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The ability to process temporal information in the scale of hundreds of mil-
liseconds to seconds is critical for a wide range of behaviors, from collision 
avoidance and target interception—present since the invertebrates—to highly 
complex behaviors such as language and music. In the second edition of the 
book Neurobiology of Interval Timing, we compile the newest and most 
exciting research in the brain sciences of timing. We gave special emphasis to 
the neural underpinnings of temporal processing in behaving human and non- 
human primates, as well as in rodents. Thus, the new edition of Neurobiology 
of Interval Timing integrates the thrilling and revealing developments on the 
psychophysics of time and timing neurophysiology, as well as fascinating 
modelling efforts to understand the clocks of the brain across a wide variety 
of behaviors, including perception and production of single intervals and 
rhythms in music and language. It is our sincere opinion that this constitutes 
an excellent book for graduate programs in neuroscience.

Querétaro, Mexico Hugo Merchant
  Victor de Lafuente  

Preface
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A Second Introduction 
to the Neurobiology of Interval 
Timing

Hugo Merchant and Victor de Lafuente

Abstract

Time is a critical variable that organisms must be 
able to measure in order to survive in a con-
stantly changing environment. Initially, this 
paper describes the myriad of contexts where 
time is estimated or predicted and suggests that 
timing is not a single process and probably 
depends on a set of different neural mechanisms. 
Consistent with this hypothesis, the explosion of 
neurophysiological and imaging studies in the 
last 10 years suggests that different brain circuits 
and neural mechanisms are involved in the abil-
ity to tell and use time to control behavior across 
contexts. Then, we develop a conceptual frame-
work that defines time as a family of different 
phenomena and propose a taxonomy with sen-
sory, perceptual, motor, and sensorimotor timing 
as the pillars of temporal processing in the range 
of hundreds of milliseconds.

Keywords

Time perception · Sensory timing · Motor 
timing · Timing models

 What Is Timing?

Timing is the tracking or planning of events that 
are constantly changing. “Time refers to the con-
tinued sequence of happenings that occur in 
apparently irreversible succession from the past, 
through present, and into the future” (Wikipedia). 
Organisms have developed different mechanisms 
to quantify the time between successive events, 
which could span ten orders of magnitude. The 
microseconds scale (10−4  s) is the scenario for 
binaural hearing and echolocation, engaging the 
auditory system to determine the spatial origin of 
sounds and objects (Joris & van der Heijden, 
2019; Schnupp & Carr, 2009; Jeffress, 1948; 
O’Neill & Suga, 1979). At the other end, circa-
dian timing (105 s) organizes all the fundamental 
body functions within 24-h oscillations. We now 
know that the master clock for this circadian tim-
ing is the hypothalamic suprachiasmatic nucleus, 
which synchronizes the internal time with the 
external light–dark cycle, entraining the overall 
rhythmicity of a wide variety of peripheral clocks 
in the organism (Hastings et al., 2018), as well as 
the wake–sleep cycle in the brain (Drucker-Colín 
& Merchant-Nancy, 1996). Between very fast 
and the very slow bordering scales, we have the 
scale that spans hundreds of milliseconds 
(10−2–101  s), seconds, and minutes (101–102  s). 
Timing within the seconds-and-minutes scales 
relies on conscious and cognitive control and is 
the context in which behavior is mapped onto the 

H. Merchant (*)
Instituto de Neurobiología, UNAM, Campus 
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external world. This timing range is related to 
foraging (Henderson et al., 2006), decision mak-
ing (Brody et al., 2003), sequential motor perfor-
mance (Bortoletto et  al., 2011), as well as 
multiple-step arithmetic (Sohn & Carlson, 2003), 
and associative conditioning (Gallistel & Gibbon, 
2000). In addition, temporal processing within 
the seconds-to-minutes scale is highly influenced 
by other processes, such as attention and mem-
ory, which interact with the mechanism of a 
 presumed internal clock (Lewis & Miall, 2003). 
On the other hand, timing in the hundreds of mil-
liseconds is crucial for behaviors such as object 
interception and collision avoidance, which we 
know are present since the invertebrates 
(Merchant & Georgopoulos, 2006; Merchant 
et al., 2001, 2003; 2009; 2004a, 2004b). Complex 
human behaviors such as speech perception and 
articulation, and the execution and appreciation 
of music and dance also develop in the 
millisecond- to-second scale (Kotz & Schwartze, 
2010; Poeppel & Assaneo, 2020; Merchant et al., 
2015a; Lenc et al., 2021). Motion processing in 
the visual and tactile modalities, as well as the 
coordination of fine movements occurs also in 
this time range (Merchant et  al., 1997, 2001; 
Romo et  al., 1995, 1996; Georgopoulos et  al., 
2007; Narselaris et al., 2006).

In trying to define time, we often include two 
critical processes: (Joris & van der Heijden, 
2019) tracking events that change with time, and 
(Schnupp & Carr, 2009) predicting the occur-
rence of future events. Tracking events rely on 
the quantification of the elapsed time that has 
spanned since a relevant sensory or motor event 
and is critical to perceive the length of an inter-
val. It is also critical to make decisions about the 
length of a stimulus in tasks that demand catego-
rization, discrimination, or identification of a 
duration based on a cognitive rule (Merchant 
et al., 2013a). Predicting the occurrence of future 
events relies on the quantification of the remain-
ing time that we must wait before an expected 
event. We know that the ability to predict future 
events is intrinsically linked to time intervals that 
had been learned through trial and error 
(Merchant & Yarrow, 2016). As we review in the 

section on the taxonomy of timing, recent neuro-
physiological and imaging studies support the 
notion that tracking elapsed time (how long) and 
anticipating a future event (when) might rely on 
different neuronal mechanisms and possibly dif-
ferent brain areas.

The perception and production of time in the 
hundreds of milliseconds is crucially related to a 
large repertoire of behaviors, it can be triggered 
or guided by different sensory modalities, spe-
cially audition, vision, and touch, and it can be 
expressed through a variety of effectors using the 
skeletomotor, oculomotor, and laryngeal systems 
(Fig.  1) (Merchant et  al., 2013a; Merchant & 
Yarrow, 2016; Merchant & Bartolo, 2018). It is 
important to note that time intervals can be pro-
duced or estimated just once (called interval 
based timing), and they can also be generated in 
sequences of nonrhythmic intervals, or in 
sequences of periodic musical stimuli that pos-
sess a metric structure (called beat-based timing) 
(Fig.  1) (Merchant et  al., 2015a; Lenc et  al., 
2021). Furthermore, some behaviors require an 
explicit representation of time intervals such as 
when tapping to a rhythm, while in other behav-
iors timing is carried covertly (or implicitly) such 
as when we draw, where timing is an emergent 
property of the produced hand trajectory 
(Merchant et al., 2008a; Zelaznik et al., 2002).

Timing can be performed in synchrony with 
periodic external events, as in the case of music 
played by an ensemble, or internally like in the 
case of a soloist (Repp & Su, 2013; Merchant 
et al., 2008b; Wing, 2002). Another property of 
the sensory input that we know modulate timing 
performance is whether the intervals are filled or 
empty. For example, empty intervals can be 
defined by presentation of brief sensory stimuli 
(such as auditory clicks), whereas filled intervals 
are defined by the onset and offset times of a con-
tinuously present stimulus. Interestingly, it has 
been shown that filled intervals are perceived as 
being longer than empty intervals of the same 
length, and that the discrimination threshold is 
smaller for empty than for filled intervals (Fig. 1) 
(Grondin & Rousseau, 1991; Grondin et  al., 
1998).

H. Merchant and V. de Lafuente
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Fig. 1 Different timing 
processes can be flexibly 
engaged depending on 
the input modality 
(hearing, touch, or sight) 
and the type of interval 
(single or multiple). 
Timing expression can 
be channeled through 
the skeletomotor, 
oculomotor, and 
laryngeal systems

In summary, key elements of temporal pro-
cessing include (Joris & van der Heijden, 2019) 
the time scale being quantified, (Schnupp & 
Carr, 2009) the modality of the stimulus that 
triggers a timing behavior, (Jeffress, 1948) 
whether the intervals are filled or empty, 
(O’Neill & Suga, 1979) whether the task 
involves single or multiple rhythmic or arrhyth-
mic intervals, (Hastings et  al., 2018) whether 
there is tracking of elapsed time or prediction of 
future events, (Drucker- Colín & Merchant-
Nancy, 1996) whether time is being measured 
for a movement or for a  perceptual decision, 
(Henderson et  al., 2006) the effector used to 

express timing behavior, (Brody et  al., 2003) 
whether timing is externally or internally gener-
ated, and (Bortoletto et al., 2011) the implicit or 
explicit nature of the timing task (Fig. 1). Thus, 
we would like to emphasize that timing most 
certainly is not a single process and probably 
depends on a set of neural mechanisms. 
Consistent with this idea, the last 10 years have 
seen an explosion of neurophysiological and 
imaging studies, suggesting that different brain 
circuits and different neural mechanisms are 
involved in the ability to tell and use time to 
control behavior. The second edition of our 
book strongly reflects this view.

A Second Introduction to the Neurobiology of Interval Timing
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 Are Different Timing Behaviors 
Supported by Different Timing 
Mechanisms?

The present book focuses mainly on the neural 
basis of temporal processing in the hundreds of 
milliseconds range, although some of the chap-
ters also deal with the underpinnings of timing 
behaviors in the seconds-to-minutes scale. Many 
authors defend the notion of different brain 
mechanisms for these two-time scales, and there 
is still some debate over the exact time boundary 
where these two scales might differ in their neu-
ronal implementation. There is evidence that the 
time boundary seems to be in the order of 1300 to 
2000 ms for perceptual and motor timing tasks 
that involve one interval or a set of isochronous 
intervals (see chapters of Simon Grondin, 
(Grondin, 2012)). However, some researchers 
maintain that these two-time scales are governed 
by the same neural clock during complex behav-
iors, such as the perception and execution of 
music with a complex hierarchical structure of 
tempi (see chapter of Sonja Kotz, (Rajendran 
et al., 2018)).

The classical model of time, often called sca-
lar timing model, proposes a general multicon-
text clock composed by an internal pacemaker 
that monitors the passage of time once a gate sig-
nal is triggered, and it also includes an integrator 
that accumulates the pulses of the pacemaker 
(Treisman, 1963). Many psychophysical studies 
have successfully used this framework to explain 
the temporal performance of humans and animals 
in different perceptual and production timing 
tasks. At the core of this framework is the scalar 
property of time, showing that the variability of 
the temporal estimates increases linearly in pro-
portion to total elapsed time (Gibbon, 1977; 
Gibbon et al., 1997). However, this model uses a 
black-box approach, in which the possible neural 
mechanisms behind the clock stage of the model 
are difficult to identify.

An alternative view emerged in the early 
2000s, and it involves the notion of a ubiquitous 
timing mechanism, that depends on the dynamic 
properties of the cortical and subcortical recur-
rent networks of the brain (Karmarkar & 

Buonomano, 2007; Buonomano & Laje, 2010). 
The common clock hypothesis has been sup-
ported by fMRI meta-analyses reporting that the 
neuronal circuit composed of the medial premo-
tor cortex (MPCs; the presupplementary motor 
area [preSMA], the supplementary motor area 
[SMA]), and the basal ganglia is engaged in 
many perceptual and motor timing tasks that span 
the hundreds of milliseconds range. The notion 
of a distributed timing mechanism is supported 
by modeling (Karmarkar & Buonomano, 2007; 
Zhou et al., 2022), brain slice recordings (Goel & 
Buonomano, 2014), and psychophysical 
approaches (Burr et  al., 2007; Tonoyan et  al., 
2022).

A third possibility suggests the existence of a 
partially distributed timing mechanism, inte-
grated by a main core of interconnected struc-
tures, such as the cortico-thalamic-basal ganglia 
circuit (CTBGc), and cortical areas that are selec-
tively engaged depending on the specific behav-
ioral requirement of a task (Merchant et  al., 
2013a, 2014a). These task-dependent areas may 
interact with the core timing system to produce 
the temporal behavior in a specific task (Merchant 
et  al., 2015b). This recent proposal is based on 
psychophysical studies (Merchant et  al., 2008a, 
2008b), functional imaging meta-analysis 
(Wiener et al., 2010), and fresh neurophysiologi-
cal observations (Betancourt et  al., 2023). 
Importantly, this corpus of evidence supports nei-
ther the existence of either a common timing 
mechanism that functions equally every time a 
subject quantifies time, nor a set of timing mech-
anisms that are specific for each task context.

 The Internal Simulation Hypothesis

A recent proposal has been put forward suggest-
ing that the process we call timing is, in fact, an 
internal re-enactment of the sensory and motor 
actions that define the timing task to be solved in 
a particular behavioral context (de Lafuente 
et  al., 2022). For example, under this internal 
simulation framework, if a subject is asked to 
time a one-second interval, they would replay the 
memory associated with a one-second interval. 
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Importantly, subjects do not make use of a gen-
eral “one-second” memory, but the specific mem-
ory generated during the learning of that task. It 
is this long-term memory that allows the brain to 
conduct an internal simulation of the future states 
of the world.

This is closely related to the often-overlooked 
fact that each timing task has an almost unique 
experimental design, a set of very particular sen-
sory stimuli, and, importantly, a set of specific 
behavioral rules that subjects must follow to 
solve the task. In this manner, the learning of a 
timing task generates a unique long-term mem-
ory or engram.

Support in favor of the internal simulation 
hypothesis has come recently from recordings 
made in nonhuman primates trained in a timing 
and rhythm perception task (García-Garibay 
et al., 2016). In this task, subjects must perceive 
and then internally maintain tempos defined by a 
visual metronome. Interestingly, when the visual 
metronome is extinguished and no movements 
are required from the subjects, the activity of 
single neurons and of the local field potentials 
(LFPs) continue to oscillate at the tempo of the 
metronome. This oscillatory activity was 
observed in V4, parietal cortices LIP and MIP, 
SMA, PFC, and the hippocampus (de Lafuente 
et al., 2022).

Under the internal simulation hypothesis, 
which we can also call the engram-replay hypoth-
esis, there would be neither dedicated clocks nor 
specialized mechanism to measure or produce 
time. Instead, the brain would be using the 
survival- critical ability to make use of past infor-
mation to predict the possible future states of the 
world, make plans, and act accordingly. We con-
sider important to suggest that this new frame-
work might encompass previous important works 
under a unifying point of view. This new point of 
view suggests that the brain does not perform 
“timing” as traditionally has been thought. 
Instead, to generate well-timed behavior, it re- 
enacts the sensory-motor engrams related to the 
task, that we as researchers instruct our subjects 
to perform (de Lafuente et al., 2022).

Supporting this viewpoint on how timed 
behavior might be achieved, recent electrophysi-

ological evidence has shown that the neuronal 
activity of the motor cortices is able to oscillate 
with different time intervals, depending on the 
tempo that the subjects are holding actively on 
working memory (Cadena-Valencia et al., 2018). 
Interestingly, this oscillatory activity is also 
observed in parietal, V4, frontal, and hippocam-
pal areas, and these patterns of activity are 
observed in the absence of any motor action or 
sensory stimuli (de Lafuente et al., 2022).

 Taxonomy of Timing: A Second 
Attempt

In the first edition of our book Neurobiology of 
Interval Timing, we suggested an initial scheme 
for the classification of timing process. The pro-
posal included sensory, perceptual, and motor 
timing as the pillars for temporal processing clas-
sification. Here, we used this scheme as a founda-
tion, and we further suggest a new critical 
element: the dynamic interaction between sen-
sory, cognitive, and motor areas to flexibly cope 
with the behavioral demands for time quantifica-
tion and event prediction.

 Sensory Timing

Organisms can extract temporal information 
from stimuli of all sensory modalities, even if 
there is no sensory organ for measuring the pas-
sage of time (Fig. 1). We still do not know how 
time is computed from the activation of different 
sensory systems or where in the sensory hierar-
chy is the temporal information computed for 
perceptual or motor purposes. To answer these 
fundamental questions, it is important to under-
stand the anatomical and functional relationships 
that exist between the auditory, visual, and 
somatosensory systems, which correspond to the 
most important modalities for temporal informa-
tion processing, particularly in the hundreds of 
milliseconds range. These sensory systems share 
a set of common operations: the sensory trans-
duction of physical information into action 
potentials in the sensory receptors; the projection 
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Fig. 2 A flux diagram for stimulus processing in the 
auditory, visual, and somatosensory modalities, ranging 
from sensation (square) to high order processing (ellipse). 

The orange ellipses highlight the levels of processing 
where different aspects of time quantification may occur

of this information (through thalamic nuclei) to 
the primary sensory areas of the cerebral cortex; 
the processing of the different aspects of the 
stimuli in the cortical and subcortical circuits; 
and finally, the use of high order sensory process-
ing for perception, learning and memory, and 
voluntary motor action (Fig. 2). Thus, time infor-
mation could be initially estimated from the 
transduction of the stimulus and the encoding of 
its physical properties in the first relays of the 
sensory systems. Few studies have focused on 
temporal processing during the transduction and 
conduction stages of sensation. In this regard, the 
auditory midbrain of many vertebrates contains 
cells that are tuned to the duration of stimuli in 

the range of tens of milliseconds (10–100  ms) 
that are also tuned to the stimulus frequency 
(Alluri et  al., 2016). Studies across vertebrates 
have identified cells with preferred durations and 
auditory bandwidths for single intervals that mir-
ror the range of species-specific vocalizations (57 
for a review). Therefore, the auditory system can 
efficiently extract temporal information early on 
within the stimuli processing hierarchy, produc-
ing a switch from neural responses driven by the 
stimulus temporal profile to cells with average 
rate-tuning to durations.

The auditory cortex also shows duration selec-
tivity for single intervals. In both cats and mon-
keys, cells show selectivity for the duration of 
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auditory stimuli (He et  al., 1997; Brosch et  al., 
1999), with preferred durations that are distrib-
uted over a wider range and for longer durations 
(50–350 ms) as compared to the inferior collicu-
lus (Aubie et al., 2012).

The migration of time interval selectivity 
toward longer durations in the auditory cortex 
can be explained by the integration of duration 
selectivity from inferior colliculus inputs or from 
the stimulus temporal integration, where both 
temporal summation and suppression of 
responses within the circuits of the auditory cor-
tex are taking place (He et al., 1997; Brosch et al., 
1999). A key aspect of duration tuning implies 
the existence of different populations of cells 
encoding different intervals, filtering the continu-
ous passage of time in subpopulations for short, 
medium, and long intervals. Thus, the fast identi-
fication of sounds would allow animal communi-
cation, echolocation, and even human language 
perception though funneling elapsed time into 
subpopulations of duration-tuned cells that act as 
feature detectors. Importantly, these feature 
detectors are hardwired in the inferior colliculus 
and auditory cortex as labeled lines for fast tem-
poral processing (Zarco & Merchant, 2009). 
Overall, these studies suggest that the auditory 
modality has an outstanding ability to extract 
temporal information for single intervals in the 
range of early hundreds of milliseconds across 
the first relays of sensory processing. This indi-
cates that the auditory modality is shaped for 
temporal processing.

For rhythmic auditory stimuli, recent neuro-
physiological studies have shown that sensory 
adaptation in the inferior colliculus and the audi-
tory cortex of the rat is a critical mechanism for 
beat extraction. Importantly, the duration tuning 
of auditory cortex defines a response asymmetry 
that can detect stimuli that are on- or off-beat for 
real music excerpts, and this beat contrast selec-
tivity aligns well with the beat tapping preference 
that human subjects produce in response to the 
same musical excerpts (Rajendran et  al., 2017, 
2018). Therefore, these findings suggest that the 
precision of the temporal coding in the inferior 
colliculus and auditory cortex predisposes the 

reliability of the estimated beat, even in the case 
of real music (Rajendran et al., 2020).

For vision, the first node in the visual pathway 
that shows duration-tuned cells for single inter-
vals is the primary visual cortex (V1; Fig.  2). 
These cells show an orderly change in response 
magnitude to a visual stimulus that is presented 
in their receptive field (Duysens et al., 1996). The 
range of durations represented in V1 spans 
50–400  ms. Interestingly, no such tuned cells 
have been found in the lateral geniculate nucleus 
of the thalamus (Duysens et al., 1996), suggest-
ing that time selectivity is a property arising from 
local processing in V1. Psychophysical studies 
have investigated the sensory adaptation for the 
temporal properties of stimuli, an effect that 
probably depends on the primary sensory cortical 
areas. For instance, the apparent duration of a 
visual stimulus can be modified in a local region 
of the visual field by adaptation to oscillatory 
motion or flicker, suggesting that there is a spa-
tially localized temporal mechanism for the sen-
sation of time of visual events in the first nodes of 
the cortical hierarchy of visual processing 
(Tonoyan et al., 2022). As far as we know, there 
are no studies documenting neuronal responses 
to periodic or nonperiodic stimuli in V1.

The tactile system possesses three receptors to 
transduce mechanical stimuli: the rapidly adapt-
ing Pacinian, the rapidly adapting Meissner, and 
the slowly adapting Merkel (Romo et al., 1998). 
The primary somatosensory cortex contains a 
columnar organization that faithfully encodes the 
properties of these three mechanoreceptors 
(Romo et  al., 1995; Mountcastle et  al., 1969). 
Interestingly, rapidly adapting cells in the 
somatosensory cortex increase their discharge 
rate as a function of the duration of a moving 
probe in their finger receptive field (Romo et al., 
1995, 1996). Thus, the primary somatosensory 
cortex also has a finely tuned machinery to extract 
temporal information (Luna et al., 2005).

Neurophysiological studies of time processing 
have provided evidence in favor of the idea that 
the auditory modality has a privileged capability 
for time quantification. Indeed, the precision of 
temporal estimations, measured in psychophysi-
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cal tasks on humans, is more accurate and less 
variable when the intervals are defined by audi-
tory as compared to visual or tactile stimuli. This 
increased precision has been observed during the 
perception of single and multiple intervals, as 
well as in the production time intervals. 
Interestingly, the time intervals marked by audi-
tory signals are judged to be longer than those 
defined by visual stimuli (Wearden et al., 1998; 
Grondin & Rousseau, 1991; Grondin et  al., 
1998).

Thus, the perception of time passage seems to 
depend on specialized groups of cells in early 
nodes of the sensory processing which contain 
neurons that that are tuned to the duration of 
auditory and visual stimuli (Fig. 3). Consequently, 
it is evident that how we perceive the passage of 
time in the tens to hundreds of milliseconds, is 
highly influenced by the sensory modality, and 
depends on the anatomofunctional properties of 
each sensory system, where feature detectors are 
hardwired and where hearing has a clear advan-
tage in temporal processing.

 The Perception of Time

Once the sensory information is encoded as brief 
events or as a pattern of populations’ neural activ-
ity tuned to the duration of the input stimuli, the 
neural system needs to translate sensation into a 
subjective sense of time, within the context of a 
specific behavior or task (Fig. 2). The most used 
tasks to measure time perception are the categori-
zation and discrimination of time intervals 
(Merchant et al., 2008a, 2008b, 2008c). The for-
mer comes with two flavors: time bisection where 
subjects keep in memory the short and long pro-
totypes to categorize intermediate probes 
(Wearden, 1991; Ng et al., 2011; Mendez et al., 
2011), and time generalization where subjects 
keep in memory the boundary between the short 
and long categories and use it to decide on each 
trial which intervals are short or long (Wearden, 
1992). The latter implies the comparison between 
the working memory trace of the first interval 
with the duration of a second interval to deter-
mine which one is the longer and produces a 

response that expresses that decision. Therefore, 
time perception tasks demand not only the encod-
ing of an interval defined by an empty or filled 
stimulus duration, but also maintaining in mem-
ory this quantity and to categorize it or discrimi-
nate the memory trace with a second interval 
using specific decision rules and learned move-
ments to express the decision (Merchant et  al., 
2008a, 2008b). Consequently, the representation 
of elapsed time needs to be dissociated from the 
memory trace of an interval (Chiba et al., 2015), 
the decision making (Merchant et  al., 2011a, 
2014b), and the voluntary motor signals to com-
municate the decision (Hernández et  al., 2010; 
Méndez et al., 2014). This is not a trivial analyti-
cal problem, since the brain areas engaged in tim-
ing, such as the medial premotor areas, the 
putamen and motor thalamus, and the prefrontal 
and parietal areas, are also deeply involved in 
executive functions, working memory, and vol-
untary motor control (Mendoza & Merchant, 
2014; Romo & Rossi-Pool, 2020; Caminiti et al., 
2010; Miller & Cohen, 2001).

A recent neurophysiological study from our 
lab showed that the primate presupplementary 
cortex (preSMA) shows a boundary signal for 
interval categorization. These neurons showed an 
up-down profile of activation with a time peak 
that corresponded to the subjective limit between 
the short and long category. Notably, the time at 
which this peak is reached changes according to 
the categorical boundary of the current block, 
predicting the monkeys’ categorical decision on a 
trial-by-trial basis (Mendoza et  al., 2018). In 
addition, preSMA shows strong neural signals 
for the categorical choice made by the monkey 
and for the outcome of the categorization (Romo 
et  al., 1993, 1997). Paradoxically, this internal 
prediction signal was not preceded by neurons 
encoding the elapsed time between the beginning 
and end of the intervals to be categorized. This 
could be due to the overtraining of the monkeys 
in this task (Mendez et  al., 2011), which could 
favor the neural representation of boundary pre-
diction than of elapsed time, while promoting the 
migration of time encoding to the basal ganglia 
(Merchant et  al., 1997), where elapsed time is 
represented during a categorization task (Gouvêa 
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Fig. 3 (a) Ramping activity of a cell whose discharge 
rate increases with elapsed time. (b) Neural trajectories of 
a cell population starting at the same state space position 
at the first stimulus (S1) and encoding elapsed time in the 
final position of the trajectory at the time of the second 
stimulus (S2). (c) Two neurons show an increase (red) or 
decrease (blue) in discharge rate as a function of the mem-

orized interval. (d) Neural trajectories reaching an attrac-
tor (MM during the memory delay). (e) Cell with a 
ramping activity that reaches a peak few milliseconds 
before the predicted event, with a larger activation slope 
for the shorter interval. (f) Neural trajectories that follow 
the same path but with larger speed for the shorter inter-
val, generating temporal scaling
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et al., 2015). Accordingly, recordings in monkeys 
performing a duration discrimination task showed 
single cell activity related with the encoding of 
elapsed time for the first interval in the striatum 
(Chiba et  al., 2015) but not in dorsolateral pre-
frontal cortex, where the neurons might encode 
either the memory trace of the first duration, the 
decision rule, or the decision choice (Oshio et al., 
2006; Genovesio et al., 2009).

Elapsed time can be encoded in the ramping 
activity of cells whose firing rates increase as a 
function of time and peak at preferred times (sand 
clock neurons); or can also be encoded by 
 increments or decrements in firing activity that 
covers the length of the times interval (Merchant 
et al., 2011b; Knudsen et al., 2014; Henke et al., 
2021) (Fig. 3a). Importantly, it is likely that thou-
sands of ramping neurons might constitute a pop-
ulation clock (Merchant & Averbeck, 2017). 
Thus, the elapsed time between two stimuli can 
be represented by the dynamic interactions across 
the neural populations that display neural 
sequences (Merchant et al., 2015b; Crowe et al., 
2014; Zhou et al., 2022).

This recent proposal of encoding time 
through dynamic neuronal activity uses dimen-
sional reduction techniques to project the high- 
dimensional individual neural activity of a 
network into a low-dimensional state space to 
study the underlying computational principles 
of timing. This approach has been used to show 
that the elapsed time between events could be 
encoded by the final position of the neural popu-
lation trajectory. Given that the trajectories trig-
gered by the first event follow a stereotypic path 
for all durations, a simple linear decoder can 
determine time as the position of the trajectory 
at the second event (Fig.  3b) (Gouvêa et  al., 
2015; Kim et  al., 2013; Sohn et  al., 2019; 
Merchant & Pérez, 2020). Therefore, this neural 
population clock, observed in SMA, the stria-
tum, and prefrontal cortex, can be started and 
stopped flexibly. However, this coding scheme 
is less efficient than the feature detectors in the 
midbrain or the sensory cortex that are tuned to 
durations. In fact, it is not yet clear whether pri-
mary sensory areas use the population mecha-
nism for encoding elapsed time.

An important question in the encoding–decod-
ing of time by neuronal activity is the nature of 
the clock reader. The final position of the neural 
trajectories could be used to generate a working 
memory representation of time for discrimination 
or for action triggering. Recurrent network mod-
eling and monkey neurophysiology have shown 
that interval working memory might be repre-
sented as a manifold in the space generated by 
the neural trajectories (Fig. 3d), while at the sin-
gle cell level, neurons show an increase or 
decrease in discharge rate as a function of the 
memorized duration (Chiba et  al., 2015; Bi & 
Zhou, 2020) (Fig. 3c).

On the other hand, the study of perceptual 
interval learning and the generalization proper-
ties of such learning has provided important 
insights into the neural underpinnings of multi-
modal temporal information processing. For 
example, using interval discrimination, it has 
been shown that intensive learning can generalize 
across untrained auditory frequencies (Wright 
et  al., 1997; Karmarkar & Buonomano, 2003), 
sensory modalities (Nagarajan et  al., 1998; 
Westheimer, 1999), stimulus locations (Nagarajan 
et al., 1998), and even from sensory to motor tim-
ing tasks (Meegan et al., 2000; Sánchez-Moncada 
et  al., 2020). However, none of these studies 
found generalization toward untrained interval 
durations. In addition, it has been suggested that 
the learning transfer depends on the improvement 
of temporal processing and not on more efficient 
memory or decision processes, at least for audi-
tory interval discrimination (Wright et al., 1997). 
Therefore, these findings not only support the 
notion of a centralized or a partially overlapping 
distributed timing mechanism, but they also 
introduce the concept of duration-specific cir-
cuits. Regarding the first point, we can speculate 
that the timing signals sent from the primary sen-
sory cortical areas to the large and distributed 
core timing network during the learning period 
may increase the global efficiency of the tempo-
ral information processing. Thus, an efficient 
core timing network will transfer its improved 
timing abilities across senses and between per-
ceptual and motor contexts. A recent investiga-
tion found that only the subjects that can learn to 
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efficiently discriminate visual intervals, and that 
show a generalization gain in tapping perfor-
mance after learning, show a concomitant 
increase in activity in SMA, putamen, and the 
cerebellum (Sánchez-Moncada et al., 2020).

Another crucial aspect is that subjective time 
is prompt to distortions and generally does not 
have a one-to-one relation with physical time. As 
mentioned above, many factors can affect timing, 
and it is evident that temporal distortions can 
happen at different processing levels. For exam-
ple, adaptation to fast visual motion strongly 
reduces the duration estimation of a subsequent 
stimulus, using a nonretinotopic reference frame. 
In addition, the duration of larger, brighter, or 
more numerous stimuli (Xuan et al., 2007; Togoli 
et al., 2021) is perceived to be longer than stimuli 
with the same duration but smaller magnitudes. 
Subjective time is dilated by the temporal fre-
quency of moving flickering displays (Kanai 
et al., 2006) and affected by the contexts in which 
the stimuli are presented (Fornaciai et al., 2018; 
Karmarkar & Buonomano, 2007). Notably, time 
perception is also affected by movement 
(Merchant & Yarrow 2016). For example, when 
making a saccade to a target, a temporal expan-
sion is produced (Yarrow et al., 2004).

Overall, the study of the neural mechanisms 
behind time perception would be greatly 
advanced by making use of experimental designs 
where time distortions are induced in a controlled 
fashion to determine their origins in the dynamics 
of neural population clocks across the timing cir-
cuits (De Kock et al., 2021). As a complement, 
studies using different modalities or contexts that 
share temporal resources can shed light into the 
properties of a core timing circuit and its interac-
tion with context-dependent areas.

 Motor Timing

Instead of reacting to sensory stimuli, the motor 
system can anticipate the appearance of future 
events. As we mentioned before, interval timing 
within the milliseconds range is a prerequisite for 
many complex behaviors, such as perception and 
production of speech (Kotz & Schwartze, 2010; 

Poeppel & Assaneo, 2020), the execution and 
appreciation of music and dance (Merchant et al., 
2015a), and the performance of sports (Merchant 
& Georgopoulos, 2006). During single interval 
production tasks, the activity of neural popula-
tions evolves with similar trajectories across 
durations, reaching a common terminal state 
when the movement is triggered. Crucially, the 
trajectories are temporally scaled stretching for 
short and compressing for long intervals (Bi & 
Zhou, 2020; Wang et al., 2018; Merchant et al., 
2011b).

At the single cell level, neurons encode the 
time to an event as ramping activity that reaches 
a peak shortly before the estimated time of the 
interval (Fig.  3c). This mechanism has been 
described in SMA, prefrontal cortex, and the stri-
atum (Merchant et al., 2011b; Henke et al., 2021; 
Merchant & Bartolo, 2018; Kunimatsu et  al., 
2018). On the other hand, when monkeys pro-
duce rhythmic taps in synchrony with a metro-
nome, neural trajectories show three main 
properties. First, they have circular dynamics that 
form a regenerating loop for every produced 
interval. Second, they converge to a similar state 
space right at the tapping time, resetting the 
 beat- based clock at this point. Finally, the peri-
odic trajectories increase in amplitude as a func-
tion of the length of the isochronous beat 
(Balasubramaniam et  al., 2021; Gámez et  al., 
2019; Lenc et  al., 2021) but also are temporal 
scaled (Betancourt et  al., 2022). Hence, single 
interval and beat-based timing seem to have par-
tially shared neural mechanisms (see chapter 
“Cognition of Time and Thinking Beyond”).

Music and dance are behaviors that depend on 
intricate loops of perception and action, where 
temporal processing can be involved during the 
synchronization of movements with sensory 
information or during the internal generation of 
movement sequences (Rajendran et  al., 2018). 
Many functional imaging studies have demon-
strated that the circuits engaged in the perception 
of time are the same that are activated during 
motor timing (Coull et  al., 2008; Wiener et  al., 
2010; Schubotz et  al., 2000; Merchant et  al., 
2013a). The cortico-basal ganglia-thalamo- 
cortical circuit (CBGT), that includes the medial 
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Fig. 4 The core timing network in the monkey brain is 
highlighted as orange structures. This core timing network 
is constituted by the skeleton-motor cortico-basal ganglia- 
thalamo- cortical circuit, which includes the medial pre-
motor areas (MPC: SMA and preSMA), as well as the 
putamen, the globus pallidus, and the motor thalamus. A1 

primary auditory area, AS arcuate sulcus, CS central sul-
cus, GPe globus pallidus externus, GPi globus pallidus 
internus, IPL inferior parietal lobe, IPS intraparietal sul-
cus, LS lateral sulcus, MPC medial premotor cortex, PS 
principal sulcus, SNr substantia nigra pars reticulata, STN 
subthalamic nucleus, STS superior temporal sulcus

premotor areas (Supplementary (SMA) and 
Presupplementary motor areas (preSMA), as 
well as the neostriatum, the globus pallidus, and 
the motor thalamus), is a network that is strongly 
engaged by interval perception and by time- 
constrained movements. These studies support 
the notion that the CBGT circuit is a key element 
of the core timing network, and that it is activated 
during the categorization and discrimination of 
time intervals, as well as during the perception 
and production of rhythms (Fig. 4). Accordingly, 
the neural population trajectories have now been 
characterized within the core timing network 
during perceptual and motor timing tasks for sin-
gle intervals, as well as for rhythmic tapping 
tasks. Nevertheless, further studies are needed to 
determine whether the rules of time processing 
change in the core timing circuit when the same 
subjects perform perceptual and motor timing 
tasks, or when they perform single interval and 
rhythmic timing tasks. Another critical unan-
swered question relates to the role of the output 
of the basal ganglia in shaping the geometry and 
dynamics of the medial premotor neural trajecto-
ries during all these tasks.

In addition to the neural dynamics in popula-
tion trajectories, different laboratories have 
shown that different core timing areas contain 

neurons that show duration tuning during motor 
timing tasks. Interval tuning during single inter-
val and beat-based timing has been reported in 
medial premotor areas (Merchant et  al., 2013b; 
Mita et al., 2009), prefrontal cortex (Henke et al., 
2021), the putamen (Bartolo et al., 2014; Bartolo 
& Merchant, 2015), the caudate (Kameda et al., 
2019; Kunimatsu et al., 2018), and the cerebel-
lum (Ohmae et al., 2017; Okada et al., 2022). In 
addition, a chronomap in the medial premotor 
cortex has been described in humans using func-
tional imaging, where interval-specific circuits 
show a topography with short preferred intervals 
in the anterior and long preferred intervals in the 
posterior portion of SMA/preSMA (Protopapa 
et al., 2019). Therefore, motor timing depends on 
distinct timing circuits composed by duration 
specific neurons. Each of these circuits quantify 
the time remaining for an event by contracting or 
expanding their activity patterns using temporal 
scaling (Merchant & Bartolo, 2018; Bartolo & 
Merchant, 2009). In fact, tuning and modularity 
are mechanisms for division of labor that are 
widely used in cortical and subcortical circuits to 
represent sensory, cognitive, and motor informa-
tion (Mountcastle, 1998; Goldman-Rakic, 1984; 
Georgopoulos et  al., 2007; Merchant et  al., 
2008d; Naselaris et al., 2006). Interval tuning can 
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provide large flexibility to encode the passage of 
time and to predict events across many behaviors 
that require temporal processing by integrating 
timing with other task-dependent parameters 
with different mapping frameworks (Merchant & 
Bartolo, 2018; Zhou et al., 2022).

A set of functional imaging studies have 
revealed the neural and functional overlap 
between perceptual and motor timing, and the 
conclusion is that the motor network of the 
CBGT is activated across a wide range of timing 
contexts. A critical question, then, is what is the 
meaning of this anatomofunctional overlap? One 
possibility is that the increase in the BOLD sig-
nal in the motor areas across timing tasks reflects 
the presence of confounding cognitive processes, 
such as effector selection and motor preparation, 
or working memory and decision processes 
(Sánchez-Moncada et al., 2020). This is unlikely, 
however, since SMA, the CBGT circuit, and the 
prefrontal cortex are selectively activated even 
when duration estimates are registered with a 
perceptual discrimination (Wiener et al., 2010), 
or after motor preparation and/or execution pro-
cesses have been rigorously controlled for (Coull 
et al., 2008; Schubotz et al., 2000) (see Chapter 
11 of Coull and Morillon). Another possibility is 
that core timing network shares the neural cir-
cuitry with motor function because our general 
sense of time has been developed through action 
since childhood (Fraisse, 1982; Levin, 1992). 
This proposal is similar in principle to other 
embodied theories of time perception (Wittmann, 
2013). Developmental studies have demon-
strated that young children appear to represent 
time in motor terms (Droit- Volet & Rattat, 1999). 
Their duration estimates are more accurate when 
the duration is filled with an action than when it 
is empty (Fraisse, 1982), and they find it difficult 
to dissociate an estimate of duration from the 
motor act itself (Droit-Volet et al., 2006). Hence, 
it is possible that the motor circuits are engaged 
early in development to build up and acquire rep-
resentations of time, forming a core timing net-
work inside the motor system.

As has been proposed before, different cogni-
tive functions may share the same neural repre-
sentations and circuits for action and perception 

(Merchant et al., 2015a; Mendoza & Merchant, 
2014). In the case of temporal processing, it is 
possible that the learned associations between 
particular actions and their durations have been 
engrained in the dynamics of the cortical and 
subcortical motor networks (Mendoza et  al., 
2016, 2018; Merchant & Averbeck, 2017; 
Méndez et  al., 2014). Thus, the dynamic repre-
sentation of time in the activity of cell popula-
tions could become a generalized temporal 
representation, which is independent of the motor 
output, and can be used for motor and perceptual 
acts that require a strict temporal control (Fig. 4). 
Longitudinal experiments recording the activity 
of the core timing network and context- dependent 
structures during learning a timing skill are 
required to test these ideas.

 Sensory-Motor Loops

The strong correlation between fluctuations in 
the speed of the trajectories with trial-by-trial 
changes in movement times supports the notion 
of a robust predictive signal that triggers behavior 
within the core timing network. This motor top- 
down prediction should dynamically interact 
with the sensory bottom-up input to generate 
calibration loops of the timing system for both 
single interval and beat-based timing. In fact, it 
has been shown that predictive signals associated 
with a rhythmic motor behavior are fed back to 
the sensory areas through a corollary discharge 
that enhances processing of incoming auditory 
signals at a particular cyclic phase (Morillon 
et al., 2014). During beat-based timing, the motor 
system routinely produces dynamic signals in 
order to internally represent time, predict move-
ments, enhance sensory events, and coordinate 
all these parameters (Merchant et  al., 2015a; 
Merchant & Yarrow, 2016). Regarding the coor-
dination process, two error signals most be com-
puted: the time difference between the motor 
corollary discharge, and the proprioceptive reaf-
ference and the time difference between the inter-
nal beat signal and the sensory input (Repp, 
2005). Both error signals could be used to cali-
brate the prediction of interval length (Betancourt 
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et  al., 2023). There is a large knowledge gap 
about how the motor and sensory timing areas 
accomplish these processes.

 Bayesian Timing

As a final comment, the study of the neural basis 
of timing has been recently enriched using 
Bayesian approaches that can successfully 
account for behavioral performance across differ-
ent timing tasks. This approach has also been 
used to dissociate the neural signals involved in 
tracking time, from those related to the acquired 
knowledge of the task parameters to optimize 
behavior. Bayesian estimators compute the pos-
terior probability as the product of the likelihood 
function and the prior probability distribution. It 
has been shown that, across timing tasks, subjects 
tend to overestimate short intervals and overesti-
mate long intervals, an effect described by the 
Viederord’s Law, and now have been recently 
called regression toward the mean or bias effect 
(Jones & Mcauley, 2005; Pérez & Merchant, 
2018). The prior distribution explains the bias 
effect by mapping the history of sample intervals 
that the observer has encountered during a block 
of trials with a mean that is close to the interme-
diate interval in the input distribution. Larger bias 
effects are captured as narrower prior distribu-
tions, reflecting more weight for previous knowl-
edge of task conditions than the actual trial 
information. In addition, the likelihood function 
captures the scalar property of timing (Jazayeri & 
Shadlen, 2010; Merchant & Pérez, 2020; Perez 
et al., 2023). Notably, the curvature of the neural 
trajectories in SMA-preSMA reflects the effect of 
the prior on the bias effect (Sohn et  al., 2019), 
while the variability of the neural trajectories is 
linked to the scalar properly of timing (Betancourt 
et al., 2023; Gámez et al., 2019).

 Book Overview

It is with great pride and excitement that we pres-
ent the second edition of the book Neurobiology 
of Interval Timing. A great deal of new and 

encouraging findings have been uncovered since 
the first edition 10 years ago. In this updated edi-
tion, we had the fortune to count among the con-
tributions one of the finest researchers in the field 
of timing.

First, authors Vatakis and Teki provide us with 
a detailed recapitulation of the meetings and 
events that have now coalesced into a mature tim-
ing research field. From the first TIMELY meet-
ing back in 2007, up until last year, these meetings 
brought together a highly interdisciplinary group 
of researchers, often with conflicting views about 
the future of field, which makes it more interest-
ing for students and scientists alike.

In his excellent chapter, Prof. Grondin clearly 
exposes how the precision and accuracy of time 
estimates depend on a number of critical factors, 
such as the sensory stimuli utilized to define time 
intervals and whether the intervals are filled or 
empty, and importantly, the chapter provides a 
balanced view of the conflicting evidence point-
ing to the existence of a single universal Weber 
Fraction for time estimation, or, instead, to the 
fairly common observation that different time 
scales might result in different estimations of the 
value of Weber’s Fraction.

Prof. Buonomano’s chapter provides a very 
thorough and precise account of previous and 
current mechanistic models that have been put 
forward to account for the timing abilities of the 
brain. A remarkable observation that the authors 
point out is that across species and behavioral 
tasks, a pattern of sequential activation of neu-
rons arises when the subjects are timing intervals. 
From this pattern, time can be decoded by look-
ing at the different times at which neurons peak 
in their activity. Importantly, the authors make 
the argument that with such population clocks, 
the activity of each individual neuron is highly 
independent of the rest of the population. Hence, 
timing is in the neural sequences, oscillatory or 
ramping activity might not be sufficient to pro-
duce the flexible chronometers that are needed to 
account for our complex timing behavior.

Regarding electrophysiological findings in 
nonhuman primates, Prof. Tanaka and colleagues 
present and discuss an outstanding body of 
experimental results that strongly suggest that the 
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basal ganglia are better suited to encode and exe-
cute timing behaviors within the range of hun-
dreds of milliseconds, which contrasts with the 
activity that they recoded from the cerebellum, 
showing that this structure operates at shorter 
time scales. It is remarkable that these authors 
not only estimated correlation measurements 
between behavior and neuronal activity, but, 
importantly, they performed causal  manipulations 
that provide firm support for their conclusions.

Also, in the field of primate neurophysiology, 
the group led by Prof. Merchant provides in their 
chapter a precise account of the numerous semi-
nal experiments and results that they have pro-
duced in relation to the neuronal underpinnings 
of our ability to keep track of time and rhythms. 
This important work includes recordings from 
single neuron activity that could form the basis to 
estimate elapsed time from a past event, to esti-
mate the time remaining to a future event, and to 
keep track of total elapsed time. Not only do 
these authors show single neuron activity, but, 
crucially, they demonstrate that the combined 
activity of large neuronal populations can account 
for the rhythmic tapping behavior of primates.

In their chapter, the research group led by 
Prof. Rueda-Orozco provides a compelling body 
of experimental evidence that convincingly indi-
cates the basal ganglia do not only contain infor-
mation about the muscles and articulations 
recruited for movements; moreover, the authors 
demonstrate that timing signals, such as elapsed 
time, constitute an integral part of basal ganglia 
activity. Such timing signals observed in the 
basal ganglia, the authors argue, might be 
strongly dependent on the rhythmic signals origi-
nating in sensory organs.

In the chapter by de Lafuente and colleagues, 
they review a body of recent literature from our 
group that provides support to the hypothesis that 
the brain estimates time and rhythm by predict-
ing the occurrence of future stimuli and that also 
predicts the possible occurrence of required 
motor actions. They provide evidence indicating 
that monkeys and humans share the ability to 
internally maintain rhythms of different tempos. 
In terms of the neuronal correlates of this internal 

metronome, we showed that the neuronal activity 
within the supplementary motor area encodes the 
temporal and spatial characteristics of that 
metronome.

In a provocative and interesting review, Prof. 
Bi brings our attention to the large gap that stills 
exist between the knowledge gathered by basic 
science and the potential applications that this 
knowledge could have to understand and treat 
diseases like Parkinson’s. Prof. Bi makes a strong 
case indicating that basic neuroscience and neu-
rotechnology have been following parallel and 
largely independent pathways that should be 
brought close together. This chapter constitutes a 
much-needed critical view on the validity and 
capacity for generalization of our current results 
and our current approximations to the study of 
time and, more generally, to the study of 
cognition.

The chapter by Profs. Coull and Morillon 
makes an excellent presentation of the close 
interlink between auditory perception and our 
innate behavior to move in rhythm with periodic 
auditory stimuli. Moreover, the authors make a 
strong case arguing that it is the violations of our 
auditory expectations that drive us to search for 
and extract the beat in musical pieces. This 
important observation highlights the crucial 
function that prediction of future events plays in 
many aspects of brain function.

In a remarkable effort to review the large body 
of fMRI evidence, the chapter of Prof. Wiener 
provides us with an up-to-date view of the tech-
niques that are being developed to make full use 
of many public databases that could contribute to 
a more general and unified understanding of the 
fMRI data currently available. The new meta- 
analyses presented by Prof. Wiener have pro-
vided further support for the existence of a 
“timing network.” And within this network, the 
supplementary motor area is the one structure 
that consistently is found to be involved for solv-
ing timing tasks.

The chapter by Fleur and colleagues provides 
us with a well-documented well-discussed utility 
of the technique called Event-Related Potentials, 
and its successful use in probing the neuronal 
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underpinning of rhythm processing in the brain. 
Such technique has the great advantage of not 
requiring conscious perception by the partici-
pant. The sole presentation of a predictable musi-
cal beat invariably induces brain responses that 
give raise to a “mismatch negativity” signal indi-
cating that the brain has detected a sensory stimu-
lus that is not expected to occur. The group led by 
Prof. Honing has produced numerous important 
insights into the possible brain mechanisms that 
could be used to detect such deviant or otherwise 
unexpected stimuli. It is worth noticing that this 
phenomenon is tightly coupled to the ability of 
the nervous system to predict the future states of 
the world.

In the chapter by Prof. Assaneo and col-
leagues, they describe the importance of rhythm 
in speech, and they make a strong case arguing 
that a speaker and a listener must share a—prob-
ably innate—common rhythmic structure that 
makes communication possible even in the most 
noisy and unpredictable environments.

Finally, the chapter by Schwartze and Kotz 
provides a solid argument in favor of the view 
that the basal ganglia constitute an integral node 
sustaining our capacity to estimate time and exe-
cute timely actions. As the authors describe, not 
only the basal ganglia are an integral part of the 
motor system, but they are also involved in mod-
ulating diverse brain structures such as the cere-
bellum and integrative areas of the cortex like the 
prefrontal cortex. Thus, the basal ganglia partici-
pate in timing not only by modulating movement 
execution, but also by modulating functions such 
as cognitive processes like attention, which we 
know is closely related to timing abilities.

We are certain that you will gain access to 
multiple insights developed by renowned col-
leagues, and you will enjoy reading it as much as 
we enjoyed the editorial process.
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Abstract

Our ability to perceive event duration and 
order is critical in every aspect of our lives, 
from everyday tasks like coordinating our 
limbs to walk safely, to uniquely human activ-
ities like planning our children’s future. Many 
theoretical accounts of timing have been pro-
posed to explain the mechanisms underlying 
our ability to estimate time and unify events in 
time. Continuous progress is being met in fur-
ther refining and extending current theories, 
with the aim not only to advance our under-
standing of timing and time perception, but 
also to make timing more accessible and 
applicable to daily life. For this to be possible, 
cross-disciplinary thinking is required, which 
is something one cannot easily attain in a sci-
entific conference, rather it requires a commu-
nity. Having a community with an interest 
and/or expertise in timing can allow for cross- 
fertilization of ideas. This chapter introduced 
the story of the Timing Research Forum or 
else TRF.
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 Introduction

Our ability to perceive event duration and order is 
critical in every aspect of our lives, from every-
day tasks like coordinating our limbs to walk 
safely, to uniquely human activities like planning 
our children’s future. And yet, unlike other per-
ceptual dimensions, we do not possess a sense 
organ specifically dedicated to time. Rather, our 
temporal percepts seem to result from a con-
glomerate of brain processes that allow us to time 
our behavior to act in a highly complex world 
(e.g., Allman et al., 2014; Macar & Vidal, 2009; 
Matthews & Meck, 2016; Tsao et  al., 2022). 
Many theoretical accounts of timing have been 
proposed to explain the mechanisms underlying 
our ability to estimate time and unify events in 
time (e.g., Buhusi & Meck, 2005; Matthews & 
Meck, 2016; Eagleman & Pariyadath, 2009; New 
& Scholl, 2009; Tse et  al., 2004; Ulrich et  al., 
2006). Continuous progress is being met in fur-
ther refining and extending current theories, with 
the aim not only to advance our understanding of 
timing and time perception, but also to make tim-
ing more accessible and applicable to daily life. 
For this to be possible, cross-disciplinary think-
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ing is required, which is something one cannot 
easily attain in a scientific conference, rather it 
requires a community. Having a community with 
an interest and/or expertise in timing can allow 
for cross-fertilization of ideas. Such crosstalk 
allows not only for multidisciplinary work to be 
possible but also interdisciplinary excellence.

In this chapter, we will describe the story of 
the making of a “home” for the timing research-
ers around the world to allow for the above- 
mentioned cross/interdisciplinary thinking. We 
will describe the first steps made initiating a more 
general timing community, the restart of creating 
a more focused timing community, and how this 
community has supported and encouraged the 
growth and expansion of timing in different disci-
plines and different settings, but also fostering 
more basic research and more accessibility in 
research materials and knowledge.

 TIMELY: The First Step in Creating 
a Timing Community

The idea of creating a multidisciplinary network 
of scientists working on timing and time percep-
tion was entertained in 2007 (during AV’s last 
year of her PhD studies), was formulated as a 
funding  proposal in 2008, and was realized in 
2009, when funded by the European COST 
(European Cooperation in Science and 
Technology) agency under the title “TD0904: 
Time In MEntaL activitY: theoretical, behavioral, 
bioimaging, and clinical perspectives (TIMELY)” 
(see Fig. 1). TIMELY mainly focused on the fol-
lowing issues.

 A. The conceptual analysis and measurement of 
time given that there was no common code of 
communication as to the different aspects of 
time perception. A debatable definition also 
leads to problematic measurement methodol-
ogies. Reaching an agreement regarding the 
conceptual analysis of time, we expected to 
also lead to more efficient and accurate mea-
sures of timing in humans and other animals.

 B. The exploration of factors associated with 
timing variability given that high timing vari-

ability had been reported within and between 
individuals. Such variability may represent a 
barrier in understanding time perception. 
Thus, a close examination of various cogni-
tive/biological processes in relation to timing 
was considered essential.

 C. The expansion of timing research to ecologi-
cally valid stimuli and real-world applica-
tions. Most timing research had focused on 
simple stimuli, necessitating the use of more 
informationally rich stimuli (e.g., music, 
action) for advancing time perception 
research and, thus, extending the results to 
real-world applications.

 D. The uncovering of the neural correlates of 
time perception. Advances in neuroimaging 
allow observation of the brain in action. It 
was considered necessary to identify the 
techniques appropriate for studying timing in 
humans and other animals and for examining 
time distortions in specific neurological/psy-
chiatric conditions and other impairments.

These ambitious aims lead to a vigorous com-
munity and the development of an active hub for: 
(a) European and international cooperation: 17 
short-term research visits across Europe and 
internationally; (b) Timing events: 3 large confer-
ences and 20 workshops and symposiums (see 
Fig. 2); (c) Training schools: 6 training schools 
with amazing participation from senior and 
junior scientists (see Fig. 2); and (d) Publications: 
14 collaborative works (e.g., Vatakis & Allman, 
2015; Vatakis et  al., 2011, 2018). A significant 
result that was also initiated due to TIMELY was 
the first journal dedicated on timing, Timing & 
Time Perception, a name suggested by Warren 
Meck and adopted by the editorial team. This 
journal continues to serve the aim to host all basic 
research studies, including interdisciplinary and 
multidisciplinary works on timing and time per-
ception, and serve as a forum for discussion and 
extension of current knowledge on the topic.

TIMELY lasted for four years and served as a 
unique “meeting place” of researchers working 
on time from different disciplines (given their 
different perspectives and approaches on time as 
a concept and percept), different laboratories, and 
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Fig. 1 The logo of the TIMELY community and the attempt to recreate it in our very first training school in Groningen 
(NL) on “Psychophysical, Computational, and Neuroscience Models of Time Perception” on April 4–8, 2011

different countries. At its conclusion, TIMELY 
brought together 318 individuals—including 112 
females and 122 early-stage researchers—work-
ing on timing and laid the foundation for the next 
stage of this community. It was a community that 
would be focused on timing and that would con-
tinue to be present independent of funding.

 Timing Research Forum (TRF): 
The Current and Future Home 
of Timing

After the conclusion of TIMELY in 2014, there 
was a lot of crosstalk among the community of 
how to move forward. One thing was certain that 
this next step had to be a group effort. Warren 
Meck at some point in 2015 had forwarded to AV 
an article under review that was written by ST 

and which urged for a community in timing. AV 
followed up on this, ST was immediately posi-
tive about the notion of a community, and it was 
in 2016 that the Timing Research Forum (TRF) 
was first introduced (Teki, 2016; see Fig. 3).

TRF’s aim is also to bring together researchers 
that have been studying timing and time percep-
tion from many different perspectives and 
through different methodologies and techniques. 
We believe that true advancement comes from 
collaborations and the sharing of the knowledge 
and experience gained by each person, each labo-
ratory, and each department and institution (Teki, 
2016). TRF, therefore, started as a “free existing 
and evolving” entity that will continuously 
change depending on the activities organized and 
the people interested with a focus on the mainte-
nance, continuation, and advancement of the tim-
ing and time perception community through open 
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Fig. 2 Group pictures of almost all attendees of the (a) 
first TIMELY training school in Groningen (NL) on the 
“Psychophysical, Computational, and Neuroscience 
Models of Time Perception” held on April 4–8, 2011, (b) 

TIMELY workshop on “Temporal processing in clinical 
populations” in Thessaloniki (GR) during March 26–29, 
2012, and (c) final conference of the TIMELY project held 
on Corfu (GR) on March 31st till April 3rd, 2014
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Fig. 3 The logo of the TRF community and the very first group picture on the very first TRF conference held in 
Strasbourg (FR) on October 23–25, 2017

science, discussions, and collaborations, and the 
advancement and dissemination of the new 
knowledge accumulated.

Since 2016, TRF has been serving this vision 
with several activities initiated by the commu-
nity. TRF’s regular activities include: (a) monthly 
newsletters that cover job advertisements, new 
papers published, calls for special journal issues, 
and, in general, all that pertains to timing, (b) the 
organization of conferences every 1.5  years 
(excluding the COVID-19 break; Giersch & 
Coull, 2018; Merchant, 2019) that include initia-
tives such as the Young Investigator Keynote 
award and the MoonShot event (where scientists 
discuss the most important questions to be solved 
in the next 5 years for better understanding time 
in the brain), (c) the monthly Journal Club talks 
from both junior and senior scientists (see https://

www.youtube.com/@timingresearchforum6392/
playlists), (d) the TRF Carte Blanche series, 
where leading researchers in timing present and 
openly discuss their past and future ideas; this 
project, which was conceived by Virginie van 
Wassenhove and realized with the help of Fuat 
Balci, kicked off in 2022 by hosting the amazing 
(Charles) Randy Gallistel, and (e) the online 
presence through TRF’s website, social media 
(Facebook and Twitter), and YouTube channel 
storing all the online activities of the 
community.

TRF was also present, with Virginie van 
Wassenhove leading the effort, in bringing 
together researchers during the pandemic of 
COVID-19  in a massive effort to study the 
“Effects of physical and social distancing on time 
perception and temporal cognition,” which lead 
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to a large collection of data (Chaumon et  al., 
2022), publications (e.g., Rioux et al., 2022), and 
a large body of data and code open to the research 
community (https://osf.io/359qm/). TRF is also 
the host of the “Timing Database” (Aydoğan 
et al., 2023), an initiative of compiling a shared 
database of published and unpublished work on 
interval timing. Such a database will allow 
researchers to conduct secondary analysis of 
large datasets to test basic assumptions (e.g., 
large scale tests of the scalar property and its lim-
its, order effects, differences between sub- and 
suprasecond timing), investigate novel research 
questions, and/or make new discoveries based on 
much larger datasets than those collected by a 
single laboratory. Importantly, this database will 
also contain unpublished datasets and, thus, serve 
at least as a partial correction factor for publica-
tion bias.

The sixth birthday of TRF in 2022 was met 
with a membership of 1207 members, plans for 
the post-COVID TRF3 conference, and new 
ideas to be implemented (e.g., annual training 
schools). This would not be possible without the 
support from the community and the continuous 
work of the Early Career Researchers (ECR) 
committee that devote their time and effort to 
keep TRF current, fresh, and alive.

 Then, Now, and the Future 
of Timing and TRF

At the closing of TIMELY, Matthews and Meck 
(2014) published a paper reviewing the current 
challenges in the field of timing and their pro-
posed directions for the future of timing. They 
correctly argued that there were three general 
challenges (and opportunities, we would say) in 
timing research: (a) the malleability of timing to 
context and other factors, (b) the individual dif-
ferences in both the mechanisms and substrates 
of interval timing, and (c) the limited transfer of 
laboratory timing research to the real world 
(Matthews & Meck, 2014). The timing commu-
nity has been vigorously working on these chal-
lenges with an ever-increasing rate of publications 
in the area (see Fig. 4). Furthermore, the maturity 
of the timing research and the presence of the 
timing community in multiple areas of science 
and society lead to the initiation, in 2017, of the 
discussions of the importance and relevance of 
timing in technology at the European Commission 
level. Specifically, in 2018, we had the launch of 
the very first Future Emerging Technologies 
(FET) Proactive call for proposals seeking “new 
technological possibilities inspired by notions of 
time, not seen as a given and singular background 
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against which things unfold, but rather as a 
resource that can be experienced and used in dif-
ferent ways” (Digital4Science, 2017).

The efforts of the timing community to make 
timing more relevant to technology and other 
more applied fields, as well as the increasing 
needs of other fields to interact with psychology 
and neuroscience have flourished in recent years 
(see Fig. 5a). Timing research is now included or 
central to funding sources that aim to develop 
technologies for the future (see Fig. 5b). It must 
be noted here that one of the first European- 
funded projects on time was a project developed 
by members of the TIMELY community. The 
project was a FET project called TIMESTORM 
(Mind and Time: Investigation of the Temporal 

Traits of Human-Machine Convergence) that 
aimed to equip artificial agents with temporal 
cognition to establish a new framework for the 
investigation and integration of knowing, doing, 
and being in artificial systems. Subsequently, the 
VIRTUALTIMES FET project aimed to create 
tools to speed up or slow down events in immer-
sive artificial worlds, resulting in the develop-
ment of the MetaChron platform that is a 
time-sensitive and “intelligent” VR platform that 
enables experiences of virtually modified time 
and tools for diagnosing and treating neurologi-
cal pathologies. More recently, another FET proj-
ect called ChronoPilot—that AV coordinates— 
aims to capitalize on the knowledge produced in 
timing research to develop mixed reality tech-
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nologies to adapt dynamically one’s time percep-
tion, as well as to find ways to coordinate time 
plasticity in collaborative settings with human 
and/or artificial agents. The aim is to modulate 
timing for better decision making and well-being, 
thus aiming for a profound impact on both tech-
nology and society.

The above-mentioned activity demonstrates 
that the timing community is very active in 
addressing all challenges posed in the field but 
also open to new ones. Of note here are efforts 
devoted to openness of the data collected (see 
Fig. 6) to attempt to answer more general ques-
tions on timing that can only be answered by 
comparing large data. Examples of these efforts 
were seen in the Chaumon et  al.’s (2022) and 
Aydoğan et al.’s (2023) work, where comparison 
of larger datasets may allow us to answer ques-
tions related to the central tendency in timing, 
differences in various timing intervals and tasks, 
individual differences, the role of cognitive pro-
cess in timing, and how isolation and wellbeing 
relate to timing, to name just a few. TRF will cer-
tainly be here, now, and in the future, to dissemi-
nate and support all that is timing.
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The Processing of Short Time 
Intervals: Some Critical Issues

Simon Grondin

Abstract

Humans have the capability to make judg-
ments about the relative duration of time inter-
vals with accuracy (correct perceived duration) 
and precision (low variability). However, this 
capability has limitations, some of which are 
discussed in the present chapter. These limita-
tions, either in terms of accuracy or precision, 
are obvious when there are changes in the 
physical characteristics of the stimuli used to 
mark the intervals to be judged. The character-
istics are the structure (filled vs. empty) of the 
intervals and the sensory origin of the stimuli 
used to mark them. The variability of time 
estimates also depends on the use of single 
intervals by opposition to the use of sequences 
of intervals, and on the duration range under 
investigation. In addition to the effect caused 
by the physical characteristics of the stimuli, 
the perceived duration also relies on the way 
of presenting successive stimuli and on 
whether the intervals are marked by a single 
source or by different sources with distance 
(spatial effect) between them.

Keywords

Time psychophysics · Duration discrimina-
tion · Variability · Weber’s law · Perceived 
duration

 Introduction

In order to understand how a mechanism works, 
it is important to understand its properties and the 
extent of the influence that some factors may 
exert on it. When it comes to the judgment of 
time intervals, we do not know exactly which 
mechanism is responsible, although there are 
many classical interpretations (e.g., Gibbon et al., 
1984; Jones, 2019; Mauk & Buonomano, 2004; 
Zakay & Block, 1997), as well as more recent 
ones (e.g., Gilden & Mezaraups, 2022; Killeen & 
Grondin, 2022). This chapter aims to identify the 
impact of some factors on the processing of tem-
poral information.

To what extent is it reasonable to posit that a 
unique timekeeping mechanism is responsible 
for processing temporal intervals (1) from differ-
ent duration ranges, (2) marked by different sen-
sory signals, (3) presented or not in a continuous 
sequence, and (4) when adopting or not an 
explicit counting strategy? These avenues are of 
interest in this chapter as they have an impact on 
either the variability of time judgments or on the 
perceived duration.
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 Methods for Studying Time 
Perception

The reading of this chapter will be easier if some 
critical distinctions are kept in mind. It is only a 
small portion of the field of psychological time 
that is addressed here. What is addressed is nei-
ther the judgments about the order of arrival of 
different sensory signals, nor the judgments 
about the durations of past events or activities. 
What is of interest here are judgments about time 
in conditions where participants know in advance 
that a judgment about time will have to be made 
(what is called prospective timing [see Grondin 
& Laflamme, 2015; Tobin et al., 2010]), and the 
intervals to be processed are usually relatively 
short.

Also critical is the following distinction. If 
you have a device to keep track of time, you want 
this device to be accurate on average (that the 
mean judgments reflect the exact physical/chro-
nometric time), and you want this average to be 
obtained with precision, i.e., with low variability 
(Grondin, 1998; Killeen & Grondin, 2022). This 
chapter is about the factors affecting the variabil-
ity of time judgments and the mean perceived 
duration. These two dependent variables can take 
different forms, depending on the method 
adopted for investigating the processing of short 
time intervals.

There are several classical methods for testing 
timing and time perception capabilities (Grondin, 
2008).1 One is the verbal estimates of a given 
interval, using chronometric units (seconds, or 
minutes for longer intervals). In another method, 
participants could be asked to produce an interval 

1 In addition to the classical psychophysical methods, it is 
possible to use indirect methods such as drawing or seg-
menting a line presented visually on a screen (Bisson 
et  al., 2009). For instance, instead of using a binary- 
forced- choice system as is the case with a bisection task, a 
participant could be asked, after being presented a short 
and a long standard interval, to indicate on a line, between 
Point S (short) and Point L (Long) on this line, a point 
representing the length of the comparison interval which 
has just been presented (Gamache & Grondin, 2010—
Experiment 2). With such a line-segmentation task, if the 
duration of the presented interval appears to be, for exam-
ple, exactly between the short and the long standard, the 
participant would have to click on the middle of the line.

of a given length, with this production typically 
being made with two successive finger taps, or by 
pressing a button for the duration of the targeted 
length.2 Interval reproduction is also a classical 
method. Instead of using chronometric units to 
define a targeted interval, the experimenter marks 
the interval with a continuous sensory signal, or 
with two brief signals marking an empty dura-
tion. After this presentation, the participant 
reproduces this interval. This can be done with 
two successive finger taps or by pressing a button 
for the duration of the targeted length, as 
described for interval production, or by ending 
with a single finger tap the reproduced interval 
whose onset was initiated with a sensory signal 
provided by the experimenter. Note that the exact 
method adopted for reproducing an interval will 
have an incidence on the results (Mioni et  al., 
2014). In the case of interval production and 
reproduction, it is possible to have an index of 
perceived duration and of variability. When a 
series of intervals are reproduced, the mean is 
kept as the estimate of perceived duration, and 
the standard deviation is the estimate of 
variability.

Another type of classical method is often 
referred to as the comparison method. In this 
case, two (or more) intervals are presented and 
must be discriminated (“Which one is longer?” 
or “Was the second interval shorter or longer than 
first one?”). The method of constant stimuli 
involves such a comparison, and most often, on 
each trial, a standard is compared to one of a 
series of comparison intervals. This method 
requires building a psychometric function where 
the probability of responding that the comparison 
interval is longer than the standard (on the y axis) 
is plotted as a function of the value of the com-
parison intervals (on the x axis). The point on the 
x axis corresponding to 50% of long responses is 
the point of subjective equality (PSE) and could 

2 Interval production may also mean that, after the presen-
tation of an interval or a series of intervals of equal dura-
tion, a series of equal intervals are produced by a 
participant (usually with a series of successive finger 
taps), and these productions may or may not involve a 
synchronization phase (Bartolo et  al., 2014; Grondin, 
1992; Wing & Kristofferson, 1973).

S. Grondin



37

be interpreted as an index of perceived duration: 
a PSE value shorter that the standard interval 
means that the comparison interval is more often 
perceived as longer than the standard. The slope 
of the function provides an index of variability. 
One can use one standard deviation to account 
for the variability of judgments (Killeen & Weiss, 
1987). It is also possible to take the distance 
between the points on the x axis corresponding to 
75% and 25% of long responses. This distance, 
divided by 2, corresponds to what is known in 
psychophysics as the difference threshold 
(Grondin, 2016).

There are variants of this constant method, 
based on a categorization of intervals. With the 
many-to-few method, only a distribution of inter-
vals is used; over the trials, participants develop 
an implicit standard and after each presentation 
of an interval, they determine whether this inter-
val is shorter or longer than the implicit standard 
(Allan, 1979). Another variation of the constant 
method—a very popular one indeed—is called, 
following the terminology used in animal timing, 
the bisection method. With this method, two stan-
dard intervals (i.e., the shortest and longest of a 
distribution of intervals) are presented several 
times at the beginning of the experimentation. 
After these standard intervals are presented, other 
intervals of varying durations are introduced, and 
participants must determine, after each presenta-
tion of an interval, whether it is closer in duration 
to the short or to the long standard interval. With 
the variations of the constant method, it is also 
possible to build a psychometric function and 
extract information about perceived duration 
(PSE) and variability.

There are several other ways to estimate dif-
ference threshold when comparing time intervals. 
For example, one is the use of an adaptive proce-
dure, where the level of difficulty is adjusted after 
each trial. Though not often used in the study of 
time perception, the method of adjustment can 
also be used: after the successive presentation of 
a standard and a comparison interval, participants 
have to adjust the duration of the comparison 
until the length of both intervals are perceived as 
equal (Kuroda & Hasuo, 2014). The standard 
deviation of the values of comparison intervals 

kept after each trial provides the estimate of 
variability.

Finally, discrimination levels, or variability, 
are sometimes expressed with other perfor-
mance indexes like the percentage of correct 
responses, signal detection theory measures 
such as A′ or d′, or the Weber fraction, i.e., the 
difference threshold divided by the standard 
(variability to time ratio) (Grondin, 2010). 
Perceived duration could be accounted for by a 
percentage of long responses, the PSE (when 
psychometric functions are used), the constant 
error (CE: PSE—Standard), or the relative CE 
(PSE—Standard in absolute values; or (PSE—
Standard/Standard)).

 Variability of Time Estimates

There are several factors that may influence the 
variability of time estimates. Among these fac-
tors, three are described below: the structure of 
the interval and the sensory modality used for 
marking it, the mode of interval presentation 
(single intervals vs. sequences), and the range of 
duration under investigation.

 Structure and Sensory Modality

The way of indicating the beginning and end of 
an interval to be discriminated has a major impact 
on performance. Essentially, an interval could be 
filled, i.e., marked by a single, continuous sen-
sory signal, or empty, i.e., marked by two brief 
sensory signals with an empty duration between 
the signal. For the discrimination of 50-ms inter-
vals, there is evidence that discrimination is eas-
ier in the filled than in the empty condition 
(Rammsayer & Lima, 1991; Rammsayer & 
Skrandies, 1998). For longer intervals (but still 
<1  s), there is evidence that discrimination is 
easier with empty than with filled intervals 
(Grondin, 1993; Grondin et al., 1998),3 but this 
finding holds only if there is no confusion in the 

3 In these studies, this superiority of empty vs. filled inter-
vals was observed in auditory and visual conditions.
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presentation of successive empty intervals (if a 
single-stimulus method is adopted, instead of a 
forced-choice procedure). Also, Rammsayer and 
Leutner (1996) report clear evidence that the dis-
crimination of empty intervals is impaired when 
marking signals are longer than 200  ms (for a 
summary of the filled vs. empty comparisons, see 
Grondin, 2003).

In the case of empty intervals, the length of the 
signals marking the beginning and end of the tim-
ing period has an impact, but the sensory modal-
ity used as a marker is also critical. There is 
abundant literature on the processing of temporal 
information revealing the superiority of the audi-
tory modality over the visual (Bratzke & Ulrich, 
2019; Bueti et al., 2008; Espinoza-Monroy & de 
Lafuente, 2021; Gontier et  al., 2013; Kuroda 
et al., 2014; Rousseau et al., 1983; Ulrich et al., 
2006) or tactile modality (Azari et  al., 2020; 
Azari et  al., 2023; Espinoza-Monroy & de 
Lafuente, 2021; Grondin & Rousseau, 1991; 
Jones et al., 2009; Mayer et al., 2014; Villalonga 
et  al., 2021). The differences between perfor-
mances when the visual and the tactile conditions 
are compared are usually nonsignificant, and this 
conclusion holds with a staircase method (Jones 
et al., 2009), and a bisection method (Azari et al., 
2020, 2023).

In most investigations on duration discrimina-
tion involving empty intervals, signals marking 
the beginning and end of the intervals are identi-
cal. If these signals differ, the performance could 
be impaired. If sounds marking intervals are of 
different frequencies, discrimination is lower 
(Grondin & Rousseau, 1991), and this deteriora-
tion increases with more differences between sig-
nals (van Noorden, 1975). Even more damaging 
are conditions where the signals marking an 
empty interval are delivered from different sen-
sory modalities (intermodal intervals) instead of 
from the same modality (intramodal intervals). 
This finding holds for the different combinations 
of auditory and visual markers (Azari et al., 2020, 
2023; Rousseau et  al., 1983; Rousseau & 
Kristofferson, 1973) and for combinations 
involving a tactile stimulus (Azari et  al., 2020, 
2023; Grondin & Rousseau, 1991; Mayer et al., 
2014).

This distribution of performance levels when 
different interval structures or different sensory 
signals are used to mark intervals is very chal-
lenging for researchers in the field of time per-
ception. A classical account of the capability to 
process temporal information is based on the idea 
that there is a unique, central, internal clock. This 
clock is reported to be a pacemaker-counter 
device, where the pacemaker emits pulses which 
are then accumulated in the counter (Gibbon 
et al., 1984; Zakay & Block, 1997). This accumu-
lation process thus forms the basis of time judg-
ments: the more pulses accumulated, the longer 
the perceived duration. The properties of the 
pulses’ emission by the pacemaker that could 
account for the errors observed in duration dis-
crimination tasks. These errors are also partly 
accounted for by the involvement of attention in 
the process, either at the beginning or end of the 
accumulation process (switch process Meck, 
1984), or during the accumulation (gate process 
Zakay & Block, 1997). In the global information 
processing account of time perception and esti-
mation, errors are also attributed to the memory 
and decisional processes involved in a specific 
method/task (Gibbon et  al., 1984). Within this 
perspective, the superiority of the auditory 
modality could be explained by an increased 
 firing rate of the pacemaker when sounds are 
used to mark intervals, with an increased rate 
leading to a finer temporal resolution. Such an 
explanation based on the firing rate would also be 
useful to explain why filled intervals are easier to 
discriminate than empty intervals, assuming that 
the firing rate is increased with filled intervals 
(Rammsayer & Lima, 1991). Note that some 
authors rather propose the contribution of a two- 
level process, with one level being controlled by 
a supraordinate, modality-independent process-
ing system, and the other level relying on a 
modality-specific (auditory or visual) processing 
of temporal information (Stauffer et  al., 2012). 
When faced with the difficulty to account for the 
problems caused by intermodal conditions, 
Grondin and Rousseau (1991) proposed that if 
the marking of an interval involved only one sen-
sory modality, the processing would be taken on 
by a modality-specific system, but when an inter-
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val is intermodal, the processing could be based 
on the functioning of the central (amodal) clock 
process.

Neuroscience offers a different viewpoint for 
explaining modality effects. Based on investiga-
tions involving the use of transcranial magnetic 
stimulations (TMS), Bueti et al. (2008) came to 
the conclusion that temporal information may be 
independently represented within a given sensory 
modality. Also based on the effect of TMS, Kanai 
et al. (2011) rather emphasize the critical role of 
the auditory cortex. Applying TMS on the audi-
tory cortex impairs the processing of both audi-
tory and visual temporal intervals. However, 
applying TMS on the visual cortex affects the 
processing of visually-marked intervals but not 
that of intervals marked with sounds. This finding 
led Kanai et al. to the conclusion that the auditory 
cortex is crucial for processing time intervals. 
Within such a perspective, weaker duration dis-
crimination performances with intervals marked 
by visual, tactile, or intermodal sequences could 
be accounted for by the need to transfer any non-
auditory signals (visual or tactile signals) into an 
auditory code.

 Single Intervals vs. Sequences 
of Intervals

Another factor to take into account when assess-
ing duration discrimination levels, or variability 
of time estimates, is whether the assessment is 
based on single intervals or sequences of inter-
vals. Sequences of intervals are particularly rele-
vant for researchers interested in the mechanisms 
involved in rhythm perception.

Typically, in duration discrimination tasks, the 
comparison interval(s) is(are) presented after the 
standard interval(s) and an interstimulus interval. 
A classical finding is that multiple presentations 
of the standard intervals result in an increased 
discrimination level (Grondin, 2012; Ivry & 
Hazeltine, 1995; McAuley & Kidd, 1998). This 
improvement of performance with multiple stan-
dard intervals was accounted for by a multiple- 
look model (Drake & Botte, 1993). In this model, 
a good part of the variance in the discrimination 

process is located at the memory level. The repre-
sentation of the standard interval, with which is 
compared the comparison intervals, is improved 
with the repetition of standard intervals. However, 
at some point, after four presentations of an inter-
val, there is no improvement to expect from addi-
tional presentations (ten Hoopen et al., 2011).

In several studies, the number of standard and 
comparison intervals covaries. When the number 
of repetitions of standard and comparison inter-
vals is controlled, performance can be improved 
by the sole repetition of the comparison intervals, 
presented after the standard and without the rep-
etition of the standard (Miller & McAuley, 2005). 
This finding of an increased discrimination level 
following a second sequence of comparison 
intervals is inconsistent with the multiple-look 
model; multiple presentations do not reduce the 
variability only by reducing the memory repre-
sentation of the standard. Indeed, more presenta-
tions of both the standard and the comparison 
intervals contribute to improve discrimination 
capabilities (McAuley & Miller, 2007).

The influence of the number of comparison 
intervals is applicable to conditions involving 
visual stimuli, and even when comparing an audi-
tory sequence to a visual sequence. In Grondin 
and McAuley (2009), using four comparison 
intervals instead of only one improved perfor-
mance when both standard and comparison 
sequences involved only visual stimuli, or when 
one sequence was visual and the other auditory 
(cross-modal conditions). Interestingly, perfor-
mances were better in the cross-modal condition 
than in the only visual condition (but lower than 
in the only auditory condition).4 These results 
hold in conditions where the standard intervals 
are presented first (fixed value in a block of tri-
als), and comparison intervals second (varied val-
ues within a block of trials), and when using the 
opposite order (varied first and fixed second). 

4 With single intervals, Ulrich et  al. (2006) report better 
discrimination when both the standard and comparison 
intervals are of the same modality (A or V) than if one is 
A and the other is V, and the V-A than in an A-V sequence, 
and intervals are not marked by the same modality, dis-
crimination is better if an A rather than a visual signal is 
the comparison interval.
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Also, this study shows that presenting the fixed 
sequence first leads to better performances than 
presenting the varied sequence first. This finding 
is consistent with what is observed with the pre-
sentation of single intervals (Lapid et al., 2008; 
Ulrich et al., 2006), a phenomenon referred to as 
a Type B effect (Dyjas et  al., 2014; Ellinghaus 
et al., 2021).

There is another type of methodological con-
trol that may influence discrimination levels. The 
comparison interval(s) could be presented in con-
tinuity after the standard interval(s) or after an 
interstimulus interval (discontinuous condition). 
This distinction is especially critical when 
sequences of flashes are used to mark very brief 
intervals. With a continuous sequence, the dis-
crimination threshold will be as high in a 150-ms 
condition as in a 300-ms condition, while with a 
discontinuous sequence, the Weber fraction holds 
for intervals lasting 150–900  ms (Grondin, 
2001a). This finding indicates the importance of 
having sufficient time for the resolution of the 
signal marking intervals in a duration discrimina-
tion task.

Globally, the superiority of the use of multiple 
presentations of intervals for discriminating time 
could reflect a limitation of the pacemaker- 
counter interpretation, which is more suitable for 
accounting for the presentation of single inter-
vals. An interpretation such as the dynamic 
attending theory of time perception (Jones, 2019; 
Jones & Boltz, 1989; Large & Jones, 1999), 
where time judgments are based on the attending 
of a given event after the regular occurrences of 
such events, seems more appropriate. As soon as 
a series of signals marking intervals are repeated 
with some regularity, it is possible to develop 
expectations about the moment of occurrence of 
the forthcoming signals.

The neuroscience literature dedicated to tim-
ing reveals that this single intervals vs. sequences 
of intervals distinction is crucial. Based on the 
use of fMRI, Teki et  al. (2011) identified the 
potential contribution of two cerebral mecha-
nisms, where the availability of one mechanism 
seems to depend on the temporal structure of the 
events in the environment. One mechanism is 
dedicated to the processing of absolute duration; 

it is based on a representation of an interval. This 
mechanism is an olivo-cerebellar network; it 
includes the contribution of the inferior olivary 
nucleus, the vermis, and the dentate nucleus. The 
other mechanism is based on the expectation of 
the moment of arrival of an event occurring in the 
continuity of regular events. This mechanism is a 
striato-thalamo-cortical network; it involves the 
contribution of several brain structures: the puta-
men, caudate nucleus, premotor cortex, supple-
mentary motor area (SMA), dorsolateral 
prefrontal cortex, and thalamus (see also Cadena- 
Valencia et al., 2018).

 Duration Range5

The capacity to discriminate intervals is not the 
same for all durations on the chronometric time 
continuum. One way of addressing this issue is to 
rely on Weber’s law. According to this law, the 
minimum difference (difference threshold) 
between the stimuli magnitudes necessary for a 
discrimination of these stimuli should increase 
proportionally with the increase in magnitude 
(Grondin, 2001b; Grondin, 2016; Killeen & 
Weiss, 1987). In other words, the difference 
threshold to magnitude ratio should be constant. 
In the field of time perception, this constancy is 
often referred to as the scalar property.

The Weber fraction for time perception is, in 
fact, not constant for a large duration range; it 
seems to remain constant only for a brief range of 
durations, and this range depends on the method 
adopted for assessing the discrimination capabili-
ties. There seems to be some constancy of this 
fraction for intervals lasting approximately 
0.3–1.2 s, at least when intervals are marked by 
auditory signals (Friberg & Sundberg, 1995).6 
For very brief duration values, the Weber fraction 

5 A complete chapter was dedicated to this issue in the first 
volume edited by Merchant and  de Lafuente (Grondin, 
2014).
6 Some studies have investigations on a limited range but 
show the constancy of the Weber fraction from 400 to 
800 ms with sounds (Schultze, 1978), and between 500 
and 740  ms with sounds or flashes marking intervals 
(Grondin et al., 2001).
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is much higher (Friberg & Sundberg, 1995; Getty, 
1975; Grondin, 1993). Such an increase of the 
Weber fraction for low magnitudes of chrono-
metric time is likely due to the properties of the 
signals marking time, not to the properties of the 
underlying mechanism responsible for process-
ing time. In fact, this increase can be accounted 
for mathematically quite easily, using a general-
ized form of Weber’s law (Killeen & Weiss, 
1987), which might indicate that a common tim-
ing system could be used for processing intervals 
shorter than 1.2  s. Nevertheless, for some 
researchers, this increased Weber fraction for 
very brief intervals (200–300 ms) is an important 
breakpoint and is interpreted as an indication that 
two different mechanisms are at play (Hibi, 1983; 
Michon, 1964).

There is another form of violation of Weber’s 
law that indicates that the duration range has a 
critical impact on the capability to discriminate 
intervals. While the timing literature dedicated to 
the discrimination of brief intervals (Getty, 1975; 
Grondin, 1993; Grondin et al., 2001), and even to 
the production of time intervals (Madison, 2001) 
shows some constancy of the Weber fraction for 
intervals lasting 0.3–1.2 s, there are several indi-
cations that, beyond 1.2 s, the Weber fraction is 
increased. Clearly, there is an increase of the 
Weber fraction from 1.3 to 1.6 s with interval dis-
crimination and categorization tasks with audi-
tory markers, and with an interval reproduction 
method (Grondin, 2012).7 This finding is consis-
tent with the composite figure reported by Gibbon 
et al. (1997)8 showing a likely transition point for 
intervals briefer or longer than 1.5 s. Even with 
visual markers, the Weber fraction is reported to 
be higher at 1.2 s than at 0.9 s (Grondin, 2001a).

The breakpoint around 200–300  ms remains 
disputable given the generalized version of 
Weber’s law; however, a breakpoint at approxi-

7 See also Halpern and Darwin (1982) for an increased 
Weber fraction between 1150 and 1300 ms in an auditory 
rhythm discrimination task.
8 This figure includes data from animal and human timing. 
For a clear violation or the Weber fraction with long inter-
vals (categorization and production tasks), see Bizo et al. 
(2006).

mately 1.2–1.5 s is more difficult to interpret. It 
may well reflect a fundamental limitation in the 
flow of psychological time. This limitation in the 
capability to process a temporal extent probably 
speaks to a temporal limitation of human cogni-
tive processes. Beyond what might be representa-
tive of some “psychological present” (Gruber 
et al., 2022), efficiency is lost.

While the results obtained with several clas-
sical timing tasks point in the direction of this 
temporal limitation, it can also be observed 
using a different method. With this method 
(Grondin et al., 2015a), at the beginning of each 
trial, a brief sound is presented four times in 
order to mark three equal time intervals lasting 
800, 1200, or 1600  ms. Participants have to 
count from 1 up to a target number, using the 
pace dictated by the sounds, and to press the 
spacebar (of a computer keyboard) twice, that 
is, when saying 1 and when reaching the target 
number. The target number, x, was 16, 21, and 
31 for trials involving, respectively, 1600-, 
1200-, and 800-ms intervals, y. In other words, 
the theoretical duration to be reproduced was 
24 s, i.e., y (x-1): 1600 (16-1), 1200 (21-1), and 
800 (31-1). After 30 trials in each condition, the 
variability of the reproduced intervals, divided 
by the target (24 s), was the dependent variable 
of interest (the Weber fraction). The results 
show that there is not much difference between 
the 0.8- and 1.2-s conditions, but the Weber 
fraction is much higher at 1.6  s. This finding 
indicates once again, with a very basic task (just 
counting at a given pace), a temporal limitation, 
that is, a loss of efficiency when intervals are 
too long. This result was also obtained with stut-
tering participants in a study showing that there 
are benefits to expect from counting aloud 
instead of silently (Plamondon & Grondin, 
2020).

