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Beyond
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Abstract

A common research protocol in cognitive neu-
roscience is to train subjects to perform delib-
erately designed experiments while recording 
brain activity, with the aim of understanding 
the brain mechanisms underlying cognition. 
However, how the results of this protocol of 
research can be applied in technology is sel-
dom discussed. Here, I review the studies on 
time processing of the brain as examples of 
this research protocol, as well as two main 
application areas of neuroscience (neuroengi-
neering and brain-inspired artificial intelli-
gence). Time processing is a fundamental 
dimension of cognition, and time is also an 
indispensable dimension of any real-world 
signal to be processed in technology. 
Therefore, one may expect that the studies of 
time processing in cognition profoundly influ-
ence brain-related technology. Surprisingly, I 
found that the results from cognitive studies 

on timing processing are hardly helpful in 
solving practical problems. This awkward sit-
uation may be due to the lack of generalizabil-
ity of the results of cognitive studies, which 
are under well-controlled laboratory condi-
tions, to real-life situations. This lack of gen-
eralizability may be rooted in the fundamental 
unknowability of the world (including cogni-
tion). Overall, this paper questions and criti-
cizes the usefulness and prospect of the 
abovementioned research protocol of cogni-
tive neuroscience. I then give three sugges-
tions for future research. First, to improve the 
generalizability of research, it is better to 
study brain activity under real-life conditions 
instead of in well-controlled laboratory exper-
iments. Second, to overcome the unknowabil-
ity of the world, we can engineer an easily 
accessible surrogate of the object under inves-
tigation, so that we can predict the behavior of 
the object under investigation by experiment-
ing on the surrogate. Third, the paper calls for 
technology-oriented research, with the aim of 
technology creation instead of knowledge 
discovery.
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 Prologue

Humans are great through reasoning, but are 
matured by recognizing the limitations of reason-
ing. ---Prof. Qing Liu, School of Politics and 
International Relations, East China Normal 
University, Shanghai

“So interesting! Why is it?” This is perhaps the 
question that inspires your curiosity about the 
brain and marks the beginning of a neuroscience 
research journey. However, before you embark 
on such an investigation, I advise to think twice 
about whether the mechanism underlying the 
phenomenon is worth investigating. In most 
cases, such investigation is useless in solving 
practical problems.

“Too short-sighted!” You may criticize me. You 
may believe that even though your results cannot 
lead to practical breakthroughs directly, they 
belong to the ongoing accumulation of knowledge 
about the brain. As the accumulation continues, 
people will eventually have a very good under-
standing of the brain and develop advanced brain 
technology to solve practical problems.

However, your criticism neglects a possibility: 
Some aspects of the brain may be unknowable. If 
such is the case, we may never be able to fully 
understand the brain, regardless of how much 
knowledge we accumulate. This unknowability 
reflects the fundamental limitations of human 
reasoning capabilities.

If you ever doubt the limitations of human rea-
soning, take a trip to an art museum. As you 
peruse the galleries, you may ask yourself: Is it 
possible to develop a logical system that, through 
a series of if-then reasoning, could lead to the 
creation of a masterpiece? If you doubt the exis-
tence of such a logical system for the creation of 
art, then why do you believe that a logical system 
for the workings of the brain exists? After all, the 
brain is believed to be much more complex than 
any artwork created by humans.

In this paper, I will review literature that high-
lights the limitations of mechanism-investigating 
research in solving practical problems. I will then 
explore the concept of the unknowability of the 
brain through the lenses of neuroscience, philos-
ophy, physics, and AI. Finally, I will provide sug-

gestions for conducting meaningful research in 
light of this unknowable reality.

 Introduction

Atomism, the idea that the universe is composed 
of fundamental components known as atoms, is 
perhaps the most influential philosophy leading 
scientific research. Richard Feynman considered 
atomism to be the most important thinking we 
should pass on to the next generation (Feynman 
et  al., 2011), as various physical changes and 
chemical reactions can be explained by suppos-
ing the movements and interactions of atoms 
(Feynman et al., 2011).

Atomism has also had a strong influence on 
cognitive neuroscience. Psychologists have 
divided cognition into several elements, includ-
ing perception, learning, memory, and decision- 
making (Baldwin, 1893). Each of these elements 
can be further divided into several sub-elements 
from different perspectives. For example, percep-
tion can be divided into the perception of space 
and time or into visual and auditory perception. 
Memory can be divided into short-term and long- 
term memory, or episodic and semantic memory, 
among other things. After investigating the brain 
activity when the subject is performing each ele-
ment of cognition, neuroscientists aim to under-
stand the biological backend of cognition by 
collecting all these pieces together (Fig.  1a). 
From this atomistic perspective, studying a single 
cognitive element is the foundation for under-
standing cognition, which is why I name this 
research protocol to be basic.

To perform basic cognitive studies, research-
ers elaborately designed simple and well- 
controlled experimental conditions to study a 
single cognitive element while teasing apart the 
influence from other elements. For example, to 
study working memory, researchers trained mon-
keys to recall a visual cue after a delay period 
(Constantinidis et al., 2001) (Fig. 1b). To study 
decision-making, researchers trained monkeys to 
watch two types of dots moving toward opposite 
directions and then decide which type had more 
dots (Roitman & Shadlen, 2002) (Fig.  1c). 

Z. Bi



173

(d)

sensation memory

decision 
making ...

Atomic view of 
cognition

(a) Decision making taskWorking memory task(b) (c)

(e)

T T

Signal 1 Signal 2 Go
Movement

Perception
epoch

Delay
epoch

Production
epoch

Variable 
duration

Interval-production task

Signal

Movement

Synchronization-
continuation task

T

Fig. 1 Illustration of basic cognitive studies. (a) Basic 
cognitive studies are guided by the philosophy of atom-
ism, which divides cognition into many elements, each of 
which is studied separately. Atomists believe that by 
understanding each element, we can eventually under-
stand the whole of cognition. (b) A classical experiment to 
study working memory. The subject fixates on a central 
point, and a visuospatial cue (one of the eight gray boxes) 
is presented briefly, followed by a mnemonic delay. After 
the delay, the subject must make a saccadic eye movement 
to the remembered location. (c) A classical experiment to 
study decision-making. There are two types of random 

dots, one moving leftward and the other moving right-
ward. The subject must decide which type has more dots. 
(d) Schematic of the time production task. The subject 
receives two signals (black bars) separated by a time inter-
val T; after a delay epoch with variable duration, a go cue 
(gray bar) appears, and the subject must move at time T 
after the go cue. (e) Schematic of the synchronization- 
continuation task. The subject must move (gray bars) 
immediately following a sequence of signals (black bars) 
with period T. The subject must still move with period T 
(dashed bar) after the signal was removed

Another example is the study of time cognition, 
which also stems from atomism. To focus on the 
processing of time while disentangling other cog-
nitive elements (such as the perception of spatial 
information), psychologists or neuroscientists 
train subjects to perform simple but deliberately 
designed timing tasks. In a classical experiment 
(Rakitin et al., 1998), participants were presented 
with specific time intervals delimited by stimuli 
and then were asked to reproduce the interval 
(Fig. 1d). When subjects were performing these 
simple and deliberately designed tasks, research-
ers recorded subjects’ brain activity to propose 
neural network mechanisms underpinning basic 
elements of cognition.

While some scientists think that the pure aim 
of science is to satisfy our curiosity about the 
world, I believe that scientific results must be 
implemented in technology and benefit the mass 
of people before scientific results complete their 
mission. However, the status and prospects of the 
technological applications of basic cognitive 
studies have seldom been discussed. In this paper, 
I will discuss the technological applications of 
basic cognitive studies, starting with a review of 
cognitive studies of time processing in the brain 
(i.e., basic timing studies) as examples of basic 
cognitive studies. Time processing is an indis-
pensable dimension of cognition (Merchant 
et  al., 2013), and time is also an indispensable 
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dimension of any real-world signal to be pro-
cessed by technology. Therefore, one may expect 
that the results of basic timing studies lay down 
the foundations for processing temporal signals 
in brain-related technology. Unfortunately, after 
reviewing two fields of brain-related technology, 
neuroengineering for brain health and brain- 
inspired artificial intelligence, which are two 
promising application fields of neuroscience sug-
gested by the China Brain Project (Poo et  al., 
2016), I found that the results of basic timing 
studies are hardly helpful in solving practical 
problems.

