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Abstract

The study of time perception has advanced 
over the past three decades to include numer-
ous neuroimaging studies, most notably 
including the use of functional Magnetic 
Resonance Imaging (fMRI). Yet, with this 
increase in studies, there comes the desire to 
draw broader conclusions across datasets 
about the nature and instantiation of time in 
the human brain. In the absence of collating 
individual studies together, the field has 
employed the use of Coordinate-Based Meta- 
Analyses (CBMA), in which foci from indi-
vidual studies are modeled as probability 
distributions within the brain, from which 
common areas of activation-likelihood are 
determined. This chapter provides an over-
view of these CBMA studies, the methods 
they employ, the conclusions drawn by them, 
and where future areas of inquiry lie. The 
result of this survey suggests the existence of 
a domain-general “timing network” that can 
be used both as a guide for individual neuro-
imaging studies and as a template for future 
meta-analyses.
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 Introduction

“Time” is ubiquitous, yet timing studies are not. 
Indeed, for studying the subject, “time” is not one 
thing. This is because timing studies occupy a 
diverse landscape of possible experimental task 
designs (Allman et al., 2014; Vatakis et al., 2018). 
Temporal discrimination, production, and repro-
duction can all be used to measure explicit, pro-
spective timing, yet so can (self)paced finger 
tapping, target anticipation, and oddball detec-
tion (Coull & Nobre, 2008). This diversity com-
plicates the pursuit of neuroimaging studies of 
timing: should we focus on what is common to 
all timing tasks? Or should we focus on what 
makes timing varied, labile, and adaptive?

No easy answer exists to this question 
(Matthews & Meck, 2014; Salet et al., 2022). Yet, 
there is a richness in the diversity of neuroimag-
ing studies conducted on the study of time per-
ception. For this chapter, I will focus on explicit 
timing studies. That is, those studies where 
“time” is the to-be-attended dimension. While 
studies investigating implicit timing do exist 
(Wiener et  al., 2010a, b), there is a diversity 
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Fig. 1 Two decades of timing studies in neuroimaging. 
Displayed are cumulative distributions of the number of 
timing studies for three of the main task designs in time 
perception: Discrimination, finger tapping, and produc-

tion. All three studies have increased in prevalence, yet 
discrimination studies have outpaced the other two types 
since 2003, whereas the other two main types have pla-
teaued. (Data drawn from (Nani et al., 2019))

among them that may indeed be greater than that 
found in explicit timing tasks. Part of this is due 
to the difficulties in building a taxonomy of tim-
ing tasks, from which common domains can be 
determined for inquiry (Paton & Buonomano, 
2018; Merchant et al., 2013).

Early attempts in the neuroimaging of time 
perception highlight the problem in approaching 
even an area as conserved as explicit timing. 
Those studies conducted in the 1990s typically 
focused on paced finger tapping as a measure of 
timing, which may have grown out of early robust 
findings in the fMRI literature in examining the 
neural effects of motor movements (Biswal et al., 
1995; Rao et al., 1993). With the advent of event- 
related fMRI, studies in the 2000s turned to a 
wider array of experimental designs (Rao et al., 
2001), including temporal discrimination and 
reproduction (Fig.  1). This trend has continued 
through the 2010s to the present moment this 
chapter is being written in. Among these newer 
studies, there have been attempts to examine so- 
called context effects in time perception 
(Merchant et al., 2013; Bueti et al., 2008). That 
is, situations in which time can change as a result 
of different experimental parameters. This may 
include the effects of signal emotion, reward, 
velocity, or magnitude on perceived duration 
(Matthews & Meck, 2016; Allman et al., 2014). 
Indeed, beyond finding where time can be 
observed in the brain, these studies highlight 
attempts to better understand how time is encoded 
(Bueti, 2011). A wider review of these latter stud-

ies can be found in other chapters in this volume, 
but highlight the future of single-imaging studies 
for time perception, which can include connec-
tionist, multivariate, and encoding-model types.