When it comes to counting, adopting such a 
strategy has an impact on the range effect. The 
exact value of the Weber fraction in classical 
human timing tasks heavily depends on the adop-
tion or not of a strategy consisting of the segmen-
tation (with explicit counting for instance) of the 
time intervals to be processed (Grondin et  al., 
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2004).9 When participants have to discriminate 
intervals lasting 0.7–1.9  s and marked with 
sounds, there are benefits to expect from a count-
ing strategy when intervals are longer than 
approximately 1.2 s (Grondin et al., 1999); and 
interestingly, with explicit counting, variability 
can remain quite constant from 1.3 to 1.9 s. Other 
data also indicate that singing or counting can 
help to maintain the Weber fraction’s constancy 
in the reproduction of 6- to 24-s intervals and, if 
participants are musicians, the fraction may even 
be lower with longer intervals (Grondin & 
Killeen, 2009).

Recent findings in neurosciences also support 
this distinction between intervals below and above 
1.2  s, showing the presence of distinct brain 
dynamics and networks to support the perception 
of time intervals above and below 1.2 s (Thibault 
et al., 2023). In this study involving a totally pas-
sive task, participants were exposed to a series of 
sounds occurring in some trials every 0.8 s or, in 
other trials, every 1.6 s. In addition to these stan-
dard intervals, some deviant interstimulus intervals 
were presented. This is known as an oddball para-
digm, and EEG recordings (auditory event-related 
potentials) were taken during the presentation of 
standards and deviants. Whole- brain cluster-based 
permutation statistics performed around the peak 
of N1 and P2 components, contrasting deviants' 
event-related potentiels (ERPs) against their stan-
dard, revealed that the deviance detection in the 
0.8- and 1.6-s conditions differed. Temporal-
related deviance detection occurred during the N1 
time period for the condition using intervals above 
1.2 s, and during the P2 time period for the condi-
tion using intervals below 1.2 s.

 Perceived Duration of Intervals

Several factors exert influence on the perceived 
duration of a given temporal extent. Three of 
these factors are described here: the structure of 

9 In Grondin (1993) (Experiment 5), participants were not 
refrained from counting, and the Weber fraction remained 
roughly constant up to 4 s (the longest interval tested), a 
finding applying to both auditory and visual conditions 
(and to filled and empty intervals).

the interval and sensory modality used for mark-
ing it, the mode of interval presentation, and 
whether or not there is space between the signals 
marking the intervals.

 Structure and Sensory Modality

One important factor that influences perceived 
duration is the structure of a time interval. As 
mentioned earlier, an interval could be filled 
(marked by a continuous signal) or empty (the 
period between two brief signals). It is most often 
reported that filled intervals are perceived longer 
as compared with empty intervals of the same 
length, and in several studies, the difference is 
very large (Craig, 1973; Goldfarb & Goldstone, 
1963; Wearden et al., 2007). Nevertheless, some 
reports indicate that this filled vs. empty differ-
ence is prone to methodological effects and indi-
vidual differences, these limitations being 
reported for intervals in the range of 20–180 ms 
(Hasuo et  al., 2011a) and for intervals up to 
520 ms (Hasuo et al., 2014a).

This filled vs. empty structure issue, some-
times referred to as the sustained sound illusion 
(Repp & Marcus, 2010), could be seen as a spe-
cial case of what is more generally referred to as 
the filled duration illusion where an empty time 
interval (marked by two brief signals) is filled 
with one or more brief stimuli inserted within this 
interval (ten Hoopen et  al., 2008; Thomas & 
Brown, 1974).10

Different hypotheses can be developed to 
account for the difference in perceived duration 
between filled (continuous signal) and empty 
intervals. Somewhat along the line described ear-
lier about the pacemaker-counter device, the dif-
ference may depend, according to Wearden et al. 
(2007), on the pace of pulse emissions by the 
pacemaker being faster with the presence of a 
continuous signal than with no signal. Another 
explanation rather emphasizes the possibility that 
the end of the timekeeping period arrives earlier 

10 This is reminiscent of the Oppel-Kundt illusion in visual 
perception, where a line segment divided into several 
parts is perceived as longer than an undivided line seg-
ment of the same length (Grondin, 2016).
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when a signal must be detected, as is the case for 
an empty interval, than it takes for perceiving the 
offset of a signal, as is required with a filled inter-
val (Craig, 1973) (see the internal-marker hypoth-
esis (Grondin, 2003; Grondin et al., 2018)).

It is important to note that several physical 
characteristics can influence the perceived dura-
tion of an interval (Berglund et  al., 1969). The 
intensity of signals seems to influence the per-
ceived duration of a filled interval (louder is lon-
ger), but, in the case of audition, the key factor is 
apparently not the absolute intensity of signals 
but rather the relative intensity of signal and 
background sounds (Matthews et al., 2011). For 
empty auditory intervals, lengthening the dura-
tion of either the first or the second marker (inter-
vals of 500 ms), when the task is to judge from 
the offset of the first signal to the onset of the 
second, increases the perceived duration of these 
intervals (Woodrow, 1928). In an experiment 
involving empty intervals from 120 to 360  ms 
that had to be estimated from the onset of the first 
signal to the onset of the second, Hasuo et  al. 
(2012) found that perceived duration is longer 
when the second marker lasts 100 instead of 
20 ms. Hasuo et al. (2011b) also found that in a 
sequence of three successive sounds marking two 
intervals, increasing the length of the second and 
third sounds increases the perceived duration of 
the first and second intervals, respectively. 
Finally, increasing the length of markers also 
increases the perceived duration of brief empty 
intermodal intervals (Grondin et  al., 1996; 
Kuroda et al., 2014).

The sensory modality used to mark the inter-
vals also has an impact on their perceived dura-
tion (for a review of older work, see Grondin, 
2003). In a series of experiments using temporal 
generalization and verbal estimation methods, 
Wearden et  al. (1998) showed that intervals 
marked by sounds are perceived as longer than 
intervals marked by a visual stimulus (investiga-
tion with intervals lasting 77–1183  ms). 
Jones et al. (2009) also showed with a verbal esti-
mation method and the same duration range, that 
intervals marked by sounds are perceived as lon-
ger than intervals marked by a visual stimulus, 
but they also showed that there was no difference 

between intervals marked by visual and tactile 
stimuli. In both studies by Wearden et  al. and 
Jones et  al., the difference between the sensory 
conditions increased as the durations of the inter-
vals to be estimated increased. The modality 
effect was attributed to the properties of the pace-
maker, positing that it runs faster when sounds 
are used to mark intervals.

For empty time intervals marked with two sig-
nals delivered from different modalities (inter-
modal intervals), Grondin and Rousseau (1991) 
report that intervals (around 250 ms) tend to seem 
longer when the first marker is tactile, and shorter 
when the first marker is visual. In a study by 
Azari et al. (2020), in experiments involving 300- 
and 900-ms standard durations, an interval 
marked by an auditory-tactile sequence is per-
ceived as longer than an interval marked by a 
visual-tactile sequence. This finding could be 
attributed to the alerting properties of the audi-
tory and visual signals. The detection of a signal 
is faster in the auditory than in the visual modal-
ity. Therefore, the timekeeping activity begins 
earlier when the first marker is auditory instead 
of visual, and consequently, the interval is 
 perceived as longer if the first marker is a sound. 
In a study by Azari et  al. (2023), an interval 
marked by a tactile-visual sequence is perceived 
as longer than an interval marked by a tactile-
auditory sequence. This finding could also be 
accounted for by the faster detection with an 
auditory than with a visual stimulus; in the pres-
ent case, it is the rapidity of the offset process, 
i.e., the moment that determines the end of the 
timekeeping period, that is at play.

This section emphasized the physical charac-
teristics of intervals that can impact perceived 
duration. It is relevant to note that the psycho-
logical characteristics of the signals used to mark 
an interval also influence perceived duration. For 
instance, if an interval is marked with a visual 
image, the perceived duration of this image will 
be influenced, for instance, by the symbolic 
meaning of the image (Gagnon et  al., 2018; 
Mioni et al., 2015; Ouellet et al., 2023), by the 
emotion expressed if a visage is presented 
(Grondin et al., 2015b), or by the emotion gener-
ated by the image (Grondin et  al., 2014). The 
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psychological characteristics of sounds also 
influence perceived duration (Mioni et al., 2018; 
Noulhiane et  al., 2007; Voyer & Reuangrith, 
2015).

 Mode of Interval Presentation

In the field of visual perception, there are several 
spatial and temporal contexts that will determine 
what exactly is perceived. There are different 
contrast effects leading to the evidence that visual 
perception goes beyond simply receiving sensory 
information on the retinae. The same is true for 
the processing of the temporal information.

The way of presenting successive stimuli 
influences perceived duration. In a comparison task 
involving a forced-choice procedure, depending 
on the length of intervals under investigation, 
either the first or the second presented interval 
may tend to be perceived as longer (Hellström, 
1977). This tendency is referred to as the Time 
Order Error (TOE) (Allan, 1979). When, with a 
given interval, there is no TOE, this interval is 
referred to as the indifference interval (Eisler 
et al., 2008). Several factors, like practice or using 
feedback, attenuate TOE (Allan, 1979; Jamieson 
& Petrusic, 1976; Jamieson & Petrusic, 1978).

When a sequence of intervals marked by con-
secutive tones is used, instead of two distinct 
intervals with an interstimulus interval, the per-
ceived duration of the intervals in the sequence 
can be severely distorted. In the auditory modal-
ity, there is a classical illusion called time- 
shrinking (Nakajima et  al., 1992). This illusion 
occurs when three successive sounds mark two 
neighboring time intervals, T1 and T2. When 
T1  ≤  200  ms and is shorter than T2, T2 will 
appear much briefer than when it is presented in 
isolation. The maximum shrinking effect occurs 
when T1 − T2 = 80 ms (ten Hoopen et al., 2008). 
Time-shrinking is also observed when visual 
(Arao et  al., 2000) and tactile (Hasuo et  al., 
2014b; Van Erp & Spapé, 2008) stimuli are used.

Other phenomena related to the presentation 
of successive intervals may occur. For instance, 
when a sequence of four identical flashes lasting 
600 or 667 ms are presented, the duration of the 

first flash is overestimated by about 50% (Rose & 
Summers, 1995). For the processing of filled 
auditory intervals, when a sine tone is preceded 
by a noise, it is perceived as much longer than if 
it is presented in isolation, a phenomenon called 
the time-stretching illusion (Sasaki et al., 1992). 
Note that there is no such illusion when a tone 
was followed, instead of being preceded, by a 
noise (Kuroda & Grondin, 2013a).

 Spatial Effects

There is a huge literature on the effect of space on 
temporal judgments, but many pieces of this lit-
erature belongs to research avenues that are dif-
ferent from the main concerns of the present 
chapter. These research avenues touch on, for 
example, the field of time-to-collision or time-to- 
contact, or the Piagetian relationship between 
space, time, and speed.

In most studies on time perception related to 
duration discrimination, signals marking inter-
vals are delivered from a single sensory source. 
Nevertheless, there is a series of studies where 
signals marking time intervals are delivered from 
different locations in space. These studies indi-
cate that having space between signals influences 
the perceived duration of a time interval. Indeed, 
there are two distinct questions: how is perceived 
duration changed if two signals marking an inter-
val are delivered from different locations instead 
of from the same location? And when signals are 
delivered from different locations, does more 
space result in longer perceived duration?

 With Visual Signals
The most classical demonstrations of the effect of 
space on perceived duration were made with 
visual signals. A typical case involves the succes-
sion of three consecutive flashes and is referred to 
as the kappa effect (Abe, 1935; Cohen et  al., 
1953).11 Let us call these flashes A, B, and C. If 

11 There are also classical works on the effect of time on 
perceived distance, the tau effect, where longer duration 
between equidistant signals results in longer perceived 
distance.
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the duration between these flashes is the same, 
but the distance between the source of flashes B 
and C is longer than the distance between the 
source of flashes A and B, the duration of the 
time interval marked by flashes B and C will be 
perceived as longer than the duration of the time 
interval marked by flashes A and B.

One explanation of this effect is based on the 
hypothesis that what is perceived by an observer 
is not three distinct objects, but one object flash-
ing three times (imputed-velocity model: ten 
Hoopen et al., 2008; Jones & Huang, 1982), and 
that this object moves at a constant speed. But 
this constancy is not maintained if the time inter-
vals are equal and the spatial distance is not. To 
maintain speed constancy, the longer distance is 
rather interpreted as a longer time interval.

The influence of space on time judgments has 
also been shown when only two flashes were 
used (imputed velocity is less likely in such a 
condition). In an experiment using the reproduc-
tion of 7- to 11-s intervals marked by flashes 
from a same source, either A or B, or by A fol-
lowed by B (32 inches between A and B), Price- 
Williams (1954) reports that having space 
between signals, instead of having flashes from a 
same source, results in longer reproductions. In 
an experiment on the discrimination of short 
empty time intervals (around 250 ms) marked by 
brief signals delivered from sources A and B 
located in the left vs. right visual field, intervals 
marked by AA or BB sequences were perceived 
as shorter than intervals delivered by bilateral 
sequences, AB or BA (Grondin, 1998). In this 
experiment, intervals presented in a BA sequence 
(right to left) were perceived as shorter than inter-
vals presented in an AB sequence (left to right). 
Also, when the visual sources are located on a 
vertical plane, the difference between perceived 
durations in the upper vs. lower visual field 
depends on the fixation point (Roussel et  al., 
2009).

 With Auditory Signals
In the auditory modality, the idea of a kappa 
effect has taken different forms. In some studies, 
it is not the spatial distance between sound 
sources that is manipulated, but the different fre-

quencies of successive sounds. For example, 
Shigeno (1986) reported that with three consecu-
tive sounds (total duration of 1000 ms), if the fre-
quency of the middle sound is closer to that of the 
last sound than to that of the first sound, the time 
interval between the first two sounds is likely to 
be perceived as longer than the time interval 
between the last two sounds. The reader will also 
find a demonstration of a kind of kappa effect 
with successive auditory signals of different fre-
quencies in Henry and McAuley (2009) and with 
three successive sounds of different intensities in 
Alards-Tomalin et al. (2013).

There are not many demonstrations of the 
effect of spatial sound sources on perceived dura-
tion (Sarrazin et  al., 2007). In Grondin and 
Plourde (2007), a sequence of four consecutive 
brief sounds was presented, delimiting three time 
intervals. The first three sounds were delivered 
from the same spatial location, marking the first 
and second time intervals. These standard time 
intervals lasted 75, 150, or 225 ms. The moment 
of occurrence of a fourth sound was systemati-
cally varied and was delivered from a different 
location on a vertical plane. Participants had to 
compare the duration of the third interval 
(between the third and fourth sound) with the 
preceding intervals. In the 150- and 225-ms stan-
dard conditions, there was an overestimation of 
the duration of the last time interval (an occur-
rence of the kappa effect). This effect occurred 
only when participants were uncertain of the 
provenance of the sounds.

The effect of space on perceived duration can 
be completely different when single intervals, 
instead of consecutive intervals, are presented. In 
a study by Roy et al. (2011), two sounds marked 
intervals (standard equals 125 or 250 ms) and the 
sources of these sounds were 1.1 or 3.3 m apart. 
Time intervals were perceived as longer with less 
distance between sound sources: longer spatial 
distance resulted in shorter perceived duration.

A recent study also showed the presence of a 
kappa effect in the auditory modality with a 
reproduction task (500- to 1600-ms intervals), 
and with a discrimination task (500-ms standard) 
involving three consecutive sounds (Bausenhart, 
2018). In the reproduction task (500- to 1600-ms 
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intervals), the kappa effect occurred with sounds 
presented from different sources (vs. from the 
same source), and this effect held both when the 
auditory and visual signals were delivered simul-
taneously, and when the auditory and visual sig-
nals were presented simultaneously with only 
sounds being delivered from different locations.

 With Tactile Signals
There is not much work on the effect of space on 
tactile duration discrimination. In one study, 
electrotactile stimuli were used to mark intervals 
(standard = 500 ms). Two brief consecutive sig-
nals were delivered on the same hand (left or 
right: no space between markers) or on different 
hands: space between signals). The results indi-
cate that when there is space between signals, 
duration is perceived as longer than when there is 
no space (Grondin et  al., 2011). In this experi-
ment, there was no difference in perceived dura-
tion between intervals marked on the left vs. right 
hand, or marked in the left-to-right vs. the right- 
to- left directions. Note also that discrimination 
was better in the same hand than in the different 
hand condition. Finally, marking a time interval 
with a tactile signal on different fingers of the 
same hand (with space between signals) is also 
perceived as longer duration than an interval of 
the same length marked by two tactile signals on 
the same finger (no space) (Kuroda & Grondin, 
2013b).

 Conclusion

It is difficult to say whether judging the relative 
duration of time intervals with accuracy (correct 
perceived duration) and precision (low variabil-
ity) requires a central, or unique, mechanism able 
to adapt to all environmental circumstances or all 
methodological contexts, or whether a multitude 
of timing mechanisms are available, with the 
physical constraints imposed by the environment 
(or methodological choices in experiments) 
deciding the best-suited mechanism the brain has 
to offer in a given circumstance. The series of 
limitations described in the present chapter 
should be seen as challenges for any model or 

theory developed to account for the capability to 
perceive and estimate time intervals.

A theory like the dynamic attending theory of 
time perception (Jones, 2019; Large & Jones, 
1999; Teki et al., 2011) seems most suitable for 
environments offering sequences with regulari-
ties, while the pacemaker-counter is more appro-
priate for processing single intervals, but requires 
the contribution of several additional sources of 
errors (attentional, memory, and decisional pro-
cesses (Gibbon et  al., 1984; Zakay & Block, 
1997)) to account for the various distortions and 
discrimination levels described in the chapter. 
Another theory, referred to as the trace theory of 
time perception (Killeen & Grondin, 2022), pro-
poses that duration estimation relies on the 
memorial strength of the signal used to initiate 
the interval at the moment this interval ends, with 
the signal that terminates the interval providing a 
reminder of the initial intensity. This theory was 
developed to account for some of the limiting 
factors reported above, but offers no speculations 
about the brain mechanisms underlying this type 
of processing.
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the Forest for the Trees
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Abstract

Extracting temporal regularities and relations 
from experience/observation is critical for 
organisms’ adaptiveness (communication, 
foraging, predation, prediction) in their eco-
logical niches. Therefore, it is not surprising 
that the internal clock that enables the percep-
tion of seconds-to-minutes-long intervals 
(interval timing) is evolutionarily well- 
preserved across many species of animals. 
This comparative claim is primarily supported 
by the fact that the timing behavior of many 
vertebrates exhibits common statistical signa-
tures (e.g., on-average accuracy, scalar vari-
ability, positive skew). These ubiquitous 
statistical features of timing behaviors serve 
as empirical benchmarks for modelers in their 
efforts to unravel the processing dynamics of 
the internal clock (namely answering how 
internal clock “ticks”). In this chapter, we 
introduce prominent (neuro)computational 
approaches to modeling interval timing at a 
level that can be understood by general audi-

ence. These models include Treisman’s pace-
maker accumulator model, the  information 
processing variant of scalar expectancy theory, 
the  striatal beat frequency model, behavioral 
expectancy theory, the learning to time model, 
the  time-adaptive opponent Poisson drift- 
diffusion model, time cell models, and neural 
trajectory models. Crucially, we discuss these 
models within an overarching conceptual 
framework that categorizes different models 
as threshold vs. clock-adaptive models and as 
dedicated clock/ramping vs. emergent time/
population code models.

Keywords
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Interval Timing · Pacemaker Accumulator · 
Population Clock Models

 Introduction

The simplest definition of interval timing is the 
perception of event times in the seconds to min-
utes range. Our sense of time can be encoded ret-
rospectively in episodic memory after a single 
occurrence, and it can prospectively guide antici-
pation following the repeated experience of tem-
porally predictable events. For instance, we 
automatically encode how long we have been sit-
ting in the waiting room (retrospectively) and 
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learn how long the red light lasts at a specific 
intersection en route from home to work (pro-
spectively). It is this capacity, coupled with ear-
lier experiences or prior knowledge, that enables 
us to question whether we mixed up the appoint-
ment time or whether the traffic light is broken.

Such temporal experiences often become part 
of our daily behaviors in the same contexts and 
daily conversations during which we give 
approximate estimates of time intervals (Balcı 
et  al., 2023). Humans can reach such duration 
estimates without a sensory system dedicated to 
physical time, which is something we cannot 
feel, see, hear, taste, or smell. Other animals also 
exhibit the capacity to monitor, remember, and 
organize adaptive behaviors around biologically 
critical events. For example, rats can learn how 
much time has elapsed before they experience an 
electric shock in a test chamber after a single 
shock (Bevins & Ayres, 1995) or learn how long 
after a stimulus onset a reward becomes avail-
able (Roberts, 1981). This was observed by Ivan 
Pavlov as part of classical conditioning (Pavlov, 
1927), which he referred to as “inhibition of 
delay,” as well as by Burrhus Frederic Skinner in 
operant conditioning in continuous fixed inter-
vals schedules (i.e., the classic “scallop”-shaped 
cumulative response plot in the fixed interval 
task, as opposed to a straight line of cumulative 
responses in variable interval schedules—Ferster 
& Skinner, 1957). The pioneering work of John 
Gibbon and his colleagues (e.g., Russell Church, 
Warren H Meck, Charles Randy Gallistel, Peter 
Balsam, and others) has further reinforced psy-
chophysics as a benchmark in modeling the 
interval timing behaviors of humans and nonhu-
man animals. This work has focused on the 
nature of mapping between objective and subjec-
tive time including its noise characteristics (as 
the main focus of the psychophysical approach 
to explaining Weber’s law - Fig.  1). Based on 
several seminal studies, it is now widely accepted 
that both humans and other animals exhibit time-
tracking capacity with similar statistical signa-
tures, which suggests common, evolutionarily 
conserved timing mechanisms that are ideal for 
study in comparative psychology and behav-
ioural neuroscience.

For instance, these researchers have concluded 
that organisms, on average, reach accurate esti-
mates of time intervals. In other words, when an 
organism emits anticipatory responses over many 
trials, the highest rate of responding happens at 
the time of the learned interval. Another statistical 
characteristic of timing behavior across different 
species is that the uncertainty in estimates of time 
intervals is proportional to the duration of events, 
such that the discriminability of two event times 
depends on the ratio and not the absolute differ-
ence between the corresponding event times (i.e., 
Weber’s Law, or in Gibbon et al.’s application to 
timing data, “time-scale invariance,” or “scalar 
invariance” in his terminology). In other words, 
according to Weber’s Law, the discriminability of 
2 s vs. 4 s is the same as 10 s vs. 20 s (same loga-
rithmic distance or ratio) and based on the same 
law 2 s vs. 4 s is more discriminable than 10 s vs. 
12 s (same linear distance). In mathematics, scale 
invariance refers to the invariance of functions 
(e.g., probability density functions) when the 
scale over which they are expressed is multiplied 
by a common factor. In simpler terms, this feature 
refers to self-similarity, where a given mathemati-
cal function looks the same irrespective of the dis-
tance from which one looks at it (e.g., as in 
fractals). Time-scale invariance is the application 
of the scale invariance property to the time 
domain, in which the standard deviation of time 
estimates grows linearly with the duration being 
timed. As a result, when timed response curves 
for different target intervals are expressed in rela-
tive time (when absolute time is divided by the 
target interval, analogous to zooming in on the 
fractals), they superimpose. Figure  1 illustrates 
this property by expressing the intervals on abso-
lute (left panel) and relative time (right panel).

An important statistical property is implied by 
timescale invariance. The coefficient of variation 
(CV)—defined as the standard deviation of the 
time estimates divided by the mean estimate—is 
constant for timescale-invariant distributions. For 
distributions such as the Gaussian, inverse 
Gaussian, and gamma distributions, specifying 
the CV specifies the distribution completely, so it 
is most convenient in these cases to work directly 
with the CV, as we do below.
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Fig. 1 Left Panel: Probability density functions describ-
ing anticipatory responses for four target intervals illus-
trated as Gaussian distributions with a constant coefficient 
of variation of .15 (σ/μ). The critical observation is that 
the probability density gets more spread out for longer 

intervals. Right Panel: Superposition of density functions 
when they are expressed in a relative time scale (absolute 
time/target duration). Note that the density values were 
perturbed by additive Gaussian noise since without noise 
these curves are completely indiscriminable

It is these widely-accepted signature statistical 
properties that constitute empirical/ psychophys-
ical benchmarks for interval timing modelers and 
constrain the processing dynamics of the genera-
tive models (analogously, in two-alternative per-
ceptual discrimination of the sort that yielded 
Weber’s original law—e.g., comparing two 
weights to determine which is heavier—Simen 
et al. (2016) demonstrated that multiplying both 
stimulus intensities by a common factor leads to 
timescale invariance as well as Weber’s Law 
behavior; but if this is not done, violations of tim-
escale invariance emerge; see also Link, 1992 for 
similar findings). Thus, any successful model of 
interval timing should account for on-average 
accuracy and scalar variability of timing behav-
iors at least for suprasecond intervals. This is 
analogous to using a limited working memory 
span (e.g., 7 −/+ 2) or the serial position effect as 
empirical benchmarks for judging the success of 
working memory models. In this chapter, we will 
nonexhaustively overview modeling efforts in 

timing research and evaluate how they account 
for the above-mentioned psychophysical features 
of interval timing characterizing the nature of 
mapping between objective and subjective time 
(i.e., accurate timing and time-scale invariance). 
Our coverage of these models will target a gen-
eral audience to make them understandable even 
to those new to the field (see Addyman et  al., 
2016, De Corte et al., 2022; Hass & Durstewitz, 
2014 for earlier similar attempts). Our primary 
focus will be on the pacemaker-accumulator fam-
ily of models since they represent a historically 
prominent and successful theoretical approach to 
interval timing.

 Computational Models of Interval 
Timing

In a nutshell, the pacemaker-accumulator family 
of models assumes that the sense of time results 
from the accumulation of signals (e.g., action 
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potentials, sub-threshold membrane potentials, 
hypothetical ticks, phasic dopamine signals) up 
to a certain level that can be treated effectively as 
a decision threshold. Although time has been a 
subject of interest since before modern science 
(e.g., St. Augustine, 2008), the earliest attempts 
to formally model interval timing were made in 
the early 1960s by Creelman (1962) and Treisman 
(1963). Treisman assumed that a timing agent 
integrates regularly emitted pulses while experi-
encing an event, and the number of pulses is 
encoded in the memory as a measure of the 
elapsed time. This would be akin to using a water 
clock in ancient Greece (clepsydra, which liter-
ally means water thief) or chronometric counting 
in daily life (one Mississippi, two Mississippi, 
…) with the critical difference that there is no 
symbolic tag for mental magnitudes in nonhu-
man animals and humans when chronometric 
counting is suppressed. Instead, it is the total 
number of pulses that generates the time repre-
sentation, which would inherit noise elements of 
the generative processes that underlie the clock 
signals, as the cognitive atomic constituents of 
the resulting temporal (magnitude) 
representation.

Treisman made one simple but critical 
assumption that accounts for the psychophysics 
of interval timing; he assumed that the rate of the 
pulses is a normally distributed random variable 
sampled once per trial (thus staying constant 
within a given trial but resampled and thus vary-
ing across trials). This is similar to the assump-
tion of trial-to-trial variability in the slope of the 
linear approach to the decision threshold in the 
Linear Ballistic Accumulator (LBA) model 
(Brown & Heathcote, 2008; see also Grice, 
1968). Note that LBA also assumes trial-to-trial 
variability in the starting point of evidence accu-
mulation. There is no reason for assuming such 
randomness other than the fact that neural infor-
mation processing is noisy, and the normal distri-
bution is a relatively safe assumption for 
capturing the underlying process as a common 
practice in cognitive modeling (Farrell & 
Lewandowsky, 2018). This simple assumption 
for accounting for variability in time estimates 
from one trial to the next also results, to a high 

degree of approximation, in a constant ratio 
between the standard deviation and the mean 
number of pulses counted for different target 
intervals (accounting for the scalar property). 
Figure 2 illustrates Treisman’s model along with 
its predictions.

Although many behavioral scientists or neuro-
scientists would be at ease with normally distrib-
uted variation in the accumulation rate between 
trials, it strikes us as implausible that average 
interpulse durations would vary across trials but 
remain fixed within trials. It is more parsimoni-
ous to assume that interpulse intervals are highly 
variable both within and across trials.

Gibbon, Church, and Meck (e.g., Gibbon 
et  al., 1984) came up with an alternative to 
Treisman’s approach (the information processing 
implementation of Scalar Expectancy Theory; 
Gibbon, 1977) in which the source of the scalar 
variability was the memory instead of the clock. 
In the information processing implementation of 
SET (IPI-SET), interpulse intervals were explic-
itly formulated as exponential distributed (result-
ing in Poisson distributed pulses). Treisman made 
no specific distributional assumption regarding 
interpulse intervals but simply assumed that 
within an individual trial, they would be corre-
lated. In contrast to Treisman (1963), in their ver-
sion of Treisman’s (1963) pacemaker accumulator 
model, the interpulse times were exponentially 
distributed (and thus with no memory of how 
long the previous interpulse time was) but with-
out the between-trial variability in the rate of 
accumulation. Like Treisman and as characteris-
tic of the pacemaker accumulator family of mod-
els, the timing agent was again assumed to encode 
and use the count of pulses as the measure of 
elapsed time.

But without between-trial variability in the 
rate of accumulation or threshold setting, there 
was still a dire need for a source of intertrial vari-
ability. This was simply because when one times 
intervals by counting Poisson distributed pulses 
and no between-trial variability in threshold set-
ting or clock speed, the time-estimate coefficient 
of variation (CV) decreases proportionally to the 
square root of the timed interval (thus violating 
timescale invariance). This was the cost of fore-
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going the intertrial variability assumptions of 
Treisman (1963), namely the variability in the 
“clock speed.” The scalar property was rescued 
by assuming trial-by-trial variability in the 
encoding of counts (Gibbon & Church, 1990; 
Gibbon et al., 1984). This critical element of the 
model was harshly criticized by John Staddon 
(Staddon & Higa, 1996, 1999) as the “injection” 
of scalar variability rather than it being an emer-
gent property of the inherent dynamics of tempo-
ral information processing. In formal terms, one 
can think of this encoding noise as a normally 
distributed random variable with a mean of 1, 
which was referred to as the translation coeffi-
cient. In psycho-mechanistic terms, the inte-
grated amount of ticks in the accumulator (akin 
to working memory in the cognitive system or a 
capacitor in an electrical circuit) would be multi-
plied by normally distributed noise during its 
“consolidation” into the reference memory. This 
simple assumption results in more spread-out 
long-term memory representations of longer 
intervals, accounting for the scalar property at the 
level of memory processes/representation and 
therefore the time-scale invariance of the result-
ing behavior.

But this resulting time-scale invariance of the 
long-term memory representation is not suffi-
cient for its manifestation at the behavioral level 
as the functional outputs of the internal clock. 
This brought about another critical assumption 
of IPI-SET, which is related to the decision pro-
cess. IPI-SET assumes that the comparison of 
elapsed time to the long-term memory represen-
tation (more precisely, a random sample from 
LTM) was based on the ratio rather than the 
absolute difference between these two memory 
representations of time intervals. It is only with 
these assumptions that IPI-SET can account for 
the time-scale invariance, which puts the source 
of scalar variability in the memory and ratio-
based decision rules rather than as an emergent 
outcome of the generative process that underlies 
the clock ticks. Note that the multiplicative 
memory translation noise can as easily be con-
ceptualized as threshold variability that 
increases linearly with increasing threshold set-

ting. This alternative interpretation was not 
exercised in IPI-SET.

In the simplest form of IPI-SET, when the 
organism monitors the duration of an event to 
match the temporal statistics of the environment, 
the model assumes that a Poisson clock keeps 
track of elapsed time and that it is constantly 
compared against a random sample interval from 
the long-term memory. The ratio of the difference 
between these quantities normalized by the ran-
dom sample from the reference memory is used 
as the decision variable that is compared against 
a threshold value in real time. Since the decision 
variable is a normalized difference between 
elapsing time and memory for time, the lowest 
possible value of zero will be reached when the 
elapsed time matches the random memory sam-
ple. This results in a V-shaped trajectory for the 
decision variable as a function of elapsing time 
(see bottom left inset on Fig. 3 for two sample 
trajectories). When this decision variable takes a 
value that is lower than the threshold, the agent 
responds in anticipation of the reward and does 
not respond when the same decision variable is 
above the same threshold. Within this framework, 
the anticipatory response is assumed to be initi-
ated when the decision variable first hits this 
threshold and terminated when the decision vari-
able hits the same threshold a second time. In the 
peak interval procedure (Balcı & Freestone, 
2020; Roberts, 1981), where subjects are trained 
to anticipate reward delivery after a constant 
delay following the onset of a timing stimulus, 
this mechanism results in the initiation of timing 
behavior before the reward delivery and its termi-
nation if the reward is omitted during the contin-
ued presentation of the timing stimulus (peak 
interval trials). The first instance is referred to as 
the start time, and the second instance is referred 
to as the stop time.

Loosely speaking, this mechanism is similar 
to the working of the conventional thermostat; 
the heater kicks in when the measured room tem-
perature dips below a set level (lower than the 
desired ambient temperature) and keeps heating 
the room until the measured room temperature 
goes above another set level (higher than the 
desired ambient temperature). Such a mechanism 
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Fig. 3 Illustration of IPI-SET.  The illustration shows 
temporal information processing in a single trial. Clock 
signals are integrated by the accumulator with the com-
pletion of the circuit (closure of the switch). Signals inte-
grated in the accumulator stage can be viewed as the 
working memory representation of elapsed time. When 
the timing event is over, the information in the accumula-
tor is transferred to the long-term memory during which it 
is multiplicatively perturbed by a normally distributed 
random variable with an unbiased mean (i.e., 1). When the 

timing agent compares elapsing time to previous experi-
ences of the corresponding event, a random sample is 
drawn from the reference memory. The decision variable 
is the normalized difference between elapsing time and 
memory for time (normalized by the random memory 
sample), which reaches zero when the elapsed time 
matches the random memory sample. This results in a 
V-shaped trajectory for the decision variable as a function 
of elapsing time (bottom left inset). Briefly, the decision- 
making stage relies on ratio comparisons

keeps the room temperature around the desired 
level while saving energy and reducing mechani-
cal costs by avoiding frequent fluctuations 
between the different states of the heater. IPI- 
SET has been used widely to explain behavioral 
phenomena in humans and other animals. For 
instance, the correlational patterns of when the 
agent starts and stops responding can provide 
information regarding the relative contribution of 
memory and decision processes to the variability 
in timing data as well as whether there is a single 
threshold or separate response thresholds for start 
and stop times (Gibbon & Church, 1990). 
Figure 3 illustrates the workings of IPI-SET and 
its control of anticipatory responses in the peak 
interval procedure.

Although the Poisson-distributed ticks of IPI- 
SET better capture what is known regarding neu-
ronal activity (e.g., exponentially distributed 
interspike intervals) compared to assuming peri-
odic pulses, this model lacked neurobiological/

neuroanatomical implementation. Warren Meck 
demonstrated one of the earliest efforts to fill this 
conceptual gap by postulating the “Dopamine 
Clock Hypothesis” (Meck, 1983; 1996). He 
assumed that the dopaminergic activity of neu-
rons in substantia nigra pars compacta (the 
nigrostriatal pathway that is primarily implicated 
in motor function and action selection) is a good 
candidate as the implementational counterpart of 
hypothetical clock ticks. The Dopamine Clock 
Hypothesis assumes that the phasic dopamine 
input in the nigrostriatal pathway is integrated by 
the dorsal striatum, which corresponds to the 
accumulator component of IPI-SET.

Meck, his colleagues, and others provided 
empirical evidence supporting this hypothesis by 
showing that timing behaviors were left-shifted 
by acutely administered dopamine agonists, 
whereas they are right-shifted by acutely admin-
istered dopamine antagonists (e.g., Meck, 1983, 
1996; Maricq et  al., 1981; Abner et  al., 2001; 
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Çevik, 2003; Matell et  al., 2006; Drew et  al., 
2003). These effects could be accounted for by 
the effect of dopaminergic modulation on the 
speed of the internal clock (rate of ticks fed into 
the accumulator). The disappearance of the acute 
effects of dopaminergic manipulations after 
chronic administration of the same compounds 
further supported this hypothesis by assuming 
calibration of the long-term memory representa-
tion to the new (biased) clock speed (Meck, 1983, 
1996—but see Balcı, 2014 and Odum & Ward, 
2007 for alternative accounts). If this was the 
case, then the termination of chronic treatment 
with dopaminergic agents should result in the 
effects in the opposite direction compared to the 
effects of acute administration on timing behav-
ior. This is indeed what was observed in the semi-
nal psychopharmacological work by Warren 
Meck, his colleagues, and others (e.g.,  Meck, 
1983, 1996).

Another set of evidence in favor of the 
Dopamine Clock Hypothesis comes from lesion 
studies. Meck showed that lesioning of both sub-
stantia nigra pars compacta and dorsal striatum 
results in the loss of temporal control over antici-
patory responses in the peak interval procedure. 
These detrimental effects of ablation can be res-
cued by the administration of the dopamine pre-
cursor levodopa for animals that have gone 
through lesioning of SNC but not the dorsal stria-
tum (Meck, 2006). In other words, dopamine 
supplementation can rescue the loss of clock sig-
nals but not the accumulation of those signals by 
the dorsal striatum. Related work showed that the 
administration of cholinergic agents also resulted 
in shifts in the timing behavior, but critically, 
these effects emerged only gradually and as a 
result of chronic administration (Meck & Church, 
1987). Based on these findings, cholinergic func-
tion was implicated in the neurobiological imple-
mentation of the translation coefficient.

A more biophysically detailed approach to 
modeling the neural basis of interval timing (in 
light of IPI-SET) was taken on by Warren Meck 
and Mathew Matell, followed by Sorinel Oprisan 
and Catalin Buhusi (Matell & Meck, 2000, 2004; 
Meck et  al., 2008; Oprisan & Buhusi, 2013). 
Their model was computationally inspired by 

Miall’s (1989) beat frequency model, which 
explains how units that spike frequently, but with 
different periods, could time intervals by encod-
ing them as the time of synchronous firing of the 
units. These times of firing synchrony could 
occur over periods much longer than the interfir-
ing period of any individual unit. However, the 
beat frequency model could not account for the 
scalar property of interval timing due to the lack 
of a noise element. Meck and Matell mapped a 
noisy version of Miall’s model onto the corticos-
triatal pathway, giving rise to the name “striatal 
beat frequency” (SBF). Their basic assumption 
was that time intervals are encoded by cortical 
oscillations that can be primarily attributed to a 
population of oscillating neurons in the prefron-
tal cortex and, therefore, subject to the effects of 
dopaminergic signaling in the mesocortical path-
way. They assumed that dopaminergic signaling 
in the mesocortical pathway would phase reset 
(synchronize) the cortical oscillations, after 
which each oscillating neuron would oscillate 
according to its endogenous frequency. The tem-
poral pattern of moments at which these oscilla-
tors with different frequencies happened to fire 
synchronously, or “beat,” generated by a large 
number of neurons, would form a unique pattern 
as a function of time and resultingly a reliable- 
enough pattern for timing intervals in different 
trials. But these signals would be of no use to the 
motor system unless synchrony was detected by a 
simple form of neural network similar to a per-
ceptron (Rosenblatt, 1958).

To this end, the SBF model assumes that 
GABAergic medium-spiny neurons in the dorsal 
striatum implement such coincidence detection 
for the specific pattern of different oscillatory 
signals (beats of cortical oscillators) for coding 
time. The role of the nigrostriatal dopamine path-
way in this model is attributed to the training of 
the medium spiny neurons to recognize the beats 
of the cortical oscillators corresponding to bio-
logically significant events through dopamine- 
dependent (through nigrostriatal pathway) 
long-term potentiation and depression (LTP and 
LTD). Specifically, nigrostriatal dopamine input 
strengthens those corticostriatal synapses that 
were active at the time of the reinforcement (LTP) 
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while weakening those that were inactive at this 
time point. As a result of this phasic input, con-
tingent on feedback or reward marking the end of 
the interval, the efficacy of the synapses connect-
ing a group of oscillating cortical neurons and 
medium spiny neurons (MSN) can be changed 
such that MSNs are trained to recognize the cor-
responding unique cortical input (perceptron role 
of the striatum).

This model can be likened to recognizing spe-
cific moments and composition that precedes and 
follows those specific moments in orchestra 
music (where each instrument can be treated as a 
different oscillatory basis function) after  listening 
to it repeatedly. When the learning for a given 
time interval is established, and as predicted by 
the temporal difference learning algorithm, the 
phasic dopamine input would occur at the begin-
ning of the timing cue to push striatal neurons to 
their resting membrane potentials. Crucially, the 
bistability of MSNs has been shown as a property 
that makes them suitable for being responsive 

(driven to their up/excitatory state ~−60  mV 
from down state ~−90  mV) to highly coherent 
cortical input from oscillating neurons (e.g., Gu 
et  al., 2015). Figure  4 illustrates the functional 
architecture of the SBF model. The SBF model 
accounts for the scalar property by introducing 
trial-by-trial change in the speed of oscillators 
and the neuronal firing thresholds in a globally 
coherent manner to preserve the informative 
value of the oscillations. If these variations that 
commonly apply to different oscillation frequen-
cies are violated, the information value of the 
cortical signals with respect to time would be 
lost.

Oprisan and Buhusi (2013) have extended the 
SBF model to account for the scalar property as 
an emergent property of the model (rather than 
enforcing it with globally coherent noise—see 
Buhusi & Oprisan, 2013) as well as to account 
for the effect of dopaminergic manipulations out-
lined earlier in the chapter by modeling the effect 
of these manipulations on the firing frequency of 

Fig. 4 Illustration of Striatal Beat Frequency model with 
four cortical oscillatory units that are phase reset with 
mesocortical dopamine input. Striatal medium spiny neu-
rons serve as coincidence detectors for recognizing the 
critical pattern of cortical oscillatory states. The oscilla-
tory states are recoded as zero and one to demonstrate the 

change in the population code as a function of time. In this 
example, the code for the target interval is 1100 while 
keeping the identity of their neuronal sources. Nigrostriatal 
dopamine input trains striatal medium spiny neurons to 
recognize these patterns
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cortical oscillators (Oprisan & Buhusi, 2011). 
Unlike the original version of the SBF model, 
these variants utilized biophysically realistic 
neurons with explicitly formulated ionic dynam-
ics. For instance, Oprisan and Buhusi (2013) 
showed that accurate timing and time-scale 
invariance emerge independent of the source of 
the noise implemented in the SBF model (i.e., 
frequency variability, memory variability). These 
variants of the SBF model pointed to its robust 
nature in terms of accounting for the psychophys-
ical properties of interval timing along with 
explicit neurobiological characterization. 
Empirical evidence for the SBF model comes 
from a variety of studies conducted with animal 
models (Emmons et al., 2017, 2019, 2020; Matell 
et al., 2003).

Note that an earlier connectionist model inter-
val timing based on the phases of an oscillating 
neuronal set at the time of reinforcement was also 
introduced by Church and Broadbent (1990). The 
model compared the oscillatory states to the 
long-term memory representation of critical 
oscillator phases, which guided the timing behav-
ior and accounted for the scalar property. But this 
model did not receive attention arguably because 
of the lack of a clear neuroanatomical mapping 
such as that proposed by the SBF Model.

At the algorithmic level of description, IPI- 
SET and Treisman’s model of timing can be 
treated as a threshold adaptive approach to inter-
val timing, where different intervals are moni-
tored by keeping an on-average constant clock 
speed and relying on the pulse-count sum as a 
measure of elapsed time. Critically, this is not the 
only way of keeping track of different intervals 
while ensuring that predictions abide by the psy-
chophysical properties of interval timing. An 
alternative approach is to adjust the speed of the 
clock (i.e., adaptive clock approach) and use a 
constant threshold to time different intervals (or 
both, although this would not be preferred on the 
grounds of parsimony).

One of the early approaches to using adaptive 
clocks to account for timing accuracy and the 
scalar property was proposed by Killeen and 
Fetterman (1988). According to their Behavioral 
Expectancy Theory (BET), time intervals are 

captured based on behavioral states that are 
sequentially linked to each other (e.g., rodents 
frequently engage in sequential grooming behav-
iors—elliptical stroke → unilateral stroke → 
bilateral stroke → body licking; Kalueff et  al., 
2016). With the onset of the timing stimulus, the 
first behavioral state is activated, and this activa-
tion propagates through a chain of states, with 
exponentially distributed intervals between state 
transitions. When the propagation reaches the 
terminal state in the chain, the temporally pre-
dictable event is expected to occur. The result is 
effectively a Poisson clock (embedded in a chain 
architecture) because the Poisson distribution 
denotes the number of events that happen during 
a given period when the event spacings are expo-
nentially distributed. This important statistical 
feature is indeed widely used in different fields 
(e.g., the mathematical study of the waiting 
lines—queuing theory—Sundarapandian, 2009). 
Crucially, BET assumes that the speed of the 
between-state transitions increases with higher 
reward rates (and thus delay to rewards while 
keeping the reward magnitude constant) associ-
ated with the timing stimulus. Analogously, an 
increase in the incoming rate of customers at a 
cafe results in meeting a constant customer count 
earlier during a happy hour. BET is thus effec-
tively a clock-speed-adaptive model of interval 
timing that accumulates clock signals up to a 
constant threshold. Figure  5 (top panel) illus-
trates the generative dynamics and assumptions 
of BET based on the escape of a particle from 
energy wells until it completes a specific path.

The threshold first crossing times of accumu-
lation of Poisson distributed signals are gamma 
distributed, whose coefficient of variation stays 
constant when the clock speed is inversely pro-
portional to the target delay (= 1/t). In this way, 
BET accounts both for high timing accuracy and 
scalar property. But note that under this critical 
assumption, BET also predicts that the clock 
speed should increase with increasing reward 
magnitude (when the target interval is constant) 
while empirical evidence suggests that such 
experimental manipulations affect threshold set-
ting for willingness to initiate anticipatory 
responses (i.e., start times) rather than causing 
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Fig. 5 Illustration of the signal propagation dynamics 
according to BET (top panel) and time cell functional 
architecture (bottom panel). Top Panel: The illustration is 
based on the unidirectional energy well-escape behavior 
of a particle (approximately exponential distribution), 
which can also be thought of as the flow of incoming liq-
uid from one well to the next (left to right) for conve-
nience. The rescaling characteristics of the two approaches 
are shown by delinearized amplitude differences in the 
sine waves (dashed, dotted-dashed, dotted sine waves). 
The exponential distribution that would account for 

energy well escape behavior is shown for three different 
amplitudes on the top panel. Note that the exponentially 
distributed escape times are slower for sine waves with 
higher amplitude. Bottom Panel: The same dynamic is 
shown with dotted-dashed green sine waves for subse-
quent wells on the bottom panel. Note that the exponential 
escape times become slower for later points in time, which 
translates into longer dwelling times of the particle in the 
subsequent wells corresponding to the longer activity of 
time cells that are activated later in time

the predicted full leftward shift in timed response 
curves (Balcı, 2014; Ludvig et al., 2007).

One of the common problems of the models 
outlined above is that they do not have explicitly 
specified learning rules (except for SBF for 
which synaptic plasticity in the dorsal striatum is 
implicated). Note that SET’s encoding function 
can also be treated as a learning instance with a 

learning rate of 1. The Learning to Time Theory 
(LET) of Machado (1997; see also Machado 
et  al., 2009) has overcome this gap in earlier 
models by assuming that each state of BET is 
associated with a common response form(s), and 
the degree of association between the time units 
and the behavioral unit is subject to plasticity 
through delta-based trial-and-error learning. 
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Thus, unlike BET, LET allows the learning of 
associations between time and behavioral outputs 
and thereby accounts for the acquisition of timed 
responses (but see Balci et al., 2009 for counter-
evidence to predictions of LET regarding acqui-
sition). Note that in essence, LET also constitutes 
a clock-speed- adaptive model of interval timing 
(inherited from BET’s functional architecture) 
with an associative interface that links the tempo-
ral representation to timing responses and thus 
adds learning capacity to interval timing (e.g., 
learning to do different things at different points 
during an interval). This contribution of LET to 
the interval timing literature filled an important 
gap,  particularly when considered within the 
framework of conventional associative learning 
models.

Another problem that is common to the mod-
els outlined above (including LET regarding 
acquisition) is that all these models effectively 
assume a perfect counter function in which the 
cumulative value of the counted clock signals 
increases monotonically as a function of time 
(activation does not back- propagate). In other 
words, although there is randomness manifested 
at the level of intersignal generation times (as an 
exponentially distributed random variable), the 
counted ticks are not subject to perturbation (akin 
to counting errors) or never lost (or follow a very 
strict unidirectional path as in the case of the 
propagation of action potentials through the 
axon).

One approach that overcomes the need for 
such strong assumptions and that unifies interval 
timing research with research on perceptual deci-
sion making and memory is to model the internal 
stopwatch as a process of noisy evidence integra-
tion, which is mathematically identical to the 
movement of a tiny particle in liquid or gas 
undergoing drift (from a current) along with 
some random movement, or diffusion (from 
heat). Drift-diffusion models (DDMs) have been 
widely used for decades to model perceptual 
decision making because they can explain both 
the accuracy and the entire distribution of 
response times in two-alternative forced choice 
tasks (e.g., Ratcliff, 1978; Ratcliff & McKoon, 
2008). For instance, when participants are repeat-

edly asked to determine the direction of coherent 
motion in an array of dynamically moving dots, a 
subgroup of which move coherently either to the 
left or right while others move in random direc-
tions, the resulting choices and associated 
response times are numerically analyzed together 
to estimate the parameters of the underlying deci-
sion process (including the drift rate and level of 
diffusion) based on the shape and relative density 
of response times for correct and incorrect 
choices. This model extends the standard psycho-
logical approach that classically treats response 
times and accuracy as isolated outputs of the 
same underlying decision process. This standard 
approach does not utilize all the information in 
the data. This is nicely captured by the parable of 
the blind man and elephant retold by Rumi. This 
parable is about blind men who have never come 
across an elephant and try to learn about the ele-
phant by touching only one part of the elephant’s 
body (leg, trunk, ear, or tusk). As a result, each 
blind man would describe the elephant based on 
what they touched resulting in widely different 
descriptions of the entity (missing the forest for 
the trees).

The primary assumptions of the DDM in the 
case of two-alternative forced choice tasks are 
that the sensory evidence is noisy, the difference 
between the evidence supporting two different 
hypotheses constitutes the decision variable, this 
noisy decision variable is integrated over time 
toward one of the two thresholds, and when the 
decision variable hits one of these two thresholds 
the corresponding decision is made. The time it 
takes for the decision variable to reach that 
threshold is taken as the response time (com-
posed of the decision time plus a nondecision 
time-related sensorimotor delay). This model 
also allows the integration of biases (e.g., due to 
prior belief states, different probability of differ-
ent signals) as well as trial-to-trial variation in the 
core parameters (Ratcliff et al., 2016).

The DDM can be viewed as the continuum 
limit of the sequential probability ratio test 
(SPRT—Wald, 1947). In the SPRT, the agent 
computes the log-likelihood ratio of continuously 
incoming data under two different hypotheses 
and reaches a decision when this log-likelihood 
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ratio reaches a given criterion (positive for one 
hypothesis and negative for the alternative 
hypothesis). Importantly, for a range of simple 
perceptual tasks with a stationary signal-to-noise 
ratio, the SPRT is the optimal procedure, which 
maximizes accuracy for a given response time 
and minimizes response time for a given accu-
racy (Wald & Wolfowitz, 1940). Thus, the DDM 
is the optimal procedure for two alternative 
forced-choice behaviors in which aspects of the 
task (signal-to-noise ratio, prior probability of 
signals) are stationary within and across trials 
(e.g., Bogacz et al., 2006).

The DDM can be formalized as an ordinary 
stochastic differential equation:

 dx A dt c dW= +· ·  

where dx is the change in the position of the deci-
sion particle x between two thresholds, A refers to 
the average rate at which the decision particle is 
displaced in this area toward the correct threshold 
(slope by which it approaches the correct thresh-
old), dt refers to an infinitely small time interval 
(denoting the continuous nature of the decision 
process) and dW refers to the Gaussian white 
noise (repeated samples that are fully indepen-
dent). Thus, c, the diffusion coefficient, deter-
mines the amount of Gaussian noise added to the 
trajectory of the decision particle at each time 
point (dt), which is typically assumed to be con-
stant for different signal strengths in decision 
making. When the decision particle reaches one 
of the two thresholds −z or z (one below and one 
above the starting point of x [x0]), a decision that 
corresponds to that threshold is made and the 
time it takes for the decision particle to reach that 
threshold denotes the decision time.

When the decision particle is bound to hit only 
one of these thresholds (e.g., due to a very high 
drift rate and high decision threshold with respect 
to the diffusion coefficient), the threshold first 
crossing time distributions are inverse Gaussian 
(aka Wald) distributions (Luce, 1986), where the 
mean equals z/A, and the shape parameter of the 
inverse Gaussian distribution equals z/c2. Thus, 
there is a closed-form solution for the threshold 
first crossing times of the decision particle when 
there is a single threshold (as opposed to the need 

for numerical solutions for the two threshold ver-
sion of DDM).

The problem with modeling interval timing as 
a drift-diffusion model with a constant diffusion 
coefficient  (c) either by modulating the single 
threshold or drift rate to time different intervals is 
that it does not result in time-scale invariant 
threshold first crossing times for different dura-
tions. As outlined earlier, this is a terminal failure 
for any model of interval timing. For instance, 
when different intervals are timed with different 
drift rates and a constant threshold (clock speed 
adaptive approach to timing), then CV grows 
with the square root of T (z/A) (Simen et  al., 
2013). If, on the other hand, one times different 
intervals by keeping the drift rate constant but 
adjusting the threshold (threshold adaptive 
approach to timing), then CV decreases with the 
square root of T.  In both cases, the time-scale 
invariance of interval timing is systematically 
violated by different changes in timing impreci-
sion/uncertainty as a function of the target time. 
In the first approach, the longer intervals end up 
having a larger CV whereas, in the second 
approach, they end up having a smaller CV.  In 
contrast, a successful model should predict a con-
stant CV.

Then how can one model interval timing with 
a diffusion process? The answer lies in two criti-
cal assumptions regarding how the drift rate and 
diffusion coefficient scale with target times, 
which is assumed to be constant in the conven-
tional DDM as it is applied in decision science. 
The time-scale invariance of threshold first cross-
ing times is achieved when the drift rate is 
inversely proportional to the target time and the 
diffusion coefficient is scaled as the square root 
of the drift rate while keeping the threshold con-
stant. But this naturally begs the question of why 
such a relationship should exist in the first place 
and how making this assumption is different 
from injecting the right kind of noise into the 
generative process to achieve time-scale invari-
ance. Crucially, this is an emergent feature that 
results from a few assumptions outlined in Simen, 
Balci, de Souza, Cohen, and Holmes (2011a; see 
also Simen et  al., 2013), such as exponentially 
distributed interspike times and balanced excit-
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atory and inhibitory inputs (as a common feature 
of neural information processing; e.g., Okun & 
Lampl, 2009).

Specifically, the time adaptive opponent 
Poisson drift-diffusion model (TopDDM) keeps 
track of the cumulative sum of excitatory 
Poisson inputs with the rate I (by probabilistic 
and independent activation of bistable units 
from OFF to ON) and inhibitory Poisson inputs 
that are a fixed proportion of excitatory inputs 
𝛾·I; the average accumulation rate is the differ-
ence between the rates of excitatory and inhibi-
tory Poisson inputs (I −  𝛾·I). The variance of 
such a competitive process is the sum of the 
variances of each spiking count, which is equal 
to the sum of the rate parameters of each Poisson 
input train (c2 = I + 𝛾·I). This results in a diffu-
sion standard deviation that is proportional to 
the square root of drift.

 
dx I dt I dW= ( ) + +( )1 1− γ γ· · · ·

 
(1)

When we define A  =  (1  −  𝛾)·I, and define  

m  =  1 1+( ) −( )γ γ/ , substitution into Eq.  1  

with c =  1+( )γ ·I , gives c =  1 1+( ) −( ) ⋅γ γ/ .A  

For convenience, after getting 1 1+( ) ( )γ − γ/  

out of the equation as a constant of proportional-
ity (m), c becomes m A , thus resulting in a par-
ticular form of drift-diffusion process in which m 
is constant across durations and a diffusion coef-
ficient (c) scales with the square root of the drift 
rate (A).

 dx A dt m A dW= +· · ·  (2)

Briefly, the specific relationship between the 
drift rate and diffusion coefficient that enables a 
drift-diffusion process to account for time-scale 
invariance of timing behaviors comes for free out 
of the assumption of time-adaptive opponent 
Poisson processes and balanced excitation and 
inhibition. Figure 6 illustrates the resulting drift- 
diffusion process for three different target 
intervals.

At the neuronal activity level, the threshold 
can be treated as the firing rate of the population 

of neurons implementing the accumulator that is 
needed for the corresponding decision to be 
made. At around the same time as us, Francois 
Rivest and Yoshua Bengio developed an identical 
drift-diffusion model of timing that simply pos-
ited that noise was proportional to the square root 
of the drift (Rivest & Bengio, 2011). The two 
models were developed in parallel without 
mutual awareness of the other group’s effort until 
a common colleague (Elliot A. Ludvig) informed 
FB during his visit to Princeton University.

One way to simulate the TopDDM is to gener-
ate a sequence of spikes according to one Poisson 
rate (exponentially distributed interspike times 
with low mean) and another sequence of spikes 
according to a lower Poisson rate (exponentially 
distributed interspike time with high mean). Then, 
one would compute the cumulative difference 
between the cumulative spike count of higher rate 
and lower rate Poisson processes. When the 
cumulative interspike time at which the cumula-
tive difference between the two Poisson processes 
reaches a predetermined level (i.e., threshold), the 
timing behavior is manifested. Two built-in func-
tions of Matlab would be sufficient to conduct 
these simulations (i.e., exprnd and cumsum). For 
instance, exprnd(.5,1,100) would generate 100 
interpulse durations with a mean of .5. If this is 
the excitatory Poisson process, then one can set 
the first input argument to the inhibitory Poisson 
process to 1/γ × .5; which would result in 1 with a 
γ parameter of .5 (i.e., exprnd(1,1,100)) and 2.5 
with a γ parameter of .2 (i.e., exprnd(2.5,1,100)). 
Take the cumulative sum of low rate exponential 
and the cumulative sum of high rate exponential 
and assign values of 1 to the cumulative sum val-
ues of high rate exponential in a second column 
and −1 to the cumulative sum values of low rate 
exponential in the second column. Concatenate 
the two arrays and then sort all rows according to 
the cumulative sums and then sum over the sec-
ond column (+1 and −1 s) and find the value on 
the first column that corresponds to a value equal 
to or higher than the threshold value (sum of 
signed ones). This will denote the reproduced 
time for the corresponding trial. When one repeats 
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Fig. 6 Illustration of TopDDM through Euler–Maruyama 
methods for the approximate numerical solution of the 
stochastic differential equation. Note that the trajectory of 
the decision particles appears very similar across three tar-
gets (top panel—different columns) because the x-axis 
upper limits are adjusted such that they are inversely pro-
portional to the drift rate. The same rescaling applies to 

the threshold first crossing times of the decision particle 
(bottom panel—different columns). The estimates of the 
coefficient of variation were nearly identical for three dif-
ferent durations. The drift rates of 2, 1, and .05 were used 
in these simulations with a γ (the proportion of inhibition 
to excitation) value of .1 and a threshold value of 10

this process, one can get the distribution of tem-
poral reproductions, which will be best accounted 
for by the inverse Gaussian distribution (Simen 
et al., 2011a).

A simpler and more efficient way of simulat-
ing TopDDM is using the Euler–Maruyama 
methods for the approximate numerical solu-
tion of the stochastic differential equation by 
repeatedly computing the following sum: 

x x I t
c I t

new old

N , ,

= + −( )× ×

+ × +( )× × × ( )
1

1 01

γ

γ ∆

∆
 with Δt 

representing a small time step. We use the 
square root of Δt in the noise term because vari-
ance grows with dt and thus standard deviation 

grows with square root of Δt. For very low val-
ues of Δt, this equation approaches the contin-
uum limit of the opponent Poisson DDM as the 
DDM approximates the continuum limit of 
SPRT.

Empirical support for the TopDDM comes 
from electrophysiological studies with  nonhuman 
animals (Merchant & Averbeck, 2017; Komura 
et al., 2001; Leon & Shadlen, 2003; Jazayeri & 
Shadlen, 2015; Murakami et al., 2017—although 
some of these studies were not designed to test 
differential slopes of ramping activity to time dif-
ferent intervals) as well as humans (Macar & 
Vidal, 2003; but see Kononowicz & van Rijn, 
2014). From these, Merchant and Averbeck 
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(2017) clearly demonstrated that TopDDM 
accounts for not only psychophysical properties 
of timing behavior of monkeys in a rhythmic tim-
ing task but also their higher order statistics of the 
response time distributions and the autocorrela-
tion structure in neural representation predicted 
by TopDDM. To highlight the conceptual conti-
nuity between different models of interval tim-
ing, we would like to highlight that BET is a 
special case of TopDDM, where the γ (inhibition 
to excitation ratio) parameter is set to 0 (i.e., pure 
Poisson clock). But the problem with using BET 
(i.e., using γ of zero) is that the interspike inter-
vals would have to be too long to be neurally 
plausible to produce reasonable CVs. Although 
TopDDM can also be criticized for the difficulty 
of sustaining an integrative state of neuronal pop-
ulations over long periods, Simen et al. (2011b) 
showed that neural integration could take place 
over much longer time scales based on sequen-
tially triggered interval timers.

Marr’s levels of analysis provide a useful 
meta-theoretical framework for the conceptual-
ization of interval timing models. Marr (1982) 
introduced three hierarchical levels of analysis 
for any cognitive system. The highest level of 
understanding of a system (the computational 
level) entails understanding what computational 
function the cognitive system is carrying out 
(e.g., computing the route to a destination). This 
corresponds to the evolutionary analysis of the 
cognitive system. The second level of analysis 
(the algorithmic level) focuses on the procedures 
carried out to perform the computation (e.g., 
searching routes with a depth-first search tree vs. 
randomly generating routes and assessing 
whether they are valid). The lowest level of anal-
ysis (the implementation level) focuses on how 
the representation and algorithmic solution can 
be realized at the hardware level (i.e., physical 
implementation). Under this meta-theoretical 
framework, the models outlined last constitute 
the algorithmic level account of interval timing 
based on noisy evidence integration processes 
(Marr, 1982—see Fig. 10).

Simen et  al. (2011a) also developed an 
implementation- level account of this model 
based on a neural network with four layers, the 

Stochastic Ramp and Trigger (SRT) model. 
The input layer of this architecture is com-
posed of detector neurons that fire with the 
onset of the timing stimulus. This function 
characterizes these units as sensory neurons 
(e.g., De Corte et  al., 2022). The input from 
detector neurons activates the second-layer 
units with strong recurrent excitation, which 
results in sustained activity even when the neu-
rons are excited by inputs below the threshold 
for switching on. This property of neurons in 
the second layer causes them to fire maximally 
throughout the timing epoch. The units at the 
third layer constitute the ramping units that can 
integrate inputs from the second layer units 
based on balanced recurrent excitation. It is 
this balanced self-excitation that enables these 
units to perfectly integrate information rather 
than exhibiting a bistable dynamic as displayed 
by the units of the second layer with stronger 
self-excitation. The rate at which ramping 
activity occurs depends on the number of 
active, second-layer tonic units that feed input 
into the third layer. More tonic units feeding 
input into the ramping units result in steeper 
ramps, which would be required for timing 
shorter intervals. Finally, the fourth layer of 
the architecture implements threshold crossing 
based on input received from the ramping units 
of the third layer and strong recurrent excita-
tion. These units fire when the firing rate in the 
ramping units reaches a constant level. Figure 7 
illustrates this functional architecture.

One of the open questions is what the imple-
mentational level counterpart of TopDDM is in 
the brain. For instance, although it was originally 
conceived as a balance of glutamatergic and 
GABAergic signaling within cortical popula-
tions, the balance between excitatory and inhibi-
tory inputs may be underlain at the systems level 
by the dopamine-dependent balance between the 
direct and indirect pathways of the striatum. 
Within this framework, over or under- 
dopaminergic input would be expected to modu-
late the balance between excitatory and inhibitory 
inputs, which would, in turn, predict the clock 
speed effects of dopaminergic modulation. This 
hypothesis also predicts that the timing impreci-
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Fig. 7 Physical (neural) implementation level explana-
tion of the time adaptive opponent Poisson drift-diffusion 
model of interval timing as a Stochastic Ramp and Trigger 
model. The sensory detection of the onset of timing stimu-
lus and the switch units that feed inputs to the integrator is 
realized by bistable units. The integrator sums the excit-

atory and inhibitory input from the bistable switch units 
and in turn drives another bistable unit that implements 
the decision to respond. The lower dashed inset shows the 
excitation profile of these units based on the degree of 
self-excitation

sion should increase with higher dopamine levels 
and decrease with lower dopamine levels. These 
questions should guide future research to investi-
gate the neural basis of TopDDM.

The TopDDM has been applied to model per-
formance in a variety of interval timing tasks 
(e.g., temporal bisection—Church & Deluty, 
1977; peak interval procedure—Roberts, 1981) 
as well as temporal error monitoring (e.g., 
Akdogan & Balci, 2016). In parallel to the diver-
gence between the standard psychological treat-
ment of choice accuracy and response times in an 
isolated fashion (remember the parable of blind 
men and elephant) vs. decision-theoretic analysis 
of these decision outputs in a unified fashion in 
two-alternative forced choice tasks, Balci and 
Simen (2014) offered a new analytical approach 
to the analysis of temporal bisection task by tak-
ing into account not only psychophysical accu-

racy functions (as typically done in standard 
psychophysical approach) but also the corre-
sponding response times within the framework of 
noisy evidence accumulation (see also Ratcliff, 
2014; Akbiyik et  al., 2022; Akdogan & Balci, 
2016).

In the temporal bisection task, subjects are ini-
tially trained to discriminate between short and 
long reference intervals by emitting two different 
responses for categorizing them based on their 
subjective similarity to short and long reference 
intervals (Church & Deluty, 1977). Once the cat-
egorization accuracy reaches a certain criterion, 
experimenters include intermediate test durations 
and do not provide any feedback for their catego-
rization. When the proportion of long choices is 
expressed as a function of test durations, one 
typically gets a sigmoidal (s shape) psychophysi-
cal function that can be well-captured by a logis-
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tic function or cumulative density functions of 
unimodal distribution functions (e.g., Weibull 
given the different many shapes it can take based 
on its shape parameter). But the response times 
associated with these categorizations are typi-
cally not considered in the analysis of the perfor-
mance. In exploring this valuable aspect of the 
data, Balci and Simen (2014) showed that the 
response times of short categorization responses 
slow down, whereas the response times of long 
categorization responses speed up with longer 
test durations. They offered a unified account of 
choice proportions and response times in terms 
of a sequential drift-diffusion process.

The first-stage drift-diffusion process was 
assumed to be adapted to hit a threshold at the long 
reference intervals (adhering to the principles of 
the TopDDM); timer stage. The state of the timer 
at the end of the test duration was assumed to set 
the starting point as well as the drift rate of the 
second stage decision process (based on the differ-
ence between the current starting point and unbi-
ased starting point). If the state of the timing 
process was above the starting point at the end of 
the timing stimulus, the drift rate would be posi-
tive, and the decision variable would, on average, 
approach the upper threshold related to the long 
categorization. On the other hand, if the state of 
the timing process was below the starting point, 
the drift rate would be negative, and the decision 
variable would, on average, approach the lower 
threshold related to the short categorization. Note 
that what determines the state of the activity level 
at the end of the timing stimulus is not only the test 
duration but also the diffusion coefficient that per-
turbs the average path of the decision particle. This 
sequential decision process can account for both 
sigmoidal psychophysical curves and the observed 
modulation of response times as a function of test 
interval duration. This model demonstrated how 
interval timing and temporal decision making pro-
cesses could be incorporated into a common theo-
retic framework. Recent work has provided 
empirical neural evidence in support of this model 
(e.g., Ofir & Landau, 2022; Wiener et al., 2018) 
(Fig. 8).

More recently, Luzardo et  al. (2017) mod-
eled timed, anticipatory responses in the peak 
interval procedure within the framework of 
TopDDM by assuming two response thresh-
olds, the lower one for the initiation of timed 
responses (start time) whereas the higher one 
for the termination (stop time) of the timed 
responses (as opposed to a single threshold in 
the original TopDDM). Importantly, they 
showed that when the first threshold is allowed 
to be variable, this model accounts for the cor-
relation patterns between the start and stop 
times as observed in the empirical data (Gibbon 
& Church, 1990). Finally, Akdogan and Balci 
(2017) showed that monitoring of the direction 
and magnitude of errors in timing behavior 
could also result from the comparison of the 
two TopDDMs, one underlying perceptual tim-
ing whereas the other underlying motor timing. 
They assumed that the order of threshold first-
crossing times of these timers can determine 
the direction of the second-stage drift-diffusion 
process, which would in turn inform the agent 
regarding the direction and magnitude of errors 
in their time estimates. All these efforts dem-
onstrate the explanatory power of the TopDDM 
framework in accounting for different variants 
of timing behaviors ranging from very simple 
timed responses to temporal awareness (Balcı, 
2022).

A limitation of time adaptive models is that 
it is not clear how one can determine which 
clock speed to use during the first exposure to 
a new duration (sometimes referred to as the 
“infinitude of the possible” problem; Gallistel 
& King, 2010). The adaptive and fast learning 
rules of TopDDM and Rivest and Bengio 
(2011) can overcome this problem as they 
allow adaptation of the drift rate so that the 
threshold is hit at the correct time after experi-
encing a new interval (after hitting the thresh-
old earlier or later than the occurrence of the 
new timing event). With a maximum learning 
rate, this rule requires only a single learning 
iteration so that the model can encode new 
durations as quickly as classical pacemaker-

F. Balcı and P. Simen



69

Fig. 8 (A) The timer (TopDDM) tracks time up to the 
duration of the long reference duration. The decision pro-
cess begins when a stimulus duration ends. Sample deci-
sion processes are shown (each for a different stimulus 
interval). The starting point of the decision process corre-
sponds to the location of the timer process at the end of the 
stimuli. Resultantly, the decision process starts at different 
locations depending on where the first process is at the 
end of the stimulus duration. Drift is toward the long 

threshold if the timer location exceeds the level of subjec-
tive equality (black horizonral dashed line). (B) Mean 
proportion of long choices as a function of the stimulus 
duration. AM: arithmetic mean, GM: geometric mean. (C) 
Response time predictions shown as dashed lines along 
with relative densities of short and long categorization 
judgments. The solid lines show the response time predic-
tions for all judgments

accumulator models; with a smaller learning 
rate, it can adapt more gradually.

 Retrospective (Episodic) Timing

All the models explained above target prospec-
tive timing. However, a large portion of our daily 
timing involves what is called retrospective tim-

ing. Unlike prospective timing, retrospective tim-
ing is treated as an automatic process based on 
implicit temporal associations between events 
and part of the episodic memory system 
(MacDonald, 2014). Similar to the place cell 
architecture with respect to the spatial represen-
tations (hippocampal neurons that fire when a 
particular location is occupied—O’Keefe & 
Nadel, 1978), Howard Eichenbaum and col-
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leagues showed that a group of hippocampal neu-
rons (now known as time cells) fire successively 
at successive moments in temporally structured 
events independent of the time-dependent behav-
iors and spatial information (Eichenbaum, 2014; 
MacDonald et al., 2011; Pastalkova et al., 2008—
but also see Tiganj et al. (2017) for similar obser-
vations in the rodent medial prefrontal cortex 
(MPC) based on the reanalysis of data from Kim 
et  al., 2013; and see Mello et  al. (2015) and 
Akhlaghpour et  al. (2016) for similar observa-
tions in the striatum).

Time cells are hypothesized to underlie the 
temporal/ordinal organization of retrospective 
memory representations by assigning “time 
stamps” or providing temporal context for mem-
ories (e.g., MacDonald et al., 2013; Manns et al., 
2007) and even the temporal organization of clas-
sical conditioning (e.g., trace conditioning that 
requires hippocampal involvement—for review, 
MacDonald, 2014 but see Ahmed et  al., 2020). 
Raster plots of spiking activity of time cells show 
that different cells fire maximally at different 
periods during the interval, and the spiking win-
dow of the later-peaking neurons is wider than 
those neurons that fire during the earlier epochs 
(Fig.  9)—they rescale the width of these high- 

activity windows according to the duration of the 
events. The wider window of spiking of neurons 
later in the chain may derive from slower signal 
propagation as a function of time (Kraus et  al., 
2013; Howard et  al., 2014; Mello et  al., 2015; 
Salz et al., 2016). This is effectively equivalent to 
the lower discriminability of longer time inter-
vals (via more overlap in the spiking windows for 
different durations) or the representation of 
shorter intervals with more units compared to 
longer intervals (see Fig. 5—lower panel). This 
architecture would in turn lead to lower temporal 
precision by which events are reconstructed and 
has lower precision for longer times. Note that 
the sequential propagation of activity parallels 
the sequential activity in BET, including the res-
caling property, but the signal propagation speed 
is assumed to be constant in BET (not matching 
the behavior of time cells).

Zeki and Balci (2019) proposed a model of 
time cells that was composed of a single layer of 
cells with integrate-and-fire characteristics feed- 
forward excitatory connections. An inhibitory 
cell was assumed to provide overall inhibition to 
time cells with each activation of a time cell, 
which increased with time. In other words, the 
inhibition is proportional to total time cell activ-

Fig. 9 Illustration of raster plots of temporally modulated spiking (top) and the resultant time fields of the correspond-
ing neurons
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ity, which as described earlier has resemblances 
to the core assumptions of the lowest-level of the 
TopDDM/SRT/Poisson-spiking hierarchy in 
Simen et  al. (2011a). Thus, the same principle 
applies in two different cases, and natural selec-
tion will likely lead to the reuse of a successful 
approach. This increasing inhibition delays the 
firing of time cells later in the chain. Importantly, 
this prediction was shown to be robust to the vari-
ation in the key model parameters. Zeki and Balci 
(2023) recently showed that similar dynamics 
(including temporal scaling) can be generated by 
integrate- and- fire neurons with slow after- 
hyperpolarization currents and varying resting 
membrane potentials and without a need for a 
specialized network architecture (e.g., synaptic 
connections between time cells) other than self-
excitation. This model relies on the fact that neu-
rons with lower resting potentials will fire later in 
time and exhibit a wider activity window (e.g., 
right-shifted and broader tuning function) com-
pared to neurons with higher resting potential. 
The initiation and termination of neurons’ firing 
with self- excitation result from the initial decay 
and then reactivation of slow after-hyperpolariz-
ing current (activated after multiple action poten-
tials), respectively.

Other models have relied on exponentially 
decaying firing rates based on the dynamics of 
calcium-activated nonspecific cationic (CAN) 
currents using an integrate-and-fire model (Tiganj 
et al., 2015). In this model, the calcium clearance 
mechanisms (active at all times) and voltage- 
gated calcium currents (present during action 
potentials) determine the CAN.  In other words, 
with each action potential, a fixed calcium con-
centration is added (resulting in calcium concen-
tration above zero at the outset due to 
stimulus-driven activity) while otherwise, the 
change in calcium at each time point is dependent 
on the clearance of calcium, which depends on 
the calcium concentration in the cell. The latter 
property results in an exponential decay of the 
intracellular calcium concentration with time 
constants up to the minute range. Importantly, 
Tiganj et al. (2015) have also shown that the time 
constants of decay can be externally controlled in 

multiple ways (e.g., calcium clearance, the maxi-
mum conductivity of the CAN current channels, 
the amount of calcium influx during action poten-
tials, and the charge needed to cause each spike).1 
Within this framework, it is not only the firing 
rate but also the identity of the active neuron that 
provides temporal information, similar to place 
cells (Howard et al., 2014). It is the rescalability 
feature of these models that puts them under time 
adaptive models of interval timing with the 
exception that the clock signals are not integrated 
in a linear but a negatively accelerating fashion.

Note that decay functions were used earlier in 
the Multiple Time Scales Model that uses a series 
of leaky integrators with decay functions accord-
ing to the power law (Staddon & Higa, 1996, 
1999—see also Temporal Context Model of 
Shankar & Howard, 2010). One of the advan-
tages of using decay functions and thus the 
strength of memory traces as a proxy for time is 
that temporal representation becomes an emer-
gent property of memory processes rather than 
requiring a dedicated timing mechanism. This 
kind of timing process may be primarily appli-
cable to retrospective, but not prospective, timing 
since the strength of the memory trace is the 
proxy for time.

Finally, several models rely on repeatable sto-
chastic processes, namely the neuronal activity 
propagation pathways in stochastically connected 
noisy neurons (Fig. 11) to encode and remember 
time intervals (e.g., Ahrens & Sahani, 2008; 
Buonomano, 2005; Buonomano & Merzenich, 
1995; Haß et al., 2008; Karmarkar & Buonomano, 
2007). The primary idea of these models is that 
when the initial unit in this chain is activated, its 
likelihood of following the same path will be 
higher than the likelihood of following different 
paths of activity propagation. One can liken this 
to the likelihood of people following earlier paths 

1 See Durstewitz D. (2003) ramping model of neuronal 
timing based on calcium dynamics. According to this 
model, the integration of input depends on the opening of 
the voltage-gated Ca2+ channels by the tonic synaptic 
input. The opening of Ca2+ activates depolarizing cur-
rents and generates a linear ramp in firing rate based on 
the resulting positive feedback (Fig. 10).
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Fig. 10 Interval timing conceptualized at different levels of analysis (Marr, 1982)

Fig. 11 Depiction of neural trajectory model of interval timing. With the onset of an event, the activation has a higher 
likelihood of following the same trajectory and the point on the trajectory codes for elapsed time

on a lawn as a detour (following a degraded lawn) 
to minimize the path length between the origin 
and the destination.

Relatedly, other researchers showed that they 
can train recurrent neural networks to encode and 
remember temporal information (e.g., Bi & 
Zhou, 2020). Specifically, they report stereotypi-

cal dynamic trajectories where temporal informa-
tion is encoded by the state evolution along this 
stereotypical trajectory. Furthermore, these 
dynamics were shown to have the property of 
temporal scaling at least while producing the 
interval (e.g., stretched for longer intervals—
referred to above). Pérez and Merchant (2018) 
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showed that time-dependent properties of recur-
rent neural networks (e.g., synaptic properties) 
can result in time-selective activity in a fashion 
that can account for the statistical properties of 
interval timing. Finally, Hardy and Buonomano 
(2018) showed that recurrent neural networks can 
generate the experimentally observed sequential 
activity (feed-forward trajectories) up to several 
seconds (i.e., 5 s) based on the balance between 
excitation and inhibition and a supervised learn-
ing rule. The state of the activity in neural net-
works can be read out as elapsed time. 
Importantly, this model also produces scalar 
variability.

These models of interval timing can also be 
categorized as ramping models in which individ-
ual neurons keep track of time by adapting the 
ramping rate (e.g., TopDDM) and as population- 
clock models in which temporal representation 
results from the activity of multiple neurons, in 
which a distinct pattern that emerges from the 
population codes for different time intervals (e.g., 
SBF—see De Corte et al., 2022 for a detailed dis-
cussion of this alternative categorization). 
Population clock models require neurons to 
exhibit the same firing profile in each trial for 
their population-level activity patterns to be 
informative with respect to time (not in and of 
itself necessarily coding for time and thus its 
metric properties). This, in turn, requires the use 
of global signals to reset the activity state of 
 individual units at the beginning of a timing 
epoch (e.g., the start-gun signal in the SBF). It is 
this repeatability (reliability) of each unit’s activ-
ity pattern that results in being able to read a 
unique pattern at the population level. For 
instance, if individual instruments start playing 
their part at random times without following the 
conductor’s start signal, the resulting music will 
not represent the desired and pleasant composi-
tion  to listen to. SBF and, to a certain extent, 
repeatable stochastic process models and time-
cell functional architecture fall within the cate-
gory of neural population- based coding of time 
intervals.

Another issue relates to empirical data that 
indicate animals’ ability to make computations 
based on time representations (i.e., affordances 

of temporal representations). For example, one 
informative type of empirical phenomenon that 
has been analyzed by De Corte et  al. (2022) is 
findings related to temporal averaging. 
Specifically, when rats are trained to expect 
rewards at different delays after the onset of audi-
tory vs. visual stimulus and their timing behavior 
is clustered around the average of these delays 
when presented with the compound stimulus 
(e.g., audiovisual—e.g., Delamater & Nicolas, 
2015; De Corte & Matell, 2016; Swanton et al., 
2009). These findings suggest that nonhuman 
animals can make swift computations based on 
previously established time representations. De 
Corte (2021) demonstrated that this interesting 
phenomenon could be explained within the 
TopDDM framework by assuming that ramping 
units increase their firing rates at intermediate 
levels (intermediate to the firing rates for short 
and long intervals signaled by two different stim-
uli) during compound trials. This would occur, 
for instance, when different cue units associated 
with different intervals compete over the number 
of layer 2 switch units (De Corte, 2021). These 
findings are harder to account for with population 
codes since there is no apparent mechanism that 
would lead to the control of the propagation of 
neuronal activity based on the assumed represen-
tational architecture. Similar computations are 
required to be able to account for Ralph Miller 
and colleagues’ temporal map results (e.g., 
Barnet & Miller, 1996; Molet et al., 2012). Note 
that population code read out of time intervals 
does not preserve the metric structure of temporal 
information, which makes them ineligible for 
arithmetic computations on temporal representa-
tions. We refer the reader to a study by De Corte 
et al. (2022) for an excellent discussion of these 
theoretical issues that relate to the conceptual 
analysis of timing models.

 Conclusion

In this chapter, we tried to cover as much as pos-
sible the (neuro)computational approaches to 
modeling interval timing and categorize them as 
threshold vs. clock-adaptive models as well as 
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dedicated clock/ramping vs. emergent time/pop-
ulation code models. We hope that the coverage 
of these models and their conceptual categoriza-
tion will help guide timing researchers in their 
modeling efforts as well as in interpreting their 
findings considering these models. Finally, we 
would like to remind the reader that “All models 
are wrong, but some are useful” (George Box, 
British statistician) no matter how much model-
ers tend to equate empirical reality with their 
models. Thus, in principle, we, as timing model-
ers, are all elegantly wrong.
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Abstract

Converging experimental and computational 
evidence indicate that on the scale of seconds 
the brain encodes time through changing pat-
terns of neural activity. Experimentally, two 
general forms of neural dynamic regimes that 
can encode time have been observed: neural 
population clocks and ramping activity. 
Neural population clocks provide a high- 
dimensional code to generate complex spatio-
temporal output patterns, in which each 
neuron exhibits a nonlinear temporal profile. 
A prototypical example of neural population 
clocks are neural sequences, which have been 
observed across species, brain areas, and 
behavioral paradigms. Additionally, neural 
sequences emerge in artificial neural networks 
trained to solve time-dependent tasks. Here, 
we examine the role of neural sequences in the 
encoding of time, and how they may emerge 
in a biologically plausible manner. We con-

clude that neural sequences may represent a 
canonical computational regime to perform 
temporal computations.

Keywords

Timing · Neural sequences · Ramping · 
Temporal processing · Neural population 
clocks

It can be said that one of the brain’s main func-
tions is to predict the future. Memory, for exam-
ple, is biologically adaptive only to the extent 
that previous experiences and information are 
useful to better respond to future events. Indeed, 
the importance of prediction is highlighted in 
many theories of brain function (Helmholtz, 
1860; Mumford, 1992; Rao & Ballard, 1999; 
Friston, 2005). Timing, of course, is a key ele-
ment of prediction, as it is generally not sufficient 
to only predict what will happen, but when it will 
happen. Indeed, animals must make predictions 
across time scales, from anticipating the position 
of a moving object or the presence of predators or 
prey, to tracking the circadian and seasonal 
changes in their physical environment. In addi-
tion to the importance of timing to prediction, 
timing is a critical component of sensory and 
motor processing. A prominent example is the 
generation of speech and music, which exemplify 
the brains’ sophisticated ability to discriminate 
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and generate complex spatiotemporal patterns. 
To cope with the need to produce temporally 
accurate predictions, parse the temporal structure 
of sensory events, and generate appropriately 
timed motor outputs and behaviors, the brain 
evolved a range of distinct mechanisms to track 
time across scales ranging from milliseconds to 
days and beyond (Buonomano, 2007). Here, we 
focus primarily on the neural mechanisms under-
lying the ability to track time and generate timed 
motor outputs on the time scale of a few seconds. 
It is on this scale that timing is most sophisti-
cated, for it is on the scale of seconds that we can 
recognize and generate temporal patterns at mul-
tiple speeds. Our ability to tell time and discern 
temporal patterns on the scale of approximately a 
second underlies speech and music processing. 
Outside the range of hundreds of milliseconds to 
a few seconds, the spatiotemporal patterns that 
comprise music and speech cease to be recog-
nized as music or speech.