I will attempt to clarify this awkward situation 
and offer suggestions for future research (Fig. 2). 
In my view, the challenge of applying basic tim-
ing studies (and, more broadly, basic cognitive 
studies) to technology stems from their lack of 
generalizability. In other words, the results of 
these studies are contingent on the specific condi-
tions and tasks of the laboratory experiments that 
produced them and may not be applicable in 

other contexts. This lack of generalizability may 
be rooted in the fundamental unknowability of 
the world, including cognition. In other words, 
the capability of knowledge to describe the world 
is fundamentally limited, so the generalizability 
of our knowledge to various situations in the 
world is fundamentally limited, and therefore, 
the capability of knowledge to guide technologi-
cal creation to change the world is also funda-
mentally limited.

I suggest three ways to improve future research 
(Fig. 2). Firstly, to improve the generalizability of 
results, researchers should analyze brain activity 
in real-life settings, rather than simple tasks in 
well-controlled experimental conditions, and 
examine their results under various situations. 
Secondly, to deal with the unknowability of the 
world, researchers should engineer surrogates of 
the object under investigation, so that they can 
predict the behavior of the investigated object 
using the surrogate, even without understanding 
how the object under investigation works. Finally, 

Basic cognitive studies 
(exemplified by basic 

timing studies)

Neuroengineering

Brain-inspired AI

reason

Lack of generalizability

Unknowability of the world

suggestion

Improving the generalizability of 
scientific reseach
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cannot help
Part 1

Part 2
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stem from

Fig. 2 Overview of this paper. In Part 1, the main results 
of basic timing studies and two application fields (neuro-
engineering and brain-inspired AI) are reviewed, showing 
that basic timing studies (and perhaps more generally, 
basic cognitive studies) cannot help the application fields 
of neuroscience. In Part 2, it is proposed that this situation 

is due to the lack of generalizability of the basic timing 
studies and, more fundamentally, the unknowability of the 
world. Finally, in Part 3, researchers are suggested to 
improve the generalizability of their results, engineer sur-
rogates to overcome the unknowability of the world, and 
perform technology-oriented studies
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due to the fundamental unknowability of the 
world, I suggest that researchers focus on 
technology- oriented research with the aim of cre-
ating new technologies, rather than science- 
oriented research with the aim of discovering 
knowledge.

 Basic Timing Studies

This section provides an overview of basic timing 
studies, which use two main paradigms to study 
time cognition. The first paradigm is interval tim-
ing, which involves training the subject to perceive 
or produce a single time interval (Fig.  1d). The 
second paradigm is beat timing, which involves 
training the subject to perceive or produce a 
sequence of time intervals rhythmically (Fig. 1e). 
In the interval-production task (Rakitin et  al., 
1998), an example of the first paradigm, the sub-
ject is presented with a specific time interval 
delimited by stimuli and is then asked to reproduce 
the interval (Fig. 1d). In the synchronization- and- 
continuation task (Gámez et al., 2019), an example 
of the second paradigm, the subject is required to 
act following a sequence of rhythmic stimuli and 
continue to act rhythmically after the removal of 
the stimuli (Fig. 1e). By recording brain activity 
during these tasks, researchers can discover fea-
tures of brain dynamics related to time cognition 
and gain insight into the neural network mecha-
nisms underpinning time cognition.

In the interval-production task (Fig.  1d), a 
neural network perceives time by evolving its 
state along a stereotypical trajectory in the per-
ception epoch, maintains time intervals in work-
ing memory using a manifold of line attractor in 
the delay epoch, and predicts a coming event by 
evolving its state along isomorphic trajectories 
with the speed of state evolution inversely scaling 
with the to-be-produced time interval in the pro-
duction epoch (Bi & Zhou, 2020a) (Fig.  3a). 
These dynamic features align with experimental 
findings from other interval-timing tasks (Jin 
et al., 2009; Mita et al., 2009; Wang et al., 2018). 
In the synchronization-continuation task 

(Fig. 1e), the network encodes different beating 
periods T using circular trajectories (Gámez 
et al., 2019) (Fig. 3b). The radii of these circular 
trajectories increase with the period T, but the 
speed of state evolution with time remains con-
stant across different values of T.

In both the perception and production epochs 
of the interval-production task, as well as in the 
beating intervals in the synchronization- 
continuation task, the neural network relies on 
state evolution along trajectories to sense the pas-
sage of time. This state evolution can be achieved 
through several mechanisms, including the 
pacemaker- accumulator model (Buhusi & Meck, 
2005) (recently supported in (Cook et al., 2022)), 
in which an accumulator counts the number of 
pulses received from a pacemaker (Fig. 3c, left); 
the synfire chain model (Zeki & Balci, 2019), in 
which a chain of neurons is sequentially excited 
(Fig. 3c, middle); and the striatal beat-frequency 
model (Matell & Meck, 2004), in which a group of 
oscillators with heterogeneous frequencies have 
their phases reset by the stimulus (Fig. 3c, right).

Anatomically, several brain areas have been 
identified as participating in timing, including the 
basal ganglia (Jin et  al., 2009), supplementary 
motor area (SMA) (Mita et  al., 2009), sensory 
cortex (Shuler & Bear, 2006), and prefrontal cor-
tex (Wang et al., 2018). There is ongoing debate 
about whether timing relies on dedicated circuits 
in the brain or on intrinsic computation that 
emerges from the inherent dynamics of neural 
circuits (Paton & Buonomano, 2018; Ivry & 
Schlerf, 2008). A prevailing viewpoint is that 
timing depends on the interaction of core timing 
areas, such as the basal ganglia and SMA, which 
are consistently involved in temporal processing 
across various contexts, and other areas, such as 
the prefrontal cortex, sensory cortex, and cerebel-
lum, which are activated in a context-dependent 
manner (Merchant et al., 2013).

At the behavioral level, the most well-known 
timing principle is the scaling property, which 
posits that the variance of time interval estima-
tion is proportional to the mean of the estimation 
(Allman et al., 2014).
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Fig. 3 Some results of basic timing studies. (a) Dynamic 
features of neural networks in the interval-production 
task. Left: For time perception in the perception epoch 
(see Fig. 1d), the network exhibits a stereotypical trajec-
tory whose final position determines the perceived time 
interval T (see Fig. 1d). Lines with blue, green, and red 
colors, respectively, represent the trajectories when T is 
large, middle, and small. Asterisk and circle, respectively, 
represent the beginning and end of the trajectory. Middle: 
In the delay epoch, time intervals are maintained in the 
working memory as positions (black dots) in an attractor 
manifold. The speed of state evolution with time decreases 
near the attractor (indicated by the lighter color near the 
attractor). Right: In the production epoch, time prediction 
is performed when the network state evolves along iso-

morphic trajectories, with the speed of state evolution 
inversely scaling with the to-be-produced interval T. (b) 
Dynamic features of neural networks in the 
synchronization- continuation task. With different periods 
T (see Fig. 1e), the network state evolves along different 
circular trajectories at the same speed, but the radius of the 
circular trajectory increases with T. (c) Some computa-
tional models for the neural mechanisms of time sensing. 
Left: In the pacemaker-accumulator model, time is mea-
sured by the accumulated number of pulses emitted from 
the pacemaker. Middle: In the synfire chain model, time 
can also be measured by the sequential firing of a chain of 
neurons. Right: In the beat-frequency model, time is mea-
sured by the activity pattern of a group of oscillators with 
heterogeneous frequencies after phase resetting

 Brain-Related Technology

Time processing is a fundamental aspect of cog-
nition (Merchant et al., 2013), and time is also an 
indispensable dimension of any real-world signal 
to be processed in technology. Therefore, one 
might expect that studies on time processing in 
cognition would profoundly influence brain- 
related technology. This section will review two 
fields of brain-related technology, neuroengi-
neering for brain health and brain-inspired artifi-
cial intelligence, which are two promising 
application fields of neuroscience suggested by 
the China Brain Project (Poo et  al., 2016). 
Unfortunately, we will see that the results from 
basic timing studies are hardly helpful in solving 
practical problems.

