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ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérôme Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wąsowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also



organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wąsowski (Copenhagen), Thomas Noll (Aachen), Jan Kofroň (Prague),
Barbara König (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Křetínský (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luís Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hähnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovács (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword



Preface

These proceedings volumes contain papers that were presented at the 33rd European
Symposium on Programming (ESOP 2024), held during April 6–11 in Luxembourg
City, Luxembourg, along with associated artifact reports. ESOP is part of the European
Joint Conferences on Theory and Practice of Software (ETAPS) and promotes the
specification, design, analysis and implementation of programming languages and
systems.

In total, these two volumes include 25 research papers, one “fresh perspective” and
four “artifact reports”. The latter two paper categories are new to ESOP. In addition to
standard research papers, the ESOP 2024 call-for-papers included the new submission
categories: “fresh perspectives” that provide new insights in a particularly elegant way
and “experience reports” that describe tools and systems used in practice. Furthermore,
authors of accepted papers were allowed to submit short “artifact reports”, to appear
together with their research papers, that describe associated software, tools, data sets, or
machine checked proofs to substantiate the claims made in their papers.

The papers in this volume were selected from 66 papers submitted in the research
paper category and 6 papers submitted in the “fresh perspectives” category. There were
no submissions for “experience reports”. While papers in these new categories had
strict formatting requirements, ESOP 2024 allowed research papers to be submitted in
any format, of any length, under the advisement that the final paper should be formatted
to fit this volume. Fourteen submissions took advantage of this flexibility.

Each submitted paper received at least three reviews by the members of the ESOP
program committee. The median PC member was assigned eight papers to review over
the seven week review period. In some cases, PC members solicited additional reviews
to aid in the decision making process. In total, 39 external reviewers added their insight
to the paper selection process. ESOP employed full double-blind review and author
identities were only revealed to reviewers on paper acceptance. Authors were also
given a chance to respond to their reviews, before the program was selected through a
two week online, asynchronous PC meeting, facilitated by the EasyChair system. The
program chair had no conflicts with any submitted paper.

ESOP 2024 also employed an artifact evaluation process. Nineteen of the 26
accepted papers elected to make their artifacts available on the archive sites Zenodo and
figshare. The committee awarded the badge “Functional” to five of these and the
badges “Functional and reusable” to the remaining fourteen. Four accepted papers in
this volume are accompanied by artifact reports. These reports were all accepted fol-
lowing a light review by both the program committee and the ESOP/FASE/FoSSaCS
joint artifact evaluation committee.

Indeed, my sincere thanks go to all who worked together to produce this event and
its proceedings. Foremost, to the authors, who provided the technical content of the
meeting. Also to the program committee, artifact evaluation committee, and external
reviewers, who provided their well-reasoned and detailed judgments, sometimes on



short notice. Tobias Kappé as the representative for ESOP among the artifact evalu-
ation committee co-chairs, deserves particular thanks. I also would like to thank the
ETAPS steering committee and its chair Marieke Huisman, the Proceedings coordi-
nator Barbara König and the local proceedings chair Afonso Delerue Arriaga, and
webmaster Jan Kofroň for their assistance in fitting ESOP together with the entire
ETAPS meeting. Finally, thanks are due to the members of the ESOP steering com-
mittee. In particular, Luis Caires, as chair of the SC, was a constant source of support,
encouragement, information and guidance.

April 2024 Stephanie Weirich
ESOP PC Chair
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Circuit Width Estimation via Effect Typing
and Linear Dependency

and Ugo Dal Lago1,2

Abstract. Circuit description languages are a class of quantum pro-
gramming languages in which programs are classical and produce a de-
scription of a quantum computation, in the form of a quantum circuit.
Since these programs can leverage all the expressive power of high-level
classical languages, circuit description languages have been successfully
used to describe complex and practical quantum algorithms, whose cir-
cuits, however, may involve many more qubits and gate applications
than current quantum architectures can actually muster. In this paper,
we present Proto-Quipper-R, a circuit description language endowed with
a linear dependent type-and-effect system capable of deriving paramet-
ric upper bounds on the width of the circuits produced by a program.
We prove both the standard type safety results and that the resulting
resource analysis is correct with respect to a big-step operational se-
mantics. We also show that our approach is expressive enough to verify
realistic quantum algorithms.

Keywords: Effect Typing · Lambda Calculus · Quantum Computing ·
Quipper

1 Introduction

With the promise of providing efficient algorithmic solutions to many prob-
lems [11,27,31], some of which are traditionally believed to be intractable [54],
quantum computing is the subject of intense investigation by various research
communities within computer science, not least that of programming language
theory [24,43,51]. Various proposals for idioms capable of tapping into this new
computing paradigm have appeared in the literature since the late 1990s. Some
of these approaches turn out to be fundamentally new [1,49,52], while many
others are strongly inspired by classical languages and traditional programming
paradigms [44,48,53,63].

One of the major obstacles to the practical adoption of quantum algorithmic
solutions is the fact that despite huge efforts by scientists and engineers alike, it
seems that reliable quantum hardware, contrary to classical one, does not scale
too easily: although quantum architectures with up to a couple hundred qubits
have recently seen the light [9,10,38], it is not yet clear whether the so-called
quantum advantage [45] is a concrete possibility, given the tremendous challenges
posed by the quantum decoherence problem [50].

Andrea Colledan1,2(B)

1 University of Bologna, Bologna, Italy
2 INRIA Sophia Antipolis, Valbonne, France

c© The Author(s) 2024
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This entails that software which makes use of quantum hardware must be
designed with great care: whenever part of a computation has to be run on quan-
tum hardware, the amount of resources it needs, and in particular the amount
of qubits it uses, should be kept to a minimum. More generally, a fine control
over the low-level aspects of the computation, something that we willingly ab-
stract from when dealing with most forms of classical computation, should be
exposed to the programmer in the quantum case. This, in turn, has led to the
development and adoption of many domain-specific programming languages and
libraries in which the programmer explicitly manipulates qubits and quantum
circuits, while still making use of all the features of a high-level classical pro-
gramming language. This is the case of the Qiskit and Cirq libraries [17], but
also of the Quipper language [25,26].

At the fundamental level, Quipper is a circuit description language embedded
in Haskell. Because of this, Quipper inherits all the expressiveness of the high
level, higher-order functional programming language that is its host, but for the
same reason it also lacks a formal semantics. Nonetheless, over the past few
years, a number of calculi, collectively known as the Proto-Quipper language
family, have been developed to formalize interesting fragments and extensions
of Quipper in a type-safe manner [46,48]. Extensions include, among others,
dynamic lifting [8,21,35] and dependent types [20,22], but resource analysis is
still a rather unexplored research direction in the Proto-Quipper community [56].

The goal of this work is to show that type systems indeed enable the possibil-
ity of reasoning about the size of the circuits produced by a Proto-Quipper pro-
gram. Specifically, we show how linear dependent types in the style of Gaboardi
and Dal Lago [12,14,15,23] can be adapted to Proto-Quipper, allowing to derive
upper bounds on circuit widths that are parametric on the number of input
wires to the circuit, be they classical or quantum. This enables a form of static
analysis of the resource consumption of circuit families and, consequently, of the
quantum algorithms described in the language. Technically, a key ingredient of
this analysis, besides linear dependency, is a novel form of effect typing in which
the quantitative information coming from linear dependency informs the effect
system and allows it to keep circuit widths under control.

The rest of the paper is organized as follows. Section 2 informally explores
the problem of estimating the width of circuits produced by Quipper, while
also introducing the language. Section 3 provides a more formal definition of
the Proto-Quipper language. In particular, it gives an overview of the system of
simple types due to Rios and Selinger [46], which however is not meant to reason
about the size of circuits. We then move on to the most important technical
contribution of this work, namely the linear dependent and effectful type system,
which is introduced in Section 4 and proven to guarantee both type safety and a
form of total correctness in Section 5. Section 6 is dedicated to an example of a
practical application of our type and effect system, that is, a program that builds
the Quantum Fourier Transform (QFT) circuit [11,39] and which is verified to
do so without any ancillary qubits.

4 A. Colledan, U. Dal Lago



To conclude this introduction, we wish to emphasize that while it is true
that quantum computing can be a difficult and intimidating subject, the class
of languages analyzed in this work focuses on circuit construction, which is an
entirely classical process, paying little to no concern to the actual quantum
semantics of circuit execution. Because of this, and due to space constraints,
we refrain from providing a general introduction to quantum computing in this
paper. Instead, we refer the interested reader to the excellent works of Nielsen
and Chuang [39], Yanofsky and Mannucci [60], and Mingsheng [61].

2 An Overview on Circuit Width Estimation

Quipper allows programmers to describe quantum circuits in a high-level and
elegant way, using both gate-by-gate and circuit transformation approaches.
Quipper also supports hierarchical and parametric circuits, thus promoting a
view in which circuits become first-class citizens. Quipper has been shown to
be scalable, in the sense that it has been effectively used to describe complex
quantum algorithms that easily translate to circuits involving trillions of gates
applied to millions of qubits. The language allows the programmer to optimize
the circuit, e.g. by using ancilla qubits for the sake of reducing the circuit depth,
or recycling qubits that are no longer needed.

One feature that Quipper lacks is a methodology for statically proving that
important parameters — such as the the width — of the underlying circuit
are below certain limits, which of course would need to be parametric on the
input size of the circuit. If this kind of analysis were available, then it would be
possible to derive bounds on the number of qubits needed to solve any instance
of a problem, and ultimately to know in advance how big of an instance can be
possibly solved given a fixed amount of qubits.

In order to illustrate the kind of scenario we are reasoning about, this section
offers some simple examples of Quipper programs, showing in what sense we can
think of capturing the quantitative information that we are interested in through
types and effect systems and linear dependency. We proceed at a very high level
for now, without any ambition of formality.

Let us start with the example of Figure 1. The Quipper function on the
left builds the structure on the right, which we call a quantum circuit. For the
purposes of this work, it suffices to say that horizontal lines represent qubits,
while other symbols represent elementary operations applied to them, e.g. ini-
tializations, gate applications, and so on. Time flows from left to right. The
specific circuit in Figure 1 consists in an (admittedly contrived) implementation
of the quantum not operation. The dumbNot function implements negation using
a controlled not gate and an ancillary qubit a, which is initialized and discarded
within the body of the function. This qubit does not appear in the interface of
the circuit, but it clearly adds to its overall width, which is 2.

Consider now the higher-order function in Figure 2. This function takes as
input a circuit building function f, an integer n and describes the circuit obtained
by applying f’s circuit n times to the input qubit q. It is easy to see that the
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dumbNot :: Qubit -> Circ Qubit
dumbNot q = do
a <- qinit True
(q,a) <- controlled_not q a
qdiscard a
return q

|1⟩

q q

Fig. 1. A contrived implementation of the quantum not operation using an ancilla

width of the circuit produced in output by iter dumbNot n is equal to 2, even
though, overall, the number of qubits initialized during the computation is equal
to n. The point is that each ancilla is created only after the previous one has
been discarded, thus enabling a form of qubit recycling.

iter :: (Qubit -> Circ Qubit)
-> Int -> Qubit -> Circ Qubit
iter f 0 q = return q
iter f n q = do
q <- f q
iter f (n-1) q

. . .

. . .

|1⟩ |1⟩ |1⟩

q q︸ ︷︷ ︸
n times

Fig. 2. A higher-order function which iterates a circuit-building function f on an input
qubit q and the result of its application to the dumbNot function from Figure 1

Is it possible to statically analyze the width of the circuit produced in output
by iter dumbNot n so as to conclude that it is constant and equal to 2? What
techniques can we use? Certainly, the presence of higher order types complicates
an already non-trivial problem. The approach we propose in this paper is based
on two ingredients. The first is the so-called effect typing [40]. In this context the
effect produced by the program is nothing more than the circuit and therefore
it is natural to think of an effect system in which the width of such circuit, and
only that, is exposed. Therefore, the arrow type A → B should be decorated
with an expression indicating the width of the circuit produced by the corre-
sponding function when applied to an argument of type A. Of course, the width
of an individual circuit is a natural number, so it would make sense to annotate
the arrow with such a number. For technical reasons, however, it will also be
necessary to keep track of another natural number, corresponding to the number
of wire resources that the function captures from the surrounding environment.
This necessity stems from a need to keep track of wires even in the presence of
data hiding, and will be explained in further detail in Section 4.

Under these premises, the dumbNot function would receive type Qubit →2,0

Qubit, meaning that it takes as input a qubit and produces a circuit of width 2
which outputs a qubit. Note that the second annotation is 0, since we do not cap-
ture anything from the function’s environment, let alone a wire. Consequently,
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because iter iterates in sequence and because the ancillary qubit in dumbNot
can be reused, the type of iter dumbNot n would also be Qubit →2,0 Qubit.

hadamardN :: [Qubit] -> Circ [Qubit]
hadamardN [] = return []
hadamardN (q:qs) = do
q <- hadamard q
qs <- hadamardN qs
return (q:qs)

q H q

qs1 H qs1

qsn H qsn

Fig. 3. The hadamardN function implements a circuit family where circuits have width
linear in their input size.

Let us now consider a slightly different situation, in which the width of the
produced circuit is not constant, but rather increases proportionally to the cir-
cuit’s input size. Figure 3 shows a Quipper function that returns a circuit on n
qubits in which the Hadamard gate is applied to each qubit, a common prepro-
cessing step in many quantum algorithms. It is obvious that this function works
on inputs of arbitrary size, and therefore we can interpret it as a circuit family,
parametrized on the length of the input list of qubits. This quantity, although
certainly a natural number, is unknown statically and corresponds precisely to
the width of the produced circuit. It is thus natural to wonder whether the kind of
effect typing we briefly hinted at in the previous paragraph is capable of dealing
with such a function. Certainly, the expressions used to annotate arrows cannot
be, like in the previous case, mere constants, as they clearly depend on the size
of the input list. Is there a way to reflect this dependency in types? Certainly,
one could go towards a fully-fledged notion of dependent types, like the ones pro-
posed in [22], but a simpler approach, in the style of Dal Lago and Gaboardi’s
linear dependent types [12,14,15,23] turns out to be enough for this purpose. This
is precisely the route that we follow in this paper. In this approach, terms can
indeed appear in types, but that is only true for a very restricted class of terms,
disjoint from the ordinary ones, called index terms. As an example, the type of
the function hadamardN above could become Listi Qubit →i,0 Listi Qubit, where
i is an index variable. The meaning of the type would thus be that hadamardN
takes as input any list of qubits of length i and produces a circuit of width at
most i which outputs i qubits. Indices are better explained in Section 4, but
in general we can say that they consist of arithmetical expressions over natu-
ral numbers and index variables, and can thus express non-trivial dependencies
between input sizes and corresponding circuit widths.
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3 The Proto-Quipper Language

This section aims at introducing the Proto-Quipper family of calculi to the non-
specialist, without any form of resource analysis. At its core, Proto-Quipper is a
linear lambda calculus with bespoke constructs to build and manipulate circuits.
Circuits are built as a side-effect of a computation, behind the scenes, but they
can also appear and be manipulated as data in the language.

Types TYPE A,B ::= 1 | w | !A | A⊗B | A ⊸ B | ListA | Circ(T,U)
Parameter types PTYPE P,R ::= 1 | !A | P ⊗R | List P | Circ(T,U)
Bundle types BTYPE T,U ::= 1 | w | T ⊗ U

Fig. 4. The Proto-Quipper types

The types of Proto-Quipper are given in Figure 4. Speaking at a high level,
we can say that Proto-Quipper employs a linear-nonlinear typing discipline. In
particular, w ∈ {Bit,Qubit} is a wire type and is linear, while ⊸ is the linear
arrow constructor. A subset of types, called parameter types, represent the values
of the language that are not linear and that can therefore be copied. Any term of
type A can be lifted into a duplicable parameter of type !A if its type derivation
does not require the use of linear resources.

Terms TERM M,N ::= V W | let ⟨x, y⟩ = V in M | forceV | boxT V
| apply(V,W ) | return V | let x = M in N

Values VAL V,W ::= ∗ | x | ℓ | λxA.M | liftM | (ℓ̄, C, k̄) | ⟨V,W ⟩
| nil | cons V W | fold V W

Wire bundles BVAL ℓ̄, k̄ ::= ∗ | ℓ | ⟨ℓ̄, k̄⟩

Fig. 5. The Proto-Quipper syntax

The syntax of Proto-Quipper is given in Figure 5. At a very high level, we
are dealing with an effectful lambda calculus with bespoke constructs for ma-
nipulating circuits. A return expression turns a value into a trivial computation,
while a let expression is used to sequence computations. Note that let is asso-
ciative and that return acts as its identity. Now, let us informally dissect the
domain-specific aspects of this language, starting with the language of values.
The constructs of greatest interest are labels and boxed circuits. A label ℓ rep-
resents a reference to a free wire of the underlying circuit being built and is
attributed a wire type w ∈ {Bit,Qubit}. Due to the no-cloning property of quan-
tum states [39], labels have to be treated linearly. Arbitrary structures of labels
form a subset of values which we call wire bundles and which are given bundle
types. On the other hand, a boxed circuit (ℓ̄, C, k̄) represents a circuit object C as
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a datum within the language, together with its input and output interfaces ℓ̄ and
k̄. Such a value is given parameter type Circ(T, U), where bundle types T and
U are the input and output types of the circuit, respectively. Boxed circuits can
be copied, manipulated by primitive functions and, more importantly, applied
to the underlying circuit. This last operation, which lies at the core of Proto-
Quipper’s circuit-building capabilities, is possible thanks to the apply operator.
This operator takes as first argument a boxed circuit (ℓ̄, C, k̄) and appends C to
the underlying circuit D. How does apply know where exactly in D to apply C?
Thanks to a second argument: a bundle of wires t̄ coming from the free output
wires of D, which identify the exact location where C is supposed to be attached.

The language is expected to be endowed with constant boxed circuits corre-
sponding to fundamental gates and operations (e.g. Hadamard, CNOT, initial-
ization, etc.), but the programmer can also introduce their own boxed circuits via
the box operator. Intuitively, box takes as input a circuit-building function and
executes it in a sandboxed environment, on dummy arguments, in a way that
leaves the underlying circuit unchanged. Said function produces a standalone
circuit C, which is then returned by the box operator as a boxed circuit (ℓ̄, C, k̄).

Figure 6 shows the Proto-Quipper term corresponding to the Quipper pro-
gram in Figure 1, as an example of the use of the language. Note that let ⟨x, y⟩ =
M in N is syntactic sugar for let z = M in let ⟨x, y⟩ = z in N . The dumbNot
function is given type Qubit ⊸ Qubit and builds the circuit shown in Figure 1
when applied to an argument.

dumbNot ≜ λqQubit. let a = apply(INIT1, ∗) in
let ⟨q, a⟩ = apply(CNOT, ⟨q, a⟩) in
let _ = apply(DISCARD, a) in

return q

Fig. 6. An example Proto-Quipper program. INIT1,CNOT and DISCARD are primitive
boxed circuits implementing the corresponding elementary operations.

On the classical side of things, it is worth mentioning that Proto-Quipper as
presented in this section does not support general recursion. A limited form of
recursion on lists is instead provided via a primitive fold constructor, which takes
as argument a (copiable) step function of type !((B⊗A) ⊸ B), an initial value of
type B, and constructs a function of type ListA ⊸ B. Although this workaround
is not enough to recover the full power of general recursion, it appears that it
is enough to describe many quantum algorithms. Figure 7 shows an example of
the use of fold to reverse a list. Note that λ⟨x, y⟩A⊗B .M is syntactic sugar for
λzA⊗B .let ⟨x, y⟩ = z in M .
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rev ≜ fold lift(λ⟨revList , q⟩List Qubit⊗Qubit.return (cons q revList)) nil

Fig. 7. An example of the use of fold: the function that reverses a list

To conclude this section, we just remark how all of the Quipper programs
shown in Section 2 can be encoded in Proto-Quipper. However, Proto-Quipper’s
system of simple types in unable to tell us anything about the resource consump-
tion of these programs. Of course, one could run hadamardN on a concrete input
and examine the size of the circuit produced at run-time, but this amounts to
testing, not verifying the program, and lacks the qualities of staticity and para-
metricity that we seek.

4 Incepting Linear Dependency and Effect Typing

We are now ready to expand on the informal definition of the Proto-Quipper
language given in Section 3, to reach a formal definition of Proto-Quipper-R: a
linearly and dependently typed language whose type system supports the deriva-
tion of upper bounds on the width of the circuits produced by programs.

4.1 Types and Syntax of Proto-Quipper-R

Types TYPE A,B ::= 1 | w | !A | A⊗B | A ⊸I,J B | ListI A | CircI(T,U)
Param. types PTYPE P,R ::= 1 | !A | P ⊗R | ListI P | CircI(T,U)
Bundle types BTYPE T,U ::= 1 | w | T ⊗ U | ListI T

Terms TERM M,N ::= V W | let ⟨x, y⟩ = V in M | forceV | boxT V
| apply(V,W ) | return V | let x = M in N

Values VAL V,W ::= ∗ | x | ℓ | λxA.M | liftM | (ℓ̄, C, k̄) | ⟨V,W ⟩
| nil | cons V W | foldi V W

Wire bundles BVAL ℓ̄, k̄ ::= ∗ | ℓ | ⟨ℓ̄, k̄⟩ | nil | cons ℓ̄ k̄
Indices INDEX I, J ::= i | n | I + J | I − J | I × J | max(I, J) | maxi<I J

Fig. 8. Proto-Quipper-R syntax and types

The types and syntax of Proto-Quipper-R are given in Figure 8. As we men-
tioned, one of the key ingredients of our type system are the index terms with
which we annotate standard Proto-Quipper types. These indices provide quanti-
tative information about the elements of the resulting types, in a manner remi-
niscent of refinement types [18,47]. In our case, we are primarily concerned with
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circuit width, which means that the natural starting point of our extension of
Proto-Quipper is precisely the circuit type: CircI(T, U) has elements the boxed
circuits of input type T , output type U , and width bounded by I. Term I is
precisely what we call an index, that is, an arithmetical expression denoting a
natural number. Looking at the grammar for indices, their interpretation is fairly
straightforward, with a few notes: n is a natural number, i is an index variable,
I − J denotes natural subtraction, such that I − J = 0 whenever I ≤ J , and
lastly maxi<I J is the maximum for i going from 0 (included) to I (excluded) of
J , where i can occur in J . Note that I = 0 implies maxi<I J = 0. While the index
in a circuit type denotes an upper bound, the index in a type of the form ListI A
denotes the exact length of the lists of that type. While this refinement might
seem quite restrictive in a generic scenario, it allows us to include lists of labels
among wire bundles, something that was not possible with simple lists. This is
due to the fact that sized lists are effectively isomorphic to finite tensors, and
therefore a sized list of labels represent a wire bundle of known size, whereas the
same is not true for a simple list of labels. Lastly, as we anticipated in Section 2,
an arrow type A ⊸I,J B is annotated with two indices: I is an upper bound to
the width of the circuit built by the function once it is applied to an argument of
type A, while J describes the exact number of wires captured in the function’s
closure. The utility of this last annotation will be clearer in Section 4.3.

The languages for terms and values are almost the same as in Proto-Quipper,
with the minor difference that the fold operator now binds the index variable
name i within its first argument. This variable appears locally in the type of the
step function, in such a way as to allow each iteration of the fold to contribute
to the overall circuit width in a different way.

4.2 A Formal Language for Circuits

The type system of Proto-Quipper-R is designed to allow for reasoning about
the width of circuits. Therefore, before we formally introduce the type system
in Section 4.3, we ought to introduce circuits themselves in a formal way. So far,
we have only spoken of circuits at a very high and intuitive level, and we have
represented them only graphically. Looking at the circuits in Section 2, what do
they have in common? At the fundamental level, they are made up of elementary
operations applied to specific wires. Of course, the order of these operations
matters, as does the order of wires that they are applied to. In the existing
literature on Proto-Quipper, circuits are usually interpreted as morphisms in a
symmetric monoidal category [46], but this approach makes it particularly hard
to reason about their intensional properties, such as width. For this reason, we
opt for a concrete model of wires and circuits, rather than an abstract one.

Luckily, we already have a datatype modeling ordered structures of wires,
that is, the wire bundles that we introduced in the previous sections. We use
them as the basis upon which we build circuits.

That being said, Figure 9 introduces the Circuit Representation Language
(CRL) which we use as the target for circuit building in Proto-Quipper-R. Wire
bundles are exactly as in Figure 8 and represent arbitrary structures of wires,
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Wire bundles BVAL ℓ̄, k̄ ::= ∗ | ℓ | ⟨ℓ̄, k̄⟩ | nil | cons ℓ̄ k̄
Bundle types BTYPE T,U ::= 1 | w | T ⊗ U | ListI T

Circuits CIRC C,D ::= idQ | C; g(ℓ̄) → k̄

Fig. 9. CRL syntax and types

while circuits themselves are defined very simply as sequences of elementary
operations applied to said structures. We call Q a label context and define it as
a mapping from label names to wire types. We use label contexts as a means
to keep track of the set of labels available in a computation, alongside their
respective types. Circuit idQ represents the identity circuit taking as input the
labels in Q and returning them unchanged, while C; g(ℓ̄) → k̄ represents the
application of the elementary operation g to the wires identified by ℓ̄ among
the outputs of C. Operation g outputs the wire bundle k̄, whose labels become
part of the outputs of the overall circuit. Note that an “elementary operation”
is usually the application of a gate, but it could also be a measurement, or the
initialization or discarding of a wire. Although semantically very different, from
the perspective of circuit building these operations are just elementary building
blocks in the construction of a more complex structure, and it makes no sense
to distinguish between them syntactically. Circuits are amenable to a form of
concatenation. We write the concatenation of C and D as C :: D and define it in
the natural way, that is, as C followed by all the operations occurring in D.

Circuit Typing Naturally, not all circuits built from the CRL syntax make
sense. For example id(ℓ:Qubit);H(k) → k and id(ℓ:Qubit);CNOT (⟨ℓ, ℓ⟩) → ⟨k, t⟩
are both syntactically correct, but the first applies a gate to a non-existing wire,
while the second violates the no-cloning theorem by duplicating ℓ. To rule out
such ill-formed circuits, we employ a rudimentary type system for circuits which
allows us to derive judgments of the form C : Q → L, which informally read
“circuit C is well-typed with input label context Q and output label context L”.

The typing rules for CRL are given in Figure 10. We call Q ⊢w ℓ̄ : T a wire
judgment, and we use it to give a structured type to an otherwise unordered
label context, by means of a wire bundle. Most rules are straightforward, except
those for lists, which rely on a judgment of the form ⊨ I = J . This is to be
intended as a semantic judgment asserting that I and J are closed and equal
when interpreted as natural numbers. Within the rule, this reflects the idea
that there are many ways to syntactically represent the length of a list. For
example, nil can be given type List0 T , but also List1−1 T or List0×5 T . This kind
of flexibility might seem unwarranted for such a simple language, but it is useful
to effectively interface CRL and the more complex Proto-Quipper-R. Speaking of
the actual circuit judgments, the seq rule tells us that the the application of an
elementary operation g is well typed whenever g only acts on labels occurring
in the outputs of C (those in ℓ̄, that is in H), produces in output labels that
do not clash with the remaining outputs of C (since L,K denotes the disjoint
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unit
∅ ⊢w ∗ : 1

lab
ℓ : w ⊢w ℓ : w

nil ⊨ I = 0

∅ ⊢w nil : ListI T

pair
Q1 ⊢w ℓ̄ : T Q2 ⊢w k̄ : U

Q1, Q2 ⊢w ⟨ℓ̄, k̄⟩ : T ⊗ U

cons
Q1 ⊢w ℓ̄ : T Q2 ⊢w k̄ : ListJ T ⊨ I = J + 1

Q1, Q2 ⊢w cons ℓ̄ k̄ : ListI T

id
idQ : Q → Q

seq
C : Q → L,H H ⊢w ℓ̄ : T K ⊢w k̄ : U g ∈ G (T,U)

C; g(ℓ̄) → k̄ : Q → L,K

Fig. 10. The CRL type system

union of the two label contexts) and is of the right type. This last requirement is
expressed as g ∈ G (T, U), where G (T, U) is the subset of elementary operations
that can be applied to an input of type T to obtain an output of type U . For
example, the Hadamard gate, which acts on a single qubit, is in G (Qubit,Qubit).

Circuit Width Among the many properties of circuits, we are interested in
width, so we conclude this section by giving a formal status to this quantity.

Definition 1 (Circuit Width). We define the width of a CRL circuit C, writ-
ten width(C), as follows

width(idQ) = |Q|, (1)
width(C; g(ℓ̄) → k̄) = width(C) + max(0, new(g)− discarded(C)), (2)

where |Q| is the number of labels in Q, new(g) represents the net number of
new wires initialized by g, and discarded(C) is the number of wires that have
been effectively discarded by the end of C, obtained as the difference between
C’s width and the number of its outputs. Note that one expects new(g) to be
equal to the difference between the number of labels in k̄ and those in ℓ̄. The
overarching idea behind this definition is that whenever we require new wires
in our computation, we first try to reuse as many previously discarded wires as
possible. As long as we can do this (new(g) ≤ discarded(C)), the initializations
do not add to the total width of the circuit. Otherwise (new(g) > discarded(C))
we must actually create new wires, increasing the overall width of the circuit.

Now that we have a formal definition of circuit types and width, we can
state a fundamental property of the concatenation of well-typed circuits, which
is illustrated in Figure 11 and proven in Theorem 1. We use this result pervasively
in proving the correctness of Proto-Quipper-R in section 5.

Theorem 1 (CRL). Given C : Q → L,H and D : H → K such that the labels
shared by C and D are all and only those in H, we have

1. C :: D : Q → L,K,
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2. width(C :: D) ≤ max(width(C),width(D) + |L|).

Proof. By induction of the derivation of D : H → K.

|Q| |L|

|H| |K|

L

H

Q

C
L

D K

Fig. 11. The kind of scenario described by Theorem 1

4.3 Typing Programs

Going back to Proto-Quipper-R, we have already seen how the standard Proto-
Quipper types are refined with quantitative information. However, decorating
types is not enough for the purposes of width estimation. Recall that, in general,
a Proto-Quipper program produces a circuit as a side effect of its evaluation. If
we want to reason about the width of said circuit, it is not enough to rely on
a regular linear type system, although dependent. Rather, we have to introduce
the second ingredient of our analysis and turn to a type-and-effect system [40],
revolving around a type judgment of the form

Θ;Γ ;Q ⊢c M : A; I, (3)

which intuitively reads “for all natural values of the index variables in Θ, under
typing context Γ and label context Q, term M has type A and produces a circuit
of width at most I”. Therefore, Θ is a collection of index variables which are
universally quantified in the rest of the judgment, while Γ is a typing context for
parameter and linear variables alike. When a typing context contains exclusively
parameter variables, we write it as Φ. In this judgment, I plays the role of an
effect annotation, describing a relevant aspect of the side effect produced by the
evaluation of M (i.e. the width of the produced circuit). The attentive reader
might wonder why this annotation consists only of one index, whereas when we
discussed arrow types in previous sections we needed two. The reason is that the
second index, which we use to keep track of the number of wires captured by
a function, is redundant in a typing judgment where the same quantity can be
inferred directly from the environments Γ and Q. A similar typing judgment of
the form Θ;Γ ;Q ⊢v V : A is introduced for values, which are effect-less.

The rules for deriving typing judgments are those in Figure 12, where Γ1, Γ2

denotes the union of two contexts with disjoint domains. A well-formedness
judgment of the form Θ ⊢ I means that all the free index variables occurring
in I are in Θ. Well-formedness is lifted to types and typing contexts in the
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unit Θ ⊢ Φ
Θ;Φ; ∅ ⊢v ∗ : 1

lab Θ ⊢ Φ
Θ;Φ; ℓ : w ⊢v ℓ : w

var
Θ ⊢ Φ, x : A

Θ;Φ, x : A; ∅ ⊢v x : A
abs

Θ;Γ, x : A;Q ⊢c M : B; I

Θ;Γ ;Q ⊢v λxA.M : A ⊸I,#(Γ ;Q) B

app
Θ;Φ, Γ1;Q1 ⊢v V : A ⊸I,J B Θ;Φ, Γ2;Q2 ⊢v W : A

Θ;Φ, Γ1, Γ2;Q1, Q2 ⊢c V W : B; I

lift
Θ;Φ; ∅ ⊢c M : A; 0

Θ;Φ; ∅ ⊢v liftM : !A
force

Θ;Φ; ∅ ⊢v V : !A

Θ;Φ; ∅ ⊢c forceV : A; 0

circ
C : Q → L Q ⊢w ℓ̄ : T L ⊢w k̄ : U Θ ⊨ width(C) ≤ I Θ ⊢ Φ

Θ;Φ; ∅ ⊢v (ℓ̄, C, k̄) : CircI(T,U)

apply
Θ;Φ, Γ1;Q1 ⊢v V : CircI(T,U) Θ;Φ, Γ2;Q2 ⊢v W : T

Θ;Φ, Γ1, Γ2;Q1, Q2 ⊢c apply(V,W ) : U ; I

box
Θ;Φ; ∅ ⊢v V : !(T ⊸I,J U)

Θ;Φ; ∅ ⊢c boxT V : CircI(T,U); 0
nil Θ ⊢ Φ Θ ⊢ A

Θ;Φ; ∅ ⊢v nil : List0 A

cons
Θ;Φ, Γ1;Q1 ⊢v V : A Θ;Φ, Γ2;Q2 ⊢v W : ListI A

Θ;Φ, Γ1, Γ2;Q1Q2 ⊢v cons V W : ListI+1 A

fold

Θ;Φ, Γ ;Q ⊢v W : B{0/i} Θ, i;Φ; ∅ ⊢v V : !((B ⊗A) ⊸J,J′ B{i+ 1/i})
Θ ⊢ I Θ ⊢ A E = max(#(Γ ;Q),maxi<I J + (I − 1− i)×#(A))

Θ;Φ, Γ ;Q ⊢v foldi V W : ListI A ⊸E,#(Γ ;Q) B{I/i}

dest
Θ;Φ, Γ1;Q1 ⊢v V : A⊗B Θ;Φ, Γ2, x : A, y : B;Q2 ⊢c M : C; I

Θ;Φ, Γ1, Γ2;Q1, Q2 ⊢c let ⟨x, y⟩ = V in M : C; I

pair
Θ;Φ, Γ1;Q1 ⊢v V : A Θ;Φ, Γ2;Q2 ⊢v W : B

Θ;Φ, Γ1, Γ2;Q1, Q2 ⊢v ⟨V,W ⟩ : A⊗B

return
Θ;Γ ;Q ⊢v V : A

Θ;Γ ;Q ⊢c return V : A;#(Γ ;Q)

let
Θ;Φ, Γ1;Q1 ⊢c M : A; I Θ;Φ, Γ2, x : A;Q2 ⊢c N : B; J

Θ;Φ, Γ1, Γ2;Q1, Q2 ⊢c let x = M in N : B;max(I +#(Γ2;Q2), J)

vsub
Θ;Γ ;Q ⊢v V : A Θ ⊢s A <: B

Θ;Γ ;Q ⊢v V : B

csub
Θ;Γ ;Q ⊢c M : A; I Θ ⊢s A <: B Θ ⊨ I ≤ J

Θ;Γ ;Q ⊢c M : B; J

Fig. 12. Proto-Quipper-R type system
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natural way. Among interesting typing rules, we can see how the circ rule bridges
between CRL and Proto-Quipper-R. A boxed circuit (ℓ̄, C, k̄) is well typed with
type CircI(T, U) when C is no wider than the quantity denoted by I, C : Q → L
and ℓ̄, k̄ contain all and only the labels in Q and L, respectively, acting as a
language-level interface to C.

The two main constructs that interact with circuits are apply and box. The
apply rule is the foremost place where effects enter the type derivation: V repre-
sents some boxed circuit of width at most I, so its application to an appropriate
wire bundle W produces exactly a circuit of width at most I. The box rule, on
the other hand, works approximately in the opposite direction. If V is a circuit
building function that, once applied to an input of type T , would build a circuit
of output type U and width at most I, then boxing it means turning it into a
boxed circuit with the same characteristics. Note that the box rule requires that
the typing context be devoid of linear variables. This reflects the idea that V
is meant to be executed in complete isolation, to build a standalone, replicable
circuit, and therefore it should not capture any linear resource (e.g. a label) from
the surrounding environment.

Wire Count Notice that many rules rely on an operator written #(·), which
we call the wire count operator. Intuitively, this operator returns the number of
wire resources (in our case, bits or qubits) represented by a type or context. To
understand how this is important, consider the return rule. The return operator
turns a value V into a trivial computation that evaluates immediately to V , and
therefore it would be tempting to give it an effect annotation of 0. However,
V is not necessarily a closed value. In fact, it might very well contain many
bits and qubits, coming both from the typing context Γ and the label context
Q. Although nothing happens to these bits and qubits, they still corresponds
to wires in the underlying circuit, and these wires have a width which must
be accounted for in the judgment for the otherwise trivial computation. The
return rule therefore produces an effect annotation of the form #(Γ ;Q), which
is shorthand for #(Γ )+#(Q) and corresponds exactly to this quantity. A formal
definition of the wire count operator on types is given in the following definition,
which is lifted to contexts in the natural way.

Definition 2 (Wire Count). We define the wire count of a type A, written
#(A), as a function #(·) : TYPE → INDEX such that

#(1) = #(!A) = #(CircI(T, U)) = 0, #(w) = 1,

#(A⊗B) = #(A) + #(B), #(A ⊸I,J B) = J, #(ListI A) = I ×#(A).

This definition is fairly straightforward, except for the arrow case. By itself,
an arrow type does not give us any information about the amount of qubits or bits
captured in the corresponding closure. This is precisely where the second index
J , which keeps track exactly of this quantity, comes into play. This annotation
is introduced by the abs rule and allows our analysis to circumvent data hiding.
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The let rule is another rule in which wire counts are essential. The two terms
M and N in let x = M in N build the circuits CM and CN , whose widths are
bounded by I and J , respectively. Once again, it might be tempting to conclude
that the overall circuit built by the let construct has width bounded by max(I, J),
but this fails to take into account the fact that while M is building CM starting
from the wires contained in Γ1 and Q1, we must keep aside the wires contained
in Γ2 and Q2, which will be used by N to build CN . These wires must flow
alongside CM and their width, i.e. #(Γ2;Q2), adds up to the total width of the
left-hand side of the let construct, leading to an overall width upper bound of
max(I +#(Γ2;Q2), J). This situation is better illustrated in Figure 13.

#(Γ1)

#(Q1) #(A)

#(Γ2)

#(Q2) #(B)

x : A

Γ1

CM

Q1

CNΓ2

Q2

Fig. 13. The shape of a circuit built by a let construct

The last rule that makes substantial use of wire counts is fold, arguably the
most complex rule of the system. The main ingredient of the fold rule is the
bound index variable i, which occurs in the accumulator type B and is used to
keep track of the number of steps performed by the fold. Let (·){I/i} denote
the capture-avoiding substitution of the index term I for the index variable i
inside an index, type, context, value or term, not unlike (·)[V/x] denotes the
capture-avoiding substitution of the value V for the variable x. Intuitively, if the
accumulator has initially type B{0/i} and each application of the step function
increases i by one, then when we fold over a list of length I we get an output
of type B{I/i}. Index E is the upper bound to the width of the overall circuit
built by the fold: if the input list is empty, then the width of the circuit is just
the number of wires contained in the initial accumulator, that is, #(Γ ;Q). If the
input list is non-empty, on the other hand, things get slightly more complicated.
At each step i, the step function builds a circuit Ci of width bounded by J , where
J might depend on i. This circuit takes as input all the wires in the accumulator,
as well as the wires contained in the first element of the input list, which are
#(A). The wires contained in remaining I−1− i elements have to flow alongside
Ci, giving a width upper bound of J + (I − 1 − i) × #(A) at each step i. The
overall width upper bound is then the maximum for i going from 0 to I − 1 of
this quantity, i.e. precisely maxi<I J+(I−1− i)×#(A). Once again, a graphical
representation of this scenario is given in Figure 14.
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#(Γ )

#(Q)

#(A) #(B{1/i})

#(A) #(B{2/i})

#(B{I−1/i})

#(A) #(B{I/i})

. . .

. . .

Γ

C0Q

C1

CI−1

Fig. 14. The shape of a circuit built by a fold applied to an input list of type ListI A

Subtyping Notice that Proto-Quipper-R’s type system includes two subsump-
tion rules, which are effectively the same rule for terms and values, respectively:
csub and vsub. We mentioned that our type system resembles a refinement type
system, and all such systems induce a subtyping relation between types, where
A is a subtype of B whenever the former is “at least as refined” as the latter. In
our case, a subtyping judgment such as Θ ⊢s A <: B means that for all natural
values of the index variables in Θ, A is a subtype of B.

unit
Θ ⊢s 1 <: 1

wire
Θ ⊢s w <: w

bang Θ ⊢s A <: B

Θ ⊢s !A <: !B

tensor Θ ⊢s A1 <: A2 Θ ⊢s B1 <: B2

Θ ⊢s A1 ⊗B1 <: A2 ⊗B2

arrow
Θ ⊢s A2 <: A1 Θ ⊢s B1 <: B2 Θ ⊨ I1 ≤ I2 Θ ⊨ J1 = J2

Θ ⊢s A1 ⊸I1,J1 B1 <: A2 ⊸I2,J2 B2

list Θ ⊢s A <: B Θ ⊨ I = J

Θ ⊢s ListI A <: ListJ B

circ
Θ ⊢s T1 <:> T2 Θ ⊢s U1 <:> U2 Θ ⊨ I ≤ J

Θ ⊢s CircI(T1, U1) <: CircJ(T2, U2)

Fig. 15. Proto-Quipper-R subtyping rules

We derive this kind of judgments by the rules in Figure 15. Note that Θ ⊢s

A <:> B is shorthand for “Θ ⊢s A <: B and Θ ⊢s B <: A”. Subtyping relies
in turn on a judgment of the form Θ ⊨ I ≤ J , which is a generalization of the
semantic judgment that we used in the CRL type system in Section 4.2. Such
a judgment asserts that for all natural values of the index variables in Θ, I is
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lesser or equal than J . Consequently, Θ ⊨ I = J is shorthand for “Θ ⊨ I ≤ J
and Θ ⊨ J ≤ I”. We purposefully leave the decision procedure of this kind of
judgments unspecified, with the prospect that, from a more practical perspective,
they could be delegated to an SMT solver [7].

4.4 Operational Semantics

Operationally speaking, it does not make sense, in the Proto-Quipper languages,
to speak of the semantics of a term in isolation: a term is always evaluated in
the context of an underlying circuit that supplies all of the term’s free labels.
We therefore define the operational semantics of Proto-Quipper-R as a big-step
evaluation relation ⇓ on configurations, i.e. circuits paired with either terms or
values. Intuitively, (C,M) ⇓ (D, V ) means that M evaluates to V and updates
C to D as a side effect.

app
(C,M [V/x]) ⇓ (D,W )

(C, (λxA.M)V ) ⇓ (D,W )
dest

(C,M [V/x][W/y]) ⇓ (D, X)

(C, let ⟨x, y⟩ = ⟨V,W ⟩ in M) ⇓ (D, X)

force
(C,M) ⇓ (D, V )

(C, force(liftM)) ⇓ (D, V )
apply

(E , q̄) = append(C, t̄, (ℓ̄,D, k̄))

(C, apply((ℓ̄,D, k̄), t̄)) ⇓ (E , q̄)

box
(Q, ℓ̄) = freshlabels(T ) (idQ,M) ⇓ (idQ, V ) (idQ, V ℓ̄) ⇓ (D, k̄)

(C, boxT (liftM)) ⇓ (C, (ℓ̄,D, k̄))

return
(C, return V ) ⇓ (C, V )

let
(C,M) ⇓ (E , V ) (E , N [V/x]) ⇓ (D,W )

(C, let x = M in N) ⇓ (D,W )

fold-end
(C, (foldi V W ) nil) ⇓ (C,W )

fold-step

(C,M{0/i}) ⇓ (C, Y ) (C, Y ⟨V,W ⟩) ⇓ (E , Z)
(E , (foldi (liftM{i+ 1/i}) Z)W ′) ⇓ (D, X)

(C, (foldi (liftM) V ) (cons W W ′)) ⇓ (D, X)

Fig. 16. Proto-Quipper-R big-step operational semantics

The rules for evaluating configurations are given in Figure 16, where C,D
and E are circuits, M and N are terms, while V,W,X, Y and Z are values. Most
evaluation rules are straightforward, with the exception perhaps of apply, box
and fold-step. Being the fundamental block of circuit-building, the semantics of
apply lies almost entirely in the way it updates the underlying circuit. The con-
catenation of the underlying circuit C and the applicand D is delegated entirely
to the append function, which is given in Definition 4. Before we examine the
append function, however, consider than when we deal with circuit objects we
are not really interested in the concrete labels that occur in them, but rather
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in the structure that they convey. For this reason, we introduce the following
notion of circuit equivalence.

Definition 3 (Circuit Equivalence). We say that two boxed circuits (ℓ̄, C, k̄)
and (t̄,D, q̄) are equivalent, and we write (ℓ̄, C, k̄) ∼= (t̄,D, q̄), when there exists
a renaming ρ of labels such that ρ(ℓ̄) = t̄, ρ(k̄) = q̄ and ρ(C) = D.

We can now move on to the definition of append, where the notion of circuit
equivalence is used to instantiate the generic input interface of a boxed circuit
with the actual labels that it is going to be appended to, and to ensure that there
are no name clashes between the appended circuit and the underlying circuit.

Definition 4 (append). We define the append of (ℓ̄,D, k̄) to C on t̄, written
append(C, t̄, (ℓ̄,D, k̄)), as the function that performs the following steps:

1. Finds (t̄,D′, q̄) ∼= (ℓ̄,D, k̄) such that the labels shared by C and D′ are all and
only those in t̄,

2. Computes E = C :: D′,
3. Returns (E , q̄).

On the other hand, the semantics of a term of the form boxT (liftM) relies
on the freshlabels function. What freshlabels does is take as input a bundle type
T and instantiate fresh Q, ℓ̄ such that Q ⊢w ℓ̄ : T . The wire bundle ℓ̄ is then
used as a dummy argument to V , the circuit-building function resulting from
the evaluation of M . This function application is evaluated in the context of the
identity circuit idQ and eventually produces a circuit D, together with its output
labels k̄. Finally, ℓ̄ and k̄ become respectively the input and output interfaces of
the boxed circuit (ℓ̄,D, k̄), which is the result of the evaluation of boxT (liftM).

Note, at this point, that T controls how many labels are initialized by the
freshlabels function. Because T can contain indices (e.g. it could be that T ≡
List3 Qubit), it follows that in Proto-Quipper-R indices are not only relevant to
typing, but they also have operational value. For this reason, the semantics of
Proto-Quipper-R is well-defined only on terms closed both in the sense of regular
variables and index variables, since a circuit-building function of input type, say,
Listi Qubit does not correspond to any individual circuit, and therefore it makes
no sense to box it. This aspect of the semantics is also apparent in the fold-step
rule, where the index variable i occurring free in M is instantiated to 0 before
evaluating M to obtain the step function Y . Then, before evaluating the next
fold, i is replaced with i+ 1 in M , increasing the index for the next iteration.

5 Type Safety and Correctness

Because the operational semantics of Proto-Quipper-R is based on configurations,
we ought to adopt a notion of well-typedness which is also based on configura-
tions. The following definition of well-typed configuration is thus central to our
type-safety analysis.
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Definition 5 (Well-typed Configuration). We say that configuration (C,M)
is well-typed with input Q, type A, width I and output L, and we write Q ⊢
(C,M) : A; I;L, whenever C : Q → L,H for some H such that ∅; ∅;H ⊢c M :
A; I. We write Q ⊢ (C, V ) : A;L whenever C : Q → L,H for some H such that
∅; ∅;H ⊢v V : A.

The three results that we want to show in this section are that any well-typed
term configuration Q ⊢ (C,M) : A; I;L evaluates to some configuration (D, V ),
that Q ⊢ (D, V ) : A;L and that D is obtained from C by extending it with a
sub-circuit of width at most I. These claims correspond to the subject reduction
and total correctness properties that we will prove at the end of this section.
However, both these results rely on a central lemma and on the mutual notions
of realization and reducibility, which we first give formally.

Definition 6 (Realization). We define V ⊩Q A, which reads V realizes A
under Q, as the smallest relation such that

– ∗ ⊩∅ 1,
– ℓ ⊩ℓ:w w,
– V ⊩Q A ⊸I,J B iff ⊨ J = |Q| and ∀W : W ⊩L A =⇒ V W ⊩I

Q,L B,

– liftM ⊩∅ !A iff M ⊩0
∅ A,

– ⟨V,W ⟩ ⊩Q,L A⊗B iff V ⊩Q A and W ⊩L B,
– nil ⊩∅ ListI A iff ⊨ I = 0,
– cons V W ⊩Q,L ListI A iff ⊨ I = J + 1 and V ⊩Q A and W ⊩L ListJ A,

– (ℓ̄, C, k̄) ⊩∅ CircI(T, U) iff C : Q → L and Q ⊢w ℓ̄ : T and L ⊢w k̄ : U and
⊨ width(C) ≤ I.

Definition 7 (Reducibility). We say that M is reducible under Q with type
A and width I, and we write M ⊩I

Q A, if, for all C such that C : L → Q,H,
there exist D, V such that

1. (C,M) ⇓ (C :: D, V ),
2. ⊨ width(D) ≤ I,
3. D : Q → K for some K such that V ⊩K A.

Both relations, and in particular reducibility, are given in the form of unary
logical relations [55]. The intuition is pretty straightforward: a term is reducible
with width I if it evaluates correctly when paired with any circuit C which
provides its free labels and if it extends C with a sub-circuit D whose width is
bounded by I. Realization, on the other hand, is less immediate. For most cases,
realizing type A loosely corresponds to being closed and well-typed with type
A, but a value realizes an arrow type A ⊸I,J B when its application to a value
realizing A is reducible with type B and width I.

By themselves, realization and reducibility are defined only on terms and
values closed in the sense both of regular and index variables. To extend these
notions to open terms and values, we adopt the standard approach of reasoning
explicitly about the substitutions that would render them closed. A closing value
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substitution γ is a function that turns an open term M into a closed term γ(M)
by substituting a value for each free variable occurring in M . We say that γ
implements a typing context Γ using label context Q, and we write γ ⊨Q Γ ,
when it replaces every variable xi in the domain of Γ with a value Vi such
that Vi ⊩Qi

Γ (xi) and Q =
⊎

xi∈dom(Γ ) Qi. A closing index substitution θ is
similar, only it substitutes closed indices for index variables and can be applied
to indices, types, contexts, values and terms alike. We say that θ implements an
index context Θ, and we write θ ⊨ Θ, when it replaces every index variable in
Θ with a closed index term. This allows us to give the following fundamental
lemma, which will be used while proving all other claims.

Lemma 1 (Core Correctness). Let Π be a type derivation. For all θ ⊨ Θ and
γ ⊨Q θ(Γ ), we have that

Π ▷ Θ;Γ ;L ⊢c M : A; I =⇒ γ(θ(M)) ⊩θ(I)
Q,L θ(A),

Π ▷ Θ;Γ ;L ⊢v V : A =⇒ γ(θ(V )) ⊩Q,L θ(A).

Proof. By induction on the size of Π, making use of Theorem 1.

Lemma 1 tells us that any well-typed term (resp. value) is reducible (resp.
realizes its type) when we instantiate its free variables according to its contexts.
Now that we have Lemma 1, we can proceed to proving the aforementioned
results of subject reduction and total correctness. We start with the former,
which unsurprisingly requires the following substitution lemmata.

Lemma 2 (Index Substitution). Let Π be a type derivation and let I be an
index such that Θ ⊢ I. We have that

Π ▷ Θ, i;Γ ;Q ⊢c M : A; J =⇒ Θ;Γ{I/i};Q ⊢c M{I/i} : A{I/i}; J{I/i},
Π ▷ Θ, i;Γ ;Q ⊢v V : A =⇒ Θ;Γ{I/i};Q ⊢v V {I/i} : A{I/i}.

Proof. By induction on the size of Π.

Lemma 3 (Value Substitution). Let Π be a type derivation and let V be a
value such that Θ;Φ, Γ1;Q1 ⊢v V : A. We have that

Π ▷ Θ;Φ, Γ2, x : A;Q2 ⊢c M : B; I =⇒ Θ;Φ, Γ1, Γ2;Q1, Q2 ⊢c M [V/x] : B; I,

Π ▷ Θ;Φ, Γ2, x : A;Q2 ⊢v W : B =⇒ Θ;Φ, Γ1, Γ2;Q1, Q2 ⊢v W [V/x] : B.

Proof. By induction on the size of Π.

Theorem 2 (Subject Reduction). If Q ⊢ (C,M) : A; I;L and (C,M) ⇓
(D, V ), then Q ⊢ (D, V ) : A;L.

Proof. By induction on the derivation of (C,M) ⇓ (D, V ) and case analysis on
the last rule used in its derivation. Lemma 3 is essential to the app,dest and let
cases, while Lemma 2 is used in the fold-step case. Lemma 1 is essential to the
box case, as it is the only case in which the side effect of the evaluation (the
circuit built by the function being boxed), whose preservation is the a matter of
correctness, becomes a value (the resulting boxed circuit).
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Of course, type soundness is not enough: we also want the resource analysis
carried out by our type system to be correct, as stated in the following theorem.

Theorem 3 (Total Correctness). If Q ⊢ (C,M) : A; I;L, then there exist
D, V such that (C,M) ⇓ (C :: D, V ) and ⊨ width(D) ≤ I.

Proof. By definition, Q ⊢ (C,M) : A; I;L entails that C : Q → L,H and
∅; ∅;H ⊢c M : A; I. Since an empty context is trivially implemented by an
empty closing substitution, by Lemma 1 we get M ⊩I

H A, which by definition
entails that there exist D, V such that (C,M) ⇓ (C :: D, V ) and ⊨ width(D) ≤ I.

6 A Practical Example

This section provides an example of how Proto-Quipper-R can be used to verify
the resource usage of realistic quantum algorithms. In particular, we use our
language to implement the QFT algorithm [11,39] and verify that the circuits it
produces have width no greater than the size of their input, i.e. that the QFT
algorithm does not overall use additional ancillary qubits.

qft ≜ foldj qftStep nil

qftStep ≜ lift(return λ⟨qs, q⟩Listj Qubit⊗Qubit.

let ⟨n, qs⟩ = qlen qs in

let revQs = rev qs in

let ⟨q, qs⟩ = (folde (lift(rotate n)) ⟨q, nil⟩) revQs in

let q = apply(H, q) in

return (cons q qs))

rotate ≜ λnNat.return λ⟨⟨q, cs⟩, c⟩(Qubit⊗Liste Qubit)⊗Qubit.

let ⟨m, cs⟩ = qlen cs in

let rgate = makeRGate (n+ 1−m) in

let ⟨q, c⟩ = apply(rgate, ⟨q, c⟩) in
return ⟨q, cons c cs⟩

Fig. 17. A Proto-Quipper-R implementation of the Quantum Fourier Transform circuit
family. The usual syntactic sugar is employed.

The Proto-Quipper-R implementation of the QFT algorithm is given in Figure
17. As we walk through the various parts of the program, be aware that we
will focus on the resource aspects of the algorithm, ignoring much of its actual
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meaning. Starting bottom-up, we assume that we have an encoding of naturals
in the language and that we can perform arithmetic on them. We also assume
some primitive gates and gate families: H is the boxed circuit corresponding to
the Hadamard gate and has type Circ1(Qubit,Qubit), whereas the makeRGate
function has type Nat ⊸0,0 Circ2(Qubit ⊗ Qubit,Qubit ⊗ Qubit) and produces
instances of the parametric controlled Rn gate. On the other hand, qlen and
rev stand for regular language terms which implement respectively the linear
list length and reverse functions. They have type qlen : Listi Qubit ⊸i,0 (Nat ⊗
Listi Qubit) and rev : Listi Qubit ⊸i,0 Listi Qubit in our type system.

We now turn our attention to the actual QFT algorithm. Function qftStep
builds a single step of the QFT circuit. The width of the circuit produced at step
j is dominated by the folding of the rotate n function, which applies controlled
rotations between appropriate pairs of qubits and has type

(Qubit⊗ Liste Qubit)⊗ Qubit ⊸e+2,0 Qubit⊗ Liste+1 Qubit, (4)

meaning that rotate n rearranges the structure of its inputs, but overall does
not introduce any new wire. We fold this function starting from an accumulator
⟨q, nil⟩, meaning that we can give foldj (lift(rotate n)) ⟨q, nil⟩ type as follows:

fold

i, j, e;n : Nat; ∅ ⊢v lift(rotate n) : !((Q⊗ Liste Q)⊗ Q ⊸e+2,0 Q⊗ Liste+1 Q)

i, j; q : Q; ∅ ⊢v ⟨q, nil⟩ : Q⊗ List0 Q i, j ⊢ j i, j ⊢ Q

i, j;n : Nat, q : Q; ∅ ⊢v folde lift(rotate n) ⟨q, nil⟩ : Listj Q ⊸j+1,1 Q⊗ Listj Q
(5)

where Q is shorthand for Qubit and where we implicitly use the fact that i, j ⊨
max(1,maxe<j e + 2 + (j − 1 − e) × 1) = j + 1 to simplify the arrow’s width
annotation using vsub and the arrow subtyping rule. Next, we fold over revQs ,
which has the same elements as qs and thus has length j, and we obtain that
the fold produces a circuit whose width is bounded by j + 1. Therefore, qftStep
has type

!((Listj Qubit⊗ Qubit) ⊸j+1,0 Listj+1 Qubit), (6)

which entails that when we pass it as an argument to the topmost fold together
with nil we can conclude that the type of the qft function is

fold

i, j; ∅; ∅ ⊢v qftStep : !((Listj Qubit⊗ Qubit) ⊸j+1,0 Listj+1 Qubit)

i; ∅; ∅ ⊢v nil : List0 Qubit i ⊢ i i ⊢ Qubit

i; ∅; ∅ ⊢v foldj qftStep nil : Listi Qubit ⊸i,0 Listi Qubit
(7)

where we once again implicitly simplify the arrow type using the fact that i ⊨
max(0,maxj<i j + 1 + (i − 1 − j) × 1) = i. This concludes our analysis and the
resulting type tells us that qft produces a circuit of width at most i on inputs
of size i, without overall using any additional wires. If we instantiate i to 3, for
example, we can apply qft to a list of 3 qubits to obtain the circuit shown in
Figure 18, whose width is exactly 3.

To conclude this section, note that for ease of exposition qft actually pro-
duces the reversed QFT circuit. This is not a problem, since the two circuits are
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q3 R3 R2 H q3

q2 R2 H q2

q1 H q1

Fig. 18. The circuit of input size 3 produced by qft (cons q1 cons q2 cons q3 nil)

equivalent resource-wise and the actual QFT circuit can be recovered by boxing
the result of qft and reversing it via a primitive operator. Besides, note that
Quipper’s internal implementation of the QFT is also reversed [16].

7 Related Work

The metatheory of quantum circuit description languages, and in particular of
Quipper-style languages, has been the subject of quite some work in recent
years, starting with Ross’s thesis on Proto-Quipper-S [48] and going forward with
Selinger and Rios’s Proto-Quipper-M [46]. In the last five years, some proposals
have also appeared for more expressive type systems or for language extensions
that can handle non-standard language features, such as the so-called dynamic
lifting [8,21,35], available in the Quipper language, or dependent types [22].
Although some embryonic contributions in the direction of analyzing the size of
circuits produced using Quipper have been given [56], no contribution tackles
the problem of deriving resource bounds parametric on the size of the input. In
this, the ability to have types which depend on the input, certainly a feature of
Proto-Quipper-D [22], is not useful for the analysis of intensional attributes of
the underlying circuit, simply because such attributes are not visible in types.

If we broaden the horizon to quantum programming languages other than
Quipper, we come across, for example, the recent works of Avanzini et al. [5]
and Liu et al. [36] on adapting the classic weakest precondition technique to
the cost analysis of quantum programs, which however focus on programs in an
imperative language. The work of Dal Lago et al. [13] on a quantum language
which characterizes complexity classes for quantum polynomial time should cer-
tainly be remembered: even though the language allows the use of higher-order
functions, the manipulation of quantum data occurs directly and not through
circuits. Similar considerations hold for the recent work of Hainry et al. [29] and
Yamakami’s algebra of functions [59] in the style of Bellantoni and Cook [6],
both characterizing quantum polynomial time.

If we broaden our scope further and become interested in the analysis of
the cost of classical or probabilistic programs, we face a vast literature, with
contributions employing a variety of techniques on heterogeneous languages and
calculi: from functional programs [2,32,33] and term rewriting systems [3,4,41]
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to probabilistic [34] and object-oriented programs [19,28]. In this context, the
resource under analysis is often assumed to be computation time, which is rela-
tively easy to analyze given its strictly monotonic nature. Circuit width, although
monotonically non-decreasing, evolves in a way that depends on a non-monotonic
quantity, i.e. the number of wires discarded by a circuit. As a result, width has
the flavor of space and its analysis is less straightforward.

It is also worth mentioning that linear dependent types can be seen as a
specialized version of refinement types [18], which have been used extensively in
the literature to automatically verify interesting properties of programs [37,62].
In particular, the work of Vazou et al. on Liquid Haskell [57,58] has been
of particular inspiration, on account of Quipper being embedded precisely in
Haskell. The liquid type system [47] of Liquid Haskell relies on SMT solvers
to discharge proof obligations and has been used fruitfully to reason about both
the correctness and the resource consumption (mainly time complexity) of con-
crete, practical programs [30].

8 Generalization to Other Resource Types

This work focuses on estimating the width of the circuits produced by Quipper
programs. This choice is dictated by the fact that the width of a circuit cor-
responds to the maximum number of distinct wires, and therefore individual
qubits, required to execute it. Nowadays, this is considered as one of the most
precious resources in quantum computing, and as such must be kept under con-
trol. However, this does not mean that our system could not be adapted to the
estimation of other parameters. This section outlines how this may be possible.

First, estimating strictly monotonic resources, such as the total number of
gates in a circuit, is possible and in fact simpler than estimating width. A sin-
gle index term I that measures the number of gates in the circuit built by a
computation would be enough to carry out this analysis. This index would be
appropriately increased any time an apply instruction is executed, while sequenc-
ing two terms via let would simply add together the respective indices.

If we were instead interested in the depth of a circuit, then we would need
a slightly different approach. Although in principle it would be possible to still
rely on a single index I, this would give rise to a very coarse approximation,
effectively collapsing the analysis of depth to a gate count analysis. A more pre-
cise approximation could instead be obtained by keeping track of depth locally.
More specifically, it would be sufficient to decorate each occurrence of a wire
type w with an index term I so that if a label ℓ were typed with wI , it would
mean that the sub-circuit rooted in ℓ has a depth at most equal to I.

Finally, it should be mentioned that the resources considered, i.e. the depth,
width, and gate count of a circuit, can be further refined so as to take into
account only some kinds of wires and gates. For instance, one could want to
keep track of the maximum number of qubits needed, ignoring the number of
classical bits, or at least distinguishing the two parameters, which of course have
distinct levels of criticality in current quantum hardware.
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9 Conclusion and Future Work

In this paper we introduced a linear dependent type system based on index re-
finements and effect typing for the paradigmatic calculus Proto-Quipper, with
the purpose of using it to derive upper bounds on the width of the circuits pro-
duced by programs. We proved not only the classic type safety properties, but
also that the upper bounds derived via the system are correct. We also showed
how our system can verify a realistic quantum algorithm and elaborated on some
ideas on how our technique could be adapted to other crucial resources types,
like gate count and circuit depth. Ours is the first type system designed specifi-
cally for the purpose of resource analysis to target circuit description languages
such as Quipper. Technically, the main novelties are the smooth combination of
effect typing and index refinements, but also the proof of correctness, in which
reducibility and effects are shown to play well together.

Among topics for further work, we can identify three main research direc-
tions. First and foremost, it would be valuable to investigate the ideas presented
in this paper from a more practical perspective, that is, to provide a prototype
implementation of the language with its type-checking procedure. The neces-
sity to count the wires present in the context (e.g. when typing abstractions)
makes it difficult to embed Proto-Quipper-R into existing languages, even those
that, in principle, seem like ideal hosts, like Liquid Haskell [57] or Granule
[42]. Because of this, we think that it would be better to produce a standalone
implementation of Proto-Quipper-R that interfaces directly with SMT solvers to
discharge the semantic judgments that are used pervasively in the typing rules.

Staying instead on the theoretical side of things, on one hand we have the
prospect of denotational semantics: most incarnations of Proto-Quipper are en-
dowed with categorical semantics that model both circuits and the terms of
the language that build them [21,22,35,46]. We already mentioned how the in-
tensional nature of the quantity under analysis renders the formulation of an
abstract categorical semantics for Proto-Quipper-R and its circuits a nontrivial
task, but we believe that one such semantics would help Proto-Quipper-R fit
better in the Proto-Quipper landscape.

On the other hand, in Section 8 we briefly discussed how our system could be
modified to handle the analysis of different resource types. It would be interesting
to test this path and to investigate the possibility of actually generalizing our
resource analysis, that is, of making it parametric on the kind of resource being
analyzed. This would allow for the same program in the same language to be
amenable to different forms of verification, in a very flexible fashion.
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On the Hardness of Analyzing Quantum
Programs Quantitatively

Martin Avanzini1 , Georg Moser2 , Romain Péchoux , and
Simon Perdrix3
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Abstract. In this paper, we study quantitative properties of quantum
programs. Properties of interest include (positive) almost-sure termina-
tion, expected runtime or expected cost, that is, for example, the ex-
pected number of applications of a given quantum gate, etc. After study-
ing the completeness of these problems in the arithmetical hierarchy over
the Clifford+T fragment of quantum mechanics, we express these prob-
lems using a variation of a quantum pre-expectation transformer, a weak-
est pre-condition based technique that allows to symbolically compute
these quantitative properties. Under a smooth restriction—a restriction
to polynomials of bounded degree over a real closed field—we show that
the quantitative problem, which consists in finding an upper-bound to
the pre-expectation, can be decided in time double-exponential in the
size of a program, thus providing, despite its great complexity, one of
the first decidable results on the analysis and verification of quantum
programs. Finally, we sketch how the latter can be transformed into an
efficient synthesis method.

1 Introduction

Motivations. Quantum computation is a promising and emerging computa-
tional paradigm which can efficiently solve problems considered to be intractable
on classical computers [41,20]. However, the unintuitive nature of quantum me-
chanics poses challenging questions for the design and analysis of corresponding
quantum programming. Indeed, the quantum program dynamics are consider-
ably more complicated compared to the behavior of classical or probabilistic
programs. Therefore, formal reasoning requires the development of novel meth-
ods and tools, a development that has already started and recently gathered
momentum in various areas, like design automation [43,22], programming lan-
guages [39,2,31,23,15], verification [36,11], etc.

Among these formal methods, those that allow us to obtain quantitative
properties on quantum programs are particularly interesting. They can be used
to obtain relevant information about the computations of a quantum program,
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RUS ≜ iN = 0;

xB = tt;

while x do {
q2 = |0⟩ ;
q2 ∗= H;

q2 ∗= T;

i = i+ 1

q2, q1 ∗= CNOT;

q2 ∗= H;

q2, q1 ∗= CNOT;

q2 ∗= T;

i = i+ 1

q2 ∗= H;

x = meas q2
}

|0⟩

|φ⟩

H T H T H

(
I+i

√
2X√
3

)1−x

|φ⟩

xmeas

˙

Fig. 1. Repeat-until-success program RUS and step-circuit.

such as the number of qubits used and the number of unitary operators used,
thus enabling the corresponding compiled quantum circuit to be optimized (for
example, by minimizing the use of gates that are hard to make fault-tolerant,
or by reducing the number of qubits) or to avoid undesirable behavior such
as non-termination. Another quantitative property of interest may also be the
question whether or not a program terminates almost-surely, that is, whether its
probability of non-termination is zero or not. Similarly, we could aim to capture
the expected values of (classical) program variables upon program termination.
The latter can also be employed to reason about the expected runtime or the
expected cost of quantum programs, if we suitably instrument the code with
counter variables.

To illustrate this, the program of Figure 1 implements a Repeat-Until-Success
algorithm that can be used to simulate quantum unitary operators on input qubit
q1 by using repeated measurements. The quantum step-circuit on the right part
corresponds to one iteration of the loop. Variable i in the program just acts as a
counter for T-gates. Hence an analysis on the expected value of variable i can be
used to infer an upper-bound on the expected T-count, i.e., the expected number
of times a T-gate is used in the fully compiled quantum circuit. Such an approach
offers the advantage to allow the programmer to implement quantum programs
using fewer T-gates, which are costly to implement fault-tolerantly [10,16], and
it therefore provides a simple quantum program to illustrate that the study of
quantitative properties is paramount.

In [6,30], new methodologies named quantum expectation transformers based
on predicate transformers [13,28] and expectation transformers [32,17] have been
put forward to naturally express and study the quantitative properties of quan-
tum programs. However, no attempt was made to automate the corresponding
techniques or delineate how complicated such an automation could be. Automa-
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tion of these formal verification techniques in the context of quantum programs
is a particularly difficult problem. Indeed, the consideration of Hilbert spaces
as a mathematical framework for describing principles and laws of quantum
mechanics makes it seemingly impossible to reason fully automatically about
quantitative properties of quantum program: they involve computational ob-
jects of exponential dimensions (in the number of qubits) with scalars ranging
over an uncountable domain (i.e., complex numbers C). This problem is directly
linked to the fact that the set C includes non-computable numbers [42] and that
testing the inequality ≤ or the equality = of two real numbers is not decidable,
even if one restricts their study to computable real numbers. Consequently, the
particular nature of quantum programs and of their semantic domain, Hilbert
spaces, makes it impossible to directly apply the results obtained in the classical
and probabilistic setting [37,24].

Contributions. In this paper, we study the hardness of the quantitative prop-
erties of mixed classical-quantum programs and provide a first step towards their
(full) automation using quantum expectation transformers.

To this end, we restrict the considered quantum gates to the Clifford+T frag-
ment, which is known to be the simplest approximately universal fragment of
quantum mechanics [1]. Clifford+T makes it possible to only consider quantum
states with algebraic amplitudes, thus restricting the study to a countable do-
main. It implies that our results can accommodate quantum gates employed in
actual hardware, recently employed to claim quantum advantage, cf [3]. More-
over, the obtained results are very general as it can be extended to any set of
gates with algebraic coefficients.

As motivated, our first contribution is about the general hardness of deciding
quantitative properties for mixed classical-quantum programs. For a given input
state, we study properties such as (positive) almost-sure termination, (P)Ast
for short; testing problems, TestR, which consist in comparing a quantum ex-
pectation (for example, the mean value of a variable) with a given value (an
algebraic and positive real number) wrt the relation R; and the finiteness prob-
lem, Test ̸=∞, which consists in checking that a quantum expectation is finite.
For each of those problems, we also study the related universal problem, which
consists in checking the corresponding property for every input. We establish a
precise mapping (Theorem 1) of the inherent complexity of each problem in the
arithmetical hierarchy [34] that is summarized in Table 1 (provided in Section 3).
E.g., Ast is Π0

2 -complete while Past is Σ0
2 -complete.

Our second contribution aims to overcome the aforementioned undecidability
results. For that, we study approximations. More precisely, we focus on infer-
ring bounding functions (in general depending on the input) on the expected
values of classical program variables upon termination. The decision problem
has thus been altered to an inference problem. Further, we restrict the set of
potential bounding functions. As a suitable class of functions, we consider poly-
nomials over the real-closed field of the algebraic numbers. The restriction to
algebraic numbers guarantees that comparison operations between real num-
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bers remain decidable. On the other hand, for any real closed field, quantifier
elimination for formulas over polynomials is decidable, that is, there exists a
double-exponential algorithm computing a quantifier-free formula equivalent to
the original formula [21]. This recasting of the problem and restriction of the
solution space suffices to render the problem decidable. The inference algorithm
established remains double-exponential (Theorem 4), thus of similar complexity
as the underlying quantifier elimination procedure.

Finally, our last contribution (Section 5) studies effective automation of the
inference of upper bounds on the expected values of program variables. To im-
prove upon the double-exponential complexity, we further restrict the class of
polynomials considered, that is, to degree-2 polynomials and sketch how tech-
niques from optimization theory can be employed. Several simple quantum algo-
rithms such as program RUS can be analyzed using this approach (Example 6).
This further reduction in expressivity allows the encoding of the problem in SMT
and thus paves the way towards (full) automation.

Related Work. Predicate transformers [13,28]—on which our work is based—
were introduced as a method for reasoning about the semantics of imperative pro-
grams. They have been adapted to the probabilistic setting, leading to the notion
of expectation transformer [32,17], which has been used to reason about expected
values [26,8], runtimes [27,33], and costs [7,4,33], and to the quantum paradigm,
leading to the notion of quantum pre-expectation transformer [35,30,6].

The problem of studying the difficulty of analyzing quantitative program
properties has been deeply studied in the classical setting. To mention a few,
[14] and [37] study termination properties and runtime/derivational properties
of first-order programs, respectively. Further, in [24] completeness results for
various quantitative properties of (pure) probabilistic programs have been estab-
lished. The inference problem of expectation transformers, i.e., establishing an
implementation that automates the search for pre-expectations, has been stud-
ied extensively. Examples of successful implementation are presented in [33,7,8].
Up to now, however, no practical, feasible studies have been carried out on quan-
tum languages. Among the techniques using quantum expectation transformers,
we believe [6] to be the most amenable to automation. Indeed, by lifting up-
per invariants of [27] to the quantum setting, it enables approximate reasoning
and eliminate the need to reason about fixpoints or limits, stemming from the
semantics of loops.

2 Quantum Programming Language

In this section, we introduce the syntax and operational semantics of the con-
sidered mixed-quantum imperative programming language.

Syntax. We make use of three basic datatypes B, N and Q for Boolean, num-
bers (non-negative integers), and qubit data, respectively. Let K be an arbitrary
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NExp ∋ n, n1, n2 ::= xN | n ∈ N | n1 + n2 | n1 − n2 | n1 × n2
BExp ∋ b, b1, b2 ::= xB | tt | ff | n1 = n2 | n1 < n2 | ¬b | b1 ∧ b2 | b1 ∨ b2
Exp ∋ e, e1, e2 ::= n | b
Stmt ∋ stm, stm1, stm2 ::= skip | xK = eK | stm1; stm2 | if bB then stm1 else stm2

| while bB do stm | qQ ∗= U | xB = meas qQ

Fig. 2. Syntax of quantum programs.

classical type in {B,N}. Each program variable comes with a fixed datatype and
can be optionally annotated by its type as a superscript. In what follows, we will
use x, x′, y, . . . to denote classical variables of type K and q, q′, . . . to denote
quantum variables of type Q. A program, denoted P, is simply a statement; see
Figure 2. Program statements are either classical assignments, conditionals, se-
quences, loops, quantum assignments qQ ∗= U, or measurements xB = meas qQ.
A quantum assignment consists in the application of a quantum unitary gate
U of arity ar(U) to a sequence of qubits q ≜ q1, . . . , qar(U). As we will see in
the semantics section, a unitary matrix U will be associated with each quantum
gate U. A measurement performs a single qubit measurement of q in the com-
putational basis: the outcome is a Boolean value and the quantum state evolves
accordingly. For a given syntactic construct t, let B(t) (respectively N (t), Q(t))
be the set of Boolean (respectively, number, qubit) variables in t.

Notice that the language encompasses qubit-initializing in the basis states. In
particular, we will use qQ = |0⟩ as syntactic sugar for x = meas q; if x then q ∗=
X else skip, for X being the Pauli X gate and for some fresh variable x of type
B.

Example 1. Consider the program of Figure 3, adapted from [6], as a simple
leading example. Let H be the unitary operator computing the Hadamard gate.
This program simulates coin tossing by repeatedly measuring the qubit q, until
the measurement outcome ff occurs. The probability to terminate within n steps

depends on the initial state ρ =
(

α β
γ δ

)
(a density matrix in C2×2, which implies

α + δ = 1 and γ = β̄) of the qubit q. Variable i is increased by one at each
iteration, and hence, when the program terminates, i stores as final value the
number of loop iterations performed. The overall probability of termination is
1. The mean value of variable i, that is, the expected number of loop iterations,
depends on the program input, in particular on the initial quantum state. After

termination, for an initial state ρ =
(

α β
β̄ δ

)
, its expected value is given by

F (ρ) = p0×1+

∞∑
i=1

p1
2i

(i+1) = p0+p1+2p1 = 1+(α−β− β̄+ δ) = 2− (β+ β̄),

where p0 = α+β+β̄+δ
2 = 1+β+β̄

2 and p1 = 1−p0 are the probabilities of measuring
|0⟩ and |1⟩, respectively, on the first iteration of the loop. For instance, for a qubit
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Cntoss ≜ xB = tt;

iN = 0;

while x do {
i = i+ 1;

qQ ∗= H;

x = meas q

}

≜ stm

with H =
1√
2

(
1 1
1 −1

)

Fig. 3. Quantum Coin tossing

initialized in state |ϕ⟩ =
√

1/3 |0⟩ +
√

2/3 |1⟩, the corresponding density matrix

is ρ|ϕ⟩ = |ϕ⟩⟨ϕ| =
(

1/3
√

2/3
√

2/3 2/3

)
and hence the expected number of loop iterations

is F (ρ|ϕ⟩) = 2 − 2
√
2/3. It will be simply 2 in the case of an initialization in the

computational basis |ϕ⟩ = |0⟩ or |ϕ⟩ = |1⟩.

Operational Semantics. Following [6], we model the dynamics of our language
as a probabilistic abstract reduction system (see [9]), a transition system where
reduction is defined as a relation over probability distributions.

Probabilistic abstract reduction systems. Given a subset K of R, let K+ be the
set of non-negative numbers in K, i.e., K+ ≜ K ∩ {x | x ≥ 0} and let K∞ be
defined by K∞ ≜ K ∪ {∞}.

A discrete (sub)distribution δ over a set A is a function δ : A → [0, 1] with
countable support supp(δ) ≜ {a ∈ A | δ(a) ̸= 0} that maps an element a of
A to a probability δ(a) such that |δ| ≜

∑
a∈supp(δ) δ(a) = 1 (|δ| ≤ 1). Any

(sub)distribution δ can be written as {δ(a) : a}a∈supp(δ). The set of subdistribu-
tions over A, denoted by D(A), is closed under denumerable convex combinations∑

i pi · δi ≜ λa.
∑

i piδi(a), with pi ∈ [0, 1] and
∑

i pi ≤ 1. Slightly simplifying
standard notation, given f : A → R+∞ and a subdistribution δ ∈ D(A), we de-
fine Eδ(f), the expectation of f on δ, by Eδ(f) ≜ Σa∈supp(δ)δ(a)f(a). Note that
Eδ(f) ∈ R+∞ is always defined, since the images of f are non-negative reals.

Bournez and Garnier [9] introduced the notion of Probabilistic Abstract Re-
duction System (PARS) as a means to study reduction systems that evolve
probabilistically. A PARS → on A is a binary relation · → · ⊆ A × D(A). The
intended meaning is that when a→ δ, then a reduces to b ∈ supp(δ) with prob-
ability δ(b). Here, we focus on deterministic PARSs, i.e., PARSs → with a→ δ1
and a → δ2 implies δ1 = δ2. An object a ∈ A is called terminal if there is no
rule a→ δ, which we write as a ̸→.

Every deterministic PARS → over A naturally lifts to a reduction relation
−→→ over distributions so that δ −→→ ε, if the reduct distribution ε is obtained
from δ by replacing reducts in supp(δ) according to the PARS →. In fact, we

define this lifting in terms of a ternary relation · ·−→→ · ⊆ D(A)× R+ ×D(A) on
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distributions, where in a step δ
c−→→ ε the weight c signifies the probability that

a reduction has occurred. This relation is defined wrt. the following three rules.

a ̸→

{1 : a} 0−→→ {1 : a}

a→ δ

{1 : a} 1−→→ δ

δi
ci−→→ ϵi

∑
i pi ≤ 1∑

i pi · δi
∑

i pici−−−−−→→
∑

i pi · ϵi

We may sometimes use the n-fold (n ≥ 0) composition of
·−→→, denoted

·−→→n, given

by δ
c−→→n ϵ if δ

c1−→→ · · · cn−→→ ϵ and the weights satisfy c =
∑n

i=1 ci. Notice that

since → is deterministic, so is
c−→→, in the sense that δ

c1−→→ ϵ1 and δ
c2−→→ ϵ2 implies

c1 = c2 and ϵ1 = ϵ2. Thus, in particular, for every a ∈ A there is precisely one
(infinite) reduction

{1 : a} = δ0
c0−→→ δ1

c1−→→ δ2
c2−→→ δ3 −→→ · · · .

For any b ∈ A, δi(b) gives the probability that a reduces to b in i steps. Note
that when b is terminal, this probability only increases along reductions (i.e.,
δi(b) ≤ δi+1(b) for all i). This justifies that we define the terminal distribution
of a as the distribution δ(b) ≜ limi→∞ δi(b). Note that δ(b) gives the probability
that a reaches b in an arbitrary (but finite) number of steps. Since the weights
ci indicate the probability that a step has been performed from δi to δi+1, the
infinite sum

∑∞
i=0 ci ∈ R+∞ gives the expected number of reduction steps carried

out, the expected derivation length of a [5].
For a PARS →, we denote by term→ : A → D(A) the function associating

with each a ∈ A its terminal distribution. The expected derivation length function
edl→ : A → R+∞ associates each a ∈ A to its expected derivation length. The
PARS → is almost surely terminating [40] (a.s. terminating for short) if a ∈ A
reduces to a terminal object b ̸→ with probability 1, that is, if |term→(a)| = 1
for every a. It is positive almost surely terminating, if the expected derivation
length is always finite, that is, edl→(a) <∞ for all a ∈ A.

Apart from termination, we are interested also in questions related to func-
tional correctness, such as (i) what is the probability that a reaches a terminal
b, (ii) what is the probability that a reaches a terminal satisfying predicate P ,
and more generally, (iii) which value does a function f : A → R+∞ take, in
expectation, when fully reducing an object a. In the literature [32], one tool to
answer all of these are given by weakest pre-expectation transformers, the natural
generalization of classical weakest pre-condition transformers to a quantitative,
probabilistic setting. We suite this notion to PARSs.

Definition 1 (Weakest pre-expectation). The weakest pre-expectation for
a PARS → over A is given by the function

wp→ : (A→ R+∞) → (A→ R+∞)

wp→ ≜ λf.λa. Eterm→(a)(f).

For 1b the indicator function evaluating to 1 on argument b and to 0 other-
wise, and by seeing a predicate P as a 0, 1-valued function, wp→ 1b a answers
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(Skip)
(skip, s, ρ) →q {1 : (↓, s, ρ)}

(Exp)
(x = e, s, ρ) →q {1 : (↓, s[x := JeKs], ρ)}

(Op)
(q ∗= U, s, ρ) →q {1 : (↓, s, ΦUq(ρ))}

(Meas)
(x = meas qi, s, ρ) →q {tr(Mk,iρ) : (↓, s[x := k],mk,i(ρ))}k∈{0,1}

(stm1, s, ρ) →q {pi : (stmi↓, si, ρi)}i∈I
(Seq)

(stm1; stm2, s, ρ) →q {pi : (stmi↓; stm2, s
i, ρi)}i∈I

JbKs ∈ {0, 1}
(Cond)

(if b then stm1 else stm0, s, ρ) →q {1 : (stmJbKs , s, ρ)}

JbKs = 0
(Wh0)

(while b do stm, s, ρ) →q {1 : (↓, s, ρ)}

JbKs = 1
(Wh1)

(while b do stm, s, ρ) →q {1 : (stm; while b do stm, s, ρ)}

Fig. 4. Operational semantics in terms of PARS.

question (i), wp→ P a answers (ii), and generally wp→ f a answers question (iii).
Note also that a PARS is a.s. terminating iff wp→ (λb. 1) a = 1 for each a ∈ A.
On the other hand, positive a.s. termination cannot be expressed through an
application of wp→.

Quantum programs as PARSs. We now endow quantum programs with an op-
erational semantics defined in terms of a PARS. Given a totally ordered set of
qubits Q = {q1, . . . , qn}, let HQ be the 2n-dimensional Hilbert space defined by

HQ ≜ ⊗n
i=1Hqi , with Hq = C2 being the vector space of computational basis

{|0⟩ , |1⟩} and ⊗ being the tensor product. With ⟨k| we denote the transpose con-
jugate of |k⟩, for k ∈ {0, 1}. Let M(HQ) be the set of complex square matrices
acting on the Hilbert space HQ, i.e., M(HQ) = C2n×2n . Given M ∈ M(HQ),
M† denotes the transpose conjugate of M , and I2n denotes the identity matrix
over M(HQ). We will write I when the dimension is clear from the context.

Let D(HQ) ⊊ M(HQ) be the set of all density operators (or quantum states),
i.e., positive semi-definite matrices of trace equal to 1 on HQ. Density operators
can be viewed as the mathematical representation of a (mixed) quantum state.
A unitary operator U is a matrix in M(HQ) such that UU † = U†U = I. A
superoperator ΦU : D(HQ) → D(HQ), an endomorphism over density opera-

tors, is attached to each unitary operator U and defined by ΦU ≜ λρ.UρU †.
By definition, ΦU is a completely positive trace preserving linear map. Indeed,
tr(UρU †) = tr(ρ), by unitarity. Hence UρU † is a density operator in D(HQ) for
each ρ ∈ D(HQ).
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Regarding measurements, for each i, 1 ≤ i ≤ card(Q), we define Mk,i ∈
M(HQ), with k ∈ {0, 1}, by M0,i ≜ I2i−1 ⊗ (|0⟩ ⟨0|)⊗ I2n−i and M1,i ≜ I−M0,i.
The measurement of the qubit qi (in the computational basis) of a density matrix
ρ ∈ D(HQ), produces the classical outcome k ∈ {0, 1} with probability tr(Mk,iρ).
The (normalized) quantum state, after the measurement, is defined by

mk,i(ρ) ≜

{
Mk,iρM

†
k,i

tr(Mk,iρ)
, if tr(Mk,iρ) ̸= 0,

I
2n otherwise.

Note that for all ρ ∈ D(HQ), mk,i(ρ) ∈ D(HQ), as it holds that tr(mk,i(ρ)) = 1.

Indeed, tr(Mk,iρM
†
k,i) = tr(M2

k,iρ) = tr(Mk,iρ), as Mk,i is a projection. Hence
mk,i is a map in D(HQ) → D(HQ).

We set JBK ≜ {0, 1} and JN K ≜ N. The classical state is modeled as a (well-
typed) store s of domain dom(s) mapping each variable x of type K to a value
in JKK. With Store, we denote the set of all such stores. Let s[xK := k] with
k ∈ JKK be the store obtained from s by updating the value assigned to x in
the map s. Given a store s, let J−Ks : KExp → JKK be the map associating to
each expression e of type K and such that B(e) ∪ N (e) ⊆ dom(s), a value in
JKK, defined in the obvious way. For example JxKs ≜ s(x), JnKs ≜ n, JttKs ≜ 1,
Jn1 − n2Ks ≜ max(0, Jn1Ks − Jn2Ks), etc.

Let ↓ be a special symbol for termination. A configuration µ, for (extended)
statement stm ∈ Stmt ∪ {↓}, store s ∈ Store, and a quantum state ρ ∈ HQ,
has the form (stm, s, ρ). Let Conf be the set of configurations. A configuration
(stm, s, ρ) is well-formed with respect to the sets of variables B, V , and Q if
B(stm) ⊆ B, N (stm) ⊆ V , Q(stm) ⊆ Q, dom(s) = B ∪ V , and ρ ∈ D(HQ).
Throughout the paper, we only consider configurations that are well-formed
with respect to the sets of variables of the program under consideration.

The operational semantics is described in Figure 4 as a PARS →q over ob-
jects in Conf, where terminal objects are precisely the configurations of the
shape (↓, s, ρ). The (classical or quantum) state of a configuration can only
be updated by the three rules (Exp), (Op), and (Meas). Rule (Exp) updates
the classical store wrt the value of the evaluated expression. Rule (Op) up-

dates the quantum state to a new quantum state ΦUq
(ρ) = UqρU

†
q , where

Uq is the unitary operator in M(HQ) computed by extending the quantum
gate U to the entire set of qubits Q. Rule (Meas) performs a measurement on
qubit qi. This rule returns a distribution of configurations corresponding to the
two possible outcomes, k = 0 and k = 1, with their respective probabilities
tr(Mk,iρ) and, in each case, updates the classical store and the quantum state
accordingly. In the particular case where tr(Mk0,iρ) = 0 for some k0 ∈ {0, 1},
{tr(Mk,iρ) : (↓, s[x := k],mk,i(ρ))}k∈{0,1} = {1 : (↓, s[x := 1 − k0],m1−k0,i(ρ))}.
Rule (Seq) governs the execution of a sequence of statements stm1; stm2, under
the covenant that ↓ ; stm ≜ stm, for each statement stm. The rule accounts
for potential probabilistic behavior when stm1 performs a measurement and it
is otherwise standard. All the other rules are standard.
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In a configuration µ = (stm, s, ρ), the pair σ ≜ (s, ρ) is called a state. Let
Ststm be the set of states σ, τ, . . . that are well-formed wrt statement stm. For
simplicity, we will denote this set by St when stm is clear from the context. To
ease the presentation, we sometimes write (stm, σ) for the configuration µ.

We will be interested in expectation-based reasoning on quantum programs.
In what follows, we also call functions f : Conf → R+∞ expectations, for brevity.

Definition 2. For a statement stm and f : St → R+∞, we overload the notions
of expected derivation length and weakest pre-expectation by:

edlstm : St → R+∞ qwpstm : (St → R+∞) → (St → R+∞)

edlstm ≜ λσ.edl→q
(stm, σ) qwpstm ≜ λf.λσ.wp→q

(fst)(stm, σ),

where fst(stm, τ) = f(τ).

Example 2. Consider the program Cntoss given Figure 3. In the setting of the
program Cntoss,Q = {q},M0,1 = ( 1 0

0 0 )andM1,1 = ( 0 0
0 1 ). On an initial state σ =

(s, ρ), the reduction starts deterministically as in the classical setting, performing
the initialization x = tt and i = 0. From there, evaluation reaches the loop
while x do stm. At each loop iteration, the loop counter i is incremented,
and the Hadamard gate applied to the quantum variable q. The loop guard is
obtained through measuring q.

To see how this is reflected in the semantics, let us first look at an iteration
of the loop. If x was set to false, that is x holds the value 0, by rule (Wh0) the
loop terminates within one step:

{1 : (while x do stm, [x:=0, i:=i], ρ)} 1−→→q {1 : (↓, [x:=0, i:=i], ρ)}. (0)

On the other hand, when x was previously set to true, the loop executes its body.
Precisely, we have:

{1:(while x do stm, [x:=1, i:=i], ρ)}
1−→→q {1:(i = i+1; q = H; x = meas q; while x do stm, [x:=1, i:=i],ρ)} (1)

1−→→q {1 : (q = H; x = meas q; while x do stm, [x:=1, i:=i+ 1], ρ)} (2)
1−→→q {1 : (x = meas q; while x do stm, [x:=k, i:=i+ 1], ΦH(ρ))} (3)
1−→→q {pk : (while x do stm, [x:=k, i:=i+ 1], ρk))}k∈{0,1}, (4)

where in the last step, the probability pk equals tr(Mk,1ΦH(ρ)), while the normal-
ized quantum state ρk is given as mk,1(ΦH(ρ)). The above reduction is obtained
by applying the rules of Figure 4: rule (Wh1) for reduction (1); rules (Exp) and
(Seq) for reduction (2); rules (Op) and (Seq) for reduction (3); and finally rules
(Meas) and (Seq) for reduction (4).

For an arbitrary initial quantum state ρ =
(

α β
γ δ

)
∈ D(HQ) (where α, β, γ, δ ∈

C and tr(ρ) = α+ δ = 1, γ = β, etc.), it follows that

p0 = tr(M0,1HρH
†) = tr(( 1 0

0 0 )
1

2

(
α+β+γ+δ α−β+γ−δ
α+β−γ−δ α−β−γ+δ

)
) =

1 + β + γ

2
,
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and that, p1 = 1− p0 = 1−(β+γ)
2 . Using ρk =

Mk,1HρH†M†
k,1

tr(Mk,1HρH†)
=

(Mk,1H)ρ(Mk,1H)†

pk
,

ρ0 =

(
1/

√
2 1/

√
2

0 0

)( α β
γ δ

)(
1/

√
2 0

1/
√

2 0

)
p0

= ( 1 0
0 0 ) ρ1 =

(
0 0

1/
√

2 1/
√

2

)( α β
γ δ

)(
0 1/

√
2

0 1/
√

2

)
p1

= ( 0 0
0 1 ).