 Coordinate-Based Meta-Analytic 
Methods

As the neuroimaging literature grew, there were 
early attempts to provide a better “overview” of 
findings. Indeed, the exponential rise of fMRI 
studies led to some concern among researchers 
for how findings would be concatenated (Fox 
et  al., 1998). This was further compounded by 
concerns regarding sample sizes in fMRI and the 
difficult task of determining effect sizes 
(McGonigle et  al., 2000), an issue that is still 
present today (Grady et al., 2021). Further, con-
cern regarding the generalizability of neuroimag-
ing studies was also present; how certain could 
researchers be that their findings regarding a par-
ticular function would apply to other studies 
investigating that same function?

To address the above issues, early steps were 
taken to survey the literature and generate data-
bases of neuroimaging findings. The brainmap 
database (www.brainmap.org) represents one 
result of this, in which neuroimaging findings 
could be categorized and catalogued in a way that 
other researchers could easily access them as a 
record (Laird et al., 2005a, b, c). A critical aspect 
of this was to have appropriate metadata; that is, 
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terms that could sufficiently describe the func-
tions or tasks of interest for a particular study.

From this effort, the main goal was to provide 
a way to synthesize results from neuroimaging 
studies that could provide insight regarding the 
consistency of findings for a particular area. Up 
until this point, any attempts at meta-analyses for 
neuroimaging relied on so-called “label-based” 
methods, in which activated regions that had 
been labeled by an atlas were collected across 
studies and those labels that occurred most often 
were deemed most likely (Laird et al., 2005a, b, 
c). This method was useful for describing neuro-
imaging findings, but suffered from being 
 qualitative in nature. With no statistical test to 
rigorously interrogate the findings, how certain 
could a researcher be that the meta-analysis was 
accurate?

To address this, two primary methods were 
developed independently yet simultaneously: 
Activation-Likelihood Estimation (ALE) and 
Multilevel Kernel Density Analysis (MKDA) 
(Wager et  al., 2009). Both methods were con-
cerned with addressing the likelihood of activa-
tion for any given brain region associated with a 
particular function or state [p(activation|function)]. 
Additionally, both methods relied on using as a 
starting point the three-dimensional coordinates 
reported for the peaks of activation clusters in 
neuroimaging studies. For ALE, the approach 
sought to answer what is the probability that a 
given voxel was active in at least one of the 
included studies. To answer this, activation foci 
from reported studies were all assumed to have 
an activation probability of 1, but each one was 
then smoothed with a 3D Gaussian function, such 
that the probability of activation dropped off in 
every direction (Turkeltaub et  al., 2002; Chein 
et al., 2002). From there, the sum of these func-
tions was taken at each individual voxel, thus rep-
resenting the ALE statistic. For MKDA, the 
approach instead asked how many studies 
reported activation at a given voxel. To answer 
this, a 3D uniform distribution of 1 s was spread 
out in a 10 mm radius from each reported activa-
tion foci. These values were then summed across 
studies, such that the final value represented the 
number of studies reporting activation at a given 

location (Wager et  al., 2004). One notable dis-
tinction between ALE and MKDA values is that 
the latter provided a more readily interpretable 
statistic; by looking at any region, one could get 
a sense instantly of how many studies were 
reporting activation (Bartra et al., 2013). By con-
trast, ALE values are in themselves difficult to 
interpret, as their value will depend on numerous 
factors, including the smoothing kernel for the 
Gaussian, the number of foci reported, and the 
distance between those foci. Yet, an advantage of 
the ALE method is that the graded probability 
distributions when summed can provide a rela-
tive difference in activation-likelihood between 
different voxels and regions that is more nuanced 
than MKDA, and so one can thus determine 
which regions are more likely to be activated over 
others. Regardless, once generated, both methods 
provided a similar means of assessing statistical 
significance, in which a random or null distribu-
tion was nonparametrically generated by ran-
domizing the reported foci locations and 
conducting the generating the ALE/MKDA val-
ues again with a high number of repetitions 
(˜10,000). Because both methods relied on pro-
ducing brain maps from reported coordinates, 
they were referred to as Coordinate-Based Meta- 
Analyses (CBMA).

