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Abstract In this research program proposal, we aim to investigate why experts 
override AI suggestions and identify design principles for more effective human-AI 
teams. Specifically, we propose testing whether increasing the perceived locus of 
control of human decision-makers over AI functions will lead to fewer overrides and 
improved performance. We present a mixed-factorial, multi-trial experimental design 
in which participants receive AI recommendations regarding demand forecasting 
decisions in a business simulation. Prior to each trial, one group specifies how they 
want the AI to function (experimental), and the other group does not (control). We 
use electroencephalography and oculometry to capture attention to recommendations 
and user interface elements. Behavioral data from a preliminary pilot study with 
four participants align with our hypotheses. We observed that participants in the 
experimental condition applied smaller adjustments to AI suggestions and had higher 
decision performance than the control group. The experiment’s results will contribute 
to our understanding of AI aversion and inform the design of human-AI interactions 
to improve performance.
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1 Introduction 

Data-driven intelligent systems empowered by artificial intelligence (AI)1 methods 
are increasingly being implemented in various fields [1–4]. However, the implemen-
tation potential of AI in complex decision-making tasks is far from full automation, 
primarily due to challenges in applying algorithmic solutions in critical contexts 
where there are concerns regarding ethical, social, or life-critical aspects of the 
final decision [5–9]. These concerns regarding full automation have given rise to 
semi-autonomous human-AI teams, where labor is divided between humans and 
AI. These systems involve collaboration between human experts and AI systems to 
perform tasks that require both human intuition and judgment abilities for dealing 
with unstructured problems and machine capabilities of big data analytics for dealing 
with structured problems [10, 11]. However, reports of AI implementation in knowl-
edge work have shown that expert decision-makers often override AI suggestions 
and end up with worse decision performance [12–15]. 

Experts’ reluctance to accept AI suggestions, even when AI performs well, can 
be referred to as AI aversion, akin to algorithm aversion [13]. AI aversion has been 
attributed to numerous factors such as lack of transparency, fear of bias, lack of 
accountability, preference for human judgment, and influence of personal experiences 
leading to different user expectations [16]. In essence, AI aversion occurs because 
of a lack of cognitive compatibility between human experts and intelligent systems, 
especially when these systems lack transparency and configurability [16–18]. 

Increasing compatibility between humans and AI systems can be possible through 
two primary methods: increasing human control over the system and improving 
system explanations [16, 19]. Research on AI explainability is vast and has produced 
valuable insights. On the other hand, although there is growing interest in studying 
user control, there is still a need for a better understanding of the impact of varying 
types and degrees of users’ perceived locus of control on the effectiveness and accep-
tance of AI systems [19]. In this study, we define perceived locus of control as 
a person’s perception of their ability to influence the human-AI semi-autonomous 
decision-making process [19, 20]. As part of a new research program investigating 
experts’ AI aversion, we propose research investigating the impact of perceived locus 
of control on users’ AI acceptance. More specifically, the proposed study aims to 
address the following research question:

1 We employ the term “AI” to encompass a broad range of automation and autonomy capabili-
ties, irrespective of the underlying technology, which could include learning agents like machine 
learning, deep learning, or artificial intelligence, as well as more static reasoning systems. 
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RQ1: To what extent does a user’s perceived locus of control improve human-AI 
team performance? 

While reducing AI aversion is critical, there is an equally important and rele-
vant concept on the other end of the spectrum: algorithm overreliance [21]. Some 
experts may rely too heavily on algorithmic suggestions without considering contex-
tual nuances and outliers, defying the purpose of implementing a human-AI team. 
Indeed, researchers express concerns that overreliance on AI can decrease system 
performance and error detection [22]. However, these are yet to be empirically tested: 

RQ2: To what extent does overreliance on AI suggestions impact a user’s ability 
to detect AI errors? 

To address recent calls for research to leverage NeuroIS methods to develop 
more effective human-AI teams [22] and generate prescriptive IS design knowledge 
[23], we started a pilot study involving a mixed factorial, multi-trial experiment 
consisting of a demand forecasting task. We use electroencephalography (EEG) 
and oculometry to measure attention, cognitive processing, and gaze behaviors. We 
manipulate AI configurability across participants for the first research question and 
AI performance across trials for the second research question. We hypothesize that 
subjects permitted to specify AI function parameters will have a higher perceived 
locus of control, override the AI less often, exhibit stronger attentional processing 
and gaze behaviors, and perform the task better compared to the control group, even 
if the AI system provides the same suggestions regardless of user input. The findings 
of this study are expected to provide a better understanding of human-AI interactions 
that can be useful in informing developers on the design of effective and efficient 
human-AI teams. 

