max.

Hyper-parameters tuning
by GPT-4

Lesson 1 0.435 0.422 0.053 0.398 0.552

Lesson 2 0.376 0.361 0.033 0.351 0.444
Lesson 3 0.398 0.382 0.036 0.381 0.480

Hyper-parameters tuning
by manual grid search

Lesson 1 0.433 0.426 0.017 0.412 0.484

Lesson 2 0.391 0.384 0.020 0.366 0.423
Lesson 3 0.396 0.394 0.010 0.384 0.433

Table 3 displays a comparative analysis of RMSE values from two hyperparam-
eter tuning approaches for the XGBoost model: one selected by GPT-4 and the
other via manual grid search. GPT-4 consistently yields lower minimum and
median RMSE values across all three lessons compared to the manual method.
However, GPT-4’s method results in a lower mean RMSE value only for Les-
son 2. The standard deviation values from GPT-4 are larger than those from
the manual grid search, indicating a wider variability in RMSE outcomes. Addi-
tionally, the minimum and maximum range of values obtained through GPT-4’s
method exceed those from the manual approach, suggesting a greater spread in
the performance results.

5 Discussions

5.1 Efficient LLM-Based Method for Predicting Learning
Performance

Our study highlights the capabilities of GPT-4 in predicting learning perfor-
mance in ITSs. We provide an in-depth examination of our experimental results
regarding the application of GPT-4 for predicting learning performance within
the CSAL AutoTutor datasets. Two exact predictive strategies, one leveraging
the inherent heuristic reasoning method and the other utilizing available machine
learning models, are implemented by GPT-4.

When employing its heuristic-based reasoning approach, GPT-4 takes into
account factors such as the perceived difficulty of questions and their attempt
frequency. This approach does not rely on a fixed algorithm but uses logical rea-
soning to analyze historical performance data. It assumes that questions deemed
more difficult are less likely to be answered correctly on the first try. Further-
more, if learners make multiple attempts on certain questions, GPT-4 interprets
this as a sign of struggle with the material, leading to a more conservative per-
formance prediction.
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At the same time, enhancing GPT-4’s predictive accuracy significantly
involves incorporating reading comprehension materials, questions, and addi-
tional background information to craft context-specific prompts. By understand-
ing the learning content and the questions’ context, GPT-4 can offer explanations
and leverage its vast knowledge base more effectively. This contextually enriched
reasoning allows GPT-4 to outperform traditional learning performance predic-
tion methods, such as BKT, PFA, SPARFA-Lite, and Tensor Factorization. The
result is not just more accurate predictions, but also insights that are directly
relevant and tailored to the specific learning scenario. This makes GPT-4 an
invaluable tool for educators seeking to understand and improve student learn-
ing performance.

When utilizing available machine learning models, GPT-4 demonstrates its
ability by recommending and applying a range of machine learning models tai-
lored to the specific needs of the data. Among these models are logistic regression,
random forest, gradient boosting machine, and XGBoost. GPT-4’s unique self-
programming ability enables it to autonomously test these models and select
the most effective one based on performance metrics from validation results.
Through this process, XGBoost is identified as the most suitable model for
predicting learning outcomes, leading to a novel approach in our experiments
that combines the strengths of GPT-4 with XGBoost, referred to as GPT-4
with selected XGBoost. This approach remains adaptable, with GPT-4 continu-
ously seeking to refine and enhance its choice of models. The fusion of GPT-4’s
capabilities with advanced machine learning techniques broadens its application
scope, pushing the boundaries of what can be achieved in computational tasks.
This not only showcases GPT-4’s potential for complex problem-solving but also
highlights its role in driving forward the evolution of ITSs.

5.2 Prompt Strategy for Predicting Learning Performance

In this study, the prompt engineering plays a crucial role. The foundational
framework of our prompts encompasses encoding for the contextual representa-
tion of numerical values and decoding to facilitate LLM-based understanding,
reasoning, and analysis in the generation of predictive outputs. This approach
allows the LLM to seamlessly integrate all processes, from data input to final
prediction. It employs self-search and self-optimization for refining prompt engi-
neering, alongside semantic compiling techniques for processing learning perfor-
mance data. The Chain-of-Thought prompt strategy [47] is employed to generate
GPT-4 output that illustrates model reasoning and its interpretative process. By
activating specific prompts within GPT-4, we guide it to more effectively analyze
and interpret learner learning performance data. This method not only improves
the transparency of the AI’s decision-making process but also enhances the pre-
cision and relevance of its predictive capabilities.