Since the advent of primary CBMA methods, 
a number of advances have been made as the 
technique has proliferated (Fox et al., 2014). For 
both ALE and MKDA, stronger inferences were 
allowed by providing algorithms for assessing 
false discovery rate and familywise error, as well 
as cluster-forming thresholds (Laird et al., 2005a, 
b, c; Eickhoff et al., 2012). Further work also pro-
vided a change from fixed-effects models to 
random- effects, by incorporating the number of 
subjects within each study as a covariate to mod-
ify individual ALE maps (Eickhoff et al., 2009). 
Other changes were also made to adjust for errors 
in the design; for example, both ALE and the 
original version of MKDA (known as “KDA”) 
were sensitive to studies that reported large num-
ber of activation foci compared to those that 
reported fewer ones. However, updates to both 
algorithms were able to account for this by 
restricting their statistics to the likelihood of acti-
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vation across studies (Turkeltaub et  al., 2012). 
Other additions to the methods allowed for use of 
subtraction analyses, in which two ALE maps 
could be contrasted with one another to examine 
if one type of task was more likely to have activa-
tion at a particular voxel than another type of task 
(Laird et al., 2005a, b, c). All of these additions 
improved the robustness of CBMA methods, pro-
viding stronger inferences regarding brain activa-
tion. However, despite these improvements, there 
are substantial weaknesses to both CBMA 
approaches. First, and foremost, is that all CBMA 
methods rely on modeling the uncertainty associ-
ated with activation foci. This modeling, once 
thresholded, provides a map that may appear 
similar to fMRI activation maps, as both incorpo-
rate smoothness into their images. Yet, CBMA 
methods have no access to the original shape acti-
vation, and as such likely do not reflect the “true” 
activation probability across studies. Indeed, a 
study that addressed this possibility by compar-
ing CBMA methods to a meta-analysis that 
incorporated actual statistical maps from a group 
of experiments found that these methods only 
matched the true activation pattern by 45% 
(Salimi-Khorshidi et al., 2009). However, it was 
noted that, of the methods tested, ALE provided 
the relatively closest similarity. As a second 
weakness, both ALE and MKDA do not take into 
account differences in effect size between studies 
and activation foci (Radua & Mataix-Cols, 2009). 
Rather, all activation foci are treated equally. Yet, 
in practice this is never the case, as marked dif-
ferences in the size of an effect will differ across 
activation peaks. Finally, a third major weakness 
is that both methods are biased to include only 
those studies that were published, which natu-
rally ignores those studies that were not. This so- 
called “file drawer” problem means that CBMA 
methods likely inflate the likelihood of true acti-
vation. Notably, a method to correct for this in 
ALE has recently been developed (Acar et  al., 
2018).

Finally, while outside the scope of this review, 
it should be noted that many other CBMA meth-
ods were developed and used (Wager et al., 2009; 
Samartsidis et al., 2017). Indeed, the basic prin-
ciple is such that anyone could generate their own 

CBMA using similar means kable (Bartra et al., 
2013). Of importance to mention is that both 
ALE and MKDA include user-defined sets of 
coordinates. That is, the person conducting the 
CBMA is the one responsible for finding the acti-
vation foci from the particular studies they are 
interested in. This stands in contrast to automatic 
meta-analytic methods, the most prevalent of 
which is by Neurosynth (Yarkoni et al., 2011). In 
the Neurosynth method, rather than running a 
CBMA on a given set of coordinates, the algo-
rithm attempts to search across the entire corpus 
of neuroimaging studies in online journals, to 
scan the text of these papers to find a term of 
interest to the user (i.e., “timing”), extract auto-
matically the reported activation foci from those 
papers, and then generate a CBMA of those coor-
dinates like MKDA.  However, from here, 
Neurosynth compares this activation map to the 
remaining corpus—that is, those studies lacking 
the term of interest—and compares them with a 
chi-square test. The result is two different activa-
tion maps: one which provides the probability of 
activation for a given function or state, and  
the other which provides the probability of a 
function or state for a given activation 
[p(function|activation)]. This latter term provides 
a so-called “reverse inference” map, in which one 
can attempt to ask if certain regions are more 
likely to be activated for particular functions 
(Poldrack, 2006).