 Theories of the Neural Mechanisms 
of Timing

Early theories of timing on the scale of seconds 
focused primarily on oscillator-based models, 
including pacemaker/accumulator models in 
which “tics” of an oscillator are integrated over 
time, providing a linear metric of elapsed time 
(Creelman, 1962; Gibbon, 1977; Killeen & 
Fetterman, 1988; Treisman et  al., 1990). Later 
oscillator-based models included those in which 
multiple oscillators operating at different fre-
quencies provided a readout of time by detect-
ing the beats or relative phases of the population 
of oscillators (Miall, 1989; Matell et al., 2003; 
Buhusi & Meck, 2005; Buhusi et  al., 2016). 
Over the past few decades, there has been a shift 
toward nonoscillator-based models, most nota-
bly those in which time is encoded in time-
dependent changes in the firing rate of neurons. 
These models include ramping and neural popu-
lation clocks (Ivry & Spencer, 2004; Mauk & 
Buonomano, 2004; Merchant et al., 2013; Balcı 
& Simen, 2016; Paton & Buonomano, 2018; 

Issa et al., 2020). Generally speaking, ramping 
models are based on a neural integrator which 
produces linear or monotonic changes in firing 
rate, thus providing a linear or nonlinear metric 
of elapsed time (Durstewitz, 2003; Simen et al., 
2011; Balcı & Simen, 2016). Neural population 
clock models explicitly propose that neural cir-
cuits encode time through changing patterns of 
neural activity imposed by the recurrent connec-
tivity of the circuits (Buonomano & Mauk, 
1994; Mauk & Donegan, 1997; Buonomano & 
Laje, 2010). While both models rely on time-
dependent changes in firing rate, in ramping 
models, a single neuron can, at least in princi-
ple, provide a continuous and linear metric of 
elapsed time. Whereas, in neural population 
clocks, a large population of neurons is, by defi-
nition, necessary to encode a continuous win-
dow of time.

In contrast to ramping models, the temporal 
profile of the firing rate of neurons in population 
clocks models is nonmonotonic. In part as a con-
sequence of this, a further distinction between 
ramping and neural population clocks models 
pertains to the dimensionality of the neural 
dynamics of the population of neurons. Neural 
population clocks comprise a high-dimensional 
neural system, whereas ramping models are low- 
dimensional. That is, in contrast to a population 
of neurons that are ramping together and thus are 
highly correlated, the pairwise correlation 
between neurons within a neural population 
clock is relatively low.

Depending on the temporal profile of their fir-
ing rate, and the “sparsity” of the neural dynam-
ics (how many neurons fire at the same moment), 
neural population clocks encompass a number of 
different dynamic regimes including complex 
patterns and neural sequences (Paton & 
Buonomano, 2018). Here, we refer to complex 
neural population clocks as those in which a sin-
gle neuron can have multiple peak firing rates, 
and neural sequences as dynamic regimes in 
which each neuron has a single peak (often cap-
tured by a Gaussian-like increase and decrease in 
firing rate) in which these peaks approximately 
tile the time window (see Fig. 1). We stress, how-

S. Soldado-Magraner and D. V. Buonomano



83

Fig. 1 Neural sequences are ubiquitous across species 
and brain regions. (a) Neurons in the premotor nucleus 
(HVC) of songbirds fire very sparsely while the animal is 
engaged in song vocalization, tiling the whole time span 
of the song (Lynch et  al., 2016). (b) Neural sequences 
emerge in the hippocampus of rats during an interval dis-
crimination task. Importantly, the sequences are scaled 
upon different interval durations (Shimbo et al., 2021). (c) 
The speed of striatal sequential dynamics of rats corre-

lates with their subjective perception of the passage of 
time (Gouvea et al., 2015). (d) The entorhinal cortex of 
mice encodes elapsed time in the form of neural sequences 
during immobility (Heys & Dombeck, 2018). (e) Time 
can robustly be decoded in the medial prefrontal cortex of 
rats engaged in a delayed-match-to-sample task (Ning 
et al., 2022). (f) Recently, neural sequences that encode 
time have also been reported in humans performing an 
episodic memory task (Umbach et al., 2020)

ever, that the term neural sequence is often used 
in a broad and not carefully defined manner. 
Sometimes, the term neural sequence is used 
interchangeably with the term synfire chain. 
Here, we distinguish between these terms, 
because synfire chain was originally coined in 
reference to the sequential, but temporally dis-
crete activity produced by synchronized “bursts” 
of activity that drive propagation within a feed- 
forward network (Abeles, 1991; Diesmann et al., 
1999; Gewaltig et al., 2001).

Below, we will focus primarily on the experi-
mental and computational evidence that in many 
cases the brain relies on neural sequences to 
encode time on the scale of hundreds of millisec-
onds to many seconds, and discuss the potential 
mechanisms underlying the emergence of neural 
circuits that support the generation of multiple 
neural sequences.

 Neural Sequences In Vivo

One of the earliest observations of neural 
sequences comes from the study of neural corre-
lates of learned vocalization in songbirds 
(Hahnloser et al., 2002). Neurons in the premotor 
nucleus HVC burst at specific times during bird 
song production and tile the whole duration of 
the song, providing a very sparse timing code that 
drives downstream motor neurons responsible for 
sound generation (Fig.  1a). Subsequent studies 
provided a causal link between the dynamics 
underlying the neural sequences in HVC and 
song timing, by showing that cooling HVC, but 
not the motor nucleus, slowed song speed (Long 
& Fee, 2008).

One of the first observations of neural 
sequences in mammals was in the rat hippocam-
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pus (Pastalkova et al., 2008). Sequential activa-
tion of neurons had been observed extensively 
in the context of navigation as a result of the 
progressive activation of place cells as an ani-
mal traverses a spatial location. Pastalkova et al. 
(2008) demonstrated that in the same manner 
that the hippocampus encodes a cognitive map 
for space, it also contains information about 
elapsed time. Importantly, in contrast to the 
sequential activation of place cells, this “tempo-
ral map” was internally generated as it emerged 
in the absence of external cues—while the ani-
mal ran in place on a running wheel. Subsequent 
studies have consistently reported the presence 
of neural sequences that encode time in the hip-
pocampus (MacDonald et al., 2011, 2013; Kraus 
et al., 2013; Taxidis et al., 2020; Umbach et al., 
2020; Wang et  al., 2020; Reddy et  al., 2021; 
Shimbo et  al., 2021; Ning et  al., 2022) 
(Fig. 2b)—the cells that participate in these neu-
ral sequences and that have a characteristic time 
receptive field are sometimes referred to as 
“time cells” (MacDonald et al., 2011). Critically, 
neural sequences have also been observed in 
many brain regions other than the hippocampus 
(Fig. 1c–e), including parietal and motor corti-
ces (Crowe et  al., 2010; Harvey et  al., 2012; 
Adler et al., 2019; Zhou et al., 2020), primary 
visual cortex (Xu et al., 2012; Gavornik & Bear, 
2014), entorhinal cortex (Heys & Dombeck, 
2018), prefrontal cortex (Tiganj et  al., 2017; 
Ning et al., 2022), and striatum (Gouvea et al., 
2015; Mello et al., 2015; Zhou et al., 2020).

The universality of neural sequences is further 
emphasized by the fact that they have been found 
across multiple species: songbirds (Hahnloser 
et al., 2002; Lynch et al., 2016), mice (Gavornik 
& Bear, 2014; Heys & Dombeck, 2018; Taxidis 
et  al., 2020), rats (Pastalkova et  al., 2008; 
MacDonald et  al., 2011, 2013; Xu et  al., 2012; 
Gouvea et  al., 2015; Mello et  al., 2015; Tiganj 
et al., 2017; Adler et al., 2019; Wang et al., 2020; 
Shimbo et al., 2021; Ning et al., 2022), monkeys 
(Crowe et al., 2010, 2014; Merchant et al., 2015; 
Gámez et al., 2019), and more recently humans 
(Umbach et  al., 2020; Reddy et  al., 2021) (see 
Fig. 1).

Neural sequences not only encode the passage 
of time, but can contain information about the 
context of how a particular behavioral event 
unfolds in time. Specifically, different neural 
sequences can be triggered by different stimuli or 
during different contexts (Pastalkova et al., 2008; 
MacDonald et al., 2013; Taxidis et al., 2020). For 
example, different neural sequences are triggered 
upon presentation of different odors in odor dis-
crimination tasks and working memory tasks 
(MacDonald et  al., 2013; Taxidis et  al., 2020). 
Importantly, in these cases, a given neuron can 
participate in both neural sequences but at differ-
ent moments in time—this observation is most 
consistent with recurrent circuit architectures as 
opposed to feed-forward circuits. Relative spatial 
location is also encoded by different neural 
sequences during object construction tasks 
(Crowe et al., 2010), and navigation-choice tasks 
(Harvey et al., 2012). This indicates that a funda-
mental role of neural sequences may be to bind 
temporal passage of time to relevant behavioral 
variables. However, neural sequences have also 
been found during immobility and tile the whole 
trial, indicating that internal states may be corre-
lated with the pure passage of time (MacDonald 
et al., 2013; Lynch et al., 2016; Heys & Dombeck, 
2018; Reddy et al., 2021). In fact, the speed of a 
neural sequence correlates with the subject per-
ception of the passage of time (Gouvea et  al., 
2015).

To date, the neurons participating in neural 
time sequences seem to be anatomically inter-
mingled, i.e., neurons that fire close in time dur-
ing the sequence do not seem to be closer in 
space (Harvey et  al., 2012; Heys & Dombeck, 
2018). Additionally, the cross-trial precision of 
the time field decreases with time (Pastalkova 
et al., 2008; MacDonald et al., 2011; Tiganj et al., 
2017; Umbach et al., 2020), an observation con-
sistent with the robust psychophysical finding 
that the standard deviation of timed motor 
responses increases linearly with time (Gibbon, 
1977; Merchant et  al., 2008; Laje et  al., 2011; 
Grondin, 2014)—Weber’s law.

An important feature of motor behavior is the 
ability to produce well-timed motor patterns at 
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Fig. 2 Neural sequences emerge in a self-organized 
manner guided by homeostatic plasticity rules. (a) 
Schematic of a recurrent neural network with spiking 
excitatory and inhibitory units. The strength of excitatory 
synapses is governed by presynaptic-dependent homeo-
static (PSD) learning rule. In this example, the recurrent 
circuit can receive two different inputs, each of which 
should drive a different sequence of activity in the same 
population of output units (right). (b–c) During unsuper-
vised learning, different neural sequences emerge in the 
recurrent neural network. After this unsupervised learning 
stage, the connections onto the 5 output neurons are 

trained using a simple supervised learning rule. In 
response to Input A, the five output neurons are trained to 
fire into a specific time and order (Target A). The order is 
changed for Input B (Target B). After both stages of train-
ing, the different input patterns trigger robust neural 
sequences that tile the whole trial duration. Importantly, 
the sequences are independent from one another as can be 
observed when sorting the neurons of Input A based on 
Input B and vice versa. The different sequences can drive 
the five output neurons to fire reliably at different points in 
time and at a different order depending on the input pat-
tern. (Adapted from Liu and Buonomano (2009))
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varying speeds—e.g., such as playing a musical 
piece at different tempos, or tapping Morse code 
at speeds 10 or 20 words per minute (Hardy et al., 
2018; Wang et  al., 2018; Slayton et  al., 2020). 
Thus, if neural sequences underlie motor timing, 
they should be able to undergo temporal scaling. 
Indeed, a number of studies have shown that 
depending on context the same neural sequence 
can unfold at different speeds (Mello et al., 2015; 
Wang et  al., 2018; Zhou et  al., 2020; Shimbo 
et al., 2021)—effectively implementing a mecha-
nism for temporal scaling. Relatedly, temporal 
scaling can also be achieved by changing the 
amplitude of the neural trajectory in state space 
traveled by the neural sequence. For example, in 
monkeys trained on a rhythmic timing task, the 
sequential activation of neurons during each beat 
evolves in state space with circular dynamics, 
forming a regenerating loop that resets for every 
produced interval (Crowe et al., 2014; Merchant 
et al., 2015) (Gámez et al., 2019). A change in the 
task tempo (the timing in between beats) corre-
lates with a change in the radii of the circular 
dynamics, with longer tempos corresponding to 
larger radii of the dynamics. The increase in radii 
is mediated by both, an increase in the number of 
neurons and an increase of duration of neural 
activation period within the sequence (Gámez 
et al., 2019).

Neural sequences are ubiquitous across spe-
cies and brain regions, but there are fundamental 
differences in their dynamics. For example, the 
neural sequences in songbirds are very sparse 
(and thus have very high dimensionality), exhib-
iting time field widths on the order of tens of mil-
liseconds. In contrast, the time field of neurons in 
the cortex and hippocampus may last hundreds of 
milliseconds and much higher “temporal den-
sity.” Furthermore, there is some evidence that 
the neural dynamics in higher cortical areas pres-
ent a lower degree of sequentially than areas 
located downstream. For example, during time- 
dependent tasks, the sequentiality index of neural 
activity in the striatum has been reported to be 
higher than that in the prefrontal and premotor 
cortex (Zhou et al., 2020; Handa et al., 2021), and 
the sequentiality in the hippocampus has been 

reported to be higher than in the prefrontal cortex 
(Ning et al., 2022). The higher degree of sequen-
tiality is postulated to provide with a more effi-
cient code to be read out by downstream 
biologically plausible mechanisms. As we will 
argue in the following sections, this higher 
sequentiality makes neural sequences an optimal 
dynamic regime for the decoding of time (Zhou 
et al., 2020).

 Neurocomputational Models 
of Neural Sequences

The above experimental studies establish that 
neural sequences are observed across a wide 
range of brain areas, and at least in some cases 
exhibit specific features including embedding of 
multiple sequences and scaling. In parallel with 
these experimental studies, computational mod-
els have focused on the potential contribution of 
neural sequences to timing and other neurocom-
putational problems. In the context of encoding 
time, it has been proposed that neural sequences 
provide an ideal neural representation for down-
stream brain areas to flexibly generate either sim-
ple (e.g., a ramp or a timed step function) or 
complex spatiotemporal output patterns (Zhou 
et al., 2020, 2022).

As mentioned above, the activity patterns of 
RA-projecting HVC neurons provide one of the 
most compelling examples of sparse neural 
sequences underlying timing—specifically, of 
the temporal structure of birdsong (Hahnloser 
et al., 2002; Long & Fee, 2008; Long et al., 2010; 
Okubo et  al., 2015; Lynch et  al., 2016). 
Computational models have proposed that the 
neural sequences that underlie song production 
arise from feed-forward neural circuits in which 
neurons active at time t drive, through direct 
excitatory connections, the neurons that are 
active at time t + 1 (Jun & Jin, 2007; Long et al., 
2010; Miller & Jin, 2013; Egger et  al., 2020). 
Critically in these models, there is no recurrency, 
that is, units active at t + 1 do not synapse onto 
units active before t + 1. This feed-forward struc-
ture is consistent with the known circuitry of 

S. Soldado-Magraner and D. V. Buonomano



87

HVC (Long et al., 2010; Egger et al., 2020); how-
ever, it is worth noting that intracellular record-
ings of RA-projecting HVC neurons reveal 
well-timed subthreshold events suggestive of 
presence of recurrent inputs (Long et al., 2010). 
At the computational level, at least, this lack of 
recurrency severely limits the number of neural 
sequences a population of neurons can encode.

Using either firing-rate or spike-based models 
of recurrent neural circuits, a number of models 
have demonstrated how single or multiple neural 
sequences can be embedded in recurrent neural 
networks (Rajan et  al., 2016; Hardy & 
Buonomano, 2018). These models can be trained 
with supervised learning rules in which each unit 
in the recurrent neural network is given a target 
temporal profile from a template or an experi-
mentally derived neuronal sequence (Laje & 
Buonomano, 2013; Rajan et al., 2016). In these 
multisequence models, different inputs trigger 
distinct neural sequences, and importantly, a 
given unit can participate in multiple sequences 
and have distinct time fields depending on which 
sequence is being played. Each of these neural 
sequences can be used to encode elapsed time 
from the onset of a cue, as well as represent a 
short-term memory that a given cue was 
presented.

As mentioned above, a fundamental feature of 
timing on the scale of seconds is its flexibility, 
i.e., the ability to generate a motor pattern, 
including playing an instrument or tapping out 
Morse code at multiple speeds (Jazayeri & 
Shadlen, 2010; Cicchini et  al., 2012; Slayton 
et al., 2020). Thus, models of timing on the scale 
of seconds should account for the ability to gen-
erate the same pattern at multiple speeds. In the 
case of neural sequences, this means that a given 
neural sequence must be able to unfold at differ-
ent speeds. A number of models have shown that 
under the proper conditions and training, it is 
indeed possible to trigger neural sequences at dif-
ferent speeds (Hardy et  al., 2018; Remington 
et al., 2018; Liu et al., 2019; Zhou et al., 2022). 
This feature of temporal scaling generally has to 
be explicitly learned by a recurrent neural net-
work and relies on separate inputs that govern 
speed, for example, by increasing the net input to 

all neuron which can reconfigure the dynamics in 
a manner that the trajectory flows more rapidly 
(or slowly) through neural state space (Goudar & 
Buonomano, 2018; Hardy & Buonomano, 2018).

 Biologically Plausible Models 
of the Emergence of Neural 
Sequences

The above models have focused primarily on the 
circuit mechanisms potentially underlying the 
formation of neural sequences and have relied 
primarily on hard-wired or nonbiologically plau-
sible learning rules to generate the appropriate 
architectures. Next, we address models that focus 
on how neural sequences may emerge in a bio-
logically plausible manner.

Two of the first models addressing how neural 
sequences could emerge in a biologically plausi-
ble and unsupervised manner relied on a form of 
homeostatic plasticity termed presynaptic- 
dependent scaling (PSD). In these models 
(Buonomano, 2005; Liu & Buonomano, 2009), it 
was proposed that spiking neurons in a randomly 
connected recurrent network have a specific 
homeostatic setpoint of neural activity (e.g., one 
spike per some unit of time or trial). A specific 
subset of neurons within this population receives 
a brief external input at the onset of each “trial.” 
Neurons below their activity setpoint would 
homeostatically upregulate the strength of the 
synaptic weights coming from their presynaptic 
partners; critically, this homeostatic plasticity 
favored the potentiation of inputs from units that 
already had a high level of average activity. This 
is important because if an inactive neuron equita-
bly potentiates inputs from presynaptic partners 
with both high and low levels of average activity, 
the system explodes when the silent partners 
eventually become active (Buonomano, 2005). It 
has been shown that this approach allows for the 
formation of multiple neural sequences in which 
a given unit can participate in many different 
neural sequences at different points in time 
(Fig.  2). Importantly, the network can produce 
multiple neural trajectories, and while it exhib-
ited “functionally feed-forward activity,” the net-
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work architecture remained highly recurrent. 
However, as implemented in these models, the 
overall duration of the sequences was fairly 
short-lived (<300 ms).

Another early model of how neural sequences 
could emerge in a self-organizing manner pro-
posed that spike-timing-dependent-plasticity 
(STDP) coupled with heterosynaptic competition 
could drive the formation of neural sequences 
(Fiete et  al., 2010). The key component of this 
model was the presence of heterosynaptic com-
petition in the form of presynaptic normalization, 
i.e., a ceiling on the total synaptic weights a given 
presynaptic unit could exert on its postsynaptic 
partners. This presynaptic normalization prevents 
units active early in the sequence from “captur-
ing” many or all of the units active later in the 
sequence—and thus collapsing the neural 
sequence. This model, however, resulted primar-
ily in purely feed-forward connectivity.

Other models of the emergence of neural 
sequences have also relied on STDP-based plas-
ticity and proposed that newly generated neurons 
through adult neurogenesis contribute to the pro-
gressive growth of the sequence. One such model 
was developed in the context of song birds 
(Tupikov & Jin, 2021), animals in which adult 
neurogenesis can occur. In this model, spontane-
ously active neurons are randomly added to a 
growing neural chain, and because the new neu-
rons exhibit higher spontaneous activity, they 
preferentially contribute to the growth of the 
chain. Runaway growth and plasticity are pre-
vented by a passive decay term of synaptic 
weights and a cap on the number of postsynaptic 
units, and any presynaptic neuron can create 
strong synapses with a form of presynaptic nor-
malization. Here again, the final neural architec-
ture is primarily feed-forward.

Additional models have relied on associative 
plasticity, but are not self-organizing in the sense 
that during the learning phase a recurrent net-
work is driven by a reproducible temporal pattern 
or a “tutor” that serves to embed a neural sequence 
into the RNN during training (Rajan et al., 2016; 
Murray & Escola, 2017; Gillett et al., 2020; Maes 
et al., 2020; Cone & Shouval, 2021). For exam-
ple, Maes et  al. (2020) demonstrated that sepa-

rate clusters of recurrently connected neurons 
can be trained using voltage-dependent STDP, 
leading to the generation of neural sequences. 
Additionally, a spike-based model demonstrated 
that using a biological plausible LTP/LTD learn-
ing rule based on eligibility traces and trained on 
a target sequence also results in neural sequences 
that after training can be triggered by the initial 
component of the trained pattern (Cone & 
Shouval, 2021).

Whether in the presence or absence of tutor 
sequences, it is clear that biologically plausible 
learning rules capable of generating neural 
sequences are unlikely to be a consequence of 
simple forms of associative plasticity or 
STDP.  This is particularly true when recurrent 
neural circuits in which a given neuron partici-
pates in multiple neural sequences (Buonomano, 
2005; Fiete et al., 2010; Cone & Shouval, 2021; 
Tupikov & Jin, 2021). Indeed, some studies have 
demonstrated that associative plasticity effec-
tively erases or collapses neural sequences (Liu 
& Buonomano, 2009; Bernacchia et  al., 2022). 
Intuitively, one can see that STDP can result in a 
sequence collapse or latency reduction (Song 
et  al., 2000; Liu & Buonomano, 2009; Lee & 
Buonomano, 2012): neurons that are sequentially 
activated strengthen the connections in the for-
ward order, thus progressively decreasing the 
duration of the neural sequence, or even collaps-
ing the neural sequence. It is thus clear that bio-
logically plausible models of neural sequences at 
a minimum require mechanisms that counteract 
the strong correlations produced by neural 
sequences, and such counteracting forces may 
include presynaptic weight normalization, 
homeostatic plasticity, or inhibitory control.

 Neural Sequences in Supervised 
Recurrent Neural Networks

Further evidence supporting the view that neural 
sequences comprise a canonical neural dynamic 
regime emerges from studies with supervised 
artificial neural networks. Neurocomputational 
and machine learning approaches often rely on 
training nonspiking recurrent neural networks 
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(RNN) using powerful (but nonbiological) gradi-
ent descent-based learning rules. Numerous stud-
ies have observed that neural sequences often 
emerge in RNNs trained to perform working 
memory or timing tasks (Orhan & Ma, 2019; 
Zhang et al., 2021; Zhou et al., 2022). The rele-
vance of these findings is that supervised RNNs 
are trained to solve a specific task, but not to 
solve it any specific way. Thus, the dynamic 
regimes the RNNs exhibit emerge from the train-
ing algorithm per se, and the solutions are in a 
sense “assumption free.”

Here, we provide an example of a supervised 
firing-rate RNN trained to solve a simple timing 

task (Zhou et al., 2022, 2023): After a brief input 
A or B, the RNN must learn to produce a timed 
response at either 1 or 2.2  s, respectively 
(Fig.  3a). Thus, the RNN must encode elapsed 
time and trigger the output at the appropriate 
times in the absence of any external signals. In 
principle, this could be achieved a number of 
ways, including, ramping activity of the RNN 
units, complex patterns of neural activity, neural 
sequences, or even oscillatory activity. We show 
that the strategy RNNs use to encode time 
strongly depend on the temporal profile imposed 
on the output unit. If the output used was required 
to immediately step up at the target time, robust 

Fig. 3 Neural sequences emerge in supervised RNNs 
trained to solve a timing task. (a) A firing-rate RNN is 
trained via backpropagation through time to solve a 
stimulus- dependent timing task. After stimulus A, the net-
work must produce an output that peaks after 1 second of 
elapsed time (short target). Under stimulus B, the network 
must produce the output at a longer interval, 2.2 s (long 
target). Two different target conditions for the output unit 
are used in the task: steps and ramps. For ramp targets, a 
continuous ramping of the output unit is imposed during 
the delay. For steps, the output unit must remain silent and 

only respond at the end of the delay. (b) Although the net-
work learns to solve the task in all scenarios, different 
dynamic regimes emerge depending on the target output 
employed. During step outputs, robust neural sequences 
emerge. (c) During ramping outputs, ramping activity of 
the recurrent units is more prevalent. (d) The different 
dynamic regimes can be quantified by computing the 
dimensionality of the recurrent pull. With a step output 
target (or half-ramp that starts rising at the delay mid-
point) higher dimensional and more sequential RNN 
dynamics is observed
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and fairly sparse neural sequences emerged in 
the RNN (Fig. 3b). In contrast, if the RNN was 
trained to produce a full ramp that started at the 
offset of the stimulus and peaked at the target 
times (1 or 2.2 s), the neural dynamics within the 
RNN was significantly different, tending toward 
more ramp-like activity (Fig.  3c). This differ-
ence can be quantified by calculating the dimen-
sionality of the RNN activity during the interval. 
We can define the dimensionality as the number 
of PCA components that are needed to account 
for 95% of the variability. If most units in the 
RNN are ramping, then the pairwise correlation 
between them will be high and the dimensional-
ity low. In contrast, a sparse neural sequence will 
have high dimensionality because the average 
pairwise correlations between the units are low. 
We can see that as the output transition from a 
full ramp to a half-ramp or a step function, the 
dimensionality of the RNN activity dramatically 
increases (Fig. 3d). Thus, there is a relationship 
between the temporal profile of the target output 
and whether the RNN dynamics is low or high 
dimensional.

This observation is intuitive as it is straight 
forward to generate a ramping output unit from 
an RNN in which all units are also full ramps. 
But such ramping RNN activity cannot be used to 
generate an output such as a step function or a 
half-ramp (a ramp that starts at the interval mid-
point). This is because—assuming a linear output 
unit—it is impossible to generate a step function 
from the linear sum of full ramps. Thus, the RNN 
must encode time through higher dimensional 
dynamics—which could in principle include a 
family of ramps with different onsets, a family of 
exponential decaying or rising activity profiles, 
oscillatory activity, or the actual neural sequences 
we observed.

These results are consistent with the notion 
that neural sequences represent a canonical 
dynamic regime because the high dimensionality 
and quasi-orthogonality of the RNN units pro-
vide a near optimal set of basis function that can 
be easily harnessed using biologically plausible 
learning rules to generate arbitrary spatiotempo-
ral output patterns (Fiete et al., 2004; Zhou et al., 
2020, 2022).

 Conclusions

Over the past decades, there has been a strong 
shift away from notion that there may be a central 
timing circuit within the brain that is responsible 
for timing across scales. Today, we know that the 
brain uses multiple different mechanisms to tell 
time across different scales. And furthermore, 
even within the specific time scale of seconds, 
timing relies on multiple mechanisms and brain 
areas. Within this diversity, neural population 
clocks, in the form of neural sequences, are 
emerging as one of the main mechanisms under-
lying not only timing but a multitude of time- 
dependent computations.

Future studies, however, must address two 
general gaps in our current knowledge. First, a 
causal role for neural sequences in timing must 
be established, for example, by demonstrating 
that brief optogenetic perturbations that prema-
turely terminate a neural sequence impair timing. 
This approach may be hampered, however, by the 
possibility that many neural sequences are occur-
ring in a distributed and interconnected manner 
throughout the brain. Second, the synaptic learn-
ing rules and principles that underlie the emer-
gence of neural sequences in different neural 
circuits must be elucidated using cellular, sys-
tems, and computational approaches.
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Temporal Information Processing 
in the Cerebellum and Basal 
Ganglia

Masaki Tanaka, Masashi Kameda, 
and Ken-ichi Okada

Abstract

Temporal information processing in the range 
of a few hundred milliseconds to seconds 
involves the cerebellum and basal ganglia. In 
this chapter, we present recent studies on non-
human primates. In the studies presented in 
the first half of the chapter, monkeys were 
trained to make eye movements when a cer-
tain amount of time had elapsed since the 
onset of the visual cue (time production task). 
The animals had to report time lapses ranging 
from several hundred milliseconds to a few 
seconds based on the color of the fixation 
point. In this task, the saccade latency varied 
with the time length to be measured 
and  showed  stochastic variability from one 
trial to the other. Trial-to-trial variability under 
the same conditions correlated well with pupil 
diameter and the  preparatory activity in the 
deep cerebellar nuclei and the  motor thala-
mus. Inactivation of these brain regions 
delayed saccades when asked to report sub-
second intervals. These results suggest that the 
internal state, which changes with each trial, 
may cause fluctuations in cerebellar neuronal 
activity, thereby producing variations in self- 
timing. When measuring different time inter-

vals, the preparatory activity in the cerebellum 
always begins approximately 500  ms before 
movements, regardless of the length of the 
time interval being measured. However, the 
preparatory activity in the striatum persists 
throughout the mandatory delay period, which 
can be up to 2 s, with different rate of increas-
ing activity. Furthermore, in the striatum, the 
visual response and low-frequency oscillatory 
activity immediately before time measure-
ment were altered by the length of the intended 
time interval. These results indicate that the 
state of the network, including the striatum, 
changes with the intended timing, which lead 
to different time courses of preparatory activ-
ity. Thus, the basal ganglia appear to be 
responsible for measuring time in the range of 
several hundred milliseconds to seconds, 
whereas the cerebellum is responsible for reg-
ulating self-timing variability in the subsec-
ond range. The second half of this chapter 
presents studies related to periodic timing. 
During eye movements synchronized with 
alternating targets at regular intervals, differ-
ent neurons in the cerebellar nuclei exhibit 
activity related to movement timing, predicted 
stimulus timing, and the temporal error of 
synchronization. Among these, the activity 
associated with target appearance is particu-
larly enhanced during synchronized move-
ments and may represent an internal model of 
the temporal structure of stimulus sequence. 
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We also considered neural mechanism under-
lying the perception of periodic timing in the 
absence of movement. During perception of 
rhythm, we predict the timing of the next stim-
ulus and focus our attention on that moment. 
In the missing oddball paradigm, the subjects 
had to detect the omission of a regularly 
repeated stimulus. When employed in humans, 
the results show that the fastest temporal limit 
for predicting each stimulus timing is about 
0.25  s (4  Hz). In monkeys performing this 
task, neurons in the cerebellar nuclei, stria-
tum, and motor thalamus exhibit periodic 
activity, with different time courses depending 
on the brain region. Since electrical stimula-
tion or inactivation of recording sites changes 
the reaction time to stimulus omission, these 
neuronal activities must be involved in peri-
odic temporal processing. Future research is 
needed to elucidate the mechanism of rhythm 
perception, which appears to be processed by 
both cortico-cerebellar and cortico-basal gan-
glia pathways.

Keywords

Time production · Synchronized movement · 
Rhythm perception · Sensory prediction · 
Internal model · Cerebellar nucleus · Striatum 
· Motor thalamus · Nonhuman primate

 Introduction

When we wait at a traffic light or ride to the beat 
of music, we unconsciously measure the elapsed 
time from the previous event and accurately pre-
dict the timing of the next event. Temporal infor-
mation processing in the range of a few hundred 
milliseconds to several seconds is essential for 
our daily activities and involves multiple net-
works in the brain, including the cortico-basal 
ganglia-thalamocortical pathways and cortico- 
cerebellar- thalamocortical pathways (Buhusi & 
Meck, 2005; Coull et al., 2011; Merchant et al., 
2013; Ivry & Schlerf, 2008). As experienced in 
everyday life, these processes are influenced by 
various internal and external factors (Wittmann, 

2013; Lake et al., 2016). In recent years, the neu-
ral mechanisms of temporal information process-
ing have been investigated in detail in laboratory 
animals that perform a variety of tasks, such as 
time production or reproduction (Jazayeri & 
Shadlen, 2015; Mita et  al., 2009; Schneider & 
Ghose, 2012; Yumoto et  al., 2011; Kunimatsu 
et al., 2018; Tanaka, 2007), temporal discrimina-
tion (Leon & Shadlen, 2003; Shimbo et al., 2021; 
Mendoza et  al., 2018; Chiba et  al., 2021), syn-
chronized movement (Merchant et  al., 2011; 
Gamez et  al., 2019; Okada et  al., 2022), and 
internalized rhythm (Cadena-Valencia et  al., 
2018; Ohmae et al., 2013; Kameda et al., 2019). 
In this chapter, we present the results of our 
behavioral experiments and neuronal recordings 
from the cerebellum, striatum, and motor thala-
mus of nonhuman primates, and discuss the roles 
of these subcortical structures. We first describe 
the neural mechanisms involved in measuring the 
time elapsed from external events, and then dis-
cuss the neural mechanisms involved in predict-
ing the timing of periodic stimuli.

 Production of Single Time Interval

 Variability of Subjective Time 
Passage

One way to explore the mechanism of temporal 
information processing is to ask subjects to report 
the passage of a certain length of time by, for 
example, pressing a stopwatch at a specific time 
interval. Even for such a simple task, the length 
of the produced time varies from trial to trial, 
likely due to fluctuations in internal factors such 
as attention and arousal level. Suzuki et al. (2016) 
examined the relationship between the speed of 
subjective time passage and pupil diameter, an 
objective marker of internal state, in monkeys 
performing a time production task. In their task, a 
visual cue was presented briefly (0.1 s) while the 
animals looked at the fixation point on the screen 
(Fig.  1a). The animals were rewarded if they 
moved their eyes toward the location of the previ-
ous cue after a mandatory delay interval of 1 s. 
Since the fixation point disappeared only after 
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Fig. 1 Correlation between pupil size and the rate of sub-
jective time lapse. (a) Self-timed saccade task. Monkeys 
made a memory-guided saccade to the location of a previ-
ously presented visual cue after a 1-second mandatory 
delay period. Since the fixation point disappeared only 
after the saccade, animals needed to measure the time 
elapsed from the visual cue. (b) Time courses of pupil size 
aligned with the cue onset. Trials are divided into three 
groups according to saccade latency, and the mean (± SE) 
pupil size for the earliest and latest saccade groups are 
shown. Two vertical dashed lines during eye fixation rep-
resent the time window for quantitative analysis. Note that 
the pupil size before the cue onset is larger for trials with 
shorter saccade latencies. (c) Relationship between pupil 

size and latency (relative to the mean) of self-timed (black 
circles) and visually guided (white circles) saccades. 
Error bars indicate ±95% CI. (d) Comparison between 
different mandatory delay intervals. Color of equilumi-
nant fixation point indicated two different delay intervals. 
Data points represent the normalized mean (±95% CI) 
pupil size and saccade latency for each of the three sac-
cade latency groups. Note that the pupil size is inversely 
correlated with the group-by-group variation in saccade 
latency under the same conditions, but not with actual sac-
cade latency across conditions. Data summarize multiple 
experiments in two monkeys. (Adapted from Suzuki et al. 
(2016) under the terms of the Creative Commons 
Attribution 4.0 International License (CC-BY))

the saccade, the animals had to monitor the 
elapsed time in each trial. Data from several hun-
dred trials were divided into three groups accord-
ing to the length of the monkey’s subjective 1-s 
(i.e., saccade latency), and the time course of 
pupil size during fixation was compared between 
the groups with the longest and shortest saccade 
latencies (Fig. 1b). In both groups of trials, pupils 
contracted immediately after the start of fixation 
and then gradually dilated, but interestingly, 
pupil diameters before the cue onset were clearly 
different depending on the subsequent self-timed 

saccade latency. Data from multiple experiments 
showed that pupil diameter before cue presenta-
tion was inversely correlated with the length of 
time the animals subsequently reported, with 
larger pupil diameters indicating shorter times 
(faster passage of time) and smaller pupil diam-
eters indicating longer times (Fig.  1c). In con-
trast, pupil diameter did not correlate with the 
latency of visually guided saccades, where mon-
keys generated an immediate saccade toward the 
visual stimulus. Thus, internal factors influence 
temporal processing, and objective measures 
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such as pupil diameter could be used to infer how 
subjects perceive the passage of time.

Then, when measuring longer duration, does 
the pupil size become much smaller? Suzuki 
et al. (2016) further trained animals to report two 
different time intervals (0.7 and 1.1 s, for exam-
ple) according to the color of equiluminant fixa-
tion point. When the relationship between 
production time and pupil diameter was exam-
ined, pupil diameter was different under different 
instructions, even if the self-timed saccade laten-
cies were similar (Fig.  1d). Furthermore, while 
saccade latency and pupil size were inversely 
correlated within each condition, pupil size 
tended to be larger when the intended time length 
was long. These results indicate that internal fac-
tors fluctuate temporal processing during indi-
vidual trials under the same condition but may 
have no relationship with the length of the 
intended time interval, or that the relationship to 
the intended timing is the opposite of the trial-by- 
trial variation. These results suggest that, when 
reporting elapsed time, there are two signals, one 
related to the length of time to be measured and 
the other related to trial-by-trial variability, and 
pupil diameter correlates well with the latter.

 Preparatory Activity for Self-Timing

How is the trial-by-trial variation in self-timing 
controlled in the brain? It is widely accepted that 
the timing of self-initiated movement is deter-
mined by the time course of the preparatory 
activity, which gradually increases over time 
(Jazayeri & Shadlen, 2015; Maimon & Assad, 
2006; Janssen & Shadlen, 2005; Merchant & 
Averbeck, 2017; Lee & Assad, 2003; Ashmore & 
Sommer, 2013; Xu et  al., 2014; Parker et  al., 
2014; Dacre et al., 2021). During motor prepara-
tion, there are a variety of neural activities with 
different time courses, but integration of these 
signals leads to the generation of a gradual ramp- 
like activity (Murakami et al., 2014). This indi-
cates that neurons exhibiting activity at different 
times cooperate to integrate information into the 
network and generate ramp-like activity that ulti-
mately controls the timing of movement. 

Therefore, trial-by-trial variations in self-timing 
are likely to be reflected in the time courses of the 
ramping activity.

Previous studies have shown that neurons in the 
supplementary eye field (SEF), the motor thala-
mus, the cerebellar dentate nucleus, and the cau-
date nucleus of the basal ganglia exhibit a 
significant preparatory activity during the self-
timed saccade task (Kunimatsu et al., 2018; Tanaka, 
2007; Ohmae et al., 2017; Kunimatsu & Tanaka, 
2012). Figure 2a illustrates a neuron recorded from 
the ventrolateral (VL) thalamus, which showed a 
gradual increase in activity before self- initiated 
saccades (Tanaka, 2007). The time course of neu-
ronal activity differed from trial to trial, peaking at 
the time of saccade initiation and then declining 
rapidly. When the data for each neuron were 
divided into five groups according to saccade 
latency, and the population activity was computed 
for each group, the variation in saccade timing cor-
related well with the slope of ramping activity 
(Fig. 2b). In addition, the firing rate immediately 
before saccade initiation was comparable between 
the groups, which was in good agreement with the 
rise-to-threshold model of decision making. 
Indeed, these neuronal activities appear to be 
closely linked to self-timing, as pharmacological 
inactivation of the recording sites in the VL thala-
mus delays saccades (Tanaka, 2006).

Similar preparatory activity has also been 
recorded in the cerebellar dentate nucleus, which 
projects to the VL thalamus. Ohmae et al. (2017) 
trained monkeys to generate self-initiated sac-
cades and varied the mandatory delay interval 
from 0.4 to 2.4  s in different trial blocks. For 
short delay intervals (≤1.2  s), a significant cor-
relation was found between the saccade latency 
and the rate of increase in preparatory activity 
(Fig.  2c). However, for the long delay interval 
(2.4 s), saccade latency did not correlate with the 
slope of the ramping activity (Fig. 2d). Instead, a 
correlation was found between saccade latency 
and the onset time of preparatory activity. These 
results suggest that during measurements of time 
interval shorter than ~1.2  s, trial-to-trial varia-
tions in response timing may reflect changes in 
the magnitude of cerebellar neuronal activity. On 
the other hand, during measurements of longer 
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Fig. 2 Time courses of preparatory neuronal activity for 
self-timed saccades in the ventrolateral (VL) thalamus 
and the cerebellar dentate nucleus. (a) Activity of an 
example VL thalamic neuron during the self-timed sac-
cade task. Data are aligned with the cue onset in the pre-
ferred direction, sorted according to saccade latency. 
Black symbol on each raster line indicates the time of sac-
cade. Solid continuous line above the rasters indicates 
spike density. The animal received a reward for saccades 
generated within the reward window indicated by vertical 
lines. (b) Time courses of population activity of VL tha-
lamic neurons. For each neuron, data were divided into 
five groups according to saccade latencies. Data were 
aligned either with the cue (left) or saccades (right), then 
were averaged across the population. In the right panel, 
traces are shifted in time so that the times of saccades 

(vertical lines) are placed at the means of the saccade 
latency relative to the cue offset. (c) Time courses of pop-
ulation activity of ramp-up neurons in the dentate nucleus 
of the cerebellum for different saccade latencies. For each 
neuron and mandatory delay interval, the data were 
divided into six groups according to saccade latencies. 
Crosses indicate the means and SDs of saccade latency for 
different groups. (d) Summary of correlation coefficients 
(Pearson’s r) between the slope of ramping activity and 
saccade latency in the cerebellar dentate neurons. Box- 
whisker plots show the median, quartiles, and range of the 
results of the bootstrap analysis. (Adapted from Tanaka 
(2007) and Ohmae et  al. (2017) under the terms of the 
Creative Commons Attribution 4.0 International License 
(CC-BY))

intervals, signals from the other areas that trigger 
preparatory activity in the cerebellum may be 
responsible for variations in self-timing.

One such candidate is the basal ganglia that 
are also involved in the generation of self-timed 

movements. In Parkinson’s disease, the onset of 
self-initiated movements is delayed and the time 
measurements in seconds are inaccurate (Coull 
et  al., 2011; Smith et  al., 2007; Honma et  al., 
2016; Tokushige et  al., 2018; Allman & Meck, 
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2012). Previous studies have suggested that the 
basal ganglia are mainly involved in measuring 
suprasecond time intervals, while the cerebellum 
is involved in subsecond timing (Buhusi & Meck, 
2005; Lewis & Miall, 2003). The activities of 
single neurons in the cerebellar dentate nucleus 
and the striatum (caudate nucleus) were com-
pared in monkeys trained to report 0.4, 1.0, and 
2.2 s elapses according to the color of the fixation 
point (Fig.  3a), which varied from trial to trial 
(Kunimatsu et al., 2018). Neurons in both struc-
tures showed strong preparatory activity at all 
intervals, but their time courses were clearly dif-
ferent. The preparatory activity in the cerebellum 
started approximately 500  ms before the self- 

timed movements, while that in the striatum 
started at the onset of the delay period (i.e., 
immediately after the visual cue), and the rate of 
increase in neuronal activity depended on the 
length of time to be measured (Fig.  3b, c). 
Furthermore, when the time course of neuronal 
activity in each condition was compared across 
the three groups of trials sorted by saccade 
latency, the trial-by-trial variation started earlier 
in the cerebellum than in the striatum (Fig. 3d). 
Thus, for the measurements of the suprasecond 
interval, preparatory activity first started in the 
striatum, while the trial variation emerged earlier 
in the cerebellum. These results suggest that the 
striatum monitors the passage of time throughout 
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Sequence of events in the self-timed saccade task. During 
central fixation, a cue flashed briefly (100  ms) in the 
peripheral visual field. Monkeys were required to remem-
ber the cue location and maintain fixation until expiration 
of the predetermined mandatory delay interval that was 
indicated by color of the fixation point (bottom inset). 
Animals received a reward if they correctly made a self- 
timed memory-guided saccade to the cue location after 
the mandatory delay period. (b, c) Time courses of popu-
lation activity for neurons in the cerebellum (b) and stria-
tum (c). For each delay condition, trials were divided into 
three groups according to saccade latency. Then, the data 
were normalized for each neuron, aligned with saccade 
initiation, and were shifted in time so that the times of 
saccades (vertical lines) were placed at the mean saccade 

latencies relative to the cue onset (right panels). On the 
left panels, data of the population activity were aligned 
with the cue onset (left vertical line). Downward arrows 
indicate the time when the traces of normalized neuronal 
activities started to diverge as detected by repeated mea-
sures ANOVAs (p < 0.01 for consecutive 40 ms, uncor-
rected for multiple comparisons). (d) Times of onset of 
trial-by-trial variation relative to the cue (upper panel) or 
saccade initiation (bottom). Each datapoint indicates the 
mean of the data derived from the analysis shown in b and 
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the trial-by-trial variation started earlier in the cerebellum 
than the striatum for medium and long delay intervals. 
(Adapted from Kunimatsu et al. (2018) under the terms of 
the Creative Commons Attribution 4.0 International 
License (CC-BY))
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the delay period and reports the time relative to 
the entire interval. In contrast, the cerebellum 
may regulate movement timing within the range 
of several hundred milliseconds in each trial. 
Consistent with this, local inactivation of the cer-
ebellar nucleus delayed only subsecond timing, 
whereas inactivation of the striatum altered both 
subsecond and suprasecond timing (Kunimatsu 
et al., 2018).

The recording studies described so far have 
examined only ramping activity, but other recent 
studies have examined the time course of neural 
trajectories in populations of neurons during tim-
ing behavior, under the assumption that individ-
ual neurons with different time courses are 
equally involved in timing. These studies showed 
that neurons in the medial frontal cortex and stri-
atum flexibly change the shape and speed of neu-
ral trajectories depending on measured intervals 
(Wang et al., 2018; Gámez et al., 2019; Betancourt 
et  al., 2023; Meirhaeghe et  al., 2021). Striatal 
neurons with different slopes of ramping activity 
can be considered as part of the population pro-
ducing these trajectory changes, and the sequen-
tial activity of many neurons may underlie the 
generation of ramping activity (Zhou & 
Buonomano, 2022). On the other hand, it is not 
yet known how the neural trajectories of cerebel-
lar neuronal populations change in measurements 
ranging from several hundred milliseconds to a 
few seconds. Although a cerebellar model that 
generates ramping activity through learning has 
been proposed (Narain et al., 2018), its temporal 
limit has not been investigated. Future analysis is 
needed to determine how neural trajectory of 
population of cerebellar neurons can relate to 
subsecond fluctuations in self-timing.

 Neural Correlates of Intended Timing

As mentioned above, in the striatum, the rate of 
increase in preparatory activity for different 
intervals varied from the beginning of the delay 
period (Fig. 3c). This indicates that neural excit-
ability in the network including the striatum may 
flexibly change upon the instruction of the time 
length to be measured. Indeed, the response of 

striatal local field potentials (LFPs) to the periph-
eral visual cues (visual evoked potentials) scaled 
depending on the length of the mandatory delay 
interval (which was indicated at the trial start by 
the color of the fixation point), with large 
responses for short duration and small responses 
for long duration (Fig. 4a, b) (Suzuki & Tanaka, 
2019). In addition, the LFP power of the low- 
frequency components (6–20 Hz) just before the 
cue presentation was proportional to the time 
interval to be measured, thereby indicating that 
the network state was altered during preparation 
of time measurement (Fig. 4c, d). However, when 
the data were analyzed separately by latency 
variation under the same conditions, no change in 
visual response or low-frequency power was 
found (Fig. 4e). Thus, the intention to measure a 
specific time interval alters the network state and 
excitability of striatal neurons, but the stochastic 
variation of the internal state under the same con-
ditions may not.

The results are summarized in Table 1. When 
measuring time intervals, there are two sources of 
variation, one related to the intended length of 
time and the other to stochastic variation. The 
preparatory activity for self-timed movements 
began early in the striatum, regardless of the 
length of the intended time length, and began 
shortly (~500  ms) before the movement in the 
cerebellum. In contrast, the effects of trial-to-trial 
variability were first observed in the cerebellum 
and later found in the striatum. The visual 
response and the low-frequency power in the 
striatum scaled according to the length of the 
instructed time interval but not greatly by the sto-
chastic variation of the produced interval. Pupil 
size, on the other hand, was strongly correlated 
with trial-to-trial variability in self-timing but not 
with the intended time interval to be measured.

These findings suggest that the cerebellum 
coordinates motor timing within a range of sec-
ond or less, and that cerebellar activity has a sig-
nificant influence on the intertrial variability of 
self-timing. The pupil diameter is known to cor-
relate well with the activity of the central norad-
renergic system (Murphy et al., 2014; Joshi et al., 
2016; Aston-Jones & Cohen, 2005), and the nor-
adrenergic neurons in the dorsal pons send pro-
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Table 1 Influence of variation of measured interval on neural and pupil response

Striatum Cerebellum

Pupil sizeSource of variation Preparatory activity Visual response α-β power Preparatory activity
Intended Early Scaled Scaled Late −
Stochastic Late − − Early Scaled

Minus sign indicates weak or no responsiveness to temporal variation
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jections to many brain regions, including the 
cerebellum, with exceptionally few projections to 
the striatum (Baldo et  al., 2003; Jones & Yang, 
1985). This suggests that stochastic changes in 
internal states may be accompanied by changes 
in the activity of neuromodulators, such as nor-
adrenaline. This contributes to behavioral varia-
tions via changes in neuronal activity in the 
cerebellum. In contrast, intentional changes in 
the measured time length were accompanied by 
changes in the neural excitability of the striatum. 
It is well known that the low-frequency compo-
nent of striatal LFP is related to dopamine, and 
low beta power (8–30 Hz) within the basal gan-
glia circuitry is significantly increased in 
Parkinson’s disease (Hammond et  al., 2007). 
Since dopamine in the striatum is also known to 
be involved in interval timing (De Corte et  al., 
2019; Hamilos et al., 2021; Soares et al., 2016; 
Kunimatsu & Tanaka, 2016), dopamine may con-
tribute to changing the network state in the 
cortico- basal ganglia pathways on each trial, 
depending on the length of time being measured. 
In fact, patients with Parkinson’s disease have a 
difficulty in varying the measurement time from 
trial to trial according to instructions, thereby 
showing a stronger central tendency than normal 
subjects (so-called “migration effect”) (Malapani 
et al., 1998). However, the role of dopamine dur-
ing normal conditions still needs to be explored, 
as a recent study has shown that the suppression 
of beta power associated with movement is not 
temporally coupled with dopamine release 
(Schwerdt et al., 2020). In addition, acetylcholine 
signaling in the striatum has also been shown to 
be involved in self-timing (Kunimatsu & Tanaka, 
2016), and the relationship between low- 
frequency oscillations and acetylcholine awaits 
further clarification.

 Rhythmic Timing

 Role of the Cerebellum 
in Synchronized Movement

In addition to self-timed single movements, a 
series of repetitive movements synchronized to 
an external rhythm, such as tapping, have been 

used to investigate the neural mechanisms of 
temporal processing (Merchant et al., 2013; Kotz 
et al., 2018; Chauvigne et al., 2014; Gámez et al., 
2019; Betancourt et  al., 2023). Synchronized 
movement requires the learning of stimulus 
tempo, generation of an internal model for peri-
odicity, precise control of movement timing, 
detection of temporal error, and update of the 
internal model (Repp, 2005). Although predictive 
synchronized movements such as musical dance 
are frequently observed in everyday life, sponta-
neous synchronization is thought to be unique to 
species with vocal learning abilities (Patel et al., 
2009; Merchant & Honing, 2013). However, 
some vocal nonlearners, including monkeys, can 
be trained to generate predictive synchronized 
movements for immediate rewards (Takeya et al., 
2017; Gamez et al., 2018).

As evidenced by the inability to ride exces-
sively slow rhythms, predictive synchronization 
has a time limit. This appears to be 2–3 s for tap-
ping (Tokushige et al., 2018; Mates et al., 1994) 
and approximately 1.5  s for eye movements 
(Shelhamer & Joiner, 2003; Takeya et al., 2018). 
In monkeys, this is close to the aforementioned 
time limit at which the rate of increase in neuro-
nal activity in the cerebellum can regulate the 
timing of self-initiated movements (Fig. 2d). The 
cerebellum is also involved in eye-blink condi-
tioning with a temporal limit of ~2 s (Medina & 
Mauk, 2000; Mauk & Buonomano, 2004), and 
the cerebellar cortex is known to be important in 
controlling its timing (Perrett et al., 1993). These 
findings suggest that the cerebellum plays a role 
in the temporal control of synchronized move-
ments. Indeed, neural activity in the cerebellum, 
along with motor-related cortical areas and the 
basal ganglia, increases during motor synchrony 
(Chauvigne et  al., 2014; Aso et  al., 2010; Lee 
et al., 2016; Witt et al., 2008), and damage to the 
cerebellum increases the temporal variability of 
discrete periodic movements (Spencer et  al., 
2003).

Okada et  al. (2022) trained monkeys to per-
form synchronized saccades to alternating left 
and right targets at regular intervals (Fig. 5a) and 
examined neuronal activity in the dentate nucleus 
of the cerebellum. Many neurons showed 
increased activity before eye movements, half of 
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which had strong directional modulation, exhib-
iting a ramp-like preparatory activity mostly for 
ipsilateral synchronized saccades. However, 
these neurons also showed strong presaccade 
activity even when the animals made a series of 
reactive saccades to randomly timed targets. This 
suggests that they are involved in motor control, 
independent of the stimulus rhythm. In contrast, 
the remaining half of the presaccade neurons 
were active for eye movements in both direc-
tions, with enhanced activity during synchro-
nized saccades compared with reactive saccades. 
These results indicate that neurons that are active 
in bilateral eye movements are important for 
motor synchrony.

Figure 5b, c illustrates examples of these neu-
rons. The Unilateral neuron exhibited strong activ-
ity before saccades to the left, and the initial peak 
of activity and saccades occurred after the target 
onset. However, the timing of peak activity gradu-
ally advanced as saccade latency became shorter 
during the sequence. When neuronal activity was 
aligned with target onset or saccades in the order 
on each trial, the timing of peak activity varied 
with respect to the target onset, but consistently 
preceded saccades (Fig. 5b, right panel). This find-
ing indicates that this unilateral neuron is related 
to motor control. In contrast, the representative 
bilateral neuron exhibited increased activity for 
saccades in both directions, and the timing of peak 
activity changed only slightly, although the sac-
cade latency gradually shortened (Fig. 5c). When 
averaging neuronal activity in the order of target or 
saccade, the activity was more consistent with tar-
get onset, indicating that the neuron was activated 
in anticipation of stimulus timing rather than 
movement. Another class of neurons in the cere-
bellar nucleus showed increased activity immedi-
ately after saccades. About half of these neurons 
showed a significant correlation with saccade 
latency (or the time difference between target 
appearance and saccade), indicating that they 
detected temporal errors in synchronized saccades 
(Okada et al., 2022).

These results suggest that neurons in the cer-
ebellar nuclei carry the signals necessary to pre-
dict the timing of alternating targets, adjust the 
timing of movements, and detect temporal errors 

to update the internal model of periodic events. 
Since these neurons were found in the output 
node of the cerebellum, the information was 
transmitted to the brainstem and thalamocortical 
pathways. Signals related to eye movements 
might be sent to the midbrain superior colliculus 
to regulate saccade timing (May et  al., 1990; 
Prevosto et al., 2017), and those related to tempo-
ral errors might be sent to the inferior olive in the 
medulla to induce learning (De Zeeuw et  al., 
1998). Alternatively, these signals, along with 
those related to the stimulus timing, might be 
sent to different areas in the cerebral cortex via 
the thalamus. Future studies are needed to clarify 
how information is integrated within multiple 
cerebrocerebellar loops, including the dentate 
nucleus, during synchronized saccades. In addi-
tion, since the basal ganglia are also known to be 
involved in synchronized movements (Chauvigne 
et al., 2014; Witt et al., 2008; Hove et al., 2013; 
Rao et al., 1997; Bartolo et al., 2014), it is impor-
tant to examine how the signals in the cortico- 
basal ganglia and the cortico-cerebellar loops 
cooperate and interact for synchronized move-
ments. Signals processed in these subcortical 
loops must be integrated in the parietal and fron-
tal cortices, which is key to a comprehensive 
understanding of the neural mechanisms of motor 
synchronization.

 Temporal Limit of Sensory Prediction 
for Rhythmic Events

The premise of synchronized movements is to 
detect the periodicity of sensory events and pre-
dict their timing. As mentioned earlier, synchro-
nized movement is difficult when the tempo is 
too slow, but it is easy to imagine that synchroni-
zation can also be impossible when the tempo is 
too fast. In the case of synchronized movements, 
this is largely due to the constraints of the motor 
system, but there is a paucity of information on 
the temporal limit of purely sensory rhythms. 
This has been examined using the missing (omis-
sion) oddball detection paradigm in healthy indi-
viduals (Ohmae & Tanaka, 2016). In this task, 
participants were asked to press a button as fast 
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as possible when they detected the omission of 
isochronous repetitive auditory stimulus 
(Fig.  6a). To detect stimulus omission, it is 
 necessary to predict the timing of the next stimu-
lus. Figure 6b shows that the relationship between 
reaction time and the interstimulus interval (or 
stimulus tempo) differed after ~250  ms (4  Hz, 

vertical dashed line), suggesting that different 
mechanisms may underlie the detection of stimu-
lus omissions for different tempos.

When listening to isochronous sound 
sequences with a short interstimulus interval, it is 
impossible to predict the timing of each stimulus 
in advance; rather, there is an impression of a 
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stant for longer intervals. (c) Each repetitive stimulus was 
randomly presented to either ear with a constant ISI 

(40–400 ms). Participants were asked to detect stimulus 
omission as accurately as possible. As a control, each 
sound was presented to both ears. The graph represents 
the proportions of correct trials in the random monaural 
(black circle) and binaural (white) conditions. (d) 
Repetitive stimuli with different ISIs were presented 
simultaneously to different ears. Stimulus omission 
occurred randomly in either ear. Black and white circles 
indicate the data for the dual- and single-ISI conditions, 
respectively. (Adapted from Ohmae and Tanaka (2016) 
under the terms of the Creative Commons Attribution 4.0 
International License (CC-BY))
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momentary interruption of a constant sound 
stream (Supplementary Audio files in (Ohmae & 
Tanaka, 2016)). This may be because auditory 
responses to regularly repeated sounds at a fast 
tempo are temporally grouped, and missing stim-
uli are detected as deviations from the steady 
state of neural activity. In fact, the data for 
responses to a pause in continuous sound are in 
line with the relationship between reaction time 
and stimulus tempo if the interstimulus interval 
of the continuous sound is assumed to be zero 
(Fig.  6b, white circle). When each sound in a 
sequence was presented randomly to each ear to 
prevent temporal grouping, the detection of stim-
ulus omission became difficult only for stimulus 
intervals shorter than 250 ms (Fig. 6c). The same 
was true when sounds of different frequencies 
were presented at regular intervals (Ohmae & 
Tanaka, 2016).

On the other hand, the detection of stimulus 
omission for slower rhythms must rely on the 
temporal prediction of the next stimulus and may 
require higher-order cognitive processes that can 
be interfered with under dual-task conditions. To 
test this hypothesis, two sequences of sounds at 
different tempos were presented simultaneously 
to different ears so that attentional resources for 
temporal prediction were separately allocated to 
both ears. Even in this condition, the participants 
reliably detected the sound omission that 
occurred in either ear. However, compared to the 
response to a single sequence, the reaction time 
in the dual-task condition was prolonged, mainly 
for slower tempos (Fig. 6d). Taken together, these 
results suggest that a time window of approxi-
mately 4 Hz or slower is necessary to integrate 
auditory inputs from different sources to predict 
the next stimulus timing. Since a similar relation-
ship between reaction time and interstimulus 
interval was also observed in sequences of visual 
and tactile stimuli (Ohmae & Tanaka, 2016), a 
4-Hz limit of temporal prediction might be com-
mon to different sensory modalities. The 3–4 Hz 
limit for the integration of temporal information 
from different sources has also been demon-
strated in simultaneity detection between differ-
ent sensory modalities (Fujisaki & Nishida, 
2010).

 Subcortical Signals Underlying 
Rhythm Perception

Using a similar oddball detection paradigm with 
a visual metronome, neuronal activity during 
rhythm perception in the cerebellar nuclei, stria-
tum, and motor thalamus has been examined in 
monkeys. In this task, a saccade target was ini-
tially presented either on the left or right side of 
the central fixation point (Fig. 7a). While main-
taining eye fixation, visual stimuli surrounding 
the fixation point were repeatedly presented at an 
interstimulus interval that was constant in each 
trial but varied from trial to trial in the range of 
100 to 600 ms. The animals were trained to make 
a saccade in response to an unexpected (random) 
omission of the repetitive stimulus to obtain a liq-
uid reward (missing oddball condition). To detect 
stimulus omission, they were required to predict 
the timing of the next stimulus. In a variant of this 
task with a different color of the fixation point, 
the animals were required to detect the occur-
rence of color change in the repetitive stimulus 
(color oddball condition).

During this task, neurons in the posterior part 
of the cerebellar dentate nucleus, the head of the 
caudate nucleus, and the motor thalamus have 
been shown to exhibit periodic activity in the 
absence of movement (Fig.  7b) (Ohmae et  al., 
2013; Kameda et al., 2019, 2023; Matsuyama & 
Tanaka, 2021; Uematsu & Tanaka, 2022). Most 
of these neurons do not respond to the first few 
stimuli in sequence, but as repetition progresses, 
the firing modulation gradually increases, indi-
cating neural entrainment to the stimulus rhythm. 
After several repetitions, the response to each 
stimulus reached a plateau, and at this moment 
the magnitude of the firing modulation was pro-
portional to the interstimulus interval (Fig.  7c). 
Some neurons in the striatum also show prefer-
ences for a specific stimulus tempo (Kameda 
et al., 2019), indicating a tuned representation of 
interval timing (Heron et  al., 2012; Protopapa 
et al., 2019). Importantly, periodic activity greatly 
decreases under the color oddball condition 
where temporal prediction is not needed but sac-
cades are required, indicating that these activities 
are under top-down control and are involved in 
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(red), striatum (caudate nucleus, blue), and motor thala-
mus (green), which showed periodic activity during 
eye fixation. In each panel, data are aligned with either the 
first stimulus (left) or stimulus omission (right). Note that 
most neurons gradually increase their periodic firing mod-
ulation with stimulus repetition. Also note that the timing 
of peak activity differs among brain regions. (c) The time 
courses of population activity in the cerebellum and stria-
tum for three different ISIs aligned with the stimulus just 
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temporal processing. Indeed, neuronal activity at 
the time of stimulus omission correlates with 
reaction time in all three brain regions (Ohmae 
et al., 2013; Kameda et al., 2019; Matsuyama & 
Tanaka, 2021). Furthermore, electrical stimula-
tion delivered to the cerebellar nuclei or the stria-
tum shortened the reaction time to stimulus 
omission and inactivation prolonged it (Ohmae 
et al., 2013; Kameda et al., 2019; Uematsu et al., 
2017). These effects disappeared under the color 
oddball condition or when the interstimulus 
interval was less than 200  ms, suggesting that 
these signals are important for predicting the tim-
ing of the next stimulus in advance.

Although the overall characteristics of neuro-
nal activity are common in the cerebellum, stria-
tum, and thalamus, the time course of periodic 
activity differs at each recording site. In the cer-
ebellar dentate nucleus, most neurons show peak 
activity at the time of stimulus presentation, 
regardless of the stimulus interval, and cease fir-
ing during eye movements. Neuronal activity 
sharply decreases after the presentation of each 
stimulus, but its amplitude and the time course of 
recovery differs between stimulus intervals, 
resulting in anticipatory activity that peaks at the 
time of the next stimulus (Fig. 7b, c). In the stria-
tum (caudate nucleus), on the other hand, neuro-
nal activity increases after stimulus presentation 
and its peak remains constant at approximately 
150–200 ms regardless of the stimulus interval, 
and the firing rate at the time of the next stimulus 
differed across intervals and the next stimulus 
timing cannot be accurately predicted from the 
time course of the population activity (Kameda 
et  al., 2019). Furthermore, it has recently been 
shown that periodic neuronal activity in the cer-
ebellum is modulated by the location of repetitive 
stimuli but not by the direction of prepared move-
ments (Fig. 7d). Conversely, neuronal activity in 
the striatum is modulated by the direction of sub-
sequent saccades but not by the location of the 

repetitive stimulus. These results suggest that the 
cerebellum is involved in the temporal prediction 
of sensory events while the striatum is involved 
in motor preparation during the task (Kameda 
et al., 2023). In the ventrolateral and the adjacent 
nuclei of the thalamus, which receive inputs from 
the cerebellum, many neurons exhibit anticipa-
tory activity like those of the cerebellar nucleus. 
Some thalamic neurons reverse the direction of 
their response to each stimulus during repetition, 
showing the first reactive and later anticipatory 
activity (Fig. 7b). Since it has been suggested that 
the motor thalamus integrates information from 
subcortical and cortical sources (Galvan et  al., 
2016; Suzuki et al., 2021), the thalamic neurons 
showing such phase transitions may reflect sig-
nals from multiple input sources (Matsuyama & 
Tanaka, 2021; Sieveritz & Raghavan, 2021).

Thus, although subcortical networks are 
involved in rhythm processing, neural signals 
vary widely among brain regions, and further 
research is needed to clarify their specific roles. 
In particular, the time course of neural activity in 
the cerebellar nuclei during oddball tasks is simi-
lar to the activity that predicts target onset during 
saccade synchronization and may represent an 
internal model of periodic sensory events. 
Previous studies have shown that the cerebellum 
generates and updates internal models that pre-
dict sensory events even in the absence of move-
ment (Cerminara et  al., 2009; O’Reilly et  al., 
2008; Roth et  al., 2013). Additionally, the time 
course of neuronal activity in the cerebellar 
nuclei during the oddball tasks closely resembles 
the time course of beta coherence in the cerebel-
lum and the cerebral cortex during passive listen-
ing to isochronous sounds shown in humans 
(Fujioka et al., 2012), suggesting that the cortico- 
cerebellar loops may be essential for the 
 generation of predictive signals. In relation to 
this, recent evidence suggests that the cerebellum 
is involved in temporal attention (Coull & Nobre, 

Fig. 7 (continued) before omission. Dashed lines indicate 
the data during 100 ms following the stimulus omission. (d) 
Comparison of sensory and motor components of neuronal 
activity in the cerebellum and striatum. The repetitive visual 
stimulus and saccade target were independently placed 
either left or right of the fixation point, and the modulation 

of periodic activity in individual neurons due to stimulus 
location was evaluated using the generalized linear model. 
Each dot represents beta coefficient of each neuron calcu-
lated for the location of the repetitive stimulus (sensory 
direction) or saccade target (motor direction). (Panels  
(c) and (d) are adapted from Kameda et al. (2019, 2023))
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1998; Nobre & van Ede, 2018; Breska & Ivry, 
2021), which appears to be controlled by low- 
frequency neural oscillations in the sensory cor-
tex during rhythm perception (Lakatos et  al., 
2008). Since attention is likely allocated to pre-
dicted stimuli, the cortico-subcortical network, 
including the cerebellum, may play a role in tem-
poral attention during rhythm processing.

 Relation to Other Studies

A well-known hypothesis in the study of tempo-
ral processing is that the basal ganglia are 
involved in beat-based or relative timing, whereas 
the cerebellum is involved in measuring single 
absolute time intervals (Teki et al., 2011a; Grube 
et al., 2010). In fact, it has been clearly demon-
strated that poor performance on timing tasks in 
Parkinson’s disease and cerebellar degeneration 
is double dissociated when processing periodic 
and single time intervals (Breska & Ivry, 2018). 
However, many previous studies in experimental 
animals have employed behavioral tasks that 
require the measurement of single time intervals 
to reveal the involvement of the basal ganglia 
(Lee & Assad, 2003; De Corte et al., 2019; Wang 
et al., 2018; Mello et al., 2015). Functional imag-
ing studies have shown increased neural activity 
in the cerebellum and basal ganglia during both 
single and periodic time processing (Wiener 
et al., 2010), suggesting that these two subcorti-
cal systems interact strongly (Petter et al., 2016; 
Teki et  al., 2011b). As described above, time- 
specific neuronal activity has been found in the 
cerebellum and striatum of monkeys during the 
self-timing task and the missing oddball detec-
tion task, which require single and periodic time 
processing, respectively. In both cases, manipula-
tion of neuronal activity at the recording sites by 
electrical stimulation or pharmacological inacti-
vation alters the task performance.

However, it is important to review these data 
in terms of relative and absolute timing to further 
understand the role of these subcortical regions. 
For example, the time course of preparatory 
activity in the striatum during self-timed tasks 
has been shown to be temporally scaled in the 
range of a few hundred milliseconds to seconds 

(Kunimatsu et al., 2018; Wang et al., 2018; Mello 
et  al., 2015). This can be viewed as the neural 
activity encoding the passage of time relative to 
the length of time being measured. Similar tem-
poral scaling has recently been shown for mid-
brain dopamine neurons (Hamilos et  al., 2021) 
and hippocampus (Shimbo et al., 2021). In con-
trast, neurons in the cerebellum are also tempo-
rally scaled when the time length is less than a 
second (Okada et al., 2022; Ohmae et al., 2017), 
but at longer time intervals, they do not have 
information relative to the intended time length 
to be measured. Furthermore, in the missing odd-
ball task, neuronal activity in the cerebellar nuclei 
for each repetitive stimulus appears to encode the 
absolute elapsed time from the previous stimulus, 
rather than the relative timing to the previous beat 
(Ohmae et al., 2013). This might mean that the 
cerebellum locally measures the time between 
immediately preceding events even when events 
have a periodic time structure.

Nevertheless, monkeys are capable of main-
taining internalized rhythm, as they continue 
periodic saccades when targets are presented in 
conjunction with eye movements (error-clamp 
condition) during the synchronized saccade task 
(Takeya et  al., 2017). Similarly, monkeys can 
continue predictive tapping even after periodic 
external stimuli have disappeared (Gamez et al., 
2018) and can covertly shift the direction of 
motor preparation in the internalized rhythms 
(Cadena-Valencia et  al., 2018; Garcia-Garibay 
et  al., 2016). Further investigation is needed to 
understand how periodic time is encoded under 
these conditions, and how the roles of the cere-
bellum and basal ganglia are different.

 Summary and Conclusions

This chapter presents recent studies in nonhuman 
primates that have examined neural mechanisms 
during the measurement of single and periodic 
time intervals. The series of studies described 
earlier in this chapter focuses on pupil diameter 
and subcortical preparatory activity during a self- 
timed saccade task and reveals two mechanisms 
that regulate movement timing. The trial-to-trial 
variation in the produced time interval under the 
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same conditions correlates well with pupil diam-
eter (Suzuki et al., 2016), which reflects internal 
states such as attention and arousal level. When 
producing time intervals of 1.2  s or less, these 
timing variations can be explained by the rate of 
increasing activity in the cerebellum and motor 
thalamus, and inactivation of these areas delays 
self-timing. When measuring longer intervals, 
preparatory activity in the cerebellum begins 
approximately 500 ms before movement, and the 
stochastic variability in self-timing correlates 
well with the time of onset rather than with the 
slope of increasing activity (Fig.  2d,  Ohmae 
et al., 2017).

On the other hand, when the length of time to 
be measured is explicitly indicated, the rate of 
increase in preparatory activity in the striatum 
changes accordingly. In the striatum, the prepara-
tory activity persists throughout the delay period, 
but the effects of intertrial variations in self- 
timing appear only immediately before move-
ment, following changes in the cerebellum 
(Fig.  3,  Kunimatsu et  al., 2018). This suggests 
that fluctuations in cerebellar activity are primar-
ily responsible for the stochastic variation in tim-
ing. Because striatal inactivation changes 
self-timing regardless of the length of the manda-
tory delay, the striatum may measure elapsed 
time over the entire range from a few hundred 
milliseconds to several seconds.

In the striatum, the magnitude of the visual 
response to the cue was negatively correlated 
with the length of time to be measured, and the 
power of the low-frequency component before 
the cue was positively correlated (Fig. 4, Suzuki 
& Tanaka, 2019). This indicates that the length of 
the intended timing changes the state of the net-
work, including the striatum, which may lead to 
changes in the time course of the preparatory 
activity. In Parkinson’s disease, in which beta 
oscillation within the basal ganglia circuitry is 
abnormally enhanced, the central tendency is 
stronger when different time lengths are gener-
ated in each trial (Malapani et  al., 1998). This 
may be because of the inability to flexibly change 
the state of the network according to the intended 
time length. In contrast, the trial-to-trial variation 
in self-timing is correlated with pupil diameter, 

which is known to reflect the activity of the cen-
tral noradrenergic system. Strong noradrenergic 
innervation from the brainstem to the cerebellum 
may contribute in part to stochastic changes in 
self-timing. Thus, when producing time intervals, 
(1) intentional signals that depend on the length 
of time to be measured and, (2) stochastic signals 
that fluctuate according to the internal state, exist 
in the brain which might control self-timing by 
modulating neuronal activity in the basal ganglia 
and cerebellum, respectively.

The second half of this chapter discusses 
recent research on periodic timing. Stimuli that 
are regularly repeated on the order of hundreds of 
milliseconds produce rhythm perception, often 
accompanied by synchronized movements. 
Predictive synchronized movements are thought 
to be specific to vocal-learning species (Patel 
et al., 2009), but recent studies have shown that 
monkeys exhibit this ability when given immedi-
ate rewards (Takeya et  al., 2017; Gamez et  al., 
2018). They can make predictive eye movements 
synchronized to alternating visual stimuli if the 
stimulus interval is 0.4 to 1.2  s. As movement 
becomes reactive when the stimulus interval is 
1.8 s, the time limit for predictive synchroniza-
tion may be approximately 1.5 s (Takeya et al., 
2018).

When monkeys perform synchronized sac-
cades, there are three types of neurons in the cer-
ebellar nuclei that exhibit periodic activity related 
to movement timing, predicted target timing, and 
synchronization errors (Fig.  5,  Okada et  al., 
2022). Of these, only neurons that show the peak 
activity at the target appearance is more active 
than during reactive saccades and may be partic-
ularly important in synchronizing movements. 
These neurons were active regardless of the tar-
get location, representing an internal model of 
periodic stimulation. To achieve synchronized 
movements, it is necessary to generate an internal 
model for periodic stimuli, adjust the movement 
timing, and update the internal model by  detecting 
errors. The cerebellum contains all this informa-
tion and may send signals to the brainstem and 
thalamocortical pathways, serving a part of the 
global network that enables motor synchrony. As 
it is also well known that the basal ganglia are 
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involved in synchronized movements, it is neces-
sary to compare the roles of these subcortical 
regions in future studies.

When perceiving rhythm, we predict the tim-
ing of the next stimulus and focus our attention 
on that moment. Its time limit has been investi-
gated using the missing oddball paradigm 
(Fig. 6, Ohmae & Tanaka, 2016). When detecting 
an omission of isochronously repeated sounds, 
the reaction time changes after about 0.25  s 
(4 Hz). At faster tempos, it is impossible to inte-
grate temporal information from the opposite ear 
or from sounds of different frequencies. 
Conversely, at slower tempos, the reaction times 
to stimulus omission were significantly pro-
longed under dual-task condition. Taken together 
with the results of the synchronized movements, 
accurate temporal prediction is possible for peri-
odic stimuli in the range of 0.25 to 1.5 s (0.6 to 
4 Hz).

Periodic neuronal activity has been recorded 
from the cerebellum (Ohmae et al., 2013), stria-
tum (Kameda et al., 2019), and motor thalamus 
(Matsuyama & Tanaka, 2021) in monkeys per-
forming a similar task using a visual metro-
nome  (Fig. 7). At each site, the magnitude of 
neuronal modulation increased gradually with 
repeated stimuli, reaching a plateau within a few 
seconds. Under these conditions, the size of the 
response to each stimulus depended on the stimu-
lus tempo. The time course of periodic neuronal 
activity varies between brain regions; in particu-
lar, many neurons in the cerebellar nuclei exhibit 
anticipatory activity that peaks at the stimulus 
timing and the magnitude of periodic modulation 
depends on the location of the repetitive stimulus 
(Kameda et al., 2023). The time course of neuro-
nal activity in primates resembles the time course 
of beta-band coherence seen in the cortex and the 
cerebellum during passive listening to isochro-
nous sound in humans (Fujioka et  al., 2012), 
which may represent an internal model predict-
ing the stimulus timing. Manipulation of neuro-
nal activity in the cerebellum and striatum 
changes the reaction time of omission detection, 
suggesting that these areas are involved in peri-
odic temporal processing. In the future, the neu-
ral mechanisms of the cortico-cerebellar and 

cortico-basal ganglia pathways in rhythm percep-
tion should be clarified.
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Abstract

The measurement of time in the subsecond 
scale is critical for many sophisticated behav-
iors, yet its neural underpinnings are largely 
unknown. Recent neurophysiological experi-
ments from our laboratory have shown that the 
neural activity in the medial premotor areas 
(MPC) of macaques can represent different 
aspects of temporal processing. During single 
interval categorization, we found that preSMA 
encodes a subjective category limit by reaching 
a peak of activity at a time that divides the set of 
test intervals into short and long. We also 
observed neural signals associated with the cat-
egory selected by the subjects and the reward 
outcomes of the perceptual decision. On the 
other hand, we have studied the behavioral and 
neurophysiological basis of rhythmic timing. 
First, we have shown in different tapping tasks 
that macaques are able to produce predictively 
and accurately intervals that are cued by audi-
tory or visual metronomes or when intervals are 
produced internally without sensory guidance. 
In addition, we found that the rhythmic timing 
mechanism in MPC is governed by different 

layers of neural clocks. Next, the instantaneous 
activity of single cells shows ramping activity 
that encodes the elapsed or remaining time for 
a tapping movement. In addition, we found 
MPC neurons that build neural sequences, 
forming dynamic patterns of activation that 
flexibly cover all the produced interval depend-
ing on the tapping tempo. This rhythmic neural 
clock resets on every interval providing an 
internal representation of pulse. Furthermore, 
the MPC cells show mixed selectivity, encod-
ing not only elapsed time, but also the tempo of 
the tapping and the serial order element in the 
rhythmic sequence. Hence, MPC can map dif-
ferent task parameters, including the passage of 
time, using different cell populations. Finally, 
the projection of the time varying activity of 
MPC hundreds of cells into a low dimensional 
state space showed circular neural trajectories 
whose geometry represented the internal pulse 
and the tapping tempo. Overall, these findings 
support the notion that MPC is part of the core 
timing mechanism for both single interval and 
rhythmic timing, using neural clocks with dif-
ferent encoding principles, probably to flexibly 
encode and mix the timing representation with 
other task parameters.
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 Introduction

Time is a crucial parameter in life, and organisms 
have developed different mechanisms to quantify 
and predict events within the continuous flow of 
change in the environment (Tsao et  al., 2022). 
Even if the central nervous system does not have 
a time sensory organ, animals are able to extract 
temporal information from stimuli of all sensory 
modalities and use it to generate timed behaviors. 
This paper focuses on the neural underpinnings 
of temporal processing during the perception and 
production of intervals in the hundreds of milli-
seconds range. This time scale is involved in 
basic but highly important behaviors observed 
since the invertebrates, such as collision avoid-
ance and moving target interception (Merchant 
et  al., 2001, 2003a, 2004a, b; Merchant & 
Georgopoulos, 2006). In addition, the range of 
hundreds of milliseconds is the scenario of com-
plex behaviors such as the perception and pro-
duction of speech (Assaneo et  al., 2021), the 
execution and appreciation of music and dance 
(Merchant et al., 2015a; Mendoza & Merchant, 
2014), and the performance of a large variety of 
sports (Merchant et  al., 2003b; Merchant & 
Pérez, 2009). Researchers have found evidence 
of two distinct timing mechanisms in this scale: 
interval- and beat-based timing (Grube et  al., 
2010a, b; Teki et al., 2011; Breska & Ivry, 2018). 
In theory, interval-based timing implies the mea-
surement of the absolute duration of discrete time 
intervals. In contrast, beat-based timing implies 
the quantification of relative durations with 
respect to the temporal regularity of the beat 
present in a stream of stimuli, such as a piece of 
music (Merchant et al., 2015a). Functional imag-
ing and patient experiments have shown that the 
olivocerebellar and cortico-thalamic-basal gan-
glia circuit (CTBGc) are involved in the interval 
and beat-based timing, respectively (Cadena- 
Valencia et  al., 2018; Grahn & Rowe, 2009; 
Sánchez-Moncada et al., 2020; Teki et al., 2012). 
Nevertheless, the medial premotor areas (MPC), 
composed of the supplementary motor area 
proper (SMA) and the presupplementary motor 
area (preSMA), are the common output to both 

the cerebellar and basal ganglia circuits 
(Rajendran et al., 2018; Schwartze et al., 2012), 
conferring them the ability to process temporal 
information during both single interval and 
rhythmic perception and production tasks.

In this paper, we argue that neural populations 
in the primate MPC show flexible and multi-
plexed time encoding strategies that support both 
interval-based and beat-based timing, largely 
drawing from observations from our laboratory 
(see Merchant & Honing, 2014 for initial view on 
this subject). In section “Neurophysiology of 
Interval-Based Perception in MPC”, we describe 
the strategies by which preSMA encodes interval 
duration, category (long or short), and reward 
outcome based on a single-interval categoriza-
tion task. In section “Neurophysiology of Beat- 
Based Perception in MPC”, we show how neural 
populations in the MPC encode beat-based tim-
ing through a metronome synchronization- 
continuation task. We conclude with a brief 
summary and outlook for future work on timing 
neurophysiology in the primate brain.

 Neurophysiology of Interval-Based 
Perception in MPC

Different psychophysical tasks have been devel-
oped to study how the brain processes temporal 
information from single intervals. We can clas-
sify these tasks according to their sensory and 
motor requirements or by the implicated sensory 
modality (Merchant et  al., 2008a, b, c). In the 
motor domain, for example, one of the most 
employed paradigms is interval reproduction, in 
which subjects are first shown one interval or 
duration and then are asked to reproduce the 
duration with some motor response (Bartolo & 
Merchant, 2009; Jazayeri & Shadlen, 2015; 
Woodrow, 1930). Interval discrimination is one 
of the most employed paradigms in the sensory 
domain (Wearden, 1992; Kononowicz & van 
Rijn, 2014; Di Fabio et  al., 2011). In this task, 
subjects are presented with two single, consecu-
tive intervals and then are asked to emit a relative 
judgment about the two durations (Kim et  al., 
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2013). The categorization of intervals as short or 
long is another instance of perceptual, 
 interval- based timing (Ng et  al., 2011; Méndez 
et al., 2014). This paradigm, also known as time 
bisection, is widely used since the late 1970s of 
the past century to explore the mechanism by 
which animals perceive the passage of time 
(Church & Deluty, 1977; Gibbon, 1981; Wearden, 
1991; Allan & Gibbon, 1991). In these tasks, sub-
jects are initially trained to make one or another 
action in response to prototypic short or long 
intervals. When subjects learn to differentiate the 
short from the long intervals, intermediate test 
durations are presented. The subject’s goal is to 
categorize each test interval as short or long using 
the appropriate behavioral response. Despite 
being the subject of a long history of psycho-
physical studies, the neural basis of interval cat-
egorization remained unknown until recently.

 The Ability of Monkeys and Humans 
to Categorize Intervals as Short or 
Long Is Similar

To provide information on the psychophysics and 
neural mechanisms of interval categorization in 
primates, we developed a paradigm where human 
subjects and Rhesus monkeys (Macaca mulatta) 
classify single intervals in the range of hundreds 
of milliseconds as short or long according to an 
arbitrary category limit (Mendez et  al., 2011; 
Mendoza et al., 2018). In each task trial, the sub-
jects were shown a test interval, with the onset 
and offset indicated by a brief visual stimulus 
displayed on a screen. After the interval offset 
and a fixed delay, the subjects communicated 
their perceptual decision by moving a cursor dis-
played on the screen into an orange circle, if the 
interval was categorized as short, or into a blue 
circle if the interval was classified as long. 
Crucially, subjects categorized three sets of eight 
intervals in every experiment. The short–long 
limit was the mean of the intervals of the set. 
Consequently, the shorter four intervals in a set 
should be categorized as short and the remaining 
as long. Importantly, the interval corresponding 

to the actual category limit of each set was never 
presented to the subjects as a test interval. As a 
result of this experimental design, the subjects 
had to change their subjective category boundary 
to classify the intervals of the different sets 
correctly.

We found that humans and monkeys perform 
similarly in these categorization tasks. Both spe-
cies showed sigmoid psychometric functions, 
with the probability of long responses increasing 
as a function of the length of the intervals. In 
addition, both species got more correct answers 
for each block’s shortest and longest intervals 
and more decision errors for the intermediate 
intervals. Furthermore, for both humans and 
monkeys, the bisection point, the interval at 
which the probability of “long” response is 0.5, 
was close to the mean of the test durations of 
each set. Also, both species showed similar rela-
tive thresholds and an increase in temporal vari-
ability as a function of the implicit interval, 
following the Scalar Property for Timing 
(Gibbon, 1981; Allan & Gibbon, 1991). All these 
results were concordant with previous behavioral 
data from monkeys and humans categorizing 
time intervals and showed that both species have 
similar abilities for the categorical perception of 
time (Mendez et al., 2011; Kopec & Brody, 2010; 
Merritt et al., 2010). When human subjects were 
tested in our interval categorization task, we 
found that even though there was a 1-second- 
long delay between interval presentation and 
decision communication, categorization diffi-
culty affected subjects’ performance, as well as 
their reaction and movement time. In addition, 
reaction and movement times were also influ-
enced by the distance between the targets. This 
implies that not only perceptual, but also 
movement- related considerations were incorpo-
rated into the decision process (Méndez et  al., 
2014). In addition, we conducted a beta burst 
TMS study in humans and found that decreasing 
the excitability of MPC produced a clear disrup-
tion of timing during the same categorization task 
(Méndez et al., 2017). Then we decided to study 
the neural properties of the primate preSMA cells 
during this paradigm.

Diverse Time Encoding Strategies Within the Medial Premotor Areas of the Primate
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 The Subjective Limit Between 
the Short and Long Categories Is 
Encoded by Neurons of the Monkey’s 
MPC

We recorded the activity of neurons in the 
preSMA of Rhesus monkeys working in the rela-
tive interval categorization task. The monkeys 
had to change their subjective boundary within 
three blocks to correctly classify the intervals of 
the different sets. Interestingly, we found that this 
internal criterion is encoded by neurons in 
preSMA (Mendoza et  al., 2018). We observed 
that some preSMA neurons, henceforth called 
“boundary neurons,” generated a peak of activity 
at a relatively constant time after the interval 
onset, regardless of the actual duration of the pre-
sented interval. Thus, the peak of activity tended 
to occur after the interval offset when the test 
interval was short but before the interval offset 
when the test interval was long (Fig.  1a). This 
timed activity could serve as a mental reference 
to delimit the duration of the short and long inter-
vals. Such a mechanism would only require 
information of the relative time of occurrence of 
the peak activity and the interval offset. This 
hypothesis was supported by the fact that the 
time of occurrence of the peak activity changed 
according to the interval set being tested. Hence, 
the time at which neurons reached the peak activ-
ity was close to the actual category boundary of 
the current set. We observed this effect at the 
population and single neuron levels. For the pop-
ulation of boundary neurons, the mean of peak 
activity times was close to the actual boundary of 
each interval set. At the single neuron level, some 
neurons changed their time of peak activity 
across the different sets, occurring earlier for the 
shorter set and later for the longer set but always 
resembling the actual category limit (Fig. 1a, b).