 Neuroengineering for Brain Health

Neuroengineering involves designing interfaces 
between living neural tissue and non-living con-
structs in order to understand, repair, replace, or 
enhance neural systems (Hetling, 2008). In this 
paper, I will review neuroengineering techniques 
used for the therapy of Parkinson’s disease 
through deep brain stimulation, the diagnosis of 
epilepsy through neuroimaging, and the develop-
ment of speech prostheses through machine 
translation of brain activity into language.

Parkinson’s disease is closely related to patho-
logical changes in the basal ganglia (Poewe et al., 
2017), a core timing area of the brain (Merchant 
et al., 2013). Epilepsy also recruits timing-related 
regions such as the thalamus, basal ganglia, and 
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frontal lobe (Bertram, 2009; Wu et al., 2019). As 
a result, patients with either Parkinson’s disease 
or epilepsy may experience distortion of timing 
perception (Gu et al., 2016; Greyson et al., 2014; 
Cainelli et al., 2019). Besides, language has rich 
hierarchical temporal structures, and the process-
ing of language may share a similar neural sub-
strate with the processing of music (Patel, 2003; 
Janata & Grafton, 2003; Hickok, 2012). 
Therefore, it is reasonable to assume that basic 
timing studies could be of great help in the ther-
apy and diagnosis of Parkinson’s disease and epi-
lepsy, as well as the machine translation of brain 
activity into language. However, I will show 
below that this is not the case.

 Neuroengineering Is Driven by Clinical 
Data and Experience
Deep brain stimulation (DBS) therapy for 
Parkinson’s disease was pioneered by Lawrence 
Pool, who implanted an electrode into the cau-
date nucleus of a female patient in 1948 (Pool, 
1954). Traditional DBS is an open loop, where 
the clinician sets parameters of the controller that 
deliver short-duration (60–180  ms) and high- 
frequency (typically 130–185 Hz) pulses of elec-
trical stimulation to alleviate symptoms (Benabid 
et al., 1994; Limousin et al., 1995; Siegfried & 
Lippitz, 1994) (Fig. 4a, left). However, this type 
of DBS cannot adapt its stimulation according to 
the feedback from the patients and has several 
drawbacks, such as adverse effects such as dyski-
nesia and high battery consumption (Bouthour 
et al., 2019; Krauss et al., 2021). Recently devel-
oped closed-loop DBS overcomes these prob-
lems by delivering stimulation only when 
pathological biomarkers are detected (Bouthour 
et al., 2019; Krauss et al., 2021) (Fig. 4a, right).

Interestingly, despite the broad success and 
application of DBS, the mechanism by which 
DBS ameliorates Parkinson’s disease is still not 
fully understood, although some mechanisms 
related to neuronal circuits, astrocytes, and neu-
rogenesis have been proposed (Okun, 2012). Due 
to the lack of understanding of the mechanism, 
the technical details of DBS have been estab-
lished mainly through empirical means. For 
example, the optimal stimulation waveform 

shape in open-loop DBS was determined by sys-
tematically varying stimulation parameters and 
examining the therapeutic effects (Rizzone et al., 
2001; Kuncel et al., 2006). The most prominent 
biomarker used in closed-loop DBS, excessively 
synchronized beta oscillation, was also discov-
ered through empirical comparisons between 
normal and diseased brains (Oswal et al., 2013; 
Cheyne, 2013). Therefore, mechanical insight, 
which is the aim of basic timing studies (Fig. 3), 
is not the primary driving force behind the devel-
opment of DBS.

Though the mechanical insights provided by 
basic timing studies may not currently be helpful 
in the research of DBS, one might still expect that 
they could be useful in the future. However, 
recent research trends suggest a dominance of 
data-driven automatic design in the development 
of DBS technology, rather than a rational imple-
mentation of mechanical knowledge. As men-
tioned earlier, closed-loop DBS delivers 
stimulation into the brain only when pathological 
activities (i.e., biomarkers) are detected. 
Traditionally, excessive beta oscillation was pre-
determined as the key biomarker of patients’ 
tremors in Parkinson’s disease (Bouthour et al., 
2019; Krauss et  al., 2021). However, in two 
recent studies (Shah et al., 2018; Tan et al., 2019), 
the authors recorded patients’ body movements 
using accelerometers and recorded local field 
potentials (LFPs) using electrodes. They then 
trained binary classifiers to detect the LFPs dur-
ing tremor or non-tremor periods. Here, the 
detector (i.e., the binary classifier) is trained by 
clinical data, instead of being rationally designed 
using our knowledge of the mechanisms of 
Parkinson’s disease. A similar data-driven 
approach has also been used to detect biomarkers 
of depression (Scangos et al., 2021a, b), where a 
classifier was trained to map stereoelectroen-
cephalography (SEEG) recordings to depression 
scores measured by a psychological 
questionnaire.

This data-driven approach is also the main-
stream of other neuroengineering techniques. For 
example, in recent studies on epilepsy diagnosis, 
neural network models were built to simulate the 
large-scale dynamics of the brain. The models 
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Fig. 4 Some neuroengineering techniques. (a) In open- 
loop deep brain stimulation (DBS) (left), the stimulation 
waveform is preset in the controller. In closed-loop DBS 
(right), the stimulation waveform can be adjusted accord-
ing to the local field potential (LFP) of the brain. In both 
types of DBS, the controller is programmed based on 
clinical data, rather than on mechanical understandings 
from basic cognitive studies. (b) Neural network models 
that simulate large-scale dynamics of the brain have been 
used to guide the surgery on epileptic patients. The param-
eters of the model are also determined by clinical data, 
rather than mechanical understandings from basic cogni-

tive studies. (c) There are two strategies to build the model 
to translate brain activities to language for speech prosthe-
sis. In the word-by-word training strategy (upper left), the 
model is trained to map the brain waveforms when the 
patient is speaking single words to single spoken words. 
In the whole-sentence strategy (upper right), the model is 
trained to map the brain waveforms when the patient is 
speaking whole sentences to the whole spoken sentences. 
In the test session (lower), the trained model is used to 
translate the brain waveforms corresponding to whole 
sentences. The whole-sentence training strategy results in 
better performance than the word-by-word strategy

were used to identify the ictogenic zone of sei-
zures and guide the resection of brain areas in 
clinical surgery (Cao et  al., 2022; Sinha et  al., 
2017) (Fig. 4b). In their neural network models, 
the connection strengths were determined 
through the fitting of empirical data, rather than 
being rationally designed based on mechanical 
insights into epilepsy or the information process-
ing of the brain. Another example is the machine 
translation of brain activities to language, which 

can be used as a speech prosthesis for degenera-
tive motor diseases such as amyotrophic lateral 
sclerosis and locked-in syndrome (Fig.  4c). 
Traditional approaches trained translation 
machines by mapping neuroimaging signals to 
individual words or even sub-word syllabic fea-
tures (such as vowel harmonics and fricative con-
sonants) (Pasley et al., 2012; Angrick et al., 2019) 
(Fig. 4c, upper left). However, the best brain-to- 
language translation performance is now realized 
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by training recurrent neural networks in an end- 
to- end manner, mapping brain signals to entire 
sentences rather than single words or syllabic 
features (Makin et al., 2020; Cogan, 2020; Moses 
et  al., 2019) (Fig.  4c, upper right). Although 
understanding the brain activities related to 
words and even syllables may seem more “basic” 
and “mechanical,” implementing such under-
standings in the technique results in worse per-
formance than directly training a neural network 
to map brain signals to entire sentences (Fig. 4c, 
lower).

 Summary
Overall, basic timing studies (Fig.  3), though 
expected to be “basic,” unfortunately do not lead 
to the progress of application-oriented research. 
This awkward situation is due to a gap in that 
basic timing studies aim for mechanistic explana-
tions for simple timing tasks, but neuroengineer-
ing, which aims for good performance in practical 
use, is not mainly driven by mechanistic under-
standings of the brain, but by clinical data and 
experience. This gap not only exists between 
basic timing studies and neuroengineering, as we 
have discussed here, but, more generally, between 
basic cognitive studies (Fig.  1) and neuroengi-
neering. Therefore, we may conclude that basic 
cognitive studies do not lead to the progress of 
neuroengineering.