 Previous Meta-Analyses of Time 
Perception Networks

The first CBMA of time perception was con-
ducted in 2010 (Wiener et al., 2010a, b). Before 
that point, three label-based meta-analyses had 
been conducted. Of these three, each incorpo-
rated a different set of studies and reached some-
what different conclusions. Lewis and Miall 
(2003) suggested that the cerebellum and supple-
mentary motor area (SMA) were the most likely 
to be activated, whereas Penney & Vaitilingham 
(2008) suggested it was the cerebellum and right 
inferior frontal gyrus (rIFG), and (Macar et  al., 
2002) suggested a range of cortical and subcorti-
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cal structures. With the first meta- analysis, these 
questions were quantitatively addressed by divid-
ing the corpus of timing studies into those that 
measured explicit timing at subsecond and supra-
second ranges, as well as whether the task was 
motor (i.e., paced finger tapping, reproduction) 
or perceptual (i.e., discrimination, estimation) in 
nature. Here, the findings demonstrated marked 
differences in activation-likelihood across sub- 
and suprasecond ranges, with the former more 
likely to activate subcortical structures such as 
the basal ganglia and cerebellum, and the latter 
recruiting more cortical regions. Crucially, across 
all timing task variations, the SMA and rIFG 
were found to be the most commonly active.

Following these initial results, a number of 
other meta-analyses were run, yet each to address 
different questions. Indeed, a strength of the 
CBMA method is that it can ask questions of 
commonality or differences across studies that 
may be difficult to ask within an individual study. 
Ortuño et  al. (2011) ran an ALE meta-analysis 
examining explicit timing studies in both healthy 
control and schizophrenia patients. For the analy-
sis of healthy control subjects, significant ALE 
values were found in the SMA, left precentral 
gyrus, basal ganglia, and thalamus, with reduced 
activation-likelihood in these same approximate 
regions for Schizophrenia patients. An additional 
study also compared activation-likelihood 
between subjects with Attention-Deficit 
Hyperactivity Disorder (ADHD) and healthy 
controls performing timing tasks (Hart et  al., 
2012). Notably, this study employed another 
CBMA method, known as Effect-size Signed 
Differential Mapping (SDM; now known as 
Seed-based d Mapping). In this method, spatial 
maps are generated that also take into effect the 
size and sign of the effect (for example, by incor-
porating reported t statistic values for each peak), 
and so can account for both direction and magni-
tude. The results of this meta-analysis demon-
strated reduced likelihood in left-hemispheric 
regions including the IFG, inferior parietal, cere-
bellum, and insula. Additionally, the right dorso-
lateral prefrontal cortex (DLPFC) was found to 
vary depending on medication status across stud-
ies in ADHD. A similar study employing SDM 

was conducted by Radua et al. (2014) that incor-
porated both time perception and cognitive effort 
(i.e., working memory and attention). Here, a 
large overlap between time perception and cogni-
tive effort was observed for many cortical regions 
associated with time, including the SMA, parietal 
and prefrontal cortices, with exclusive timing 
likelihood remaining in the basal ganglia. A cru-
cial insight gained from this study is that many of 
the regions associated with “timing” were likely 
engaged in multiple, overlapping functions, not-
ing that the specificity of any one region was dif-
ficult to assess.

While the results of Radua and colleagues 
may suggest that numerous areas associated with 
“timing” are engaged in other processes during a 
timing task, it should be noted that CBMA can 
still afford some insights into the functional sub-
divisions of these areas. For example, a second-
ary study followed up on the original Wiener 
2010 results by conducting an in-depth analysis 
of the studies likely to activate solely the SMA 
(Schwartze et al., 2012). Here, by dividing stud-
ies up between motor and perceptual compo-
nents, the authors demonstrated that 
activation-likelihood shifted along a rostrocaudal 
gradient, with perceptual timing studies more 
likely to activate the anterior SMA, also known 
as the “pre”-SMA, and motor timing studies 
more likely activate posterior regions of the SMA 
“proper.” Notably, this finding was also observed 
in the original 2010 findings (Wiener et  al., 
2011).