If boundary neurons encoded the subjective 
boundary, a correlation between the category 
selected by the monkeys and the category 
decoded from the activity of the boundary neu-
rons should exist. Therefore, we determined 
whether the relative temporal occurrence of the 
peak activity and the end of the interval signaled 
by the presentation of the second stimulus could 

be used to decode the categorical decision of the 
monkeys. For each boundary neuron and trial, we 
quantified the time elapsed (τ) between the peak 
of activity and the interval offset (Fig. 1c). Next, 
we looked for the τ that minimized the error in 
classifying each interval as short or long (the best 
decoding criterion; Fig.  1d). Finally, we con-
structed neurometric curves with the probability 
of a particular interval being categorized as long 
obtained from the proportion of trials in which τ 
was smaller than the best decoding criterion 
(Fig.  1e). We found that the best criterions 
allowed the decoding of the monkey’s responses 
with high precision. Consequently, the relative 
thresholds and the points of subjective equality 
from the neurometric and the corresponding psy-
chometric curves were similar. Significant trial- 
by- trial correlations between the category 
selected by the monkeys and the category 
decoded from the peak activity were found for a 
large group of neurons. This is remarkable since 
limit was never shown as a test interval to the 
monkeys. Therefore, the neural representation of 
the boundary was likely computed subjectively 
from the actually presented intervals.

 PreSMA Neurons Explicitly Represent 
the Categorical Response 
of the Monkeys

Since activity of boundary neurons can be used to 
decode the category selected by the monkeys. 
These results strongly support the notion that this 
signal encodes a mental criterion to judge the 
intervals as short or long. Interestingly, we also 
found a subpopulation of preSMA neurons that 
explicitly encode the category selected by the 
monkeys (Fig.  2a). These category-encoding 
neurons showed selective activity to the short or 
long responses: their activity was similar for all 
the intervals assigned by the monkeys to the same 
category and different for the intervals classified 
in the opposite category. We found neurons with 
higher activity for intervals categorized as short 
and neurons with higher activity for intervals cat-
egorized as long. These responses are similar to 
previously reported neurons encoding the cate-
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Fig. 1 Neurons in the preSMA of the Rhesus monkey 
encode the subjective category boundary in the interval 
categorization task. (a) Some preSMA neurons generate 
peaks of activity (indicated by the asterisks) with a rela-
tively fixed latency. Consequently, the peaks tend to occur 
after the offset of the short but before the offset of the long 
intervals. The activity is aligned to the interval onset and 
is segregated by the intervals being categorized (indicated 
to the right of the panels). (b) Activity of the neuron 
shown in a) but during the categorization of a different set 
of longer intervals. Note that the peak activity occurs now 
around 1100 ms after interval onset. (c) For each trial, the 

time difference (tau) between the peak of neuronal activ-
ity and the end of the test interval was measured. (d) 
These measures tended to be positive for trials in which 
short intervals were presented and negative for long- 
interval trials and segregated short from long intervals in a 
way that correlated with the decision of the monkeys 
(indicated by the dot color; see the inset). The red line 
indicates the best criterion for this boundary neuron and 
set of intervals (see main text). (e) Psychometric and neu-
rometric functions for the data shown in (d). (Figures 
were adapted from Mendoza et al., 2018)
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Fig. 2 (a) Mean (+ SEM) activity of a population of 
preSMA neurons encoding the category selected by the 
monkeys. In the short-response trials, these neurons 
showed higher activity before the actual monkey’s 
response. Note that the activity is aligned to the interval 
offset; the interval onset is not shown. (b) Mean activity of 
a population of neurons encoding the outcome of the 
monkey’s decision. These neurons decreased their activity 
after the reward delivery (feedback time) in the correct 

trials. Activity is aligned to the time of feedback. (c) 
Hypothetical trial-by-trial adjustment of the neural cate-
gory boundary. In every trial of the task, intervals are 
judged to be short or long based on the subjective bound-
ary (upper panel). In subsequent trials, the time or width 
of the peak activity is adjusted depending on the task’s 
variables in the previous trials (lower panels). (Figures a 
and b were adapted from Mendoza et al., 2018)

gorical decision during tactile (Romo et al., 1995, 
1996; Merchant et  al., 1997) and visual 
 categorization tasks (Freedman et  al., 2001; 
Merchant et al., 2011a). An additional difference 
with the activity of “boundary neurons” was that 
category- selective activity occurred between the 
interval offset and the monkeys’ responses 
(Mendoza et  al., 2018). In our task, this period 
comprised a fixed time delay between the interval 
offset and the presentation of the response tar-
gets. During this delay, the monkeys had to 
remember their perceptual decision until the pre-
sentation of the response circles. Hence, the 
time-persistent activity of category-selective 
cells maybe the neural substrate of the memory 
trace of the categorical decision.

 The Reward Outcome 
of the Perceptual Decisions Is 
Encoded by the preSMA

The consequences of the perceptual decision 
were also represented in the activity of preSMA 

neurons. In this case, some neurons showed 
activity selective to whether the monkeys’ 
responses were correct (Fig. 1g). This outcome- 
selective activity was observed after the mon-
keys’ responses, i.e., after the delivery, or 
absence, of reward. Hence, some outcome- 
encoding neurons were more active for correct 
responses, and other neurons showed higher 
activity for incorrect responses (Mendoza et al., 
2018). This error signal may be essential in 
adjusting the subjective boundary or the choice 
during the learning or execution of the task. 
Further modeling studies are needed to reveal 
how the encoding of categorization variables 
emerges and is optimized in the preSMA neural 
circuits.

Overall, our results show a sequence of infor-
mation encoding in preSMA during the categori-
zation of intervals. First, the learned mental 
category boundary is evoked and used as a time 
reference to judge the ongoing interval. Next, an 
explicit representation of the selected category 
emerges and is maintained as a memory trace 
during the delay previous to the actual response 
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of the monkey. Finally, a strong representation of 
the outcome of the perceptual decision is gener-
ated and maintained during the intertrial time 
(Fig.  2c). Importantly, although the category 
boundary is encoded from the level of single neu-
rons, the actual monkey’s criterion must result 
from the combined neural activity of all the pop-
ulation of boundary neurons. In fact, we found 
that the mean times of peak activity of all the 
boundary neurons correlated with the mean 
behavioral bisection point of the monkeys for 
each set of the categorization task (Mendoza 
et  al., 2018). The concept of a population code 
may also apply to the neural representations of 
the selected category and the outcome of the per-
ceptual decisions.

 Behavior and Neurophysiology 
Suggest Interval Categorization Is 
Solved by Similar Neural Mechanisms 
in Monkeys and Humans

A key question is whether our experimental 
observations in the Rhesus monkey can be 
extrapolated to other animals, including humans. 
The concept of an internal criterion was proposed 
in 1981 to explain the behavior of different spe-
cies in interval categorization (Gibbon, 1981). 
Subsequent behavioral and theoretical studies 
proposed that such a hypothetical criterion cor-
responds to the bisection point in humans and 
other animals and that is determined by the range 
of the test intervals (Killeen et al., 1997; Allan, 
2002a). Nevertheless, the criterion hypothesis 
remained one of several possible alternative 
explanations (Gibbon, 1981; Maddox & Ashby, 
1993; Allan, 2002b). Neurophysiologic studies in 
humans provided additional support to the idea of 
an internal criterion in humans. Lindbergh and 
Kieffaber (Lindbergh & Kieffaber, 2013) 
observed significant differences in the ERPs 
time-locked to probe offset between intervals 
judged to be short and long. In another study, Ng 
and colleagues (2011) reported an ERP, the 
Contingent Negative Variation, to increase in 
amplitude up to the value of the short prototype 
to remain at a constant level until about the mean 

of the short and long anchors and then, to return 
to baseline. These observations are consistent 
with a decision mechanism based on a category 
limit; i.e., during a trial of the categorization task, 
once the subjective time limit between the short 
and long intervals is exceeded, there is no need to 
continue attending the interval duration. 
Therefore, the category membership of the long 
intervals can be determined as early as the inter-
val reaches the internal time criterion. This is 
consistent with the finding of shorter reaction 
times for the longer test durations in categoriza-
tion tasks compared to other perceptual timing 
tasks, and with the observation that interval cate-
gorization is less demanding than other timing 
tasks that are supposed to require the tracking of 
the complete intervals (Bannier et  al., 2019). 
Consequently, these behavioral observations, 
models, and neurophysiologic studies suggest 
that the neural mechanism operating in humans 
during interval categorization is similar to the 
mechanism we described in the monkey working 
in equivalent tasks.

 Factors Influencing the Subjective 
Boundary

Experiments with human and nonhuman pri-
mates and other species performing interval cat-
egorization found choice biases resulting from 
manipulations of several task variables, including 
the range of the test intervals, the long–short 
ratio, the interval spacing and the probability of 
stimulus or reward occurrence (Allan, 2002a; 
Elsmore, 1972; Stubbs, 1976; Akdoğan & Balcı, 
2016; Cambraia et al., 2019). Commonly, these 
manipulations produce systematic shifts of the 
psychometric functions with consequent changes 
in the bisection point. Notably, some of these 
variables were reported to produce similar 
changes in other perceptual tasks. In detection 
tasks, the psychometric thresholds are affected 
by manipulating the payoff or stimulus contin-
gencies. This phenomenon, called the response 
bias, was proposed to depend on changes in the 
observer’s criterion (Gescheider, 1997). A related 
phenomenon is the effect of the trial-by-trial 
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 history on the current subject’s performance. In 
interval categorization, the current judgments 
were reported to be sensitive to the choices in the 
previous trials (Wehrman et al., 2020). Thus, in 
order to learn the task or after changes in the 
task’s variables, the subjective limit must be fine- 
tuned by the events in the previous trials.

We suspect that the recent task history can 
bias the subject’s decisions and consequently can 
affect the peak activity of the boundary neurons. 
We propose that the time or width of the peak 
activity is modulated according to the variables 
in the previous trials (Fig. 2c). With training, the 
peak activity of the boundary neurons would 
adapt to the statistics of the tasks, for example, to 
the range or probability of the test intervals or the 
reward contingencies. Therefore, adjusting the 
internal boundary would be an iterative process 
with critical importance during learning or after 
changes in task contingencies. An alternative 
explanation to the response bias or the “history 
effect” is that they result from changes in the bal-
ance of the short–long choice-related neural 
activity, not from changes in the activity of 
boundary neurons. As we demonstrated, different 
neural codes in preSMA represent the subjective 
boundary and the selected category. Due to this 
functional segregation, our paradigm is well 
suited to determine whether specific task vari-
ables affect the internal criterion or the choice—
ongoing studies in our laboratory attempt to 
provide data on these topics.

 No Ramping Activity in preSMA 
During Interval Categorization?

To end, we compare our observations during 
interval categorization with the neurophysiologic 
observations made in other timing tasks. 
Critically, we found that neurons in the monkey’s 
preSMA encode the main variables needed to 
solve the categorization task, but we did not find 
cells encoding elapsed time during the interval 
presentation (Mendoza et  al., 2018). This is 
remarkable since different research groups have 
reported these types of activity in the preSMA of 
monkeys. Tanji and colleagues reported that neu-

rons in the SMA and preSMA of the Japanese 
monkey increased their activity as a function of 
the elapsed time (ramping activity) during the 
production of single intervals (Mita et al., 2009). 
Experiments in our laboratory with Rhesus mon-
keys trained in multiple-interval, synchronization- 
continuation tapping tasks also demonstrated 
ramping activity in preSMA during the interval 
production (Merchant et al., 2011b). Interestingly, 
ramping activity related to elapsed time is also 
observed during the perceptual phase of interval 
reproduction tasks in other motor-related cortical 
areas. Each trial of these tasks has perceptual and 
reproduction phases. In the perceptual phase, a 
target interval is presented, and the subjects must 
attend to its duration but avoid movement. Then, 
in the subsequent reproduction phase of the trial, 
the subjects reproduce, with any motor action, 
the previously perceived interval (Jazayeri & 
Shadlen, 2015; Henke et al., 2021).

We hypothesize that ramping activity is 
mainly recruited by motor-related areas during 
tasks requiring the quantification of the whole 
intervals, such as the perceptual or motor phases 
of motor timing tasks or perceptual discrimina-
tion tasks (Merchant et  al., 1997, 2011b). Not 
only does interval categorization lack an interval 
reproduction phase, but our decoding analysis 
also demonstrated that it could be solved without 
quantifying the total interval duration. These 
ideas are consistent with most neurophysiologic 
studies in monkeys (Jazayeri & Shadlen, 2015; 
Mendoza et al., 2018; Perrett, 1998; Maimon & 
Assad, 2006; Renoult et al., 2006; Tanaka, 2007; 
Leon & Shadlen, 2003; Lebedev et  al., 2008; 
Genovesio et  al., 2009; Oshio et  al., 2008). 
Nevertheless, we cannot discard the possibility 
that elapsed time can be decoded from the activ-
ity of neurons in other brain areas (see for exam-
ple Gouvêa et  al., 2015). Additional studies in 
different animal species, with a more diverse bat-
tery of timing paradigms and recording the 
simultaneous activity of several cortical areas, 
are needed to clarify these issues.

In conclusion, our data suggest that the mon-
key preSMA solves interval categorization using 
a simple mechanism that does not require exhaus-
tive quantifying each interval but fine-tuning a 
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time boundary. Initial evidence from different 
research groups suggests that the same mecha-
nism might operate in the human brain. Therefore, 
our observations support classical psychophysi-
cal hypotheses suggesting that subjects compare 
the intervals to be categorized with an internal 
criterion that depends on the distributions of the 
test intervals, the choice biases, and the reward 
contingencies.

 Neurophysiology of Beat-Based 
Perception in MPC

 Psychophysics of Rhythmic Tapping

Music and dance depend on intricate loops of 
perception and action, where temporal process-
ing can be engaged during the synchronization of 
movements with sensory information or during 
the internal generation of movement sequences 
(Janata & Grafton, 2003). Thus, beat induction is 
the cognitive ability that allows humans to hear a 
regular pulse in music and to move in synchrony 
with it. Importantly, without beat induction there 
is no music perception and, hence, is considered 
a universal human trait (Honing, 2012; Honing 
et  al., 2012, 2018). These cognitive abilities 
depend on an internal brain representation of 
pulse that involves the generation of regular tem-
poral expectations, which is the core of the beat- 
based timing mechanism (Balasubramaniam 
et al., 2021). Several studies have shown that the 
internal pulse is directly mapped to the timing of 
the entrained movements, typically measured as 
tapping movements that occur few milliseconds 
before the beat (Lenc et  al., 2021; Nozaradan 
et al., 2016), 2017. A classical task used to study 
beat induction is the synchronization- continuation 
tapping task (SCT), which can be considered a 
simplified version of beat perception and entrain-
ment in music. In the SCT, subjects tap in sync 
with periodic sensory cues (synchronization 
epoch), and then keep tapping after the metro-
nome is extinguished using an internal beat rep-
resentation (continuation epoch) (Wing, 2002). 
Performance in this task shows two features pres-
ent in other timing tasks: a linear increase in vari-

ability of produced intervals with the mean that is 
a form of Weber’s law, called scalar property 
(Merchant et  al., 2008a; Gibbon et  al., 1997; 
García-Garibay et  al., 2016), and an over- and 
underestimation of intervals for shorter and lon-
ger intervals, termed regression toward the mean 
or bias effect (Woodrow, 1934; McAuley & 
Jones, 2003; Pérez & Merchant, 2018; Yc et al., 
2019). Furthermore, subjects use an error correc-
tion mechanism that maintains tap synchroniza-
tion with the metronome, since a longer produced 
interval tends to be followed by a shorter interval 
and vice versa, to avoid error accumulation and 
losing the metronome (Repp, 2005; Iversen et al., 
2015; Pérez et al., 2023). In contrast, during con-
tinuation, there is a drift in the duration of pro-
duced intervals (Madison, 2001; Collier & 
Ogden, 2004).

Humans possess a remarkable flexibility for 
beat-based timing, recognizing the beat from a 
wide range of complex rhythms, and with the 
natural tendency to predictively entrain to the 
beat by moving different body parts, such as fin-
ger or foot taps (Patel, 2018). Recently, it has 
been demonstrated that macaques possess the 
neural machinery to perceive and entrain to the 
simplest form of beat: an isochronous auditory 
metronome. On one side, beat perception has 
been measured with mismatch negativity (MMN), 
an auditory event-related EEG potential that can 
be used as an index of a violation of temporal 
expectation. Notably, MMN is sensitive to viola-
tions of the beat using complex or simple rhythms 
in humans but only for isochronous metronomes 
in monkeys (Honing et al., 2012, 2018). On the 
other, psychophysical experiments showed that, 
when immediate feedback about the timing of 
each movement is provided, monkeys can predic-
tively entrain to an isochronous beat, generating 
tapping movements in anticipation of the metro-
nome (Gámez et  al., 2018; see also García- 
Garibay et al., 2016; Takeya et al., 2017). In fact, 
macaques can flexibly change their movement 
tempo from trial to trial covering a range from 
400 to 1000  ms (unpublished observations). 
Furthermore, monkeys can superimpose accen-
tuation patterns onto an isochronous auditory 
sequence, suggesting that they can generate a 
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simple subjective rhythm on a regular auditory 
sequence (Ayala et  al., 2017; Criscuolo et  al., 
2023). Thus, both primate species can produce 
negative asynchronies, show an error correction 
mechanism, produce precise and accurate inter-
val during synchronization to an isochronous 
(Betancourt et  al., 2023). Nevertheless, humans 
perform better with auditory but monkeys with 
visual metronomes (Gámez et  al., 2018; 
Betancourt et al., 2023; Zarco et al., 2009). These 
findings support the gradual audio-motor hypoth-
esis that suggests that beat-based timing emerged 
gradually in primates, peaking in humans due to 
a sophisticated audio-motor circuit, and that is 
also present for isochrony in macaques where it 
depends on the close interaction between MPC, 
CTBGc, and the auditory cortex (Merchant & 
Honing, 2014; Honing & Merchant, 2014). 
Indeed, in both primate species, it has been 
shown that MPC plays a critical role in beat 
extraction and entrainment (Merchant et  al., 
2015a; Mendoza & Merchant, 2014; Rao et al., 
1997; Chen et al., 2008).

 Ramping Activity as a Single-Cell 
Timing Signal for Rhythmic Tapping

We recorded the activity of MPC cells during a 
version of the SCT where monkeys produced 
three intervals in the synchronization and three 
intervals in the continuation epochs (Fig.  3a). 
Brief auditory or visual interval markers were 
used during the synchronization phase and the 
range of target intervals was from 450 to 1000 ms 
(Zarco et al., 2009). The monkeys were able to 
produce the target intervals accurately, showing 
an average underestimation of ~50  ms across 
interval durations during the synchronization and 
continuation phases of the SCT. In addition, we 
analyzed the temporal variability of the mon-
keys’ tapping performance, defined as the SD of 
the individual interresponse intervals (Merchant 
et  al., 2008a, b). The temporal variability fol-
lowed the scalar property, with a linear increase 
as a function of interval duration in both phases 
of SCT (Zarco et  al., 2009). Furthermore, the 
analysis of the tapping hand kinematics revealed 

that monkeys temporalize the pauses or dwell 
between movements, while producing stereo-
typic downward and upward movements with a 
similar duration across the tested metronome 
tempos (450–1000  ms). These findings suggest 
that monkeys use an explicit timing strategy to 
perform the SCT, where the timing mechanism 
controls the dwell duration, while also triggering 
the execution of stereotyped tapping movements 
across each produced interval in the rhythmic 
sequence (Gámez et  al., 2018; Donnet et  al., 
2014).

The extracellular activity of single MPC neu-
rons was recorded during task performance. A 
large population of neurons showed ramping 
activity before or after each sensory or motor 
event in the SCT (Merchant et  al., 2011b). 
Consequently, we developed a warping algorithm 
to determine whether the responses of the cells 
were aligned to the sensory or motor aspects of 
the SCT, and we found that most MPC cells were 
aligned to the tapping movements instead of the 
stimuli used to drive the temporal behavior (Perez 
et al., 2013; Merchant et al., 2015b).

Next, we used an iterative algorithm to find 
the best regression model to explain the 
increase or decrease of instantaneous activity 
over time with respect to the tapping times 
using the spike density function. With this 
method, we defined for each ramp the follow-
ing parameters: duration, slope, peak magni-
tude, and the time τ from the peak to the button 
press. Using this information, we classified dif-
ferent cell populations with ramping activity 
into four groups: motor, relative- timing, abso-
lute-timing and time-accumulator, and swing-
ing cells (Merchant et  al., 2011b). A large 
group of cells shows ramps before the move-
ment onset that are similar across produced 
durations and the sequential structure of the 
task and, therefore, are considered motor ramps 
(Fig. 3b). Interestingly, another cell population 
showed an increase in ramp duration but a 
decrease in slope as a function of the animals’ 
produced duration, reaching a similar dis-
charge magnitude at a specific time before the 
button press. These cells are called relative-
timing cells since their ramping profile could 
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Fig. 3 (a) Synchronization-Continuation Task (SCT). 
Monkeys were required to push a button (R, black line) 
each time stimuli with a constant interstimulus interval (S, 
gray line) were presented, which resulted in a stimulus- 
movement cycle. After four consecutive synchronized 
movements, the stimuli stopped, and the monkeys contin-
ued tapping with similar pacing for three additional inter-
vals. The target intervals, defined by brief auditory or 
visual stimuli, were 450, 550, 650, 850, and 1000 ms, and 

were chosen pseudo-randomly within a repetition. 
Different ramp populations: motor (b), relative-timing (c), 
absolute-timing (d), and time-accumulator (e) cells. b and 
c are aligned to the next button press, while c and d are 
aligned to the previous button press. The duration of pro-
duced intervals is color-coded in b. All these ramp popula-
tion functions correspond to the addition of individual 
ramps over time. (Modified from Merchant et al., 2011b)

signal how much time is left to trigger the but-
ton press in the task sequence (Fig.  3c). 
Therefore, this population of MPC neurons has 
the response properties to encode the time 

remaining for an event or time-to-contact cells, 
and once the population reaches a firing mag-
nitude threshold, it could trigger the internal 
beat signal (Merchant et al., 2011b).
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Other groups of cells show a consistent 
increase followed by a decrease in their instanta-
neous discharge rate when their activity was 
aligned to the previous button press rather than to 
the next one. These cells showed an up-down 
activation profile whose duration increased as a 
function of the produced interval (Fig.  3d) and 
were called absolute-timing cells. In addition, we 
found cells that responded as sand clocks since 
their activity was accumulated as a function of 
the passage of time, with final peaks of activity 
that increased linearly with the produced interval 
and hence were denominated time-accumulator 
cells (Fig.  3e). Therefore, these cells could be 
representing the elapsed time since the previous 
movement, using two different encoding strate-
gies: one functioning as an accumulator of 
elapsed time where the peak magnitude and the 
duration of the activation period are directly 
associated with the time passed, and another 
where only the duration of the activation period is 
encoding the length of the time passed since the 
previous movement (Merchant et  al., 2011b; 
Merchant & Averbeck, 2017).

Cell activity changes associated with temporal 
information processing in behaving monkeys 
have been reported in the cerebellum (Perrett, 
1998; Okada et al., 2022; Ohmae et al., 2017), the 
putamen (Bartolo et  al., 2014; Bartolo & 
Merchant, 2015; Merchant & Bartolo, 2018), the 
caudate (Kameda et al., 2019; Kunimatsu et al., 
2018), the thalamus (Tanaka, 2007; Wang et al., 
2018), the posterior parietal cortex (Jazayeri & 
Shadlen, 2015; Renoult et  al., 2006; Leon & 
Shadlen, 2003), and the prefrontal cortex (Henke 
et al., 2021; Oshio et al., 2008; Brody, 2003), as 
well as in the motor cortex (Merchant et  al., 
2004a; Maimon & Assad, 2006; Lebedev et al., 
2008), and MPC (Mita et  al., 2009; García- 
Garibay et al., 2016; Merchant et al., 2014; Sohn 
et al., 2019). These areas form different circuits 
linked to sensorimotor processing using the skel-
etomotor or oculomotor effector systems. Most 
of these studies have described climbing activity 
during different timing contexts, which include 
discrimination of time, time estimation, time cat-
egorization, single interval reproduction, and 
rhythmically produced saccades and hand move-

ments. Therefore, the increase or decrease in 
instantaneous activity as a function of the pas-
sage of time is a property present in many cortical 
and subcortical areas of the CTBGc and the cer-
ebellum that may be involved in different aspects 
of temporal processing in the hundreds of milli-
seconds scale. In fact, the ubiquitous presence of 
cells’ increases or decreases in discharge rate as a 
function of time across different timing tasks and 
areas of a potential core timing circuit suggests 
that ramping activity is a fundamental element of 
the timing mechanism.

The recently reported temporal scaling as a 
mechanism to encode time remaining for action 
is very evident in ramping cells that behave as 
time-to-contact cells or the absolute timing cells 
reported by us (Fig. 3c, d) (Merchant & Averbeck, 
2017). These cells show a similar instantaneous 
pattern of activations that is contracted for short 
and expanded for long intervals and can be the 
single-cell primordium for the neural population 
temporal scaling observed in neural trajectories 
in state space (Wang et  al., 2018; Remington 
et  al., 2018). In contrast, the time-accumulator 
cells do not scale in time; their main feature is the 
magnitude of their activity peak (Gámez et  al., 
2019). This type of cells might be very common 
during tasks that demand elapsed time encoding 
instead of predicting a sensory, cognitive, or 
motor event (Bi & Zhou, 2020; Merchant & 
Pérez, 2020).

 Interval Tuning: A Circuit Signal 
for Context-Dependent Flexibility

Psychophysical studies on learning and general-
ization of time intervals support the notion that 
neurons in the timing circuit are tuned to specific 
interval durations but can be activated in a modal-
ity- and context-independent fashion (Sánchez- 
Moncada et al., 2020; Bartolo & Merchant, 2009; 
Meegan et  al., 2000; Nagarajan et  al., 1998). 
Accordingly, we found a graded modulation in 
the discharge rate of cells as a function of interval 
duration during the SCT in cells of MPC 
(Merchant et al., 2013a). Figure 4a, b shows the 
profile of activation of a cell in the preSMA of a 
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Fig. 4 (a) Responses of a sharply double-tuned MPC cell 
with a long-preferred interval and a preferred sequence 
order around the second continuation interval. Circles cor-
respond to tap times. The raster is aligned (red line) to the 
second tap of the continuation phase. All target intervals 
are showed in a vertical arrangement. (b) Double- 
Gaussian tuning function for the cell responses depicted 
in a. The heatmap discharge scaler is on the right. 
(Modified from Merchant et al., 2013a)

monkey performing this task. The neuron shows 
larger activity for the longest durations, with a 
preferred interval of around 900 ms. A large pop-
ulation of MPC cells is tuned to different interval 
durations during the SCT, with a distribution of 
preferred intervals that covers all the tested dura-

tions, although there was a bias toward long pre-
ferred intervals (Merchant et  al., 2013b). These 
observations suggest that the MPC represents 
interval duration, where different populations of 
interval-tuned cells are activated depending on 
the duration of the produced interval (Merchant 
& Bartolo, 2018). In addition, most of these cells 
also showed selectivity to the sequential organi-
zation of the task, as previously described in 
sequential motor tasks in MPC (Tanji, 2001). The 
cell in Fig. 4a, b also shows an increase in activity 
during the fifth produced interval in the SCT 
sequence. Again, at the cell population level, all 
the possible preferred ordinal sequences were 
covered (Merchant et  al., 2013b). Hence, the 
temporal and sequential information is multi-
plexed in a cell population signal that defines the 
duration of the produced interval and its position 
in the learned SCT sequence (Bartolo et al., 2014; 
Merchant et  al., 2013a). Overall, these findings 
support the notion that MPC uses mixed selectiv-
ity to represent the passage of time, the tempo 
duration, and the serial order during SCT 
(Merchant & Bartolo, 2018; Gámez et al., 2019; 
Merchant et al., 2013b).

Interval tuning during single interval- and 
beat-based timing has been reported in MPC 
(Mita et  al., 2009; Merchant et  al., 2013b), the 
prefrontal cortex (Henke et al., 2021), the puta-
men (Bartolo et al., 2014; Bartolo & Merchant, 
2015), the caudate (Kameda et  al., 2019; 
Kunimatsu et  al., 2018), and the cerebellum 
(Okada et al., 2022; Ohmae et al., 2017). In addi-
tion, a chronomap in the medial premotor cortex 
has been described in humans using functional 
imaging. The interval-specific circuits show a 
topography with short preferred intervals in the 
anterior and long preferred intervals in the poste-
rior portion of SMA/preSMA (Protopapa et  al., 
2019). Hence, timing not only depends on one 
population of cells that contracts or expands their 
activity patterns depending on a constant speed 
knob (Wang et  al., 2018) but also on interval- 
specific neurons that build distinct timing cir-
cuits. It is well known that tuning and modularity 
are mechanisms for the division of labor that are 
used in cortical and subcortical circuits to repre-
sent sensory, cognitive and motor information 
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(Hubel & Wiesel, 1977; Mountcastle, 1998; 
Georgopoulos et al., 2007; Goldman-Rakic et al., 
1984; Naselaris et al., 2006a, b). Consequently, 
interval tuning can provide large flexibility to 
mix time encoding and prediction with other task 
parameters, which are also represented in the pre-
motor system but with different mapping frame-
works (Merchant & Bartolo, 2018; Merchant & 
Yarrow, 2016; Zhou et al., 2022).

 Neural Sequences

As a population, ramping and/or tuned MPC cells 
show activation profiles that are far from static. 
Indeed, these cells are recruited in rapid succes-
sion producing a progressive neural pattern of 
activation (called neural sequences or moving 
bumps) that flexibly fills the beat duration 
depending on the tapping tempo. Hence, neural 
sequences provide a relative representation of 
how far an interval has evolved between the taps 
(Merchant et al., 2015b; Crowe et al., 2014; Zhou 
et al., 2020). Notably, this periodic clock resets 
on every period cycle, encoding the interval pulse 
in this resetting. In fact, the neural chain progres-
sion starts with a group of cells, migrates to other 
cells during the timed interval, stops with the last 
group of cells, and simultaneously is initialized 
for the next produced interval with the previous 
initial set of cells (Lenc et al., 2021; Gámez et al., 
2018; Merchant et al., 2015b). Three parameters 
of the moving bumps are directly linked with the 
representation of the tapping tempo duration: (1) 
The duration of the activation period for each cell 
within the moving bump, (2) the number of neu-
rons comprising the neural sequence, and (3) 
neural recruitment lapse, which is the time 
between pairs of consecutively activated cells 
(see Fig. 5c). We have shown that the rhythmic 
neural clock in MPC uses a mixed encoding strat-
egy between temporal scaling and absolute time 
encoding to represent the tempo. Under the tem-
poral scaling scenario, the activation profile of a 
neuron in the moving bump is the same between 
target durations but shrinks for short and elon-
gates for longer tempos. Under the absolute tim-
ing strategy, the activation periods are the same 

across durations, but additional neurons are 
recruited for longer durations so that the new 
neurons are active in the last portion of the inter-
val (Zhou et al., 2022). Our results indicate that 
both the duration and the number of neurons 
increased as a function of the target tempo in the 
task, indicating the presence of both types of 
encoding strategies (Merchant et  al., 2015b; 
Gámez et al., 2019).

Neural sequences have been reported in the 
striatum (Kim et al., 2013; Gouvêa et al., 2015; 
Zhou et  al., 2020; Mello et  al., 2015; Bakhurin 
et  al., 2017; Jin et  al., 2009), prefrontal cortex 
(Kim et al., 2013; Tiganj et al., 2017), and medial 
premotor areas (Merchant et al., 2015b; Gámez 
et al., 2019; Crowe et al., 2014; Murakami et al., 
2014) in perception and production interval- and 
beat-based timing tasks across primate and rodent 
species. Hence, this is a population code that is 
widespread across the CTBGc core timing net-
work and the prefrontal cortex during different 
timing paradigms and maybe the most reliable 
neural population clock. In fact, a recent empiri-
cal and computational study suggested that neu-
ral sequences are an effective representation of 
time from the downstream readout point of view 
(Zhou et al., 2020).

 Neural Population Trajectories

The time-varying activity of cell populations can 
be projected into a low-dimensional state space 
using dimensional reduction techniques. These 
techniques capture the covariance of the activity 
of the cell population across time and can reveal 
emergent properties that are not present in the 
single-cell activity (Elsayed & Cunningham, 
2017). Indeed, the neural trajectories that we 
obtained using principal component analysis 
(PCA) on more than a thousand MPC neurons 
recorded in the SCT show the following proper-
ties (Fig. 5a, d) (Mendoza et al., 2016). First, they 
have circular dynamics that form a regenerating 
loop for every produced interval. Notably, the 
population state during pulse-based predictive 
timing correlates with the traversed proportion of 
an interval (relative timing) instead of its absolute 
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Fig. 5 (a) Simplified version of the SCT with only three 
produced intervals in the synchronization epoch. The 
small speakers correspond to the isochronous stimuli for 
the fast and slow tempos. The color code of the three pro-
duced intervals is used in b and c to signal the timing neu-
ral population codes in the task sequence. (b) Neural 
sequences for the fast (top) and slow (bottom) tempos 
producing three regenerating moving bumps for each pro-
duced interval. Individually colored stripes are constituted 
by multiple horizontal lines, where each line corresponds 
to the onset and duration of the activation period for one 
cell. For the fast tempo, we simulated 200 cells with a 
mean activation duration of 200  ms, while for the slow 
tempo we simulated 280 cells with a mean activation 
duration of 300  ms. All cells were sorted by their peak 
activation time. (c) The three key parameters of neural 
sequences are outlined in pink: the number of cells in the 
moving bump, the duration of the activation period of 

each neuron, and the recruitment lapse that corresponds to 
the time between the activation peaks of two consecutive 
neurons. (d) Neural trajectories during the synchroniza-
tion task. The trajectory starts from a tapping separatrix 
(black cuboid), completes a cycle during every intertap 
interval, and returns to the tapping separatrix. The separa-
trix is invariant across durations and serial order elements 
of the task. The metronome’s tempo modulates the ampli-
tude of the trajectories and the serial order element as the 
third axes in the state population, generating for each pro-
duced interval an evolving population pattern of activa-
tion. The circles correspond to the tapping times and the 
arrows specify the direction of the trajectories’ move-
ment. Note that a similar population response profile is 
repeated cyclically for the three intervals (color coded) 
and that the resetting of each moving bump corresponds to 
a potential internal pulse representation

magnitude (Balasubramaniam et  al., 2021; 
Gámez et al., 2019). Second, the periodic trajec-
tories increase in amplitude as a function of the 
tapping interval. These period-dependent incre-

ments in the trajectory radius result from a larger 
number of neurons within a moving bump 
(Gámez et al., 2019). Finally, the neural popula-
tion trajectories converge in similar state space at 
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tapping times, resetting the pulse-based clock at 
this point (Gámez et al., 2019) (Fig. 5c). Hence, 
the convergence to this neural attractor state 
could be the internal representation of the pulse 
transmitted as a phasic top-down predictive sig-
nal to the auditory areas before each tap (Lenc 
et al., 2021).

The notion that beat-based timing depends on 
a population clock whose dynamics at each 
instant correspond to a unique pattern in state- 
space started in 2014 (Merchant et al., 2014). In 
that article, we suggested that on top of the 
single- cell encoding of time there was a popula-
tion timer that represented the relative passage of 
time, the duration of the produced intervals, and 
the serial order elements of the tapping sequence 
during SCT.  Since then, there have been many 
reports of neural population clocks during 
interval- based timing using neural trajectories in 
medial premotor areas (Wang et al., 2018; Sohn 
et al., 2019; Remington et al., 2018; Gámez et al., 
2019), prefrontal cortex (Kim et al., 2013; Henke 
et  al., 2021; Xu et  al., 2014), and the striatum 
(Zhou et al., 2020). These neural clocks can com-
pute elapsed time in the final position, time 
remaining for an action in the time scaling and, 
flexibly incorporate the task context into the 
kinematics of the neural trajectories (Henke 
et al., 2021; Remington et al., 2018; Egger et al., 
2019; De Lafuente et  al., 2022). Therefore, the 
neural trajectory clock is now the most accepted 
neurophysiological mechanism to quantify and 
predict events in time in both interval- and beat- 
based timing tasks (Tsao et al., 2022). The paral-
lelisms between the geometric and kinematic 
properties of neural trajectories and the proper-
ties of neural sequences have also been thor-
oughly documented (Betancourt et al., 2023).

 Integrating Layers of Neuronal Clocks 
in the Medial Premotor Cortex

Our neurophysiological recordings in behaving 
animals indicate that MPC, an area of the core 
timing mechanism (Merchant et al., 2013a), uses 
multiple encoding strategies and different organi-
zation levels to represent diverse aspects of the 

temporal and sequential structure of the SCT. The 
different types of ramping activity; the cells with 
mixed selectivity to tempo duration, serial order, 
and elapsed time; the progressive patterns of neu-
ronal activation; and the neural trajectories must 
be interlinked to generate a coordinated popula-
tion clock that flexibly processes temporal infor-
mation across a wide variety of tasks. 
Consequently, it is crucial to generate metrics 
that define the rules of interaction between these 
temporal signals and to determine the bidirec-
tional effects of lower to upper levels of the neu-
ral organization on timing. It is also fundamental 
to determine the interaction between the neural 
clock and other task components such as decision 
making, reinforcement learning, the calculation 
of value, and the impact of previous trials of the 
task-solving strategy. Important attempts to 
tackle the first issue come from our lab, where we 
have documented that different types of ramping 
activity are active at different stages of the neural 
sequences, that duration-tuned cells are mainly 
engaged in the intermediate part of the moving 
bumps, and that the geometry and kinematics of 
neural trajectories have a counterpart in the prop-
erties of the neural sequences (Betancourt et al., 
2023; Gámez et al., 2019). Recently, the group of 
Thurley also linked the properties of mixed selec-
tivity, ramping, neural sequences, and neural tra-
jectories (Henke et  al., 2021) during single 
interval measurement and reproduction in the 
prefrontal cortex of gerbils. Nevertheless, an 
integrated analysis on the timing mechanisms 
across tasks and species is lacking and urgently 
needed.

 Structural Bases for Beat-Based 
Timing During SCT

Although rhythmic entrainment is prevalent 
across all human cultures (Nettle, 2000), there 
are wide individual differences in the precision, 
accuracy, and predictability of movement syn-
chronization (García-Saldivar et  al., 2022). A 
critical unanswered question is what the struc-
tural bases for these differences in SCT are. To 
address this issue, we first obtained 
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 diffusion- weighted images from human subjects 
who also performed the SCT with auditory or 
visual metronomes and five tempos ranging from 
550 to 950 ms. Then, we developed a method to 
determine the fiber density of U-fibers running 
tangentially to the cortex (García-Saldivar et al., 
2022), which are the core fiber system for corti-
cocortical associations (Schüz & Braitenberg, 
2002). Notably, the right audio-motor system 
(including MPC) showed individual differences 
in the density of U-fibers that were highly corre-
lated with the degree of predictive entrainment 
across subjects, measured with the asynchronies 
during the SCT. These correlations were selective 
for the synchronization epoch and were specific 
for auditory metronomes with tempos around 
700 ms. In addition, we found that the predictive 
rhythmic entrainment abilities of subjects were 
significantly associated with the density and bun-
dle diameter of the corpus callosum (CC), form-
ing a chronotopic map where behavioral 
correlations of short and long intervals were 
found with the anterior and posterior portions of 
the CC (García-Saldivar et  al., 2022). 
Consequently, these findings support the notion 
that the structural properties of the superficial 
and deep white matter of the audio-motor system 
define the predictive abilities of subjects during 
rhythmic tapping.

A similar methodology can be applied to 
determine the structural changes in the white 
matter and the plastic modifications of cortical 
thickness due to intensive learning in nonhuman 
primates (Garcia-Saldivar et al., 2021; Messinger 
et al., 2021; Poirier et al., 2021). Indeed, a longi-
tudinal approach can be used to collect and ana-
lyze image data at different stages of learning to 
determine the effects of training on rhythmic per-
ception and entrainment tasks in macaques (Song 
et  al., 2021; Milham et  al., 2020). Preliminary 
observations from our lab suggest that the density 
of superficial white matter in the cortical areas of 
the core timing network (Merchant et al., 2013a) 
undergoes learning-induced changes. Crucially, 
this structural information can be used in con-
junction with behavioral and neurophysiological 
information to generate a multimodal map that 
combines all these data in the same structural 

framework. This integrated construct can be used 
to understand more deeply the anatomofunc-
tional correlates of rhythmic behavior for each 
animal and across animals (Garcia-Saldivar et al., 
2021).

 Some Considerations on the Brain 
Mechanisms Behind Interval- 
and Beat-Based Timing

The recent myriad of neurophysiological studies 
on the neural basis of timing have mainly focused 
on the timing signals of the striatum and medial 
prefrontal cortex in rodents performing single 
interval tasks (Gouvêa et al., 2015; Mello et al., 
2015; Bakhurin et  al., 2017; Jin et  al., 2009; 
Tiganj et al., 2017; Milham et al., 2020; Emmons 
et  al., 2017). These papers have documented 
ramping activity, neural sequences, and trajecto-
ries with time scaling properties. The main prin-
ciple behind these studies is that time can be 
represented as stable, repeatable activity patterns 
in single cells so that the overall population state 
activity systematically changes as a function of 
time within these two connected brain areas. This 
rule is followed on tasks in the range of hundreds 
of milliseconds and seconds (Tsao et al., 2022). 
On the other hand, the human imaging and lesion 
literature support the hypothesis of functionally 
nonoverlapping mechanisms of interval- and 
beat-based timing, with the separable contribu-
tions of the cerebellum and basal ganglia to these 
two types of temporal processing (Grube et al., 
2010a; Breska & Ivry, 2018; Teki et  al., 2012). 
Obviously, the rodent neurophysiology on single 
interval tasks in the striatum contradicts this 
hypothesis. All these studies claim that the basal 
ganglia are a key component of single interval 
timing. This discrepancy could be due to several 
factors, including: (1) the limited generalization 
in the brain anatomy of the rodent and the human, 
especially regarding the frontal lobe and the basal 
ganglia (Mendoza & Merchant, 2014); (2) the 
limited range of timing behaviors than can be 
trained in rodents, compared with the immense 
flexibility and behavioral repertoires in humans 
for measuring time; (3) the methodological 
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restrictions of measuring the neural activity in 
human using the slow BOLD signal (seconds 
resolution) or the inherent problems of using 
behavior in neurological patients to understand 
brain mechanisms (Merchant et  al., 2008c). 
Needless to say, the neurophysiology in nonhu-
man primates can partially address these issues 
since the anatomy, physiology, and behavioral 
spectrum in monkeys is quite close to that of 
humans (Mendoza & Merchant, 2014; Merchant 
et al., 2003b, 2004; Honing & Merchant, 2014). 
In particular, invasive high-density electrodes can 
be placed in many areas simultaneously during 
task performance (Mendoza et al., 2016), obtain-
ing neurophysiological signals that can reveal a 
potential neural clock generalizable to the Homo 
sapiens. Recordings in the primate putamen on 
single interval reproduction tasks have revealed 
neural signals with the same properties observed 
in rodents (Wang et al., 2018; Sohn et al., 2019); 
while experiments in monkeys performing a 
rhythmic event detection task have shown that 
the cerebellum provides more accurate time pre-
dicting information than the caudate (Kameda 
et al., 2019). Furthermore, in a rhythmic saccadic 
task where monkeys show predictive timing 
behavior (Takeya et  al., 2017), the cerebellum 
shows a complex set of responses, including pre-
dictive rhythmic activity (Okada et  al., 2022). 
Therefore, these studies clearly contradict the 
notion of a dissociation in the mechanisms for 
interval- and beat-based timing, and instead sug-
gest that both the basal ganglia and the cerebel-
lum play important roles in timing both single 
and periodic events in coordination with the 
medial premotor areas. Further experiments with 
simultaneous recordings across these circuits in 
macaques performing both single and rhythmic 
timing tasks are urgently needed to have a clear 
notion of how the basal ganglia and the cerebel-
lum dynamically encode temporal information in 
conjunction with the premotor areas.
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Abstract

In rodents and primates, interval estimation 
has been associated with a complex network 
of cortical and subcortical structures where 
the dorsal striatum plays a paramount role. 
Diverse evidence ranging from individual 
neurons to population activity has demon-
strated that this area hosts temporal-related 
neural representations that may be instrumen-
tal for the perception and production of time 
intervals. However, little is known about how 
temporal representations interact with other 
well-known striatal representations, such as 
kinematic parameters of movements or 
somatosensory representations. An attractive 
hypothesis suggests that somatosensory repre-
sentations may serve as the scaffold for com-
plex representations such as elapsed time. 
Alternatively, these representations may coex-
ist as independent streams of information that 
could be integrated into downstream nuclei, 
such as the substantia nigra or the globus palli-
dus. In this review, we will revise the available 
information suggesting an instrumental role of 

sensory representations in the construction of 
temporal representations at population and 
single-neuron levels throughout the basal 
ganglia.

Keywords

Basal ganglia · Timing · Action · Sensory 
processing

 Introduction

The basal ganglia (BG) are a group of subcortical 
nuclei implicated in motor function. While their 
specific function is still debated, multiple streams 
of evidence in human and nonhuman primates, 
felines, and rodents indicate their involvement in 
action selection, postural control, and modulation 
of movement parameters, such as vigor, timing, 
and kinematics (Graybiel, 2008; Redgrave et al., 
2010; Turner & Desmurget, 2010; Dudman & 
Krakauer, 2016; Yin, 2017; Robbe, 2018). In 
rodents, the main nucleus of the BG is the stria-
tum, which in turn can be subdivided into three 
functional regions: the ventral striatum, receiving 
information mainly from limbic regions includ-
ing the medial and orbital prefrontal cortex; the 
dorsomedial striatum, receiving information 
mainly from dorsolateral prefrontal and premotor 
cortices; and the dorsolateral striatum (DLS), 
receiving information mainly from sensorimotor 
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regions of the cortex and thalamus (Redgrave 
et al., 2010). The DLS, also known as sensorimo-
tor striatum, has been more commonly impli-
cated in motor control and time-related processes 
(Buhusi & Meck, 2005; Redgrave et  al., 2010; 
Merchant et  al., 2013). In humans, BG lesions 
produce chronometric dysfunctions; for example, 
patients with bilateral striatal lesions present 
problems with interval production and, to a lesser 
extent, with interval perception (Coslett et  al., 
2010; Schwartze et  al., 2015; Nozaradan et  al., 
2017). Similar results have been found in patients 
with Parkinson’s disease and Huntington’s dis-
ease who were tested in different interval timing 
protocols. Both types of patients tended to pres-
ent strong impairments not only in interval per-
ception but also in interval production (Rowe 
et  al., 2010; Beudel et  al., 2013; Honma et  al., 
2016, 2018). In rodents, bilateral striatal lesions 
completely abolished timing behavior in a peak- 
interval timing procedure (Meck, 2006). In a pro-
tocol where rats were trained to execute a timed 
sequence of movements while running on a 
motorized treadmill, bilateral striatal lesions 
affected speed control and behavioral timing 
(Jurado-Parras et al., 2020). While the BG have 
been associated with various behaviors, little is 
known about the potential interactions between 
the well-characterized sensorimotor functions 
and other relevant functions, such as the percep-
tion or production of time intervals. With the 
objective of creating a conceptual bridge between 
these apparently different functions, in the fol-
lowing sections, we will analyze the available 
literature where, in our opinion, timing and sen-
sorimotor functions intersect and arise from the 
neural dynamics of the same neural populations.

 The Dorsolateral Striatum: 
A Sensorimotor Hub Implicated 
in Interval Perception 
and Production

Cortical activity has been typically associated 
with temporal processing from ramping spiking 
patterns at the single-cell level in the medial pre-
motor cortex (MPC) (Merchant et  al., 2011) to 

whole cortical regions containing temporal infor-
mation embedded in the population activity, 
commonly known as “population clocks” 
(Buonomano & Laje, 2010). In these population 
dynamics, temporal information can be extracted 
from the sequential activation of neurons within 
the population (Zhou et al., 2020), that is, from 
the “temporal position” of each cell within an 
activation sequence triggered by a particular 
stimulus or behavioral transition (Jin et al., 2009). 
Furthermore, temporal information can also be 
extracted from the geometrical characteristics of 
the cortical population’s neural trajectories 
(Gámez et al., 2019). Altogether, various lines of 
evidence in primate literature suggest that the 
MPC carries time-related information at the 
single- cell and population level. The evidence 
also supports the notion that in primates, this 
region is implicated in the perception and pro-
duction of time intervals. However, sensorimotor 
cortices massively innervate the striatum, where 
single-neuron and population temporal-related 
dynamics have also been reported, making it dif-
ficult to understand if the temporal representa-
tions in the striatum are partially or completely 
inherited from cortical regions, or whether par-
tially or completely produced locally (Wang 
et  al., 2018). For example, in primates, striatal 
spiking activity has been associated with timing 
perception. In an interval discrimination proce-
dure, the striatal bursting activity of individual 
neurons was associated with the presentation of 
different stimulus durations, delay periods, and 
final choices, suggesting a potential involvement 
in interval categorization (Chiba et  al., 2015). 
Conversely, when animals were required to pro-
duce a particular time interval, individual striatal 
neurons tracked the passage of time in an adjust-
able ramping fashion during three different 
instructed intervals (Kunimatsu et  al., 2018). 
Moreover, important examples of the role of the 
corticostriatal networks at the single-cell and 
population levels have recently emerged from the 
rodent literature. At the single-cell level, rodent 
cortical dynamics have been shown to present 
both ramping activity and sequential activation in 
relation to specific time intervals (Kim et  al., 
2013; Xu et  al., 2014; Henke et  al., 2021). 
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Likewise, subpopulations of DLS neurons have 
been described to discharge at specific time inter-
vals associated with rewards, suggesting that this 
brain region could represent behaviorally rele-
vant intervals (Matell et  al., 2003). Similar to 
what has been found in primates, Gouvêau et al. 
(2015) demonstrated that in rats trained to dis-
criminate between long- and short-time intervals 
on the scale of a few hundreds of milliseconds, 
striatal neural population dynamics are organized 
in sequences of activation, and population trajec-
tories drawn from dimensionally reduced dynam-
ics from the same activity adjust their speed 
depending on the duration of the interval (Gouvêa 
et al., 2015). Along the same line, in rats trained 
to lever press at different fixed-interval ratios 
ranging from 12 to 60  s, striatal population 
dynamics covered the interval to be estimated 
and the sequential activation order of the cells 
scaled with the target interval (Mello et al., 2015). 
In another example, Bakhurin and colleagues 
(Bakhurin et al., 2017) trained mice to lick from 
a water spout starting 2.5 s after the presentation 
of a particular odorant. In this work, striatal and 
cortical population dynamics were analyzed and 
compared, demonstrating that striatal activity 
was significantly more useful to decode the pas-
sage of time in the 2.5-s interval between the 
odor presentation and motor response.

The previous examples illustrate the striatal 
involvement in the perception of time intervals in 
rodents, but a few other examples have also 
addressed its participation in time interval pro-
duction. Rueda-Orozco and Robbe trained rats to 
execute a timed sequence of accelerations and 
deaccelerations while running on a motorized 
treadmill at a fixed speed (Rueda-Orozco & 
Robbe, 2015). The authors found robust DLS 
speed and spatial representations of the sequence 
of movements, but interestingly and in contrast 
with the previous examples, they only found a 
few individual cells that presented correlations 
with elapsed time, suggesting that this variable 
may be better represented in the ensemble activ-
ity. In the same work, the authors were able to 
compare the sequential activation of neurons 
associated with execution sequences of move-
ments in expert and naïve animals. While the 

kinematic representations were specific to the 
expert rats, the sequential activation elicited by 
movement execution was present in both groups. 
This observation suggested a strong learning- 
independent sequential organization evolving in 
time and triggered by relevant behavioral events, 
as a potential temporal structure to contextualize 
motor commands (Paton & Lau, 2015; Rueda- 
Orozco & Robbe, 2015). Recently, a similar idea 
was proposed and tested by Toso et al. (2021). In 
this work, rats were trained to estimate the dura-
tion of patterns of somatosensory stimulation 
applied to the animal’s whiskers. These patterns 
changed in duration, frequency, and amplitude. 
As in all the previous examples, the authors 
found clear DLS sequential activations that 
spanned for the duration of trials, but inherently, 
these were decoupled from the animals’ judg-
ments of duration. The authors concluded that 
trial-related temporal representations in the form 
of sequential activation are inherent to the DLS 
but have no impact on the judgment of specific 
intervals presented during the same trial (Toso 
et al., 2021).

The previous examples support the notion that 
striatal sequential activations are a robust phe-
nomenon that can be triggered by specific behav-
ioral circumstances, such as odors or cutaneous 
stimulations, or the beginning of trained (or 
untrained) movement sequences. In fact, in a 
recent article, it has been demonstrated that these 
DLS sequences can also be evoked in anesthe-
tized conditions by applying specific patterns of 
somatosensory stimulation (Hidalgo-Balbuena 
et al., 2019). While it is difficult to question the 
presence of this organized neural unfolding, its 
specific contribution to timed behavior, if any, is 
still yet to be fully determined. In this context, 
two future lines of research may help to clarify 
this point: first, determining the exact source of 
these sequential activations and whether they are 
linked to sensory feedback or can be self- 
sustained after being triggered by sensory or 
motor commands from cortical or thalamic inputs 
to the striatum, and second, manipulating these 
sequences during different behavioral contexts, 
for example, during behavioral protocols specifi-
cally designed to produce or sense time intervals. 
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In the following sections, we will address the lat-
est evidence in both directions.

 Sensory Processing in the DLS: 
Beyond Sensory Feedback 
for Sensorimotor Transformations

The somatotopic sensory representation in the 
striatum has been described for decades in pri-
mates and rodents (West et al., 1990; Carelli & 
West, 1991; West, 1998; Reiner et  al., 2003; 
Coffey et al., 2016; Hintiryan et al., 2016). These 
representations have been accepted as the intrin-
sic anatomical organization of corticostriatal 
communication, and recently, it has been demon-
strated that cortical activity permeates the stria-
tum in a topographically organized fashion 
(Peters et al., 2021). However, the exact role of 
these representations is not entirely clear. In the 
context of motor control, a straightforward pos-
sibility is that these representations may be nec-
essary to contextualize action maps and provide 
sensory feedback for movement control. In 
humans, somatosensory functions, such as 
somatosensory discrimination or tactile object 
shape recognition, have been reported to be 
impaired in Parkinsonian patients (Weder et al., 
1999, 2000), and basic sensory processing and 
integration appear to be disrupted in rodent mod-
els of Parkinson’s disease (Ketzef et  al., 2017; 
Peña-Rangel et al., 2021).

How sensory information is processed in the 
striatum? In this section, we will focus on 
somatosensory processing, mostly from the 
whisker and forelimb systems. First, in the 
rodent, different streams of sensory information 
reach the DLS from the primary somatosensory 
cortex (Hoover et al., 2003) and sensory regions 
of the thalamus (Erro et al., 2001, 2002; Díaz- 
Hernández et al., 2018; Hidalgo-Balbuena et al., 
2019). Second, it has been demonstrated that 
striatal medium spiny neurons (MSNs) from 
both direct (dMSNs) and indirect (iMSNs) path-
ways are able to integrate information from dif-
ferent sensory modalities, such as somatosensory 
and visual modalities (Reig & Silberberg, 2014; 
Coffey et  al., 2017), and from ipsilateral and 

contralateral sensorimotor cortices (Reig & 
Silberberg, 2016). Third, it has been suggested 
that information is greatly “filtered” in its tran-
sition from the cortex to the striatum. In a rodent 
study, cortical layer 5 neurons from the barrel 
field projecting to the DLS were antidromically 
identified by stimulating the DLS. While most 
of the cortical neurons were responsive to whis-
ker stimulation, only about a third of the neu-
rons recorded in the DLS responded to the same 
stimulation (Pidoux et al., 2011). Fourth, striatal 
sensory representations are used to guide learn-
ing and reward associations. In an elegant work 
on the barrel system of mice, whisker stimula-
tion was associated with water rewards, and 
conditioned responses were defined as “licks” to 
a waterspout. Whisker-related depolarizations 
associated with rewards (but not when animals 
made mistakes) were detected in the membrane 
potential of MSNs from the DLS (Sippy et al., 
2015). In the same work, it was demonstrated 
that both dMSNs and iMSNs exhibited signifi-
cant membrane potential depolarizations, but 
dMSNs presented the shortest response laten-
cies and associated action potentials, while the 
iMSNs’ depolarizations were not sufficient to 
trigger action potentials. The authors also 
reported that substituting whisker stimulation 
(in catch trials) with optogenetic activation of 
dMSNs, but not iMSNs, efficiently evoked the 
conditioned response (Sippy et al., 2015). These 
results are consistent with the role of the BG in 
sensorimotor transformation, which can either 
bias the behavior toward a reward or simply ini-
tiate a sensory-guided action, in this case “lick-
ing.” Additional work has shown that the 
primary motor (M1) and sensory (S1) cortex 
provide differential inputs to the subpopulations 
of neurons in the DLS. Lee et al. have proposed 
that S1 (but not M1) provides stronger inputs to 
parvalbumin interneurons, typically known as 
fast-spiking interneurons, than to MSNs (Lee 
et  al., 2019; Johansson & Silberberg, 2020). 
Interestingly, optogenetic S1-DLS terminal acti-
vation during a sensory discrimination protocol 
induced a response inhibition, while M1-DLS 
terminal activation induced a facilitated behav-
ioral outcome.
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Until recently, striatal sensory information has 
been studied in the context of stimulus-reward 
associations, providing a potential basis for 
movement timing; that is, the moment when 
movements may be initiated or repressed. 
However, movement initiation constitutes only a 
piece of the puzzle. Sensory information through-
out the cortico-BG-thalamic circuits is a constant 
flow that accompanies motor execution, for 
example, when rodents freely explore the world 
with whiskers and forelimbs, usually in a rhyth-
mic fashion (West et al., 1990; Shi et al., 2005; 
Rueda-Orozco & Robbe, 2015; Hidalgo- 
Balbuena et al., 2019). Hence, the study of senso-
rimotor processing in the BG has recently 
benefitted from sensory information analyses in 
the context of continuous motor execution or 
stimulation patterns that mimic motor execution. 
In this context, repetitive sensory stimulation of 
the whiskers or forelimbs induces different pat-
terns of response adaptation in cortical and DLS 
neurons (Smith et al., 2012; Peña-Rangel et al., 
2021). It has been proposed that different pat-
terns of adaptation (short-term facilitation or 
inhibition) are related to the propensity of recur-
rent networks, such as the cortex or striatum, to 
generate sequential patterns of activation 
(Carrillo-Reid et al., 2015b; Goel & Buonomano, 
2016). These striatal sequential patterns that can 
be observed in isolated brain slices (Carrillo- 
Reid et al., 2008) or in rodent behavior (Barbera 
et al., 2016) may be a mechanism through which 
a constant sensory flow to the BG helps to sense 
or to produce time intervals.

 Sensory Information in the DLS: 
A Dynamic Pacemaker 
to Contextualize Motor Timing

One intrinsic characteristic of sensory systems is 
that, under particular circumstances, they are 
entrained to behavioral dynamics. For example, 
in the case of the olfactory system, the sensation 
is rhythmically organized and tightly linked to 
the respiratory rhythm (Cury & Uchida, 2010; 
Junek et al., 2010). The encoding consequences 
of this imposed rhythm are still under debate, but 

one possibility is that breathing may act as an 
oscillatory pacemaker creating windows for the 
integration of information at brain-wide scales 
that may be important for cognitive functions, 
such as memory consolidation (Karalis & Sirota, 
2022). Similarly, rhythmic auditory and visual 
information have been probed to serve as external 
pacemakers that entrain cortical and subcortical 
activity into circular population dynamics to 
encode beats or complex rhythms which may 
ultimately guide rhythmic behavior (Cadena- 
Valencia et  al., 2018; Gámez et  al., 2019). 
Another important characteristic is that sensory- 
evoked responses at the single-cell and popula-
tion levels appear to share temporal dynamics 
independently of the sensory modality, suggest-
ing a common scaffold for information process-
ing that can be used for cognitive and motor 
functions (Luczak et al., 2015). In the somatosen-
sory system, at the single-cell level, these 
responses can be observed as complex patterns 
consisting of short-latency activations frequently 
followed by a transient inactivation and a rebound 
(Fig. 1a) (Chapin et al., 1981; Hidalgo-Balbuena 
et al., 2019; Peña-Rangel et al., 2021). These pat-
terns present a variety of response latencies 
across the population, giving the impression of 
sequential activation covering hundreds of milli-
seconds following the stimulation onset (Fig. 1b, 
c). Furthermore, the temporal architecture of 
these population dynamics (Fig. 1c) appears to be 
spontaneous and recruited by the corresponding 
sensory stream (Luczak et  al., 2007, 2009; 
Carrillo-Reid et al., 2015a). In this context, DLS 
activity is strongly permeated by topographically 
organized somatosensory representations (West 
et  al., 1990; West, 1998; Reiner et  al., 2003; 
Hintiryan et  al., 2016). From these, forelimb, 
hindlimb, mouth, and whisker representations 
would be naturally prone to be rhythmically 
entrained during locomotion, mastication, or 
exploration. The whisking cycle, for example, 
oscillates at around 10  Hz (Deschênes et  al., 
2016; Sreenivasan & Petersen, 2016). These sig-
nals can be recorded in the DLS of unrestrained 
or anesthetized rodents (Alloway et  al., 2009; 
Smith et al., 2012, 2014). The relevance of these 
rhythmic signals in the striatum has not been 
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Fig. 1 Sensory-evoked responses organized in sequences 
covering hundreds of milliseconds. (a) Somatosensory- 
evoked activity in six representative neurons recorded in 
the dorsolateral striatum (color-coded). Spike rasters and 
peri-histograms are aligned to the onset of somatosensory 
stimulation (red lines and arrowheads) of the contralateral 
forepaw palm to the recording site. For each neuron, the 
moment of the highest firing rate after stimulus onset is 
indicated by a colored dot. (b) The average activity of 

neurons displayed in A was normalized to the highest 
peak, revealing a variety of latencies spanning hundreds 
of milliseconds. (c) Average firing rate (z-scored) for 
more than 400 neurons recorded in the striatum, sorted by 
the time of the highest activity after stimulus onset (red 
arrowhead). Cells displayed in this figure were collected 
in experiments reported in (Hidalgo-Balbuena et  al., 
2019; Peña-Rangel et al., 2021)

determined, but one possibility is that it may 
serve as a pacemaker to facilitate inter-region or 
interstructure communication. Along the same 
line of thinking, in rats, the forelimb cycle during 
locomotion typically oscillates between 2 and 
3 Hz depending on movement speed (West et al., 
1990; Carelli & West, 1991; Shi et al., 2004). In 
this case, in previous work from our group, we 
explored the relevance of these striatal rhythmic 
signals (Hidalgo-Balbuena et al., 2019). First, by 
using an anesthetized model where sensory sig-
nals can be reliably recorded in sensory regions 
of cortical, striatal, and nigral regions (Mochol 
et  al., 2015; Peña-Rangel et  al., 2021), we 

induced striatal population sensory responses 
evoked by 3.3  Hz trains of cutaneous stimuli 
mimicking the forelimb cycle when animals are 
running at speeds of ~30 cm/s. This stimulation 
protocol evoked cortical and striatal population 
dynamics organized in neural sequences that cov-
ered the 300-ms interval between stimuli 
(Hidalgo-Balbuena et  al., 2019; Peña-Rangel 
et  al., 2021). Interestingly, when activity was 
analyzed throughout the train of 5 stimuli, 
sensory- evoked striatal population dynamics 
were more useful to decode elapsed time as com-
pared to the decoding from cortical activity 
(Hidalgo-Balbuena et al., 2019). These observa-
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tions suggest a prewired striatal network configu-
ration that can be recalled by sensory stimulation 
even in artificial experimental conditions and that 
is independent of motor commands. Such net-
work dynamics have been observed in in  vitro 
conditions in cortical culture cells (Goel & 
Buonomano, 2016) and similar dynamics have 
been reported in striatal slices (Carrillo-Reid 
et al., 2008), supporting the idea that an intrinsic 
functional property of neural networks is the 
organization in sequential dynamics from which 
time can be decoded (Goel & Buonomano, 2014). 
While this is an attractive alternative, there are 
still some important questions to answer. For 
example, what type of timing would these dynam-
ics represent? Would these signals be useful to 
exclusively perceive time, or would they also be 
useful to guide timed actions? To address these 
possibilities, in a previous report, we optogeneti-
cally activated/inactivated sensory pathways to 
the DLS in rats performing a stereotyped 
sequence of movements in a temporal interval of 
7 s. Inhibiting and exciting sensory pathways to 
the DLS induced the execution of shorter and 
longer sequences of movements, respectively. 
Further behavioral analysis revealed that changes 
in sequence duration were independent of move-
ment speed or motor confounds, confirming that 
these changes were related to under and overesti-
mation of the temporal interval, respectively 
(Hidalgo-Balbuena et al., 2019). These data indi-
cate that rhythmic sensory inputs to the DLS may 
constitute a temporal reference for movement 
production. In this study, striatal neural dynamics 
were not assessed during movement execution; 
hence, it was not possible to determine if the sen-
sory manipulations that induced behavioral 
changes also impacted DLS population dynam-
ics. In this sense, a more recent work suggests 
that striatal neural sequences can guide temporal 
judgments (Monteiro et al., 2023). By manipulat-
ing striatal temperature in rodents, authors were 
able to speed up or slow down both striatal 
sequential dynamics and temporal judgments, 
strongly suggesting that scaling striatal temporal 
population dynamics is the mechanism used to 
estimate elapsed time (Monteiro et  al., 2021). 
Further experiments would be necessary to eluci-

date the exact neural mechanism underlying the 
production of temporal intervals, but in our opin-
ion, the previous evidence strongly suggests that 
rhythmic entrainment induced by different sen-
sory streams to the BG may play a central role in 
this function.

 Sensory- and Time-Related Signals 
Throughout Cortico-Basal Ganglia- 
Thalamic Circuits

The striatum belongs to a macrocircuit that 
includes BG and extra-BG structures; hence, an 
important question arises about the diversity of 
the temporal representations that reach the cir-
cuits of the BG. Are striatal sensory and sequen-
tial representations distributed homogeneously 
throughout the different subpopulations of stria-
tal neurons and downstream BG nuclei? MSNs, 
the main striatal population, are further divided 
into two subpopulations expressing distinct sub-
classes: dopaminergic metabotropic receptors 
D1 and D2 (Albin et  al., 1989; Gerfen et  al., 
1990). MSNs expressing the D1 receptor are the 
origin of the direct pathway (dMSNs), project-
ing directly to the output nuclei of the BG, the 
globus pallidus internal segment (GPi) and the 
substantia nigra pars reticulata (SNr). MSNs 
expressing the D2 receptor are the origin of the 
indirect pathway (iMSNs), projecting to the 
external segment of the globus pallidus (GPe). 
Both pathways exert opposing effects over 
movement control, with dMSNs and iMSNs 
facilitating and inhibiting movement, respec-
tively (Albin et  al., 1989; Gerfen et  al., 1990; 
Kravitz et al., 2010; Cruz et al., 2022). The main 
source of dopamine to all BG nuclei is the sub-
stantia nigra pars compacta (SNc), and it has 
been reported that SNc neurons encode interval 
duration and that its activation or inactivation is 
sufficient to slow down or speed up time interval 
perception, respectively (Soares et  al., 2016). 
These data suggest that both pathways are per-
meated by time-related signals, but whether each 
pathway would represent time or not is still 
unknown. In this context, a recent work in mice 
demonstrated that both subpopulations of neu-
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rons develop strong and reliable sequential acti-
vations associated with forelimb movements 
(Sheng et al., 2019). Importantly, the experimen-
tal design included fixed intertrial intervals, and 
it was during this period when more iMSNs were 
implicated in sequential organization. These data 
suggest that interval representation may not be 
homogeneously represented in the striatum. 
Whether these iMSN/dMSN sequential activa-
tions are exclusively training- dependent or also 
spontaneous or triggered by sensory streams is 
yet to be defined. However, the latter possibility 
would not be surprising since; for example, it 
has been shown that whole-body somatosensory 
representations (Coffey et al., 2017) and rhyth-
mic signals related to licking (Chen et al., 2021) 
are present in both pathways, and both subpopu-
lations display different patterns of recurrent 
connectivity with other elements of the striatal 
microcircuit, such as neurons of the opposite 
pathway or interneurons (Taverna et  al., 2008; 
Chuhma et al., 2011). In this context, systemic, 
and intrastriatal administration of D2 but not D1 
antagonist produced an overestimation of time 
intervals in a “peak-interval” procedure (Drew 
et  al., 2003; De Corte et  al., 2019; Kamada & 
Hata, 2021). However, earlier studies suggest 
that both D1 and D2 receptor agonists and antag-
onists may produce similar time overestimations 
and underestimations, respectively (Frederick, 
1996). However, Cheung et  al. found that sys-
temic administration of quinpirole, a D2 recep-
tor agonist, caused an overestimation of time, 
while the administration of a D2 antagonist pro-
duced no impact on timing (Cheung et al., 2007). 
More recently, it has been reported that the stria-
tal optogenetic manipulation of the BG’s direct 
pathway produced a temporal representation 
reset of a fixed interval (Bakhurin et al., 2020). 
Indirect pathway activation induced a pause on 
the interval that proportionally recovered as 
optogenetic stimulation ceased (Bakhurin et al., 
2020). There are still many questions on whether 
the activity of a single pathway would be better 
to encode elapsed time; however, the available 
evidence arising from pharmacological and 
optogenetic research and experiments suggests 
that this may be the case.

The External Segment of the Globus 
Pallidus While there is a consensus on the par-
ticipation of the dopaminergic system in tempo-
ral processing, the specific anatomical and 
functional mechanisms are far from being fully 
understood. An alternative possibility to explore 
the role of the different pathways in temporal 
processing would be to focus on different ele-
ments of the BG beyond the striatum. Additionally, 
time representation may be considered an emer-
gent property of neural networks (striatal or 
extra-striatal), where the temporal dynamics 
could be mediated by their connectivity and the 
intrinsic properties of their elements (Goel & 
Buonomano, 2014). In this context, the GPe and 
the subthalamic nucleus (SthN) are anatomically 
independent entities typically associated with the 
indirect pathway. The GPe is a GABAergic 
nucleus considered the first relay of the indirect 
pathway. It targets the output nuclei of the BG 
(the internal segment of the GP and the SNr) with 
reciprocal connections with the striatum and 
SthN (Kita & Jaeger, 2016). Given that the GPe is 
centrally located within the BG, studying this 
area may be an interesting approach to explore 
the indirect pathway’s contribution to movement 
control and other components of behavior, 
including timing. In primates and rodents, GPe 
neurons display firing rates between 30 and 
80 Hz and adjust their activity patterns to passive 
and active movements of the arm and orofacial 
regions (DeLong, 1971; Alexander & DeLong, 
1985). In addition, these neurons can also couple 
their spiking activity to different temporal phases 
of movement or movement sequences, firing 
before, during, or at the end of the sequence 
(Hegeman et al., 2016). Previous reports on non-
human primates also demonstrate somatotopic 
representations of the different parts of the con-
tralateral hemibody, inheriting the topographical 
organization from the sensorimotor cortices and 
the DLS (Bevan, 2002; Jaeger & Kita, 2011; 
Nambu, 2011; Iwamuro et al., 2017). In terms of 
intrinsic properties, GPe shares important fea-
tures with time-related structures, such as the 
cortex of the striatum. For example, cortical sen-
sory/motor stimulations or even task-relevant 
events produce complex response patterns in the 
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firing rate of individual GPe neurons, character-
ized by an initial high-frequency discharge fol-
lowed by a transient inhibition and a final burst 
rebound (Alexander et  al., 1985; Bevan, 2002; 
Jaeger & Kita, 2011; Kita & Jaeger, 2016; 
Iwamuro et al., 2017). These complex response 
patterns have been described in cortical and stria-
tal regions (Chapin et  al., 1981; Hidalgo- 
Balbuena et al., 2019; Peña-Rangel et al., 2021) 
and have been proposed as “building blocks” of 
population spontaneous or evoked packets of 
information from which temporal representations 
can be extracted (Goel & Buonomano, 2014; 
Luczak et  al., 2015; Hidalgo-Balbuena et  al., 
2019) (Fig.  1). In summary, while there are no 
network analysis studies directly exploring the 
contribution of the GPe to time interval estima-
tion, the basic network elements observed in 
other brain regions would make this indirect 
pathway structure a suitable candidate to explore 
this possibility.

The Substantia Nigra Pars Reticulata The SNr 
is one of the two major output nuclei of the BG, 
receiving mostly inhibitory afferents from the 
striatum (direct pathway) and excitatory afferents 
from the SthN (indirect pathway) (Yoshida & 
Precht, 1971; Dray et  al., 1976; Parent et  al., 
1984). SNr neurons synthesize and release 
GABA tonically to its main targets, the motor 
thalamus (ventral medial/lateral; VM/VL) and 
the dorsal midbrain (Carpenter et  al., 1976; 
Parent et al., 1983; Hikosaka, 2007). In addition, 
SNr neurons display multiple collateral contacts 
with other SNr neurons, providing intrinsic feed-
back to regulate the output of the BG (Brown 
et al., 2014). SNr neurons show complex associa-
tions with sensory events (Nagy et  al., 2005; 
Brown et  al., 2014; Báez-Cordero et  al., 2020) 
and different phases of movement, such as prepa-
ration and execution (Hikosaka & Wurtz, 1983; 
Turner & Desmurget, 2010; Schmidt et al., 2013). 
An interesting feature of SNr neurons is that 
changes in their firing rate are rarely related to a 
single event. For example, the same cell might 
have multisensory responses (Nagy et al., 2005) 
and be modulated by saccades triggered by visual 
stimulation. Regarding the potential contribution 

to temporal processing, Shultz (1986) studied the 
electrophysiological properties of SNr neurons 
with extracellular recordings from single neurons 
in monkeys performing a behavioral GO/NO-GO 
paradigm, employing an initial preparatory tone, 
visual stimuli, and forelimb reaching movements. 
SNr neurons showed consistent changes in activ-
ity during performance, and these changes were 
not simply related to sensory stimuli or forelimb 
movements. Some neurons increase or decrease 
their activity during the period between an initial 
sensory stimulus and the availability to move for 
reward. Similar complex responses have been 
seen in SNr neurons in relation to oculomotor 
mechanisms (Wurtz & Hikosaka, 1986). These 
complex responses have been typically described 
as neural mechanisms related to motor planning 
or movement onset; however, some of their tem-
poral dynamics may also be related to temporal 
processing. For example, in mice trained to lick a 
waterspout for reward in a fixed-interval sched-
ule, stimulation of the SNr to the superior collic-
ulus pathway not only canceled licking (motor 
effect) but also delayed the initiation of anticipa-
tory licking for the next interval, suggesting that 
SNr may play a role in initiating actions and in 
adjusting central timing mechanisms (Toda et al., 
2017). However, in a cue-guided decision- 
making licking task in mice (Catanese & Jaeger, 
2021), the authors recorded single-unit activity in 
the VM/VL thalamus; these neurons showed a 
prominent ramping of activity during a delay 
epoch in anticipation of a Go cue signaling the 
onset of movement, suggesting that ramping 
activity was related to the timing of action initia-
tion. Next, the authors explored whether inhibi-
tion from the SNr during the delay epoch could 
affect behavioral outcomes through an alteration 
of ramping activity in VM/VL. To test this pos-
sibility, they optogenetically stimulated the SNr 
GABAergic terminals in the VM/VL thalamus 
during the delay epoch and found a decrease in 
impulsive licks and an increase in movement 
omissions. These behavioral changes were 
accompanied by a decrease in the ramping activ-
ity of multiple VM/VL neurons, further support-
ing the notion that SNr contributes to the 
appropriate timing of action initiation.
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The Motor Thalamus So far, we have revised 
BG neural dynamics that can be linked to tempo-
ral processing. However, the concerted activity of 
these motor nuclei would be meaningless without 
a reader. The main target of the output of the BG 
is the motor thalamus (MTh), a group of nuclei 
linking subcortical and cortical areas. The MTh 
can be divided into three regions: ventral anterior 
(VA), VL, and VM.  This complex receives the 
main projections from the cerebral cortex, the 
cerebellum, and the BG (Pare et  al., 1987; 
Sommer, 2003). Even when its participation in 
behavioral outcomes is not completely under-
stood, the evidence suggests that this complex is 
involved in motor functions such as timing, prep-
aration, initiation, and vigor of movements (Guo 
et  al., 2017; Gaidica et  al., 2018; Catanese & 
Jaeger, 2021; Inagaki et  al., 2022). In this con-
text, imaging studies in humans suggest the MTh 
is part of a network that activates during percep-
tual timing tasks (Rao et al., 1997; Stevens et al., 
2007; Teki et  al., 2011). For example, in a 
synchronization- continuation tapping task for 
humans, functional magnetic resonance imaging 
revealed that both conditions produced equiva-
lent activation on the sensorimotor cortex, cere-
bellum (dentate nucleus), and the right superior 
temporal gyrus, but only the “continuation” con-
dition produced an activation of the premotor 
medial system: supplementary motor area, puta-
men, and thalamus (VL nuclei), suggesting that 
the internal generation of the motor interval also 
implicates MTh (Rao et al., 1997). This has been 
further confirmed in stroke patients whose MTh 
is affected, producing more variable motor inter-
vals than healthy subjects or brain-injured con-
trols (stroke in another brain region) (Mole et al., 
2018). More specific studies from the group of 
Masaki Tanaka indicate that the MTh may be 
implicated in motor timing. For example, phar-
macological inactivation of the VL thalamus 
delayed saccades in primates (Tanaka, 2006), and 
many of the thalamic neurons displayed ramping 
activity in anticipation of external stimuli that 
trigger the saccade or self-timed saccades, sug-
gesting that MTh neurons carry preparatory sig-
nals that keep track of elapsed time until 
movement onset (Tanaka, 2007). More recently, 

the same group demonstrated that subpopulations 
of MTh neurons can extract temporal predictions 
from periodic sensory events (Matsuyama & 
Tanaka, 2021). The mechanisms behind these 
temporal computations are yet to be determined, 
but the previous evidence suggests that, as in the 
BG, time may be embedded as an emergent prop-
erty of thalamic network dynamics.

 Conclusions

In this work, we summarized relevant observa-
tions linking sensory processing with timed 
behavior throughout cortical, BG, and thalamic 
circuits. The first important observation is that 
sensory inputs to the sensorimotor striatum pro-
duce various robust complex patterns of activa-
tion at the single-cell level. These patterns are 
characterized by brief periods of bursting activity 
intermingled with silences with variable latencies 
after stimulation onset. These sensory-evoked 
responses can be observed under anesthetized 
conditions, suggesting a prewired configuration, 
and are not exclusive to the sensorimotor region 
of the striatum but can also be observed through-
out the different relays of the BG, such as the 
GPe or the SNr, and extra-BG regions such as the 
MTh and the primary somatosensory and motor 
cortices (Fig.  2). When these type of responses 
are plotted together and sorted according to the 
moment of highest activity, ensemble activity 
appears to organize as neural sequences covering 
hundreds of milliseconds after the presentation of 
a triggering stimulus (even in anesthetized condi-
tions) or a relevant behavioral event (Luczak 
et  al., 2015; Rueda-Orozco & Robbe, 2015; 
Hidalgo-Balbuena et  al., 2019; Monteiro et  al., 
2021; Peña-Rangel et al., 2021). This sequential 
dynamic appears to be a robust organization from 
which time can be decoded, but whose definitive 
function is still debated. A possible explanation is 
that these sequences can be a parallel and inde-
pendent organization to the typical sensorimotor 
organization that includes visual, auditory, and 
somatosensory representations, or the representa-
tion of task-relevant events or motor-related 
parameters, such as rewards or kinematic 
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Fig. 2 Sensory representations throughout cortico-basal 
ganglia-thalamic circuits. Somatosensory-evoked activity 
of example neurons recorded at different relays within the 
cortico-BG-thalamic circuit (color-coded). Activity in 
spike rasters and peri-stimulus histograms is aligned to the 
first five consecutive stimuli delivered at 3.3 Hz to the fore-
paw contralateral to the recording sites (upper right cor-
ner). All recordings were performed in 
urethane- anesthetized animals. Representative neurons 
from primary motor (M1) and sensory (S1) cortices 
(brown), dorsolateral striatum (blue), and substantia nigra 

pars reticulata (SNr; golden) were extracted from experi-
ments performed in the following publications (Hidalgo- 
Balbuena et  al., 2019; Báez-Cordero et  al., 2020; 
Peña- Rangel et  al., 2021; Pimentel-Farfan et  al., 2022). 
Representative neurons for the external segment of the glo-
bus pallidus (green) and the motor thalamus (MTh; purple) 
were collected in unpublished experiments from our group 
under identical conditions. No available data for the inter-
nal segment of the globus pallidus (GPi; orange) or the 
subthalamic nucleus (SthN, red). Maximum firing rates are 
indicated for each neuron on top of the histogram

 representations, respectively. In support of this 
notion, researchers have recorded striatal sequen-
tial activation in behaving rats performing 

sequences of movements (Rueda-Orozco & 
Robbe, 2015) or sensory discriminations (Toso 
et al., 2021) and have shown that this activation is 
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independent of the learning stage, kinematic 
encoding, or sensory discriminative properties of 
the striatal network. These sequences may pro-
vide a general sense of the passage of time, which 
might be useful to interval perception or to the 
temporal constraint of motor commands during 
interval production. These sequences may be 
started or entrained by sensory events, such as the 
rhythmic representation of the forelimb during 
locomotion (Hidalgo-Balbuena et  al., 2019) or 
the clicking sound during lever pressing tasks 
(Cook et al., 2022).

The fact that the ensemble dynamics recruited 
by sensory inputs throughout the different relays 
of the cortico-BG-thalamic circuits share impor-
tant features (e.g., sequential activation) suggests 
that to fully understand the role of sensory- 
evoked activity in perception and movement tim-
ing, it is necessary to determine the relationship 
between the sequential activation observed in dif-
ferent structures, for example, in the striatum and 
its anatomical targets—the GPe, GPi, and SNr. 
To this aim, a key challenge is developing experi-
mental approaches to manipulate sequential acti-
vation at different stages of these circuits and 
then evaluating the impact of these manipulations 
on time perception and time production. This has 
been partially achieved by specifically manipu-
lating somatosensory pathways to the DLS in 
animals performing behavioral protocols 
designed to produce time intervals (Hidalgo- 
Balbuena et al., 2019). However, it is still neces-
sary to combine this manipulative approach with 
simultaneous high-density neural recording 
methods and more complete behavioral protocols 
where production and perception of time inter-
vals can be compared.

References

Albin, R. L., Young, A. B., & Penney, J. B. (1989). The 
functional anatomy of basal ganglia disorders. Trends in 
Neurosciences, 12, 366–375. Available at: https://link-
inghub.elsevier.com/retrieve/pii/016622368990074X

Alexander, G.  E., & DeLong, M.  R. (1985). 
Microstimulation of the primate neostriatum. 
II. Somatotopic organization of striatal microexcitable 
zones and their relation to neuronal response prop-

erties. Journal of Neurophysiology, 53, 1417–1430. 
Available at: http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati
on&list_uids=4009227

Alexander, G. E., DeLong, M. R., & Delong, R. (1985). 
Microstimulation of the primate neostriatum. 
I.  Physiological properties of striatal microexcitable 
zones. Journal of Neurophysiology, 53, 1401–1416. 
Available at: http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati
on&list_uids=4009226

Alloway, K.  D., Smith, J.  B., Beauchemin, K.  J., & 
Olson, M.  L. (2009). Bilateral projections from rat 
MI whisker cortex to the neostriatum, thalamus, and 
claustrum: Forebrain circuits for modulating whisk-
ing behavior. The Journal of Comparative Neurology, 
515, 548–564. Available at: https://onlinelibrary.wiley.
com/doi/10.1002/cne.22073

Báez-Cordero, A.  S., Pimentel-Farfan, A.  K., Peña- 
Rangel, T., & Rueda-Orozco, P. E. (2020). Unbalanced 
inhibitory/excitatory responses in the substantia Nigra 
Pars Reticulata underlie cannabinoid-related slow-
ness of movements. The Journal of Neuroscience, 40, 
5769–5784. Available at: http://www.jneurosci.org/
lookup/doi/10.1523/JNEUROSCI.0045- 20.2020

Bakhurin, K.  I., Goudar, V., Shobe, J.  L., Claar, L.  D., 
Buonomano, D.  V., & Masmanidis, S.  C. (2017). 
Differential encoding of time by prefrontal and stria-
tal network dynamics. The Journal of Neuroscience, 
37, 854–870. Available at: http://www.jneurosci.org/
lookup/doi/10.1523/JNEUROSCI.1789- 16.2017

Bakhurin, K.  I., Li, X., Friedman, A.  D., Lusk, N.  A., 
Watson, G.  D. R., Kim, N., & Yin, H.  H. (2020). 
Opponent regulation of action performance and tim-
ing by striatonigral and striatopallidal pathways. 
eLife, 9, 1–25. Available at: https://elifesciences.org/
articles/54831

Barbera, G., Liang, B., Zhang, L., Gerfen, C.  R., 
Culurciello, E., Chen, R., Li, Y., & Lin, D. T. (2016). 
Spatially compact neural clusters in the dorsal stria-
tum encode locomotion relevant information. Neuron, 
92, 202–213. Available at: https://doi.org/10.1016/j.
neuron.2016.08.037

Beudel, M., de Geus, C. M., Leenders, K. L., & de Jong, 
B. M. (2013). Acceleration bias in visually perceived 
velocity change and effects of Parkinson’s bradykine-
sia. Neuroreport, 24, 773–778. Available at: https://
journals.lww.com/00001756- 201310020- 00003

Bevan, M. (2002). Move to the rhythm: Oscillations in 
the subthalamic nucleus–external globus pallidus 
network. Trends in Neurosciences, 25, 525–531. 
Available at: https://linkinghub.elsevier.com/retrieve/
pii/S016622360202235X

Brown, J., Pan, W.-X., & Dudman, J.  T. (2014). The 
inhibitory microcircuit of the substantia nigra pro-
vides feedback gain control of the basal ganglia out-
put. eLife, 3, 1–25.