 Brain-Inspired Artificial Intelligence

Brain-inspired artificial intelligence (AI) is 
another potential application field of neurosci-
ence. Brain-inspired AI aims to build strong AI 
(i.e., AI that has mental capabilities and functions 
that mimic the human brain, or in other words, 
can pass the Turing test) by mimicking the struc-
ture and function of the brain, through the imple-
mentation of neuroscience knowledge in AI 
engineering (Hassabis et al., 2017). I have a criti-
cism of this brain-inspired approach to AI, though 
due to ethical concerns, detailed investigations on 
the human brain cannot be performed. As a result, 
brain-inspired AI can only closely mimic the 
brain of animals, which has low-level intelli-

gence, rather than that of humans, whose high- 
level intelligence is the ultimate aim. Therefore, 
the brain-inspired approach should not be the 
leading approach to strong AI in the long run. I 
will talk about the possible approach to strong AI 
at the end of this subsection; at present, however, 
let us forget this criticism and think about how 
basic timing studies may contribute to brain- 
inspired AI. Unfortunately, I will show that basic 
timing studies are also of little help to this field.

 The Inspiration for AI 
from Neuroscience
The inspiration for AI from neuroscience is found 
at the levels of neurons, synapses, and neural net-
works. This is exemplified below:

 1. Single Neuron Level.
 (a) Biological neurons fire spikes, unlike arti-

ficial analog neurons, whose activities 
take continuous values. Implementing 
spiking neurons in hardware significantly 
reduces energy consumption compared to 
analog neurons (Frenkel, 2021). The rea-
son is that the membrane voltage of spik-
ing neurons stays near the resting state 
most of the time due to the sparsity of 
spiking periods, resulting in small leaky 
currents.

 (b) Biological neurons also have rich internal 
dynamics due to the interaction between 
the membrane voltage and ion channels 
(Dayan & Abbott, 2001), unlike artificial 
neurons, which are usually nonlinear fil-
ters of total synaptic currents. Such rich 
internal dynamics significantly improve 
the computational power of biological 
neurons (Beniaguev et  al., 2021). 
Recently, it has been found that only 19 
neurons with internal dynamics can make 
up a full-stack autonomous vehicle con-
trol system (Lechner et al., 2020).

 2. Single Synapse Level.
 (a) Biological synapses have binary effica-

cies (O’Connor et  al., 2005), unlike in 
artificial networks where synaptic weights 
typically take continuous values. Binary- 
weight artificial neural networks have 
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been investigated and broadly used due to 
their low computation and memory cost, 
as well as performance that is comparable 
with continuous-weight networks 
(Courbariaux et al., 2016).

 (b) Biological synapses also have hidden 
states other than synaptic efficacy, which 
arise from the complex interactions of 
proteins in synapses (Graupner & Brunel, 
2010). Adding hidden synaptic states in 
artificial neural networks improves mem-
ory capacity and learning performance 
(Baldassi et al., 2007; Kirkpatrick et al., 
2017). The reason is that a high hidden 
state of a synapse can indicate that this 
synapse is important for the good perfor-
mance of a task; therefore, protecting the 
efficacy of synapses with high hidden 
states from being changed in the further 
training process can maintain the perfor-
mance of the neural network during fur-
ther training.

 3. Neural Network Level.
 (a) Memory replay, found in the hippocam-

pus and cortex (Ji & Wilson, 2007), is a 
phenomenon in which the neuronal firing 
sequence in sleep or at rest closely 
matches the firing sequence in the real 
experience just before. Memory replay 
inspires DQN (Mnih et al., 2015), a well- 
known deep reinforcement learning algo-
rithm that guides actions according to 
perceptual inputs in order to maximize 
future rewards. Besides, memory replay is 
also used in the Dyna algorithm (Sutton & 
Barto, 2018) to train a mental model of 
the environment. After training, the agent 
can predict the outcome of an action in 
situations never seen before using this 
mental model, facilitating the agent to 
adapt to more complicated environments.

 (b) Biological neurons are subject to gain 
modulation, which means that one input, 
the modulatory one, affects the sensitivity 
of a neuron to another input (Salinas & 
Thier, 2000; Salinas & Sejnowski, 2001). 
Gain modulation is the neural mechanism 
of attention. With attention mechanisms, 

a neural network looks at an image or 
input sequence and decides which parts of 
the image or sequence are important for 
the task at hand and then sends only the 
important parts to subsequent information 
processing. Attention mechanisms have 
become an indispensable component of 
advanced image and language processing 
models (Vaswani et  al., 2017; Devlin 
et al., 2019).

 (c) Context-dependent gating (Cichon & 
Gan, 2015) means that different sparse 
sets of dendritic branches are disinhibited 
when the brain is involved in different 
tasks. This mechanism allows the brain to 
recruit different dendritic branches for 
different tasks, so that the synaptic 
weights learned for one task will not 
interfere with the configuration learned 
for another task. Such context-dependent 
gating has been implemented in artificial 
neural networks to avoid catastrophic for-
getting during continual learning 
(Manning et al., 2020; Zeng et al., 2019).

 Basic Timing Studies Hardly Inspire AI
From the examples provided (also see (Hassabis 
et al., 2017) for a detailed review), it is clear that 
basic timing studies do not have a significant 
impact on the development of brain-inspired AI, 
despite time processing being a fundamental 
aspect of brain cognition. Similarly, other basic 
cognitive topics, such as working memory and 
decision-making (Fig. 1b, c), though attract great 
interest in the neuroscience community, and they 
also contribute little to brain-inspired AI. There 
are two possible reasons for the limited impact of 
basic cognitive studies in AI applications:

 1. Lack of Generalizability (Fig. 5a).
All the neural mechanisms implemented in 

AI have a common property: They are not 
task-specific. In other words, if a neural mech-
anism exists only when the brain is perform-
ing a simple task like Fig. 1b–e, but does not 
exist if the brain is performing another more 
complicated task, this neural mechanism will 
not be used in AI implementation. The reason 
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(a)

(b)

(c)

(d)

Results of basic 
cognitive studies

Valid in the condition of 
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experiment

Invalid in another 
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Universality of dynamics over
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Fig. 5 Pitfalls of basic cognitive studies. (a) Basic cogni-
tive studies may lack generalizability, so that the results 
are valid in a specific laboratory experiment condition but 
invalid in another condition. (b) Examples of lack of gen-
eralizability. Upper: Some experiments suggest that inter-
val timing is more associated with the visual cortex, but 
other experiments suggest that interval timing is more 
associated with the auditory cortex. Lower: Interval tim-
ing and beating timing, though both are pure timing tasks, 
have different dynamic features and involve different 

brain areas. (c) Different learning algorithms result in 
similar neuronal population dynamics when the neural 
network is trained on the same basic cognitive task. 
Therefore, we cannot infer the learning algorithm that the 
brain uses through the dynamics when the brain is per-
forming basic cognitive tasks. (d) The lack of generaliz-
ability may be due to the methodology of laboratory 
experiments in basic cognitive studies and also the misun-
derstanding of the ideology of simplification

is simple: AI aims to solve complicated real- 
world problems, instead of toy problems like 
Fig. 1b–e designed by neuroscientists.

The lack of generalizability to real-world 
situations is the main shortcoming of basic 
cognitive studies. The dynamics of the brain 
when performing complex tasks cannot be 
deduced from the dynamics observed when 
the brain is performing simple tasks. In other 
words, even if we have a good understanding 
of the dynamics involved in numerous sim-
ple tasks like the one illustrated in Fig. 1b–e, 
we still do not know the brain dynamics in 
complex tasks. For example, suppose we let 
a patient perform simple tasks of speaking 
single words. Even if we record the brain 
activity related to numerous single-word 
speaking, we still do not know the patient’s 
brain activity when speaking a whole sen-

tence: because by dividing a sentence into 
single words, we are neglecting the syntactic 
structure of the sentence. This is why the 
translation of brain activity to language for 
speech prosthesis achieves better perfor-
mance when the neural network is trained to 
translate one sentence at a time instead of 
one word at a time (Makin et  al., 2020; 
Cogan, 2020; Moses et al., 2019) (Fig. 4c). 
More generally, cognition requires the coor-
dination of all “basic” elements: perception, 
memory, decision-making, and so on. Even if 
we study each “basic” element in isolation, 
we will still not be able to understand how 
the brain performs complex real-world tasks 
that require the coordination of these ele-
ments. We will discuss more about the lack 
of generalizability further in the next 
section.