With further neuroimaging studies between 
2009 and 2019, a second series of CBMAs for 
time perception have been run. The first, by 
(Teghil et al., 2019) divided neuroimaging stud-
ies of time perception between those that mea-
sured activation while subjects timed an 
exogenous cue (as in a temporal discrimination 
task, for example) and those that timed an endog-
enous cue (as in a self-paced finger tapping task, 
for example). Here, the general CBMA revealed 
a pattern of activation likelihood similar to the 
original 2010 results, including the SMA, bilat-
eral prefrontal and parietal cortices, and the basal 
ganglia; notably absent was the cerebellum in 
this study. Between internally and externally 
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driven stimuli, the authors observed that external 
stimuli were more likely to activate the SMA, 
rIFG, left precentral gyrus, and insula, suggesting 
that external stimuli are stronger drivers of time 
processing than internally based timekeeping.

The second of the “new” studies was con-
ducted by Nani et  al. (2019). Here, the authors 
conducted a more direct replication of the 
(Wiener et al., 2010a, b) results by dividing stud-
ies between sub- and suprasecond and motor and 
perceptual domains. Importantly, this study also 
incorporated numerous controls to measure the 
robustness of results, incorporating the null 
 distribution correction suggested by Acar et  al. 
(2018). Further, the authors measured correla-
tions between ALE maps, as well as a hierarchi-
cal clustering to measure similarities. The results 
of this more conservative meta-analysis nonethe-
less revealed a similar pattern to the original 2010 
findings, yet with a more conserved volume for 
each region. Notably, the cerebellum and inferior 
parietal cortices were less likely to be activated 
overall, with the former only being observed for 
subsecond motor timing. In terms of similarity, 
motor and perceptual studies were more similar 
to each other across duration ranges, yet at the 
suprasecond range, motor and perceptual timing 
studies were quite similar. These results sup-
ported the original 2010 findings, noting that the 
overall results had not changed much despite 
additional studies, and also provided a more 
nuanced view of the timing landscape.

The third recent CBMA for time perception 
was conducted by Cona et  al. (2021). In this 
study, timing-related regions were compared to 
those that were likely to activate space percep-
tion and processing, which included spatial 
navigation, mental rotation, and spatial atten-
tion studies among others. Here, the main ALE 
analysis for time was again similar to the 
results of both Wiener et  al. (2010a, b) and 
Nani et al. (2019). Between space and time, the 
former was more likely to activate posterior 
regions, including occipital and parietal corti-
ces, whereas the latter was more likely to acti-
vate anterior regions, including prefrontal 
cortex, and subcortical regions including the 
basal ganglia and cerebellum. A conjunction 

analysis found significant activation-likelihood 
in the SMA, rIFG, left precentral gyrus, bilat-
eral insula, and inferior parietal cortices. As an 
additional analysis, these authors examined 
“gradients” of activation- likelihood within 
conjunction regions, finding that the SMA, 
rIFG, right inferior parietal cortex all shifted in 
activation-likelihood between time and space 
studies in either a rostrocaudal or dorsoventral 
direction.

The final and most recent CBMA was per-
formed by Naghibi et  al. (2023). In this study, 
which collected the largest number of neuroim-
aging studies of timing to date, the authors segre-
gated the studies according to a variety of 
classifications, including the duration of stimuli, 
the modality of the stimuli, whether intervals 
were presented in a sequence or in isolation, 
whether the task was perceptual or motor in 
nature, whether subjects were quantifying or pre-
dicting intervals, and the nature of the control 
task. The last comparison was of particular 
importance, as the choice of control task and its 
difficulty can have large differences in observed 
activation patterns (Livesey et al., 2007). As with 
other CBMA, a similar network of regions were 
observed; however, the pre-SMA and left anterior 
insula were the most robust among the different 
distinctions.

 Does a Time Perception Network 
Exist?