Buhusi, C.  V., & Meck, W.  H. (2005). What makes us 
tick? Functional and neural mechanisms of interval 

P. E. Rueda-Orozco et al.

https://linkinghub.elsevier.com/retrieve/pii/016622368990074X
https://linkinghub.elsevier.com/retrieve/pii/016622368990074X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4009227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4009227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4009227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4009226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4009226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4009226
https://onlinelibrary.wiley.com/doi/10.1002/cne.22073
https://onlinelibrary.wiley.com/doi/10.1002/cne.22073
http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0045-20.2020
http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0045-20.2020
http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1789-16.2017
http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1789-16.2017
https://elifesciences.org/articles/54831
https://elifesciences.org/articles/54831
https://doi.org/10.1016/j.neuron.2016.08.037
https://doi.org/10.1016/j.neuron.2016.08.037
https://journals.lww.com/00001756-201310020-00003
https://journals.lww.com/00001756-201310020-00003
https://linkinghub.elsevier.com/retrieve/pii/S016622360202235X
https://linkinghub.elsevier.com/retrieve/pii/S016622360202235X


153

timing. Nature Reviews. Neuroscience, 6, 755–765. 
Available at: http://www.nature.com/articles/nrn1764

Buonomano, D.  V., & Laje, R. (2010). Population 
clocks: Motor timing with neural dynamics. Trends in 
Cognitive Sciences, 14, 520–527. Available at: https://
doi.org/10.1016/j.tics.2010.09.002

Cadena-Valencia, J., García-Garibay, O., Merchant, H., 
Jazayeri, M., & de Lafuente, V. (2018). Entrainment 
and maintenance of an internal metronome in sup-
plementary motor area. eLife, 7, 1–23. Available at: 
https://elifesciences.org/articles/38983

Carelli, R. M., & West, M. O. (1991). Representation of 
the body by single neurons in the dorsolateral stria-
tum of the awake, unrestrained rat. The Journal of 
Comparative Neurology, 309, 231–249.

Carpenter, M.  B., Nakano, K., & Kim, R. (1976). 
Nigrothalamic projections in the monkey demon-
strated by autoradiographic technics. The Journal of 
Comparative Neurology, 165, 401–415. Available 
at: https://onlinelibrary.wiley.com/doi/10.1002/
cne.901650402

Carrillo-Reid, L., Tecuapetla, F., Tapia, D., Hernandez- 
Cruz, A., Galarraga, E., Drucker-Colin, R., & 
Bargas, J. (2008). Encoding network states by stria-
tal cell assemblies. Journal of Neurophysiology, 99, 
1435–1450. Available at: http://jn.physiology.org/cgi/
doi/10.1152/jn.01131.2007

Carrillo-Reid, L., Kang Miller, J., Hamm, J. P., Jackson, 
J., & Yuste, R. (2015a). Endogenous sequen-
tial cortical activity evoked by visual stimuli. The 
Journal of Neuroscience, 35, 8813–8828. Available 
at: http://www.jneurosci.org/cgi/doi/10.1523/
JNEUROSCI.5214- 14.2015

Carrillo-Reid, L., Lopez-Huerta, V.  G., Garcia-Munoz, 
M., Theiss, S., & Arbuthnott, G.  W. (2015b). Cell 
assembly signatures defined by short-term synap-
tic plasticity in cortical networks. International 
Journal of Neural Systems, 25, 1550026. Available 
at: https://www.worldscientific.com/doi/abs/10.1142/
S0129065715500264

Catanese, J., & Jaeger, D. (2021). Premotor ramping of 
thalamic neuronal activity is modulated by nigral 
inputs and contributes to control the timing of action 
release. The Journal of Neuroscience, 41, 1878–1891. 
Available at: https://www.jneurosci.org/lookup/
doi/10.1523/JNEUROSCI.1204- 20.2020

Chapin, J.  K., Waterhouse, B.  D., & Woodward, D.  J. 
(1981). Differences in cutaneous sensory response 
properties of single somatosensory cortical neurons in 
awake and halothane anesthetized rats. Brain Research 
Bulletin, 6, 63–70. Available at: https://linkinghub.
elsevier.com/retrieve/pii/S036192308180069X

Chen, Z., Zhang, Z.-Y., Zhang, W., Xie, T., Li, Y., Xu, 
X.-H., & Yao, H. (2021). Direct and indirect pathway 
neurons in ventrolateral striatum differentially regulate 
licking movement and nigral responses. Cell Reports, 
37, 109847. Available at: https://doi.org/10.1016/j.
celrep.2021.109847

Cheung, T.  H. C., Bezzina, G., Hampson, C.  L., Body, 
S., Fone, K.  C. F., Bradshaw, C.  M., & Szabadi, E. 

(2007). Effect of quinpirole on timing behaviour in 
the free-operant psychophysical procedure: Evidence 
for the involvement of D2 dopamine receptors. 
Psychopharmacology, 193, 423–436. Available at: 
https://link.springer.com/10.1007/s00213- 007- 0798- 8

Chiba, A., Oshio, K., & Inase, M. (2015). Neuronal rep-
resentation of duration discrimination in the monkey 
striatum. Physiological Reports, 3, e12283. Available 
at: https://doi.wiley.com/10.14814/phy2.12283

Chuhma, N., Tanaka, K. F., Hen, R., & Rayport, S. (2011). 
Functional connectome of the striatal medium spiny 
neuron. The Journal of Neuroscience, 31, 1183–1192. 
Available at: https://www.jneurosci.org/lookup/
doi/10.1523/JNEUROSCI.3833- 10.2011

Coffey, K. R., Nader, M., & West, M. O. (2016). Single 
body parts are processed by individual neurons in the 
mouse dorsolateral striatum. Brain Research, 1636, 
200–207. Available at: https://doi.org/10.1016/j.
brainres.2016.01.031

Coffey, K. R., Nader, M., Bawa, J., & West, M. O. (2017). 
Homogeneous processing in the striatal direct and 
indirect pathways: Single body part sensitive type IIb 
neurons may express either dopamine receptor D1 
or D2. The European Journal of Neuroscience, 46, 
2380–2391.

Cook, J. R., Li, H., Nguyen, B., Huang, H., Mahdavian, 
P., Kirchgessner, M.  A., Strassmann, P., Engelhardt, 
M., Callaway, E.  M., & Jin, X. (2022). Secondary 
auditory cortex mediates a sensorimotor mechanism 
for action timing. Nature Neuroscience, 25, 330–344. 
Available at: https://www.nature.com/articles/
s41593- 022- 01025- 5

Coslett, H.  B., Wiener, M., & Chatterjee, A. (2010). 
Dissociable neural systems for timing: Evidence 
from subjects with basal ganglia lesions Tell F, ed. 
PLoS One, 5, e10324. Available at: https://dx.plos.
org/10.1371/journal.pone.0010324

Cruz, B.  F., Guiomar, G., Soares, S., Motiwala, A., 
Machens, C.  K., & Paton, J.  J. (2022). Action sup-
pression reveals opponent parallel control via striatal 
circuits. Nature, 607, 521–526. Available at: https://
www.nature.com/articles/s41586- 022- 04894- 9

Cury, K.  M., & Uchida, N. (2010). Robust odor 
coding via inhalation-coupled transient activ-
ity in the mammalian olfactory bulb. Neuron, 68, 
570–585. Available at: https://doi.org/10.1016/j.
neuron.2010.09.040

De Corte, B.  J., Wagner, L.  M., Matell, M.  S., & 
Narayanan, N.  S. (2019). Striatal dopamine and the 
temporal control of behavior. Behavioural Brain 
Research, 356, 375–379. Available at: https://doi.
org/10.1016/j.bbr.2018.08.030

DeLong, M. R. (1971). Of pallidal during movement. The 
Journal of Physiology, 34, 414–427.

Deschênes, M., Takatoh, J., Kurnikova, A., Moore, 
J.  D., Demers, M., Elbaz, M., Furuta, T., Wang, F., 
& Kleinfeld, D. (2016). Inhibition, not excitation, 
drives rhythmic whisking. Neuron, 90, 374–387. 
Available at: https://linkinghub.elsevier.com/retrieve/
pii/S0896627316001860

The Interactions of Temporal and Sensory Representations in the Basal Ganglia

http://www.nature.com/articles/nrn1764
https://doi.org/10.1016/j.tics.2010.09.002
https://doi.org/10.1016/j.tics.2010.09.002
https://elifesciences.org/articles/38983
https://onlinelibrary.wiley.com/doi/10.1002/cne.901650402
https://onlinelibrary.wiley.com/doi/10.1002/cne.901650402
http://jn.physiology.org/cgi/doi/10.1152/jn.01131.2007
http://jn.physiology.org/cgi/doi/10.1152/jn.01131.2007
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5214-14.2015
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5214-14.2015
https://www.worldscientific.com/doi/abs/10.1142/S0129065715500264
https://www.worldscientific.com/doi/abs/10.1142/S0129065715500264
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1204-20.2020
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1204-20.2020
https://linkinghub.elsevier.com/retrieve/pii/S036192308180069X
https://linkinghub.elsevier.com/retrieve/pii/S036192308180069X
https://doi.org/10.1016/j.celrep.2021.109847
https://doi.org/10.1016/j.celrep.2021.109847
https://springerlink.bibliotecabuap.elogim.com/10.1007/s00213-007-0798-8
https://doi.wiley.com/10.14814/phy2.12283
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.3833-10.2011
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.3833-10.2011
https://doi.org/10.1016/j.brainres.2016.01.031
https://doi.org/10.1016/j.brainres.2016.01.031
https://www.nature.com/articles/s41593-022-01025-5
https://www.nature.com/articles/s41593-022-01025-5
https://dx.plos.org/10.1371/journal.pone.0010324
https://dx.plos.org/10.1371/journal.pone.0010324
https://www.nature.com/articles/s41586-022-04894-9
https://www.nature.com/articles/s41586-022-04894-9
https://doi.org/10.1016/j.neuron.2010.09.040
https://doi.org/10.1016/j.neuron.2010.09.040
https://doi.org/10.1016/j.bbr.2018.08.030
https://doi.org/10.1016/j.bbr.2018.08.030
https://linkinghub.elsevier.com/retrieve/pii/S0896627316001860
https://linkinghub.elsevier.com/retrieve/pii/S0896627316001860


154

Díaz-Hernández, E., Contreras-López, R., Sánchez- 
Fuentes, A., Rodríguez-Sibrían, L., Ramírez-Jarquín, 
J. O., & Tecuapetla, F. (2018). The thalamostriatal pro-
jections contribute to the initiation and execution of 
a sequence of movements. Neuron, 100, 739–752.e5. 
Available at: https://linkinghub.elsevier.com/retrieve/
pii/S0896627318308547

Dray, A., Gonye, T. J., & Oakley, N. R. (1976). Caudate 
stimulation and substantia nigra activity in the rat. 
The Journal of Physiology, 259, 825–849. Available 
at: http://doi.wiley.com/10.1113/jphysiol.1976.
sp011497

Drew, M. R., Fairhurst, S., Malapani, C., Horvitz, J. C., 
& Balsam, P. D. (2003). Effects of dopamine antago-
nists on the timing of two intervals. Pharmacology, 
Biochemistry, and Behavior, 75, 9–15. Available 
at: https://linkinghub.elsevier.com/retrieve/pii/
S0091305703000364

Dudman, J. T., & Krakauer, J. W. (2016). The basal ganglia: 
From motor commands to the control of vigor. Current 
Opinion in Neurobiology, 37, 158–166. Available at: 
https://doi.org/10.1016/j.conb.2016.02.005

Erro, M.  E., Lanciego, J.  L., Arribas, J., & Gimenez- 
Amaya, J. M. (2001). Striatal input from the ventro-
basal complex of the rat thalamus. Histochemistry and 
Cell Biology, 115, 447–454.

Erro, M.  E., Lanciego, J.  L., & Giménez-Amaya, J.  M. 
(2002). Re-examination of the thalamostriatal projec-
tions in the rat with retrograde tracers. Neuroscience 
Research, 42, 45–55. Available at: http://linkinghub.
elsevier.com/retrieve/pii/S0168010201003029

Frederick, D. (1996). Effects of selective dopamine 
D1- and D2-agonists and antagonists on timing per-
formance in rats. Pharmacology, Biochemistry, and 
Behavior, 53, 759–764. Available at: https://linking-
hub.elsevier.com/retrieve/pii/0091305795021035

Gaidica, M., Hurst, A., Cyr, C., & Leventhal, D.  K. 
(2018). Distinct populations of motor thalamic neu-
rons encode action initiation, action selection, and 
movement vigor. The Journal of Neuroscience, 38, 
6563–6573. Available at: https://www.jneurosci.org/
lookup/doi/10.1523/JNEUROSCI.0463- 18.2018

Gámez, J., Mendoza, G., Prado, L., Betancourt, A., & 
Merchant, H. (2019). The amplitude in periodic neu-
ral state trajectories underlies the tempo of rhythmic 
tapping Zatorre R, ed. PLoS Biology, 17, e3000054. 
Available at: https://dx.plos.org/10.1371/journal.
pbio.3000054

Gerfen, C.  R., Engber, T.  M., Mahan, L.  C., Susel, Z., 
Chase, T. N., Monsma, F. J., & Sibley, D. R. (1990). 
D1 and D2 dopamine receptor-regulated gene expres-
sion of striatonigral and striatopallidal neurons. 
Science (80- ), 250, 1429–1432. Available at: https://
www.science.org/doi/10.1126/science.2147780

Goel, A., & Buonomano, D. V. (2014). Timing as an intrin-
sic property of neural networks: Evidence from in vivo 
and in vitro experiments. Philosophical Transactions 
of the Royal Society, B: Biological Sciences, 369, 
20120460. Available at: https://royalsocietypublish-
ing.org/doi/10.1098/rstb.2012.0460

Goel, A., & Buonomano, D.  V. (2016). Temporal inter-
val learning in cortical cultures is encoded in intrinsic 
network dynamics. Neuron, 91, 320–327. Available at: 
https://doi.org/10.1016/j.neuron.2016.05.042

Gouvêa, T.  S., Monteiro, T., Motiwala, A., Soares, S., 
Machens, C., & Paton, J. J. (2015). Striatal dynamics 
explain duration judgments. eLife, 4, 1–14. Available 
at: https://elifesciences.org/articles/11386

Graybiel, A.  M. (2008). Habits, rituals, and the evalu-
ative brain. Annual Review of Neuroscience, 31, 
359–387. Available at: http://www.annualreviews.org/
doi/10.1146/annurev.neuro.29.051605.112851

Guo, Z.  V., Inagaki, H.  K., Daie, K., Druckmann, S., 
Gerfen, C.  R., & Svoboda, K. (2017). Maintenance 
of persistent activity in a frontal thalamocortical 
loop. Nature, 545, 181–186. Available at: http://www.
nature.com/articles/nature22324

Hegeman, D. J., Hong, E. S., Hernández, V. M., & Chan, 
C.  S. (2016). The external globus pallidus: Progress 
and perspectives Bolam P, ed. The European Journal 
of Neuroscience, 43, 1239–1265. Available at: https://
onlinelibrary.wiley.com/doi/10.1111/ejn.13196

Henke, J., Bunk, D., von Werder, D., Häusler, S., 
Flanagin, V. L., & Thurley, K. (2021). Distributed cod-
ing of duration in rodent prefrontal cortex during time 
reproduction. eLife, 10, 1–24. Available at: https://
elifesciences.org/articles/71612

Hidalgo-Balbuena, A. E., Luma, A. Y., Pimentel-Farfan, 
A. K., Peña-Rangel, T., & Rueda-Orozco, P. E. (2019). 
Sensory representations in the striatum provide a tem-
poral reference for learning and executing motor hab-
its. Nature Communications, 10, 4074. Available at: 
https://doi.org/10.1038/s41467- 019- 12075- y

Hikosaka, O. (2007). GABAergic output of the basal gan-
glia. Progress in Brain Research, 209–226. Available 
at: https://linkinghub.elsevier.com/retrieve/pii/
S0079612306600125

Hikosaka, O., & Wurtz, R.  H. (1983). Visual and ocu-
lomotor functions of monkey substantia nigra pars 
reticulata. III.  Memory-contingent visual and sac-
cade responses. Journal of Neurophysiology, 49, 
1268–1284. Available at: http://www.physiology.org/
doi/10.1152/jn.1983.49.5.1268

Hintiryan, H., Foster, N.  N., Bowman, I., Bay, M., 
Song, M.  Y., Gou, L., Yamashita, S., Bienkowski, 
M. S., Zingg, B., Zhu, M., Yang, X. W., Shih, J. C., 
Toga, A.  W., & Dong, H.  W. (2016). The mouse 
cortico- striatal projectome. Nature Neuroscience, 19, 
1100–1114.

Honma, M., Kuroda, T., Futamura, A., Shiromaru, A., 
& Kawamura, M. (2016). Dysfunctional counting of 
mental time in Parkinson’s disease. Scientific Reports, 
6, 25421. Available at: http://www.nature.com/
articles/srep25421

Honma, M., Masaoka, Y., Koyama, S., Kuroda, T., 
Futamura, A., Shiromaru, A., Terao, Y., Ono, K., & 
Kawamura, M. (2018). Impaired cognitive modifica-
tion for estimating time duration in Parkinson’s disease 
Ginsberg SD, ed. PLoS One, 13, e0208956. Available 
at: https://dx.plos.org/10.1371/journal.pone.0208956

P. E. Rueda-Orozco et al.

https://linkinghub.elsevier.com/retrieve/pii/S0896627318308547
https://linkinghub.elsevier.com/retrieve/pii/S0896627318308547
http://doi.wiley.com/10.1113/jphysiol.1976.sp011497
http://doi.wiley.com/10.1113/jphysiol.1976.sp011497
https://linkinghub.elsevier.com/retrieve/pii/S0091305703000364
https://linkinghub.elsevier.com/retrieve/pii/S0091305703000364
https://doi.org/10.1016/j.conb.2016.02.005
http://linkinghub.elsevier.com/retrieve/pii/S0168010201003029
http://linkinghub.elsevier.com/retrieve/pii/S0168010201003029
https://linkinghub.elsevier.com/retrieve/pii/0091305795021035
https://linkinghub.elsevier.com/retrieve/pii/0091305795021035
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0463-18.2018
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0463-18.2018
https://dx.plos.org/10.1371/journal.pbio.3000054
https://dx.plos.org/10.1371/journal.pbio.3000054
https://www.science.org/doi/10.1126/science.2147780
https://www.science.org/doi/10.1126/science.2147780
https://royalsocietypublishing.org/doi/10.1098/rstb.2012.0460
https://royalsocietypublishing.org/doi/10.1098/rstb.2012.0460
https://doi.org/10.1016/j.neuron.2016.05.042
https://elifesciences.org/articles/11386
http://www.annualreviews.org/doi/10.1146/annurev.neuro.29.051605.112851
http://www.annualreviews.org/doi/10.1146/annurev.neuro.29.051605.112851
http://www.nature.com/articles/nature22324
http://www.nature.com/articles/nature22324
https://onlinelibrary.wiley.com/doi/10.1111/ejn.13196
https://onlinelibrary.wiley.com/doi/10.1111/ejn.13196
https://elifesciences.org/articles/71612
https://elifesciences.org/articles/71612
https://doi.org/10.1038/s41467-019-12075-y
https://linkinghub.elsevier.com/retrieve/pii/S0079612306600125
https://linkinghub.elsevier.com/retrieve/pii/S0079612306600125
http://www.physiology.org/doi/10.1152/jn.1983.49.5.1268
http://www.physiology.org/doi/10.1152/jn.1983.49.5.1268
http://www.nature.com/articles/srep25421
http://www.nature.com/articles/srep25421
https://dx.plos.org/10.1371/journal.pone.0208956


155

Hoover, J.  E., Hoffer, Z.  S., & Alloway, K.  D. (2003). 
Projections from primary somatosensory cortex to the 
neostriatum: The role of somatotopic continuity in cor-
ticostriatal convergence. Journal of Neurophysiology, 
89, 1576–1587. Available at: http://jn.physiology.org/
cgi/doi/10.1152/jn.01009.2002

Inagaki, H. K., Chen, S., Ridder, M. C., Sah, P., Li, N., 
Yang, Z., Hasanbegovic, H., Gao, Z., Gerfen, C. R., 
& Svoboda, K. (2022). A midbrain-thalamus-cortex 
circuit reorganizes cortical dynamics to initiate move-
ment. Cell, 185, 1065–1081.e23. Available at: https://
doi.org/10.1016/j.cell.2022.02.006

Iwamuro, H., Tachibana, Y., Ugawa, Y., Saito, N., & 
Nambu, A. (2017). Information processing from the 
motor cortices to the subthalamic nucleus and globus 
pallidus and their somatotopic organizations revealed 
electrophysiologically in monkeys. The European 
Journal of Neuroscience, 46, 2684–2701. Available at: 
https://onlinelibrary.wiley.com/doi/10.1111/ejn.13738

Jaeger, D., & Kita, H. (2011). Functional connectivity 
and integrative properties of globus pallidus neurons. 
Neuroscience, 198, 44–53. Available at: https://doi.
org/10.1016/j.neuroscience.2011.07.050

Jin, D.  Z., Fujii, N., & Graybiel, A.  M. (2009). Neural 
representation of time in cortico-basal ganglia circuits. 
Proceedings of the National Academy of Sciences, 
106, 19156–19161. Available at: https://pnas.org/doi/
full/10.1073/pnas.0909881106

Johansson, Y., & Silberberg, G. (2020). The func-
tional organization of cortical and thalamic inputs 
onto five types of striatal neurons is determined by 
source and target cell identities. Cell Reports, 30, 
1178–1194.e3. Available at: https://doi.org/10.1016/j.
celrep.2019.12.095

Junek, S., Kludt, E., Wolf, F., & Schild, D. (2010). 
Olfactory coding with patterns of response laten-
cies. Neuron, 67, 872–884. Available at: https://doi.
org/10.1016/j.neuron.2010.08.005

Jurado-Parras, M.-T., Safaie, M., Sarno, S., Louis, J., 
Karoutchi, C., Berret, B., & Robbe, D. (2020). The 
dorsal striatum energizes motor routines. Current 
Biology, 30, 4362–4372.e6. Available at: https://doi.
org/10.1016/j.cub.2020.08.049

Kamada, T., & Hata, T. (2021). Striatal dopamine D1 
receptors control motivation to respond, but not 
interval timing, during the timing task. Learning & 
Memory, 28, 24–29. Available at: http://learnmem.
cshlp.org/lookup/doi/10.1101/lm.052266.120

Karalis, N., & Sirota, A. (2022). Breathing coordinates 
cortico-hippocampal dynamics in mice during offline 
states. Nature Communications, 13, 467. Available at: 
https://www.nature.com/articles/s41467- 022- 28090- 5

Ketzef, M., Spigolon, G., Johansson, Y., Bonito-Oliva, 
A., Fisone, G., & Silberberg, G. (2017). Dopamine 
depletion impairs bilateral sensory processing in the 
striatum in a pathway-dependent manner. Neuron, 94, 
855–865.e5. Available at: https://doi.org/10.1016/j.
neuron.2017.05.004

Kim, J., Ghim, J.-W., Lee, J. H., & Jung, M. W. (2013). 
Neural correlates of interval timing in rodent pre-

frontal cortex. The Journal of Neuroscience, 33, 
13834–13847. Available at: https://www.jneurosci.
org/lookup/doi/10.1523/JNEUROSCI.1443- 13.2013

Kita, H., & Jaeger, D. (2016). Organization of the glo-
bus pallidus. In Handbook of behavioral neuroscience 
(pp.  259–276). Available at: https://linkinghub.else-
vier.com/retrieve/pii/B9780128022061000131

Kravitz, A.  V., Freeze, B.  S., Parker, P.  R. L., Kay, K., 
Thwin, M. T., Deisseroth, K., & Kreitzer, A. C. (2010). 
Regulation of parkinsonian motor behaviours by opto-
genetic control of basal ganglia circuitry. Nature, 
466, 622–626. Available at: http://www.nature.com/
articles/nature09159

Kunimatsu, J., Suzuki, T. W., Ohmae, S., & Tanaka, M. 
(2018). Different contributions of preparatory activity 
in the basal ganglia and cerebellum for self-timing. 
eLife, 7, 1–19. Available at: https://elifesciences.org/
articles/35676

Lee, C.  R., Yonk, A.  J., Wiskerke, J., Paradiso, K.  G., 
Tepper, J.  M., & Margolis, D.  J. (2019). Opposing 
influence of sensory and motor cortical input on stria-
tal circuitry and choice behavior. Current Biology, 29, 
1313–1323.e5. Available at: https://doi.org/10.1016/j.
cub.2019.03.028

Luczak, A., Barthó, P., Marguet, S.  L., Buzsáki, G., & 
Harris, K.  D. (2007). Sequential structure of neo-
cortical spontaneous activity in  vivo. Proceedings 
of the National Academy of Sciences, 104, 347–352. 
Available at: https://pnas.org/doi/full/10.1073/
pnas.0605643104

Luczak, A., Barthó, P., & Harris, K.  D. (2009). 
Spontaneous events outline the realm of possible sen-
sory responses in neocortical populations. Neuron, 
62, 413–425. Available at: https://doi.org/10.1016/j.
neuron.2009.03.014

Luczak, A., McNaughton, B. L., & Harris, K. D. (2015). 
Packet-based communication in the cortex. Nature 
Reviews. Neuroscience, 16, 745–755. Available at: 
https://doi.org/10.1038/nrn4026

Matell, M.  S., Meck, W.  H., & Nicolelis, M.  A. L. 
(2003). Interval timing and the encoding of sig-
nal duration by ensembles of cortical and stria-
tal neurons. Behavioral Neuroscience, 117, 
760–773. Available at: http://doi.apa.org/getdoi.
cfm?doi=10.1037/0735- 7044.117.4.760

Matsuyama, K., & Tanaka, M. (2021). Temporal predic-
tion signals for periodic sensory events in the primate 
central thalamus. The Journal of Neuroscience, 41, 
1917–1927. Available at: https://www.jneurosci.org/
lookup/doi/10.1523/JNEUROSCI.2151- 20.2021

Meck, W.  H. (2006). Neuroanatomical localization of 
an internal clock: A functional link between meso-
limbic, nigrostriatal, and mesocortical dopaminergic 
systems. Brain Research, 1109, 93–107. Available 
at: https://linkinghub.elsevier.com/retrieve/pii/
S0006899306017203

Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scal-
able population code for time in the striatum. Current 
Biology, 25, 1113–1122. Available at: https://doi.
org/10.1016/j.cub.2015.02.036

The Interactions of Temporal and Sensory Representations in the Basal Ganglia

http://jn.physiology.org/cgi/doi/10.1152/jn.01009.2002
http://jn.physiology.org/cgi/doi/10.1152/jn.01009.2002
https://doi.org/10.1016/j.cell.2022.02.006
https://doi.org/10.1016/j.cell.2022.02.006
https://onlinelibrary.wiley.com/doi/10.1111/ejn.13738
https://doi.org/10.1016/j.neuroscience.2011.07.050
https://doi.org/10.1016/j.neuroscience.2011.07.050
https://pnas.org/doi/full/10.1073/pnas.0909881106
https://pnas.org/doi/full/10.1073/pnas.0909881106
https://doi.org/10.1016/j.celrep.2019.12.095
https://doi.org/10.1016/j.celrep.2019.12.095
https://doi.org/10.1016/j.neuron.2010.08.005
https://doi.org/10.1016/j.neuron.2010.08.005
https://doi.org/10.1016/j.cub.2020.08.049
https://doi.org/10.1016/j.cub.2020.08.049
http://learnmem.cshlp.org/lookup/doi/10.1101/lm.052266.120
http://learnmem.cshlp.org/lookup/doi/10.1101/lm.052266.120
https://www.nature.com/articles/s41467-022-28090-5
https://doi.org/10.1016/j.neuron.2017.05.004
https://doi.org/10.1016/j.neuron.2017.05.004
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1443-13.2013
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1443-13.2013
https://linkinghub.elsevier.com/retrieve/pii/B9780128022061000131
https://linkinghub.elsevier.com/retrieve/pii/B9780128022061000131
http://www.nature.com/articles/nature09159
http://www.nature.com/articles/nature09159
https://elifesciences.org/articles/35676
https://elifesciences.org/articles/35676
https://doi.org/10.1016/j.cub.2019.03.028
https://doi.org/10.1016/j.cub.2019.03.028
https://pnas.org/doi/full/10.1073/pnas.0605643104
https://pnas.org/doi/full/10.1073/pnas.0605643104
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1038/nrn4026
http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.117.4.760
http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.117.4.760
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2151-20.2021
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2151-20.2021
https://linkinghub.elsevier.com/retrieve/pii/S0006899306017203
https://linkinghub.elsevier.com/retrieve/pii/S0006899306017203
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1016/j.cub.2015.02.036


156

Merchant, H., Zarco, W., Bartolo, R., Perez, O., & Prado, 
L. (2011). Measuring time with different neural chro-
nometers during a synchronization-continuation task. 
Proceedings of the National Academy of Sciences, 
108, 19784–19789.

Merchant, H., Harrington, D. L., & Meck, W. H. (2013). 
Neural basis of the perception and estimation of 
time. Annual Review of Neuroscience, 36, 313–336. 
Available at: https://www.annualreviews.org/
doi/10.1146/annurev- neuro- 062012- 170349

Mochol, G., Hermoso-Mendizabal, A., Sakata, S., Harris, 
K.  D., & de la Rocha, J. (2015). Stochastic transi-
tions into silence cause noise correlations in corti-
cal circuits. Proceedings of the National Academy of 
Sciences, 112, 3529–3534. Available at: http://www.
pnas.org/lookup/doi/10.1073/pnas.1410509112

Mole, J., Winegardner, J., Malley, D., & Fish, J. (2018). 
Time perception impairment following thalamic stroke: 
A case study. Neuropsychological Rehabilitation, 28, 
208–222. Available at: https://doi.org/10.1080/096020
11.2017.1383273

Monteiro, T., Rodrigues, F. S., Pexirra, M., Cruz, B. F., 
Rueda-Orozco, P.  E., & Paton, J.  J. (2021). Using 
temperature to analyse the neural basis of a latent 
temporal decision. bioRxiv. Available at: https://doi.
org/10.1101/2020.08.24.251827

Monteiro, T., Rodrigues, F. S., Pexirra, M., Cruz, B. F., 
Gonçalves, A. I., Rueda-Orozco, P. E., & Paton, J. J. 
(2023). Using temperature to analyze the neural basis of 
a time-based decision. Nature Neuroscience. Available 
at: https://doi.org/10.1038/s41593- 023- 01378- 5

Nagy, A., Paróczy, Z., Norita, M., & Benedek, G. 
(2005). Multisensory responses and receptive field 
properties of neurons in the substantia nigra and 
in the caudate nucleus. The European Journal of 
Neuroscience, 22, 419–424. Available at: http://doi.
wiley.com/10.1111/j.1460- 9568.2005.04211.x

Nambu, A. (2011). Somatotopic organization of the 
primate basal ganglia. Frontiers in Neuroanatomy, 
5, 1–9. Available at: http://journal.frontiersin.org/
article/10.3389/fnana.2011.00026/abstract

Nozaradan, S., Schwartze, M., Obermeier, C., & Kotz, 
S. A. (2017). Specific contributions of basal ganglia 
and cerebellum to the neural tracking of rhythm. 
Cortex, 95, 156–168. Available at: https://doi.
org/10.1016/j.cortex.2017.08.015

Pare, D., Steriade, M., Deschenes, M., & Oakson, G. 
(1987). Physiological characteristics of anterior tha-
lamic nuclei, a group devoid of inputs from reticular 
thalamic nucleus. Journal of Neurophysiology, 57, 
1669–1685. Available at: https://www.physiology.org/
doi/10.1152/jn.1987.57.6.1669

Parent, A., Mackey, A., Smith, Y., & Boucher, R. (1983). 
The output organization of the substantia nigra in 
primate as revealed by a retrograde double label-
ing method. Brain Research Bulletin, 10, 529–537. 
Available at: https://linkinghub.elsevier.com/retrieve/
pii/036192308390151X

Parent, A., Bouchard, C., & Smith, Y. (1984). The striato-
pallidal and striatonigral projections: Two distinct fiber 

systems in primate. Brain Research, 303, 385–390. 
Available at: https://linkinghub.elsevier.com/retrieve/
pii/0006899384912241

Paton, J.  J., & Lau, B. (2015). Tread softly and carry a 
clock’s tick. Nature Neuroscience, 18, 329–330. 
Available at: https://doi.org/10.1038/nn.3959

Peña-Rangel, T.  M., Lugo-Picos, P.  I., Báez-Cordero, 
A.  S., Hidalgo-Balbuena, A.  E., Luma, A.  Y., 
Pimentel-Farfan, A. K., & Rueda-Orozco, P. E. (2021). 
Altered sensory representations in parkinsonian corti-
cal and basal ganglia networks. Neuroscience, 466, 
10–25. Available at: http://www.ncbi.nlm.nih.gov/
pubmed/33965505

Peters, A.  J., Fabre, J.  M. J., Steinmetz, N.  A., Harris, 
K.  D., & Carandini, M. (2021). Striatal activity 
topographically reflects cortical activity. Nature, 
591, 420–425. Available at: https://doi.org/10.1038/
s41586- 020- 03166- 8

Pidoux, M., Mahon, S., Deniau, J.  M., & Charpier, S. 
(2011). Integration and propagation of somatosensory 
responses in the corticostriatal pathway: An intracel-
lular study in  vivo. The Journal of Physiology, 589, 
263–281.

Pimentel-Farfan, A.  K., Báez-Cordero, A.  S., Peña- 
Rangel, T. M., & Rueda-Orozco, P. E. (2022). Cortico- 
striatal circuits for bilaterally coordinated movements. 
Science Advances, 8, 1–19. Available at: https://www.
science.org/doi/10.1126/sciadv.abk2241

Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, 
J. A., Cox, R. W., & Binder, J. R. (1997). Distributed 
neural systems underlying the timing of move-
ments. The Journal of Neuroscience, 17, 5528–5535. 
Available at: https://www.jneurosci.org/lookup/
doi/10.1523/JNEUROSCI.17- 14- 05528.1997

Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, 
M.  C., Lehericy, S., Bergman, H., Agid, Y., Delong, 
M.  R., & Obeso, J.  A. (2010). Goal-directed and 
habitual control in the basal ganglia: Implications for 
Parkinson’s disease. Nature Reviews. Neuroscience, 
11, 760–772. Available at: https://doi.org/10.1038/
nrn2915

Reig, R., & Silberberg, G. (2014). Multisensory 
integration in the mouse striatum. Neuron, 83, 
1200–1212. Available at: https://doi.org/10.1016/j.
neuron.2014.07.033

Reig, R., & Silberberg, G. (2016). Distinct corticostria-
tal and intracortical pathways mediate bilateral sen-
sory responses in the striatum. Cerebral Cortex, 26, 
4405–4415. Available at: https://academic.oup.com/
cercor/article- lookup/doi/10.1093/cercor/bhw268

Reiner, A., Jiao, Y., Del Mar, N., Laverghetta, A. V., & Lei, 
W.  L. (2003). Differential morphology of pyramidal 
tract-type and intratelencephalically projecting-type 
corticostriatal neurons and their intrastriatal terminals 
in rats. The Journal of Comparative Neurology, 457, 
420–440.

Robbe, D. (2018). To move or to sense? Incorporating 
somatosensory representation into striatal functions. 
Current Opinion in Neurobiology, 52, 123–130. Avai-
lable at: https://doi.org/10.1016/j.conb.2018.04.009

P. E. Rueda-Orozco et al.

https://www.annualreviews.org/doi/10.1146/annurev-neuro-062012-170349
https://www.annualreviews.org/doi/10.1146/annurev-neuro-062012-170349
http://www.pnas.org/lookup/doi/10.1073/pnas.1410509112
http://www.pnas.org/lookup/doi/10.1073/pnas.1410509112
https://doi.org/10.1080/09602011.2017.1383273
https://doi.org/10.1080/09602011.2017.1383273
https://doi.org/10.1101/2020.08.24.251827
https://doi.org/10.1101/2020.08.24.251827
https://doi.org/10.1038/s41593-023-01378-5
http://doi.wiley.com/10.1111/j.1460-9568.2005.04211.x
http://doi.wiley.com/10.1111/j.1460-9568.2005.04211.x
http://journal.frontiersin.org/article/10.3389/fnana.2011.00026/abstract
http://journal.frontiersin.org/article/10.3389/fnana.2011.00026/abstract
https://doi.org/10.1016/j.cortex.2017.08.015
https://doi.org/10.1016/j.cortex.2017.08.015
https://www.physiology.org/doi/10.1152/jn.1987.57.6.1669
https://www.physiology.org/doi/10.1152/jn.1987.57.6.1669
https://linkinghub.elsevier.com/retrieve/pii/036192308390151X
https://linkinghub.elsevier.com/retrieve/pii/036192308390151X
https://linkinghub.elsevier.com/retrieve/pii/0006899384912241
https://linkinghub.elsevier.com/retrieve/pii/0006899384912241
https://doi.org/10.1038/nn.3959
http://www.ncbi.nlm.nih.gov/pubmed/33965505
http://www.ncbi.nlm.nih.gov/pubmed/33965505
https://doi.org/10.1038/s41586-020-03166-8
https://doi.org/10.1038/s41586-020-03166-8
https://www.science.org/doi/10.1126/sciadv.abk2241
https://www.science.org/doi/10.1126/sciadv.abk2241
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.17-14-05528.1997
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.17-14-05528.1997
https://doi.org/10.1038/nrn2915
https://doi.org/10.1038/nrn2915
https://doi.org/10.1016/j.neuron.2014.07.033
https://doi.org/10.1016/j.neuron.2014.07.033
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhw268
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhw268
https://doi.org/10.1016/j.conb.2018.04.009


157

Rowe, K. C., Paulsen, J. S., Langbehn, D. R., Duff, K., 
Beglinger, L. J., Wang, C., O’Rourke, J.  J. F., Stout, 
J. C., & Moser, D. J. (2010). Self-paced timing detects 
and tracks change in prodromal Huntington disease. 
Neuropsychology, 24, 435–442. Available at: http://
doi.apa.org/getdoi.cfm?doi=10.1037/a0018905

Rueda-Orozco, P.  E., & Robbe, D. (2015). The stria-
tum multiplexes contextual and kinematic informa-
tion to constrain motor habits execution. Nature 
Neuroscience, 18, 435–460.

Schmidt, R., Leventhal, D.  K., Mallet, N., Chen, F., & 
Berke, J. D. (2013). Canceling actions involves a race 
between basal ganglia pathways. Nature Neuroscience, 
16, 1118–1124. Available at: http://www.nature.com/
articles/nn.3456

Schultz, W. (1986). Activity of pars reticulata neurons of 
monkey substantia nigra in relation to motor, sensory, 
and complex events. Journal of Neurophysiology, 55, 
660–677. Available at: https://www.physiology.org/
doi/10.1152/jn.1986.55.4.660

Schwartze, M., Stockert, A., & Kotz, S. A. (2015). Striatal 
contributions to sensory timing: Voxel-based lesion 
mapping of electrophysiological markers. Cortex, 
71, 332–340. Available at: https://linkinghub.elsevier.
com/retrieve/pii/S0010945215002610

Sheng, M., Lu, D., Shen, Z., & Poo, M. (2019). Emergence 
of stable striatal D1R and D2R neuronal ensembles 
with distinct firing sequence during motor learning. 
Proceedings of the National Academy of Sciences, 
116, 11038–11047. Available at: https://pnas.org/doi/
full/10.1073/pnas.1901712116

Shi, L.  H., Luo, F., Woodward, D.  J., & Chang, J.  Y. 
(2004). Neural responses in multiple basal ganglia 
regions during spontaneous and treadmill locomo-
tion tasks in rats. Experimental Brain Research, 
157, 303–314. Available at: http://link.springer.
com/10.1007/s00221- 004- 1844- y

Shi, L.  H., Luo, F., Woodward, D.  J., & Chang, J.  Y. 
(2005). Dose and behavioral context dependent inhibi-
tion of movement and basal ganglia neural activity by 
delta-9-tetrahydrocannabinol during spontaneous and 
treadmill locomotion tasks in rats. Synapse, 55, 1–16. 
Available at: http://doi.wiley.com/10.1002/syn.20088

Sippy, T., Lapray, D., Crochet, S., & Petersen, C. C. H. 
(2015). Cell-type-specific sensorimotor processing in 
striatal projection neurons during goal-directed behav-
ior. Neuron, 88, 298–305. Available at: https://doi.
org/10.1016/j.neuron.2015.08.039

Smith, J. B., Mowery, T. M., & Alloway, K. D. (2012). 
Thalamic POm projections to the dorsolateral striatum 
of rats: Potential pathway for mediating stimulus- 
response associations for sensorimotor habits. Journal 
of Neurophysiology, 108, 160–174. Available at: http://
jn.physiology.org/cgi/doi/10.1152/jn.00142.2012

Smith, Y., Galvan, A., Ellender, T. J., Doig, N., Villalba, 
R. M., Huerta-Ocampo, I., Wichmann, T., & Bolam, 
J. P. (2014). The thalamostriatal system in normal and 
diseased states. Frontiers in Systems Neuroscience, 
8, 1–18. Available at: http://journal.frontiersin.org/
article/10.3389/fnsys.2014.00005/abstract

Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain 
dopamine neurons control judgment of time. Science 
(80- ), 354, 1273–1277. Available at: https://www.sci-
ence.org/doi/10.1126/science.aah5234

Sommer, M.  A. (2003). The role of the thalamus in 
motor control. Current Opinion in Neurobiology, 13, 
663–670. Available at: https://linkinghub.elsevier.
com/retrieve/pii/S0959438803001697

Sreenivasan, V., & Petersen, C. C. H. (2016). Inhibition 
patterns the whisking rhythm. Neuron, 90, 
211–213. Available at: https://doi.org/10.1016/j.
neuron.2016.04.012

Stevens, M.  C., Kiehl, K.  A., Pearlson, G., & Calhoun, 
V.  D. (2007). Functional neural circuits for mental 
timekeeping. Human Brain Mapping, 28, 394–408. 
Available at: https://onlinelibrary.wiley.com/
doi/10.1002/hbm.20285

Tanaka, M. (2006). Inactivation of the central thalamus 
delays self-timed saccades. Nature Neuroscience, 9, 
20–22. Available at: http://www.nature.com/articles/
nn1617

Tanaka, M. (2007). Cognitive signals in the primate 
motor thalamus predict saccade timing. The Journal 
of Neuroscience, 27, 12109–12118. Available at: 
https://www.jneurosci.org/lookup/doi/10.1523/
JNEUROSCI.1873- 07.2007

Taverna, S., Ilijic, E., & Surmeier, D. J. (2008). Recurrent 
collateral connections of striatal medium spiny neu-
rons are disrupted in models of Parkinson’s dis-
ease. The Journal of Neuroscience, 28, 5504–5512. 
Available at: https://www.jneurosci.org/lookup/
doi/10.1523/JNEUROSCI.5493- 07.2008

Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). 
Distinct neural substrates of duration-based and beat- 
based auditory timing. The Journal of Neuroscience, 
31, 3805–3812. Available at: https://www.jneurosci.
org/lookup/doi/10.1523/JNEUROSCI.5561- 10.2011

Toda, K., Lusk, N.  A., Watson, G.  D. R., Kim, N., Lu, 
D., Li, H.  E., Meck, W.  H., & Yin, H.  H. (2017). 
Nigrotectal stimulation stops interval timing in mice. 
Current Biology, 27, 3763–3770.e3. Available at: 
https://doi.org/10.1016/j.cub.2017.11.003

Toso, A., Reinartz, S., Pulecchi, F., & Diamond, M.  E. 
(2021). Time coding in rat dorsolateral striatum. 
Neuron, 109, 3663–3673.e6. Available at: https://doi.
org/10.1016/j.neuron.2021.08.020

Turner, R. S., & Desmurget, M. (2010). Basal ganglia con-
tributions to motor control: A vigorous tutor. Current 
Opinion in Neurobiology, 20, 704–716. Available at: 
https://doi.org/10.1016/j.conb.2010.08.022

Wang, J., Narain, D., Hosseini, E.  A., & Jazayeri, 
M. (2018). Flexible timing by temporal scaling 
of cortical responses. Nature Neuroscience, 21, 
102–110. Available at: https://doi.org/10.1038/
s41593- 017- 0028- 6

Weder, B. J., Leenders, K. L., Vontobel, P., Nienhusmeier, 
M., Keel, A., Zaunbauer, W., Vonesch, T., & Ludin, 
H.-P. (1999). Impaired somatosensory discrimina-
tion of shape in Parkinson’s disease: Association 
with caudate nucleus dopaminergic function. Human 

The Interactions of Temporal and Sensory Representations in the Basal Ganglia

http://doi.apa.org/getdoi.cfm?doi=10.1037/a0018905
http://doi.apa.org/getdoi.cfm?doi=10.1037/a0018905
http://www.nature.com/articles/nn.3456
http://www.nature.com/articles/nn.3456
https://www.physiology.org/doi/10.1152/jn.1986.55.4.660
https://www.physiology.org/doi/10.1152/jn.1986.55.4.660
https://linkinghub.elsevier.com/retrieve/pii/S0010945215002610
https://linkinghub.elsevier.com/retrieve/pii/S0010945215002610
https://pnas.org/doi/full/10.1073/pnas.1901712116
https://pnas.org/doi/full/10.1073/pnas.1901712116
http://springerlink.bibliotecabuap.elogim.com/10.1007/s00221-004-1844-y
http://springerlink.bibliotecabuap.elogim.com/10.1007/s00221-004-1844-y
http://doi.wiley.com/10.1002/syn.20088
https://doi.org/10.1016/j.neuron.2015.08.039
https://doi.org/10.1016/j.neuron.2015.08.039
http://jn.physiology.org/cgi/doi/10.1152/jn.00142.2012
http://jn.physiology.org/cgi/doi/10.1152/jn.00142.2012
http://journal.frontiersin.org/article/10.3389/fnsys.2014.00005/abstract
http://journal.frontiersin.org/article/10.3389/fnsys.2014.00005/abstract
https://www.science.org/doi/10.1126/science.aah5234
https://www.science.org/doi/10.1126/science.aah5234
https://linkinghub.elsevier.com/retrieve/pii/S0959438803001697
https://linkinghub.elsevier.com/retrieve/pii/S0959438803001697
https://doi.org/10.1016/j.neuron.2016.04.012
https://doi.org/10.1016/j.neuron.2016.04.012
https://onlinelibrary.wiley.com/doi/10.1002/hbm.20285
https://onlinelibrary.wiley.com/doi/10.1002/hbm.20285
http://www.nature.com/articles/nn1617
http://www.nature.com/articles/nn1617
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1873-07.2007
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1873-07.2007
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.5493-07.2008
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.5493-07.2008
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.5561-10.2011
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.5561-10.2011
https://doi.org/10.1016/j.cub.2017.11.003
https://doi.org/10.1016/j.neuron.2021.08.020
https://doi.org/10.1016/j.neuron.2021.08.020
https://doi.org/10.1016/j.conb.2010.08.022
https://doi.org/10.1038/s41593-017-0028-6
https://doi.org/10.1038/s41593-017-0028-6


158

Brain Mapping, 8, 1–12. Available at: https://
onlinelibrary.wiley.com/doi/10.1002/(SICI)1097- 
0193(1999)8:1%3C1::AID- HBM1%3E3.0.CO;2- E

Weder, B., Azari, N.  P., Knorr, U., Seitz, R.  J., Keel, 
A., Nienhusmeier, M., Maguire, R.  P., Leenders, 
K.  L., & Ludin, H.-P. (2000). Disturbed func-
tional brain interactions underlying deficient 
tactile object discrimination in Parkinson’s dis-
ease. Human Brain Mapping, 11, 131–145. 
Available at: https://onlinelibrary.wiley.com/
doi/10.1002/1097- 0193(200011)11:3%3C131::AID- 
HBM10%3E3.0.CO;2- M

West, M.  O. (1998). Anesthetics eliminate 
somatosensory- evoked discharges of neurons in 
the somatotopically organized sensorimotor stria-
tum of the rat. The Journal of Neuroscience, 18, 
9055–9068.

West, M. O., Carelli, R. M., Pomerantz, M., Cohen, S. M., 
Gardner, J.  P., Chapin, J.  K., & Woodward, D.  J. 
(1990). A region in the dorsolateral striatum of the rat 
exhibiting single-unit correlations with specific loco-
motor limb movements. Journal of Neurophysiology, 
64, 1233–1246. Available at: http://www.physiology.
org/doi/10.1152/jn.1990.64.4.1233

Wurtz, R. H., & Hikosaka, O. (1986). Role of the basal 
ganglia in the initiation of saccadic eye movements. 
Progress in Brain Research, 64, 175–190. Available 
at: https://linkinghub.elsevier.com/retrieve/pii/
S0079612308634123

Xu, M., Zhang, S., Dan, Y., & Poo, M. (2014). 
Representation of interval timing by temporally 
scalable firing patterns in rat prefrontal cortex. 
Proceedings of the National Academy of Sciences, 
111, 480–485. Available at: https://pnas.org/doi/
full/10.1073/pnas.1321314111

Yin, H.  H. (2017). The basal ganglia in action. 
Neuroscience, 23, 299–313. Available at: http://jour-
nals.sagepub.com/doi/10.1177/1073858416654115

Yoshida, M., & Precht, W. (1971). Monosynaptic inhi-
bition of neurons of the substantia nigra by cau-
datonigral fibers. Brain Research, 32, 225–228. 
Available at: https://linkinghub.elsevier.com/retrieve/
pii/0006899371901703

Zhou, S., Masmanidis, S.  C., & Buonomano, D.  V. 
(2020). Neural sequences as an optimal dynami-
cal regime for the readout of time. Neuron, 108, 
651–658.e5. Available at: https://doi.org/10.1016/j.
neuron.2020.08.020

P. E. Rueda-Orozco et al.

https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0193(1999)8:1<1::AID-HBM1>3.0.CO;2-E
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0193(1999)8:1<1::AID-HBM1>3.0.CO;2-E
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0193(1999)8:1<1::AID-HBM1>3.0.CO;2-E
https://onlinelibrary.wiley.com/doi/10.1002/1097-0193(200011)11:3<131::AID-HBM10>3.0.CO;2-M
https://onlinelibrary.wiley.com/doi/10.1002/1097-0193(200011)11:3<131::AID-HBM10>3.0.CO;2-M
https://onlinelibrary.wiley.com/doi/10.1002/1097-0193(200011)11:3<131::AID-HBM10>3.0.CO;2-M
http://www.physiology.org/doi/10.1152/jn.1990.64.4.1233
http://www.physiology.org/doi/10.1152/jn.1990.64.4.1233
https://linkinghub.elsevier.com/retrieve/pii/S0079612308634123
https://linkinghub.elsevier.com/retrieve/pii/S0079612308634123
https://pnas.org/doi/full/10.1073/pnas.1321314111
https://pnas.org/doi/full/10.1073/pnas.1321314111
http://journals.sagepub.com/doi/10.1177/1073858416654115
http://journals.sagepub.com/doi/10.1177/1073858416654115
https://linkinghub.elsevier.com/retrieve/pii/0006899371901703
https://linkinghub.elsevier.com/retrieve/pii/0006899371901703
https://doi.org/10.1016/j.neuron.2020.08.020
https://doi.org/10.1016/j.neuron.2020.08.020


159© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
H. Merchant, V. de Lafuente (eds.), Neurobiology of Interval Timing, Advances in Experimental 
Medicine and Biology 1455, https://doi.org/10.1007/978-3-031-60183-5_9

Estimating Time and Rhythm 
by Predicting External Stimuli

Mildred Salgado-Ménez, Marisol Espinoza- 
Monroy, Ana M. Malagón, Karla Mercado, 
and Victor de Lafuente

Abstract

In this chapter, we present recent findings 
from our group showing that elapsed time, 
interval timing, and rhythm maintenance 
might be achieved by the well-known ability 
of the brain to predict the future states of the 
world. The difference between predictions and 
actual sensory evidence is used to generate 
perceptual and behavioral adjustments that 
help subjects achieve desired behavioral goals. 
Concretely, we show that (1) accumulating 
prediction errors is a plausible strategy 
humans could use to determine whether a train 
of consecutive stimuli arrives at regular or 
irregular intervals. By analyzing the behavior 
of human and non-human primate subjects 
performing rhythm perception tasks, we dem-
onstrate that (2) the ability to estimate elapsed 
time and internally maintain rhythms is shared 
across primates and humans. Neurophysio-
logical recordings show that (3) the medial 
premotor cortex engages in rhythm entrain-
ment and maintains oscillatory activity that 
reveals an internal metronome’s spatial and 
temporal characteristics. Finally, we demon-

strate that (4) the amplitude of gamma oscilla-
tions within this cortex increases proportionally 
to the total elapsed time. In conjunction with 
our most recent experiments, our results sug-
gest that timing might be achieved by an inter-
nal simulation of the sensory stimuli and the 
motor commands that define the timing task 
that needs to be performed.

Keywords

Model of timing · Decision making · Interval 
timing rhythm · Time

 Introduction

Predicting the occurrence of future events and 
timing our behavior is a fundamental ability of 
nervous systems. When events have a constant 
interval separating them, we can easily predict 
the time of the next occurrence and plan our 
behavioral actions accordingly. Playing a 
musical instrument or dancing to music is a 
remarkable example of our ability to estimate 
time and rhythm and closely synchronize our 
actions to external stimuli. We propose that the 
ability to predict, more specifically, our ability 
to simulate the unfolding of events into the 
future, is key to understanding the cognitive 
process that we encompass within the timing 
label.
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To accurately predict future events, we have 
developed several cognitive, sensory, and motor 
proxies that help us track the passage of time. To 
estimate elapsed time, for example, we com-
monly use overt counting mechanisms that keep 
track of the number of seconds elapsed from a 
past event (one—Mississippi, two—Mississippi, 
etc.). Similarly, we can use backward counting to 
estimate the time-to-go that remains before a rel-
evant sensory or motor event (3, 2, 1, etc.). A 
 fundamental question then arises—what mecha-
nism does the brain implement to generate and 
maintain such chronometers?

Numerous specialized mechanisms have been 
proposed that could plausibly account for our 
ability to keep track of time (Bangert et al., 2011; 
Becker & Rasmussen, 2007; Grondin, 2001; Ivry 
& Spencer, 2004; Matell & Meck, 2004; Simen 
et  al., 2011). A pacemaker-accumulator was 
among the first of such specialized mechanisms. 
Upon starting such an internal chronometer, the 
regular ticks from a hypothesized pacemaker are 
accumulated so that the total number of ticks is 
proportional to elapsed time. A threshold on this 
accumulated quantity could trigger an action at a 
particular time.

Mechanisms that use hypothetical oscillators 
have also been proposed in which cortical neu-
rons could generate regular volleys of activity 
directed toward the neurons of the basal ganglia. 
If cortical neurons span a wide range of intervals 
(oscillators of different frequencies), basal gan-
glia neurons could be trained to decode time by 
detecting peak activities among combinations of 
such oscillators (Allman et  al., 2014; Matell 
et  al., 2007; Matell & Meck, 2000; Matell & 
Meck, 2004; McAuley, 1995; Teki et  al., 2011; 
Treisman et al., 1990; Wiener & Kanai, 2016).

More recently, the study of the dynamical sys-
tems that arise from the activity of recurrently 
connected neurons has been used to demonstrate 
that time can be decoded from the ever-changing 
neuronal states defined by the numerous neurons’ 
joint activity (Remington et  al., 2018a). 
Importantly, this new approach to timing elimi-
nates the need to use explicit clocks or regularly 
firing neurons. It has demonstrated that any pat-
tern of activity that changes with time can be 

used to decode time as long as the activity of the 
population changes reproducibly across resets of 
the system.

A dynamical systems approach that is 
grounded in electrophysiological data recorded 
from behaving monkeys has refined this timing- 
through- dynamics approach to show that the 
combined activity of neurons in premotor cor-
tices generates low-dimensional manifolds 
(surfaces) that can change their geometry and 
speed of change to measure and reproduce dif-
ferent time intervals reliably (Remington et al., 
2018b).

In parallel with this theoretically inclined 
work, more empirical studies have consistently 
demonstrated that a wide array of brain structures 
are engaged by tasks that require estimating time 
and generating time-constrained behavioral 
actions. Motor and premotor areas of the cortex 
in humans and primates show ramping or cycling 
patterns of neuronal activity that are closely 
related to the ability of subjects to measure time 
and generate behavioral decisions based on time 
and rhythm estimation (Merchant et  al., 2011, 
2013, 2015; Merchant & Averbeck, 2017).

Sub-cortical areas such as the basal ganglia, 
the cerebellum, and the hippocampus contain 
neurons that increase their activity and reach pre-
cisely timed peaks that indicate when a particular 
period of time has elapsed. They might also indi-
cate that the time to execute an action has arrived 
(Breska & Ivry, 2018; Coull et  al., 2011; 
Ferrandez et al., 2003; Gibbon et al., 1997; Grahn 
& Brett, 2007; Jin et al., 2009; Schubotz & Von 
Cramon, 2004).

Notably, the fundamental studies discussed so 
far have in common the view that there is a dedi-
cated mechanism that the brain uses to estimate 
time. This mechanism might be distributed 
among different brain areas and structures and 
can plausibly be implemented by the variety of 
algorithms just described. It is crucial to note that 
these studies propose a group of algorithms and 
processes with the specialized objective of imple-
menting the timing abilities of the nervous sys-
tems (Finnerty et  al., 2015; Karmarkar & 
Buonomano, 2007; Mauk & Buonomano, 2004; 
Paton & Buonomano, 2018).
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In this chapter, we describe recent findings from 
our group that were aimed at characterizing the 
ability of human and non-human primates to esti-
mate and maintain rhythms of different frequen-
cies. We also show electrophysiological recordings 
from the medial premotor cortex (MPC; also called 
the supplementary motor area, SMA), demonstrat-
ing that the motor system might be using simulated 
movements as a proxy to estimate and maintain 
metronomes with different tempos.

Finally, we briefly discuss recent findings 
from our laboratory that strongly support the 
hypothesis that the brain uses its well-known 
ability to simulate past, present, and future states 
internally. We propose that this capacity to simu-
late possible states of the world is used to keep 
track of time, predict the onset of future events, 
and plan behavioral actions accordingly.

 Results

 1. The accumulation of prediction errors can be 
used to distinguish regular from irregular 
trains of sensory stimuli

When a train of sensory or motor events 
occurs at regular intervals, the brain can easily 
predict the onset of future occurrences of these 
events (Zacks & Tversky, 2001). This capacity 
allows us to dance, appreciate, and generate 
music, and, in general, allows us to plan and exe-
cute our behavior in close timing to predictable 
future events. However, how do we decide 
whether a train of sensory events occurs at regu-
lar intervals?

Suppose we approach timing as the ability to 
internally model current and future states of the 
world. In that case, a mechanism that utilizes the 
differences between predictions and actual events 
might be useful to distinguish regular from irreg-
ular rhythms (Cooper, 2021; Schulze, 1978, 
1989). In one of our recent investigations 
(Espinoza-Monroy & de Lafuente, 2021), we 
made use of a regularity discrimination task and 
a model that accumulated the time difference 
between the predicted onset and the actual onset 
of sensory stimuli.

In our regularity discrimination task, human 
participants perceived a train of consecutive sen-
sory stimuli and had to decide whether they 
occurred at regular or irregular time intervals 
(Figs. 1 and 2). As expected, subjects rapidly and 
accurately communicated their “irregular” deci-
sions when the intervals between stimuli were 
highly variable. On the contrary, when the vari-
ability of the intervals between consecutive stim-
uli was highly regular, subjects took more time. 
They generated a significant proportion of errors 
(false alarms), thus revealing the difficulty of per-
ceiving slight differences between predicted and 
actual onset times.

Making use of this regularity detection task, 
we compared the resulting psychometric (accu-
racy; Fig. 3b) and chronometric (response time; 
Fig.  3c) curves across auditory, visual, and 
somatosensory modalities (Fig. 3a). Consistent 
with previous research (Patel et al., 2005; Repp, 
2003), we found that human subjects are better at 
estimating the timing of auditory stimuli. Tactile 
and visual modalities demonstrated similar accu-
racy and decision times (Fig. 3d).

Importantly, by making use of the decision- 
making model, we provided support to the 
hypothesis that human subjects do not wait to 
detect large deviations of predicted and actual 
onset times but instead accumulate the successive 
differences between predictions and evidence 
and then commit to a “regular” or an “irregular” 
decision once the accumulation of many of these 
differences reaches a decision bound.

Our behavioral and modeling efforts sup-
ported the hypothesis that the human brain per-
ceives a train of sensory pulses as irregular when 
observed onset times deviate from predicted 
onset times.

 2. The ability to internally maintain rhythms is 
shared across human and non-human 
primates

Ours and previous research firmly established 
that humans can internally maintain rhythms of dif-
ferent tempos (Hary & Moore, 1987; Mates, 1994; 
Repp, 2005; Zarco et al., 2009). Are monkeys able 
to do the same, more so, without overt movements? 
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Fig. 1 A simple model to decide whether a train of stim-
uli comes at regular or irregular intervals. The top traces 
show an example of sensory pulses presented at regular 
intervals. When the time of stimulus presentation closely 
coincides with the brain’s expected onset time, then no 
error signal is generated, and a decision variable moving 
toward the “regular” choice bound wins the race (DVreg), 
resulting in a “regular stimulus” decision by the partici-

pant. A few model parameters, like the slope and which 
the “regular” decision variable approaches the lower 
bound, or an alpha parameter determining how much of 
the “irregular” evidence takes to decay, allow the model to 
match not only the resulting accuracy of the decision 
closely, but also the time it takes the subjects to reach that 
decision

Fig. 2 When sensory stimuli arrive at unexpected times, 
our model proposes that these time differences accumu-
late, increasing the amount of “irregular” evidence. When 

such accumulation (DVirr) reaches the decision bound, the 
subject makes an “irregular” decision
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Fig. 3 Behavioral results of a regular or irregular 
decision- making task. (a) Brief pulses (50  ms) of audi-
tory, tactile, and visual stimuli were used to generate a 
train of pulses that determined a rhythm that human sub-
jects had to determine whether they presented at regular or 
irregular intervals. (b) As expected, when sensory pulses 
arrived at highly irregular intervals (high variability, std. 
% of interval length), participants accurately identified 
them as “irregular” p(irregular), and this ability decreased 

as the inter-pulse intervals became more regular (low vari-
ability, x-axis). (c) As expected, the time subjects took to 
communicate their “irregular” decisions reduced as the 
inter-pulse intervals became highly irregular. (d) 
Consistent with previous results, we found that the audi-
tory system was more sensitive and generated faster deci-
sions (e) when distinguishing regular from irregular 
rhythms
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In recent work (García-Garibay et  al., 2016), we 
addressed this question by making use of a left-
right visual metronome task in which human and 
non-human primates had to observe and then inter-
nally maintain the tempo at which a visual metro-
nome alternated between the left and right sides of 
a computer screen (Fig. 4). In this task, the subjects 
observed three intervals of the visually defined 
metronome, and when the metronome disappeared, 
they were required to internally estimate its left-
right position as a function of elapsed time. Notably, 
at a random time after the metronome was extin-
guished, a visual cue instructed the subjects to 
touch the side of the screen at which they estimated 
the metronome should be.

As expected, the behavioral results demon-
strated that the ability to identify the metronome’s 
position correctly gradually decreased as a func-
tion of elapsed time, reflecting the fact that the 
pace of the internal metronome (no longer visible 
on the screen) gradually fell out of sync from the 
correct tempo (Fig.  5). This behavioral pattern 
was well captured by a model that made use of 
Weber’s law—called the scalar property in the 
context of timing—stating that the variance of 
time estimates grows linearly with elapsed time 
(Fig. 5).

Importantly, by making use of our model, we 
were able to provide support to the hypothesis 
that subjects time individual intervals (i.e., they 
reset their clock after each interval is completed), 
as opposed to making use of a chronometer that 
estimates total elapsed time. In addition, our 
behavioral results demonstrated that subjects 

establish a mean prior tempo, which causes them 
to get ahead of trials with slow tempos and fall 
behind in trials with faster ones.

Overall, our behavioral and modeling work 
using the visual metronome task demonstrated 
that monkeys share the human ability to maintain 
a rhythm internally and, crucially, can do it in the 
absence of movements.

 3. The medial premotor cortex engages in 
rhythm entrainment, and it helps maintain 
oscillatory activity that reveals the timing 
characteristics of an internal metronome

Next, we investigated the neuronal correlates 
of this internal metronome (Cadena-Valencia 
et al., 2018). What are the neuronal mechanisms 
allowing human and non-human primates to 
maintain internal rhythms in the absence of 
movements? The supplementary motor area 
(SMA) has been thoroughly studied in the con-
text of timing, motor preparation, and motor exe-
cution (Bengtsson et  al., 2009; Grahn & Brett, 
2007; Grahn & Rowe, 2009; Mita et  al., 2009; 
Rao et al., 1997; Schubotz & von Cramon, 2002). 
Thus, we decided to investigate what role this 
area plays in maintaining an internal metronome 
that does not require motor actions. Of course, 
we used our recently developed visual metro-
nome task in which monkeys had to maintain an 
internal rhythm established by a briefly presented 
metronome (Fig. 6).

Our results demonstrated that circuit activity 
recorded by local field potentials (LPFs) dis-

Fig. 4 The visual metronome task. A visual stimulus 
switches from left to right from an eye fixation point at the 
center of a computer screen. After three visible stimuli 

(presentation phase), the stimulus disappears, and the par-
ticipant’s task is to keep track of the no longer visible 
stimulus as a function of time (continuation phase)
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Fig. 5 The ability to 
correctly identify the 
position of a no longer 
visual metronome 
p(correct) decreases as 
the internal metronome 
gradually falls out of 
sync from the true pace 
of the metronome, for 
both Rhesus monkeys 
(a) and humans (b). This 
reduction in accuracy is 
well captured by a 
model that uses the 
well-known “scalar 
property of 
timing” (colored lines). 
Please note that, overall, 
the performance of the 
Rhesus monkeys is well 
above human 
performance in this 
rhythm task, most likely 
due to the extensive 
training that monkeys 
received

Fig. 6 Detailed illustration of the left-right metronome 
task. At the center of the screen, eye (red) and hand (black) 
fixation areas instructed the monkeys to maintain their 
hands and eyes over the center of the screen throughout 
the trial. A visual stimulus appeared left or right (ran-
domly determined) and disappeared after three entrain-

ment intervals. When the metronome was no longer 
visible, the maintenance intervals could span 1–6 ran-
domly selected intervals. At the go-cue (disappearance of 
the hand fixation area), monkeys knew they had to com-
municate their estimated position of the metronome

played rhythmic bursts of high gamma activity 
(30–40 HZ) that reflected the position and tempo 
of the internal metronome (Fig. 7a). Remarkably, 

monkey subjects were able to switch between 
slow, fast, and rapid tempos, on a trial-by-trial 
basis. The neuronal activity reflected this slowing 
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Fig. 7 Single neuron activity and local field potential 
activity were recorded at the supplementary motor area in 
monkeys performing the left-right metronome task. (a) 
The high gamma oscillations in LFP (spectrogram) dem-
onstrate clear oscillations during the maintenance epoch 
of the task, in which the metronome is no longer visible. 
Please note that these are internal modulations of activity, 
driven exclusively by the estimates that subjects have of 
the invisible metronome. (b) The mean firing rate activity 
of supplementary motor neurons oscillates at the metro-

nome’s rhythm, and they can stretch or compress this 
oscillation to match the tempo of the estimated metro-
nome. (c) Moreover, by analyzing the dynamics of error 
trials, compared to correct trials, we were able to deter-
mine that monkeys lag behind fast tempos and get ahead 
of slow ones, importantly determining that monkeys 
rarely guess the positions of the metronome. Instead  of 
guessing, they tried their best to maintain the correct 
tempo even on incorrect trials
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and stretching of the internal chronometer 
(Fig.  7b). We decoded the monkey’s internal 
decisions based on single trials of a single LFP, 
which demonstrated a close relationship between 
gamma bust activity, firing rate activity, and the 
pace of the internal metronome. Moreover, the 
activity from single neurons allowed us to predict 
whether this internal metronome was falling 
ahead or behind the true tempo (Fig. 7c).

The fact that a premotor area, such as the sup-
plementary motor area, shows such strong and 
highly behavioral-predictive activity supports to 
the theory that the brain uses the motor system as 
a proxy to estimate the passage of time. Indeed, 
this interpretation of our results is consistent with 
the idea that the motor system simulates alternat-
ing reaching movements to the left and right as a 
proxy to maintain an internal rhythm (Fig.  7b) 
(Egger et  al., 2019; Robbe, 2023;  Schubotz & 
von Cramon, 2002; Schubotz & Von Cramon, 
2004). Moreover, given that the amplitude of 
both oscillatory single neuron activity and the 
amplitude of the gamma bursts gradually increase 
over time, we propose that the supplementary 
motor areas not only keep track of individual 
intervals but, importantly, are able to estimate the 
total elapsed time spanned since the beginning of 
the given trial (Fig. 7a, b).

 4. Timing as the ability to simulate future states 
of the world

In our most recent investigations (de Lafuente 
et al., 2024) we aimed to support the idea that the 
brain does not use a specialized mechanism to 
estimate rhythm or time. Instead, we tested the 
hypothesis that the brain internally simulates 
future motor plans and also stimulates the possi-
ble sensory stimuli that might appear in the near 
future that could be behaviorally relevant.

To this end, we again made use of the visual 
metronome task. However, we additionally 
recorded from visual area 4, which is related to 
encoding visual information and participates in 
attention-driven processes (Ghose & Maunsell, 
2002; Leinweber et al., 2017). Interestingly, we 
discovered that this visual area not only activates 
in response to the visual presentation of the met-

ronome but also, crucially, maintains its left-right 
oscillatory activity once the visual stimulus is no 
longer visible. We were able to demonstrate that 
the internal metronome was periodically activat-
ing single neurons and also  the larger circuit 
recorded in the LFPs. 

In summary, our research has led us to con-
clude that the brain might not use a specialized 
mechanism to track time or rhythm. Instead, we 
propose that the brain utilizes its well-known 
machinery to simulate the present and future 
states of the world. Concretely, our experimental 
findings support the idea that monkeys recreate 
the visual stimuli and the motor plans that will be 
needed to correctly identify the position of the 
metronome once it is no longer visible. In other 
words, the brain internally recreates the sensory 
and motor aspects of the metronome once they 
are no longer visible.
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Abstract

A common research protocol in cognitive neu-
roscience is to train subjects to perform delib-
erately designed experiments while recording 
brain activity, with the aim of understanding 
the brain mechanisms underlying cognition. 
However, how the results of this protocol of 
research can be applied in technology is sel-
dom discussed. Here, I review the studies on 
time processing of the brain as examples of 
this research protocol, as well as two main 
application areas of neuroscience (neuroengi-
neering and brain-inspired artificial intelli-
gence). Time processing is a fundamental 
dimension of cognition, and time is also an 
indispensable dimension of any real-world 
signal to be processed in technology. 
Therefore, one may expect that the studies of 
time processing in cognition profoundly influ-
ence brain-related technology. Surprisingly, I 
found that the results from cognitive studies 

on timing processing are hardly helpful in 
solving practical problems. This awkward sit-
uation may be due to the lack of generalizabil-
ity of the results of cognitive studies, which 
are under well-controlled laboratory condi-
tions, to real-life situations. This lack of gen-
eralizability may be rooted in the fundamental 
unknowability of the world (including cogni-
tion). Overall, this paper questions and criti-
cizes the usefulness and prospect of the 
abovementioned research protocol of cogni-
tive neuroscience. I then give three sugges-
tions for future research. First, to improve the 
generalizability of research, it is better to 
study brain activity under real-life conditions 
instead of in well-controlled laboratory exper-
iments. Second, to overcome the unknowabil-
ity of the world, we can engineer an easily 
accessible surrogate of the object under inves-
tigation, so that we can predict the behavior of 
the object under investigation by experiment-
ing on the surrogate. Third, the paper calls for 
technology-oriented research, with the aim of 
technology creation instead of knowledge 
discovery.
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 Prologue

Humans are great through reasoning, but are 
matured by recognizing the limitations of reason-
ing. ---Prof. Qing Liu, School of Politics and 
International Relations, East China Normal 
University, Shanghai

“So interesting! Why is it?” This is perhaps the 
question that inspires your curiosity about the 
brain and marks the beginning of a neuroscience 
research journey. However, before you embark 
on such an investigation, I advise to think twice 
about whether the mechanism underlying the 
phenomenon is worth investigating. In most 
cases, such investigation is useless in solving 
practical problems.

“Too short-sighted!” You may criticize me. You 
may believe that even though your results cannot 
lead to practical breakthroughs directly, they 
belong to the ongoing accumulation of knowledge 
about the brain. As the accumulation continues, 
people will eventually have a very good under-
standing of the brain and develop advanced brain 
technology to solve practical problems.

However, your criticism neglects a possibility: 
Some aspects of the brain may be unknowable. If 
such is the case, we may never be able to fully 
understand the brain, regardless of how much 
knowledge we accumulate. This unknowability 
reflects the fundamental limitations of human 
reasoning capabilities.

If you ever doubt the limitations of human rea-
soning, take a trip to an art museum. As you 
peruse the galleries, you may ask yourself: Is it 
possible to develop a logical system that, through 
a series of if-then reasoning, could lead to the 
creation of a masterpiece? If you doubt the exis-
tence of such a logical system for the creation of 
art, then why do you believe that a logical system 
for the workings of the brain exists? After all, the 
brain is believed to be much more complex than 
any artwork created by humans.

In this paper, I will review literature that high-
lights the limitations of mechanism-investigating 
research in solving practical problems. I will then 
explore the concept of the unknowability of the 
brain through the lenses of neuroscience, philos-
ophy, physics, and AI. Finally, I will provide sug-

gestions for conducting meaningful research in 
light of this unknowable reality.

 Introduction

Atomism, the idea that the universe is composed 
of fundamental components known as atoms, is 
perhaps the most influential philosophy leading 
scientific research. Richard Feynman considered 
atomism to be the most important thinking we 
should pass on to the next generation (Feynman 
et  al., 2011), as various physical changes and 
chemical reactions can be explained by suppos-
ing the movements and interactions of atoms 
(Feynman et al., 2011).

Atomism has also had a strong influence on 
cognitive neuroscience. Psychologists have 
divided cognition into several elements, includ-
ing perception, learning, memory, and decision- 
making (Baldwin, 1893). Each of these elements 
can be further divided into several sub-elements 
from different perspectives. For example, percep-
tion can be divided into the perception of space 
and time or into visual and auditory perception. 
Memory can be divided into short-term and long- 
term memory, or episodic and semantic memory, 
among other things. After investigating the brain 
activity when the subject is performing each ele-
ment of cognition, neuroscientists aim to under-
stand the biological backend of cognition by 
collecting all these pieces together (Fig.  1a). 
From this atomistic perspective, studying a single 
cognitive element is the foundation for under-
standing cognition, which is why I name this 
research protocol to be basic.

To perform basic cognitive studies, research-
ers elaborately designed simple and well- 
controlled experimental conditions to study a 
single cognitive element while teasing apart the 
influence from other elements. For example, to 
study working memory, researchers trained mon-
keys to recall a visual cue after a delay period 
(Constantinidis et al., 2001) (Fig. 1b). To study 
decision-making, researchers trained monkeys to 
watch two types of dots moving toward opposite 
directions and then decide which type had more 
dots (Roitman & Shadlen, 2002) (Fig.  1c). 
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Fig. 1 Illustration of basic cognitive studies. (a) Basic 
cognitive studies are guided by the philosophy of atom-
ism, which divides cognition into many elements, each of 
which is studied separately. Atomists believe that by 
understanding each element, we can eventually under-
stand the whole of cognition. (b) A classical experiment to 
study working memory. The subject fixates on a central 
point, and a visuospatial cue (one of the eight gray boxes) 
is presented briefly, followed by a mnemonic delay. After 
the delay, the subject must make a saccadic eye movement 
to the remembered location. (c) A classical experiment to 
study decision-making. There are two types of random 

dots, one moving leftward and the other moving right-
ward. The subject must decide which type has more dots. 
(d) Schematic of the time production task. The subject 
receives two signals (black bars) separated by a time inter-
val T; after a delay epoch with variable duration, a go cue 
(gray bar) appears, and the subject must move at time T 
after the go cue. (e) Schematic of the synchronization- 
continuation task. The subject must move (gray bars) 
immediately following a sequence of signals (black bars) 
with period T. The subject must still move with period T 
(dashed bar) after the signal was removed

Another example is the study of time cognition, 
which also stems from atomism. To focus on the 
processing of time while disentangling other cog-
nitive elements (such as the perception of spatial 
information), psychologists or neuroscientists 
train subjects to perform simple but deliberately 
designed timing tasks. In a classical experiment 
(Rakitin et al., 1998), participants were presented 
with specific time intervals delimited by stimuli 
and then were asked to reproduce the interval 
(Fig. 1d). When subjects were performing these 
simple and deliberately designed tasks, research-
ers recorded subjects’ brain activity to propose 
neural network mechanisms underpinning basic 
elements of cognition.

While some scientists think that the pure aim 
of science is to satisfy our curiosity about the 
world, I believe that scientific results must be 
implemented in technology and benefit the mass 
of people before scientific results complete their 
mission. However, the status and prospects of the 
technological applications of basic cognitive 
studies have seldom been discussed. In this paper, 
I will discuss the technological applications of 
basic cognitive studies, starting with a review of 
cognitive studies of time processing in the brain 
(i.e., basic timing studies) as examples of basic 
cognitive studies. Time processing is an indis-
pensable dimension of cognition (Merchant 
et  al., 2013), and time is also an indispensable 
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dimension of any real-world signal to be pro-
cessed by technology. Therefore, one may expect 
that the results of basic timing studies lay down 
the foundations for processing temporal signals 
in brain-related technology. Unfortunately, after 
reviewing two fields of brain-related technology, 
neuroengineering for brain health and brain- 
inspired artificial intelligence, which are two 
promising application fields of neuroscience sug-
gested by the China Brain Project (Poo et  al., 
2016), I found that the results of basic timing 
studies are hardly helpful in solving practical 
problems.

I will attempt to clarify this awkward situation 
and offer suggestions for future research (Fig. 2). 
In my view, the challenge of applying basic tim-
ing studies (and, more broadly, basic cognitive 
studies) to technology stems from their lack of 
generalizability. In other words, the results of 
these studies are contingent on the specific condi-
tions and tasks of the laboratory experiments that 
produced them and may not be applicable in 

other contexts. This lack of generalizability may 
be rooted in the fundamental unknowability of 
the world, including cognition. In other words, 
the capability of knowledge to describe the world 
is fundamentally limited, so the generalizability 
of our knowledge to various situations in the 
world is fundamentally limited, and therefore, 
the capability of knowledge to guide technologi-
cal creation to change the world is also funda-
mentally limited.

I suggest three ways to improve future research 
(Fig. 2). Firstly, to improve the generalizability of 
results, researchers should analyze brain activity 
in real-life settings, rather than simple tasks in 
well-controlled experimental conditions, and 
examine their results under various situations. 
Secondly, to deal with the unknowability of the 
world, researchers should engineer surrogates of 
the object under investigation, so that they can 
predict the behavior of the investigated object 
using the surrogate, even without understanding 
how the object under investigation works. Finally, 

Basic cognitive studies 
(exemplified by basic 

timing studies)

Neuroengineering

Brain-inspired AI

reason

Lack of generalizability

Unknowability of the world

suggestion

Improving the generalizability of 
scientific reseach

Using surrogate to overcome 
unknowability

Performing technology-oriented 
studies

cannot help
Part 1

Part 2

Part 3

stem from

Fig. 2 Overview of this paper. In Part 1, the main results 
of basic timing studies and two application fields (neuro-
engineering and brain-inspired AI) are reviewed, showing 
that basic timing studies (and perhaps more generally, 
basic cognitive studies) cannot help the application fields 
of neuroscience. In Part 2, it is proposed that this situation 

is due to the lack of generalizability of the basic timing 
studies and, more fundamentally, the unknowability of the 
world. Finally, in Part 3, researchers are suggested to 
improve the generalizability of their results, engineer sur-
rogates to overcome the unknowability of the world, and 
perform technology-oriented studies
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due to the fundamental unknowability of the 
world, I suggest that researchers focus on 
technology- oriented research with the aim of cre-
ating new technologies, rather than science- 
oriented research with the aim of discovering 
knowledge.

 Basic Timing Studies

This section provides an overview of basic timing 
studies, which use two main paradigms to study 
time cognition. The first paradigm is interval tim-
ing, which involves training the subject to perceive 
or produce a single time interval (Fig.  1d). The 
second paradigm is beat timing, which involves 
training the subject to perceive or produce a 
sequence of time intervals rhythmically (Fig. 1e). 
In the interval-production task (Rakitin et  al., 
1998), an example of the first paradigm, the sub-
ject is presented with a specific time interval 
delimited by stimuli and is then asked to reproduce 
the interval (Fig. 1d). In the synchronization- and- 
continuation task (Gámez et al., 2019), an example 
of the second paradigm, the subject is required to 
act following a sequence of rhythmic stimuli and 
continue to act rhythmically after the removal of 
the stimuli (Fig. 1e). By recording brain activity 
during these tasks, researchers can discover fea-
tures of brain dynamics related to time cognition 
and gain insight into the neural network mecha-
nisms underpinning time cognition.

In the interval-production task (Fig.  1d), a 
neural network perceives time by evolving its 
state along a stereotypical trajectory in the per-
ception epoch, maintains time intervals in work-
ing memory using a manifold of line attractor in 
the delay epoch, and predicts a coming event by 
evolving its state along isomorphic trajectories 
with the speed of state evolution inversely scaling 
with the to-be-produced time interval in the pro-
duction epoch (Bi & Zhou, 2020a) (Fig.  3a). 
These dynamic features align with experimental 
findings from other interval-timing tasks (Jin 
et al., 2009; Mita et al., 2009; Wang et al., 2018). 
In the synchronization-continuation task 

(Fig. 1e), the network encodes different beating 
periods T using circular trajectories (Gámez 
et al., 2019) (Fig. 3b). The radii of these circular 
trajectories increase with the period T, but the 
speed of state evolution with time remains con-
stant across different values of T.

In both the perception and production epochs 
of the interval-production task, as well as in the 
beating intervals in the synchronization- 
continuation task, the neural network relies on 
state evolution along trajectories to sense the pas-
sage of time. This state evolution can be achieved 
through several mechanisms, including the 
pacemaker- accumulator model (Buhusi & Meck, 
2005) (recently supported in (Cook et al., 2022)), 
in which an accumulator counts the number of 
pulses received from a pacemaker (Fig. 3c, left); 
the synfire chain model (Zeki & Balci, 2019), in 
which a chain of neurons is sequentially excited 
(Fig. 3c, middle); and the striatal beat-frequency 
model (Matell & Meck, 2004), in which a group of 
oscillators with heterogeneous frequencies have 
their phases reset by the stimulus (Fig. 3c, right).

Anatomically, several brain areas have been 
identified as participating in timing, including the 
basal ganglia (Jin et  al., 2009), supplementary 
motor area (SMA) (Mita et  al., 2009), sensory 
cortex (Shuler & Bear, 2006), and prefrontal cor-
tex (Wang et al., 2018). There is ongoing debate 
about whether timing relies on dedicated circuits 
in the brain or on intrinsic computation that 
emerges from the inherent dynamics of neural 
circuits (Paton & Buonomano, 2018; Ivry & 
Schlerf, 2008). A prevailing viewpoint is that 
timing depends on the interaction of core timing 
areas, such as the basal ganglia and SMA, which 
are consistently involved in temporal processing 
across various contexts, and other areas, such as 
the prefrontal cortex, sensory cortex, and cerebel-
lum, which are activated in a context-dependent 
manner (Merchant et al., 2013).

At the behavioral level, the most well-known 
timing principle is the scaling property, which 
posits that the variance of time interval estima-
tion is proportional to the mean of the estimation 
(Allman et al., 2014).
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Fig. 3 Some results of basic timing studies. (a) Dynamic 
features of neural networks in the interval-production 
task. Left: For time perception in the perception epoch 
(see Fig. 1d), the network exhibits a stereotypical trajec-
tory whose final position determines the perceived time 
interval T (see Fig. 1d). Lines with blue, green, and red 
colors, respectively, represent the trajectories when T is 
large, middle, and small. Asterisk and circle, respectively, 
represent the beginning and end of the trajectory. Middle: 
In the delay epoch, time intervals are maintained in the 
working memory as positions (black dots) in an attractor 
manifold. The speed of state evolution with time decreases 
near the attractor (indicated by the lighter color near the 
attractor). Right: In the production epoch, time prediction 
is performed when the network state evolves along iso-

morphic trajectories, with the speed of state evolution 
inversely scaling with the to-be-produced interval T. (b) 
Dynamic features of neural networks in the 
synchronization- continuation task. With different periods 
T (see Fig. 1e), the network state evolves along different 
circular trajectories at the same speed, but the radius of the 
circular trajectory increases with T. (c) Some computa-
tional models for the neural mechanisms of time sensing. 
Left: In the pacemaker-accumulator model, time is mea-
sured by the accumulated number of pulses emitted from 
the pacemaker. Middle: In the synfire chain model, time 
can also be measured by the sequential firing of a chain of 
neurons. Right: In the beat-frequency model, time is mea-
sured by the activity pattern of a group of oscillators with 
heterogeneous frequencies after phase resetting

 Brain-Related Technology

Time processing is a fundamental aspect of cog-
nition (Merchant et al., 2013), and time is also an 
indispensable dimension of any real-world signal 
to be processed in technology. Therefore, one 
might expect that studies on time processing in 
cognition would profoundly influence brain- 
related technology. This section will review two 
fields of brain-related technology, neuroengi-
neering for brain health and brain-inspired artifi-
cial intelligence, which are two promising 
application fields of neuroscience suggested by 
the China Brain Project (Poo et  al., 2016). 
Unfortunately, we will see that the results from 
basic timing studies are hardly helpful in solving 
practical problems.