Summarizing (1)–(4) we thus get:

{1 : (while x do stm, [x:=1, i:=i],
(

α β
γ δ

)
)}

4−→→4
q {p0: (while x do stm, [x:=0, i:=i+ 1], ρ0),

p1: (while x do stm, [x:=1, i:=i+ 1], ρ1)}.
Putting everything together, we have

(Cntoss, s,
(

α β
γ δ

)
)

2−−−−→→2
q {1 : (while x do stm, [x:=1, i:=0], ρ)}

4−−−−→→4
q {p0: (while x do stm, [x:=0, i:=1], ρ0),

p1: (while x do stm, [x:=1, i:=1], ρ1)}
p0+4p1−−−−−→→4

q {p0: (↓, [x:=0, i:=1], ρ0),
p1

2 : (while x do stm, [x:=0, i:=2], ρ0),
p1

2 : (while x do stm, [x:=1, i:=2], ρ1)}
p1
2 +4

p1
2−−−−−→→4

q {p0: (↓, [x:=0, i:=1], ρ0),
p1

2 : (↓, [x:=0, i:=2], ρ0),
p1

4 : (while x do stm, [x:=0, i:=3], ρ0),
p1

4 : (while x do stm, [x:=1, i:=3], ρ1)}
p1
4 +4

p1
4−−−−−→→4

q · · ·
where terminal configurations are underlined. This reduction converges to the
terminal distribution

termCntoss(s, ρ) = {p0 : (↓, [x:=0, i:=1], ρ0)}+ {p1

2i : (↓, [x:=0, i:=i+ 1], ρ0)}i≥1,

with an expected derivation length of

edlCntoss(s,
(

α β
γ δ

)
) = 2 + 4 + (p0 + 4p1) +

∞∑
i=1

5p1
2i

= 7 + 8p1 = 11− 4(β + γ).

For expectation f(s, ρ) ≜ s(i), measuring the iteration counter i, we have

qwpCntoss f (s,
(

α β
γ δ

)
) = p0 × 1 +

∞∑
i=1

p1
2i

(i+ 1) = p0 + p1 + 2p1 = 2− (β + γ),

that is, the mean value held by i holds after execution is 2 − (β + γ). The
termination probability is

qwpCntoss (λσ.1) (s,
(

α β
γ δ

)
) = p0 × 1 +

∞∑
i=1

p1
2i

× 1 = p0 + p1 = 1,

i.e., the program is almost surely terminating.
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3 Weakest Pre-expectations and Arithmetical Hierarchy

In this section, we study the hardness of some natural quantitative problems for
weakest pre-expectations and expected derivation length.

Computability-Aimed Restrictions. This subsection is devoted to putting
some restrictions on programs and on the considered notion of expectation to
overcome the issues of computability, mentioned in the introduction.

Algebraic numbers. Towards this end, our solution is to target a subset of com-
plex numbers, where simple operations like equality are decidable. We consider
the set Q of algebraic numbers, i.e., complex numbers in C that are roots of a non-
zero polynomial in Q[X]. Let A ≜ Q∩R be the real closed field of real algebraic
numbers in R. The following inclusions trivially hold (i) N ⊆ Q ⊆ A ⊆ R ⊆ C
and (ii) Q ⊆ C. It was proved in [18, Proposition 2.2] that equality over Q and
inequality over A are decidable using Cohn’s representation [12]. It is well-known
that the product and sum over Q are computable in polynomial time.

We now restrict the program semantics to matrices and density operators over
algebraic numbers. Given a totally ordered set of qubits Q = {q1, . . . , qn}, let
H̃Q be the Hausdorff pre-Hilbert space Q2n

(i.e., the completeness requirement

on Hilbert spaces is withdrawn) of n qubits defined by H̃Q ≜ ⊗n
i=1H̃qi , with

H̃q ≜ Q2
being the vector space of computational basis {|0⟩ , |1⟩} over the field

Q. Let M(H̃Q) and D(H̃Q) be the set of matrices and density operators on H̃Q,
respectively.

Clifford+T gates. For the program semantics to be defined on the space D(H̃Q),
the considered quantum gates are now restricted to gates whose corresponding
unitary operators are in M(H̃Q), i.e., have a matrix representation over the
algebraic numbers. To this end, we consider a restriction to the Clifford+T gates :
I, X, Y, Z, H, S, CNOT, and T, whose unitary matrices are given below:

I ≜ ( 1 0
0 1 ), X ≜ ( 0 1

1 0 ), Y ≜
(
0 −i
i 0

)
, Z ≜

(
1 0
0 −1

)
, H ≜

1√
2

(
1 1
1 −1

)
,

S ≜
1√
2
( 1 0
0 i ), CNOT ≜

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
, T ≜

(
1 0

0 ei
π
4

)
.

The Clifford+T fragment is the set of unitary transformations generated by se-
quential (matrix multiplication) and parallel (Kronecker product) compositions
of the gates H, S, CNOT , and T . This constitutes a reasonable restriction for
unitary operators as it is known to be the simplest approximately universal
fragment of quantum mechanics [1].

A central observation is that the superoperator associated with a unitary
operator of the Clifford+T fragment is an endomorphism over density operators
in D(H̃Q).
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Lemma 1. The Clifford+T fragment preserves D(H̃Q), i.e., there exist Q and
q ∈ Q such that for each unitary operator U of the Clifford+T fragment ΦUq

∈
D(H̃Q) → D(H̃Q).

Notice that, while a restriction to Clifford+T is reasonable in terms of quan-
tum mechanics and universality, our result can be extended by adding any quan-
tum gate preserving the above lemma. For example, the phase shift gate, defined
by Pφ ≜

(
1 0
0 eiφ

)
, preserves D(H̃Q) whenever φ = rπ, for any r ∈ Q.

Let StmtCT be the set of statements restricted to quantum gates computing
Clifford+T unitary operators (hence a subset of Stmt), StCT be the set of states
whose quantum state is in D(H̃Q), and ConfCT be the set of well-formed config-
urations in (StmtCT ∪ {↓})× StCT. Let St

stm
CT be the set of states in StCT that are

well-formed wrt statement stm. Once again, by abuse of notation, we will denote
this set by StCT when stm is clear from the context.

A consequence of Lemma 1 is that ConfCT is closed under reduction, in
the following sense. Let Dfin

A+(A) ⊆ D(A) be the set of finitely supported sub-
distributions δ with algebraic probabilities, i.e., δ(a) ∈ A+ for all a ∈ A.

Lemma 2. The set Dfin
A+(ConfCT) is stable under reduction, more precisely, if

δ ∈ Dfin
A+(ConfCT) and δ

c−→→q ε, then ε ∈ Dfin
A+(ConfCT) and c ∈ A+.

Computable expectations. We also restrict the expectation codomain to algebraic
numbers. Hence the considered expectations will be functions in StCT → A+. On
its own, this restriction is not sufficient for our concerns, as the set StCT → A+ is
not countable. It implies that there exist expectations in StCT → A+ that are not
computable functions. To resolve this issue, we restrict the space of expectations
further to computable ones:

ECT ≜ {f | f : StCT → A+, f computable}.

An immediate consequence of Lemma 2 is that termstm(σ) ∈ D(ConfCT) for any
stm ∈ StmtCT and σ ∈ StCT. In consequence, qwpstm f σ is well-defined for all
f ∈ StCT. This justifies that in our treatment below, we restrict expectations
to the class ECT. However, keep in mind that despite Lemma 2, the subdistribu-
tion termstm(σ), obtained at the limit, does not fall within Dfin

A+(A). It is neither
finite nor are probabilities algebraic (A+ is not complete). In particular, in gen-
eral qwpstm f σ is a real number, rather than an algebraic one.

Quantitative Problems. We now define formally the quantitative problems
that we study.

Testing problems. Some natural quantitative problems related to weakest pre-
expectations are to determine for a given program stm, a given state σ, a given ex-
pectation f , and a given algebraic number a, whether the corresponding weakest
pre-expectation qwpstm f σ is smaller than or equal to a. In this setting, it makes
sense to consider any possible relation in the set {<,≤,=,≥, >} ⊆ P(A×A) as
one could be interested in finding precise values, (strict) upper- or lower-bounds.
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Definition 3. The testing problem sets TestR ⊆ ConfCT × ECT × A+, for R ∈
{<,≤,=,≥, >}, are defined by:

(stm, σ, f, a) ∈ TestR :⇐⇒ (qwpstm f σ) R a.

The consideration of both Test≤ and Test> may seem redundant, as Test>

can be viewed as the complement of Test≤. However, it makes perfect sense
to distinguish both properties, when considering the corresponding universal
problems, as we do in a moment.

Finiteness problem. Another problem of interest consists in checking whether
the weakest pre-expectations produces some finitary output.

Definition 4. The finiteness problem set Test ̸=∞ ⊆ ConfCT × ECT is defined
by:

(stm, σ, f) ∈ Test ̸=∞ :⇐⇒ qwpstm f σ <∞.

Termination problems. We also define two termination problems for almost sure
termination and positive almost sure termination:

Definition 5. The sets of (positive) almost-sure terminating configurations
Ast ⊆ ConfCT (Past ⊆ ConfCT) are defined by:

(stm, σ) ∈ Ast :⇐⇒ |termstm(σ)| = 1

(stm, σ) ∈ Past :⇐⇒ edlstm(σ) <∞.

It is well-known that Past ⊊ Ast, cf. [9].

Universal problems. Another kind of natural problems arises if one tries to check
some properties for each possible program input (i.e., for each state σ). We can
thus define universal properties for each of the sets described previously.

Definition 6. The sets of universal testing, finiteness and (positive) a.s. termi-
nation problems are defined by:

(stm, f, g)∈UTestR ⊆ StmtCT × E2CT ⇐⇒ ∀σ ∈ StCT, (stm, σ, f, g(σ))∈TestR

(stm, f) ∈ UTest ̸=∞ ⊆ StmtCT × ECT ⇐⇒ ∀σ ∈ StCT, (stm, σ, f) ∈ Test ̸=∞

stm ∈ UAst ⊆ StmtCT ⇐⇒ ∀σ ∈ StCT, (stm, σ) ∈ Ast

stm ∈ UPast ⊆ StmtCT ⇐⇒ ∀σ ∈ StCT, (stm, σ) ∈ Past

Example 3. We have Cntoss ∈ UAst and Cntoss ∈ UPast, for the program
Cntoss of Figure 3. Indeed, it was shown in Example 2 that Cntoss termi-
nates with probability 1 and a finite expected derivation length. This prop-
erty holds for any input of the domain. In the same example, we have proven
(Cntoss, f) ∈ Test ̸=∞ for f(s, ρ) = s(i). Indeed, we have shown the stronger

property (Cntoss, f, g) ∈ Test=, where g(s,
(

α β
γ δ

)
) = 2− (β + γ).
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Standard Universal

Problem Class Problem Class

Testing Test> Σ0
1 UTest> Π0

2
(‡)

Test≥ Π0
2

(‡) UTest≥ Π0
2

(‡)

Test= Π0
2 UTest= Π0

2
(‡)

Test≤ Π0
1

(‡) UTest≤ Π0
1

(‡)

Test< Σ0
2 UTest< Π0

3
(‡)

Finiteness Test ̸=∞ Σ0
2 UTest ̸=∞ Π0

3
(‡)

Termination Ast Π0
2 UAst Π0

2

Past Σ0
2 UPast Π0

3

Table 1. Completeness results for quantitative problems in the arithmetical hierarchy.

Completeness Results in the Arithmetical Hierarchy. In what follows,
we place the introduced quantitative problems within the arithmetical hierar-
chy [34]. The arithmetical hierarchy is a means to classify and relate undecidable
problems wrt. to their inherent difficulty, measured in terms of the number of
(unbounded) quantifier alternations needed to state the problem as a formula in
first-order arithmetic, based on a decidable (recursive) predicate.

Reminder on the arithmetical hierarchy. Classes of the arithmetical hierarchy
are defined inductively as follows:

Π0
0 = Σ0

0 ≜ rec, rec being the class of decidable problems (recursive sets)

Π0
n+1 ≜ {ψ | ∃ϕ ∈ Σ0

n, ∀x.(ψ(x) ⇐⇒ ∀y.ϕ(x, y))},
Σ0

n+1 ≜ {ψ | ∃ϕ ∈ Π0
n, ∀x.(ψ(x) ⇐⇒ ∃y.ϕ(x, y))}.

For each n, Π0
n is the complement of Σ0

n (i.e., Π0
n = co-Σ0

n, and vice versa) and it
is a well-known result that Σ0

1 and Π0
1 correspond to the classes re of recursively

enumerable (i.e., semi-decidable) problems and co-re of co-recursively enumer-
able (i.e., co-semi-decidable) problems, respectively. Given the sets A ⊆ X and
B ⊆ Y , we write A ≤m B (A is many-one reducible to B) if there exists a com-
putable function f : X → Y such that ∀x ∈ X, x ∈ A ⇐⇒ f(x) ∈ B. Given a
class c of the arithmetical hierarchy and a set A, A is c-hard if ∀B ∈ c, B ≤m A.
A set A is c-complete if A ∈ c and A is c-hard. It is well-known that if a set A
is c-complete then its complement, noted co-A, is (co-c)-complete.

Results. Table 1 associates the quantum decision problems to the correspond-
ing classes in the arithmetical hierarchy for which we have proven them com-
plete, that is, we have proven membership and hardness for the corresponding
class. Some of the results may seem surprising. For instance, the testing problem
Test>, i.e., deciding qwpstm f σ > a within the Clifford+T fragment, turns out
to be recursive enumerable. It is thus classified identical to the (classical) halting
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problem H.§ Remarkable, through the restriction to the Clifford+T fragment,
corresponding problems are ranked within the arithmetical hierarchy identical
to their non-quantum counterparts (see [37,24]). This observation holds for all
problems apart those marked with (‡) which, to the best of our knowledge, have
not been studied in a classical/probabilistic setting. Π0

2 - and Π
0
3 -completeness

of the universal testing problems, given relations > and < respectively, has been
conjectured by Kaminski in his PhD thesis [25] for probabilistic programs.

A crucial observation towards these results is that, restricting to the Clif-
ford+T fragment, the weakest pre-expectation of a program P can be approxi-
mated through computable transformers qwp≤n

stm : ECT → ECT that limit execution
of stm to at most n ∈ N reduction steps. That is,

qwp≤n
stm f σ ≜ E

term≤n
stm (σ)

(f),

for term≤n
stm(σ) the distribution of terminal configurations obtained within n re-

duction steps, when evaluating (stm, σ). With regards to the above mentioned
Test> ∈ Σ0

1 for instance, observe that:

(stm, f, σ, a) ∈ Test> ⇐⇒ qwpstm f σ > a

⇐⇒ lim
i→∞

qwp≤n
stm f σ > a

⇐⇒ ∃n ∈ N, ∃δ ∈ A+ \ {0}, qwp≤n
stm f σ ≥ a+ δ.

Crucially, the predicate qwp≤n
stm f σ ≥ a+δ becomes computable. In essence, this

is a consequence of Lemma 2: The n-th step normal form distribution term≤n
stm(σ)

is finite and computable, as f is computable so is thus qwp≤n
stm f σ. From here,

the result follows now as equality on A is decidable. The proof of this, as well
as all completeness proofs listed in Table 1 can be found in the Appendix. The
following constitutes our first main result.

Theorem 1. All completeness results in Table 1 hold.

4 Quantum Expectation Transformers

In what follows, we are interested in deliniating subclasses of testing problems
that lead to decidability. To this end, we now define a notion of quantum ex-
pectation transformer as a means to compute symbolically the weakest pre-
expectation of a program. We first introduce some preliminary notations in order
to lighten the presentation.

Notations. For any expression e, JeK is a shorthand notation for the function
λ(s, ρ).JeKs ∈ St → R+∞. We will also use f [x := e] for the expectation
λ(s, ρ).f(s[x := JeKs], ρ). Similarly, for a given map χ : D(HQ) → D(HQ),

§In our context the halting set H can be defined as the class of classical programs
and states (P, σ) for which P is halting on σ.
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qet[ skip ]{f} ≜ f

qet[ x = e ]{f} ≜ f [x := e]

qet[ stm1; stm2 ]{f} ≜ qet[ stm1 ]{qet[ stm2 ]{f}}

qet[ if b then stm1 else stm2 ]{f} ≜ qet[ stm1 ]{f} +JbK qet[ stm2 ]{f}

qet[ while b do stm ]{f} ≜ lfp
(
λF.qet[ stm ]{F} +JbK f

)
qet[ q ∗= U ]{f} ≜ f [ΦUq ]

qet[ x = meas qi ]{f} ≜ f [x := 0; m0,i] +p0,i f [x := 1; m1,i].

Fig. 5. Quantum expectation transformer qet[ · ]{·}

f [χ] ≜ λ(s, ρ).f(s, χ(ρ)). We will also sometimes group such state modifications,
for instance, f [x := e; χ] stands for (f [x := e])[χ] and f [x := e, y := e′] stands
for (f [x := e])[y := e′].

For p ∈ St → [0, 1] and f, g ∈ St → R+∞, f +p g denotes the function
λσ.p(σ) · f(σ) + (1 − p(σ)) · g(σ) ∈ St → R+∞, similar we use f · g to denote
λσ.f(σ) · g(σ) ∈ St → R+∞. Thus, for instance, f [x := x + 1] +Jx=1K f behaves
like f , except that x is first incremented when applied to states with classical
variable x equal to 1. In correspondence to the normalization of quantum state
mk,i, we define probabilities pk,i ≜ λρ.tr(Mk,iρM

†
k,i). We overload this function

from D(HQ) to St s.t. pk,i(s, ρ) = pk,i(ρ). In this way, f [x := 0; m0,i] +p0,i

f [x := 1; m1,i] computes precisely the expected value of f on the distribution
of states obtained by measuring the i-th qubit and assigning the outcome to
classical variable x.

Finally, we denote by ≤ also the pointwise extension of the order from R+∞

to functions, that is, f ≤ g holds iff ∀σ ∈ St, f(σ) ≤ g(σ).

Definition 7 (Quantum expectation transformer). The quantum expec-
tation transformer consists in a program semantics mapping expectations to ex-
pectations in a continuation passing style

qet[ · ]{·} : Stmt → (St → R+∞) → (St → R+∞)

and is defined inductively on statements in Figure 5.

This transformer corresponds to the notion of expected value transformer of [6] on
the Kegelspitze S = (R+∞,+f), with +f being the forgetful addition. In the case
of loops, the least fixed point lfp is defined with respect to the pointwise ordering
on the function space St → R+∞. Equipped with this ordering, this space forms
a ω-CPO. As the quantum transformer can be shown to be ω-continuous, the
fixed-point is always defined, cf. [44].

Theorem 2 (Adequacy). The following holds:

∀stm ∈ Stmt, ∀f : St → R+∞, qwpstm(f) = qet[ stm ]{f} .
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continuity qet[ stm ]{supi fi} = supi qet[ stm ]{fi}
monotonicity f ≤ g ⇒ qet[ stm ]{f} ≤ qet[ stm ]{g}
upper invariance (J¬bK·f ≤ g ∧ JbK·qet[ stm ]{g} ≤ g)⇒qet[ while b do stm ]{f} ≤ g

Fig. 6. Universal laws derivable for the quantum expectation transformer.

Apart from continuity, the quantum expectation transformer satisfies several
useful laws, see Figure 6. The (monotonicity) Law permits us to reason modulo
upper-bounds: actual expectations can be always substituted by upper-bounds.
It is in fact an immediate consequence from the (continuity) Law, which is
defined for any ω-chain (fi)i. The (upper invariance) Law constitutes a general-
ization of the notion of invariant stemming from Hoare calculus. It is used to find
closed-form upper-bounds g to expectations f of loops. The pre-conditions state
that g should dominate f on states where the loop would immediately exist,
and otherwise, should remain invariant under iteration. It is worth mentioning
that this proof rule is not only sound, but also complete, in the sense that any
upper-bound satisfies the two constraints. The following example illustrates the
use of this rule on the running example.

Example 4. Following Example 2, we over-approximate qet[ Cntoss ]{f}, for
f(s, ρ) = s(i) the post-expectation measuring the classical variable i.

To this end, observe that the function g : St → R+∞ is an upper-invariant
(Figure 6) to the while loop while x do stm, given a post-expectation f : St →
R+∞. Recall that the loop body stm comprises (i = i+1; q ∗= H; x = meas q).
To fulfill the conditions of the (upper invariance) Law the following inequalities
have to be met:

J¬xK · f ≤ g JxK · qet[ i = i+1; q ∗= H; x = meas q ]{g} ≤ g. (5)

By unfolding the definition, we see

qet[ i = i+1; q ∗= H; x = meas q ]{g}
= qet[ i = i+1 ]{qet[ q ∗= H ]{qet[ x = meas q ]{g}}}
= qet[ i = i+1 ]

{
qet[ q ∗= H ]

{
g[x:=0; m0,1] +p0,1

g[x:=1; m1,1]
}}

= qet[ i = i+1 ]
{
g[x:=0; m0,1; ΦH ] +p0,1·ΦH

g[x:=1; m1,1; ΦH ]
}

= g[x:=0; m0,1; ΦH; i:=i+1] +p0,1·ΦH
g[x:=1; m1,1; ΦH; i:=i+1]

= λ(s, ρ).
∑

k∈{0,1}

pk,1(ΦH(ρ)) · g(s[x = k, i:=i+1],mk,1(ΦH(ρ))).

By using the identities computed already in Example 2, we thus obtain

qet[ stm ]{g} (s,
(

α β
γ δ

)
) =

∑
k∈{0,1}

pk · g(s[x = k, i:=i+1], ρk), (6)
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where, as in Example 2, p0 = 1+β+γ
2 , p1 = 1−(β+γ)

2 , ρ0 = ( 1 0
0 0 ) and ρ1 = ( 1 0

0 0 )

We claim that g(s,
(

α β
γ δ

)
) ≜ s(i) + s(x) · (2− (β + γ)) is an upper-bound to

the pre-expectation of the while loop wrt. to the post expectation f . To this end,
we check (5). The first inequality is trivially satisfied. Concerning the second,
notice that by definition,

g(s[x = 0, i:=i+1], ( 1 0
0 0 )) = s(i)+1 and g(s[x = 1, i:=i+1], ( 0 0

0 1 )) = s(i)+3.

By (6) we have

qet[ stm ]{g} (s,
(

α β
γ δ

)
) =

1 + β + γ

2
(s(i) + 1) +

1− (β + γ)

2
(s(i) + 3)

= (s(i) + 2)− (β + γ) = g(s,
(

α β
γ δ

)
),

from which now the second constraint follows by case analysis on the value of x.
Hence qet[ while x do stm ]{f} ≤ g and, by monotonicity (Figure 6),

qet[ Cntoss ]{f} (s,
(

α β
γ δ

)
) ≤ qet[ x = tt; i = 0 ]{g} (s,

(
α β
γ δ

)
)

= g([x:=1, i:=0],
(

α β
γ δ

)
) = 2− (β + γ).

Note that, in this case, the computed bound is exact.

One question of interest is to find the qet[ · ]{·} of a given statement. We
obtain the following completeness results as a corollary of Theorem 1 and The-
orem 2 on the Clifford+T fragment.

Corollary 1. The following completeness results hold:

– {(stm, f, g) ∈ StmtCT × E2CT | ∀σ, qet[ stm ]{f} (σ) = g(σ)} is Π0
2 -complete.

– {(stm, f, g) ∈ StmtCT × E2CT | ∀σ, qet[ stm ]{f} (σ) ≤ g(σ)} is Π0
1 -complete.

The same kind of result can be straightforwardly obtained for each of the quan-
titative problems defined in previous section. All the corresponding sets are un-
decidable: they are at best (co-)semi-decidable as illustrated by Figure 1. This
motivates us for restricting the problem a bit further to find a class of functions
for which the quantitative problems for wpstm f can be decided.

5 Decidability of qet Inference over a Real Closed Field

Corollary 1 illustrates that it is not sufficient to relax the problem of finding the
quantum expectation transformer of a given statement to upper-bounds, in order
to make it decidable. The undecidability of finding the quantum expectation
transformer of a given program is due to two other issues: 1) Issue 1: The
computation of a fixpoint for qet[ · ]{·} in the case of while loops, 2) Issue 2:
The check for inequalities over functions in ECT, whose first-order theory is not
decidable. This section is devoted to overcoming these two issues, by finding an
expressive fragment on which the inference of an upper-bound of the quantum
expectation transformer becomes decidable.
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qinf[ skip ]{F} ≜ F

qinf[ x = e ]{F} ≜ F [x := e]

qinf[ stm1; stm2 ]{F} ≜ qinf[ stm1 ]{qinf[ stm2 ]{F}}

qinf

 ifℓ b

then stm1
else stm2

{F} ≜ Xℓ, with side-cond.

{
b ⊢ qinf[ stm1 ]{F} ≤ Xℓ

¬b ⊢ qinf[ stm2 ]{F} ≤ Xℓ

qinf
[
whileℓ b do stm

]
{F} ≜ Xℓ, with side-cond.

{
b ⊢ qinf[ stm ]{Xℓ} ≤ Xℓ

¬b ⊢ F ≤ Xℓ

qinf[ q ∗= U ]{F} ≜ F [ϕUq ]

qinf
[
x = measℓ qi

]
{F} ≜ Xℓ, with side-cond.


p0,i = 0 ⊢ F [x := 1; m1,i] ≤ Xℓ

p1,i = 0 ⊢ F [x := 0; m0,i] ≤ Xℓ

pk,i ̸= 0 ⊢ F [x := 0; m0,i]

+p0,i F [x := 1; m1,i] ≤ Xℓ

Fig. 7. Term representations of qinf[ · ]{·} and their corresponding side-conditions.

Symbolic Inference. As a first step towards automated inference, we define
a symbolic variant of the quantum expectation transformer in Figure 7. In the
case of conditionals, loops, and measurements, we will use fresh variables for
expectations; side conditions will guarantee that these variables indeed denote
(upper-bounds to) the corresponding expectations. This means that the sym-
bolic version yields correct results only when the expectations assigned to these
variables satisfy all the side conditions. By solving the generated constraints,
viz., by finding an interpretation of ascribed variables that satisfy the imposed
side-conditions, we effectively arrive at an inference procedure overcoming Issue
1.

To formalize this approach, we associate a unique label ℓ with each loop, con-
ditional, and measurement, occurring in the considered program. Notationally,
we write whileℓ b do stm / ifℓ b then stm1 else stm2 / measℓ q. Such labels
permit us to associate a unique expectation variable Xℓ to each of these con-
structs. Given a set of such expectation variables EVar, the set of terms ETerm,
upon which the symbolic quantum expectation transformer operates, is defined
according to the following grammar:

ETerm F,G ::= X | F [x := e] | F [χ] | F +p G,

where X stand for an arbitrary expectation variable in EVar. As stressed above,
X will be used to denote certain expectations wrt. loops, conditionals, and mea-
surements. We have already introduced the notations F [x := e] and F [χ] to
represent updates to the classical and quantum state, respectively. Here, χ will
always denote a finite composition of superoperators ϕU and measurementsmk,i.
By ensuring that normalization of quantum states mk,i(ρ) is never considered
in the degenerate case of a zero-probability measurement pk,i(ρ), it will thereby
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always be possible to write χ as λρ. MρM†

tr(NρN†)
, for some M ∈ M(H̃Q) in the Clif-

ford+T fragment. Finally, following the same reasoning, in the barycentric sum
F +p G the probability p is a function in the quantum state, and will always

be of general form λρ. tr(MρM†)
tr(NρN†)

, for some M,N ∈ M(H̃Q) in the Clifford+T

fragment. Similar to before, we may group updates such as in F [x := e; χ].
The symbolic variation of the expectation transformer can now be defined as

qinf[ · ]{·} : Stmt → ETerm → ETerm,

generating also a set of side-conditions of the shape Γ ⊢ F ≤ G, with the
intended meaning that G binds F on all input states that satisfy the predicate
Γ . The full definition of qinfer is given in Figure 7. As already hinted, the side
conditions ensure that introduced variables Xℓ indeed yield an upper-bound on
the corresponding expectation, in the case of conditionals by case-analysis, and
in the case of loops via an application of the upper-invariant law from Figure 6.
In the case of measurements, mk,i and pk,i are defined exactly as before. Here,
we single out the two cases where the probability of a measurement, either
p0,i(ρ) = tr(M0,iρ) = tr(M0,iρM

†
0,i) or p1,i(ρ) = 1−p0,i(ρ), is zero. This way, we

avoid the case analysis underlying the definition of mk,i and may, wlog., assume

that it is indeed of the form λρ.
Mk,iρM

†
k,i

tr(Mk,iρM
†
k,i)

, with non-zero trace tr(Mk,iρM
†
k,i).

Example 5. In correspondence to Example 4, let us consider the application of
the inference procedure on the program Cntoss, wrt. to the post-expectation
f(s, ρ) = s(i). We label the loop and measurement with m and w, respectively.

Let X denote the post-expectation f . Unfolding the definition, we see

qinf[ Cntoss ]{X} = qinf[ x = tt; i = 0; whilew x do stm ]{X}
= Xw[x:=1; i:=0],

generating the side-conditions x ⊢ Xm[ΦH ; i:=i+1] ≤ Xw and ¬x ⊢ X ≤ Xw .
The left-hand side of the first constraint is obtained from

qinf[ stm ]{Xw} = qinf[ i = i+1 ]{qinf[ q ∗= H ]{qinf[ measm q ]{Xw}}}
= Xm[ΦH; i:=i+1].

Note that this expansion generates further constraints, this time on Xm repre-
senting the measurement. Specifically, it yields the following constraints:

p1−k,1 = 0 ⊢ Xw[x:=k;mk,1] ≤ Xm , (for k ∈ {0, 1}),
p0,1 ̸= 0 ̸= p1,1 ⊢ Xw[x:=0;m0,1] +p0,1

Xw[x:=1;m1,1] ≤ Xm .

Using the analysis from Example 4, we interpret Xw and Xm as:

α(Xw) ≜ λ(s,
(

α β
γ δ

)
). s(i) + s(x)(2− (β + γ)),

α(Xm) ≜ λ(s,
(

α β
γ δ

)
). s(i) + 2− 2α.
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Furthermore, we interpret the input variable X as f , i.e., α(X) ≜ λ(s, ρ). s(i).
Notice how α(Xw) just corresponds to the upper-invariant g derived in Exam-
ple 4. Using the assignment, it is now standard to check that it is a solution to

the five constraints. For instance, considering states σ = ({i:=n, x:=x},
(

α β
γ δ

)
),

the ultimate constraint amount to the implication

α ̸= 0 ̸= δ ⇒ n+α (n+ 2) ≤ n+ 2− 2α,

which trivially holds. Finally, recall qinf[ Cntoss ]{X} = Xw[x:=1; i:=0]. This

term is interpreted as λ(s,
(

α β
γ δ

)
). 2− (β+ γ), yielding the optimal bound com-

puted in Example 4.

Example 6. Re-consider program RUS depicted in Figure 1. Here, we are inter-
ested in an upper-bound on the number of T -gates, counted by the program
variable i. As before, we label the loop and measurement with m and w, respec-
tively. Let

stm =

stm0︷ ︸︸ ︷
q2 = |0⟩ ; . . . ; x = measm q2,

be the body of the while loop statement (see Figure 1). We proceed with the
analysis backwards. By the rules of Figure 7 it holds that qinf[ stm0 ]{F} =
F [Φ; i:=i+2] for any F , where Φ gives the quantum state updates within
stm0. Unfolding definitions, we have qinf[ RUS ]{X} = Xw[x:=0; i:=1] with
x ⊢ Xm[Φ; i:=i+2] ≤ Xw and ¬x ⊢ X ≤ Xw , since, by the above observation,

qinf[ stm ]{Xw} = qinf[ stm0 ]{qinf[ x = measm q2 ]{Xw}} = Xm[Φ; i:=i+2],

subject to the following additional constraints stemming from measurements:

p1−k,2 = 0 ⊢ Xw[x:=k;mk,2] ≤ Xm , (for k ∈ {0, 1}),
p0,2 ̸= 0 ̸= p1,2 ⊢ Xw[x:=0;m0,2] +p0,2

Xw[x:=1;m1,2] ≤ Xm .

Taking α(X) ≜ λ(s, ρ). s(i) and solving the constraints yields a constant
upper bound of 8/3 on the expected number of T -gates used by the program. This
is due to the fact that the probability of the internal measurement is always 3

4 .
Note that this bound is tight.

The transformer qinfer can be linked to qet of course only when variables Xℓ

are interpreted in a way that the side conditions generated by infer are met. To
spell this out formally, let α : EVar → ECT be an assignment of expectations to
variables in EVar, and let JF Kα : ECT denote the interpretation of F ∈ ETerm
under α defined in the natural way, e.g., JXℓKα = α(Xℓ), JF [χ]Kα = JF Kα[χ],
etc.

We say that a constraint Γ ⊢ F ≤ G is valid under α if JF Kα(σ) ≤ JGKα(σ)
holds for all states σ ∈ StCT with Γ (σ). An assignment α is a solution to a set
of constraints C, if it makes every constraint in C valid. Finally, we say α is a
solution to qinf[ stm ]{f} if it is a solution to the set of constraints generated
by qinf[ stm ]{f}. We have the following correspondence:
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Theorem 3. For any α ∈ EVar → ECT, if α is solution to qinf[ stm ]{F} = G,
then it holds that qet[ stm ]{JF Kα} ≤ JGKα.

It is worth mentioning that the above procedure could have been defined
without restriction to the full space St → R+∞ of expectations. In this case, this
symbolic approach is also complete, in the sense that if qet[ stm ]{f} = g then
qinf[ stm ]{X} = G for some G such that the side-conditions have a solution α,
with α(X) = f and JGKα = g. As our main focus is on decidability, however, we
have made the choice to restrict ourself to the Clifford+T setting.

Restriction to Polynomials over the Real Closed Field A. We now turn
our eyes towards constraint solving, addressing the remaining Issue 2 through
restricting the domain of expectations to polynomials over algebraic numbers.
To be more precise, we consider the following problem.

Definition 8. Let E ⊆ ECT be a class of expectations. The inference problem
Qinfer(E) ⊆ StmtCT × E × (EVar → E) is given by

(stm, f, α) ∈ Qinfer(E) ⇐⇒ α[X := f ] is solution to qinf[ stm ]{X}

In the above definition, (stm, f, α) ∈ Qinfer(E) is satisfied if the statement stm
has solution α[X := f ] wrt. the expectation f . Hence it can be seen as checking
whether f is a post-expectation for stm. In particular, any solution α[X := f ]
constitutes an upper bound on the weakest pre-expectation of f (see Theorem 3).
We will now see that Qinfer(E) is decidable, for E the set of (real algebraic)
polynomial expectations of (arbitrary but fixed) degree d. For states StCT over
n classical variables y1, . . . , yn and m qubits, let Ad[StCT] denotes the class of
functions of polynomial expectations of the form

λ({yi := Yi}1≤i≤n, (Aj,k + iBj,k)1≤j,k≤2m). P, (7)

where variables Yi refer to the classical, and variables Aj,k and Bj,k refer to the
real part and imaginary part, respectively, of each algebraic coefficient in the
quantum state. Further, P ∈ A[Y1, . . . , Yn, A1,1, . . . , A2m,2m , B1,1, . . . , B2m,2m ] is
a multivariate polynomial with coefficients in A. The index d refers to the (total)
degree of the underlying polynomial P . For instance,

λ({x := X; i := I},
(

A1,1+iB1,1 A1,2+iB1,2

A2,1+iB2,1 A2,2+iB2,2

)
). I+X(2− (A1,2+A2,1)) ∈ A2[StCT]

One important remark here is that we allow for possibly negative polynomials
whereas expectations only output positive real algebraic numbers. Consequently,
some side conditions are put on the admissible coefficients Aj,k and Bj,k of the
input density matrix to preserve this condition (the matrix is positive, has trace

1, is hermitian). For example,
∑2m

i=1Ai,i = 1,
∑2m

i=1Bi,i = 0 (trace is 1) and
∀i, k, Ai,k = Ak,i and Bi,k = −Bk,i (self-adjointness). One can easily check
that the expectations defined in Example 5 are in Ad[StCT], for d ≥ 1.
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The restriction to polynomials is made on purpose, as quantifier elimination
is decidable in the theory of real closed fields, a well known result due to Tarski
and Seidenberg. Recall that the theory of real closed fields is the first-order
theory in which the primitive operations are multiplication, addition, the order
relation ≤, and the constants 0 and 1. Consequently, the only numbers that
can be defined are the real algebraic numbers. Specifically, we will make use
of the following result, quantifying the complexity of the quantifier elimination
decision procedure as a function exponential in number of variables, and double-
exponential in the number of quantifier alternations.

Proposition 1 ([21, Theorem 6]). Let A be an integral ring over a real
closed field R. Let ψ = Q1x⃗1.Q2x⃗2. · · ·Qlx⃗l. ϕ be a formula in prenex-normal
form, where ∀k, Qk ∈ {∀, ∃}, Qk ̸= Qk+1, and ϕ is a quantifier-free formula
over i variables and j atomic propositions of the shape P ≥ 0, each P being a
polynomial of degree at most d with coefficients in A. There exists an algorithm

computing a quantifier-free formula equivalent to ψ in time O(|ψ|) · (jd)iO(l)

.

As A constitutes both an integral ring and a real closed field, the above
theorem is in particular applicable taking A = R ≜ A. In the particular case
where ψ is a closed formula, the resulting quantifier-free formula is simply a
Boolean combination of inequalities over constants from A. Since we already
observed that these can be decided in polynomial time, the above proposition
thus implies that validity of ψ is decidable under the given time bound.

By restricting assignment α to polynomial expectations, it becomes decidable
to check that α is a solution to a given constraint set C. Indeed, under such a
polynomial assignment α, a constraint Γ ⊢ F ≤ G becomes expressible as a
formula in the theory of real closed field A. By letting α range over polynomial
expectations with undetermined coefficients, we can this way arrive at the main
decidability result of this section.

Theorem 4. For any degree d ∈ N, d ≥ 1, the problem Qinfer(Ad[StCT]) is

decidable in time 22
dO(n)

, where n is the size of the considered program.

Practical Algorithm. Theorem 4 established a computable algorithm on the
inference of upper bounds on weakest pre-expectation on quantitative program
properties of any given mixed classical-quantum program. Nevertheless, the com-
plexity of this algorithm — double-exponential in the program size — is forbid-
dingly high. In order to turn this procedure into a practical algorithm, we have
to tame this inherent complexity. For this, significant further restrictions on the
class of bounding functions are necessary. We propose to proceed as follows.
(1) Bounding functions: in (7) we restricted the class of expectations to poly-
nomials, which in turn yield a bound on the weakest pre-expectation. Based
on an analysis of concrete examples considered in the literature (e.g., [30,6]),
this can be tightened further to degree 2 polynomials. (2) Approximate solu-
tions : Theorem 4 rests upon (the decidability) of quantifier elimination. Thus
the constraints C induced through the symbolic inference of qinf[ stm ]{X} = G
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(G,X ∈ ETerm) are solved exactly. Over-approximation, however, suffices, if we
are only interested in soundness of the inference mechanism.

The restriction of the class of bounding functions is in essence a question of
applicability of the automation, taking into account particular use-cases. With
respect to approximate solutions, we observe that the actual constraints C con-
sidered have at most one quantifier alternation and admit a quantifier prenex of
the form ∃∗∀∗, that is, a sequence of existential quantifier follows by a sequence
of universal quantifiers. Roughly speaking the existential quantifiers refer to the
inference of coefficients in the bounding polynomials, while the universal quanti-
fiers refer to program variables. It is well-known that universal quantification in
optimization problems can be turned into existential quantification, like Farka’s
lemma or generalizations thereof, cf. [38,19]. (E.g., [7,29] for instances of this
approach for the inference of expected program costs.)

Summarizing, the inference mechanism detailed in Section 5 can be over-
approximated to generate purely existential constraints. The latter can be effec-
tively solved via SMT. We expect that (full) automation of the inference mech-
anism can capitalize on these ideas. Working out the details and in particular
implementation of an effective prototype is subject to future work.

6 Conclusion and Future Work

We have studied the complexity and inference of techniques for obtaining quali-
tative program properties. One particular property of interest would be the cost
of quantum programs, that is average time, average number of gates, mean value
of a variable, etc. We show that these problems were undecidable in general by
placing them in the arithmetic hierarchy and saw that inference could become
decidable on a restricted fragment: quantum gates in Clifford+T and a function
space with a decidable theory (polynomials of bounded degree over a real closed
field). Further, we sketch how the latter can be transformed into an efficient
synthesis method.

Many open questions remain. The studied notion of expectation transformer
describes local properties of the quantum state, while it would be interesting
to extend this technique to the global state so as to study a mixed state in
a quantum-only setting (without classical variables and stores). Another ques-
tion of interest is to what extent a characterization of the quantum class zbqp,
the class of problems computed by quantum programs in polynomial expected
runtime, could be obtained using this tool.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-69166-2_18
https://doi.org/10.1007/978-3-540-69166-2_18
https://doi.org/10.4230/LIPIcs.CSL.2011.481
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
http://creativecommons.org/licenses/by/4.0/


Reconciling Partial and Local Invertibility

1 KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
athune@kth.se

2 Tohoku University, Aramaki Aza-aoba 6-3-09, Aoba-ku, Sendai 980-8579, Japan.
kztk@tohoku.ac.jp

3 University of Bristol, Bristol BS8 1TH, United Kingdom.
meng.wang@bristol.ac.uk

Abstract. Invertible programming languages specify transformations to
be run in two directions, such as compression/decompression or encryp-
tion/decryption. Two key concepts in invertible programming languages
are partial invertibility and local invertibility. Partial invertibility lets
invertible code be parameterized by the results of non-invertible code,
whereas local invertibility requires all code to be invertible. The former
allows for more flexible programming, while the latter has connections
to domains such as low-energy computing and quantum computing. We
find that existing approaches lack a satisfying treatment of partial in-
vertibility, leaving the connection to local invertibility unclear.
In this paper, we identify four core constructs for partially invertible pro-
gramming, and show how to give them a locally invertible interpretation.
We show the expressiveness of the constructs by designing the functional
invertible language Kalpis, and show how to give them a locally invert-
ible semantics using the novel arrow combinator language rrArr—the
key idea is viewing partial invertibility as an invertible effect. By for-
malizing the two systems and giving Kalpis semantics by translation
to rrArr, we reconcile partial and local invertibility, solving an open
problem in the field. All formal developments are mechanized in Agda.

Keywords: Reversible computation · Arrows · Partial invertibility ·
Domain-specific languages.

1 Introduction

An invertible computation can be run in two ways: forward in the conventional
way, or backward to recover an input given the output. Such processes appear
frequently and prominently in a variety of contexts, enabling the shape of in-
formation to be adapted to different purposes, while preserving the essential
content. For instance, (lossless) compression shrinks the size of a piece of infor-
mation to facilitate efficient storage, encryption transforms it to be inaccessible
to third parties, and serialization reshapes it to enable storage or transmission.
The property of invertibility is crucial, as it guarantees that the data can always
be refit to its original purpose.
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For example, consider the function autokey below, which computes a variant
of the Autokey cipher (see e.g., [50]). The cipher takes a primer character k , and
interprets it as an integer (e.g., ’A’ 7→ 0, ’B’ 7→ 1, . . . , ’Z’ 7→ 25) determining a
shift to apply to the first element of the input. Each consecutive character in the
input is similarly shifted by the amount given by its predecessor. For instance,
autokey ’F’ "HELLO" = "CXHAD", as ’F’ represents a (cyclic left) shift of 5
characters, mapping ’H’ to ’C’, and ’H’ a shift of 7 characters, mapping ’E’
to ’X’, and so on.

autokey :: Char→ [Char]→ [Char]
autokey k [ ] = [ ]
autokey k (h : t) =
shift (chrToInt k) h : autokey h t

autokey ′ :: Char→ [Char]→ [Char]
autokey ′ k [ ] = [ ]
autokey ′ k (h′ : t′) =
let h = shift (−(chrToInt k)) h′

in h : autokey ′ h t′

The corresponding decryption function autokey ′ is given to the right, and shifts
backward to restore the original input. We assume shift : Int → Char → Char
performing the cyclic shift is previously defined. This is a simple example, but
it serves as a toy model of more advanced encryption schemes and has a few
interesting features which we highlight momentarily.

In traditional unidirectional languages, each direction of an invertible algo-
rithm has to be specified separately in this way, and there is no easy way of
ensuring that the two programs really constitute each other’s inverses. Further-
more, there is a maintenance concern—when one direction is updated, the other
has to be updated accordingly. An alternative, more scalable approach is to let a
single program denote both directions at the same time—intuitively, the inverse
is derived by “reading the original code right-to-left”. Invertible programming
languages implement this approach, letting each program be executed in either
of two directions, which are guaranteed to form a pair of inverse functions. Some
examples of invertible languages include Janus [35,53], R [17], Inv [43], Π [10,26],
RFun [54], Theseus [27], CoreFun [25] and Sparcl [39, 40].

These languages traditionally require each individual step of computation to
be invertible, which can be ensured, e.g., by providing a set of invertible com-
binators as basic building blocks, or by imposing various syntactic restrictions.
This form of local invertibility has several benefits, in addition to being a simple
foundation for building programming languages. For example, it was observed
early on that discarding information fundamentally results in heat dissipation,
meaning that a machine executing only invertible instructions could in principle
operate at lower energy levels than a conventional computer [32]. Moreover, lo-
cally invertible languages serve as a foundation when considering other domains
with similar requirements, such as quantum computing, where computations are
composed of individually invertible quantum gates along with irreversible mea-
surements [22,48]. Despite these benefits, the local flavor of invertibility severely
limits the flexibility of the programmer. In particular, our example function
autokey is not actually invertible up front! The case autokey k [ ] = [ ] discards
the value of k , which means we cannot simply read the definition right-to-left. Of
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course, the primer k is not intended to be treated as part of the invertible input
to autokey , but rather as a parameter determining the bijection between input
and output strings. However, this cannot be naturally expressed in a language
adhering strictly to the (locally) invertible paradigm, where the parameter would
need to be preserved in the result.

The property of becoming invertible when some parameters are fixed is known
as partial invertibility [39, 40, 44, 47], and many previous languages offer some
form of support for partially invertible definitions. However, the level of support
varies from more limited (e.g., [25,27,35]) to more complete (e.g., [39,40]), and
the previous work largely lacks a systematic treatment. The case of autokey is
especially tricky, since its invertible input h flows to the unidirectional parameter
k in the recursive call. To our knowledge, only Sparcl [39,40] handles cases like
this in a systematic way, but it does so through an advanced language foundation
quite different from that of traditional invertible languages, and its connection
to the locally invertible paradigm is not well-understood. Thus, it is an open
question whether it is possible to support fully expressive partial invertibility
while maintaining a compositional locally invertible interpretation.

It is theoretically known that any (partially) invertible computation can be
simulated in a locally invertible system [8]; however, this simulation gives poor
control over the invertible behavior and is inefficient in both time and space.
There has been research on inversion of arbitrary programs (e.g., [41, 44, 49]),
and on logic languages with no fixed direction of execution, like Prolog and
Curry, which use (lazy) generate-and-test to find inputs corresponding to a given
output [4]. Yet, these approaches lack the guarantee of invertibility, which is the
main motivation of an invertible language.

1.1 Contributions and Organization

In this paper, we identify a core set of constructs for partially invertible pro-
gramming, and explain them in terms of a locally invertible semantics. These
constructs are sufficient to allow expressive partially-invertible and higher-order
computation, thus solving an open problem in the invertible programming lit-
erature. The constructs include (1) partially invertible branching, (2) pinning
invertible inputs, (3) partially invertible composition, and (4) abstraction and
application of invertible computations.

We demonstrate the above findings by designing and formalizing two sys-
tems based on these constructs, Kalpis4 and rrArr. Kalpis is a typed func-
tional programming language accommodating expressive partially-invertible and
higher-order computation, and rrArr is an arrow combinator language intended
to capture the essence of partially invertible programs. Kalpis is given seman-
tics via rrArr, which captures partial invertibility as an effect on top of ‘pure’
invertible computations, intuitively adjoining a parameter to an invertible func-
tion, analogously to the reader monad in unidirectional computation. By in-
terpreting terms of Kalpis as parameterized bijections, we are able to give a
4 The name stands for “Kalpis—an Arrow-based Locally and Partially Invertible

System”.
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translation into rrArr combinators, giving a compositional embedding into a
locally invertible setting. Thus, we present a simple and rigorous take on partial
invertibility which bridges the gap between previous work in the field.

The core constructs for partial invertibility that we present are not new per
se, and the features of Kalpis largely coincide with those of Sparcl [39, 40].
However, the goal of this paper is not to present Kalpis as such, but rather to
describe partial invertibility from first principles and give a simpler semantics
which is compatible with local invertibility. There are key technical differences
between the two languages, and the fact that they are still similar should be
taken as a sign that we have achieved our goal without a significant loss of
expressiveness.

In summary, our main contributions are:

– We identify a core set of partially invertible programming constructs (Sec-
tion 2), which we demonstrate to be sufficient to achieve a level of expres-
siveness similar to the state-of-the-art.

– We showcase the constructs through the design of the invertible functional
language Kalpis, including a formal type system and operational semantics
(Section 3).

– We present rrArr, an extension of the irreversibility effect [26] and the
reversible reader [23] (Section 4) as a core calculus for partially invertible
computation with a locally invertible interpretation.

– We give a compositional translation from Kalpis into rrArr (Section 5).
– We prove type safety and invertibility properties (Section 3), and prove the

correctness of the arrow translation (Sections 4 and 5).
– Our developments come with a formalization in Agda including proofs of all

theorems,5 and a prototype implementation of Kalpis.6

Section 6 discusses the results in relation to previous work, and Section 7 con-
cludes.

2 Constructs for Partially Invertible Programming

In this section, we introduce a set of core constructs for partially invertible
programming and explain their intuitive idea using programming examples in our
partially invertible language Kalpis, which we introduce formally in Section 3.
The constructs include (1) partially invertible branching, (2) pinning invertible
inputs, (3) partially invertible composition, and (4) abstraction and application
of invertible computations. We explain them each in turn, and show how they
can be understood as operations on parameterized bijections, which we exploit
in later sections to embed them into a locally invertible setting.

These constructs act as a form of glue, allowing invertible and unidirectional
computations to be run in tandem. Thus, we also assume some traditional invert-

5 https://git.sr.ht/~aathn/kalpis-agda
6 https://git.sr.ht/~aathn/kalpis
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ible constructs taken from the existing literature, like invertible pattern match-
ing, which we briefly explain where necessary.

2.1 Partially Invertible Branching

As a first example, we define partially invertible addition. In particular, the
function x 7→ x + n has inverse x 7→ x − n for any n ∈ N. Kalpis supports
recursive type definitions, and we can define the naturals as follows.

data Nat = Z | S Nat

Now, addition is implemented naturally by the following function add , taking
an n to produce the corresponding bijection.

sig add : Nat→ Nat↔ Nat
def• add n x =
case n of
Z → x
S n → S (add n ⋄ x)

The language uses a functional syntax, and features elements typical to invertible
programming: a bijection type A ↔ B, bijection definition def•, and bijection
application f ⋄ x. The functional types associate to the right, so the type of

add : Nat→ Nat↔ Nat

indicates a partially invertible function taking a Nat to produce a bijection
Nat↔ Nat. The case form showcases our first core construct, partially invertible
branching. If n is zero, x is returned unchanged, and otherwise S is applied to
the result of a recursive computation. The resulting function appends n copies
of S to x in the forward direction, or peels them off in the backward direction.

What is interesting is that case results in a loss of information: without
prior knowledge of n, it is impossible to determine which branch to choose when
executing backwards. This corresponds to the fact that one cannot uniquely
determine n and x given y = n + x. However, when n is fixed beforehand, we
can refer to its value regardless of executing forwards or backwards, which is
what motivates the case construct. For example, we get the following results
when applying add to some example inputs, where the primitive operator (·)† :
(A↔ B)→ (B ↔ A) lets us compute the inverse.

-- 1 + 2 = 3
> add (S (S Z)) ⋄ S Z
S (S (S Z))

-- 3− 2 = 1
> (add (S (S Z)))† ⋄ S (S (S Z))
S Z

As the type Nat↔ Nat requires, the argument x in the definition of add must
be treated linearly, i.e., must be used exactly once in any successful evaluation
(see e.g., [51]) in order to ensure invertibility. For instance, changing the first
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case above to Z→ Z gives an error, as x is unused in the case body. Indeed, if x is
never used, there is no way to recover its value in the backward direction. While
allowing more than one use does not directly prevent invertibility, it requires
implicit copying of values, which may induce unintended runtime failures in the
backward execution. Similarly, we cannot branch on x using case for the reasons
mentioned above; instead, an invertible case• form is available, explained later.

Note that add is not a total function: e.g., the application (add (S Z))†⋄Z will
try to peel an S when there is none, resulting in a runtime error.7 The guarantee
given by Kalpis is that whenever evaluating a bijection f on argument v gives
v′ in the forward direction, then evaluating f on v′ gives v in the backward
direction, and vice versa (this is made formal in Section 3).

Mathematically, add represents a parameterized bijection, a family of (partial)
one-to-one mappings fn : N → N (such that fn(x) = x + n). This view will
underpin our explanation of partially invertible computations in later sections,
and each of the core constructs in this section can also be understood from this
viewpoint. Seen from this perspective, the case construct allows definitions of
the form

fn(x) =

{
gn(x) if n = 0
hn(x) otherwise ,

where g and h are also parameterized bijections.

2.2 Pinning Invertible Inputs

As a second example, we consider a program fib computing pairs of Fibonacci
numbers (defined by the equations F0 = F1 = 1 and Fn+1 = Fn + Fn−1 for
n > 0), a classic in the invertible programming literature (e.g., [18, 53]). We
can compute fib n by case distinction on n; if n = 0, we return (F0, F1), and
otherwise we recursively obtain fib (n−1) = (Fn−1, Fn), with which we compute
the next pair (Fn, Fn + Fn−1).

However, if we try to implement this algorithm invertibly using the function
add above, we encounter an issue: we cannot make the call add Fn⋄Fn−1, as add
does not treat its first argument invertibly. Since Fn comes from the invertible
input n, we need an operation that is properly invertible in both inputs. To this
end, we can define an invertible addition add ′ such that add ′⋄(x, y) = (x, x+y).
By preserving a copy of x in the output, the same x can be used to recover y
by subtraction in the inverse direction. Indeed, add ′ ⋄ (Fn, Fn−1) gives just the
result we need. In Kalpis, add ′ can be derived from add automatically using
our second core construct, pin.

sig add ′ : (Nat,Nat)↔ (Nat,Nat)
def• add ′ (x, y) = pin add ⋄ (x, y)

Here, the operator pin : (c → a ↔ b) → (c, a) ↔ (c, b) lifts a partially
invertible function to operate on invertible data; we refer to this as pinning
7 The loss of totality is unavoidable in order to achieve r-Turing completeness [5], i.e.,

the ability to define all computable bijections.
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the invertible input x , allowing it to be used in a unidirectional position. This
construct (inherited from Sparcl [39, 40]) is crucial in practical programming,
as it lets unidirectional computations depend on invertible data in a controlled
manner. With add ′ defined, fib can be written as follows.

sig fib : Nat↔ (Nat,Nat)
def• fib n =
case• n of
Z → (S Z, S Z) with is11
S n → let• (y, x) = fib ⋄ n in

add ′ ⋄ (x, y)
with not ◦ is11

sig is11 : Nat→ Bool
def is11 n =
case n of
(S Z, S Z) → True
_ → False

This example is defined by invertible pattern matching (case•), a construct in-
herited from previous languages like Janus [35,53] and Ψ -Lisp [7]. When branch-
ing on the input to a bijection (as opposed to a fixed parameter), postconditions
marked by the keyword with ensure that the execution can determine which
branch to take in the backward direction. Each postcondition is a boolean func-
tion that must return True for any result of its branch and False for any result
of the branches below it (this is checked at runtime following the symmetric
first-match policy [54]). The backward evaluation tests each condition in turn,
selecting the first branch whose condition is true. Here, is11 is used to distinguish
the base case where the output is (S Z, S Z).

The inverse behavior of fib computes n given a pair (Fn, Fn+1). Specifically,
by computing Fn+1 − Fn, we obtain Fn−1, and repeating the process until we
reach the start of the sequence lets us deduce the index of the initial pair. Kalpis
runs fib as below.

-- (F3, F4) = (3, 5)
> fib ⋄ S (S (S Z))
(S (S (S Z)), S (S (S (S (S Z)))))

-- (Fn, Fn+1) = (3, 5) ⇒ n = 3

> fib† ⋄ (S (S (S Z)), S (S (S (S (S Z)))))
S (S (S Z))

Again, fib is non-total: running it backwards on a pair not constituting two
consecutive Fibonacci numbers will cause the computation to fail.

Viewed as an operation on parameterized bijections, pin lets part of an in-
vertible input be shifted to the parameter position if a copy is returned in the
end. Formally, we have pin(f)n(x, y) = (x, f(n,x)(y)); in our example, f(n,x) cor-
responds to addition by x , ignoring a trivial n representing variables captured
in the pin form.
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2.3 Partially Invertible Composition

We now return to the example of the introduction, autokey . It can be defined in
Kalpis as follows:

sig autokey : Char→ [Char]↔ [Char]
def• autokey k xs =
case• xs of
[ ] → [ ]
(h : t) → let• (h, r) = pin autokey ⋄ (h, t) in

(shift (chrToInt k) ⋄ h) : r

The structure is very similar to the unidirectional version in Section 1, but uses
the invertible branching and pinning constructs explained previously. We assume
primitives chrToInt : Char → Int and shift : Int → Char ↔ Char for computing
and performing the cyclical shifts, respectively. We omit the with-conditions of
the invertible match by convention, as the syntactically distinct branch bodies
can act as patterns to guide backward branching.

This example features our third core construct, partially invertible compo-
sition. This simply refers to the fact that we can modify the parameter of a
bijection unidirectionally, as in shift (chrToInt k) ⋄ h. In this case, the (irre-
versible) function chrToInt is applied to k inside the (invertible) call to shift .
In other words, the parameter part of an invertible computation is allowed to
depend freely on unidirectional computations, greatly enhancing the flexibility
when programming. The reason we call it composition is because from the per-
spective of parameterized bijections, this corresponds to the composition of a
parameterized bijection f with an (arbitrary) function g on the parameter part,
i.e., (f ◦ g)n(x) = fg(n)(x). In our example, we have f corresponding to shift
and g corresponding to chrToInt .

The example also further highlights the utility of pin. As noted in the intro-
duction, autokey is tricky to express since each character in the invertible output
depends unidirectionally on the preceding character in the corresponding input.
Similar patterns also appear in more advanced examples; for instance, consider
an adaptive compression method where each character in the input must be
treated invertibly, and yet also be used as part of the (unidirectional) compres-
sion table. pin enables this sort of dependency in a safe way, letting us use h in
the recursive call to autokey and returning a copy to use in the output.

Again, Kalpis lets us execute autokey in either direction, and guarantees
that the two are inverses.

> autokey ’F’ ⋄ "HELLO"
"CXHAD"

> (autokey ’F’)† ⋄ "CXHAD"
"HELLO"

2.4 Abstraction and Application of Invertible Computations

Our final core construct of partially invertible programming is the ability to ab-
stract and apply invertible computations. Although the examples we have seen so
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far have defined (partially) invertible computations using the def• keyword in a
style close to traditional invertible languages, Kalpis actually features bijections
as first-class values and supports proper higher-order programming. Bijections
can be constructed with an invertible λ-form λ•x.e analogous to that typical for
ordinary functions, and the form def• f x1 x2 . . . xn = e is simply syntac-
tic sugar for f = λx1.λx2 . . . λ

•xn. e. To our knowledge, only Sparcl [39, 40]
shares this feature, with most invertible languages being limited to first-order
computation.

For example, we are able to define multiple variants of the typical map func-
tion for lists in Kalpis.

sig map : (a→ b)→ [a]→ [b]
def map f l =
case xs of
[ ] → [ ]
h : t → f h : map f t

sig mapBij : (a↔ b)→ [a]↔ [b]
def• mapBij f l =
case• xs of
[ ] → [ ]
h : t → (f ⋄ h) : (mapBij f ⋄ t)

Here, map is defined as usual, and maps a function over each element of a list,
while mapBij makes use of the language’s invertible constructs, taking a bijection
argument to produce a bijection on lists. For example, using mapBij , the Caesar
cipher (which shifts each character in the input a fixed number of steps) can be
defined with a one-liner, as below to the left.

sig caesar : Char→ [Char]↔ [Char]
def caesar k = mapBij (shift k)

sig vig : [Char]→ [Char]↔ [Char]
def vig ks = apBij (map shift ks)

The function on the right, vig (from Vigenère), takes a list of keys, shifting
each character in the input using the corresponding key—the definition relies on
apBij : [a ↔ b] → [a] ↔ [b] to apply a list of bijections pointwise to a list of
inputs (assuming the two have equal lengths). The latter example demonstrates
that bijections can even occur inside data structures such as lists.

Some restrictions must be observed when dealing with higher-order computa-
tion in Kalpis. The language distinguishes between unidirectional and invertible
terms, and carefully controls the interaction between the two. The restrictions
mean that the invertible fragment of the language is essentially first-order; a
formal account is given in Section 3.

Viewed from the perspective of parameterized bijections, abstraction corre-
sponds to forming the function n 7→ fn, witnessing that each choice of parameter
n induces a bijection fn which can be treated as a standalone value. On the other
hand, application of a bijection α corresponds to forming the parameterized bi-
jection appα(x) = α(x), where the parameter determining the bijection is α
itself.

This concludes Section 2; for more programming examples in Kalpis, we
refer to the prototype implementation,8 which contains a number of nontriv-
ial programs, including implementations of Huffman coding and sliding-window
compression.
8 https://git.sr.ht/~aathn/kalpis
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3 The Kalpis Core System

In this section, we formally define the Kalpis core system and state the essential
metatheoretic properties. A salient feature of the system is the clear separation
between unidirectional and invertible terms: we have two main syntactic cate-
gories, two typing relations, and three evaluation relations (one for unidirectional
terms, and one in each direction for invertible terms). The unidirectional terms
are a conservative extension of a standard simply-typed call-by-value λ-calculus,
and the invertible terms add support for (partially) invertible computation.

After introducing the syntax and reviewing some examples, Sections 3.4
and 3.5 give a formal semantics which suggests an interpretation of Kalpis
terms as parameterized bijections. This view is made precise in Sections 4 and 5,
which define a translation from Kalpis into the arrow language rrArr, enabling
a locally invertible interpretation.

3.1 Syntax

The syntax of Kalpis core is given below, where u denotes unidirectional terms,
r denotes invertible terms, and p denotes patterns. The vector notation t denotes
an ordered sequence of elements ti, whose length we will refer to by |t|.

u ::= x | λx.u | u1 u2 | λ•x.r | u1 ⋄ u2 | C u | case u0 of {p→ u}
r ::= x | u ⋄ r | u† ⋄ r | pin u ⋄ r
| C r | case u of {p→ r} | case• r0 of {p→ r with u}

p ::= C x

The syntax of unidirectional terms include the standard cases for variables, ab-
straction and application, along with data constructors and pattern matching.
In addition, there is the invertible abstraction λ•x.r and application u1 ⋄ u2 ex-
plained in the previous section. Note that while the body r is an invertible term,
the abstraction itself is unidirectional.

The syntax of invertible terms resembles a first-order functional language, but
with a couple of key additions. We have bijection application u ⋄ r, where the
bijection is unidirectional whereas the argument is invertible. We also have fully
applied versions of the (·)† and pin operators explained in the previous section
(this is without loss of generality, as e.g., the higher-order version of pin can be
recovered as λf.λ•x. pin f ⋄ x). Partially invertible branching is represented by
the case form, whose scrutinee u is unidirectional. The case• form deconstructs
an invertible term, and has a with-condition for invertible branching, following
Janus [35, 53] and Ψ -Lisp [7]. The core constructs of the previous section are
all featured explicitly in the syntax, except for partially invertible composition,
which is implicitly performed whenever a unidirectional term u occurs in an
invertible context.

3.2 Types

Next, we define the types of Kalpis core.

A,B ::= T B | A→ B | A↔ B | X
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The types include constructors T B, functions A → B, bijections A ↔ B and
type variables X. The types are conventional with the exception of invertible
computations A ↔ B; this simplicity is a design feature of Kalpis. With each
type constructor T we associate an arity k and a set of constructors C with
signatures C : A1 → A2 → · · · → An → T B, where |B| = k. We will assume
the type constructors include at least the unit 1, products ⊗, and sums ⊕ with
constructors

() : 1 (−,−) : A→ B → A⊗B InL : A→ A⊕B InR : B → A⊕B

for any A,B. We use Bool as a shorthand for 1⊕1, and True, False as shorthands
for InL (), InR (), respectively.

Types can be (mutually) recursive via constructors; for example, the type
Nat has constructors Z : Nat and S : Nat→ Nat. In general, for any fixed A, the
recursive type µX.A can be represented with a nullary type constructor RecA,
with constructor

Roll : A[RecA/X]→ RecA.

For instance, Rec1⊕X has constructor Roll : 1 ⊕ Rec1⊕X → Rec1⊕X , making it
isomorphic to Nat. Technically, we consider a variable X implicitly bound in the
annotation to Rec, and assume all other types are closed.

3.3 Correspondence to the Surface Language

The correspondence between the core syntax and the examples of Section 2
should be clear. For instance, the examples of addition and Fibonacci number
calculation can be written as follows:

add ≜fix (λadd ′.λn.λ•m.
case n of
Z → m
S n′ → S (add ′ n′ ⋄m)))

fib ≜fixBij (λfib′.λ•n.
case• n of
Z → (S Z, S Z) with is11
S n′ → case• fib′ ⋄ n′ of

(x, y) → pin add ⋄ (y, x))
with λ_. True

with not ◦ is11 )

Here, add is a unidirectional term defined using a fixpoint operator fix , and the
structure is similar to the version presented in Section 2.1. The function fib is
similarly defined, but uses the fixpoint operator fixBij instead of fix , which works
for bijections instead of functions. We omit the definition of is11 : Nat⊗Nat→
Bool in the interest of space. The term fixBij (and analogously fix ) is defined as
below, making use of the language’s recursive types.

fixBij ≜ λf. (λg. g (Roll g)) (λx.λ•a. f ((case x of Roll y → y) x) ⋄ a)

The type system we define in the next section will assign these terms the following
types as expected.

add : Nat→ Nat↔ Nat fix : ((A→ B)→ A→ B)→ A→ B
fib : Nat↔ Nat⊗ Nat fixBij : ((A↔ B)→ A↔ B)→ A↔ B
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3.4 Type System

Figure 1 shows the typing rules for unidirectional (Γ ⊢ u : A) and invertible
(Γ ;Θ ⊢ r : A) terms. The latter relation uses two contexts Γ and Θ; intuitively, Γ
contains variables for unidirectional data, which may be discarded or duplicated
freely, whereas Θ contains variables for data that must be treated in an invertible
way. This use of a dual context system [13] is inspired by previous work such
as CoreFun [25] and Sparcl [39, 40]. Formally, we define the typing contexts as
Γ,Θ ::= ε | Γ, x : A, and assume names x are unique within a context. We let
Γ1, Γ2 denote the concatenation of two contexts.

The rules for Γ ⊢ u : A are mostly straightforward. T-Abs• pushes the
parameter x of λ•x.r into Θ instead of Γ to ensure that the variable is used in
an invertible way in r, and T-Run gives a rule for bijection application analogous
to T-App. In the Case rules, we implicitly require that patterns are disjoint and
exhaustive.

In the rules for Γ ;Θ ⊢ r : A, the variables in the Θ environments must be
used exactly once to ensure invertibility. Hence, we need to separate Θ into, e.g.,
Θ = Θ1 ⊎ Θ2 for typing subterms, where ⊎ is used analogously to a linear type
system (see, e.g., [9]). The rules follow the intuition that r denotes a bijection
between Θ and A parameterized by Γ . This highlights the difference between the
pattern matching rules, T-UCase and T-RCase: the bound variables Γi in the
former are parameters for the bijection that ri defines, while in the latter, the
variables Θi are part of the inputs of ri, so that case• performs a composition
of two invertible computations.

As stated in Section 2.4, there are some restrictions on how unidirectional
and invertible terms can interact. Note that the unidirectional subterms oc-
curring in the invertible typing rules are only typed using Γ , and not Θ. For
instance, since the left-hand side in rule T-RApp is unidirectional, it cannot
depend directly on invertible variables, ruling out terms like λ•x.(x⋄True). This
is a natural restriction, as we cannot generally deduce which function was used
to produce some given result. Conversely, there is no rule for directly accessing
Γ from the invertible typing relation; instead, unidirectional data can only af-
fect the computation through rules like T-UCase and T-RApp. Both λ-forms
are unidirectional, meaning they can neither capture invertible variables nor be
returned from an invertible computation. In this sense, the invertible fragment
of the language is first-order.

We note that there are no particular restrictions on unidirectional terms,
and the approach presented could be used to augment any standard functional
language with invertible computations λ•x.r and u1 ⋄ u2. The prototype imple-
mentation further adds let-polymorphism as an orthogonal extension.

3.5 Operational Semantics

We first define the set of values as below.

v ::= C v | ⟨λx.u, γ⟩ | ⟨λ•x.r, γ⟩
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Typing Rules for Unidirectional Terms Γ ⊢ u : A and Patterns Γ ⊢ p : A

x : A ∈ Γ

Γ ⊢ x : A
T-UVar

Γ, x : A ⊢ u : B

Γ ⊢ λx.u : A→ B
T-Abs

Γ ⊢ u1 : A→ B Γ ⊢ u2 : A

Γ ⊢ u1 u2 : B
T-App

Γ ;x : A ⊢ r : B

Γ ⊢ λ•x.r : A↔ B
T-Abs•

Γ ⊢ u1 : A↔ B Γ ⊢ u2 : A

Γ ⊢ u1 ⋄ u2 : B
T-Run

|u| = |A| C : A→ T B {Γ ⊢ ui : Ai}i
Γ ⊢ C u : T B

T-Con

Γ ⊢ u0 : A {Γi ⊢ pi : A Γ, Γi ⊢ ui : B}i
Γ ⊢ case u0 of {p→ u} : B

T-Case
|x| = |A| C : A→ T B

x : A ⊢ C x : T B
T-Pat

Typing Rules for Invertible Terms Γ ;Θ ⊢ r : A

Γ ;x : A ⊢ x : A
T-RVar

Γ ⊢ u : A↔ B Γ ;Θ ⊢ r : A

Γ ;Θ ⊢ u ⋄ r : B
T-RApp

Γ ⊢ u : A↔ B Γ ;Θ ⊢ r : B

Γ ;Θ ⊢ u† ⋄ r : A
T-Inv

Γ ⊢ u : C → A↔ B Γ ;Θ ⊢ r : C ⊗A

Γ ;Θ ⊢ pin u ⋄ r : C ⊗B
T-Pin

|Θ| = |r| = |A| C : A→ T B {Γ ;Θi ⊢ ri : Ai}i
Γ ;⊎Θ ⊢ C r : T B

T-RCon

Γ ⊢ u : A {Γi ⊢ pi : A Γ, Γi;Θ ⊢ ui : B}i
Γ ;Θ ⊢ case u of {p→ r} : B

T-UCase

Γ ;Θ ⊢ r0 : A
{
Θi ⊢ pi : A Γ ;Θ′ ⊎Θi ⊢ ri : B Γ ⊢ ui : B → Bool

}
i

Γ ;Θ ⊎Θ′ ⊢ case• r0 of {p→ r with u} : B
T-RCase

Fig. 1. The type system of Kalpis core: A → B means A1 → · · · → A|A| → B.

Here, γ is a value environment, i.e., a mapping from variables to their values.
Formally, we define γ, θ ::= ∅ | γ, x 7→ v, with γ and θ corresponding to Γ and
Θ. We use the disjoint union θ1⊎ θ2 to concatenate two environments θ1 and θ2,
which is defined only when dom(θ1) and dom(θ2) are disjoint. The values include
constructors and two closure forms ⟨λx.u, γ⟩ and ⟨λ•x.r, γ⟩, corresponding to
unidirectional and invertible computations. We type the values in analogy with
the terms, with the rules for closures as follows:

γ : Γ Γ, x : A ⊢ u : B

⟨λx.u, γ⟩ : A→ B

γ : Γ Γ ;x : A ⊢ r : B

⟨λ•x.r, γ⟩ : A↔ B

Here, we write γ : Γ to mean that dom(γ) = dom(Γ ) and γ(x) : Γ (x) for all
x ∈ dom(Γ ). For p a pattern, we write pγ to denote the value obtained by
applying the substitution γ to p’s variables. In addition, we use the shorthand

î = j ≜

{
True if i = j
False otherwise .

We now present in Figure 2 the operational semantics of Kalpis core, which
consists of three evaluation relations: unidirectional, forward, and backward. The
unidirectional evaluation relation γ ⊢ u ⇓ v reads that under γ term u evaluates
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to value v, as usual. In contrast, the forward and backward evaluation relations
define a bijection. The former relation γ; θ ⊢ r ⇒ v reads that under γ the
forward evaluation of r maps θ to v, and the latter relation γ; v ⊢ r ⇐ θ reads
that under γ the backward evaluation of r maps v to θ. As one can see, γ serves as
parameter for this bijection that defines a one-to-one correspondence between θ
and v. Due to the space limitations, we omitted the rules for backward evaluation,
as they are completely symmetric to forward evaluation. That is, for each rule of
the forward evaluation, the corresponding backward rule is obtained by swapping
each occurrence γ; θ ⊢ r ⇒ v with γ; v ⊢ r ⇐ θ, and vice versa. Crucially, the
evaluation relations are mutually dependent, and when a unidirectional term
is embedded in an invertible computation, the unidirectional evaluation will be
invoked to evaluate the term in the same way regardless of whether executing
forwards or backwards.

We encourage the reader to study the rules for partially invertible case
and invertible case• especially. The former branches based on a unidirectional
term, which is evaluated first regardless of the direction of execution. The lat-
ter branches based on an invertible term, which is evaluated first in the forward
direction but last in the backward direction. In the backward direction, the with-
conditions u are instead evaluated first; the condition î = j for j ≤ i encodes the
branch selection and the runtime check of postconditions mentioned previously.

There is a subtlety in the backward evaluation rule for constructors C r,
where the same C occurs both in the term C r and the input C v, meaning that
evaluation fails if the value does not match the constructor C. This corresponds
to, e.g., the term (λ•x. S x)† ⋄ Z failing as it tries to subtract one from zero.

3.6 Metatheory

In this section, we briefly state the essential properties of the core system. The
propositions in this section have been formalized mechanically, by implementing
and reasoning about a definitional interpreter [46] in Agda. The implementation
follows the presentation of the paper closely, but uses intrinsically-typed terms
and nameless variables, and relies on the sized delay monad [1, 11].

Theorem 1 (Subject reduction).
– If Γ ⊢ u : A, γ : Γ and γ ⊢ u ⇓ v, then v : A.
– If Γ ;Θ ⊢ r : A, γ : Γ , θ : Θ and γ; θ ⊢ r ⇒ v, then v : A.
– If Γ ;Θ ⊢ r : A, γ : Γ , v : A and γ; v ⊢ r ⇐ θ, then θ : Θ.

Proof. Directly from the existence and type of the definitional interpreter in
Agda.

Theorem 2 (Invertibility). If Γ ;Θ ⊢ r : A, γ : Γ , θ : Θ and v : A, then

γ; θ ⊢ r ⇒ v if and only if γ; v ⊢ r ⇐ θ.

Proof. By simultaneous induction on the term r and the step count of evalua-
tion; simple induction on the term r is not enough as the language has general
recursion. The proof is otherwise straightforward, since the evaluation relations
are completely symmetric.
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Unidirectional Evaluation γ ⊢ u ⇓ v

γ(x) = v

γ ⊢ x ⇓ v γ ⊢ λx.u ⇓ ⟨λx.u, γ⟩ γ ⊢ λ•x.r ⇓ ⟨λ•x.r, γ⟩

γ ⊢ u1 ⇓ ⟨λx.u, γ′⟩ γ ⊢ u2 ⇓ v2 γ′, x 7→ v2 ⊢ u ⇓ v

γ ⊢ u1 u2 ⇓ v

{γ ⊢ ui ⇓ vi}i
γ ⊢ C u ⇓ C v

γ ⊢ u1 ⇓ ⟨λ•x.r, γ′⟩ γ ⊢ u2 ⇓ v2 γ′;x 7→ v2 ⊢ r ⇒ v

γ ⊢ u1 ⋄ u2 ⇓ v

γ ⊢ u0 ⇓ piγi γ, γi ⊢ ui ⇓ v′

γ ⊢ case u0 of {p→ u} ⇓ v′

Forward (and Backward) Evaluation γ; θ ⊢ r ⇒ v
(

γ; v ⊢ r ⇐ θ
)

γ ⊢ u ⇓ ⟨λ•x.r′, γ′⟩ γ; θ ⊢ r ⇒ v γ′;x 7→ v ⊢ r′ ⇒ v′

γ; θ ⊢ u ⋄ r ⇒ v′ γ; (x 7→ v) ⊢ x⇒ v

γ ⊢ u ⇓ ⟨λ•x.r′, γ′⟩ γ; θ ⊢ r ⇒ v γ′; v ⊢ r′ ⇐ (x 7→ v′)

γ; θ ⊢ u† ⋄ r ⇒ v′
{γ; θi ⊢ ri ⇒ vi}i
γ;⊎θ ⊢ C r ⇒ C v

γ ⊢ u ⇓ ⟨λx.u′, γ′⟩ γ; θ ⊢ r ⇒ (v1, v2)

γ′, x 7→ v1 ⊢ u′ ⇓ ⟨λ•y.r′, γ′′⟩ γ′′; y 7→ v2 ⊢ r′ ⇒ v3

γ; θ ⊢ pin u ⋄ r ⇒ (v1, v3)

γ ⊢ u ⇓ piγi γ, γi; θ ⊢ ri ⇒ v′

γ; θ ⊢ case u of {p→ r} ⇒ v′

γ; θ ⊢ r0 ⇒ piθi γ; θ′, θi ⊢ ri ⇒ v′
{
γ ⊢ uj ⇓ ⟨λx.u′

j , γj⟩ γj , x 7→ v′ ⊢ u′
j ⇓ ̂i = j

}
j≤i

γ; θ ⊎ θ′ ⊢ case• r0 of {p→ r with u} ⇒ v′

Fig. 2. The operational semantics of Kalpis core. Rules for the backward evaluation
are omitted in the interest of space, but can be derived as explained in the text.

Remark on Progress. We have chosen to give the semantics in a big-step style
in this paper. This choice was made both because the invertibility property is
more natural to state about a big-step semantics, which relates input to output
directly, and to make the step to a denotational semantics smaller—as men-
tioned, the evaluation relations suggest an interpretation of invertible terms as
parameterized bijections.

Thus, the progress property typically proven for a small-step semantics,
meaning that evaluation never gets “stuck” given a valid input (see, e.g., [45]), is
not direct to state in our case. However, we get a similar guarantee from the im-
plementation in Agda, whose type checker asserts that no uncontrolled run-time
errors are possible. Indeed, the only errors that can occur during evaluation are
those caused by imprecise with-conditions or mismatched constructors.

4 Arrows for Partial and Local Invertibility

While the core system of Kalpis presented in the previous section is simple
and illuminating, it only offers an operational understanding of the language.
Furthermore, it depends on a unidirectional evaluation, which does not fit in a
locally invertible setting. We want to get at the essence of partially invertible
programming, and show that partial and local invertibility can be reconciled,
which is the focus of this section.
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Syntax
A,B ::= 1 | A⊕B | A⊗B | µX.A

τ ::= A⇋ B | A⇝ B | C ·A↭ B

µ ::= arru c | µ1 ≫u µ2 | firstu µ | leftu µ | clone | run α

α ::= arr r c | α1 ≫r α2 | firstr α | leftr α | α† | case! α1 α2 | pin α | µ≫! α

Typing Rules for Arrows µ : A⇝ B and α : C ·A↭ B

c : A⇋ B

arru c : A⇝ B

µ1 : A⇝ B µ2 : B ⇝ C

µ1 ≫u µ2 : A⇝ C

µ : A⇝ B

firstu µ : A⊗ C ⇝ B ⊗ C

µ : A⇝ B

leftu µ : A⊕ C ⇝ B ⊕ C clone : A⇝ A⊗A

α : C ·A↭ B

run α : C ⊗A⇝ B

c : A⇋ B

arr r c : C ·A↭ B

α1 : D ·A↭ B α2 : D ·B↭ C

α1 ≫r α2 : D ·A↭ C

α : D ·A↭ B

firstr α : D · (A⊗ C)↭ B ⊗ C

α : D ·A↭ B

leftr α : D · (A⊕ C)↭ B ⊕ C

α : C ·A↭ B

α† : C ·B↭ A

α1 : C ·A⇝ B α2 : D ·A⇝ B

case! α1 α2 : (C ⊕D) ·A↭ B

µ : C ⇝ D α : D ·A↭ B

µ≫! α : C ·A↭ B

α : (C ⊗D) ·A↭ B

pin α : C · (D ⊗A)↭ D ⊗B

Fig. 3. The syntax and types of rrArr: A and B denote base types, τ denotes com-
binator types, c denotes bijections, µ denotes unidirectional arrow combinators and α
denotes invertible arrow combinators.

In what follows, we define rrArr, a low-level language based on arrow com-
binators, intended to capture the essence of partially invertible computation.
The operations of rrArr directly correspond to the core constructs of Sec-
tion 2, and have an immediate interpretation in terms of abstract functions and
parameterized bijections. What is more, we show that they have an alterna-
tive, compositional and locally invertible interpretation using an idea similar to
the reader monad in unidirectional computation (based on the irreversibility ef-
fect [26] and the reversible reader [23]). This property is not obvious for Kalpis,
not to mention earlier work such as Sparcl [39, 40].

We begin by explaining the syntax and semantics of a first-order fragment of
rrArr, before proceeding to give its locally invertible intrepretation. We then
extend this fragment to match the full expressiveness of Kalpis in Section 4.5
with operations for higher-order computation. In Section 5, we top it all off by
giving a formal translation from Kalpis core to rrArr.

4.1 Syntax and Type System of rrArr

Figure 3 shows the syntax and type system of rrArr (where base bijections c
of type A⇋ B are kept abstract). The language involves unidirectional (µ) and
invertible (α) terms, similarly to Kalpis. Both kinds of terms form arrows over
bijections, through the combinators arr , ≫, and first .

The former arrow, denoted by µ : A⇝ B, intuitively represents an ordinary
function; arru c extracts the forward semantics of a bijection c, µ1 ≫u µ2
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composes two functions µ1 and µ2, and firstu µ simply applies µ to the first
component of the input. The unidirectional arrows also feature leftu, the sum
counterpart of first , and allow copying data through clone.

The latter arrow, denoted by α : C · A↭ B, represents bijections between
A and B parameterized by C; arr r c constructs a parameterized bijection that
behaves as the bijection c ignoring any parameter, α1≫r α2 composes the two
bijections obtained by passing the parameter to both α1 and α2, and first r α
applies the bijection determined by α to the first component of the input. These
arrows also support left r, and form an inverse arrow [23] through a dagger op-
erator α†, that undoes α and its effect.

What is special in rrArr is the communication between the two arrows
through case!, pin, ≫!, and run, where the former three directly correspond to
the core constructs of Section 2. The term case! α1 α2 performs partially in-
vertible branching, running α1 or α2 depending on the value of its parameter.
The term pin α corresponds to the pinning construct; in rrArr, this operation
moves part of the input (D) into the parameter (C ⊗D) of α. The term µ≫! α
represents partially invertible composition of the function µ with the parame-
terized bijection α. Finally, the operator run allows converting a parameterized
bijection C ·A↭ B to a function C ⊗A⇝ B by extracting its forward seman-
tics. This can be seen as a special case of applying invertible computations (in a
unidirectional context); the treatment of abstraction and application supporting
higher-order computation is left for Section 4.5, as it requires a slight extension.

It is worth noting that invertible arrows are inherently allowed to ignore their
parameter (through arr r), a fact that can be used to derive the crucial erasure
operation in unidirectional arrows. In particular, supposing id : A ⇋ A, we get
the term run (arr r id) : C ⊗ 1⇝ 1, which ignores any input C to return ().

4.2 Semantics of rrArr

We now formalize the intuitive interpretation through the semantics presented
in Figure 4. We define a base set of values containing unit, pairs, and tagged
values, which we type in the conventional way. Recursively typed values roll w
are only manipulated by the base invertible combinators c.

w ::= () | (w1, w2) | inl w | inr w | roll w

The semantics of rrArr again takes the form of three relations: one for uni-
directional arrows and two for invertible arrows. The first (µ w1 7→ w2) reads that
µ maps w1 to w2, confirming the intuition that unidirectional arrows represent
functions. The second (α w;w1 7→ w2) and third (α w;w1 ←[ w2) read that given
parameter w, α maps w1 to w2 under the forward (resp. backward) evaluation,
confirming the intuition that our invertible arrows correspond to parameterized
bijections. The rules closely follow the informal descriptions presented in the
previous section. We assume a base invertible semantics for combinators c of the
form c w1 7→ w2, invoked by the rules concerning arr for each arrow.
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Unidirectional Evaluation µ w1 7→ w2

c w1 7→ w2

(arru c) w1 7→ w2

µ1 w1 7→ w2 µ2 w2 7→ w3

(µ1 ≫u µ2) w1 7→ w3

µ w1 7→ w2

(firstu µ) (w1, w3) 7→ (w2, w3)

µ w1 7→ w2

(leftu µ) inl w1 7→ inl w2 (leftu µ) inr w1 7→ inr w1 clone w1 7→ (w1, w1)

α w;w1 7→ w2

(run α) (w,w1) 7→ w2

Forward (and Backward) Evaluation α w;w1 7→ w2

(
α w;w1 ← [ w2

)
c w1 7→ w2

(arr r c) w;w1 7→ w2

α1 w;w1 7→ w2 α2 w;w2 7→ w3

(α1 ≫r α2) w;w1 7→ w3

α w;w1 7→ w2

(firstr α) w; (w1, w3) 7→ (w2, w3)

α w;w1 7→ w2

(leftr α) w; inl w1 7→ inl w2 (leftr α) w; inr w1 7→ inr w1

α w;w2 ← [ w1

α† w;w1 7→ w2

α1 w;w1 7→ w2

(case! α1 α2) inl w;w1 7→ w2

α2 w;w1 7→ w2

(case! α1 α2) inr w;w1 7→ w2

µ w 7→ w′ α w′;w1 7→ w2

(µ≫! α) w;w1 7→ w2

α (w,w1);w2 7→ w3

(pin α) w; (w1, w2) 7→ (w1, w3)

Fig. 4. The semantics of rrArr. As before, the backward evaluation rules are sym-
metrically obtained from the forward rules.

The semantics satisfies the desired properties of subject reduction and in-
vertibility, although we refer to our mechanized formalization for the details.9

4.3 Locally Invertible Interpretation

Recall that our goal is to define a locally invertible interpretation, whereas the
straightforward semantics of Section 4.2 depended on a unidirectional evaluation.
In this section, we give an alternative interpretation of rrArr, utilizing the
reversible reader (RReader) [23] to interpret the invertible arrow combinators.

JC ·A↭ BK = RReader C A B

Here, RReader C A B consists of the bijections of type C ⊗ A ⇋ C ⊗ B that
keep the C part unchanged. This arrow was originally introduced with the in-
tention of modelling a bijection with some “static” input C [23]. Regarding ⇝,
we use the irreversibility effect [26] that leverages the fact that every unidirec-
tional computation can be simulated by a locally invertible computation yielding
“garbage” [8], as:

JA⇝ BK = ∃G.A⇋ G⊗B

Combining these two effects is a novel point of rrArr; in particular, we
contribute the core constructs of case!, ≫!, pin and run, which enable commu-
nication between the two. Locally invertible interpretations of the primitives in
9 https://git.sr.ht/~aathn/kalpis-agda

76 A. Ågren Thuné et al.

https://git.sr.ht/~aathn/kalpis-agda


unitel× : 1⊗A ⇋ A

swap× : A⊗B ⇋ B ⊗A

assocl× : A⊗ (B ⊗ C) ⇋ (A⊗B)⊗ C

swap+ : A⊕B ⇋ B ⊕A

assoc+ : A⊕ (B ⊕ C) ⇋ (A⊕B)⊕ C

distr : (A⊕B)⊗ C ⇋ A⊗ C ⊕B ⊗ C

inl : A ⇋ A⊕B

roll : A[µX.A/X] ⇋ µX.A

id : A⇋ A

c : A⇋ B

c† : B ⇋ A

c1 : A⇋ B c2 : B ⇋ C

c1 # c2 : A⇋ C

c1 : A⇋ C c2 : B ⇋ D

c1 ⊗ c2 : A⊗B ⇋ C ⊗D

c1 : A⇋ C c2 : B ⇋ D

c1 ⊕ c2 : A⊕B ⇋ C ⊕D

Fig. 5. The invertible primitives of Πo [26]. Note that we replace the looping construct
trace with the derived inl for simplicity (Section 4.5 recovers the expressiveness of this
combinator).

each system have been given in the existing results. Here, we extend the results
with the operations novel to rrArr, to show that the two systems together give
a locally invertible model of partially invertible computations.

As our target invertible language, we use Πo [26], whose combinators c consti-
tute a minimal set of (non-total) invertible operations. The combinators support
sequential composition (c1 # c2), parallel composition (c1 ⊗ c2 and c1 ⊕ c2), and
importantly, a local inversion operator (c†) such that (c1 # c2)† = c†2 # c†1. Figure 5
shows a summary of the primitives; their behavior should be obvious from the
types (see the Agda formalization for details).

We now proceed to give another interpretation of the core constructs of
rrArr.

Partially invertible branching. Given α1 and α2 with Jα1K : C⊗A⇋ C⊗B
and Jα2K : D ⊗A⇋ D ⊗B, we must construct

Jcase! α1 α2K : (C ⊕D)⊗A⇋ (C ⊕D)⊗B.

Using distr , we can convert (C⊕D)⊗A to C⊗A⊕D⊗A, after which Jα1K and Jα2K
can be run in parallel. Factoring out the B, we get the required transformation.

Jcase! α1 α2K = distr # Jα1K⊕ Jα2K # distr †

Pinning. Given α with JαK : (C ⊗D)⊗A⇋ (C ⊗D)⊗B, we must produce

Jpin αK : C ⊗ (D ⊗A)⇋ C ⊗ (D ⊗B).

As the reversible reader arrow JαK already returns the context C unchanged, we
only need to shuffle the inputs and outputs appropriately.

Jpin αK = assocl× # JαK # assocl†×

Partially invertible composition. Given µ and α with JµK : C ⇋ G⊗D and
JαK : D ⊗A⇋ D ⊗B, we must construct

Jµ≫! αK : C ⊗A⇋ C ⊗B.
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The basic idea is to run JµK to produce a D-typed value to run JαK on, however,
this brings with it unwanted garbage. Fortunately, since JαK is a reversible reader
arrow, it is guaranteed to preserve the D-component, meaning that after running
it we have the same D and G-values available to us as before. These can be
turned back into the original C value by running JµK backwards, giving the
transformation required.

Jµ≫! αK =

JµK⊗ id # assocl†× # id ⊗ JαK # assocl× # JµK† ⊗ id JαK
A

C JµK JµK†

B

D D

G

C

Note that this is precisely the construction underlying the reversible updates [5]
of imperative reversible languages, and that JαK preserving the context is crucial
for the construction to succeed.
Running invertible computations. Given α with JαK : C ⊗A⇋ C ⊗B, we
must produce

Jrun αK : C ⊗A⇋ G⊗B,

for some G. Clearly it suffices to take JαK with G = C, and we are done.

4.4 Correctness

We now state the desired correctness properties of our locally invertible inter-
pretation, which show that it is equivalent to the direct semantics of Figure 4
and that JαK is indeed a reversible reader arrow (i.e., it preserves the context
C).

Theorem 3 (rrArr 99K Πo Soundness).
– µ w1 7→ w2 implies JµK w1 7→ (g, w2) for some g.
– α w;w1 7→ w2 implies JαK (w,w1) 7→ (w,w2). ⊓⊔

Theorem 4 (rrArr 99K Πo Completeness).
– JµK w1 7→ (g, w2) implies µ w1 7→ w2.
– JαK (w,w1) 7→ (w′, w2) implies w = w′ and α w;w1 7→ w2. ⊓⊔

The theorems do not refer to the backward evaluation directly, utilizing the
invertibility of both rrArr and Πo.

4.5 Higher-order Computation

The previous sections laid out the fundamental ideas for representing partial
invertibility in a locally invertible setting. However, with rrArr being first-
order, it is not sufficient to be able to interpret Kalpis in a simple way. In
this section, we extend the language with four new combinators enabling proper
higher-order computation, shown in Figure 6. The combinators curry and app
are the standard currying and evaluation maps, creating and applying functions
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A,B ::= · · · | A→ B | A↔ B

µ ::= · · · | curry µ | app | curry• α α ::= · · · | app• w ::= · · · | ⟨µ,w⟩ | ⟨α,w⟩

µ : C ⊗A⇝ B

curry µ : C ⇝ (A→ B)

α : C ·A↭ B

curry• α : C ⇝ (A↔ B)

app : (A→ B)⊗A⇝ B

app• : (A↔ B) ·A↭ B

(curry µ) w 7→ ⟨µ,w⟩

(curry• α) w 7→ ⟨α,w⟩

µ (w,w1) 7→ w2

app (⟨µ,w⟩, w1) 7→ w2

α w;w1 7→ w2

app• ⟨α,w⟩;w1 7→ w2

Fig. 6. Combinators for higher-order computation in rrArr.