Specifically, the Chain-of-Thought prompt strategy systematically maps out
the reasoning steps necessary for predicting learning performance, employing a
sequence of precisely tailored prompt compositions to ensure effective execu-
tion of each steps. These compositions encompass: (a) Presentation of Learn-
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ing Materials: Share the learning materials and associated comprehension ques-
tions to establish a basis for analysis. (b) Contextual Transcriptions of Learning
Performance Data: Provide a detailed contextual representation of the learn-
ing performance data. (c) Analysis Request: Clearly articulate the request for
data analysis, specifying the desired insights or outcomes. (d) Method Selection:
GPT-4 suggests appropriate analytical or machine learning methods based on
the project needs. (e) Model Development: Assistance in developing a machine
model, e.g., XGBoost, including training and validation across dataset folds. (f)
Performance Evaluation: Calculation and presentation of validation outcomes,
such as RMSE, for each fold. (g) Configuration Disclosure: Detailed sharing
of the model’s configuration settings for transparency and reproducibility. (h)
Skill Assessment: Discussion on assessing learners’ reading comprehension skills
based on their performance data. (i) Optimization: Guidance on fine-tuning
the model’s hyperparameters for improved predictive performance. (j) Iterative
Feedback: Continuous exchange for clarification, refinement, and further analysis
based on user inputs and GPT-4’s suggestions. For a comprehensive overview
and detailed instructions, please refer to Appendix A.

6 Limitations

Although the present study highlights the potential of LLMs in enhancing pre-
dictive accuracy of learning performance prediction, it also identifies certain lim-
itations. Future work remains in strengthening the connections between specific
reading comprehension knowledge and skills and the reasoning process. There
is a need to explore how these connections can be utilized to refine prompts
and enhance predictive effectiveness. Specifically, constraints related to the fine-
tuning of LLM-based platforms or APIs may hinder the optimization of mod-
els tailed for our dataset. Additionally, limitations in executing deep learning
models restrict the application of advanced techniques such as Deep Knowledge
Tracing (DKT) [67], Self-Attentive Knowledge Tracing (SAKT) [68], Dynamic
Key-Value Memory Networks (DKVMN) [69], which may further improve the
predictive accuracy.

7 Future Directions

7.1 LLMs for Knowledge Tracing in Learner Model

The potential of LLMs for knowledge tracing relies on at least two key aspects:
firstly, their capability in identifying knowledge components [70,71], which
encapsulate the prerequisite knowledge for proficiently addressing specific ques-
tions with the given context; and secondly, their integration with machine learn-
ing models (self-selected by LLMs or external), which is further bolstered by
LLMs’ inherent interpretability, facilitating cohesive reasoning, assessment, and
predictive capabilities concerning the learner performance. Further research in
this direction holds significant promise for advancing our understanding and
application of knowledge tracing methodologies based on LLMs.
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7.2 LLM-Based Trace of Learners’ Learning for Intelligent Tutoring
Systems

The present study’s finding motivate future research into LLMs to augment and
complement modeling of learner learning and dynamic learning states within
ITSs. The endeavor involves utilizing diverse data types, including numeri-
cal, textual, and even multimodal inputs, to construct a comprehensive learner
model. Drawing from LLMs like ChatGPT, Llama, and Gemini, along with var-
ious machine learning methods, future research could provide effective real-time
prediction of learner learning. By integrating insights from LLMs and machine
learning, this approach enhances the pedagogical component of Intelligent Tutor-
ing Systems, enabling more precise instructional strategies and feedback mech-
anisms. Specifically, the present use of LLMs for learner modeling could be used
in nascent applications for tutoring through Expectation-Misconception Tailored
(EMT) conversation styles in adult literacy [6,35,72] or applications of LLMs
to automatically generate peer-tutoring dialog [49]. Improving learner modeling
through these applications could enable more personalized and effective peda-
gogical strategies and feedback for learners.