 Neuroengineering for Brain Health

Neuroengineering involves designing interfaces 
between living neural tissue and non-living con-
structs in order to understand, repair, replace, or 
enhance neural systems (Hetling, 2008). In this 
paper, I will review neuroengineering techniques 
used for the therapy of Parkinson’s disease 
through deep brain stimulation, the diagnosis of 
epilepsy through neuroimaging, and the develop-
ment of speech prostheses through machine 
translation of brain activity into language.

Parkinson’s disease is closely related to patho-
logical changes in the basal ganglia (Poewe et al., 
2017), a core timing area of the brain (Merchant 
et al., 2013). Epilepsy also recruits timing-related 
regions such as the thalamus, basal ganglia, and 
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frontal lobe (Bertram, 2009; Wu et al., 2019). As 
a result, patients with either Parkinson’s disease 
or epilepsy may experience distortion of timing 
perception (Gu et al., 2016; Greyson et al., 2014; 
Cainelli et al., 2019). Besides, language has rich 
hierarchical temporal structures, and the process-
ing of language may share a similar neural sub-
strate with the processing of music (Patel, 2003; 
Janata & Grafton, 2003; Hickok, 2012). 
Therefore, it is reasonable to assume that basic 
timing studies could be of great help in the ther-
apy and diagnosis of Parkinson’s disease and epi-
lepsy, as well as the machine translation of brain 
activity into language. However, I will show 
below that this is not the case.

 Neuroengineering Is Driven by Clinical 
Data and Experience
Deep brain stimulation (DBS) therapy for 
Parkinson’s disease was pioneered by Lawrence 
Pool, who implanted an electrode into the cau-
date nucleus of a female patient in 1948 (Pool, 
1954). Traditional DBS is an open loop, where 
the clinician sets parameters of the controller that 
deliver short-duration (60–180  ms) and high- 
frequency (typically 130–185 Hz) pulses of elec-
trical stimulation to alleviate symptoms (Benabid 
et al., 1994; Limousin et al., 1995; Siegfried & 
Lippitz, 1994) (Fig. 4a, left). However, this type 
of DBS cannot adapt its stimulation according to 
the feedback from the patients and has several 
drawbacks, such as adverse effects such as dyski-
nesia and high battery consumption (Bouthour 
et al., 2019; Krauss et al., 2021). Recently devel-
oped closed-loop DBS overcomes these prob-
lems by delivering stimulation only when 
pathological biomarkers are detected (Bouthour 
et al., 2019; Krauss et al., 2021) (Fig. 4a, right).

Interestingly, despite the broad success and 
application of DBS, the mechanism by which 
DBS ameliorates Parkinson’s disease is still not 
fully understood, although some mechanisms 
related to neuronal circuits, astrocytes, and neu-
rogenesis have been proposed (Okun, 2012). Due 
to the lack of understanding of the mechanism, 
the technical details of DBS have been estab-
lished mainly through empirical means. For 
example, the optimal stimulation waveform 

shape in open-loop DBS was determined by sys-
tematically varying stimulation parameters and 
examining the therapeutic effects (Rizzone et al., 
2001; Kuncel et al., 2006). The most prominent 
biomarker used in closed-loop DBS, excessively 
synchronized beta oscillation, was also discov-
ered through empirical comparisons between 
normal and diseased brains (Oswal et al., 2013; 
Cheyne, 2013). Therefore, mechanical insight, 
which is the aim of basic timing studies (Fig. 3), 
is not the primary driving force behind the devel-
opment of DBS.

Though the mechanical insights provided by 
basic timing studies may not currently be helpful 
in the research of DBS, one might still expect that 
they could be useful in the future. However, 
recent research trends suggest a dominance of 
data-driven automatic design in the development 
of DBS technology, rather than a rational imple-
mentation of mechanical knowledge. As men-
tioned earlier, closed-loop DBS delivers 
stimulation into the brain only when pathological 
activities (i.e., biomarkers) are detected. 
Traditionally, excessive beta oscillation was pre-
determined as the key biomarker of patients’ 
tremors in Parkinson’s disease (Bouthour et al., 
2019; Krauss et  al., 2021). However, in two 
recent studies (Shah et al., 2018; Tan et al., 2019), 
the authors recorded patients’ body movements 
using accelerometers and recorded local field 
potentials (LFPs) using electrodes. They then 
trained binary classifiers to detect the LFPs dur-
ing tremor or non-tremor periods. Here, the 
detector (i.e., the binary classifier) is trained by 
clinical data, instead of being rationally designed 
using our knowledge of the mechanisms of 
Parkinson’s disease. A similar data-driven 
approach has also been used to detect biomarkers 
of depression (Scangos et al., 2021a, b), where a 
classifier was trained to map stereoelectroen-
cephalography (SEEG) recordings to depression 
scores measured by a psychological 
questionnaire.

This data-driven approach is also the main-
stream of other neuroengineering techniques. For 
example, in recent studies on epilepsy diagnosis, 
neural network models were built to simulate the 
large-scale dynamics of the brain. The models 
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Fig. 4 Some neuroengineering techniques. (a) In open- 
loop deep brain stimulation (DBS) (left), the stimulation 
waveform is preset in the controller. In closed-loop DBS 
(right), the stimulation waveform can be adjusted accord-
ing to the local field potential (LFP) of the brain. In both 
types of DBS, the controller is programmed based on 
clinical data, rather than on mechanical understandings 
from basic cognitive studies. (b) Neural network models 
that simulate large-scale dynamics of the brain have been 
used to guide the surgery on epileptic patients. The param-
eters of the model are also determined by clinical data, 
rather than mechanical understandings from basic cogni-

tive studies. (c) There are two strategies to build the model 
to translate brain activities to language for speech prosthe-
sis. In the word-by-word training strategy (upper left), the 
model is trained to map the brain waveforms when the 
patient is speaking single words to single spoken words. 
In the whole-sentence strategy (upper right), the model is 
trained to map the brain waveforms when the patient is 
speaking whole sentences to the whole spoken sentences. 
In the test session (lower), the trained model is used to 
translate the brain waveforms corresponding to whole 
sentences. The whole-sentence training strategy results in 
better performance than the word-by-word strategy

were used to identify the ictogenic zone of sei-
zures and guide the resection of brain areas in 
clinical surgery (Cao et  al., 2022; Sinha et  al., 
2017) (Fig. 4b). In their neural network models, 
the connection strengths were determined 
through the fitting of empirical data, rather than 
being rationally designed based on mechanical 
insights into epilepsy or the information process-
ing of the brain. Another example is the machine 
translation of brain activities to language, which 

can be used as a speech prosthesis for degenera-
tive motor diseases such as amyotrophic lateral 
sclerosis and locked-in syndrome (Fig.  4c). 
Traditional approaches trained translation 
machines by mapping neuroimaging signals to 
individual words or even sub-word syllabic fea-
tures (such as vowel harmonics and fricative con-
sonants) (Pasley et al., 2012; Angrick et al., 2019) 
(Fig. 4c, upper left). However, the best brain-to- 
language translation performance is now realized 
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by training recurrent neural networks in an end- 
to- end manner, mapping brain signals to entire 
sentences rather than single words or syllabic 
features (Makin et al., 2020; Cogan, 2020; Moses 
et  al., 2019) (Fig.  4c, upper right). Although 
understanding the brain activities related to 
words and even syllables may seem more “basic” 
and “mechanical,” implementing such under-
standings in the technique results in worse per-
formance than directly training a neural network 
to map brain signals to entire sentences (Fig. 4c, 
lower).

 Summary
Overall, basic timing studies (Fig.  3), though 
expected to be “basic,” unfortunately do not lead 
to the progress of application-oriented research. 
This awkward situation is due to a gap in that 
basic timing studies aim for mechanistic explana-
tions for simple timing tasks, but neuroengineer-
ing, which aims for good performance in practical 
use, is not mainly driven by mechanistic under-
standings of the brain, but by clinical data and 
experience. This gap not only exists between 
basic timing studies and neuroengineering, as we 
have discussed here, but, more generally, between 
basic cognitive studies (Fig.  1) and neuroengi-
neering. Therefore, we may conclude that basic 
cognitive studies do not lead to the progress of 
neuroengineering.

 Brain-Inspired Artificial Intelligence

Brain-inspired artificial intelligence (AI) is 
another potential application field of neurosci-
ence. Brain-inspired AI aims to build strong AI 
(i.e., AI that has mental capabilities and functions 
that mimic the human brain, or in other words, 
can pass the Turing test) by mimicking the struc-
ture and function of the brain, through the imple-
mentation of neuroscience knowledge in AI 
engineering (Hassabis et al., 2017). I have a criti-
cism of this brain-inspired approach to AI, though 
due to ethical concerns, detailed investigations on 
the human brain cannot be performed. As a result, 
brain-inspired AI can only closely mimic the 
brain of animals, which has low-level intelli-

gence, rather than that of humans, whose high- 
level intelligence is the ultimate aim. Therefore, 
the brain-inspired approach should not be the 
leading approach to strong AI in the long run. I 
will talk about the possible approach to strong AI 
at the end of this subsection; at present, however, 
let us forget this criticism and think about how 
basic timing studies may contribute to brain- 
inspired AI. Unfortunately, I will show that basic 
timing studies are also of little help to this field.

 The Inspiration for AI 
from Neuroscience
The inspiration for AI from neuroscience is found 
at the levels of neurons, synapses, and neural net-
works. This is exemplified below:

 1. Single Neuron Level.
 (a) Biological neurons fire spikes, unlike arti-

ficial analog neurons, whose activities 
take continuous values. Implementing 
spiking neurons in hardware significantly 
reduces energy consumption compared to 
analog neurons (Frenkel, 2021). The rea-
son is that the membrane voltage of spik-
ing neurons stays near the resting state 
most of the time due to the sparsity of 
spiking periods, resulting in small leaky 
currents.

 (b) Biological neurons also have rich internal 
dynamics due to the interaction between 
the membrane voltage and ion channels 
(Dayan & Abbott, 2001), unlike artificial 
neurons, which are usually nonlinear fil-
ters of total synaptic currents. Such rich 
internal dynamics significantly improve 
the computational power of biological 
neurons (Beniaguev et  al., 2021). 
Recently, it has been found that only 19 
neurons with internal dynamics can make 
up a full-stack autonomous vehicle con-
trol system (Lechner et al., 2020).

 2. Single Synapse Level.
 (a) Biological synapses have binary effica-

cies (O’Connor et  al., 2005), unlike in 
artificial networks where synaptic weights 
typically take continuous values. Binary- 
weight artificial neural networks have 
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been investigated and broadly used due to 
their low computation and memory cost, 
as well as performance that is comparable 
with continuous-weight networks 
(Courbariaux et al., 2016).

 (b) Biological synapses also have hidden 
states other than synaptic efficacy, which 
arise from the complex interactions of 
proteins in synapses (Graupner & Brunel, 
2010). Adding hidden synaptic states in 
artificial neural networks improves mem-
ory capacity and learning performance 
(Baldassi et al., 2007; Kirkpatrick et al., 
2017). The reason is that a high hidden 
state of a synapse can indicate that this 
synapse is important for the good perfor-
mance of a task; therefore, protecting the 
efficacy of synapses with high hidden 
states from being changed in the further 
training process can maintain the perfor-
mance of the neural network during fur-
ther training.

 3. Neural Network Level.
 (a) Memory replay, found in the hippocam-

pus and cortex (Ji & Wilson, 2007), is a 
phenomenon in which the neuronal firing 
sequence in sleep or at rest closely 
matches the firing sequence in the real 
experience just before. Memory replay 
inspires DQN (Mnih et al., 2015), a well- 
known deep reinforcement learning algo-
rithm that guides actions according to 
perceptual inputs in order to maximize 
future rewards. Besides, memory replay is 
also used in the Dyna algorithm (Sutton & 
Barto, 2018) to train a mental model of 
the environment. After training, the agent 
can predict the outcome of an action in 
situations never seen before using this 
mental model, facilitating the agent to 
adapt to more complicated environments.

 (b) Biological neurons are subject to gain 
modulation, which means that one input, 
the modulatory one, affects the sensitivity 
of a neuron to another input (Salinas & 
Thier, 2000; Salinas & Sejnowski, 2001). 
Gain modulation is the neural mechanism 
of attention. With attention mechanisms, 

a neural network looks at an image or 
input sequence and decides which parts of 
the image or sequence are important for 
the task at hand and then sends only the 
important parts to subsequent information 
processing. Attention mechanisms have 
become an indispensable component of 
advanced image and language processing 
models (Vaswani et  al., 2017; Devlin 
et al., 2019).

 (c) Context-dependent gating (Cichon & 
Gan, 2015) means that different sparse 
sets of dendritic branches are disinhibited 
when the brain is involved in different 
tasks. This mechanism allows the brain to 
recruit different dendritic branches for 
different tasks, so that the synaptic 
weights learned for one task will not 
interfere with the configuration learned 
for another task. Such context-dependent 
gating has been implemented in artificial 
neural networks to avoid catastrophic for-
getting during continual learning 
(Manning et al., 2020; Zeng et al., 2019).

 Basic Timing Studies Hardly Inspire AI
From the examples provided (also see (Hassabis 
et al., 2017) for a detailed review), it is clear that 
basic timing studies do not have a significant 
impact on the development of brain-inspired AI, 
despite time processing being a fundamental 
aspect of brain cognition. Similarly, other basic 
cognitive topics, such as working memory and 
decision-making (Fig. 1b, c), though attract great 
interest in the neuroscience community, and they 
also contribute little to brain-inspired AI. There 
are two possible reasons for the limited impact of 
basic cognitive studies in AI applications:

 1. Lack of Generalizability (Fig. 5a).
All the neural mechanisms implemented in 

AI have a common property: They are not 
task-specific. In other words, if a neural mech-
anism exists only when the brain is perform-
ing a simple task like Fig. 1b–e, but does not 
exist if the brain is performing another more 
complicated task, this neural mechanism will 
not be used in AI implementation. The reason 
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Fig. 5 Pitfalls of basic cognitive studies. (a) Basic cogni-
tive studies may lack generalizability, so that the results 
are valid in a specific laboratory experiment condition but 
invalid in another condition. (b) Examples of lack of gen-
eralizability. Upper: Some experiments suggest that inter-
val timing is more associated with the visual cortex, but 
other experiments suggest that interval timing is more 
associated with the auditory cortex. Lower: Interval tim-
ing and beating timing, though both are pure timing tasks, 
have different dynamic features and involve different 

brain areas. (c) Different learning algorithms result in 
similar neuronal population dynamics when the neural 
network is trained on the same basic cognitive task. 
Therefore, we cannot infer the learning algorithm that the 
brain uses through the dynamics when the brain is per-
forming basic cognitive tasks. (d) The lack of generaliz-
ability may be due to the methodology of laboratory 
experiments in basic cognitive studies and also the misun-
derstanding of the ideology of simplification

is simple: AI aims to solve complicated real- 
world problems, instead of toy problems like 
Fig. 1b–e designed by neuroscientists.

The lack of generalizability to real-world 
situations is the main shortcoming of basic 
cognitive studies. The dynamics of the brain 
when performing complex tasks cannot be 
deduced from the dynamics observed when 
the brain is performing simple tasks. In other 
words, even if we have a good understanding 
of the dynamics involved in numerous sim-
ple tasks like the one illustrated in Fig. 1b–e, 
we still do not know the brain dynamics in 
complex tasks. For example, suppose we let 
a patient perform simple tasks of speaking 
single words. Even if we record the brain 
activity related to numerous single-word 
speaking, we still do not know the patient’s 
brain activity when speaking a whole sen-

tence: because by dividing a sentence into 
single words, we are neglecting the syntactic 
structure of the sentence. This is why the 
translation of brain activity to language for 
speech prosthesis achieves better perfor-
mance when the neural network is trained to 
translate one sentence at a time instead of 
one word at a time (Makin et  al., 2020; 
Cogan, 2020; Moses et al., 2019) (Fig. 4c). 
More generally, cognition requires the coor-
dination of all “basic” elements: perception, 
memory, decision-making, and so on. Even if 
we study each “basic” element in isolation, 
we will still not be able to understand how 
the brain performs complex real-world tasks 
that require the coordination of these ele-
ments. We will discuss more about the lack 
of generalizability further in the next 
section.
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 2. Lack of Insight into Brain Learning 
Mechanism (Fig. 5c).

One may wonder whether the dynamic fea-
tures observed when the brain performs sim-
ple tasks (Fig.  3) depend on the specific 
learning algorithm of the brain. If a particular 
learning algorithm results in the experimen-
tally observed features (Fig.  3), while other 
algorithms do not, we may be able to infer the 
brain’s learning algorithm through these 
dynamic features. This learning mechanism 
could then be implemented into AI design. 
Unfortunately, accumulating evidence sug-
gests that similar dynamic features universally 
emerge when neural networks are trained on 
the same basic cognitive task using different 
learning algorithms. This implies that we may 
not be able to infer critical information about 
the learning algorithm that the brain uses 
through the dynamics observed when the 
brain is performing simple tasks.

For example, although error back- 
propagation (BP) algorithms lack convincing 
experimental support (Lillicrap et al., 2020), 
artificial neural networks trained by BP 
exhibit biologically plausible dynamics in 
image classification tasks (Hong et al., 2016), 
language tasks like next-word prediction 
(Goldstein et al., 2022), and other simple tasks 
in basic cognitive studies (Bi & Zhou, 2020a; 
Mante et al., 2013). Recently, I trained recur-
rent neural networks using an evolutionary 
algorithm to perform the context-dependent 
decision-making task (Bi et  al., 2022) and 
found that the resulting network exhibited 
dynamics closely analogous to those observed 
in monkey experiments and the dynamics 
observed in artificial neural networks trained 
by BP (Mante et al., 2013). The reason for this 
universality of dynamics across different 
learning algorithms is unknown, but it is pos-
sibly because different algorithms universally 
tune the synaptic weights into a high-entropy 
region in the synaptic configuration space 
(Baldassi et  al., 2015; Bi & Zhou, 2020b). 
Here, “high entropy” means that if we slightly 
perturb the synaptic weights found by an algo-
rithm, the perturbed weights still probably 

result in good task performance. Therefore, 
the weights found by different algorithms are 
likely to be close to each other in a high- 
entropy region, which may be the reason for 
the universal dynamic property of the net-
works trained by different algorithms. Due to 
this universality, we cannot gain insight into 
the learning mechanism of the brain from the 
dynamic features found in basic cognitive 
studies, let alone implement the brain learning 
mechanism in AI.

So what is the approach to strong AI, the machine 
with intelligence equal to the human brain or 
even more powerful? In my opinion, the most 
important thing we should learn from biology is 
the colossal scale of the human brain. Comparative 
studies have shown that the human brain contains 
more neurons than any other animal, which is 
probably the reason for our superior cognitive 
abilities (Herculano-Houzel, 2012). Consistently, 
AI is undergoing a paradigm shift with the rise of 
colossal models (e.g., BERT (Devlin et al., 2019) 
and GPT-3 (Brown et  al., 2020)) with over 
100 billion parameters trained on oceans of data 
(Bommasani et al., 2021). Such models, trained 
unsupervisedly, develop geometric representa-
tion of knowledge (Manning et al., 2020; Rives 
et al., 2021), which versatilely serve as the com-
mon basis of many task-specific models via adap-
tation (Bommasani et  al., 2021). Most 
impressively, as the size of the neural network 
increases, advanced functionalities such as 
 in- context learning naturally emerge (Brown 
et al., 2020): In-context learning means that the 
neural network after training can be competent 
for a task never seen during training, after the 
trained neural network is instructed by a natural 
language description of the task. Such colossal 
models are becoming the trend of AI led by big 
tech companies such as Google, Microsoft, and 
Huawei, with broad applications in the text 
(Devlin et  al., 2019), images (Ramesh et  al., 
2021), protein design (Rives et  al., 2021), and 
chemical reactions (Schwaller et  al., 2021). 
Recently, at a conference, a manager of the colos-
sal model project of Huawei told me that the 
progress of colossal models is also gradually get-
ting stagnant, because we cannot afford the huge 
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energy consumption to train the model if the 
model is too large (Strubell et  al., 2019). He 
believed that the next generation of colossal 
models should be led by the revolution of the 
computation paradigm, such as quantum comput-
ing, which can speed up some kinds of computa-
tions by exponential order (Nielsen & Chuang, 
2011). At another conference, a professor of 
quantum physics told me that quantum algo-
rithms are getting mature; the bottleneck of quan-
tum computing lies in its hardware 
implementation. If their opinions are correct, we 
may expect that strong AI will naturally emerge 
after the manufacturing technology of quantum 
computers is mature and if we train mega- 
colossal models using quantum computers.

 Summary
Overall, basic cognitive studies cannot signifi-
cantly contribute to AI due to their limitations on 
generalizability and insight into brain learning 
mechanism. The future of AI is likely to be led by 
colossal models.

 Contemplation

Time processing is a fundamental aspect of cog-
nition, and time is also an indispensable dimen-
sion of any real-world signal to be processed in 
technology. But why do basic timing studies, 
which aim to study time processing in the brain, 
which are also interesting and elegant, instead 
have little help to the progress of brain-related 
technology? Below, I will discuss possible rea-
sons for this discrepancy.

 Generalizability: The Shortcoming

Generalizability is a measure of how useful the 
results of a study are for broader situations. 
Generalizability is the critical hypothesis (and 
also the aim) of science. To understand this point, 
let us consider a simple example. If we want to 
test the effectiveness of a new drug, we will 
recruit several patients and test the drug on them. 
However, our aim is not only to investigate these 

several recruited patients, but to draw a general 
conclusion on the effect of the drug on the mass 
of people using these recruited patients, with the 
hypothesis that similar phenomena can also be 
observed if we recruit another group of patients. 
As another example, when physicists perform an 
experiment and conclude a physical law, their 
aim is not only to explain the very experiment 
they perform, but to conclude a law generalizably 
applicable to other experiments taken at another 
place and another time. However, we should not 
take such generalizability for granted. Many hard 
problems are because we do not have a generaliz-
able understanding of the problem or a generaliz-
able technique to deal with the problem. For 
example, cancer is a challenging disease to cure 
because we do not have a generalizable technique 
to efficiently kill all the cancer cells due to the 
high diversity of cancer cells (Morita et al., 2020; 
Black & McGranahan, 2021).

Lack of generalizability is a significant short-
coming of basic timing studies. Results obtained 
under one experimental condition often cannot 
predict the result under another condition. For 
example, if an auditory stimulus is associated 
with time duration Ta and a visual stimulus with 
duration Tv in a rat subject, presenting the audi-
tory and visual stimuli simultaneously will make 
the rat subject time an expected duration of T+, 
which is between Ta and Tv, but closer to Tv 
(Swanton & Matell, 2011; Matell & Kurti, 2014). 
Additionally, compared to an auditory stimulus, 
the association between a visual stimulus with a 
time duration can be better transferred to a subse-
quent operant response when tested in a 
Pavlovian-instrumental transfer procedure 
(Matell & Valle, 2017). These results imply that 
visual signals are more involved in interval tim-
ing than auditory signals. However, in a recent 
study on an action timing task, in which a mouse 
had to learn the timing of its action based on the 
sensory feedback caused by its own action, it was 
the deprivation of auditory input (not visual) that 
disrupted the learned action timing (Cook et al., 
2022), contradicting previous understanding 
(Fig. 5b, upper). Furthermore, there are two fre-
quently studied experimental paradigms of tim-
ing tasks: interval timing, in which the subject is 
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to perceive or produce a single time interval 
(Wang et  al., 2018; Karmarkar & Buonomano, 
2007) (Fig. 1d), and beating timing, in which the 
subject is to perceive or produce regular beats 
(Gámez et al., 2019) (Fig. 1e). It has been found 
that the brain uses different neural substrates and 
mechanisms to process temporal information in 
these two paradigms (Gámez et al., 2019; Wang 
et  al., 2018; Karmarkar & Buonomano, 2007; 
Teki et al., 2011), even though they are both pure 
timing tasks with no other information (such as 
spatial information) involved (Fig.  5b, lower). 
Overall, the lack of generalizability in basic tim-
ing studies makes it challenging to conclude how 
the brain processes temporal information.Below, 
I will explore two possible reasons for the lack of 
generalizability in basic timing studies (Fig. 5d):

 1. Laboratory Experiments.
Basic timing studies are performed in labo-

ratory experiments, which have artificially 
designed and well-controlled experimental 
conditions (just like Fig. 1d, e) that may not 
reflect real-life situations. The lack of general-
izability has long been recognized as the short-
coming of laboratory experiments in social 
science, including psychology (Brüggemann 
& Bizer, 2016; Hulstijn, 1997). Therefore, the 
limitations of basic timing studies discussed 
here are just examples of the general short-
coming of the laboratory experiment para-
digm. Perhaps the only way to improve the 
generalizability of the results of laboratory 
experiments is to capture the common results 
of different experimental conditions through a 
literature review. For example, Bueti and 
Buonomano (2014) concluded that temporal 
learning transfers across different modalities, 
including visual and auditory modalities, dif-
ferent auditory pitches, and slightly different 
lengths of temporal intervals, by reviewing 
papers. However, literature review cannot 
always lead to a straightforward conclusion, 
especially if the brain has a complicated per-
formance under different experimental condi-
tions. For example, the transfer of learning 
may not exist under some conditions and may 
be strong or weak in other conditions.

 2. Misunderstanding of Simplification.
Simplification is a pervasive idea in the 

data analysis and computational models of 
basic timing studies (Fig. 3). The pacemaker- 
accumulator model (Buhusi & Meck, 2005) 
(Fig. 3c, left), the best-known timing model, 
contains only four components (pacemaker, 
accumulator, memory device, and compara-
tor) to model the timing process. The dynamic 
features found by basic timing studies (Fig. 3a, 
b) are often discovered after reducing the 
dimension of the population dynamics of neu-
ral networks using principal component anal-
ysis (PCA). This PCA method also manifests 
the idea of simplification: simplifying the 
population dynamics by reducing its 
dimension.

The idea of simplification, also named the 
principle of Occam’s razor, tries to explain the 
world using as few entities as possible. 
However, the advantage of this principle of 
simplification must be understood before 
using it. One widely accepted advantage of 
simplification is that simple theories tend to 
be more testable and, therefore, easier to fal-
sify (Baker, 2016; Sober & Knowles, 1991). 
In other words, the primary advantage of a 
simple theory is not that it can better predict 
the experiment, but instead lies in its ease of 
falsification, which is believed to be a neces-
sary property of a scientific theory (Popper, 
1959). Another advantage of simplification 
(with controversy) is that it improves induc-
tion: choosing a simple theory after numerous 
observations reduces the chance of changing 
the theory after more future observations 
(Baker, 2016). This induction advantage is 
closely related to the concept of generalizabil-
ity we discuss here because reducing the 
change in theory after future observations 
means improving the generalizability of the 
theory. However, “induction” means that the 
theory must be concluded after numerous 
observations, which is apparently not the case 
for the results (Fig. 3) in basic timing studies, 
which are usually proposed based on single 
laboratory experiments under simple and 
well-controlled situations. In other words, if 
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we indeed want a simple timing theory that is 
generalizable to real-world situations, numer-
ous observations in real-world situations are 
necessary.

 Unknowability: The Reality

The methodology of basic cognitive studies 
involves recording brain activity while subjects 
perform deliberately designed tasks in order to 
understand the neural mechanisms of cognition. 
This methodology is based on the following phil-
osophical understanding of science (Fig.  6a): 
Science investigates the world, generates knowl-
edge, and then technology uses the knowledge 
generated by science to change the world. 
However, this philosophy fails to consider the 
possibility that the capability of knowledge (and 
therefore science) to describe the world may be 
fundamentally limited, meaning that some parts 
of the world are unknowable. If this is the case, 
the knowledge generated by science will not be 
able to well guide the design of technology to 
change the world effectively (Fig. 6a). The lack 
of generalizability discussed before may also 
stem from the unknowability of the world (includ-
ing cognition): If the capability of knowledge to 
describe the world is fundamentally limited, we 
should not dream of the luxury that our knowl-
edge has the possibility to generalize to every 
situation.

 The Inspiration from AI
To discuss the limited capability of knowledge, 
let us start with an interesting empirical finding in 
AI.  In AI, knowledge is usually represented by 
(subject; relation; object) triplets, representing 
the relationship between a subject and an object 
(Hogan et al., 2021). For example, the sentence 
“dog is animal” can be represented by a triplet 
(dog; be; animal). A collection of a large number 
of triplets is called a knowledge base. It has been 
found that adding knowledge bases to deep learn-
ing models can improve the performance of natu-
ral language processing (Guo et  al., 2022; 
Annervaz et  al., 2018). However, interestingly, 
well-known colossal models (such as GPT-3 

(Brown et al., 2020) of Microsoft or Pangu (Zeng 
et al., 2021) of Huawei) are pure deep neural net-
works without a knowledge base. A possible 
explanation for why well-known colossal models 
do not contain a knowledge base is that the per-
formance improvement after adding a knowledge 
base to colossal models is marginal (below 4%, 
see Table  5 of Colon-Hernandez et  al., 2021) 
(Fig.  6b). I discussed this interesting phenome-
non with an AI expert in NetEase, who believed 
that this is because colossal models are trained by 
oceans of texts collected from the Internet, which 
contain far richer information than knowledge 
bases can provide, so adding knowledge bases to 
colossal models can hardly increase the informa-
tion used to train the colossal models. Notice that 
people have invested great efforts to develop 
knowledge bases: Well-known knowledge bases 
such as YAGO and Freebase contain over 1 bil-
lion triplets. Despite such efforts, these knowl-
edge bases are still hardly useful in the core AI 
technology of colossal models.

What can we learn from this empirical finding 
in AI? Notice that science is a process of generat-
ing knowledge from experiments (Fig.  6a): For 
example, basic timing studies aim to establish the 
relationship between the dynamics of the brain 
and the behavioral task. Also, notice that AI rep-
resents the future of technology. Therefore, if 
knowledge bases cannot help AI, we may con-
clude that science will not help technology in the 
future!

 The Inspiration from Philosophy 
and Physics
The recognition of the limited capability of 
knowledge has a long history in philosophy. 
David Hume believed that causality cannot be 
justified because we can only observe that one 
thing, A, happened after another thing, B, but we 
cannot observe the underlying causal mechanism 
that made A happen after B (David Hume, https://
en.wikipedia.org/wiki/David_Hume). Immanuel 
Kant believed that there exist things (the so- 
called things-in-themselves) that are unperceiv-
able and unknowable. What we can perceive are 
mere “appearances” of these unknowable things, 
and a theory of the world develops when the per-
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Fig. 6 The unknowability of the world. (a) Science 
extracts knowledge from the world, and technology 
implements knowledge to change the world. However, if 
knowledge has limited capability to describe the world, it 
will also have limited capability to guide the creation of 
technology (yellow boxes). (b) Adding knowledge to 
colossal models only marginally improves their perfor-
mance. (c) Inferring the dynamic equation from experi-
mental observation is an NP-hard problem. (d) A Platonic 
understanding of cognition. The dynamics of the brain in 
various tasks (such as the stereotypical trajectory for time 

perception (Bi & Zhou, 2020a; Karmarkar & Buonomano, 
2007), competing dynamics by mutual inhibition for 
decision- making (Wong & Wang, 2006), and self- 
excitation for working memory (Lim & Goldman, 2013)) 
are various shadows of an unknowable object (the brain 
dynamics for cognition) under fires at different positions. 
This Platonic viewpoint implies that we will still not 
understand cognition after studying the dynamics in vari-
ous tasks, unlike the atomic viewpoint (Fig.  1a), which 
believes that we will understand cognition after studying 
each element of cognition

ceived things conform to our spatial and temporal 
forms of intuition (Immanuel Kant, https://
en.wikipedia.org/wiki/Immanuel_Kant). In 
1963, Frederic Fitch proposed a logic paradox 
that asserts that if all truths were knowable, it 
would follow that all truths are already known 
(Fitch’s paradox of knowability, https://en.wiki-
pedia.org/wiki/Fitch%27s_paradox_of_know-
ability). Therefore, if we acknowledge that not all 

truths are already known, we have to acknowl-
edge that not all truths are knowable. Fitch’s par-
adox sets up a fundamental limitation on the 
capability of experiments: There exists truth that 
cannot be known using experiments, no matter 
how advanced the techniques we use.

A recent study in the field of physics provides 
further evidence for the notion of unknowability. 
The study demonstrates that identifying the 
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underlying dynamical equation, or physical real-
ity, from any amount of experimental observa-
tions is provably NP-hard for both classical and 
quantum mechanical systems (Cubitt et  al., 
2012a, b) (Fig. 6c). In simpler terms, if NP/ = P, 
which is the prevailing belief among computer 
scientists, identifying the underlying dynamical 
equation will require an exponentially long 
amount of time relative to the dimension of the 
system. Therefore, the dynamical equation would 
effectively be unknowable if the system has a 
large dimension.

There have been extensive studies on NP 
problems using models, such as spin glass, 
derived from statistical physics (Mézard & 
Montanari, 2009), which provide insight into the 
nature of the computational difficulty in solving 
these problems. The main conclusion is that the 
computational difficulty is closely related to the 
(some kind of) correlation between degrees of 
freedom in the system. To understand this con-
cept, consider a system described by a state vec-
tor x =  (x1, x2,…, xn). If the different xis (i = 1, 
2,…, n) do not interact with each other, we can 
find the optimal state xopt of the system with 
respect to a problem by sequentially optimizing 
each xi, respectively. However, if the different xis 
strongly interact with each other, we may have to 
adjust a large number of xis simultaneously dur-
ing the optimization process, making it more 
challenging to find xopt.

Basic cognitive studies (Fig. 1) aim to under-
stand the dynamics of the brain underlying cog-
nition by observing the brain’s activities when 
the brain is performing simple tasks. Therefore, 
basic cognitive studies address the same type of 
NP-hard problem studied in (Cubitt et al., 2012a, 
b) that infers dynamics from observation. We 
have mentioned in the last paragraph that the dif-
ficulty of this problem lies in the correlation 
between different degrees of freedom. Therefore, 
the atomic philosophy (Fig.  1a), which aims to 
understand cognition by studying each individual 
cognitive element (such as perception, memory, 
and decision-making), is actually unsuitable for 
guiding cognition research. This is because the 
coordination between different cognitive ele-

ments is vital for performing real-life tasks, so it 
is important to consider the whole task simulta-
neously. We have mentioned a good example 
before (Fig. 4c): The translation of brain activity 
to language for speech prosthesis achieves better 
performance when training the neural network to 
translate one sentence at a time instead of one 
individual word at a time (Makin et  al., 2020; 
Cogan, 2020; Moses et al., 2019).

Unfortunately, atomism is just the very phi-
losophy that guides basic cognitive studies 
(including basic timing studies), which is possi-
bly the reason for the difficulty we encounter in 
understanding cognition. Despite decades of 
research, we still do not have a complete under-
standing of how the brain processes time. Results 
from basic timing studies can sometimes contra-
dict each other (Fig. 5b) and cannot provide guid-
ance for the design of technology. The study of 
the hippocampus is another example of this issue. 
While it has been found that the hippocampus 
transfers memory into the cortex (Goto et  al., 
2021) and performs inferential reasoning (Barron 
et  al., 2020), the hippocampus encodes place 
(Sosa & Giocomo, 2021), head directions (Sosa 
& Giocomo, 2021), time (Eichenbaum, 2014), 
visual and auditory stimuli (Goto et  al., 2021; 
Turk-Browne, 2019), and abstract knowledge 
(Nieh et al., 2021), we still do not have a clear 
understanding of its functional role. In other 
words, we cannot predict the hippocampus’ func-
tional role in a new experimental condition. What 
is the mechanism of the brain to process time? 
What is the functional role of the hippocampus? 
Perhaps, they are essentially unknowable.

How can we make sense of the kaleidoscopic 
observations in timing and hippocampal studies? 
In his famous allegory of the cave, Plato likens 
our understanding of the world to the shadows on 
the wall of a cave, cast by objects in front of a fire 
(Allegory of the cave, https://en.wikipedia.org/
wiki/Allegory_of_the_cave). Inspired by this 
allegory, I think the best way to understand the 
observations in timing or hippocampal studies is 
to regard the brain dynamics in different experi-
mental conditions as the shadows cast by an 
object from fires at different positions (Fig. 6d). 
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The object represents the reality of the neural 
mechanism of cognition, which is unknowable, 
but what we can observe are only the dynamics of 
the brain when performing a specific task. When 
the fire is at different positions, the projection on 
the wall is different, just like the kaleidoscopic 
dynamics of the brain when performing different 
tasks. This Platonic viewpoint suggests that we 
may still not understand cognition after studying 
the dynamics in various tasks, in contrast to the 
atomic viewpoint (Fig. 1a), which posits that we 
will understand cognition after studying each ele-
ment of cognition. Plato encouraged us to walk 
out of the cave and know the reality of the world 
through reason. However, inferring the reality 
from observation is an NP-hard problem (Cubitt 
et al., 2012a, b), so the reality may be essentially 
unknowable.

 Summary

The results of basic cognitive studies have lim-
ited applicability to the development of brain- 
related technology due to their lack of 
generalizability. This lack of generalizability 
may be attributed to the fundamental unknow-
ability of cognition.

 Outlook

What can we learn from the understandings 
above to guide our future research? I give three 
suggestions, explained in three subsections below 
(Fig. 7).

 Improving Generalizability

As previously mentioned, generalizability is a 
central aim of science. We want our results to 
be valid in broader conditions, not just in the 
specific experimental conditions we investi-
gated (Fig.  7a). Basic cognitive studies 
(Fig.  1b–e) are typically performed in labora-
tory experiments, where the experimental con-
ditions are artificially designed and 
well-controlled, rather than in real- life settings. 
As previously noted, the lack of generalizabil-
ity has long been recognized as a shortcoming 
of laboratory experiments (Brüggemann & 
Bizer, 2016; Hulstijn, 1997). Therefore, one 
possible way to improve the generalizability of 
our results is to extract the features of brain 
dynamics when subjects are performing real-
life tasks, rather than tasks deliberately 
designed for experiments. Additionally, to 
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Gather knowledge from real-life 
tasks, instead of laboratory tasks 

under strict control

Test knowledge under various 
conditions

Object under 
investigation 

Engineered 
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Fig. 7 My suggestions for future research. (a) Improve 
generalizability. (b) Engineer an easily accessible surro-
gate to mimic the object under investigation, so that we 
can predict the behavior of the object by investigating the 

surrogate without experimenting on the object. (c) 
Transform our research style from science-oriented, 
which aims to discover knowledge, to technology- 
oriented, which aims to create technology
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improve the generalizability of a result, it is 
necessary to verify the result under various 
conditions.

 Making Use of Surrogate

The concept of unknowability suggests that it 
may be impossible to develop a universal theory 
that is applicable to every situation. In light of 
this, how should we proceed with research? One 
emerging methodology to address the issue of 
unknowability is the use of surrogates. Instead of 
attempting to understand the underlying mecha-
nism of a complex system, we create a surrogate 
of the system that behaves similarly to the origi-
nal system in situations of interest (Fig. 7b). By 
observing the behavior of the surrogate, we can 
predict the behavior of the original system in a 
new situation. Surrogates are often more 
 accessible than the original system, and this 
approach can be implemented even when we do 
not fully understand the mechanism underlying 
the original system.

Surrogating is the exact idea of neural net-
work models. After observing the input signal Ii 
(i = 1, 2, 3,…), and the output Oi of a system in 
response to Ii, a deep neural network model can 
be constructed by training the network to produce 
the output Oi given the input Ii. The resulting 
deep network serves as a surrogate for the origi-
nal system and can predict the output of the sys-
tem when given a new input signal, Ij, as long as 
Ij is not significantly different from the set of 
observed inputs {Ii}i. In this approach, the 
response mechanism of the original system is not 
explicitly studied; instead, this understanding is 
encoded in the parameters of the trained neural 
network. While this knowledge may be difficult 
to interpret, it can still be used effectively. This 
type of knowledge is known as “dark knowledge” 
(Jia, 2019; Hinton et al., 2015), which stands in 
contrast to “light knowledge” that can be 
expressed through language and formulas.

Surrogates have been extensively used in brain 
research. It has been discovered that artificial 
neural networks, after being trained on a task, 
exhibit similar dynamics to the brain when per-

forming the same task (Hong et  al., 2016; 
Goldstein et  al., 2022; Mante et  al., 2013). 
Therefore, artificial neural networks can be used 
as surrogates to study the brain, as has been done 
in the study of timing tasks (Bi & Zhou, 2020a). 
Additionally, as previously mentioned, neural 
network models have been utilized as surrogates 
for epileptic brains to guide clinical surgery (Cao 
et al., 2022; Sinha et al., 2017).

Furthermore, the concept of surrogating has 
been applied in fields beyond brain research. For 
example, self-organized 3-dimensional tissue 
cultures derived from stem cells, known as organ-
oids, have been used to model various organs, 
personalize disease treatment, and develop new 
drugs (Chiaradia & Lancaster, 2020; Kim et al., 
2020). Another example is digital twins, which 
are virtual models designed to accurately repre-
sent physical objects and updated in real time 
with collected data. Digital twins are used to 
design, manufacture, monitor, and diagnose large 
equipment such as bridges, aircraft, and power 
generators (Liu et  al., 2021). These examples 
demonstrate the use of surrogates to investigate 
and manipulate an easier-to-understand system in 
order to study the original system, even though 
the surrogate may also be too complex to be fully 
understood (e.g., the “dark knowledge” found in 
artificial neural networks).

 Being Technology-Oriented

Science is the process of exploring new knowl-
edge through observation and experiments. 
Technology is the process of applying scientific 
knowledge for various purposes. However, the 
fundamental unknowability of the world presents 
a limitation on the capability of science to under-
stand the world and guide technology (Fig. 6a). 
Therefore, in my opinion, future studies should 
be technology-oriented (Fig. 7c), which has the 
following two meanings:

 1. Instead of being driven by the interest in how 
nature works, scientists should perform their 
research with practical applications in mind. 
A blueprint or at least a rough sketch of how 
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their findings could be applied to solve practi-
cal problems would be beneficial. Without the 
guidance of technology, scientific results may 
not be useful in guiding practical applications, 
as demonstrated by basic timing studies’ lim-
ited impact on neuroengineering and brain- 
inspired AI.

 2. Technology tends to be created without the 
guidance of scientific knowledge. There is a 
growing trend to create technology through 
human-guided self-organization rather than 
through the implementation of knowledge via 
rational design. This shift away from rational 
design may be due to the unknowability of the 
world, which renders knowledge increasingly 
useless in dealing with complex problems. 
Self-organization is a process in which collec-
tive order arises from local interactions 
between parts of an initially disordered sys-
tem (Self-organization, https://en.wikipedia.
org/wiki/Self- organization; Spontaneous 
order, https://en.wikipedia.org/wiki/
Spontaneous_order). The training of deep 
artificial neural networks is a self- organization 
process under human guidance: We adjust the 
interactions between artificial neurons by 
adjusting the synaptic weights, rather than 
directly designing the activity of each neuron, 
but the collective dynamics of the neural net-
work when performing tasks emerge from 
these interactions. A good example of the par-
adigm shift of technology from rational design 
to human-guided self-organization is natural 
language processing. The traditional method 
of translating one language to another was to 
recognize the grammatical structure of an 
input sentence and then translate the sentence 
based on this structure using human-designed 
rules (Cambria & White, 2014). Today, how-
ever, the language translation is based on end- 
to- end training of neural networks, with the 
grammatical structure and translation rules 
automatically and implicitly emerging during 
training (Goldberg, 2017). As previously 
mentioned, this automatic and implicit feature 
extraction by neural networks has also been 
used to recognize pathological biomarkers in 

closed-loop deep brain stimulation (Scangos 
et  al., 2021a, b) and translate brain activity 
into natural language (Makin et  al., 2020; 
Cogan, 2020) (Fig. 4).

How can we guide the self-organization of a 
complex system to create technology? The cur-
rent dominating methodology, deep learning, 
involves adjusting the synaptic weights of a deep 
network by gradient-based algorithms while fix-
ing the network architecture at the form preas-
signed by humans (Goodfellow et  al., 2016). 
However, evolutionary algorithms have the 
potential advantage of allowing for the adjust-
ment of both synaptic weights and network archi-
tecture, without requiring human design input 
(Stanley et al., 2019). In a neural network created 
by evolutionary algorithms, everything emerges 
from self-organization, minimizing the interfer-
ence of human rational design, whose capability 
is limited due to the unknowability of the world, 
potentially leading to superior technology 
(Stanley & Lehman, 2015). Furthermore, human- 
guided evolution is not only an algorithm that 
runs on computers but also a practice in laborato-
ries. We create high-yield plants and animals by 
selective breeding (Selective breeding, https://
en.wikipedia.org/wiki/Selective_breeding), and 
we also discover drugs and functional proteins by 
directing the evolution of engineered microbes 
(Davis et  al., 2017; Romero & Arnold, 2009). 
Human-guided evolution, without the need for 
rational design, may be the ultimate method to 
create something to our desired end in this 
unknowable world.

 Conclusion

In this paper, I review the main results of basic 
timing studies and highlight their limited applica-
bility in solving practical problems in the fields 
of neuroengineering and brain-inspired AI. Basic 
timing studies extract knowledge from deliber-
ately designed simple tasks, whereas neuroengi-
neering is mainly driven by clinical data and AI is 
driven by training colossal models using oceans 
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of data collected from the Internet. The limitation 
of basic timing studies may be due to the lack of 
generalizability of their results, which stems 
from the fundamental unknowability of the 
world, including cognition. The reason for this 
limitation is also true for, more generally, basic 
cognitive studies. As a result, I question and criti-
cize the usefulness and prospect of the research 
protocol of basic cognitive studies (Fig. 1), which 
involves recording brain activity when the sub-
ject is performing deliberately designed experi-
ments to understand the neural mechanism of 
cognition. I then suggest three ways to guide 
future research: improving the generalizability of 
results, considering using surrogates to overcome 
the unknowability, and performing technology- 
oriented studies.

The neuroscience problem identified in this 
paper is part of a larger trend in biology where 
mass-scale technology, such as multi-omic data-
bases and supercomputing power, is increasingly 
being used to solve practical problems with AI 
(Subramanian et al., 2020). The knowledge nec-
essary for AI to solve these problems is not 
implemented by humans through rational design, 
but instead emerges self-organizedly during the 
problem-solving process in a hidden manner. 
This knowledge is encoded in the AI system, 
such as in synaptic weights, but is unknowable by 
humans. We can imagine that in the far future, 
when AI becomes far more powerful than human 
intelligence, we may feel hard to understand the 
logic behind AI’s problem-solving even if AI 
tries to explain it to us. Therefore, the use of hid-
den knowledge, something we can use but not 
understand, should be a gradually dominating 
paradigm in scientific and technological research.
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Abstract

Timing and motor function share neural cir-
cuits and dynamics, which underpin their 
close and synergistic relationship. For 
instance, the temporal predictability of a sen-
sory event optimizes motor responses to that 
event. Knowing when an event is likely to 
occur lowers response thresholds, leading to 
faster and more efficient motor behavior 
though in situations of response conflict can 
induce impulsive and inappropriate respond-
ing. In turn, through a process of active sens-
ing, coupling action to temporally predictable 
sensory input enhances perceptual processing. 
Action not only hones perception of the 
event’s onset or duration, but also boosts sen-
sory processing of its non-temporal features 
such as pitch or shape. The effects of temporal 
predictability on motor behavior and sensory 
processing involve motor and left parietal cor-

tices and are mediated by changes in delta and 
beta oscillations in motor areas of the brain.

Keywords

Temporal predictions · Active sensing · 
Temporal orienting · Impulsivity · Motor 
rhythm · Delta

 Introduction

Estimating the duration of an event engages 
regions of the brain traditionally associated with 
motor function, such as supplementary motor 
area, basal ganglia, and cerebellum, even when 
the temporal estimation process is purely percep-
tual (Wiener et al., 2010; Naghibi et al., 2023). 
This neuroanatomical overlap suggests that tim-
ing might share functional mechanisms with 
motor processing and that we may even acquire 
our sense of time through action (Coull & Droit- 
Volet, 2018). The inherent link between temporal 
processing and motor systems is exemplified by 
the universal and innate act of dancing to the beat 
of music (Mehr et al., 2019). While music is most 
often considered an auditory phenomenon, from 
an ecological and phylogenetic perspective it is 
tightly coupled to dance (Fitch, 2016). This 
uniquely human behavior involves synchronizing 
body movements with the musical rhythm 
through audio-motor interaction (Merchant et al., 
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2015; Patel & Iversen, 2014; Vuust et al., 2022; 
Zatorre et al., 2007). Yet not all forms of music 
induce dance equally. The musical quality and 
psychological construct associated with dance 
and the pleasurable wanting-to-move experience 
is called groove (Janata et al., 2012). The mere 
fact that humans spontaneously dance to specific 
types of musical stimuli speaks in favor of the 
dynamic and integrated nature of cognitive pro-
cesses. In particular, it emphasizes the closed- 
loop nature of the action-perception cycle and 
exemplifies active sensing frameworks (see 
below; (Crapse & Sommer, 2008; Schroeder 
et  al., 2010)). Investigation of the groove phe-
nomenon shows that motor contributions to audi-
tory perception involve temporal processing and 
arise when precise temporal expectations (or 
“priors”) are violated by sensory evidence (Vuust 
et al., 2022). In the context of music, these tem-
poral violations (or “prediction errors”) are cap-
tured by the degree of syncopation—defined as 
the appearance of a beat on a metrically weak 
(unexpected) accent preceding a rest on a metri-
cally strong (expected) accent. The experience of 
groove occurs during perception of recurring 
syncopated rhythmic patterns, with the relation-
ship between the degree of syncopation and per-
ceived groove being non-linear (Vuust & Witek, 
2014; Zalta et  al., 2024). This relation can be 
modeled with dynamical system approaches or as 
the interaction between the degree of syncopa-
tion and the precision (or metrical certainty) of 
the internal model of temporal structure (Vuust 
et al., 2022; Zalta et al., 2024).

 Temporal Predictability Optimizes 
Motor Processing

While the temporal predictability of musical 
rhythms induces spontaneous movement for 
pleasure, the temporal predictability of sensory 
input can be used in a more practical way to opti-
mize behavior. For instance, going through the 
same traffic light every day builds an association 
between duration (the length of time for which 
the light stays red) and action (accelerating away 
once the light changes color). This association 

creates a temporal expectation (or “prior”) that 
allows you to predict the moment at which the 
light will turn green so that you can accelerate 
away more quickly. Experimentally, the behav-
ioral benefits of temporal predictability have 
been extensively explored and documented. 
Studies repeatedly show that knowing when an 
event will happen improves both perceptual and 
motor processing of that event: temporally pre-
dictable events are perceived more easily and 
more quickly; they are better encoded into work-
ing and long-term memory and are responded to 
more quickly (Nobre & van Ede, 2018, 2023). 
Yet the motor benefits of temporal predictability 
are not restricted to response speed. Several stud-
ies have examined the effects of temporal prepa-
ration on motor mechanisms by manipulating the 
length of the interval (or “foreperiod,” FP) 
between a warning cue and a target in a simple 
RT task. In the variable FP paradigm, the FP var-
ies from one trial to another. As the conditional 
probability of target appearance gradually 
increases as the FP elapses, participants both 
respond more quickly (Niemi & Näätänen, 1981) 
and exert less force on the response button 
(Mattes & Ulrich, 1997; Jaśkowski & Verleger, 
1993). In other words, temporal predictability 
speeds responses while simultaneously reducing 
the muscular effort needed to make these 
responses, suggesting that it might improve 
motor efficiency. Support for this hypothesis has 
come from neurophysiological studies of the 
fixed FP paradigm in which the FP is consistently 
short in one block but consistently long in another 
block. Since, according to Weber’s law, temporal 
variance increases with the length of the interval, 
temporal estimates of short FPs are more precise 
than estimates of long ones, meaning that partici-
pants are better prepared in short FP blocks. 
Accordingly, RTs are faster in short FP blocks 
than long FP ones (Niemi & Näätänen, 1981). In 
addition to these performance benefits, the 
peripheral motor units that contract the muscle of 
the responding hand are better synchronized in 
short FP blocks than long ones (Hasbroucq et al., 
1995) and activation of the primary motor cortex 
contralateral to the response hand is lower 
(Tandonnet et al., 2006). A strikingly similar pat-
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tern of findings was revealed by single unit 
recordings of the primary motor cortex in 
 monkeys. Over several months of training on a 
fixed FP task, RTs to the target got steadily faster 
indicating that monkeys were learning to predict 
the time of target onset. In parallel, neural firing 
in primary motor cortex became tuned to the tem-
poral structure of the task. At the predicted time 
of target onset, neural firing was better synchro-
nized and the mean firing rate in the population 
of recorded neurons was lower overall (Kilavik 
et al., 2009). The performance benefits of tempo-
ral predictability might therefore be mediated by 
enhanced network efficiency: better synchroniza-
tion and lower firing rates.

Even when we can learn to predict the onset 
time of a target within a single experimental ses-
sion, RTs get progressively faster, and the muscu-
lar force used to make the response gets steadily 
smaller, again indicating improved motor effi-
ciency (Thomas et al., 2019). In this study, par-
ticipants performed a whole-body pointing task 
toward a response button that was just slightly 
out of reach. They responded to the presentation 
of a visual target that appeared after either a fixed 
FP in one session, or after a variable FP in 
another. During the pointing movement, electro-
myographic (EMG) recordings of the tibialis 
anterior in the ankle allowed changes in activa-
tion of the muscle to be tracked over the course of 
the session (50 trials). When the target was pre-
sented after a fixed FP, RTs to the target got 
steadily faster and the EMG amplitude of tibialis 
activation got progressively lower. By contrast, 
when the time of target onset could not be pre-
dicted in the variable FP session, there was no 
change in RT or EMG amplitude. Temporal pre-
dictability therefore optimized motor efficiency, 
both improving performance and reducing mus-
cular effort. Notably, these muscular changes 
occurred even in muscles that were far from the 
primary response effector, indicating a distrib-
uted, whole-body motor effect (Thomas et  al., 
2019).

Temporal predictability not only optimizes 
motor activity related to limb movements, but 
also affects various types of oculomotor behav-
ior. For instance, saccades (Dankner et al., 2017), 

microsaccades (Amit et al., 2019; Denison et al., 
2019), and blinks (Amit et al., 2019; Abeles et al., 
2020) are inhibited just prior to the presentation 
of temporally predictable, but not unpredictable, 
targets, even when no response to the target is 
required (Tal-Perry & Yuval-Greenberg, 2021). 
Moreover, microsaccade inhibition occurs 
whether the temporal dynamics of stimulus pro-
cessing are shaped implicitly by temporal proba-
bilities (Amit et  al., 2019) or explicitly by 
temporal cues (Denison et al., 2019; Tal-Perry & 
Yuval-Greenberg, 2020). These results demon-
strate how temporal predictions influence basic 
motor mechanisms to optimize behavior. Blinks 
and microsaccades during stimulus presentation 
impair perception, therefore inhibiting such ocu-
lomotor activity at temporally probable or rele-
vant moments in time would improve visual 
discrimination of any stimuli occurring at those 
times. Nonetheless, oculomotor inhibition has 
even been demonstrated during discrimination of 
tactile (Badde et  al., 2020) or auditory targets 
(Abeles et al., 2020), with greater inhibition the 
more temporally predictable the targets are. Since 
oculomotor inhibition occurs even in the absence 
of a visual target, it might represent a generalized 
supramodal marker of temporal predictions. Such 
covert markers of temporal prediction, occurring 
before the target has even appeared, could com-
plement more overt measures of temporal predic-
tion, such as RTs, which are measurable only 
after the target has appeared. For instance, indi-
viduals with ADHD do not show the usual RT 
benefits of temporal predictability and also fail to 
show saccade inhibition prior to the predicted 
time, indicating that they have difficulty process-
ing temporal regularities in stimulus presentation 
over and above any concomitant changes in per-
formance (Dankner et al., 2017).

 Temporal Predictability Can Trigger 
Impulsive Behavior

Unfortunately, temporal predictability is not 
always beneficial for behavior. Although RTs to 
tactile targets in choice discrimination tasks are 
faster when targets appear after a fixed or highly 
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probable FP (Lange & Röder, 2006; Badde et al., 
2020), tactile perceptual  sensitivity in a 
 psychophysical task is impaired by the temporal 
regularity of target appearance (Kusnir et  al., 
2020). Kusnir et al. (2020) found that when brief 
changes in auditory or tactile intensity were pre-
sented at fixed, rather than variable, intervals, 
detection thresholds were better for auditory 
stimuli but worse for tactile stimuli. The authors 
attributed this dissociation to the fact that, by 
contrast with visual and auditory perception, our 
perception of touch is often determined by the 
force of our own motor acts. Self-generated 
action induces sensory suppression mechanisms 
that cause the predicted sensations of our own 
motor acts (the “efference copy”) to be perceived 
as weaker than those imposed by external stimuli 
(e.g., Blakemore et al., 1999). By analogy, pas-
sive tactile stimuli occurring at predictable 
moments in time may be similarly subject to tac-
tile suppression mechanisms, leading to reduced 
perceptual sensitivity.

Even within the visual modality, in which 
temporal predictability has typically been shown 
to benefit performance, it can be detrimental 
when stimulus characteristics trigger potentially 
competing responses. For instance, Correa et al. 
(2010) showed that temporal predictability exac-
erbates the interfering effects of incompatible 
stimulus-response associations in classic 
response conflict paradigms, such as the flanker 
or Simon tasks. In the flanker task, participants 
make left or right response buttons according to 
the direction indicated by a central arrow. This 
arrow is flanked on either side by arrows whose 
direction either match (compatible) or not 
(incompatible) the direction of the central arrow. 
Typically, RTs are slower for targets with incom-
patible flankers due to the conflicting responses 
induced by the directions of the task-relevant 
central arrow and the flanking distractors. In the 
Simon task, left or right button presses are associ-
ated with a specific stimulus feature, such as 
color (press left for blue stimuli and right for red) 
or shape (press left for x and right for +). 
Crucially, the side of the screen on which stimuli 
are presented either matches (compatible) or not 
(incompatible) the response side indicated by the 

target. Again, RTs are slower for incompatible 
targets due to the response conflict induced by 
the task-relevant stimulus feature and the more 
salient, though task-irrelevant, target location. 
Correa et  al. (2010) adapted these classic para-
digms by presenting stimuli at times that were 
either temporally probable (75%) or improbable 
(25%) within a given block, with the hypothesis 
that temporal predictability would mitigate the 
RT costs of response conflict. However, in both 
flanker and Simon tasks, RTs to incompatible 
stimuli were even slower when they appeared at 
expected, rather than unexpected, times (Correa 
et  al., 2010). In other words, temporal predict-
ability exacerbated the motor cost of response 
conflict (see also van Driel et al., 2015 for a com-
plementary approach). Correa et al. (2010) sug-
gested that temporal predictability increased 
motor readiness to response to both task-relevant 
and task-irrelevant features. As such, responses 
to compatible stimuli would accelerate due to the 
combined influence of the task-relevant and irrel-
evant features. By contrast, responses to incom-
patible stimuli would be both slower and more 
error-prone because the interfering influence of 
the task-irrelevant feature would counteract that 
of the task-relevant feature.

We have followed up this research in a series 
of studies in which temporal predictability in 
the Simon task was manipulated with temporal 
cues rather than stimulus probabilities. 
Specifically, a temporal cue predicted whether 
the subsequent target would occur after a short 
or a long interval whereas a neutral cue pro-
vided no predictive information, with the target 
equally likely to occur after the short or long 
delay (Fig. 1a). Since short and long interval tri-
als were intermixed within blocks, participants 
could use temporal cues to voluntarily orient 
their focus of temporal attention to different 
moments in time from one trial to the next. We 
first confirmed Correa et  al.’s (2010) findings 
that the RT cost of incompatible targets was 
greater when they were temporally predictable. 
Second, we demonstrated that in the fastest sec-
tion of the RT distribution, when participants 
are responding particularly quickly and making 
more errors to incompatible stimuli, these errors 
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Fig. 1 Temporal predictions modulate motor cortex 
activity during response conflict. (a) Temporal Simon 
task: Centrally presented “Time” cues indicated whether 
the target would occur after a short (small inner circle) or 
long (large outer  circle) interval. “Neutral” cues (both 
circles) gave no information about target onset. Target 
shape was associated with left/right hand responses 
(counterbalanced across participants). Target location 
could be either compatible or incompatible with the cor-
rect hand response. In this example, the + appears on the 
left but should be responded to with the right hand and so 
is an “incompatible” target type. If it had appeared on the 
right of the screen, it would have been a “compatible” tar-
get. (b) After target presentation, but before initiation of 
the response (gray square), there was stronger inhibition 

(i.e., steeper slopes) of activity measured over the primary 
motor cortex contralateral to the incorrect response hand 
(lower panel)  for temporally predictable (compared to 
neutral) compatible targets, but less inhibition for tempo-
rally predictable (compared to neutral) incompatible tar-
gets. By contrast, temporal predictability had no effect on 
motor cortex activity contralateral to the correct response 
hand (upper panel) prior to response initiation. (c) During 
response execution, delta phase locking measured over 
the primary motor cortex contralateral to the correct 
response hand was stronger for incompatible than com-
patible targets (not shown) and was stronger still when 
incompatible targets were temporally predictable  (left 
panel) rather than unpredictable (right panel). (From 
Korolczuk et al. (2022))

were even more frequent in the temporal cue 
condition than the neutral cue condition 
(Korolczuk et al., 2018). In other words, when 
the time of target appearance could be predicted 
in advance, it was harder to stop the automatic 
impulse to make a response with the hand asso-
ciated to the more salient, but task-irrelevant, 
feature. This result indicates that temporal pre-
dictability induces a greater number of fast, 
impulsive errors and supports the hypothesis of 
increased response readiness.

Further support for this hypothesis came 
from EMG recordings of the response hands. 
EMG allowed us to detect small, sub-threshold 
“twitches” in the muscles of the incorrect 
response hand that occasionally occur before 
the response with the correct hand is given. 
These twitches, termed “partial errors,” are 
usually caught and corrected before becoming 
fully fledged supra-threshold errors (Burle 
et al., 2002; Servant et al., 2015). Nevertheless, 
the number of these covert partial errors pro-
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vides a measure of susceptibility to automatic 
response capture by the task-irrelevant stimulus 
feature, independent of any subsequent correc-
tion (inhibition) processes. Korolczuk et  al. 
(2020) found that temporal cueing not only 
increased the number of overt impulsive errors, 
confirming prior results, but also increased the 
number of covert partial errors. Moreover, these 
partial errors were made more quickly when the 
target was temporally predictable. By contrast, 
temporal predictability did not affect the num-
ber of covert partial errors that were subse-
quently corrected. Taken together, this pattern 
of results indicates that participants quickly 
began to activate the wrong response hand 
when targets were temporally predictable  but 
were still able to correct their mistake before it 
became an overt motor response. Very similar 
findings were reported by Menceloglu et  al. 
(2021) using a fixed FP flanker task, in which 
participants used a computer mouse to reach 
toward the left or right response side rather than 
simply pressing a left or right button. Analysis 
of reaching trajectories allowed covert response 
tendencies to be tracked. If flankers were 
incompatible with the direction indicated by 
the central arrow, trajectories initially curved 
toward the side indicated by the task-irrelevant 
flankers before then being adjusted back toward 
the correct response side. Temporal predictabil-
ity exacerbated the effects of response conflict 
on reaching dynamics: trajectories to incompat-
ible targets were even more curved toward the 
competing side when participants knew when 
the target was going to appear. Together, these 
studies demonstrate how careful analysis of 
movement parameters (EMG or reach trajec-
tory) helps uncover the effects of temporal pre-
dictability on motor control more completely. 
Online inhibition of these automatic, yet covert, 
response impulses would never have been 
revealed by simply measuring mean RT. Instead, 
analyses of sub- threshold EMG activity or tra-
jectory dynamics show that temporal predict-
ability increases the urge to initiate premature, 
yet potentially erroneous, prepotent responses, 
which can nevertheless still be corrected before 
the final response is delivered.

Temporal predictability doesn’t only  modu-
late motor activity during the execution of the 
motor response. We recently combined EMG 
with electroencephalography (EEG) to show that 
temporal predictability can modulate motor 
activity related to the resolution of response con-
flict before response execution has even begun. 
We recorded activity over left and right primary 
motor cortices, which were contralateral to either 
the correct or incorrect response hand in a tempo-
rally cued Simon task (Korolczuk et  al., 2022). 
Simultaneous EMG recording allowed the onset 
of motor responses to be pinpointed with high 
temporal precision. We hypothesized that tempo-
ral predictability would improve RTs to compat-
ible targets by increasing motor activation in the 
hemisphere contralateral to the correct hand and/
or decreasing motor inhibition in the hemisphere 
contralateral to the incorrect hand. Results 
showed that, in fact, temporal predictability had 
no effect on activity in the motor cortex contralat-
eral to the correct hand in this response conflict 
paradigm (Fig. 1b, top). Instead, it differentially 
modulated inhibitory activity in the motor cortex 
contralateral to the incorrect response hand as a 
function of target compatibility (Fig. 1b, bottom). 
When target features were compatible, temporal 
predictability increased motor inhibition in the 
hemisphere controlling the incorrect response 
hand and performance improved. Conversely, 
when target features were incompatible, trigger-
ing two conflicting responses, temporal predict-
ability decreased motor inhibition in the 
hemisphere controlling the incorrect hand, and 
impulsive responding increased. This neurophys-
iological dissociation explains both the perfor-
mance benefits of temporal predictability for 
non-conflict stimuli and performance costs for 
conflict stimuli. These inhibitory effects occurred 
after the target had been presented but approxi-
mately 100 ms before the EMG-defined onset of 
the motor response, indicating a clear effect of 
temporal predictability on motor planning rather 
than response execution.

The effects of temporal predictability on 
motor inhibition are further corroborated by the 
results of a temporally cued version of the Stop- 
Signal Task (Korolczuk et al., 2018). The Stop- 
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Signal task is a visual choice RT task in which 
25% of trials contain an auditory stop signal, pre-
sented very soon after the target appears, signal-
ing that participants should withhold their 
response to the target on that trial. Korolczuk 
et al. (2018) adapted this paradigm by including 
temporal or neutral cues (similar to those shown 
in Fig. 1a) at the beginning of each trial, which 
either predicted (temporal cue) or not (neutral 
cue) when the target would occur, i.e., after a 
short or long interval. As expected, temporal 
(versus neutral) cues speeded RTs on the 75% of 
“go” trials that did not contain a stop signal. By 
contrast, when participants had to withhold their 
response in the “stop” trials, temporal cues 
impaired performance: it took participants longer 
to stop their response to the target when the time 
at which it would appear was entirely predict-
able. The complementary pattern of results dem-
onstrates that temporal predictability facilitates 
motor responding to a target in go trials but 
makes it harder to inhibit the response in stop tri-
als. In other words, temporal predictability low-
ers the response threshold, sometimes to 
detrimental effect.

 Rhythmic Movements Enhance 
Sensory Processing

Temporal predictions not only guide motor con-
trol but can also facilitate sensory process-
ing (Nobre & van Ede, 2018, 2023). Behavioral 
experiments demonstrate that anticipating the 
temporal occurrence of an upcoming event opti-
mizes its processing by improving the quality of 
visual (Cravo et al., 2013; Doherty et al., 2005; 
Rohenkohl et al., 2012) or auditory (Jaramillo & 
Zador, 2011; Morillon et al., 2016; Wollman & 
Morillon, 2018) information. Indeed, naturalistic 
acoustic signals, such as speech and music, also 
exhibit reliable temporal regularities that can be 
used to generate temporal predictions (Ding 
et  al., 2017). While the temporal structure of 
environmental signals has been mostly over-
looked until now, recent results crucially reveal 
the unique role of the motor system in the analy-
sis of perceptual temporal dynamics. One of the 

contributions of the motor cortex to sensory pro-
cessing would be in the analysis of the slow tem-
poral dynamics of the perceptual stream, likely 
providing a contextual temporal framework to 
parse sensory information, thereby improving the 
quality of perceptual processing. This contribu-
tion of motor areas is likely modality- and 
domain-general and would occur during percep-
tion of any sensory signal temporally structured 
with low-frequency dynamics. Accordingly, cou-
pling action to temporally predictable sensory 
streams, such as auditory rhythms, fur-
ther  enhances sensory processing. From early 
childhood (< 1 year), infants’ movements influ-
ence their perception of auditory rhythms 
(Phillips-Silver & Trainor, 2005), suggesting that 
the contribution of the motor system to time per-
ception is innate. Rhythmic action training helps 
children aged 5 years old to accurately reproduce 
a rhythmic sequence and, more interestingly, 
helps both 5- and 8-year-olds to discriminate the 
trained rhythm in a purely perceptual timing task 
(Monier et al., 2019). Moving in time to a rhyth-
mic stimulus helps adults (Phillips-Silver & 
Trainor, 2007), especially non-musicians (Su & 
Pöppel, 2012; Zalta et al., 2020), find the beat in 
ambiguous rhythms and improves perceptual 
estimates of duration (Manning & Schutz, 2013, 
2016). Even simply imagining rhythmic move-
ment strengthens the performance benefits of the 
temporal predictability of a stimulus stream 
(Fautrelle et al., 2015). The temporal information 
implicitly embedded within rhythmic movements 
therefore helps construct an explicit, indepen-
dent, and flexible representation of duration that 
can be used to make accurate perceptual temporal 
discriminations.

In a set of studies, we investigated the influ-
ence of overt movements on the quality of audi-
tory temporal attention (Morillon & Baillet, 
2017; Morillon et al., 2014). We focused on the 
auditory modality because of its relative bottom-
 up disconnection from the motor system. Indeed, 
while bottom-up and top-down motor influences 
are contingent in most sensory modalities, audi-
tion is the exception since we cannot selectively 
move our ears. Hence, bottom-up auditory pro-
cessing is remarkably divorced from movement, 
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whereas movement can modulate auditory pro-
cessing through top-down corollary discharge 
(efference copy) signals (see below; Morillon 
et al., 2015; Schroeder et al., 2010). We measured 
the ability of human participants to extract rele-
vant melodic information embedded in rhythmic 
streams that were interleaved with distractors, as 
in the cocktail-party effect (Cherry, 1953), where 
listeners must “tune in” to one conversation in a 
noisy scene. We used a perceptual decision- 
making task to measure the effects of temporal 
attention over an extended time period. 
Participants were asked to categorize sequences 
of eight pure tones as being higher or lower 
pitched, on average, than a reference frequency. 
To drive rhythmic fluctuations in attention, the 
tones (targets) were delivered in phase with a ref-
erence beat, presented at the beginning of each 
trial, and in antiphase with irrelevant yet physi-
cally indistinguishable tones (distractors). Hence, 
only the temporal dimension, namely an accurate 
internal representation of the beat, allowed par-
ticipants to discriminate targets from distractors 
(see Fig. 2a). Participants were instructed either 
to use their motor system overtly, by tapping in 
time with the reference beat, or to keep the 
rhythm covertly, in both cases as a way to opti-

mize the allocation of temporal attention (predic-
tions) in a purely internally driven fashion. Our 
findings showed that the active implication of the 
motor system improved the precision of temporal 
attention and the quality of sensory processing. 
In other words, moving in time to a periodic stim-
ulus improves the temporal segmentation of audi-
tory information and improves perceptual 
discrimination of non-temporal features (here, 
pitch) of stimuli occurring on the beat. Moreover, 
the motor-related improvement in auditory seg-
mentation depended parametrically on the tem-
poral predictions made by the motor system: the 
more rhythmic the auditory sequence and the bet-
ter able participants were to tap rhythmically, the 
more they benefitted from overt motor rhythms to 
extract auditory information (Morillon et  al., 
2014). Our results therefore reinforce the idea 
that the motor system is intrinsically engaged in 
the analysis of temporal sequences (see below).

In a more recent study, we developed a para-
digm to behaviorally quantify the sampling 
capacity of periodic temporal attention during 
auditory and visual perception  (Zalta et  al., 
2020). Sequences of stimuli were presented on 
each trial, from 2 to ~20 s. Three reference stim-
uli defining the tempo (or beat frequency) of the 

Fig. 2 Temporal predictions mediated by delta-beta cou-
pled oscillations. (a) Dynamic selective attention para-
digm. Quasi-rhythmic sequences of tones were presented 
binaurally on each trial. Four reference tones (not shown) 
preceded an alternation of eight target and eight distractor 
tones of variable frequencies. Targets occurred in phase 
with the preceding references, whereas distractors 
occurred in antiphase. Participants had to decide whether 
the mean frequency of targets was higher or lower than the 
reference frequency. While auditory input occurs at 3 Hz 
(melody), participants temporally modulate their attention 

at 1.5 Hz (beat). (b) In this design, neural activity dedi-
cated to stimulus processing or temporal prediction is 
hence dissociable based on its temporal dynamics (3 Hz 
vs. 1.5 Hz, respectively). While auditory association cor-
tex (AA) tracked stimulus dynamics (3 Hz; not shown), 
temporal predictions were encoded in the left sensorimo-
tor cortex (SM) in delta-beta phase-amplitude coupled 
(1.5 – 18-24 Hz) oscillations, functionally directed toward 
auditory regions to modulate the 3  Hz auditory input. 
(From Morillon and Baillet (2017))
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isochronous event sequence preceded a mixture 
of on-beat and off-beat stimuli. Participants per-
formed a beat discrimination task at the end of 
each trial, by deciding whether the last stimulus 
of the sequence, a deviant, was on or off beat. 
While on-beat stimuli reinforced the temporal 
structure, crucially, off-beat stimuli had a dis-
tracting influence. This interleaved delivery of 
sensory events forced participants to track the 
beat throughout the entire duration of the 
sequence while minimizing the interference of 
aperiodic events. This protocol thus ensured that 
their attentional focus was temporally modulated 
over an extended time period. The density of dis-
tractors (i.e., number of distractors per beat) was 
adjusted for each participant prior to the experi-
ment to reach threshold performance for a 2 Hz 
beat frequency. The quality of temporal attention 
was estimated for different beat frequencies, 
ranging from ~0.5 Hz to ~4 Hz across conditions, 
to span most of the range of discernible tempi 
(Fraisse, 1948; McAuley, 2010; Moelants, 2002; 
Repp & Su, 2013; Woodrow, 1951). In each 
modality, we first investigated temporal attention 
during passive perception—i.e., without overt 
motor involvement—and then quantified in 
another set of experiments the motor contribution 
to temporal attention. Through six interrelated 
behavioral experiments, we revealed the exis-
tence of a limited sampling capacity of temporal 
attention which, importantly, was sensory- 
specific (~1.4 Hz in audition, ~0.7 Hz in vision). 
In addition, we demonstrated that the motor con-
tribution to temporal attention was also sensory- 
specific and derives from the compatibility of 
temporal dynamics underlying motor and 
sensory- specific attentional processes. Indeed, 
we showed that the motor contribution to tempo-
ral attention scales with motor rhythmic preci-
sion, which is maximal at ~1.5–2  Hz (Fraisse, 
1948; Woodrow, 1951). Moreover, this effect cru-
cially depends on the temporal simultaneity of 
motor acts relative to the beat (Morillon et  al., 
2014; Zalta et al., 2020). Finally, in line with pre-
vious models of beat perception and temporal 
attention processes (Jones, 1976; Large & Jones, 
1999; Large et al., 2015), we show that our results 
are reproduced by a simple dynamical model 

involving three coupled oscillators. While the 
optimal sampling rate of temporal attention is 
directly reflected in the natural frequency of the 
(auditory or visual) attentional oscillator, the 
quality of the motor modulation  of temporal 
attention crucially depends on the time delay in 
the coupling between the stimulus and the motor 
oscillator. These results suggest that specific 
rhythmic sampling rates emerge from the specific 
configuration of large-scale neural networks 
encompassing sensory regions, in addition to 
attentional and motor areas (Donner & Siegel, 
2011; Siegel et  al., 2012). Future models and 
experiments need to further investigate how these 
multiple neural structures—devoted to specific 
algorithmic processes and having specific tempo-
ral constraints—are dynamically coordinated to 
subserve or facilitate perceptual processing.

 Active Sensing as a Fundamental 
Mechanism of Perception

Active sensing describes the fact that perception 
is intrinsically shaped by motor dynamics 
(Morillon et  al., 2015; Schroeder et  al., 2010). 
Indeed, our sensory organs are not passive recep-
tacles for stimulation but are part of an action- 
perception closed-loop system (Ahissar & Assa, 
2016). Sensory inputs are acquired through overt 
motor sampling behaviors, such as hand or eye 
movements in primates and whisking or sniffing 
in rodents. Consequently, motor acts and associ-
ated neural dynamics temporally structure the 
activity of sensory cortices and, consequently, the 
processing of incoming sensory inputs.

Attention is an essential component of the 
process, helping to impose a motor sampling pat-
tern on the relevant sensory stream (visual, tac-
tile…). In addition to driving activity in sensory 
areas by volleys of ascending input (through 
movement of the sensory organ), there is top- 
down (corollary discharge and/or attentional) 
modulation, all yoked to movement (Schroeder 
et al., 2010). The corollary discharge signals pro-
vided by motor areas to sensory systems convey 
system-specific information content (spatial, 
spectral, etc.) as well as contextual temporal 
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information (i.e., the underlying temporal frame-
work (Crapse & Sommer, 2008)). Thus, percep-
tual information is sampled according to the 
rhythms of overt action, but also the rhythms of 
covert motor and/or attentional dynamics. As 
illustrated by whisking and sniffing in rodents 
and saccadic sampling during free viewing in pri-
mates, motor-driven information sampling rou-
tines follow temporally periodic patterns 
(McAuley et al., 1999; Wachowiak, 2011).

Covert-attentional sampling is a form of active 
sensing that takes over when overt-motoric sam-
pling is not possible. In the auditory domain, a 
form of overt active sensing is lacking (Morillon 
et al., 2015; Schroeder et al., 2010) but a covert 
form of active sensing is present, with oscillatory 
influences from motor cortex modulating activity 
in auditory regions during perception (Arnal, 
2012; Merchant et  al., 2015; Morillon & 
Schroeder, 2015; Morillon et al., 2015; Patel & 
Iversen, 2014). When perceiving several rhyth-
mic sensory streams simultaneously (e.g., one 
conversation at a cocktail party), dynamic atten-
tional filtering facilitates the processing of one 
task-relevant stream at the expense of all others. 
This occurs whether attention is selecting 
between modalities (Lakatos et al., 2009), within 
a modality (Lakatos et al., 2013), or integrating 
across modalities (Zion Golumbic et al., 2013). 
Motor system neural dynamics are implicated in 
covert-attentional, as well as overt-motoric, sam-
pling of sensory input. For instance, motor and 
premotor cortices consistently emerge as active 
regions in studies of rhythmic (Morillon et  al., 
2015) or temporally cued (Coull & Nobre, 1998; 
Davranche et al., 2011; Coull et al., 2013) atten-
tional selection. According to the premotor the-
ory of attention, covert shifts in spatial attention 
are governed by the same circuitry that controls 
overt shifts in eye position (Rizzolatti et  al., 
1987). Although one can argue specific tenets of 
the theory (Smith & Schenk, 2012), it clearly 
underscores a fundamental relationship between 
motor systems and active/attentive sensory pro-
cessing. This relationship comes to the fore when 
the temporal predictability of sensory input is 
being  used to optimize behavior (traffic light, 
musical beat, etc.). Accordingly, it has been pro-

posed that time perception relies on the neural 
recycling of action circuits and is implemented 
by internal, non-conscious “simulation” of move-
ments in most ecological situations (Schubotz, 
2007; Coull & Droit-Volet, 2018; Arnal, 2012; 
Patel & Iversen, 2014; De Kock et  al., 2021; 
Robbe, 2023). This idea mirrors the central prop-
osition of the premotor theory of attention in 
which the transmission of temporal information 
from motor to sensory regions could be imple-
mented through corollary discharge signals 
(Crapse & Sommer, 2008; Nobre & van Ede, 
2018; Khalilian-Gourtani et al., 2022).

 Motor Cortex Rhythms as Intrinsic 
Temporal Constraints of Perception

Cortical rhythms correspond to the periodic shift-
ing of neuronal populations between states of 
high and low excitability, which coordinates neu-
ral communication (Wang, 2010). In the motor 
cortex, most of the existing data point to beta 
oscillations (~12–30  Hz) as a predominant and 
specific rhythm during rest and to coordinate 
information transfer in action planning and exe-
cution. However, using finer-grained spectral 
analysis methods to analyze recordings from the 
motor cortex reveals a much more complex pic-
ture (Morillon et al., 2019). In humans for exam-
ple, ongoing oscillatory activity of the primary 
motor cortex is characterized by consistent spec-
tral peaks, principally in the delta (0.5–4 Hz) and 
beta frequency ranges (Keitel & Gross, 2016). 
Interestingly, these oscillatory rhythms are hier-
archically structured in time (Lakatos et  al., 
2005). For example, a functionally relevant delta- 
beta phase-amplitude coupling has been shown 
in the motor cortex during auditory (Arnal et al., 
2015; Keitel et  al., 2018; Morillon & Baillet, 
2017) and visual (Saleh et al., 2010) perception. 
This specific spectro-spatial pattern of activity 
represents temporal information and is directly 
related to behavioral performance in tasks involv-
ing perceptual temporal processing. Increases in 
the sensory quality of information presented at 
predictable moments in time (Nobre & van Ede, 
2018) are reflected in the reorganization of low- 
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frequency neural oscillations, which temporally 
modulates the excitability of task-relevant neural 
populations and thus acts as an instrument of sen-
sory selection (Schroeder & Lakatos, 2009). This 
neural reorganization is visible in sensory 
 cortices, but also in higher-order associative 
attentional and motor regions (Besle et al., 2011).

Multiple findings converge to support the rel-
evance of intrinsic delta oscillations, at the func-
tional and behavioral levels, whenever 
rhythmicity, i.e., temporal predictability, is 
observed. For instance, walking, a most basic 
motor act, is fundamentally rhythmic and oper-
ates within the delta range (2 Hz; (MacDougall & 
Moore, 2005)). Strikingly, this mirrors spontane-
ous oscillatory activity in the motor cortex 
(~2 Hz). Spontaneous rhythmic motor behaviors 
such as finger tapping also function at a preferred 
tempo of ~1.5–2 Hz, and motor tapping has an 
optimal temporal precision at around ~0.8–2.5 Hz 
(Fraisse, 1948). Moreover, during production of 
speech, an extremely complex motor behavior, 
the coordination of articulatory movements is 
encoded in kinematic trajectories characterized 
by delta oscillatory dynamics (Chartier et  al., 
2018). Even during reaching, a non-periodic 
motor behavior, motor trajectories are encoded in 
patterns of neural dynamics that oscillate at 
around 1–2 Hz (Churchland et al., 2012). Delta 
dynamics in motor areas also anticipate the tim-
ing of informative cues in motor planning (Saleh 
et al., 2010; Cadena-Valencia et al., 2018) and are 
tuned to temporally predictable targets requiring 
resolution of response conflict in the Simon task 
(Korolczuk et  al., 2022; Fig.  1c). Delta oscilla-
tory dynamics are also argued to be responsible 
for cognitive phenomena such as attentional 
blink, inhibition of return, and the psychological 
refractory period (Schroeder & Lakatos, 2009; 
Wyart et  al., 2012). Overall, delta oscillations 
shape the dynamics of neural activity in the motor 
cortex and of motor behaviors and appear to 
impose a temporal framework that both enables 
and constrains the sampling of perceptual infor-
mation. In other words, a proactive simulation 
process is effected by delta oscillations which 
constrain the speed at which temporal processing 
occurs.