A → B. Their invertible counterparts curry• and app• provide the final core
construct from Section 2: abstraction and application of invertible computations.
They operate over parameterized bijections, abstracting the parameter to get a
bijection value A ↔ B. The values are extended accordingly with two new
closure forms ⟨µ,w⟩ : A → B and ⟨α,w⟩ : A ↔ B, where µ : C ⊗ A ⇝ B,
α : C · A ↭ B, and w : C, representing staged unidirectional and invertible
computations, respectively.

Having higher-order computation in the invertible setting has been challeng-
ing [2,12,39,40]. Borrowing the idea from [39,40], we address the issue by lever-
aging the fact that the function and bijection values are only part of invertible
computations as parameters of parameterized bijections; hence, we only need a
limited form of higher-orderness. We extend Πo with two additional primitive
operations:

curry⇋ : (C ⊗A⇋ C ⊗B)→ (C ⇋ C ⊗ (A↔ B))
app⇋ : ((A↔ B)⊗A)⇋ ((A↔ B)⊗B)

The former takes a combinator with an auxiliary piece of “state” C, and abstracts
it into a bijection given a value of C. The latter applies a bijection, and saves it
to enable reversing the operation later. To represent the values of type A↔ B in
Πo, we introduce a third form of closure ⟨f, w⟩, where we have f : C⊗A⇋ C⊗B
and w : C. Then, the semantics of app⇋ and curry⇋ are as follows:

clos = ⟨f, w⟩
(curry⇋ f) w 7→ (w, clos)

f (w, a) 7→ (w′, b)

app⇋ (⟨f, w⟩, a) 7→ (⟨f, w′⟩, b)

As before, the inverse semantics is symmetric; e.g., (curry⇋ f)† (w, clos) 7→
w if clos = ⟨f, w⟩. The (non-total) invertibility of curry⇋ is trivial, as its inverse
fails unless its input matches the corresponding output; it is essentially a unidi-
rectional function embedded in the invertible world. Since observational equality
of closure values is undecidable, the equality check must rely on some other, in-
tensional (e.g., syntactic) equality. Practically, this means that the combinator
can only be used to create a closure and then subsequently undo the very same
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closure. However, this does not pose an issue for the translation from rrArr,
where closures will only result from uses of curry and curry•, both of which are
unidirectional arrows (⇝). These unidirectional arrows will only be executed
backwards as part of partially invertible compositions (≫!), which ensures that
the input is the same as the corresponding output.

Now, we can interpret JappK = app⇋, Japp•K = app⇋, and

Jcurry µK = inl # curry⇋ (inl† ⊗ id # JµK # inr ⊗ id), Jcurry• αK = curry⇋ JαK.

The former construction curries JµK : C ⊗ A ⇋ G ⊗ B given w : C by creating
a one-shot closure ⟨f, inl w⟩ which turns into ⟨f, inr g⟩ for g : G when first
applied, and fails on a second application.

The theorems of Section 4.4 extend without difficulty to the higher-order
combinators, although the statement is somewhat more intricate due to the dif-
fering set of closure values between rrArr and Πo. We refer to the mechanized
formalization in Agda for details.

5 Interpreting Kalpis with Arrows

Theorem 1 (Section 3.6) suggests that a unidirectional term-in-context Γ ⊢ u : A
can be seen as a function from Γ to A, and that an invertible term-in-context
Γ ;Θ ⊢ r : A can be seen as a bijection between Θ and A parameterized by
Γ . Then, it is natural that they be related with the two arrows (− ⇝ −) and
(− · −↭ −) of rrArr, respectively. In this section, we give a formal account
of this relation by translating terms of Kalpis into rrArr, giving by extension
a compositional locally invertible interpretation of Kalpis.

We first define some operations on typing contexts. We define Γ× as

(x1 : A1, . . . , xn : An)
× = (((1⊗A1)⊗A2)⊗ · · · )⊗An.

It is straightforward to define an operator lookupx : Γ× ⇝ A provided that
Γ (x) = A. We also use a combinator splitΘ1,Θ2

: (Θ1⊎Θ2)
× ⇋ Θ×

1 ⊗Θ
×
2 for split-

ting the linear environments. Then, we give two type-directed transformations:
Γ ⊢ u : A 99K µ that transforms u to µ of type Γ× ⇝ A, and Γ ;Θ ⊢ r : A 99K α
that transforms r to α of type Γ× ·Θ×↭ A. For the purposes of the translation,
we consider a fixed set of type constructors T B ::= 1 | A ⊗ B | A ⊕ B | RecA,
identifying µX.A with RecA.

Without loss of generality, we drop unnecessary with-conditions, so that
a case•-expression with one branch needs no with-clause, and one with two
branches needs only one clause. Due to the space limitations, we present only the
most representative cases here, and point the interested reader to the mechanized
formalization in Agda.10

10 https://git.sr.ht/~aathn/kalpis-agda
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Case T-UCase (A⊕B).

Γ ⊢ u : A⊕B 99K µ
Γ, x : A;Θ ⊢ r1 : C 99K α1 Γ, y : B;Θ ⊢ r2 : C 99K α2

Γ ;Θ ⊢ case u of InL x→ r1; InR y → r2 : C 99K
(clone≫u firstu µ≫u arru (swap× # distl))≫! case! α1 α2

We can duplicate Γ× using clone and use one copy to construct A ⊕ B with
µ. Using distl : A ⊗ (B ⊕ C) ⇋ A ⊗ B ⊕ A ⊗ C, which is easily derived, we
distribute the second copy of Γ over the sum. Then, the required combinator can
be constructed through a combination of partially invertible composition (≫!)
and branching (case!), where we have case! α1 α2 : (Γ×⊗A⊕Γ×⊗B) ·Θ↭ C.
Case T-RCase (A⊕B).

Γ ;Θ1 ⊢ r1 : A⊕B 99K α1 Γ ;Θ2, x : A ⊢ r2 : C 99K α2

Γ ;Θ2, y : B ⊢ r3 : C 99K α3 Γ ⊢ u : C → Bool 99K µ

Γ ;Θ1 ⊎Θ2 ⊢ case• r1 of InL x→ r2; InR y → r3 with u : C 99K
arr r splitΘ1,Θ2

≫r first r α1≫r arr r (swap× # distl)≫r

case α2 α3 (mkCond µ)

The idea is similar to T-UCase, but we now operate in the invertible world, so
we split (Θ1 ⊎Θ2)

× instead of duplicating Γ , and compose using≫r instead of
≫!. The combinator case α1 α2 α3 ≜ left r α1≫r right r α2≫r α

†
3 with type

case : (D ·A↭ C)→ (D ·B↭ C)→ (D ·C↭ C ⊕C)→ D · (A⊕B)↭ C,

provides an invertible branching operator analogous to case!, with a postcondi-
tion for merging the branches. We convert µ : Γ× ⇝ (C → Bool) to an arrow
mkCond µ : Γ× · C ↭ C ⊕ C through the mkCond operator, which can be
defined using pin, case! and app in tandem.
Cases T-Abs•, T-RApp.

Γ ;x : A ⊢ r : B 99K α

Γ ⊢ λ•x.r : A ↔ B 99K
curry• (arr r unitel†× ≫r α)

Γ ⊢ u : A ↔ B 99K µ Γ ;Θ ⊢ r : A 99K α

Γ ;Θ ⊢ u ⋄ r : B 99K α≫r (µ≫! app•)

For T-Abs•, we get α : Γ× ·1⊗A↭ B, which we curry• after handling the unit.
For T-RApp, α transforms Θ× to A, letting µ be applied through a partially
invertible composition (≫!) with app•.
Case T-Pin.

Γ ⊢ u : C → A↔ B 99K µ Γ ;Θ ⊢ r : C ⊗A 99K α

Γ ;Θ ⊢ pin u ⋄ r : C ⊗B 99K α≫r pin ((firstu µ≫u app)≫! app•)

We have α producing C ⊗ A, and with parameter Γ× ⊗ C, we can apply µ to
produce B. Thus, we must shift C from the output into the parameter, and pin
achieves just that.
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Correctness. Finally, we show the correctness of the translation with respect to
the semantics of Sections 3.5 and 4.2. Before we state correctness, we must first
define a translation of the values, since they differ between Kalpis and rrArr.

J()K = (), J(v1, v2)K = (Jv1K, Jv2K),
JInL vK = inl JvK, JInR vK = inr JvK, JRoll vK = roll JvK,

J⟨λx.u, γ⟩K = ⟨JuK, JγK⟩, J⟨λ•x.r, γ⟩K = ⟨arr unitel†×≫r JrK, JγK⟩

The base values are translated trivially, whereas the closures are translated ac-
cording to the type-directed translation given above (cf. Case T-Abs•). We also
define a translation of value environments γ in the obvious way.

Then, we can state the correctness of the translation as below.

Theorem 5 (Kalpis 99K rrArr Soundness).
– Γ ⊢ u : A 99K µ and γ ⊢ u ⇓ v implies µ JγK 7→ JvK
– Γ ;Θ ⊢ r : A 99K α and γ; θ ⊢ r ⇒ v implies α JγK; JθK 7→ JvK. ⊓⊔

This theorem does not refer to the backward evaluation directly, utilizing the
invertibility of both Kalpis and rrArr. The completeness part, on the other
hand, does need a separate statement for the backward direction, since there is
no a priori guarantee that the output w is of the form JθK.

Theorem 6 (Kalpis 99K rrArr Completeness).
– Γ ⊢ u : A 99K µ and µ JγK 7→ w implies γ ⊢ u ⇓ v for v with JvK = w.
– Γ ;Θ ⊢ r : A 99K α and α JγK; JθK 7→ w implies γ; θ ⊢ r ⇒ v for v with

JvK = w.
– Γ ;Θ ⊢ r : A 99K α and α JγK; JvK ← [ w implies γ; v ⊢ r ⇐ θ for θ with

JθK = w. ⊓⊔

We refer to the Agda code in the supplementary material for the proofs.

6 Related Work

Kalpis and rrArr are not the first to support partial invertibility. In the imper-
ative setting, languages such as Janus [35,53], Frank’s R [17], and R-While [19]
support a limited form of partial invertibility via reversible update operators [6].
An example of a reversible update statement is x += e, whose effect can be re-
verted by the corresponding inverse statement x -= e. Both statements use the
same e, which need not be invertible (e.g., x += yz is reverted by x -= yz, and
vice versa). In the functional setting, Theseus [27] allows a bijection to take ad-
ditional parameters, but only provided that they are available at compile time.
RFun version 2,11 an extension to the original RFun [54], and CoreFun [25] allow
more flexibility via so-called ancilla parameters, which are translated to auxiliary
inputs and outputs of the invertible computation. Their approach is similar to
Kalpis’s but more restrictive since they lack support for the pin operator and
11 https://github.com/kirkedal/rfun-interp
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higher-order computation. Jeopardy [31] is a recent invertible language where
even irreversible functions can be inverted in certain contexts depending on im-
plicitly available information. However, this is still work in progress, and seems
to lean closer to program inversion methods than the lightweight type-based
approach we employ.

Sparcl [39,40] is the most flexible system that supports partial invertibility
to our knowledge, which is realized through a more advanced language founda-
tion. Instead of bijections A ↔ B, Sparcl features invertible data marked by
the type A•, which implicitly corresponds to some bijection S ↔ A. This idea
of invertible data is inherited from the HOBiT language [38], which represents
lens combinators [15, 16] as higher-order functions to achieve applicative-style
higher-order bidirectional programming [36, 37]. The type system of Sparcl
ensures that a closed linear function between invertible data !(A•⊸ B•) is iso-
morphic to a (non-total) bijection between A and B, so that partial invertibility
can be represented as a function that takes both unidirectional and invertible
data C → A• ⊸ B•. This representation affords more flexibility than Kalpis
does: invertible data is allowed to be captured in abstractions, and can even
appear in subcomponents of datatypes (e.g., Int⊗ (Int•) or Int⊕ (Int•) are both
valid types). However, this flexibility comes at the cost of complexity, requiring a
semantics that interleaves partial evaluation and invertible computation, making
a locally invertible interpretation difficult. We remark that the holed residuals
⟨x.E⟩ featured in Sparcl’s core system bear a strong resemblance to bijections
λ•x.r in Kalpis.

Our combinator language rrArr can be seen as an extension of MLΠ , an
arrow metalanguage on top of the invertible language Π treating information
creation and loss (non-totality and irreversibility) as an effect [26]. By combin-
ing their work with the reversible reader arrow [23], we are able to give erasing
(weakening) as a derived operation defined via the operator run (as demon-
strated in Section 4). Further research on the nontrivial interaction between the
arrows, such as an equational characterization and a denotational model, is left
for future work. While the previous work is able to treat non-totality as part
of an effect, we assume some non-total operations in the underlying invertible
system due to the inclusion of recursive and functional types.

The design of Kalpis is inspired by the arrow calculus of Lindley, Wadler,
and Yallop [33], which is a metalanguage for the conventional representation of
arrows [24], analogous to the monad metalanguage [42]. In a sense, Kalpis can
be seen as a counterpart to the arrow calculus for rrArr. For example, the treat-
ment of λ•x.r is actually inherited from the arrow calculus, where arrows cannot
be nested in general [34], unless the underlying arrow supports application to
form a monad [24]. To the best of our knowledge, a monad-based programming
system for invertible/reversible computation does not exist, though there are
some closely related results, including monads for nondeterministic computation
(such as [14]) and a monadic programming framework for bidirectional trans-
formations [20, 52]. However, these existing approaches lack the guarantee of
bijectivity—a motivation to use invertible languages.
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The importance of partial invertibility has been recognized in the neighboring
literature on program inversion—program transformations that derive a program
of f−1 for a given program of f . Partial inversion [44, 47] essentially applies a
binding-time analysis [21, 28] to an input program, where the static data can
be treated as unidirectional inputs. The technique is further extended to treat
results of inverses as unidirectional [3, 29, 30]. This treatment is similar to the
role of pin in Kalpis and Sparcl [39,40] in that it converts invertible data into
“static” parameters. Some approaches to program inversion are more liberal: semi
inversion [41] essentially converts a program into a logic program, where there
is no clear boundary between unidirectional and invertible data, and the PINS
system [49], in addition to an original program, can take a control structure of
an inverse program to effectively synthesize inverses that may not mirror the
control structures of the original. The main limitation of program inversion is
that as a program transformation it may fail, often for reasons that are not
obvious to programmers.

7 Conclusion

We have presented a set of four core constructs for partially invertible program-
ming, demonstrated their expressiveness through examples, and shown that they
can be given a locally invertible interpretation, thus solving an open problem in
the field. The four constructs are (1) partially invertible branching, (2) pinning
invertible inputs, (3) partially invertible composition, and (4) abstraction and
application of invertible computations. We designed the partially invertible lan-
guage Kalpis on top of these constructs and formalized its syntax, type system
and operational semantics. We then presented rrArr, a low-level arrow lan-
guage with primitives directly corresponding to the constructs, and gave it a lo-
cally invertible interpretation based on two effects—the irreversibility effect [26]
and the reversible reader [23]. Finally, we presented a type-directed translation
from Kalpis to rrArr, showing how to support expressive partial invertibility
on top of a locally invertible foundation. Proofs of all theorems stated in the
paper are formalized by the accompanying Agda code.12
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Efficient Matching with Memoization for
Regexes with Look-around and Atomic

Grouping⋆

Abstract. Regular expression (regex) matching is fundamental in many
applications, especially in web services. However, matching by backtrack-
ing—preferred by most real-world implementations for its practical per-
formance and backward compatibility—can suffer from so-called catas-
trophic backtracking, which makes the number of backtracking super-
linear and leads to the well-known ReDoS vulnerability. Inspired by
a recent algorithm by Davis et al. that runs in linear time for (non-
extended) regexes, we study efficient backtracking matching for regexes
with two common extensions, namely look-around and atomic grouping.
We present linear-time backtracking matching algorithms for these ex-
tended regexes. Their efficiency relies on memoization, much like the one
by Davis et al.; we also strive for smaller memoization tables by care-
fully trimming their range. Our experiments—we used some real-world
regexes with the aforementioned extensions—confirm the performance
advantage of our algorithms.

Keywords: regular expression · look-around · atomic grouping · pat-
tern matching · ReDoS · memoization

1 Introduction

Regex Matching Regular expressions (regexes) are a fundamental formalism
for various pattern-matching tasks. Many regex matching implementations, how-
ever, suffer from occasional super-linear growth of their execution time. Such ex-
cessive execution time can be exploited for DoS attacks—this is a vulnerability
called regex denial of service (ReDoS). ReDoS is recognized as a significant se-
curity concern in many real-world systems, especially web services such as Stack
Overflow and Cloudflare (see §2.4 for more details).
Need for Efficient Backtracking Regex Matching The principal cause
of ReDoS is catastrophic backtracking, that is, the explosion of recursion in a
backtracking-based matching algorithm.
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In regex matching, in general, a regex r is converted into a non-deterministic
finite automaton (NFA) A, and the latter is executed for an input string w. The
non-determinism of A can be resolved in either a depth-first or a breadth-first
manner. The former is called backtracking regex matching, and the latter is the
on-the-fly DFA construction.

Catastrophic backtracking and ReDoS are phenomena unique to the former
(i.e., backtracking)—as is well-known, the time complexity of the on-the-fly DFA
construction is linear (i.e., O(|w|)). Indeed, many modern regex implementations
are based on the on-the-fly DFA construction, including RE23, Go’s regexp4,
and Rust’s regex5.

It is practically essential, however, to make backtracking regex matching
more efficient. A principal reason is consistency. Most existing regex matching
implementations use backtracking, and they return only one matching position
out of many (see §2.3). While it is possible to replace them with on-the-fly
DFA matching, it is non-trivial to ensure consistency, that is, that the chosen
matching position is the same as the original backtracking matching implemen-
tation. .NET’s regex implementation has a linear-time complexity backend using
a derivative-based approach, which is compatible with a backtracking backend.
Still, it does not support look-around and atomic grouping [28]. Once the re-
turned matching position changes, it can unexpectedly affect the behavior of all
the systems (e.g., web services) that use regex matching.

Another reason for improving backtracking regex matching is its extensibility.
There are many extensions of regexes widely used—such as the ones we study,
namely look-around and atomic grouping—and they are supported by few on-
the-fly DFA matching implementations.
Existing Work: Linear-time Backtracking Matching with Memoization
Memoization is a well-known technique for speeding up recursive computations.
The recent work [10] shows that memoization can be applied to backtracking
regex matching with consistency in mind. Specifically, the work [10] presents
a backtracking matching algorithm that runs in O(|w|) time—thus, it is the-
oretically guaranteed to avoid catastrophic backtracking—for regexes without
extensions. (They also mention application to extended regexes in [10], but we
found issues in their discussion—see Remark 2).
Our Contribution: Linear-time Backtracking Matching for Some Ex-
tended Regexes In this paper, we present a linear-time backtracking match-
ing algorithm for regexes with look-around and atomic grouping, two real-world
extensions of regexes. It uses memoization in order to achieve a linear-time com-
plexity. We also prove that it is consistent (i.e., it chooses the same matching
position as the original algorithm without memoization).

The technical key to our algorithm is the design of suitable memoization ta-
bles. We follow the general idea in [10] of using memoization for backtracking
matching, but our examination of its issues with extended regexes (Remark 2)
3 https://github.com/google/re2
4 https://pkg.go.dev/regexp
5 https://docs.rs/regex/latest/regex/
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shows that the range—i.e., the set of possible entries—of memoization tables
should be suitably extended. Specifically, the range in [10] is {false}, record-
ing only matching failures; it is extended in our algorithm to {Failure(j) | j ∈
{0, . . . , ν(A)}}∪{Success}. Here, ν(A) is the maximum nesting depth of atomic
grouping for the (extended) NFA A, defined in §5.

Our development is rigorous and systematic, based on the notion of NFA
whose labels can themselves be NFAs. This extended notion of NFA is suggested
in [10, Section IX.B]; in this paper, we formalize it and build its theory.

We experimentally evaluate our algorithm; the experiment results confirm its
performance advantages. Additionally, we survey the usage status of look-around
and atomic grouping—two regex extensions of our interest—in real-world regexes
and demonstrate their wide usage (§6).
Technical Contributions We summarize our technical contributions.

– We propose a backtracking matching algorithm for regexes with look-around,
proving its linear-time complexity (§4). This algorithm fixes the issues in the
algorithm in [10] (Remark 2) and restores correctness and linearity.

– We also propose a backtracking matching algorithm for regexes with atomic
grouping, proving its linear-time complexity (§4).

– We experimentally confirm the performance of our algorithms (§6).
– We investigate the usage status of look-around and atomic grouping in real-

world regexes and confirm their wide usage (§6).
– We establish a rigorous theoretical basis for our algorithms for extended

regexes, namely NFAs with sub-automata (§2.6).

Organization We provide some preliminaries in §2, such as regex extensions
of our interest. Our formalization of NFAs with sub-automata is also presented
here. In §3, we discuss the work [10] that is closest to ours. We present our
matching algorithm for regex with look-around in §4 and the one for regex with
atomic grouping in §5. Then, we discuss our implementation and experimental
evaluation in §6. We conclude in §7.

Some additional proofs and other materials are deferred to the appendices in
the extended version [15].
Related Work Many related works are discussed elsewhere in suitable contexts.
Here, we discuss other related works.

There are many theoretical studies on look-around and atomic grouping. The
work [27] is a theoretical study of look-ahead operators; it shows how to convert
them to finite automata. Another conversion based on derivatives is introduced
in [26]. The work [3] conducts a fine-grained analysis of the size of DFAs ob-
tained from converting regexes with look-ahead, improving the bounds given
in [26,27]. The work [5] discusses the relation between look-ahead operators and
back-references in regexes. A recent study [22] presents a linear-time matching
algorithm for regexes with look-around; it uses a memoization-like construct for
efficiency. However, the compatibility with backtracking is not a concern there,
unlike the current work. On atomic grouping, conversion to finite automata is
proposed [4], where atomic grouping is simulated by look-ahead.
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Another common regex extension is back-reference. We do not deal with this
extension because 1) this extension is known to be non-regular (i.e., the language
class defined by back-reference is beyond regular), and 2) its matching problem
is known to be NP-complete [1] (thus the search for linear-time matching is
doomed). There are other extensions (absent operators, conditional branching,
etc.), but they are used less often (cf. §6).

ReDoS countermeasures are an active scientific topic. Besides efficient match-
ing, there are two directions for them: ReDoS detection and ReDoS repair. Re-
DoS detection is a problem that determines whether a given regex can cause
catastrophic backtracking. This can be done by finding specific structures in a
transition diagram of an automaton [2,18,29,34,36,37]. Besides, dynamic anal-
ysis, such as fuzzing [31], and combinations of static and dynamic analyses [19]
are studied. ReDoS repair is a problem of modifying a given regex so that it
does not cause ReDoS. Known solutions include exploring ReDoS-free regexes
using SMT solvers [6, 21] and rule-based rewriting of vulnerable regexes [20].
These ReDoS detection and repair measures are computationally demanding,
and their real-world deployment is limited.

There are other implementation-level studies on speeding up regex matching,
such as Just-in-Time (JIT) compilation [17] and FPGA [32]. However, these
studies are not intended to prevent catastrophic backtracking.

2 Preliminaries

We introduce preliminaries for this paper. Firstly, we present some basic con-
cepts such as regexes, NFAs, conversion from regexes to NFAs, and backtracking
matching. We then discuss catastrophic backtracking and the ReDoS vulnerabil-
ity that it can cause. Finally, we introduce look-around and atomic grouping as
practical regex extensions and NFAs with sub-automata for these extensions.

We fix a finite set Σ as an alphabet throughout this paper. We call sequences
of elements of Σ strings. The empty string is denoted by ε. For a string w =
σ0σ1 . . . σn−1, the length of w, denoted by |w|, is defined as |w| = n. We also
write w[i] = σi for i ∈ {0, . . . , n− 1}.

We use partial functions for memoization. For two sets A and B, a partial
function G from A to B, denoted by G : A ⇀ B, is defined as a function G : A→
B ∪ {⊥}. Here ⊥ is the element for “undefined,” and it is assumed that ⊥ ̸∈ B.

Let G : A ⇀ B be a partial function, a ∈ A, and b ∈ B. We let G(a) ← b
denote an updated partial function: it carries a to b, and any other x ∈ A to
G(x) (it is undefined if G(x) is initially undefined).

2.1 Regexes

Regular expressions (regexes) are defined by the following abstract grammar.

r ::= σ (a (literal) character, where σ ∈ Σ) | ε (the empty string)
| r|r (an alternation) | r ·r (a concatenation)
| r∗ (a repetition)
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Branch
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(e) r∗

Fig. 1: a conversion from regexes to NFAs

The concatenation operator ·may be omitted when there is no ambiguity. The
precedence of operators is as follows: repetition, concatenation, and alternation.
For example, ab∗|c means (a · (b∗))|c.

For a regex r, the size of r, denoted by |r|, is defined as follows: |σ| = |ε| = 1,
|(r1|r2)| = |r1 · r2| = |r1|+ |r2|+ 1, and |r∗| = |r|+ 1.

2.2 NFAs

A non-deterministic finite state automaton (NFA) is a quadruple (Q, q0, F, T ),
where Q is a finite set of states q0 ∈ Q is an initial state, F ⊆ Q is a set
of accepting states, and T is a transition function. For each q ∈ Q \ F , T (q)
can be one of the following: T (q) = Eps(q′), T (q) = Branch(q′, q′′), and T (q) =
Char(σ, q′) where q′, q′′ ∈ Q and σ ∈ Σ.

The above definition of a transition function T is tailored to our purpose of
backtracking. Compared to the common definition δ : Q × ({ε} ∪ Σ) → 2Q, it
expresses general branching as combinations of certain elementary branchings.
The latter is namely one transition by ε, two transitions by ε, and one transi-
tion by a certain character σ ∈ Σ. This makes the description of backtracking
matching easier. Note, in particular, that the successors q′, q′′ in the branch-
ing Branch(q′, q′′) are ordered. Here, q′ and q′′ are called the first and second
successors, respectively. This definition of transition functions is similar to the
op-codes of many real-world regex-matching implementations (cf. [8]).

We present a conversion from regexes to NFAs (see Figure 1); it is similar to
the Thompson–McNaughton–Yamada construction [23, 35]. For a regex r, A(r)
denotes the NFA A converted from r. In the figure, labels on arrows show kinds
of transitions. In a Branch transition, the top arrow points to the first successor,
and the bottom points to the second successor. Rectangles indicate that the
conversion is applied to sub-expressions inductively. Because each case of this
construction introduces at most two new states, for a regex r and the NFA
A(r) = (Q, q0, F, T ), we have |Q| = O(|r|).
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Algorithm 1 a partial backtracking matching algorithm for NFAs
1: function MatchA,w(q, i)

Parameters: an NFA A, and an input string w
Input: a current state q, and a current position i

Output: returns SuccessAt(i′) if the matching succeeds, or
returns Failure if the matching fails

2: (Q, q0, F, T ) = A
3: if q ∈ F then return SuccessAt(i)
4: else if T (q) = Eps(q′) then return MatchA,w(q′, i)
5: else if T (q) = Branch(q′, q′′) then
6: result←MatchA,w(q′, i)
7: if result = Failure then return MatchA,w(q′′, i)
8: else return result
9: else if T (q) = Char(σ, q′) then

10: if i < |w| and w[i] = σ then return MatchA,w(q′, i + 1)
11: else return Failure

We collectively call Eps and Branch transitions ε-transitions. Later in this
paper, if there are consecutive ε-transitions, they may be shown as a single
transition in a figure. When a certain state returns to itself by ε-transitions,
such a sequence of ε-transitions is called an ε-loop. ε-loops are problematic in
matching because they cause infinite loops in matching.

An ε-loop can be detected during matching by recording a position on an
input string when a state is visited. When an ε-loop is detected, several solutions
exist to deal with it (see, e.g., [30]), such as treating an ε-loop as a failure (e.g.,
JavaScript and RE2) or treating it as a success but escaping it (e.g., Perl). These
solutions can be easily adapted to our algorithms; therefore, for the simplicity
of presentation, we introduce the following assumption.

Assumption 1 (no ε-loops). NFAs do not contain ε-loops.

2.3 Backtracking Matching

We present a basic backtracking matching algorithm for NFAs in Algorithm 1.
It serves as a basis for optimization by memoization, both in [10] and in the
current work.

The function MatchA,w is recursively called in this algorithm, but it must
terminate on Asm. 1. It takes two parameters: A is an NFA, and w is an
input string. It also takes two arguments: q ∈ Q is the current state, and
i ∈ {0, . . . , |w|} is the current position on w. MatchA,w(q0, i) for an NFA A =
(Q, q0, F, T ) returns SuccessAt(i′) with the matching position i′ ∈ {0, . . . , |w|} if
the matching with A succeeds from i to i′ on w, or returns Failure if the matching
fails.

The Match function implements partial matching: given the position i ∈
{0, . . . , |w|} of interest, one obtains, by running MatchA,w(q0, i), one “matching
position” i′ (if it exists) such that w[i] w[i+1] . . . w[i′] is accepted by A. Note the
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q0

q1

q2 q3

q4 q5

q6

q7 q8

Branch

Branch

Char(a)

Char(a)

Eps

Eps

Eps

Char(b)

Fig. 2: the NFA A((a|a)∗
b)

difference from total matching: given A and w, it returns true if (the whole) w is
accepted by A and false otherwise. The practical relevance of partial matching
must be clear, as we can use it for text search and replacement.

Lines 5 to 8 in Algorithm 1 perform matching for Branch transitions. Here,
the algorithm first tries matching from the first successor q′, and if that fails,
it tries matching from the second successor q′′ with the same position. This
behavior is called backtracking.

We define the regex partial matching problem using the function Match.

Problem 1 (regex partial matching).
Input: a regex r, an input string w, and a starting position i ∈ {0, . . . , |w|}

Output: returns MatchA(r),w(q0, i) where A(r) = (Q, q0, F, T ).

Remark 1. One can say that the problem formulation is a bit strange. It requires,
as output, a specific matching position chosen by a specific algorithm Match,
while a usual formulation would require an arbitrary matching position. We take
this formulation since we aim to show that our optimization by memoization not
only solves partial matching but also is consistent with an existing backtracking
matching algorithm, in the sense we discussed in §1. We formulate consistency
as correctness with respect to Prob. 1, that is, preserving the solution chosen by
the specific algorithm Match. We also note that the algorithm Match mirrors
many existing implementations of regex matching (cf. §2.2).

2.4 Catastrophic Backtracking and ReDoS

In the execution of the Match function (Algorithm 1), depending on an NFA
A and an input string w, the number of recursive calls for the Match function
may increase explosively, resulting in a very long matching time, as we will see
in Example 1. This explosive increase in matching time is called catastrophic
backtracking.

Example 1 (catastrophic backtracking). Consider the NFA A = A((a|a)∗
b) =

(Q, q0, F, T ) shown in Figure 2, and let w = "anc" (the string repeating a of n
times and ending with c) be an input string. MatchA,w(q0, 0) invokes recursive
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calls O(2n) times until returning Failure. The reason for this recursive call ex-
plosion is to try all combinations on q2 to q3 and q4 to q5 transitions for each a
in w during the matching.

Regexes denial of service (ReDoS) is a security vulnerability caused by catas-
trophic backtracking. In ReDoS, catastrophic backtracking causes a huge load
on servers, making them unable to respond in a timely manner. There are cases
of service outages due to ReDoS at Stack Overflow in 2016 [12] and at Cloudflare
in 2019 [16]. Additionally, a 2018 study [33] reported that over 300 web services
have potential ReDoS vulnerabilities. Thus, ReDoS is a widespread problem in
the real world, and there is a great need for countermeasures.

According to a 2019 study [25], only 38% of developers are aware of Re-
DoS. This study also found that many developers find it difficult not only to
read regexes but also to find and validate regexes to match their desires. It is
mentioned in [25] that developers use Internet resources such as Stack Overflow
to find regexes. In recent years, it has also become common to use generative
AIs such as ChatGPT for such a purpose. However, when the authors asked,
“Please suggest 10 regexes for validating email addresses” to ChatGPT,6 2 of
the 10 suggested regexes would cause ReDoS (see Table 1). Developers may un-
knowingly use such vulnerable regexes. For this reason, it is important to develop
ReDoS countermeasures that can be achieved without the developer being aware
of them.

Matching speed-up is a way to avoid causing ReDoS by ensuring that match-
ing is linear in time to the length of an input string, freeing developers from wor-
rying about ReDoS. A popular method for matching speed-up is using breadth-
first search for non-deterministic transition instead of backtracking (depth-first
search); it is called the on-the-fly DFA construction [7,28]. However, since look-
around and atomic grouping are extensions based on backtracking (see §2.6), it
is not obvious that they can be supported by the on-the-fly DFA construction.

Memoization is another approach to ensuring linear-time backtracking match-
ing; we pursue it in this paper.

2.5 Regex Extensions: Look-around and Atomic Grouping

Many real-world regexes come with various extensions for enhanced expressiv-
ity [13]. In this paper, we are interested in two classes of extensions, namely
look-around and atomic grouping.
Look-around Look-around is a regex extension that allows constraints on
strings around a certain position. It is also called zero-width assertion (e.g.,
in [10]) because it does not consume any characters. Look-around consists of
four types: positive or negative, and look-ahead or look-behind.

Positive look-ahead is typically represented by the syntax (?=r); its matching
succeeds when, reading ahead from the current position of the input string, the
6 We used ChatGPT 3.5 (September 25, 2023 version).
7 The second and third regexes are the same; they are the actual output of ChatGPT.
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Table 1: the regexes given by ChatGPT for the question “Please suggest 10
regexes for validating email addresses”.7

suggested regex (ChatGPT’s comment) vulnerable?

ˆ[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$
(Basic Email Validation)

ˆ[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$
(Basic Email Validation with TLD)

ˆ[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$
(Strict Email Validation)

ˆ[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}(?:\.[a-z
A-Z]{2,})?$

(Email Validation Allowing for Subdomains)
ˆ[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{1,}$

(Email Validation Allowing Single-Character Domain Name)
ˆ[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}(?:\.[\p{
L}\p{N}]{2,})?$

(Email Validation Allowing Internationalized Domain Names (IDNs))
ˆ(?:"[\w\s]+")?([a-zA-Z0-9._%+-]+)@[a-zA-Z0-9.-]+\.[a-zA
-Z]{2,}$

(Email Validation with Optional Quoted Local Part)
ˆ(?:\([ˆ()]*\)|[\w\s]+)?([a-zA-Z0-9._%+-]+)@[a-zA-Z0-9.-
]+\.[a-zA-Z]{2,}$

(Email Validation with Optional Comments)
vulnerable

ˆ[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$i
(Email Validation Allowing for Case-Insensitive Domain)

ˆ(?:(?:[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,})|(
[a-zA-Z0-9._%+-]+)\+[ˆ@]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,})$

(Email Validation with Support for Subaddressing)
vulnerable

matching of the inner regex r succeeds. Note that the position for the overall
matching does not change by the inner matching of r. For example, the regex
/(?=bc)/ matches the string "abc" from position 1 (i.e., after the first character
a) without consuming any characters.

The matching of a negative look-ahead (?!r) succeeds when the inner regex
r is not matched.

Positive or negative look-behind—denoted by (?<=r) or (?<!r), respectively—
is similar to the above, with the difference that the inner matching of r is per-
formed backward, i.e., from right to left. For example, the regex /(?<=ab)/
matches the string "abc" from position 2 (i.e., before the last character c) with-
out consuming any characters.

A typical use of look-around is to put a look-behind before (or a look-ahead
after) a regex r. This is useful when one wants to perform a search or replacement
of r for only those occurrences that are in a certain context. For example, the
regex /(?<=<p>)[ˆ<]*(?=<\/p>)/ matches only contents of the HTML <p> tag.
As another example, common assertions such as \A (this matches the beginning
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of a string) and \z (this matches the end) can be expressed using look-around,
namely \A = (?<!.) and \z = (?!.).
Atomic Grouping Atomic grouping is a regex extension that controls back-
tracking behaviors. It is designed to manually avoid problems caused by back-
tracking, such as catastrophic backtracking (§2.4).

Atomic grouping is represented by the syntax (?>r); once the matching of
the inner regex r succeeds, the remaining branches in potential backtracking for
matching r are discarded. For example, the regex /(a|ab)c/ matches the string
"abc", but the regex /(?>(a|ab))c/ using atomic grouping does not match it.
This is because, once a in the atomic grouping matches the first character a of
"abc", the remaining branch ab (in a|ab) is discarded, and one is left with the
regex c and the string "bc".

Atomic grouping is often used for the purpose of preventing catastrophic
backtracking. In that case, it is used in combination with the repetition syntax,
e.g., (?>(r*)) (often abbreviated as r*+) and (?>(r+)) (abbrev. as r++). These
abbreviations are called possessive quantifiers. The former (namely (?>(r*)))
is intuitively understood as (?>(ε|r|rr|. . . )), with the difference that longer
matching is preferred (this is because the Eps loop is the first successor in Fig-
ure 1e). Once a longer match is found, the remaining branches (i.e., those for
shorter matches) get discarded, thus preventing catastrophic backtracking.

One might wonder if our (linear-time and thus ReDoS-free) matching algo-
rithm should support atomic grouping—the principal use of atomic grouping
is to suppress backtracking and avoid ReDoS. We do need to support it since,
as we discussed in §1, ours is meant to be a drop-in replacement for matching
implementations that are currently used.
Our Target Extended Regexes Our target class, namely regexes with look-
around and atomic grouping, is defined by the following grammar.

r ::= . . . (the same as the regexes definition, §2.1)
| (?=r) | (?!r) (positive and negative look-ahead)
| (?<=r) | (?<!r) (positive and negative look-behind)
| (?>r) (atomic grouping)

For brevity, we sometimes refer to regexes with look-around and atomic grouping
as (la, at)-regexes. We also refer to regexes with look-around as la-regexes and
regexes with atomic grouping as at-regexes.

For a (la, at)-regex r, the size of r, denoted by |r|, is defined as the same as
the regex one except for |(?=r)| = |(?>r)| = |r|+ 1.

Look-around is known to be regular : they can be converted to DFA, and the
language family of la-regexes is the same as the regular language. This fact is
mentioned in [3,26,27]. Atomic grouping is also known to be regular in the same
sense [4]. However, it is known that look-ahead and atomic grouping can make
the number of states of the corresponding DFA grow exponentially [3, 4, 26,27].

In what follows, for simplicity, we only discuss positive look-ahead in dis-
cussions of look-around. Adaptation to other look-around operators, such as
negative look-behind, is straightforward.
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2.6 NFAs with Sub-automata

We introduce NFAs with sub-automata for backtracking matching algorithms for
(la, at)-regexes. This extended notion of NFAs is suggested in [10, Section IX.B],
but it seems ours is the first formal exposition.

Roughly speaking, an NFA with sub-automata is an NFA whose transitions
can be labeled with—in addition to a character σ ∈ Σ, as in usual NFAs—
another NFA with sub-automata. See Figure 3, where transitions from q0 to q1
are labeled with r , the NFA with sub-automata obtained by converting r. We
annotate these transitions further with a label (pla for positive look-ahead, at
for atomic grouping, etc.) that indicates which operator they arise from. Note
that NFAs with sub-automata can be nested—transitions in r in Figure 3 can
be labeled with NFAs with sub-automata, too.

Our precise definition is as follows. There, P is the set that collects all states
that occur in an NFA with sub-automata A, i.e., in 1) the top-level NFA, 2) its
label NFAs, 3) their label NFAs, and so on.

Definition 1 (NFAs with sub-automata). An NFA with sub-automata A
is a quintuple A = (P, Q, q0, F, T ) where P is a finite set of states and Q ⊆ P is a
set of so-called top-level states. We require that the quadruple (Q, q0, F, T ) is an
NFA, except that the value T (q) of the transition function T is either 1) Eps(q′),
Branch(q′, q′′), or Char(σ, q′) (as in usual NFAs, §2.2), or 2) Sub(k,A′, q′), where
A′ is an NFA with sub-automata, q′ is a successor state, and k is a kind label
where k ∈ {pla, nla, plb, nlb, at}.

We further impose the following requirements. Firstly, we require all NFAs
with sub-automata in A to have disjoint state spaces. That is, for any dis-
tinct top-level states q, q′′ ∈ Q in A, if T (q) = Sub(k,A′, q′) and T (q′′) =
Sub(k′,A′′, q′′′), then we must have P ′ ∩ P ′′ = ∅, Q ∩ P ′ = ∅ and Q ∩ P ′′ = ∅,
where A′ = (P ′, . . . ) and A′′ = (P ′′, . . . ). Secondly, we require that the set P
in A = (P, . . . ) is the (disjoint) union of all states that occur within A, that is,
P = Q ∪

⋃
q∈Q,T (q)=Sub(k,A′,q′),A′=(P ′,... ) P ′.

The kind label k in Sub(k,A′, q′′) indicates how the sub-automaton A′ should
be used (cf. Algorithm 2). If every kind label occurring in A (including its sub-
automata) is either pla, nla, plb, or nlb, then A is called a la-NFA. Similarly, if
every kind label is at, A is called an at-NFA. Following this convention, general
NFAs with sub-automata are called (la, at)-NFAs.

Note that the definition is recursive. Non-well-founded nesting is prohibited,
however, by the finiteness of P . By the definition, if P = Q, then A does not
contain any transitions labeled with sub-automata.

In addition to Eps and Branch transitions, we refer to Sub transitions with
a label k ∈ {pla, nla, plb, nlb} as ε-transitions too. We also assume the following,
similarly to Asm. 1.

Assumption 2. (la, at)-NFAs do not contain ε-loops.
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q0 q1
Sub(pla, r )

(a) (?=r) (positive look-ahead)

q0 q1
Sub(at, r )

(b) (?>r) (atomic grouping)

Fig. 3: a conversion from (la, at)-regexes to (la, at)-NFAs. For negative look-
ahead, we use the corresponding kind label nla. For positive and negative look-
behind, besides using the kind labels plb and nlb, we suitably reverse r .

Algorithm 2 a partial backtracking matching algorithm for (la, at)-NFAs
1: function Match-(la, at)A,w(q, i)

Parameters: a (la, at)-NFA A, and an input string w
Input: a current state q, and a current position i

Output: returns SuccessAt(i′) if the matching succeeds, or
returns Failure if the matching fails

2: (P, Q, q0, F, T ) = A
3: if q ∈ F then

... ▷ the same as Algorithm 1
12: else if T (q) = Sub(pla,A′, q′) then

▷ positive look-ahead; other look-around ops. are similar
13: (P ′, Q′, q′

0, F ′, T ′) = A′

14: result←Match-(la, at)A′,w(q′
0, i)

15: if result = SuccessAt(i′) then return Match-(la, at)A,w(q′, i)
16: else return r
17: else if T (q) = Sub(at,A′, q′) then ▷ atomic grouping
18: (P ′, Q′, q′

0, F ′, T ′) = A′

19: result←Match-(la, at)A′,w(q′
0, i)

20: if result = SuccessAt(i′) then return Match-(la, at)A,w(q′, i′)
21: else return r

For (la, at)-regexes, their conversion to (la, at)-NFAs is described by the
constructions in Figure 3—using transitions labeled with sub-automata—in ad-
dition to the conversion for regexes in §2.2. Note that we have |P | = O(|r|) in
these constructions.

The backtracking matching algorithm in Algorithm 1 can be naturally ex-
tended to (la, at)-NFAs; it is shown in Algorithm 2. The clauses for positive
look-ahead (Lines 12 to 16) and atomic grouping (Lines 17 to 21) are similar to
each other, conducting matching for sub-automata. Note that their difference is
in the “return position” (i in Line 15; i′ in Line 20).

The clauses for other look-around operators are similar to the ones for posi-
tive look-around. For look-behind, we can suitably use an additional parameter
d ∈ {−1, +1} for indicating a matching direction.

Using the extended backtracking matching algorithm (Algorithm 2), we de-
fine the partial matching problem for (la, at)-regexes in the same way as for
regexes without extensions (Prob. 1).
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Problem 2 ((la, at)-regex partial matching).
Input: a (la, at)-regex r, an input string w, and a starting position i

Output: returns Match-(la, at)A(r),w(q0, i) where A(r) = (P, Q, q0, F, T ).

3 Previous Works on Regex Matching with Memoization

This section introduces an existing work [10] on regex matching with memoiza-
tion, paving the way for our algorithms for (la, at)-regexes in Sections 4 and 5.

Memoization is a programming technique that makes recursive computations
more efficient by 1) recording arguments of a function and the corresponding
return values and 2) reusing them when the function is called with the recorded
arguments.

As we described in §2.3, regex matching is conducted by backtracking match-
ing. It is implemented by recursive functions (see Algorithms 1 and 2); thus, it is
a natural idea to apply memoization. Since Java 14, Java’s regex implementation
has indeed used memoization for optimization. However, this optimization is not
enough to completely prevent ReDoS; see, e.g., [24].

The work that inspires the current work the most is [10], whose main novelty
is linear-time backtracking regex matching (much like the current work). Its
contributions are as follows.
1. Focusing on (non-extended) regexes (see §2.1), they introduce a backtracking

matching algorithm that uses memoization. It achieves a linear-time com-
plexity: for an input string w, its runtime is O(|w|).

2. They introduce selective memoization, by which they reduce the domain of
the memoization table from Q × N to Qsel × N. Here Qsel is a subset of Q
that is often much smaller.

3. They introduce a memory-efficient compression method—based on run-length
encoding (RLE)—for memoization tables.

4. Finally, they discuss adaptations of the above method to extended regexes,
namely REWZWA (the extension by look-around; look-around is called zero-
width assertion in [10]) and REWBR (the extension by back-reference).

We will mainly discuss the above item 1; it serves as a basis for our algorithms
in Sections 4 and 5. The technique in the item 2 is potentially very relevant: we
expect that it can be combined with the current work; doing so is future work.
The content of the item 2 is reviewed in [15, Appendix A] for the record.

Remark 2. On the above item 4, the work [10] claims that the time complexity
of their algorithm is linear also for REWZWA (O(|w|) for an input string w).
However, we believe that this claim comes with the following problems.

– The description of an algorithm for REZWA in [10] is abstract and leaves
room for interpretation. The description is to “preserve the memo functions
of the sub-automata throughout the simulation of the top-level M-NFA, re-
membering the results from sub-simulations that begin at different indices i
of w” [10, Section IX-B]. For example, it is not explicit what the “results”
are—they can mean (complete) matching results or mere success/failure.
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Algorithm 3 a total matching algorithm with memoization for NFAs without
ε-transitions [10, Listing 2].
1: function DavisSLM

A,w(q, i)
Parameters: an NFA A without ε-transitions, an input string w, and

a memoization table M : Q× N ⇀ {false}
Input: a current state q, and a current position i

Output: returns true if the matching succeeds, or
returns false if the matching fails

2: (Q, q0, F, δ) = A
3: if i = |w| then return whether q ∈ F
4: if M(q, i) ̸= ⊥ then return M(q, i)
5: for q′ ∈ δ(q, w[i]) do
6: if DavisSLM

A,w(q′, i + 1) then return true
7: M(q, i)← false
8: return false

– Moreover, the part “that begin at different indices i of w” is problematic;
we believe that remembering these results does not lead to linear-time com-
plexity. This point is discussed later in Remark 4.

– Besides, there is a gap between the algorithm described in the paper [10]
and its prototype implementation [11], even for (non-extended) regexes. See
Remark 3.

– Because of this gap, the implementation [11] works in linear time for all
regexes, including REZWA, but can lead to erroneous results for REZWA.
See Remark 4.

Our contribution includes a correct memoization algorithm for look-around (REZWA)
that resolves the above problems.

3.1 Linear-time Backtracking Matching with Memoization

We describe the first main contribution of the work [10] (the item 1 in the above
list), namely a backtracking algorithm that achieves a linear-time complexity
thanks to memoization. The algorithm [10, Listing 2] is presented in Algorithm 3.

q0

q1

q2

q3

a a

a a

b

Fig. 4: the NFA
A((aa|aa)∗

b),
after removing
ε-transitions

In this algorithm DavisSLM
A,w, an NFA A is a quin-

tuple (Q, q0, F, δ) where δ : Q × Σ → 2Q is an non-
deterministic transition function. An additional parame-
ter M : Q × N ⇀ {false} is a memoization table, which
is mathematically a mutable partial function. This algo-
rithm implements total matching (cf. §2.3). It is notable
that the memoization table records only matching failures:
a matching success does not have to be recorded since it
immediately propagates to the success of the whole prob-
lem.
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Algorithm 4 a variant of Algorithm 3 implemented in their prototype [11]
1: function DavisSLImplM

A,w(q, i)
2: (Q, q0, F, δ) = A
3: if i = |w| then return whether q ∈ F
4: if M(q, i) ̸= ⊥ then return M(q, i)

M(q, i)← false ▷ M(q, i) is speculatively set to false
5: for q′ ∈ δ(q, w[i]) do

...
7: M(q, i)← false ▷ moved up

...

This algorithm achieves a linear-time matching. It thus prevents ReDoS. A
full proof of linear-time complexity is found in [10, Appendix C], but its essence
is the following (note the critical role of memoization here).

– For any call DavisSLM
A,w(q, i), if M(q, i) is defined, then the call does not

invoke any further recursive calls.
– When such a call returns false, the entry M(q, i) of the memoization gets

defined (Line 7).
– As a consequence, the number of recursive calls of DavisSLM

A,w is limited to
|Q| × |w|.

Example 2 (matching with memoization for NFAs without ε-transitions). Let us
consider the regex (aa|aa)∗b and the corresponding NFA A((aa|aa)∗b) defined
in §2.2. For the purpose of applying Algorithm 3, we manually remove its ε-
transitions, leading to the NFA in Figure 4. Let w = "a2nc" be an input string.
MatchA,w(q0, 0) (without memoization) invokes recursive calls O(2n) times for
the same reason as in Example 1, but DavisSLM0

A,w(q0, 0) (with memoization,
where M0 is the initial memoization table) invokes recursive calls O(n) times
because M(q0, i) for each position i ∈ {0, 2, . . . , 2n} has been recorded after the
first visit.

Remark 3. Following the discussion in Remark 2, here we describe the gap be-
tween Algorithm 3—the algorithm described in the paper [10]—and its prototype
implementation [11]. The latter is shown in Algorithm 4.

The precise difference between the two algorithms is that Line 7 in Algo-
rithm 3 is moved up to the moment just before the for-loop, in Algorithm 4.
It is not hard to see that this modification does not affect the correctness of
the algorithm: if the pair (q, i) is visited again in the future, it means that the
current matching from (q, i) did not succeed, and backtracking occurred. Note
that, in case the current matching is successful, the function call returns true
so the memoization content M(q, i) should not matter.

However, the above argument is true only when there is no look-around.
(A detailed discussion is in Example 3.) This point seems to be missed in the
implementation [11].
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Algorithm 5 a partial matching algorithm with memoization. An adaptation
of Algorithm 3 from [10], and a basis for our algorithms (Algorithms 6 and 7)
1: function MemoM

A,w(q, i)
Parameters: an NFA A, an input string w, and

a memoization table M : Q× N ⇀ {Failure}
Input: a current state q, and a current position i

Output: returns SuccessAt(i′) if the matching succeeds, or
returns Failure if the matching fails

2: (Q, q0, F, T ) = A
3: if M(q, i) ̸= ⊥ then return M(q, i)
4: result← ⊥
5: if q ∈ F then result← SuccessAt(i)
6: else if T (q) = Eps(q′) then result←MemoM

A,w(q′, i)
7: else if T (q) = Branch(q′, q′′) then
8: result←MemoM

A,w(q′, i)
9: if result = Failure then result←MemoM

A,w(q′′, i)
10: else if T (q) = Char(σ, q′) then
11: if i < |w| and w[i] = σ then result←MemoM

A,w(q′, i + 1)
12: else result← Failure
13: if result = Failure then M(q, i)← Failure
14: return result ▷ result ̸= ⊥, as one can easily see

3.2 Matching with Memoization Adapted to the Current Formalism

In Algorithm 5, we present an adaptation of Algorithm 3 to our formalism,
especially our definition of NFA (§2.2) that offers fine-grained handling of non-
determinism. Algorithm 5 has been adapted also to solve partial matching (it
returns a matching position i′) rather than total matching as in Algorithm 3 (cf.
§2.3). Algorithm 5 serves as a basis towards our extensions to look-around and
atomic grouping in Sections 4 to 5.

The adaptation is straightforward: Line 5 ensures that the algorithm solves
partial matching; the rest is a natural adaptation of the for-loop of Algorithm 3
to our definition of NFA (§2.2). The algorithm terminates thanks to Asm. 1. We
note that the type of memoization tables does not have to be changed compared
to Algorithm 3.

Algorithm 5 exhibits the same desired properties as Algorithm 3, namely
correctness (with respect to Prob. 1) and linear-time complexity. We formally
state these properties for the record; here, M0 : Q× N ⇀ {Failure} is the initial
memoization table (its entry is anywhere ⊥).
Theorem 1 (linear-time complexity of Algorithm 5). For an NFA A =
(Q, q0, F, T ), an input string w, and an position i ∈ {0, . . . , |w|}, MemoM0

A,w(q0, i)
terminates with O(|w|) recursive calls.
Theorem 2 (correctness of Algorithm 5). For an NFA A = (Q, q0, F, T ),
an input string w, and an position i ∈ {0, . . . , |w|}, MatchA,w(q0, i) =
MemoM0

A,w(q0, i).
The proofs can be found in [15, Appendix B.1]. Here is their outline.
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Fig. 6: the at-NFA A(a∗(?>a∗)ab)

We first introduce the notion of run for Match and Memo; it records recur-
sive calls of the function itself, as well as invocations of the memoization table,
together with their return values.

For linear time complexity (Thm. 1), we show that 1) a recursive call with
the same argument (q, i) appears at most once in a run, and that 2) the number
of invocations of the memoization table with the same key (q, i) is bounded by
the (graph-theoretic) in-degree. Linear-time complexity then follows easily.

For correctness (Thm. 2), we introduce a conversion from runs of Memo to
runs of Match. By showing that 1) the result is indeed a valid run of Match
and 2) the conversion preserves return values, we show the coincidence of the
return values of the two algorithms, i.e., correctness.

4 Memoization for Regexes with Look-around

We describe our first main technical contribution, namely a backtracking match-
ing algorithm for la-NFAs with memoization (Algorithm 6). We prove that it is
correct (Thm. 4) and that its time complexity is linear (O(|w|), Thm. 3).

The key ingredient of our algorithm is the type of memoization tables, where
their range is extended from {Failure} to {Failure, Success}. We motivate this ex-
tension through two problematic algorithms MemoExit-la and MemoEnter-la;
MemoExit-la is obtained by naively extending Algorithm 5 (Memo) with adding
the processing of sub-automaton transitions with pla (positive look-ahead) done
in Algorithm 2 (Lines 12 to 16), and MemoEnter-la is similar to MemoExit-la,
but this records to the memoization table at the same timing as Algorithm 4
(DavisSLImpl). In particular, their memoization tables only record false.

The example below shows the problems with the two naive algorithms. Specif-
ically, MemoExit-la is not linear and MemoEnter-la is not correct.

Example 3. Consider the la-NFA A = A(((?=a∗)a)∗) = (P, Q, q0, F, T ) shown in
Figure 5, and let w = "an" be an input string.
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MemoExit-laM0
A,w(q0, 0) invokes recursive calls O(|w|2) times—in the same

way as Match-(la, at)—because there are no matching failures in A′ that con-
tribute to memoization.

We also see MemoEnter-la is not correct: Match-(la, at)A,w(q0, 0) re-
turns SuccessAt(n), but MemoEnter-laM0

A,w(q0, 0) returns SuccessAt(1) because
M(q5, 1) = false is recorded during the first loop and interpreted as a matching
failure.

In Example 3, a natural solution to the non-linearity issues with MemoExit-la
is to enrich memoization so that it also records previous successes of look-around.
Furthermore, since matching positions do not matter in look-around, the type
of memoization tables should be M : P × N ⇀ {Failure, Success}.
Remark 4. The work [10, Section IX-B] proposes an adaptation of their memo-
ization algorithm to REZWA. Its description in [10, Section IX-B] (to “preserve
the memo functions. . . ”; see Remark 2) consists of the following two points:
1. preserving the memoization tables of the sub-automata throughout the whole

matching, and
2. recording the results of sub-automata matching from different start positions

i of w.
The naive algorithm MemoExit-la we discussed above implements the first
point. We can further add the second point (that is essentially “memoization for
sub-automaton matching”) to MemoExit-la.

However, we find that this is not enough to ensure linear-time complexity.
The problem is that the “memoization for sub-automaton matching” is used too
infrequently. For example, in Example 3, the start positions of sub-automaton
matching are different each time; thus, the memoized results are never used.

Our algorithm (Algorithm 6) resolves this problem by letting the memoiza-
tion tables (for sub-automaton matching) record results not only for starting
positions but also for non-starting positions.

We also note that there is a gap between the algorithm in the paper [10] and
its prototype implementation [11]; see Remark 3. The latter is linear time but
not always correct. For example, in Example 3, the correct result is SuccessAt(n),
but the prototype [11] returns SuccessAt(1), similarly to MemoEnter-la.

Algorithm 6 is the matching algorithm for la-NFAs that we propose. It adopts
the above extended type of M . In Line 18, Success is recorded in the mem-
oization table when the matching succeeded. This function can return one of
SuccessAt(i′), Failure, and Success. We first prove the following lemma to see
that the algorithm indeed solves the partial matching problem (Prob. 2).
Lemma 1. For a la-NFA A = (P, Q, q0, F, T ), an input string w, and a
position i ∈ {0, . . . , |w|}, Memo-laM0

A,w(q0, i) returns either SuccessAt(i′) for
i′ ∈ {0, . . . , |w|} or Failure (it does not return Success).
Proof. When we obtain Success as a return value, it must be via an entry M(q, i)
of the memoization table. However, due to Asm. 2, when M(q, i) is set to Success
for a state q of the top-level automaton of A, the matching is already finished
and returns SuccessAt(i′). ⊓⊔

Efficient Matching with Memoization for (la, at)-regexes 107



Algorithm 6 our partial matching algorithm with memoization for la-NFAs
1: function Memo-laM

A,w(q, i)
Parameters: a la-NFA A, an input string w, and

a memoization table M : P × N ⇀ {Failure, Success}
Input: a current state q, and a current position i

Output: returns SuccessAt(i′) if the matching succeeds,
returns Success if a matching success is in M (cf. Lemma 1), or
returns Failure if the matching fails

2: (P, Q, q0, F, T ) = A
3: if M(q, i) ̸= ⊥ then return M(q, i)
4: result← ⊥
5: if q ∈ F then ▷ the same as Lines 5 to 12 of Algorithm 5

...
13: else if T (q) = Sub(pla,A′, q′) then
14: (P ′, Q′, q0

′, F ′, T ′) = A′

15: result←Memo-laM
A′,w(q0

′, i)
16: if result = SuccessAt(i′) or Success then
17: result←Memo-laM

A,w(q′, i)
18: if result = SuccessAt(i′) or Success then M(q, i)← Success
19: else if result = Failure then M(q, i)← Failure
20: return result

As a consequence of the lemma, we can further shrink the memoization tables
in Algorithm 6 by not recording Success for M(q, i) where q is a state of the top-
level automaton.

Algorithm 6 exhibits the desired properties, namely correctness (with respect
to Prob. 2) and linear-time complexity.
Theorem 3 (linear-time complexity of Algorithm 6). For a la-NFA
A = (P, Q, q0, F, T ), an input string w, and a position i ∈ {0, . . . , |w|},
Memo-laM0

A,w(q0, i) terminates with O(|w|) recursive calls.
Theorem 4 (correctness of Algorithm 6). For a la-NFA A =
(P, Q, q0, F, T ), an input string w, and a position i ∈ {0, . . . , |w|},
Match-(la, at)(q0, i) = Memo-laM0

A,w(q0, i).
Thm. 3 and 4 can be shown similarly to Thm. 1 and 2; see [15, Appendix B.2].
The in-degree for sub-automata requires some additional care.

5 Memoization for Regexes with Atomic Grouping

We describe our second main technical contribution, namely a backtracking
matching algorithm for at-NFAs with memoization (Algorithm 7). We prove that
it is correct (Thm. 6) and that its time complexity is linear (O(|w|), Thm. 5).

The key ingredient of our algorithm is the type of memoization tables, where
their range is extended from {Failure} to {Failure(j) | j ∈ {0, . . . , ν(A0)}}; the
latter records a depth j of atomic grouping in order to distinguish failures of dif-
ferent depths. We motivate this extension through two problematic algorithms
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MemoExit-at and MemoEnter-at. Much like in §4, MemoExit-at naively
extends Algorithm 5 (Memo) by adding the processing of sub-automaton tran-
sitions with at done in Algorithm 2 (Lines 17 to 21), and MemoEnter-la is
similar to MemoExit-at, but records to the memoization table at the same
timing as Algorithm 4 (DavisSLImpl).

Firstly, we observe that MemoExit-at is not linear for a reason similar to
Example 3. (A concrete example is given by Example 4.) Therefore, we turn to
the other candidate, namely MemoEnter-at.

We find, however, that MemoEnter-at is also problematic. It is not correct.

Example 4. Consider the at-NFA A = A(a∗(?>a∗)ab) = (P, Q, q0, F, T ) shown in
Figure 6, and let w = "anb" be an input string. Match-(la, at)A,w(q0, 0) returns
Failure—the atomic grouping (?>a∗) consumes all a’s in w and no a is left for
the final ab pattern—but MemoEnter-atM0

A,w(q0, 0) returns SuccessAt(n + 1).
Thus MemoEnter-at is wrong.

For both algorithms, the state q7 in the at transition is first reached at posi-
tion i = n, and then backtracking is conducted, leading to the state q7 again at
i = n− 1. The execution of MemoEnter-at proceeds as follows.

– The first execution path consumes all a’s in the loop from q0 to q2, reaches
q7 with i = n, eventually leading to failure at q4 and thus to backtracking.
Speculative memoization (M(q, i) ← false in Algorithm 4) is conducted in
its course; in particular, M(q7, n) = false is recorded.

– After backtracking, the second execution path reaches q7 with i = n− 1; it
then visits q8 once and reaches q7 with i = n. Now it uses the memoized
value M(q7, n) = false (cf. Line 4 of Algorithm 4), leading to backtracking
to q7 with i = n−1. It then takes the branch to q10, and the matching for A′

succeeds. Therefore, the execution reaches q4 with i = n− 1, and the whole
matching succeeds.

The last example shows the challenge we are facing, namely the need of
distinguishing failures of different depths. Specifically, in the previous example,
the memoized value M(q7, n) = false comes from the failure of matching for
ambient A; still, it is used to control backtracking in the sub-automaton A′. This
fact is problematic in an atomic grouping where, roughly speaking, backtracking
in an ambient automaton should not cause backtracking in a sub-automaton.
Atomic grouping can be nested, so we must track at which depth failure has
happened.

Definition 2 (nesting depth of atomic grouping). For an at-NFA A =
(P, Q, q0, F, T ) and a state q ∈ P , the nesting depth of atomic grouping for q,
denoted by νA(q), is

νA(q) =


0 if q ∈ Q

1 + νA′ (q) where A′ = (P ′, Q′, q′
0, F ′, T ′)

s.t. T (q′) = Sub(at,A′, q′′) and q ∈ P ′.

Efficient Matching with Memoization for (la, at)-regexes 109



Algorithm 7 our partial matching algorithm with memoization for at-NFAs
1: function Memo-atM

A0,A,w(q, i)
Parameters: an at-NFA A0, a sub-automaton A of A0 (it can be A0 itself),

an input string w, and a memoization table M : P × N ⇀
{Failure(j) | j ∈ {0, . . . , ν(A0)}}

Input: a current state q, and a current position i
Output: returns SuccessAt(i′, K) if the matching succeeds, or

returns Failure(j) if the matching fails
2: (P, Q, q0, F, T ) = A
3: if M(q, i) ̸= ⊥ then return M(q, i)
4: result← ⊥
5: if q ∈ F then result← Success(i, ∅)
6: else if T (q) = Eps(q′) then result←Memo-atM

A0,A,w(q′, i)
7: else if T (q) = Branch(q′, q′′) then
8: result←Memo-atM

A0,A,w(q′, i)
9: if result = Failure(j) and j = νA0 (q) then

10: result←Memo-atM
A0,A,w(q′′, i)

11: if result = Failure(j′) then result← Failure(min(j, j′))
12: else if T (q) = Char(σ, q′) then
13: if i < |w| and w[i] = σ then result←Memo-atM

A0,A,w(q′, i + 1)
14: else result← Failure(νA0 (q))
15: else if T (q) = Sub(at,A′, q′) then
16: (P ′, Q′, q0

′, F ′, T ′) = A′

17: result←Memo-atM
A0,A′,w(q′

0, i)
18: if result = SuccessAt(i′, K′) then
19: result←Memo-atM

A0,A,w(q′, i′)
20: if result = SuccessAt(i′′, K′′) then result← SuccessAt(i′′, K′ ∪K′′)
21: else if result = Failure(j) then
22: for k ∈ K′ do M(k)← Failure(j)
23: else if result = Failure(j) and j > νA0 (q) then result← Failure(νA0 (q))
24: if result = SuccessAt(i′, K) then result← SuccessAt(i′, K ∪ {(q, i)})
25: else if result = Failure(j) then M(q, i)← Failure(j)
26: return result

We also define the maximum nesting depth of atomic grouping for A, denoted
by ν(A), as ν(A) = maxq∈P νA(q).

Algorithm 7 is our algorithm for at-NFAs; the type of its memoization tables
is M : P × N ⇀ {Failure(j) | j ∈ {0, . . . , ν(A)}}. Some remarks are in order.

Note first that the algorithm takes, as its parameters, the whole at-NFA A0
and its sub-automaton A as the algorithm’s current scope. The top-level call is
made with A0 = A (cf. Thm. 5 and 6); when an at transition is encountered,
the scope goes to the corresponding sub-automaton (A′ in Line 17).

In Line 9, the if condition checks that the nesting depth of Failure is the
depth of the current NFA, and backtracking is performed if and only if it is true.
This approach is crucial for avoiding the error in Example 4. The rest of the
cases for Eps, Branch, Char is similar to Algorithm 5.
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The case for Sub (Lines 15–23) requires some explanation. It is an adaptation
of Lines 17–21 of Algorithm 5 with memoization. The apparent complication
comes from the set K in SuccessAt(i′, K). The set K is a set of keys for a
memoization table M , that is, pairs (q, i) of a state and a position. The role of
K is to collect the set of keys of M for which, once failure happens, the entry
Failure(j) has to be recorded (this is done in a batch manner in Line 22). More
specifically, once failure happens in an outer automaton (i.e., at a smaller depth
j), this has to be recorded as Failure(j) for inner automata (at greater depths).
The set K collects those keys for which this has to be done, starting from inner
automata (A′, Line 18) and going to outer ones (A, Lines 19–20).

A closer inspection reveals that Line 20 is vacuous in Algorithm 7; however,
it is needed when we combine it with look-around at the end of the section.

Algorithm 7 exhibits the desired properties, namely correctness (with respect
to Prob. 2) and linear-time complexity. In Thm. 6, f is a function that converts
results of Algorithm 7 to results of Algorithm 2; it is defined by f(Failure(j)) =
Failure and f(SuccessAt(i′, K)) = SuccessAt(i′).
Theorem 5 (linear-time complexity of Algorithm 7). For an at-NFA
A = (P, Q, q0, F, T ), an input string w, and an position i ∈ {0, . . . , |w|},
Memo-atM0

A,A,w(q0, i) terminates with O(|w|) recursive calls.
Theorem 6 (correctness of Algorithm 7). For an at-NFA A =
(P, Q, q0, F, T ), an input string w, and an position i ∈ {0, . . . , |w|},
Match-(la, at)(q0, i) = f(Memo-atM0

A,A,w(q0, i)).
Thm. 5 and 6 are proved similarly to Thm. 1 and 2; see [15, Appendix B.3]. The
following points require some extra care.

Firstly, for linear-time complexity (Thm. 5), there is another recursive call
(Line 19) before the return value of a recursive call (Line 17) is memoized
(Line 22). If the second recursive call (Line 19) eventually leads to (the same
call as) the first call (Line 17) (let’s call this event (∗)), then this can nullify the
effect of memoization. We prove, as a lemma, that (∗) never happens.

Secondly, for correctness (Thm. 6), our conversion of runs should replace
an invocation of the memoization table—if it returns a failure with a shallower
depth—with not only the corresponding run (as before) but also the run of the
second recursive call (Line 19). See [15, Appendix B.3] for details.
Combination with Look-around It is also possible to combine with Al-
gorithm 6 (for look-around) and Algorithm 7 (for atomic grouping). In this
case, the type of memoization tables becomes M : P × N ⇀ {Failure(j) | j ∈
{0, . . . , ν(A)}} ∪ {Success} and nesting depths of the atomic group are reset by
look-around operators. A complete algorithm can be found in [15, Appendix C];
it also exhibits the desired properties.

6 Experiments and Evaluation

Implementation We implemented the algorithm proposed in this paper for
evaluation. We call our implementation memo-regex. It is written in 1368 lines
of Scala.
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Table 2: our benchmark regexes and input strings

r1

/ˆ(?=ˆ.{1,254}$)(ˆ(?:(?!\.|-)([a-z0-9\-\*]{1,63}|([a-z0-9\-]{1,62}[a-
z0-9]))\.)+(?:[a-z]{2,})$)$/s

input: w1 = "0." "0.0a."n "\u0000", complexity: O(2n)
https://regexlib.com/REDetails.aspx?regexp_id=3494

r2

/(?=(?:[ˆ\']*\'[ˆ\']*\')*(?![ˆ\']*\'))/
input: w2 = "x"n "′", complexity: O(n2)
https://regexlib.com/REDetails.aspx?regexp_id=938

r3

/(?<=[\w\s](?:[\.\!\? ]+[\x20]*[\x22\xBB]*))(?:\s+(?![\x22\xBB](?!\w)
))/

input: w3 = "\”"n " ", complexity: O(n2)
https://regexlib.com/REDetails.aspx?regexp_id=2355

r4

/(?:(<)\s*?(\w+)(\s*?(?>(?!=[\/\?]?>)(\w+)(?:\s*(=)\s*)((?:\'[ˆ\']*\'
|\"[ˆ\"]*\"|[ˆ >]+))))\s*?([\/\?]?>))/

input: w4 = "<" "aaa"n ">", complexity: O(n2)
https://regexlib.com/REDetails.aspx?regexp_id=373

memo-regex supports both look-around (i.e., look-ahead and look-behind)
and atomic grouping. We implemented a regex parser ourselves. Backtracking is
implemented by managing a stack manually rather than using a recursive func-
tion to prevent stack overflow. In this case, the memoization keys are pushed
onto the stack. Recoding these keys in a memoization table is done during back-
tracking. We used the mutable HashMap from the Scala standard library as a
data structure for memoization tables.

memo-regex also supports capturing sub-matchings. However, this feature
cannot be used within atomic grouping and positive look-around because sub-
matching information is lost for memoization.

The code of memo-regex, as well as all experiment scripts, is available [14].
Efficiency of Our Algorithm We conducted experiments to assess the per-
formance of our memo-regex, in particular in comparison with other existing
implementations.

As target regexes, we looked for those with look-around and/or atomic group-
ing in the real-world regexes posted on regexlib.com. We then identified—by
manual inspection—four regexes r1, . . . , r4 that are subject to potential catas-
trophic backtracking. These regexes are shown in Table 2. We then crafted input
strings w1, . . . , w4, respectively, so that they cause catastrophic backtracking.
Specifically, r1 contains positive look-ahead and negative look-ahead; this posi-
tive look-ahead is used for restricting the length of input strings. The regexes r2
and r3 are themselves positive look-ahead and look-behind, respectively; both
include negative look-ahead, too. The regex r4 includes atomic grouping and
negative look-ahead.

For these regexes, we measured matching time using memo-regex on Open-
JDK 21.0.1. We compared it with the following implementations: Node.js 20.5.0,
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Fig. 8: matching time for r2, r3 and r4

Ruby 3.1.4, and PCRE2 10.42 (used by PHP 8.3.1, w/ or w/o JIT). All of these
implementations use backtracking; Ruby and PCRE2 have restrictions on regexes
inside look-behind and Node.js does not support atomic grouping. The exper-
iments were performed 10 times and the average was adopted. Furthermore,
for memo-regex, we measured the size of its memoization table by the memory
usage, using jamm.8 The experiments were conducted on MacBook Pro 2021
(Apple M1 Pro, RAM: 32 GB).

We show the results in Figures 7 and 8. Note that the values of n are different
depending on whether the matching time complexity is O(n2) or O(2n). Results
for some implementations are absent for r3 and r4 because of the syntactic
restrictions discussed above.

In Figures 7 and 8, we observe clear performance advantages of memo-regex.
In particular, its linear-time complexity and linear memory consumption (mem-
oization table size) are experimentally confirmed.
Real-world Usage of Look-around and Atomic Grouping We addition-
ally surveyed the use of the regex extensions of our interest, in order to confirm
their practical relevance.

We used a regex dataset collected by a 2019 survey [9]. This dataset contains
537,806 regexes collected from the source code of real-world products.

8 https://github.com/jbellis/jamm
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We tallied the usage of each regex extension by parsing these regexes in the
dataset with our parser in memo-regex. 8,679 regexes could not be parsed or
compiled; this is due to back-reference for 4,360 regexes, unsupported syntax
(Unicode character class, conditional branching, etc.) for 4,134 regexes, and too
large or semantically invalid regexes for the other 184 regexes. We adopted the
remaining 529,127 regexes for tallying.

Table 3: regex ext. usage

feature # of regexes
(total) 529,127
positive look-ahead 7,476 (1.4%)
negative look-ahead 6,917 (1.3%)
positive look-behind 1,746 (0.3%)
negative look-behind 3,750 (0.7%)
atomic grouping 1,113 (0.2%)
at least one of the above 17,167 (3.2%)

The result is shown in Table 3. Note that
1) the numbers for look-ahead and look-be-
hind do not include simple zero-width asser-
tions such as ˆ (line-begin) or $ (line-end),
and 2) that of atomic grouping includes pos-
sessive quantifiers such as *+ and ++.

In Table 3, we observe that 17,167 regexes
(3.2%) in the dataset use at least one of the
extensions we studied in this paper. While
the ratio is not very large, the absolute num-
ber (17,167 regexes) is significant; this implies that there are a number of ap-
plications (such as web services) that rely on the regex extensions. Thereby we
confirm the practical relevance of these regex extensions.

7 Conclusions and Future Work

In this paper, we proposed a backtracking algorithm with memoization for
regexes with look-around and atomic grouping. It is the first linear-time back-
tracking matching algorithm for such regexes. It also fixs problems of the mem-
oization matching algorithm in [10] for look-ahead. We implemented the algo-
rithm; our experimental evaluation confirms its performance advantage.

One direction of future work is to support more extensions. Our implemen-
tation does not support a widely used regex extension, namely back-references.
In the recent work [10], back-reference was supported by additionally record-
ing captured positions in memoization tables. We expect that a similar idea is
applicable to our algorithm.

Combination with selective memoization (used in [10]; see [15, Appendix A])
is another direction. We believe it is possible, but it will require a more detailed
discussion on how to handle sub-automata in the selective memoization schema.
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A Denotational Approach
to Release/Acquire Concurrency

Abstract. We present a compositional denotational semantics for a
functional language with first-class parallel composition and shared-mem-
ory operations whose operational semantics follows the Release/Acquire
weak memory model (RA). The semantics is formulated in Moggi’s mon-
adic approach, and is based on Brookes-style traces. To do so we adapt
Brookes’s traces to Kang et al.’s view-based machine for RA, and supple-
ment Brookes’s mumble and stutter closure operations with additional
operations, specific to RA. The latter provides a more nuanced under-
standing of traces that uncouples them from operational interrupted exe-
cutions. We show that our denotational semantics is adequate and use it
to validate various program transformations of interest. This is the first
work to put weak memory models on the same footing as many other
programming effects in Moggi’s standard monadic approach.

1 Introduction

Denotational semantics defines the meaning of programs compositionally, where
the meaning of a program term is a function of the meanings assigned to its
immediate syntactic constituents. This key feature makes denotational semantics
instrumental in understanding the meaning a piece of code independently of the
context under which the code will run. This style of semantics contrasts with
standard operational semantics, which only executes closed/whole programs. A
basic requirement of such a denotation function J−K is for it to be adequate w.r.t.
a given operational semantics: plugging program terms M and N with equal
denotations—i.e. JMK = JNK—into some program context Ξ [−] that closes over
their variables, results in observationally indistinguishable closed programs in
the given operational semantics. Moreover, assuming that denotations have a
defined order (≤), a “directed” version of adequacy ensures that JMK ≤ JNK
implies that all behaviors exhibited by Ξ [M ] under the operational semantics
are also exhibited by Ξ [N ].

For shared-memory concurrent programming, Brookes’s seminal work [13]
defined a denotational semantics, where the denotation JMK is a set of totally
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ordered traces of M closed under certain operations, called stutter and mumble.
Traces consist of sequences of memory snapshots that M guarantees to provide
while relying on its environment to make other memory snapshots. Brookes [12]
used the insights behind this semantics to develop a semantic model for sepa-
ration logic, and Turon and Wand [46] used them to design a separation logic
for refinement. Additionally, Xu et al. [48] used traces as a foundation for the
Rely/Guarantee approach for verification of concurrent programs, and Liang
et al., Liang et al. [34, 35] used a trace-based program logic for refinement.

A memory model decides what outcomes are possible from the execution of
a program. Brookes established the adequacy of the trace-based denotational
semantics w.r.t. the operational semantics of the strongest model, known as
sequential consistency (SC), where every memory access happens instantaneously
and immediately affects all concurrent threads. However, SC is too strong to
model real-world shared memory, whether it be of modern hardware, such as
x86-TSO [40, 44] and ARM, or of programming languages such as C/C++ and
Java [4, 37]. These runtimes follow weak memory models that allow performant
implementations, but admit more behaviors than SC.

Do weak memory models admit adequate Brookes-style denotational se-
mantics? This question has been answered affirmatively once, by Jagadeesan
et al. [25], who closely followed Brookes to define denotational semantics for
x86-TSO. Other weak memory models, in particular, models of programming
languages, and non-multi-copy-atomic models, where writes can be observed by
different threads in different orders, have so far been out of reach of Brookes’s to-
tally ordered traces, and were only captured by much more sophisticated models
based on partial orders [15, 19, 24, 26, 28, 41].

In this paper we target the Release/Acquire memory model (RA, for short).
This model, obtained by restricting the C/C++11 memory model to Release/
Acquire atomics, is a well-studied fundamental memory model weaker than x86-
TSO, which, roughly speaking, ensures “causal consistency” together with “per-
location-SC” and “RMW (read-modify-write) atomicity” [29, 30]. These assur-
ances make RA sufficiently strong for implementing common synchronization
idioms. RA allows more performant implementations than SC, since, in par-
ticular, it allows the reordering of a write followed by a read from a different
location, which is commonly performed by hardware, and it is non-multi-copy-
atomic, thus allowing less centralized architectures like POWER [45].

Our first contribution is a Brookes-style denotational semantics for RA. As
Brookes’s traces are totally ordered, this result may seem counterintuitive. The
standard semantics for RA is a declarative (a.k.a. axiomatic) memory model, in
the form of acyclicity consistency constraints over partially ordered candidate
execution graphs. Since these graphs are not totally ordered, one might expect
that Brookes’s traces are insufficient. Nevertheless, our first key observation is
that an operational presentation of RA as an interleaving semantics of a weak
memory system lends itself to Brookes-style semantics. For that matter, we de-
velop a notion of traces compatible with Kang et al.’s “view-based” machine [27],
an operational semantics that is equivalent to RA’s declarative formulation. Our
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main technical result is the (directed) adequacy of the proposed Brookes-style
semantics w.r.t. that operational semantics of RA.

A main challenge when developing a denotational semantics lies in mak-
ing it sufficiently abstract. While full abstraction is often out of reach, as a
yardstick, we want our semantics to be able to justify various compiler trans-
formations/optimizations that are known to be sound under RA [47]. Indeed,
an immediate practical application of a denotational semantics is the ability to
provide local formal justifications of program transformations, such as those per-
formed by optimizing compilers. In this setting, to show that an optimization
N ↠M is valid amounts to showing that replacing N by M anywhere in a larger
program does not introduce new behaviors, which follows from JMK ≤ JNK given
a directionally adequate denotation function J−K.

To support various compiler transformations, we close our denotations un-
der certain operations, including analogs to Brookes’s stutter and mumble, but
also several RA-specific operations, that allow us to relate programs which
would naively correspond to rather different sets of traces. Given these closure
operations, our semantics validates standard program transformations, includ-
ing structural transformations, algebraic laws of parallel programming, and all
known thread-local RA-valid compiler optimizations. Thus, the denotational se-
mantics is instrumental in formally establishing validity of transformations under
RA, which is a non-trivial task [19, 47].

Our second contribution is to connect the core semantics of parallel pro-
gramming languages exhibiting weak behaviors to the more standard semantic
account for programming languages with effects. Brookes presented his semantics
for a simple imperative WHILE language, but Benton et al., Dvir et al. [6, 20]
later recast it atop Moggi’s monad-based approach [38] which uses a functional,
higher-order core language. In this approach the core language is modularly ex-
tended with effect constructs to denote program effects. In particular, we define
parallel composition as a first-class operator. This is in contrast to most of the
research of weak memory models that employ imperative languages and assume
a single top-level parallel composition.

A denotational semantics given in this monadic style comes ready-made with
a rich semantic toolkit for program denotation [7], transformations [5, 8–10, 23],
reasoning [2, 36], etc.. We challenge and reuse this diverse toolkit throughout
the development. We follow a standard approach and develop specialized logical
relations to establish the compositionality property of our proposed semantics;
its soundness, which allows one to use the denotational semantics to show that
certain outcomes are impossible under RA; and adequacy. This development
puts weak memory models, which often require bespoke and highly specialized
presentations, on a similar footing to many other programming effects.

Outline. In §2 we lay the groundwork for the rest of the paper by introducing
the programming language that we will use (§2.1), the main ideas that underpin
Brookes’s trace-based denotational semantics (§2.2), and the operational RA
model (§2.3). In §3 we present the core aspects of our denotational semantics.
First, we discuss our extension of RA’s operations semantics with first-class
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parallelism, which enables denotations to be defined for concurrent composition
(§3.1). We then present RA traces (§3.2) and use them to define the denotations
of key program constructs (§3.3). Next, we show how the restriction of traces
within denotations (§3.4) and the addition of closure operations (§3.5) make our
denotational semantics more abstract. The denotational semantics extends to the
entire programming language standardly using Moggi’s monad-based approach
(§3.6). With the denotational semantics in place, we present our main results in
§4. Finally, we conclude and discuss related work in §5. More details are available
in the extended version of this paper [21].

2 Preliminaries

We first introduce the language and its operational semantics under the Sequen-
tial Consistency (SC) memory model (§2.1). We then outline Brookes’s denota-
tional semantics for SC (§2.2). Finally, we introduce Kang et al.’s operational
presentation of Release/Acquire (RA) (§2.3).

2.1 Language and Operational Semantics

The programming language we use is an extension of a functional language with
shared-state constructs. Program terms M and N can be composed sequentially
explicitly as M ;N or implicitly by left-to-right evaluation in the pairing construct
〈M,N〉. They can be composed in parallel as M ∥ N . We assume preemptive
scheduling, thus imposing no restrictions on the interleaving execution steps
between parallel threads. To introduce the memory-access constructs, we present
the well-known message passing litmus test, adapted to the functional setting:

(x := 1 ; y := 1) ∥ 〈y?, x?〉 (MP)

Here, x and y refer to distinct shared memory locations. Assignment ℓ:=v stores
the value v at location ℓ in memory, and dereference ℓ? loads a value from ℓ.
The language also includes atomic read-modify-write (RMW) constructs. For ex-
ample, assuming integer storable values, FAA (ℓ, v) (Fetch-And-Add) atomically
adds v to the value stored in ℓ. In contrast, interleaving is permitted between
the dereferencing, adding, and storing in ℓ := (ℓ?+ v). The underlying memory
model dictates the behavior of the memory-access constructs more specifically.

In the functional setting, execution results in a returned value: ℓ :=v returns
the unit value 〈〉, i.e. the empty tuple; ℓ?, and the RMW constructs such as
FAA (ℓ, v), return the loaded value; M ;N returns what N returns; and 〈M,N〉,
as well as M ∥ N , return the pair consisting of the return value of M and the
return value of N . We assume left-to-right execution of pairs, so in the (MP)
example 〈y?, x?〉 steps to 〈v, x?〉 for a value v that can be loaded from y, and
〈v, x?〉 steps to 〈v, w〉 for a value w that can be loaded from x. In between, the
left side of the parallel composition (∥) can take steps.

We can use intermediate results in subsequent computations via let binding:
let a = M inN binds the result of M to a in N . Thus, we execute M first,
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and substitute the resulting value V for a in N before executing N [a 7→ V ].
Similarly, we deconstruct pairs by matching: matchM with 〈a, b〉. N binds the
components of the pair that M returns to a and b respectively in N . The first
and second projections fst and snd, as well as the operation swap that swaps the
pair constituents, are defined using match standardly.

Sequential consistency. In the strongest memory model of Sequential Consis-
tency (SC), every value stored is immediately made available to every thread,
and every dereference must load the latest stored value. Thus the underlying
memory model uses maps from locations to values for the memory state that
evolves during program execution. Given an initial state, the behavior of a pro-
gram in SC depends only on the choice of interleaving of steps. Though any
such map can serve as an initial state, litmus tests are traditionally designed
with the memory that sets all values to 0 in mind. In (MP) the order of the two
stores and the two loads ensures that executions under SC may return 〈〈〉 , 〈0, 0〉〉,
〈〈〉 , 〈0, 1〉〉, and 〈〈〉 , 〈1, 1〉〉, but not 〈〈〉 , 〈1, 0〉〉.

Observations. An observable behavior of an entire program is a value it may
evaluate to from given initial memory values. While programs may internally
interact and observe the memory, we do not consider it feasible to observe the
memory directly.

2.2 Overview of Brookes’s Trace-based Semantics

Observable behavior as defined for whole programs is too crude to study
program terms that can interact with the program context within which they
run. Indeed, compare M1 defined as x := 1 ; y := 1 ; y? versus M2 defined as
x := 1 ; y := x? ; y?. Under SC, the difference between them as whole programs
is unobservable: starting from any initial state both return 1. Now consider
them within the program context − ∥ x := 2. That is, compare M1 ∥ x := 2
versus M2 ∥ x := 2. In the first, M1 still always returns 1; but in the second,
M2 can also return 2 by interleaving the store of 2 in x immediately after the
store of 1 in x. Thus, if JMK, i.e. M ’s denotation, were to simply map initial
states to possible results according to executions of M , we could not defineJM ∥ NK in terms of JMK and JNK alone, because we would have JM1K = JM2K
but also JM1 ∥ x := 2K 6= JM2 ∥ x := 2K. We conclude that JMK must contain
more information on M than an “input-output” relation; it must account for
interference by the environment.

Adequacy in SC. A prominent approach to define compositional semantics for
concurrent programs is due to Brookes [13], who defined a denotational semantics
for SC by taking JMK to be a set of traces of M closed under certain rewrite
rules as we detail below. Brookes established a (directional) adequacy theorem:
if JMK ⊇ JNK then the transformation M ↠ N is valid under SC. The latter
means that, when assuming SC-based operational semantics, M can be replaced
by N within a program without introducing new observable behaviors for it.
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Thus, adequacy formally grounds the intuition that the denotational semantics
soundly captures behavior of program terms.

As a particular practical benefit, formal and informal simulation arguments
which are used to justify transformations in operational semantics can be re-
placed by cleaner and simpler proofs based on the denotational semantics. For
example, a simple argument shows that Jx := v ; x := wK ⊇ Jx := wK holds in
Brookes’s semantics. Thanks to adequacy, this justifies Write-Write Elimination
(WW-Elim) x := v ; x := w ↠ x := w in SC.

Traces in SC. In Brookes’s semantics, a program term is denoted by the set of
traces, each trace consisting of a sequence of transitions. Each transition is of
the form 〈µ, ρ〉, where µ and ρ are memories, i.e. maps from locations to values.
A transition describes a program term’s execution relying on a memory state µ
in order to guarantee the memory state ρ.

For example, Jx := wK includes all traces of the form 〈ρ, ρ [x := w]〉 , where
ρ [x := w] is equal to ρ except for mapping x to w. The definition is composi-
tional: the traces in Jx := v ; x := wK are obtained from sequential compositions
of traces from Jx := vK with traces from Jx := wK, obtaining all traces of the
form 〈µ, µ [x := v]〉 〈ρ, ρ [x := w]〉 . Such a trace relies on µ in order to guaran-
tee µ [x := v], and then relies on ρ in order to guarantee ρ [x := w]. Allowing
ρ 6= µ [x := v] reflects the possibility of environment interference between the
two store instructions. Indeed, when denoting parallel composition JM ∥ NK we
include all traces obtained by interleaving transitions from a trace from JMK
with transitions from a trace from JNK. By sequencing and interleaving, one
subterm’s guarantee can fulfill the requirement which another subterm relies on.
They may also relegate reliances and guarantees to their mutual context.

In the functional setting, executions not only modify the state but also return
values. In this setting, traces are pairs, which we write as ξ ∴ r, where ξ is the
sequence of transitions and r represents the final value that the program term
guarantees to return [6]. For example, the semantics of dereference Jx?K includes
all traces of the form 〈µ, µ〉 ∴µ(x). Indeed, the execution of x? does not change
the memory and returns the value loaded from x. In the semantics of assignmentJx := vK, instead of 〈µ, µ [x := v]〉 we have 〈µ, µ [x := v]〉 ∴ 〈〉.

Rewrite rules in SC. Were denotations in Brookes’s semantics defined to only
include the traces explicitly mentioned above, it would not be abstract enough
to justify (WW-Elim), which eliminates redundant writes. Indeed, we only saw
traces with two transitions in Jx := v ; x := wK, but in Jx := wK we saw traces
with one. The semantics would still be adequate, but it would lack abstraction.
This is where Brookes’s second main idea comes into play, making the denota-
tions more abstract by closing them under two operations that rewrite traces:

Stutter adds a transition of the form 〈µ, µ〉 anywhere in the trace. Intuitively,
a program term can always guarantee what it relies on.

Mumble combines a couple of subsequent transitions of the form 〈µ, ρ〉 〈ρ, θ〉
into a single transition 〈µ, θ〉 anywhere in the trace. Intuitively, a program
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term can always omit a guarantee to the environment, and rely on its own
omitted guarantee instead of relying on the environment.

Denotations in Brookes’s semantics are defined to be sets of traces closed
under rewrite rules: applying a rewrite to a trace in the set results in a trace
that is also in the set. For example, Jx := wK is the least closed set with all traces
of the form 〈ρ, ρ [x := w]〉 ∴ 〈〉, and Jx := v ; x := wK is the least closed set with
all sequential compositions of traces from Jx := vK with traces from Jx := wK.

Closure under these rules makes traces in JMK correspond precisely to inter-
rupted executions of M , which are executions of M in which the memory can
arbitrarily change between steps of execution. Each transition 〈µ, ρ〉 in a trace inJMK corresponds to multiple execution steps of M that transition µ into ρ, and
each gap between transitions accounts for possible environment interruption.
The rewrite rules maintain this correspondence: stutter corresponds to taking 0
steps, and mumble corresponds to taking n +m steps instead of taking n steps
and then m steps when the environment did not change the memory in between.
Brookes’s adequacy proof is based on this precise correspondence. In particular,
the single-pair traces in JMK correspond to the (uninterrupted) executions, the
“input-output” relation, of M .

Abstraction in SC. Brookes’s semantics is fully abstract, meaning that the con-
verse to adequacy also holds: if N ↠ M is valid under SC, then JNK ⊇ JMK.
However, Brookes’s proof relies on an artificial program construct, await, that
permits waiting for a specified memory snapshot and then step (atomically)
to a second specified memory snapshot. Thus, in realistic languages, when this
construct is unavailable, Brookes’s full abstraction proof does not apply.

Nevertheless, even without full abstraction, one can still provide evidence
that an adequate semantics is abstract by ensuring that it supports known trans-
formations. As an example, we show directly that Jx := v ; x := wK ⊇ Jx := wK
holds in Brookes’s semantics. Since Jx := v ; x := wK is closed, it suffices to show
that Jx := v ; x := wK ⊇ {

〈µ, µ [x := w]〉 ∴ 〈〉
∣∣ memory µ

}
. For a memory µ, we

have 〈µ, µ [x := v]〉 〈ρ, ρ [x := w]〉 ∴〈〉 ∈ Jx := v ; x := wK for every memory ρ, in
particular when ρ = µ [x := v]. Since ρ [x := w] = µ [x := v] [x := w] = µ [x := w],
we have 〈µ, µ [x := v]〉 〈µ [x := v], µ [x := w]〉 ∴ 〈〉 ∈ Jx := v ; x := wK. After ap-
plying mumble, we have 〈µ, µ [x := w]〉 ∴ 〈〉 ∈ Jx := v ; x := wK.
2.3 Overview of Release/Acquire Operational Semantics

Memory accesses in RA are more subtle in than in SC. To address this we
adopt Kang et al.’s “view-based” machine [27], an operational presentation of
RA proven to be equivalent to the original declarative formulation of RA [e.g.
30]. In this model, rather than the memory holding only the latest value written
to every variable, the memory accumulates a set of memory update messages for
each location. Each thread maintains its own view that captures which messages
the thread can observe, and is used to constrain the messages that the thread
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Fig. 1. Illustrations of a memory (top) and a trace (bottom), in the setting of two
memory locations, x and y. Top: A memory holding six messages. The timelines
are purposefully misaligned and not to scale to emphasize that timestamps for
different locations are incomparable and that only the order between them is
relevant. The graph structure that the views impose is illustrated by arrows
pointing between messages. Messages that are not dovetailed are set apart, e.g.
ν3 dovetails with ν2, which does not dovetail with ν1. Bottom: A trace with
two transitions: α 〈µ1, ρ1〉 〈µ2, ρ2〉 ω ∴ 5. The memory illustrated on top is ρ2.
Messages and edges that are not part of a previous memory are highlighted. The
local messages are ν2 and ν3, and the rest are environment messages.

may read and write. The messages in the memory carry views as well, which are
inherited from the thread that wrote the message, and passed to any thread that
reads the message. Thus views indirectly maintain a causal relationship between
messages in memory throughout the evolution of the system.