8 Conclusion

The present study investigates the use of LLMs, specifically GPT-4, in predicting
learner’s learning performance in the context of adult literacy in Intelligent Tutor-
ing Systems. We developed an LLM-based prediction method that integrates the
encoding of numerical learning performance data into a contextual prompt, con-
ducting data analysis and prediction within LLM component, and decoding the
output to obtain predicted learning performance data. Compared to traditional
machine learning methods, such as BKT, PFA, SPARFA-Lite and Tensor Factor-
ization, our LLM-based method achieves higher predictive accuracy when incor-
porating with XGBoost (selected by GPT-4 in our study). Although XGBoost
running on a local machine initially surpasses GPT-4 in accuracy, the optimiza-
tion of XGBoost parameters selected by GPT-4 and fine-tuned within the LLM
environment exhibits enhanced performance over local execution. Our examina-
tion of hyperparameter tuning by GPT-4 versus manual grid search reveals simi-
lar outcomes, yet the GPT-4 method introduces a degree of variability. Our find-
ings underscore the potential of merging LLMs with established machine learning
frameworks to boost personalization and efficacy in adult literacy education. This
work lays the groundwork for future inquiries into the integration of LLMs in ITS
environments, demonstrating the increased practicality of employing LLMs for
learner performance prediction in AI-enhanced educational contexts.
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Appendix A: Example Prompt Strategy for Predicting Learning
Performance

User GPT-4

User: Hello ChatGPT, I am working on a
project related to adult literacy and have a
dataset from the Center for the Study of Adult
Literacy (CSAL) AutoTutor lessons. This
dataset contains responses from adult learners
engaged in reading comprehension activities. I
seek your expertise in data mining and
analysis to uncover insights and predict
learning outcomes.

I’d be delighted to help you with your project
on adult literacy. To get started and provide
you with the most accurate assistance, I’ll need
some additional information about your dataset
and your specific goals. Here are a few questions
to guide our next steps:

– Dataset Overview: Could you provide an
overview of the dataset? For instance, what
are the features (columns) in your dataset, and
what types of data do they contain (numerical,
categorical, text, etc.)?
– Learning Performance: What specific learning
performance are you interested in predicting?
For example, are you looking to predict overall
improvement in literacy levels, comprehension
scores after lessons, or something else?
– Analysis Goals: Beyond predicting learning
performance, are there any specific insights or
patterns you’re hoping to uncover? This might
include identifying the most challenging lessons,
understanding which factors contribute most to
literacy improvement, or anything else relevant
to your project.

Once you provide more details, we can discuss
potential data mining techniques and
analytical approaches that could be beneficial
for your project ...

User: Here is the information for one CSAL les-
son. The topic of the lesson resolves around
Problems and Solution for testing adult read-
ing comprehension. The reading content is
titled’Minor Burns’. We assume the difficulty
level of this lesson and questions as Medium.
The reading material for the current lesson is
in following: {Reading Material} . All the
questions and corresponding answers are as
follows: {Questions} . Could you provide a
mapping of the relationship between the
knowledge required for each question, based on
the lesson content, and the reading skills
necessary to comprehend and master this
knowledge?

GPT-4: To map the relationship between the
knowledge required for each question based on
the “Minor Burns” lesson content, we’ll examine
the questions and identify the specific pieces of
information or skills needed to answer them cor-
rectly. This process involves linking each ques-
tion to the relevant parts of the text and cat-
egorizing the type of knowledge or cognitive
skill they test, such as factual knowledge, com-
prehension, application, or analysis. Knowledge
Mapping:

– Question 1: What is the topic of this text?
Knowledge Required: Factual knowledge about
the text’s main topic.
Related Text Content: The entire reading is
focused on minor burns.
Skill Type: Identification of main idea.

...
This mapping highlights that successfully
answering the questions requires a mix of
factual knowledge, comprehension, application,
analysis, and evaluation skills. Each question is
tied to specific content within the “Minor
Burns” lesson, demanding learners to engage
with the material at different cognitive levels ...
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User GPT-4

User: This dataset is organized into five dis-
tinct sections, each comprising a training
and a testing dataset. These datasets feature
four key columns: learner ID, Question ID,
Attempts, and Obs (actual performance).
Within the Obs column, a performance score
of 0 signifies a completely incorrect answer,
while a score of 1 denotes a completely
correct answer, in relation to the previ-
ously mentioned questions and their respec-
tive answers. All historical performance data
are encapsulated within the training dataset,
whereas data awaiting prediction are con-
tained within the testing dataset. The task
involves utilizing the training dataset to fine-
tune the GPT-4 model, applying the testing
dataset for validation, and predicting learner
performance as reflected in the Obs column.
Notes for consideration:

1. I should rely on my analytical and compu-
tational skills for making these predictions.
2. It’s requested that I calculate a contin-
uous likelihood score between 0 and 1 for
each learner’s chance of correctly answer-
ing a question, based on the learner ID and
Question ID. This score should directly cor-
relate with the likelihood of a correct or
incorrect answer, adhering to the criteria
outlined in the dataset’s description.