The modulatory effects of temporal predict-
ability on both perceptual and motor process-
ing have consistently been shown to originate 
at least in part in motor cortex (Morillon & 
Baillet, 2017) and regions associated with 
motor planning, such as left inferior parietal 
cortex (Bolger et  al, 2014;  Coull, 2014; 
Naghibi et al., 2023). In a magnetoencephalog-
raphy (MEG) experiment, we asked human 
participants to perform auditory categoriza-
tions of sequences of pure tunes, composed of 
an interleaved delivery of targets and distrac-
tors (Morillon et al., 2014). This paradigm mir-
rors the cocktail-party effect (Cherry, 1953), 
with the “noisy” signal occurring at a rate of 
~3  Hz while temporal attention is guided to 
temporally predictable targets at ~1.5 Hz (see 
Fig. 2 and above). We observed that while the 
acoustic signal drives cortical dynamics in and 
around auditory regions, left-lateralized senso-
rimotor cortex encodes the temporal predic-
tions that allow for precise temporal 
anticipation of forthcoming sensory inputs at 
1.5 Hz (see also Bolger et al., 2014). Moreover, 
this encoding is associated with bursts of beta 
(18–24 Hz) neural oscillations that are directed 
toward auditory regions. In addition, when par-
ticipants were instructed to use their motor 
system overtly, by pressing a button in time 
with the reference beat (similar to (Morillon 
et  al., 2014)), the quality of temporal predic-
tions increased and enhanced auditory task 
performance even more. These behavioral 
changes were associated with increased signal-
ing of temporal predictions in right-lateralized 
frontoparietal associative regions, involved in 
melodic processing and auditory memory for 
pitch (Zatorre et  al., 1994). This study indi-
cates a covert form of auditory active sensing 
and emphasizes the fundamental role of left- 
lateralized motor brain areas and overt  motor 
behavior in sensory processing. Attentional 
modulation of auditory information thus 
depends on the downward propagation of such 
temporal information represented in delta-beta 
phase- amplitude coupled oscillations in motor 
cortex (Arnal et al., 2015; Morillon & Baillet, 
2017; Saleh et al., 2010).
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 Conclusion

Temporal regularities in sensory input can be 
automatically or voluntarily extracted and 
exploited to optimize both perceptual process-
ing and motor behavior. Moreover, the influence 
between the motor system and timing is mutual. 
The temporal predictability of sensory input 
affects a wide variety of motor behaviors, 
including speed, force, and impulsivity. 
Reciprocally, motor behavior hones temporal 
precision and leads to a more robust representa-
tion of time. By boosting the precision of the 
temporal representation through movement, 
temporal predictions become more accurate and 
the motor and sensory processing of events 
occurring at predicted moments in time is 
heightened. Importantly, faster responses to 
temporally predictable events will further 
tighten the coupling between action and time, 
which could then feed back within a closed-loop 
system to enhance the temporal precision of 
predictions even more, and so continually fine-
tune sensorimotor processing. While enhanced 
sensory processing  of predictable events will 
generally serve to optimize behavior, it may 
sometimes induce maladaptive impulsive behav-
ior by triggering responses to salient but irrele-
vant events.  The intertwined relationship 
between motor activity and temporal informa-
tion processing may be mediated by delta-range 
oscillatory activity in the motor cortex, such that 
oscillatory dynamics become tuned to the tem-
poral predictability of sensory input, thereby 
shaping the sampling of perceptual information. 
More generally, this outline is directly compati-
ble with the active sensing framework, which 
attributes the motor system with a fundamental 
role in perception.
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Coordinate-Based Meta-Analyses 
of the Time Perception Network

Martin Wiener

Abstract

The study of time perception has advanced 
over the past three decades to include numer-
ous neuroimaging studies, most notably 
including the use of functional Magnetic 
Resonance Imaging (fMRI). Yet, with this 
increase in studies, there comes the desire to 
draw broader conclusions across datasets 
about the nature and instantiation of time in 
the human brain. In the absence of collating 
individual studies together, the field has 
employed the use of Coordinate-Based Meta- 
Analyses (CBMA), in which foci from indi-
vidual studies are modeled as probability 
distributions within the brain, from which 
common areas of activation-likelihood are 
determined. This chapter provides an over-
view of these CBMA studies, the methods 
they employ, the conclusions drawn by them, 
and where future areas of inquiry lie. The 
result of this survey suggests the existence of 
a domain-general “timing network” that can 
be used both as a guide for individual neuro-
imaging studies and as a template for future 
meta-analyses.
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 Introduction

“Time” is ubiquitous, yet timing studies are not. 
Indeed, for studying the subject, “time” is not one 
thing. This is because timing studies occupy a 
diverse landscape of possible experimental task 
designs (Allman et al., 2014; Vatakis et al., 2018). 
Temporal discrimination, production, and repro-
duction can all be used to measure explicit, pro-
spective timing, yet so can (self)paced finger 
tapping, target anticipation, and oddball detec-
tion (Coull & Nobre, 2008). This diversity com-
plicates the pursuit of neuroimaging studies of 
timing: should we focus on what is common to 
all timing tasks? Or should we focus on what 
makes timing varied, labile, and adaptive?

No easy answer exists to this question 
(Matthews & Meck, 2014; Salet et al., 2022). Yet, 
there is a richness in the diversity of neuroimag-
ing studies conducted on the study of time per-
ception. For this chapter, I will focus on explicit 
timing studies. That is, those studies where 
“time” is the to-be-attended dimension. While 
studies investigating implicit timing do exist 
(Wiener et  al., 2010a, b), there is a diversity 
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Fig. 1 Two decades of timing studies in neuroimaging. 
Displayed are cumulative distributions of the number of 
timing studies for three of the main task designs in time 
perception: Discrimination, finger tapping, and produc-

tion. All three studies have increased in prevalence, yet 
discrimination studies have outpaced the other two types 
since 2003, whereas the other two main types have pla-
teaued. (Data drawn from (Nani et al., 2019))

among them that may indeed be greater than that 
found in explicit timing tasks. Part of this is due 
to the difficulties in building a taxonomy of tim-
ing tasks, from which common domains can be 
determined for inquiry (Paton & Buonomano, 
2018; Merchant et al., 2013).

Early attempts in the neuroimaging of time 
perception highlight the problem in approaching 
even an area as conserved as explicit timing. 
Those studies conducted in the 1990s typically 
focused on paced finger tapping as a measure of 
timing, which may have grown out of early robust 
findings in the fMRI literature in examining the 
neural effects of motor movements (Biswal et al., 
1995; Rao et al., 1993). With the advent of event- 
related fMRI, studies in the 2000s turned to a 
wider array of experimental designs (Rao et al., 
2001), including temporal discrimination and 
reproduction (Fig.  1). This trend has continued 
through the 2010s to the present moment this 
chapter is being written in. Among these newer 
studies, there have been attempts to examine so- 
called context effects in time perception 
(Merchant et al., 2013; Bueti et al., 2008). That 
is, situations in which time can change as a result 
of different experimental parameters. This may 
include the effects of signal emotion, reward, 
velocity, or magnitude on perceived duration 
(Matthews & Meck, 2016; Allman et al., 2014). 
Indeed, beyond finding where time can be 
observed in the brain, these studies highlight 
attempts to better understand how time is encoded 
(Bueti, 2011). A wider review of these latter stud-

ies can be found in other chapters in this volume, 
but highlight the future of single-imaging studies 
for time perception, which can include connec-
tionist, multivariate, and encoding-model types.

 Coordinate-Based Meta-Analytic 
Methods

As the neuroimaging literature grew, there were 
early attempts to provide a better “overview” of 
findings. Indeed, the exponential rise of fMRI 
studies led to some concern among researchers 
for how findings would be concatenated (Fox 
et  al., 1998). This was further compounded by 
concerns regarding sample sizes in fMRI and the 
difficult task of determining effect sizes 
(McGonigle et  al., 2000), an issue that is still 
present today (Grady et al., 2021). Further, con-
cern regarding the generalizability of neuroimag-
ing studies was also present; how certain could 
researchers be that their findings regarding a par-
ticular function would apply to other studies 
investigating that same function?

To address the above issues, early steps were 
taken to survey the literature and generate data-
bases of neuroimaging findings. The brainmap 
database (www.brainmap.org) represents one 
result of this, in which neuroimaging findings 
could be categorized and catalogued in a way that 
other researchers could easily access them as a 
record (Laird et al., 2005a, b, c). A critical aspect 
of this was to have appropriate metadata; that is, 

M. Wiener

http://www.brainmap.org/


217

terms that could sufficiently describe the func-
tions or tasks of interest for a particular study.

From this effort, the main goal was to provide 
a way to synthesize results from neuroimaging 
studies that could provide insight regarding the 
consistency of findings for a particular area. Up 
until this point, any attempts at meta-analyses for 
neuroimaging relied on so-called “label-based” 
methods, in which activated regions that had 
been labeled by an atlas were collected across 
studies and those labels that occurred most often 
were deemed most likely (Laird et al., 2005a, b, 
c). This method was useful for describing neuro-
imaging findings, but suffered from being 
 qualitative in nature. With no statistical test to 
rigorously interrogate the findings, how certain 
could a researcher be that the meta-analysis was 
accurate?

To address this, two primary methods were 
developed independently yet simultaneously: 
Activation-Likelihood Estimation (ALE) and 
Multilevel Kernel Density Analysis (MKDA) 
(Wager et  al., 2009). Both methods were con-
cerned with addressing the likelihood of activa-
tion for any given brain region associated with a 
particular function or state [p(activation|function)]. 
Additionally, both methods relied on using as a 
starting point the three-dimensional coordinates 
reported for the peaks of activation clusters in 
neuroimaging studies. For ALE, the approach 
sought to answer what is the probability that a 
given voxel was active in at least one of the 
included studies. To answer this, activation foci 
from reported studies were all assumed to have 
an activation probability of 1, but each one was 
then smoothed with a 3D Gaussian function, such 
that the probability of activation dropped off in 
every direction (Turkeltaub et  al., 2002; Chein 
et al., 2002). From there, the sum of these func-
tions was taken at each individual voxel, thus rep-
resenting the ALE statistic. For MKDA, the 
approach instead asked how many studies 
reported activation at a given voxel. To answer 
this, a 3D uniform distribution of 1 s was spread 
out in a 10 mm radius from each reported activa-
tion foci. These values were then summed across 
studies, such that the final value represented the 
number of studies reporting activation at a given 

location (Wager et  al., 2004). One notable dis-
tinction between ALE and MKDA values is that 
the latter provided a more readily interpretable 
statistic; by looking at any region, one could get 
a sense instantly of how many studies were 
reporting activation (Bartra et al., 2013). By con-
trast, ALE values are in themselves difficult to 
interpret, as their value will depend on numerous 
factors, including the smoothing kernel for the 
Gaussian, the number of foci reported, and the 
distance between those foci. Yet, an advantage of 
the ALE method is that the graded probability 
distributions when summed can provide a rela-
tive difference in activation-likelihood between 
different voxels and regions that is more nuanced 
than MKDA, and so one can thus determine 
which regions are more likely to be activated over 
others. Regardless, once generated, both methods 
provided a similar means of assessing statistical 
significance, in which a random or null distribu-
tion was nonparametrically generated by ran-
domizing the reported foci locations and 
conducting the generating the ALE/MKDA val-
ues again with a high number of repetitions 
(˜10,000). Because both methods relied on pro-
ducing brain maps from reported coordinates, 
they were referred to as Coordinate-Based Meta- 
Analyses (CBMA).

Since the advent of primary CBMA methods, 
a number of advances have been made as the 
technique has proliferated (Fox et al., 2014). For 
both ALE and MKDA, stronger inferences were 
allowed by providing algorithms for assessing 
false discovery rate and familywise error, as well 
as cluster-forming thresholds (Laird et al., 2005a, 
b, c; Eickhoff et al., 2012). Further work also pro-
vided a change from fixed-effects models to 
random- effects, by incorporating the number of 
subjects within each study as a covariate to mod-
ify individual ALE maps (Eickhoff et al., 2009). 
Other changes were also made to adjust for errors 
in the design; for example, both ALE and the 
original version of MKDA (known as “KDA”) 
were sensitive to studies that reported large num-
ber of activation foci compared to those that 
reported fewer ones. However, updates to both 
algorithms were able to account for this by 
restricting their statistics to the likelihood of acti-
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vation across studies (Turkeltaub et  al., 2012). 
Other additions to the methods allowed for use of 
subtraction analyses, in which two ALE maps 
could be contrasted with one another to examine 
if one type of task was more likely to have activa-
tion at a particular voxel than another type of task 
(Laird et al., 2005a, b, c). All of these additions 
improved the robustness of CBMA methods, pro-
viding stronger inferences regarding brain activa-
tion. However, despite these improvements, there 
are substantial weaknesses to both CBMA 
approaches. First, and foremost, is that all CBMA 
methods rely on modeling the uncertainty associ-
ated with activation foci. This modeling, once 
thresholded, provides a map that may appear 
similar to fMRI activation maps, as both incorpo-
rate smoothness into their images. Yet, CBMA 
methods have no access to the original shape acti-
vation, and as such likely do not reflect the “true” 
activation probability across studies. Indeed, a 
study that addressed this possibility by compar-
ing CBMA methods to a meta-analysis that 
incorporated actual statistical maps from a group 
of experiments found that these methods only 
matched the true activation pattern by 45% 
(Salimi-Khorshidi et al., 2009). However, it was 
noted that, of the methods tested, ALE provided 
the relatively closest similarity. As a second 
weakness, both ALE and MKDA do not take into 
account differences in effect size between studies 
and activation foci (Radua & Mataix-Cols, 2009). 
Rather, all activation foci are treated equally. Yet, 
in practice this is never the case, as marked dif-
ferences in the size of an effect will differ across 
activation peaks. Finally, a third major weakness 
is that both methods are biased to include only 
those studies that were published, which natu-
rally ignores those studies that were not. This so- 
called “file drawer” problem means that CBMA 
methods likely inflate the likelihood of true acti-
vation. Notably, a method to correct for this in 
ALE has recently been developed (Acar et  al., 
2018).

Finally, while outside the scope of this review, 
it should be noted that many other CBMA meth-
ods were developed and used (Wager et al., 2009; 
Samartsidis et al., 2017). Indeed, the basic prin-
ciple is such that anyone could generate their own 

CBMA using similar means kable (Bartra et al., 
2013). Of importance to mention is that both 
ALE and MKDA include user-defined sets of 
coordinates. That is, the person conducting the 
CBMA is the one responsible for finding the acti-
vation foci from the particular studies they are 
interested in. This stands in contrast to automatic 
meta-analytic methods, the most prevalent of 
which is by Neurosynth (Yarkoni et al., 2011). In 
the Neurosynth method, rather than running a 
CBMA on a given set of coordinates, the algo-
rithm attempts to search across the entire corpus 
of neuroimaging studies in online journals, to 
scan the text of these papers to find a term of 
interest to the user (i.e., “timing”), extract auto-
matically the reported activation foci from those 
papers, and then generate a CBMA of those coor-
dinates like MKDA.  However, from here, 
Neurosynth compares this activation map to the 
remaining corpus—that is, those studies lacking 
the term of interest—and compares them with a 
chi-square test. The result is two different activa-
tion maps: one which provides the probability of 
activation for a given function or state, and  
the other which provides the probability of a 
function or state for a given activation 
[p(function|activation)]. This latter term provides 
a so-called “reverse inference” map, in which one 
can attempt to ask if certain regions are more 
likely to be activated for particular functions 
(Poldrack, 2006).

 Previous Meta-Analyses of Time 
Perception Networks

The first CBMA of time perception was con-
ducted in 2010 (Wiener et al., 2010a, b). Before 
that point, three label-based meta-analyses had 
been conducted. Of these three, each incorpo-
rated a different set of studies and reached some-
what different conclusions. Lewis and Miall 
(2003) suggested that the cerebellum and supple-
mentary motor area (SMA) were the most likely 
to be activated, whereas Penney & Vaitilingham 
(2008) suggested it was the cerebellum and right 
inferior frontal gyrus (rIFG), and (Macar et  al., 
2002) suggested a range of cortical and subcorti-
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cal structures. With the first meta- analysis, these 
questions were quantitatively addressed by divid-
ing the corpus of timing studies into those that 
measured explicit timing at subsecond and supra-
second ranges, as well as whether the task was 
motor (i.e., paced finger tapping, reproduction) 
or perceptual (i.e., discrimination, estimation) in 
nature. Here, the findings demonstrated marked 
differences in activation-likelihood across sub- 
and suprasecond ranges, with the former more 
likely to activate subcortical structures such as 
the basal ganglia and cerebellum, and the latter 
recruiting more cortical regions. Crucially, across 
all timing task variations, the SMA and rIFG 
were found to be the most commonly active.

Following these initial results, a number of 
other meta-analyses were run, yet each to address 
different questions. Indeed, a strength of the 
CBMA method is that it can ask questions of 
commonality or differences across studies that 
may be difficult to ask within an individual study. 
Ortuño et  al. (2011) ran an ALE meta-analysis 
examining explicit timing studies in both healthy 
control and schizophrenia patients. For the analy-
sis of healthy control subjects, significant ALE 
values were found in the SMA, left precentral 
gyrus, basal ganglia, and thalamus, with reduced 
activation-likelihood in these same approximate 
regions for Schizophrenia patients. An additional 
study also compared activation-likelihood 
between subjects with Attention-Deficit 
Hyperactivity Disorder (ADHD) and healthy 
controls performing timing tasks (Hart et  al., 
2012). Notably, this study employed another 
CBMA method, known as Effect-size Signed 
Differential Mapping (SDM; now known as 
Seed-based d Mapping). In this method, spatial 
maps are generated that also take into effect the 
size and sign of the effect (for example, by incor-
porating reported t statistic values for each peak), 
and so can account for both direction and magni-
tude. The results of this meta-analysis demon-
strated reduced likelihood in left-hemispheric 
regions including the IFG, inferior parietal, cere-
bellum, and insula. Additionally, the right dorso-
lateral prefrontal cortex (DLPFC) was found to 
vary depending on medication status across stud-
ies in ADHD. A similar study employing SDM 

was conducted by Radua et al. (2014) that incor-
porated both time perception and cognitive effort 
(i.e., working memory and attention). Here, a 
large overlap between time perception and cogni-
tive effort was observed for many cortical regions 
associated with time, including the SMA, parietal 
and prefrontal cortices, with exclusive timing 
likelihood remaining in the basal ganglia. A cru-
cial insight gained from this study is that many of 
the regions associated with “timing” were likely 
engaged in multiple, overlapping functions, not-
ing that the specificity of any one region was dif-
ficult to assess.

While the results of Radua and colleagues 
may suggest that numerous areas associated with 
“timing” are engaged in other processes during a 
timing task, it should be noted that CBMA can 
still afford some insights into the functional sub-
divisions of these areas. For example, a second-
ary study followed up on the original Wiener 
2010 results by conducting an in-depth analysis 
of the studies likely to activate solely the SMA 
(Schwartze et al., 2012). Here, by dividing stud-
ies up between motor and perceptual compo-
nents, the authors demonstrated that 
activation-likelihood shifted along a rostrocaudal 
gradient, with perceptual timing studies more 
likely to activate the anterior SMA, also known 
as the “pre”-SMA, and motor timing studies 
more likely activate posterior regions of the SMA 
“proper.” Notably, this finding was also observed 
in the original 2010 findings (Wiener et  al., 
2011).

With further neuroimaging studies between 
2009 and 2019, a second series of CBMAs for 
time perception have been run. The first, by 
(Teghil et al., 2019) divided neuroimaging stud-
ies of time perception between those that mea-
sured activation while subjects timed an 
exogenous cue (as in a temporal discrimination 
task, for example) and those that timed an endog-
enous cue (as in a self-paced finger tapping task, 
for example). Here, the general CBMA revealed 
a pattern of activation likelihood similar to the 
original 2010 results, including the SMA, bilat-
eral prefrontal and parietal cortices, and the basal 
ganglia; notably absent was the cerebellum in 
this study. Between internally and externally 
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driven stimuli, the authors observed that external 
stimuli were more likely to activate the SMA, 
rIFG, left precentral gyrus, and insula, suggesting 
that external stimuli are stronger drivers of time 
processing than internally based timekeeping.

The second of the “new” studies was con-
ducted by Nani et  al. (2019). Here, the authors 
conducted a more direct replication of the 
(Wiener et al., 2010a, b) results by dividing stud-
ies between sub- and suprasecond and motor and 
perceptual domains. Importantly, this study also 
incorporated numerous controls to measure the 
robustness of results, incorporating the null 
 distribution correction suggested by Acar et  al. 
(2018). Further, the authors measured correla-
tions between ALE maps, as well as a hierarchi-
cal clustering to measure similarities. The results 
of this more conservative meta-analysis nonethe-
less revealed a similar pattern to the original 2010 
findings, yet with a more conserved volume for 
each region. Notably, the cerebellum and inferior 
parietal cortices were less likely to be activated 
overall, with the former only being observed for 
subsecond motor timing. In terms of similarity, 
motor and perceptual studies were more similar 
to each other across duration ranges, yet at the 
suprasecond range, motor and perceptual timing 
studies were quite similar. These results sup-
ported the original 2010 findings, noting that the 
overall results had not changed much despite 
additional studies, and also provided a more 
nuanced view of the timing landscape.

The third recent CBMA for time perception 
was conducted by Cona et  al. (2021). In this 
study, timing-related regions were compared to 
those that were likely to activate space percep-
tion and processing, which included spatial 
navigation, mental rotation, and spatial atten-
tion studies among others. Here, the main ALE 
analysis for time was again similar to the 
results of both Wiener et  al. (2010a, b) and 
Nani et al. (2019). Between space and time, the 
former was more likely to activate posterior 
regions, including occipital and parietal corti-
ces, whereas the latter was more likely to acti-
vate anterior regions, including prefrontal 
cortex, and subcortical regions including the 
basal ganglia and cerebellum. A conjunction 

analysis found significant activation-likelihood 
in the SMA, rIFG, left precentral gyrus, bilat-
eral insula, and inferior parietal cortices. As an 
additional analysis, these authors examined 
“gradients” of activation- likelihood within 
conjunction regions, finding that the SMA, 
rIFG, right inferior parietal cortex all shifted in 
activation-likelihood between time and space 
studies in either a rostrocaudal or dorsoventral 
direction.

The final and most recent CBMA was per-
formed by Naghibi et  al. (2023). In this study, 
which collected the largest number of neuroim-
aging studies of timing to date, the authors segre-
gated the studies according to a variety of 
classifications, including the duration of stimuli, 
the modality of the stimuli, whether intervals 
were presented in a sequence or in isolation, 
whether the task was perceptual or motor in 
nature, whether subjects were quantifying or pre-
dicting intervals, and the nature of the control 
task. The last comparison was of particular 
importance, as the choice of control task and its 
difficulty can have large differences in observed 
activation patterns (Livesey et al., 2007). As with 
other CBMA, a similar network of regions were 
observed; however, the pre-SMA and left anterior 
insula were the most robust among the different 
distinctions.

 Does a Time Perception Network 
Exist?

Altogether, the results of the past 10+ years of 
meta-analyses for time perception have revealed 
striking consistency (Fig. 2). Indeed, apart from a 
few areas that have dropped in and out (i.e., cer-
ebellum, parietal cortex), the remaining overall 
constellation has been fixed. This consistency 
raises the question of whether or not a true timing 
“network” exists in the brain. The existence of 
such a network would be helpful for future neu-
roimaging ventures of time perception. Indeed, if 
one already knows where activation is likely to be 
found across any given timing task, then studies 
can focus more on how those regions are involved 
(Bueti, 2011).
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Wiener, et al. 2010 Ortuno, et al. 2011 Radua, et al. 2014 Teghil, et al. 2019 Nani, et al. 2019 Cona, et al. 2020

Fig. 2 Timing meta-analyses from 2010 to 2020. From 
left to right, meta-analyses are presented as contours on a 
glass brain. The majority of these studies have employed 
the use of ALE, which changed its methods after 2011. 
The exception is Radua et  al. (2014), which employed 

Signed Differential Mapping. Across these meta-analyses, 
a common set of regions can be observed, spanning from 
the SMA to the basal ganglia, inferior frontal and parietal 
cortices. Notably, little change has been observed despite 
the larger number of studies included

In examining the region’s most commonly 
activated across timing meta-analyses, a number 
of features are readily observed. First, the SMA 
is consistently the most likely structure to be 
active across explicit studies of timing. While 
there are certainly task contexts that influence its 
function, such as its motor or perceptual nature 
and spatial context, the region is specifically 
invoked. Here, then, is our first “node” in an 
explicit timing network, from which others may 
diverge. A second area commonly active is the 
rIFG, spanning pars triangularis and operculum. 
This region may overlap with the DLPFC, as 
commonly observed as well in individual studies, 
yet not commonly reported in meta-analyses. 
Beyond these two “primary” regions, a number 
of other nodes are commonly observed across the 
cortex. These include the bilateral inferior pari-
etal cortices; however, an observed feature is that 
the right is favored more than the left, with a gen-
erally broader distribution that includes the 
supramarginal gyrus. At the subcortical level, the 
basal ganglia are also observed bilaterally, 
including caudate and putamen. Indeed, while 
these regions may not be commonly observed 
across all timing task variations, it is important to 
note that the basal ganglia are a set of heteroge-
nous structures, rather than a single unit, and so a 
lack of activation-likelihood in this region may 
be due to different studies/contexts activating dis-
tinct parts (Wiener et al., 2011). The same con-
text applies to the cerebellum, although here 
studies are most likely to find activation in sub-
second motor paradigms, and most commonly 

surrounding the dentate gyrus. The thalamus is 
also commonly observed across neuroimaging 
studies, although not always as the highest sub-
cortical region. Yet, the thalamus is a critical node 
for relaying patterns of activity between cortical 
and subcortical areas; indeed, the striatal beat fre-
quency model of timing (SBF) directly invokes 
cortico-striato-thalamic loops (Matell & Meck, 
2004). Finally, stratifying the border between 
subcortical regions and the cortex are the insular 
gyri, which are also observed bilaterally. Yet, due 
to their proximity to the IFG, it is difficult to 
ascertain at the level of a CBMA if these regions 
are truly active across timing studies, or merely a 
result of spreading activation-likelihood from a 
more lateral cortical source. Regardless, they are 
included as part of the timing network due to 
recent work suggesting that interoceptive pro-
cesses are typically invoked for time processing 
(Wittmann, 2013).

Altogether, the consensus of timing meta- 
analyses provides a parcellation that can be called 
the “Timing Network” (Fig. 3). This network can 
be used to guide future neuroimaging studies, 
which can attempt to validate its existence or to 
further probe interactions between these regions 
across different task contexts. For example, the 
edge weights connecting these nodes may vary 
across different timing tasks or conditions. 
However, there is still an open question of 
whether or not a true timing network actually 
exists. Indeed, among “functional” network par-
cellations, a number of domain-general networks 
with distinct yet overlapping activation patterns 
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Fig. 3 The proposed timing network. A plot of parcels 
displayed on a rendered brain, with each colored parcel 
representing a node in the network. Note that colors here 
are arbitrary. Each parcel was drawn from the AAL atlas 
to include those regions most commonly reported across 

meta-analyses of explicit timing studies. The middle seg-
ment includes an axial slice with subcortical structures 
highlighted. Not displayed here is the cerebellum, which 
is included in the network. This network is available for 
download at https://neurovault.org/collections/13081/

are already well-known (Mattar et  al., 2015). 
These include the default mode, dorsal attention, 
somatomotor, language, cingular-opercular, and 
multiple demand networks, among numerous 
others, which will certainly overlap with the pro-
posed timing network. However, the timing net-
work may have a unique collection of regions 
compared to these others, spanning both cortical 
and subcortical regions. A true dissociation of 
these networks from the timing network would 
require comparisons of structural, functional, and 
resting-state networks. But, the timing network 
as conceived here, based on consistent meta- 
analytic findings, is a reasonable place to start.

 The Future of Timing Meta-Analyses

The discussion of prior CBMAs for time percep-
tion is meant to highlight two things: (1) the con-
sistency among them for regions associated with 
time perception, leading to the conclusion of a 
generalized timing network, and (2) the possibil-
ity for future analyses that have not yet been 
done. Indeed, CBMAs have a strong utility in 
their ability to address questions of consistency. 

To that end, there are numerous other possibili-
ties for CBMAs of the timing network that have 
not yet been employed.

First, among CBMA methods, only ALE and 
SDM have been used to measure timing net-
works. This leaves MKDA as a method that has 
not yet been employed. However, while this may 
present an opening for a novel meta-analysis, I 
suggest that the results of MKDA would likely 
not differ from the prior meta-analyses. This is 
because, at their core, all CBMA methods rely on 
the same general strategy for modeling activation 
based on reported foci (Fox et  al., 1998). 
However, other methods for CBMA exist that 
may provide at least somewhat divergent find-
ings. One recently developed method, the 
Analysis of brain coordinates (ABC) shows 
promise (Tench et al., 2022). Briefly, this method 
considers at the first-level what clusters of stud-
ies are most likely to occur across the brain vol-
ume, which differs from the ALE/MKDA 
approach in which clusters are later defined after 
statistical thresholding. The ABC method further 
thresholds these clusters based on the expected 
proportion that would occur by chance. As a 
result, significant clusters for ABC report clusters 
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that are likely to replicate across the corpus of 
included studies.

Second, other extensions to the ALE algo-
rithm exist that have not yet been tested. The first 
is termed Meta-Analytic Connectivity Modeling 
(MACM) (Laird et al., 2009). MACM is a type of 
connectivity analysis that shares the same strat-
egy as that used by seed-based connectivity mea-
sures. Specifically, MACM works by isolating a 
particular voxel or region of the brain, and then 
searching for all studies that report activation for 
that particular region. Notably, this search may 
be restricted to only include studies that investi-
gate a particular area (i.e., timing). The activation 
foci for these studies are extracted and a standard 
ALE analysis is run, with the resulting MACM 
map displaying those regions that are signifi-
cantly associated with the seed region of interest. 
For example, one could specify the SMA as a 
node, and then examine all other regions that are 
commonly activated with it. Comparisons 
between regions in the timing network may yield 
details regarding how different regions interact 
across different task contexts.

While MACM provides a measure of associa-
tion, it is important to stress that it does not pro-
vide a measure of connectivity in the sense 
applied to studies of resting-state or task-based 
fMRI, and even their claims of connections may 
be spurious (Leonardi & Van, 2015). A closer 
measure for CBMA is the recently developed 
Co-activation Probability Estimation (CoPE) 
method (Chu et al., 2015). In the CoPE method, 
activation foci are treated as probability distribu-
tions, similar to ALE, but with a smaller width. 
From here, values are normalized and the co- 
activation of each voxel is measured across stud-
ies. That is, which voxels are likely to be activated 
together across studies? The resulting measures 
are compared against a null distribution from 
Monte Carlo simulations for statistical signifi-
cance, resulting in a map where clusters represent 
those that are co-active across studies. The impor-
tant distinction of the CoPE method is that it can 
distinguish between local and long-range con-
nectivity, and so be used to derive a connectivity 
matrix between regions. Applying CoPE for time 
perception would allow for a true measure of net-

work properties observed across studies. Yet, as 
of this writing, no software package for CoPE is 
publicly available, limiting its use.

As an alternative to the CoPE method, a more 
recent CBMA connectivity measure has been 
proposed, for which a freely available software 
package exists (Tench et al., 2020). This method, 
known as Coordinate-based meta-analysis of net-
works (CBMAN), is a variation of the ABC 
method described above. Broadly, the CBMAN 
method works by measuring z-scores associated 
with reported activation peaks and examining 
their covariance structure across the included 
structures. As a result, multivariate normal distri-
butions can be fit to the z-scores of the most 
likely clusters for activation, with the covariance 
used to estimate connectivity between clusters. 
As this method includes both activation foci and 
effect sizes, it provides a strong measure for 
inferring connectivity; ripe for the study of 
timing.

A final, untapped method is to examine reverse 
inferences for the timing network. That is, up 
until now, all of the CBMA methods here report 
the likelihood of activation given the set of 
included studies [p(activation|timing)]. However, 
they do not speak to the converse inference: what 
is the probability of a timing task having occurred, 
given activation is found in a particular region 
[p(timing|activation)]. For example, if a study 
finds a significant cluster in the SMA, was the 
subject timing? Knowing this probability can 
provide insight into the specificity of any one 
region for timing. However, given the ubiquity of 
timing studies, it is likely that no single region 
has a high absolute probability for timing, but 
rather there will be relative differences between 
regions (e.g., if SMA activation is observed, is it 
more likely that a subject was timing than if right 
parietal activation is found). As described above, 
the Neurosynth method provides a means to 
assess this. Yet, Neurosynth relies on automatic 
tagging of studies based on terms of interest, and 
the term “timing” likely includes those studies 
associated with time perception and those that 
aren’t. In fact, the Neurosynth website does 
include this term, but with no clear clusters avail-
able for reverse inference. However, given the 
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ALE values represent the forward probability of 
activation, it is possible via Bayes Theorem to 
construct the posterior probability. This method 
has recently been proposed for ALE (Costa et al., 
2021), and provides a simple software plugin to 
accomplish it. The only requirement, however, is 
to have a set of “nontiming” studies to compare 
with it.

Recently, we noted this method was employed 
by our group (Mondok & Wiener, 2022). Here, 
we employed the timing studies used in our pre-
vious meta-analysis (Cona et al., 2021) and con-
ducted the reverse-inference analysis as described 
above. Two main findings emerged from this 
analysis. First, the overall probability of a timing 
task having been conducted, given activation of a 
particular brain region, was low. Indeed, no sin-
gle region offered high predictive value for deter-
mining if a study was employing a timing study 
over another task. However, it should be noted 
that many tasks offer low predictive value, espe-
cially when a large network of regional activa-
tions are possible (Yarkoni et  al., 2011). 
Nonetheless, among those regions that were pre-
dictive, the SMA and the bilateral insula had the 
highest predictive power for timing tasks. In par-
ticular, we note an interesting convergence with 
the recent results of (Naghibi et al., 2023), who in 
their standard CBMA also found these regions as 
having the most consistent likelihood.

 Conclusions

In discussing CBMA methods and their applica-
tion for time perception, a final open question is 
whether or not there are new analyses available at 
the aggregate level that can yield insights to how 
timing is accomplished in the brain. Hopefully, 
the new methods described just above can be 
applied with important distinctions available, and 
when carefully applied can provide further details 
about the existence and flexibility of the timing 
network. Further, additional methods may come 
along that provide a new leap in our understand-
ing of time at the collective level. Regardless, the 
foundation for any meta-analysis is the individual 

studies that support it. As timing studies continue 
to be done with neuroimaging, more detailed 
questions can be asked, and more can be learned.
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Abstract

The aim of this chapter is to give an overview 
of how the perception of rhythmic temporal 
regularity such as a regular beat in music can 
be studied in human adults, human newborns, 
and nonhuman primates using event-related 
brain potentials (ERPs). First, we discuss dif-
ferent aspects of temporal structure in general, 
and musical rhythm in particular, and we dis-
cuss the possible mechanisms underlying the 
perception of regularity (e.g., a beat) in 
rhythm. Additionally, we highlight the impor-
tance of dissociating beat perception from the 
perception of other types of structure in 
rhythm, such as predictable sequences of tem-
poral intervals, ordinal structure, and rhythmic 
grouping. In the second section of the chapter, 
we start with a discussion of auditory ERPs 

elicited by infrequent and frequent sounds: 
ERP responses to regularity violations, such 
as mismatch negativity (MMN), N2b, and P3, 
as well as early sensory responses to sounds, 
such as P1 and N1, have been shown to be 
instrumental in probing beat perception. 
Subsequently, we discuss how beat perception 
can be probed by comparing ERP responses to 
sounds in regular and irregular sequences, and 
by comparing ERP responses to sounds in dif-
ferent metrical positions in a rhythm, such as 
on and off the beat or on strong and weak 
beats. Finally, we will discuss previous 
research that has used the aforementioned 
ERPs and paradigms to study beat perception 
in human adults, human newborns, and non-
human primates. In doing so, we consider the 
possible pitfalls and prospects of the tech-
nique, as well as future perspectives.
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 Introduction

In music, as in several other domains, events 
occur over time. The way events are structured in 
time, both in music and in other domains, allows 
the brain to anticipate the timing of events and, in 
doing so, to optimize processing of events that 
occur at expected moments in time (Nobre & van 
Ede, 2018). In addition, temporal expectations 
(e.g., predicting “when” an event will happen) 
can guide our movement. This is of particular 
interest when considering musical rhythm, where 
temporal expectations allow us to dance and 
make music together (Honing, 2012; Leow & 
Grahn, 2014), and may play a role in our enjoy-
ment of music (Fiveash et  al., 2023). Temporal 
expectations can be formed based on different 
information in the environment, such as the con-

tingency between a cue and a temporal interval, 
and the passage of time itself (Nobre & van Ede, 
2018). Such interval-based predictions, as well as 
foreperiod effects, are discussed in depth else-
where (Buhusi & Meck, 2005; Ng & Penney, 
2014). Here, we focus on temporal expectations 
as present in rhythm, which denotes the temporal 
structure of a sequence of multiple events.

Figure 1 shows a schematic overview of rhyth-
mic structure. A rhythmic sequence of seven 
sounds is depicted, with temporal intervals of 
various lengths separating the sounds, forming a 
rhythmic pattern of shorter and longer temporal 
intervals. In music, importantly, in addition to 
structure in the form of a rhythmic pattern 
(Fig. 1B), rhythm often induces the perception of 
a regular pulse or beat (Bouwer et  al., 2021; 
Nobre & van Ede, 2018). The beat (Fig. 1C) is a 
perceived regularly recurring salient moment in 
time (Cooper & Meyer, 1960) that we can tap and 
dance to. In musical rhythm, the beat often coin-
cides with an event, but a beat can also coincide 
with plain silence (see shaded area in Fig.  1): 
Listeners can perceive a beat even in the absence 
of cues to this regularity in the rhythmic signal 
and can persist in perceiving a beat in the pres-

Fig. 1 Schematic overview of structure in rhythm. 
Rhythm can be conceptualized as a sequence of events in 
time. Panel A depicts an example rhythm in common 
music notation. In Panel B, C, and D, sounds are depicted 
as vertical bars. On top of perceiving the rhythmic pattern 
formed by the temporal structure of the sounds (e.g., the 
succession of longer and shorter intervals in time, panel 
B), we can perceive a regular beat, here depicted as black 
events (C). Several nested hierarchical levels of regularity 

make up a metrical structure (D), with differences in 
salience between strong beats (depicted in black), weak 
beats (depicted in dark gray), and subdivisions of the beat 
(in light gray and white). The metrical interpretation is 
represented as a metrical tree, with the length of the 
branches representing the theoretical metric salience of a 
specific position in the sequence. Note that the third beat 
(shaded area) coincides with silence: this is a “loud rest” 
or syncopation, with a missing event on a perceived beat
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ence of conflicting rhythmic information (Honing 
& Bouwer, 2019; Longuet-Higgins & Lee, 1984). 
The beat is often embedded in a hierarchical 
structure of multiple perceived levels of temporal 
regularity. At a higher level, we can hear regular-
ity in the form of regular stronger and weaker 
beats (often referred to as meter, like in a waltz, 
which has a strong-weak-weak pattern of beats), 
and at a lower level, we can perceive regular sub-
divisions of the beat. Together, these regularities 
create a hierarchical pattern of saliency known as 
a metrical structure (Fig.  1D). We can perceive 
temporal regularity with a period roughly in the 
timescale of 200 to 2000  ms (London, 2002, 
2012). Within this range, we have a clear prefer-
ence for beats with a period around 600  ms or 
100 beats per minute (Fraisse, 1982), and while 
listeners can to some extent guide the level of 
regularity they attend to most (Drake et al., 2000), 
the regularity closest to the preferred rate is often 
considered most salient (e.g., the beat).

In this chapter, we first discuss the processes 
underlying the perception of a regular beat, and 
possible considerations for designing stimuli 
that induce beat perception. Next, we discuss 
how beat perception can be studied using event-
related potentials (ERPs), and we give an over-
view of studies probing beat perception with 
ERPs in human adults, human newborns, and 
nonhuman animals. The current chapter updates 
a previous overview on this topic (Honing et al., 
2014). Note that we focus on perceptual aspects 
of beat perception. For a discussion of how beat 
perception relates to movement, the motor sys-
tem, and motor entrainment, see overviews on 
this topic elsewhere (Cannon & Patel, 2021; 
Damm et al., 2019; Merchant et al., 2015; Repp 
& Su, 2013).

 Mechanisms of Beat Perception

 Entrainment as a Mechanism for Beat 
Perception

The perception of a regular beat and the temporal 
expectations we form in response to a beat are 
often explained within the framework of entrain-

ment (Henry & Herrmann, 2014; Obleser & 
Kayser, 2019): the synchronization of an internal 
regularity to the regularity in an external stimu-
lus. From a psychological perspective, entrain-
ment has been described by Dynamic Attending 
Theory (DAT) (Jones, 2009; Large & Jones, 
1999). DAT proposes that internal fluctuations in 
attentional energy, termed attending rhythms, 
elicit expectations about when future events 
occur. The internal fluctuations in attentional 
energy can adapt their phase and period to an 
external rhythm, leading to alignment of peaks in 
attentional energy with metrically strong posi-
tions (i.e., peaks in attentional energy fall on the 
beat). At moments of heightened attentional 
energy, events are expected to occur, and process-
ing of events is enhanced (Haegens & Zion 
Golumbic, 2018). The attending rhythms are 
thought to be self-sustaining and can occur at 
multiple nested levels, tracking events with dif-
ferent periods simultaneously (Drake et al., 2000; 
Large & Jones, 1999). These features of the 
Dynamic Attending model correspond respec-
tively to the stability of our metrical percept and 
the perception of multiple hierarchical levels of 
regularity (Large, 2008). Behavioral support for 
DAT comes from studies showing a processing 
advantage on the beat (e.g., in phase with an 
external regularity) for perceiving temporal inter-
vals (Large & Jones, 1999), pitch (Jones et  al., 
2002), intensity changes (Bouwer et  al., 2020; 
Bouwer & Honing, 2015), and phonemes (Quené 
& Port, 2005). The processing advantage persists 
after a rhythmic sequence ends, in line with the 
supposed self-sustaining nature of the attending 
rhythms (Hickok et al., 2015; Saberi & Hickok, 
2022b). However, note that recently, the persis-
tent behavioral facilitation of events in phase 
with a regularity outlasting rhythmic stimulation 
could not always be replicated, which spurred 
discussion on the automaticity and ubiquity of 
entrainment (Bauer et  al., 2015; Bouwer, 2022; 
Lin et al., 2021; Saberi & Hickok, 2022a, b; Sun 
et  al., 2021). Several explanations for these 
 discrepant findings have been suggested, includ-
ing the presence of large individual differences in 
the strength of entrainment (Bauer et  al., 2015; 
Saberi & Hickok, 2022b; Sun et  al., 2021), the 
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dependence of entrainment on uncertainty in the 
auditory input (Saberi & Hickok, 2022b), and the 
dependence of entrainment on the rate of the 
rhythmic signal (Pesnot Lerousseau et al., 2021; 
Saberi & Hickok, 2022b).

At the neural level, entrainment may be imple-
mented by the alignment of low-frequency oscil-
lations (in the delta range; 0.5-4 Hz) to external 
regularity (Haegens & Zion Golumbic, 2018; 
Henry & Herrmann, 2014; Obleser & Kayser, 
2019; Rimmele et  al., 2018), leading to height-
ened neural sensitivity at expected time points 
(Haegens & Zion Golumbic, 2018; Henry & 
Herrmann, 2014), akin to the peaks in attentional 
energy described by DAT.  In line with the self- 
sustaining nature of the attending rhythms 
described by DAT, neural oscillations can also 
retain their alignment to a rhythmic sequence 
after sensory stimulation is stopped (Bouwer 
et al., 2023; Kösem et al., 2018; van Bree et al., 
2021). Entrainment has mainly been studied in 
the context of regular, periodic stimulation, to 
explain the prediction of regular, isochronous 
beats (e.g., predictions that are equally spaced in 
time). Recently however, models of entrainment 
have also been used to explain predictions for 
non-isochronous rhythmic patterns (e.g., the pre-
dictions of successions of short and long inter-
vals, that are not necessarily of equal length), in 
the context of irregular meters as found in Balkan 
music (Tichko & Large, 2019). For the purposes 
of this chapter, importantly, entrainment theories, 
both at the psychological and neural level, predict 
that processing is enhanced for events that are in 
phase with the entraining signal (Haegens & Zion 
Golumbic, 2018).

 Predictive Processing as a Mechanism 
for Beat Perception

The perception of a beat is a bidirectional pro-
cess: not only can a varying musical rhythm 
induce the perception of a regular beat (hence 
also referred to as “beat induction” (Honing, 
2012)), but a regular beat can also influence the 
perception of the very same rhythm that induces 
it. Hence beat perception can be seen as an inter-

action between bottom-up and top-down sensory 
and cognitive processes (Desain & Honing, 
1999), and as such fits well within the framework 
of predictive processing (Koelsch et  al., 2019; 
Vuust & Witek, 2014). Within this framework, 
the perceived metrical structure provides a repre-
sentation within which incoming sounds are 
interpreted. This representation is constantly 
updated based on the incoming sensory informa-
tion. The relation between the events in the music 
and the perceived metrical structure thus is a flex-
ible one, in which the perceived metrical struc-
ture is both inferred from the music and has an 
influence on how we perceive the music (Desain 
& Honing, 2003; Grube & Griffiths, 2009). Of 
importance to the current chapter, within predic-
tive processing models, it is often assumed that 
sensory processing for expected events is attenu-
ated (Friston, 2005). Thus, entrainment and pre-
dictive processing accounts of rhythm perception 
make somewhat different predictions about the 
underlying mechanisms of beat perception 
(Bouwer & Honing, 2015; Palmer & Demos, 
2022), be it synchronization of an internal regu-
larity with an external one, or creation of a hier-
archical mental representation of the beat 
regularity. Now that we have considered the pos-
sible mechanisms underlying the perception of a 
beat, in the next section we consider aspects of 
rhythmic stimuli that may induce a perceived 
beat.

 Beat from the Bottom Up: 
Considerations for Stimulus Design

 Inducing a Beat from a Rhythmic 
Sequence
The simplest rhythmic stimulus that may induce 
the perception of a regular beat is an isochronous 
sequence (e.g., a sequence with identical dura-
tions between tones, like a metronome, see Fig. 2, 
example 1A). To probe beat perception, responses 
to sounds in such sequences have been compared 
to responses to sounds in sequences with irregu-
lar, jittered timing (Fig. 2, example 1B), with the 
premise that while an isochronous sequence can 
elicit a perceived beat, a jittered sequence cannot. 
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Fig. 2 Examples of rhythmic sequences used to study 
beat perception. Rhythms consist of sound events repre-
sented here by vertical bars. Dashed vertical lines repre-
sent the perceived beats. Long vertical bars and bars of 
intermediate length (for example 2) represent (frequent) 
standard sounds. The shortest vertical bars represent 
(infrequent) deviant sounds, such as an unexpected 
decrease in loudness, which are used to elicit a specific 
series of ERPs (see ERPs in response to expectancy viola-
tions). The tree structure underneath the example rhythms 
depicts the (theoretical) perceived metrical structure for 
the rhythms that induce a beat (example A). 1) The sim-
plest stimulus to study beat perception is arguably an iso-
chronous sequence (1A), with a rate within the range of 
human preferred tempo. Responses to deviant and stan-
dard events in such a sequence can be compared to 
responses to the same events in jittered sequences (1B, see 
for example (Schwartze et  al., 2011, 2013; Teki et  al., 
2011)). Some studies have also compared responses to 
deviants in odd (black) and even (gray) positions in iso-
chronous sequences (1A), to study subjective accenting 
(Brochard et al., 2003; Potter et al., 2009). 2) A rhythm 
with alternating loud (long white vertical bars) and soft 
(intermediate white vertical bars) sounds is thought to 
induce a regular duple beat when it has isochronous tim-
ing (2A). Beat perception can be probed by comparing 

responses to events on the beat (black) and off the beat 
(gray), either for deviant or standard sounds. Care must be 
taken to compare events that are acoustically identical and 
occur in an acoustically identical context. To control for 
sequential learning, the difference between responses on 
and off the beat in an isochronously timed sequence (2A) 
can be compared to the same contrast in a sequence with 
jittered timing and the same statistical structure (2B), 
which is thought to induce sequential learning, but not a 
beat (Bouwer et  al., 2016; Háden et  al., 2024; Honing 
et al., 2018). Note that here, it is also possible to (subjec-
tively) perceive strong and weak beats (e.g., perceive yet 
another level of regularity). For the sake of simplicity, this 
is not depicted in this Fig.  3) When a rhythm has non- 
isochronous timing, a beat can be induced by temporal 
grouping accents. When an (accented) event mostly 
occurs with regular intervals, listeners will infer a regular 
beat (3A). Here, to control for grouping, like in example 
2, responses in a sequence with regular accents and 
integer- ratio durations (3A) can be contrasted with 
responses in a sequence with the same grouping structure, 
but irregular accents and non-integer-ratio durations (3B), 
which is thought not to induce a perceived beat (Bouwer 
et al., 2020; Grahn & Brett, 2007). As for example 2, for 
the sake of simplicity, only one level of regularity (the 
beat) is depicted here

Thus, a difference in responses to events in such 
regular and jittered sequences may be ascribed to 
the presence of a perceived beat in the former but 
not the latter. In addition to the regularity at the 
beat level, we can also perceive metrical structure 

in isochronous sequences, even if all sounds are 
identical (i.e., an equitone sequence). It was 
shown that listeners perceive events in odd posi-
tions (Fig. 2, example 1A, black shades) as more 
salient than events in even positions (Fig.  2, 
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example 1A, gray shades), in line with odd posi-
tions representing metrically accented and even 
positions representing metrically unaccented 
events (Brochard et al., 2003; Potter et al., 2009). 
This phenomenon is termed subjective accenting 
and is reminiscent of perceiving “tick-tock” 
when listening to a clock instead of “tick-tick” 
(e.g., we hear a stronger and weaker “tick” and 
“tock” even if all “ticks” are in fact physically 
identical). Note that subjective accenting may 
depend on the rate of the sequence, with listeners 
shifting the number of notes perceived as one 
group (or one beat) depending on the tempo. 
Interestingly, while humans prefer a beat at a rate 
around 600  ms, subjective accenting seems to 
favor rates that are slower, suggesting that it is 
akin to the alternation of strong and weak beats 
(e.g., meter), rather than events on and off the 
beat (Bååth, 2015; Poudrier, 2020). In addition, 
subjective accenting is a highly variable effect 
that does not always occur in all listeners 
(Criscuolo et al., 2023).

While listeners can thus perceive beat and 
meter in isochronous, equitone sequences, in nat-
ural rhythm, the beat usually needs to be inferred 
from a varying rhythmic signal. Moreover, the 
regularity listeners perceive need not even be 
apparent from a rhythmic signal, as in fact, 
rhythm sometimes does not contain regularity at 
the beat rate at all (Tal et  al., 2017). To infer a 
metrical structure from music with a varying 
rhythmic structure, we often make use of accents. 
In a sequence of events, an accent is a more 
salient event because it differs from other, non- 
accented events along some auditory dimension 
(Ellis & Jones, 2009). When accents exhibit regu-
larity in time, we can induce a regular beat from 
them. Accented tones are then usually perceived 
as on the beat or, on a higher level, as coinciding 
with a strong rather than a weak beat (Lerdahl & 
Jackendoff, 1983). Loudness accents may be 
used to allow listeners to infer a beat from a 
rhythm (Bouwer et al., 2018), and pitch accents 
also have been shown to play a role in perceiving 
the beat (Ellis & Jones, 2009; Hannon et  al., 
2004). Indeed, spectral information may even be 
more informative for the brain to entrain to than 
the sound envelope of a rhythm (e.g., changes in 

loudness or onsets) (Weineck et al., 2022). It is 
very likely that in natural music, many sound fea-
tures can contribute to an accent structure and our 
perception of the beat, including not only loud-
ness and pitch but also timbre. In line with this, 
the use of ecologically valid stimuli may enhance 
the perception of a beat (Bolger et  al., 2013; 
Tierney & Kraus, 2013). Example 2A in Fig. 2 
depicts a rhythm which mostly consists of alter-
nating loud (long vertical white bars) and softer 
(intermediate vertical white bars) tones. Such a 
pattern would induce a duple beat through loud-
ness accents, with some events falling on the beat 
(black shades) and some events falling off the 
beat (gray shades).

Accents can also arise from the perceptual 
grouping of rhythmic events in time, even when 
sounds are acoustically identical. When an onset 
is isolated in time relative to other onsets, it 
sounds like an accent. Second, when two onsets 
are grouped together, the second onset sounds 
accented. Finally, for groups of three or more 
onsets, the first and/or last tone of the group will 
be perceived as an accent (Povel & Essens, 1985). 
Such temporal accents may drive the perception 
of a beat in a bottom-up manner. Recordings 
from midbrain neurons in rodents have shown 
increased firing rate for events on the beat com-
pared to events off the beat in rhythms with 
purely temporal accents, consistent with the idea 
that increased responses to tones that are salient 
based on temporal grouping may drive human 
beat perception (Rajendran et  al., 2017, 2020). 
Example 3A in Fig. 2 shows a rhythm in which 
the beat is elicited by temporal accents. Here, a 
beat can be perceived through temporal accents 
that are regularly spaced, with an (accented) 
event always coinciding with perceived beat 
times. Note that to perceive a beat in this type of 
rhythm, not only regular spacing of accents but 
also the presence of intervals with integer-ratio 
durations is of importance (Grahn & Brett, 2007; 
Jacoby & McDermott, 2017). For example, if the 
regularity of the beat is present with a period of 
600 ms (i.e., 100 beats per minute), it is benefi-
cial to the perception of the beat if a rhythm con-
tains temporal intervals of 150, 300, and 450 ms, 
which are all related to the beat interval at integer 
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ratios (in this case ratios of 4/1, 2/1, and 4/3). 
Both for example 2A and example 3A, we would 
expect differential responses to events on and off 
the beat, as events on the beat are more expected 
if a beat is perceived.

In addition to bottom-up influences on a per-
ceived beat from accents and the temporal struc-
ture of a rhythm, listeners can impose different 
metrical structures on rhythmic sequences if 
instructed to do so (Iversen et  al., 2009; 
Nozaradan et al., 2011), and cultural background 
and experience may affect the beat we perceive 
(Gerry et  al., 2010; Hannon & Trehub, 2005; 
Jacoby & McDermott, 2017; Kaplan et al., 2022; 
Yates et al., 2016).

 Dissociating Beat Perception 
from Duration-Based Temporal 
Expectations
Importantly, one challenge in beat perception 
research is to dissociate responses to a regular 
beat from responses to other types of structure in 
the rhythm, such as duration-based temporal 
structure, ordinal structure, low-level acoustic 
differences, and temporal grouping. First, we 
can, in addition to hearing a beat, perceive tem-
poral structure in predictable single durations, 
and predictable rhythmic patterns, be it by learn-
ing the contingency between a cue and a specific 
temporal duration, by learning a sequence of 
absolute intervals (e.g., the time intervals between 
two events), or by learning a rhythmic pattern in 
the form of relative durations (e.g., the ratios 
between consecutive inter-onset intervals) 
(Bouwer et  al., 2020, 2023; Breska & Deouell, 
2017; Morillon et  al., 2016; Nobre & van Ede, 
2018). Neuroimaging work suggests that specific 
networks are dedicated to perceiving absolute 
and relative durations respectively. While a net-
work comprising the cerebellum and the inferior 
olive is involved in absolute duration-based tim-
ing, a different network, including the basal gan-
glia and the SMA, is active for relative or 
beat-based timing (Teki et  al., 2011). It is still 
unclear how the perception of absolute durations, 
relative durations, rhythmic patterns, and metri-
cal structure are related, with some suggesting 
that the underlying mechanism for pattern and 

beat perception is similar (Cannon, 2021; Cannon 
& Patel, 2021) and some suggesting separate 
mechanisms (Bouwer et al., 2020, 2023). Hence, 
when studying beat perception, it is important to 
take into account possible overlap between tem-
poral structure based on a beat, and temporal 
structure based on patterns and absolute dura-
tions (Bouwer et al., 2021). This may be a chal-
lenge for studies relying on isochrony to study 
beat perception (e.g., Fig. 2, example 1), as the 
temporal structure in an isochronous sequence 
can be described both in terms of its regularity, 
and in terms of the repetition of a single interval 
(Bouwer et  al., 2021; Keele et  al., 1989). To 
account for this, the use of more complex stimuli, 
with at least one level of hierarchy (e.g., some 
events on the beat and some events off the beat, 
like in examples 2 and 3) may be instrumental.

 Dissociating Beat Perception 
from Ordinal Structure
When a beat is elicited by accents in otherwise 
isochronous sequences, to induce two levels in a 
metrical hierarchy (Fig. 2, example 2A), one chal-
lenge that arises in probing beat perception is that 
in strongly beat inducing sequences, the accents 
themselves also introduce ordinal structure. For 
instance, in example 2A, a listener may infer that 
a soft sound is always followed by a louder sound 
and that a loud sound is followed by a soft sound 
in most cases (e.g., loud and soft sounds mostly 
alternate). Thus, listeners may learn the ordinal, 
statistical structure of a sequence (Conway & 
Christiansen, 2001), something humans are capa-
ble of at a young age (Saffran et  al., 1999). To 
account for such ordinal structure in probing beat 
perception, one approach is to not just compare 
the difference between responses to sounds in 
metrically strong and weak positions (e.g., on and 
off the beat) in isochronous sequences (Fig.  2, 
example 2A), in which this difference is affected 
by statistical learning and the perceived beat, but 
to contrast this difference with the difference 
between responses to sounds in metrically strong 
and weak positions in jittered sequences (Fig. 2, 
example 2B), in which the difference is only 
affected by statistical learning (Bouwer et  al., 
2016).
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 Dissociating Beat Perception from Low- 
Level Acoustics and Grouping
In natural music, a beat is often induced by creat-
ing accents on the beat (similar to example 2A in 
Fig.  2). Because accented sounds by definition 
need to stand out from non-accented sounds, this 
often means that tones on the beat have a differ-
ent sound than tones that are not on the beat. 
Similarly, the acoustic context (e.g., the tone pre-
ceding the tone of interest) of weak and strong 
metrical positions is not identical. Such acoustic 
differences may lead to differences in low-level 
perceptual features like masking, and may affect 
sensory responses (Bouwer et al., 2014; Honing 
et al., 2014; Winkler et al., 2013). To account for 
this, stimuli must ideally be controlled to be able 
to probe different metrical positions with identi-
cal acoustic properties. To this end, example 2A 
contains occasional events on offbeat positions 
that have a loud sound, making them identical to 
sounds on the beat. This makes it possible to 
probe sounds on and off the beat with identical 
acoustic properties and context (Bouwer et  al., 
2016; Háden et al., 2024; Honing et al., 2018).

Finally, temporal grouping may be instrumen-
tal in inducing a beat in non-isochronous rhythms 
(Fig. 2, example 3A). That is, grouping of events 
may lead to perceived accents, which may then 
be used by a listener to abstract a beat structure 
from a non-isochronous sequence (Povel & 
Essens, 1985). However, it must be considered 
that differences in salience due to perceptual 
grouping may lead to differences in neural 
responses, regardless of the presence of a beat 
(Andreou et al., 2015). To account for this, a sim-
ilar strategy as described above for ordinal struc-
ture may be followed, whereby responses to 
events in a non-isochronous rhythm with regu-
larly spaced accents, which is thought to induce a 
beat (e.g., Fig. 2, example 3A), are compared to 
responses to events in a rhythm without regularly 
spaced accents, but with an identical grouping 
structure (e.g., Fig.  2, example 3B), which is 
thought to not induce a beat (Bouwer et  al., 
2020).

To summarize, in musical rhythm, humans 
often perceive nested, hierarchical levels of regu-
larity known as a metrical structure, with the 

most salient level of regularity representing the 
beat. The perception of beat and meter has been 
explained by entrainment theories and theories of 
predictive processing, which make slightly dif-
ferent predictions for how the perceived metrical 
structure affects the processing of events in a 
rhythm (e.g., entrainment should lead to enhanced 
processing of events in strong metrical positions, 
while predictions should lead to attenuation of 
events that are expected) (Bouwer & Honing, 
2015; Lange, 2013). A metrical structure can be 
inferred from a rhythm through accents in vari-
ous forms. Importantly, in studying beat percep-
tion, the perception of metrical structure needs to 
be dissociated from other types of structure pres-
ent in rhythm, such as duration-based temporal 
structure, ordinal structure, low-level acoustic 
variability, and grouping. Hence, a simple com-
parison of responses on and off the beat is often 
not enough to infer something about beat percep-
tion, as events on and off the beat often differ in 
many more characteristics than just their metrical 
position.

 Measuring Beat Perception 
with Event-Related Potentials 
(ERPs)

Some of the main questions regarding beat per-
ception are concerned with whether beat percep-
tion is innate (or spontaneously developing) and/
or species-specific (Honing, 2018; Honing et al., 
2014). Testing human newborns and nonhuman 
animals to answer these questions requires a 
method that is noninvasive and does not require 
an overt response from the participant. EEG is 
well suited for this task and has the temporal res-
olution to track the perception of a beat over 
time. Several different approaches exist in prob-
ing beat perception with EEG. Analyses of EEG 
responses in the frequency domain may directly 
probe the entrainment of low-frequency neural 
oscillations to an external regularity (Nozaradan, 
2014; Tal et al., 2017), but also need to account 
for possible methodological pitfalls (Novembre 
& Iannetti, 2018; Zoefel et al., 2018). Here, we 
focus on the well-studied approach of analyzing 

F. L. Bouwer et al.



235

event-related potentials (ERPs), and we discuss 
several recent studies that have used ERPs to 
probe beat perception in human adults, new-
borns, and nonhuman primates.

 Auditory ERPs

ERPs are hypothesized to reflect the sensory and 
cognitive processing in the central nervous sys-
tem associated with particular (auditory) events 
(Luck, 2005). ERPs are isolated from the EEG 
signal by averaging the signal in response to 
many trials containing the event of interest. 
Through this averaging procedure, any activity 
that is not time-locked to the event is averaged 
out, leaving the response specific to the event of 
interest: the ERP. While ERPs do not provide a 
direct functional association with the underlying 
neural processes, there are several advantages to 
the technique, such as the ability to record tem-
porally fine-grained and covert responses not 
observable in behavior. Also, several ERP com-
ponents have been well studied and documented, 
not only in human adults but also in newborns 
and nonhuman animals. Some of these compo-
nents, used in testing beat perception, are elicited 
with an oddball paradigm.

 ERPs in Response to Expectancy 
Violations
An auditory oddball paradigm consists of a fre-
quently recurring sequence of stimuli (standards), 
in which infrequently a stimulus is changed 
(deviant) in some feature (e.g., pitch, intensity, 
and timing). The deviant stimulus thus violates 
the expectations that are established by the stan-
dard stimuli. Depending on the task of the subject 
a deviant stimulus elicits a series of ERP compo-
nents reflecting different stages and mechanisms 
of processing. The mismatch negativity (MMN) 
is a negative ERP component elicited between 
100 and 200 ms after the deviant stimulus. MMN 
is thought to reflect automatic deviance detection 
through a memory-template matching process 
(Kujala et al., 2007; Näätänen et al., 2007), and 
can be elicited by expectancy violations in sound 
features such as pitch, duration, or timbre 

(Winkler, 2007; Winkler & Czigler, 2012), 
abstract rules (Paavilainen et al., 2007), or stimu-
lus omissions (Yabe et al., 1997). The N2b is a 
component similar to the MMN in latency, polar-
ity, and function, but it is only elicited when the 
deviant is attended and relevant to the task 
(Schröger & Wolff, 1998). At around 300  ms 
after the deviant stimulus, a positive component 
can occur, known as the P3a, which reflects atten-
tion switching and orientation toward the deviant 
stimulus. For task-relevant deviants, this compo-
nent can overlap with the slightly later P3b, 
reflecting match/mismatch with a working mem-
ory representation (S. H. Patel & Azzam, 2005; 
Polich, 2007). The latency and amplitude of the 
MMN, N2b, P3a, and P3b are sensitive to the 
relative magnitude of the expectancy violation 
(Comerchero & Polich, 1999; Fitzgerald & 
Picton, 1983; Rinne et  al., 2006; Schröger & 
Winkler, 1995) and correspond to discrimination 
performance in behavioral tasks (Novitski et al., 
2004). These properties are exploited when prob-
ing beat perception with ERPs. Moreover, ERP 
responses to expectancy violations, most notably 
the MMN, have been recorded in comatose 
patients (Näätänen et  al., 2007), sleeping new-
borns (Alho et  al., 1992), and anesthetized ani-
mals (Csépe et al., 1987), making ERP research 
an ideal instrument for interspecies comparisons 
and for testing the innateness of beat perception.

 ERPs in Response to Frequent Stimuli
While the abovementioned ERPs are elicited by 
expectancy violations, any sound will elicit a suc-
cession of obligatory responses, regardless of 
whether a sound is frequent or infrequent. Hence, 
in addition to using responses to expectancy vio-
lations to probe beat perception, we can also 
compare responses to frequent sounds (stan-
dards). In the current chapter, we focus on two 
early sensory responses (as studied in humans): 
the P1 and the N1. The auditory P1 (sometimes 
termed P50, as it typically peaks at about 50 ms 
post-stimulus onset) and N1 (sometimes termed 
N100, as it typically peaks around 100 ms post- 
stimulus onset) components are thought to be 
generated in auditory cortices, and are sensitive 
to stimulus features, like loudness and pitch 
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change, and presentation rate (Näätänen & 
Picton, 1987; Picton et al., 1974; Winkler et al., 
2013). In addition, N1 has been shown to be 
affected by both attention and expectations, 
including temporal expectations (Lange, 2013; 
Picton & Hillyard, 1974), making it a potentially 
informative component to study in the context of 
musical rhythm.

 Using ERPs to Probe Beat Perception

The general idea of using ERPs to probe beat per-
ception is that an event on the beat is perceived 
differently from an event occurring not on the 
beat due to the metrical expectations of the lis-
tener, and thus that two physically identical 
events in different metrical positions should yield 
different brain responses. More specifically, ERP 
responses elicited by expectancy violations (e.g., 
MMN, N2b, P3a, P3b) are typically larger for 
more unexpected events. If a beat is perceived, 
we form strong expectations for events to occur 
on the beat (Honing & Bouwer, 2019). Hence, 
ERPs in response to expectancy violations that 
interfere with the perceived beat (e.g., a deviant 
softer sound on the beat, depicted by the short 
vertical bars in black shades in Fig. 2, examples 
2A and 3A) should be larger than ERPs in 
response to violations that do not interfere with a 
perceived beat, either because they are in line 
with the metrical structure (e.g., a deviant softer 
sound in an offbeat position, depicted by the 
short vertical bars in gray shades in Fig. 2, exam-
ples 2A and 3A) or because no beat is perceived 
(e.g., a deviant softer sound in a jittered sequence, 
depicted by the short vertical bars in Fig.  2, 
examples 2B and 3B). In addition, several com-
ponents of the obligatory auditory-evoked poten-
tial (e.g., the P1 and N1 responses) are smaller 
for expected than unexpected sounds, in line with 
predictive processing accounts that predict the 
silencing of the predicted sensory input (Lange, 
2013). Hence, in the presence of a perceived met-
rical structure, events in weak metrical positions 
(e.g., standard sounds off the beat, depicted by 
the long vertical bars in gray shades in Fig.  2, 
examples 2A and 3A) are less expected than 

events in strong metrical positions (e.g., standard 
sounds on the beat, depicted by the long vertical 
bars in black shades in Fig. 2, examples 2A and 
3A) and may therefore elicit stronger responses.

ERP responses to expectancy violations and 
P1 and N1 responses can also be affected by 
attention. The N2b and P3b only occur when a 
stimulus is task-relevant (Polich, 2007; Schröger 
& Wolff, 1998), while the MMN can be modu-
lated by attention (Haroush et al., 2010), and can 
even be completely eliminated when deviations 
in attended and unattended auditory streams vie 
for feature-specific processing resources 
(Sussman, 2007). Since dynamic attending the-
ory predicts enhanced processing in metrically 
strong positions due to a peak in attentional 
energy, we may expect that ERP components in 
response to expectancy violations are affected by 
metrical position due to differences in attention, 
with larger responses to events that coincide with 
peaks in attention (e.g., in strong metrical posi-
tions). At the same time, N1 has been shown to be 
enhanced by attention, hence the response to 
events in strong metrical positions may be larger 
than the response to events in weak metrical posi-
tions (Haegens & Zion Golumbic, 2018).

Note that several mechanisms may thus affect 
ERPs to rhythm in different ways, and sometimes 
even in opposite directions, with larger responses 
to events in strong metrical positions due to atten-
tion effects, and smaller responses due to the 
effects of expectations (Lange, 2013). Also, in 
most cases, an implicit assumption made by stud-
ies using oddball designs is that expectations for 
when a sound will occur are coupled with expec-
tations for the sound itself (“what”). In other 
words, in the studies below, when an expectation 
is violated, it is almost always the expectations 
for a certain sound (“what”) that is violated, and 
not the expectation for sound timing itself. 
Whether expectations for timing can be formed at 
all without any expectation for sound identity is a 
subject for debate, and outside of the scope of 
this chapter (Clarke, 2005; Gibson, 1975; 
Morillon et al., 2016).

Importantly, when using ERPs to probe beat 
perception, the ERPs are not a direct index of the 
processes involved in the perception of a beat. 
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Rather, ERPs are used that have been extensively 
studied over the years and are known to be 
affected by attention and expectations. Since the 
main mechanisms underlying beat perception 
have been associated with the processes of 
attending and expectancy (see Mechanisms of 
beat perception), ERPs can be used to index the 
strength of beat perception by indexing the 
strength of attention and expectations. The ERPs 
themselves thus do not reflect the perceived beat, 
but rather, are modulated by it. We will now turn 
to a discussion of research that has used ERPs to 
probe beat perception in human adults, new-
borns, and nonhuman primates.

 Probing Beat Perception in Human 
Adults with ERP Responses 
to Expectancy Violations

 Comparing Isochronous to Jittered 
Sequences
As described above, the simplest way of probing 
beat perception is by comparing responses to 
infrequent sounds embedded within an isochro-
nous, presumably beat inducing sequence (Fig. 2, 
example 1A) with responses to infrequent sounds 
within a sequence with jittered timing (Fig.  2, 
example 1B). Typically, P3 responses are larger, 
and sometimes earlier, for deviants in isochro-
nous than jittered sequences (Lange, 2009; 
Rimmele et  al., 2011; Schmidt-Kassow et  al., 
2009; Schwartze et al., 2011), in line with stron-
ger expectations being formed about the occur-
rence of events in isochronous sequences. This 
effect is somewhat attenuated in cerebellar 
patients (Kotz et  al., 2014) and children with 
developmental coordination disorder (Chang 
et al., 2021), and has been related to movement, 
both in healthy adults and Parkinson patients 
(Conradi et al., 2016; Lei et al., 2019), confirm-
ing a role for motor networks in the formation of 
temporal expectations. Results for earlier 
responses are somewhat mixed, but larger N2b 
responses to deviants in isochronous than jittered 
sequences have been observed (Kotz et al., 2014; 
Rimmele et  al., 2011). The effect seems to be 
attention-dependent, though numerically, the 

same effect can be seen for the MMN in unat-
tended conditions (Schwartze et al., 2011).

However, of note, because an isochronous 
stimulus is used, it is unclear whether these 
results are due to beat perception, or rather, dif-
ferences in learning single intervals. Interestingly, 
one study in the visual domain found no differen-
tiation between the effects of temporal expecta-
tions on the P3 for isochronous sequences and 
cue-based expectations (Breska & Deouell, 
2017). Also, similar P3 effects can be observed 
for sequences with grouping structure, but not 
temporal regularity (Schmidt-Kassow et  al., 
2009). Thus, the contrast between responses to 
isochronous and jittered sequences likely con-
tains a combination of beat perception and the 
perception of other types of regularity.

 Comparing Responses to Strong 
and Weak Beats
To account for the presence of duration-based 
temporal processing, one option is to add an extra 
hierarchical level to the metrical structure and 
examine differences between metrical positions. 
One example of how deviant detection can show 
the presence of metrical perception comes from 
studies examining subjective rhythmization 
(Brochard et  al., 2003; Potter et  al., 2009). In 
these studies, participants were presented with an 
isochronous series of tones. They were hypothe-
sized to perceive the tones in odd positions as 
stronger than tones in even positions, due to an 
imposed duple metrical structure. Infrequently, a 
softer tone was introduced, either in odd or in 
even positions (Fig. 2, example 1A). These devi-
ants elicited an N2b and a P3b. The P3b to devi-
ants in odd positions had a larger amplitude than 
the P3b to deviants in even positions, showing 
that the deviants were indeed detected better—or 
perceived as more violating—on a strong beat 
than on a weak beat (Brochard et al., 2003; Potter 
et al., 2009). In a related study, physical accents 
in the form of tones with longer durations were 
used to induce a duple or triple meter, and similar 
to the subjective rhythmization studies, the P3 
response to softer target tones was larger in strong 
than weak metrical positions. Here, a similar 
effect was found for the earlier N2b components, 
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albeit only in the duple meter condition (Abecasis 
et al., 2005).

Note that in these studies, the isochronous 
sequence on which a structure was imposed was 
at a rate close to the preferred tempo for humans, 
and as such, the difference between odd and even 
positions can be interpreted more as meter (e.g., 
strong and weak beats) than as beat (e.g., on the 
beat and off the beat). It is unclear whether these 
results are based on listeners imposing the tem-
poral structure of regularity at the level of the 
meter or on listeners imposing a hierarchical 
grouping structure, with groups of two or three 
events. To examine this, one strategy could be to 
contrast the difference between responses to 
strong and weak beats in an isochronous sequence 
(e.g., example 1A in Fig. 2) with the same differ-
ence in a jittered sequence (e.g., example 1B in 
Fig. 2).

Of note, in the studies looking at subjective 
rhythmization, the rhythmic sequences were 
always task-relevant, and the ERP components of 
interest were the attention-dependent P3b and 
N2b. One other study examined meter processing 
under unattended conditions by using drum 
rhythms with occasionally omitted sounds on 
strong and weak beats, and found a latency dif-
ference for the MMN dependent on meter (e.g., 
shorter latency for strong than weak beat viola-
tions (Ladinig et  al., 2009, 2011)). However, 
these findings could not be replicated in a bigger 
sample (Bouwer et  al., 2014), suggesting that 
meter processing may require attention. 
Additionally, meter processing may be affected 
by musical training (Nave-Blodgett et al., 2021).

 Comparing Responses 
on and off the Beat
At the level of the beat, several studies have used 
oddball paradigms to study the difference in 
responses on and off the beat. For drum rhythms 
with infrequent omissions, MMN responses were 
larger for omissions on the beat than off the beat, 
even when the sequences were not attended 
(Bouwer et  al., 2014). Similarly, MMN was 
larger for intensity decrements in odd then even 
positions for isochronous sequences at a rate that 

corresponded to twice the preferred rate of 
humans (e.g., the isochronous sequence was at 
the level of subdivisions of a beat, with odd 
events on the beat and even events off the beat 
(Bouwer & Honing, 2015)). Interestingly, for iso-
chronous sequences without acoustic cues to the 
hierarchical metrical structure, this effect was 
larger for Western listeners than for bicultural lis-
teners who are familiar with sub-Saharan African 
music (Haumann et  al., 2018), indicative of an 
effect of experience. Indeed, another study found 
that deviance responses to omissions on and off 
the beat were related to musical training (Silva & 
Castro, 2019), and differences may also be due to 
innate variability in strategies for temporal pro-
cessing (Snyder et al., 2010).

Note that for the abovementioned studies, 
deviants consisted of softer sounds or omissions. 
Both entrainment and predictive processing 
accounts of beat perception would predict these 
deviants to be more salient in strong metrical 
positions, either since more processing resources 
are focused on those points in time, or because 
listeners form strong expectations for louder 
sounds on the beat (Bouwer & Honing, 2015). 
Results from studies using intensity increments 
as deviants may be more in line with the latter 
explanation, as these consistently found larger 
ERP responses to unexpected increments off the 
beat then on the beat (Abecasis et  al., 2009; 
Bouwer & Honing, 2015; Geiser et al., 2010). In 
these studies, however, no jittered control 
sequences (e.g., examples B in Fig. 2) were used, 
leaving the possibility open that the rhythmic 
stimuli may have induced a temporal grouping 
structure. Of note, behaviorally, listeners show 
the effects of grouping even for non-isochronous 
rhythmic sequences with a timing structure that 
does not induce a beat easily (Bouwer et  al., 
2020).

Importantly, the stimuli used by (Bouwer 
et al., 2014) contained multiple types of struc-
ture in addition to the beat. This study used 
drum rhythms with alternating bass drum, 
snare drum, and hihat sounds. While omissions 
on the beat always followed a hihat sound, 
omissions off the beat followed a bass drum 
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sound—an order of events that was overall 
more likely in the sequences. Hence, the 
observed effects could be due to statistical 
learning (i.e. learning the transitional probabil-
ities between consecutive sounds), rather than 
beat perception (Bouwer et al., 2016). In a fol-
low-up study, this was accounted for by using 
jittered sequences as a control condition (e.g., 
Fig.  2, example 2B). Here, the difference in 
ERP responses (MMN, N2b, and P3a) to inten-
sity decrements on and off the beat was larger 
in the isochronous sequences (Fig. 2, example 
2A) than in the jittered sequences (Fig.  2, 
example 2B), which the authors took as evi-
dence for beat perception. This effect came on 
top of the statistical learning that was evident 
from the difference between responses to devi-
ants on and off the beat in the jittered sequences, 
and the effect was present regardless of atten-
tion to the sequences (Bouwer et  al., 2016). 
The results from this study are depicted in 
Fig. 3A. One open question is whether the dif-
ferences in responses could potentially be due 
to better statistical learning in isochronous 
than jittered sequences, as temporal expecta-
tions have been shown to affect statistical 
learning (Tsogli et al., 2022).

Finally, several studies have found bigger 
ERP responses for deviations from the rhythmic 
surface structure than deviations from the hierar-
chical metrical (and ordinal) structure, both for 
rhythms consistent of drum sounds indicating the 
metrical structure (Vuust et al., 2005, 2009) and 
rhythms with temporal accents (Edalati et  al., 
2021; Geiser et al., 2009). This shows that abso-
lute temporal expectations can greatly influence 
ERP responses to rhythm, and highlights the 
importance of controlling for differences in the 
surface structure of rhythm.

To summarize, a large collection of studies 
has now shown the presence of differences in 
responses to deviant sounds on and off the beat 
for several ERP components, including the 
MMN, N2b, P3a, and P3b, often without atten-
tion directed to a rhythmic stimulus, and with 
musically untrained listeners. However, it 
remains a challenge to design stimuli that can 
readily ascribe this effect to beat perception.

 Probing Beat Perception in Human 
Adults by Looking at the Auditory P1 
and N1 Response

 Comparing Isochronous to Jittered 
Sequences
A large body of research has shown smaller sen-
sory responses to sounds in isochronous than jit-
tered sequences, both for the N1 component 
(Foldal et  al., 2020; Kotz et  al., 2014; Lange, 
2009, 2010; Makov & Zion Golumbic, 2020; 
Schwartze et al., 2013; Schwartze & Kotz, 2015; 
van Atteveldt et al., 2015) and the P1 component 
(Brinkmann et  al., 2021; Rimmele et  al., 2011; 
Schwartze et al., 2013, 2015; Schwartze & Kotz, 
2015). This is in line with the attenuation of 
expected sounds as predicted by predictive pro-
cessing accounts of temporal expectations. This 
effect was shown to be largely independent of 
attention (Makov & Zion Golumbic, 2020; 
Schwartze et al., 2013). While the use of isochro-
nous sequences without hierarchical structure 
prohibits strong conclusions about the involve-
ment of beat-based perception, of note, this effect 
was diminished in patients with basal ganglia 
lesions (Schwartze et  al., 2015), but not in 
patients with cerebellar lesions (Kotz et  al., 
2014). As the basal ganglia, but not the cerebel-
lum, is specifically involved in beat-based per-
ception (Grahn, 2009; Merchant et al., 2015), this 
may suggest that for isochronous sequences, tem-
poral expectations rely at least to some extent on 
beat perception.

 Comparing Responses in Different 
Metrical Positions
While early sensory responses are usually attenu-
ated by the presence of temporal predictability in 
isochronous sequences, interestingly, studies 
comparing early sensory responses on and off the 
beat have found opposite results, with larger 
responses for events on the beat. This was found 
for the N1 response for rhythms with temporal 
accents indicating the beat (Abecasis et al., 2009) 
and melodies with pitch structure indicating the 
beat (Fitzroy & Sanders, 2015), and for the P1 
response for isochronous sequences at a fast rate 
(e.g., with odd tones being on the beat and even 
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Fig. 3 ERP results from studies probing beat perception 
in human adults, newborns, and nonhuman primates. (a) 
Difference waves (e.g., difference between ERPs to devi-
ant and standard sounds) for infrequent intensity decre-
ments presented within isochronous and jittered 
sequences, either on the beat or off the beat (Fig. 2, exam-
ple 2). For human adults, N2b, MMN, and P3 responses 
were larger on the beat (black) than off the beat (gray), 
and this difference was more pronounced in isochronous 
(solid lines) than jittered sequences (dashed lines), sug-
gestive of beat perception (Bouwer et  al., 2016). (b) In 
newborns, similar to adults, the MMR was largest for 
deviants on the beat in isochronous sequences, providing 
evidence for the presence of beat processing (Háden et al., 
2024). Note that the latency and morphology of newborn 

MMR are very different from the MMN found in adults. 
(c) In two nonhuman primates presented with the same 
paradigm (Fig.  2, example 2), the MMR was larger for 
deviants presented within isochronous sequences (solid 
lines) than for deviants presented within jittered sequences 
(dashed lines). However, here, the difference between the 
responses to deviants on and off the beat was not larger in 
the isochronous than jittered condition, suggesting that 
while the animals were capable of perceiving the temporal 
regularity of the isochronous sequences, they did not rep-
resent the full metrical structure including the beat 
(Honing et  al., 2018). Note that like for newborns, the 
morphology of the ERPs and the latency of the MMR are 
different from that commonly found in human adults (see 
also Table 1), and highly variable between individuals

tones off the beat (Bouwer & Honing, 2015)), 
and real music (Tierney & Kraus, 2013). 
Similarly, the N1 response was found to be larger 
for events on a strong beat than for events on a 
weak beat in two studies with isochronous 
sequences on which listeners were instructed to 
impose a duple, triple, or quadruple meter 

(Fitzroy & Sanders, 2021; Schaefer et al., 2010). 
Thus, while the putative beat perception in iso-
chronous sequences leads to attenuated responses 
as compared to in jittered sequences without a 
beat, at the same time, beat perception seems to 
enhance responses on the beat when compared to 
responses off the beat.
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There are several explanations for this dis-
crepancy. First, the effects of attention and pre-
diction on early sensory processing are thought 
to be opposite, with the former leading to 
enhancement and the latter to attenuation (Lange, 
2013). Possibly, the balance in the extent to 
which attentional processes and predictive pro-
cesses related to beat perception are present dif-
fers depending on the type of sequence used. 
Another possibility is that whereas the contrast 
between isochronous and jittered sequences taps 
into processes associated with temporal expecta-
tions, the contrast between different metrical 
positions taps into process associated with hierar-
chical perception and grouping. Evidence for this 
idea comes from two studies that manipulated 
beat perception (e.g., in the temporal domain, the 
temporal regularity of the signal) while control-
ling for the grouping structure of non- isochronous 
rhythms (akin to Fig. 2, sequence 3A and 3B). In 
both these studies, sensory responses were atten-
uated for events on the beat in sequences with 
regularly spaced accents (e.g., with a beat, Fig. 2, 
example 3A) as compared to in sequences with 
irregular accents (e.g., without a beat, Fig.  2, 
example 3B (Bouwer et al., 2020; Schirmer et al., 
2021)), even in the absence of attention (Bouwer 
et al., 2020). In one of these studies, ERPs and 
behavioral responses were measured separately 
for events on the beat and off the beat, both in the 
sequences with and without a beat. Of note, while 
the ERPs yielded no significant difference 
between events on and off the beat, behaviorally, 
there was an advantage for events on the beat, 
even for sequences without a regular beat, indica-
tive of possible grouping effects (Bouwer et al., 
2020).

To summarize, temporal expectations gener-
ally seem to lead to attenuation of the P1 and N1 
component of the auditory-evoked potential, irre-
spective of the task relevance of a rhythmic 
sequence. In contrast, metrical structure may lead 
to enhancement of these components for metri-
cally strong as compared to weak positions. This 
discrepancy may be explained by dissociating 
between temporal expectations, including beat 
perception, and expectations based on grouping 
and hierarchical structure.

In general, both studies examining responses 
to infrequent sounds (e.g., probing expectancy 
violations with oddball paradigms) and studies 
examining early sensory responses to frequent 
sounds have found consistent differences in ERP 
responses dependent on the presence of a regular 
beat. In many studies, these effects were shown 
to be independent of task relevance, and the 
effects were present in participants without spe-
cific musical training. These properties make 
ERPs an interesting candidate to probe beat per-
ception in human newborns and nonhuman pri-
mates (Honing et al., 2014), which we will turn to 
in the next sections.

 Measuring ERPs in Human Newborns

Birth is a special moment for research as it is the 
first time that the infants’ nervous system is eas-
ily accessible to electrophysiological measure-
ments, and a starting point of development with 
unfiltered auditory input (Lecanuet, 1996). 
However, the auditory system develops from the 
second trimester during pregnancy (Moore & 
Linthicum, 2007), and shows signs of discrimi-
nation of sounds even in utero (Huotilainen et al., 
2005). Hence, birth cannot be taken as a sharp 
boundary between innate and learned abilities, 
albeit there is some evidence separating these 
abilities in preterm infants (Mahmoudzadeh 
et al., 2017). Due to the extremely rapid develop-
ment of the auditory system during the first year, 
recordings from newborns are not only noisier 
than recordings from adults but also qualitatively 
different, lacking adult-obligatory components 
such as the P1 and N1 (Eggermont & Ponton, 
2003). MMN-like ERP responses in newborns 
were first measured by Alho et  al. (Alho et  al., 
1992). It is not yet clear whether the infants’ 
responses are identical or only analogous to the 
adult MMN responses (Háden et  al., 2016). 
Based on the ERP correlates of deviant-standard 
discrimination we can assume that auditory 
information that leads to discrimination in adults 
is also processed in the infants’ brains. However, 
further processing steps are unclear. ERPs both 
negative and positive in polarity and within a 
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wide variety of latency ranges from about 80 ms 
up to 500 ms were found in response to oddball 
designs (Virtala et al., 2022). With these caveats 
in mind, in the discussion below we will refer to 
these ERP responses found in newborns and 
young infants as mismatch responses (MMR).

Measuring ERPs in newborns is a technical 
and analytical challenge, not only because of the 
inherent noisiness of the signal but also due to the 
limited recording time usually available, the 
altered state of the infants that are mostly sleep-
ing throughout the recording, and the limited 
number of channels used in newborn recordings. 
Fortunately, the use of high-density (64+) elec-
trode nets became widespread, several prepro-
cessing pipelines aim to address noise in 
recordings (Debnath et al., 2020; Fló et al., 2022; 
Gabard-Durnam et  al., 2018; Kumaravel et  al., 
2022), and templates for more accurate source 
reconstruction have become available (O’Reilly 
et al., 2021). These advances allow for more fine- 
grained analyses of infantile auditory processing 
and better comparison with adult results. Such 
advances can also motivate the replication of 
basic results in the field.

Several abilities that underlie music percep-
tion seem to be functioning already at birth. 
Newborns are able to separate two sound streams 
based on sound frequency (Winkler et al., 2003) 
and detect pattern repetitions which they incor-
porate into their model of the auditory scene 
(Stefanics et  al., 2007). Most important to beat 
perception is the ability to process temporal rela-
tions. The presentation of a stimulus earlier or 
later than expected in an isochronous sequence 
elicits an MMR in 10-month-old infants (Brannon 
et  al., 2004), at least for large time intervals 
(500–1500  ms). Newborns are also sensitive to 
shorter changes (60–100 ms) in stimulus length 
(Čeponiené et al., 2002; Cheour et al., 2002), and 
6-month-old infants detect even shorter gaps 
(4–16 ms) inserted in tones (Trainor et al., 2001, 
2003), showing the remarkable temporal resolu-
tion of the auditory system. Háden et al. showed 
that newborns are sensitive to changes in the pre-
sentation rate of the stimulation, can detect the 
beginning of sound trains, and react to the omis-
sion of expected stimuli (Háden et  al., 2012). 