Altogether, the results of the past 10+ years of 
meta-analyses for time perception have revealed 
striking consistency (Fig. 2). Indeed, apart from a 
few areas that have dropped in and out (i.e., cer-
ebellum, parietal cortex), the remaining overall 
constellation has been fixed. This consistency 
raises the question of whether or not a true timing 
“network” exists in the brain. The existence of 
such a network would be helpful for future neu-
roimaging ventures of time perception. Indeed, if 
one already knows where activation is likely to be 
found across any given timing task, then studies 
can focus more on how those regions are involved 
(Bueti, 2011).
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Wiener, et al. 2010 Ortuno, et al. 2011 Radua, et al. 2014 Teghil, et al. 2019 Nani, et al. 2019 Cona, et al. 2020

Fig. 2 Timing meta-analyses from 2010 to 2020. From 
left to right, meta-analyses are presented as contours on a 
glass brain. The majority of these studies have employed 
the use of ALE, which changed its methods after 2011. 
The exception is Radua et  al. (2014), which employed 

Signed Differential Mapping. Across these meta-analyses, 
a common set of regions can be observed, spanning from 
the SMA to the basal ganglia, inferior frontal and parietal 
cortices. Notably, little change has been observed despite 
the larger number of studies included

In examining the region’s most commonly 
activated across timing meta-analyses, a number 
of features are readily observed. First, the SMA 
is consistently the most likely structure to be 
active across explicit studies of timing. While 
there are certainly task contexts that influence its 
function, such as its motor or perceptual nature 
and spatial context, the region is specifically 
invoked. Here, then, is our first “node” in an 
explicit timing network, from which others may 
diverge. A second area commonly active is the 
rIFG, spanning pars triangularis and operculum. 
This region may overlap with the DLPFC, as 
commonly observed as well in individual studies, 
yet not commonly reported in meta-analyses. 
Beyond these two “primary” regions, a number 
of other nodes are commonly observed across the 
cortex. These include the bilateral inferior pari-
etal cortices; however, an observed feature is that 
the right is favored more than the left, with a gen-
erally broader distribution that includes the 
supramarginal gyrus. At the subcortical level, the 
basal ganglia are also observed bilaterally, 
including caudate and putamen. Indeed, while 
these regions may not be commonly observed 
across all timing task variations, it is important to 
note that the basal ganglia are a set of heteroge-
nous structures, rather than a single unit, and so a 
lack of activation-likelihood in this region may 
be due to different studies/contexts activating dis-
tinct parts (Wiener et al., 2011). The same con-
text applies to the cerebellum, although here 
studies are most likely to find activation in sub-
second motor paradigms, and most commonly 

surrounding the dentate gyrus. The thalamus is 
also commonly observed across neuroimaging 
studies, although not always as the highest sub-
cortical region. Yet, the thalamus is a critical node 
for relaying patterns of activity between cortical 
and subcortical areas; indeed, the striatal beat fre-
quency model of timing (SBF) directly invokes 
cortico-striato-thalamic loops (Matell & Meck, 
2004). Finally, stratifying the border between 
subcortical regions and the cortex are the insular 
gyri, which are also observed bilaterally. Yet, due 
to their proximity to the IFG, it is difficult to 
ascertain at the level of a CBMA if these regions 
are truly active across timing studies, or merely a 
result of spreading activation-likelihood from a 
more lateral cortical source. Regardless, they are 
included as part of the timing network due to 
recent work suggesting that interoceptive pro-
cesses are typically invoked for time processing 
(Wittmann, 2013).