More concretely, causality is enforced by timestamping messages, thus plac-
ing them on their location’s timeline. To capture the atomicity of RMWs, each
message occupies a half-open segment (q, t] on their location’s timeline, where
t is the message’s timestamp. It dovetails with a message at the same location
with timestamp q. An RMW “modifies” a message by dovetailing with it.

A view κ associates a timestamp κ(ℓ) to each location ℓ, obscuring the portion
of ℓ’s timeline before κ(ℓ). The view points to a message at ℓ with timestamp
κ(ℓ). A view ω dominates a view α, written α ≤ ω, if α(ℓ) ≤ ω(ℓ) for every ℓ.

Messages point to messages via the view they carry, and must point to them-
selves. So when specifying a message, the value its view takes at its location
may be omitted. For example, assuming of two location, x and y, we denote by
x:1@(.5,1.7] ⟪y@3.5⟫ the message at location x that carries the value 1, occupies
the segment (.5, 1.7] on x’s timeline, and carries the view κ such that κ(x) = 1.7
and κ(y) = 3.5. An example memory is depicted on the top of Figure 1.

When a thread writes to ℓ, it must increase the timestamp its view associates
with ℓ and use its new view as the message’s view. The message’s segment
must not overlap with any other segment on ℓ’s timeline. In particular, only one
message can ever dovetail with a given message. A thread can only read from
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Fig. 2. Depictions of a step during an execution of a litmus test, with the view
of the right thread changing from σ to σ′. The value each message carries is in
its bottom-right corner. Views are illustrated implicitly in the graph structure
that they impose. Obscured messages are faded. Left: As the right thread in
(MP) loads 1 from y, it inherits the view of ϵ1, obscuring ν0. Right: The right
thread in (SB) loading 0 from x. Storing ϵ1 did not obscure ν0.

revealed messages, and when it reads, its view increases as needed to dominate
the view of the loaded message. This may obscure messages at other locations.

Revisiting the (MP) litmus test, starting with a memory with a single message
holding 0 at each location, and with all views pointing to the timestamps of these
message, suppose the right thread loaded 1 from y, as depicted on the left side of
Figure 2. Such a message can only be available if the left thread stored it. Before
storing 1 to y, the left thread stored 1 to x, obscuring the initial x message. The
right thread inherits this limitation through the causal relationship, so it will
not be able to load 0 from x. Therefore, RA forbids the outcome 〈〈〉 , 〈1, 0〉〉.

In contrast, consider the litmus test known as store buffering:

(x := 1 ; y?) ∥ (y := 1 ; x?) (SB)

By considering the possible interleavings, one can check that no execution in SC
returns 〈0, 0〉. However, in RA some do. Indeed, even if the left thread stores to
x before the right thread loads from x, the right thread’s view allows it to load
0, as depicted on the right side of Figure 2.

We can recover the SC behavior by interspersing fences between sequenced
memory accesses, which we model with FAA (z, 0) to a fresh location z. Thus,
compare (SB) to the store buffering with fences litmus test:

(x := 1 ; FAA (z, 0) ; y?) ∥ (y := 1 ; FAA (z, 0) ; x?) (SB+F)

Both of the FAA (z, 0) instructions store messages that must dovetail with the
message that they load from, and in that also inherit its view. They cannot both
dovetail with the same message because their segments cannot intersect. Thus,
one of them—say, the one on the right—will have to dovetail with the other. In
this scenario, the view of the message that the left thread stores at z points to
the message it previously stored at x. When the right thread loads the message
from z it inherits this view, obscuring the initial message to x. Therefore, when
it later loads from x, it must load what the left thread stored. Thus, like in SC,
no execution in RA returns 〈0, 0〉.
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3 Denotational Semantics for Release/Acquire

We start this section by explaining how we support first-class concurrent compo-
sition (∥) in the operational semantics of Release/Acquire (§3.1). In the rest of
the section we present the core of our denotational semantics. First, we present
our notion of a trace, adapted to RA, along with four basic rewrite rules that our
denotations are closed under (§3.2). Next, we define the denotations of the key
program constructs (§3.3). We then present further aspects of the denotational
semantics that make it more abstract: restrictions that traces in denotations
must uphold (§3.4), and three more rewrite rules under which denotations are
closed (§3.5). For completeness, we show how to give denotations to the whole
language standardly, using Moggi’s approach (§3.6).

3.1 First-class Concurrent Composition

Kang et al. presentation assumes top-level parallelism, a common practice in
studies of weak-memory models. This comes at the cost of the uniformity and
compositionality. In particular, the denotation JM ∥ NK cannot be defined. We
resolve this by extending Kang et al.’s operational semantics to support first-class
parallelism by organizing thread views in an evolving view-tree, a binary tree
with view-labelled leaves, rather than in a fixed flat mapping. Thus, states that
accompany executing terms consist of a memory and a view-tree. In discourse,
we do not distinguish between a view-leaf and its label.

An initial state consists of a memory with a single message at each location,
and a view which points to these messages’ timestamps. The example below
shows how threads inherit their parent’s view upon activation and combine their
views as they synchronize:

Example. In the following, ⇝ is the execution step relation, ⇝∗ is its reflexive-
transitive closure, µ0 is an initial memory, κ̇ is the κ-labelled view-leaf, T ̂R is
the view-tree that consists of a node connected to the view-trees T and R, and
ω is the least view that dominates both ω1 and ω2:

〈µ0, α̇〉 ,M ; (N1 ∥ N2)⇝∗ 〈µ1, α̇
′〉 , N1 ∥ N2 ⇝

〈
µ1, α̇

′ ̂ α̇′
〉
, N1 ∥ N2

⇝∗
〈
ρ, ω̇1

̂ ω̇2

〉
, V1 ∥ V2 ⇝ 〈ρ, ω̇〉 , 〈V1, V2〉

First, M runs until it returns a value, which is discarded by the sequencing
construct. Next, the parallel composition N1 ∥ N2 activates. The threads then
interleave executions, each with its associated side of the view-tree. Finally, once
both threads return a value, they synchronize.

Handling parallel composition as a first-class construct allows us to decom-
pose Write-Read Reordering (WR-Reord) (x := v) ; y? ↠ fst 〈y?, (x := v)〉 , a
crucial reordering of memory accesses valid under RA but not under SC, into a
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combination of Write-Read Deorder (WR-Deord) 〈(x := v) , y?〉↠ (x := v) ∥ y?
together with structural transformations and laws of parallel programming:

(x := v) ; y?
↓Structural

↠ snd 〈(x := v) , y?〉
↓(WR-Deord)

↠ snd ((x := v) ∥ y?)
↓Par. Prog. Law: Symmetry

↠ snd (swap (y? ∥ (x := v)) )
↓Structural

↠ fst (y? ∥ (x := v))
↓Par. Prog. Law: Sequencing

↠ fst 〈y?, (x := v)〉

This provides a separation of concerns: the components of this decomposition are
supported by our semantics using independent arguments. It also sheds a light
on the interesting part, as they are all valid under SC except for (WR-Deord).

3.2 Traces for Release/Acquire

Adapting Brookes’s SC-traces, our RA-traces also include a sequence of transi-
tions ξ, each transition a pair of RA memories; and a return value r. Intuitively,
these play a similar role here, formally grounded in analogs to the stutter and
mumble rewrite rules. Seeing that the operational semantics only adds messages
and never modifies them, we require that every memory snapshot in the sequence
ξ be contained in the subsequent one, whether it be within or across transitions.
A message added within a transition is a local message; otherwise it is an en-
vironment message. We call the first memory in ξ’s first transition its opening
memory, and the second memory in ξ’s last transition its closing memory.

In addition, RA-traces include an initial view α, declaring which messages are
relied upon to be revealed in ξ’s opening memory; and a final view ω, declaring
which messages are guaranteed to be revealed in ξ’s closing memory. We ground
these intuition formally in the rewind and forward rewrite rules below.

We write the trace as α ξ ω∴r. See an illustration on the bottom of Figure 1.

Stutter & Mumble. We define the stutter (St) and mumble (Mu) rewrite rules:

α ξη ω ∴ r St−→ α ξ〈µ, µ〉η ω ∴ r α ξ〈µ, ρ〉〈ρ, θ〉η ω ∴ r Mu−−→ α ξ〈µ, θ〉η ω ∴ r

As in Brookes’s semantics, their role is to make the semantics more abstract by
divorcing the length of the sequence from the individual steps taken in the oper-
ational semantics, while maintaining the transitions’ Rely/Guarantee character.

Rewind & Forward. The rewind (Rw) rewrite rules establish the fact that the
term only relies on certain messages being revealed, not on messages being ob-
scured. The rewind rule modifies the initial view, making it point to earlier
messages on the timelines. Thus, relied upon messages will remain available af-
ter the rewrite. Similarly, the forward (Fw) rewrite rule establish the fact that
the term only guarantees that certain messages are revealed. The forward rule
modifies the final view, making it point to later messages on the timelines. Thus,
any message guaranteed to be available was already guaranteed beforehand. The
rules are schematically depicted in Figure 3.
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ϵ· · · · · · ν · · ·α
Rw−−→ ϵ ν· · · · · · ν · · ·α′ ν· · · · · · ϵ · · · ω

Fw−→ ν ϵ· · · · · · ϵ · · · ω′

Fig. 3. Schematic depictions of the rewind and forward rewrite rule, focusing on
a single location, where the initial/final view points to ν before and points to ϵ
after. The messages ν and ϵ may coincide, dovetail, or be separated. Left: The
initial view α is “rewound” to α′. Right: The final view ω is “forwarded” to ω′.

3.3 Introducing Denotations for RA

We present denotations of key constructs of the programming language. By
referring to the notion of a closed set below, we mean a set that is closed under
certain rewrite rules, such as stutter, mumble, rewind, and forward from §3.2.

Pure. A pure (i.e. effect-free) computation guarantees a returned value, and
otherwise can only guarantee what it relies on. For example, define J2 + 3K as
least closed set with all traces of the form κ 〈µ, µ〉 κ ∴ 5.

Sequence. In denoting sequential composition we must make sure that the first
component does not obscure any message that the second component relies on.
Thus, define J〈M,N〉K as least closed set with all traces of the form α ξη ω∴〈r, s〉,
where there exists a view κ such that α ξ κ ∴ r ∈ JMK and κ η ω ∴ s ∈ JNK.
The existence of the revealed messages is implicit: ξ’s closing memory must
be contained in the memory that follows it, which is η’s opening memory. The
definition of JM ;NK is the same, except that the first component of the returned
pair is discarded. That is, with traces of the form α ξη ω ∴ s.

Parallel. Threads composed in parallel rely on the same preceding sequential en-
vironment and guarantee to the same succeeding sequential environment. Thus,
define JM1 ∥ M2K as the least closed set with all traces of the form α ξ ω∴〈r1, r2〉,
where there exist sequences ξ1 and ξ2 such that and ξ is obtained by interleaving
their transitions, and α ξi ω ∴ ri ∈ JMiK (for i ∈ {1, 2}).

Dereference. We define Jℓ?K to be the least closed set with all traces of the form
α 〈µ, µ〉 ω∴v, where ℓ:v@(q, α(ℓ)]⟪κ⟫ ∈ µ for some timestamp q and view κ, and
both α ≤ ω and κ ≤ ω.

Assignment. Define Jℓ := vK as the least closed set with all traces of the form
α 〈µ, ρ〉 ω ∴ 〈〉 where ρ is obtained by adding the message ℓ:v@(q, ω(ℓ)]⟪ω⟫ to µ
for some timestamp q, and α ≤ ω.

Read-modify-write. The definition of JFAA (ℓ, w)K combines the two above, along
with a dovetailing requirement. Specifically, it is the least closed set with all
traces of the form α 〈µ, ρ〉 ω∴ v, where ℓ:v@(q, α(ℓ)]⟪κ⟫ ∈ µ for some timestamp
q and view κ, both α ≤ ω and κ ≤ ω, and ρ is obtained by adding the message
ℓ: (v+w) @(α(ℓ), ω(ℓ)]⟪ω⟫ to µ. The semantics of other RMWs is defined similarly.
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Example. We show that Jℓ := v ; vK ⊆ Jℓ := v ; ℓ?K. When sequencing two traces,
the final view of the first must match the initial view of the second, so traces inJℓ := v ; vK have the form α 〈µ, ρ〉 〈θ, θ〉 ω∴ v, where ρ is obtained by adding the
message ℓ:v@(q, ω(ℓ)]⟪ω⟫ to µ for some timestamp q, and α ≤ ω. Since ω points
to this added message, and since ρ ⊆ θ as memories along a trace’s sequence,
ω 〈θ, θ〉 ω ∴ v ∈ Jℓ?K. By sequencing, α 〈µ, ρ〉 〈θ, θ〉 ω ∴ v ∈ Jℓ := v ; ℓ?K.
3.4 Correspondence to the Operational Semantics

Traces in denotations, if unconstrained, may represent behaviors that include
operationally unreachable states. Forbidding such redundant traces eliminates a
source of differentiation between denotations, thus increasing their abstraction.

Reachable states. Consider the transformation x? ; y? ↠ y?, a consequence of
the RA-valid Irrelevant Read Elimination (R-Elim) x? ; 〈〉 ↠ 〈〉 and structural
equivalences. Consider the state S that consists of the memory at the top of
Figure 1 and the view that points to ν3 and ϵ2. The only step x? ; y? can take
from the state S is to load ν3, inheriting the view that ν3 carries, which changes
the thread’s view to point to ϵ3. Only ϵ3 is available in the following step, which
means the term returns 3. In contrast, starting from S, the term y? can load
from ϵ2 to return 7. This analysis does not invalidate the transformation because
the state S is unreachable by an execution starting from an initial state, and
should therefore be ignored when determining observable behaviors.

Internalizing invariants. Just as we ignore unreachable states in the operational
semantics, we discard “unreachable” traces to refine our denotational semantics.
We consider a state to be valid if it adheres to the following invariants.

Scattering: segments in memory never overlap.
Pointing: views always point to messages.
Dominating: views always dominate the views of the messages to which they

point. This invalidates the state S above, because the view of the thread
does not dominate the view of ν3 even though it points to it.

Descending: a path from a message along the view-induced graph structure can-
not end in another message with a greater timestamp at the same location.
Demonstrated both positively and negatively in Figure 4.

Acyclicity: a cycle along the view-induced graph structure consists solely of mes-
sages which have the smallest timestamp on their timeline.

Memory snapshots in traces are required to obey each of the invariants above.
The initial and final view must point to and dominate the opening and closing
memory respectively. This means that there must be a message to load that
allows the initial and final view to be equal, and we obtain Jx? ; 〈〉K ⊇ J〈〉K.

We also uphold requirements that correspond to the relation between the
states across a possibly-interrupted series of steps in the operational semantics:

Accumulating: the memory after contains the memory before. We require that
every memory snapshot contains the one before it.
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Fig. 4. Two variations on the memory illustrated in Figure 1. Top: This can
function as a memory snapshot in a trace. It demonstrates that the views of
messages along a timeline do not have to be ordered: ϵ2 appears earlier than ϵ3 on
y’s timeline but points to a later message on x’s timeline. Bottom: This cannot
function as a memory snapshot in a trace, because it contains an ascending path.
Intuitively, no thread could have written ϵ2 because the view that ϵ2 carries
indicates that the thread would have already “known” about ν3 and therefore,
following the causality chain, about ϵ3 as well. Thus, the thread would have been
forbidden from picking ϵ2’s timestamp.

Delimiting: if the view-trees before and after are leaves, then the view after
dominates the view before, and the view of any written message dominates
the view before and is dominated by the view after. We impose the analogous
requirement on the initial and final views, and on the local messages.

The trace in Figure 1 adheres to the invariants and relationships we have listed.

Concrete operational correspondence. We call the rewrite rules that were de-
fined in §3.2 concrete because they maintain a certain concrete interpretation of
traces. To see this, consider the operational semantics for RA augmented with
an additional kind of step, which any term can take. The only change along this
step is that a view in the view-tree inherits the view from a message that is
available to it. This addition does not change the observable behaviors of whole
programs, and maintains the above invariants.

Each trace in the denotations of §3.3, if closed only under the concrete rewrite
rules, corresponds to an interrupted execution in the augmented operational
semantics. The correspondence is similar to that from Brookes’s semantics in
terms of the sequence of transitions and return value. The initial and final views
determine the views at the beginning and the end of the interrupted execution.

The introduction of the rewrite rules in §3.5 will mean that traces do not
have such a clear operational interpretation. The key to our proof of adequacy
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x: ν· · · · · ·

yk: ϵk · · ·· · · βk · · ·

y1: ϵ1 · · ·· · · β1 · · ·
... Ti−→

x: ν′· · · · · ·

yk: ϵk · · ·· · · βk · · ·

y1: ϵ1 · · ·· · · β1 · · ·
...

Fig. 5. Schematic depiction of the tighten rewrite rule, that focuses on a par-
ticular memory snapshot within the trace, in the setting of k+1 locations. The
message ν is “tightened” to ν′, such that for each i it points to βi instead of ϵi.
This includes the case that βi and ϵi are the same message in some locations.

is to partially recover this operational correspondence in terms of the overall
observable behaviors (§4).

3.5 Abstract Rewrite Rules

Transitions in RA traces consist of sets of messages, which record much more
information about the operational execution than the mappings from locations
to values we had in SC. This makes the trace-based semantics too concrete. We
resolve the memory-concreteness issue by introducing three abstract rewrite rules
that obfuscate information about local messages. This makes the denotations
more abstract by blurring the distinctions that denotations can make.

Tighten. Recall the transformation (WR-Deord) that we wish to support. Let
τ1 ∈ Jx := vK and τ2 ∈ Jy?K, such that they compose sequentially to form a trace
from J〈(x := v) , y?〉K. Then τ1’s final view κ must equal τ2’s initial view. The
view κ dominates the view σ of the local message ν1 stored by τ1, and κ cannot
obscure the message ν2 from which τ2 loaded its value. Thus, σ cannot obscure
ν2. In contrast, consider τ1 and τ2 that compose in parallel to form a trace fromJ(x := v) ∥ y?K. Here, the view of the local message may very well obscure the
loaded message. Indeed, the final view of τ1 may dominate the initial view of τ2.

To resolve this, observe that the purpose of recording views in messages is to
encumber its loaders. Under this perspective, the view of a local message guaran-
tees to the environment that loading the local message will keep certain messages
revealed. Therefore, making the view larger only weakens the guarantee. Thus,
we introduce the tighten (Ti) rewrite rule that makes the view of a local mes-
sage larger. The rule is depicted in Figure 5, and Figure 6 provides a concrete
example. Using tighten, we can show that J〈(x := v) , y?〉K ⊇ J(x := v) ∥ y?K.
Absorb. Recall the transformation (WW-Elim) that we wish to support. To show
this we aim to replicate, as far as we can, the reasoning we have used to showJx := v ; x := wK ⊇ Jx := wK in Brookes’s semantics. Recall that, to use mumble,
we made the memories match across the two transitions of Jx := v ; x := wK.
Doing so here, we end up with two local messages, whereas traces from Jx := wK
only have a single local message. Roughly speaking, the equality concerning SC
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Fig. 6. A possible result from rewriting the trace from Figure 1 using tighten.
Since ν2 is local in the trace from Figure 1, tighten can advance its view to point
to ϵ3 instead of ϵ1. The same replacement is applied throughout the trace’s
sequence, not just the closing memory.

memories µ [x := v] [x := w] = µ [x := w] does not transfer to RA where memory,
by accumulating messages, is more concrete. We resolve this by adding the absorb
(Ab) rewrite rule, which replaces two dovetailed local messages with one that
carries the second message’s value. The rule is depicted in Figure 7, and Figure 8
provides a specific example.

Dilute. There is another known family of transformations that are valid under
RA memory, yet we cannot justify with the rules we presented. These introduce
non-modifying atomic updates, such as Read to FAA (R-FAA) ℓ?↠ FAA (ℓ, 0).

Running within some context, FAA (ℓ, 0) reads a message ν, to which it dove-
tails another message ϵ with the same value. It’s possible that some β dovetails
with ϵ later in the execution. In the same context, we can simulate this behavior
with ℓ? instead, by having the context provide ν′ instead of ν, with the differ-
ence that it takes up the same segment that ν and ϵ have taken up combined. If
there is a β as mentioned, it can now dovetail with ν′ to the same effect. In this
scenario, ν is an environment message, but we must also account for the case
that it is local to allow for composition, such as in ℓ :=v ;ℓ?↠ ℓ :=v ;FAA (ℓ, 0).

We internalize the idea behind this argument as the dilute (Di) rewrite rule,
in which a message is replaced by two message that together occupy the same
segment, the second being a local message that cannot appear before the first in
the trace and must carry the same value. With dilute, Jℓ?K ⊇ JFAA (ℓ, 0)K. The
rule is depicted in Figure 7, and Figure 9 provides a specific example.

3.6 Monadic Presentation

One of the contributions of this work is to bridge research of weak-memory
models with Moggi’s monad-based approach [38] to denotational semantics. In
this approach, one start by defining a monad, which has three components. The
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v
ν

w
ϵ

Ab−→

w
ϵ′

w
ν′

Di−→

w
ν

w
ϵ

Fig. 7. Schematic depictions of the absorb (left) and dilute (right) rewrite rules,
that focus on the segment of the dovetailed messages together with all pointers
into and out of them, within a particular memory snapshot. The circular cloud
represents the subset of the memory that the messages in focus are pointing to,
showing that they all have the same view. The elliptical clouds represent views—
including the initial and final view, as well as other messages—that point to each
of the dovetailing messages. Left: The message ν is “absorbed” into the message
ϵ to become ϵ′. No view may point to ν. Right: The message ν′ “dilutes” into
ν and ϵ. While ϵ must be a local message, ν and ν′ can appear anywhere the
trace’s sequence, as long as they appear in the same places in the sequence, and
that ϵ does not appear before. The views that point to ν′ before diluting can
point either to ν or to ϵ after diluting.

first associates for every set X, which we think of as representing returned values,
to a set T X representing computations that return values from X. In our case,
T X consists of countable sets of traces closed under rewrite rules.

Denotations are then defined according to their typing judgments. For ex-
ample, a, b : Loc ` 〈a, b?〉 : (Loc × Val) means that in the context that the free
variables a and b are locations, the term 〈a, b?〉 is a location-value pair. Given
a function γ that maps a and b to locations, J〈a, b?〉K γ ∈ T (Loc × Val). For
Γ ` M : A and Γ ` N : A, we generalize containment JNK ⊇ JMK pointwise:
if γ maps variables in Γ appropriately by their type, then JNK γ ⊇ JMK γ. This
degenerates when Γ is empty, i.e. when M and N are closed terms.

The second monad component is a function returnT
X : X → T X maps values

to pure computations that return that value. The third component sequences
computations, such that the latter depends on the value returned by the for-
mer: (⟫=T

X,Y ) : (T X) × (X → T Y ) → T Y . Omitting the indices, the monad
components must satisfy certain axioms that formalize the stated intuition:
return r⟫=f = f(r), P⟫= return = P and (P⟫=f) ⟫=g = P⟫=λr. (f(r)⟫=g).

In our case, we define return r as the least closed set with all traces of the
form κ 〈µ, µ〉 κ∴ r; and P ⟫= f as the least closed set with all traces of the form
α ξη ω ∴ s, where α ξ κ ∴ r ∈ P and κ η ω ∴ s ∈ f(r) for some κ.

Denotations. This approach comes read-made with denotations for standard lan-
guage constructs. For example, J〈M,N〉K γ B JMK γ ⟫= λr. (JNK γ ⟫= λs. 〈r, s〉).
Similarly, JmatchM with 〈a, b〉. NK γ B JMK γ ⟫= λ〈r, s〉. JNK γ [a 7→ r] [b 7→ s],
where γ [a 7→ r] is obtained from γ by mapping a to r. Pure computations use
the return function, e.g. JvK = return v.

Program effects can be modularly introduced in this approach, such as mem-
ory access, where Jℓ := vK ∈ T {〈〉} and Jℓ?K, JFAA (ℓ, v)K ∈ T Val; and par-
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Fig. 8. A possible result from rewriting of the trace from Figure 6 using absorb.
The dovetailed messages ν2 and ν3 are local in the trace from Figure 1, added
within the same transition, so by rewriting by absorb they can be replaced by ν′3
obtained by stretching ν3’s segment to cover ν2’s segment.

allel composition, a function (|||TX,Y ) : T X × T Y → T (X × Y ) with whichJM ∥ NK γ B JMK γ ||| JNK γ. The definition remains the same: we obtain traces
in P ||| Q by interleaving transitions and pairing returned values of traces with
matching views, one from P and one from Q.

Adhering to left-to-right evaluation both operationally and denotationally,
M :=N is equivalent to match 〈M,N〉with 〈a, b〉. a := b. In traces of assignment,
the added local message is free to dovetail with a previous message, unlike in
RMW traces where it must. Therefore, we have Jℓ := (ℓ?+ v)K ⊇ JFAA (ℓ, v)K.
Structural reasoning. Among the general results and proof techniques this ap-
proach supplies are structural equivalences. These are denotational equations
that hold due to the properties of the core calculus, and are preserved by mod-
ular expansions with program effects. For instance, if K is effect-free, thenJifK thenM ;N elseM ;N ′ K = JM ; ifK thenN elseN ′ K. Equivalences such as
this one may otherwise require challenging ad-hoc proofs [e.g. 24, 26].

More generally, structural reasoning composes to derive further equivalences.
For example, from J〈〉K = Jℓ? ; 〈〉K and structural equivalences, namely “left neu-
trality” JKK = J〈〉 ;KK and “associativity” J(M ;N) ;KK = JM ; (N ;K)K:

JKK = J〈〉 ;KK = J(ℓ? ; 〈〉) ;KK = Jℓ? ; (〈〉 ;K)K = Jℓ? ;KK (⋆)

Structural reasoning generalizes to program transformations. For example,
(⟫=) is monotonic, so we can also derive:

J〈〉K = Jℓ? ; 〈〉K = Jℓ?K⟫=λv.J〈〉K ⊇ JFAA (ℓ, 0)K⟫=λv.J〈〉K = JFAA (ℓ, 0) ; 〈〉K
Since (|||) is also monotonic, we can use this to show that J(SB)K ⊇ J(SB+F)K.
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Fig. 9. A possible result from rewriting of the trace from Figure 1 using dilute.
The message ϵ1 from Figure 1 was replaced with ϵ′1, with the same value 1. The
local message β—which takes up the rest of the missing space left behind by
ϵ1—always appears with ϵ′1, dovetailing with it and carrying the same value.
The message ϵ2, that used to dovetail with ϵ1, now dovetails with β.

Higher order. An important aspect of a programming language is its facilitation
of abstraction. Higher-order programming is a flexible instance of this, in which
programmable functions can take functions as input and return functions as
output. Moggi’s approach supports this feature out-of-the-box, in such a way
that does not complicate the rest of the semantics, as the first-order fragment
of the semantics need not change to include it.

Every value returned by an execution has a semantic presentation which
we use as the returned value in traces. The semantic and syntactic values are
identified in the first-order fragment, but different syntactic functions may have
the same semantics, so the identification does not extend to higher-order.

bound) and of ground type (all functions are applied to arguments). This defi-
nition is in line with the expectation that a program should return a concrete
result that the end-user can consume. Thus, we only consider observable behav-
iors of programs. Transformations only need to be valid when applied within
programs. Programs degenerate to closed terms in the first-order fragment.

4 Main Results

We present the main results that we have proven about our denotational seman-
tics. Moggi’s semantic toolkit features ubiquitously in their proofs.

Compositionality. In its most basic form, this key feature of denotational seman-
tics means that a program term’s denotation is defined using the denotations of
its immediate subterms. We have used this in (⋆). In our case denotations are
sets, where each elements represents a possible behavior of the term, we are
interested in establishing a directional generalization of compositionality:
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Lemma 1. If JMK ⊆ JNK then JΞ [M ]K ⊆ JΞ [N ]K for any program context Ξ [−].

Compositionality is a consequence of its monadic design using monotonic oper-
ators, and is not substantially different from previous work [e.g. 20].

Observability correspondence. The abstract rewrite rules break the direct cor-
respondence between traces and interrupted executions. For example, in our
analysis of (WW-Elim), by using absorb, we ended up with a trace in which only
one message is added even though the program term adds two messages.

Still, some connection must remain to obtain a proof of adequacy. In partic-
ular, we would like traces to correspond to observable behavior of programs. In
one direction, an even stronger property holds, known as soundness:

Lemma 2. For every execution of a program M in the operational semantics of
RA, there exists α 〈µ, ρ〉 ω ∴ r ∈ JMK that matches the execution: 〈α, µ〉 is the
initial state, 〈ω, ρ〉 is the final state, and r matches the value returned.

To prove soundness, we take a trace where transitions correspond to the memory-
accessing execution steps, and then use mumble to obtain a single transition.

Ignoring the final state, the correspondence holds in the other direction too:

Lemma 3. For every program M and α 〈µ, ρ〉 ω∴r ∈ JMK there is an observable
behavior of M with initial state 〈α, µ〉 and return value matching r.

The lack of correspondence with the final state is an artifact of the concreteness-
abstraction divergence between the operational and denotational semantics. Due
to this divergence, it is significantly more challenging to establish this direction
of the correspondence than in previous work.

Overcoming the concreteness-abstraction hurdle. The most technically challeng-
ing step in proving Lemma 3 is to prove the application of abstract rewrite rules
can be deferred to the end. We define the basic denotation of a term M by JMK,
which is the denotation were it defined using only the concrete rewrite rules.
Denoting its closure under the abstract rewrite rules by JMK†, we claim:

Lemma 4. If M is a program, then JMK† = JMK.
Thus, to obtain all of the traces that result from the regular denotational con-
struction, where all of the rewrite rules are applied throughout the entire de-
notational construction, it is enough to close only under the concrete rewrite
rules as the denotation of a program is built-up from its subterms, applying the
abstract rewrite rules only at the top level.

The intuition that guides the inductive proof of Lemma 4 is that the abstract
rewrite rules can be percolated out. To get the main idea across while keeping
the discussion self-contained, we focus on the JM1 ∥ M2K† ⊇ JM1 ∥ M2K case.

Let π ∈ JM1 ∥ M2K. By definition, π is obtained by first composing some
τ1 ∈ JM1K in parallel with some τ2 ∈ JM2K, i.e. interleaving transitions and
pairing return values, and then rewriting the resulting trace τ with concrete
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and abstract rules. By the inductive hypothesis, JMiK† ⊇ JMiK. So τi ∈ JMiK†,
meaning that τi is the result of rewriting some τ ′i ∈ JMiK with abstract rules.

To warm up, we first address the case where τ ′1
Ab−→ τ1 and τ ′2 = τ2. We would

hope, naively, that we can compose τ ′1 with τ ′2 to obtain some τ ′ ∈ JM1 ∥ M2K
such that τ ′ Ab−→ τ , and thus τ ′ rewrites to π. However, they do not compose
because τ ′1 has two local message, and τ ′2 has only the one environment mes-
sage that matches the result of “absorbing” the two messages. Rather, τ ′1 can
compose with a trace τ̄2 which is equal to τ ′2 except for having the required two
environment messages instead of the combined one.

We formalize this by introducing a dual auxiliary rewrite rule x̄ for each
abstract rule x. For example, the dual of absorb is expel, which splits up an en-
vironment message dually to how absorb combines local messages. The auxiliary
rewrite rules keep us within the basic denotations:

Lemma 5. If τ ∈ JMK and τ z−→ π for some auxiliary rule z, then π ∈ JMK.
Then we apply τ ′2

x̄−→ τ̄2 ∈ JMiK, and obtain the required τ ′ by composing τ ′1
in parallel with τ̄2. This process of applying the dual rewrite in order to percolate
an abstract rewrite out holds for sequential composition too. We summarize:

Lemma 6. If π′ x−→ π for some abstract x, and π composes in parallel with ϱ to
obtain τ , then there exist ϱ′ x̄−→ ϱ and τ ′ x−→ τ , such that π′ composes in parallel
with ϱ′ to obtain τ ′. Similarly for sequential composition.

In the case where there are more abstract rewrite rules needed to obtain τ1
from τ ′1, we can repeat the process. Yet two problems remain.

The first problem is that π is obtained from τ ′ ∈ JM1 ∥ M2K by both concrete
and abstract rewrites, starting with the abstract rewrites that we have “peeled
off” τ1. To show that π ∈ JM1 ∥ M2K†, we need the concrete rewrites to come
before the abstract rewrites.

The second problem appears once we remove our simplifying assumption
that τ ′2 = τ2. In the general case, we obtain τ̄2 from τ ′2 using abstract rewrites
followed by auxiliary rewrites. If we could replace the sequence of rewrites with
one in which the abstract rewrites follow the auxiliary rewrites, then τ ′2 could be
rewritten with auxiliary rules to some τ̄ ′2 ∈ JM2K by using Lemma 5, which in
turn could be rewritten with abstract rewrites to τ̄2 ∈ JM2K†. This would allow
the proof to continue by repeating the process to the other side.

Both problems are solved by commuting the abstract rewrites outwards:

Lemma 7. For any rewrite sequence starting with τ and ending with π, there
exists one in which all of the abstract rewrites appear last.

Thus, we can do as we planned and repeat the process to the other side,
“peeling off” the abstract rewrites from τ̄2 to obtain τ̄ ′2 ∈ JM2K, rewriting τ ′1 with
the dual auxiliary rules in lockstep, resulting in some τ̄ ′1 ∈ JM1K by Lemma 5. By
Lemma 6, these compose in parallel to some τ̄ ∈ JM1 ∥ M2K that rewrites with
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concrete and abstract rules to τ , and thus to π. By Lemma 7, we can rewrite
τ̄ with concrete rules to some τ̄ ′ ∈ JM1 ∥ M2K first, and with abstract rules
afterwards, obtaining π ∈ JM1 ∥ M2K†.

Having established Lemma 4, the rest is relatively straightforward. First,
traces in basic denotations correspond to interrupted executions, and in partic-
ular, an analog of Lemma 3 holds for basic denotations:
Lemma 8. For every program M and α 〈µ, ρ〉 ω∴r ∈ JMK there is an observable
behavior of M with initial state 〈α, µ〉 and return value matching r.

Next, it is clear from their definition that the abstract rules do not change the
number of transitions. Thus, thanks to Lemma 4, the single-transition traces inJMK are the result of rewriting single-transition traces in JMK by abstract rules,
which correspond to observable behaviors of M by Lemma 8.

Lemma 3 follows from the fact that the abstract rules preserve the corre-
spondence between traces and observable behavior of programs. For example,
due to absorb there is a trace which only adds one message in the denotation of a
program that adds two messages; yet the initial view, the opening memory, and
the returned value are maintained. The tighten rule similarly preserves these. In
both cases, the execution exhibiting the behavior can remain unchanged. The
dilute rule may replace an initial message’s timestamp with a smaller one, in
which case the execution exhibiting the behavior needs to use the new times-
tamp accordingly, but otherwise remains the same.

Adequacy. The central result is (directional) adequacy, stating that denotational
approximation corresponds to refinement of observable behaviors:
Theorem 9. If JMK ⊆ JNK, then for all program contexts Ξ [−], every observ-
able behavior of Ξ [M ] is an observable behavior of Ξ [N ].
In particular, JMK ⊆ JNK implies that N ↠ M is valid under RA, because the
effect of applying it is unobservable.

Adequacy follows immediately from the above results. Indeed, using sound-
ness, an observable behavior of Ξ [M ] corresponds to a single-transition τ ∈JΞ [M ]K; by the assumption and compositionality τ ∈ JΞ [N ]K; and using the
other direction, τ corresponds to an observable behavior of Ξ [N ].

Higher-order subtleties. When applying the above results in the presence of
higher order, one must pay attention to the program assumption. Indeed, supposeJMK ⊇ JM ′K. Compositionality does not entail that Jλa.MK ⊇ Jλa.M ′K. Indeed,
a function λa.M is a value, i.e. it does not execute, and in particular it does not
perform any effects, regardless of M . Accordingly, Jλa.MK consists of closures
of traces of the form κ 〈µ, µ〉 κ ∴ f , where f is a function that returns sets of
traces obtained from JMK. The fact that JMK ⊇ JM ′K is not helpful, because
traces in Jλa.M ′K have different returned values f ′ from traces in Jλa.MK.

Directional compositionality is still useful in the presence of abstractions. For
example, if M is a program that returns a location, then from Ja := v ; a := wK ⊇Ja := wK it follows that J(λa. a := v ; a := w)MK ⊇ J(λa. a := w)MK.
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Laws of Parallel Programming
Symmetry ↠M ∥ N swap (N ∥ M)

Generalized Sequencing
↠(let a = M1 inM2) ∥ (let b = N1 inN2) matchM1 ∥ N1 with ⟨a, b⟩.M2 ∥ N2

Eliminations
Irrelevant Read ↠ℓ? ; ⟨⟩ ⟨⟩
Write-Write ↠ℓ := v ; ℓ := w ℓ := w

Ab

Write-Read ↠ℓ := v ; ℓ? ℓ := v ; v

Write-FAA ↠ℓ := v ; FAA (ℓ, w) ℓ := (v + w) ; v
Ab

Read-Write ↠let a = ℓ? in ℓ := (a+ v) ; a FAA (ℓ, v)

Read-Read ↠⟨ℓ?, ℓ?⟩ let a = ℓ? in ⟨a, a⟩
Read-FAA ↠⟨ℓ?,FAA (ℓ, v)⟩ let a = FAA (ℓ, v) in ⟨a, a⟩
FAA-Read ↠⟨FAA (ℓ, v) , ℓ?⟩ let a = FAA (ℓ, v) in ⟨a, a+ v⟩
FAA-FAA ↠⟨FAA (ℓ, v) ,FAA (ℓ, w)⟩ let a = FAA (ℓ, v + w) in ⟨a, a+ v⟩Ab

Others
Irrelevant Read Introduction ↠⟨⟩ ℓ? ; ⟨⟩
Read to FAA ↠ℓ? FAA (ℓ, 0)

Di

Write-Read Deorder ↠⟨(ℓ := v) , ℓ′?⟩ (ℓ := v) ∥ ℓ′?
Ti (ℓ ̸= ℓ′)

Write-Read Reorder ↠(ℓ := v) ; ℓ′? fst ⟨ℓ′?, (ℓ := v)⟩Ti (ℓ ̸= ℓ′)

Fig. 10. A selective list of supported non-structural transformations. Along with
Symmetry, the denotational semantics supports all symmetric-monoidal laws
with the binary operator (∥) and the unit 〈〉. Similar transformations, replacing
FAA with other RMWs, are supported too. The abstract rewrite rules used to
validate a transformation is mentioned, if there is one.

To deal with the need to prove properties “pointwise” that abstractions bring
about, such as containment of denotations in the proof of directional composi-
tionality, we use logical relations. Moggi’s toolkit provides a standard way to
define these, thereby lifting properties to their higher-order counterparts.

Transformations exhibiting abstraction. To the best of our knowledge, all trans-
formations N ↠ M proven to be valid under RA in the existing literature are
supported by our denotational semantics, i.e. JNK ⊇ JMK. Structural transforma-
tions are supported by virtue of using Moggi’s standard semantics. Our seman-
tics also validates “algebraic laws of parallel programming”, such as sequencing
M ∥ N ↠ 〈M,N〉 and its generalization that Hoare and van Staden [22] recog-
nized, (M1 ;M2) ∥ (N1 ;N2)↠ (M1 ∥ N1) ; (M2 ∥ N2), which in the functional
setting can take the more expressive form in which the values returned are passed
on to the following computation. See Figure 10 for a partial list.

Hence we claim that our adequate denotational semantics is sufficiently ab-
stract. This supports the case that Moggi’s semantic toolkit can successfully
scale to handle the intricacies of RA concurrency by adapting Brookes’s traces.
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5 Related Work and Concluding Remarks

Our work follows the approach of Brookes [13] and its extension to higher-order
functions using monads by Benton et al. [6]. Brookes developed a denotational
semantics for shared memory concurrency under standard sequentially consis-
tency [33], and established full abstraction w.r.t. a language that has a global
atomic await instruction that locks the entire memory. The concepts behind this
approach had been used in multiple related developments, e.g. [12, 34, 35, 46]. We
hope that our work that targets RA will pave the way for similar continuations.

Jagadeesan et al. [25] adapted Brookes’s semantics to the x86-TSO memory
model [40]. They showed that for x86-TSO it suffices to include the final store
buffer at the end of the trace and add two additional simple closure rules that
emulate non-deterministic propagation of writes from store buffers to memory,
and identify observably equivalent store buffers. The x86-TSO model, however,
is much closer to sequential consistency than RA, which we study in this pa-
per. In particular, unlike RA, x86-TSO is “multi-copy-atomic” (writes by one
thread are made globally visible to all other threads at the same time) and
successful RMW operations are immediately globally visible. Additionally, the
parallel composition construct in Jagadeesan et al. [25] is rather strong: threads
are forked and joined only when the store buffers are empty. Being non-multi-
copy-atomic, RA requires a more delicate notion of traces and closure rules, but
it has more natural meta-theoretic properties, which one would expect from a
programming language concurrency model: sequencing, a.k.a. thread-inlining, is
unsound under x86-TSO [see 25, 31] but sound under RA (see Figure 10).

Burckhardt et al. [14] developed a denotational semantics for hardware weak
memory models (including x86-TSO) following an alternative approach. They
represent sequential code blocks by sequences of operations that the code per-
forms, and close them under certain rewrite rules (reorderings and eliminations)
that characterize the memory model. This approach does not validates impor-
tant optimizations, such as Read-Read Elimination. Moreover, unlike x86-TSO,
RA cannot be characterized by rewrite operations on SC traces [31].

Dodds et al. [19] developed a fully abstract denotational semantics for RA,
extended with fences and non-atomic accesses. Their semantics is based on
RA’s declarative (a.k.a. axiomatic) formulation as acyclicity criteria on execution
graphs. Roughly speaking, their denotation of code blocks (that they assume to
be sequential) quantifies over all possible context execution graphs and calculates
for each context the “happens-before” relation between context actions that is
induced by the block. They further use a finite approximation of these histories
to atomically validate refinement in a model checker. While we target RA as
well, there are two crucial differences between our work and Dodds et al. [19].
First, we employ Brookes-style totally ordered traces and use interleaving-based
operational presentation of RA. Second, and more importantly, we strive for a
compositional semantics where denotations of compound programs are defined
as functions of denotations of their constituents, which is not the case for Dodds
et al. [19]. Their model can nonetheless validate transformations by checking
them locally without access to the full program.
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Others present non-compositional techniques and tools to check refinement
under weak memory models between whole-thread sequential programs that ap-
ply for any concurrent context. Poetzl and Kroening [43] considered the SC-for-
DRF model, using locks to avoid races. Their approach matches source to target
by checking that they perform the same state transitions from lock to subsequent
unlock operations and that the source does not allow more data-races. Morisset
et al. [39] and Chakraborty and Vafeiadis [16] addressed this problem for the
C/C++11 model, of which RA is a central fragment, by implementing match-
ing algorithms between source and target that validate that all transformations
between them have been independently proven to be safe under C/C++11.

Cho et al. [18] introduced a specialized semantics for sequential programs that
can be used for justifying compiler optimizations under weak memory concur-
rency. They showed that behavior refinement under their sequential semantics
implies refinement under any (sequential or parallel) context in the Promising
Semantics 2.1 [17]. Their work focuses on optimizations of race-free accesses
that are similar to C11’s “non-atomics” [4, 32]. It cannot be used to establish
the soundness of program transformations that we study in this paper. Adding
non-atomics to our model is an important future work.

Denotational approaches were developed for models much weaker than RA [15,
24, 26, 28, 41] that allow the infamous Read-Write Reorder and thus, for a
high-level programming language, require addressing the challenge of detecting
semantic dependencies between instructions [3]. These approaches are based on
summarizing multiple partial orders between actions that may arise when a given
program is executed under some context. In contrast, we use totally ordered
traces by relating to RA’s interleaving operational semantics. In particular, Ka-
vanagh and Brookes [28] use partial orders, Castellan, Paviotti et al. [15, 41] use
event structures, and Jagadeesan et al., Jeffrey et al. [24, 26] employ “Pomsets
with Preconditions” which trades compositionality for supporting non-multi-
copy-atomicity, as in RA. These approaches do not validate certain access elim-
inations, nor Irrelevant Load Introduction, which our model validates.

An exciting aspect of our work is the connection between memory models
to Moggi’s monadic approach. For SC, Abadi and Plotkin, Dvir et al. [1, 20]
have made an even stronger connection via algebraic theories [42]. These allow
to modularly combine shared memory concurrency with other computational
effects. Birkedal et al. [11] develop semantics for a type-and-effect system for SC
memory which they use to enhance compiler optimizations based on assumptions
on the context that come from the type system. We hope to the current work
can serve as a basis to extend such accounts to weaker models.
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Abstract. Software Transactional Memory (STM) is an extensively stud-
ied paradigm that provides an easy-to-use mechanism for thread safety
and concurrency control. With the recent advent of byte-addressable
persistent memory, a natural question to ask is whether STM systems
can be adapted to support failure atomicity. In this paper, we answer this
question by showing how STM can be easily integrated with Intel’s Persis-
tent Memory Development Kit (PMDK) transactional library (which we
refer to as txPMDK) to obtain STM systems that are both concurrent
and persistent. We demonstrate this approach using known STM systems,
TML and NOrec, which when combined with txPMDK result in per-
sistent STM systems, referred to as PMDK-TML and PMDK-NORec,
respectively. However, it turns out that existing correctness criteria are
insufficient for specifying the behaviour of txPMDK and our concurrent
extensions. We therefore develop a new correctness criterion, dynamic
durable opacity, that extends the previously defined notion of durable opac-
ity with dynamic memory allocation. We provide a model of txPMDK,
then show that this model satisfies dynamic durable opacity. Moreover,
dynamic durable opacity supports concurrent transactions, thus we also
use it to show correctness of both PMDK-TML and PMDK-NORec.
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1 struct loc {
2 pmem::obj::p<int> value;
3 pmem::obj::persistent_ptr<loc> next; };
4
5 struct root { pmem::obj::persistent_ptr<loc> head = nullptr; };
6
7 void post_crash(...) {
8 auto pop = pmem::obj::pool<root>::open("file",...);
9 auto root = pop.root();

10 pmem::obj::transaction::run(pop, [&]{
11 auto xvalue = root->head->value;
12 }); }
13
14 int main(...) {
15 auto pop = pmem::obj::pool<root>::open("file",...);
16 auto root = pop.root();
17 pmem::obj::transaction::run(pop, [&]{
18 auto x = pmem::obj::make_persistent<loc>();
19 x->value = 42;
20 x->next = nullptr;
21 root->head = x;
22 }); }

Fig. 1: C++ snippet for allocating in persistent memory using txPMDK [54]

Among the most widely used collections of libraries for persistent programming
is Intel’s Persistent Memory Development Kit (PMDK), which was first released
in 2015 [30]. One important component of PMDK is its transactional library,
which we refer to as txPMDK, and which supports generic failure-atomic
programming. A programmer can use txPMDK to protect against full system
crashes by starting a transaction, performing transactional reads and writes, then
committing the transaction. If a crash occurs during a transaction, but before
the commit, then upon recovery, any writes performed by the transaction will be
rolled back. If a crash occurs during the commit, the transaction will either be
rolled back or be committed successfully, depending on how much of the commit
operation has been executed. If a crash occurs after committing, the effect of the
transaction is guaranteed to persist.

Most software transactional memory (STM) algorithms leave memory alloca-
tion implicit, since they are generally safe under standard allocation techniques
(e.g. malloc). Memory that is allocated as part of a transaction can be deallocated
if the transaction is aborted. However, in the context of persistency, memory
allocation is more subtle since transactions may be interrupted by a crash.

For example, consider the program in Fig. 1. Persistent memory is allocated,
accessed and maintained via memory pools [54] (files that are memory mapped
into the process address space) of a certain type (e.g. of type loc in Fig. 1). Due
to address space layout randomization (ASLR) in most operating systems, the
location of the pool can differ between executions and across crashes. As such,
every pool has a root object from which all other objects in the pool can be
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found. That is, to avoid memory leaks, all objects in the pool must be reachable
from the root. An application locates the root object using a pool object pointer
(POP) that is to be created with every program invocation (e.g. line 15). After
locating the pool root (line 16), we use a txPMDK transaction (lines 17–22) to
allocate a persistent loc object x (line 18) with value 42 (line 19) and add it to
the pool (line 21).

Consider the scenario where the execution of this transaction crashes. After
recovery from the crash, we then execute post_crash (line 7). As before, we
open the pool (line 8) and locate its root (line 9). We then use a txPMDK
transaction to read from the loc object allocated and added at the pool head
prior to the crash (line 11). There are then three cases to consider: the crash may
have occurred (1) before the transaction started the commit process, (2) after
the transaction successfully committed, or (3) while the transaction was in the
process of committing.

In case (1), the execution of the two transactions can be depicted as follows,
where the PBegin events capture commencing the transactions (lines 17 and 10),
PAlloc(x) denotes the persistent allocation of x (line 18); PWrite(x->value,42)
captures writing to x (line 19); and PRead(root->head):x denotes reading
from x->value and returning the value x (first part of line 11). As the first
transaction never reached the commit stage, its effects (i.e. allocating x and
writing to it) should be invisible (i.e. rolled back), and thus the read of the second
transaction effectively reads from unallocated memory, leading to an error such
as a segmentation fault.

PBegin PAlloc(x)

PWrite
(x->value,42)

PWrite
(x->next,...)

PWrite
(root->head,x)

E PBegin

PRead
(root->head):x

PRead
(x->value)

SegFault

In case (2), the execution of the transactions is as follows, where the PCommit
events capture the end (successful commit) of the transactions (lines 22 and 12),
the effects of the first transaction fully persist upon successful commit, and thus
the read in the second transaction does not fault.

PBegin PAlloc(x) ... PCommit

E
PBegin

PRead
(root->head):x

PRead
(x->value):42 PCommit

Finally, in case (3), either of the two behaviours depicted above is possible (i.e.
the second transaction may either cause a segmentation fault or read from x).

Efficient and correct memory allocation in a persistent memory setting is
challenging ([54, Chapter 16] and [55]). In addition to the ASLR issue mentioned
above, the allocator must guarantee failure atomicity of heap operations on
several internal data structures managed by PMDK. Therefore, PMDK provides
its own allocator that is designed specifically to work with txPMDK.

We identify two key drawbacks of txPMDK as follows. In this paper, we
take steps towards addressing both of these drawbacks.

A) Lack of concurrency support. Unlike existing STM systems in the persis-
tent setting [39,32] that provide both failure atomicity (ensuring that a transaction
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either commits fully or not at all in case of a crash) and isolation (as defined
by ACID properties, ensuring that the effects of incomplete transactions are
invisible to concurrently executing transactions), txPMDK only provides fail-
ure atomicity and does not offer isolation in concurrent settings. In particular,
naïvely implemented applications with racy PMDK transactions lead to memory
inconsistencies. This is against the spirit of STM: the primary function of STM
systems is providing a concurrency control mechanism that ensures isolation.
The current txPMDK implementation provides two solutions: threads either
execute concurrent transactions over disjoint parts of the memory [54, Chapter
7], or use user-defined fine-grained locks within a transaction to ensure memory
isolation [54, Chapter 14]. However, both solutions are sub-optimal: the former
enforces serial execution when transactions operate over the same part of the
memory, and the latter expects too much of the user.

B) Lack of a suitable correctness criterion. There is no formal specification
describing the desired behaviour of txPMDK, and hence no rigorous descrip-
tion or correctness proof of its implementation. This undermines the utility of
txPMDK in safety-critical settings and makes it impossible to develop formally
verified applications that use txPMDK. Indeed, there is currently no correctness
criterion for STM systems that provide dynamic memory allocation (a large
category that includes all realistic implementations).

1.1 Concurrency for txPMDK

Integrating concurrency with PMDK transactions is an important end goal for
PMDK developers. The existing approach requires integration of locks with
txPMDK, which introduces overhead for programmers. Our paper shows that
STM and PMDK can be easily combined, improving programmability. Many
other works have aimed to develop failure-atomic and concurrent transactions
(e.g. OneFile [52] and Romulus [16]), but none use off-the-shelf commercially
available libraries. Moreover, these other works have not addressed correctness
with the level of rigour that our paper does. In other work, popular key-value
stores Memcached and Redis have been ported to use PMDK [36,37]; our work
paves the way for concurrent version of these applications to be developed.
Another example is the work of Chajed et al [11], who provide a simulation-based
technique for verifying refinement of durable filesystems, where concurrency is
handled by durable transactions.

We tackle the first drawback (A) mentioned above by developing, specifying,
and validating two thread-safe versions of txPMDK.
Contribution A: Making txPMDK thread-safe. We combine txPMDK
with two off-the-shelf (thread-safe) STM systems, TML [17] and NOrec [18],
to obtain two new implementations, PMDK-TML and PMDK-NORec, that
support concurrent failure-atomic transactions with dynamic memory allocation.
In particular, we reuse the existing concurrency control mechanisms provided by
these STM systems to ensure atomicity of write-backs, thus obtaining memory
isolation even in a multi-threaded setting. We show that it is possible to integrate
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Fig. 2: The contributions of this paper and their relationships to prior work

these mechanisms with txPMDK to additionally achieve failure atomicity. Our
approach is modular, with a clear separation of concerns between the isolation
required due to concurrency and the atomicity required due to the possibility
of system crashes. This shows that concurrency and failure atomicity are two
orthogonal concerns, highlighting a pathway towards a mix-and-match approach
to combining (concurrent) STM and failure-atomic transactions. Finally, in order
to provide the same interface as PMDK, we extend both TML and NOrec with
an explicit operation for memory allocation.

1.2 Specification and Validation

To tackle drawback (B) above, we make four contributions. Together, they provide
the first formal (and rigorous) specification of txPMDK and validation of its
implementation.
Contribution B1: A model of txPMDK. We provide a formal specification
of txPMDK as an abstract transition system. Our formal specification models
almost all key components of txPMDK (including its redo and undo logs, as well
as the interaction of these components with system crashes), with the exception
of memory deallocation within txPMDK transactions.
Contribution B2: A correctness criterion for transactions with dy-
namic allocation. Although the literature includes several correctness criterion
for transactional memory (TM), none can adequately capture txPMDK in that
they do not account for dynamic memory allocation. We develop a new correct-
ness condition, dynamic durable opacity (denoted ddOpacity), by extending
durable opacity [6] to account for dynamic allocation. ddOpacity supports not
only sequential transactions such as txPMDK, but also concurrent ones. To
demonstrate the suitability of ddOpacity for concurrent and persistent (durable)
transactions, later we validate our two concurrent txPMDK implementations
(PMDK-NORec and PMDK-TML) against ddOpacity.
Contribution B3: An operational characterisation of our correctness
criterion. Our aim is to show that txPMDK conforms to ddOpacity, or
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more precisely, that our model of txPMDK refines our model of ddOpacity.
To demonstrate this, we use a new intermediate model called ddTMS. While
ddOpacity is defined declaratively, ddTMS is defined operationally, which
makes it conceptually closer to our model of the txPMDK implementation. We
prove that ddTMS is a sound model of ddOpacity (i.e. every trace of ddTMS
satisfies ddOpacity).
Contribution B4: Validation of txPMDK, PMDK-TML and PMDK-
NORec in FDR4. We mechanise our implementations (txPMDK, PMDK-
TML and PMDK-NORec) and specification (ddTMS) using the CSP modelling
language. We use the FDR4 model checker [26] to show the implementations are
refinements of ddTMS over both the persistent SC (PSC) [31] and persistent
TSO (Px86sim) [50] memory models. For Px86sim, we use an equivalent formula-
tion called PTSOsyn developed by Khyzha and Lahav [31]. The proof itself is
fully automatic, requiring no user input outside of the encodings of the models
themselves. Additionally, we develop a sequential lower bound (ddTMS-Seq),
derived from ddTMS, and show that this lower bound refines txPMDK (and
hence that txPMDK is not vacuously strong). Our approach is based on an
earlier technique for proving durable opacity [23], but incorporates much more
sophisticated examples and memory models.
Outline. Fig. 2 gives an overview of the different components that we have
developed in this paper and their relationships to each other and to prior work.
We structure our paper by presenting the components of Fig. 2 roughly from the
bottom up. In §2, we present the abstract txPMDK model, and in §3 we describe
its integration with STM to provide concurrency support via PMDK-TML and
PMDK-NORec. In §4 we present ddOpacity, in §5 we present ddTMS, and
in §6 we describe our FDR4 encodings and bounded proofs of refinement.
Additional Material. We provide our FDR4 development as supplementary
material [47]. The proofs of all theorems are given in an extended version [46].

2 Intel PMDK transactions

We describe the abstract interface txPMDK provides to clients (§2.1), our
assumptions about the memory model over which txPMDK is run (§2.2) and
the operations of txPMDK (§2.3). We present our PMDK abstraction in §2.3.

2.1 PMDK Interface

PMDK provides an extensive suite of libraries for simplifying persistent pro-
gramming. The PMDK transactional library (txPMDK) has been designed to
support failure-atomicity by providing operations for tracking memory locations
that are to be made persistent, as well allocating and accessing (reading and
writing) persistent memory within an atomic block.

In Fig. 3 we present an example client code that uses txPMDK. The code (due
to [54, p. 131]) implements the push operation for a persistent linked-list queue.
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1 struct queue_node {
2 pmem::obj::p<int> value;
3 pmem::obj::persistent_ptr<queue_node> next; };
4
5 struct queue { private:
6 pmem::obj::persistent_ptr<queue_node> head = nullptr;
7 pmem::obj::persistent_ptr<queue_node> tail = nullptr; };
8
9 void push(pmem::obj::pool_base &pmem_op, int value) {

10 pmem::obj::transaction::run(pmem_op, [&]{
11 auto node = pmem::obj::make_persistent<queue_node>();
12 node->value = value;
13 node->next = nullptr;
14 if (head == nullptr) {
15 head = tail = node;
16 } else {
17 tail->next = node;
18 tail = node; }
19 }); }

Fig. 3: C++ persistent push operation using txPMDK ([54, p. 131])

The implementation wraps a typical (non-persistent) push operation within a
transaction using a C++ lambda [&] expression (line 10). The transaction is
invoked using transaction::run, which operates over the memory pool pmem_op.
The node structure (lines 2 and 3), the queue structure (lines 6 and 7), and
any new node declaration (line 11) are to be tracked by a PMDK transaction.
Additionally, the push operation takes as input the persistent memory object pool,
pmem_op, which is a memory pool on which the transaction is to be executed. This
argument is needed because the application memory may map files from different
file systems. On line 7 we use make_persistent to perform a transactional
allocation on persistent memory that is linked to the object pool pmem_op (see
[54] for details). The remainder of the operation (lines 12–18) corresponds to
an implementation of a standard push operation with (transactional) reads and
writes on the indicated locations. At line 19, the C++ lambda and the transaction
is closed, signalling that the transaction should be committed.

If the system crashes while push is executing, but before line 19 is executed,
then upon recovery, the entire push operation will be rolled back so that the
effect of the incomplete operation is not observed, and the queue remains a
valid linked list. After line 19, the corresponding transaction executes a commit
operation. If the system crashes during commit, depending on how much of the
commit operation has been executed, the push operation will either be rolled
back, or committed successfully. Note that roll-back in all cases ensures that the
allocation at line 11 is undone.

2.2 Memory Models

We consider the execution of our implementations over two different memory
models: PSC and PTSOsyn [31]. Both models include a flush x instruction
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to persist the contents of the given location x to memory. PTSOsyn aims for
fidelity to the Intel x86 architecture. In a race-free setting (as is the case for
single-threaded txPMDK transactions) it is sound to use the simpler PSC
model, though we conduct all of our experiments in both models.

PSC is a simple model that considers persistency effects and their interaction
with sequential consistency. Writes are propagated directly to per-location persis-
tence buffers, and are subsequently flushed to non-volatile memory, either due
to a system action, or the execution of a flush instruction. A read from x first
attempts to fetch its value from the persistence buffer and if this fails, fetches its
value from non-volatile memory.

Under Intel-x86, the memory models are further complicated by the interaction
between total store ordering (TSO) effects [40] and persistency. Due to the abstract
nature of our models (see Fig. 4) it is sufficient for us to focus on the simpler
Px86sim model [50] since we do not use any of the advanced features [48,49,50]. We
introduce a further simplification via PTSOsyn that is observationally equivalent
to Px86sim [31]. Unlike Px86sim, which uses a single (global) persistence buffer,
PTSOsyn uses per-location buffers simplifying the resulting FDR4 models (§6).

In PTSOsyn, writes are propagated from the store buffer in FIFO order to a
per-location FIFO persistency buffer. Writes in the persistency buffer are later
persisted to the non-volatile memory. A read from location x first attempts to
fetch the latest write to x from the store buffer. If this fails (i.e. no writes to x
exists in the store buffer), it attempts to fetch the latest write from the persistence
buffer of x, and if this fails, it fetches the value of x from non-volatile memory.

2.3 PMDK Implementation

We present the pseudo-code of our txPMDK abstraction in Fig. 4. We model
all features of txPMDK (including its redo and and undo logs as well as its
recovery mechanism in case of a crash) except memory deallocation within a
txPMDK transaction. We use mem to model the memory, mapping each location
(in loc) to a value-metadata pair. We model a value (in val) as an integers, and
metadata as a boolean indicating whether the location is allocated. As we see
below, the list of free (unallocated) locations, freeList, is calculated during
recovery using metadata.

Each PMDK transaction maintains redo logs and an undo log. The redo logs
record the locations allocated by the transaction so that if a crash occurs while
committing, the allocated locations can be reallocated, allowing the transaction
to commit upon recovery. Specifically, txPMDK uses two distinct redo logs:
tRedo and pRedo. Both are associated with fields undoValid (which is unset
when the log is invalidated), checksum (used to indicate whether the log is valid),
and allocs (which contains the set of locations allocated by the transaction).
Note that txPMDK explicitly sets and unsets undoValid, whereas checksum
is calculated (e.g. at line 36) and may be invalidated by crashes corrupting a
partially completed write. The undo log records the original (overwritten) value
of each location written to by the transaction, and is consulted if the transaction
is to be rolled back. We model it as a map from locations to values (of type int).
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1 // Each location is persistent; there is no explicitly volatile memory.
2 mem : loc -> {
3 val : int; // the contents of this location
4 metadata : bool; } // false = not allocated, true = allocated
5 freeList : loc list // transient list of free locations
6
7 // Redo logs -- tRedo is transient; pRedo is persistent.
8 tRedot, pRedot : {undoValid:bool; checksum:int; allocs:loc set;}
9 undot : loc -> int // undo log recording the original val of each loc

10 undoValid : bool // undoValid global flag, initially true

11 PBegint ≜
12 tRedot := (true, -1, {})
13 pRedot := (true, -1, {})
14 undot := {}
15 undoValidt := true
16

17 PAlloct ≜
18 xt := freeList.take
19 tRedot.allocs :=
20 tRedot.allocs ∪ {xt}
21 return xt
22

23 PReadt(x) ≜
24 return mem[x].val
25

26 PWritet(x,v) ≜
27 if x /∈ dom(undot) then
28 wt := mem[x].val
29 undot := undot ∪ {x 7→ wt}
30 flush undot
31 mem[x].val := v
32

33 PCommitt ≜
34 persist_writest
35 tRedot.undoValid := false
36 tRedot.checksum :=

calc_checksum(tRedot)
37 pRedot := tRedot
38 flush pRedot
39 apply_pRedot
40 pRedot.checksum := -1
41 flush pRedot.checksum

42 apply_pRedot ≜
43 foreach x ∈ pRedot.allocs:
44 mem[x].metadata := true
45 flush mem[x].metadata
46 if ¬pRedot.undoValid then
47 undoValidt := false
48 flush undoValidt
49

50 persist_writest ≜
51 foreach x ∈ dom(undot): flush x
52

53 roll_backt ≜
54 foreach (x 7→ v) ∈ undot:
55 mem[x].val := v
56 persist_writest
57

58 PAbortt ≜
59 roll_backt
60 undoValidt := false
61 flush undoValidt
62 foreach x ∈ tRedot.allocs:
63 freeList.add(x)
64

65 PRecoveryt ≜
66 if calc_checksum(pRedot)
67 = pRedot.checksum
68 then apply_pRedot
69 if undoValidt then
70 roll_backt
71 foreach x ∈ dom(mem):
72 if ¬mem[x].metadata then
73 freeList.add(x)

Fig. 4: PMDK global variables and pseudo-code

A separate variable undoValid (distinct from undoValid in tRedo and pRedo)
is used to determine whether this undo log is valid.

Each component in Fig. 4 have both a volatile and persistent copy, although
some components, e.g. tRedo and freeList, are transient, i.e. their persistent
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versions are never used. Likewise, the persistent redo log, pRedo, is only used in
a persistent fashion and its volatile copy is never used.

We now describe the operations in Fig. 4. We assume the operations are
executed by a transaction with id t . This id is not useful in the sequential
setting in which txPMDK is used; however, in our concurrent extension (§3)
the transaction id is critical.

PBegin. The begin operation simply sets all local variables to their initial values.
PAlloc. Allocation chooses and removes a free location, say x, from the free
list, adds x to the transient redo log (line 20) and returns x. Removing x from
freeList ensures it is not allocated twice, while the transient redo log is used
together with the persistent redo log to ensure allocated locations are properly
reallocated upon a system crash.

When the transaction commits, the transient redo log is copied to the persistent
one (line 37), and the effect of the persistent log is applied at line 39 via
apply_pRedo. (Note that apply_pRedo is also called by PRecovery on line 68.)
The behaviour of this call depends on how much of the in-flight transaction was
executed before the crash leading to the recovery. If a crash occurred after the
transaction executed (line 37) and the corresponding write persisted (either due
to a system flush or the execution of line 38), then executing apply_pRedo via
PRecovery has the same effect as the executing line 39, i.e. the effect of the redo
log will be applied. This (persistently) sets the metadata field of each location in
the redo log to indicate that it is allocated (lines 43–45), and then invalidates
the undo log (lines 46–48) so that the transaction is not rolled back.
PRead. A read from x simply returns its in-memory value (line 24). Note that
location x may not be allocated; txPMDK delegates the responsibility of checking
whether it is allocated to the client.
PWrite. A write to x first checks (line 27) if the current transaction has already
written to x (via a previously executed PWrite). If not, it logs the current value
by reading the in-memory value of x (line 28) and records it in the undo log
(line 29). The updated undo log is then made persistent (line 30). Once the
current value of x is backed up in the undo log (either by the current write or by
the previous write to x), the value of x in memory is updated to the new value v
(line 31). As with the read, location x may not have been allocated; txPMDK
delegates this check to the client.
PCommit. The main idea behind the commit operation is to ensure all writes
are persisted, and that the persistent redo and undo logs are cleared in the correct
order, as follows. (1) On line 34 all writes written by the transaction are persisted.
(2) Next, the transient redo log is invalidated (line 35) and the checksum for
the log is calculated (line 36). This updated transient log is then set to be the
persistent redo log (line 37), which is then made persistent (line 38). Note that
after executing line 38, we can be assured that the transaction has committed; if
a crash occurs after this point, the recovery will redo and persist the allocation
and the undo log will be cleared. (3) The operation then calls apply_pRedo at
line 39, which makes the allocation persistent and clears the undo log. (4) Finally,
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at line 40, the pRedo checksum is invalidated since apply_pRedo has already
been executed. If a crash occurs after line 40 has been executed, then the recovery
checks at line 67 and line 69 will fail, i.e. recovery will calculate the free list.
PAbort. A PMDK transaction is aborted by a PRead/PWrite that attempts to
access (read/write) an unallocated location. When a transaction is aborted, all
of its observable effects must be rolled back. First, the memory effects are rolled
back (line 59), then the undo log is invalidated (line 60) and made persistent
(line 61), preventing undo from being replayed in case a crash occurs. Finally, all
of the locations allocated by the executing transaction are freed (lines 62–63).
Note that if a crash occurs during an abort, the effect of the abort will be replayed.
PRecovery reconstructs the free list at lines 71–73, which effectively replays the
loop at lines 62–63 of PAbort. Additionally, if a crash occurs before the write at
line 60 has persisted, then the effect of undoing the operation will be explicitly
replayed by the roll-back executed by PRecovery since undoValid holds. If the
crash occurs after the write at line 60 has persisted, then no roll-back is necessary.
PRecovery. The recovery operation is executed immediately after a crash, and
before any other operation is executed. The recovery proceeds in three phases:
(1) The checksum of the persistent redo log is recalculated (line 67) and if it
matches the stored checksum (pRedo.checksum) the apply_pRedo operation is
executed. As discussed, apply_pRedo sets and persists the metadata of each
location in the redo log, and then invalidates the undo log. (2) The transaction
is rolled back if apply_pRedo in step 1 fails; otherwise, no roll-back is performed.
(3) The free list is reconstructed by inserting each location whose metadata is
set to false into freeList (lines 71–73).

Correctness and Thread Safety. As discussed in §2.1, txPMDK is designed
to be failure-atomic. This means that correctness criteria such as opacity [27,2]
and TMS1/TMS2 [20] (restricted to sequential transactions) are inadequate
since they do not accommodate crashes and recovery. This points to conditions
such as durable opacity [6], which extends opacity with a persistency model.
However, durable opacity (restricted to sequential transactions) is also insufficient
since it does not define correctness of allocations and assumes totally ordered
histories. In §4 we develop a generalisation of durable opacity, called dynamic
durable opacity (ddOpacity) that addresses both of these issues. As with durable
opacity, ddOpacity defines correctness for concurrent transactions. We develop
concurrent extensions of PMDK transactions in §3, which we show to be correct
against (i.e. refinements of) ddOpacity.

As discussed, PMDK transactions are not thread-safe; e.g. concurrent calls
to PRead and PWrite on the same location create a data race causing PRead to
return an undefined value (see the example in §1). We discuss techniques for
mitigating against such races in §3. Nevertheless, some PMDK transactional
operations are naturally thread-safe. In particular, PAlloc is designed to be
thread-safe via an built-in arena mechanism: a memory pool split into disjoint
arenas with each thread allocating from its own arena. Moreover, each thread
uses locks for each arena to publish allocated memory to the shared pool [55].
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Init. glb = 0

1 TxBegint ≜
2 do loct := glb
3 until even(loct)
4 PBegint
5

6 TxAlloct ≜
7 return PAlloct
8

9 TxWritet(x, v) ≜
10 if even(loct) then
11 if ¬cas(glb, loct, loct+1)
12 then PAbortt; return abort
13 else loct++
14 PWritet(x,v)

15 TxReadt(x) ≜
16 vt := PReadt(x)
17 if even(loct) then
18 if glb = loct then
19 return vt
20 else PAbortt; return abort
21 else return vt
22

23 TxCommitt ≜
24 PCommitt
25 if odd(loct) then
26 glb := loct+1
27

28 Recovery ≜
29 foreach t ∈ TXId:
30 PRecoveryt
31 glb := 0

Fig. 5: Pseudo-code for PMDK-TML with our additions made w.r.t. TML
highlighted red

3 Making PMDK Transactions Concurrent

We develop two algorithms that combine two existing STM systems with PMDK.
The first algorithm (§3) is based on TML [17], which uses pessimistic concurrency
control via an eager write-back scheme. Writing transactions effectively take a
lock and perform the writes in place. The second algorithm (§3) is based on
NOrec [18], which utilises optimistic concurrency control via a lazy write-back
scheme. In particular, transactional writes are collected in a local write set and
written back when the transaction commits.

It turns out that PMDK can be incorporated within both algorithms straight-
forwardly. This is a strength of our approach and points towards a generic
technique for extending existing STM systems with failure atomicity. Given the
challenges of persistent allocation, we reuse PMDK’s allocation mechanisms to
provide an explicit allocation mechanism in both our extensions [54].

PMDK-TML. We present the pseudo-code for PMDK-TML (combining TML
and txPMDK) in Fig. 5, where we highlight the calls to txPMDK operations.
These calls are the only changes we have made to the TML algorithm. TML is
based on a single global counter, glb, whose value is read and stored within a
local variable loct when transaction t begins (TxBegin). There is an in-flight
writing transaction iff glb is odd. TML is designed for read-heavy workloads, and
thus allows multiple concurrent read-only transactions. A writing transaction
causes all other concurrent transactions to abort.

PMDK-TML proposes a modular combination of PMDK with the TML
algorithm by nesting a PMDK transaction inside a TML transaction; i.e. each
transaction additionally starts a PMDK transaction. All reads and writes to
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memory are replaced by txPMDK read and write operations. Moreover, when a
transaction aborts or commits, the operation calls a txPMDK abort or commit,
respectively. Finally, PMDK-TML includes allocation and recovery operations,
which call txPMDK allocation and recovery, respectively. The recovery operation
additionally sets glb to 0.

A read-only transaction t may call PReadt at line 16 when another transaction
t ′ is executing PWritet′ at line 14 on the same location. Since txPMDK does
not guarantee thread safety for these calls, the value returned by PReadt should
not be passed back to the client. This is indeed what occurs. First, note that if
transaction t is read-only, then loct is even. Moreover, a read-only transaction
only returns the value returned by PReadt (line 19) if no other transaction has
acquired the lock since t executed TxBegint . In the scenario described above, t ′
must have incremented glb by successfully executing the CAS at line 11 as part
of the first write operation executed by t ′, changing the value of glb. This means
that t would abort since the test at line 18 would fail.
PMDK-NORec. We present PMDK-NORec (combining NOrec and PMDK)
in Fig. 6, where we highlight the calls to txPMDK. These calls are the only
changes we have made to the NOrec algorithm. As with TML, NOrec is
based on a single global counter, glb, whose value is read and stored within a
transaction-local variable loc when a transaction begins (TxBegin). There is an
in-flight writing transaction iff glb is odd. Unlike TML, NOrec performs lazy
write-back, and hence utilises transaction-local read and write sets. A transaction
only performs the write-back at commit time once it “acquires” the glb lock. Prior
to write-back and read response, it ensures that the read sets are consistent using a
per-location validate operation. We eschew details of the NOrec synchronisation
mechanisms and refer the interested reader to the original paper [18].

The transformation from txPMDK to PMDK-NORec is similar to PMDK-
TML. We ensure that a PMDK transaction is started when a PMDK-NORec
transaction begins, and that this PMDK transaction is either aborted or com-
mitted before the PMDK-NORec transaction completes. We introduce TxAlloc
and Recovery operations that are identical to PMDK-TML, and replace all calls
to read and write from memory by PRead and PWrite operations, respectively.

As with PMDK-TML, a PRead executed by a transaction (at line 12, line 15
or line 31) may race with a PWrite (at line 43) executed by another transaction.
However, since PWrite operations are only executed after a transaction takes
the glb lock (at line 40), any transaction with a racy PRead is revalidated. If
validation fails, the associated transaction is aborted.

4 A Declarative Correctness Criteria

We present a declarative correctness criteria for TM implementations. Unlike
prior definitions such as (durable) opacity, TMS1/2 etc. that are defined in terms
of histories of invocations and responses, we define dynamic durable opacity
(ddOpacity) in terms of execution graphs, as is standard model for weak memory
setting. Our models are inspired by prior work on declarative specifications for
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Init: glb = 0

1 TxBegint ≜
2 do loct := glb
3 until even(loct)
4 PBegint
5

6 TxAlloct ≜
7 return PAlloct
8

9 TxReadt(x) ≜
10 if x ∈ dom(wrSett) then
11 return wrSett(x)
12 vt := PReadt(x)
13 while loct ̸= glb
14 loct := Validate
15 vt := PReadt(x)
16 rdSett := rdSett ∪ {x 7→ vt}
17 return vt
18

19 Recovery ≜
20 foreach t ∈ TXId:
21 PRecoveryt
22 glb := 0

23 TxWritet(x,v) ≜
24 wrSett := wrSett ∪ {x 7→ v}
25

26 Validatet ≜
27 while true
28 timet := glb
29 if odd(timet) then goto 28
30 foreach x 7→ v ∈ rdSett:
31 if PReadt(x) ̸= v
32 then PAbortt; return abort
33 if timet = glb
34 then return timet
35

36 TxCommitt ≜
37 if wrSett.isEmpty
38 then PCommitt
39 return
40 while ¬cas(glb, loct, loct + 1)
41 loct := Validatet
42 foreach x 7→ v ∈ wrSett:
43 PWritet(x, v)
44 PCommitt
45 glb := loct + 2
46 return

Fig. 6: Pseudo-code for PMDK-NORec, with our additions made w.r.t. NOrec
highlighted red

transactional memory, which focussed on specifying relaxed transactions [22,14].
However, these prior works do not describe crashes or allocation.

Executions and Events. The traces of memory accesses generated by a
program are commonly represented as a set of executions, where each execution
G is a graph comprising: 1. a set of events (graph nodes); and 2. a number of
relations on events (graph edges). Each event e corresponds to the execution of
either a transactional event (e.g. marking the beginning of a transaction) or a
memory access (read/write) within a transaction.

Definition 1 (Events). An event is a tuple a = ⟨n, τ, t , l⟩, where n ∈ N is
an event identifier, τ ∈ TId is a thread identifier, t ∈ TXId is a transaction
identifier and l ∈ Lab is an event label.

A label may be B to mark the beginning of a transaction; A to denote a
transactional abort; (M, x, 0) to denote a memory allocation yielding x initialised
with value 0; (R, x, v) to denote reading value v from location x; (W, x, v) to denote
writing v to x; C to mark the beginning of the transactional commit process; or S

to denote a successful commit.

The functions tid, tx and lab respectively project the thread identifier,
transaction identifier and the label of an event. The functions loc, valr and valw
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respectively project the location, the read value and the written value of a label,
where applicable, and are lifted to events by defining e.g. loc(a) = loc(lab(a)).

Notation. Given a relation r and a set A, we write r?, r+ and r∗ for the
reflexive, transitive and reflexive-transitive closures of r, respectively. We write r−1

for the inverse of r; r|A for r∩(A×A); [A] for the identity relation on A, i.e. {(a, a) |
a∈A}; irreflexive(r) for ∄a. (a, a)∈ r; and acyclic(r) for irreflexive(r+). We write
r1; r2 for the relational composition of r1 and r2, i.e. {(a, b) | ∃c.(a, c)∈ r1∧(c, b)∈
r2}. When A is a set of events, we write Ax for {a∈A | loc(a)=x}, and rx for r|Ax .
Analogously, we write At for {a∈A | tx(a)=t}. The ‘same-transaction’ relation,
st ⊆ E × E , is the equivalence relation st ≜

{
(a, b) ∈ E × E tx(a)=tx(b)

}
.

Definition 2. An execution, G ∈ Exec, is a tuple (E , po, clo, rf,mo), where:

– E is a set of events. The set of reads in E is R ≜
{
e ∈ E lab(e)=(R,−,−)

}
.

The sets of allocations (M ), writes (W ), aborts (A), transactional begins
(B), transactional commits (C) and commit successes (S) are analogous.

– po ⊆ E × E denotes the ‘program-order’ relation, defined as a disjoint union
of strict total orders, each ordering the events of one thread.

– clo ⊆ E × E denotes the ‘client-order’ relation, which is a strict partial order
between transactions (st; clo; st ⊆ clo \ st) that extends the program order
between transactions (po \ st ⊆ clo).

– rf ⊆ (M ∪ W ) × R denotes the ‘reads-from’ relation between events of the
same location with matching values; i.e. (a, b) ∈ rf ⇒ loc(a)=loc(b) ∧
valw(a)=valr(b). Moreover, rf is total and functional on its range.

– mo ⊆ E × E is the ‘modification-order’, defined as the disjoint union of
relations {mox}x∈Loc, such that each mox is a strict total order on M x ∪W x .

Given a relation r ⊆ E × E , we write rT for lifting r to transaction classes:
rT ≜ st; (r \ st); st. For instance, when (w, r) ∈ rf, w is a transaction t1 event and
r is a transaction t2 event, then all events in t1 are rfT-related to all events in t2.
We write rI to restrict r to its intra-transactional edges (within a transaction):
rI ≜ r ∩ st; and write rE to restrict r to its extra-transactional edges (outside
a transaction): rE ≜ r \ st. Analogously, we write ri to restrict r to its intra-
thread edges : ri ≜

{
(a, b) ∈ r tid(a)=tid(b)

}
; and write re to restrict r to its

extra-thread edges : re≜ r \ ri.
In the context of an execution G (we use the “G.” prefix to make this explicit),

the reads-before relation is rb ≜ (rf−1;mo).
Lastly, we write Commit for the events of committing transactions, i.e. those

that have reached the commit stage: Commit ≜ dom(st; [C ]). We define the sets
of aborted events, Abort, and (commit)-successful events, Succ, analogously. We
define the set of commit-pending events as CPend ≜ Commit \ (Abort∪Succ), and
the set of pending events as Pend ≜ E \ (CPend ∪ Abort ∪ Succ).

Given an execution G=(E , po, clo, rf,mo), we write G|A for (E ∩A, po|E∩A,
clo|E∩A, rf|E∩A,mo|E∩A). We further impose certain “well-formedness” conditions
on executions, used to delimit transactions and restrict allocations. For example,
we require that events of the same transaction are by the same thread and the
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each t contains exactly one begin event. In particular, these conditions ensure
that in the context of a well-formed execution G we have 1. G.Succ ⊆ G.Commit;
2. each t contains at most a single abort or success (|G.E t ∩ (A ∪ S )| ≤ 1) and
thus G.(Succ∩Abort)=∅; and 3. G.E = G.(Pend⊎Abort⊎CPend⊎Succ), i.e. the
sets G.Pend, G.Abort, G.CPend and G.Succ are pair-wise disjoint.

Execution Consistency. The definition of (well-formed) executions above
puts very few constraints on the rf and mo relations. Such restrictions and
thus the permitted behaviours of a transactional program are determined by
defining the set of consistent executions, defined separately for each transactional
consistency model. The existing literature includes several definitions of well-
known consistency models, including serialisability (SER) [41], snapshot isolation
(SI) [9,44] and parallel snapshot isolation (PSI) [10,43].

Serialisability (SER). The serialisability (SER) consistency model [41] is
one of the most well-known transactional consistency models, as it provides strong
guarantees that are intuitive to understand and reason about. Specifically, under
SER, all concurrent transactions must appear to execute atomically one after
another in a total sequential order. The existing declarative definitions of SER
[9,10,50] are somewhat restrictive in that they only account for fully committed
(complete) transactions, i.e. they do not support pending or aborted transac-
tions. Under the assumption that all transactions are complete, an execution
(E , po, clo, rf,mo) is deemed to be serialisable (i.e. SER-consistent) iff:

– rfI ∪ moI ∪ rbI ⊆ po (ser-int)
– clo ∪ rfT ∪ moT ∪ rbT is acyclic. (ser-ext)

The ser-int axiom enforces intra-transactional consistency, ensuring that e.g. a
transaction observes its own writes by requiring rfI ⊆ po (i.e. intra-transactional
reads respect the program order). Analogously, the ser-ext axiom guarantees
extra-transactional consistency, ensuring the existence of a total sequential order in
which all concurrent transactions appear to execute atomically one after another.
This total order is obtained by an arbitrary extension of the (partial) ‘happens-
before’ relation which captures synchronisation resulting from transactional
orderings imposed by client order (clo) or conflict between transactions (rfT ∪
moT ∪ rbT). Two transactions are conflicted if they both access (read or write)
the same location x, and at least one of these accesses is a write. As such, the
inclusion of rfT ∪ moT ∪ rbT enforces conflict-freedom of serialisable transactions.
For instance, if transactions t1 and t2 both write to x via events w1 and w2 such
that (w1, w2) ∈ mo, then t1 must commit before t2, and thus the entire effect of
t1 must be visible to t2.

Opacity. We do not stipulate that all transactions commit successfully
and allow for both aborted and pending transactions. As such, we opt for the
stronger notion of transactional correctness known as opacity. In what follows we
describe our notion of opacity over executions (formalised in Def. 3), and later
relate it to the existing notion of opacity over histories [27] and prove that our
characterisation of opacity is equivalent to that of the existing one (see Thm. 1).
Further intuitions are provided in the extended version of this paper [46].
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Definition 3 (Opacity). An execution G = (E , po, clo, rf,mo) is opaque iff:

– dom(rfT) ⊆ Vis (vis-rf)
– rfI ∪ moI ∪ rbI ⊆ po (int)
– (clo ∪ rfT ∪ moT ∪ (rbT; [Vis])) is acyclic (ext)

where Vis ≜ Succ ∪ CPendRF with CPendRF ≜ dom([CPend]; rfT).

The existing definition of opacity [27] does not account for memory alloca-
tion and assumes that all locations accessed (read/written) by a transaction
are initialised with some value (typically 0). In our setting, we make no such
assumption and extend the notion of opacity to dynamic opacity to account for
memory allocation. More concretely, our goal is to ensure that accesses in visible
transactions are valid, in that they are on locations that have been previously
allocated in a visible transaction. We define an execution to be dynamically
opaque (Def. 4) if its visible write accesses are valid, i.e. are mo-preceded by a
visible allocation.

Definition 4 (Dynamic opacity). An execution G is dynamically opaque iff
it is opaque (Def. 3) and G.(W ∩ Vis) ⊆ rng

(
[M ∩ Vis];G.mo

)
.

We next use the above definitions to define (dynamic durable) opacity over
execution histories. In the context of persistent memory where executions may
crash (e.g. due to a power failure) and resume thereafter upon recovery, a history
is a sequence of events (Def. 1) partitioned into different eras separated by crash
markers (recording a crash occurrence), provided that the threads in each era
are distinct, i.e. thread identifiers from previous eras are not reused after a crash.

Definition 5 (Histories). A history, H ∈ Hist, is a pair (E , to), where E
comprises events and crash markers, E ⊆ Event ∪ Crash with Crash ≜{
(n, ) n∈N

}
, and to is a total order on E, such that:

– (E , toi) is well-formed; and
– events separated by crashes have distinct threads:
([E ]; to; [Crash]; to; [E]) ∩ toi = ∅.

A history (E ′, pto) is a prefix of history (E , to) iff E′ ⊆ E, pto = to|E′ and
dom(to; [E ′]) ⊆ E ′.

The client order induced by a history H = (E , to), denoted by clo(H ), is the
partial order on TXId defined by clo(H ) ≜ [S ∪ A]; toT; [B ]. We define history
opacity as a prefix-closed property (cf. [27]), designating a history H as opaque if
every prefix (E , pto) of H induces an opaque execution. The notion of dynamic
opacity over histories is defined analogously.

Definition 6. A history H is opaque iff for each prefix Hp = (E , pto) of H ,
there exist rf,mo such that (E , ptoi, clo(Hp), rf,mo) is opaque (Def. 3). H is
dynamically opaque iff for each prefix Hp=(E , pto) of H , there exist rf,mo such
that (E , ptoi, clo(Hp), rf,mo) is dynamically opaque (Def. 4).
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We define durable opacity over histories: a history H is durably opaque iff the
history obtained from H by removing crash markers is opaque. We define dynamic,
durable opacity analogously.

Definition 7. A history (E , to) is durably opaque iff (E \ Crash, to|E\Crash)
is opaque. A history (E , to) is dynamically and durably opaque iff the history
(E \ Crash, to|E\Crash) is dynamically opaque.

Finally, we show that our definitions of history (durable) opacity are equivalent
to the original definitions in the literature. (See [46] for the proof.)

Theorem 1. History opacity as defined in Def. 6 is equivalent to the original
notion of opacity [27]. History durable opacity as defined in Def. 7 is equivalent
to the original notion of durable opacity [6].

5 Operationally Proving Dynamic Durable Opacity

We develop an operational specification, ddTMS (§5.1), and prove it correct
against ddOpacity (§5.2). In particular, we show that every history (i.e. ob-
servable trace) of ddTMS satisfies ddOpacity. As ddTMS is a concurrent
operational specification, it serves as basis for validating the correctness of txP-
MDK as well as our concurrent extensions PMDK-TML and PMDK-NORec.

5.1 ddTMS: The dTMS2 Automaton Extended with Allocation

ddTMS is based on dTMS2, which is an operational specification that guar-
antees durable opacity [6]. dTMS2 in turn is based on TMS2 automaton [20],
which is known to satisfy opacity [33]. Furthermore, the ddTMS commit op-
eration includes the simplification described by Armstrong et al [1], omitting
a validity check when committing read-only transactions. In what follows we
present ddTMS as a transition system.
ddTMS state. Formally, the state of ddTMS is given by the variables in
Fig. 7. dTMS2 keeps track of a sequence of memory stores, mems, one for each
committed writing transaction since the last crash. This allows us to determine
whether reads are consistent with previously committed write operations. Each
committing transaction that contains at least one write adds a new memory
version to the end of the memory sequence. As we shall see, mems tracks allocated
locations since it maps every allocated location to a value different from ⊥.

Each transaction t is associated with several variables: pct , beginIdx t , rdSet t ,
wrSet t and alSet t . The pct denotes the program counter, ranging over a set of
program counter values ensuring each transaction is well-formed and that each
transactional operation takes effect between its invocation and response. The
beginIdx t ∈ N denotes the begin index, set to the index of the most recent memory
version when the transaction begins. This is used to ensure the real-time ordering
property between transactions. The rdSet t ∈ Loc ⇀ Val is the read set and
wrSet t ∈ Loc ⇀ Val is the write set, recording the values read and written by
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mems ∈ Mem ≜ Seq ⟨Loc → Val⊥⟩ Val⊥ ≜ Val ∪ {⊥},where ⊥ /∈ Val
S ∈ State ≜ TXId → TState

s ∈ TState ≜ N× (Loc ⇀ Val)× (Loc ⇀ Val)× P (Loc)
storing the local begin index, read set, write set and allocation set

PC ∈ PCMap ≜ TXId → PCVal

Invs ≜

{
TxBegin, TxRead(l), TxWrite(l, v),
TxAlloc, TxCommit

l ∈ Loc, v ∈ Val
}

Resps ≜

{
TxBegin, TxRead(l, v), TxWrite(l, v),
TxAlloc(l), TxCommit, Abort

l ∈ Loc, v ∈ Val
}

PCVal ≜
{
init, ready, aborted, committed, fault, Π(i),∆(TxCommit) i ∈ Invs

}
α ∈ Action ≜

{
inv(i), res(r), ε, i ∈ Invs, r ∈ Resps

}
Initially, PC0 ≜ λt .init S0 ≜ λt .(0, ∅, ∅, ∅) mems0 ≜ [λx. ⊥]

Fig. 7: ddTMS state

the transaction during its execution, respectively. We use S ⇀ T to denote a
partial function from S to T . Finally, alSet t ⊆ Loc denotes the allocation set,
containing the set of locations allocated by the transaction t . We use s.beginIdx,
s.rdSet, s.wrSet and s.alSet to refer to the begin index, read set, write set and
allocation set of a state s, respectively.

The read set is used to determine whether the values read by the transaction
are consistent with its version of memory (using validIdx). The write set, on
the other hand, is required because writes are modelled using deferred update
semantics: writes are recorded in the transaction’s write set and are not published
to any shared state until the transaction commits.

ddTMS Global Transitions. ddTMS is specified by the transition system
shown in Fig. 8, where the ddTMS global transitions are given at the top and
the per-transaction transitions are given at the bottom. The global transitions
may either take a per-transaction step (rule (S)), match a transaction fault (rule
(F)), crash (rule (X)), or behave chaotically due to a fault (rule (C)).

Note that a crash transition models both a crash and a recovery. It sets
the program counter of every live transaction to aborted, preventing them from
performing any further actions after the crash. Since transaction identifiers are
not reused, the program counters of completed transactions need not be modified.
After restarting, it must not be possible for any new transaction to interact with
stale memory states prior to the crash. Thus, we reset the memory sequence to
be a singleton sequence containing the last memory state prior to the crash.