In this submission, we report on our study design, briefly discuss preliminary 
results from a pilot study comprised of four participants and conclude with the 
expected contributions of the complete study currently underway. 

2 Methods and Materials 

To address the aims of this research plan, we developed an experimental task in which 
participants are asked to perform a series of demand forecasting tasks. This section 
explains the experimental task, followed by the experimental conditions, procedure, 
and data recording tools. 

Participants 

We will use convenience sampling to recruit 100 participants, primarily from our 
university’s student participant panel. Participants will be screened based on their 
experience with SAP and the courses they have taken to ensure a basic knowledge 
of the experimental task and experience with stimuli. In addition to their task-related
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knowledge, participants will be screened for having a normal vision and not being 
diagnosed with a neuropathological condition. 

Material and Procedure 

Building upon previous studies using the ERPsim business simulation to investigate 
human–computer interactions [24–28], we used this platform to generate a realistic 
demand dataset for the demand forecasting task. The experimental task uses the 
newsvendor problem, a well-established experimental paradigm in which partici-
pants play the role of a demand management agent [29, 30]. They decide how many 
units of a perishable product to order for the next period, knowing there is uncertain 
demand and different costs for having excess demand or losing sales. 

Participants will be presented with a time series chart displaying a fictitious distri-
bution company’s weekly ice cream demand over the last 20 weeks. In each trial, 
they will evaluate the weekly demand data, receive a forecast estimation from the AI, 
and decide whether they want to edit the AI suggestion or continue directly. After 
they submit their decision, the simulation will advance by one week, and they will 
be presented with their performance in terms of lost and saved money. Following the 
performance report, participants continue doing this demand forecasting task in the 
same market, one virtual week per trial. With the addition of AI functionality to the 
newsvendor paradigm, we extend and demonstrate the use of this well-established 
decision-making task in an information systems study. 

To ensure the ecological validity of the task, participants will use an industry-
standard organizational resource planning software, SAP, to complete their exper-
imental tasks. The SAP screen designed for this experiment shows pricing infor-
mation, past demand data, and AI-supported demand forecasting functions. At the 
beginning of a trial, participants will not be provided with any AI suggestions or 
explanations, but the AI suggestion field will be visible without any number. Partic-
ipants will be asked to scan and evaluate all demand information first, then fixate 
on the suggestion area while clicking the “Calculate AI Suggestions” button. One 
second after they click the button, a three or four-digit number will appear as an 
AI suggestion in its designated area, marking the onset of each trial’s stimulus. 
Two seconds later, an explanation of the factors contributing to each suggestion will 
appear, together with buttons to accept or edit suggestions. 

The designed SAP interface will be shown in full screen mode on a 22,, screen 
at 1920 × 1080 resolution at a 60 Hz refresh rate. Participants will mainly use a 
mouse to interact with the system and use the keyboard only when they adjust AI 
suggestions. 

Experiment design. To test the impact of perceived locus of control on user behaviors 
in an AI-supported decision-making scenario, we designed a mixed factorial, multi-
trial experiment with a between-subjects, two-level factor of AI configurability, and 
a within-subjects two-level factor of AI error.
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Participants receive AI suggestions in all between-subjects conditions before 
completing their tasks. To investigate the impact of perceived user control on accep-
tance of AI suggestions and human-AI interactions, we aim to create an increased 
locus of control for participants in one of the between-subjects conditions. In the 
configurable AI (experimental) condition, the system asks for the user’s configura-
tion input at the beginning of each trial. In contrast, the unconfigurable AI (control) 
condition uses an AI system that does not ask for user input. Regardless of user inputs, 
both systems perform identically to isolate the psychological impact of the locus of 
control over performance. Participants in both groups can override AI suggestions. 

The three AI parameters we ask participants to configure are smoothing, trend, and 
seasonality. These parameters are crucial in the Holt-Winters method, a popular time 
series forecasting model used in supply chain management [31]. We hypothesize 
that ability to provide input regarding relevant task parameters will increase their 
locus of control, which then will lead to a greater acceptance and utilization of AI 
suggestions in trials with high AI performance. Moreover, by making participants 
think about these parameters in each trial, we aim to increase their AI error detection 
abilities through increased task engagement and accumulated task knowledge. 

We will conduct manipulation checks using previously validated self-report 
measurement item sets for perceived autonomy in human-AI interactions [19]. More-
over, to control the experiment duration across conditions, participants assigned to 
the control group will see a loading page for a duration that is based on our pretest 
observations. 