Altogether, the consensus of timing meta- 
analyses provides a parcellation that can be called 
the “Timing Network” (Fig. 3). This network can 
be used to guide future neuroimaging studies, 
which can attempt to validate its existence or to 
further probe interactions between these regions 
across different task contexts. For example, the 
edge weights connecting these nodes may vary 
across different timing tasks or conditions. 
However, there is still an open question of 
whether or not a true timing network actually 
exists. Indeed, among “functional” network par-
cellations, a number of domain-general networks 
with distinct yet overlapping activation patterns 
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Fig. 3 The proposed timing network. A plot of parcels 
displayed on a rendered brain, with each colored parcel 
representing a node in the network. Note that colors here 
are arbitrary. Each parcel was drawn from the AAL atlas 
to include those regions most commonly reported across 

meta-analyses of explicit timing studies. The middle seg-
ment includes an axial slice with subcortical structures 
highlighted. Not displayed here is the cerebellum, which 
is included in the network. This network is available for 
download at https://neurovault.org/collections/13081/

are already well-known (Mattar et  al., 2015). 
These include the default mode, dorsal attention, 
somatomotor, language, cingular-opercular, and 
multiple demand networks, among numerous 
others, which will certainly overlap with the pro-
posed timing network. However, the timing net-
work may have a unique collection of regions 
compared to these others, spanning both cortical 
and subcortical regions. A true dissociation of 
these networks from the timing network would 
require comparisons of structural, functional, and 
resting-state networks. But, the timing network 
as conceived here, based on consistent meta- 
analytic findings, is a reasonable place to start.

 The Future of Timing Meta-Analyses

The discussion of prior CBMAs for time percep-
tion is meant to highlight two things: (1) the con-
sistency among them for regions associated with 
time perception, leading to the conclusion of a 
generalized timing network, and (2) the possibil-
ity for future analyses that have not yet been 
done. Indeed, CBMAs have a strong utility in 
their ability to address questions of consistency. 

To that end, there are numerous other possibili-
ties for CBMAs of the timing network that have 
not yet been employed.

First, among CBMA methods, only ALE and 
SDM have been used to measure timing net-
works. This leaves MKDA as a method that has 
not yet been employed. However, while this may 
present an opening for a novel meta-analysis, I 
suggest that the results of MKDA would likely 
not differ from the prior meta-analyses. This is 
because, at their core, all CBMA methods rely on 
the same general strategy for modeling activation 
based on reported foci (Fox et  al., 1998). 
However, other methods for CBMA exist that 
may provide at least somewhat divergent find-
ings. One recently developed method, the 
Analysis of brain coordinates (ABC) shows 
promise (Tench et al., 2022). Briefly, this method 
considers at the first-level what clusters of stud-
ies are most likely to occur across the brain vol-
ume, which differs from the ALE/MKDA 
approach in which clusters are later defined after 
statistical thresholding. The ABC method further 
thresholds these clusters based on the expected 
proportion that would occur by chance. As a 
result, significant clusters for ABC report clusters 
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that are likely to replicate across the corpus of 
included studies.

Second, other extensions to the ALE algo-
rithm exist that have not yet been tested. The first 
is termed Meta-Analytic Connectivity Modeling 
(MACM) (Laird et al., 2009). MACM is a type of 
connectivity analysis that shares the same strat-
egy as that used by seed-based connectivity mea-
sures. Specifically, MACM works by isolating a 
particular voxel or region of the brain, and then 
searching for all studies that report activation for 
that particular region. Notably, this search may 
be restricted to only include studies that investi-
gate a particular area (i.e., timing). The activation 
foci for these studies are extracted and a standard 
ALE analysis is run, with the resulting MACM 
map displaying those regions that are signifi-
cantly associated with the seed region of interest. 
For example, one could specify the SMA as a 
node, and then examine all other regions that are 
commonly activated with it. Comparisons 
between regions in the timing network may yield 
details regarding how different regions interact 
across different task contexts.

While MACM provides a measure of associa-
tion, it is important to stress that it does not pro-
vide a measure of connectivity in the sense 
applied to studies of resting-state or task-based 
fMRI, and even their claims of connections may 
be spurious (Leonardi & Van, 2015). A closer 
measure for CBMA is the recently developed 
Co-activation Probability Estimation (CoPE) 
method (Chu et al., 2015). In the CoPE method, 
activation foci are treated as probability distribu-
tions, similar to ALE, but with a smaller width. 
From here, values are normalized and the co- 
activation of each voxel is measured across stud-
ies. That is, which voxels are likely to be activated 
together across studies? The resulting measures 
are compared against a null distribution from 
Monte Carlo simulations for statistical signifi-
cance, resulting in a map where clusters represent 
those that are co-active across studies. The impor-
tant distinction of the CoPE method is that it can 
distinguish between local and long-range con-
nectivity, and so be used to derive a connectivity 
matrix between regions. Applying CoPE for time 
perception would allow for a true measure of net-

work properties observed across studies. Yet, as 
of this writing, no software package for CoPE is 
publicly available, limiting its use.