Following the design of txPMDK (and our concurrent extensions PMDK-
TML and PMDK-NORec) we do not check for reads and writes to unallocated
memory within the library and instead delegate such checks to the client. An
execution of txPMDK (as well as PMDK-TML and PMDK-NORec) that
accesses unallocated memory is assumed to be faulty. In particular, a read or write
of unallocated memory induces a fault (rule (F)). Once a fault is triggered, the
program counter of each transaction is set to “fault” and recovery is impossible.
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validIdx(n, s,mems) ≜ s.beginIdx ≤ n < |mems| ∧ s.rdSet ⊆ mems(n)
∧ s.alSet ⊆

{
l mems(n)(l) = ⊥

}
PC(t), S(t),mems

α−→ pc, s,mems′

pc ̸=fault

PC, S,mems
αt−→

PC[t 7→ pc], S[t 7→ s],mems′

(S)

PC(t), S(t),mems
fault−−−→ fault, s,mems′

PC′=λt .fault

PC, S,mems
fault−−−→

PC′, S[t 7→ s],mems′

(F)

PC′=λt . if PC(t) ̸∈{init, committed, fault}
then aborted else PC(t)

PC, S,mems
 −→ PC′, S, ⟨last(mems)⟩

(X) PC = λt .fault
PC, S,mems

αt−→ PC, S,mems
(C)

(IB)
pc = init

pc, s,mems
inv(TxBegin)−−−−−−−→

∆(TxBegin), s′,mems

(DB)
pc=∆(TxBegin)

s′=s[beginIdx 7→ |mems| −1]

pc, s,mems
res(TxBegin)−−−−−−−→

ready, s,mems

(IOp)
pc = ready a ∈ InvOps

pc, s,mems
inv(a)−−−−→

∆(a), s,mems

(DR-E)
pc=∆(TxRead(l))

l ̸∈s.alSet ∪dom(s.wrSet)
validIdx(n, s,mems)

mems(n)(l) = v v ̸= ⊥
rs = s.rdSet⊕ {l 7→v}

pc, s,mems
res(TxRead(l,v))−−−−−−−−−→

ready, s[rdSet 7→ rs],mems

(FR)
pc=∆(TxRead(l))

l ̸∈s.alSet ∪dom(s.wrSet)
validIdx(n, s,mems)
mems(n)(l)=⊥

pc, s,mems
fault−−−→

fault, s,mems

(RA)

pc ̸∈

init, ready,
committed,
aborted, fault


pc, s,mems

res (Abort)−−−−−−→
aborted, s,mems

(DR-I)
pc = ∆(TxRead(l))
l∈dom(s.wrSet)
s.wrSet(l) = v

pc, s,mems
res(TxRead(l,v))−−−−−−−−−→

ready, s,mems

(DR-A)
pc = ∆(TxRead(l))
l ̸∈ dom(s.wrSet)

l ∈ s.alSet

pc, s,mems
res(TxRead(l,0))−−−−−−−−−→

ready, s,mems

(DW)
pc = ∆(TxWrite(l, v))

l ∈ s.alSet ∨ last(mems)(l) ̸= ⊥
ws = s.wrSet⊕ {l 7→v}

pc, s,mems
res(TxWrite(l,v))−−−−−−−−−−→

ready, s[wrSet 7→ ws],mems

(FW)
pc = ∆(TxWrite(l, v))

l /∈ s.alSet
last(mems)(l) = ⊥

pc, s,mems
fault−−−→

fault, s,mems

(DA)
pc = ∆(TxAlloc)

l ̸∈s.alSet
as = s.alSet ⊎ {l}

pc, s,mems
res(TxAlloc(l))−−−−−−−−−→

ready, s[alSet 7→ as],mems

(DC-RO)
pc = ∆(TxCommit)

s.alSet = ∅
dom(s.wrSet) = ∅

pc, s,mems
ε−→

Π(TxCommit), s,mems

(RC)
pc = Π(TxCommit)

pc, s,mems
res(TxCommit)−−−−−−−−→

committed, s,mems

(DC-W)
pc = ∆(TxCommit)

validIdx(last(mems), s,mems)
mems′=mems++((last(mems)⊕

{
l 7→0 l∈s.alSet

}
)⊕s.wrSet)

pc, s,mems
ε−→ Π(TxCommit), s,mems′

Fig. 8: The ddTMS global transitions (above) with its per-transaction transitions
(below), where
InvOps ≜ {TxWrite(l, v), TxRead(l) | l ∈ Loc, v ∈ Val} ∪ {TxAlloc, TxCommit}
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From a faulty state the system behaves chaotically, i.e. it is possible to generate
any history using rule (C).

ddTMS Per-Transaction Transitions. The system contains externally
visible transitions for invoking an operation (rules IB and IOp), which set the
program counters to ∆(a), where a is the operation being performed. This allows
the histories of the system to contain operation invocations without corresponding
matching responses.

For the begin, allocation, read and write operations, an invocation can be
followed by a single transition (rules DB, DA, DR-E, DR-I, DR-E and DW)
that performs the operation combined with the corresponding response. Following
an invocation, the commit operation is split into internal do actions ((DC-RO)
and (DC-W)) and an external response (rule RC). Finally, after a read/write
invocation, the system may perform a fault transition for a read (rule FR)
or a write (rule FW). The main change from dTMS2 is the inclusion of an
allocation procedure. The design of ddTMS allows the executing transaction,
t , to tentatively allocate a location l within its transaction-local allocation set,
alSet t . This allocation in ddTMS is optimistic – correctness of the allocation is
only checked when t performs a read or commits.

Successful (non-faulty) read and write operations take allocations into account
as follows. (1) A read operation of transaction t reads from a prior write (rule
(DR-I)) or allocation (rule (DR-A)) performed by t itself. In this case, the
operation may only proceed if the location l is either in the allocation or write
set of t . The effect of the operation is to return the value of l in the write set
(if it exists) or 0 if it only exists in the allocation set. (2) A read operation of
transaction t reads from a write or allocation performed by another transaction
(rule (DR-E)). Note that as with dTMS2 and TMS2, in ddTMS a read-only
transaction may serialise with any memory index n after beginIdx t . Moreover,
within validIdx, in addition to ensuring that t ’s read set is consistent with the
memory index n (second conjunct), we must also ensure that t ’s allocation set is
consistent with memory index n (third conjunct) by ensuring that none of the
locations in the allocation set have been allocated at memory index n. (3) A
write of transaction t successfuly performs its operation (rule (DW)), which can
only happen if the location l being written has been allocated, either by t itself
(first disjunct), or by a prior transaction (second disjunct). A writing transaction
must serialise after the last memory index in mems, thus the second disjunct
checks allocation against the last memory index.

A successful (non-faulty) transaction is split into two cases: (1) t is a read-only
transaction (rule (DC-RO)), where both alSet t and wrSet t are empty for t . In
this case, the transaction simply commits. (2) t has performed an allocation or
a write (rule (DC-W)). Here, we check that t is valid with respect to the last
memory in mems using validIdx. The commit introduces a new memory into the
memory sequence mems. The update also ensures that all pending allocations in
alSet t take effect before applying the writes from t ’s write set.
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5.2 Soundness of ddTMS

We state our main theorem relating ddTMS to ddOpacity. As the models are
inherently different, we need several definitions to transform ddTMS histories to
those compatible with ddOpacity.

An execution of a labelled transition system (LTS) is an alternating se-
quence of states and actions, i.e. a sequence of the form s0 a1 s2 a2 . . . sn−1 an sn
such that for each 0 < i ≤ n, si−1

ai−→ si and s0 is an initial state of the
LTS. Suppose σ is an execution of ddTMS. We let AH σ = a1 a2 . . . an be
the action history corresponding to σ, and EH σ be the external history of σ,
which is AH σ restricted to non-ϵ actions. Let FFσ be the longest fault-free
prefix of EH σ. We generate the history (in the sense of Def. 5) correspond-
ing to FFσ as follows. First, we construct the labelled history, LH σ of σ from
FFσ by removing all invocation actions (leaving only responses and crashes).
Then, we replace each response ai = αt by the event (i, t , t , L(α)), where
L(res(TxBegin)) = B, L(res(TxAlloc(l))) = (M, l, 0), L(res(TxRead(l, v))) =
(R, l, v), L(res(TxWrite(l, v))) = (W, l, v), L(res(Abort)) = A, L(inv(TxCommit)) =
C, and L(res(TxCommit)) = S. Similarly, we replace each crash action ai =  by
the pair (i, ). Note that in this construction, for simplicity, we conflate threads
and transactions, but this restriction is straightforward to generalise. Finally, let
the ordered history of σ, denoted OH σ, be the total order corresponding to LH σ.

Theorem 2. For any execution σ of ddTMS, the ordered history OH σ satisfies
ddOpacity.

The definitions of (dynamic) durable opacity can lifted to the level of systems
in the standard manner, providing a notion of correctness for implementations [28].

6 Modelling and Validating Correctness in FDR4

FDR4 [26] is a model checker for CSP [29] that has recently been used to verify
linearisability [38], as well as opacity and durable opacity [23]. We similarly provide
an FDR4 development, which allows proofs of refinement to be automatically
checked up to certain bounds. This is in contrast to manual methods of proving
correctness of concurrent objects [21,19], which require a significant amount of
manual human input (though such manual proofs are unbounded).

An overview of our FDR4 development [47] is given in Fig. 9. We derive two
specifications from ddTMS. The first is an FDR4 model of ddTMS itself, based
on prior work [38,23], but contains the extensions described in §5.1. The second
is ddTMS-Seq, which restricts ddTMS to a sequential crash-free specification.
We use ddTMS-Seq to obtain (lower-bound) liveness-like guarantees, which
strengthens traditional deadlock or divergence proofs of refinement. These lower-
bound checks ensure our models contain at least the traces of ddTMS-Seq.

Fig. 10 summarises our experiments on the upper bound checks, where the
times shown combine the compilation and model exploration times. Each row
represents an experiment that bounds the number of transactions (#txns),

Intel PMDK Transactions: Specification, Validation and Concurrency 171



Implementations

PMDK

PMDK-TML

PMDK-NORec

Memory
models

PSC

PTSOsyn

ddTMS
(concurrent upper bound)

ddTMS-Seq
(sequential lower bound)

refines

refines

uses

Fig. 9: Overview of FDR4
checks

Memory #txns #locs #val #buff tx-
PMDK

PMDK-
TML

PMDK-
NOrec

PSC 2 2 2 2 5.83s 5.90s 6.74s
PSC 2 3 2 2 201.03s 213.97s 271.35s
PSC 2 2 3 2 21.65s 23.47s 27.40s
PSC 2 2 2 3 5.83s 5.78s 6.60s

PTSOsyn 2 1 2 2 0.61s 3.96s 1.57s
PTSOsyn 2 2 2 2 6.67s 6.71s 7.73s
PTSOsyn 2 3 2 2 267.1s 268.91s 319.18s
PTSOsyn 2 2 3 2 24.10s 25.53s 29.24s
PTSOsyn 2 2 2 3 14.37s 14.19s 15.41s

Fig. 10: Summary of upper bounds checks (to-
tal time in seconds: compilation + model explo-
ration). The time out (TO) is set to 1000 seconds
of compilation time.

locations (#locs), values (#val) and the size of the persistency and store buffers
(#buff). The times reported are for an Apple M1 device with 16GB of memory.
The first row depicts a set of experiments where the implementations execute
directly on NVM, without any buffers. As we discuss below, these tests are
sufficient for checking lower bounds. The baseline for our checks sets the value
of each parameter to two, and Fig. 10 allows us to see the cost of increasing
each parameter. Note that all models time out when increasing the number
of transactions to three, thus these times are not shown. Also note that for
txPMDK (which is single-threaded), the checks for PSC also cover PTSOsyn,
since PTSOsyn is equivalent to PSC in the absence of races [31]. Nevertheless,
it is interesting to run the single-threaded experiments on the PTSOsyn model
to understand the impact of the memory model on the checks.

In our experiments we use FDR4’s built-in partial order reduction features
to make the upper bound checks feasible. This has a huge impact on the model
checking speed; for instance, the check for PMDK-TML with two transactions,
two locations, two values and buffer size of two reduces from over 6000 seconds
(1 hour and 40 minutes) to under 7 seconds, which is almost a 1000-fold im-
provement! This speed-up makes it feasible to use FDR4 for rapid prototyping
when developing programs that use txPMDK, even for the relatively complex
PTSOsyn memory model.

7 Related Work

Crash Consistency. Several authors have defined notions of atomicity for
concurrent objects that take persistency into account (see [4] for a survey.) None
of these conditions are suitable as they define consistency for concurrent operations
(of concurrent data structures) as opposed to transactional memory.

Approaches and semantics to crash-consistent transactions stretch back to the
mid 1970s, which considered the problem in the database setting [24,34]. Since
then, a myriad of definitions have been developed for particular applications
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(e.g. distributed systems, file systems, etc.). For plain reads and writes, one of
the first studies of persistency models focussed on NVM is by Pelley et al. [42].
Since then, several semantic models for real hardware (Intel and ARM) have
been developed [50,49,31,12,48]. For transactional memory, there are only a few
notions that combine a notion of crash consistency with ACID guarantees as
required for concurrent durable transactions. Raad et al. [50] define a persistent
serializability under relaxed memory, which does not handle aborted transactions.
As we have already discussed, Bila et al. [6] define durable opacity, but this is
defined in terms of (totally ordered) histories as opposed to partially ordered
graphs. Neither persistent serialisability nor durable opacity handle allocation.

Validating the txPMDK Implementation. Even without a clear consistency
condition, a range of papers have explored correctness of the C/C++ implemen-
tation. Bozdogan et al. [8] built a sanitiser for persistent memory and used it
to uncover memory-safety violations in txPMDK. Fu et al. [25] have built a
tool for testing persistent key-value stores and uncovered consistency bugs in the
PMDK libraries. Liu et al. [36] have built a tool for detecting cross-failure races
in persistent programs, and uncovered a bug in PMDK’s libpmemobj library
(see ‘Bug 4’ in their paper). They are at a different level of abstraction than ours
since they focus on the code itself and do not provide any description of the
design principles behind PMDK.

Raad et al. [45] and Bila et al. [7] have developed logics for reasoning about
programs over the Px86-TSO model (which we recall is equivalent to PTSOsyn).
However, these logics have thus far only been applied to small examples. Ex-
tending these logics to cover a proof by simulation and a full (manual) proof of
correctness of PMDK, PMDK-TML and PMDK-NORec would be a significant
undertaking, but an interesting avenue for future work.

Transactional Memory (TM). Several works have studied the semantics
of TM [15,22,44,43]. However, our works differ from those in that they do not
account for persistency guarantees and crash consistency. However, while earlier
works [44,43] merely propose a model for weak isolation (i.e. mixing transactional
and non-transactional accesses), [15,22] formalise the weak isolation in various
hardware and software TM platforms, albeit without validating their semantics.

Several approaches to crash consistency have recently been proposed. For
a survey and comparison of techniques (in addition to transactions) see [3].
OneFile [52], Romulus [16], and Trinity and Quadra [51] together describe a set
of algorithms that aim to improve the efficiency of txPMDK by reducing the
number of fence instructions. Liu et al. [35] present DudeTM, a persistent TM
design that uses a shadow copy of NVM in DRAM, which is is shared amongst
all transactions. Their approach comprises three key steps: Zardoshti et al. [56]
present an alternative technique for making STMs persistent by instrumenting
STM code with additional logging and flush instructions. However, none of these
works have defined any formal correctness guarantees, and hence do not offer any
proofs of correctness either. In particular, the role of allocation and its interaction
with reads and writes is generally unclear.
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As well as defining durable opacity, Bila et al. [6] develop a persistent version
of the TML STM [17] by introducing explicit undo logging and flush instructions.
They then prove this to be durably opaque via the dTMS2 specification. More
recently, Bila et al. [5] have developed a technique for transforming both an
STM and its corresponding opacity proof by delegating reads/writes to memory
locations controlled by the TM to an abstract library that is later refined to use
volatile and non-volatile memory. Neither of these works use txPMDK, and are
over a sequentially consistent memory model.

8 Conclusions and Future Work

Our main contribution is validating the correctness for txPMDK via the develop-
ment of declarative (ddOpacity) and operational (ddTMS) consistency criteria.
We provide an abstraction of txPMDK and show that it satisfies ddTMS and
hence ddOpacity by extension. Additionally, we develop PMDK-TML and
PMDK-NORec as two concurrent extensions of txPMDK that are based on
existing STM designs, and show that these also satisfy ddTMS (and hence
ddOpacity). All of our models are validated under the PSC and PTSOsyn
memory models using FDR4.

As with most accepted existing transactional models (be it with or without
persistency), we assume strong isolation, where each non-transactional access
behaves like a singleton transaction (a transaction with a single access). That
is, even ignoring persistency, there are no accepted definitions or models for
mixing non-transactional and transactional accesses, and all existing transactional
models (including opacity and serialisability) assume strong isolation. Indeed,
PMDK transactions are specifically designed to be used in a purely transactional
setting and are not meant to be used in combination with non-transactional
accesses; i.e. they would have undefined semantics otherwise. Consequently, as
we do not consider mixing transactional code with non-transactional code, RMW
(read-modify-write) instructions are irrelevant in our setting. Specifically, as
non-transactional access are treated as singleton transactions, RMW instructions
are not needed or relevant since they behave as transactions and their atomicity
would be guaranteed by the transactional semantics.

One threat to validity of our work is that the model checking results are on
a small number of transactions, locations, values, and buffer sizes (see Fig. 10).
However, we have found that these sizes have been adequate for validating all
of our examples, i.e., when errors are deliberately introduced, FDR validation
fails and counter-examples are automatically generated. Currently, we do not
know whether there is a small model theorem for durable opacity in general.
This is a separate line of work and a general question that we believe is out
of the scope of this paper. Specifically, our focus here is on making PMDK
transactions concurrent, providing a clear specification for PMDK (and its
concurrent variations) with dynamic allocation, and validating correctness of the
results under a realistic memory model.
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Abstract. This report extends §6 of the main paper by providing further
details of the mechanisation effort.

1 Modelling and Validating Correctness in FDR4

FDR4 [4] is a model checker for CSP [5] that has recently been used to verify
linearisability [7], as well as opacity and durable opacity [3]. We similarly provide
an FDR4 development, which allows proofs of refinement to be automatically
checked up to certain bounds. This is in contrast to manual methods of proving
correctness of concurrent objects [2,1], which require a significant amount of
manual human input (though such manual proofs are unbounded). FDR4 uses
a variety of underlying model checking paradigms and partial-order reduction
techniques [4], depending on the structure of the files to be verified. FDR4 builds
on FDR3, but the exact implementation details of FDR4 are not publicly available
since it is a commercial product (available for free academic use).

The CSP files corresponding to this report may be downloaded from [8].

1.1 Modelling Details

One of the most challenging aspects of the FDR4 development is the modelling
work itself. Our algorithms execute over a shared memory, but the CSP formalism
is based on communicating processes with no notion of shared states. Thus, for each
location we must explicitly define handler processes that communicate through
channels to update and return the values of components (e.g. the addresses,
read/write sets) of each model. Moreover, the implementations (txPMDK,
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PMDK-NORec and PMDK-TML), the specification (ddTMS) and underlying
memory models (PSC and PTSOsyn) we consider are non-trivial, significantly
increasing the challenge of the modelling effort. Although constructing the models
is challenging, once the models have been developed, they can be combined
in a modular fashion. We have taken advantage of this feature to combine
our implementations with different memory models during development. The
combination of PMDK-TML and TML/NOrec also takes advantage of this
modularity.

This modularity also means that our models are reusable. One could use our
models to check other developments, e.g. those that use txPMDK to implement
other failure-atomic data structures, or verify redesigns of txPMDK over different
memory models. Specifically, we use a top-level CSP process (which may comprise
an interleaved composition of processes for each transaction) to model the most
general client. Each transaction process begins a transaction, and then calls an
unbounded number of reads, writes and allocations at non-deterministically chosen
locations and with non-deterministically chosen values. An in-flight transaction
process may also non-deterministically choose to terminate by calling commit
instead of calling a read, write or allocation. Each operation call produces
an externally visible invocation event, and when the operation terminates, an
externally visible response is generated. Some operations may respond with an
abort, in which case the transaction process itself terminates.

Additionally, there is an externally visible crash event that synchronises
with all processes. At the level of the abstraction (i.e. ddTMS), this simply
terminates all in-flight transactions, and resets the memory sequence (as detailed
by the rule (X)). At the level of the implementation, all in-flight transactions are
terminated and additionally, the store and persistency buffers are cleared. This
means that when execution resumes, the value of each location is taken from
NVM. Immediately after a crash (and before any other processes are started), the
recovery process corresponding to the algorithm is executed. Note that transaction
identifiers are never reused.

We eschew further details of our FDR4 models since they are provided as
supplementary material [8] and also refer the interested reader to other prior
works [7,3].

1.2 Overview of Development

An overview of our FDR4 development is given in Fig. 1. We derive two specifi-
cations from ddTMS. The first is an FDR4 model of ddTMS itself, based on
prior work [7,3], but contains the extensions required for ddTMS. The second is
ddTMS-Seq, which restricts ddTMS to a sequential crash-free specification. We
use ddTMS-Seq to obtain (lower-bound) liveness-like guarantees, which strength-
ens traditional deadlock or divergence proofs of refinement. These lower-bound
checks ensure our models contain at least the traces of ddTMS-Seq.
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Implementations

PMDK

PMDK-TML

PMDK-NORec

Memory
models

PSC

PTSOsyn

ddTMS
(concurrent upper bound)

ddTMS-Seq
(sequential lower bound)

refines

refines

uses

Fig. 1: Overview of FDR4
checks

Memory #txns#locs#val#buff txPMDK
PMDK-
TML

PMDK-
NOrec

PSC 2 2 2 2 5.83s 5.90s 6.74s
PSC 2 3 2 2 201.03s 213.97s 271.35s
PSC 2 2 3 2 21.65s 23.47s 27.40s
PSC 2 2 2 3 5.83s 5.78s 6.60s

PTSOsyn 2 1 2 2 0.61s 3.96s 1.57s
PTSOsyn 2 2 2 2 6.67s 6.71s 7.73s
PTSOsyn 2 3 2 2 267.1s 268.91s 319.18s
PTSOsyn 2 2 3 2 24.10s 25.53s 29.24s
PTSOsyn 2 2 2 3 14.37s 14.19s 15.41s

Fig. 2: Summary of upper bounds checks (to-
tal time in seconds: compilation + model explo-
ration). The time out (TO) is set to 1000 seconds
of compilation time.

CSP files. Our development comprises the following files.

File Description

Types.csp Contains the basic types and parameters. Use this file to increase /
decrease the number of transactions, memory locations, values, etc.
Defaults to 2 transactions, 2 locations and two values.

MemoryP.csp Handler for memory, as well as the redo and undo logs. Operations
query handlers to read/update the shared memory, flush to persistent
memory and recover. This file is used to switch between memory
models (NVM (which contains no crashes), PSC and PTSOsyn) - see
the bottom of the file.

LocHandler.csp Handler for local memory (i.e., the loc variable used by the imple-
mentations in Figs. 5 and 6.

ddTMS.csp Model of the ddTMS automata from the main paper (Fig. 8).
PMDK.csp Model of PMDK from Fig. 4 of the main paper.
PMDK-TML.csp Model of PMDK-TML from Fig. 5 of the main paper.
PMDK-NOrec.csp Model of PMDK-NORec from Fig. 6 of the main paper.
Refinement.csp File containing all checks to be performed.

Description of Tests. The file Refinement.csp comprises six tests as detailed
in Figs. 9 and 10 of the paper. There are three upper-bound checks, which show
that PMDK, PMDK-TML and PMDK-NORec are refinements of ddTMS,
validating soundness:

– FinalTMS [T= PMDK, checking that PMDK refines ddTMS.
– FinalTMS [T= FinalTML, checking that PMDK-TML refines ddTMS.
– FinalTMS [T= FinalNOrec, checking that PMDK-NORec refines ddTMS.

Each of these tests can be run against the memory models: NVM (which contains
no crashes), PSC and PTSOsyn by commenting/uncommenting the relevant
lines at the end of the file MemoryP.csp.

Additionally, there are three lower-bound checks, which show ddTMS-Seq
are refinements of PMDK, PMDK-TML and PMDK-NORec.
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– PMDK [T= SeqFinalTMS

– FinalTML [T= SeqFinalTMS

– FinalNOrec [T= FinalNOrec

Each of these tests can be run against the memory models: NVM and PSC as
defined in the file MemoryP.csp. Note that the test against PTSOsyn times out.
However, the tests above are sufficient since PTSOsyn reduces to PSC in the
absence of data races (e.g., sequential executions).

Each check in FDR4 is split into two phases: (1) a compilation phase that
builds the models; and (2) a model exploration phase. The characteristics of the
upper and lower bounds checks are distinct. When naively checking the upper
bound, compilation is almost instantaneous but model exploration times can be
significant; these times are swapped for the lower bounds checks.

In general, lower-bounds take much longer to verify than the upper-bounds
since FDR4 is optimised to verify abstract (low-detail) specifications are refined
by concrete (high-detail) implementations. The lower bounds checks use the more
complex models as the specification, leading to the creation of very large space-
inefficient models, putting pressure on the available system memory. However, the
lower-bound checks for PSC and PTSOsyn are superceded by the corresponding
checks over NVM, since the memory models PSC and PTSOsyn are both
supersets of NVM. That is, any trace over NVM must also be a trace PSC
and PTSOsyn. For two transactions, two locations and two values, the checks
for PMDK, PMDK-TML and PMDK-NORec take 12.16, 17.36, and 56.02
seconds, respectively.

1.3 Summary of Results

Fig. 2 summarises our experiments on the upper bound checks, where the times
shown combine the compilation and model exploration times. Each row represents
an experiment that bounds the number of transactions (#txns), locations (#locs),
values (#val) and the size of the persistency and store buffers (#buff). The times
reported are for an Apple M1 device with 16GB of memory. The first row depicts a
set of experiments where the implementations execute directly on NVM, without
any buffers. As we discuss below, these tests are sufficient for checking lower
bounds. The baseline for our checks sets the value of each parameter to two,
and Fig. 2 allows us to see the cost of increasing each parameter. Note that all
models time out when increasing the number of transactions to three, thus these
times are not shown. Also note that for txPMDK (which is single-threaded),
the checks for PSC also cover PTSOsyn, since PTSOsyn is equivalent to PSC in
the absence of races [6]. Nevertheless, it is interesting to run the single-threaded
experiments on the PTSOsyn model to understand the impact of the memory
model on the checks.

In our experiments we use FDR4’s built-in partial order reduction features
to make the upper bound checks feasible. This has a huge impact on the model
checking speed; for instance, the check for PMDK-TML with two transactions,
two locations, two values and buffer size of two reduces from over 6000 seconds

Artifact Report: Intel PMDK Transactions 183



(1 hour and 40 minutes) to under 7 seconds, which is almost a 1000-fold im-
provement! This speed-up makes it feasible to use FDR4 for rapid prototyping
when developing programs that use txPMDK, even for the relatively complex
PTSOsyn memory model.
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Specifying and Verifying Persistent Libraries

, Azalea Raad2, and Viktor Vafeiadis1
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Abstract. We present a general framework for specifying and verifying
persistent libraries, that is, libraries of data structures that provide some
persistency guarantees upon a failure of the machine they are execut-
ing on. Our framework enables modular reasoning about the correctness
of individual libraries (horizontal and vertical compositionality) and is
general enough to encompass all existing persistent library specifications
ranging from hardware architectural specifications to correctness con-
ditions such as durable linearizability. As case studies, we specify the
FliT and Mirror libraries, verify their implementations over Px86, and
use them to build higher-level durably linearizable libraries, all within
our framework. We also specify and verify a persistent transaction library
that highlights some of the technical challenges which are specific to per-
sistent memory compared to weak memory and how they are handled by
our framework.

1 Introduction

Persistent memory (PM), also known as non-volatile memory (NVM), is a new
kind of memory, which can be used to extend the capacity of regular RAM,
with the added benefit that its contents are preserved after a crash (e.g. a power
failure). Employing PM can boost the performance of any program with access
to data that needs to survive power failures, be it a complex database or a plain
text editor.

Nevertheless, doing so is far from trivial. Data stored in PM is mediated
through the processors’ caching hierarchy, which generally does not propagate
all memory accesses to the PM in the order issued by the processor, but rather
performs these accesses on the cache and only propagates them to the memory
asynchronously when necessary (i.e. upon a cache miss or when the cache has
reached its capacity limit). Caches, moreover, do not preserve their contents upon
a power failure, which results in rather complex persistency models describing
when and how stores issued by a program are guaranteed to survive a power
failure. To ensure correctness of their implementations, programmers have to
use low-level primitives, such as flushes of individual cache lines, fences that
enforce ordering of instructions, and non-temporal stores that bypass the cache
hierarchy.

These primitives are often used to implement higher-level abstractions, pack-
aged into persistent libraries, i.e. collections of data structures that must guar-
antee to preserve their contents after a power failure. Persistent libraries can be
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thought of as the analogue of concurrent libraries for persistency. And just as
concurrent libraries require a specification, so do persistent libraries.

The question naturally arises: what is the right specification for persistent
libraries? Prior work has suggested a number of candidate definitions, such as
durable linearizability, buffered durable linearizability [17], and strict lineariz-
ability [1], which are all extensions of the well-known correctness condition for
concurrent data structures (i.e. linearizability [15]). In general, these definitions
stipulate the existence of a total order among all executed library operations,
a contiguous prefix of which is persisted upon a crash: the various definitions
differ in exactly what this prefix should be, e.g. whether it is further constrained
to include all fully executed operations.

Even though these specifications have a nice compositionality property, we
argue that none of them are the right specification pattern for every persistent
concurrent library. While for high-level persistent data structures, such as stacks
and queues, a strong specification such as durable or strict linearizability would
be most appropriate, this is certainly not the case for a collection of low-level
primitives. Take, for instance, a library whose interface simply exposes the ex-
act primitives of the underlying platform: memory accesses, fences and flushes.
Their semantics, recently formalized in [30,19,28] in the case of the Intel-x86
architecture and in [31,5] in the case of the ARMv8 architecture, quite clearly
do not fit into the framework of the durable linearizability definitions. More
generally, there are useful concurrent libraries (especially in the context of weak
memory consistency) that are not linearizable [26]; it is, therefore, conceivable
that making those libraries persistent will require weak specifications.

Another key problem with attempting to specify persistent libraries modu-
larly is that they often break the usual abstraction boundaries. Indeed, some
models such as epoch persistency [6,24] provide a global persistency barrier that
affects all memory locations, and therefore all libraries using them. Such global
operations also occur at higher abstraction layers: persistent transactional li-
braries often require memory locations to be registered with the library in order
for them to be used inside transactions. As such, to ensure compatibility with
such transactional libraries, implementers of other libraries must register all lo-
cations they use and ensure that any component libraries they use do the same.

In this paper, we introduce a general declarative framework that addresses
both of these challenges. Our framework provides a very flexible way of specifying
persistent libraries, allowing each library to have a very different specification—
be it durable linearizability or a more complex specification in the style of the
hardware architecture persistency models. Further, to handle libraries that have
a global effect (such as persistent barriers above) or, more generally, that make
some assumptions about the internals of all other libraries, we introduce a tag
system, allowing us to describe these assumptions modularly.

Our framework supports both horizontal and vertical compositionality. That
is, we can verify an execution containing multiple libraries by verifying each
library separately (horizontal compositionality). Moreover, we can completely
verify the implementation of a library over a set of other libraries using the
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specifications of its constituent libraries without referring to their implemen-
tations (vertical compositionality). To achieve the latter, we define a semantic
notion of substitution in terms of execution graphs, which replaces each library
node by a suitably constrained set of nodes (its implementation).

For simplicity, in §2, we develop a first version of our framework over the
classical notion of an execution history [15], which we extend with a notion
of crashes. This basic version of our framework includes full support for weak
persistency models but assumes an interleaving semantics of concurrency; i.e.
sequential consistency (SC) [23].

Subsequently, in §3 we generalise and extend our framework to handle weak
consistency models such as x86-TSO [32] and RC11 [22], thereby allowing us
to represent hardware persistency models such as Px86 [30] and PARMv8 [31],
in our framework. To do so, we rebase our formal development over execution
graphs using Yacovet [26] as a means of specifying the consistency properties of
concurrent libraries.

We illustrate the utility of our framework by encoding in it a number of exist-
ing persistency models, ranging from actual hardware models such as Px86 [30],
to general-purpose correctness conditions such as durable linearizability [17]. We
further consider two case studies, chosen to demonstrate the expressiveness of
our framework beyond the kind of case studies that have been worked out in the
consistency setting.

First, in §4 we use our framework to develop the first formal specifications
of the FliT [35] and Mirror [10] libraries and establish the correctness of not only
their implementations against their respective specifications, but also their asso-
ciated constructions for turning a linearizable library into a durably linearizable
one. This generic theorem is new compared to the case studies in [26], and lever-
ages our ‘semantic’ approach in §3. Moreover, our proofs of these constructions
are the first to establish this result in a weak consistency setting.

Second, in §5 we specify and prove an implementation of a persistent trans-
actional library Ltrans, which provides a high-level construction to persist a set of
writes atomically. The Ltrans library illustrates the need for a ‘well-formedness’
specification (in addition to its consistency and persistency specifications) that
requires clients of the Ltrans library to ensure e.g. that Ltrans writes appear only
inside transactions. Moreover, it demonstrates the use of our tagging system to
enable other libraries to interoperate with it.

Contributions and Outline. The remainder of this article is organised as

follows.

§2 We present our general framework for specifying and verifying persistent
libraries in the strong sequential consistency setting.

§3 We further generalise our framework to account for weaker consistency mod-
els.

§4 We use our framework to develop the first formal specifications of the FliT
and Mirror libraries, verify their implementations against their specifications
and prove their general construction theorems for turning linearizable li-
braries to durably linearizable ones.
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§5 We specify a persistent transactional library Ltrans, develop an implemen-
tation of Ltrans (over the Intel-x86 architecture) and verify it against its
specification. We then consider two case studies of vertical and horizontal
composition in our framework using Ltrans.

We conclude and discuss related and future work in §6. The full proofs of all
theorems stated in the paper are given in the technical appendix.

2 A General Framework for Persistency

We present our framework for specifying and verifying persistent libraries, which
are collections of methods that operate on durable data structures. Following
Herlihy et al. [15], we will represent program histories over a collection of libraries
Λ as Λ-histories, i.e. as sequences of calls to the methods of Λ, which we will then
gradually enhance to model persistency semantics. Throughout this section, we
assume an underlying sequential consistency semantics; in §3 we will generalize
our framework to account for weaker consistency models.

In the following, we assume the following infinite domains: Meth of method
names, Loc of memory locations, Tid of thread identifiers, and Val ⊇ Loc∪Tid
of values. We let m range over method names, x over memory locations, t over
thread identifiers, and v over values. An optional value v⊥ ∈ Val⊥ is either a
value v ∈ Val or ⊥ /∈ Val.

2.1 Library Interfaces

A library interface declares a set of method invocations of the form m(v). Some
methods are are designated as constructors; a constructor returns a location
pointing to the new library instance (object), which is passed as an argument to
other library methods. An interface additionally contains a function, loc, which
extracts these locations from the arguments and return values of its method
calls.

Definition 1. A library interface L is a tuple ⟨M,Mc, loc⟩, where the set of
method invocations M is a subset of P (Meth×Val∗), Mc ⊆ M is the set of
constructors, and loc : M×Val⊥ → P (Loc) is the location function.

Example 1 (Queue library interface). The queue library interface, LQueue, has
three methods: a constructor QueueNew(), which returns a new empty queue;
QueueEnq(x, v) which adds value v to the end of queue x; and QueueDeq(x)
which removes the head entry in queue x. We define loc(QueueNew(), x) =
loc(QueueEnq(x, ), ) = loc(QueueDeq(x), ) = {x}.

A collection Λ is a set of library interfaces with disjoint method names. When
Λ consists of a single library interface L, we often write L instead of {L}.
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2.2 Histories

Given a collection Λ, an event e ∈ Events(Λ) of Λ is either a method invocation
m(v)t with m(v) ∈

⋃
L∈Λ L.M and t ∈ Tid or method response (return) event

ret(v)t.

A Λ-history is a sequence of events of Λ whose projection to each thread is
an alternating sequence of invocation and return events which starts with an
invocation.

Definition 2 (Sequential event sequences). A sequence of events e1 . . . en
is sequential if all its odd-numbered events e1, e3, . . . are invocation events and
all its even-numbered events e2, e4, . . . are return events.

Definition 3 (Histories). A Λ-history is a finite sequence of events H ∈
Events(Λ)∗, such that for every thread t, the sub-sequence H[t] comprising only
of t events is sequential. The set Hist(Λ) denotes the set of all Λ-histories.

When clear from the context, we refer to occurrences of events in a history by
their corresponding events. For example, if H = e1 . . . en and i < j, we say that ei
precedes ej and that ej succeeds ei. Given an invocation m(v)t in H, its matching
return (when it exists) is the first event of the form ret(v)t that succeeds it (they
share the same thread). A call is a pair m(v)t:v⊥ of an invocation and either its
matching return v⊥ ∈ Val (complete call) or v⊥ = ⊥ (incomplete call).

A library (specification) comprises an interface and a set of consistent histo-
ries. The latter captures the allowed behaviors of the library, which is a guarantee
made by the library implementation.

Definition 4. A library specification (or simply a library) L is a tuple ⟨L,Sc⟩,
where L is a library interface, and Sc ⊆ Hist(L) denotes its set of consistent
histories.

2.3 Linearizability

Linearizability [15] is a standard way of specifying concurrent libraries that have
a sequential specification S, denoting a set of finite sequences of complete calls.
Given a sequential specification S, a concurrent library L is linearizable under S
if each consistent history of L can be linearized into a sequential one in S, while
respecting the happens before order, which captures causality between calls. It
is sufficient to consider consistent executions because inconsistent executions
are, by definition, guaranteed by the library to never happen. Happens-before is
defined as follows.

Definition 5 (Happens-Before). A method call C1 happens before another
method call C2 in a history H, written C1 ≺H C2 if the response of C1 precedes
the invocation of C2 in H. When the choice of H is clear from the context, we
drop the H subscript from ≺.
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A history H is linearizable under a sequential specification S if there exists a
linearization (in the order-theoretic sense) of ≺H that belongs to S. The subtlety
is the treatment of incomplete calls, which may or may not have taken effect. We
write compl(H) for the set of histories obtained from a history H by appending
zero or more matching return events. We write trunc(H) for the history obtained
from H by removing its incomplete calls. We can then define linearizability as
follows [14].

Definition 6. A sequential history Hℓ is a sequentialization of a history H if
there exists H ′ ∈ trunc(compl(H)) such that Hℓ is a linearization of ≺H′ . A
history H is linearizable under S if there exists a sequentialization of H that
belongs to S. A library L is linearizable under S if all its consistent histories are
linearizable under S.

For instance, we can specify the notion of linearizable queues as those that
linearizable under the following sequential queue specification, SQueue.

Example 2 (Sequential queue specification). The behaviors of a sequential queue,
SQueue, is expressed as a set of sequential histories as follows. Given a his-
tory H of LQueue and a location x ∈ Loc, let H[x] denote the sub-history
containing calls c such that loc(c) = {x}. We define SQueue as the set of all
sequential histories H of LQueue such that for all x ∈ Loc, H[x] is of the form
QueueNew()t0 :x e1 · · · en, where each QueueDeq call in e1 · · · en returns the
value of the k-th QueueEnq call, if it exists and precedes the QueueDeq, where k
is the number of preceding QueueDeq calls returning non-null values; otherwise,
it returns null.

2.4 Adding Failures

Our framework so far does not support reasoning about persistency as it lacks
the ability to describe the persistent state of a library after a failure. Our first
extension is thus to extend the set of events of a collection, Events(Λ), with
another type of event, a crash event  .

Crash events allow us to specify the durability guarantees of a library. For
instance, a library that does not persist any of its data may specify that a
history with crash events is consistent if all of its sub-histories between crashes
are (independently) consistent. In other words, in such a library, the method
calls before a crash have no effect on the consistency of the history after the
crash. We modify the definition of happens-before accordingly by treating it
both as an invocation and a return event. We also assume that, after a crash,
the thread ids of the new threads are distinct from that of all the pre-crash
threads. For libraries that do persist their data, a useful generic specification is
durable linearizability [17], defined as follows.

Definition 7. Given a history H, let ops(H) denote the sub-history obtained
from H by removing all its crash markers. A history H is durably linearizable
under S if there exists a sequentialization Hℓ of ops(H) such that Hℓ ∈ S.
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Intuitively, this ensures that operations persist before they return, and they
persist in the same order as they take effect before a crash.

Although durable linearizability can specify a large range of persistent data-
structures, it can be too strong. For example, consider a (memory) register li-
brary Lwreg that only guarantees that writes to the same location are persisted
in the order they are observed by concurrent reads. The Lwreg methods comprise
RegNew() to allocate a new register, RegWrite(x, v) to write v to register x, and
RegRead(x) to read from register x. The sequential specification Swreg is simple:
once a register is allocated, a read R on x returns the latest value written to x,
or 0 if R happens before all writes. The associated durable linearizability speci-
fication requires that writes be persisted in the linearization order; however, this
is often not the case on existing hardware, e.g. in Px86 (the Intel-x86 persistency
model) [30].

A more relaxed and realistic specification would consider two linearizations
of the events: the standard volatile order ≺ and a persistent order nvo expressing
the order in which events are persisted. The next sections will handle this more
refined model, this paragraph only gives a quick tastes of the kind of models that
are implemented by hardware. To capture the same-location guarantees, we stip-
ulate a per-location ordering on writes that is respected by both linearizations.
Specifically, we require an ordering mo of the write calls such that for all lo-
cations x: 1) restricting mo to x, written mox, totally orders writes to x; and
2) mox ⊆≺ and mox ⊆ nvo. Given a history H, we can then combine these two
linearizations by using ≺ after the last crash and nvo before.

Formally, a history H with n−1 crashes can be decomposed into n (crash-
free) eras ; i.e. H = H1 ·  · · · ·Hn where each Hi is crash-free. Let us write ≺i

for ≺ ∩(Hi×Hi) and so forth. We then consider k-sequentializations of the form

Hk
ℓ = H

(1)
ℓ · · ·H(k−1)

ℓ · H(k)
ℓ , where H

(k)
ℓ is a sequentialization of Ek w.r.t. ≺k

and H
(i)
ℓ is a sequentialization of Ei w.r.t. nvoi, for i < k. We can now specify

our weak register library as follows, where H comprises n eras:

H ∈ Lwreg.Sc ⇐⇒ ∀k ≤ n. ∃Hk
ℓ k-seq. of H. Hk

ℓ ∈ Swreg

Example 3. The following history is valid according to this specification but not
according to the durably linearizable one:

Wt1(x, 1)·Wt2(y, 1)·Rt3(y)·rett3(1)·Rt3(x)·rett3(0)· ·Rt4(y)·rett4(0)·Rt4(x)·rett4(1)

While the writes to x (Wt1(x, 1)) and y (Wt2(y, 1)) are executing, thread t3
observes the new value (1) of y but the old value (0) of x; i.e. ≺ must order
Wt2(y, 1) before Wt1(x, 1). By contrast, after the crash the new value (1) of x
but the old value of y (0) is visible; i.e. nvo must order the two writes in the
opposite order to ≺ (Wt1(x, 1) before Wt2(y, 1)).

Persist Instructions. The persistent registers described above are too weak
to be practical, as there is no way to control how writes to different locations are
persisted. In realistic hardware models such as Px86, this control is afforded to
the programmer using per-location persist instructions (e.g. CLFLUSH), ensuring
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that all writes on a location x persist before a write-back on x. Here, we consider
a coarser (stronger) variant, denoted by PFENCE, that ensures that all writes
(on all locations) that happen before a PFENCE are persisted. Later in §3 we
describe how to specify the behavior of per-location persist operations.

Formally, we specify PFENCE by extending the specification of Lwreg as follows:
given history H, write call cw and PFENCE event cf , if cw ≺H cf , then (cw, cf ) ∈
nvo.

Example 4. Consider the history obtained from example 3 by adding a PFENCE:

Wt1(x, 1) ·Wt2(y, 1) ·Rt3(y) · rett3(1) ·Rt3(x) · rett3(0) · PFENCEt4() · rett4() ·  ·
Rt4(y) · rett4(0) ·Rt4(x) · rett4(1)

This history is no longer consistent according to the extended specification of
Lwreg: as PFENCE has completed (returned), all its ≺-previous writes must have
persisted and thus must be visible after the crash (which is not the case for
Wt2(y, 1)).

2.5 Adding Well-formedness Constraints

Our next extension is to allow library specifications to constrain the usage of
the library methods by the client of the library. For example, a library for a
mutual exclusion lock may require that the “release lock” method is only called
by a thread that previously acquired the lock and has not released it in between.
Another example is a transactional library, which may require that transac-
tional read and write methods are only called within transactions, i.e. between
a “transaction-begin” and a “transaction-end” method call.

We call such constraints library well-formedness constraints, and extend the
library specifications with another component, Swf ⊆ Hist(L), which records
the set of well-formed histories of the library. Ensuring that a program produces
only well-formed histories of a certain library is an obligation of the clients of
that library, so that the library implementation can rely upon well-formedness
being satisfied.

2.6 Tags and Global Specifications

The goal of our framework is not only to specify libraries in isolation, but also to
express how a library can enforce persistency guarantees across other libraries.
For example, consider a library Ltrans for persistent transactions, where all op-
erations wrapped within a transaction persist together atomically ; i.e. either all
or none of the operations in a transaction persist.

The Ltrans methods are: PTNewReg to allocate a register that can be accessed
(read/written) within a transaction; PTBegin and PTEnd to start and end a trans-
action, respectively; PTRead(x) and PTWrite(x, v) to read from and write to Ltrans
register x, respectively; and PTRecover to restore the atomicity of transactions
whose histories were interrupted by a crash.
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Consider the snippet below, where the PEnq(q, 33) (enqueuing 33 into per-
sistent queue q) and PSetAdd(s, 77) (adding 77 to persistent set s) are wrapped
within an Ltrans transaction and thus should take effect atomically and at the
latest after the end of the call to PTEnd.

PTBegin();
PEnq(q, 33);
PSetAdd(s, 77);

PTEnd();

Such guarantees are not offered by existing hardware primitives e.g. on Intel-
x86 or ARMv8 [30,31] architectures. As such, to ensure atomicity, the persis-
tent queue and set implementations cannot directly use hardware reads/writes;
rather, they must use those provided by the transactional library whose imple-
mentation could use e.g. an undo-log to provide atomicity.

Our framework as described so far cannot express such cross-library persis-
tency guarantees. The difficulty is that the transactional library relies on other
libraries using certain primitives. This, however, is against the spirit of compo-
sitional specification, which precludes the transactional library from referring to
other libraries (e.g. the queue or set libraries). Specifically, there are two chal-
lenges. First, both well-formedness requirements and consistency guarantees of
Ltrans must apply to any method call that is designed to use (transitively) the
primitives of Ltrans. Second, we must formally express atomicity (“all operations
persist atomically”), without Ltrans knowing what it means for a method of an
arbitrary library to persist. In other words, Ltrans needs to introduce an abstract
notion of ‘having persisted’ for an operation, and guarantee that all methods in
a transaction ‘persist’ atomically.

To remedy this, we introduce the notion of tags. Specifically, to address the
first challenge, the transactional library provides the tag t to designate those
operations that are ‘transaction-aware’ and as such must be used inside a trans-
action. To address the second challenge, the transaction library provides the
tag ptr, denoting an operation that has abstractly persisted. The specification
of Ltrans then guarantees that all operations tagged with t inside a transaction
persist atomically, in that either they are all tagged with ptr of none of them
are. Dually, using the well-formedness condition, Ltrans requires that all oper-
ations tagged with t appear inside a transaction. Note that as the persistent
queue and set libraries tag their operations with t, verifying their implementa-
tions incurs related proof obligations; we will revisit this later when we formalize
the notion of library implementations.

Remark 1 (Why bespoke persistency?). The reader may question why ‘having
persisted’ is not a primitive notion in our framework, as in an existing model of
Px86 [19] where histories track the set P of persisted events. This is because asso-
ciating a Boolean (‘having persisted’) flag with an operation may not be sufficient
to describe whether it has persisted. To see this, consider a library Lpair with op-
erations Write(x, l, r) (writing (l, r) to pair x), Readl(x) and Readr(x) (reading
the left and right components of x, respectively). Suppose Lpair is implemented
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by storing the left component in an Ltrans register and the right component in
a Lwreg register. The specification of Lpair would need to track the persistence of
each component separately, and hence a single set P of persisted events would
not suffice.

Let us see how libraries can use these tags in global well-formedness and
consistency specifications. The dilemma is, on the one hand, the specification
of Ltrans needs to refer to events from other libraries, but on the other hand, it
should not depend on other libraries to preserve encapsulation. Our idea is to
anonymize these external events such that the global specification depends only
on their relevant tags. A library should only rely on the tags it introduces itself,
as well as the tags of the libraries it uses.

We now revisit several of our definitions to account for tags and global spec-
ifications. A library interface now additionally holds the tags it introduces as
well as those it uses. For instance, the Ltrans library described above depends on
no tag and introduces tags t and ptr.

Definition 8 (Interfaces). An interface is a tuple L = ⟨M,Mc, loc,Tagsnew,
Tagsdep⟩, where M, Mc, and loc are as in Def. 1, Tagsnew is the set of tags
L introduces, and Tagsdep is the set of tags L uses. The set of tags usable by L

is Tags(L) ≜ L.Tagsnew ∪ L.Tagsdep.

We next define the notion of tagged method invocations (where a method in-
vocation is associated with a set of tags). Hereafter, our notions of events, history
(and so forth) use tagged method invocations (rather than methods invocations).

Definition 9. Given a library interface L, a tagged method invocation is of the
form m(v)Tt : v⊥, where the new component is a set of tags T ⊆ Tags(L).

A global specification of a library interface L is a set of histories with some
“anonymized” events. These are formalized using a designated library interface,
⋆L (with a single method ⋆), which can be tagged with any tag from Tags(L).

Definition 10. Given an interface L, the interface ⋆L is ⟨{⋆}, ∅, ∅, ∅,Tags(L)⟩.

Now, given any history H ∈ Hist({L} ∪ Λ), let πL(H) ∈ Hist({L, ⋆L}) denote
the anonymization of H such that each non-L event e in H labelled with a
method m(v)Tt : v⊥ of L′ ∈ Λ is replaced with ⋆Tt of ⋆L if T ̸= ∅ and is discarded
otherwise. It is then straightforward to extend the notion of libraries with global
specifications as follows.

Definition 11. A library specification L is a tuple ⟨L,Λtags,Sc,Swf, Tc, Twf⟩,
where L, Sc and Swf are as in Def. 4; Tc and Twf ⊆ Hist({L, ⋆L}) are the globally
consistent and globally well-formed histories, respectively; and Λtags denotes the
tag-dependencies, i.e. a collection of libraries that provide all tags that L uses:
L.Tagsdep ⊆

⋃
L′∈Λtags

L′.Tagsnew. Both Twf and Tc contain the empty history.

In the context of a history, we write ⌊t⌋ for the set of events or calls tagged
with the tag t (we consider a return event tagged the same way as its unique
matching invocation).
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For the Ltrans library, the globally well-formed set Ltrans.Twf comprises histo-
ries H such that for each thread t, E[t] restricted to PTBegin, PTEnd and events
of the form t-tagged events is of the form described by the regular expression
(PTBegin.⌊t⌋∗.PTEnd)∗. In particular, transaction nesting is disallowed in our
simple Ltrans library.

To define global consistency, we need to know when two operations are part
of the same transaction. Given a history H, we define the same-transaction
relation, strans, relating pairs of e, e′ ∈ ⌊t⌋ ∪ PTEnd ∪ PTBegin executed by the
same thread t such that there is no PTBegin or PTEnd executed by t between
them. The set Ltrans.Tc of globally consistent histories contains histories H such
that ∀(e, e′) ∈ strans, e ∈ ⌊ptr⌋ ⇔ e′ ∈ ⌊ptr⌋, and all completed PTEnd calls are
in ⌊ptr⌋. Since the PTEnd call is related to all events inside its transaction, this
specification does express that (1) a transaction persist by the time the call to
PTEnd finishes and (2) all events persist atomically.

Finally, we need to define the local consistency predicate Ltrans.Sc describing
the behavior of the registers provided by Ltrans. This is where the we define the
concrete meaning of ‘having persisted’ for these registers. Let S be the sequential
specification of a register. Let H ∈ Hist(Ltrans) be a history decomposed into k
eras as H1 ·  · H2 ·  · · · · · Hk. Then H ∈ Ltrans.Sc iff all events are tagged
with t, and there exists a ≺-linearization Hℓ of

(
(H1 ·  ·H2 ·  · · · · ·Hk−1)∩

⌊ptr⌋
)
· Hk such that Hℓ ∈ S, where ⌊ptr⌋ is the set of events of H tagged

with ptr. In other words, a write operation is seen after a crash iff it has persisted.
The requirement that such operations must appear within transactions and the
guarantee that they persist at the same time in a transaction are covered by the
global specifications.

2.7 Library Implementations

We have described how to specify persistent libraries in our framework, and
next describe how to implement persistent libraries. This is formalized by the
judgment Λ ⊢ I : L, stating that I is a correct implementation of library L
and only uses calls in the collection of libraries Λ. As usual in such ‘layered’
frameworks [13,26], the base layer, which represents the primitives of the hard-
ware, is specified as a library, keeping the framework uniform. This judgement
can be composed vertically as follows, where I[IL] denotes replacing the calls
to library L in I with their implementations given by IL (which in turn calls
libraries Λ′):

Λ, L ⊢ I : L′ Λ′ ⊢ IL : L

Λ,Λ′ ⊢ I[IL] : L
′

As we describe later, this judgment denotes contextual refinement and is im-
practical to prove directly. We define a stronger notion that is compositional
and more practical to use.

Definition 12 (Implementation). Given a collection Λ of libraries and a li-
brary L, an implementation I of L over Λ is a map, I : L.M × Val⊥ −→
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globals log := Q.new()
method PTNewReg() := alloc(1)
method PTRead(l) := read(l)
method PTWrite(l, v) :=
Q.append(log, ( l , v)) ;
write ( l , v)

method PTBegin() := FENCE();
method PTEnd() :=
Append(log, COMMITTED);
FENCE()

method PTRecover() :=
let w = Q.new() in
while (x := Q.pop(log))

if (x = COMMITTED)
w = Q.new();

else
Q.append(w, x);

while (( l , v) = Q.pop(log)) {
write ( l , v) ; }

Fig. 1. Implementation of Ltrans

P(Hist(Λ)), such that it is downward-closed: 1) if H ∈ I(m(v)t, v⊥) and H ′ is a
prefix of H, then H ′ ∈ I(m(v),⊥); and 2) each I(m(v)t:v⊥) history only contain
events by thread t.

Intuitively, I(m(v), v⊥) contains the histories corresponding to a call m(v) with
outcome v⊥, where v⊥ = ⊥ denotes that the call has not terminated yet and
v⊥ = v ∈ Val denotes the return value. Downward-closure means that an imple-
mentation contains all partial histories. We use a concrete programming language
to write these implementations; its syntax and semantics are standard and given
in the appendix [34].

For example, the implementation of Ltrans over Lwreg and LQueue is given in
Fig. 1. The idea is to keep an undo-log as a persistent queue that tracks the
values of the variables before the transaction begins. At the end of a transaction,
and after all its writes have persisted, we write the sentinel value COMMITTED to
the log to indicate that the transaction was completed successfully. After a crash,
the recovery routine PTRecover returns the undo-log and undoes the operations
of incomplete transactions by writing their previous values.

Histories and Implementations. An implementation I of L over Λ is
correct if for all histories H ∈ Hist({L} ∪ Λ′) that use library L as well as
those in Λ′, and all histories H ′ obtained by replacing calls to L methods with
their implementation in I, if H ′ is consistent, then so is H (it satisfies the L
specification).

We define the action H ·I of an implementation I on an abstract history H in
a ‘relational’ way: H ′ ∈ H ·I when we can match each operationm′(v) inH ′ with
some operation f(m′(v)) in H in such a way that the collection f−1(m(v)t:v⊥)
of operations corresponding to some call m(v)t:v⊥ in H agrees with I(m(v)t:v⊥).

Definition 13. Let I be an implementation of L over Λ; let H ∈ Hist({L}∪Λ′)
and H ′ ∈ Hist(Λ ∪ Λ′) be two histories. Given a map f : {1, . . . , |H ′|} →
{1, . . . , |H|}, H ′ (I, f)-matches H if the following hold:

1. f is surjective;
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2. for all invocations of H, if m(v)t /∈ L.M, then f(m(v)t) = m(v)t;
3. for all threads t, if e1 precedes e2 in H ′[t], then f(e1) precedes f(e2) in H[t];

4. for all calls m(v)t:v⊥ of H, the set f−1(m(v)t) corresponds to a substring H ′
m

of H ′[t] and H ′
m ∈ I(m(v)t:v⊥), where v⊥ is the (optional) return value

of m(v)t in H.

The action of I on a history H is defined as follows:

H · I ≜ {H ′ | ∃f. H ′ (I, f)-matches H}.

Condition 1 ensures that all events of the abstract history are matched with an
implementation event; condition 2 ensures that the events that do not belong to
the library being implemented (L) are left untouched, and condition 3 ensures
that the thread-local order of events in the implementation agrees with the one in
the specification. The last condition (4) states that the events corresponding to
the implementation of a call m(v) are consecutive in the history of the executing
thread t, and correspond to the implementation I.

Well-formedness and Consistency. Recall that libraries specify both how
they should be used (well-formedness), and what they guarantee if used cor-
rectly (consistency). Using these specifications (expressed as sets of histories)
to define implementation correctness is more subtle than one might expect.
Specifically, if we view a program using a library L as a downward-closed set
of histories in Hist(L), we cannot assume all its histories are in the set L.Swf of
well-formed histories, as the semantics of the program will contain unreachable
traces (see [26]). To formalize reachability at a semantic level, we define heredi-
tary consistency, stating that each step in the history was consistent, and thus
the current ‘state’ is reachable.

Definition 14 (Consistency). History H∈Hist(Λ) is consistent if for all L∈
Λ, H[L]∈ L.Sc and πL(H)∈ L.Tc. It is hereditarily consistent if all H[1..k] are
consistent, for k ≤ |H|.

This definition uses the ‘anonymization’ operator πL defined in §2.6 to test that
the history H follows the global consistency predicates of every L ∈ Λ.

We further require that programs using libraries respect encapsulation, de-
fined below, stating that locations obtained from a library constructor are only
used by that library instance. Specifically, the first condition ensures that dis-
tinct constructor calls return distinct locations. The second condition ensures
that a non-constructor call e of L uses locations that have been allocated by an
earlier call c (c ≺ e) to an L constructor.

Definition 15 (Encapsulation). A history H ∈ Hist(Λ) is encapsulated if
the following hold, where C denotes the set of calls to constructors in H:

1. for all c, c′ ∈ C, if c ̸= c′, then loc(c) ∩ loc(c′) = ∅;
2. for all e ∈ H \ C, if loc(e) ̸= ∅, then there exist c ∈ C, L ∈ Λ such that

e, c ∈ L.M, c ≺ e and loc(e) ⊆ loc(c).
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We can now define when a history of Λ is immediately well-formed : it must
be encapsulated and be well-formed according to each library in Λ and all the
tags it uses.

Definition 16. History H ∈ Hist(Λ) is immediately well-formed if the follow-
ing hold:

1. H is encapsulated;
2. H[L] ∈ L.Swf, for all L ∈ Λ; and
3. πL(H) ∈ L.Twf for all L ∈ TagDep(Λ), where the immediate dependen-

cies TagDep(Λ) is defined as
⋃

L∈Λ{L} ∪ Λtags(L).

We finally have the notions required to define a correct implementation.

Implementation Correctness. As usual, an implementation is correct if
all behaviors of the implementation are allowed by the specification. In our
setting, this means that if a concrete history is hereditarily consistent, so should
the abstract history. Moreover, assuming the abstract history is well-formed, all
corresponding concrete histories should also be well-formed; this corresponds to
the requirement that the library implementation uses its dependencies correctly,
under the assumption that the program itself uses its libraries correctly.

Definition 17 (Correct implementation). An implementation I of L over Λ
is correct, written Λ ⊢ I : L, if for all collections Λ′, all ‘abstract’ histories H ∈
Hist({L} ∪ Λ′) and all ‘concrete’ histories H ′ ∈ H · I ⊆ Hist(Λ ∪ Λ′), the
following hold:

1. if H is immediately well-formed, then H ′ is also immediately well-formed;
and

2. if H ′ is immediately well-formed and hereditarily consistent, then H is con-
sistent.

This definition is similar to contextual refinement in that it quantifies over all
contexts: it considers histories that use arbitrary libraries as well as those that
concern I directly. We now present a more convenient, compositional method for
proving an implementation correct, which allows one to only consider libraries
and tags that are used by the implemented library.

2.8 Compositionally Proving Implementation Correctness

Recall that in this section we present our framework in a simplified sequentially
consistent setting; later in §3 we generalize our framework to the weak mem-
ory setting. We introduce the notion of compositional correctness, simplifying
the global correctness conditions in Def. 17. Specifically, while Def. 17 considers
histories with arbitrary libraries that may use tags introduced by L, our com-
positional condition requires one to prove that only those L methods that are
L-tagged satisfy L.Tc.
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Definition 18 (Compositional correctness). An implementation I of L
over Λ is compositionally correct if the following hold:

1. For all Λ′, H ∈ Hist({L} ∪ Λ) and H ′ ∈ H · I ⊆ Hist(Λ ∪ Λ′), if H ′ is
well-formed, then H is well-formed;

2. For all H ∈ Hist(L) and H ′ ∈ H · I ⊆ Hist(Λ), if H ′ is well-formed and
hereditarily consistent, then H ∈ L.Sc ∩ L.Tc; and

3. For all L′ ∈ Λ, H ∈ Hist({L, L′, ⋆L′}) and H ′ ∈ H · I, if πL′(H ′) ∈ L′.Twf ∩
L′.Tc, then πL′(H) ∈ L′.Tc.

The preservation of well-formedness (condition 1) does not change compared to
its counterpart in Def. 17, as in practice this condition is easy to prove directly.
Condition 2 requires one to prove that the implementation is correct in isolation
(without Λ′). Condition 3 requires one to prove that global consistency require-
ments are maintained for all dependencies of the implementation. In practice,
this corresponds to proving that those L operations tagged with existing tags
in Λ obey the global specifications associated with these tags. Intuitively, the
onus is on the library that uses a tag for its methods to prove the associated
global consistency predicate: we need not consider unknown methods tagged
with tags in L.Tagsnew.

Finally, we show that it is sufficient to show an implementation I is compo-
sitionally correct as it implies that I is correct.

Theorem 1 (Correctness). If an implementation I of L over Λ is composi-
tionally correct (Def. 18), then it is also correct (Def. 17).

Example 5 (Transactional Library Ltrans). Consider the implementation Itrans
of Ltrans over Λ = {Lwreg, LQueue} given in Fig. 1, and let us assume we were
to show that Itrans is compositionally correct. Our aim here is only to outline the
proof obligations that must be discharged; later in §5 we give a full proof in the
more general weak memory setting.

1. For the first condition of compositional correctness, we must show Itrans
preserves well-formedness: if the abstract history H is well-formed, then so
is any corresponding concrete history H ′ ∈ H · Itrans. This is straightforward
as the well-formedness conditions of Lwreg and LQueue are trivial, and Ltrans
does not use any existing tag.

2. For the second condition of compositional correctness, we must show that
Itrans preserves consistency in the other direction: keeping the notations as
above, assuming H ′ is consistent for Λ, then H is consistent as specified
by Ltrans. There are two parts to this obligation, as we also have to show that
the Ltrans’s operations tagged with t satisfy the global consistency predicate
of the library.

3. The last condition holds vacuously as Ltrans does not use any existing tags.

Example 6 (A Client of Ltrans). To see how the global consistency specifications
work, consider a simple min-max counter library, Lmmcnt, tracking the maxi-
mal and minimal integer it has been given. The Lmmcnt is to be used within
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method mmNew() :=
(PTNewReg(), PTNewReg())

method mmAdd(x, n) :=
PTWrite(min(n, PTRead(x.1)))
PTWrite(max(n, PTRead(x.2)))

method mmMin(x) :=
PTRead(x.1)

method mmMax(x) :=
PTRead(x.2)

Fig. 2. Implementation Immcnt of Lmmcnt

Ltrans transactions, and provides four methods: mmNew() to construct a min-max
counter, mmAdd(x, n), to add integer n to the min-max counter, and mmMin(x)
and mmMax(x) to read the respective values.

We present the Immcnt implementation over Ltrans in Fig. 2. The idea is sim-
ply to track two integers denoting the minimal and maximal values of the num-
bers that have been added. Interestingly, even though they are stored in Ltrans
registers, the implementation does not begin or end transactions: this is the re-
sponsibility of the client to avoid nesting transactions. This is enforced by Lmmcnt

using a global well-formedness predicate. Moreover, the mmAdd operation is tagged
with t from the Ltrans library, ensuring that it behaves well w.r.t. transactions.
A non-example is a version of Immcnt where the minimum is in a Ltrans register,
but the max is in a “normal” Lwreg register. This breaks the atomicity guarantee
of transactions.

Formally, the interface Lmmcnt has four methods as above, where mmNew is
the only constructor. The set of used tags is Tagsdep = {t, ptr}, and all Lmmcnt

methods are tagged with t as they all use primitives from Ltrans. The consis-
tency predicate is defined using the obvious sequential specification Smmcnt, which
states that calls to mmMin return the minimum of all integers previously given
to mmAdd in the sequential history. We lift this to (concurrent) histories as follows.
A history H ∈ Hist(Lmmcnt) is in Lmmcnt.Sc if there exists Eℓ ∈ Smmcnt that is a
≺-linearization of E1[p

tr] · E2[p
tr] · · ·En−1 · En[p

tr], where H constructs n eras
decomposed as H = E1 ·  · · · · En (recall that E[ptr] denotes the sub-history
with events tagged with ptr, that is, persisted events.). The global specification
and well-formedness conditions of Lmmcnt are trivial. Because Lmmcnt uses tag t
of Ltrans, a well-formed history of Lmmcnt must satisfy Ltrans.Twf, which requires
that all operations tagged with t be inside transactions, and Ltrans.Tc guarantees
that Lmmcnt operations persist atomically in a transaction.

When proving that the implementation in Figure 2 satisfies Lmmcnt using
compositional correctness, one proof obligation is to show that, given histories
H ∈ Hist({Ltrans, Lmmcnt, ⋆Ltrans}) and H ′ ∈ H · Immcnt ⊆ Hist({Ltrans, ⋆Ltrans}), if
πLtrans(H

′) ∈ Ltrans.Tc, then πLtrans(H) ∈ Ltrans.Tc. This corresponds precisely to
the fact that min-max counter operations persist atomically in a transaction,
assuming the primitives it uses do as well.
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2.9 Generic Durable Persistency Theorems

We consider another family of libraries with persistent reads/writes guaranteeing
the following:

if one replaces regular (volatile) reads/writes in a linearizable implemen-
tation with persistent ones, then the implementation obtained is durably
linearizable.

We consider two such such libraries: FliT [35] and Mirror [10]. Thanks to our
framework, we formalise the statement above for the first time and prove it for
both Flit and Mirror against a realistic consistency (concurrency) model (see
§4).

3 Generalization to weak-memory

This section sketches how we generalize the framework presented in the previous
section to the weak memory, where events generated by the program are not
totally ordered. For lack of space, the technical details, which largely follow that
of the previous section, are relegated to the Appendix [34]. The purpose of this
section is to give an idea of how executions, a standard tool in the semantics of
weak memory, generalize the histories we used in the Overview section, and to
give enough context for the case studies that follow.

[init]

R(x):5

W (y, 2):()

R(y):0

W (x, 5):()

po po

rf

rf

Fig. 3. An execution of the program
P:
a = x; y = 2 ∥ a = y; x = 5

Unlike the histories that we discussed
in the previous section, in which events
are totally ordered by a notion of time,
events in executions are only partially or-
dered, reflecting that instructions executed
in parallel are not naturally ordered. For-
mally, an execution is thus a set of events
equipped with a partial order which repre-
sents the ordering between events from the
same thread. This partial order, written po,
for program-order, is depicted with black
arrows in Fig. 3, where it orders minimally
the initial event, and the two events of each
thread according to the source code. Addi-
tional edges indicate, for each read-event returning the value v, the write-event
that provided the value v: in that case, an rf-edge from the write-event to the
read-event is added to the execution.

To be able to reason about synchronization, the notion of happens-before
needs to be adapted to this setting. It is defined using po and an additional
type of edge, synchronizes-with, written sw, which denotes that two events syn-
chronize with each other, and in particular that one happens before the other.
Usually, sw ⊆ rf, for example between a release-write and an acquire-read in
the C11 memory model. Given these sw edges, the happens-before order they
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induce, which generalizes ≺ from the previous section is defined as the transitive
closure (po ∪ sw)+. This is not sufficient however, because we consider partial
executions G where the focus is on a subset of the libraries in some unknown
global execution G′, that is: G = G′ ⇃ L. Therefore, external events (in G′ but
not in G) may induce happens-before relations between events of G, yet we want
to specify library L without referring to any such execution G′ that contains it.
To solve this issue, we use the technique of [26], and we add a final type of edge
to executions: hb, which corresponds to both the external and the internal syn-
chronization. Because of the latter, it must contain the internal synchronization:
po ∪ sw ⊆ hb.

To summarize, an execution is a tuple ⟨E, po, rf, sw, hb⟩ comprised of a set E
of events, and of the relations we just described. A library specification is the
same as in the previous section, mutatis mutandis. The sets of executions that
are parts of specifications are defined using a formalism developed in the weak
memory model literature. A set S of executions is described with conditions
about relations built from po, rf, etc. Given a set V of events, we denote by
[V ] the relation V × V , and we denote by R1;R2 the standard composition of
two relations R1 and R2. For example, if R denotes the set of read-events of an
execution and W the set of write-events, the condition [W ]; rf; [R] ⊆ sw states
that if there is a rf-edges between two events e1 ∈ W and e2 ∈ R of an execution,
there must also be a sw synchronization edge between e1 and e2.

As in the previous section, the tag system allows the library specification to
state which events must have been persisted in a valid execution. The semantics
of a program is a set of executions that contain events from all the libraries used
by the program; and whose happens-before order satisfy hb = (po ∪ sw)+, as
there are no external synchronization in the executions of the whole program.
The Appendix [34] details how our framework is defined in this more general
setting.

4 Case Study: Durable Linearizability with FliT and
Mirror

We consider a family of libraries that provide a simple interface with persistent
memory accesses (reads and writes), allowing one to convert any linearisable
implementation to a durably linearisable one by replacing regular (volatile) ac-
cesses with persistent ones supplied by the library. Specifically, we consider two
such libraries FliT [35] and Mirror [10]; we specify them both in our framework,
prove their implementations sound against their respective specifications, and
further prove their general result for converting data structures.

4.1 The FliT Library

FliT [35] is a persistent library that provides a simple interface very close to
Px86, but with stronger persistency guarantees, which make it easier to imple-
ment durable data structures. Specifically, a FliT object ℓ can be accessed via
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method wrπ(ℓ, v) :
if π = p then

fetch-and-add(flit-counter(ℓ), 1);
write(ℓ, v);
flushopt(ℓ);
fetch-and-add(flit-counter(ℓ),−1);

else
sfence;
write(ℓ, v);

method rdπ(ℓ) :
local v = read(ℓ);
if π = p ∧ flit-counter(ℓ) > 0 then

flushopt(ℓ);
return v;

method finishOp :
sfence;

Fig. 4. FliT library implementation in Px86

write and read methods, wrπ(ℓ, v) and rdπ(ℓ), as well as standard read-modify-
write methods. Each write (resp. read) operation has two variants, denoted by
the type π ∈ {p, v}. This type specifies if the write (resp. read) is persistent
(π = p) in that its effects must be persisted, or volatile (π = v) in that its
persistency has been optimised and offers weaker guarantees. The default access
type is persistent (p), and the volatile accesses may be used as optimizations
when weaker guarantees suffice. Wei et al. [35] introduce a notion of dependency
between different operations as follows. If a (persistent or volatile) write w de-
pends on a persistent write w′, then w′ persists before w. If a persistent read
r reads from a persistent write w, then r depends on w and thus w must be
persisted upon reading if it has not already persisted. Though simple, FliT pro-
vides a strong guarantee as captured by a general result for correctly converting
volatile data structures to persistent ones: if one replaces every memory access
in the implementation of a linearizable data-structure with the corresponding
persistent FliT access, then the resulting data structure is durably linearizable.

Compared to the original FliT development, our soundness proof is more
formal and detailed: it is established against a formal specification (rather than
an English description) and with respect to the formal Px86 model.

FliT Interface. The FliT interface uses the pPx86 from Px86 and contains
a single constructor, new, allocating a new FliT location, as well as three other
methods below, the last two of which are durable:

– rdπ(ℓ) with π∈{p, v}, for a π-read from ℓ;
– wrπ(ℓ, v) with π∈{p, v}, denoting a π-write of value v ∈ Val to ℓ; and
– finishOp, which waits for previously executed operations to persist.

We write R and W respectively for the read and write events, and add the
superscript π (e.g. Rp) to denote such events with the given persistency mode.

FliT Specification. We develop a formal specification of FliT in our frame-
work, based on its original informal description. The correctness of FliT execu-
tions is described via a dependency relation that contains the program order and
the total execution (linearization) order restricted to persistent write-read oper-
ations on the same location. Note that this dependency notion is stronger than
the customary definitions that use a rf relation (as in the Px86 specification)
instead of lin, because a persistent read may not read directly from a persistent
write w, but rather from another later (lin-after w) write.
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Definition 19 (FliT execution Correctness). A FliT execution G is correct
if there exists a ‘reads-from’ relation rf and a total order lin ⊇ G.hb on G.E and
an order nvo such that:

1. Each read event reads from the most recent previous write to the same loca-
tion:
rf =

⋃
ℓ∈Loc([Wℓ]; lin; [Rℓ]) \ (lin; [Wℓ]; lin)

2. Reads return the value written by the write they read from:
(w, r) ∈ rf ⇒ ∃ℓ, π, π′, v. lab(r) = rdπ′(ℓ) : v ∧ lab(w) = wrπ(ℓ, v) : −

3. Persistent writes persist before every other later dependent write:
[W p]; (po ∪

⋃
ℓ∈Loc[W

p
ℓ ]; lin; [R

p
ℓ ])

+; [W ] ⊆ nvo
4. Persistent writes before a finishOp persist:

dom([W p]; (po ∪
⋃

ℓ∈Loc[W
p
ℓ ]; lin; [R

p
ℓ ])

+; [finishOp]) ⊆ ⌊pPx86⌋
5. And nvo is a persist order: dom(nvo; ⌊Ptag⌋) ⊆ ⌊Ptag⌋.

Px86 implementation of FliT. The implementation of FliT methods is
given in Fig. 4. Whereas a naive implementation of this interface would have to
issue a flush instruction both after persistent writes and in persistent reads, the
implementation shown associates each location with a counter to avoid perform-
ing superfluous flushes when reading from a location whose value has already
persisted. Specifically, a persistent write on ℓ increments its counter before writ-
ing to and flushing it, and decrements the counter afterwards. As such, persistent
reads only need to issue a flush if the counter is positive (i.e. if there is a con-
current write that has not executed its flush yet).

Theorem 2. The implementation of FliT in Fig. 4 is correct.

FliT and Durable Linearizability. Given a data structure implementa-
tion I, let p(I) denote the implementation obtained from I by 1) replacing
reads/writes in the implementation with their corresponding persistent FliT in-
structions, and 2) adding a call to finishOp right before the end of each method.
We then show that given an implementation I, if I is linearizable, then p(I) is
durably linearizable3. We assume that all method implementations are single-
threaded, i.e. all plain executions I(m(v)) are totally ordered.

Theorem 3. If Px86 ⊨ I : Lin(S), then FliT ⊨ p(I) : DurLin(S).

4.2 The Mirror Library

The Mirror [10] persistent library has similar goals to FliT. The main difference
between the two is that Mirror operations do not offer two variants, and their
operations are implemented differently from those of FliT. Specifically, in Mir-
ror each location has two copies: one in persistent memory to ensure durability,

3 The definition here is the same as in §2, as hb-linearizations of the execution still
yield sequential executions.
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and one in volatile memory for fast access. As such, read operations are imple-
mented as simple loads from volatile memory, while writes have a more involved
implementation than those of FliT.

We present the Mirror specification and implementation in the technical ap-
pendix where we also prove that its implementation is correct against its spec-
ification. As with FliT, we further prove that Mirror can be used to convert
linearizable data structures to durably linearizable ones, as described above.

5 Case Study: Persistent Transactional Library

We revisit the Ltrans transactional library, develop its formal specification and
verify its implementation (Fig. 1) against it. Recall the simple Ltrans implemen-
tation in Fig. 1 and that we do not allow for nested transactions. The implemen-
tation uses an undo-log which records the former values of persistent registers
(locations) modified in a transaction. If, after a crash, the recovery mechanism
detects a partially persisted transaction (i.e. the last entry in the undo log is not
COMMITTED), then it can use the undo-log to restore registers to their former
values. The implementation uses a durably linearizable queue library4 Q, and
assumes that it is externally synchronized : the user is responsible for ensuring
no two transactions are executed in parallel. We formalize this using a global
well-formedness condition.

Later in §5.2 we develop a wrapper library LStrans for Ltrans that additionally
provides synchronization using locks and prove that our implementation of this
library is correct. To do this, we need to make small modifications to the structure
of the specification: the specification in §2 requires that any ‘transaction-aware
operation’ (i.e. those tagged with t) be enclosed in calls to PTBegin and PTEnd.
Since LStrans wraps the calls to PTBegin and PTEnd, the well-formedness condition
needs to be generalized to allow operations tagged with t to appear between
calls to operations that behave like PTBegin and PTEnd. To that end, we add two
new tags b and e to denote such operations, respectively.

5.1 Specification

The Ltrans library provides four tags : 1) t for transaction-aware ‘client’ opera-
tions; 2) ptr for operations that have persisted using transactions; and 3) b, e for
operations that begin and end transactions, respectively. We write R,W,B, E ,RC
respectively for the sets of events labeled with read, write, begin, end and recov-
ery methods. As before, we write e.g. ⌊t⌋ for the set of events tagged with t. Note
that while B denotes the set of the begin events in library Ltrans, the ⌊b⌋ denotes
the set of all events that are tagged with b, which includes B (of library Ltrans) as
well as events of other (non-Ltrans) libraries that may be tagged with b; similarly
for E and ⌊e⌋. As such, our local specifications below (i.e. local well-formedness

4 For example, take any linearizable queue implementation and use the FliT library as
described in §4.
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and consistency) are defined in terms of B and E , whereas our global specifica-
tions are defined in terms of ⌊b⌋ and ⌊e⌋. As before, for brevity we write e.g.
[t] as a shorthand for the relation [⌊t⌋]. We next define the ‘same-transaction’
relation strans:

strans ≜ [⌊b⌋∪⌊e⌋∪⌊t⌋]; (po∪po−1); [⌊b⌋∪⌊e⌋∪⌊t⌋] \ ((po; [e]; po)∪(po; [b]; po))

An execution is locally well-formed iff the following hold:

1. A transaction must be opened before it is closed: E ⊆ rng([B]; po)
2. Transactions are not nested and are matching: [E ]; po; [E ] ⊆ [E ]; po; [B]; po; [E ]

and [B]; po; [B] ⊆ [B]; po; [E ]; po; [B]
3. Transactions must be externally synchronized: E × B ⊆ hb ∪ hb−1

4. The recovery routine must be called after each crash before using the library:
 ; hb; ⌊b⌋ ⊆  ; hb; [RC]; hb; ⌊b⌋

5. Events are correctly tagged: W ∪R ⊆ ⌊t⌋

An execution is globally well-formed if client operations are inside transactions:

6. ⌊t⌋ ⊆ rng([b]; po)
7. [e]; po; [t] ⊆ [e]; po; [b]; po; [t]

An execution is locally-consistent if there exists a relation rf satisfying:

8. rf relates writes to reads, rf ⊆ W × R, such that each read is related to
exactly one write (i.e. rf−1 is total and functional).

9. Reads access the most recent write: rf−1; hb ⊆ hb
10. External reads (reading from a different transaction) read from persisted

writes: dom(rf \ strans) ⊆ ⌊ptr⌋

An execution is globally-consistent if there exists an order nvo over ⌊t⌋ satisfying:

11. Transactions are nvo-ordered: [e]; hb; [b] ⊆ nvo
12. nvo is the persistance order: dom(nvo; [ptr]) ⊆ ⌊ptr⌋;
13. Either all the events or none of the events in a transaction persist (atomicity):

[ptr]; strans; [t] ⊆ [ptr]
14. All events of a completed transaction (ones with an associated end event)

persist: ⌊e⌋c ⊆ ⌊ptr⌋, where ⌊e⌋c denotes the set of method calls tagged
with e which have completed.

Theorem 4. The Ltrans implementation in Fig. 1 over Px86 is correct.

5.2 Vertical Library Composition: Adding Internal Synchronization

We next demonstrate how our framework can be used for vertical library compo-
sition, where an implementation of one library comprises calls to other libraries
with non-trivial global specifications. To this end, we develop LStrans, a wrapper
library around Ltrans that is meant to be simpler to use by providing synchro-
nization internally: rather than the user ensuring synchronization for Ltrans, one
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can use LStrans to prevent two transactions from executing in parallel. More for-
mally, the well-formedness condition (3) of Ltrans becomes a correctness guarantee
of LStrans. We consider a simple implementation of LStrans that uses a global lock
acquired at the beginning of each transaction and released at the end as shown
below.

globals lock := L.new() method LPTBegin() := L.acq(lock);PTBegin()
method LPTEnd() := PTEnd();L.rel(lock)

Theorem 5. The implementation of LStrans above is correct.

Using compositional correctness, the main proof obligation is the condition stip-
ulating that the implementation be well-formed, ensuring that Ltrans is used
correctly by the LStrans implementation. This is straightforward as we can as-
sume there exists an immediate prefix that is consistent. The existence of the
hb-ordering of calls to PTBegin and PTEnd follows from the consistency of the
global lock used by the implementation.

5.3 Horizontal Library Composition

We next demonstrate how our framework can be used for horizontal library
composition, where a client program comprises calls to multiple libraries. To
this end, we develop a simple library, Lcntr, providing a persistent counter to be
used in sequential (single-threaded) settings: If a client uses Lcntr in concurrent
settings, it must call its methods within critical sections. The Lcntr provides three
operations to create (NewCounter), increment (CounterInc) and read a counter
(CounterRead). The specification and implementation of Lcntr are given in [34]

As Lcntr uses the tags of Ltrans, we define Lcntr.Λtags ≜ {Ltrans}. The all the
operations are tagged with t. As such, Lcntr inherits the global well-formedness
condition of Ltrans, meaning that Lcntr operations must be used within transac-
tions (i.e. hb-between operations respectively tagged with b and e). Putting it
all together, the following client code snippet uses Lcntr in a correct way, even
though Lcntr has no knowledge of the existence of LStrans.

c = NewCounter(); LPTBegin(); CounterInc(c) ; CounterInc(c) ; LPTEnd();

Specifically, the above is an instance of horizontal library composition (as the
client comprises calls to both LStrans and Lcntr), facilitated in our framework
through global specifications.

6 Conclusions, Related and Future Work

We presented a framework for specifying and verifying persistent libraries, and
demonstrated its utility and generality by encoding existing correctness notions
within it and proving the correctness of the FliT and Mirror libraries, as well as
a persistent transactional library.
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Related Work. The most closely related body of work to ours is [26]. How-
ever, while their framework can be used for specifying only the consistency guar-
antees of a library, ours can be used to specify both consistency and persistency
guarantees. More generally, our tag system extends the expressivity of [26] with
support for global effects such as some types of fences.

Existing literature includes several works on formal persistency models, both
for hardware [25,30,31,5,6,19,29,28] and software [4,21,11], as well as correct-
ness conditions for persistent libraries such as durable linearizability [17]. As we
showed in §3, such models can be specified in our framework.

There have been works [33] to specify libraries using an operational approach
instead of the declarative approach that we advocate for here. While it is not
generic in the memory model, it support weak memory, with a fragment of the
C++ 11 memory model, and supports synchronization that is internal and ex-
ternal to the library. Another framework for formalizing behavior of concurrent
objects in the presence of weak memory is [18], which is more syntactic as our
framework: they use a process calculus, which allows them to handle callbacks
between the library and the client. Extending our framework, which is more
semantic, to handle this setting would probably require shifting from execution-
s/histories to something similar to game semantics.

Additionally, there are several works on implementing and verifying algo-
rithms that operate on NVM. [9] and [36] respectively developed persistent queue
and set implementations in Px86. [8] provided a formal correctness proof of the
implementation in [36]. All three of [8,36,9] assume that the underlying concur-
rency model is SC [23], rather than that of Px86 (namely TSO). As we demon-
strated in §4–§5 we can use our framework to verify persistent implementations
modularly while remaining faithful to the underlying concurrency model. [27,2]
have developed persistent program logics for verifying programs under Px86. [20]
recently formalized the consistency and persistency semantics of the Linux ext4
file system, and developed a model-checking algorithm and tool for verifying the
consistency and persistency behaviors of ext4 applications such as text editors.

Recently, and independently to this work, Bodenmüller et al [3] have proved
the correctness of the Flit library under TSO. They used an operational ap-
proach, and modeled the libraries and the memory and persistency models oper-
ationally using automata, and proved a simulation result using KIV a specialized
proof assistant. As for this paper, they proved that a linearizable library using
Flit becomes durably linearizable.

Future Work. We believe our framework will pave the way for further work
on verifying persistent libraries, whether manually (as done here), possibly with
the assistance of an interactive theorem prover and/or program logics such as
those of [7,27,2], or automatically via model checking. The work of [7] uses the
framework of [26] to specify data structures in a program logic, and it would be
natural to extend it to our framework for persistency. Existing work in the latter
research direction, e.g. [12,20], has so far only considered low-level properties,
such as the absence of races or the preservation of user-supplied invariants. It has
not yet considered higher-level functional correctness properties, such as durable

208 Léo Stefanesco, Azalea Raad, and Viktor Vafeiadis



linearizability and its variants. We believe our framework will be helpful in that
regard. In a more theoretical direction, it would be interesting to understand
how our compositional correctness theorem fits in general settings for abstract
logical relations such as [16].
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Hyperproperty Verification as CHC Satisfiability

Abstract. Hyperproperties specify the behavior of a system across mul-
tiple executions, and are an important extension of regular temporal
properties. So far, such properties have resisted comprehensive treat-
ment by software model-checking approaches such as IC3/PDR, due to
the need to find not only an inductive invariant but also a total alignment
of different executions that facilitates simpler inductive invariants.
We show how this treatment is achieved via a reduction from the ver-
ification problem of ∀∗∃∗ hyperproperties to Constrained Horn Clauses
(CHCs). Our starting point is a set of universally quantified formulas in
first-order logic (modulo theories) that encode the verification of ∀∗∃∗

hyperproperties over infinite-state transition systems. The first-order en-
coding uses uninterpreted predicates to capture the (1) witness function
for existential quantification over traces, (2) alignment of executions,
and (3) corresponding inductive invariant. Such an encoding was previ-
ously proposed for k-safety properties. Unfortunately, finding a satisfying
model for the resulting first-order formulas is beyond reach for modern
first-order satisfiability solvers. Previous works tackled this obstacle by
developing specialized solvers for the aforementioned first-order formu-
las. In contrast, we show that the same problems can be encoded as
CHCs and solved by existing CHC solvers. CHC solvers take advantage
of the unique structure of CHC formulas and handle the combination of
quantifiers with theories and uninterpreted predicates more efficiently.
Our key technical contribution is a logical transformation of the afore-
mentioned sets of first-order formulas to equi-satisfiable sets of CHCs.
The transformation to CHCs is sound and complete, and applying it to
the first-order formulas that encode verification of hyperproperties leads
to a CHC encoding of these problems. We implemented the CHC en-
coding in a prototype tool and show that, using existing CHC solvers
for solving the CHCs, the approach already outperforms state-of-the-art
tools for hyperproperty verification by orders of magnitude.

1 Introduction

Hyperproperties [15] are properties that relate multiple execution traces, either
taken from a single program or from multiple programs. Checking such properties
is known as relational verification, and is essential when reasoning about security
policies, program equivalence, concurrency protocols, etc. Existing specification
languages for hyperproperties [14,6,43] extend standard ones, e.g., temporal logic
or Hoare logic, with (explicit or implicit) quantification over traces. This shifts
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the focus from properties of individual traces to properties of sets of traces. For
example, k-safety [15] is a class of hyperproperties, where k universal quantifiers
are used to define a relational invariant over states originating from k traces.

This paper addresses verification of hyperproperties with ∀∗∃∗ quantification
over traces and a body of the form □ϕ (where □ stands for “globally”). This
fragment captures many hypersafety (e.g., the aforementioned k-safety) and hy-
perliveness properties, and was shown by [8] to express a wide class of properties
of interest, including generalized non-interference (GNI) [38].

Verification of hyperproperties is more challenging than verification of single-
trace properties, and, as a result, has gained a lot of attention in recent years.
Unlike single-trace properties, verification of properties of k traces requires the
discovery of relational inductive invariants, which define the relation between
states of k execution traces. Since the construction of invariants that hold be-
tween any k reachable states is hard (or even impossible, depending on the
assertion logic), proving hyperproperties often hinges on finding an alignment of
any k traces such that the invariant only needs to describe aligned states.

In the case of k-safety properties, an alignment of traces is often given by a
self composition [5,44] of the program, composing different copies of the program
(or several different programs) together, e.g., by running the different copies in
lockstep [48] or by more sophisticated composition schemes, e.g., [24]. While self
composition allows to reduce k-safety verification to standard safety verification,
this reduction requires to choose the alignment of the different copies a-priori.
The choice of alignment, however, has a significant effect on the complexity
of the inductive invariants themselves, as demonstrated by [41]. This renders
the standard reduction from k-safety verification to safety verification, based
on a fixed alignment, impractical in many cases. As a result, finding a good
alignment as part of relational verification has been a topic of interest in recent
years [43,27,45,6,8].

In the case of hyperliveness properties that stem from the use of existen-
tial quantification over traces (i.e. ∀∗∃∗ properties), complexity rises further.
Verifying such hyperliveness properties calls for finding “witness” traces that
match the universally quantified traces, in addition to the relational invariant
and alignment. This reduces verification of ∀∗∃∗ properties to the problem of in-
ferring three ingredients: (i) a witness function for existential quantification over
traces, (ii) an alignment of traces, and (iii) a corresponding relational inductive
invariant. These ingredients are all interdependent: different witnesses call for
different alignments and give rise to different invariants, with different levels of
complexity. It is therefore desirable to search for the combination of the three of
them simultaneously, which is the focus of this paper.

We propose a novel reduction from verification of hyperproperties with a
∀∗∃∗ quantification prefix over infinite-state transition systems to satisfiability
of Constrained Horn Clauses (CHCs) [11,10], also known as CHC-SAT. Impor-
tantly, the reduction does not fix any of the aforementioned verification ingre-
dients, in particular, the alignment, a-priori. Instead, it is based on a CHC
encoding of their joint requirements. The unique structure of CHCs makes it
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possible to adopt software model checking techniques (e.g. interpolation [39],
IC3/PDR [32,35]) for solving them. Our reduction, thus, allows to use state-
of-the-art CHC solvers [28,33,31,49] to achieve a highly efficient hyperproperty
verification procedure.

While it is known that safety verification can be reduced to CHC-SAT, we
are the first to show how inferring the combination of a witness function, a trace
alignment and an inductive invariant for hyperproperties of the ∀∗∃∗-fragment
can be reduced to CHC-SAT.

The first step of our reduction to CHC-SAT is an encoding of the joint re-
quirements of the witness-alignment-invariant ingredients as a set of universally
quantified formulas in first-order logic (FOL) modulo theories, where uninter-
preted predicates capture the witness, alignment and invariant, and first-order
theories (e.g., arithmetic and arrays) are used for modeling the transition sys-
tem and the requirements. Such an encoding has been proposed by [41] for the
problem of finding an invariant together with an alignment in the context of
verification of k-safety properties (the universally quantified subset of this frag-
ment). We extend their FOL encoding to ∀∗∃∗ properties, based on the game
semantics introduced in [8].

Unfortunately, the resulting FOL formulas are beyond what modern first-
order satisfiability solvers can handle due to a combination of quantifiers with
theories and uninterpreted predicates. In particular, the FOL formulas are not in
the form of CHCs. As a result, previous works [41,45] that used a similar encoding
could not rely on a (single) CHC-SAT query to find the alignment and invariant
simultaneously. Instead, [41] resorted to an enumeration of potential alignments,
using a separate CHC-SAT query to search for an inductive invariant (in a
restricted language) for each candidate alignment. [45] developed a specialized
solver that is able to handle these non-CHC formulas directly.

In contrast to previous works, we introduce a second step where we transform
the set of universally quantified FOL formulas to a set of universally quantified
CHCs. This step—which is also the key technical contribution of the paper—
allows us to use any CHC solver for hyperproperty verification, and benefit from
current and future developments in this lively area of research. We emphasize
that the transformation to CHCs is surprising since it allows us to overcome
a seemingly unavoidable obstacle: a disjunction of atomic formulas involving
unknown predicates, which arises from the encoding of a choice between different
alignment and witness options.

We implemented the reduction of ∀∗∃∗-hyperproperty verification to CHC-
SAT in a tool called HyHorn, on top of Z3 [23], using Spacer [31] as a CHC
solver. Our results show that HyHorn is very efficient in verifying ∀∗∃∗-hyper-
properties, outperforming the state-of-the-art [45,8,41] by orders of magnitude.