In both between-subjects conditions, we follow an oddball paradigm design and 
randomly assign 15 of the 70 trials as oddballs in which the AI misbehaves, i.e., 
provides suggestions having more than three times the standard error of its average 
performance. 

Experimental procedure. The experiment starts with a practice round in which 
participants are asked to complete five trials of demand forecasting tasks without AI 
support. After the practice block, there will be a training block with AI functionality, 
which is then followed by 70 trials of AI-supported demand forecasting tasks. 

Data Recording and Analysis 

Neurophysiological measures of attention to AI recommendations and the inter-
face. EEG signals will be recorded from 32 scalp sites at a sampling rate of 1000 Hz. 
From this recorded data, event-related potentials (ERP) will be derived from the 
visual onset of the AI recommendation (the three to four-digit number at the bottom 
of Fig. 1). In this study, we will focus on the P300 ERP component, which reflects the 
cognitive processing of decision-relevant information and the allocation of attention 
to the stimulus [32].

The recorded EEG data will be filtered using 30 Hz low-pass and 1 Hz high-pass 
filters. The filtered data will then be divided into segments of 1 s per trial, starting 0.1 s
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Fig. 1 Experimental stimuli. The relevant input information for the decision is on the top, whereas 
the AI-supported decision-making interface elements are on the bottom half of the screen. Partic-
ipants are asked to analyze the data before clicking the “Calculate AI-Based Forecasts” button. 
They are also asked to focus on the suggestion field at the bottom. Once they receive suggestions, 
participants can accept or edit the suggested forecasts

before and 0.9 s after the stimulus onset of AI suggestion numbers. Following the 
epoching of the data, artifact rejection will be applied using automatic and manual 
procedures, assuming peak-to-peak amplitude ranges greater than 100 µV to be  
artifacts. 

After filtering, epoching, and artifact rejection, the ERPs will be averaged across 
trials. These averaged ERPs will be used in statistical tests to determine whether our 
manipulation leads to a higher P300 peak amplitude, indicating higher attention to 
AI suggestions and improved ability to detect AI errors. 

Eye-tracking measures. Gaze data will be recorded using a Tobii Pro Nano (Tobii 
Technology AB, Sweden) at a sampling rate of 60 Hz. Research has demonstrated 
that gaze transition entropy (GTE), a measure of the randomness of eye movements 
during visual processing, is related to attentional processing [33, 34]. Using GTE, we 
aim to gain insight into how individuals allocate attention when making forecasting 
decisions and detecting errors, and how this process is impacted by their perceived 
control over the AI system. Additionally, eye-tracking data will complement the ERP 
measurements by verifying participants’ fixation on the stimulus at the onset.
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Behavioral measures. We will also collect behavioral and self-report measures to 
gain a more comprehensive understanding of the phenomenon and triangulate our 
neurophysiological measurements. Behavioral measures include forecasting accu-
racy, response times, AI suggestion acceptance, and the magnitude of adjustments to 
AI suggestions. Self-report measures include the perceived level of control [19, 35, 
36], perceived use and ease of use [37], trust in AI [38, 39], explanation satisfaction 
and understandability [39–41] and confirmation of expectations [40]. 

3 Preliminary Results and Future Outlook 

We have conducted four pilot study sessions and analyzed behavioral and self-
reported data. These results provide promising initial figures. First, our measure-
ment of perceived level of control [19] supports the effectiveness of our manipu-
lation. Second, our pilot study participants with a higher sense of control (i) made 
smaller adjustments to the AI suggestions, and (ii) obtained a higher forecasting 
performance. More specifically, in a time series with a seasonality ranging from 400 
to 1,000 units, participants in the experimental group had an average adjustment of 
128 units, whereas the control group participants had an AI adjustment average of 
149 units across 70 trials. Also, participants in the experimental condition generated 
an average profit of 699 Euros (based on the game scenario), compared to 396 Euros 
by the control (140 observations per condition). Analysis of the ERP data from these 
pilot sessions is currently in progress. 

This study is expected to provide empirical evidence for the relevance and impor-
tance of users’ perceived sense of control over an AI in the success of human-AI 
collaborative system implementation in the context of decision-making. Moreover, 
the insights gained from the results of this study will have practical implications 
for the design of human-AI interactions. We believe that utilizing neurophysiolog-
ical measures will enhance our understanding of the cognitive processes underlying 
human-AI interactions, leading to the design of more effective systems that optimize 
the contributions of both AI and human experts in their collaborative efforts. 
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