Cognition of Time and Thinking Beyond



182

 2. Lack of Insight into Brain Learning 
Mechanism (Fig. 5c).

One may wonder whether the dynamic fea-
tures observed when the brain performs sim-
ple tasks (Fig.  3) depend on the specific 
learning algorithm of the brain. If a particular 
learning algorithm results in the experimen-
tally observed features (Fig.  3), while other 
algorithms do not, we may be able to infer the 
brain’s learning algorithm through these 
dynamic features. This learning mechanism 
could then be implemented into AI design. 
Unfortunately, accumulating evidence sug-
gests that similar dynamic features universally 
emerge when neural networks are trained on 
the same basic cognitive task using different 
learning algorithms. This implies that we may 
not be able to infer critical information about 
the learning algorithm that the brain uses 
through the dynamics observed when the 
brain is performing simple tasks.

For example, although error back- 
propagation (BP) algorithms lack convincing 
experimental support (Lillicrap et al., 2020), 
artificial neural networks trained by BP 
exhibit biologically plausible dynamics in 
image classification tasks (Hong et al., 2016), 
language tasks like next-word prediction 
(Goldstein et al., 2022), and other simple tasks 
in basic cognitive studies (Bi & Zhou, 2020a; 
Mante et al., 2013). Recently, I trained recur-
rent neural networks using an evolutionary 
algorithm to perform the context-dependent 
decision-making task (Bi et  al., 2022) and 
found that the resulting network exhibited 
dynamics closely analogous to those observed 
in monkey experiments and the dynamics 
observed in artificial neural networks trained 
by BP (Mante et al., 2013). The reason for this 
universality of dynamics across different 
learning algorithms is unknown, but it is pos-
sibly because different algorithms universally 
tune the synaptic weights into a high-entropy 
region in the synaptic configuration space 
(Baldassi et  al., 2015; Bi & Zhou, 2020b). 
Here, “high entropy” means that if we slightly 
perturb the synaptic weights found by an algo-
rithm, the perturbed weights still probably 

result in good task performance. Therefore, 
the weights found by different algorithms are 
likely to be close to each other in a high- 
entropy region, which may be the reason for 
the universal dynamic property of the net-
works trained by different algorithms. Due to 
this universality, we cannot gain insight into 
the learning mechanism of the brain from the 
dynamic features found in basic cognitive 
studies, let alone implement the brain learning 
mechanism in AI.

So what is the approach to strong AI, the machine 
with intelligence equal to the human brain or 
even more powerful? In my opinion, the most 
important thing we should learn from biology is 
the colossal scale of the human brain. Comparative 
studies have shown that the human brain contains 
more neurons than any other animal, which is 
probably the reason for our superior cognitive 
abilities (Herculano-Houzel, 2012). Consistently, 
AI is undergoing a paradigm shift with the rise of 
colossal models (e.g., BERT (Devlin et al., 2019) 
and GPT-3 (Brown et  al., 2020)) with over 
100 billion parameters trained on oceans of data 
(Bommasani et al., 2021). Such models, trained 
unsupervisedly, develop geometric representa-
tion of knowledge (Manning et al., 2020; Rives 
et al., 2021), which versatilely serve as the com-
mon basis of many task-specific models via adap-
tation (Bommasani et  al., 2021). Most 
impressively, as the size of the neural network 
increases, advanced functionalities such as 
 in- context learning naturally emerge (Brown 
et al., 2020): In-context learning means that the 
neural network after training can be competent 
for a task never seen during training, after the 
trained neural network is instructed by a natural 
language description of the task. Such colossal 
models are becoming the trend of AI led by big 
tech companies such as Google, Microsoft, and 
Huawei, with broad applications in the text 
(Devlin et  al., 2019), images (Ramesh et  al., 
2021), protein design (Rives et  al., 2021), and 
chemical reactions (Schwaller et  al., 2021). 
Recently, at a conference, a manager of the colos-
sal model project of Huawei told me that the 
progress of colossal models is also gradually get-
ting stagnant, because we cannot afford the huge 
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energy consumption to train the model if the 
model is too large (Strubell et  al., 2019). He 
believed that the next generation of colossal 
models should be led by the revolution of the 
computation paradigm, such as quantum comput-
ing, which can speed up some kinds of computa-
tions by exponential order (Nielsen & Chuang, 
2011). At another conference, a professor of 
quantum physics told me that quantum algo-
rithms are getting mature; the bottleneck of quan-
tum computing lies in its hardware 
implementation. If their opinions are correct, we 
may expect that strong AI will naturally emerge 
after the manufacturing technology of quantum 
computers is mature and if we train mega- 
colossal models using quantum computers.

 Summary
Overall, basic cognitive studies cannot signifi-
cantly contribute to AI due to their limitations on 
generalizability and insight into brain learning 
mechanism. The future of AI is likely to be led by 
colossal models.

 Contemplation

Time processing is a fundamental aspect of cog-
nition, and time is also an indispensable dimen-
sion of any real-world signal to be processed in 
technology. But why do basic timing studies, 
which aim to study time processing in the brain, 
which are also interesting and elegant, instead 
have little help to the progress of brain-related 
technology? Below, I will discuss possible rea-
sons for this discrepancy.

 Generalizability: The Shortcoming

Generalizability is a measure of how useful the 
results of a study are for broader situations. 
Generalizability is the critical hypothesis (and 
also the aim) of science. To understand this point, 
let us consider a simple example. If we want to 
test the effectiveness of a new drug, we will 
recruit several patients and test the drug on them. 
However, our aim is not only to investigate these 

several recruited patients, but to draw a general 
conclusion on the effect of the drug on the mass 
of people using these recruited patients, with the 
hypothesis that similar phenomena can also be 
observed if we recruit another group of patients. 
As another example, when physicists perform an 
experiment and conclude a physical law, their 
aim is not only to explain the very experiment 
they perform, but to conclude a law generalizably 
applicable to other experiments taken at another 
place and another time. However, we should not 
take such generalizability for granted. Many hard 
problems are because we do not have a generaliz-
able understanding of the problem or a generaliz-
able technique to deal with the problem. For 
example, cancer is a challenging disease to cure 
because we do not have a generalizable technique 
to efficiently kill all the cancer cells due to the 
high diversity of cancer cells (Morita et al., 2020; 
Black & McGranahan, 2021).