Our main contributions are:

– We develop a satisfiability-preserving transformation of first-order formulas
of a certain form to CHCs. The transformation is accompanied by a bi-
directional translation of solutions.
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pre(a1 < a2 ∧ b1 > b2)
squaresSum(int a, int b){

assume (0 < a < b);
int c=0;
while (a<b) {c+=a*a; a++;}
return c;

}
post(c1 > c2)

a1 < a2 ∧ b1 > b2 →
∀π1 : ¬(a < b), π2 : ¬(a < b) ·□(c1 > c2)

(a)

(1)Init(V1) ∧ Init(V2) ∧ a2 > a1 ∧ b2 < b1 → Inv(V1, V2)

(2)Inv(V1, V2) ∧A{1}(V1, V2) ∧ Tr(V1, V
′
1 ) ∧ V2 = V ′

2 → Inv(V ′
1 , V

′
2 )

(3)Inv(V1, V2) ∧A{2}(V1, V2) ∧ V1 = V ′
1 ∧ Tr(V2, V

′
2 ) → Inv(V ′

1 , V
′
2 )

(4)Inv(V1, V2) ∧A{1,2}(V1, V2) ∧ Tr(V1, V
′
1 ) ∧ Tr(V2, V

′
2 ) → Inv(V ′

1 , V
′
2 )

(5)Inv(V1, V2) ∧A{1}(V1, V2) → a1 < b1

(6)Inv(V1, V2) ∧A{2}(V1, V2) → a2 < b2

(7)Inv(V1, V2) ∧A{1,2}(V1, V2) → (a1 < b1 ∧ a2 < b2)

∨(a1 ≥ b1 ∧ a2 ≥ b2)

(8)Inv(V1, V2) → ((a1 ≥ b1 ∧ a2 ≥ b2) → c1 > c2)

(9)Inv(V1, V2) → A{1}(V1, V2) ∨A{2}(V1, V2) ∨A{1,2}(V1, V2)

(b)

Fig. 1: (a) A program that computes the sum of squares of integer interval [a, b)
with a 2-safety specification for it, and (b) its first-order encoding.

– We apply the transformation to obtain, for the first time, a sound and com-
plete reduction from verification of ∀∗∃∗-OHyperLTL (w.r.t. a game seman-
tics) to CHC-SAT. The reduction captures searching for an alignment, an
∃∗-witness function and an inductive invariant simultaneously. It is applica-
ble to infinite-state transition systems, with the caveat that their branching
degree needs to be finite (bounded by a constant) if the hyperproperty in-
cludes ∃∗ quantification.

– To handle ∃∗ in the presence of unbounded nondeterminism, we incorporate
into the CHC encoding a sound abstraction based on a set of underapproxi-
mations (“restrictions”).

– We implement a tool, HyHorn, that constructs CHCs for ∀∗∃∗-OHyperLTL
specifications, and solves them using Spacer. In most cases, HyHorn discov-
ers the solution completely automatically, while in some, it uses predicate
abstraction, based on user-provided predicates.

2 Overview

We illustrate our approach for verifying hyperproperties by reduction to CHC-
SAT. We start with the simpler case of k-safety properties, followed by the more
general case of ∀∗∃∗ hyperproperties.

2.1 Motivating Example

As a means for highlighting the challenges in verifying hyperproperties, and, in
particular, in reducing the problem to CHC solving, we present the example
program squaresSum and its 2-safety specification from [41] in Fig. 1a. Given
positive integers a < b, the program computes the sum of squares of all integers
in the interval [a, b). squaresSum is monotone in the sense that as the input
interval increases, so does the output c. Formally, this is a 2-safety property that
requires that whenever two traces satisfy the pre-condition [a2, b2) ⊂ [a1, b1),
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they also satisfy the post-condition c1 > c2, where variable indices correspond
to the traces that they represent. This is a special case of k-safety, where the
relational property is checked at the end of the executions. More generally, we
consider k-safety properties where the relational property is specified at desig-
nated observation points (explained in Sec. 3).

To verify the 2-safety property, a prominent approach is to reduce the prob-
lem to a regular safety verification problem by composing the program with
itself (known as “self composition”). There are (infinitely) many possibilities
for aligning the traces in the composed system, and the alignment chosen has
direct impact on the complexity of the inductive invariant needed to establish
safety. For example, if the two traces of squaresSum are aligned in lockstep,
then initially c1 = c2, after one step, c1 < c2, and only later on, c1 > c2. Show-
ing that c1 > c2 at the end requires tracking the difference c1 − c2, which is
a complex value because it involves the sum of squares itself. This cannot be
captured by an inductive invariant in first-order logic using theories currently
supported by automated solvers (e.g., linear arithmetic) and is therefore beyond
reach for state-of-the-art solvers. On the other hand, if the second trace, whose
input is the smaller interval, “waits” for a1 and a2 to coincide before proceeding
in lockstep, then the property that c1 > c2 becomes inductive (except for the
first step), greatly simplifying the inductive invariant. It is therefore important
to consider the alignment and the (relational) inductive invariant together.

The requirements that the alignment and inductive invariant need to satisfy
can be formulated in first-order logic [41]. To do so, we denote the program
variables by V = ⟨a, b, c⟩. We express the initial states and program steps as

formulas over V (and primed variant V ′) : Init(V )
△
= a > 0 ∧ b > a ∧ c = 0,

Tr(V, V ′)
△
= a < b ∧ c′ = c + a · a ∧ a′ = a + 1 ∧ b′ = b. To reason about two

traces, we use two copies of V , denoted V1 and V2. We introduce “unknown”
predicates Inv , A{1}, A{2}, A{1,2} over ⟨V1, V2⟩ to capture the inductive invariant
and desired alignment of the traces. {Au}u define an arbiter that, when Au is
satisfied, schedules the steps of the traces according to u (for example, schedule
u = {1} stands for a step in trace 1 and a stutter in trace 2). The arbiter
therefore determines the alignment of the traces. The inductive invariant Inv
relates states of the two copies of the program, making it relational.

The problem of searching for the alignment and the inductive invariant si-
multaneously is then posed as a satisfiability problem (modulo the theory of
arithmetic) of the formulas in Fig. 1b. To ensure that the arbiter, which deter-
mines the alignment, does not avoid violations of the post-condition by making
one of the traces stutter forever s.t. it never reaches its final state, formulas 5-7
require that the arbiter only schedule a trace if it has not exited the loop, unless
both traces exited the loop (in which case both are scheduled). This “validity”
requirement means that, at the latest, the arbiter must schedule a trace when
the other reaches the final state. Formulas 1-4 then ensure that all states that
are reachable, subject to the steps permitted by the arbiter, must satisfy Inv .
Specifically, the first formula ensures the initiation condition of the inductive in-
variant: the invariant satisfies the pre-condition and includes all the initial states
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of the composed system. Formulas 2-4 ensure the consecution of the invariant
under every choice the arbiter makes. The 8th formula ensures the safety of the
invariant and the last formula mandates that there is always at least one choice
that is enabled, and that the system never reaches a “stuck” state.

An interpretation for the unknown predicates Inv , A{1}, A{2}, A{1,2} defines
an arbiter and a corresponding inductive invariant. A possible solution is

A{1}(V1, V2)
△
= a1 < a2 ∨ (b2 ≤ a1 < b1) A{2}(V1, V2)

△
= ⊥

A{1,2}(V1, V2)
△
= (a1 = a2 ∧ a1 < b2) ∨ a1 ≥ b1

Inv(V1, V2)
△
= 0 < a1 ≤ b1 ∧ 0 < a2 ≤ b2 ∧

(
(a1 < a2 ∧ c1 ≥ c2) ∨ (a1 ≥ a2 ∧ c1 > c2)

)
This solution captures the arbiter that makes the second trace wait until

a1 = a2, then makes both traces proceed together until the second one exits its
loop, in which case the first trace continues to execute alone until it also exits
its loop and both traces are again (vacuously) scheduled together. The solution
to Inv captures the corresponding inductive invariant previously discussed.

2.2 Challenges in Encoding Hyperproperty Verification as
CHC-SAT

The formulas of Fig. 1b, with the exception of the last one, are constrained
Horn clauses. That is, when the implications in these formulas are converted to
disjunctions, at most one predicate application appears positively in each clause.

Alas, the presence of the last formula precludes direct application of exist-
ing CHC solvers. The problem is the disjunction on the right hand side of the
implication. Such a disjunction appears to be crucial for a correct encoding of
the problem. The reason is that uninterpreted predicates designate semantic re-
lations. With such predicates denoting the choice of schedule, it is easy to drop
into a vacuous solution where some states have no corresponding choice and are
essentially “stuck”, unsoundly making a post-condition violation unreachable.
Encoding the requirement that every state have a schedule results in a clause
with multiple occurrences of positive literals, capturing inherent disjunctions
over the possible choices, which are not Horn. In particular, these disjunctions
cannot be eliminated by renaming [37].

Previous works tackled this obstacle either by employing explicit enumeration
of alignments that satisfy the non-Horn clause to avoid the disjunction [41], or by
developing specialized techniques that are able to handle such disjunctions [45].

2.3 Our Approach: Transformation to CHC

In this paper, we show that the problem of searching for an alignment together
with a (relational) inductive invariant can be encoded using CHCs, allowing us
to reduce the problem to CHC-SAT, without fixing the alignment a priori.

A key insight of our reduction to CHC-SAT is the use of “doomed” states
as a way to avoid the problematic disjunction over all choices of schedules. We
refer to a given state as “doomed” if it necessarily reaches a state that violates
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D{1}(V1,V2) ∧D{2}(V1,V2) ∧D{1,2}(V1,V2) ∧ Init(V1) ∧ Init(V2) ∧ a2 > a1 ∧ b2 < b1 → ⊥
¬(a1 ≥ b1 ∧ a2 ≥ b2 → c1 > c2) → D{1}(V1, V2)

¬(a1 ≥ b1 ∧ a2 ≥ b2 → c1 > c2) → D{2}(V1, V2)

¬(a1 ≥ b1 ∧ a2 ≥ b2 → c1 > c2) → D{1,2}(V1, V2)

¬(a1 < b1) → D{1}(V1, V2)

¬(a2 < b2) → D{2}(V1, V2)

¬(a1 < b1 ∧ a2 < b2) ∧ ¬(a1 ≥ b1 ∧ a2 ≥ b2) → D{1,2}(V1, V2)

D{1}(V
′
1 , V

′
2 ) ∧D{2}(V

′
1 , V

′
2 ) ∧D{1,2}(V

′
1 , V

′
2 ) ∧ Tr(V1, V

′
1 ) ∧ V2 = V ′

2 → D{1}(V1, V2)

D{1}(V
′
1 , V

′
2 ) ∧D{2}(V

′
1 , V

′
2 ) ∧D{1,2}(V

′
1 , V

′
2 ) ∧ V1 = V ′

1 ∧ Tr(V2, V
′
2 ) → D{2}(V1, V2)

D{1}(V
′
1 , V

′
2 ) ∧D{2}(V

′
1 , V

′
2 ) ∧D{1,2}(V

′
1 , V

′
2 ) ∧ Tr(V1, V

′
1 ) ∧ Tr(V2, V

′
2 ) → D{1,2}(V1, V2)

Fig. 2: CHC encoding of Fig. 1a.

the hyperproperty along every valid alignment (as opposed to some in the di-
rect encoding). Importantly, due to this conjunctive nature, doomed states lend
themselves to a Horn encoding. If an initial state is identified as doomed (i.e.,
the CHCs are unsatisfiable), then the property is violated and a counterexample
can be retrieved. Otherwise, if the set of initial states does not intersect the set
of doomed states, then the hyperproperty is proved. Moreover, given an inter-
pretation of the unknown predicates in which the initial states are not doomed,
an alignment and a corresponding inductive invariant can be retrieved.

Based on this insight, in Sec. 4, we develop a general transformation of formu-
las of a certain form, to an equi-satisfiable set of CHCs. Furthermore, we provide
a transformation of solutions between the two formulations (in both directions).
The first-order formulas to which the transformation is applicable follow the
overall structure of the formulas in Fig. 1b, but are somewhat more general.
For example, some of the unknown predicates may have additional arguments,
which turn out to be useful when considering a broader class of hyperproperties
beyond k-safety (∀∗∃∗).

In Sec. 5 we apply the transformation of Sec. 4 to reduce k-safety verification
to CHC-SAT. When applying the transformation on the formulas encoding our
running example (Fig. 1b), we obtain the set of CHCs depicted in Fig. 2 over
unknown predicates D{1}, D{2}, D{1,2}.

In the CHCs of Fig. 2, an unknown predicate Du represents states that are
“doomed” if schedule u is chosen. The first CHC requires that no initial state
that satisfies the pre-condition is completely doomed, i.e., for every such state
there is a schedule for which it is not doomed. The remaining CHCs encode the
properties of doomed states for each schedule. For example, the CHCs where
D{1} is in the head (right hand side of the implication) imply that a state is
doomed for schedule {1} if: (a) it violates the post-condition, (b) it already
exited the loop and hence trace 1 cannot be the only trace to be scheduled, or
(c) it is the pre-state of a transition taken by 1 leading to a post-state that is
doomed for every choice u.

A solution to the CHCs in Fig. 2 can be obtained from the solution to the

formulas in Fig. 1b by Du
△
= ¬(Inv ∧Au) for every u ∈ {{1}, {2}, {1, 2}}.

More generally, in Sec. 4, we show a bi-directional transformation of solutions.
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2.4 Beyond k-Safety

Our transformation to CHCs is not limited to an encoding of k-safety, but also
generalizes to hyperproperties that use ∀∗∃∗ quantification over traces, as pre-
sented in Sec. 6.

Hyperproperties with existential trace quantification become meaningful in
the presence of nondeterminism in the program. For an example of such a
property, consider a nondeterministic variant of squaresSum where the assign-
ment c += a * a is replaced by if (*) c += a * a. That is, the increment
of c may nondeterministically be skipped. We may now wish to verify that, if
[a2, b2) = [a1, b1), then for every trace from input [a1, b1) there exists a trace from
input [a2, b2) such that when both terminate, c1 ̸= c2. This is a ∀∃-hyperproperty.

To verify such properties, a “witness” function is needed to map the univer-
sally quantified traces to the corresponding existentially quantified traces such
that the body of the formula holds for the combination of the traces. Even if a
witness function is known, to verify that the combination of the traces satisfies
the body of the formula, we still need to find a proper alignment of the traces
and an inductive invariant. As in the case of k-safety, these components are all
interdependent, making it desirable to search for all of them together.

In general, the witness function for the existentially quantified traces may
need to depend on the full universally quantified traces. However, [8] defines a
sound but incomplete game semantics, in which the witness function essentially
constructs the existentially quantified traces step-by-step, in response to moves
of a “falsifier” who reveals the universally quantified traces step-by-step.

We show in Sec. 6.1 that the problem of searching for a step-by-step witness
function, an alignment and a (relational) inductive invariant can be encoded in
first-order logic, and the encoding is amenable to our transformation to CHCs.
This results in a sound and complete CHC encoding of the game semantics of [8]
for transition systems whose branching degree is bounded by a constant, which
we henceforth refer to as “finite branching”.

The idea in the ∀∗∃∗-first-order encoding is to let the unknown predicates
Au specify not only the schedules chosen by the arbiter but also the choice of
existentially quantified traces for the witness function. To do so, we assign a
unique label to each of the possible transitions, and use these labels to identify
the transitions along the traces. In this encoding, instead of u denoting a schedule
only, it now denotes both a schedule and a choice of labels identifying the next
transitions in the existentially quantified traces according to the witness function.
Furthermore, the Au predicates receive additional arguments that represent the
next labels along the universally quantified traces.

For example, in the nondeterministic variant of squaresSum, there are at
most two possible transitions in each control location. We therefore introduce
two labels to distinguish between these possibilities: i for “increment” and s for
“skip”. The predicates that describe the schedules and the choices of existentially
quantified traces for the ∀∃-hyperproperty of interest are:

A{1},i, A{2},i, A{1,2},i, A{1},s, A{2},s, A{1,2},s.
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They are defined over ⟨V1, V2, a⟩, where a ranges over the possible labels.
Note that in this encoding, the Au predicates are no longer defined over

⟨V1, V2⟩ only, but have additional arguments for the labels of the universally
quantified traces, while Inv does not. Thus, the reduction to CHCs applies our
transformation in a more general setting than Fig. 1b. Furthermore, since u
denotes both a schedule and a choice of labels for the existentially quantified
traces, the number of Au predicates depends on the number of labels. To ensure
that there are finitely many predicates, we require the transition system to have a
finite branching degree (otherwise, the space of possible labels becomes infinite).

Finally, in Sec. 6.2, we extend our approach to handle infinite (or unbounded)
branching in the transition system, which can result, for example, from reading
an input from an infinite domain. To do so, we introduce another first-order
encoding that roughly replaces the infinitely-many concrete choices of transi-
tions by finitely-many abstract choices. Unlike the cases of k-safety and ∀∗∃∗-
hyperproperties with finite branching, the resulting encoding is sound but in-
complete w.r.t. the game semantics. By applying our transformation, we obtain
a sound (albeit incomplete) reduction to CHC-SAT.

3 Background

We use first-order logic to model systems and their properties. Throughout the
paper, we fix a background first-order theory T and denote its signature by Σ.

Transition Systems A (symbolic, labeled) transition system is a tuple TS =
(V, a, Init ,Tr), where V is a vocabulary, i.e., a vector of (logical) variables, each
associated with a sort from Σ, denoting state variables; a is a label variable; Init
is a formula over Σ with free variables V , and Tr is a formula over Σ with free
variables V ∪ {a} ∪ V ′, where V ′ consists of the primed variants of V .

A state of TS is a valuation to V , and we denote by S the set of all such
valuations; L is the set of values that a can take, called labels; S0 ⊆ S is the set of
initial states, which consists of all valuations that satisfy Init , and R ⊆ S×L×S
is the transition relation, which consists of the valuations for the composite
vocabulary V ∪ {a} ∪ V ′ that satisfy Tr . For simplicity, we assume that R is
total, i.e., ∀s ∈ S ∃ℓ ∈ L, s′ ∈ S · (s, ℓ, s′) ∈ R3. We say that TS is deterministic
when ∀s ∈ S, ℓ ∈ L ·

∣∣{s′ |R(s, a, s′)}∣∣ = 1 and that it has finite branching when
L is finite. A trace of TS is an infinite sequence of states t = s0, s1, . . . such that
for every i ≥ 0 there exists ℓ ∈ L such that (si, ℓ, si+1) ∈ R. We denote by t[i]
the i’th state in t. We further denote the set of traces that start from a state s
by T(s), and the set of all traces of TS by T.

Hyperproperties and their specification. We consider a fragment of the relational
logic OHyperLTL [6] , which we call ∀∗∃∗-OHyperLTL with formulas of the form:

φ = ψ → ∀π1 : ξ1, . . . , πl : ξl · ∃πl+1 : ξl+1, . . . , πk : ξk · □ϕ
3 w.l.g.; Tr can always be replaced by Tr∨((∀a ∀V ′·¬Tr)∧V ′ = V ), which corresponds
to adding self loops to states that have no outgoing transition.

220 Shachar Itzhaky, Sharon Shoham, and Yakir Vizel



where πi are trace variables whose intended valuations are taken from T; ξi
are (non-temporal) formulas with free variables V that determine observation
points along the k traces, where the traces must synchronize; ψ is a pre-condition
that is assumed to hold initially; and ϕ needs to globally hold when all traces
reach the observation points (which they must synchronize on before moving
on). Vj denotes a copy of V where all variables are indexed by j. We refer to the
variables in Vj as the state variables of the j’th trace (namely, πj). When l = k,
i.e., all quantifiers are universal, φ is a k-safety property. A relational pre/post
specification, as used in our motivating example, is a special case of a k-safety
property where the observable points are the final states (which are augmented
with self loops). For example, Fig. 1a presents the ∀∗∃∗-OHyperLTL specification
of the motivating example. When l < k, the formula also includes existential
quantifiers, extending expressiveness to include some hyperliveness properties.
An example of a security hyperliveness property that can be expressed in ∀∗∃∗-
OHyperLTL is generalized non-interference (GNI) [38]. GNI requires that for
any two traces π1 and π2 there exists a trace π3 whose high (secret) inputs agree
with π1 and whose low (public) inputs and outputs agree with π2.

∀∗∃∗-OHyperLTL formulas are interpreted over transition systems. Intu-
itively, φ holds in a transition system if from every k initial states that jointly
satisfy the pre-condition ψ, for every l traces from the first l states there exist
corresponding k−l traces from the remaining k−l states s.t. the composed states
of all traces globally satisfy ϕ, when the traces are projected to their observation
points. Formally, given a transition system TS and φ as above, we refer to a tu-
ple (s1, . . . , sk) of k states of TS as a composed state. A composed state defines
a valuation to V1 ∪ . . . ∪ Vk, where sj is the valuation of Vj . A composed state
is initial if si ∈ S0 for every 1 ≤ i ≤ k. We say that TS |= φ if for every initial
composed state s = (s1, . . . , sk) such that s |= ψ the following holds: for every
t1, . . . , tl ∈ T(s1) × · · · × T(sl) there exist tl+1, . . . , tk ∈ T(sl+1) × · · · × T(sk)
such that (|t1|)ξ1 , . . . , (|tk|)ξk |= □ϕ, where (|ti|)ξi is the projection (filtering) of
trace ti to states satisfying ξi. The semantics of □ϕ is that t′1, . . . , t

′
k |= □ϕ iff

∀i ≤ min(|t′1|, . . . , |t′k|) · (t′1[i], . . . , t′k[i]) |= ϕ. Note that the semantics is oblivious
to the transition labels since labels are only implicit in traces. Labels become
useful in Sec. 6, where we use them to identify transitions along traces.

Remark 1. To simplify the presentation we consider hyperproperties defined
w.r.t. a single transition system. The extension to multiple transition systems is
straightforward. Similarly, □ϕ can be generalized to any temporal safety prop-
erty via the standard automata-theoretic approach to model checking.

Constrained Horn Clauses (CHCs) are defined over a signature Σ′ that extends
Σ with a set P of (uninterpreted) predicates. Symbols in Σ are called interpreted,
while the predicates in P are uninterpreted (sometimes called unknown). First-
order formulas over Σ are called constraints. A CHC is a first-order formula
of the form ∀X ·

∧
i Pi(Xi) ∧ φ(X ) → H(XH) where X is a vector of (logical)

variables; Pi ∈ P (not necessarily distinct, i.e., it is possible that Pi1 = Pi2 for

Hyperproperty Verification as CHC Satisfiability 221



α(V) → Inv(V)
Inv(V) ∧ β(V) → ⊥

∀ Inv(V) ∧Au(V,W) ∧ γu(V,W) → ⊥
∀ Inv(V) ∧Au(V,W) ∧ δu(V,V ′,W) → Inv(V ′)

Inv(V) →
∨
u∈U

Au(V,W)

(a)

∧
u∈U

Du(V,W) ∧ α(V) → ⊥

∀ β(V) → Du(V,W)

∀ γu(V,W) → Du(V,W)

∀
∧

u′∈U

Du′(V ′,W ′) ∧ δu(V,V ′,W) → Du(V,W)

(b)(
∀ = ∀u ∈ U

)
Fig. 3: Formula scheme before (a) and after (b) the transformation.

i1 ̸= i2); H is either ⊥ or a predicate from P; Xi,XH ⊆ X ; and φ is a constraint.
The universal quantification over X is often omitted.

A set of CHCs (or, more generally, first-order formulas) is satisfiable (modulo
T ) if it has satisfying model M such that the projection of M onto Σ is a model
of T . A solution to a set of CHCs maps every predicate in P to a formula over
Σ that defines it such that substituting all occurrences of the predicates by their
definitions results in formulas that are valid modulo T . If a set of CHCs has a
solution then it is satisfiable. However, the converse may not hold due to the
limited expressive power of first-order formulas.

4 General Transformation to CHCs

In this section we describe a satsifiability-preserving transformation that lets
us convert a set of formulas, which adheres to a specific FOL scheme, to an
equi-satisfiable set of CHCs. An extended version, with step-by-step details of
the transformation, appears in [34]. Later we show how verification of a ∀∗∃∗-
OHyperLTL property can be captured by a set of formulas of the aforementioned
scheme, where this transformation allows us to then reason about the correctness
of the ∀∗∃∗-OHyperLTL property by deciding the satisfiability of the CHCs.

Consider the scheme in Fig. 3a for a set of formulas over a signature Σ′

that extends the signature Σ of the background theory by unknown predicates
Inv and {Au}u∈U , for some finite set U . V,V ′,W denote disjoint vocabularies,
i.e., vectors of (logical) variables that are implicitly universally quantified. A row
prefixed by ∀ indicates |U | formulas, where u is substituted by all corresponding
values from U . α, β, γu, δu designate constraints (no occurrence of Inv or Au).

At a high level, formulas 1 and 4 in Fig. 3a use Inv to capture an inductive
invariant of the “states” (valuations to V) reachable from α by “transitions” of
δu, restricted according to a choice u ∈ U of an “arbiter” {Au}u. Formula 2
establishes the fact that the reachable states are disjoint from some “bad states”
β. Formulas 3 allow to enforce that the arbiter meets certain requirements, and
formula 5 ensures that the arbiter makes a choice for every “state” in Inv .

Example 1. For our running example, we have V = ⟨V1, V2⟩ = ⟨a1, b1, c1, a2, b2, c2⟩,
V ′ = ⟨V ′

1 , V
′
2⟩ = ⟨a′1, b′1, c′1, a′2, b′2, c′2⟩, and W = ⟨⟩ (The extra vocabulary W will
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come into use later in the paper). U is the set of arbitration choices {{1}, {2}, {1, 2}},
and the corresponding completion of the constraint holes α, β, γu, δu is easily dis-
cernible. (Note that a constraint on the right of → corresponds to its negation
on the left.)

Note that the last formula in Fig. 3a is not a CHC since its head is a dis-
junction of unknown predicates. To remedy this shortcoming, we transform the
formulas in Fig. 3a into the set of CHCs in Fig. 3b. The CHCs obtained for
the running example are included in the extended version of the paper [34]. The
transformation ensures:

Theorem 1. The set of formulas in Fig. 3a is equi-satisfiable to the system of
CHCs in Fig. 3b. Furthermore, there is an efficient translation of models of the
former to models of the latter, and vice versa.

Proof. The extended version of the paper [34] includes a stepwise transforma-
tion that shows how the CHCs in Fig. 3b are obtained from the formulas in
Fig. 3a, where each step preserves equi-satisfiability and models. Here, due to
space constraints, we only describe the final translation between models, which
we have verified with Z3:

Given Inv , Au |= [Fig. 3a] Given Du |= [Fig. 3b]

Du(V,W)
△
= ¬(Inv(V) ∧Au(V,W)) Inv(V) △

= ∀W ·
∨

u∈U ¬Du(V,W)

Au(V,W)
△
= ¬Du(V,W)

5 Encoding k-Safety Verification as CHCs

In this section we address the problem of verifying k-safety properties via a
CHC encoding. To this end, we start with a natural, non-Horn, encoding of the
problem, as described in the previous section and previous works [41,45,8], and
apply our transformation to obtain an equi-satisfiable system of CHCs.

Consider the k-safty formula: φ = ψ → ∀π1 : ξ1, . . . , πk : ξk · □ϕ
This formula holds in a transition system TS if, starting from initial composed
states that satisfy the pre-condition ψ, the observable states along every tuple of
k traces satisfy ϕ, when the observable states are reached synchronously. Note
that a pre-post specification, as used in our motivating example, is a special
case of such a formula where the observable states are the final states. Verifying
φ corresponds to finding (1) an alignment of the traces that synchronizes the
observation points defined by ξ1, . . . , ξk, and (2) an inductive invariant that es-
tablishes that ϕ holds whenever ξ1, . . . , ξk hold. Note that the invariant needs to
be inductive along the aligned traces, including intermediate states between ob-
servable points. As different alignments give rise to different inductive invariants,
it is desirable to find both of them simultaneously [41].

As before, we model the alignment using an arbiter that schedules a subset
∅ ̸=M ⊆ {1, . . . , k} of the traces to make a step based on the current composed
state s1· · · sk. The arbiter may be nondeterministic, but it must choose at least

Hyperproperty Verification as CHC Satisfiability 223



∧
i Init(Vi) ∧ ψ(V) → Inv(V)
Inv(V) ∧ Bad(V) → ⊥

∀ Inv(V) ∧AM (V) ∧ ¬validM (V) → ⊥
∀ Inv(V) ∧AM (V) ∧ δM (V,V ′) → Inv(V ′)

Inv(V) →
∨
M

AM (V)

(a)

∧
M

DM (V) ∧
∧
i

Init(Vi) ∧ ψ(V) → ⊥

∀ Bad(V) → DM (V)
∀ ¬validM (V) → DM (V)
∀

∧
M′

DM′(V ′) ∧ δM (V,V ′) → DM (V)

(b)

(
∀ = ∀M

)
Fig. 4: k-safety formula scheme before (a) and after (b) the transformation.

one set M . Furthermore, the arbiter must respect the synchronization of the
observation points: it must not let a trace proceed beyond its observation point
before the other traces reached theirs. This motivates the following definition.

Definition 1 (valid schedules). M is a valid schedule for a composed state
s1· · · sk if either of the following two conditions holds:
1. ∀i ∈M · si ̸|= ξi 2. ∀i ∈M · si |= ξi and M = {1, ..., k}.

Intuitively, the observation points act as a “barrier”. All traces must reach
the observation point before any of them can progress past it; and when they
do, they do it simultaneously.4

To reason about composed states, we define a vocabulary V = V1 ∪ . . . ∪ Vk
that consists of the set of state variables of all traces. We encode the arbiter
using a family of unknown predicates {AM (V)}M for every ∅ ̸=M ⊆ {1, . . . , k}
and the inductive invariant using an unknown predicate Inv(V). We express the
situation where all traces reach an observable state but ϕ does not hold using

the constraint: Bad(V) △
=

∧
i ξi(Vi) ∧ ¬ϕ(V). The joint steps of the traces as

determined by the schedule M are given by the following constraint:

∆M (V,V ′, a1, . . . , ak)
△
=

∧
i∈M Tr(Vi, ai, V

′
i ) ∧

∧
i ̸∈M Vi = V ′

i

δM (V,V ′)
△
= ∃a1, . . . , ak ·∆M (V,V ′, a1, . . . , ak)

Note that the label variables are existentially quantified5, indicating that any
labeled transition can be used. The definition of a valid schedule is captured by:

validM (V) △
=

{∧
i∈M ¬ξi(Vi) M ̸= {1, . . . , k}(∧
i∈M ¬ξi(Vi)

)
∨
(∧

i∈M ξi(Vi)
)

M = {1, . . . , k}
(1)

Fig. 4a formalizes the joint requirements of the arbiter and the inductive in-
variant that ensures that φ holds. The following theorem summarizes the sound-
ness of the encoding, which is a slight generalization of the encoding in [41]
(where only pre/post specifications are considered):

4 The requirement that all traces leave the observation point in tandem saves the need
to record which of them already made a step since the last observation point.

5 Since δM appears on the left-hand side of an implication, existential quantifiers can
be pushed outside as universal quantifiers, resulting in quantifier-free bodies.
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1 sum = 0;
2 b = *;
3 if (b > 0) {
4 i = 0;
5 while (i < n - 1) {
6 sum = sum + A[i];
7 i++;
8 }
9 }

10 else {
11 i = 1;
12 while (i < n) {
13 y = *;
14 sum = sum + A[i] + y;
15 i++;
16 }
17 }

(A1 = A2 ∧ n1 = n2) → ∀π1 : pc = 5 ∃π2 : pc = 5∨ pc = 12 ·□(b2 ≤ 0∧ sum1 = sum2)

Fig. 5: Example for a ∀∃ hyperproperty.

Theorem 2. The set of formulas in Fig. 4a is satisfiable iff TS |= φ.

Example 2. Applying the scheme of Fig. 4a to the program and ∀∗∃∗-OHyperLTL
specification of the 2-safety property from Fig. 1a results in Fig. 1b, except for
moving constraints to the right hand side of the implication when it assists
readability. Note that in this example, the observation points ξi of both traces
correspond to the condition for exiting the loop (which is the negated loop con-

dition). As a result valid{i}
△
= ai < bi for i ∈ {1, 2} and valid{1,2}

△
= (a1 <

b1 ∧ a2 < b2) ∨ (¬(a1 < b1) ∧ ¬(a2 < b2)).

The set of formulas in Fig. 4a fits the general scheme of Fig. 3a; Thus, it
is amenable to our general satisfiability-preserving transformation, the CHCs
in Fig. 4(b). Since the transformation is satisfiability preserving, we obtain the
following as a corollary of Thm. 1 and 2:

Corollary 1. The system of CHCs in Fig. 4b is satisfiable iff TS |= φ.

Where AM (V) in Fig. 4a describes the states where choosing schedule M
leads to successful verification with Inv as an inductive invariant, DM (V) in
Fig. 4b can be understood as describing states where choosing M would prevent
the verification from going through in the sense that no inductive invariant
would exist. In other words, these states are “doomed” if M is chosen, hence
the choice of notation. If the set of CHCs in Fig. 4b is satisfiable, it proves that
initial states that satisfy the pre-condition are not doomed. This intuition can
be interpreted in a dual manner: if the initial states are not doomed, then there
exists an alignment for which a safe inductive invariant exist.

6 Encoding ∀∗∃∗ Hyperproperties as CHCs

In this section we consider the more general case of ∀∗∃∗-OHyperLTL specifi-
cations. Throughout the section, TS is a transition system, and we fix a formula:

φ = ψ → ∀π1 : ξ1, . . . , πl : ξl · ∃πl+1 : ξl+1, . . . , πk : ξk · □ϕ
In order to encode the problem of deciding if TS |= φ as a satisfiability

problem, we follow [8], and consider a game semantics, which is natural due
to the alternation of quantifiers. The ∀ and ∃ quantifiers are “demonic” and
“angelic”, thus controlled by the falsifier and the verifier, respecitvely.
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In the following, we introduce the game semantics of [8] for ∀∗∃∗-OHyperLTL.
We then encode truth of φ in TS under the game semantics as a satisfiability
problem, and use the transformation from Sec. 4 to obtain a system of CHCs
that is satisfiable iff TS satisfies φ according to the game semantics.

Example 3. To illustrate the game semantics, we use the example in Fig. 5, which
accompanies this section. The presented program computes the sum of an array
slice, nondeterministically choosing between the slice A[0..n−2] and A[1..n−1].
For the second variant, an arbitrary integer can be added to each summand.
This allows the program to fulfill the specification at the bottom, which requires
that for every execution there is a corresponding execution of the second variant
(where b2 ≤ 0) such that the sums at lines 5 and 12 align at every iteration. The
specification is valid because y at line 13 can always be chosen to compensate
for the deviation due to the index i not being the same.

Considering the game semantics, the falsifier first has to choose a value for
b, which can be either positive or nonpositive. If it is nonpositive, then the

verifier wins the game vacuously because ξ1
△
= (pc = 5) is never reached. If the

choice is positive, then the verifier must choose nonpositive to satisfy b2 ≤ 0
from the specification. In subsequent steps, the verifier must select a scheduling
that will align pc1 = 5 and pc = 12 at every iteration, and select a value for
y such that after both assignments (lines 6 and 14) sum1 = sum2 is satisfied.
When following these choices, the verifier manages to satisfy sum1 = sum2 at
all observation points, which gives it a winning play.

Safety games are played between a verifier, whose goal is to avoid bad states,
and a falsifier who tries to reach a bad state. Formally, the game is a tuple
G = (VS ,FS , S0, δV , δF , B) where VS are verifier states, in which the verifier
moves, and FS are falsifier states, in which the falsifier moves, and VS∩FS = ∅.
The game states are S = VS ∪ FS . S0 ⊆ S is a set of initial states, and B ⊆ S
is a set of bad states. δV ⊆ VS ×S defines the possible moves of the verifier and
δF ⊆ FS × S—of the falsifier. It is assumed that δV , δF are total i.e., there is at
least one move for each player from every state. A play is a sequence of game
states σ0, σ1, . . . such that σ0 ∈ S0, and for every i ≥ 0, (σi, σi+1) ∈ δV ∪ δF .
The play is winning for the verifier if it is infinite and σi ̸∈ B for every i ≥ 0.
A (memoryless) strategy for the verifier is a function χ : VS → S such that
(σ, χ(σ)) ∈ δV for every σ ∈ VS . χ is a winning strategy for the verifier if all the
plays in which the verifier moves according to χ are winning for the verifier.

Game semantics for ∀∗∃∗-OHyperLTL Let φ be as above. The game that cap-
tures the semantics of φ is defined with respect to a deterministic labeled transi-
tion system TS = (V, a, Init ,Tr). (We can always determinize TS by extending
the set of labels without affecting the semantics; this step may introduce in-
finitely many labels, which do not require any special treatment in the definition
of the game, but whose CHC encoding will be addressed in Sec. 6.2.)

The game for φ and TS proceeds in rounds, where in each round the falsifier
makes a move and the verifier responds. The falsifier states are composed states
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(of k traces), and the verifier states augment them with a record of the falsifier’s
last move. The bad states are falsifier states where all traces are in their obser-
vation points but ϕ does not hold. The falsifier is responsible for choosing the
transitions that define the ∀ traces t1..l assigned to π1..l. The verifier responds by
choosing the transitions of the ∃ traces tl+1..k assigned to πl+1..k. Here the labels
of the transitions come into play: the players specify the transitions of choice by
picking a label ℓ ∈ L for each trace. (Since TS is deterministic, transitions are
uniquely identified by labels.) The traces then need to be aligned s.t. they syn-
chronize on their observation points defined by ξi. The alignment does not affect
the winner of the play, as long as it is a valid alignment. However, as in the case
of k-safety, the alignment is instrumental for obtaining a winning strategy that
has a simple description. As a result, the choice of the (valid) alignment is also
left to the verifier. Altogether, a move of the falsifier consists of picking labels
ℓl, . . . , ℓl ∈ L for the ∀ trace variables; a move of the verifier consists of picking a
valid subset ∅ ̸=M ⊆ {1, ..., k} of the traces to progress (as in Sec. 5) and also
labels ℓl+1, . . . , ℓk ∈ L for the ∃ trace variables, and proceeding to the resulting
composed state.6 In this manner, the verifier iteratively “reads off” the states
of t1..l, properly aligned, and generates the traces tl+1..k, while avoiding the bad
states. If the verifier can do so indefinitely, then this proves that φ holds.

Formally, the components of the game are as follows (here, M represents a
valid schedule according to Definition 1):

FS = Sk VS = Sk × Ll S0 = {s ∈ Sk0 | s |= ψ}
B = {s ∈ FS | s ̸|= ϕ and si |= ξi for every 1 ≤ i ≤ k}

δF = {(s, (s, ℓ∀)) | s ∈ FS , ℓ∀ ∈ Ll} δV = {((s, ℓ∀), s′) | s M,ℓ
⇝ s′ for ℓ∃ ∈ Lk−l}

The notation s
M,ℓ
⇝ s′ indicates that s′ is obtained from s by taking the tran-

sition with label ℓi from si whenever i ∈ M , and stuttering otherwise, where
ℓ = ⟨ℓ1, . . . , ℓk⟩. We refer to it as a transition of the composed system accord-
ing to schedule M labeled ℓ. The labels are split into ℓ∀ = ⟨ℓ1, .., ℓl⟩ and ℓ∃ =

⟨ℓl+1, .., ℓk⟩. Formally, s
M,ℓ
⇝ s′ ⇐⇒

∧
i∈M R(si, ℓi, s′i) ∧

∧
i ̸∈M si = s′i.

Example 4. In the example of Fig. 5, the labels of transitions are integer values
that reflect the choice of * at lines 2 and 13 (and have no effect on other states).
The verifier and falsifier specify their moves using these labels. For example, in
order to ensure that sum1 = sum2 is satisfied at every iteration, the verifier
selects a transition label ℓ = A[i− 1]−A[i] in line 13, which sets the value of y
accordingly; after both assignments at lines 6 and 14, sum1 = sum2 holds.

The game semantics of ∀∗∃∗-OHyperLTL is based on the winner in the veri-
fication game:

Definition 2 (Game Semantics for ∀∗∃∗-OHyperLTL [8]). Let TS be a
transition system and φ a ∀∗∃∗-OHyperLTL formula. TS satisfies φ according

6 In [8], steps of the verifier are split to two. Our definition is more precise in the sense
that a winning strategy in the game of [8] implies a winning strategy in our game.
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to the game semantics, denoted TS |=G φ, if the verifier has a winning strategy
in the verification game GTS ,φ.

Theorem 3 (as shown in [8]). If TS |=G φ then TS |= φ.

6.1 CHC Encoding of the Game with Finite Branching

To encode the verification game for φ and TS , we introduce unknown predi-
cates {Au}u∈U that describe the strategy of the verifier as well as an unknown
predicate Inv that encodes an inductive invariant that ensures that the strat-
egy is winning. We first consider the case where the set of labels L is finite,
i.e., TS has a finite branching. This makes it possible to define U as the set
of all possible concrete choices of the verifier and introduce a predicate Au per
every possible choice of the verifier. To do so, we define U = M × Lk−l, where
M = P({1, . . . , k})\{∅} is the set of possible schedules, and Lk−l are the choice
labels for constructing the traces assigned to {πi}i=l+1..k. Note that U is finite
in this case. For each u = ⟨M, ℓ∃⟩ ∈ U , the predicate Au describes the verifier
states in which the verifier chooses u for its move. Recall that verifier states
consist of both the previous state of the verifier, captured by the composed state
vocabulary V defined as before, and the last move of the falsifier, captured by
label variables ⟨a1, . . . , al⟩. We denote L∀ = ⟨a1, . . . , al⟩, L∃ = ⟨al+1, . . . , ak⟩ and
L = L∀ ∪ L∃ = ⟨a1, . . . , ak⟩. Then, the Au predicates are defined over V ∪ L∀.
The Inv predicate is defined over V only, as it describes a set of falsifier states.

The formulas in Fig. 6a formalize the requirements that ensure that {Au}u
defines a winning strategy for the verifier, while accounting for the alternating
choices of the falsifier (ℓ∀) and verifier (⟨M, ℓ∃⟩) in every round, where

∆M (V,V ′,L) =
∧

i∈M Tr(Vi, ai, V
′
i ) ∧

∧
i ̸∈M Vi = V ′

i

δM,ℓ∃(V,V ′,L∀) = ∆M (V,V ′,L)
[
L∃ 7→ ℓ

′]
Bad(V) =

∧
i ξi(Vi) ∧ ¬ϕ(V)

∆M is the formula expression of
M,ℓ
⇝ from above. That is, s, s′, ℓ (valuations

to V,V ′,L) satisfy ∆M if the composed system according to M has a transition
from s to s′ labeled ℓ. δM,ℓ∃ is then the projection of ∆M to a concrete choice

of labels ℓ∃ for the existentially quantified traces; the labels for the universals,
captured by L∀, remain free.

Theorem 4. The set of formulas in Fig. 6a is satisfiable iff TS |=G φ.

Proof. A solution for Fig. 6a induces a winning strategy χ for the verifier in
the game for φ and TS : χ(s, ℓ∀) = s′ for s |= Inv , where s′ is reached by
choosing ⟨M, ℓ∃⟩ (i.e., s, s′, ℓ∀ |= δM,ℓ∃) such that s, ℓ∀ |= AM,ℓ∃ ; such s′ must
exist because the last formula states that there must always be a choice for
the verifier in falsifier states that satisfy Inv . For s ̸|= Inv , χ(s, ℓ∀) is defined
arbitrarily. In the other direction, given a winning strategy for the verifier, we
define the interpretation of Inv to be its winning region and the interpretation
of AM,ℓ∃ to consist of the falsifier states (s, ℓ∀) where the strategy chooses s′

such that s, ℓ∀ |= AM,ℓ∃ .
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∧
i Init(Vi) ∧ ψ(V) → Inv(V)
Inv(V) ∧ Bad(V) → ⊥

∀ Inv(V) ∧AM,ℓ∃(V,L
∀) ∧ ¬validM (V) → ⊥

∀ Inv(V) ∧AM,ℓ∃(V,L
∀) ∧ δM,ℓ∃(V,V

′,L∀) → Inv(V ′)

Inv(V) →
∨

⟨M,ℓ∃⟩∈U

AM,ℓ∃(V,L
∀)

(a)∧
⟨M,ℓ∃⟩∈U

DM,ℓ∃(V) ∧
∧
i

Init(Vi) ∧ ψ(V) → ⊥

∀ Bad(V) → DM,ℓ∃(V)
∀ ¬validM (V) → DM,ℓ∃(V)
∀

∧
⟨M′,ℓ′∃⟩∈U

DM′,ℓ′∃(V
′) ∧ δM,ℓ∃(V,V

′) → DM,ℓ∃(V)

(b)

Fig. 6: A game formula scheme before (a) and after (b) the transformation, where
∀ = ∀⟨M, ℓ∃⟩ ∈ U .

Remark 2. For k-safety properties, the encoding in Fig. 6a, based on the game
semantics, is equivalent to the encoding in Fig. 4a (Sec. 5). In particular, in this
case, the set L∃ is empty, which means that ℓ∃ = ⟨⟩, resulting in a game with
finite branching, namely only the choices of the schedule M . Note that for such
properties, the benefits of the game semantics are less obvious since if TS |= φ,
then every strategy is winning for the verifier.

Encoding safety games in general The game encoding in Fig. 6a and Thm. 4
are stated here for the specific safety games corresponding to ∀∗∃∗-OHyperLTL
verification in order to avoid additional notational burden. However, the result is
applicable to a more general class of safety games where the moves of the players
are organized in rounds, each of which comprises of a move of the falsifier,
followed by a move of the verifier. Furthermore, the states of the verifier are
“intermediate states” defined as VS = FS × Ω, where Ω is a set of auxiliary
states used to record the last falsifier move. The initial and bad states are falsifier
states. The verifier moves to a new state according to the previous state together
with the auxiliary state, while the falsifier is only allowed to choose the auxiliary
part of the state. Therefore, δF ⊆ {⟨ŝ, ⟨ŝ, ω⟩⟩ | ŝ ∈ FS , ω ∈ Ω}. The encoding
extends to such games, where Init(Vi) ∧ ψ(V) is replaced by an encoding of S0;
Bad is replaced by an encoding of B; δM,ℓ∃(V,V ′,L∀) is replaced by an encoding
of δV ◦ δF as a formula where the falsifier state variables and the choices of the
falsifier are free, and validM (V) is replaced by a guard encoded over the same
free variables that ensures that the verifier step is applicable. Accordingly, our
subsequent results (including the CHC encoding) extend to any such game.
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Applying our transformation to the formulas in Fig. 6a results in the CHCs
in Fig. 6b. Intuitively, AM,ℓ∃ describe the winning strategy for the verifier: for
“safe” states, represented by Inv , and given a move made by the falsifier, if the
verifier chooses to move according to ⟨M, ℓ∃⟩, then it stays in the “safe” region.
In contrast, DM,ℓ∃ represents “doomed” states. Namely, if the verifier chooses

to move according to ⟨M, ℓ∃⟩ from a state in DM,ℓ∃ , then the falsifier can force
reaching a bad state for every choice of the verifier in the next steps of the game.

Corollary 2. The set of CHCs in Fig. 6b is satisfiable iff TS |=G φ.

Example 5. The example in Fig. 5 fits the case of finite branching if we assume
that the integer values in the array A and those of sum and t are bounded modulo
2m, and so are the labels L. This means that the falsifier has 2m possible steps at
each game state, and the verifier has 3 ·2m (3 is the number of possible schedules
out of {1, 2}). In the next subsection we explain how to encode the problem when
the integers are considered to be unbounded.

6.2 CHC Encoding of the Game with Infinite Branching

The set of formulas in Fig. 6a, and the corresponding system of CHCs in Fig. 6b
is well defined when the set U is finite. However, if L is infinite, so is U . In this
case, instead of using Lk−l to specify the traces chosen by the verifier, we define
a finite, abstract set of composed labels, denoted L♯, to be used by the verifier
(the falsifier will continue to use the concrete labels to specify his transitions of
choice). Each abstract label in L♯ is a relational predicate p with free variables V
(the composed vocabulary) that relates the states of different traces. Thus, the
vector of individual existential choices ℓ∃ of the verifier is now replaced with a
single choice of a (relational) predicate p ∈ L♯ over all the copies. In contrast to
the use of concrete labels to specify the (unique) next transition for each trace
individually, an abstract label p ∈ L♯ determines the next transitions for the ∃
traces by relating their post-states to the rest of the composed post-state.

Specifically, given a set of labels ℓ∀ for the ∀ traces and a schedule M , a
predicate p ∈ L♯ is used as a restriction (inspired by the homonymous concept
from [8]) of the transitions of the composed system according to schedule M
with ∀-choices ℓ, restricting the set of aforementioned transitions to those where
the composed post-state satisfies p.

Example 6. In Fig. 5, at line 13, a nondeterministic integer value is assigned
to variable t. Since the set of integers is infinite, assigning a unique label ℓ to
each integer results in an infinite set L. To specify the choices of the verifier,
we therefore define a finite set of abstract labels. An example of such a set is
L♯ = {sum1 = sum2, sum1 = y2, sum1 < y2, sum1 = sum2 + A2[i2] + y2}.The
restriction sum1 = sum2 can result in an empty set of transitions (we will return
to this point later in the section); but the restrictions sum1 = y2, sum1 < y2
and sum1 = sum2+A2[i2]+y2 always define a nonempty set of transitions when
pc2 = 13 and when a schedule {2} ⊆M is chosen: those transitions that choose a
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value for y2 such that the predicate holds after the transition; there is always at
least one such value. In fact, for sum1 = y2 and sum1 = sum2+A2[i2]+y2 there
is exactly one such value, while for sum1 < y2, the set of values (transitions) is
infinite. Note that there are transitions that are not selected by any restriction
(those that assign to y2 a value such that none of the predicates hold).

Thus, the abstract labels define a space of underapproximations of the transi-
tions of the composed system. This is an underapproximation since some (com-
binations of) individual transitions of TS may not be allowed by any p ∈ L♯.

The verifier uses p ∈ L♯ to specify the transitions of the traces assigned
to the existentially quantified variables πl+1..k. We then require that all of the
composed post-states reached by the verifier’s choice ⟨M,p⟩ are winning for the
verifier. This amounts to proving that all restricted traces satisfy □ϕ, which
would mean that there exist traces that do, as long as the restrictions do not
lead to an empty set of traces. Therefore, to ensure soundness of the encoding,
we require that the restrictions be nonempty. Nonemptiness of the restrictions
also ensures that the choices of the falsifier are never restricted, since the choices
of the falsifier are always singletons (based on the concrete labels).

Rather than limiting the set of predicates used as abstract labels, we ensure
nonemptiness by applying the restrictions only when the resulting set of transi-
tions is nonempty; otherwise, the full set of transitions is considered. Technically,
this is accounted for by special considerations in the construction of the CHC
encoding, as detailed below.

CHC encoding We adapt the formulas in Fig. 6a to the case of abstract labels.
We define U = M× L♯ . The formulas from Fig. 6a carry over, except that the
definition of δM,ℓ from the finite branching case is now replaced with δM,p, which
captures the transitions according to the abstract labels, as defined below.

For a schedule ∅ ̸=M ⊆ {1..k} and p ∈ L♯, we define allowedM,p, a formula
that is satisfied by s, ℓ∀ when some transition is possible from s with scheduling
M and ∀-choice ℓ∀ such that the target composed state satisfies p. This means
that the restriction to p is nonempty. δM,p then applies the restriction of the
composed post-state to p only when allowed (otherwise all transitions remain):

allowedM,p(V,L∀)
△
= ∃V ′,L∃ ·∆M (V,V ′,L) ∧ p(V ′)

δM,p(V,V ′,L∀)
△
=

(
∃L∃ ·∆M (V,V ′,L)

)
∧
(
allowedM,p(V,L∀) → p(V ′)

)
The resulting encoding is sound, but, unlike the case of finite branching, not
complete.

Theorem 5. If the set of formulas in Fig. 6a adapted to L♯ is satisfiable, then
TS |=G φ.

Example 7. Going back to the example in Fig. 5, choosing schedule M = {2}
and restriction ℓ♯ = (sum1 = sum2 + A2[i2] + y2) when pc2 = 13 ensures that
the unique value of y2 that satisfies the restriction is selected. With this value
chosen, the assignment of the next line will produce a value of sum2 that is
equal to that of sum1. This gives rise to the following winning strategy (at every

Hyperproperty Verification as CHC Satisfiability 231



iteration): (i) schedule {1} with any restriction until pc1 = 7; (ii) schedule {2}
until pc2 = 13, then schedule {2} again with ℓ♯ = (sum1 = sum2 +A2[i2] + y2),
then {2} again with any restriction; (iii) conclude the iteration by scheduling
{1, 2}. As explained, the inductive invariant sum1 = sum2 is preserved in this
behavior, and there are no “stuck” states (since, by construction of δM,p, empty
restrictions are lifted to the full set of transitions).

As a corollary of Thm. 5, satisfiability of the aforementioned formulas en-
sures that TS |= φ. To obtain an equi-satisfiable CHC encoding, we apply the
transformation of Sec. 4. The resulting CHC encoding consists of the formulas in
Fig. 6b adapted to use L♯ in the same way the formulas in Fig. 6a are adapted.

Corollary 3. If the set of CHCs in Fig. 6b adapted to L♯ is satisfiable, then
TS |=G φ.

7 Evaluation

We implemented our CHC-encoding approach in a tool called HyHorn, on top of
Z3 [23] (4.12.0) through its Python API, using Spacer [35,31] as a CHC solver.
HyHorn takes as input a CFG, or several CFGs, whose transitions are annotated
with two-vocabulary first-order formulas, and constructs a formula expressing
the transition relation Tr . The specification is provided as: (i) a quantifier pre-
fix ∀∀, ∀∃, or ∀∀∃, (ii) observation points ξi and (iii) safety condition ϕ that
must hold globally in all observations. From that, the CHC encoding (Sec. 5,
Sec. 6) is constructed and passed to Spacer for solving. HyHorn supports all
first-order theories supported by Spacer (in our experiments, we used the the-
ories of integer arithmetic and arrays). HyHorn further provides the option to
apply predicate abstraction with a user-provided set of predicates, same as [8].
The abstraction is incorporated into the CHC encoding using the implicit ab-
straction encoding [13]. Notably, many of the benchmarks shown here are solved
by HyHorn even without an abstraction, that is, directly over the concrete state.

In the area of hyperproperty verification, there are already several tools
present, and the objective of our evaluation is to compare with such. Still, the
field is not mature enough to have a standardized specification format (as is the
case with SMTLIB and SV-COMP, to name a few). As a result, each tool has
its own, opinionated, format, which varies from logical formulas to control-flow
graphs. This makes it technically difficult to compare results of multiple solu-
tions. In particular, benchmarks taken from previous work come in a range of
formats, dictated by the tools that introduced them. A few of the benchmarks
were translated by previous authors and, thanks to their efforts, are available
in more than one format. For the majority of them, manual work is required
for translating the benchmarks, and, more importantly, there is no one accepted
translation, and the translation can introduce artifacts in the evaluation.

This forced us to prioritize the comparisons in our experiments. We chose
to focus on comparison with the most closely related tools to our work. These
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k-safety HyHorn HyPA PCSat Pdsc
PA concrete

double square NI 0.56 — 67.0 — 6.8
double square NI ff 0.12 — 5.3 1.5 ✚
half square NI 0.30 0.30 63.0 13.4 3.4
squares sum 0.17 3.41 70.4 360.7 2.8
squares sum (simplified) 0.10 0.30 17.2 ✚ ✚
array insert 0.86 13.4 ✚ ✚ 18.5
array insert (simplified) 1.33 2.58 16.2 378.6 ✚
exp1x3 0.08 0.09 2.9 ✚ ✚
fig 3 [FV19] 0.03 — 7.9 ✚ ✚
fig 2 [BF22] 0.11 — 13.6 ✚ ✚
col item symm 0.49 0.49 14.9 ✚ ✚
counter det 0.46 — 6.2 ✚ ✚
mult equiv 0.29 — 14.2 ✚ ✚
mult equiv (simplified) 0.19 — 10.3 ✚ ✚
array int mod 0.13 — ✚ ✚ 58.2
mult dist [FV19] 2.25 — ✚ ✚ ✚

∀∗∃∗ HyHorn HyPA
PA concrete

non-det add 1.45 2.80 3.3
counter sum 0.09 — 4.0
async GNI 0.36 0.37 3.8
compiler opt 1 0.14 0.19 1.8
compiler opt 2 0.17 0.78 2.0
refine 0.18 0.29 4.0
refine 2 0.28 0.65 3.9
smaller 0.16 0.96 2.0
counter diff 0.17 — 6.8
fig 3 [BF22] 0.81 — 9.9
P1 (simple) 0.19 0.59 1.4
P1 (GNI) 0.26 0.75 138.7
P2 (GNI) 8.50 6.65 12.8
P3 (GNI) 0.32 0.20 4.6
P4 (GNI) 0.77 0.63 27.7

Table 1: Experimental results for k-safety properties. Time is measured in sec-
onds. “—” represents timeouts after 20 minutes. “/” denotes benchmarks not
present in the respective tool’s suite.
In benchmark names, [FV19] refers to [27]; [BF22] refers to [8].

are HyPA [8], Pdsc [41], and PCsat [45]. HyPA is the most recent tool, and has al-
ready collected benchmarks from various previous papers (includingWeaver [27]);
Pdsc and PCsat both use the same first-order encoding as our starting point and
thus are also relevant. HyPA’s benchmarks include, in particular, ∀∗∃∗ examples
such as GNI, and Pdsc targets non-trivial alignments, and, as such all of its
benchmarks have non-lockstep alignments.

Benchmarks For the evaluation of our approach we use the full sets of bench-
marks from HyPA [8] and Pdsc [41]. The benchmarks of HyPA are divided into
k-safety benchmarks, which are adopted from [43,27,41,45], and ∀∗∃∗ bench-
marks, which include refinement properties for compiler optimizations, general
refinement of nondeterministic programs and generalized non-interference (GNI).
For two benchmarks, we include both a simplified version as given in [8], as well
as the original example. The benchmarks of Pdsc include more non-lockstep ex-
amples, as well as all of the comparator benchmarks from [43]. The comparator
examples consist of both safe and unsafe instances. Weaver [27] considers 12
additional (sequential) k-safety benchmarks. As an additional test case, we man-
ually translated the running example from Weaver, which is a 3-safety property
with a nontrivial alignment, and tested it with HyHorn – HyHorn solved it in
2.25 seconds when provided with a few simple predicates (inequalities between
program variables). We believe that being the running example makes it a good
representative of the remaining 12. This brings our benchmark suite to a total
of 112 k-safety examples (16 in Table 1 plus 96 comparator benchmarks).

Experiments To demonstrate the effectiveness of HyHorn we compare to HyPA [8],
the most recent approach of formal verification of ∀∗∃∗-hyperproperties, which
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employs a construction using automata. To exhibit the benefits of the direct CHC
encoding we also compare the k-safety examples to PCSat [45] and Pdsc [41].
Both encode the k-safety problem using FOL formulas as in Fig. 4a. PCSat uses
a specialized solver for pfwCSP (a fragment of FOL that includes these formu-
las), while Pdsc solves the FOL formulas by enumerating alignments and using
a CHC solver for each alignment. We do not compare to game solvers since, as
reported by [8], state-of-the-art infinite-state game solvers, such as [26,2], which
work without user-provided predicates, are unable to solve the benchmarks we
consider.

We run HyHorn on the full set of benchmarks, and each of the other tools on
the ones included in their benchmark suite. This is because each tool has its own
input format: HyPA and Pdsc each has its own representation for the transition
system and the property; PCSat accepts pfwCSP instances that are constructed
manually. Some of the benchmarks are common to several tools.

All experiments are run on an AMD EPYC 74F3 with 32GB of memory.
HyPA and PCSat are executed in Docker using their published artifacts7.

Results The performance measurements of the tools for the k-safety benchmarks
and for the ∀∗∃∗ benchmarks are shown in Table 1. The results for the compara-
tor examples are deferred to the extended version of the paper [34]. HyHorn
is tested in two modes: with predicate abstraction (“PA”) and without (“con-
crete”). HyPA and Pdsc require predefined predicates (the same predicates are
used in all tools), while PCSat does not, but uses hints to solve ‘array insert’
and ‘squares sum’. HyHorn solves almost all of the benchmarks with PA in under
a second, outperforming previous approaches by up to two orders of magnitude;
and also solves most of the benchmarks quickly without PA, esp. the ∀∗∃∗ prop-
erties. In particular, HyHorn solves the two array benchmarks, while HyPA and
PCSat do not support arrays and only solve simplified versions with integers.
The runtime of HyHorn (both with and without predicates) on the comparator
examples is similar to the runtime of Pdsc (see [34]), where HyHorn solves some
benchmarks that Pdsc does not. (The other tools do not include these bench-
marks.) On the unsafe examples, HyHorn provides a concrete counterexample,
while Pdsc is only able to determine that there is no inductive invariant and
alignment expressible with the given set of predicates.

8 Related Work

There is a large body of work studying verification of hyperproperties. While ear-
lier verification techniques mostly focus on k-safety properties, or specific exam-
ples such as program equivalence, monotonocity, determinism [5,44,3,30,43,47]
[24,27,41,1], lately verification of non-safety hyperproperties has been studied
[4,16,45,7,8]. Below we discuss the works closest to ours.

7 We evaluated HyHorn in Docker as well. There were no meaningful differences in
runtime.
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k-Safety Automatic verification of k-safety properties can be achieved by re-
ducing the problem to a standard safety verification problem by means of self-
composition [5], product-programs [3], and their derivatives [47,24]. Recently,
however, it was identified that the alignment of the different copies has a sub-
stantial effect over the complexity of the verification problem [41,27,12]. Our
approach is most related to the technique of Shemer et al. [41], which uses a se-
mantic alignment that chooses which copy of the system performs a move based
on the composed state of the different copies. They suggest an algorithm that
iterates through the set of possible semantic alignments, such that in each itera-
tion a CHC solver tries to prove the property, with the chosen alignmnet, using
predicate abstraction. Unlike [41], HyHorn delegates the search for the alignment
to the CHC solver, together with the search for the invariant, making the algo-
rithm less dependent on predicate abstraction. Moreover, while [41] is restricted
to k-safety only, our technique can handle k-safety as well as the more general
∀∗∃∗-OHyperLTL.

∀∗∃∗ Hyperproprties Recently, verification of ∀∗∃∗ hyperproperties has been
studied, targeting both finite and infinite systems [45,16,8]. Unno et al. [45]
present an approach based on an encoding of hyperproperties verification as
satisfiability of formulas in FOL that extend Horn form with disjunctions, ex-
istential quantification and well founded relations. Deciding satisfiability of the
generated set of formulas is based on a variant of the CEGIS framework. Hy-
Horn is different as it encodes ∀∗∃∗-OHyperLTL verification as a set of CHCs,
which does not require a specialized solver and can use any off-the-shelf CHC
solver. Coenen et.al. [16] suggested a game-based approach for verification of
∀∗∃∗ properties over finite-state systems, which was then extended by Beutner
et al. [8] to handle infinite-state systems. Similarly to [8], we use game semantics
to solve ∀∗∃∗ problems, but do not require building the game-graph in order
to solve the game, instead reducing the game solution to satisfiability of CHCs.
It is important to note that in the case of infinite branching degree, while the
approach in [8] explicitly checks for emptiness of restrictions in hindsight, i.e.,
after they are used in a strategy, and removes them iteratively if needed, HyHorn
embeds the emptiness requirements into the set of CHCs. Recently, [7] extended
the game-based approach to use prophecy variables as a way to achieve com-
pleteness of the reduction to games. Extending our approach to this case is a
promising avenue for future research.

Relational CHCs [40] present a method for discovering relational solutions to
CHCs. Their setting is different: the inputs are CHCs that serve as the definition
of the transitions, and synchronization is between sets of unknown predicates;
at the current state, only lock-step semantics is considered. Furthermore, their
algorithm extends and modifies Spacer [35], while our approach can use any
CHC solver without modification.

Infinite-State Game Solving Our approach for verifying ∀∗∃∗ hyperproperties
is based on the game semantics of ∀∗∃∗-OHyperLTL proposed in [16,8]. How-
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ever, we do not propose a general game solving algorithm. Instead, we use the
game semantics to come up with a first-order encoding of hyperproperty verifi-
cation problems, which is then reduced to CHC solving. This allows us to use
any CHC solver when solving the hyperproperty game. There is a large body
of work on solving infinite-state games [21,9,46,26]. The game solving approach
in [46] uses three-valued predicate abstraction to reduce the problem to finite-
state game solving and requires to iteratively refine the controllable predecessor
operator when computing candidate winning states. The approach in [26] tar-
gets games defined over the theory of linear real arithmetic and is based on an
unrolling of the game and the use of Craig interpolants [18] to synthesize a win-
ning strategy. The game solver in [2] is not restricted to a given FOL theory, but
requires an interpolation procedure in order to compute sub-goals that are used
to inductively split a game into sub-games. As reported by [8], game solving ap-
proaches [26,2], which work without a provided set of predicates, are unable to
handle the infinite-state games for the benchmarks we consider. Moreover, the
approaches in [26,16,2,8] cannot handle games that are defined using formulas
over the theory of arrays, which are part of our benchmark. The approach of [9]
to solving games over infinite graphs is based on reduction of games (including
safety games) to CHCs. However, unlike the reduction presented in this paper,
in [9] the games are encoded in a different fragment of Horn, namely ∀∃-Horn
where the head predicates can contain existential quantifiers. More recently (and
concurrently with our work), [25] proposed a new reduction of game solving to
CHC solving. Their approach handles safety games in which the branching de-
gree of the “safe” player (the verifier in our setting) is bounded. In contrast,
our encoding supports also infinite branching with the restrictions mechanism.
Moreover, they do not support predicate abstraction, which is crucial for solving
some of our benchmarks.

Restrictions as Underapproximations The use of restrictions as underapproxma-
tions of the transition relation, inspired by [8], corresponds to the use of must
hyper-transitions [36] in abstract transition systems [42,19] and games [20,22].
Similarly to [29,17], we use such underapproximations to replace an existential
quantifier by universal quantification within the restriction.

9 Conclusion

We introduced a translation of a family of non-Horn first-order formulas to
CHCs. This translation led to the first CHC encoding of a simultaneous infer-
ence of an invariant and an alignment for verifying k-safety properties. While
the transformation itself is rather simple, identifying it was not straightforward
and alluded previous works on the topic. We have further extended the CHC en-
coding to infer a witness function for existentially quantified traces arising in the
verification of ∀∗∃∗-OHyperLTL properties. Our experiments exhibit significant
improvement over state-of-the-art hyperproperty verifiers thanks to the existence
of advanced off-the-shelf CHC solvers, whose efficacy is expected to improve even
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further. The approach shows promising capabilities in solving (many) hyeprprop-
erty verification problems completely automatically. In some cases, predicates
still have to be provided by the user, a limitation that we hope to overcome
in the future by automatic inference of predicates. Applying (or extending) the
transformation to obtain CHC encoding for other verification fragments is an
interesting direction for future work.
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Abstract. Precondition inference is an important problem with many
applications in verification and testing. Finding preconditions can be
tricky as programs often have loops and arrays, which necessitates find-
ing quantified inductive invariants. However, existing techniques have
limitations in finding such invariants, especially when preconditions are
missing. Further, maximal (or weakest) preconditions are often required
to maximize the usefulness of preconditions. So the inferred inductive
invariants have to be adequately weak. To address these challenges, we
present an approach for maximal quantified precondition inference using
an infer-check-weaken framework. Preconditions and inductive invari-
ants are inferred by a novel technique called range abduction, and then
checked for maximality and weakened if required. Range abduction at-
tempts to propagate the given quantified postcondition backwards and
then strengthen or weaken it as needed to establish inductiveness. Weak-
ening is done in a syntax-guided fashion. Our evaluation performed on a
set of public benchmarks demonstrates that the technique significantly
outperforms existing techniques in finding maximal preconditions and
inductive invariants.

1 Introduction

Many practical problems in software development, verification, and testing rely
on good and nontrivial preconditions for programs. Preconditions can be consid-
ered as a constraint on a program’s input or used to filter out input values of a
program at run-time. While performing verification in a backward fashion, pre-
conditions are used to summarize loops and functions. The maximal (or logically
weakest) precondition is desirable in all these applications. Such preconditions
can be derived in various methods [45,14,54,13,53,25,3,46].

However, precondition inference is known to be difficult for programs with
unbounded loops, as it requires reasoning about possible behaviors in any any
loop iteration. This necessitates the inference of inductive invariants that de-
scribe a set of states from which a new iteration can begin and cannot escape.
This task becomes particularly challenging in the presence of data structures
like arbitrarily-sized arrays. When reasoning about array elements, solvers are
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Fig. 1: An overview of our infer-check-weaken framework.

expected to support quantifiers, but existing techniques [30,40,34,32,22] have
many limitations.

We present a new technique to automatically infer maximal quantified pre-
conditions for deterministic programs that manipulate arrays and have linear ar-
ray loops. These loops are non-nested and terminating loops with unique counter
variables. The postconditions can have either universal or existential quantifica-
tion. Since such programs can model many practical programs, several techniques
target them, but for assertion checking and not precondition inference [39,10].
Moreover, we show in this paper that precondition inference is undecidable for
this class of programs.

An overview of our algorithm is shown in Fig. 1. The algorithm operates in
an “infer-check-weaken” framework. Our algorithm views the problem as solving
a system of constrained Horn clauses (CHCs), which are logical systems to rep-
resent the verification conditions of programs, with a missing precondition 𝑝𝑟𝑒.
A valid solution for this system is inferred by an abduction-based algorithm, i.e.,
by systematically answering the questions like “what state at the beginning of
the iteration could yield a given state at the end of the iteration?” The solution
is then checked for maximality by inferring another precondition (𝑐𝑝𝑟𝑒) for a
system that uses the same CHC encoding of the loop and the complemented
(i.e., negated) postcondition. If the solution is not maximal, it is weakened in-
crementally in a counter-example-guided loop.

The inference algorithm begins with the weakest possible candidate solution
and propagates the given quantified postcondition towards the program’s en-
try point. In the process, it strengthens the candidate solution using our novel
technique called range abduction. Range abduction finds a strengthening of quan-
tified formulas by reduction (wherever possible) to abduction over quantifier-free
formulas. The obtained formulas are combined with the range formula [22] that
essentially represents a boundary between the indices of arrays that are already
processed and indices that are yet to be processed. Such a predicate can be
obtained using lightweight static analysis over the structure of the CHCs. The
inference algorithm uses the Houdini technique [24] to weaken a solution.

Intuitively, range abduction for linear array loops seeks to pose two integer
abduction queries over indices that are modified and indices that are not modi-
fied. Integer abduction has been used in invariant inference [17,18], precondition
inference [27,16], and specification synthesis [2,50]. On the lower level, abduction

246 Sumanth Prabhu S, Grigory Fedyukovich, and Deepak D’Souza



is often implemented using quantifier elimination, but in our setting the formu-
las must use quantifiers over array indices that should not be eliminated. Range
abduction is designed specifically for this application.

Although efficient, range abduction does not guarantee maximality, and our
inference is followed by two additional steps: maximality checking and weakening.
The maximality checker tries to determine whether all the states outside the
current precondition lead to a violation of the assertion. If they do, the current
precondition is maximal. Otherwise, there is at least one state that can be added
to the current precondition, and hence an attempt to weaken the precondition
is made. The weakening module weakens a precondition and infers an inductive
invariant for it using a syntax-guided-synthesis based method.

A prior framework [50] to find specifications (including preconditions) follows
a similar approach by iteratively inferring solutions. But it is based on integer
abduction and a maximality checking using an SMT solver, and it is applicable
only to array-free programs. Furthermore, it does not guarantee maximality
in some cases [29]. We experimentally observed that extending the SMT-based
maximality checking algorithm of [50] with quantified formulas over arrays makes
the tool diverge. This motivated us to design a new maximality checker by using
𝑐𝑝𝑟𝑒 of the complement system and range abduction.

We have implemented our algorithm in a tool called PreQSyn, which takes
CHCs as input. On a challenging set of 32 benchmarks, PreQSyn significantly
outperforms a prior maximal quantified precondition inference tool P-Gen [54].
PreQSyn automatically found 31 preconditions and proved 21 of them to be
maximal, while in contrast P-Gen found only 2 maximal preconditions and in
most cases did not find any preconditions. We also show that a variety of existing
array verification tools like VeriAbs [15], Spacer [32], and FreqHorn [22],
find it hard to even verify the preconditions we discovered for these benchmarks.
Our tool can not only solve them by finding preconditions, but also finds the
maximal ones in most of the cases.

The core contributions of this paper are:

1. An algorithm, based on a new technique called range abduction, to infer
universal and existential quantified preconditions and invariants, effective
on linear array loop programs.

2. New methods to check maximality and weaken preconditions.

3. A tool that implements the algorithms to infer maximal preconditions and
can be used as a CHC solver.

4. Experimental evaluation demonstrating the effectiveness of the algorithm.

In the rest of the paper, we motivate the problem with an example in Sect. 2.
The necessary background for abduction and CHCs are provided in Sect. 3. A
proof of undecidability of the problem is in Sect. 4. Sect. 5 presents an overview
of our inference algorithm and an illustration on the example. The details of
range abduction are in Sect. 6, while Sect. 7 has the maximality checking and
weakening algorithms. Our experimental evaluation can be found in Sect. 8,
related work in Sect. 9, and conclude with limitations and future work in Sect. 10.
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int N = nondetInt ();

int A[N], B[N], C[N];

assume(pre(A, B, C, N)); // goal: find maximal pre

for (int i = 0; i < N; i++)

if (2*i < N) C[i] = i;

else A[i] = C[i];

assert (∀j. 0 ≤ j < N =⇒ A[j] == B[j]); // postcondition

Fig. 2: C-like example with a universally quantified postcondition and no pre-
condition.

𝑝𝑟𝑒(𝑁,𝐴,𝐵,𝐶) ∧ 𝑖 = 0 =⇒ 𝑖𝑛𝑣(𝑖,𝑁,𝐴,𝐵,𝐶) (𝐶1)

𝑖𝑛𝑣(𝑖,𝑁,𝐴,𝐵,𝐶) ∧𝑖<𝑁∧2 * 𝑖<𝑁∧ 𝐶
′
= 𝑠𝑡𝑜𝑟𝑒(𝐶, 𝑖, 𝑖) ∧𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣(𝑖

′
,𝑁,𝐴,𝐵,𝐶

′
) (𝐶2)

𝑖𝑛𝑣(𝑖,𝑁,𝐴,𝐵,𝐶) ∧𝑖<𝑁∧2*𝑖≥𝑁∧ 𝐴
′
= 𝑠𝑡𝑜𝑟𝑒(𝐴, 𝑖, 𝐶[𝑖]) ∧𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣(𝑖

′
,𝑁,𝐴

′
,𝐵,𝐶) (𝐶3)

𝑖𝑛𝑣(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ ¬(𝑖<𝑁) ∧ ¬(∀𝑗. 0 ≤ 𝑗 < 𝑁 =⇒ 𝐴[𝑗]=𝐵[𝑗]) =⇒ ⊥ (𝐶4)

Fig. 3: CHC encoding of program in Fig. 2.

int N = nondetInt ();

int A[N], B[N], C[N];

assume(cpre(A, B, C, N));

for (int i = 0; i < N; i++)

if (2*i < N) C[i] = i;

else A[i] = C[i];

assert (∃j. 0 ≤ j < N ∧ A[j] != B[j]); // complemented post

Fig. 4: The program used to check maximality; the postcondition is comple-
mented and has no precondition.

2 Motivating Example

We motivate the problem with the program shown in Fig. 2 with three finite-
length statically allocated arrays 𝐴, 𝐵, and 𝐶, each of the size 𝑁 . The arrays
are accessed sequentially in the loop: the cells in the first half of 𝐶 are assigned
their corresponding indices, and the remaining elements of 𝐶 are copied to the
corresponding positions in 𝐴. The program ends with the postcondition stating
the pairwise equality of 𝐴 and 𝐵. Our goal is to find the maximal precondition
under which the postcondition holds. Intuitively, such a precondition must be
universally quantified because it must express that arrays 𝐴, 𝐵, and 𝐶 are
properly initialized up to an arbitrary length 𝑁 .

Further, in order to prove that the postcondition indeed holds after the loop
has terminated, we have to show that there exists an inductive invariant that
is also universally quantified. To confirm that the precondition is logically the
weakest, we need to formally prove that any attempt to extend it by a single
point leads to a violation of the postcondition. Thus, the solution we target
should have two properties: 1) it should allow us to find an inductive invariant
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for the loop, and 2) any of its weakening results in a counterexample that violates
the assertion.

The only publicly existing tool to find quantified precondition, P-Gen [54],
which is based on predicate abstraction, is unable to solve this program. The
last candidate precondition it tries to refine is 𝑁 = 3 ∧ 𝐴[0] = 𝐵[0] ∧ 𝐴[1] =
𝐵[1]∧𝐴[2] = 𝐵[2], which does not constrain the value of array 𝐶, thus allowing
the program to violate the postcondition, e.g., when 𝐶[2] ̸= 𝐵[2] initially and
𝐴[2] = 𝐶[2] in the else-branch when 𝑖 = 2.

Fig. 3 shows a system of CHCs over relations 𝑝𝑟𝑒 and 𝑖𝑛𝑣, representing the
verification conditions of the program in Fig. 2. For brevity, we do not mention
the universal quantification over all program variables including arrays, which
is implicit. In particular, the first CHC identifies the initial value of the counter
but does not give any constraints over 𝐴, 𝐵, or 𝐶 (which are essentially deferred
to 𝑝𝑟𝑒). The next two CHCs encode the loop body, corresponding to the two
possible branches in the body of the loop. The last CHC encodes that no state
satisfying the negation of the assertion is reachable.

The missing precondition makes the CHC system in Fig. 3 different from the
CHC systems that appear in verification tasks. Hence, existing CHC solvers are
not directly applicable here as they can return the strongest solution: ⊥. For
instance, Spacer [32] (Z3 v4.12.2) returns the solution 𝑝𝑟𝑒 ↦→ 𝜆𝑁,𝐴,𝐵,𝐶.⊥
and 𝑖𝑛𝑣 ↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶.⊥. Such vacuous solutions are not of much use in the
applications mentioned earlier.

The CHC system also represents a maximal specification problem, with 𝑝𝑟𝑒
being the specification of an initialization function. However, existing maximal
precondition synthesis techniques [2,50,29] do not support synthesizing quanti-
fied preconditions over arrays.

Our algorithm takes the input CHC system and works in an infer-check-
weaken fashion as shown in Fig 1. First, the infer module strengthens and
weakens the postcondition from the last CHC via range abduction and Hou-
dini, resp., to find the following precondition (detailed illustration follows in
Sect. 5.2):

𝜆𝑁,𝐴,𝐵,𝐶. ∀𝑗(0≤𝑗<𝑁∧ 2 * 𝑗<𝑁 =⇒ 𝐴[𝑗]=𝐵[𝑗]) ∧∀𝑗(0≤𝑗<𝑁∧ 2 * 𝑗≥𝑁 =⇒ 𝐵[𝑗]=𝐶[𝑗]).

We note that this is the maximal precondition for this problem instance,
and in general we may not always find the maximal precondition in the first
iteration. In any case, we need to check the maximality of the inferred precon-
dition. Our maximality checker does this by trying to find a precondition for
the complement of the postcondition (called the “complement program”, see
Fig 4). This is achieved by calling the infer module again, albeit with an exis-
tentially quantified postcondition. By using the existentially quantified structure
of the postcondition, the infer module discovers the following precondition (see
Sect. 6.4 for details):

𝜆𝑁,𝐴,𝐵,𝐶. ∃𝑗(0≤𝑗<𝑁∧ 2 * 𝑗≥𝑁∧𝐵[𝑗] ̸=𝐶[𝑗]).

The maximality checker now tries to determine whether all the points that are
outside the precondition of the original program are indeed in the precondition
of the complement program. For the example program, this is encoded as the

Maximal Quantified Precondition Synthesis for Linear Array Loops 249



following formula:

∀𝐴,𝐵,𝑁.
(︀
¬(∀𝑗(0≤𝑗<𝑁∧ 2 * 𝑗<𝑁 =⇒ 𝐴[𝑗]=𝐵[𝑗]) ∧ ∀𝑗(0≤𝑗<𝑁∧ 2 * 𝑗≥𝑁 =⇒ 𝐵[𝑗]=𝐶[𝑗]))

=⇒ ∃𝑗(0≤𝑗<𝑁∧ 2 * 𝑗≥𝑁∧𝐵[𝑗] ̸=𝐶[𝑗])
)︀
.

If the formula was valid, the current precondition would be maximal since all the
states outside would violate the property (as they would be in the precondition of
the complement program). In this example, the implication is not valid, because
𝑁 = 3, 𝐴 = [0, 0, 0], 𝐵 = [1, 0, 0], 𝐶 = [0, 0, 0] is a counter-example to validity.
Our approach then weakens the precondition of the complement program based
on the counterexample to the validity check:

𝜆𝑁,𝐴,𝐵,𝐶. ∃𝑗(0≤𝑗<𝑁∧ 2 * 𝑗≥𝑁 =⇒ 𝐵[𝑗] ̸=𝐶[𝑗]) ∨∃𝑗(0≤𝑗<𝑁∧ 2 * 𝑗<𝑁∧𝐴[𝑗] ̸=𝐵[𝑗]).

The checker now conducts a successful validity check, and the algorithm termi-
nates.

3 Background

This paper builds largely on foundations of Satisfiability Modulo Theories (SMT)
problems. SMT aims to determine the existence of an assignment to variables of
a first-order logic formula that makes it true. We will be dealing with the logical
setting L of linear integer arithmetic (LIA) with arrays. The signature of the
logic includes a finite set of uninterpreted relation symbols R . Each symbol 𝑟
in R has an associated arity 𝑎𝑟, and an associated type which indicates a type
(integer or array) for each argument of the relation.

We write 𝜙(𝑥1, . . . , 𝑥𝑛) (where each 𝑥𝑖 is a variable with an associated in-
teger/array type) to denote a formula 𝜙 of this logic, that does not use any of
the relation symbols in R , and whose free variables are among {𝑥1, . . . , 𝑥𝑛}. For
convenience, we also write 𝜙(�⃗�) to denote the same. For a formula 𝜙(�⃗�), and
an assignment 𝑚 which maps the variables in �⃗� to concrete integers/arrays, we
write 𝑚 |= 𝜙 to denote that 𝜙 evaluates to ⊤ under 𝑚, and say 𝑚 satisfies 𝜙,
or that 𝑚 is a model of 𝜙. A formula 𝜓 is logically weaker than a formula 𝜙
(denoted 𝜙 =⇒ 𝜓), if every model of 𝜙 also satisfies 𝜓. Hence 𝜙 =⇒ ⊥
denotes that 𝜙 is unsatisfiable.

An interpretation for a relation symbol 𝑟 ∈ R is defined as a map of the form
𝜆𝑥1 . . . 𝜆𝑥𝑛.𝜙(𝑥1, . . . , 𝑥𝑛), where 𝜙 is a well-typed first-order formula that does
not contain any symbols from R .

We now present formal definitions of the concepts that will be used in the
rest of the paper.

3.1 Abduction

Definition 1. Let �⃗� and �⃗� be vectors of variables such that the variables in �⃗�
are also present in �⃗�. Let 𝛼(�⃗�) and 𝛽(�⃗�) be formulas without any relation symbols
from R , with free variables in �⃗�. Let 𝑟 be an uninterpreted relation in R of arity
equal to the length of �⃗�. Consider a formula of the form 𝑟(�⃗�) ∧ 𝛼(�⃗�) =⇒ 𝛽(�⃗�).
The abduction problem is to find an interpretation 𝜙 for 𝑟, such that:
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1. 𝜙(�⃗�) ∧ 𝛼(�⃗�) ≠⇒ ⊥, and
2. 𝜙(�⃗�) ∧ 𝛼(�⃗�) =⇒ 𝛽(�⃗�).

Intuitively, the problem of abduction is to find a formula 𝜙 that together with
𝛼 entails the formula 𝛽 in a non-trivial manner. One can see that for a given
abduction problem there may be multiple solutions, but we are interested in a
maximal one (i.e. logically weakest), whenever a solution exists. The techniques
in [17,16,2] compute such a maximal solution for first order theories that admit
quantifier elimination. This solution is succinctly presented in the lemma below.

Lemma 1. Let 𝑟(�⃗�)∧𝛼(�⃗�) =⇒ 𝛽(�⃗�) be an abduction problem where the under-
lying first order theory has a method QE(�⃗�, 𝜓) whose result is a �⃗�-free formula
constructed by (existential) quantifier elimination of variables �⃗� from the formula
𝜓. Suppose that the given instance has a solution. Then, the following formula
𝜙(�⃗�) forms a maximal solution for the abduction problem:

𝜙(�⃗�)
def
= ¬(QE(�⃗� ∖ �⃗�, 𝛼 ∧ ¬𝛽)).

Example 1. Consider an instance of the abduction problem 𝑟(𝑥) ∧ 𝑦 = 0 =⇒
𝑥 > 𝑦. Then 𝜙(𝑥) is computed as follows:

𝜙(𝑥) = ¬(QE({𝑥, 𝑦} ∖ {𝑥}, 𝑦 = 0 ∧ 𝑥 ≤ 𝑦)) =
¬(QE(𝑦, 𝑦 = 0 ∧ 𝑥 ≤ 𝑦)) = ¬(𝑥 ≤ 0) = 𝑥 > 0.

3.2 Modeling Programs With Constrained Horn Clauses

Constrained Horn clauses (CHCs) [37,28,57,35,51,23,31,50] are becoming in-
creasingly popular as an intermediate logical representation of programs and
their proof obligations. Dealing directly with CHCs as opposed to program state-
ments is convenient and allows for easier creation and handling of various SMT
formulas and constructed invariants.

Definition 2. A CHC (in the logic L) is a formula in L that has the form of
one of the following three implications:

∀𝑥1. (𝜙1(𝑥1) =⇒ 𝑟1(𝑥1)) (1)

∀�⃗�1, �⃗�2. (𝑟1(�⃗�1) ∧ 𝜙2(�⃗�1, �⃗�2) =⇒ 𝑟2(�⃗�2)) (2)

∀�⃗�1. (𝑟1(�⃗�1) ∧ 𝜙3(�⃗�1) =⇒ ⊥) (3)

where:

– 𝑟1, 𝑟2 ∈ R are uninterpreted relation symbols, where 𝑟1 and 𝑟2 may coincide.
– 𝑥1, 𝑥2 are vectors of variables;
– the vectors �⃗�1 and �⃗�2 have no common elements, and
– the formulas 𝜙𝑖, called constraints, have no uninterpreted symbols from R .

We introduce some auxiliary notation below for convenience. For a CHC 𝐶:
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– body(𝐶) (resp. head(𝐶)) denotes the left (resp. right) side of the implication
in 𝐶,

– rel(body(𝐶)) denotes the (singleton or empty) set of relation symbols in R
that appear in body(𝐶),

– When 𝐶 is of type (2), rel(head(𝐶)) denotes the singleton set {𝑟2} containing
the relation appearing in head(𝐶),

– When 𝐶 is of type (2), args(body(𝐶)) (a.k.a. source variables) denotes �⃗�1
and args(head(𝐶)) (a.k.a. destination variables) denotes �⃗�2.

A CHC of type (1) is called a fact, and of type (3) is called a query. For
simplicity, for a query 𝐶, we write rel(head(𝐶)) = rel(⊥) = ⊥. In the literature,
the CHCs we are considering are called linear as there is at most one relation
symbol in the body of a CHC. A system of CHCs is a finite non-empty set of
CHCs.

We assume that our precondition inference problem is represented by a sys-
tem of CHCs 𝑆 without any facts4 and there is a designated relation 𝑝𝑟𝑒 (or
𝑐𝑝𝑟𝑒) that appears in rel(body(𝐶)) for some CHC 𝐶 in 𝑆 and doesn’t appear
in rel(head(𝐶 ′)) for any other CHC 𝐶 ′ in 𝑆. Furthermore, we assume that there
is a single query in 𝑆 with a constraint of the form 𝜙 ∧ 𝜌, where ¬𝜌 is the
postcondition in the inference problem.

CHCs allow for flexibility of program encoding. For instance, it is safe to
assume that each 𝜙𝐶 is in Conjunctive Normal Form (CNF). For if 𝐶 had the
following form:

𝑟1(�⃗�1) ∧ (𝜙1(�⃗�1, �⃗�2) ∨ 𝜙2(�⃗�1, �⃗�2)) =⇒ 𝑟2(�⃗�2),

it can be transformed into two CHCs:

𝑟1(�⃗�1) ∧ 𝜙1(�⃗�1, �⃗�2) =⇒ 𝑟2(�⃗�2)

𝑟1(�⃗�1) ∧ 𝜙2(�⃗�1, �⃗�2) =⇒ 𝑟2(�⃗�2).

Definition 3 (CHC Solution and Satisfiability). A solution to a system of
CHCs 𝑆 is a map M that provides an interpretation for each relation symbol in
R , such that for each CHC 𝐶 in 𝑆,

(︀
body(𝐶) =⇒ head(𝐶)

)︀
[M /R ]5 is valid.

In this case we say M is inductive at 𝐶. We say 𝑆 is satisfiable if there exists a
solution to it.

Definition 4 (Maximal Precondition). Let 𝑆 be a system of CHCs for a pre-
condition inference problem. We call a solution M to 𝑆 (precondition) maximal
if there is no solution M ′ to 𝑆 with M ′(𝑝𝑟𝑒) strictly logically weaker (i.e. w.r.t.
the implication partial order) than M (𝑝𝑟𝑒). M (𝑝𝑟𝑒) is also called the weakest
precondition.

4 A fact CHC represents the initial condition of the program. Since 𝑝𝑟𝑒 is in the place
of initial condition in our task, there will not be a fact CHC.

5 For a formula 𝜙, terms/formulas 𝑎 and 𝑏, we write 𝜙[𝑏/𝑎] to denote 𝜙 after all
instances of 𝑎 are replaced by 𝑏. For a set of terms/formulas 𝑋 and a mapping M
from 𝑋 to other terms/formulas, 𝜙[M /𝑋] denotes the simultaneous replacement of
all 𝑥1, 𝑥2, . . . ∈ 𝑋 by M (𝑥1),M (𝑥2), . . ., respectively.
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We now define certain terms that will be used in weakening of a precondition
(Sect. 7).

Definition 5 (Complement System). Given a system of CHCs 𝑆, we define
a complement system 𝑆 to be the system obtained from 𝑆 by replacing 𝜌 by ¬𝜌
in the query CHC.

Definition 6 (CHC Extension). Given a system of CHCs 𝑆 with 𝑝𝑟𝑒 and
an interpretation 𝜙 for 𝑝𝑟𝑒, we define 𝑆𝜙, an extension of 𝑆 w.r.t 𝜙, to be
the system obtained from 𝑆 by replacing 𝑝𝑟𝑒 by 𝜙 in the CHC 𝐶 ∈ 𝑆, where
rel(body(𝐶)) = {𝑝𝑟𝑒}

Lemma 2. Given 𝑆 with 𝑝𝑟𝑒 and its extension 𝑆𝜙, if M𝜙 is a solution to 𝑆𝜙

then M = {𝜆𝑟 ∈ R . if 𝑟 = 𝑝𝑟𝑒 then 𝜙 else M𝜙(𝑟)} is a solution to 𝑆.

To encode program executions, we borrow the notion of CHC unrolling
from [21]. Essentially, a CHC unrolling is a symbolic representation of a set
of program executions starting from a state satisfying 𝜙. If the unrolling is sat-
isfiable then the execution terminates in the postcondition.

Definition 7 (Unrolling of CHCs). Given an extended CHC system 𝑆𝜙 over
R , let 𝐶0, . . . , 𝐶𝑘 be a 𝑘 + 1-length sequence of CHCs in 𝑆𝜙, with 𝐶0 being a
fact, 𝐶𝑘 being a query, and rel(head(𝐶𝑖)) = rel(body(𝐶𝑖+1)) for each 𝑖. Then, a
𝑘-length unrolling of 𝑆𝜙 is defined as below:

𝜋⟨𝐶0,...,𝐶𝑘⟩
def
=

⋀︁
0≤𝑖<𝑘

body(𝐶𝑖)(�⃗�𝑖, ⃗𝑥𝑖+1) ∧ (body(𝐶𝑘)[¬𝜌/𝜌])(�⃗�𝑘)

.

Example 2. Consider the CHC system 𝑆 from Fig. 3. Let 𝜙 be:

(∀𝑗. 0 ≤ 𝑗 < 𝑁 =⇒ 𝐴[𝑗] = 𝐵[𝑗] = 0 ∧ 𝐶[𝑗] = 1) ∧𝑁 = 1

Then 𝜋⟨𝐶1,𝐶2,𝐶4⟩, which is a 3-length unrolling of 𝑆𝜙, is the following satisfiable
formula:

𝜋⟨𝐶1,𝐶2,𝐶4⟩ = (∀𝑗. 0 ≤ 𝑗 < 𝑁 =⇒ 𝐴[𝑗] = 𝐵[𝑗] = 0 ∧ 𝐶[𝑗] = 1) ∧𝑁 = 1 ∧ 𝑖 = 0 ∧
𝑖<𝑁∧2 * 𝑖<𝑁∧ 𝐶 ′= 𝑠𝑡𝑜𝑟𝑒(𝐶, 𝑖, 𝑖) ∧𝑖′= 𝑖+1 ∧
¬(𝑖′<𝑁) ∧ (∀𝑗. 0 ≤ 𝑗 < 𝑁 =⇒ 𝐴[𝑗]=𝐵[𝑗]).