As an alternative to the CoPE method, a more 
recent CBMA connectivity measure has been 
proposed, for which a freely available software 
package exists (Tench et al., 2020). This method, 
known as Coordinate-based meta-analysis of net-
works (CBMAN), is a variation of the ABC 
method described above. Broadly, the CBMAN 
method works by measuring z-scores associated 
with reported activation peaks and examining 
their covariance structure across the included 
structures. As a result, multivariate normal distri-
butions can be fit to the z-scores of the most 
likely clusters for activation, with the covariance 
used to estimate connectivity between clusters. 
As this method includes both activation foci and 
effect sizes, it provides a strong measure for 
inferring connectivity; ripe for the study of 
timing.

A final, untapped method is to examine reverse 
inferences for the timing network. That is, up 
until now, all of the CBMA methods here report 
the likelihood of activation given the set of 
included studies [p(activation|timing)]. However, 
they do not speak to the converse inference: what 
is the probability of a timing task having occurred, 
given activation is found in a particular region 
[p(timing|activation)]. For example, if a study 
finds a significant cluster in the SMA, was the 
subject timing? Knowing this probability can 
provide insight into the specificity of any one 
region for timing. However, given the ubiquity of 
timing studies, it is likely that no single region 
has a high absolute probability for timing, but 
rather there will be relative differences between 
regions (e.g., if SMA activation is observed, is it 
more likely that a subject was timing than if right 
parietal activation is found). As described above, 
the Neurosynth method provides a means to 
assess this. Yet, Neurosynth relies on automatic 
tagging of studies based on terms of interest, and 
the term “timing” likely includes those studies 
associated with time perception and those that 
aren’t. In fact, the Neurosynth website does 
include this term, but with no clear clusters avail-
able for reverse inference. However, given the 
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ALE values represent the forward probability of 
activation, it is possible via Bayes Theorem to 
construct the posterior probability. This method 
has recently been proposed for ALE (Costa et al., 
2021), and provides a simple software plugin to 
accomplish it. The only requirement, however, is 
to have a set of “nontiming” studies to compare 
with it.

Recently, we noted this method was employed 
by our group (Mondok & Wiener, 2022). Here, 
we employed the timing studies used in our pre-
vious meta-analysis (Cona et al., 2021) and con-
ducted the reverse-inference analysis as described 
above. Two main findings emerged from this 
analysis. First, the overall probability of a timing 
task having been conducted, given activation of a 
particular brain region, was low. Indeed, no sin-
gle region offered high predictive value for deter-
mining if a study was employing a timing study 
over another task. However, it should be noted 
that many tasks offer low predictive value, espe-
cially when a large network of regional activa-
tions are possible (Yarkoni et  al., 2011). 
Nonetheless, among those regions that were pre-
dictive, the SMA and the bilateral insula had the 
highest predictive power for timing tasks. In par-
ticular, we note an interesting convergence with 
the recent results of (Naghibi et al., 2023), who in 
their standard CBMA also found these regions as 
having the most consistent likelihood.

 Conclusions

In discussing CBMA methods and their applica-
tion for time perception, a final open question is 
whether or not there are new analyses available at 
the aggregate level that can yield insights to how 
timing is accomplished in the brain. Hopefully, 
the new methods described just above can be 
applied with important distinctions available, and 
when carefully applied can provide further details 
about the existence and flexibility of the timing 
network. Further, additional methods may come 
along that provide a new leap in our understand-
ing of time at the collective level. Regardless, the 
foundation for any meta-analysis is the individual 

studies that support it. As timing studies continue 
to be done with neuroimaging, more detailed 
questions can be asked, and more can be learned.
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