Lack of generalizability is a significant short-
coming of basic timing studies. Results obtained 
under one experimental condition often cannot 
predict the result under another condition. For 
example, if an auditory stimulus is associated 
with time duration Ta and a visual stimulus with 
duration Tv in a rat subject, presenting the audi-
tory and visual stimuli simultaneously will make 
the rat subject time an expected duration of T+, 
which is between Ta and Tv, but closer to Tv 
(Swanton & Matell, 2011; Matell & Kurti, 2014). 
Additionally, compared to an auditory stimulus, 
the association between a visual stimulus with a 
time duration can be better transferred to a subse-
quent operant response when tested in a 
Pavlovian-instrumental transfer procedure 
(Matell & Valle, 2017). These results imply that 
visual signals are more involved in interval tim-
ing than auditory signals. However, in a recent 
study on an action timing task, in which a mouse 
had to learn the timing of its action based on the 
sensory feedback caused by its own action, it was 
the deprivation of auditory input (not visual) that 
disrupted the learned action timing (Cook et al., 
2022), contradicting previous understanding 
(Fig. 5b, upper). Furthermore, there are two fre-
quently studied experimental paradigms of tim-
ing tasks: interval timing, in which the subject is 
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to perceive or produce a single time interval 
(Wang et  al., 2018; Karmarkar & Buonomano, 
2007) (Fig. 1d), and beating timing, in which the 
subject is to perceive or produce regular beats 
(Gámez et al., 2019) (Fig. 1e). It has been found 
that the brain uses different neural substrates and 
mechanisms to process temporal information in 
these two paradigms (Gámez et al., 2019; Wang 
et  al., 2018; Karmarkar & Buonomano, 2007; 
Teki et al., 2011), even though they are both pure 
timing tasks with no other information (such as 
spatial information) involved (Fig.  5b, lower). 
Overall, the lack of generalizability in basic tim-
ing studies makes it challenging to conclude how 
the brain processes temporal information.Below, 
I will explore two possible reasons for the lack of 
generalizability in basic timing studies (Fig. 5d):

 1. Laboratory Experiments.
Basic timing studies are performed in labo-

ratory experiments, which have artificially 
designed and well-controlled experimental 
conditions (just like Fig. 1d, e) that may not 
reflect real-life situations. The lack of general-
izability has long been recognized as the short-
coming of laboratory experiments in social 
science, including psychology (Brüggemann 
& Bizer, 2016; Hulstijn, 1997). Therefore, the 
limitations of basic timing studies discussed 
here are just examples of the general short-
coming of the laboratory experiment para-
digm. Perhaps the only way to improve the 
generalizability of the results of laboratory 
experiments is to capture the common results 
of different experimental conditions through a 
literature review. For example, Bueti and 
Buonomano (2014) concluded that temporal 
learning transfers across different modalities, 
including visual and auditory modalities, dif-
ferent auditory pitches, and slightly different 
lengths of temporal intervals, by reviewing 
papers. However, literature review cannot 
always lead to a straightforward conclusion, 
especially if the brain has a complicated per-
formance under different experimental condi-
tions. For example, the transfer of learning 
may not exist under some conditions and may 
be strong or weak in other conditions.

 2. Misunderstanding of Simplification.
Simplification is a pervasive idea in the 

data analysis and computational models of 
basic timing studies (Fig. 3). The pacemaker- 
accumulator model (Buhusi & Meck, 2005) 
(Fig. 3c, left), the best-known timing model, 
contains only four components (pacemaker, 
accumulator, memory device, and compara-
tor) to model the timing process. The dynamic 
features found by basic timing studies (Fig. 3a, 
b) are often discovered after reducing the 
dimension of the population dynamics of neu-
ral networks using principal component anal-
ysis (PCA). This PCA method also manifests 
the idea of simplification: simplifying the 
population dynamics by reducing its 
dimension.

The idea of simplification, also named the 
principle of Occam’s razor, tries to explain the 
world using as few entities as possible. 
However, the advantage of this principle of 
simplification must be understood before 
using it. One widely accepted advantage of 
simplification is that simple theories tend to 
be more testable and, therefore, easier to fal-
sify (Baker, 2016; Sober & Knowles, 1991). 
In other words, the primary advantage of a 
simple theory is not that it can better predict 
the experiment, but instead lies in its ease of 
falsification, which is believed to be a neces-
sary property of a scientific theory (Popper, 
1959). Another advantage of simplification 
(with controversy) is that it improves induc-
tion: choosing a simple theory after numerous 
observations reduces the chance of changing 
the theory after more future observations 
(Baker, 2016). This induction advantage is 
closely related to the concept of generalizabil-
ity we discuss here because reducing the 
change in theory after future observations 
means improving the generalizability of the 
theory. However, “induction” means that the 
theory must be concluded after numerous 
observations, which is apparently not the case 
for the results (Fig. 3) in basic timing studies, 
which are usually proposed based on single 
laboratory experiments under simple and 
well-controlled situations. In other words, if 
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we indeed want a simple timing theory that is 
generalizable to real-world situations, numer-
ous observations in real-world situations are 
necessary.

 Unknowability: The Reality

The methodology of basic cognitive studies 
involves recording brain activity while subjects 
perform deliberately designed tasks in order to 
understand the neural mechanisms of cognition. 
This methodology is based on the following phil-
osophical understanding of science (Fig.  6a): 
Science investigates the world, generates knowl-
edge, and then technology uses the knowledge 
generated by science to change the world. 
However, this philosophy fails to consider the 
possibility that the capability of knowledge (and 
therefore science) to describe the world may be 
fundamentally limited, meaning that some parts 
of the world are unknowable. If this is the case, 
the knowledge generated by science will not be 
able to well guide the design of technology to 
change the world effectively (Fig. 6a). The lack 
of generalizability discussed before may also 
stem from the unknowability of the world (includ-
ing cognition): If the capability of knowledge to 
describe the world is fundamentally limited, we 
should not dream of the luxury that our knowl-
edge has the possibility to generalize to every 
situation.

 The Inspiration from AI
To discuss the limited capability of knowledge, 
let us start with an interesting empirical finding in 
AI.  In AI, knowledge is usually represented by 
(subject; relation; object) triplets, representing 
the relationship between a subject and an object 
(Hogan et al., 2021). For example, the sentence 
“dog is animal” can be represented by a triplet 
(dog; be; animal). A collection of a large number 
of triplets is called a knowledge base. It has been 
found that adding knowledge bases to deep learn-
ing models can improve the performance of natu-
ral language processing (Guo et  al., 2022; 
Annervaz et  al., 2018). However, interestingly, 
well-known colossal models (such as GPT-3 

(Brown et al., 2020) of Microsoft or Pangu (Zeng 
et al., 2021) of Huawei) are pure deep neural net-
works without a knowledge base. A possible 
explanation for why well-known colossal models 
do not contain a knowledge base is that the per-
formance improvement after adding a knowledge 
base to colossal models is marginal (below 4%, 
see Table  5 of Colon-Hernandez et  al., 2021) 
(Fig.  6b). I discussed this interesting phenome-
non with an AI expert in NetEase, who believed 
that this is because colossal models are trained by 
oceans of texts collected from the Internet, which 
contain far richer information than knowledge 
bases can provide, so adding knowledge bases to 
colossal models can hardly increase the informa-
tion used to train the colossal models. Notice that 
people have invested great efforts to develop 
knowledge bases: Well-known knowledge bases 
such as YAGO and Freebase contain over 1 bil-
lion triplets. Despite such efforts, these knowl-
edge bases are still hardly useful in the core AI 
technology of colossal models.

What can we learn from this empirical finding 
in AI? Notice that science is a process of generat-
ing knowledge from experiments (Fig.  6a): For 
example, basic timing studies aim to establish the 
relationship between the dynamics of the brain 
and the behavioral task. Also, notice that AI rep-
resents the future of technology. Therefore, if 
knowledge bases cannot help AI, we may con-
clude that science will not help technology in the 
future!

 The Inspiration from Philosophy 
and Physics
The recognition of the limited capability of 
knowledge has a long history in philosophy. 
David Hume believed that causality cannot be 
justified because we can only observe that one 
thing, A, happened after another thing, B, but we 
cannot observe the underlying causal mechanism 
that made A happen after B (David Hume, https://
en.wikipedia.org/wiki/David_Hume). Immanuel 
Kant believed that there exist things (the so- 
called things-in-themselves) that are unperceiv-
able and unknowable. What we can perceive are 
mere “appearances” of these unknowable things, 
and a theory of the world develops when the per-
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Fig. 6 The unknowability of the world. (a) Science 
extracts knowledge from the world, and technology 
implements knowledge to change the world. However, if 
knowledge has limited capability to describe the world, it 
will also have limited capability to guide the creation of 
technology (yellow boxes). (b) Adding knowledge to 
colossal models only marginally improves their perfor-
mance. (c) Inferring the dynamic equation from experi-
mental observation is an NP-hard problem. (d) A Platonic 
understanding of cognition. The dynamics of the brain in 
various tasks (such as the stereotypical trajectory for time 

perception (Bi & Zhou, 2020a; Karmarkar & Buonomano, 
2007), competing dynamics by mutual inhibition for 
decision- making (Wong & Wang, 2006), and self- 
excitation for working memory (Lim & Goldman, 2013)) 
are various shadows of an unknowable object (the brain 
dynamics for cognition) under fires at different positions. 
This Platonic viewpoint implies that we will still not 
understand cognition after studying the dynamics in vari-
ous tasks, unlike the atomic viewpoint (Fig.  1a), which 
believes that we will understand cognition after studying 
each element of cognition

ceived things conform to our spatial and temporal 
forms of intuition (Immanuel Kant, https://
en.wikipedia.org/wiki/Immanuel_Kant). In 
1963, Frederic Fitch proposed a logic paradox 
that asserts that if all truths were knowable, it 
would follow that all truths are already known 
(Fitch’s paradox of knowability, https://en.wiki-
pedia.org/wiki/Fitch%27s_paradox_of_know-
ability). Therefore, if we acknowledge that not all 

truths are already known, we have to acknowl-
edge that not all truths are knowable. Fitch’s par-
adox sets up a fundamental limitation on the 
capability of experiments: There exists truth that 
cannot be known using experiments, no matter 
how advanced the techniques we use.