Our technique addresses deterministic programs. A non-deterministic pro-
gram in our context has an initial state that can both satisfy and violate the
postcondition. More formally,

Definition 8 (Non-deterministic Modulo Postcondition CHCs). Let 𝑆
be a system of CHCs that has 𝑝𝑟𝑒 and extendable by a formula 𝜙. We call
𝑆 non-deterministic modulo postcondition if there exists an uniquely satisfiable
formula 𝑠 for which there are at least two satisfiable unrollings 𝜋⟨𝐶0,...,𝐶ℓ⟩ and

𝜋⟨𝐶0,...,𝐶𝑚⟩ corresponding to extensions 𝑆𝑠 and 𝑆𝑠, respectively. Otherwise, we
say 𝑆 is deterministic6

6 An example is presented in [49].
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We assume that the CHCs are representing terminating programs. Hence, for
any initial state of a program encoded in CHCs, there exists an unrolling either
satisfying or violating the postcondition.

Definition 9 (Terminating CHCs). Let 𝑆 be a system of CHCs with 𝑝𝑟𝑒
and extendable by a formula 𝜙. We say 𝑆 is terminating if there does not exist
an infinite-length unrolling for 𝑆⊤ and 𝑆⊤ (i.e. 𝑆 and 𝑆 are extended by 𝜙 = ⊤).

3.3 Linear Array Loop Programs

Though our algorithms work at the level of CHCs, we are motivated to target
CHCs representing linear array loop programs (or “linear loops” in short) that
model real-world programs in existing array program verification works [9,39,10].
These are terminating programs with non-nested loops. We now present the
syntax of a linear loop.

𝑝𝑟𝑜𝑔𝑟𝑎𝑚 → assume(𝑝𝑟𝑒(𝑉,𝐴)); 𝑠𝑡𝑚𝑡𝑠; 𝑝𝑜𝑠𝑡;

𝑠𝑡𝑚𝑡𝑠 → 𝑎𝑠𝑠𝑖𝑔𝑛
⃒⃒
forloop

⃒⃒
𝑠𝑡𝑚𝑡𝑠; 𝑠𝑡𝑚𝑡𝑠

𝑎𝑠𝑠𝑖𝑔𝑛 → 𝑣 = 𝑓(𝑉,𝐴)
⃒⃒
𝑎[𝑖] = 𝑓(𝑉,𝐴)

⃒⃒
if(𝜑(𝑉 )) {𝑎𝑠𝑠𝑖𝑔𝑛} else {𝑎𝑠𝑠𝑖𝑔𝑛}⃒⃒

𝑎𝑠𝑠𝑖𝑔𝑛; 𝑎𝑠𝑠𝑖𝑔𝑛

forloop → for (𝑖 = 𝑙(𝑉 ); 𝑐(𝑖, 𝑉 ); 𝑖 = ℎ(𝑖)) {𝑎𝑠𝑠𝑖𝑔𝑛}
𝑝𝑜𝑠𝑡 → assert(∀𝑥.𝑅(𝑥, 𝑉 ) =⇒ 𝑄(𝑥, 𝑉,𝐴))

⃒⃒
assert(∃𝑥.𝑅(𝑥, 𝑉 ) ∧𝑄(𝑥, 𝑉,𝐴))

Here 𝑉 and 𝐴 are disjoint sets of integer and array variables, respectively,
𝑖 ∈ 𝑉 is a loop counter, 𝑣 ̸= 𝑖 ∈ 𝑉 is an integer variable, 𝑓 is a term over
𝑉 and 𝐴 such that any access to 𝐴 is done by 𝑖, 𝑙 is an integer term over
𝑉 , ℎ is an integer term over 𝑖 which results in a monotonically increasing (or
decreasing) assignment, and 𝑐 is a guard of the form 𝑖 < 𝑢 or 𝑖 > 𝑢 for some
integer term 𝑢 over 𝑉 , and 𝜑 is a boolean predicate. The postcondition 𝜌 is given
as a condition in assert, where 𝑅 is a predicate in LIA over quantified and
integer variables that represent a range of array elements, and 𝑄 is a property
over an array with array read-access done only by 𝑥. For example, the formula
∀𝑥. 0 ≤ 𝑥 < 𝑁 =⇒ 𝐵[𝑥] = 42 is in this form, where 𝐵 is an array variable.

The precondition (and inductive invariants) inferred by our algorithm will
be of the same quantification as the postcondition. Further, it can be conjunc-
tions in case of universal quantification and disjunctions in case of existential
quantification. Specifically, we consider preconditions (and inductive invariants)
of the form described in (4). Such a form has been found effective in inferring
inductive invariants in the existing works for array programs like [38,33,32,22].⋀︁(︀

∀𝑥.𝑅(𝑥, 𝑉 ) =⇒ 𝑄(𝑥, 𝑉,𝐴)
)︀

or
⋁︁(︀
∃𝑥.𝑅(𝑥, 𝑉 ) ∧𝑄(𝑥, 𝑉,𝐴)

)︀
(4)

A formal description of CHCs that represent linear loop programs is given in
Sect. 6.1.
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4 Undecidability of Maximal Precondition Inference for
Linear Loops

Although linear loops and postconditions have syntactic restrictions, inference
of maximal preconditions for such programs in the considered form (i.e. (4)) is
still undecidable. In this section we prove this result.

We reduce the halting problem of two-counter machines [42] to the maxi-
mal precondition inference problem. Recall that a two counter machine 𝑀 =
(𝐶1, 𝐶2, 𝐿) has two counters 𝐶1 and 𝐶2, which are initially set to 0, and a finite
set of instructions 𝐿 = {𝑙1, . . . , 𝑙𝑘}, where each instruction 𝑙𝑖 is of type inc,
decjz, and a designated halt instruction 𝑙ℎ . Given a two-counter machine
𝑀 = (𝐶1, 𝐶2, 𝐿), deciding whether it halts, i.e. the halt instruction 𝑙ℎ ∈ 𝐿 is
reached, is undecidable.

Theorem 1. The problem of computing the maximal precondition for linear ar-
ray loop programs in the form described in (4) is uncomputable.

Proof Sketch We construct a linear array loop program with a single loop whose
body simulates the execution of one transition of a two-counter machine, and an
array records the locations the machine can reach after the transition.7

The undecidability of the problem notwithstanding, many real-life programs,
like industrial battery controllers [9], adhere to linear array loop structures. Con-
sequently, techniques like [39,10] have been developed to address such programs,
but focusing on assertion checking rather than precondition inference. The ex-
isting precondition inference technique [54] finds it challenging to infer a precon-
dition for such programs (details in Section 8). Motivated by these challenges,
we propose a sound technique that infers maximal preconditions.

5 Inferring Preconditions and Invariants by Abduction

In this section, we give an overview of our approach for abductive inference of
preconditions and inductive invariants. We first explain its basic principles, and
then demonstrate them on the running example.

5.1 Overview

We assume that the input system of CHCs 𝑆 represents a precondition inference
problem, i.e. it has no facts, a single query, and a designated relation (𝑝𝑟𝑒 or
𝑐𝑝𝑟𝑒) for the precondition. Since we are interested in the precondition inference
for array programs, we assume that the query has a quantified constraint 𝜌.

The high-level algorithm is given in Algorithm 1. It is called InferAbd and
is inspired by an earlier work on specification synthesis [50]. InferAbd incre-
mentally attempts to discover an interpretation for each uninterpreted predicate

7 All proofs are in [49].
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Algorithm 1: InferAbd(𝑆,M , 𝑅)

Input: 𝑆 – set of CHCs over R , 𝑅 ⊆ R – current subset (initially empty) of
relations with invariants/preconditions, M – mapping from R to
predicates, initially 𝜆𝑟.⊤

Output: M – invariants/preconditions of 𝑆

1 if 𝑅 = ∅ then
2 𝑅← {𝑟 | ∃𝑠. rel(body(𝑠)) = 𝑟 ∧ rel(head(𝑠)) = ⊥ ∧ 𝑠 ∈ 𝑆}
3 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡← {𝐶 | 𝐶 ∈ 𝑆 ∧ rel(body(𝐶)) ∈ 𝑅};
4 while ∃𝐶 ∈𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡.CheckSAT(¬

(︀
body(𝐶) =⇒ head(𝐶)

)︀
[M /R ]) do

5 let 𝜙 be
(︀
body(𝐶) =⇒ head(𝐶)

)︀
[M /R ];

6 M (rel(body(𝐶)))← M (rel(body(𝐶)))∧ Abduce(𝜙, args(body(𝐶)), 𝑆);
7 M (rel(body(𝐶)))←Houdini(𝑆,M , 𝑅);

8 if No M (·) was strengthened or weakened then
9 if 𝑅 = R then return M ;

10 𝑅← {𝑟 | ∃𝐶 ∈ 𝑆. rel(body(𝐶)) = 𝑟 ∧ rel(head(𝐶)) ∈ 𝑅};
11 return InferAbd(𝑆,M , 𝑅);

in R by propagating the assertion backward, strengthening it when needed to es-
tablish inductiveness, or weakening if something went wrong during the inference
of inductive invariants.

InferAbd (Algorithm 1) constructs a solution M for a system of CHCs
recursively. M initially maps all the predicates in R to ⊤. At each call, the
algorithm searches for a CHC 𝐶 (line 3) such that M is not inductive at 𝐶.
This inductiveness check is reduced to a satisfiability check, which is performed
by an SMT solver (line 4). If 𝜙 is satisfiable then M is not inductive at the
corresponding 𝐶, and thus M needs strengthening.

Note that in the first call of InferAbd, the initial M is inductive for all
the CHCs except the query, thus the interpretations will be created for the
predicates that appear in the body of the query. In the subsequent calls, these
interpretations could be either strengthened or propagated through the bodies
of the CHCs where they appear in the heads, towards the precondition.

In InferAbd, we write 𝜓 ← Abduce(𝜙, �⃗�, 𝑆) to denote an invocation of a
new abduction algorithm (Algorithm 2) to obtain a formula 𝜓 over variables �⃗�
that makes 𝜙 valid. InferAbd uses Abduce as existing abduction solvers have
limited support for arrays. In order to support arrays and quantifiers, Abduce
abstracts quantified formulas over arrays and integers into quantifier-free formu-
las only over integers. To do this, Abduce considers two abduction queries for
a CHC in 𝑆: 1) for the array element that is being rewritten (if any), and 2)
for all other elements that are not changed. The formal description of Abduce
is in Sect 6 along with illustration. However, by doing this “arrays-to-integer”
reduction, Abduce could introduce some imprecision, which is fixed by running
the Houdini algorithm (details in Sect 6.3).

InferAbd may not terminate because the series of strengthening predicates
obtained in each iteration may diverge. But the recursion in InferAbd can be
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easily augmented by a threshold condition that forces the termination with an
unknown result after reaching a predetermined recursion depth.

Theorem 2. Whenever Algorithm 1 terminates, it returns a solution M to 𝑆.

5.2 Approach in Action

We demonstrate the precondition inference approach on the example from Sect. 2
and Fig. 3.

Synthesizing an invariant for 𝑖𝑛𝑣 The algorithm begins with obtaining an initial
candidate interpretation to 𝑖𝑛𝑣 from the query CHC. The predicate is the query
constraint (i.e. the postcondition ¬𝜌) with a slight modification:

𝑖𝑛𝑣
cand↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶. ∀𝑗(0≤𝑗<𝑁 ∧𝑗 <𝑖 =⇒ 𝐴[𝑗]=𝐵[𝑗]).

The modification includes dropping the loop condition and strengthening it
by conjuncting a range formula [21] to the antecedent (𝑗 < 𝑖 here). In simple
terms, the range formula is a predicate that represents the boundary between
indices that are modified and not modified. It can be (𝑗 < 𝑖) or (𝑗 > 𝑖), based
on whether the loop counter is increasing or decreasing, respectively (formal
definition in 11).

Our algorithm then checks if any of the CHCs in Worklist are not valid.
In this case, the second CHC is not valid. The algorithm then follows backward
reasoning and attempts to update the current interpretation of 𝑖𝑛𝑣 by abductive
strengthening to make it inductive using a series of SMT checks and quantifier
elimination queries.

The algorithm does abductive strengthening by posing two queries. The first
one is to accommodate the write to the 𝑖-th element of the array. This strengthen-
ing for the second CHC is posed as an abduction query for 𝜓1 that is constructed
by restricting to only a single cell of the array that is rewritten in the loop:

𝜓1(𝐴,𝐵,𝐶, 𝑗) ∧𝐴′[𝑗]=𝐴[𝑗] ∧𝐵′[𝑗]=𝐵[𝑗] ∧𝐶′[𝑗] = 𝑗 =⇒ 𝐴′[𝑗]=𝐵′[𝑗].

Here, all the array terms (like 𝐴[𝑗], 𝐴′[𝑗], 𝐵[𝑗], etc.) are further replaced by fresh
integer variables which allows us to use a standard abduction solver and get the
following solution:

𝜓1 ↦→ 𝜆𝐴,𝐵,𝐶, 𝑗. 𝐴[𝑗]=𝐵[𝑗].

Intuitively, 𝜓1 gives the weakest precondition on 𝐴[𝑖], 𝐵[𝑖] and 𝐶[𝑖] before
the 𝑖-th loop iteration, such that the desired postcondition holds for 𝐴′[𝑖] and
𝐵′[𝑖] after the iteration.

The second abduction query accommodates all the other elements in the
range 0≤𝑗<𝑁 ∧ 𝑗 ̸= 𝑖 that are unaffected in the 𝑖-th iteration:

𝜓2(𝐴,𝐵,𝐶, 𝑗) ∧𝐴′[𝑗]=𝐴[𝑗] ∧𝐶′[𝑗]=𝐶[𝑗] ∧𝐵′[𝑗]=𝐵[𝑗] =⇒ 𝐴′[𝑗]=𝐵′[𝑗].
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The delta w.r.t. the first query is shown in bold. This query also has the same
solution as 𝜓1.

𝜓2 ↦→ 𝜆𝐴,𝐵,𝐶, 𝑗. 𝐴[𝑗]=𝐵[𝑗].

To build the new invariant from 𝜓2 and 𝜓1 to the new invariant candidate,
we split the array range into two segments based on the range formula, and its
negation:

𝑖𝑛𝑣
cand↦→ 𝜆𝐴,𝐵,𝐶, 𝑖. ∀𝑗(0≤𝑗<𝑁 ∧𝑗 <𝑖 =⇒ 𝐴[𝑗]=𝐵[𝑗]) ∧

∀𝑗(0≤𝑗<𝑁 ∧ 𝑗 < 𝑖∧2 * 𝑗<𝑁=⇒𝐴[𝑗]=𝐵[𝑗]) ∧
∀𝑗(0≤𝑗<𝑁 ∧ 𝑗 ≥ 𝑖∧2 * 𝑗<𝑁=⇒𝐴[𝑗]=𝐵[𝑗]).

The second conjunct is derived from 𝜓2 and the range formula (𝑗 < 𝑖),
whereas the third conjunct is from 𝜓1 and negation of the range formula (𝑗 ≥ 𝑖).
If the CHC has any additional constraints (like 2 * 𝑖 < 𝑁 here) that will be
added in the antecedent as well.

While validating this candidate, the algorithm goes over the CHCs again and
checks the implications: it now turns out to be not inductive for the third CHC.
The algorithm thus repeats the abductive strengthening and poses two queries:

𝜓3(𝐴,𝐵,𝐶, 𝑗) ∧𝐵′[𝑗]=𝐵[𝑗] ∧ 𝐶 ′[𝑗]=𝐶[𝑗] ∧𝐴′[𝑗]=𝐶[𝑗] =⇒ 𝐴′[𝑗]=𝐵′[𝑗],

𝜓4(𝐴,𝐵,𝐶, 𝑗) ∧𝐵′[𝑗]=𝐵[𝑗] ∧ 𝐶 ′[𝑗]=𝐶[𝑗] ∧𝐴′[𝑗]=𝐴[𝑗] =⇒ 𝐴′[𝑗]=𝐵′[𝑗],

getting the following next candidate, that is subsequently validated:

𝑖𝑛𝑣 ↦→ 𝜆𝐴,𝐵,𝐶, 𝑖. ∀𝑗(0≤𝑗<𝑁 ∧𝑗 <𝑖 =⇒ 𝐴[𝑗]=𝐵[𝑗])∧
∀𝑗(0≤𝑗<𝑁 ∧ 𝑗 < 𝑖∧2 * 𝑗<𝑁=⇒𝐴[𝑗]=𝐵[𝑗]) ∧
∀𝑗(0≤𝑗<𝑁 ∧ 𝑗 ≥ 𝑖∧2 * 𝑗<𝑁=⇒𝐴[𝑗]=𝐵[𝑗]) ∧
∀𝑗(0≤𝑗<𝑁 ∧ 𝑗 < 𝑖∧2 * 𝑗≥𝑁=⇒𝐴[𝑗]=𝐵[𝑗]) ∧
∀𝑗(0≤𝑗<𝑁 ∧ 𝑗 ≥ 𝑖∧2 * 𝑗≥𝑁=⇒𝐵[𝑗]=𝐶[𝑗]).

Synthesizing 𝑝𝑟𝑒 Finally, the precondition is obtained from the solution for 𝑖𝑛𝑣.
Because the first CHC initializes the counter 𝑖 to zero, all the conjuncts with
𝑗 < 𝑖 simplify to true and the rest simplifies to:

𝑝𝑟𝑒 ↦→ 𝜆𝑁,𝐴,𝐵,𝐶. ∀𝑗(0≤𝑗<𝑁 ∧ 2 * 𝑗 < 𝑁 =⇒𝐴[𝑗]=𝐵[𝑗]) ∧
∀𝑗(0≤𝑗<𝑁 ∧ 2 * 𝑗 ≥ 𝑁 =⇒𝐵[𝑗]=𝐶[𝑗]).

6 Range Abduction

In this section, we present our technique called range abduction for inferring
quantified invariants, and subsequently, quantified preconditions. We define the
Abduce method for quantified formulas over arrays and linear arithmetic that
can be used in the general algorithm of abductive invariant synthesis. Its core
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features include the capability to selectively apply quantifier elimination, such
that it keeps all quantifiers that are explicit in the abducible formula. As its main
computational vehicle, the method uses quantifier elimination over linear arith-
metic on formulas produced from the actual abducibles by over-approximating
(as precisely as possible) the array computation.

6.1 Preliminaries

CHCs We first formally describe the CHC structure that we support correspond-
ing to linear loops. We assume that the inputs are given as CHCs, where bodies
are in CNF (otherwise, it can be transformed following Sect. 3.2). For each CHC,
we consider two disjoint vectors of source (resp., destination) variables, �⃗� and �⃗�
(resp., �⃗� ′ and �⃗� ′), such that only �⃗� (resp., �⃗� ′) consists of array variables.

We allow only a single index to access elements of all arrays 𝑏 ∈ �⃗� in each CHC
𝐶, and without loss of generality we assume that it is an integer variable 𝑖 ∈ �⃗�
(usually, a loop counter).8 For simplicity, we also introduce a set of temporary
integer variables �⃗� that store some elements selected from arrays and can be
used in other parts of 𝐶 (e.g., to compute the next value to be written to an
array 𝑏′ via some function 𝑓). Thus, we assume that only three possible types of
constraints are used to equate arrays (or their elements), and that they appear
in recursive CHCs, that is:

𝑖𝑛𝑣1(�⃗�, �⃗�) ∧
[︀
(𝑎′ = 𝑎∧)*

]︀
∧
[︀
(𝑡 = 𝑎[𝑖]∧)*

]︀
∧[︀

(𝑏′ = store(𝑏, 𝑖, 𝑓(�⃗�, �⃗�))∧)*
]︀
∧ 𝜙(�⃗�, �⃗� ′, �⃗�) =⇒ 𝑖𝑛𝑣2(�⃗�

′, �⃗� ′)
(5)

where * is Kleene star, 𝑎, 𝑏 ∈ �⃗�, 𝑎′, 𝑏′ ∈ �⃗� ′, 𝑡 ∈ �⃗�, and 𝜙 is over only non-array
variables. Note that sequences of stores (e.g., nested) could be supported after
some sort of a CHC normalization, e.g., by introducing temporary uninterpreted
predicates and splitting 𝐶. Symbols 𝑖𝑛𝑣1 and 𝑖𝑛𝑣2 might refer to the same
predicate.

Queries There is only a single query among CHCs, and it has the form of either
of the two implications:

𝑖𝑛𝑣(�⃗�, �⃗�)∧𝜙(�⃗�) ∧ ∃𝑥.(𝑅(𝑥, �⃗�) ∧𝑄(𝑥, �⃗�, �⃗�)) =⇒ ⊥ (6)

𝑖𝑛𝑣(�⃗�, �⃗�)∧𝜙(�⃗�) ∧ ∀𝑥.(𝑅(𝑥, �⃗�) =⇒ 𝑄(𝑥, �⃗�, �⃗�)) =⇒ ⊥ (7)

In the body of the query, there is a quantifier-free conjunct 𝜙 and a quantified
formula with subformulas 𝑅 and 𝑄. Formula 𝜙 could represent the termination
condition of the array processing loop/recursion (captured in the other CHCs).
The subformulas 𝑅 and 𝑄 could represent, respectively, a range of elements in

8 In practice, the restrictions about array accesses and the shape of the CHC can
be relaxed, but requires a more careful handling than we propose in this paper.
Our implementation has it, but the paper omits it to maintain the simplicity of
presentation.
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an array (giving a condition over possible index 𝑥 of the array), and a property
over an array element (indexed using the 𝑥 variable). We restrict read-accesses
of arrays to the quantified variable only.

The formula in the query determines an initial candidate interpretation for
the predicate in the query. For instance, in (6) and (7), respectively:

𝑖𝑛𝑣
cand↦→ 𝜆�⃗�, �⃗�. ∀𝑥. (𝑅(𝑥, �⃗�) =⇒ ¬𝑄(𝑥, �⃗�, �⃗�)) (8)

𝑖𝑛𝑣
cand↦→ 𝜆�⃗�, �⃗�. ∃𝑥. (𝑅(𝑥, �⃗�) ∧ ¬𝑄(𝑥, �⃗�, �⃗�)) (9)

Applying Algorithm 1 We assume that an iteration of the algorithm deals with a
mapping M and the following CHC, where M (𝑖𝑛𝑣1) might be currently ⊤, but
M (𝑖𝑛𝑣2) is quantified:

𝑖𝑛𝑣1(�⃗�, �⃗�) ∧ 𝜙(�⃗�, �⃗�, �⃗� ′, �⃗� ′) =⇒ 𝑖𝑛𝑣2(�⃗�, �⃗�) (10)

Abductive strengthening is needed when the following implication is not valid
on substitutions of interpretations of 𝑖𝑛𝑣1 and 𝑖𝑛𝑣2 (line 6 of Algorithm 1), thus
necessitating to find 𝜓, such that the following is valid:

𝜓 ∧ 𝜙 =⇒ M (𝑖𝑛𝑣2) (11)

Intuitively, for 𝜓 our algorithm reuses the quantified structure of M (𝑖𝑛𝑣2).
For all quantifier-free conjuncts of M (𝑖𝑛𝑣2), strengthening is done following the
simple abduction, like e.g., in [17]. For quantified formulas, the algorithm is
trickier. In the rest of this section, we assume that algorithms are strengthening
w.r.t. formulas 𝜋∃ and 𝜋∀ having the forms, respectively (9) and (8).

6.2 Core Technique

The basic principle behind our quantified abductive strengthening is in the
preservation of the range. That is, if the quantified formula on the right side
of (11) has form (9) or (8), then it intuitively means that some property 𝑄(𝑥, �⃗�, �⃗�)
should hold either for all elements of array(s) (when quantification is universal),
or some elements of arrays �⃗� (when quantification is existential), determined by
𝑅(𝑥, �⃗�). Thus, an interpretation of predicate 𝜓 on the left side of (11) should
also constrain all elements of (some) arrays belonging to the same range.

Since by our syntax restrictions we allow elements of arrays 𝑏 ∈ �⃗� to be
rewritten using only a single index 𝑖, each constraint 𝑏′ = store(𝑏, 𝑖, 𝑓(�⃗�, �⃗�)) can
be safely replaced in the CHC body as:

𝑏′[𝑖] = 𝑓(�⃗�, �⃗�) and ∀𝑗. 𝑖 ̸= 𝑗 =⇒ 𝑏′[𝑖] = 𝑏[𝑖]

In the following, we are going to use the auxiliary mapping to reduce abduc-
tion over array and integer variables to purely integer abduction.

Definition 10. Let �⃗�, �⃗�, and �⃗�′ be sets of array variables, integer variables, and
integer terms, respectively, all of the same cardinality. A bijection SS : �⃗�′ → �⃗� is
called select-substitution w.r.t. index 𝑖, if for every 𝑎 ∈ �⃗�, there exists 𝑡 ∈ �⃗� such
that SS(𝑎[𝑖]) = 𝑡.
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Algorithm 2: Abduce(𝜋, �⃗�, 𝑆)

Input: 𝜋 – abducible formula of the form (11) from a CHC 𝐶, �⃗� – variables
to keep, 𝑆 – set of CHCs over R where 𝐶 ∈ 𝑆, M – mapping from R
to predicates

Output: 𝜓 a strengthening for 𝜋

1 ⟨𝜋1, 𝜋2⟩ ← decompose 𝜋 into (12) and (13);
2 for 𝑘 ∈ [1, 2] do
3 𝜋𝑘 ← unquantify and apply some SS to 𝜋𝑘;
4 𝜓′

𝑘 ← solve integer abduction for 𝜋𝑘;
5 𝜓𝑘 ← apply SS−1 to 𝜓′

𝑘 and replace 𝑖 by 𝑥;

6 𝜎 ← ComputeRangeFormula(𝑆);
7 𝜃 ← GetCondition(𝐶);
8 if 𝜋 universally quantified then
9 𝜓1 ← 𝜓1 ∨ 𝜎 ∨ ¬𝜃;

10 𝜓2 ← 𝜓2 ∨ ¬𝜎 ∨ ¬𝜃;
11 𝜓 ← ∀𝑥. 𝜓1 ∧ ∀𝑥. 𝜓2;

12 if 𝜋 existentially quantified then
13 𝜓1 ← 𝜓1 ∧ ¬𝜎 ∧ 𝜃;
14 𝜓2 ← 𝜓2 ∧ 𝜎 ∧ 𝜃;
15 𝜓 ← ∃𝑥. 𝜓1 ∨ ∃𝑥. 𝜓2;

16 return 𝜓;

The pseudocode of our range abduction is given in Algorithm 2. Below we
discuss its details.

Universally-quantified formulas (8) The abduction query 𝜋 of the form (11) can
be decomposed (line 1) into two stronger abduction queries, 𝜋1, 𝜋2:

𝜓1∧
[︀
(𝑏′[𝑖] = 𝑓(�⃗�, �⃗�)∧)*

]︀
. . .=⇒ (𝑅(𝑖, �⃗�) =⇒𝑄(𝑖, �⃗�, �⃗�)) (12)

𝜓2∧
[︀
(𝑏′[𝑖] = 𝑏[𝑖]∧)*

]︀
. . . =⇒ (𝑅(𝑖, �⃗�) =⇒ 𝑄(𝑖, �⃗�, �⃗�)) (13)

Since M (𝑖𝑛𝑣2) is universally-quantified and due to our syntactic restrictions,
only the 𝑖-th elements of any source arrays are relevant for the abduction query.
Thus, without loss of generality, our algorithm lowers the (possibly) universally-
quantified formula in M (𝑖𝑛𝑣2) to a quantifier-free formula over the 𝑖-th array
element, and further replaces all the array access terms of the form 𝑎[𝑖] to integer
terms 𝑎𝑖 using a select-substitution SS , essentially boiling down to two abduction
queries over pure integer arithmetic with abducibles 𝜓′

1 and 𝜓′
2 (lines 3, 4).

After the abduction solver returns 𝜓′
1 and 𝜓′

2 for the integer arithmetic
queries, the SS−1 mapping is applied to replace integer terms 𝑎𝑖 by array terms
𝑎[𝑖] to get 𝜓1 and 𝜓2 that constitute solutions to queries (12) and (13)(line 5).

It remains finally to re-introduce the universal quantifier for 𝑥 to 𝜓1[𝑥/𝑖] and
𝜓2[𝑥/𝑖] to get a solution to our main abduction query (11). There are several
ways to do it. One way is to not introduce quantifiers for 𝜓1 as the query (12)
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captures the effect of a single store to an 𝑖-th element of an array. For 𝜓2, then,
the quantifier’s range will span over all the original range except 𝑖. However,
this way, seemingly obvious, does not work in practice because the produced
invariant is unlikely to be inductive.

Another way is to split the range into two segments with the border at 𝑖. It
would intuitively correspond to the range formula computation of [22], i.e., the
sub-array that has already been processed in the loop encoded by the CHC, and
the sub-array that remains to be processed. The former restricts the range of 𝜓2

(lines 10, 14) and the latter of 𝜓1 (lines 9, 13). More formally:

Definition 11. For an inductive CHC 𝐶 with loop counter 𝑖, where 𝑖 is in the
interval [𝑙, 𝑢], and a free variable 𝑗, the range formula is 𝑗 < 𝑖 when 𝑖 ≥ 𝑙 is
inductive at 𝐶, and 𝑗 > 𝑖 when 𝑖 ≤ 𝑢 is inductive at 𝐶.

In Algorithm 2, 𝜎 is the range formula returned by ComputeRangeFor-
mula. Additionally, GetCondition adds predicates that are present in the
constraint of the CHC (like 2 * 𝑖 < 𝑁) after substituting the loop counters in
them by the quantified variables.

Existentially-quantified formulas (9) Similar to the universally-quantified case,
the abduction query (11) for existential quantification will be decomposed into
two abduction queries. Queries (12) and (13) in this case have the form:

𝜓1 ∧
[︀
(𝑏′[𝑖] = 𝑓(�⃗�, �⃗�)∧)*

]︀
. . . =⇒ (𝑅(𝑖, �⃗�) ∧𝑄(𝑖, �⃗�, �⃗�))

𝜓2 ∧
[︀
(𝑏′[𝑖] = 𝑏[𝑖]∧)*

]︀
. . . =⇒ (𝑅(𝑖, �⃗�) ∧𝑄(𝑖, �⃗�, �⃗�))

The remainder of the algorithm in this case is the same as in the universally-
quantified case with the exception that we disjoin two quantified solutions for
the abduction queries before checking if it is inductive.

6.3 Houdini Algorithm

The strengthening performed by Algorithm 2 might result in a too strong candi-
date invariant for already validated CHCs. To resolve this, Algorithm 1 weakens
the candidate invariants by using an existing algorithm called Houdini [24](line 7).
Given a set of relations 𝑅 and a mapping M ,Houdini recursively weakens M un-
til it is inductive at each CHC 𝐶 whose rel(head(𝐶)) ∈ 𝑅. It does this by finding
a counterexample to inductiveness and dropping the conjuncts that don’t satisfy
the counterexample.

6.4 Illustration of Existentially Quantified Precondition Inference

We end this section by illustrating Algorithm 1 on an existentially quantified
postcondition from Fig. 4. The CHCs of this program are given in Fig. 5.

The algorithm chooses an initial candidate for 𝑖𝑛𝑣 from the query. The loop
condition is dropped like universal quantification, but the range formula is not
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𝑐𝑝𝑟𝑒(𝑁,𝐴,𝐵,𝐶) ∧ 𝑖 = 0 =⇒ 𝑖𝑛𝑣(𝑖,𝑁,𝐴,𝐵,𝐶)

𝑖𝑛𝑣(𝑖,𝑁,𝐴,𝐵,𝐶) ∧𝑖<𝑁∧2 * 𝑖<𝑁∧ 𝐶′= 𝑠𝑡𝑜𝑟𝑒(𝐶, 𝑖, 𝑖) ∧𝑖′= 𝑖+1 =⇒ 𝑖𝑛𝑣(𝑖′,𝑁,𝐴,𝐵,𝐶 ′)

𝑖𝑛𝑣(𝑖,𝑁,𝐴,𝐵,𝐶) ∧𝑖<𝑁∧2*𝑖≥𝑁∧𝐴′= 𝑠𝑡𝑜𝑟𝑒(𝐴, 𝑖, 𝐶[𝑖]) ∧𝑖′= 𝑖+1 =⇒ 𝑖𝑛𝑣(𝑖′,𝑁,𝐴′,𝐵,𝐶)

𝑖𝑛𝑣(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ ¬(𝑖<𝑁) ∧ ¬(∃𝑗. 0 ≤ 𝑗 < 𝑁∧𝐴[𝑗] ̸=𝐵[𝑗]) =⇒⊥

Fig. 5: CHC encoding of program in Fig. 4.

conjuncted for existential postcondition as this often results in a too strong
precondition, viz. ⊥.

𝑖𝑛𝑣
cand↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶. ∃𝑗. 0≤𝑗<𝑁 ∧𝐴[𝑗] ̸=𝐵[𝑗]

Algorithm 1 now checks if either the second or third CHC in the 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡
is not inductive. Since the third CHC is not inductive, Abduce is called. The
result of two abduction queries corresponding to 𝑖-th element and non 𝑖-th ele-
ment, i.e. 𝜓1 and 𝜓2, will be 𝐵[𝑗] ̸=𝐶[𝑗] and 𝐴[𝑗] ̸=𝐵[𝑗], respectively. Further,
quantification and range formulas are added, which will result in the candidate:

𝑖𝑛𝑣
cand↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶. ∃𝑗. 0≤𝑗<𝑁 ∧𝐴[𝑗] ̸=𝐵[𝑗]∧(︀

∃𝑗. 0≤𝑗<𝑁 ∧ 𝑗 ≥ 𝑖 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐵[𝑗] ̸=𝐶[𝑗]∨
∃𝑗. 0≤𝑗<𝑁 ∧ 𝑗 < 𝑖 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐴[𝑗] ̸=𝐵[𝑗]

)︀
Now, the Houdini algorithm finds that the candidate is not inductive at the

third CHC. For instance, it finds a counterexample to validity of the form:

𝑎[𝑗] ̸= 𝑏[𝑗] for 𝑗 = 𝑖 , otherwise 𝑎[𝑗] = 𝑏[𝑗]

𝑏[𝑗] ̸= 𝑐[𝑗] for 𝑗 = 𝑖+ 2 , otherwise 𝑏[𝑗] = 𝑐[𝑗]

It drops the conjunct ∃𝑗. 0 ≤ 𝑗 < 𝑁 ∧ 𝐴[𝑗] ̸= 𝐵[𝑗] that does not satisfy the
counterexample. The rest are found to be inductive at the third and second
CHCs.

𝑖𝑛𝑣 ↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶. ∃𝑗. 0≤𝑗<𝑁 ∧ 𝑗 ≥ 𝑖 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐵[𝑗] ̸=𝐶[𝑗]∨
∃𝑗. 0≤𝑗<𝑁 ∧ 𝑗 < 𝑖 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐴[𝑗] ̸=𝐵[𝑗]

Finally, the precondition 𝑐𝑝𝑟𝑒 is computed from the first CHC by substitut-
ing 𝑖 = 0, resulting in:

𝑐𝑝𝑟𝑒 ↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶. ∃𝑗. 0≤𝑗<𝑁 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐵[𝑗] ̸=𝐶[𝑗]

7 Maximal Preconditions

The interpretation of 𝑝𝑟𝑒 generated by Algorithm 1 is guaranteed to be a pre-
condition by Theorem 2, but it could be non-maximal. That is, it may exclude
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Algorithm 3: MaximalPrecond(𝑆,𝑝𝑟𝑒)

Input: 𝑆 – set of CHCs over R , 𝑝𝑟𝑒 ∈ R – precondition relation
Output: M (𝑝𝑟𝑒) – Maximal precondition for 𝑝𝑟𝑒

1 M ← InferAbd(𝑆, {𝜆𝑟 ∈ R .⊤});
2 M ← InferAbd(𝑆, {𝜆𝑟 ∈ R .⊤});
3 𝜑← ¬

(︀
¬M (𝑝𝑟𝑒) =⇒ M (𝑐𝑝𝑟𝑒)

)︀
;

4 while CheckSAT(𝜑) do
5 𝑐𝑡𝑚← GetModel(𝜑);

// 𝑐𝑡𝑚 is of the form
⋀︀

0≤𝑖≤𝑛

𝑥𝑖 = 𝑐𝑖

6 𝑝𝑜𝑠𝑡𝑉 𝑖𝑜𝑙𝑎𝑡𝑒𝑑← UnrollCHC(𝑆𝑐𝑡𝑚, 𝑆𝑐𝑡𝑚);
7 if 𝑝𝑜𝑠𝑡𝑉 𝑖𝑜𝑙𝑎𝑡𝑒𝑑 then

8 M ←Weaken(𝑆,M (𝑐𝑝𝑟𝑒) ∨ 𝑐𝑡𝑚)
9 else

10 M ←Weaken(𝑆,M (𝑝𝑟𝑒) ∨ 𝑐𝑡𝑚)

11 𝜑← ¬
(︀
¬M (𝑝𝑟𝑒) =⇒ M (𝑐𝑝𝑟𝑒)

)︀
;

12 return M (𝑝𝑟𝑒);

some initial states from which the postcondition holds. In this section, we pro-
pose a technique that checks whether a precondition is maximal (i.e. logically
weakest). If not, it incrementally weakens the precondition in a loop until it
becomes maximal.

7.1 Overview

Algorithm 3 gives a description of the maximality checker. Given a precondition
inference problem via a system of CHCs 𝑆, it returns a maximal precondition
on termination. It first generates a precondition for 𝑆 using Algorithm 1. In
order to check whether the precondition is maximal, the algorithm infers another
precondition for the complement CHC system 𝑆 (line 2). Recall from Definition 5
that this system has the same structure as 𝑆 except the postcondition in the
query is complemented. To avoid confusion, we consider 𝑝𝑟𝑒 of this system is
substituted by another uninterpreted relation with the same arity 𝑐𝑝𝑟𝑒. For
example, Fig 5 is the complement CHC system of Fig 3.

The maximality check is performed next by checking whether all the states
that are outside M (𝑝𝑟𝑒) are in M (𝑐𝑝𝑟𝑒)(line 4). Intuitively, if all the states in
¬M (𝑝𝑟𝑒) are in M (𝑐𝑝𝑟𝑒) then those states violate the postcondition as M (𝑐𝑝𝑟𝑒)
is the precondition of the complement postcondition. The validity check is re-
duced to a satisfiability check by negation and the model to the satisfiability
check is called a counterexample-to-maximality, or CTM.

The algorithm uses the CTM to determine which of 𝑝𝑟𝑒 or 𝑐𝑝𝑟𝑒 has to
be weakened by invoking the method UnrollCHC (line 6). Intuitively, Un-
rollCHC performs a task similar to executing the program represented by
CHCs with 𝐶𝑇𝑀 as the initial state. More precisely, UnrollCHC will find
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unrollings (Definition 7) of different lengths for the extensions 𝑆𝑐𝑡𝑚 and 𝑆𝑐𝑡𝑚

and terminates when an unrolling is satisfiable. It then returns whether the un-
rolling was from 𝑆𝑐𝑡𝑚, or 𝑆𝑐𝑡𝑚. For a deterministic CHC system (Definition 8),
a satisfiable unrolling exists either for 𝑆𝑐𝑡𝑚, or 𝑆𝑐𝑡𝑚.

In the next step, the algorithm will weaken 𝑐𝑝𝑟𝑒 if the unrolling is from 𝑆𝑐𝑡𝑚,
or 𝑝𝑟𝑒 if the unrolling is from 𝑆𝑐𝑡𝑚. The weakening is performed by Weaken,
which will be called with an appropriate CHC system and the current interpreta-
tion for the precondition(lines 10, 8). Weaken will generalize the precondition
and find inductive invariants. This loop of checking for CTM and weakening one
of the precondition continues till the maximal precondition is found.

Theorem 3. The precondition returned by Algorithm 3, when it terminates, is
maximal when 𝑆 is deterministic and terminating.

Example 3. In Sect 5.2 and Sect 6.4, Algorithm 1 found the following interpre-
tations for 𝑝𝑟𝑒 and 𝑐𝑝𝑟𝑒:

𝑝𝑟𝑒 ↦→ 𝜆𝑁,𝐴,𝐵,𝐶. ∀𝑗. 0≤𝑗<𝑁 ∧ 2 * 𝑗 < 𝑁 =⇒𝐴[𝑗]=𝐵[𝑗]∧
∀𝑗. 0≤𝑗<𝑁 ∧ 2 * 𝑗 ≥ 𝑁 =⇒𝐵[𝑗]=𝐶[𝑗].

𝑐𝑝𝑟𝑒 ↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶. ∃𝑗. 0≤𝑗<𝑁 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐵[𝑗] ̸=𝐶[𝑗].

The reader may notice that 𝑐𝑝𝑟𝑒 is not maximal, hence it is not possible to
check whether 𝑝𝑟𝑒 is maximal. We now illustrate how Algorithm 3 determines
this.

After finding the interpretations, Algorithm 3 checks the following formula:

¬(∀𝑗. 0≤𝑗<𝑁∧ 2 * 𝑗<𝑁 =⇒𝐴[𝑗]=𝐵[𝑗]∧∀𝑗. 0≤𝑗<𝑁∧ 2 * 𝑗≥𝑁 =⇒𝐵[𝑗]=𝐶[𝑗])

=⇒
∃𝑗. 0≤𝑗<𝑁∧ 2 * 𝑗≥𝑁 =⇒𝐵[𝑗] ̸=𝐶[𝑗]

Since this formula is satisfiable, the algorithm deduces that at least one
among M (𝑝𝑟𝑒) and M𝑐(𝑐𝑝𝑟𝑒) is not maximal. Suppose it gets the following
satisfiability model, or CTM:

𝑁 = 1 ∧𝐴[0] = 0 ∧𝐵[0] = 1 ∧ 𝐶[0] = 0.

UnrollCHC finds that the CHCs violate the property when the CTM is
the initial state. Hence, 𝑐𝑝𝑟𝑒, the precondition of negation of the property, can
be weakened by at least one point, viz. CTM.
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Algorithm 4: Weaken(𝑆, M (𝑝𝑟𝑒) ∨ 𝑐𝑡𝑚)

Input: 𝑆 – set of CHCs over R , M (𝑝𝑟𝑒) ∨ 𝑐𝑡𝑚
Output: M ′ – a solution to 𝑆 with M (𝑝𝑟𝑒) ∨ 𝑐𝑡𝑚 =⇒ M ′(𝑝𝑟𝑒)

1 𝐺← ConstructGrammar(𝑆,M (𝑝𝑟𝑒));
2 while ⊤ do
3 𝜎 ← NextCandidate(𝐺);
4 if CheckSAT(¬

(︀
𝑐𝑡𝑚 =⇒ 𝜎

)︀
) then continue;

5 𝜙← M (𝑝𝑟𝑒) ∨ 𝜎;
6 for 𝑖 ∈ [0 · · ·𝑛] where R = {𝑟0 = 𝑝𝑟𝑒, 𝑟1 · · · 𝑟𝑛} do
7 M ′(𝑟𝑖)← InvInfer(𝑆,M ′, 𝑟𝑖) or 𝜙 for 𝑟0;
8 if ∃𝐶 ∈ 𝑆𝜙.CheckSAT(¬

(︀
body(𝐶) =⇒ head(𝐶)

)︀
[M ′/R ]) then

continue;
9 return M ′;

7.2 Weakening of Precondition

Once the precondition that has to be weakened is determined, a trivial weakening
is to add the CTM to the current interpretation. However, this may cause non-
termination as there can be infinitely many CTMs. In this section, we propose
a heuristic in Algorithm 4 that can accelerate the weakening process.

Algorithm 4 works in two stages. First, it finds a formula 𝜙 that is generally
weaker than the trivial solution M (𝑝𝑟𝑒)∨𝑐𝑡𝑚 (lines 3- 5). To do this, it enumer-
ates (line 3) a formula 𝜎 from an input grammar 𝐺 (a sample grammar is given
in [49] ) and then checks if it is weaker. Then, it finds inductive invariants M ′

(line 7) for the extended system 𝑆𝜙 (recall Definition 6) using a slightly modified
version of range abduction (algorithmic description is in [49]). By Lemma 2, 𝜙
and M ′ together forms a solution to the input system 𝑆.

Theorem 4. Algorithm 4 returns a solution M ′ to 𝑆, and M (𝑝𝑟𝑒) ∨ 𝑐𝑡𝑚 =⇒
M ′(𝑝𝑟𝑒)

Example 4. We continue illustration of Example 3. Algorithm 4 is called with
a complement CHC system (Fig 5) and M (𝑐𝑝𝑟𝑒) ↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶. ∃𝑗. 0 ≤ 𝑗 <
𝑁 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐵[𝑗] ̸=𝐶[𝑗] and 𝑐𝑡𝑚 = 𝑁 = 1 ∧ 𝐴[0] = 0 ∧𝐵[0] = 1 ∧ 𝐶[𝑗] = 0.
Suppose that the algorithm samples 𝜎 as ∃𝑗. 0≤𝑗 <𝑁 ∧ 2 * 𝑗 < 𝑁 ∧ 𝐴[𝑗] ̸=𝐵[𝑗]
based on the constraints from query and second CHC. Since the check at line 4
passes, 𝜙 will be assigned:

∃𝑗. 0≤𝑗<𝑁 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐵[𝑗] ̸=𝐶[𝑗] ∨ ∃𝑗. 0≤𝑗<𝑁 ∧ 2 * 𝑗 < 𝑁 ∧𝐴[𝑗] ̸=𝐵[𝑗].

InvInfer uses the postcondition to compute M [𝑟𝑖+1] and 𝜎 to compute
M [𝑟𝑖−1]. It then adds 𝑗 < 𝑖 to the former, 𝑗 ≥ 𝑖 to the latter, and disjuncts them
(due to existential quantification) to get:

𝑖𝑛𝑣 ↦→ 𝜆𝑖,𝑁,𝐴,𝐵,𝐶. ∃𝑗. 0 ≤ 𝑗 < 𝑖 ∧𝐴[𝑗] ̸=𝐵[𝑗]∨
∃𝑗. 𝑖 ≤ 𝑗 < 𝑁 ∧ 2 * 𝑗 ≥ 𝑁 ∧𝐵[𝑗] ̸=𝐶[𝑗]∨
∃𝑗. 𝑖 ≤ 𝑗 < 𝑁 ∧ 2 * 𝑗 < 𝑁 ∧𝐴[𝑗] ̸=𝐵[𝑗]

266 Sumanth Prabhu S, Grigory Fedyukovich, and Deepak D’Souza



Since this is inductive at all CHCs, the algorithm returns with 𝜙 and 𝑖𝑛𝑣.
Algorithm 3 will perform its check and finds that 𝑝𝑟𝑒 is maximal.

8 Evaluation

Tool We implemented our algorithms in a tool called PreQSyn on top of the
FreqHorn framework [22]. Our tool takes as input a precondition-inference
problem encoded as a set of CHCs. It uses Z3 [44] to solve SMT queries. Quan-
tifier elimination is performed using the solver from [20] that uses model-based
projection [5]. On a successful execution, our tool infers maximal preconditions
and inductive invariants for the loops.

Evaluation Goals We evaluate PreQSyn on the following research questions:

RQ1 Can PreQSyn infer universal and existential preconditions? How many
of them can it prove maximal?

RQ2 Can PreQSyn compete with existing maximal quantified precondition
inference tools?

RQ3 How challenging for state-of-the-art is to infer invariants with precondi-
tions?

RQ4 How do various modules of PreQSyn influence its performance?

Benchmarks and Configuration We use 32 precondition inference problems with
29 universal and 3 existential quantified postconditions. Since none of the bench-
marks from [54] had quantified postconditions, we derived a majority (26/32)
of benchmarks from the existing verification benchmarks of [22] that have been
collected from various sources like SV-COMP. In particular, we considered 48
benchmarks from the public repository of [22] that have multiple loops, i.e., the
first loop has an array initialization, and the other loops involve various types
of array processing like copying, modifying, filtering, and searching among the
elements. We then excluded the first (initialization) loop from each benchmark,
thus targeting the necessity of synthesizing a quantified precondition that would
intuitively describe how the arrays need to be initialized in order to meet the
postcondition. We further excluded benchmarks that gave repetitive problems
(8/48) and did not meet our syntactic restrictions (viz. had non-quantified post-
conditions (6/48), had nested loops (5/48), or had non-linear expressions (3/48)).
We added 6 new benchmarks to test different features of our tool.

We performed the experiments on an Ubuntu 20.04 machine with a 2.5GHz
processor and 16GB memory. A timeout of 100s was given to all the tools.

RQ1 PreQSyn inferred a precondition for 31/32 benchmarks. The failed bench-
mark timed out in the inductiveness check. Out of 31 preconditions, 22 were
proved to be maximal automatically. All the successful benchmarks were com-
pleted within 5 seconds. Overall, PreQSyn solved CHC tasks numbering 31
with universally quantified and 30 existentially quantified postconditions corre-
sponding to 𝑝𝑟𝑒 and 𝑐𝑝𝑟𝑒.
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On manual inspection of 9 benchmarks for which PreQSyn found a precon-
dition but was unable to prove maximality, 5 were found to be non-deterministic.
However, the inferred preconditions for them were sufficiently weak. The rest 4
failed in different stages of weakening 𝑐𝑝𝑟𝑒. Among these benchmarks, we found
that 3/4 preconditions (i.e. 𝑝𝑟𝑒) were actually maximal.9

RQ2 We ran P-Gen (with Z3 v2.0 as its SMT solver) on semantically equiva-
lent C programs manually constructed from the CHCs. P-Gen found only 2/32
preconditions as maximal. Both of them were existentially quantified. It timed
out on 5/32 benchmarks. On the remaining 25/32 benchmarks it exited without
finding a precondition. Overall, PreQSyn inferred significantly more precondi-
tions than P-Gen due to the generalization capability of range abduction.

RQ3 We tried to replace our invariant inference technique by an existing one,
thus evaluating the need to discover our invariants. Existing state-of-the-art
CHC solving tools can handle arrays, to some extent, namely: Spacer [32](Z3
v4.8.10), a PDR-based invariant inference tool, and FreqHorn [22] (v.0.6), a
SyGuS based invariant inference tool. So we pose the simpler problem of in-
ferring invariants with preconditions to them. Furthermore, we also pose this
as an assertion checking problem to VeriAbs [15] (v1.4.2), a portfolio solver
that targets linear loops and the gold winner of SV-COMP 2022 ReachSafety
Category [4] and the winner of array category since several years.

To create invariant inference and verification problems, we consider 42 pre-
condition inference problems corresponding to 𝑝𝑟𝑒 and 𝑐𝑝𝑟𝑒 for which Pre-
QSyn was able to find the maximal preconditions. The 42 precondition infer-
ence problems were converted manually to verification problems by using the
maximal preconditions. For Spacer, the CHCs were annotated by the maximal
interpretations of 𝑝𝑟𝑒 and 𝑐𝑝𝑟𝑒, for VeriAbs, semantically equivalent C pro-
grams with maximal preconditions as loops, and for FreqHorn original CHCs
were provided as input.

Out of 42 problems, 21 each of universally and existentially quantified post-
conditions, VeriAbs solved 37, FreqHorn solved 20, and Spacer solved 11.

RQ4 We disabled Houdini algorithm from line 7 of Algorithm 1 and PreQSyn
found preconditions for 27 benchmarks compared to 31 with the range abduction
algorithm. Out of 27, only 6 were proved maximal. We conclude that weakening
by Houdini is useful, especially when postconditions are existentially quantified.
We extended the SMT-based maximality checking algorithm from [50], but it was
unsuccessful in proving the 21 problems that our maximality checker proved.

9 Related Work

The problem of precondition inference appears in multiple applications and has
been the subject of numerous works. Broadly, these works can be classified as

9 Detailed results of evaluation with timings can be found in [49].
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static [45,14,54,13], dynamic [53,25,3,41], and a mix of both [46]. Our technique
falls in the first category. The two works closest to ours are [14] and [54] which
compute maximal quantified preconditions for array programs, using abstract
interpretation and CEGAR-based predicate abstraction, respectively. Unlike the
technique in [14], our work does not require predefined abstract domains. The
technique in [54] computes over-approximations of safe and unsafe states (i.e.
over-approximations of 𝑝𝑟𝑒 and 𝑐𝑝𝑟𝑒) and then refines them till they become
disjoint. The over-approximations are computed using predicate abstraction and
the predicates required for the refinement of the abstraction are derived from
a set of heuristic rules. Our technique differs from theirs in several ways: we
rely on abduction-based techniques to infer necessary predicates, while they rely
on minimal unsat cores; we infer quantified inductive invariants that witness
the correctness of the inferred preconditions, while their technique does not;
finally, we target quantified postconditions while they consider only quantifier-
free postconditions.

The problem of inferring universally quantified inductive invariants has re-
ceived considerable attention. The inference is made using methods such as ab-
stract interpretation [30], predicate abstraction using Skolem constants [40] and
interpolation [34], an extension of IC3 for arrays [32], and syntax-guided synthe-
sis [22]. These techniques, apart from being restricted to universal quantification,
also expect a precondition. Our technique overcomes these limitations by infer-
ring preconditions including existentially quantified ones.

Many techniques verify programs with arrays by transforming them to a
sound abstraction without explicitly generating inductive invariants. The ab-
straction can be obtained by considering all the array elements as a single cell [7],
or multiple fixed cells and then converting to array-free nonlinear CHCs [43],
overapproximating unknown loop bounds to a smaller known bound [39], acceler-
ating entire transition relations [8], using CHC transformations [6,35] and induc-
tion based techniques [9,10,11]. The portfolio solver VeriAbs [1] used in our ex-
periment predominantly used the shrinking [39] technique to verify, which does
not generate invariants. The tool also has induction-based techniques [9,10,11]
that implicitly generate invariants, but are not given to the user. RAPID [26]
translates the semantics of the input program into formulas in trace logic. Then
the formulas are verified using a theorem prover. Though sound lemmas are used
to translate loops, it currently does not support the extraction of invariants from
the lemmas. Apart from the inability to generate explicit invariants, all of these
techniques need preconditions to verify the programs.

Our technique works on CHCs, which has gained much attention in recent
years for different verification and inference tasks [57,36,51,21,19,50,32,22]. Most
of these techniques do not handle arrays, and when they do, do not generate
maximal preconditions.

The core part of our algorithm uses abductive inference. Abduction has been
used for programs without arrays to infer invariants [17,18], preconditions [27,16],
and specifications [2,50]. The technique in [56] finds specification over unin-
terpreted functions by overcoming the limitation of integer abduction engines
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through a data-driven approach. In contrast, our technique extends the abduc-
tion itself for quantified formulas over arrays.

Recent works in specification synthesis uses artifacts like input-output exam-
ples, comments in the code, partial code snippets, and user-supplied constraints
and languages to infer specifications [12,55,47]. In comparison, our work uses the
entire program and postcondition expressed as a logical formula to find maximal
preconditions.

10 Limitations and Future Work

The restriction on array access statements simplifies the conversion between ar-
ray and integer terms in range abduction. However, this can be relaxed to sup-
port terms like 𝑎[𝑏[𝑖]], 𝑎[𝑖+1] among others, by enhancing the select-substitution
(recall Def 10).

The restriction on form of postconditions, inductive invariants and precon-
ditions is required for effective range abduction and SMT checks. Our approach
can easily support alternating quantifiers, if the structure of the postcondition
is close to the inductive invariant.

For non-deterministic programs, Algorithm 4 will not terminate when a CTM
has two satisfiable unrollings: 𝜋 and 𝜋 (refer Definition 8). Hence, the maxi-
mality check will be inconclusive. Nevertheless, Algorithm 1 can still generate
preconditions (with inductive invariants) for such programs, often maximal ones
as observed in our experiments. We extend our approach to non-deterministic
CHCs in [48].

In the case of non-terminating programs, an initial state with non-terminating
execution can be added to either 𝑝𝑟𝑒 or 𝑐𝑝𝑟𝑒, as it will have inductive invariants
for both. If added to the latter, the maximality check could wrongly conclude
that 𝑝𝑟𝑒 is maximal when it’s not. Therefore, relaxing this restriction affects
the soundness of the maximality check. An interesting future direction for max-
imality checking would be to extend the work presented in [29] to incorporate
array handling.

Data Availability and Artifact

The artifact accompanying the paper is publicly available at [52].
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35. Hojjat, H., Rümmer, P.: The ELDARICA Horn Solver. In: FMCAD. pp. 158–164.
IEEE (2018)

36. Kafle, B., Gallagher, J.P., Ganty, P.: Solving non-linear Horn clauses using a linear
Horn clause solver. In: HCVS. EPTCS, vol. 219, pp. 33–48 (2016)

37. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: Jayhorn: A framework for verifying
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Abstract. Inlining is a crucial optimisation when compiling functional
programming languages. This paper describes how we have implemented
and verified function inlining and loop specialisation for PureCake, a
verified compiler for a Haskell-like (purely functional, lazy) programming
language. A novel aspect of our formalisation is that we justify inlining by
pushing and pulling let-bindings. All of our work has been mechanised
in the HOL4 interactive theorem prover.
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· functional programming · machine-checked proofs

1 Introduction

It can be tricky to generate high-quality code from lazy, purely functional pro-
grams for a number of reasons. One of these reasons is that functional program-
ming encourages a brief declarative style that makes heavy use of shorthands
(e.g., for partially-applied functions) and higher-order functions [8]. Producing
good code from such input requires a well-developed inliner, as noted [17] by the
developers of the Glasgow Haskell Compiler (GHC):

“One of the trickiest aspects of a compiler for a functional language is
the handling of inlining. [...] Effective inlining is particularly crucial in
getting good performance.”

This paper is about implementing and verifying an inliner that can specialise
loops for PureCake, an end-to-end verified compiler for a Haskell-like language [10].

The inliner by example. The following simple example demonstrates what
our inliner does. Imagine that a programmer is to write a function that incre-
ments every element of a list of integers. The programmer should write:

suc_list = map (+1)

Here, the programmer has relied on the library function map below to perform
the necessary list traversal.
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map f [] = []
map f (x:xs) = f x : map f xs

To generate high-quality code for suc_list, the compiler must both inline and
specialise map. Our inliner takes the definition of suc_list above and produces
the following code.

suc_list =
let map' xs =

case xs of
[] -> []
(y:ys) -> y + 1 : map' ys

in map'

In particular, the inliner has combined the following code transformations:

– selective expansion of function definitions at call sites; and
– loop specialisation of recursive functions with known arguments (e.g., argu-

ment f to map is always (+1) in suc_list).

Contributions. Our work adds verified inlining and loop specialisation to Pure-
Cake. Our inliner is capable of optimisations such as the one above. More specif-
ically, we make the following contributions:

1. We define and prove sound a relation that encapsulates an envelope of
semantics-preserving inlinings (§ 4). This relation is independent of the
heuristics of any real implementation. It is proved sound using a novel for-
malisation of inlining as pushing/pulling of let-bindings.

2. We derive sound equational principles that allow us to lift out arguments
which remain constant during recursion, such as f in map in the example
above (§ 5). These principles are phrased such that they can be used in the
relation above and have the effect of specialising loops.

3. We implement an inliner that can specialise loops and verify that its action
preserves semantics, relying on the formalisations above (§ 6).

4. We integrate our inliner into the PureCake compiler and its verification (§ 7).

All of our work is mechanised using the HOL4 interactive theorem prover, and
our development is open-source.3 To the best of our knowledge, ours is the first
verified inliner for a lazy functional programming language, and the first verified
loop specialiser for any functional language.

2 The Inliner by Example

We begin with a high-level explanation of how our inliner works, before diving
into verification details in later sections. We will show the transformations the
3 https://github.com/cakeml/pure, see also our artifact hosted on Zenodo [9].
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inliner performs step-by-step. As a running example, we use the code from the
previous section with one modification: we lift (+1) to a separate function add1
for clarity. The input code after this modification is as follows:

suc_list = map add1

add1 i = i + 1

map f [] = []
map f (x:xs) = f x : map f xs

main = ...

Our inliner is installed very early in the PureCake compiler, directly after
parsing and binding group analysis. Binding group analysis processes the pro-
gram above to the code below, breaking up the mutually recursive bindings into
a nesting of let-expressions. Note that there is no dependency between add1 and
map, so their definitions could be reordered; for this example we put add1 first.

18 let add1 i = i + 1 in
19 let map f l = case l of
20 [] -> []
21 (x:xs) -> f x : map f xs in
22 let suc_list = map add1 in
23 let main = ... in main

The inliner receives this program as input. As it traverses the program, it
records known definitions that it may wish to inline later on. In particular, it
maintains a mapping from names to their definitions, which starts off empty.
Therefore, after processing line 18 (i.e., the definition of add1), the mapping
contains only the definition of add1, that is, \i -> i + 1.

The inliner then moves to line 19, the let-expression that defines map. The
definition of map is recursive, so the inliner analyses it to determine whether any
of its arguments remain constant over all recursive calls. In the case of map, it
finds that the first argument, f, remains constant. This means that it can loop
specialise map to produce the following equivalent definition.

let map f =
let map' l = case l of

[] -> []
(x:xs) -> f x : map' xs

in map'
in ...

Our inliner does not alter the definition of map in the program, but it does add
this equivalent definition to its mapping of known definitions. We will very soon
see why it is useful to pull out the constant argument f.
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The inliner moves on to the definition of suc_list on line 22.

let suc_list = map add1 in ...

After pulling out the constant argument f above, the inliner considers map to
be a single-argument function. Therefore, the application map add1 here seems
fully applied and the inliner will rewrite it. First, it transforms map add1 into
the following.

let suc_list =
let f = add1 in
let map' l = case l of

[] -> []
(x:xs) -> f x : map' xs

in map'
in ...

Notice the use of a binding let f = add1 to assign the constant argument f of
map. Then, the inliner recurses into this expression, replacing f by add1 in the
second row of the pattern match:

(x:xs) -> add1 x : map' xs

The inliner recurses again into the modified subexpression add1 x, and realises
that add1 (which is mapped to \i -> i + 1) is fully applied. Therefore, it inlines
add1 too:

(x:xs) -> (let i = x in i + 1) : map' xs

Once again, the inliner recurses on the modified subexpression, turning the in-
nermost i into x:

(x:xs) -> (let i = x in x + 1) : map' xs

The final code produced by the inliner is below. The definition of suc_list
has been rewritten so extensively that it now resembles a copy of map which has
been specialised to the add1 function.

41 let add1 i = i + 1 in
42 let map f l = case l of
43 [] -> []
44 (x:xs) -> f x : map f xs in
45 let suc_list =
46 let f = add1 in
47 let map' l = case l of
48 [] -> []
49 (x:xs) -> (let i = x in x + 1) : map' xs
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50 in map'
51 in let main = ... in main

Some dead code remains, e.g., let f = add1 (line 46) and let i = x (line 49).
We perform a simple dead code elimination pass immediately after the inliner
to remove these.

Single-pass optimisation. Note that our inliner does not make multiple passes
over input code, in contrast to the presentation above. It performs a single top-
down pass over its input, calling itself recursively only on function applications
or variables that it has successfully rewritten. The depth of this recursion is
bounded by a simple user-configurable recursion limit.

3 Setting: PureCake

We implement and verify our inlining and specialisation optimisations as part of
the verified compiler PureCake. In this section, we describe both the PureCake
project at a high level, and the key aspects of its formalisation on which we rely.

What is PureCake? PureCake [10] is an end-to-end verified compiler for a
Haskell-like language known as PureLang. Here, a “Haskell-like” language is
one which: is purely functional with monadic effects; evaluates lazily; and has a
syntax resembling that of Haskell. PureCake compiles PureLang to the CakeML
language, which is call-by-value and ML-like, and has an end-to-end verified com-
piler [12,14]. CakeML targets machine code, so PureCake and CakeML can be
composed to produce end-to-end guarantees for the compilation of PureLang
to machine code [10, §6].

The PureCake compiler is designed to be realistic: it accepts a featureful
input language and generates performant code. This makes it an ideal setting
for verified inlining and specialisation optimisations. We add these to PureCake
as PureLang-to-PureLang transformations.

Formalisation details. PureLang is formalised using two ASTs: compiler ex-
pressions and semantic expressions, denoted ce and e respectively [10, §3.2].
The compiler implementation uses compiler expressions, and their semantics is
given by desugaring into semantic expressions (denoted desugar, of type ce → e).

The call-by-name operational semantics of PureLang is defined over its sim-
pler semantic expressions [10, §3.3]. This semantics admits an equational the-
ory [10, §3.4] which is sound and complete with respect to contextual equiv-
alence. Its equivalence relation, e1 ∼= e2, is based on an untyped applicative
bisimulation from Abramsky’s lazy λ-calculus [1] and is proved congruent via
Howe’s method [7], i.e., expressions composed of equivalent subexpressions are
themselves equivalent.

PureCake’s compiler passes are verified in two stages.
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1. A binary syntactic relation is defined over semantic expressions (e1 R e2).
The relation is proved to imply e1 ∼= e2, so e1 and e2 have identical observ-
able behaviour in all contexts. Intuitively, the syntactic relation carves out
an envelope of possible valid transformations, independent of the heuristics
of any real implementation.

2. The implementation is then defined over compiler expressions, with concrete
heuristics. It is verified to perform only those valid transformations expressed
by the syntactic relation.

Composition of the two stages produces the overall proof that the action of the
compiler implementation preserves semantics. A key benefit of this approach is
that heuristics remain an implementation detail in stage 2, and can be changed
without incurring the significant proof obligations of stage 1.

Approach and paper outline. We can now describe more precisely the steps we
took to add inlining and loop specialisation to the PureCake compiler.

§ 4 (stage 1) We defined a relation which captures an envelope of valid inlining
transformations, and proved that this relation preserves semantics.

§ 5 We formalised loop specialisation using PureLang’s equational theory such
that it can be used in the envelope mentioned above.

§ 6 (stage 2) We implemented the overall inlining and specialisation transfor-
mations over compiler expressions, verifying that they fit the envelopes.

§ 7 We integrated our inliner into the PureCake compiler pipeline and its top-
level correctness result.

§ 8 We benchmarked the performance of the output of the inliner.

4 Inlining as a Relational Envelope

In this section, we define a relation which characterises all the inlinings that we
wish to perform. We then prove that any code transformation contained within
this relational envelope must preserve semantics.

4.1 Understanding the relation

We begin by describing the intuition behind our relation.

Inlining is not substitution. Inlining is a more complex transformation than
substitution or β-conversion. If we were to view inlining as a special case of
these, we would generate unsatisfactory code. In particular, consider the example
below: inlining based on substitution must replace all three occurrences of f with
its definition; inlining based on β-conversion would remove the let-binding.

let f i = 5 in f 1 : map f xs ++ map f ys
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By contrast, a real inliner must be able to choose whether to inline a definition
per use of that definition. In other words, the inliner should decide which usages
of a given definition are rewritten on a case-by-case basis. For the example above,
a real inliner should produce the code below. Note that it chooses to inline the
function f only at the usage which fully applies it.

let f i = 5 in (\i -> 5) 1 : map f xs ++ map f ys

Of course, a real inliner would further transform (\i -> 5) 1 into 5 (this is in
fact a β-conversion). For clarity in this example, we do not show that step.

Inlining is a series of let transformations. The key intuition behind our
inlining transformations is as follows. We push let-bindings into expressions as
far as possible, rewrite the result, then pull the bindings out again. We illustrate
this by example below, starting from the same initial code as above.

let f i = 5 in f 1 : map f xs ++ map f ys

We now push in the let-binding which defines f to produce a series of equivalent
expressions. First, we push it in one step past the list constructor (:):

(let f i = 5 in f 1) :
(let f i = 5 in map f xs ++ map f ys)

Next, we push it in through the function application f 1:

(let f i = 5 in f) (let f i = 5 in 1) :
(let f i = 5 in map f xs ++ map f ys)

Now, we choose to rewrite the use of f under the first let f i = 5 to \i -> 5:

(let f i = 5 in (\i -> 5)) (let f i = 5 in 1) :
(let f i = 5 in map f xs ++ map f ys)

Note that we have chosen not to perform any other rewrites of f, because other
uses of f are not fully applied.

We can now reverse the pushing in of let-bindings, i.e., we pull them out
instead. The final result is as follows, where f is inlined exactly as we wanted:

let f i = 5 in (\i -> 5) 1 : map f xs ++ map f ys

Stacking let transformations. Above, our example shows how we can inline
a single let-binding: we push it inwards, use it for rewriting, and pull it outwards
back to its original position. We can generalise this straightforwardly to handle
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a list of let-bindings. This mimics the implementation of a real inliner, which
must carry with it a collection of definitions it may wish to inline.

Consider the following example, in which an inliner attempts to rewrite the
expression g 3 + 7 and carries definitions f i = 5; h i = 2; g i = f i + 1.

let f i = 5 in
let h i = 2 in
let g i = f i + 1 in

g 3 + 7

Just as with a single let-binding, we can push in the stack of let-bindings,
rewrite, and pull them out again. This produces the following expression.

let f i = 5 in
let h i = 2 in
let g i = f i + 1 in

(\i -> (\i -> 5) i + 1) 3 + 7

The only complication in generalising to a stack of let-bindings is that some
definitions can depend on others. In the example above, the definition of g
depends on f. This is why we model the bindings as a list : this preserves scoping
correctly, ensuring we do not break any dependencies between definitions.

Note that this intuition of pushing in and pulling out of let-bindings applies
only to the formalisation that justifies our inlining rewrites. The implementation
of our inliner performs no such push/pull transformations: as one might expect,
it merely carries around a simple (unordered) map of variable names to their
definitions. This map represents exactly the set of definitions that the inliner
may wish to use for rewriting at usage sites.

4.2 Defining a Semantics-Preserving Envelope

We now describe an inductive relation, l ⊩ e1 ⇝ e2, which characterises all of
the inlining transformations that we perform. We prove that any transformation
described by the relation lies within the equational theory of PureLang (∼=, § 3).
Therefore, the relation describes only semantics-preserving transformations.

The relation l ⊩ e1 ⇝ e2 should be read as follows: expression e1 can be
transformed into expression e2 under the definitions in the list l. Both e1 and
e2 are PureLang semantic expressions, and l is a list of definitions. Each such
definition is of the form x ← e, associating name x with semantic expression
e. We will first describe the formal meaning of l ⊩ e1 ⇝ e2, which is best
understood via its soundness theorem, Theorem 1. Then in following subsections,
we describe key parts of the definition of ⇝.

Theorem 1 relates derivations of l ⊩ e1 ⇝ e2 with ∼=, PureLang’s equational
theory, assuming pre and lets_ok. The definitions of pre and lets_ok are shown in
Figure 1—they enforce distinct variable names between both the expression e1
and each of the definitions in l to avoid inadvertent clashes or capture.
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vars_of l def
=

⋃{
{x} ∪ freevars e

∣∣∣ mem (x ← e) l
}

pre l e
def
= barendregt e ∧ boundvars e # vars_of l

lets_ok []
def
= T

lets_ok ((x ← e) :: l)
def
=

x /∈ freevars e ∧
(
{x} ∪ freevars e

)
# {x | ∃e. mem (x ← e) l} ∧ lets_ok l

Fig. 1. The definition of pre and lets_ok. Here, the # predicate returns true only for
disjoint sets: s1#s2

def
= (s1 ∩ s2 = ∅).

Theorem 1. Soundness of l ⊩ e1 ⇝ e2.

⊢ l ⊩ e1 ⇝ e2 ∧ pre l e1 ∧ lets_ok l ⇒ lets l e1 ∼= lets l e2

where lets [] e
def
= e and lets ((x ← e ′) :: l) e

def
= let x = e ′ in (lets l e)

In particular, expressions e1 and e2 related in the context of definitions l produce
equal expressions (according to ∼=) under the stack of let-bindings corresponding
to l. The latter correspondence is encapsulated by the definition of lets, which
nests let-bindings. This theorem is proved by induction over the derivation of
l ⊩ e1 ⇝ e2. In upcoming subsections, we will examine key rules of ⇝ and their
cases in this inductive proof.

When the inliner is first invoked, it is passed an entire PureLang program
and has no knowledge of any definitions. In other words, its mapping of variable
names to known definitions is empty, corresponding to the list l being empty ([]).
In this case, we can simplify Theorem 1 by instantiating l 7→ [], and unfolding
the definitions of pre l and lets_ok l. This produces the following theorem:

Theorem 2. Soundness of [] ⊩ e1 ⇝ e2.

⊢ [] ⊩ e1 ⇝ e2 ∧ barendregt e1 ∧ closed e1 ⇒ e1 ∼= e2

We can read this as follows: if we can transform some closed e1 which satis-
fies barendregt to some e2 according to ⇝, then e1 and e2 are equivalent. The
barendregt predicate restricts the variable naming convention within e1 to avoid
problems with variable capture, because PureLang has explicit names. In par-
ticular, barendregt is the well known Barendregt variable convention that enforces
unique free/bound variable names across an entire program [3].

The precise definition of barendregt is not necessary here. Suffice it to say
that in order to discharge this assumption, our inliner implementation will rely
on a freshening pass. This pass α-renames programs such that they obey the
Barendregt variable convention, and therefore satisfy barendregt.
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Reflexivity. We must allow the inliner to choose whether to rewrite a usage
site on a case-by-case basis (§ 4.1). Therefore, the inliner must be allowed not
to inline, i.e., it must be able to leave an expression unchanged. Therefore the
⇝ relation has a reflexivity rule:

l ⊩ e ⇝ e
refl

The refl case of the proof of Theorem 1 boils down to showing the equation
lets l e ∼= lets l e, which is trivial due to reflexivity of ∼=.

Inlining. The simplest rule for inlining uses a definition found in the list l
(where mem denotes list membership) to rewrite a variable:

mem (x ← e) l

l ⊩ var x ⇝ e
inline

In particular, if l associates name x with definition e, then the variable var x can
be replaced by expression e. The inline case of Theorem 1 requires establishing:

⊢ mem (x ← e) l ∧ lets_ok l ∧ pre l (var x )⇒ lets l (var x ) ∼= lets l e

Proof outline. We first derive a lemma that allows us to duplicate a let-binding
from l, assuming lets_ok (defined in Figure 1 such that it enables this lemma):

⊢ mem (x ← e) l ∧ lets_ok l ⇒ lets l e ′ ∼= lets l (let x = e in e ′) Let-dup

Equipped with the Let-dup lemma, we proceed as follows:

lets l (var x ) ∼= lets l (let x = e in var x ) (Let-dup)
∼= lets l e (trivial)

⊓⊔

Let. We can now inline known definitions, but we must be able to learn those
definitions in the first place. The rule Let allows us to add a let-bound definition
to the stack l, using the append operator (++).

l ⊩ e1 ⇝ e ′1 l ++ (x ← e1) ⊩ e2 ⇝ e ′2

l ⊩ (let x = e1 in e2)⇝ (let x = e ′1 in e ′2)
Let

Proof outline. Let case of Theorem 1.

lets l (let x = e1 in e2)
∼= lets (l ++ (x ← e1)) e2 (definition of lets)
∼= lets (l ++ (x ← e1)) e

′
2 (ih for e2)

∼= lets l (let x = e1 in e ′2) (definition of lets)
∼= let x = (lets l e1) in (lets l e ′2) (push in lets)
∼= let x = (lets l e ′1) in (lets l e ′2) (ih for e1)
∼= lets l (let x = e ′1 in e ′2) (pull out lets)
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⊓⊔
Above, we can push and pull lets through let because the precondition pre
enforces sufficiently distinct variable names.

Note that this rule records the unmodified expression e1 in the stack of known
definitions l. It could instead use the ⇝-transformed expression e ′1. The proof
strategy with this modification is essentially unchanged, except we must reverse
our applications of the inductive hypotheses.

Congruences. We must be able to apply ⇝ within subexpressions. Therefore,
we have several congruence rules, such as the following:

l ⊩ e1 ⇝ e ′1 l ⊩ e2 ⇝ e ′2

l ⊩ (e1 · e2)⇝ (e ′1 · e ′2)
App-cong

l ⊩ e ⇝ e ′

l ⊩ (λx . e)⇝ (λx . e ′)
Lam-cong

∀i. l ⊩ ei ⇝ e ′i l ⊩ e ⇝ e ′

l ⊩ (letrec xn = en in e)⇝
(
letrec xn = e ′n in e ′

) Letrec-cong

Each such case in Theorem 1 requires showing that we can push/pull lets
into/out of subexpressions. Once again, the precondition pre permits this by
enforcing sufficiently distinct variable names. The remainder of the proof follows
from congruence of ∼=.

Simplification. The following rule allows ⇝ to carry out any transformation
that preserves ∼=:

l ⊩ e1 ⇝ e2 e2 ∼= e ′2

l ⊩ e1 ⇝ e ′2
simp

The simp case in Theorem 1 is a direct consequence of the transitivity of ∼=.
This rule permits the inliner to modify (and in particular, simplify) generated

expressions during its operation. There are two important uses of this ability:

– Turning fully applied λ-abstractions into a stack of let-bindings. This allows
recursive applications of inlining (see rule trans below).

(λx1. λx2. . . . λxn. e) · e1 · e2 · . . . · en ∼=
lets (x1 ← e1 :: x2 ← e2 :: . . . :: xn ← en) e (1)

– Freshening names of bound variables (i.e., α-renaming). This happens di-
rectly before application of the rule trans below.

Transitivity. To permit recursion into recently inlined expressions, ⇝ has a
transitivity rule:

l ⊩ e1 ⇝ e2 l ⊩ e2 ⇝ e3 pre l e2

l ⊩ e1 ⇝ e3
trans
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In particular, e1 can be transformed to e3 if there is some intervening e2 which
can act as a stepping stone.

Unusually, we require precondition pre to hold of intermediate expression e2.
This is demanded by the proof of Theorem 1, in which we can only instanti-
ate inductive hypotheses if we first establish pre. Unfortunately, l ⊩ e1 ⇝ e2
and pre l e1 are not enough to derive pre l e2. Fortunately, we can freshen
bound variable names (i.e., α-rename) sufficiently to establish pre, and justify
this freshening using rule simp above.

Specialisation. The⇝ relation must be able to support loop specialisation, as
described for the map function in § 2. Therefore, it has a rule spec which permits
conversion of a letrec into a let, as long as there is a proof that the conversion
preserves ∼=.

l ⊩ e1 ⇝ e ′1 (∀e. letrec x = e1 in e ∼= let x = e2 in e)

l ++ (x ← e2) ⊩ e3 ⇝ e ′3 disjoint_names e2 e3 x /∈ freevars e2

l ⊩ letrec x = e1 in e3 ⇝ letrec x = e ′1 in e ′3
spec

That is, if we can ∼=-convert some letrec x = e1 to some let x = e2, then we can
append x ← e2 to the stack of known definitions when processing letrec body
e3. Again, we require restrictions on variable naming: the variables bound in e2
and e3 must be disjoint, and the bound variable x must not appear free in e2.

Proof outline. spec case of Theorem 1.

lets l (letrec x = e1 in e3)
∼= lets l (let x = e2 in e3) (assumption of rule)
∼= lets (l ++ (x ← e2)) e3 (definition of lets)
∼= lets (l ++ (x ← e2)) e

′
3 (ih for e3)

∼= lets l (let x = e2 in e ′3) (definition of lets)
∼= lets l (letrec x = e1 in e ′3) (ass. of rule, symmetry of ∼=)
∼= letrec x = (lets l e1) in lets l e ′3 (push lets)
∼= letrec x = (lets l e ′1) in lets l e ′3 (ih for e1)
∼= lets l (letrec x = e ′1 in e ′3) (pull out lets)

⊓⊔

5 Specialisation of Recursive Bindings

Our example in § 2 showed that our inliner can specialise applications of recur-
sive functions such as map to known arguments such as add1. This is possible
whenever constant arguments such as f can be pulled out of the recursion. That
is, whenever we can transform recursive functions like map (left) into equivalent
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code which makes the constant argument explicit using map' (right):

let map f l =
case l of

[] -> []
(x:xs) -> f x : map f xs

let map f = let map' l =
case l of

[] -> []
(x:xs) -> f x : map' xs

in map'

In this section, we describe how we prove correctness of such transformations.
Critically, our proofs can be used in the spec rule of⇝ from the previous section.

5.1 Understanding Specialisation

Like⇝, our specialisation transformation is justified using equational reasoning.
We illustrate the equational steps below, again noting that the implementation
is much more direct. We use the map example of § 1, eliding parts not relevant
to specialisation. The input is therefore as follows:

let map f l = ... f x ... map f xs ...

We first make a local copy of the recursive definition map, named map':

let map = let map' f l = ... f x ... map' f xs ...
in map'

We then η-expand the final usage of the copy map':

let map = let map' f l = ... f x ... map' f xs ...
in \f l -> map' f l

Next, we pull out the new λ-abstractions to the top-level:

let map f l = let map' f l = ... f x ... map' f xs ...
in map' f l

We then α-rename the constant argument in the copy (here, f becomes g):

let map f l = let map' g l = ... g x ... map' g xs ...
in map' f l

The first major step (transform 1 ) replaces the constant argument g with the
known value to which the function map’ is always applied, f:

let map f l = let map' g l = ... f x ... map' f xs ...
in map' f l

The second major step (transform 2 ) deletes the now unused argument g. It
removes the argument from both the definition of map' and all calls to map':
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let map f l = let map' l = ... f x ... map' xs ...
in map' l

We push back in some of the top-level λ-abstractions, in this case just l:

let map f = let map' l = ... f x ... map' xs ...
in \l -> map' l

Finally, η-contraction removes the λ-abstraction over l:

let map f = let map' l = ... f x ... map' xs ...
in map'

Most of the steps are straightforwardly justified in PureLang’s equational the-
ory. However, the steps marked transform 1 and transform 2 are more involved.
We discuss these below.

5.2 Key Lemmas for Specialisation

Both transform 1 and transform 2 require a substitution-like traversal of the
entire subexpression under consideration. It is not clear how to justify these
traversals using simple equational reasoning in PureLang’s theory. Therefore,
we resort to more cumbersome simulation proofs to establish ∼= by appealing to
its definition in terms of PureLang’s operational semantics.

For transform 1, we prove a theorem of the following form. Here call_with_arg
holds only if every application of f in e is applied to var y after n arguments,
and the names f and y are never rebound within e.

⊢ call_with_arg f xn y e ∧ . . .

⇒ letrec f = (λ xn . λy . e) in ((var f) · e1n · (varw) · e2m)
∼= letrec f = (λ xn . λy . e[varw/y]) in ((var f) · e1n · (varw) · e2m)

Though the variable w is free in the theorem above, it is a closed constant
expression in most parts of the proof, which simplifies the derivation of this theo-
rem. This is because ∼= is defined over open terms in terms of closing substitution
and a relation over closed terms. The proof of this theorem is a large simulation
based on the semantics of PureLang.

For transform 2, we prove a theorem with a similar shape. This time, remove_-
call_arg is an inductive relation that ensures y never appears in e1 and relates
e1 to a second expression e2 in which the relevant argument has been removed
from each application of f .

⊢ remove_call_arg f xn y zm e1 e2 ∧ . . .

⇒ letrec f = (λ xn . λy . λ zm . e1) in ((var f) · e3n · (var y) · e4m)
∼= letrec f = (λ xn . λ zm . e2) in ((var f) · e3n · e4m)

We prove this theorem by a large simulation too. The simulation strategy is
necessary because letrec causes (potentially non-terminating) recursion.

288 H. Kanabar et al.



6 Implementing a Correct Inliner

In this section, we describe the implementation of our inliner and the proof that
its action lies within the ⇝ relation described in § 4. We also touch on three
other transformations mentioned previously: specialisation, freshening of bound
variables, and dead code elimination. Our inliner relies on all three.

6.1 Preliminaries

We implement our inliner within a state monad with the following type:

α M
def
= name set→ (α, name set)

Here, name set is a set of variable names; we will see its usage shortly. This monad
has standard return/bind operators, and we will use Haskell-style do-notation to
show definitions written within the monad.

The inliner itself has the following signature:

inline : (h : heuristic)→ (k : num)→ (m : (name 7→ ce))→ ce → ce M

In other words, the inliner transforms compiler expressions to compiler expres-
sions within the state monad, requiring several other inputs:

– An unordered mapping m from names to expressions. This is the “memory”
of the inliner: the set of known definitions which it can use for rewriting.

– Heuristic h decides whether to “remember” a definition for future inlining. It
accepts an expression ce and returns a boolean: if true, the definition should
be remembered.

– Natural number k is the recursion limit for the inliner, used to bound its
recursion into rewritten expressions.

– The name set parameter hidden within the monad keeps track of all variable
names (whether bound or free) in input expression ce. It is used to ensure
that sufficiently fresh variable names are chosen when freshening the names
of bound variables.

6.2 Inliner implementation

The inliner traverses compiler expressions top-down. During the traversal, it
performs two key operations: rewriting a variable to a known definition from
memory, and adding a new definition to memory.

Rewriting a variable. There are two kinds of expressions in which the inliner
will attempt to rewrite a variable. The first is a lone variable (of the form var x ),
and the second is an application of a variable to some arguments (of the form
(var x ) · . . .). The latter case is used to inline fully applied functions only.
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In the lone variable case, the inliner is defined as follows:

inlinekh m (var x )
def
=

return (var x )
x /∈ domain m ∨ k = 0 ∨
m(x) = λy . . . .

inlinek−1
h m ce m(x) = ce

That is, on encountering a free variable x the inliner does one of the following:

– Leaves the variable unchanged if the definition of x is unknown, or the re-
cursion limit has been reached, or the definition of x is known to be a λ-
abstraction. The last case may seem unusual, but note we do not rewrite
variables to λ-abstractions unless the result will be fully applied. This is
handled in the application case below.

– Rewrites the variable by inserting the expression ce found in memory, and
then recurses into ce with a decremented recursion limit.

In the application case, the inliner is defined as follows:

inlinekh m ((var x ) · ce1 · . . . · cen)
def
= do

[ce ′1, . . . , ce
′
n ]← mapM (inlinekh m) [ce1, . . . , cen ];

if x /∈ domain m ∨ k = 0 then return ((var x ) · ce ′1 · . . . · ce ′n) else do

ce ← freshen (m(x) · ce ′1 · . . . · ce ′n);
case convert_to_lets ce of

| None → return ((var x ) · ce ′1 · . . . · ce ′n)
| Some ce ′ → inlinek−1

h m ce ′

(2)

That is, on encountering a free variable x applied to n arguments the inliner
does the following:

1. Recurses into the arguments to produce n new arguments.
2. Searches for variable x in memory and checks the recursion limit. If x is not

found or the recursion limit has been reached, the inliner returns variable x
applied to the n new arguments.

3. Rewrites x using its definition from memory, m(x).
4. Freshens the resulting application of m(x) to the n new arguments.
5. Attempts to convert the freshened application to a series of let-bindings.

This is precisely the conversion shown in eq. (1) (pg. 11). Note that the
conversion fails (returns None) if m(x) is not fully applied, in which case the
inliner bails out of inlining the definition of x.

6. Recurses into the newly produced series of let-bindings with a decremented
recursion limit.

The conversion into let-bindings is critical: it allows the inliner to learn the
definitions of the applied arguments ce ′1, . . . , ce

′
n for future inlining within the

function body of m(x). Note that we only decrement the recursion limit when the
size of the input expression may not have strictly decreased. This happens only
when performing non-structural recursions, which only occur when we recurse
into a definition rewritten from memory.
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Remembering a new definition. The inliner can remember let- or letrec-
bound expressions.
In the let case, it is defined as follows:

inlinekh m (let x = ce1 in ce2)
def
= do

ce ′1 ← inlinekh m ce1;

let m′ = rememberh m (x ← ce1) ;

ce ′2 ← inlinekh m′ ce2;

return (let x = ce ′1 in ce ′2)

rememberh m (x ← ce)
def
= if cheap ce ∧ h ce then m[x 7→ ce] else m

That is, the inliner recurses into ce1 (without decrementing the recursion limit),
before memorising the definition x ← ce1 and recursing into ce2 with the aug-
mented memory. The function remember records the definition only when two
conditions are satisfied: the definition is cheap, and heuristic h returns true.

As the name suggests, cheap is a predicate that determines whether a defini-
tion is cheap to compute, and so will not slow the program down or cause loss
of value sharing when inlined. The definition of cheap is as follows:

cheap (var x ) = cheap (λx . e) = cheap (op[ ])
def
= T cheap _ def

= F

In the letrec case, the inliner must also perform specialisation. Its action is
defined as follows:

inlinekh m (letrec x = ce1 in ce2)
def
= do

ce ′1 ← inlinekh m ce1;

let m′ = remember_rech m (x ← ce1) ;

ce ′2 ← inlinekh m′ ce2;

return (letrec x = ce ′1 in ce ′2)

remember_rech m (x ← ce)
def
=

if ¬ can_specialise (x ← ce) ∨ ¬ h ce then m else

let ([wa1
1 . . . wan

n ], λ ym . ce ′) = extract_const_args (x ← ce)

in [x 7→ specialise x [wa1
1 . . . wan

n ] (λ ym . ce ′)]

This mirrors the let case almost exactly. The key difference is the use of re-
member_rec instead of remember: this does not check cheap, but does attempt
specialisation (and bails out if it fails). We examine specialisation in the upcom-
ing subsection.

Heuristics. So far, we have only implemented one heuristic based on expres-
sion size: the inliner only remembers definitions that are smaller than a user-
configurable bound. Our implementation can accept any heuristic function as an
input, making it straightforward to support new kinds of heuristic.
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Implementing specialisation. Above, specialise transforms a letrec-binding
into a let-binding before adding it to memory. We rely on two helper functions:
can_specialise and extract_const_args.

The test can_specialise simply checks if we are able to specialise a recursive
body. The body must be a λ-abstraction with some constant arguments. Then,
extract_const_args will extract these constant arguments. It accepts a definition
x ← ce, where we know ce is a λ-abstraction of the form λ xn . ce. It splits the
formal parameters xn into x1 . . . xm and xm+1 . . . xn, where m is the minimum
number of arguments that x is invoked with recursively in body ce. It further
annotates the x1 . . . xm with annotations a1 . . . am, which describe whether the
arguments remain constant for each recursive call. In the implementation of inline
above, this has produced the annotated variables wai

i and left the remainder of
the λ-abstraction untouched (λ ym . ce ′).

Then, specialise is defined as follows.

specialise f [wa1
1 . . . wan

n ] ce
def
=

let (xn, ce
′) = specialise_each x [wa1

1 . . . wan
n ] ce in

let (yi, zj) = drop_common_suffix [wa1
1 . . . wan

n ] xn in

λ yi . letrec f = (λ xn . ce ′) in (var f) · (var z1) · . . . · (var zj )

That is, it processes each annotated variable in turn, updating their call sites in
body ce (i.e., performing transform 1 and transform 2 from § 5 simultaneously
using specialise_each), producing a new set of formal parameters xn. It deter-
mines which of these can be η-contracted (the final step in § 5) with a call to
drop_common_suffix, and then returns the new letrec which accepts constant ar-
guments yi at the top-level, and has η-contracted constant arguments zj applied
directly already.

Freshening and Dead-Let Elimination. Our inliner assumes that its input
expression has a variable naming convention which is sufficient to prevent it from
accidentally capturing variables during operation. Therefore, we only give the
inliner expressions which obey the Barendregt variable convention, which asserts
unique bound variable names and disjoint bound/free names [3]. This is achieved
by freshening (α-renaming) bound variables directly before inlining, and further
freshening before recursing into subexpressions taken from the inliner’s memory.
For example, the inliner invokes freshen in eq. (2) (pg. 16) above. This is precisely
why the inliner carries around a name set in its state monad: this set contains
all variable names (whether bound or free) of the input expression. Freshening
avoids names in this set when inventing fresh names, and returns an updated
set each time it runs.

The output of the inliner also contains various unused let-bindings. We
showed such bindings in the example of § 1 (namely, f and i). To remove such
bindings, we run a dead-let elimination pass directly after the inliner.
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Including these two auxiliary passes, the top-level definition of the inliner is
as follows:

inlinerkh ce
def
=

let (ce ′, names) = freshen ce (boundvars ce) in

let (cei, _) = inlinekh ∅ ce ′ names in

dead_let cei

(3)

That is, the inliner freshens names, inlines definitions top-down starting with an
empty (∅) memory, then removes dead lets. Note that the top-level definition
expects to receive only closed expressions, which is why it only passes bound
variables (boundvars) to freshen. This respects our invariant that the name set
contains all bound and free variable names, as there are no free variables.

6.3 Inliner correctness

In this section, we prove that the inliner implementation is correct. In the context
of PureCake’s proof strategy as described in § 3:

– (stage 1) Theorem 2 above (pg. 9) proved that ⇝ preserves semantics.
– (stage 2) Theorem 3 below will prove that any transformation performed by

the inliner lies within the ⇝ relation of § 4.

We then compose these results to produce our final soundness theorem: the
output expression of the inliner is equivalent to its corresponding input.

Theorem 3. inline satisfies ⇝.