Furthermore, there are indications that newborns 
can learn hierarchical rules (Moser et al., 2020), 
and can integrate contextual information in their 
predictions about future events over both shorter 
(Háden et  al., 2015) and longer time periods 
(Todd et  al., 2022). Some of the abilities that 
reflect the general organization of temporal pat-
tern processing in the brain may be present even 
before term birth. Preterm newborn infants were 
shown to exhibit an MMR to earlier than expected 
tones in a non-isochronous rhythmic pattern in 
duple meter (Edalati et al., 2022). Thus, the infant 
brain, even preterm, can detect rhythmic pattern 
violations. Dynamic causal modeling (DCM) of 
the MMR revealed extensive top-down and bot-
tom- up connections between the auditory corti-
ces and temporal structures on both sides, and 
right frontal areas (Edalati et al., 2022), similar to 
the network found in adults (Phillips et al., 2015). 
Taken together, these results indicate that investi-
gating phenomena reliant on temporal processing 
(e.g., beat and meter perception) is viable in 
(newborn) infants.

 Using MMR to Probe Beat Perception 
in Human Newborns

Several studies to date have examined beat per-
ception in newborns using MMR as an index of 
temporal expectations. One study examined pro-
cessing of unexpected sounds within natural lan-
guage that was presented either spoken, sung, or 
rhythmically recited to a strong beat at about 
2 Hz, as intended for a nursery rhyme (Suppanen 
et al., 2019). Deviants in the form of changes in 
words, vowels, sound intensity, or pitch were 
introduced on stressed syllables (e.g., on the 
beat). MMR to vowel and word changes was only 
elicited in the rhythmic nursery rhyme condition. 
The enhancement of MMR in a rhythmic context 
is reminiscent of the larger oddball responses to 
deviants in isochronous than jittered sequences 
found in adults (Schwartze et  al., 2011). 
Interestingly, only vowel and word changes elic-
ited an MMR, but not intensity and pitch changes. 
This may have been due to the collation of 
responses for all intensity and pitch changes, 
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including intensity increments as well as decre-
ments, which in adults can lead to opposite results 
(Bouwer & Honing, 2015). However, these 
results may also underline the importance of con-
text, in this case linguistic, on the processing of 
acoustic deviants, and raises the question whether 
processing of linguistic stimuli may be privileged 
even at birth (Thiede et al., 2019).

Two studies have looked at differences in 
MMR on and off the beat in newborns. First, 
Winkler et  al. tested whether newborns can 
extract a regular beat from a varying rhythmic 
stimulus (Winkler et al., 2009), using a paradigm 
previously used in adults to probe meter percep-
tion (Ladinig et al., 2009, 2011). Newborns were 
presented with a drum pattern in duple meter, in 
which sounds on the first beat (e.g., the strongest 
metrical position in the pattern) were occasion-
ally omitted. The response to these omissions 
was compared to the response to omissions off 
the beat, and to the response to omissions in a 
control sequence consisting of patterns in which 
sounds on the first beat were always omitted. The 
ERP responses to the omissions on the beat dif-
fered significantly from responses to patterns 
without omission, omissions off the beat, and 
omissions in the control sequence. The results 
were interpreted as evidence for the presence of 
ability to detect a beat in newborns. However, the 
omission on the beat differed from the omissions 
off the beat in multiple ways, including differ-
ences in acoustic context, and differences in the 
transitional probabilities of the omitted sounds. 
Therefore, the results of this study could have 
been biased by indexing not just beat perception 
but also low-level acoustic differences between 
conditions, and sequential learning (Bouwer 
et al., 2014).

To control for these possible confounds, a sub-
sequent study (Háden et al., 2024) used a para-
digm previously used to probe beat perception in 
human adults (Bouwer et al., 2016) and nonhu-
man primates (Honing et  al., 2018). Newborns 
were presented with a drum rhythm with alternat-
ing accented and unaccented sounds that induce a 
beat (or duple meter) when presented with iso-
chronous timing, but not when presented with 
randomly jittered timing (Fig.  2, example 2). 

Infrequently, softer sounds were introduced as 
deviants, falling either on the beat or off the beat. 
Deviants were always preceded and followed by 
identical sounds, to control for the effects of 
acoustic context on ERPs (see Fig. 2, example 2). 
Results showed a clear difference in MMR ampli-
tude between metrical positions in the isochro-
nous sequence, but not in the equivalent jittered 
sequence (Fig.  3b). However, the current para-
digm could not show effects of statistical learn-
ing (e.g., a difference in responses on and off the 
beat for the jittered sequences), despite previous 
evidence for this ability working in newborns 
(Bosseler et al., 2016), and the presence of this 
effect in adults using the same paradigm (Bouwer 
et al., 2016). Despite the qualitative differences 
between an adult MMN and the newborn MMR, 
these results provide converging evidence that 
beat processing is present in newborns infants, 
even when controlling for acoustic context and 
statistical learning.

 Measuring ERPs in Nonhuman 
Primates

There is quite some discussion on whether beat 
perception is species-specific (Fitch, 2015; 
Ravignani, 2018; Wilson & Cook, 2016). 
Evidence in support of beat perception in a select 
number of species comes from experiments that 
test motor entrainment to a beat through overt 
behavior (A. D. Patel, 2021). However, if the pro-
duction of synchronized movement to sound or 
music is not observed in a species, this is no evi-
dence for the absence of beat perception. It could 
well be that certain animals are simply not able to 
synchronize their movements to a varying 
rhythm, while they can perceive a beat. Also, 
with behavioral methods that rely on overt 
motoric responses, it is difficult to separate 
between the contribution of perception and 
action. Electrophysiological measures, such as 
ERPs, do not require an overt response, and as 
such provide an attractive alternative to probe 
beat perception in animals (Honing et al., 2018).

While most animal studies have used 
implanted electrodes to record electroencephalo-
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grams (EEG) (Javitt et al., 1994; Laughlin et al., 
1999; Pincze et  al., 2001), noninvasive electro-
physiological techniques such as scalp-recorded 
evoked potentials (EP) and event-related poten-
tials (ERP) are considered an attractive alterna-
tive. Next to being a mandatory requirement for 
studying some nonhuman primates such as chim-
panzees (Fukushima et  al., 2010; Hirata et  al., 
2013), these methods allow for a direct compari-
son between human and nonhuman primates. As 
such they have contributed to establishing animal 
models of the human brain and human brain dis-
orders (Gil-da-Costa et al., 2013; Godlove et al., 
2011), a better understanding of the neural mech-
anisms underlying the generation of human 
evoked EP/ERP components (Fishman & 
Steinschneider, 2012), as well as delineating 
cross-species commonalities and differences in 
brain functions, including rhythm perception and 
cognition (Fukushima et al., 2010; Hirata et al., 
2013; Itoh et  al., 2015; Reinhart et  al., 2012; 
Ueno et al., 2008, 2009). The most relevant ERP 
components for comparative primate studies of 
rhythm perception are summarized in Table 1.

Since the discovery of the MMN component, 
researchers have tried to find analogous processes 
in animal models (Shiramatsu & Takahashi, 
2021; Woodman, 2011) and to integrate deviance 
detection and predictive processing into a general 
framework of auditory perception (Näätänen 
et al., 2010). A wide range of electrophysiologi-
cal methods from scalp electrodes to single-cell 
recordings have been used on animal models. 
These methods highlight different phenomena of 

varying spatial and temporal resolution. The most 
vital difference is that scalp and epidural record-
ings may yield components similar to the human 
MMN (i.e. electric responses generated by large 
brain areas), whereas local field potential, multi-
unit activity, and single-cell recordings work on a 
lower spatial scale and reflect stimulus-specific 
adaptation (Nelken & Ulanovsky, 2007). SSA 
has many common properties with MMN; both 
can be observed in similar paradigms, and it is 
still debated whether SSA reflects the cellular 
level activity underlying MMN. However, this 
discussion is beyond the scope of the current 
chapter.

Using epidural recording, MMN-like 
responses (from here on referred to as MMR) 
have been shown in different species including 
rats (Nakamura et al., 2011), cats (Csépe et al., 
1987; Pincze et  al., 2001, 2002) and macaque 
monkeys (Javitt et  al., 1992, 1994). In most of 
these studies, frequency and amplitude violations 
were used. In rats, deviance detection was shown 
for both a temporal feature, sound duration 
(Nakamura et al., 2011), and to an abstract fea-
ture, namely melodic contour (Ruusuvirta et al., 
2007). Recordings from scalp electrodes showed 
MMR in mice (Umbricht et al., 2005), and in a 
single chimpanzee (Ueno et al., 2008). While not 
all attempts at recording MMR from animals 
were successful, it seems that an MMR can be 
reliably elicited in some animal models (Harms 
et  al., 2016; Schall et  al., 2015; Shiramatsu & 
Takahashi, 2021) and thus can be used to study 
auditory processing in nonhuman primates.

Table 1  Homologies between rhesus monkey, chimpanzee, and human cortical auditory-evoked potentials (ERPs). 
Time range in ms; alternative naming in square brackets

Human scalp 
(Picton et al., 
1974)

Ape scalp
(Ueno 
et al., 
2008)

Monkey 
scalp
(Honing 
et al. 2012)

Monkey 
scalp
(Gil-da- 
Costa et al. 
2013)

Monkey 
scalp
(Itoh et al. 
2015)

Monkey 
scalp
(Honing 
et al. 2018)

Monkey 
cranial
(Teichert, 
2016)

Monkey 
epidural
(Javitt 
et al., 
2000)

P1 50–60 – – 25–30 
[mP1]

20–40- 45–65 
[P55]

5–40

N1 75–100 – – 45–65 
[mN1]

40–60 70–105 
[N85]

40–120

MMR 100–200 125–180 60–110 48–120 – 60–125 – –
P3a 200–250 – 100–250 – 125–225 – –
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 Using MMR to Probe Beat Perception 
in Nonhuman Primates

Honing et al. (Honing et al., 2012) demonstrated, 
for the first time, that an MMR can be recorded 
from the scalp in rhesus monkeys (Macaca 
mulatta), both for pitch deviants and unexpected 
omissions. Ueno et al. (Ueno et al., 2008) used a 
similar method in a chimpanzee (Pan troglo-
dytes) and Gil-da-Costa et al. (Gil-da-Costa et al., 
2013) made a comparison between measuring an 
MMR in humans and macaques (Macaca fascic-
ularis). Together these results provide support for 
the idea that a mismatch response can be used as 
an index of the detection of expectancy violations 
in an auditory signal in both humans and nonhu-
man primates. A follow-up study, using stimuli 
and an experimental paradigm identical to those 
used to study beat perception in human adults 
(Bouwer et  al., 2016) and newborns (Háden 
et al., 2024), confirmed that rhesus monkeys are 
sensitive to the isochrony of a rhythmic sequence, 
but not to its induced beat (Honing et al., 2018). 
Results from the two monkeys in this study are 
depicted in Fig.  3c. These findings are in line 
with the hypothesis that beat perception is some-
what species-specific. Note that while rhesus 
monkeys continue to be an important animal 
model for the human brain, and results in mon-
keys and humans are often compared (Gil-da- 
Costa et  al., 2013), we have to be cautious in 
directly comparing ERP signals from humans 
and nonhuman animals because of obvious dif-
ferences in neural architecture.

Behaviorally, contrary to what was previously 
thought (Zarco et al., 2009), macaques do show 
the ability to predictively tap to a metronome, 
and to modify their tapping tempo to tempo 
changes in the entraining stimulus, when pro-
vided with sufficient feedback and reward 
(Gámez et al., 2018). In addition, and consistent 
with these behavioral results, it was shown that 
during isochronous tapping, the medial premotor 
cortex in monkeys indexes time intervals in a 
relative and predictive manner (Betancourt et al., 
2023; Gámez et al., 2019). But note that process-
ing isochrony is not the same as beat perception, 
and may be subserved by a different mechanism 

(Bouwer et al., 2021; Honing et al., 2018). For an 
overview of time encoding in the primate medial 
premotor cortex, see Merchant et  al., this 
volume.

Overall, the observed differences between 
humans and monkeys provide support for the 
gradual audiomotor evolution (GAE) hypothesis 
(Honing et al., 2018; Honing & Merchant, 2014; 
Merchant & Honing, 2014). This hypothesis sug-
gests beat-based timing to be more developed in 
humans as opposed to apes and monkeys, and 
that it evolved through a gradual chain of ana-
tomical and functional changes to the interval- 
based mechanism to generate an additional 
beat-based mechanism. More specifically, the 
integration of sensorimotor information through-
out the mCBGT circuit and other brain areas dur-
ing the perception or execution of single intervals 
is similar in human and nonhuman primates, but 
different in the processing of multiple intervals 
(Merchant & Honing, 2014). While the mCBGT 
circuit was shown to be also involved in beat- 
based mechanisms in brain imaging studies (e.g., 
(Teki et  al., 2011)), direct projections from the 
medial premotor cortex (MPC) to the primary 
auditory cortex (A1) via the inferior parietal lobe 
(IPL) that is involved in sensory and cognitive 
functions such as attention and spatial sense, may 
be the underpinning of beat-based timing as 
found in humans, and possibly apes (Merchant & 
Honing, 2014; Proksch et al., 2020).

Probing beat perception and isochrony per-
ception in animals is still in its infancy (Bouwer 
et al., 2021; Henry et al., 2021; Wilson & Cook, 
2016). But it appears, at least within the primate 
lineage, that beat perception has evolved gradu-
ally, peaking in humans and present only with 
limitations in chimpanzees (Hattori & Tomonaga, 
2020), bonobos (Large & Gray, 2015), macaques 
(Honing et  al., 2018), and other nonhuman pri-
mates (Raimondi et al., 2023).

While beat perception can be argued to be fun-
damental to the capacity for music (i.e. musical-
ity (Honing, 2012)), it continues to be difficult to 
trace back this skill in the animal world. In the 
few species that are studied, it appears to be 
mostly vocal learners that are sensitive to a regu-
lar pulse (the beat) in a varying rhythmic stimu-
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lus such as music. Seminal examples are a 
sulphur-crested cockatoo (A.  D. Patel et  al., 
2009) and a gray parrot (Schachner et al., 2009) 
that are capable of synchronizing to the beat of 
human music and, importantly, maintaining syn-
chrony when the same music is played at a differ-
ent tempo. The observation that this behavior was 
initially only shown in vocal learning species 
gave rise to the vocal learning and rhythmic syn-
chronization (VLRS) hypothesis (A.  D. Patel, 
2006, 2021), suggesting our ability to move in 
time with an auditory beat in a precise, predic-
tive, and tempo-flexible manner originated in the 
neural circuitry for complex vocal learning. This 
hypothesis is an alternative to the GAE hypothe-
sis discussed earlier.

However, the gradual audiomotor evolution 
(GAE) and vocal learning (VLRS) hypotheses 
differ in several ways (see also Proksch et  al., 
2020). First, the GAE hypothesis does not claim 
that the neural circuit that is engaged in rhythmic 
entrainment is deeply linked to vocal perception, 
production, and learning, even if some overlap 
between the circuits exists. Furthermore, since 
the cortico-basal ganglia-thalamic circuit 
(CBGT) has been involved in beat-based mecha-
nisms in imaging studies, we suggest that the 
reverberant flow of audiomotor information that 
loops across the anterior prefrontal CBGT cir-
cuits maybe the underpinning of human rhythmic 
entrainment. Lastly, the GAE hypothesis sug-
gests that the integration of sensorimotor infor-
mation throughout the mCBGT circuit and other 
brain areas during the perception or execution of 
single intervals is similar in human and nonhu-
man primates.

In addition, a recent counterexample to the 
VLRS hypothesis is a California sea lion (Zalophus 
californianus; not considered a vocal learner) that 
is able to synchronize head movements to a variety 
of musical fragments, as well as showing general-
ization over different tempi (Cook et  al., 2013; 
Rouse et al., 2016). Overall, it seems that perceiv-
ing a beat in a complex stimulus (i.e. music) and 
being able to synchronize to it is not restricted to 
humans, might well be more widespread than pre-
viously thought, and not restricted to vocal learners 
per se (Bouwer et al., 2021; ten Cate & Honing, 
2023; Wilson & Cook, 2016).

 Discussion and Conclusion

In this chapter, we have shown how ERPs can be 
used to probe the perception of a regular beat in 
rhythm. Measuring ERPs is relatively straightfor-
ward, it can be realized in populations that are 
difficult to study behaviorally (like infants and 
monkeys), and it is a well-researched method. 
However, several challenges remain, for beat per-
ception research in general, and for ERP studies 
in particular.

First, as we have stressed throughout this 
chapter, musical rhythm contains many types of 
structure, including not only temporal structure, 
both in terms of a regular beat and absolute tem-
poral intervals, but also grouping, ordinal struc-
ture, and hierarchy. The beat can be considered 
the most prominent periodicity in a rhythmic sig-
nal (Fiveash et al., 2022), and beat perception has 
been considered as the ability to flexibly extract a 
regular temporal structure from rhythm (Penhune 
& Zatorre, 2019). Such definitions of the beat 
clearly involve the temporal aspect of rhythm, 
and specifically the temporal periodicity associ-
ated with beat-based perception. For many stud-
ies targeting beat perception with ERPs, it is not 
completely clear whether influences of absolute 
timing, grouping, ordinal structure, and hierar-
chical structure can be ruled out, as these struc-
tural aspects of rhythm often covary with the 
temporal regularity that is the beat, and are often 
even necessary to induce a beat.

Related to this, some have suggested that the 
perception of hierarchical metrical structure is 
different from the perception of a beat or pulse as 
temporal regularity (Fitch, 2013; Silva & Castro, 
2019). The idea that meter processing is indeed 
more about hierarchical structure, or the alterna-
tion of stressed and unstressed events, than about 
temporal regularity is in line with models of 
meter in language, where the meter does not nec-
essarily adhere to a temporal regularity. In lan-
guage, learning the alternation of stressed (e.g., 
salient) and unstressed sounds is vital to process-
ing (Henrich et al., 2014; Henrich & Scharinger, 
2022; Magne et  al., 2016), and the hierarchical 
structure that arises from such nontemporal 
structure is often termed meter. This is, however, 
at odds with models of beat perception that con-
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sider beat and meter to be interrelated, with meter 
perception relying on similar (oscillatory) mech-
anisms as beat perception (e.g., meter in this 
interpretation is just another level of regularity 
within a structure of multiple nested levels of 
regularity) (Drake et al., 2000; Large, 2008). The 
relationship between the different aspects of 
rhythm perception, and specifically the relation-
ship between beat perception and hierarchy per-
ception, remains an important topic for future 
studies.

One disadvantage of using ERPs to study beat 
perception is that with ERPs, what is probed is not 
the mechanism of beat perception itself, but rather 
the effect a perceived beat has on the sensory pro-
cessing of incoming information, be it expected or 
unexpected tones. Combining results from ERP 
studies with results from studies that directly 
probe the underlying mechanisms of beat percep-
tion, for example, by examining low- frequency 
neural oscillations in response to rhythm (Lenc 
et  al., 2021), will provide more insight in this 
regard. Also, the studies discussed in this chapter 
mostly deal with purely perceptual effects of beat 
perception. While some studies have used ERPs 
in studying motor synchronization to a beat 
(Andrea-Penna et al., 2020; Conradi et al., 2016; 
Lei et al., 2019; Mathias et al., 2020; Schwartze & 
Kotz, 2015), given the tight coupling between 
beat perception and movement, this remains an 
interesting topic for future work. Ultimately, com-
bining different methods and paradigms will 
allow us to get a more coherent picture of the per-
ception of beat and meter, and address its apparent 
innateness, and domain and species specificity. 
All in all, this research will contribute to a better 
understanding of the fundamental role that beat 
and meter perception play in music.
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Rhythms in Speech

M. Florencia Assaneo and Joan Orpella

Abstract

Speech can be defined as the human ability to 
communicate through a sequence of vocal 
sounds. Consequently, speech requires an 
emitter (the speaker) capable of generating the 
acoustic signal and a receiver (the listener) 
able to successfully decode the sounds pro-
duced by the emitter (i.e., the acoustic signal). 
Time plays a central role at both ends of this 
interaction. On the one hand, speech produc-
tion requires precise and rapid coordination, 
typically within the order of milliseconds, of 
the upper vocal tract articulators (i.e., tongue, 
jaw, lips, and velum), their composite move-
ments, and the activation of the vocal folds. 
On the other hand, the generated acoustic sig-
nal unfolds in time, carrying information at 
different timescales. This information must be 
parsed and integrated by the receiver for the 
correct transmission of meaning. This chapter 
describes the temporal patterns that character-
ize the speech signal and reviews research that 
explores the neural mechanisms underlying 

the generation of these patterns and the role 
they play in speech comprehension.

Keywords

Syllabic rhythm · Speech production · Speech 
perception · Brain oscillations

Time has long been recognized as a critical 
dimension for speech perception and for auditory 
perception more generally. Time is, in fact, so 
inherent to sound that, without time, sounds 
would not exist. This property of sound sets audi-
tion aside from other sensory domains, such as 
vision or olfaction, in which the relevant objects 
(a picture, a scent) can, in principle, exist in their 
static form. In this chapter, we will dive deep into 
the role played by time and, particularly, tempo-
ral regularity in the speech process  (see 
Fig. 1). First, we will describe the physical prop-
erties of the speech acoustic signal, with a par-
ticular emphasis on its rhythmic structure. Next, 
we will move to the listener’s perspective to show 
that the perceptual system capitalizes on this 
rhythmic structure to decode the speech signal 
successfully. Then, we will explore how the 
speaker generates this rhythm and how it relates 
to the biophysical properties of the speech-motor 
system. To conclude the chapter, we will merge 
listener and speaker dimensions and present 
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Fig. 1 Schematic representation of the speech process 
and its temporal scales. (a) The left silhouette represents a 
female Spanish speaker articulating the sentence “Cierra 
siempre la puerta de casa con llave” (Always lock the 
house door). The central panel shows the acoustic signal 
generated by the speaker. This signal carries information 
at different timescales. Syllables, for example, correspond 
to short segments lasting between 125  ms and 330  ms. 
One or more syllables form words and several words pro-

duce phrases. The silhouette on the right represents a con-
versational partner, who receives and decodes the 
generated acoustic signal extracting from it the informa-
tion sent by the speaker. (b) There are important similari-
ties between the speech process and music; both are 
inherently human and involve acoustic signals that unfold 
in time. The figure shows a comparison between the tem-
poral scales of commonly defined units of speech and 
music

hypotheses about the benefits of having percep-
tion and production systems operate optimally 
through the same rhythmic patterns.

 The Acoustic Signal

Acoustic signals can be decomposed into two 
main components: a carrier signal and a modula-
tory wave. The carrier defines the content at dif-
ferent frequencies which compose the speech 
signal. The modulatory wave represents the 
amplitude of the signal. From the perspective of 
perception, the carrier defines the tone of the 
acoustic signal and the modulatory wave its vol-
ume. When it comes to speech, the acoustic sig-

nal exhibits rich dynamics in both components 
(Elliott & Theunissen, 2009). On the one hand, it 
shows rapid changes in the frequency content of 
the carrier signal, known as the fine structure of 
the speech signal. On the other, it shows continu-
ous variations in its amplitude, defined as the 
speech envelope. The speech envelope can be 
easily identified in plots of the acoustic signal in 
the time domain (e.g., Fig. 2a). To examine the 
fine structure (the carrier), it is necessary to rep-
resent the signal in frequency space (i.e., decom-
pose the signal into frequency bands). Specifically, 
the speech fine structure becomes visible in the 
spectrogram of the acoustic signal (a representa-
tion of the signal that displays the time evolution 
of its frequency content; Fig.  2b). Phonemes, 
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Fig. 2 The acoustic signal. (a) Time domain. Time evolu-
tion of the acoustic signal corresponding to the same sen-
tence presented in Fig. 1, with its envelope superimposed 
as a magenta trace. On top, the corresponding phonetic 
transcription (i.e., symbols identifying the spoken sounds; 
for more detail, see (International Phonetic Association, 
1999)) aligned with the acoustic signal. (b) Frequency 
domain. Spectrogram corresponding to the acoustic signal 
delimited by the dashed lines (“puerta de casa con llave”). 
Below the phonetic transcription corresponding to each 
segment of the spectrogram. As highlighted by the pink 
rectangles, consonants can be defined by a silence fol-

lowed by a burst of noise (like “k”) or by a high-frequency 
narrowband noise (like “s”). Vowels, instead, are charac-
terized by a set of emphasized frequencies, known as for-
mants, highlighted in green for one example case. The 
trajectories followed by the formants when transitioning 
from a consonant to the stable part of the vowel define the 
characteristic signature of the specific consonant-vowel 
combination. (c) Modulation spectrum. Each line shows 
the average of the envelopes’ spectra computed from dif-
ferent audio samples of different speakers of a given lan-
guage. (Upper panel adapted from Varnet et  al. (2017). 
Lower panel adapted from Ding et al. (2017))

defined as the vocal sounds composing a lan-
guage, can be identified by their characteristic 
signatures in the spectrogram (Liberman, 1996). 
For example, emphasized frequency bands, 
known as formants, determine the identity of 
vowels, while formant transitions following noise 
bursts identify consonants (see green lines in 
Fig.  2b) (Stevens, 1999). Given that phonemes 
can be determined by the signal’s fine structure, 
the most common approach to studying the 
acoustic signal of speech has focused on its spec-
trogram, irrespective of the envelope. However, a 
set of studies that examined this dimension of the 
signal (the envelope) revealed its critical role for 
perception. Specifically, these studies showed 
that, if the envelope is preserved, the speech sig-
nal remains intelligible even when the informa-
tion carried by the fine structure is largely 
degraded. That is, the fine structure may be 
replaced by different carrier signals altogether 
(what is known as noise-vocoded speech), but as 

long as the envelope is preserved, comprehension 
is still possible (Faulkner et al., 2000; Shannon 
et al., 1995). This line of research shows that a 
large amount of the information conveyed by the 
speech acoustic signal is embedded in its 
envelope.

The speech acoustic signal is rhythmically 
structured, as can be readily inferred by look-
ing at its waveform and the relatively regular 
sequence of increments and decrements in its 
amplitude (see Fig. 2a). Historically, however, 
the rhythmic structure of speech was first 
examined through the lens of linguists, who 
attempted to measure this rhythmical structure 
in the succession of arbitrary linguistic units 
(mostly syllables) rather than by examining the 
acoustic signal directly (i.e., without commit-
ting to any predetermined units). This line of 
investigation proposed that languages come in 
two rhythmic types: syllable-timed and stress-
timed (Abercrombie, 2022). In syllable-timed 
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languages, the sequence of syllables compos-
ing a speech stream have equal durations. For 
stress- timed languages, it is the time interval 
between stressed syllables (accented/promi-
nent syllables in the speech) that remains 
rhythmically stable. Studies that define lan-
guages using this nomenclature are still com-
mon. Spanish and English, for example, are 
typically categorized as syllable- timed and 
stress-timed, respectively. However, efforts to 
find a nonarbitrary measurement to automati-
cally classify languages as belonging to one or 
the other group have been unsuccessful (Nolan 
& Jeon, 2014) and this categorization of lan-
guages is now considered a mere perceptual 
phenomenon.

A more principled approach to examining the 
rhythmic properties of speech is to study the 
acoustic signal directly, without commitment to 
preconceived linguistic units. In two comprehen-
sive studies (Ding et  al., 2017; Varnet et  al., 
2017), researchers explored the spectrum of the 
speech envelope (i.e., the frequencies that charac-
terize the speech amplitude modulations) across 
different speakers, languages, and conditions 
(e.g., isolated sentences, audiobooks, conversa-
tional speech). To do this, the authors first 
extracted the speech envelope from each audio 
sample (see Fig.  2a). Next, they obtained the 
spectrum of each of the computed envelopes 
through an analytical procedure known as the fast 
Fourier transform. Finally, they averaged these 
modulation spectra across speakers and condi-
tions within the language to arrive at the average 
envelope spectrum for that language. The results 
of both studies using this analysis approach 
reveal striking consistencies across languages, 
with average envelope spectra across languages 
in the range of 2–8 Hz, peaking around 5 Hz (see 
Fig. 2c).

Given that the mean syllable duration across 
languages is roughly 200 ms (about 5 syllables 
per second), these results align with previous lin-
guistic considerations. Moreover, it has been pro-
posed that the breadth of the reported peak 
reflects the variability in syllable duration 
(Greenberg et al., 2003), which may explain why 
linguists failed to measure the syllables’ isoch-

rony. In sum, although the sequence of linguistic 
units (i.e., syllables) that compose speech are not 
perfectly isochronous, there is still a universal 
quasi-rhythmic speech structure where the syl-
labic rate across languages is restricted to a range 
from 2 to 8 syllables per second.

 The Listener

  As mentioned, the speech signal carries critical 
information over short timescales, in the range of 
tens of milliseconds, corresponding to its fine 
structure. Important information is also carried 
by the slow energy modulations characterized by 
the speech envelope (see Fig. 2), which roughly 
correspond to the spoken syllabic rate. Stress and 
tonal contrasts, as well as linguistic (e.g., signal-
ing a statement vs. a question) and affective (e.g., 
signaling sadness) prosody, may be carried at the 
syllable level (Rosen, 1992). But beyond this, it 
seems that the rhythmic nature of these slow 
modulations is critical to the listener for the 
decoding of the fine detail itself, that is, for 
speech intelligibility.

The auditory system appears to be well attuned 
to the slow modulations in the signal, particularly 
in frequencies of the order of 2–8 Hz. Early psy-
chophysical studies highlighted this sensitivity, 
which is not specific to speech (e.g., Houtgast & 
Steeneken, 1985; Viemeister, 1979). In these 
studies, the threshold for the perception of 
amplitude- modulated signals at different fre-
quencies is understood as a measure of the tem-
poral resolution of the system. A consistent 
finding is that the perceptual threshold is lowest 
(i.e., perception is best) at modulation frequen-
cies between 2 and 8 Hz, increasing (worst per-
ception) as we  move away from this range, 
suggesting that the 2–8  Hz frequency range is 
privileged in auditory perception in general. 
Moreover, these slow rhythms bear a close link to 
speech intelligibility. Indeed, intelligibility is 
highest when the rhythmic structure of the signal 
(the envelope’s spectrum) falls within this spe-
cific range of frequencies (2–8 Hz), which is also 
well-aligned with the average modulation rates 
observed across languages (see Fig. 2c).
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A compelling demonstration of the relevance 
of slow rhythms for speech intelligibility comes 
from studies using time-compressed speech (e.g., 
Ahissar et al., 2001; Ghitza & Greenberg, 2009; 
Versfeld & Dreschler, 2002). A common finding 
is that intelligibility is maintained up to speeds of 
about 8 syllables per second and declines rapidly 
after that. Preserving the natural syllabic rhythm 
may thus be critical for speech comprehension. 
In an elegant experiment, Ghitza and Greenberg 
(2009) used naturally spoken sentences with 
unpredictable semantic content (e.g., The vast 
trade dealt the task) to measure the intelligibility 
of time-compressed speech. In the lab, intelligi-
bility is typically measured by presenting partici-
pants with a word or sentence (often manipulated 
in some way, e.g., time-compressed, masked by 
noise) and asking them to type it back. As 
expected, intelligibility was poor (with error rates 
of about 50%) when sentences were compressed 
by a factor of 3 (i.e., at unnaturally fast syllabic 
rates). What was more interesting was that, when 
silent gaps were inserted between the successive 
chunks of compressed speech (corresponding to 
acoustic segments of 40 ms), a manipulation that 
recovered the overall temporal structure of the 
original signal (Fig. 3a), intelligibility was con-
siderably restored. Since the length of the acous-
tic segments was the same in all cases (i.e., there 
was no additional acoustic information in the 
silent gaps condition), this “perceptual restora-
tion” was hypothesized to result from the reestab-
lishing of the natural syllabic rate, affording the 
system the necessary time for decoding the 
acoustic information.

So far, we have seen that the speech signal 
exhibits a remarkable rhythmicity within a range 
of relatively low frequencies, that the auditory 
system seems to be most sensitive to modulations 
within this range, and that this range of frequen-
cies also defines the limits for speech intelligibil-
ity. Can we also find these rhythms in the 
listener’s brain activity? And, given their rele-
vance for intelligibility, how does the perceptual 
system use them?

Given the aforementioned findings, it is rea-
sonable to predict that the auditory cortex will 
show a particular sensitivity to temporal modula-

tion rates within the same restricted range of 
2–8 Hz, that is, within the theta frequency band. 
Several neuroimaging studies have confirmed 
this prediction (e.g., Boemio et  al., 2005; 
Fuglsang et  al., 2022; Giraud et  al., 2007). For 
example, when testing a wide range of frequen-
cies (4–256 Hz), primary and secondary auditory 
cortical regions are selective to amplitude modu-
lations (sinusoidally modulated white noise) at 
frequencies between 4 and 8 Hz (i.e., theta band) 
(Giraud et al., 2000).

It is interesting to note that spontaneous fluc-
tuations in the theta band are also present in audi-
tory cortical regions (e.g., Keitel & Gross, 2016). 
Giraud et al. (2007) observed spontaneous oscil-
latory activity in the theta range during resting 
state (no task) in the auditory cortex using con-
current electroencephalography and functional 
magnetic resonance imaging. Thus, the theta 
rhythm appears to be endogenously generated in 
these regions, in addition to other rhythms such 
as gamma (>30 Hz), with which it may interact 
(see below). This observation places spontaneous 
cortical activity in auditory regions in close align-
ment with the natural rhythms of produced 
speech.

Is the proximity in frequencies between the 
rhythms of speech and spontaneous auditory 
activity a coincidence? Possibly not. Data show 
that, beyond its spontaneous activity and sensitiv-
ity to amplitude modulations in the theta range, 
the auditory cortex closely tracks these amplitude 
modulations in the signal, that is, the speech 
envelope (see Fig. 3b). This tracking, sometimes 
called entrainment, occurs regardless of whether 
the acoustic signal contains intelligible speech 
(Ahissar et  al., 2001; Luo & Poeppel, 2007), 
backward speech (Howard & Poeppel, 2010), a 
foreign language (Peña & Melloni, 2012), or 
white noise (Henry & Obleser, 2012). Because of 
this, auditory entrainment is often understood as 
an automatic coupling of the intrinsic oscillatory 
activity of the auditory system to the acoustic 
input (Doelling et al., 2019).

Given the robustness of this tracking or 
entrainment phenomenon, researchers have 
also asked whether the auditory entrainment to 
the speech envelope has consequences for 
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Fig. 3 A listener’s perspective. (a) Example stimuli used 
in Ghitza and Greenberg (2009). Acoustic signal and 
spectrogram of a natural speech sentence (first two rows) 
and the 40 ms snippets of sound from this sentence with 
80 ms interleaved silences used to recover the sentence’s 
original rhythmic structure (acoustic signal and its corre-
sponding spectrogram, in row 3 and 4, respectively) 
(adapted from Ghitza & Greenberg, 2009). (b) Auditory 
entrainment to speech. The upper panel displays a sche-
matic representation of the auditory cortex activity elic-
ited during the perception of the sentence displayed 
underneath. During speech perception, auditory brain 
regions entrain their activity to the speech envelope. (c) 
Schematic representation of the theory of oscillation- 

based operations in the perception of speech by Giraud 
and Poeppel (2012). A stimulus-driven spike train is 
assumed to represent the speech signal in auditory brain 
regions (top). These regions align their theta oscillatory 
activity to the speech envelope (bottom), which modulates 
gamma power. In turn, modulations in gamma power reg-
ulate the excitability of neurons in charge of forwarding 
the signal to higher-order cortical regions, in terms of 
alternating periods of integration and transmission (spik-
ing). The result of these operations is not only the align-
ment of cortical activity to the more informative parts of 
the speech signal but also the packaging of speech infor-
mation in chunks of a size appropriate for subsequent 
computations. (Adapted from Giraud and Poeppel (2012))

speech intelligibility. Neurophysiological data 
show that the degree of entrainment (specifi-
cally in the theta band) correlates with intelli-
gibility (Doelling et al., 2014; Park et al., 2015; 
Peelle & Davis, 2012). For instance, using 
magnetoencephalography (MEG), Doelling 
and colleagues (2014) showed that attenuating 
the temporal fluctuations in the speech enve-
lope linked to the syllabic rate reduced cortical 
tracking as well as intelligibility. Critically, 
tracking and intelligibility were both recovered 
when the temporal cues at the syllable rate 
were artificially reinstated by introducing 
“clicks” at the time points of the original tem-
poral modulation peaks. Relatedly, auditory 
entrainment to the perceived speech envelope 
of poor readers (Abrams et al., 2009) and chil-
dren with dyslexia (Goswami, 2011) shows 

abnormal patterns, which may explain the 
observed deficits.

An important question is whether cortical 
tracking in the critical frequency band character-
ized by the envelope is functionally relevant for 
intelligibility. In other words, the fact that enve-
lope tracking correlates with intelligibility does 
not necessarily imply that tracking plays a causal 
role in intelligibility. Conclusions regarding cau-
sality can be drawn from studies showing that 
intelligibility is compromised when auditory 
entrainment to the speech envelope is disrupted 
via noninvasive electrical cortical stimulation 
(Wilsch et  al., 2018; Zoefel et  al., 2018). In a 
recent study, Riecke and colleagues (2018) 
showed that the degree of intelligibility of a 
speech signal, from which envelope fluctuations 
had been removed, scales with the degree to 
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which intrinsic oscillations in temporal areas can 
be biased (again, via electrical stimulation) 
toward the times of those original envelope fluc-
tuations. These studies suggest that entrainment 
correlates with intelligibility and is necessary for 
speech to be perceived as intelligible.

There are also reasons to believe that the theta 
rhythm is a hardwired property of the system. 
Adults naturally tend to modify their speech 
when it is directed to infants, enhancing its rhyth-
mic structure by producing more even-timed syl-
lables (Lee et  al., 2014). This spontaneous 
adjustment of speech may actually facilitate lan-
guage acquisition, since infant-directed speech 
increases infants’ attention to the linguistic input 
and enhances their cortical tracking of the speech 
envelope (Kalashnikova et al., 2018).

Why the syllable rhythm and corresponding 
tracking by auditory areas is so important for 
speech perception is not fully understood. Several 
explanations have been advanced. Ghitza (2011) 
proposed a model (called Tempo) in which the 
auditory input is sequentially processed by a 
parsing path followed by a decoding path. While 
the details of this model are beyond the scope of 
this chapter, it suffices to say that tracking of the 
speech input in the theta band is understood as a 
syllabic parsing mechanism. The parsing of the 
speech signal is critical for its subsequent decod-
ing, when segmented chunks of speech are 
mapped onto memory units, determining speech 
comprehension. In the case of syllables, for 
example, syllable-like chunks segmented from 
the continuous speech during the parsing step are 
mapped onto so-called syllable neurons at the 
end of each theta cycle.

A related possibility, suggested by Giraud and 
Poeppel (2012), is that envelope tracking may 
play two fundamentally different but equally cru-
cial roles, depending on the hemisphere. While 
theta tracking by the right auditory cortex may be 
used to integrate the spectral properties of the 
input for speaker identification and prosodic 
analysis (Zatorre et  al., 2002), left-lateralized 
theta tracking may be used for the purpose of 
sampling and discretizing the speech input (see 
Fig. 3c). In particular, speech envelope tracking 
in the theta band by the left auditory cortex may 

be used to modulate gamma activity to discretize 
the speech input arriving in early auditory corti-
cal areas. The speech input can thus be trans-
formed from continuous neuronal spike trains to 
packages of spike trains with alternating periods 
of information integration and subsequent trans-
mission to the next hierarchical level. This mech-
anism would thus not only represent a useful 
means for sampling and parsing the speech input 
by focusing on its most informative parts (e.g., 
syllables onsets or maximum energy points), but 
also for providing outputs of the appropriate size 
for subsequent computational stages (e.g., pho-
nological processing and contact with motor 
representations).

In sum, the auditory system appears to come 
equipped with spontaneous theta oscillations and 
shows a remarkable sensitivity to rhythmic inputs 
in the same frequency range. When faced with 
speech, these spontaneous oscillations align with 
the speech envelope, which shows a consistent 
rhythmicity in theta. This alignment has been 
shown to be functionally relevant for intelligibil-
ity, and several theories suggest that its main pur-
pose is to optimize the parsing of the speech 
input and provide chunks of the appropriate size 
for subsequent decoding of the finer detail. Next, 
we turn to the speaker’s perspective and the bio-
physical properties of the system that gives rise to 
the speech signal.

 The Speaker

As shown in the previous sections, the speech 
acoustic signal exhibits temporal regularities in 
its envelope, which are in turn recovered by the 
perceptual system. Here, we will explore speech 
rhythmicity from the speaker’s perspective by 
describing the anatomical system responsible for 
generating speech and the neural activity under-
pinning the dynamics of such a system.

The human vocal system comprises two main 
components: the vocal folds, which are the sound 
source, and the vocal tract, which acts as a filter 
of that sound (see Fig. 4a). The folds are no more 
than two membranes emplaced in the larynx with 
the ability to vibrate and produce sound when 
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Fig. 4 The speaker. (a) Human vocal organ. Schematic 
representation of the motor gesture corresponding to the 
production of an /a/, on the left, and of a /p/ on the right. 
For /a/, a voiced vowel, the vocal tract (set of cavities 
highlighted in blue in the upper panel) is open and the 
vocal folds are activated (lower panel). For /p/, an 
unvoiced consonant, the vocal tract is constricted at the 
lips (orange arrow) and the folds are open and quiet (lower 
panel). (b) Spectral profile of resting state activity in 
speech production related regions. Spectral power in com-
parison to the whole brain. Different colored lines show 
the set of spectra that best describe the resting state activ-

ity in each brain area. These spectra profiles do not neces-
sarily coexist in time. The legends show the percentage of 
trials (1  second segments) in which each spectrum was 
presented. Left precentral gyrus (red) composes the motor 
cortex; supplementary motor area (blue) has been related 
to speech initiation (Guenther, 2015); left inferior frontal 
pars opercularis (green) and triangularis (yellow) are 
related to speech planning (Castellucci et al., 2022) and 
have been shown to regulate the timing of speech produc-
tion (Long et  al., 2016). (All panels were adapted from 
Keitel and Gross (2016))

forced by the air pressure coming from the lungs. 
The vocal tract is constituted by a set of cavities 
between the glottis and the lips. During the gen-
eration of vowels, the sound produced by the 
folds travels along the tract before reaching the 
outside of the body (Titze, 1994). The passage 
along the tract filters the signal, emphasizing 
some frequencies (i.e., the formants depicted as 
green lines in Fig. 2b) while suppressing others. 
This filtering process results in the signatures that 
characterize the different vowels (Stevens, 1999). 
Conversely, during the production of unvoiced 
consonants such as “s” or “k,” the folds remain 
quiet, and the sound originates as a turbulence in 
the airflow produced by the constriction of the 
tract (see Fig.  4a). The degree of constriction 
(e.g., a complete closure followed by a sudden 
release for stop consonants like “k” or “p” or a 
stable narrowing for fricatives likes “s” or “f”) 
and the point of the tract where the constriction 
takes place result in the acoustic signatures that 
characterize the different unvoiced sounds. 

Crucially, the vocal tract can take many different 
configurations by the movements of the speech 
articulators (i.e., tongue, lips, jaw, and velum), a 
feat that allows humans to produce a wide reper-
toire of speech sounds (i.e., phonemes).

As stated in the first section of this chapter, the 
speech acoustic wave can be decomposed into a 
carrier signal that contains the fine structure and 
a modulatory signal that defines the envelope of 
the sound. From a speaker’s perspective, the pre-
cise coordination of the displacement of the vocal 
tract articulators (i.e., jaw, tongue, lips, and 
velum) assigns a given phoneme its desired 
acoustic features and gives it its particular signa-
ture (e.g., the formant frequencies, the formant 
transition, or the frequency band of a fricative 
noise; Stevens, 1999). On the other hand, the 
amplitude of the sound (envelope) is less depen-
dent on the precise position of the articulators 
and instead evolves proportionally to the airflow 
rate along the tract (Titze, 1994). In other words, 
the speech envelope depends on the degree of 
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overall opening of the vocal tract (i.e., the more 
closed the vocal tract is, the lower the airflow rate 
at its exit resulting in a reduced sound volume). 
This implies that the rhythms of the speech enve-
lope will reflect the temporal patterns of the 
opening and closing cycles of the vocal tract. A 
close temporal correspondence between the 
speech envelope and the area of the mouth open-
ing has been empirically demonstrated, confirm-
ing this theoretical deduction (Chandrasekaran 
et al., 2009).

The fact that the dynamics of the vocal tract 
depict temporal regularities in the frequency 
range privileged by the perceptual system (previ-
ous section) invites the following question: Do 
speakers adopt this specific rhythm to satisfy the 
requirements of the listener? Or does this rhythm 
in production reflect the natural frequency of the 
speech motor system? To answer this question, 
we will review the literature characterizing the 
oscillatory nature of the brain areas in charge of 
generating speech.

The frequency band typically associated with 
motor cortex activity comprises a range between 
~12 and 30 Hz (Kilavik et al., 2013). This band, 
known as the beta frequency band, follows a 
characteristic dynamic pattern; specifically, it is 
enhanced at rest (i.e., during what is known as 
resting state) (Congedo et al., 2010), suppressed 
during motor execution (specifically during 
speech production; Salmelin et  al., 2000), and 
typically shows a postmovement rebound 
(Jurkiewicz et al., 2006; Saarinen et al., 2006). In 
addition to the beta band, oscillatory power in the 
theta band has also been reported in motor region 
activity during resting state. Furthermore, focus-
ing on speech production related areas, Giraud 
and colleagues (2007) showed that a frequency 
band between 3 and 6 Hz is overrepresented in 
the spontaneous activity that originates in motor 
areas associated with mouth (lips and jaw) move-
ments. This result invites the conjecture of a rela-
tionship between this natural frequency and the 
cycles of opening and closing of the vocal tract 
previously described in this section. Despite 
these compelling findings, the landscape of fre-
quencies in the speech motor system, as in other 
brain regions, is likely to be more complex. Of 

particular interest, Keitel and Gross (2016) dem-
onstrated that brain area activity during rest is not 
defined by a single oscillatory regime but is 
instead characterized by complex patterns com-
prising different frequency bands. In particular, 
they showed that power spectra of 1-second-long 
segments of MEG resting state computed on 
atlas-defined brain areas clustered into different 
spectral profiles. This implies that, at rest, the 
activity of each brain region displays a unique 
pattern of oscillatory activity comprising a vari-
ety of frequency bands. These bands do not nec-
essarily coexist in time; instead, it is the amount 
of time that each frequency is activated that char-
acterizes each specific region. Particularly rele-
vant to this section are the spectral profiles of 
regions associated with speech production (see 
Fig. 4b). As shown in the figure, while all regions 
display activity in a set of frequency bands, in all 
cases theta is one of these bands that is signifi-
cantly activated during rest. In short, the brain 
network responsible for speech production is 
broad and depicts a complex landscape of differ-
ent oscillatory regimes during rest. 
Notwithstanding, it is important to stress that 
power in a frequency band aligning with the 
rhythmic patterns of the speech envelope (i.e., 
from 2 to 8  Hz) has been consistently reported 
during resting state activity in regions related to 
speech production.

Another way to explore the oscillatory nature 
of the speech production system is by assessing 
vocal production in preverbal infants. At an early 
stage of development, vocalizations are less cul-
turally shaped, and the white matter pathways 
connecting motor areas with the rest of the brain 
are still underdeveloped (Brauer et  al., 2013). 
This immature structural connectivity ensures 
that motor activity is less influenced by the acti-
vation of other brain regions. These conditions 
are optimal to probe the natural rhythms of the 
speech motor system. An infant’s first vocaliza-
tions, known as marginal babbling, begin at 
3  months and comprise nonspeech sounds like 
squealing or cooing. These vocalizations occur 
occasionally, and each attempt is limited to one 
of these long-voiced sounds (i.e., there is no 
rhythmic structure yet). Marginal babbling pre-
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sumably allows the infant to acquire basic motor 
commands to activate the vocal folds and  produce 
sounds (Vihman, 2014). Later in development, 
once these basic commands are acquired, speech-
like vocalizations take place. Around 6 months, 
marginal babbling evolves to canonical babbling, 
which consists of stereotyped repetitions of a 
subset of syllables. Strikingly, canonical bab-
bling shows regularities across languages, as 
does adult speech: the subset of repeated sylla-
bles is composed of a stop consonant followed by 
a vowel (i.e., a complete occlusion and later 
release of the vocal tract; for example, ma-ma-
 ma-…) and the repetition rate is close to 3  Hz 
(Dolata et al., 2008). These results indicate that, 
already early in development, the speech produc-
tion system prefers rhythmic activity within the 
theta band.

Yet another means to indirectly assess the 
privileged frequencies of the speech production 
system harnesses the fact that motor and auditory 
brain areas are highly interactive. Anatomically, 
the arcuate fasciculus directly and indirectly con-
nects auditory temporal regions with frontal 
motor and premotor regions (Catani et al., 2005). 
Functionally, speech motor areas are activated 
during passive listening to speech (Cogan et al., 
2014; Du et  al., 2014; Wilson et  al., 2004). 
Exploiting this interaction, Assaneo and Poeppel 
(2018) investigated the degree of synchrony 
between motor and auditory areas during the pas-
sive listening of trains of syllables presented at 
different rates (from 2.5 to 6.5 syll/sec). As 
expected, they found an entrainment of speech 
motor areas to the syllable trains. Critically, this 
entrainment was restricted to a range of frequen-
cies around 4.5  Hz. This result thus replicates 
previous observations, pointing to frequencies 
within the theta band as those favored by speech 
production areas.

Now, the question arises as to which kind of 
biophysical model can explain these observations 
implying that speech production areas prefer 
rhythms close to 4.5 Hz. A good candidate is the 
neural oscillator, an object widely described in 
computational neuroscience and shown to be bio-
logically plausible (Wilson & Cowan, 1972). The 

main features that define a neural oscillator are as 
follows: (i) the ability to generate a rhythmic out-
put at a given natural frequency without any 
rhythmic input, (ii) the ability to spontaneously 
synchronize to input signals but only when these 
signals oscillate at a frequency close to the oscil-
lator’s natural frequency, and (iii) the strength of 
the coupling between the oscillator and input sig-
nals determine how close the input frequency 
needs to be for synchronization to occur (Fig. 5a; 
Pikovsky et  al., 2001). For a more detailed 
description of what an oscillator is, or is not, refer 
to (Doelling & Assaneo, 2021). Consistent with 
the observations so far reviewed in this section, 
researchers have proposed that (at least some) 
speech production areas can be modeled as a neu-
ral oscillator with a natural frequency close to 
4.5  Hz, receiving the auditory activity as input 
(Fig.  5b; Poeppel & Assaneo, 2020). Such a 
model explains the enhancement of theta band 
activity in speech production areas during resting 
state (i.e., feature (i) of the neural oscillator); and 
the restricted frequency range of coupling 
between auditory and motor areas (i.e., feature 
(ii) of the neural oscillator) reported by Assaneo 
and Poeppel (2018). In addition, if the coupling 
between auditory and motor cortices is assumed 
to be proportional to the white matter pathway 
connecting them, the model predicts that only 
individuals with a certain degree of structural 
connectivity will manage to synchronize their 
speech production to rhythmic acoustic stimuli. 
In other words, individuals with weak structural 
connectivity between the areas will lie on the 
lower part of the graph in Fig. 5a and, for them, 
synchronization will occur only if the perceived 
rhythm is close to their natural rate. For these 
participants, a small amount of noise (any kind of 
biological system is influenced by deterministic 
laws as well as by randomness; Monod, 1971) 
will also bring them out of the synchronization 
region (shaded area in Fig.  5a). On the other 
hand, individuals with strong structural connec-
tivity between areas will lie on the upper part of 
the graph and display robust synchronization for 
a wide range of frequencies of the external stimu-
lus. In line with this prediction, data show that, 
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Fig. 5 A plausible biophysical model for speech produc-
tion areas. (a) An oscillator’s distinctive behavior. An 
oscillator synchronizes its activity to an external rhythmic 
input for combinations of parameters (input frequency, 
coupling strength) lying on the shaded region. This kind 
of visualization (i.e., parameters’ space depicting areas 
where synchronization does, or does not, take place) is 
known as Arnold Tongue (Strogatz, 2018). Note that for 
very low values of the coupling synchronization, this will 
take place only if the input signal oscillates virtually at the 
natural frequency of the oscillator. (b) A biophysical 
model for the speech production system. Schematic repre-
sentation of the model. Speech production area (right) can 
be modeled as an oscillator with a natural frequency (fNAT) 

around 4.5 Hz, which receives as input the activity gener-
ated in the auditory cortex (left). The strength of the cou-
pling between areas (k) is proportional to the structural 
connectivity between them (e.g., white matter volume). 
According to panel c, this model predicts that subjects 
with high volume in the arcuate fasciculus (i.e., high val-
ues of oscillator-input coupling strength) will show 
motor-to-auditory synchrony for a wide range of per-
ceived syllabic rates. Conversely, a subject with low vol-
ume in this white matter structure will synchronize for a 
more restricted range of syllabic rates. In addition, any 
noise added to the system will bring this last subject out 
from the region of synchrony

when participants are instructed to overtly repeat 
a given syllable while listening to an isochronous 
syllabic stream, only some of them spontane-
ously synchronize their speech production to the 
external rhythm. Crucially, and in line with the 
theoretical assumption, these synchronizers show 
more volume than the nonsynchronizers in the 
left arcuate fasciculus (Assaneo et al., 2019), the 
main white matter pathway connecting auditory 
and motor cortical regions.

Returning to our initial question (i.e., does the 
speaker adopt a theta rhythm to satisfy the require-
ments of the listener or does this rhythm reflect the 
natural frequency of the speech motor system), all 
the evidence summarized in this section suggest 
that the stability of the syllabic rate across lan-
guages is a consequence of the rhythmic activity 
that naturally occurs in brain regions responsible 
for speech production. Remarkably, these speech 
motor rhythms appear to be evolutionarily pre-
served, as suggested by research on nonhuman 
primates. Lip smacking, a stereotyped noisy 

mouth movement subserving social communica-
tion, which has been proposed as a precursor of 
language, shows temporal regularities around 
5  Hz in macaques (Ghazanfar et  al., 2012) and 
4 Hz in chimpanzees (Pereira et al., 2020). In addi-
tion, the vocal folds of marmosets synchronize 
their activity to the vocal tract movements in the 
theta band during the utterance of long- distance 
contact calls (Risueno-Segovia & Hage, 2020).

How do computational models of speech pro-
duction account for all these observations regard-
ing the theta rhythm? It is probably fair to say 
that the theta rhythm is not dealt with explicitly 
in most models. However, a link is traced indi-
rectly by the emphasis placed on the syllable as 
the primary unit of speech motor control that 
most theories make, both in linguistics (e.g., 
Dell, 1986; Levelt, 1989) and in cognitive neuro-
science (e.g., Guenther, 2015; Hickok, 2012). 
Speech motor control refers to the processes 
involved in the planning and production of 
speech in terms of, for example, the goals that 

Rhythms in Speech



268

drive these processes (e.g., hitting syllable-like 
auditory targets), the nature of the motor plans 
and commands recruited to achieve these goals 
(e.g., syllable-like motor chunks), and how all 
these come into play when speaking. For 
instance, a recent theory, termed Hierarchical 
State Feedback Control (Hickok, 2012), explic-
itly poses (at least) two distinct but interacting 
hierarchical levels of speech motor control. At 
the higher level, the motor commands are in 
charge of the cycles of opening and closing of 
the vocal tract that will roughly code for sylla-
bles (as seen earlier in this and previous sec-
tions). At the lower level (i.e., within the higher 
level), the finer motor commands code for the 
articulatory detail (roughly phonemes) that is 
targeted at the end points of each half cycle 
movement (i.e., the most open and closed posi-
tions of the vocal tract movement). Articulatory 
features at close positions of the vocal tract will 
mostly pertain to consonants, while articulatory 
features at open positions will generally pertain 
to vowels (see Fig. 4a). The theory then goes fur-
ther to defend that, although the two hierarchical 
levels necessarily interact, each level likely 
relates to a different type of sensory target (i.e., 
the sensory goal driving the motor command). 
Specifically, the higher level (syllables) involves 
auditory targets coded in auditory areas. The 
lower level (phonemes) involves somatosensory 
targets coded in somatosensory cortical areas. 
The reason for this is that, because of coarticula-
tion (i.e., the influence of one speech gesture 
over its neighbors), individual phoneme seg-
ments often do not have reliable acoustic realiza-
tions and thus cannot be coded in auditory space. 
However, they do have clear somatosensory con-
sequences as end point vocal tract configurations 
(e.g., lip closure for a “p” or back tongue raising 
for a “k”), which would thus define the targets of 
this level of motor control. The hypothesis, 
therefore, is that speech acts are defined by 
higher-level goals, namely hitting syllable-level 
auditory targets. Within these higher-level motor 
commands in charge of each opening-closing 
cycle, there are also subgoals pertaining to the 
end points of each half-cycle, namely somato-
sensory targets related to articulatory features 

that (roughly) define phonemes. This implicitly 
associates the higher-level motor commands pri-
marily with the generation of the speech enve-
lope, while the lower commands would be 
responsible for the fine structure (as defined in 
section “The Acoustic Signal”). Consequently, 
the theta rhythm would be most relevant in the 
process of planning and producing speech in the 
way it relates to its primary units (syllable-like 
acoustic goals and motor commands).

In sum, the dynamics of the vocal tract exhibit 
temporal regularities in the theta frequency range, 
which is also privileged as a natural rhythm of the 
speech motor neural system and is reflected in the 
units for speech motor control. In the next (final) 
section of this chapter, we will explore possible 
reasons for the relevance of theta rhythm from an 
emitter-receiver interaction perspective.

 The Listener-Speaker Interaction

So far, we characterized the three main agents 
composing speech, namely the acoustic signal, 
the listener, and the speaker, and we have shown 
that all exhibit rhythmic features within the same 
frequency range. The envelope of the acoustic 
signal displays a relatively stable temporal pat-
tern across languages, implying that the mean 
syllabic rate is restricted to a range from 2 to 8 
syllables per second (theta band). This quasi- 
rhythmic pattern is recovered by the perceptual 
system, which seems to rely on these temporal 
regularities for comprehension. Moreover, 
beyond speech perception, the auditory system is 
tuned to efficiently process rhythmic sounds 
within the theta band. Finally, from a speaker 
perspective, we showed that the temporal pat-
terns of speech reflect the oscillatory properties 
of the brain areas in charge of generating speech. 
In summary, the speech production and percep-
tion systems appear to operate optimally in the 
same frequency range. In this section, we will 
review the role oscillations play in other cogni-
tive domains and more generally at the brain 
level, while trying to elucidate why both systems 
(i.e., speech perception and production) evolved 
to favor the same rhythms.
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The study of oscillatory regimes on brain 
activity began in the early twentieth century 
(Berger, 1930) and is still an active field of study 
(Giraud, 2020). After many decades of investiga-
tion and debate about the amount of frequency 
bands being enhanced and the functional role 
played by them, some agreement has been 
reached. Today, it is widely accepted that brain 
activity displays temporal regularities compris-
ing a set of frequency bands (Buzsáki, 2006), 
namely gamma (~40 to 80  Hz), beta (~13 to 
35 Hz), alpha (~8 to 12 Hz), theta (~3 to 8 Hz), 
and delta (~0.5 to 3 Hz). The limits of each band 
are not monolithically defined, and variability 
can be found in the literature. However, the hier-
archy is preserved (i.e., with delta as the slowest 
rhythm and gamma the fastest) and the bands are 
always centered around the same values. 
Critically, this pattern of oscillatory activity 
remains stable across species, suggesting that it 
constitutes a fundamental feature of neural sys-
tems (Buzsáki et al., 2013). Although consensus 
has been reached on the oscillatory nature of 
brain activity, the functional role played by oscil-
lations and their interaction is still not completely 
understood (Singer, 2018). In fact, heterogeneous 
sets of cognitive roles have been assigned to the 
different frequency bands (e.g., Davis et  al., 
2012; Lee et  al., 2018; Moran & Hong, 2011; 
Roux & Uhlhaas, 2014; Symons et  al., 2016), 
with scarce efforts to unify the existing lines of 
research. Of specific interest for this last section 
is the “parsing role” assigned to theta. It has been 
suggested that this frequency band serves the 
sensory systems by aligning the input’s temporal 
dynamics with endogenous rhythm of the brain 
for a successful later decoding of the input signal 
by higher-level processing areas (Giraud, 2020; 
Kayser et al., 2012).

Given the existing literature showing that 
oscillatory activity is a characteristic feature of 
the brain and suggesting that it optimally pro-
cesses rhythmic information, how do perceptual 
systems deal with the continuous flow of sensory 
experience? According to the active sensing the-
ory, organisms rely on their motor system to sam-
ple the continuous sensory environment assigning 
to the input signal the required temporal granular-

ity (Schroeder et al., 2010). Rhythmic movements 
within the theta band applied to sampling of the 
surroundings have been shown across sensory 
systems and species, thus supporting this pro-
posal. Here we will mention only some examples 
of these rhythmic sensory-oriented movements. It 
has been shown that, during visual exploration, 
both human and nonhuman primates produce 
rapid and rhythmic eye movements (saccades) 
ranging from 3 to 8 Hz (Hoffman et  al., 2013). 
Most mammals rely on sniffing (a repetitive 
sequence of short inhalation-exhalation cycles) to 
identify odors. Sniffing occurs rhythmically 
across species, with a characteristic sniffing fre-
quency ranging from 2 to 8  Hz (Spencer et  al., 
2021). In order to identify the roughness of a sur-
face, a person may move a finger back and forth 
over it. These tactile movement patterns have 
been shown to be approximately sinusoidal, with 
frequencies around 4  Hz (Morley et  al., 1983). 
Rodents rely on licking (a rhythmic pattern of lin-
gual protrusion-retraction) to make gustatory 
judgments. The licking rhythm also occurs within 
the theta range (Travers et al., 1997). These exam-
ples should suffice to realize that all sensory sys-
tems, except the auditory system, appear to be 
aided by a dynamic peripheral structure able to 
produce rhythmic movements to sample the envi-
ronment. In this regard, it has been proposed that 
the rhythmic structure of speech may be a solu-
tion to the lack of a hardware mechanism for the 
sampling of the auditory environment (i.e., no 
dedicated movements to sample the continuous 
sound environment) (Lakatos et al., 2019; Poeppel 
& Assaneo, 2020). Therefore, during speech per-
ception, no active sensing is necessary given that 
the temporal regularities required by the percep-
tual system for optimal decoding of the sensory 
environment are already present in the signal to be 
sensed (i.e., the acoustic speech signal). This may 
explain why speech perception and production 
systems evolved preferred rates that are aligned in 
frequency. This phenomenon could thus be seen 
as an active sensing case featuring two agents, 
with the motor system parsing the signal on the 
speaker’s side automatically chunking the emitted 
signal to fulfill the requirements of the listener’s 
sensory system.
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This bipartite view of speech production and 
perception, whereby ongoing oscillations in the 
auditory system of the listener track or entrain to 
the rhythms produced by the speaker, is reason-
able in an almost idealistic context of speech 
rhythmicity. However, although speech appears to 
be rhythmic in the theta range on average, a given 
instance of speech (say, a phrase or sentence) is 
usually no better than quasi-rhythmic. How does 
the auditory system deal with this variability? A 
recent hypothesis is that, beyond the automatic 
coupling of auditory regions to the input, the lis-
tener makes use (possibly unconsciously) of pre-
dictive temporal cues in the speech stream (e.g., 
gradual rate fluctuations, syntactic or semantic 
information) to realign ongoing oscillations with 
the speech signal (Rimmele et al., 2018; ten Oever 
& Martin, 2021).

The speech motor system is believed to be the 
main source of this predictive modulation of 
auditory activity. Because of this, temporal pre-
dictions are often understood as a covert form of 
active sensing (i.e., using the motor system to 
sample the sensory environment) (Morillon & 
Schroeder, 2015). This covert form of active 
sensing could potentially exploit the motor sys-
tem’s ability to generate predictions about the 
consequences of impending actions, generally 
used for online motor control and monitoring, to 
implement the predictive realignment of ongoing 
oscillations. In line with this, data show that 
motor and higher-order processing areas predic-
tively modulate speech-entrained, low-frequency 
oscillations in auditory regions (Keitel et  al., 
2018; Morillon & Baillet, 2017), enhancing their 
tracking of the speech signal (Park et al., 2015). 
Whether oscillatory realignment via the speech 
motor system involves strictly temporal informa-
tion or whether it additionally involves predic-
tions about the content of upcoming speech 
events is still an unresolved question. Whichever 
the case, this mechanism affords the perceptual 
auditory system with the necessary robustness 
and flexibility to deal with the complex signal 
that constitutes speech.

As a final remark, we would like to acknowl-
edge that, despite this chapter’s focus on the 

oscillatory properties of speech within the theta 
band, other temporal regularities have been 
investigated in the speech literature. For exam-
ple, slower oscillations within the delta (<3 Hz) 
band are also thought to play a crucial role from 
a perceptual perspective, subserving the parsing 
and processing of longer constituents such as 
phrases (Kösem & van Wassenhove, 2017; 
Meyer, 2018; Rimmele et al., 2021). However, at 
the moment, the presence of these frequencies in 
the acoustic signal has been theoretically sug-
gested but not empirically demonstrated. Another 
example, related to absolute instead of regular 
interval (i.e., rhythmic) timing perception, is 
voice onset time (VOT). In phonetics (Cho & 
Ladefoged, 1999), VOT refers to the time inter-
val between the release of the vocal tract con-
striction for stop consonants and the onset of 
voicing. VOT can be measured from the acoustic 
signal, given that both articulatory events have 
clear signatures on the spectrogram, and has 
been shown to be critical for speech perception 
in allowing the listener to distinguish between 
different consonants. Researchers have relied on 
this parameter to characterize language acquisi-
tion as well as some speech motor disorders 
(Englund, 2005; Pascal Auzou et  al., 2000; 
Zlatin & Koenigsknecht, 1976). Time-related 
phenomena, such as the delta rhythm and VOT, 
highlight the relevance of temporal regularities 
in the perception and production of speech other 
than the theta rhythm. Still other examples can 
be found in the literature, given that speech is 
ultimately defined by an acoustic signal unfold-
ing in time (Kotz & Schwartze, 2010). The 
choice to focus our attention on theta rhythms 
rests on the facts that they have been consistently 
reported in all three speech dimensions (i.e., the 
acoustic signal, the listener, and the speaker) and 
that their study has allowed researchers to infer 
biophysical properties of the underlying neural 
network. Temporal regularities around 4 Hz are 
present in the acoustic speech signal across lan-
guages, are required by the perceptual system to 
achieve comprehension, and seem to emerge 
from the timescales characteristic of speech 
motor brain regions.

M. F. Assaneo and J. Orpella
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Timing Patterns in the Extended 
Basal Ganglia System

Michael Schwartze and Sonja A. Kotz

Abstract

The human brain is a constructive organ. It 
generates predictions to modulate its function-
ing and continuously adapts to a dynamic 
environment. Increasingly, the temporal 
dimension of motor and non-motor behaviour 
is recognised as a key component of this pre-
dictive bias. Nevertheless, the intricate inter-
play of the neural mechanisms that encode, 
decode and evaluate temporal information to 
give rise to a sense of time and control over 
sensorimotor timing remains largely elusive. 
Among several brain systems, the basal gan-
glia have been consistently linked to interval- 
and beat-based timing operations. Considering 
the tight embedding of the basal ganglia into 
multiple complex neurofunctional networks, it 
is clear that they have to interact with other 
proximate and distal brain systems. While the 
primary target of basal ganglia output is the 
thalamus, many regions connect to the stria-

tum of the basal ganglia, their main input 
relay. This establishes widespread connectiv-
ity, forming the basis for first- and second- 
order interactions with other systems 
implicated in timing such as the cerebellum 
and supplementary motor areas. However, 
next to this structural interconnectivity, addi-
tional functions need to be considered to bet-
ter understand their contribution to temporally 
predictive adaptation. To this end, we develop 
the concept of interval-based patterning, con-
ceived as a temporally explicit hierarchical 
sequencing operation that underlies motor and 
non-motor behaviour as a common interpreta-
tion of basal ganglia function.

Keywords

Temporal processing ·  Interval timing ·  
Patterning ·  Chunking ·  Temporal prediction

All state changes in an individual and in the envi-
ronment generate events that are defined by their 
type (‘what’) and timing (‘when’). To success-
fully interact with an ever-changing environment, 
individuals continuously adapt to these what and 
when dimensions of events (Schwartze & Kotz, 
2013). In this fundamental action, humans not 
only react to but also predict events (Friston, 
2009; Friston et  al., 2006). This essentially 
affords optimised allocation of neural and cogni-
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tive resources and timely action, e.g. in the case 
of an athlete commencing a sprint with the last 
sound of a starting signal, or a musician falling in 
with an orchestra on a specific note. The underly-
ing principle is simple and thus readily transfer-
able between different contexts: knowing when 
something happens affords better cognitive and 
behavioural adaptation to what happens.

The efficiency of this temporally predictive 
adaptation partially depends on the capacity to 
exploit ‘when’, i.e. timing information, to tune 
into the dynamic environment. Models of ‘pre-
dictive coding’ (Friston, 2009; Friston et  al., 
2006) suggest that this capacity involves a funda-
mental division of labour, in which slower neural 
dynamics inform and interact with faster neural 
dynamics to guide adaptation (Friston, 2012; 
Schwartze et al., 2012a). However, unlike ‘what’ 
information, which can be manifold (e.g. touch, 
movement, colour, words, musical tones), ‘when’ 
information is strictly one-dimensional and thus 
solely defined by the interplay of change (event) 
and persistence (interval; Fig. 1). Consequently, 
other timing-related characteristics such as regu-
larity, periodicity, but also grouping, are ulti-
mately temporal ordering principles that specify 
the configuration of change and persistence. 
However, although these components of timing 

are well-defined and quantifiable in physics, it 
has long been recognised that they are much less 
so for perception and neurocognitive functions, 
and thus require a distinct taxonomy of temporal 
experience to capture the mechanisms underlying 
temporally predictive adaptation in humans 
(Jones, 1976; Pöppel, 1978).

Neurocognitive processes add further subjec-
tive components to temporally predictive adapta-
tion. A well-established example is the 
phenomenon of ‘subjective accentuation’, i.e. the 
emergence of a perceptual dissociation of ‘strong’ 
and ‘weak’ events when listening to a train of 
physically identical stimuli such as metronome 
clicks that commonly leads to the ‘tick-tock’ illu-
sion (Brochard et al., 2003; Abecasis et al., 2005; 
Criscuolo et al., 2023). Physical and neurocogni-
tive timing are therefore not necessarily equiva-
lent in how temporal ordering principles are 
realised. However, both, either independent or in 
combination, can lead to perceived temporal reg-
ularity, which, in turn, seems a prerequisite 
for  efficient temporally predictive adaptation. 
Perceived temporal regularity essentially corre-
sponds to the recognition of a ‘pattern of time’, 
which also may or may not constitute a ‘pattern 
in time’ (Handel, 1974). Although the ability to 
produce, perceive and synchronise movement 

Fig. 1 Patterns of time. The interplay of change and per-
sistence (e.g. the clicks of a metronome) generates succes-
sive events that constitute an environmental timing pattern 
(physical timing: red circles). Neural encoding generates 
representations of the temporal locus of events (event tim-
ing) and inter-event relations (interval timing: green 

lines). Additional mechanisms and functions can lead to 
subjective accentuation of some events (accentuation tim-
ing: black circles) and to distinct markings of the begin-
ning and the end of a pattern (boundary timing: green 
squares)
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with patterns of time is increasingly recognised 
as a fundamental of neurocognitive function 
(Merchant et  al., 2015; Penhune & Zatorre, 
2019), the dissociation of physical and neurocog-
nitive timing warrants further differentiation of 
their basic constituents.

Perceived temporal regularity and grouping 
imply at least two intervals (and correspondingly 
three events). As indicated, additional mecha-
nisms and functional components can lead to 
subjective accentuation over the course of a lon-
ger sequence but also mark boundaries, i.e. the 
beginning and the end of a pattern such as that 
established by an action sequence (Fujii & 
Graybiel, 2003; Graybiel, 2008). The resultant 
accentuation timing and boundary timing (Fig. 1) 
are essentially chunking phenomena that may 
relate to specific cognitive constructs and con-
straints, e.g. the dynamic allocation of attention 
and working memory capacities (Jones, 1976; 
Large & Jones, 1999; Schwartze et  al., 2020). 
However, these examples illustrate why next to a 
taxonomy of temporal experience (Pöppel, 1978), 
additional mechanistic and functional compo-
nents have to be considered to obtain a better 
understanding of temporally predictive adapta-
tion as a form of interaction of the organism with 
a pattern structure (Jones, 1976).

Eventually, these additional subjective com-
ponents are anchored in the brain and different, 
partly interdependent, neural mechanisms have 
been associated with the precise encoding of 
when an event occurs and the encoding of the 
respective inter-event relations or intervals that 
form the basic constituents of any pattern of time 
(Ivry & Schlerf, 2008; Spencer & Ivry, 2013; 
Buhusi & Meck, 2005; Bares et al., 2019).

Next to multiple other functions, chunking 
and interval timing specifically engage the sub-
cortical basal ganglia system, which, in turn, 
interfaces with other cortical and subcortical sys-
tems. Together, these systems form a large-scale 
network that seems to support interleaved and 
differential aspects of adaptive timing (Buhusi & 
Meck, 2005; Ivry & Schlerf, 2008; Merchant 
et al., 2013; Petter et al., 2016). This interactive 
network architecture may not only explain phe-
nomena such as subjective accentuation in timing 
but also how timing factors into other well- 

established basal ganglia functions, e.g. in relat-
ing an event to a subsequent reward (Schultz, 
2004) or in triggering sequential behaviour 
(Graybiel, 2008).

The basal ganglia system and associated thala-
mocortical circuits link to prefrontal and supple-
mentary motor cortices and the cerebellum. 
However, much less is known about if and how 
this core timing network interfaces with further 
systems and whether such interaction guides 
temporally predictive adaptation. One example 
of a direct functional interaction between several 
systems is the initiation and termination of the 
basal ganglia interval timing mechanism through 
dopaminergic bursts emitted by the ventral teg-
mental area (VTA; Buhusi & Meck, 2005; Petter 
et  al., 2016). However, when considering such 
interactions between systems, critical questions 
arise such as how sensory input triggers these 
bursts in the first place, and how they respond to 
repeating events that delineate the consecutive 
intervals of a pattern. To answer these questions, 
it seems necessary to take a more holistic per-
spective on timing that considers further second- 
order interactions and information flow from the 
earliest stages of sensory processing.

Previous work developed such a holistic per-
spective into an integrative timing framework 
(Schwartze & Kotz, 2013). A central tenet of this 
framework is the adaptive cerebellar filtering of 
sensory input into an event-based stimulus repre-
sentation and its rapid transmission to the thala-
mus as a means to translate physical timing into 
an intermittent neural ‘clock’ signal (Fig. 2).

Following the cerebellar encoding of event 
timing, the clock signal is transmitted to cortical 
targets that include the supplementary motor area 
(SMA), where successive events trigger continu-
ous oscillatory activity at different frequencies. 
The thalamus relays and amplifies the signal by 
employing a bursting firing mode (Sherman, 
2001). As originally suggested by the striatal beat 
frequency model of interval timing, a snapshot of 
the oscillatory activity at the end of an interval is 
integrated by the basal ganglia into a distinct 
code of an inter-event interval (‘timestamp’; 
Matell et al., 2003; Matell & Meck, 2004; Buhusi 
& Meck, 2005) and relayed to the cortex. 
However, one may speculate that the intermittent 
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Fig. 2 A timing network. Dynamic input (here exempli-
fied by a sound signal) is differentially encoded along 
ascending connections that include a direct bottom-up 
route via the cerebellum (CE). The CE performs tempo-
rally precise sparse coding of events (e.g. onsets, offsets, 
abrupt changes in energy) of the input into an intermittent 
(dashed red) ‘clock signal’ transmitted via the thalamus 
(THAL) to frontal cortices (FC). Thalamic signals trigger 
cortical oscillatory activity. A snapshot of the concerted 
cortical oscillatory activity (dashed black) is integrated by 
the basal ganglia (BG) into a relational (interval) repre-
sentation of the time between events. Successive events 
end the current and open the next interval. Interval repre-
sentations are transmitted to frontal cortices (green) for 
timing judgments and pattern recognition. Parallel to the 
intermittent clock signal, the ascending auditory pathway 
transmits a detailed continuous input representation. This 
signal reaches sensory cortices (here temporal cortex, TC) 
to interface with memory representations (blue) that are 
then conveyed to frontal areas to bridge input elements 
(e.g. successive words forming utterances, tones forming 
melodies). The thalamus also receives modulatory input 
from other structures, potentially allowing top-down mod-
ulation of functioning and reactivity (grey) to predictively 
adapt the organism to the environment

cerebellar clock signal and entirely subcortical 
pathways are not only instrumental in triggering 
thalamic bursting but also the dopaminergic 
bursting that opens and ends the integration of 
cortical oscillatory activity by the basal ganglia 
(Petter et al., 2016).

Among the cortical targets of the cerebellar 
clock signal  the medial frontal SMA insofar 
plays a special role as it tightly connects to the 
basal ganglia as well as to prefrontal, premotor 
and primary motor cortices. Already in his origi-
nal definition of the SMA, Wilder Penfield 
(Penfield, 1950) provided evidence that electro-
stimulation of this area just anterior of the senso-
rimotor cortex produces varied motor responses 
that include vocalisations. Most of the responses 

could be categorised as either slow and sustained 
(i.e. persistent) or rhythmic (i.e. patterned). SMA 
activity in monkeys has been shown to indicate 
total elapsed time as well as rhythm intervals 
(Cadena-Valencia et al., 2018). The SMA is fur-
thermore one of the only brain systems that is 
consistently recruited in perceptual and motor 
timing tasks (Wiener et al., 2010). However, this 
general SMA engagement across different con-
texts and pattern levels also illustrates that in 
addition to a holistic perspective, further struc-
tural and functional differentiation of the systems 
that make up the timing network is critical to bet-
ter understand temporally predictive adaptation.

The general importance of the SMA for tim-
ing is supported by its anatomical differentiation 
into the more anterior pre-SMA and the more 
posterior SMA-proper (Picard & Strick, 2001). 
Connectivity between the SMA and the striatum 
of the basal ganglia maintains this anterior- 
posterior organisation, while distinct cortical 
connections link the pre-SMA to prefrontal corti-
ces and the SMA-proper to premotor and primary 
motor cortices (Picard & Strick, 2001; Lehéricy 
et al., 2004; Akkal et al., 2007; Kotz et al., 2013). 
This organisation is likely part and parcel of 
functional separations, with single and longer 
interval timing hosted by the pre-SMA and mul-
tiple interval timing by the SMA-proper 
(Schwartze et  al., 2012b; Cona et  al., 2021). 
Alternatively, it may reflect a shifting functional 
gradient that indicates the initial recruitment of 
single-interval pre-SMA timing in a cyclic man-
ner, and an associated activation of the SMA- 
proper with an evolving pattern of time. In both 
cases, it seems likely that information flow 
through this anterior-posterior system would be 
modulated by factors such as interval duration or 
tasks demands (Coull et al., 2004; Macar et al., 
2006), reflecting the distinct prefrontal and pre-
motor connectivity patterns of pre-SMA and 
SMA-proper in interaction with cognitive pro-
cesses such as attentional resource allocation, 
working memory, or movement control.

These interactive dynamics and functional 
gradients furthermore allow considering whether 
the same or at least similar concepts and mecha-
nisms that have been identified in one field of 
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research can be applied to another field of inquiry 
to derive refined and testable hypotheses. This 
rationale can be exemplified by SMA to basal 
ganglia connectivity and by linking basal ganglia 
functions that are expressed on a timescale that 
spans days or even years to the milliseconds-to- 
seconds range that is typically relevant for senso-
rimotor timing research. Accordingly, the 
previously documented role of the SMA in estab-
lishing a temporal link between action and effect 
(Moore et  al., 2010) may differentially engage 
interval timing in a context-dependent manner 
that reflects interval duration or single interval as 
opposed to multiple interval patterns and corre-
sponding recruitment of anterior-posterior SMA 
to basal ganglia connections. Similarly, the for-
mation and expression of ‘habits’, both associ-
ated with the basal ganglia system (Graybiel, 
2008; Smith & Graybiel, 2016), may engage 
interval timing in a cyclic manner (Fig.  3). 
According to Graybiel (2008), habits are largely 
defined by five central characteristics: they are 
learned, occur repeatedly, are performed almost 
automatically, manifest as a triggered action or 
thought sequence and can be completed without 
constant oversight. Structural and functional dif-

ferentiation of the SMA and connections to the 
basal ganglia as identified for timing may factor 
into these characteristics, forming an explicitly 
temporal component of the general motor and 
cognitive patterning and chunking mechanisms 
that have been ascribed to the basal ganglia sys-
tem (Graybiel, 1997, 1998).

Next to refined conceptions in several 
domains, this integrative perspective may also 
help to better explain a range of pathological phe-
nomena. For example, insufficient differentiation 
along the structural and functional gradients of 
the timing network may diffuse production and 
perception of patterns of time, while compensa-
tory strategies may target such insufficient differ-
entiation. This may be the case in stuttering, a 
disorder that affects the temporal pattern of 
speech sequences. However, delayed auditory 
feedback can typically improve speech fluency 
dramatically in people who stutter. This effect 
may indicate a lower degree of automaticity or 
that speakers are prevented from hearing their 
own errors, reducing or prohibiting erroneous 
basal ganglia activity (Alm, 2004; Guenther & 
Hickok, 2016). Alternatively, the higher degree 
of temporal differentiation introduced by the 

Fig. 3 Interval timing and habitual behaviour. The inter-
val timing capacity of the basal ganglia system is initiated 
via a dopaminergic burst with the first event (event1/
beginning) of sequential behaviour. Subsequent events 
close and open successive intervals until the final event 
ends the sequence (event n/end). The temporal regularity 
extracted from a pattern (through representation and 
learning) drives temporally adaptive behaviour in predic-

tion of future events, e.g. by allocating attention to times 
at which events are predicted to occur. In turn, this facili-
tates automisation of sequential behaviour, e.g. by reduc-
ing overall attentional demands for rigid and habitual 
forms of behaviour. Subjective accentuation through 
‘boundary timing’ facilitates the chunking of the sequence 
and specifies an interval that corresponds to the duration 
of the entire sequence
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delay may improve a speaker’s sense of agency 
and the differentiation of perceptual and senso-
rimotor timing as linked to the interplay of the 
SMA and basal ganglia. This could potentially 
explain why not only the iterative build-up of a 
pattern of time during speech production is 
affected but also that people who stutter can show 
subtle sensorimotor and sensory as well as non- 
verbal timing dysfunctions (Etchell et al., 2014; 
Falk et al., 2015; Schwartze et al., 2020).

Dysfunctional timing is also a hallmark of 
Parkinson’s disease. Although Parkinson’s dis-
ease is not a unitary pathology and comprises 
various forms and subtypes, the two most com-
monly associated structural and functional fea-
tures are the well-documented cell loss in the 
substantia nigra pars compacta of the basal gan-
glia system and cardinal motor symptoms 
(Weingarten et al., 2015). However, Parkinson’s 
disease is a progressive disease that affects mul-
tiple brain systems outside the basal ganglia, and 
also leads to non-motor symptoms that can pre-
cede motor symptoms in early non-medicated 
patients (Pont-Sunyer et al., 2015). Dysfunctional 
timing may manifest in disturbances of gait flu-
ency, problems to produce and to maintain a 
steady movement pace, or an impaired ability to 
synchronise with pacing stimuli (Allman & 
Meck, 2012; Dalla Bella et al., 2015). However, 
it is currently largely unclear at which point in 
the progression of the neurodegenerative process 
timing is affected, suggesting that more subtle 
timing dysfunctions manifest before or after 
other typical symptoms. Especially if one con-
siders the expression of a pattern of time as the 
outcome of general operations that define not 
only the order of successive motor but also of 
non- motor events and cognitive behaviour such 
as complex problem solving (Graybiel, 2008), it 
would be meaningful to explore the timing 
aspect of existing diagnostic tools more system-
atically. Dysfunctional timing may already be 
present and indicative of pre-diagnostic disease 
mechanisms due to the engagement of the basal 
ganglia, associated pathways and secondary 
regions in the selection and sequencing of most 
forms of motor and non-motor behaviour 
(Graybiel, 2008).

The notion of aberrant timing as an early 
marker of PD is further supported by neuroimag-
ing studies that show dynamic patterns of SMA 
and cerebellar hyper- and hypo-activity that may 
indicate compensatory mechanisms during early 
disease stages (Kotz & Schwartze, 2011; 
Schwartze & Kotz, 2016). Complementing such 
findings, post-mortem studies of PD patients 
indicate a selective loss of pyramidal neurons in 
the SMA and suggest that this loss may precede 
basal ganglia pathology (McDonald & Halliday, 
2002).

Although certainly selective, these examples 
clearly illustrate that the human capacity for tem-
porally predictive adaptation to the environment 
is a fundamental but complex phenomenon. A 
better understanding of this capacity requires 
combining a taxonomy of temporal experience 
with a holistic neurofunctional perspective that 
explains how the human organism encodes and 
decodes patterns of time. One important open 
question concerns the dimensionality of facilita-
tory compared to pathological manifestations of 
temporal adaptation. Although temporally pre-
dictive adaptation necessarily involves an aspect 
of temporal regularity, overreliance on regularity 
might mark inflexible, habitual behaviour.

The main argument put forward here is that 
decomposition of basal ganglia function and their 
interaction with other brain systems in timing can 
be used to derive refined explanations and test-
able assumptions across different contexts. This 
approach has not least a number of methodologi-
cal implications, as the parameters that define 
temporal experience and subjective components 
of temporally predictive adaptation impose sev-
eral constraints for the design of respective 
empirical investigations, e.g. in terms of interval 
durations, stimulus rates, grouping, regularity, or 
jitter that specify the interplay of change and 
persistence.
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