A recent study in the field of physics provides 
further evidence for the notion of unknowability. 
The study demonstrates that identifying the 
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underlying dynamical equation, or physical real-
ity, from any amount of experimental observa-
tions is provably NP-hard for both classical and 
quantum mechanical systems (Cubitt et  al., 
2012a, b) (Fig. 6c). In simpler terms, if NP/ = P, 
which is the prevailing belief among computer 
scientists, identifying the underlying dynamical 
equation will require an exponentially long 
amount of time relative to the dimension of the 
system. Therefore, the dynamical equation would 
effectively be unknowable if the system has a 
large dimension.

There have been extensive studies on NP 
problems using models, such as spin glass, 
derived from statistical physics (Mézard & 
Montanari, 2009), which provide insight into the 
nature of the computational difficulty in solving 
these problems. The main conclusion is that the 
computational difficulty is closely related to the 
(some kind of) correlation between degrees of 
freedom in the system. To understand this con-
cept, consider a system described by a state vec-
tor x =  (x1, x2,…, xn). If the different xis (i = 1, 
2,…, n) do not interact with each other, we can 
find the optimal state xopt of the system with 
respect to a problem by sequentially optimizing 
each xi, respectively. However, if the different xis 
strongly interact with each other, we may have to 
adjust a large number of xis simultaneously dur-
ing the optimization process, making it more 
challenging to find xopt.

Basic cognitive studies (Fig. 1) aim to under-
stand the dynamics of the brain underlying cog-
nition by observing the brain’s activities when 
the brain is performing simple tasks. Therefore, 
basic cognitive studies address the same type of 
NP-hard problem studied in (Cubitt et al., 2012a, 
b) that infers dynamics from observation. We 
have mentioned in the last paragraph that the dif-
ficulty of this problem lies in the correlation 
between different degrees of freedom. Therefore, 
the atomic philosophy (Fig.  1a), which aims to 
understand cognition by studying each individual 
cognitive element (such as perception, memory, 
and decision-making), is actually unsuitable for 
guiding cognition research. This is because the 
coordination between different cognitive ele-

ments is vital for performing real-life tasks, so it 
is important to consider the whole task simulta-
neously. We have mentioned a good example 
before (Fig. 4c): The translation of brain activity 
to language for speech prosthesis achieves better 
performance when training the neural network to 
translate one sentence at a time instead of one 
individual word at a time (Makin et  al., 2020; 
Cogan, 2020; Moses et al., 2019).

Unfortunately, atomism is just the very phi-
losophy that guides basic cognitive studies 
(including basic timing studies), which is possi-
bly the reason for the difficulty we encounter in 
understanding cognition. Despite decades of 
research, we still do not have a complete under-
standing of how the brain processes time. Results 
from basic timing studies can sometimes contra-
dict each other (Fig. 5b) and cannot provide guid-
ance for the design of technology. The study of 
the hippocampus is another example of this issue. 
While it has been found that the hippocampus 
transfers memory into the cortex (Goto et  al., 
2021) and performs inferential reasoning (Barron 
et  al., 2020), the hippocampus encodes place 
(Sosa & Giocomo, 2021), head directions (Sosa 
& Giocomo, 2021), time (Eichenbaum, 2014), 
visual and auditory stimuli (Goto et  al., 2021; 
Turk-Browne, 2019), and abstract knowledge 
(Nieh et al., 2021), we still do not have a clear 
understanding of its functional role. In other 
words, we cannot predict the hippocampus’ func-
tional role in a new experimental condition. What 
is the mechanism of the brain to process time? 
What is the functional role of the hippocampus? 
Perhaps, they are essentially unknowable.

How can we make sense of the kaleidoscopic 
observations in timing and hippocampal studies? 
In his famous allegory of the cave, Plato likens 
our understanding of the world to the shadows on 
the wall of a cave, cast by objects in front of a fire 
(Allegory of the cave, https://en.wikipedia.org/
wiki/Allegory_of_the_cave). Inspired by this 
allegory, I think the best way to understand the 
observations in timing or hippocampal studies is 
to regard the brain dynamics in different experi-
mental conditions as the shadows cast by an 
object from fires at different positions (Fig. 6d). 
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The object represents the reality of the neural 
mechanism of cognition, which is unknowable, 
but what we can observe are only the dynamics of 
the brain when performing a specific task. When 
the fire is at different positions, the projection on 
the wall is different, just like the kaleidoscopic 
dynamics of the brain when performing different 
tasks. This Platonic viewpoint suggests that we 
may still not understand cognition after studying 
the dynamics in various tasks, in contrast to the 
atomic viewpoint (Fig. 1a), which posits that we 
will understand cognition after studying each ele-
ment of cognition. Plato encouraged us to walk 
out of the cave and know the reality of the world 
through reason. However, inferring the reality 
from observation is an NP-hard problem (Cubitt 
et al., 2012a, b), so the reality may be essentially 
unknowable.

 Summary

The results of basic cognitive studies have lim-
ited applicability to the development of brain- 
related technology due to their lack of 
generalizability. This lack of generalizability 
may be attributed to the fundamental unknow-
ability of cognition.

 Outlook

What can we learn from the understandings 
above to guide our future research? I give three 
suggestions, explained in three subsections below 
(Fig. 7).

 Improving Generalizability

As previously mentioned, generalizability is a 
central aim of science. We want our results to 
be valid in broader conditions, not just in the 
specific experimental conditions we investi-
gated (Fig.  7a). Basic cognitive studies 
(Fig.  1b–e) are typically performed in labora-
tory experiments, where the experimental con-
ditions are artificially designed and 
well-controlled, rather than in real- life settings. 
As previously noted, the lack of generalizabil-
ity has long been recognized as a shortcoming 
of laboratory experiments (Brüggemann & 
Bizer, 2016; Hulstijn, 1997). Therefore, one 
possible way to improve the generalizability of 
our results is to extract the features of brain 
dynamics when subjects are performing real-
life tasks, rather than tasks deliberately 
designed for experiments. Additionally, to 

Improve 
generalizability

Gather knowledge from real-life 
tasks, instead of laboratory tasks 

under strict control

Test knowledge under various 
conditions

Object under 
investigation 

Engineered 
surrogate 

transform

mimic

Science-oriented 
research:

Discover 
knowledge from 

experiment

Technology-oriented 
research:

Create technology 
using knowledge 

and data, especially 
data

(a) (b)

(c)

Fig. 7 My suggestions for future research. (a) Improve 
generalizability. (b) Engineer an easily accessible surro-
gate to mimic the object under investigation, so that we 
can predict the behavior of the object by investigating the 

surrogate without experimenting on the object. (c) 
Transform our research style from science-oriented, 
which aims to discover knowledge, to technology- 
oriented, which aims to create technology

Z. Bi
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improve the generalizability of a result, it is 
necessary to verify the result under various 
conditions.