{Add “Avoid using the machine learning
models.” for GPT-4 model.}
{Attached Dataset Files}

GPT-4: To begin analyzing and predict-
ing learner performance using the provided
datasets, I’ll start by examining one of the
training datasets to understand its structure
and content. This initial analysis will help
me determine the appropriate data prepro-
cessing steps and model training approach...
{Compile Dataset Files}

...
Given the nature of the data (categorical
IDs for learners and questions without addi-
tional metadata), the model will need to
capture patterns based on historical perfor-
mance metrics associated with specific learn-
ers and questions.
For predicting learner performance on read-
ing comprehension questions based on the
dataset provided, we can explore a variety
of methods. These can range from heuristic
approaches to sophisticated machine learn-
ing models.
{Suggest Methods}

Let’s outline potential methods within these
categories:

1. Heuristic Methods ...
2. Machine Learning Models ...

...
For simplicity and efficiency, we’ll begin
with a model that doesn’t require exten-
sive preprocessing of these categorical fea-
tures. A gradient boosting machine, such as
XGBoost, can handle numerical categorical
variables directly and is well-suited for this
task due to its ability to model complex rela-
tionships and provide probability scores for
outcomes.

...
{Alternatively, GPT-4 is capable of
autonomously selecting the optimal
prediction method, with logistic regression
and XGBoost being the most commonly
utilized approaches based on our
experiments.}

This is one optional step: {User: Request to
verify dataset information and details to
ensure GPT-4 comprehends the data and
can perform fundamental statistical
analyses. For instance, calculate the
number of students, the number of
questions, and attempts, including the
distribution and frequency of these
elements, among others. }

{GPT-4: Showcase its understanding and
analytical findings in response to your
request ...}
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User GPT-4

User: Could you assist in employing XGBoost
regression for model development and predic-
tion tasks across the five folds? I would appre-
ciate if you could also provide the validation
outcomes, specifically Root Mean Squared Error
(RMSE), for each fold. Additionally, could you
detail the specific configuration of the XGBoost
algorithm utilized in this analysis?
{If you opt to not use machine learning models
and instead rely on GPT-4’s intrinsic reasoning
and computational abilities for prediction, you
can request GPT-4 to proceed using its
heuristic approach in formulating responses.}

GPT 4: Using a very simplified XGBoost regres-
sion model for the first fold, we successfully
completed the training and evaluation process
within the computational constraints. Here are
the updated results for all five folds in following:

– Fold 1:
– Fold 2:
– Fold 3:
– Fold 4:
– Fold 5:

...

User: Can you help me present the model
setting?

GPT-4: For the evaluations performed across
the five folds, the XGBoost regression model
was configured with the following settings to
balance the execution time and predictive per-
formance within the operational constraints:

– n_estimators:...
– max_depth:...
– learning_rate:

...

User: Is there any reading comprehension skills
for answering the questions? Can you help me
assess the learners reading comprehension
skills?

GPT-4: To assess a learner’s reading
comprehension skills based on the performance
data provided, I will first need to analyze the
dataset for patterns in their responses to
questions that we can infer are related to
reading comprehension. Given the structure of
the dataset, I can attempt to identify: ...

{Fine-tuning Model}

User: Could you assist in optimizing the model
by fine-tuning its hyperparameters to achieve
enhanced predictive performance?

GPT-4: Optimizing an XGBoost model involves
tuning various hyperparameters to find the best
combination that minimizes prediction error on
your validation set. The most common hyper-
parameters to adjust include: ...
Let’s start by selecting a set of
hyperparameters to tune for the XGBoost
model...

User: {Other prompts that you need} GPT-4: {Other responses}
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