 Making Use of Surrogate

The concept of unknowability suggests that it 
may be impossible to develop a universal theory 
that is applicable to every situation. In light of 
this, how should we proceed with research? One 
emerging methodology to address the issue of 
unknowability is the use of surrogates. Instead of 
attempting to understand the underlying mecha-
nism of a complex system, we create a surrogate 
of the system that behaves similarly to the origi-
nal system in situations of interest (Fig. 7b). By 
observing the behavior of the surrogate, we can 
predict the behavior of the original system in a 
new situation. Surrogates are often more 
 accessible than the original system, and this 
approach can be implemented even when we do 
not fully understand the mechanism underlying 
the original system.

Surrogating is the exact idea of neural net-
work models. After observing the input signal Ii 
(i = 1, 2, 3,…), and the output Oi of a system in 
response to Ii, a deep neural network model can 
be constructed by training the network to produce 
the output Oi given the input Ii. The resulting 
deep network serves as a surrogate for the origi-
nal system and can predict the output of the sys-
tem when given a new input signal, Ij, as long as 
Ij is not significantly different from the set of 
observed inputs {Ii}i. In this approach, the 
response mechanism of the original system is not 
explicitly studied; instead, this understanding is 
encoded in the parameters of the trained neural 
network. While this knowledge may be difficult 
to interpret, it can still be used effectively. This 
type of knowledge is known as “dark knowledge” 
(Jia, 2019; Hinton et al., 2015), which stands in 
contrast to “light knowledge” that can be 
expressed through language and formulas.

Surrogates have been extensively used in brain 
research. It has been discovered that artificial 
neural networks, after being trained on a task, 
exhibit similar dynamics to the brain when per-

forming the same task (Hong et  al., 2016; 
Goldstein et  al., 2022; Mante et  al., 2013). 
Therefore, artificial neural networks can be used 
as surrogates to study the brain, as has been done 
in the study of timing tasks (Bi & Zhou, 2020a). 
Additionally, as previously mentioned, neural 
network models have been utilized as surrogates 
for epileptic brains to guide clinical surgery (Cao 
et al., 2022; Sinha et al., 2017).

Furthermore, the concept of surrogating has 
been applied in fields beyond brain research. For 
example, self-organized 3-dimensional tissue 
cultures derived from stem cells, known as organ-
oids, have been used to model various organs, 
personalize disease treatment, and develop new 
drugs (Chiaradia & Lancaster, 2020; Kim et al., 
2020). Another example is digital twins, which 
are virtual models designed to accurately repre-
sent physical objects and updated in real time 
with collected data. Digital twins are used to 
design, manufacture, monitor, and diagnose large 
equipment such as bridges, aircraft, and power 
generators (Liu et  al., 2021). These examples 
demonstrate the use of surrogates to investigate 
and manipulate an easier-to-understand system in 
order to study the original system, even though 
the surrogate may also be too complex to be fully 
understood (e.g., the “dark knowledge” found in 
artificial neural networks).

 Being Technology-Oriented

Science is the process of exploring new knowl-
edge through observation and experiments. 
Technology is the process of applying scientific 
knowledge for various purposes. However, the 
fundamental unknowability of the world presents 
a limitation on the capability of science to under-
stand the world and guide technology (Fig. 6a). 
Therefore, in my opinion, future studies should 
be technology-oriented (Fig. 7c), which has the 
following two meanings:

 1. Instead of being driven by the interest in how 
nature works, scientists should perform their 
research with practical applications in mind. 
A blueprint or at least a rough sketch of how 
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their findings could be applied to solve practi-
cal problems would be beneficial. Without the 
guidance of technology, scientific results may 
not be useful in guiding practical applications, 
as demonstrated by basic timing studies’ lim-
ited impact on neuroengineering and brain- 
inspired AI.

 2. Technology tends to be created without the 
guidance of scientific knowledge. There is a 
growing trend to create technology through 
human-guided self-organization rather than 
through the implementation of knowledge via 
rational design. This shift away from rational 
design may be due to the unknowability of the 
world, which renders knowledge increasingly 
useless in dealing with complex problems. 
Self-organization is a process in which collec-
tive order arises from local interactions 
between parts of an initially disordered sys-
tem (Self-organization, https://en.wikipedia.
org/wiki/Self- organization; Spontaneous 
order, https://en.wikipedia.org/wiki/
Spontaneous_order). The training of deep 
artificial neural networks is a self- organization 
process under human guidance: We adjust the 
interactions between artificial neurons by 
adjusting the synaptic weights, rather than 
directly designing the activity of each neuron, 
but the collective dynamics of the neural net-
work when performing tasks emerge from 
these interactions. A good example of the par-
adigm shift of technology from rational design 
to human-guided self-organization is natural 
language processing. The traditional method 
of translating one language to another was to 
recognize the grammatical structure of an 
input sentence and then translate the sentence 
based on this structure using human-designed 
rules (Cambria & White, 2014). Today, how-
ever, the language translation is based on end- 
to- end training of neural networks, with the 
grammatical structure and translation rules 
automatically and implicitly emerging during 
training (Goldberg, 2017). As previously 
mentioned, this automatic and implicit feature 
extraction by neural networks has also been 
used to recognize pathological biomarkers in 

closed-loop deep brain stimulation (Scangos 
et  al., 2021a, b) and translate brain activity 
into natural language (Makin et  al., 2020; 
Cogan, 2020) (Fig. 4).

How can we guide the self-organization of a 
complex system to create technology? The cur-
rent dominating methodology, deep learning, 
involves adjusting the synaptic weights of a deep 
network by gradient-based algorithms while fix-
ing the network architecture at the form preas-
signed by humans (Goodfellow et  al., 2016). 
However, evolutionary algorithms have the 
potential advantage of allowing for the adjust-
ment of both synaptic weights and network archi-
tecture, without requiring human design input 
(Stanley et al., 2019). In a neural network created 
by evolutionary algorithms, everything emerges 
from self-organization, minimizing the interfer-
ence of human rational design, whose capability 
is limited due to the unknowability of the world, 
potentially leading to superior technology 
(Stanley & Lehman, 2015). Furthermore, human- 
guided evolution is not only an algorithm that 
runs on computers but also a practice in laborato-
ries. We create high-yield plants and animals by 
selective breeding (Selective breeding, https://
en.wikipedia.org/wiki/Selective_breeding), and 
we also discover drugs and functional proteins by 
directing the evolution of engineered microbes 
(Davis et  al., 2017; Romero & Arnold, 2009). 
Human-guided evolution, without the need for 
rational design, may be the ultimate method to 
create something to our desired end in this 
unknowable world.

 Conclusion

In this paper, I review the main results of basic 
timing studies and highlight their limited applica-
bility in solving practical problems in the fields 
of neuroengineering and brain-inspired AI. Basic 
timing studies extract knowledge from deliber-
ately designed simple tasks, whereas neuroengi-
neering is mainly driven by clinical data and AI is 
driven by training colossal models using oceans 
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of data collected from the Internet. The limitation 
of basic timing studies may be due to the lack of 
generalizability of their results, which stems 
from the fundamental unknowability of the 
world, including cognition. The reason for this 
limitation is also true for, more generally, basic 
cognitive studies. As a result, I question and criti-
cize the usefulness and prospect of the research 
protocol of basic cognitive studies (Fig. 1), which 
involves recording brain activity when the sub-
ject is performing deliberately designed experi-
ments to understand the neural mechanism of 
cognition. I then suggest three ways to guide 
future research: improving the generalizability of 
results, considering using surrogates to overcome 
the unknowability, and performing technology- 
oriented studies.

The neuroscience problem identified in this 
paper is part of a larger trend in biology where 
mass-scale technology, such as multi-omic data-
bases and supercomputing power, is increasingly 
being used to solve practical problems with AI 
(Subramanian et al., 2020). The knowledge nec-
essary for AI to solve these problems is not 
implemented by humans through rational design, 
but instead emerges self-organizedly during the 
problem-solving process in a hidden manner. 
This knowledge is encoded in the AI system, 
such as in synaptic weights, but is unknowable by 
humans. We can imagine that in the far future, 
when AI becomes far more powerful than human 
intelligence, we may feel hard to understand the 
logic behind AI’s problem-solving even if AI 
tries to explain it to us. Therefore, the use of hid-
den knowledge, something we can use but not 
understand, should be a gradually dominating 
paradigm in scientific and technological research.
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