⊢ inlinekh m ce ns = (ce ′, ns ′) ∧ memory_relns l m ∧
barendregt (desugar ce) ∧ boundvars ce # domain m ∧
freevars ce ∪ boundvars ce ⊆ ns ∧ wf ce

⇒ l ⊩ (desugar ce)⇝ (desugar ce ′)

That is, after desugaring compiler expressions into semantic expressions (desugar,
see § 3), the action of the inliner for input ce, memory m, and name set ns lies
within ⇝ for some stacked lets l when the following hold:

– (memory_rel) m and l contain the same definitions, and each such definition
both satisfies wf below and has bound/free variables within ns ;

– (barendregt) bound names in ce are unique, and disjoint from free names;
– the bound variables of ce do not shadow (are disjoint from, #) any variables

with known definitions, i.e., those in the domain of m;
– all bound/free variables of ce are within ns ; and
– (wf) ce is well-formed.

Proof outline. Induction over the implementation function inline. For each case
of the proof, we apply rules of ⇝ to justify each atomic inlining operation. ⊓⊔
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Theorem 4. Top-level correctness of inliner.

⊢ wf ce ∧ closed ce ⇒ (desugar ce) ∼=
(
desugar (inlinerkh ce)

)
Proof outline. Composition of Theorem 3 above with Theorem 2 (pg. 9), the
soundness theorem for⇝. Unfolding the definition of inliner, we use the soundness
theorem of freshen, the closed assumption, and the application of inline to empty
memory ∅ to discharge the preconditions on Theorem 3. ⊓⊔

7 Integration into the PureCake Compiler

We insert the inliner and its associated cleanup of dead let-bindings as Pure-
Lang-to-PureLang transformations early in the PureCake compiler. In partic-
ular, directly after parsing and binding group analysis, as shown in Figure 2.
Elimination of dead lets happens directly afterwards.

Unusually, the inliner runs before type inference. Ideally, it would take place
afterwards: it changes program structure significantly, and type inference should
execute on code resembling user input to allow direct error-reporting. The rea-
soning behind this design choice is PureCake’s demand analysis, which facilitates
strictness optimisations by annotating variables that can be evaluated eagerly.
We found that running the inliner before demand analysis produces significantly
better performance (§ 8, Figure 4). However, the soundness proof for demand
analysis requires it to receive only well-typed input code. To run the inliner
after type inference and before demand analysis, we would have to prove that
it preserves well-typing, which is a significant undertaking due to PureLang’s
untyped AST. Future iterations of PureLang’s AST are intended to be typed;
therefore, we could consider proving type preservation in future work.

To update PureCake’s compiler correctness theorem after integrating our in-
liner, we must establish that the inliner preserves both semantics and various
syntactic invariants. We have already presented our proof of semantics preserva-
tion in § 6. The latter syntactic invariants guarantee that compiler expressions
are closed and satisfy well-formedness properties which are checked as part of
parsing. For example, PureLang forbids degenerate function applications to zero
arguments: this can be expressed in the AST for PureLang compiler expressions
but is ill-formed. Establishing preservation of the invariants is mostly mechani-
cal, but quite tedious and long-winded.

8 Benchmarks

In this section we measure the efficacy of our inliner. In particular, we benchmark
code generated by PureCake to determine how much the addition of the inliner
improves runtime and memory overhead.
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Language Compiler implementation

Concrete syntax

PureLang
ce

pure call-by-name
(subst. semantics)

ThunkLang
pure call-by-value
(subst. semantics)

EnvLang
pure call-by-value
(env. semantics)

StateLang
impure call-by-value

(env. semantics)

CakeML source

lex, parse, desugar

binding group analysis; simplify

inline, specialise loops ←− new

remove dead lets ←− new
type inference

simplify

demand analysis

translate to call-by-value;
introduce delay/force;
avoid delay (force (var ))

lift λ-abstractions
out of delays

simplify forces

reformulate to simplify
compilation to StateLang

compile delay/force and
IO monad to stateful ops

push · unit inwards

make every λ-abstraction
bind a variable
translate to CakeML;
attach preamble

front end

back end

Fig. 2. High-level structure of the PureCake compiler. The inliner and its associated
clean up are PureLang-to-PureLang passes which take place immediately after bind-
ing group analysis and before type inference.
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Fig. 3. Graphs showing the performance impact of our inliner: the base-2 logarithm of
a ratio of measurements (execution time or heap allocations) with/without the inliner
enabled: log2 (mdisabled/menabled). Error bars are too small to be visible.
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Fig. 4. Graphs showing the performance impact of our inliner when executed after
PureCake’s demand analysis. Performance is clearly worse compared to Figure 3; there-
fore we do not pursue this approach.

Methodology. We evaluate the performance of several benchmark programs with
and without the inliner enabled, using an Intel® Xeon® E-2186G and 64 GB
RAM. We consider the same programs as presented by the PureCake developers
in prior work [10, §7.1]. We also add a new suc_list program, which repeatedly
applies the suc_list function shown in § 1 to a list of natural numbers. Like
the PureCake developers, we measure wall-clock runtime and total heap alloca-
tions as reported by the CakeML runtime. Our measurements are facilitated by
existing benchmarking scripts found in the PureCake development.

Results. Figure 3 shows our results, plotted as two bar graphs: the left shows
runtime speedup, the right shows allocation reduction. In many cases, our inliner
significantly improves performance; in all cases it does not worsen performance.
The value for each plot is obtained by taking the base-2 logarithm of a ratio: the
measurement without the inliner enabled (i.e., the longer duration or greater
allocation) divided by the measurement with the inliner enabled. Expressed as
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Table 1. Line counts for each part of our development.

Part of development kLoC

Syntactic relation (⇝) and its soundness (§ 4) 2.6
Equational theory behind specialisation (§ 5) 4.0
Implementation of inliner (incl. specialisation) (§ 6.2) 0.6
Correctness of the implementation (§ 6.3) 3.7
Freshening and its correctness proof 3.1
Elimination of dead lets and its correctness proof 0.5
Total ∼15

a percentage, the most significant improvements are: a ∼20% reduction in the
runtime of life, a ∼15% reduction in the allocations of suc_list.

Inliner placement. We noted in § 7 that our inliner should run before PureCake’s
demand analysis. Here, we justify that design choice. In particular, we benchmark
a version of the PureCake compiler which runs our inliner directly after demand
analysis. The results are shown in Figure 4. The improvements in runtime and
memory overhead are reduced for several benchmarks, and in some cases runtime
even worsens overall. Therefore, our inliner should run before demand analysis
for maximum benefit.

Code size and compile times. Simple measurements of code size show that our
inliner can produce significantly larger CakeML programs (∼50% increase); how-
ever CakeML’s efficient handling of inserted lets reduces the effect for binaries
(< 15% overall increase). Compile times are unaffected: these remain dominated
by PureCake’s type-checking and CakeML’s register allocation.

Line counts. Our work adds to PureCake significantly. Table 1 shows line counts
for each part of our development, measured using wc -l.

9 Related Work

Verified inlining in functional languages. CakeML [12] compiles a subset of Stan-
dard ML (strict, impure) to several mainstream architectures with end-to-end
guarantees. It performs function inlining in its second intermediate language,
ClosLang, which has first-class closures. A flow analysis discovers invocations
of known functions, and simultaneously inlines closed functions which themselves
do not contain closures. Use of de Bruijn indices sidesteps reasoning about shad-
owing and freshening. As in our work, recursive applications of inlining improve
the performance of higher-order functions; we go one step further with speciali-
sation and the inlining of open terms which can contain λ-abstractions.
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CertiCoq [2] verifiably compiles Gallina (the metalanguage of Coq) to C light,
an intermediate language early in CompCert’s pipeline. One of its passes [4]
performs several shrink reductions simultaneously: transformations that only
reduce code size. One such reduction is the inlining of functions which are applied
exactly once; in this case, inlining is β-reduction, contrary to our discussion in
§ 4.1. Restriction to shrink reductions further removes the need for a recursion
limit as code size strictly decreases on each recursive call. Their verification
relies on a more general rewrite system which permits inlining of functions which
are used multiple times. A separate pass [16] further inlines small non-recursive
functions which can be applied multiple times; here a key concern is maintenance
of A-normal form expressions. In all proofs, the Barendregt variable convention
(i.e., barendregt) is used to avoid name clashes.

Pilsner [15] compiles a strict impure language to an idealised assembly, inlin-
ing select top-level functions in its intermediate representation. Recursive func-
tions can be unrolled in this way, but not specialised. Again, the Barendregt
variable convention is enforced. The focus here is on the novel proof technique of
parametric inter-language simulations (PILS) to enable compositional compiler
correctness, where PureCake focuses on mechanised whole-program compiler cor-
rectness for a realistic language.

Other verified inlining passes. CompCert [13] compiles a subset of C99, perform-
ing function inlining in its register transfer language (RTL). This control flow
graph (CFG) representation differs considerably from the functional PureLang;
inlining considers only top-level function declarations in the RTL setting. Rather
than using a recursion limit, CompCert guarantees termination by forbidding in-
lining of functions within their own bodies.

CompCert also performs lazy code motion [19] within RTL. A special case
of this transformation is loop-invariant code motion, which loosely resembles
our specialisation: both are concerned with moving constant expressions out of
loops, but in our functional setting loops are expressed as recursive functions.
Their verification uses translation validation [18]: an unverified tool transforms
code, and then per-run automation proves that semantics has been preserved.

The Plutus Tx language from the Cardano blockchain platform resembles a
subset of Haskell, and is compiled to a custom language known as Plutus Core.
The compiler is implemented as a GHC plugin: GHC machinery first lowers
Plutus Tx to a System F-like language, which is then optimised and compiled
further. The compiler is verified using translation certification [11], which aims
to make translation validation approaches less brittle by combining automated
and manual proof. As in PureCake, syntactic relations are used to encapsu-
late semantics-preserving transformations: automated proof shows that unver-
ified code transformations inhabit the relations, and manual proof shows that
the relations preserve semantics. Translation certification is robust to evolving
compiler implementations because the syntactic proofs are more amenable to
automated verification than the semantic ones. A syntactic relation akin to § 4
justifies inlining; however, semantic verification is ongoing work at the time of
writing. The Barendregt variable convention is enforced in this work too.
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Verified optimisation of realistic Haskell-like languages. The CoreSpec project4
tackles verified variants of Haskell as implemented by GHC. For example, GHC’s
dependent types extensions were proposed using formal specifications of the syn-
tax, semantics, and typing rules of GHC’s Core language [20]. The unverified tool
hs-to-coq [6] translates Haskell code to Gallina (Coq’s metalanguage), lever-
aging Coq’s logic to enable equational reasoning about real-world programs. A
future aim of the project is to derive Coq models of Core automatically from
GHC’s implementation, prove correctness of optimisations within Coq, and in-
tegrate the resulting verified code back into GHC as a plugin. Where CoreSpec
focuses on accurate modelling of GHC with the loss of some trust, PureCake
instead sacrifices faithfulness for end-to-end guarantees.

GHC’s arity analysis pass [5] η-expands functions to avoid excessive thunk
allocations. Its mechanised proof of correctness for a simplified Core language
relies on an explicitly call-by-need semantics to show performance preservation,
i.e., that η-expansion does not reduce value-sharing.

10 Summary and Future Work

This paper has described our work on a verified inlining and loop specialisation
pass for PureLang, a lazy functional programming language. First, we verified
a syntactic relation which defines an envelope of permitted inlining transforma-
tions, independent of heuristic choices. We used a novel phrasing of inlining as
the pushing in and pulling out of let-bindings to prove the relation sound us-
ing PureLang’s equational theory. Our inliner implementation is then proven
to remain within this envelope. We have integrated our work into the Pure-
Cake compiler, an end-to-end verified compiler, and demonstrated significant
performance improvements. To the best of our knowledge, ours is the first ver-
ified function inliner for a lazy functional programming language, and the first
verified loop specialiser for any functional language.

In future work, we intend to support loop unrolling and develop better heuris-
tics that decide when to do inlining. Loop unrolling will probably involve aug-
menting the definition of lets so that it can hold both let expressions and
letrecs. Developing good heuristics will require some careful experimentation
with the compiler implementation. We do not expect adjustment to the inliner’s
heuristics to impact our correctness proofs in any significant way, since the proofs
are designed to be independent of heuristic choices.
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Abstract. Universal probabilistic programming languages (PPLs) make
it relatively easy to encode and automatically solve statistical inference
problems. To solve inference problems, PPL implementations often ap-
ply Monte Carlo inference algorithms that rely on execution suspension.
State-of-the-art solutions enable execution suspension either through (i)
continuation-passing style (CPS) transformations or (ii) efficient, but
comparatively complex, low-level solutions that are often not available
in high-level languages. CPS transformations introduce overhead due to
unnecessary closure allocations—a problem the PPL community has gen-
erally overlooked. To reduce overhead, we develop a new efficient selective
CPS approach for PPLs. Specifically, we design a novel static suspen-
sion analysis technique that determines parts of programs that require
suspension, given a particular inference algorithm. The analysis allows
selectively CPS transforming the program only where necessary. We for-
mally prove the correctness of the analysis and implement the analysis
and transformation in the Miking CorePPL compiler. We evaluate the
implementation for a large number of Monte Carlo inference algorithms
on real-world models from phylogenetics, epidemiology, and topic model-
ing. The evaluation results demonstrate significant improvements across
all models and inference algorithms.

Keywords: Probabilistic programming · Static analysis · Continuation-
passing style.

1 Introduction

Probabilistic programming languages (PPLs), such as Anglican [50], Birch [36],
WebPPL [18], Stan [10], Pyro [6], and Gen [11], make it possible to encode and
solve statistical inference problems. Such inference problems are of significant in-
terest in many research fields, including phylogenetics [43], computer vision [25],
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topic modeling [7], inverse graphics [20], and cognitive science [19]. A particu-
larly appealing feature of PPLs is the separation between the inference problem
specification (the language) and the inference algorithm used to solve the prob-
lem (the language implementation). This separation allows PPL users to focus
solely on encoding their inference problems while inference algorithm experts
deal with the intricacies of inference implementation.

Implementations of PPLs apply many different inference algorithms. Monte
Carlo inference algorithms—such as Markov chain Monte Carlo (MCMC) [16]
and sequential Monte Carlo (SMC) [12]—are popular due to their asymptotic
correctness and relative ease of implementation for universal5 PPLs. The cen-
tral idea behind all Monte Carlo methods in PPLs is to execute probabilistic
programs multiple times to generate samples that approximate the target dis-
tribution for the encoded inference problem. However, repeated execution is
expensive, and PPL implementations must avoid unnecessary overhead.

Monte Carlo algorithms often need to suspend executions. For example,
MCMC algorithms can suspend at random draws in the program to avoid un-
necessary re-execution when proposing new executions, and SMC algorithms
can suspend at likelihood updates to resample executions. Languages such as
WebPPL [18] and Anglican [50], and the approach described by Ritchie et
al. [41], apply continuation-passing style (CPS) transformations [3] to enable
arbitrary suspension during execution. The main benefit of CPS transforma-
tions is that they are relatively easy to implement in functional programming
languages. However, one disadvantage with CPS transformations is that high-
performance low-level languages, without higher-order functions, do not support
them. For this reason, there are also more direct low-level alternatives to CPS,
including non-preemptive multitasking (e.g., coroutines [15]) and PPL control-
flow graphs [30]. These more direct alternatives can additionally avoid much of
the overhead resulting from CPS6, but are more complex to implement.

We consider how to bridge the performance gap between CPS-based PPLs
and lower-level PPLs that rely on, e.g., direct implementation of coroutines. We
consider optimizations at the CPS transformation level, and not the transla-
tion from CPS-based PPLs to lower-level representations. CPS overhead is a
result of closure allocations for continuations. We make the important observa-
tion that PPLs do not require the arbitrary suspensions provided by full CPS
transformations. Most Monte Carlo inference algorithms require suspension only
in very specific parts of programs. Current state-of-the-art CPS-based PPLs do
not consider inference-specific suspension requirements to reduce CPS overhead.

We design a new static suspension analysis and a new selective CPS trans-
formation for PPLs that together significantly reduce runtime overhead com-

5 A term that first appeared in Goodman et al. [17], indicating expressive PPLs where
the number and types of random variables are not always known statically.

6 Note that CPS only results in overhead if programs reify the continuations at run-
time to, e.g., suspend computations. Traditional CPS-based compilers often only use
CPS as an intermediate form during compilation, which does not result in runtime
overhead.
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pared to a traditional full CPS transformation. Current state-of-the-art func-
tional PPLs that use CPS for execution suspension can therefore greatly benefit
from our new approach. The suspension analysis identifies all parts of programs
that may require suspension as a result of applying a particular inference algo-
rithm. We formalize the suspension analysis algorithm using a core PPL calculus
equipped with a big-step operational semantics. Specifically, the challenge lies in
capturing how suspension requirements propagate through the program in the
presence of higher-order functions. Furthermore, we formalize the selective CPS
transformation and justify its correctness when guided by the suspension anal-
ysis. Prior work on selective CPS for general-purpose programming languages,
e.g., by Nielsen [38] and Asai and Uehara [4], focuses on analyses based on type
systems and type inference. In contrast, we instead build our suspension analysis
using 0-CFA [46] and it operates directly on an untyped calculus.

Overall, we (i) prove that the suspension analysis is correct, (ii) show that
the resulting selective CPS transformation gives significant performance gains
compared to using a full CPS transformation, and (iii) show that the overall ap-
proach is directly applicable to a large set of inference algorithms. Specifically, we
evaluate the approach for the following inference algorithms: likelihood weight-
ing, the SMC bootstrap particle filter, the SMC alive particle filter [24], aligned
lightweight MCMC [29,49], and particle-independent Metropolis–Hastings [40].
We consider each inference algorithm for four real-world models from phyloge-
netics, epidemiology, and topic modeling.

We implement the suspension analysis and selective CPS transformation in
Miking CorePPL [30,9]. Similarly to WebPPL and Anglican, the implementa-
tion supports the co-existence of many inference problems and applications of
inference algorithms to these problems within the same program. However, com-
pared to full CPS, such programs are more challenging to handle with selective
CPS, as the CPS transformation of an inference problem also depends on the ap-
plied inference algorithm—different inference algorithms generally require differ-
ent suspensions. To complicate things further, different inference problems may
share some code, or the PPL user may apply two different inference algorithms
to the same inference problem. The compiler must then apply different CPS
transformations to different parts of the program, and sometimes even many
different CPS transformations to separate copies of the same part of the pro-
gram. To solve this, we develop an approach that, for any given Miking CorePPL
program, extracts all possible inference problems and corresponding inference al-
gorithm applications. This extraction procedure allows the correct application
of selective CPS throughout the program.

In summary, we make the following contributions.

– We design, formalize, and prove the correctness of a suspension analysis
for PPLs, where the suspension requirements come from a given inference
algorithm (Section 4).

– We design and formalize a new selective CPS transformation for PPLs. Com-
pared to full CPS, selectively CPS transforming PPL programs guided by
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the suspension analysis significantly reduces runtime overhead resulting from
unnecessary closure allocations (Section 5).

– We implement the suspension analysis and selective CPS transformation in
the Miking CorePPL compiler. Unlike full CPS, selective CPS introduces
challenges for probabilistic programs containing many inference problems
and inference algorithm applications. We implement an approach that cor-
rectly applies selective CPS to such programs by extracting individual infer-
ence problems (Section 6).

Section 7 presents the evaluation and its results for the implementations in Mik-
ing CorePPL, Section 8 discusses related work in more detail, and Section 9
concludes. We first consider a motivating example in Section 2 and introduce
the underlying PPL calculus in Section 3.

An extended version of the paper is available at arXiv [31]. We use the †

symbol in the text to indicate that more information (e.g., proofs) is available
in the extended version.

2 A Motivating Example

This section introduces the running example in Fig. 1 and uses it to present the
basic idea behind PPLs and how inference algorithms such as SMC and MCMC
make use of CPS to suspend executions. Most importantly, we illustrate the
motivation and key ideas behind selective CPS for PPLs.

Consider the probabilistic program in Fig. 1a, written in a functional-style
PPL. The program encodes an inference problem for estimating the probability
distribution over the bias of a coin, conditioned on the outcome of four exper-
imental coin flips: true, true, false, and true (true = heads and false = tails).
At line 1, we use the PPL-specific assume construct to define our prior belief
in the bias a1 of the coin. We set this prior belief to a Beta(2, 2) probability
distribution, illustrated in Fig. 1b. In the illustration, 0 indicates a coin that
always results in false, 1 a coin that always results in true, and 0.5 a fair coin.
We see that our prior belief is quite evenly spread out, but with more probability
mass towards a fair coin. To condition this prior distribution on the observed
coin flips, we conceptually execute the program in Fig 1a infinitely many times,
sampling values from the prior Beta distribution at assume (line 1) and, as a
side effect, accumulating the product of weights given as argument to the PPL-
specific weight construct (line 4). We make the four consecutive calls weight
(fBernoulli a1 true), weight (fBernoulli a1 true), weight (fBernoulli a1 false),
and weight (fBernoulli a1 true)7, using the recursive function iter . The func-
tion application fBernoulli a1 o gives the probability of the outcome o given a
bias a1 for the coin. I.e., fBernoulli a1 true = a1 and fBernoulli a1 false = 1− a1.
So, for example, a sample a1 = 0.4 gets the accumulated weight 0.4 · 0.4 · 0.6 · 0.4
7 PPLs also commonly use a similar built-in function observe to update the weight.

For example, observe (Bernoulli a1) true is equivalent to weight (fBernoulli a1

true).
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1 let a1 = assume (Beta 2 2) in
2 let rec iter = λobs.
3 if null obs then () else
4 weight (fBernoulli a1 (head obs));
5 iter (tail obs)
6 in
7 iter [true,true,false,true];
8 a1

(a) Program texample.

0 0.5 1

(b) Beta(2,2).

0 0.5 1

(c) Distribution of texample.

1 Suspensionassume(Beta 2 2, λa1.
2 let rec iter = λobs.
3 if null obs then () else
4 weight (fBernoulli(a1)

5 (head obs));
6 iter (tail obs)
7 in
8 iter [true,true,false,true];
9 a1)

(d) Suspension at assume.

1 let a1 = assume (Beta 2 2) in
2 let rec iter = λk. λobs.
3 if null obs then k ()
4 else
5 Suspensionweight(

6 fBernoulli(a1) (head obs),
7 (λ_. iter k (tail obs)))
8 in
9 iter (λ_. a1)

10 [true,true,false,true];

(e) Suspension at weight.

1 let k7 = λt6.
2 let k8 = λt7.
3 Suspensionassume(t7, λa1.
4 let rec iter = λk1. λobs.
5 let k2 = λt1.
6 if t1 then k1 () else
7 let k3 = λt2.
8 let k4 = λt3.
9 let k5 = λt4.

10 Suspensionweight(t4, λ_.
11 let k6 = λt5. iter k1 t5 in
12 tailCPS k6 obs)
13 in t2 k5 t3
14 in headCPS k4 obs
15 in fBernoulliCPS k3 a1

16 in nullCPS k2 obs
17 in iter (λ_. a1)
18 [true,true,false,true])
19 in t6 k8 2
20 in BetaCPS k7 2

(f) Full CPS.

Fig. 1: A probabilistic program texample modeling the bias of a coin. Fig. (a)
gives the program. The function fBernoulli is the probability mass function of
the Bernoulli distribution. Fig. (b) illustrates the distribution for a1 at line 1
in (a). Fig. (c) shows the set of (weighted) samples resulting from conceptually
running texample infinitely many times. Fig. (d) and Fig. (e) show the selective
CPS transformations required for suspension at assume and weight, respectively.
Fig. (f) gives texample in full CPS, with suspensions at assume and weight. The
CPS subscript indicates CPS-versions of intrinsic functions such as head and tail .
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and a1 = 0.7 the accumulated weight 0.7·0.7·0.3·0.7. The end result is an infinite
set of weighted samples of a1 (the program returns a1 at line 8) that approxi-
mate the posterior or target distribution of Fig. 1a, illustrated in Fig 1c. Note
that, because we observed three true outcomes and only one false, the weights
shift the probability mass towards 1 and narrows it slightly as we are now more
sure about the bias of the coin. Increasing the number of experimental coin flips
would make Fig. 1c more and more narrow.

We can approximate the infinite number of samples by running the program
a large (but finite) number of times. This basic inference algorithm is known
as likelihood weighting. The problem with likelihood weighting is that it is only
accurate enough for simple models. For complex models, it is common that only
a few likelihood weighting samples (often only one) get much larger weights rela-
tive to the other samples, greatly reducing inference accuracy. Real-world models
require more powerful inference algorithms based on, e.g., SMC or MCMC. A
key requirement in both SMC and MCMC is the ability to suspend executions
of probabilistic programs at calls to weight and/or assume. One way to enable
suspensions is by writing programs in CPS. We first illustrate a simple use of
CPS to suspend at assume in Fig. 1d. Here, the program immediately returns
an object Suspensionassume(Beta 2 2, k), indicating that execution stopped at an
assume with the argument Beta 2 2 and a continuation k (i.e., the abstraction
binding a1) that executes the remainder of the program. With likelihood weight-
ing, we would simply sample a value a1 from the Beta 2 2 distribution and resume
execution by calling k a1. This call then runs the program until termination and
results in the actual return value of the program, which is a1. Many MCMC in-
ference algorithms reuse samples from previous executions at Suspensionassume,
and the suspensions are thus useful to avoid unnecessary re-execution [41].

As a second example, we illustrate suspension at weight for, e.g., SMC in-
ference in Fig. 1e. Here, we require suspensions in the middle of the recursive
call to iter , and writing the program in CPS is more challenging. We rewrite the
iter function to take a continuation k as argument, and call the continuation
with the return value () at line 3 instead of directly returning () as in Fig. 1a at
line 3. This continuation argument k is precisely what allows us to construct and
return Suspensionweight objects at line 5. To illustrate the suspensions, consider
executing the program with likelihood weighting. First, the program returns the
object Suspensionweight(fBernoulli(a1) true, k′), where k′ is the continuation that
line 7 constructs. Likelihood weighting now updates the weight for the execu-
tion with the value fBernoulli(a1) true and resumes execution by calling k′ ().
Similarly, this next execution returns Suspensionweight(fBernoulli(a1) true, k′′) for
the second recursive call to iter , and we again update the weight and resume
by calling k′′ (). We similarly encounter Suspensionweight(fBernoulli(a1) false, k′′′)
and Suspensionweight(fBernoulli(a1) true, k′′′′) before the final call k′′′′ () runs
the program to termination and produces the actual return value a1. In SMC,
we run many executions concurrently and wait until they all have returned a
Suspensionweight object. At this point, we resample the executions according
to their weights (the first value in Suspensionweight), which discards executions
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with low weight and replicates executions with high weight. After resampling,
we continue to the next suspension and resampling by calling the continuations.

PPL implementations enable suspensions at assume and/or weight through
automatic and full CPS transformations. Fig. 1f illustrates such a transforma-
tion for Fig. 1a. We indicate CPS versions of intrinsic functions with the CPS
subscript. Note that the full CPS transformation results in many additional
closure allocations compared to Fig. 1d and Fig. 1e. As a result, runtime over-
head increases significantly. The contribution in this paper is a static analysis
that allows an automatic and selective CPS transformation of programs, as in
Fig. 1d and Fig. 1e. With a selective transformation, we avoid many unneces-
sary closure allocations, and can significantly reduce runtime overhead while still
allowing suspensions as required for a given inference algorithm.

3 Syntax and Semantics

This section introduces the PPL calculus used to formalize the suspension anal-
ysis in Section 4 and selective CPS transformation in Section 5. Section 3.1 gives
the abstract syntax and Section 3.2 a big-step operational semantics. Section 3.3
introduces A-normal form—a prerequisite for both the suspension analysis and
the selective CPS transformation.

3.1 Syntax

We build upon the standard untyped lambda calculus, representative of func-
tional universal PPLs such as Anglican, WebPPL, and Miking CorePPL. We
define the abstract syntax below.

Definition 1 (Terms, values, and environments). We define terms t ∈ T
and values v ∈ V as

t ::= x | c | λx. t | t t | let x = t in t v ::= c | ⟨λx. t, ρ⟩
| if t then t else t | assume t | weight t

x, y ∈ X ρ ∈ P c ∈ C {false, true, ()} ∪ R ∪D ⊆ C.

(1)

The countable set X contains variable names, C intrinsic values and operations,
and D ⊂ C intrinsic probability distributions. The set P contains evaluation
environments, i.e., maps from variables in X to values in V .

Definition 2 (Target language terms). As a target language for the selective
CPS transformation in Section 5, we additionally extend Definition 1 to target
language terms t ∈ T+ by

t += Suspensionassume(t, t) | Suspensionweight(t, t). (2)

Fig. 1a gives an example of a term in T , and Fig. 1d and Fig. 1e of terms in
T+. However, note that the programs in Fig. 1 also use the list constructor [. . .]
(not part of the above definitions) to make the example more interesting.
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In addition to the standard variable, abstraction, and application terms in the
untyped lambda calculus, we include explicit let expressions for convenience.
Furthermore, we use the syntactic sugar let rec f = λx.t1 in t2 to define
recursive functions (translating to an application of a call-by-value fixed-point
combinator). We use t1; t2 as a shorthand for (λ_.t2) t1, where _ means that
we do not use the argument. That is, we evaluate t1 for side effects only.

We include a set C of intrinsic operations and constants essential to inference
problems encoded in PPLs. The set of intrinsics includes boolean truth values,
the unit value, real numbers, and probability distributions. We can also add
further operations and constants to C. For example, we can let + ∈ C to support
addition of real numbers. To allow control flow to depend on intrinsic values, we
include if expressions that use intrinsic booleans as condition.

We saw examples of the assume and weight constructs in Section 2. The
assume construct takes distributions D ⊂ C as argument, and produces random
variables distributed according to these distributions. For example, we can let
N ∈ C be a function that constructs normal distributions. Then, assume (N
0 1), where N 0 1 ∈ D, defines a random variable with a standard normal
distribution. Partially constructed distributions, e.g., N 0, are also in C, but
not in D (they are not yet proper distributions). As we saw in Section 2, the
weight construct updates the likelihood with the real number given as argument,
and allows conditioning on data (e.g., the four coin flips in Fig. 1).

3.2 Semantics

We construct a call-by-value big-step operational semantics, based on Lundén
et al. [29], describing how to evaluate terms t ∈ T . Such a semantics is a key
component when formally defining the probability distributions corresponding
to terms t ∈ T (e.g., the distribution in Fig. 1c corresponding to the program in
Fig. 1a) and also when proving various properties of PPLs and their inference
algorithms (e.g., inference correctness). See, e.g., the work by Borgström et al. [8]
and Lundén et al. [28] for full formal treatments.

We use the semantics to formally define suspension, and use this definition
to state the soundness of the suspension analysis in Section 4 (Theorem 1). We
use a big-step semantics, as we do not require the additional control provided by
a small-step semantics. For example, we do not concern ourselves with details
of termination, as the soundness of the analysis relates only to terminating ex-
ecutions. Fig. 2 presents the full semantics as a relation ρ ⊢ t s⇓w

u v over tuples
(P, T, S, {false, true},R, V ). S is a set of traces capturing the random draws at
assume during evaluation. Intuitively, ρ ⊢ t s⇓w

u v holds iff t evaluates to v in
the environment ρ with the trace s and the total probability density (i.e., the
accumulated weight) w. We describe the suspension flag u later in this section.

Most of the rules are standard and we focus on explaining key properties
related to PPLs and suspension. We first consider the rule (Const-App), which
uses the δ-function to evaluate intrinsic operations.
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ρ ⊢ t1 s1⇓w1
u1

⟨λx.t, ρ′⟩ ρ ⊢ t2 s2⇓w2
u2

v2 ρ′, x 7→ v2 ⊢ t s3⇓w3
u3

v

ρ ⊢ t1 t2 s1∥s2∥s3⇓w1·w2·w3
u1∨u2∨u3

v
(App)

ρ ⊢ x
[]⇓1

false ρ(x)
(Var)

ρ ⊢ t1 s1⇓w1
u1

c1 ρ ⊢ t2 s2⇓w2
u2

c2

ρ ⊢ t1 t2 s1∥s2⇓w1·w2
u1∨u2

δ(c1, c2)
(Const-App)

ρ ⊢ λx.t []⇓1
false ⟨λx.t, ρ⟩

(Lam)
ρ ⊢ t1 s1⇓w1

u1
v1 ρ, x 7→ v1 ⊢ t2 s2⇓w2

u2
v

ρ ⊢ let x = t1 in t2 s1∥s2⇓w1·w2
u1∨u2

v
(Let)

ρ ⊢ c
[]⇓1

false c
(Const)

ρ ⊢ t1 s1⇓w1
u1

true ρ ⊢ t2 s2⇓w2
u2

v2

ρ ⊢ if t1 then t2 else t3 s1∥s2⇓w1·w2
u1∨u2

v2
(If-True)

ρ ⊢ t s⇓w
u d w′ = fd(c)

ρ ⊢ assume t s∥[c]⇓w·w′

suspendassume∨u c
(Assume)

ρ ⊢ t s⇓w
u w′

ρ ⊢ weight t s⇓w·w′
suspendweight∨u ()

(Weight)

Fig. 2: A big-step operational semantics for t ∈ T . We omit the rule (If-False)
for brevity; it is analogous to (If-True). The environment ρ, x 7→ v denotes ρ
extended with a binding v for x. For each d ∈ D, the function fd is its probability
density or probability mass function. E.g., fN (0,1)(x) = ex

2/2/
√
2π, the density

function of the standard normal distribution. We use the following notation: ∥
for sequence concatenation, · for multiplication, and ∨ for logical disjunction.

Definition 3 (Intrinsic arities and the δ-function). For each c ∈ C, we
let |c| ∈ N denote its arity. We also assume the existence of a partial function
δ : C × C → C such that if δ(c, c1) = c2, then |c| > 0 and |c2| = |c| − 1.

For example, δ((δ(+, 1)), 2) = 3. We use the arity property of intrinsics to for-
mally define traces.

Definition 4 (Traces). For all s ∈ S, s is a sequence of intrinsics with arity 0,
called a trace. We write s = [c1, c2, . . . , cn] to denote a trace s with n elements.

The rule (Assume) formalizes random draws and consumes elements of the trace.
Specifically, (Assume) updates the evaluation’s total probability density w ∈ R
with the density w′ of the first trace element with respect to the distribution
given as argument to assume. The rule (Weight) furthermore directly modifies
the total probability density according to the weight argument.

We now consider the special suspension flag u in the derivation ρ ⊢ t s⇓w
u v.

Definition 5 (Suspension requirement). A derivation ρ ⊢ t s⇓w
u v requires

suspension if the suspension flag u is true.

For example, the rule (App) requires suspension if u1 ∨u2 ∨u3—i.e., if any sub-
derivation requires suspension. To reflect the particular suspension requirements
in SMC and MCMC inference, we limit the source of suspension requirements
to assume and weight. We turn the individual sources on and off through the
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1 let t1 = 2 in
2 let t2 = 2 in
3 let t3 = Beta in
4 let t4 = t3 t1 in
5 let t5 = t4 t2 in
6 let a1 = assume t5 in
7 let rec iter = λobs.
8 let t6 = null in
9 let t7 = t6 obs in

10 let t8 =
11 if t7 then
12 let t9 = () in
13 t9
14 else
15 let t10 = fBernoulli in
16 let t11 = t10 a1 in
17 let t12 = head in
18 let t13 = t12 obs in

19 let t14 = t11 t13 in
20 let w1 = weight t14 in
21 let t15 = tail in
22 let t16 = t15 obs in
23 let t17 = iter t16 in
24 t17
25 in
26 t8
27 in
28 let t18 = true in
29 let t19 = false in
30 let t20 = true in
31 let t21 = true in
32 let t22 = [t21,t20,t19,t18] in
33 let t23 = iter t22 in
34 a1

Fig. 3: The running example texample from Fig. 1a transformed to ANF.

boolean variables suspendassume and suspendweight in Fig. 2. For the examples in
the remainder of this paper, we let suspendweight = true and suspendassume = false
(i.e., only weight requires suspension, as in SMC inference).

To illustrate the semantics, consider texample of Fig. 1a again. Because texample
evaluates precisely one assume, the only valid traces for texample are singleton
traces [a1], where a1 ∈ R[0,1] due to the Beta prior for a1. By initially setting
ρ to the empty environment ∅ and following the rules of Fig. 2, we derive ∅ ⊢
texample

[a1]⇓fBeta(2,2)(a1)·a3
1(1−a1)

true a1. Note that every evaluation of texample has
u = true, as there are always four calls to weight during evaluation. That is, the
derivation requires suspension. However, many subderivations of texample do not
require suspension. For example, the subderivations assume (Beta 2 2) and
null obs do not (i.e., have u = false). Section 4 presents a suspension analysis
that conservatively approximates which subderivations require suspension. The
analysis enables, e.g., the selective CPS transformation in Fig. 1e.

3.3 A-Normal Form

We simplify the suspension analysis in Section 4 and the selective CPS transfor-
mation in Section 5 by requiring that terms are in A-normal form (ANF) [13].

Definition 6 (A-normal form). We define the A-normal form terms tANF ∈
TANF as follows.

tANF ::= x | let x = t′ANF in tANF

t′ANF ::= x | c | λx. tANF | x y

| if x then tANF else tANF | assume x | weight x

(3)

It holds that TANF ⊂ T . Furthermore, there exist standard transformations to
convert terms in T to TANF. Fig. 3 illustrates Fig. 1a transformed to ANF. We
will use Fig. 1a as a running example in Section 4 and Section 5.
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Restricting programs to ANF significantly simplifies the suspension analysis
and selective CPS transformation. From now on we require that all variable
bindings in programs are unique, and together with ANF, the result is that
every expression in a program t ∈ TANF is uniquely labeled by a variable name
from a let expression. This property is essential for the treatment in Section 4.

4 Suspension Analysis

This section presents the main technical contribution: the suspension analysis.
The analysis goal is to identify program expressions that may require suspension
in the sense of Definition 5. Identifying such expressions leads to the selective
CPS transformation in Section 5, enabling transformations such as in Fig 1e.

The suspension analysis builds upon the 0-CFA algorithm [46,39], and we
formalize our algorithms based on Lundén et al. [29]. The main challenge we
solve is how to model the propagation of suspension in the presence of higher-
order functions. The 0 in 0-CFA stands for context insensitivity—the analysis
considers every part of the program in one global context. Context insensitivity
makes the analysis more conservative compared to context-sensitive approaches
such as k-CFA, where k ∈ N indicates the level of context sensitivity [33]. We
use 0-CFA for two reasons: (i) the worst-case time complexity for the analysis
is polynomial, while it is exponential for k-CFA already at k = 1, and (ii) the
limitations of 0-CFA rarely matter in practical PPL applications. For example,
k-CFA provides no benefits over 0-CFA for the programs in Section 7.

We assume ⟨λx. t, ρ⟩ ̸∈ C (recall that C is the set of intrinsics). That is, we
assume that closures are not part of the intrinsics. In particular, this disallows
intrinsic operations (including the use of assume d, d ∈ D ⊂ C) to produce
closures, which would needlessly complicate the analysis without any benefit.

Consider the program in Fig. 3, and assume that weight requires suspension.
Clearly, the expression labeled by w1 at line 20 then requires suspension. Fur-
thermore, w1 evaluates as part of the larger expression labeled by t8 at line 10.
Consequently, the evaluation of t8 also requires suspension. Also, t8 evaluates
as part of an application of the abstraction binding obs at line 7. In particular,
the abstraction binding obs binds to iter , and we apply iter at lines 23 and 33.
Thus, the expressions named by t17 and t22 require suspension. In summary,
we have that w1, t8, t17, and t22 require suspension, and we also note that all
applications of the abstraction binding obs require suspension.

We proceed to the formalization and first introduce standard abstract values.

Definition 7 (Abstract values). We define the abstract values a ∈ A as a ::=
λx.y | constx n for x, y ∈ X and n ∈ N.

The abstract value λx.y represents all closures originating at, e.g., a term λx.
let y = 1 in y in a program at runtime (recall that we assume that the vari-
ables x and y are unique). Note that the y indicates the name returned by the
body (formalized by the function name in Algorithm 1). The abstract value
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Algorithm 1 Constraint generation for the suspension analysis. We write the
functional-style pseudocode for the algorithm itself in sans serif font to distin-
guish it from terms in T .
function generateConstraints(t): TANF → P(R) =

1 match t with
2 | x → ∅
3 | let x = t1 in t2 →
4 generateConstraints(t2) ∪
5 match t1 with
6 | y → {Sy ⊆ Sx}
7 | c → if |c| > 0 then {constx |c| ∈ Sx}
8 else ∅
9 | λy. tb → generateConstraints(tb)

10 ∪ {λy. name tb ∈ Sx}
11 ∪ {suspendn ⇒ suspendy

12 | n ∈ suspendNames(tb)}
13 | lhs rhs → {
14 ∀z∀y λz.y ∈ Slhs

15 ⇒ (Srhs ⊆ Sz) ∧ (Sy ⊆ Sx),
16 ∀y∀n consty n ∈ Slhs ∧ n > 1
17 ⇒ consty n − 1 ∈ Sx,
18 ∀y λy._ ∈ Slhs

19 ⇒ (suspendy ⇒ suspendx),
20 ∀y consty _ ∈ Slhs

21 ⇒ (suspendy ⇒ suspendx),
22 suspendx ⇒
23 (∀y λy._ ∈ Slhs ⇒ suspendy)

24 ∧ (∀y consty _ ∈ Slhs ⇒ suspendy)

25 }
26 | assume _ →
27 if suspendassume then {suspendx} else ∅
28

29 | weight _ →
30 if suspendweight then {suspendx} else ∅
31 | if y then tt else te →
32 generateConstraints(tt)
33 ∪ generateConstraints(te)
34 ∪ {Sname tt ⊆ Sx, Sname te ⊆ Sx}
35 ∪ {suspendn ⇒ suspendx
36 | n ∈ suspendNames(tt)
37 ∪ suspendNames(te)}
38
39 function name(t): TANF → X =
40 match t with
41 | x → x
42 | let x = t1 in t2 → name(t2)
43
44 function suspendNames(t): TANF → P(X) =
45 match t with
46 | x → ∅
47 | let x = t1 in t2 →
48 suspendNames(t2) ∪
49 match t1 with
50 | lhs rhs → {x}
51 | if y then tt else te → {x}
52 | assume _ →
53 if suspendassume then {x} else ∅
54 | weight _ →
55 if suspendweight then {x} else ∅
56 | _ → ∅

constx n represents all intrinsic functions of arity n originating at x. For exam-
ple, constx 2 originates at, e.g., a term let x = + in t.

The central objects in the analysis are sets Sx ∈ P(A) and boolean values
suspendx for all x ∈ X. The set Sx contains all abstract values that may flow to
the expression labeled by x, and suspendx indicates whether or not the expression
requires suspension. A trivial but useless solution is Sx = A and suspendx = true
for all variables x in the program. To get more precise information regarding
suspension, we wish to find smaller solutions to the Sx and suspendx.

To formalize the set of sound solutions for Sx and suspendx, we generate con-
straints c ∈ R for programs.† Algorithm 1 formalizes the necessary constraints
for programs t ∈ TANF with a function generateConstraints that recursively
traverses the program t to generate a set of constraints. Due to ANF, there are
only two cases in the top match (line 1). Variables generate no constraints, and
the important case is for let expressions at lines 3–30. The algorithm makes use
of an auxiliary function name (line 39) that determines the name of an ANF
expression, and a function suspendNames (line 44) that determines the names
of all top-level expressions within an expression that may suspend (namely, ap-
plications, if expressions, and assume and/or weight).
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We next illustrate and motivate the generated constraints by considering the
set of constraints generateConstraints(texample), where texample is the pro-
gram in Fig. 3. Many constraints are standard, and we therefore focus on the
new suspension constraints introduced as part of this paper. In particular, the
challenge is to correctly capture the flow of suspension requirements across func-
tion applications and higher-order functions. First, we see that defining aliases
(line 6) generates constraints of the form Sy ⊆ Sx, that constants introduce
const abstract values (e.g., constt61 ∈ St6), and that assume and weight intro-
duce suspension requirements, e.g., suspendw1

(shorthand for suspendw1
= true).

First, we consider the constraints generated for λobs. (line 7 in Fig. 3) through
the case at lines 9-12 in Algorithm 1. To keep the example simple, we treat the
unexpanded let rec as an ordinary let in the analysis (for this particular
example, the analysis result is unaffected). Omitting the recursively generated
constraints for the abstraction body, the generated constraints are

{λobs. t8 ∈ Siter} ∪ {suspendn ⇒ suspendobs | n ∈ {t7, t8}}. (4)

The first constraint is standard and states that the abstract value λobs. t8 flows to
Siter as the variable naming the λobs expression is t8 at line 26 in Fig. 3 (difficult
to notice due to the column breaks). The remaining constraints are new and sets
up the flow of suspension requirements. Specifically, the abstraction obs itself
requires suspension if any expression bound by a top-level let in its body requires
suspension. For efficiency, we only set up dependencies for expressions that may
suspend (formalized by suspendNames in Algorithm 1). Note here that we do
not add the constraint suspendw1

⇒ suspendobs , as w1 is not at top-level in the
body of obs . Instead, we later add the constraint suspendw1

⇒ suspend t8 , and
suspendw1

⇒ suspendobs follows by transitivity.
The constraints generated for the if bound to t8 at line 10 through the case

at lines 31-37 in Algorithm 1 are (omitting recursively generated constraints)

{St9 ⊆ St8 , St17 ⊆ St8}
∪ {suspendn ⇒ suspend t8 | n ∈ {t11, t13, t14, w1, t16, t17}}.

(5)

The first two constraints are standard, and state that abstract values in the
results of both branches flow to the result St8 . The last set of constraints is new
and similar to the abstraction suspension constraints. The constraints capture
that all expressions at top-level in both branches that require suspension also
cause t8 to require suspension.

Consider the application at line 23 in Fig. 3. The generated constraints
through the case at lines 13-25 in Algorithm 1 are

{ ∀z∀y λz.y ∈ Siter ⇒ (St16 ⊆ Sz) ∧ (Sy ⊆ St17),

∀y∀n consty n ∈ Siter ∧ n > 1 ⇒ consty n− 1 ∈ St17 ,

∀y λy._ ∈ Siter ⇒ (suspendy ⇒ suspend t17),

∀y consty _ ∈ Siter ⇒ (suspendy ⇒ suspend t17),

suspend t17 ⇒ (∀y λy._ ∈ Siter ⇒ suspendy)

∧ (∀y consty _ ∈ Siter ⇒ suspendy) }.

(6)
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The first two constraints are standard and state how abstract values flow as a
result of applications. The last three constraints are new and relate to suspension.
The third and fourth constraints state that if an abstraction or intrinsic requiring
suspension flows to iter , the result t17 of the application also requires suspension.
The fifth constraint states that if the result t17 requires suspension, then all
abstractions and constants flowing to iter require suspension. This last constraint
is not strictly required to later prove the soundness of the analysis in Theorem 1,
but, as we will see in Section 5, it is required for the selective CPS transformation.

We find a solution to the constraints through a fairly standard algorithm that
propagates abstract values according to the constraints until fixpoint.† However,
we extend the algorithm to support the new suspension constraints. The al-
gorithm is a function analyzeSuspend: TANF → ((X → P(A)) × P(X)). The
function returns a map data : X → P(A) that assigns sets of abstract values to all
Sx and a set suspend : P(X) that assigns suspendx = true iff x ∈ suspend. Impor-
tantly, the assignments to Sx and suspendx satisfy all generated constraints. To il-
lustrate the algorithm, here are the analysis results analyzeSuspend(texample):

Siter = {λobs.t8} St6 = {constt61} St10 = {constt102}
St11 = {constt101} St12 = {constt121} St15 = {constt151}

Sn = ∅ | all other n ∈ X

suspendn = true | n ∈ {obs, w1, t8, t17, t22}
suspendn = false | all other n ∈ X.

(7)

The above results confirm our earlier reasoning: the expressions labeled by obs,
w1, t8, t17, and t22 may require suspension.

We now consider the soundness of the analysis. First, the soundness of 0-
CFA is well established (see, e.g., Nielson et al. [39]) and extends to our new
constraints, and we take the following lemma to hold without proof.

Lemma 1 (0-CFA soundness). For every t ∈ TANF, the solution given by
analyzeSuspend(t) for Sx and suspendx, x ∈ X, satisfies the constraints
generateConstraints(t).

Next, we must show that the constraints themselves are sound. Consider the
evaluation of an arbitrary term t ∈ TANF. For each subderivation of t, labeled by
a name x (due to ANF), it must hold that suspendx = true if the subderivation
requires suspension. Otherwise, the analysis is unsound. Theorem 1 formally
captures the soundness. Note that the analysis is conservative (i.e., incomplete),
because it may find suspendx = true even if the subderivation for x does not
require suspension.

Theorem 1 (Suspension analysis soundness). Let t ∈ TANF, s ∈ S, u ∈
{false, true}, w ∈ R, and v ∈ V such that ∅ ⊢ t s⇓w

u v. Now, let Sx and
suspendx for x ∈ X according to analyzeSuspend(t). For every subderiva-
tion (ρ ⊢ let x = t1 in t2

s1∥s2⇓w1·w2
u1∨u2

v′) of (∅ ⊢ t s⇓w
u v), u1 = true implies

suspendx = true.
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Algorithm 2 Selective continuation-passing style transformation. We define
tid = λx.x. The term cCPS is the CPS version of c. We write the functional-style
pseudocode for the algorithm itself in sans serif font to distinguish it from terms
in T .
function cps(vars, t): P(X)× TANF → T+ =

1 return cps′(tid, t)
2

3 function cps′(cont,t): T × TANF → T+ =
4 match t with
5 | x → if cont = tid then t else cont t
6 | let x = t1 in t2 →
7 let t′2 = cps′(cont, t2) in
8 match t1 with
9 | y → let x = t1 in t′2

10 | c → let x =

11 (if x ∈ vars then cCPS else c) in t′2
12 | λy. tb →
13 let t′1 = if y ∈ vars
14 then λk.λy. cps′(k, tb)
15 else λy. cps′(tid, tb)
16 in
17 let x = t′1 in t′2
18 | lhs rhs →
19 if x ∈ vars then
20 if tailCall(t)
21 then lhs cont rhs

22 else lhs (λx.t′2) rhs

23 else let x = t1 in t′2
24
25
26
27

28 | if y then tt else te →
29 if x ∈ vars then
30 if tailCall(t) then
31 if y then cps′(cont, tt)
32 else cps′(cont, te)
33 else
34 let k = λx.t′2 in
35 if y then cps′(k, tt) else cps′(k, te)
36 else let x = if y then cps′(tid, tt)
37 else cps′(tid, te) in t′2
38 | assume y → let x = t1 in t′2
39 if x ∈ vars then
40 if tailCall(t)
41 then Suspensionassume(y, cont)
42 else Suspensionassume(y,λx.cps′(cont, t2))
43 else let x = t1 in t′2
44 | weight y → let x = t1 in t′2
45 if x ∈ vars then
46 if tailCall(t)
47 then Suspensionweight(y, cont)
48 else Suspensionweight(y,λx.cps′(cont, t2))
49 else let x = t1 in t′2
50
51 function tailCall(t): TANF → {false, true} =
52 match t with
53 | let x = _ in x → true
54 | _ → false

The proof uses Lemma 1 and structural induction over the derivation ∅ ⊢
t s⇓w

u v.†
Next, we use the suspension analysis to selectively CPS transform programs.

5 Selective CPS Transformation

This section presents the second technical contribution: the selective CPS trans-
formation. The transformations themselves are standard, and the challenge is to
correctly use the suspension analysis results for a selective transformation.

Algorithm 2 is the full algorithm. Using terms in ANF as input significantly
helps reduce the algorithm’s complexity. The main function cps takes as input
a set vars : P(X), indicating which expressions to CPS transform, and a pro-
gram t ∈ TANF to transform. It is the new vars argument that separates the
transformation from a standard CPS transformation. For the purposes of this
paper, we always use vars = {x | suspendx = true}, where the suspendx come
from analyzeSuspend(t). One could also use vars = X for a standard full CPS
transformation (e.g., Fig 1f), or some other set vars for other application do-
mains. The value returned from the cps function is a (non-ANF) term of the
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1 let t1 = 2 in
2 let t2 = 2 in
3 let t3 = Beta in
4 let t4 = t3 t1 in
5 let t5 = t4 t2 in
6 let a1 = assume t5 in
7 let rec iter = λk. λobs.
8 let t6 = null in
9 let t7 = t6 obs in

10 if t7 then
11 let t9 = () in
12 t9
13 else
14 let t10 = fBernoulli in
15 let t11 = t10 a1 in
16 let t12 = head in

17 let t13 = t12 obs in
18 let t14 = t11 t13 in
19 Suspensionweight(t14,
20 λ_.
21 let t15 = tail in
22 let t16 = t15 obs in
23 iter k t16)
24 in
25 let t18 = true in
26 let t19 = false in
27 let t20 = true in
28 let t21 = true in
29 let t22 = [t21,t20,t19,t18] in
30 let k′ = λ_. a1 in
31 iter k′ t22

Fig. 4: The running example from Fig. 3 after selective CPS transformation. The
program is semantically equivalent to Fig. 1e.

type T+. The helper function cps′, initially called at line 1, takes as input a
continuation term cont, indicating the continuation to apply in tail position. Ini-
tially, this continuation term is tid, which indicates no continuation. Similarly
to Algorithm 1, the top-level match at line 4 has two cases: a simple case for
variables (line 5) and a complex case for let expressions (lines 6–49). To enable
optimization of tail calls, the auxiliary function tailCall indicates whether or
not an ANF expression is a tail call (i.e., of the form let x = t′ in x).

We now illustrate Algorithm 2 by computing cps(varsexample, texample), where
varsexample = {obs, w1, t8, t17, t22} is from (7), and texample is from Fig. 3. Fig. 4
presents the final result. First, we note that the transformation does not change
expressions not labeled by a name in varsexample, as they do not require suspen-
sion. In the following, we therefore focus only on the transformed expressions.
First, consider the abstraction obs defined at line 7 in Fig. 3, handled by the
case at line 12 in Algorithm 2. As obs ∈ varsexample, we apply the standard CPS
transformation for abstractions: add a continuation parameter to the abstrac-
tion and recursively transform the body with this continuation. Next, consider
the transformation of the weight expression w1 at line 20 in Fig. 3, handled by
the case at line 44 in Algorithm 2. The expression is not at tail position, so we
build a new continuation containing the subsequent let expressions, recursively
transform the body of the continuation, and then wrap the end result in a Sus-
pension object. The if expression t8 at line 10 in Fig. 3, handled by the case
at line 28 in Algorithm 2, is in tail position (it is directly followed by returning
t8). Consequently, we transform both branches recursively. Finally, we have the
applications t17 and t22 at lines 23 and 33 in Fig. 3, handled by the case at
line 18 in Algorithm 2. The application t17 is at tail position, and we transform
it by adding the current continuation as an argument. The application at t22 is
not at tail position, so we construct a continuation k′ that returns the final value
a1 (line 34 in Fig. 3), and then add it as an argument to the application.
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Fig. 5: Overview of the Miking CorePPL compiler implementation. We divide
the overall compiler into two parts, (i) suspension analysis and selective CPS
(Section 6.1) and (ii) inference problem extraction (Section 6.2). The figure de-
picts artifacts as gray rectangular boxes and transformation units and libraries
as blue rounded boxes. Note how the inference extractors transformation sep-
arates the program into two different paths that are combined again after the
inference-specific compilation. The white inheritance arrows (pointing to suspen-
sion analysis and selective CPS transformations) mean that these libraries are
used within the inference-specific compiler transformation.

It is not guaranteed that Algorithm 2 produces a correct result. Specifically,
for all applications lhs rhs , we must ensure that (i) if we CPS transform the ap-
plication, we must also CPS transform all possible abstractions that can occur
at lhs , and (ii) if we do not CPS transform the application, we must not CPS
transform any abstraction that can occur at lhs . We control this through the
argument vars. In particular, assigning vars according to the suspension analysis
produces a correct result. To see this, consider the application constraints at
lines 13–25 in Algorithm 1 again, and note that if any abstraction or intrinsic
operation that requires suspension occur at lhs , suspendx = true. Furthermore,
the last application constraint ensures that if suspendx = true, then all abstrac-
tions and intrinsic operations that occur at lhs require suspension. Consequently,
for all λy._ and consty _, either all suspendy = true or all suspendy = false.

6 Implementation

We implement the suspension analysis and selective CPS transformation in Mik-
ing CorePPL [30], a core PPL implemented in the domain-specific language
construction framework Miking [9]. We choose Miking CorePPL for the imple-
mentation over other CPS-based PPLs, as the language implementation contains
an existing 0-CFA base implementation which simplifies the suspension analysis
implementation. Fig. 5 presents the organization of the CorePPL compiler. The
input is a CorePPL program that may contain many inference problems and ap-
plications of inference algorithms, similar to WebPPL and Anglican. The output
is an executable produced by one of the Miking backend compilers. Section 6.1
gives the details of the suspension analysis and selective CPS implementations,
and in particular the differences compared to the core calculus in Section 3. Sec-
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tion 6.2 presents the inference extractor and its operation combined with selec-
tive CPS. The suspension analysis, selective CPS transformation, and inference
extraction implementations consist of roughly 1500 lines of code (a contribution
in this paper). The code is available on GitHub [2].

6.1 Suspension Analysis and Selective CPS

Miking CorePPL extends the abstract syntax in Definition 1 with standard func-
tional data structures and features such as algebraic data types (records, tuples,
and variants), lists, and pattern matching. The suspension analysis and selective
CPS implementations in Miking CorePPL extend Algorithm 1 and Algorithm 2
to support these language features. Furthermore, compared to suspendweight and
suspendassume in Fig. 2, the implementation allows arbitrary configuration of sus-
pension sources. In particular, the implementation uses this arbitrary configura-
tion together with the alignment analysis by Lundén et al. [29]. This combination
allows selectively CPS transforming to suspend at a subset of assumes or weights
for aligned versions of SMC and MCMC inference algorithms.

Miking CorePPL also includes a framework for inference algorithm imple-
mentation. Specifically, to implement new inference algorithms, users implement
an inference-specific compiler and inference-specific runtime. Fig. 5 illustrates
the different compilers and runtimes. Each inference-specific compiler applies
the suspension analysis and selective CPS transformation to suit the inference
algorithm’s particular suspension requirements.

Next, we show how Miking CorePPL handles programs containing many
inference problems solved with different inference algorithms.

6.2 Inference Problem Extraction

Fig. 5 includes the inference extraction compiler procedure. First, the compiler
applies an inference extractor to the input program. The result is a set of infer-
ence problems and a main program containing remaining glue code. Second, the
compiler applies inference-specific compilers to each inference problem. Finally,
the compiler combines the main program and the compiled inference problems
with inference-specific runtimes and supplies the result to a backend compiler.

Consider the example in Fig. 6a. We define a function m that constructs a
minimal inference problem on lines 7–10, using a single call to assume and a
single call to observe (modifying the execution weight similar to weight). The
function takes an initial probability distribution d and a data point y as input.
We apply aligned lightweight MCMC inference for the inference problem through
the infer construct on lines 12–16. The first argument to infer gives the infer-
ence algorithm configuration, and the second argument the inference problem.
Inference problems are thunks (i.e., functions with a dummy unit argument).
We construct the inference problem thunk by an application of m with a uniform
initial distribution and data point 1.0. The inference result d0 is another proba-
bility distribution, and we use it as the first initial distribution in the recursive
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1 mexpr
2 let data = [
3 24.0, 42.2, 96.7, 9.2, 85.8,
4 34.2, 41.7, 53.4, 85.6, 45.4
5 ] in
6
7 let m = lam d. lam y. lam.
8 let x = assume d in
9 observe y (Gaussian x 0.1);

10 x in
11
12 let d0 =
13 infer (LightweightMCMC
14 { iterations = 100,
15 aligned = true })
16 (m (Uniform 0.0 4.0) 1.0) in
17

18 recursive let repeat =
19 lam data. lam d.
20 match data with [y] ++ data then
21 let posterior =
22 infer (BPF {particles = 100})
23 (m d y) in
24 repeat data posterior
25 else d
26 let d1 = repeat data d0 in
27 match distEmpiricalSamples d1
28 with (samples, weights) in
29 iter
30 (lam s.
31 print
32 (concat (float2string s) "\n"))
33 samples

(a) Miking CorePPL program.

1 let m = lam d. lam y. lam.
2 let x = assume d in
3 observe y (Gaussian x 0.1);
4 x in
5 m (Uniform 0.0 4.0) 1.0 ()

(b) Extracted inference problem from
line 13 in (a).

1 let m = lam d. lam y. lam.
2 let x = assume d in
3 observe y (Gaussian x 0.1);
4 x in
5 m d y ()

(c) Extracted inference problem from
line 22 in (a).

Fig. 6: Example Miking CorePPL program in (a) with two non-trivial uses of
infer. Figures (b) and (c) show the extracted and selectively CPS-transformed
inference problems at lines 13 and 22 in (a), respectively. The compiler handles
the free variables d and y in (c) in a later stage.

repeat function (lines 19–24). This function repeatedly performs inference us-
ing the SMC bootstrap particle filter (lines 21–23), again using the function m
to construct the sequence of inference problems. Each infer application uses
the result distribution from the previous iteration as the initial distribution and
consumes data points from the data sequence. We extract and print the samples
from the final result distribution d1 at lines 29–33. A limitation with the current
extraction approach is that we do not yet support nested infers.

A key challenge in the compiler design is how to handle different inference
algorithms within one probabilistic program. In particular, inference algorithms
require different selective CPS transformations, applied to different parts of the
code. To allow the separate handling of inference algorithms, we apply the ex-
traction approach by Hummelgren et al. [22] on the infer applications, pro-
ducing separate inference problems for each occurrence of infer. Although the
compiler design mostly concerns rather comprehensive engineering work, special
care must be taken to handle the non-trivial problem of name bindings when
transforming and combining different code entities together. For instance, the
compiler must selectively CPS transform Fig. 6b to suspend at assume (required
by MCMC) and selectively CPS transform Fig. 6c to suspend at observe (re-
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quired by SMC). We design a robust and modular solution, where it is possible
to easily add new inference algorithms without worrying about name conflicts.

7 Evaluation

This section presents the evaluation of the suspension analysis and selective CPS
implementations. Our main claims are that (i) the approach of selective CPS sig-
nificantly improves performance compared to traditional full CPS, and (ii) that
this holds for a significant set of inference algorithms, evaluated on realistic infer-
ence problems. We use four PPL models and corresponding data sets from the
Miking benchmarks repository, available on GitHub [1]. The models are: con-
stant rate birth-death (CRBD) in Section 7.1, cladogenetic diversification rate
shift (ClaDS) in Section 7.2, latent Dirichlet allocation (LDA) in Section 7.3,
and vector-borne disease (VBD) in Section 7.4. All models are significant and
actively used in different research areas: CRBD and ClaDS in evolutionary bi-
ology and phylogenetics [37,43,32], LDA in topic modeling [7], and VBD in epi-
demiology [14,34]. In addition to the Miking CorePPL models from the Miking
benchmarks, we also implement CRBD in WebPPL and Anglican.

We add a number of popular inference algorithms in Miking CorePPL with
support for selective CPS. The first is standard likelihood weighting (LW), as
introduced in Section 2. LW does not strictly require CPS, but we implement
it with suspensions at weight to highlight the difference between no CPS, se-
lective CPS, and full CPS. LW gives a good direct measure of CPS overhead
as the algorithm simply executes programs many times. Suspending at weight
can also be useful in LW to stop executions with weight 0 (i.e., useless samples)
early. However, we do not use early stopping to isolate the effect CPS has on
execution time. Next, we add the bootstrap particle filter (BPF) and alive parti-
cle filter (APF). Both are SMC algorithms that suspend at weight to resample
executions. BPF is a standard algorithm often used in PPLs, and APF is a re-
lated algorithm introduced in a PPL context by Kudlicka et al. [24]. The final
two inference algorithms we add are aligned lightweight MCMC (just MCMC
for short) and particle-independent Metropolis–Hastings. Aligned lightweight
MCMC [29] is an extension to the standard PPL Metropolis–Hastings approach
introduced by Wingate et al. [49], and suspends at a subset of calls to assume.
Particle-independent Metropolis–Hastings (PIMH) is an MCMC algorithm that
repeatedly uses the BPF (suspending at weight) within a Metropolis–Hastings
MCMC algorithm [40]. We limit the scope to single-core CPU inference.

In addition to the inference algorithms in Miking CorePPL, we also use three
other state-of-the-art PPLs for CRBD: Anglican, WebPPL, and the special high-
performance RootPPL compiler for Miking CorePPL [30]. For Anglican, we ap-
ply LW, BPF, and PIMH inference. For WebPPL, we use BPF and (non-aligned)
lightweight MCMC. For the RootPPL version of Miking CorePPL, we use BPF
inference (the only supported inference algorithm).

We consider two configurations for each model: 1 000 and 10 000 samples. An
exception is for CRBD and ClaDS, where we adjust APF to use 500 and 5 000
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Anglican LW Anglican BPF WebPPL BPF WebPPL MCMC
1 000 samples 11.6 ± 0.36 s 5.65 ± 2.71 s 2.42 ± 0.20 s 1.42 ± 0.07 s

10 000 samples 90.4 ± 2.12 s 29.1 ± 2.35 s 53.9 ± 4.03 s 3.10 ± 0.77 s

Fig. 7: Mean execution times for the CRBD model. The error bars show 95%
confidence intervals (using the option (’ci’, 95) in Seaborn’s barplot). The
table shows standard deviations.

samples to make the inference accuracy comparable to the related BPF. We run
each experiment 300 times (with one warmup run) and measure execution time
(excluding compile time). To justify the efficiency of the suspension analysis and
selective CPS transformation that are part of the compiler, we note here that
they, combined, run in only 1–5 ms for all models.

The experiments do not compare the performance of different inference algo-
rithms. To do this, one would also need to consider how accurate the inference
results are for a given amount of execution time. Accuracy varies dramatically
between different combinations of inference algorithms and models. We evaluate
the execution time of selective and full CPS in isolation for individual infer-
ence algorithms. Selective CPS is solely an execution time optimization—the
algorithms themselves and their accuracy remain unchanged.†

For Miking CorePPL, we used OCaml 4.12.0 as backend compiler for the
implementation in Section 6 and GCC 7.5.0 for the separate RootPPL com-
piler. We used Anglican 1.1.0 (OpenJDK 11.0.19) and WebPPL 0.9.15 (Node.js
16.18.0). We ran the experiments on an Intel Xeon Gold 6148 CPU with 64 GB
of memory using Ubuntu 18.04.6.

7.1 Constant Rate Birth-Death

CRBD is a diversification model, used by evolutionary biologists to infer distri-
butions over birth and death rates for observed evolutionary trees of groups of
species, called phylogenies. For the CRBD experiment, we use the Alcedinidae
phylogeny (Kingfisher birds, 54 extant species) [43,23]. We compare CRBD in
Miking CorePPL (55 lines of code)†, Anglican (129 lines of code)†, and WebPPL
(66 lines of code)†. The total experiment execution time was 9 hours.
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Fig. 8: Mean execution times for the ClaDS model. The error bars show 95%
confidence intervals (using the option (’ci’, 95) in Seaborn’s barplot).

Fig. 7 presents the results. We note that selective CPS is faster than full CPS
in all cases. Unlike full CPS, the overhead of selective CPS compared to no CPS
is marginal for LW. The execution time for early MCMC samples is sensitive
to initial conditions, and we therefore see more variance for MCMC compared
to the other algorithms. When we increase the number of samples to 10 000,
the variance reduces. With the exception of MCMC in WebPPL, the execution
times for Anglican and WebPPL are one order of magnitude slower than the
equivalent algorithms in Miking CorePPL. However, note that the comparison
is only for reference and not entirely fair, as Anglican and WebPPL use different
execution environments compared to Miking CorePPL. Lastly, we note that the
Miking CorePPL BPF implementation with selective CPS is not much slower
than when compiling Miking CorePPL to RootPPL BPF—a compiler designed
specifically for efficiency (but with other limitations, such as the lack of garbage
collection). RootPPL does not use CPS, and instead enables suspension through
a low-level transformation using the concept of PPL control-flow graphs [30].

7.2 Cladogenetic Diversification Rate Shift

ClaDS is another diversification model used in evolutionary biology [32,43]. Un-
like CRBD, it allows birth and death rates to change over time. We again use the
Alcedinidae phylogeny. The source code consists of 72 lines of code.† The total
experiment execution time was 3 hours. Fig. 8 presents the results. We note that
selective CPS is faster than full CPS in all cases.

7.3 Latent Dirichlet Allocation

LDA [7] is a model from natural language processing used to categorize docu-
ments into topics. We use a synthetic data set with size comparable to the data
set in Ritchie et al. [41]: a vocabulary of 100 words, 10 topics, and 25 observed
documents (30 words in each). We do not apply any optimization techniques such
as collapsed Gibbs sampling [21]. Solving the inference problem using a PPL is
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Fig. 10: Mean execution times for the VBD model. The error bars show 95%
confidence intervals (using the option (’ci’, 95) in Seaborn’s barplot).

therefore challenging already for small data sets. The source code consists of 26
lines of code.† The total experiment execution time was 12 hours.

Fig. 9 presents the results. We note that selective CPS is faster than full CPS
in all cases. Interestingly, the reduction in overhead compared to full CPS for
LW is not as significant. The reason is that suspension at weight for the model
requires that we CPS transform the most computationally expensive recursion.

7.4 Vector-Borne Disease

We use the VBD model from Funk et al. [14] and later Murray et al. [34]. The
background is a dengue outbreak in Micronesia and the spread of disease between
mosquitos and humans. The inference problem is to find the true numbers of
susceptible, exposed, infectious, and recovered (SEIR) individuals each day, given
daily reported numbers of new cases at health centers. The source code consists
of 140 lines of code.† The total execution time was 8 hours.

Fig. 10 presents the results. Again, we note that selective CPS is faster than
full CPS in all cases, except seemingly for APF and 1 000 samples. This is very
likely a statistical anomaly, as the variance for APF is quite severe for the case
with 1 000 samples. Compared to the BPF, APF uses a resampling approach for
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which the execution time varies a lot if the number of samples is too low [24].
The plots clearly show this as, compared to 1 000 samples, the variance is re-
duced to BPF-comparable levels for 10 000 samples. In summary, the evaluation
demonstrates the clear benefits of selective CPS over full CPS for universal PPLs.

8 Related Work

There are a number of universal PPLs that require non-trivial suspension. One
such language is Anglican [50], which solves the suspension problem using CPS.
Anglican performs a full CPS transformation with one exception—certain stat-
ically known functions named primitive procedures, that include a subset of the
regular Clojure (the host language of Anglican) functions, are guaranteed to not
execute PPL code, and Anglican does not CPS transform them [47]. However,
higher-order functions in Clojure libraries cannot be primitive procedures, and
Anglican must manually reimplement such functions (e.g., map and fold). An-
glican does not consider a selective CPS transformation of PPL code, and always
fully CPS transforms the PPL part of Anglican programs.

WebPPL [18] and the approach by Ritchie et al. [41] also make use of CPS
transformations to implement PPL inference. They do not, however, consider
selective CPS transformations. Ścibior et al. [44] present an architectural design
for a probabilistic functional programming library based on monads and monad
transformers (and corresponding theory in Ścibior et al. [45]). In particular, they
use a coroutine monad transformer to suspend SMC inference. This approach is
similar to ours in that it makes use of high-level functional language features to
enable suspension. They do not, however, consider a selective transformation.

The PPLs Pyro [6], Stan [10,5], Gen [11,27], and Edward [48] either im-
plement inference algorithms that do not require suspension (e.g., Hamiltonian
Monte Carlo), or restrict the language in such a way that suspension is explicit
and trivially handled by the language implementation. For example, SMC in
Pyro8 and newer versions of Birch require that users explicitly write programs
as a step function that the SMC implementation calls iteratively. Resampling
only occurs in between calls to step, and suspension is therefore trivial.

Work on general-purpose selective CPS transformations include Nielsen [38],
Asai and Uehara [4], Rompf et al. [42], and Leijen [26]. They consider typed lan-
guages, unlike the untyped language in this paper. The early work by Nielsen [38]
considers the efficient implementation of call/cc through a selective CPS trans-
formation. The transformation requires manual user annotations, unlike the fully
automatic approach in this paper. A more recent approach is due to Asai and Ue-
hara [4], who consider an efficient implementation of delimited continuations us-
ing shift and reset through a selective CPS transformation. Similar to us, they
automatically determine where to selectively CPS transform programs. They use
an approach based on type inference, while our approach builds upon 0-CFA.
Rompf et al. [42] follow a similar approach to Asai and Uehara [4], but for
8 Note that the main inference algorithm in Pyro is stochastic variational inference,

which does not require suspension.
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Scala, and additionally require user annotations. Leijen [26] uses a type-directed
selective CPS transformation to compile algebraic effect handlers.

There are low-level alternatives to CPS for suspension in PPLs. In particular,
there are various languages and approaches that directly implement support for
non-preemptive multitasking (e.g., coroutines). Turing [15] and older versions of
Birch [36,35] implement coroutines to enable arbitrary suspension, but do not
discuss the implementations in detail. Lundén et al. [30] introduces and uses the
concept of PPL control-flow graphs to compile Miking CorePPL to the low-level
C++ framework RootPPL. The compiler explicitly introduces code that main-
tains special execution call stacks, distinct from the implicit C++ call stacks. The
implementation results in excellent performance, but supports neither garbage
collection nor higher-order functions. Another low-level approach is due to Paige
and Wood [40], who exploits mutual exclusion locks and the fork system call to
suspend and resample SMC executions. In theory, many of the above low-level
alternatives to CPS can, if implemented efficiently, result in the least possible
overhead due to more fine-grained low-level control. The approaches do, however,
require significantly more implementation effort compared to a CPS transforma-
tion. Comparatively, the selective CPS transformation is a surprisingly simple,
high-level, and easy-to-implement alternative that brings the overhead of CPS
closer to that of more low-level approaches.

9 Conclusion

This paper introduces a selective CPS transformation for the purpose of exe-
cution suspension in PPLs. To enable the transformation, we develop a static
suspension analysis that determines parts of programs that require a CPS trans-
formation as a consequence of inference algorithm suspension requirements. We
implement the suspension analysis, selective CPS transformation, and an infer-
ence problem extraction procedure (required as a result of the selective CPS
transformation) in Miking CorePPL. Furthermore, we evaluate the implementa-
tion on real-world models from phylogenetics, topic-modeling, and epidemiology.
The results demonstrate significant speedups compared to the standard full CPS
suspension approach for a large number of Monte Carlo inference algorithms.
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Higher-Order LCTRSs and Their Termination
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Abstract Logically constrained term rewriting systems (LCTRSs) are a
formalism for program analysis with support for data types that are not
(co)inductively defined. Only imperative programs have been considered
through the lens of LCTRSs so far since LCTRSs were introduced as a first-
order formalism. In this paper, we propose logically constrained simply-
typed term rewriting systems (LCSTRSs), a higher-order generalization
of LCTRSs, which suits the needs of representing and analyzing functional
programs. We also study the termination problem of LCSTRSs and define
a variant of the higher-order recursive path ordering (HORPO) for the
newly proposed formalism.

Keywords: Higher-order term rewriting · Constraints · Recursive path
ordering.

1 Introduction

It is hardly a surprising idea that term rewriting can serve as a vehicle for
reasoning about programs. During the last decade or so, the term rewriting
community has seen a line of work that translates real-world problems from
program analysis into questions about term rewriting systems, which include, for
example, termination (see, e.g., [8,10,15,37]) and equivalence (see, e.g., [13,36,9]).
Such applications take place across programming paradigms due to the versatile
nature of term rewriting, and often materialize into automatable solutions.

Data types are a central building block of programs and must be properly
handled in program analysis. While it is rarely a problem for term rewriting
systems to represent (co)inductively defined data types, others such as integers
and arrays traditionally require encoding; think of neg (suc (suc (suc zero)))
encoding −3. This usually turns out to cause more obfuscation than clarification
to the methods applied and the results obtained. An alternative is to incorporate
primitive data types into the formalism, which contributes to the proliferation of
subtly different formalisms that are generally incompatible with each other, and
it is often difficult to transfer techniques between such formalisms.

Logically constrained term rewriting systems (LCTRSs) [27,12] emerged from
this proliferation as a unifying formalism seeking to be general in both the
selection of primitive data types (little is presumed) and the applicability of
varied methods (many are extensible). LCTRSs thus allow us to benefit from the
broad term rewriting arsenal in a wide range of scenarios for program analysis
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(see, e.g., [32,24,23]). In particular, rewriting induction on LCTRSs [12,30] offers
a powerful tool for program verification.

As a first-order formalism, LCTRSs only naturally accommodate imperative
programs. This paper aims to generalize this formalism in a higher-order setting.

Motivation. Below is a first-order LCTRS implementing the factorial function:

fact n → 1 [n ≤ 0] fact n → n ∗ fact (n− 1) [n > 0]

where n ≤ 0 and n > 0 are logical constraints, which the integer n must satisfy
respectively when the corresponding rewrite rule is applied. Suppose we have
access to higher-order functions, a defining feature of functional programming;
now we have the following alternative implementation of fact:

fact n → fold (∗) 1 (genlist n)

genlist n → nil [n ≤ 0] genlist n → cons n (genlist (n− 1)) [n > 0]

fold f y nil → y fold f y (cons x l) → f x (fold f y l)

Here fold takes an argument f , which itself represents a function. Higher-order
functions such as fold do not fit into first-order LCTRSs, which leads to the first
reason to generalize this formalism: to overcome the limitation of its expressivity.

There is another reason for higher-order LCTRSs. The latter implementation
of fact reflects a pattern of functional programming: the combination of “standard”
higher-order building blocks such as fold and map, and functions that are specific
to the problem at hand. We note that a higher-order formalism can reveal more
modularity in programs. It would be valuable to exploit such modularity in
analyses as well.

With higher-order LCTRSs, we would like to explore automatable solutions
to the termination problem of functional programs in the same fashion as the
first-order case [27,25], or even better, to the finding of their complexity by
term rewriting. Moreover, given two programs supposedly implementing the
same function, a method that derives whether they are indeed equivalent is
also desirable. For example, a proof that the above two implementations of
fact are equivalent may serve as a correctness proof of the latter, less intuitive
implementation (which in general might be an outcome of code refactoring). Such
methods have been explored in a first-order setting [12,7].

Higher-order LCTRSs will broaden the horizons of both LCTRSs and higher-
order term rewriting. The eventual goal is to have a formalism that can be
deployed to analyze both imperative and functional programs, so that through
this formalism, the abundant techniques based on term rewriting may be applied
to automatic program analysis. This paper is a step toward that goal.

Contributions. The presentation begins with our perspective on higher-order
term rewriting (without logical constraints) in Section 2. The contributions of
this paper follow in subsequent sections:
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– We propose the formalism of logically constrained simply-typed term rewriting
systems (LCSTRSs), a higher-order generalization of LCTRSs, in Section 3.

– We adapt reduction orderings and rule removal to the newly proposed formal-
ism, and define (as well as prove the soundness of) constrained HORPO—a
variant of HORPO [21]—in Section 4. This includes changes to fit HORPO to
curried notation and partial application, and to handle theory symbols and
logical constraints in a similar way to RPO for first-order LCTRSs [27]. While
this version of HORPO is not the most powerful higher-order termination
technique, it offers a simple yet self-contained solution, and serves to illustrate
how existing techniques may be extended.

– We have developed for our formalism the foundation of a new open-source
analysis tool, in which an implementation of constrained HORPO is provided.
It requires several new insights, especially with regard to the way theories
and logical constraints are handled, and is discussed in Section 6.

2 Preliminaries

One of the first problems that a student of higher-order term rewriting faces is
the absence of a standard formalism on which the literature agrees. This variety
reflects the diverse interests and needs held by different authors.

In this section, we present simply-typed term rewriting systems (STRSs) [29]
as the unconstrained basis of our formalism. This is one of the simplest higher-
order formalisms, and closely resembles simple functional programs. We choose
this formalism as our starting point because it is already powerful, while avoiding
many of the complications that may be interesting for equational reasoning
purposes but are not needed in program analysis, such as reduction modulo β.

Types and Terms. Types rule out undesired terms. We consider simple types :
given a non-empty set S of sorts (or base types), the set T of simple types
over S is generated by the grammar T ::= S | (T → T ). Right-associativity is
assigned to → so we can omit some parentheses. The order of a type A, denoted
by ord(A), is defined as follows: ord(A) = 0 for A ∈ S and ord(A → B) =
max(ord(A) + 1, ord(B)).

Given disjoint sets F and V, whose elements we call function symbols and
variables, respectively, the set T of pre-terms over F and V is generated by the
grammar T ::= F | V | (T T). Left-associativity is assigned to the juxtaposition
operation, called application, so t0 t1 t2 stands for ((t0 t1) t2), for example.

We assume that every function symbol and variable is assigned a unique
type. Typing works as expected: if pre-terms t0 and t1 have types A → B and
A, respectively, t0 t1 has type B. The set of terms over F and V, denoted by
T (F ,V), is the subset of T consisting of pre-terms with a type. We write t : A if a
term t has type A. The set of variables occurring in a term t ∈ T (F ,V), denoted
by Var(t), is defined as follows: Var(f) = ∅ for f ∈ F , Var(x) = {x } for x ∈ V
and Var(t0 t1) = Var(t0) ∪Var(t1). A term t is called ground if Var(t) = ∅. The
set of ground terms over F is denoted by T (F , ∅).
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Substitutions and Contexts. Variables occurring in a term can be seen as place-
holders: the occurrences of a variable may be replaced with terms which have the
same type as the variable does. Type-preserving mappings from V to T (F ,V) are
called substitutions. Every substitution σ extends to a type-preserving mapping
σ̄ from T (F ,V) to T (F ,V). We write tσ for σ̄(t) and define it as follows: fσ = f
for f ∈ F , xσ = σ(x) for x ∈ V and (t0 t1)σ = (t0σ) (t1σ).

Term formation gives rise to the concept of a context: a term containing a hole.
Formally, let □ be a special terminal symbol denoting the hole, and the grammar
C ::= □ | (C T) | (T C) with the above rule for T generates pre-terms containing
exactly one occurrence of the hole. Given a type for the hole, a context is an
element of C which is typed as a term is. Let C[]A denote a context in which the
hole has type A; filling the hole with a term t : A produces the term C[t]A defined
as follows: □[t]A = t, (C0[]A t1)[t]A = C0[t]A t1 and (t0 C1[]A)[t]A = t0 C1[t]A.
We usually omit types in the above notation, and in C[t], t is understood as a
term which has the same type as the hole does.

Rules and Rewriting. Now we have all the ingredients in our recipe for higher-
order term rewriting. A rewrite rule ℓ → r is an ordered pair of terms where ℓ
and r have the same type, Var(ℓ) ⊇ Var(r) and ℓ assumes the form f t1 · · · tn for
some function symbol f . Formally, a simply-typed term rewriting system (STRS)
is a quadruple (S,F ,V,R) where every element of F ∪ V is assigned a simple
type over S and R ⊆ T (F ,V)× T (F ,V) is a set of rewrite rules. We usually let
R alone stand for the system and keep the details of term formation implicit.

The set R of rewrite rules induces the rewrite relation →R ⊆ T (F ,V) ×
T (F ,V): t →R t′ if and only if there exist a rewrite rule ℓ → r ∈ R, a substitution
σ and a context C[] such that t = C[ℓσ] and t′ = C[rσ]. When there is no
ambiguity about the system in question, we may simply write → for →R.

Given a relation ≻ ⊆ X ×X, an element x of X is called terminating with
respect to ≻ if there is no infinite sequence x = x0 ≻ x1 ≻ · · ·, and ≻ is called
well-founded if all the elements of X are terminating with respect to ≻. An STRS
R is called terminating if →R is well-founded.

Example 1. The following rewrite rules constitute a terminating system:

take zero l → nil take n nil → nil take (suc n) (cons x l) → cons x (take n l)

where zero : nat, suc : nat → nat, nil : natlist, cons : nat → natlist → natlist and
take : nat → natlist → natlist are function symbols, and l : natlist, n : nat and
x : nat are variables.

Example 2. The following rewrite rule constitutes a non-terminating system:

iterate f x → cons x (iterate f (f x))

where cons : nat → natlist → natlist and iterate : (nat → nat) → nat → natlist are
function symbols, and f : nat → nat and x : nat are variables.
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Limitations. The above formalism does not offer product types, polymorphism
or λ-abstractions. What it does offer is its already expressive syntax enabling us,
in a higher-order setting, to generalize LCTRSs and to discover what challenges
one may face when extending existing unconstrained techniques. We expect that,
once preliminary higher-order results are developed, we will adopt more features
from other higher-order formalisms in future extensions.

The exclusion of λ-abstractions does not rid us of first-class functions, thanks
to curried notation. For example, the occurrence of suc in iterate suc zero is
partially (in this case, not at all) applied and still forms a term, which can be
passed as an argument. Also, a term such as iterate (λx. suc (suc x)) zero can be
simulated at the cost of an extra rewrite rule (in this case, add2 x → suc (suc x)).
There are also straightforward ways of encoding product types.

Notions of Termination. If we combine the two systems from Examples 1
and 2, the outcome is surely non-terminating: take zero (iterate suc zero) is not
terminating, for example. From a Haskell programmer’s perspective, however,
this term is “terminating” due to the non-strictness of Haskell. In general, every
functional language uses a certain evaluation strategy to choose a specific redex,
if any, to rewrite within a term, whereas the rewrite relation we define in this
section corresponds to full rewriting: the redex is chosen non-deterministically.

Furthermore, programmers usually care only about the termination of terms
that are reachable from the entry point of a program and seldom consider full
termination: the termination of all terms, i.e., the well-foundedness of the rewrite
relation. We study full termination with respect to full rewriting in this paper,
as it implies any other termination properties and full termination is often a
prerequisite for determining properties such as confluence and equivalence.

3 Logically Constrained STRSs

Term rewriting systems do not have primitive data types built in; with some
function symbols constructing (introducing) values of a certain type and pattern
matching rules deconstructing (eliminating) those values, a term rewriting system
relies on (co)inductively defined data types. While (co)inductive reasoning is
straightforward this way, data types such as integers and arrays require encoding,
which can be convoluted; think of the space-consuming unary representation of a
number or a binary representation which takes less space but shifts the burden
to rewrite rules defining arithmetic, and negative numbers bring up even more
complications. Besides, such encoding neglects advances in modern SMT solvers.

In this section, we extend unconstrained STRSs with logical constraints so
that data types that are not (co)inductively defined can be represented directly,
and analysis tools can take advantage of existing SMT solvers. We follow the
ideas of first-order LCTRSs [27,12]. Specifically, we will consider systems over
arbitrary first-order theories, i.e., we are not bound to, say, systems over integers,
while avoiding higher-order logical constraints. In the unconstrained part of such
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a system (outside theories), however, higher-order arguments and results are still
completely usable.

3.1 Terms Modulo Theories

Following Section 2, we postulate a set S of sorts, a set F of function symbols
and a set V of variables where every element of F ∪ V is assigned a simple type
over S. First, we assume that there is a distinguished subset Sϑ of S, called the
set of theory sorts. The grammar Tϑ ::= Sϑ | (Sϑ → Tϑ) generates the set Tϑ of
theory types over Sϑ. Note that the order of a theory type is never greater than
one. Next, we assume that there is a distinguished subset Fϑ of F , called the
set of theory symbols, and that the type of every theory symbol is in Tϑ, which
means that the type of any argument passed to a theory symbol is a theory sort.
Elements of T (Fϑ,V) are called theory terms. Last, for technical reasons, we
assume that there are infinitely many variables of each type.

Theory symbols are interpreted in an underlying theory: given an Sϑ-indexed
family of sets (XA)A∈Sϑ

, we extend it to a Tϑ-indexed family by letting XA→B

be the set of mappings from XA to XB; an interpretation of theory symbols is
a Tϑ-indexed family of mappings ([[·]]A)A∈Tϑ

where [[·]]A assigns to each theory
symbol of type A an element of XA and is bijective1 if A ∈ Sϑ. Theory symbols
whose type is a theory sort are called values. Given an interpretation of theory
symbols ([[·]]A)A∈Tϑ

, we extend each indexed mapping [[·]]B to one that assigns
to each ground theory term of type B an element of XB by letting [[t0 t1]]B be
[[t0]]A→B([[t1]]A). We usually write just [[·]] when the type can be deduced.

Example 3. Let Sϑ be { int }. Then int → int → int is a theory type over Sϑ while
(int → int) → int is not. Let Fϑ be { sub }∪{ n̄ |n ∈ Z } where sub : int → int → int
and n̄ : int. The values are the elements of { n̄ |n ∈ Z }. Let Xint be Z, [[·]]int be
the mapping n̄ 7→ n and [[sub]] be the mapping λm. λn.m−n. The interpretation
of sub 1̄ is the mapping λn. 1− n.

We are not limited to the theory of integers:

Example 4. To reason about integer arrays, we could either represent them
as lists and simulate random access through more costly list traversal (which
affects the complexity), or consider a theory of bounded arrays as follows: Let
Sϑ be { int, intarray } and Fϑ be the union of { size, select, store }, { n̄ |n ∈ Z }
and { ⟨n̄0, . . . , n̄k−1⟩ | k ∈ N and ∀i. ni ∈ Z } where size : intarray → int, select :
intarray → int → int, store : intarray → int → int → intarray, n̄ : int and
⟨n̄0, . . . , n̄k−1⟩ : intarray. Let Xint and Xintarray be Z and Z∗, respectively. Let [[·]]int
be the mapping n̄ 7→ n and [[·]]intarray be the mapping ⟨n̄0, . . . , n̄k−1⟩ 7→ n0 . . . nk−1.
Let [[size]](n0 . . . nk−1) be k. Let [[select]](n0 . . . nk−1, i) be ni if 0 ≤ i < k, and
0 otherwise. Let [[store]](n0 . . . nk−1, i,m) be n0 . . . ni−1mni+1 . . . nk−1 if 0 ≤
i < k, and n0 . . . nk−1 otherwise. Note that the values include theory symbols
⟨n̄0, . . . , n̄k−1⟩ : intarray as well as n̄ : int.
1 The bijectivity is assumed so that values (see below) are isomorphic to (and therefore

a representation of) elements of (XA)A∈Sϑ .
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In this paper, we largely consider the theory of integers in Example 3 when
giving examples because it is easy to understand. This particular theory does not
play a special role for the formalism we will shortly present; in fact, the theory of
bit vectors may be more appropriate to real-world programs using integers, and
our formalism is not biased toward any choice of theories. In particular, we do
not have to choose predefined theories from SMT-LIB [3]. The theory of bounded
arrays in Example 4 is an instance of such a “non-standard” theory (which can
nevertheless be encoded within the theory of functional arrays). On the other
hand, theories supported by SMT solvers are preferable in light of automation.

3.2 Constrained Rewriting

Constrained rewriting requires the theory sort bool: we henceforth assume that
bool ∈ Sϑ, { f, t } ⊆ Fϑ, Xbool = { 0, 1 }, [[f]]bool = 0 and [[t]]bool = 1. A logical
constraint is a theory term φ such that φ has type bool and the type of each
variable in Var(φ) is a theory sort. A (constrained) rewrite rule is a triple ℓ → r [φ]
where ℓ and r are terms which have the same type, φ is a logical constraint,
the type of each variable in Var(r) \Var(ℓ) is a theory sort and ℓ is a term that
assumes the form f t1 · · · tn for some function symbol f and contains at least
one function symbol in F \ Fϑ.2

This definition can be obscure at first glance, especially when compared with
its unconstrained counterpart in Section 2: variables which do not occur in ℓ are
allowed to occur in r, not to mention the logical constraint φ as a brand-new
component. Given a rewrite rule ℓ → r [φ], the idea is that variables occurring in
φ are to be instantiated to values which make φ true and other variables which
occur in r but not in ℓ are to be instantiated to arbitrary values—note that the
type of each of these variables is a theory sort. Formally, given an interpretation
of theory symbols [[·]], a substitution σ is said to respect a rewrite rule ℓ → r [φ]
if σ(x) is a value for all x ∈ Var(φ) ∪ (Var(r) \Var(ℓ)) and [[φσ]] = 1.

We summarize all the above ingredients in the following definition:

Definition 1. A logically constrained STRS (LCSTRS) consists of S, Sϑ, F ,
Fϑ, V, (XA), [[·]] and R where

1. S is a set of sorts,
2. Sϑ ⊆ S is a set of theory sorts which contains bool,
3. F is a set of function symbols in which every function symbol is assigned a

simple type over S,
4. Fϑ ⊆ F is a set of theory symbols in which the type of every theory symbol is

a theory type over Sϑ, with f : bool and t : bool elements of Fϑ,
5. V is a set of variables disjoint from F in which every variable is assigned

a simple type over S and there are infinitely many variables to which every
type is assigned,

2 We do not require f to be in F \ Fϑ (that is, f can be a theory symbol) because a
theory symbol may occur at the head position of a rewrite rule’s left-hand side in
rewriting induction, and this general definition is in line with first-order LCTRSs.
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6. (XA) is an Sϑ-indexed family of sets such that Xbool = { 0, 1 },
7. [[·]] is an interpretation of theory symbols such that [[f]] = 0 and [[t]] = 1, and
8. R ⊆ T (F ,V)× T (F ,V)× T (Fϑ,V) is a set of rewrite rules.

We usually let R alone stand for the system.

And the following definition concludes the elaboration of constrained rewriting:

Definition 2. Given an LCSTRS R, the set of rewrite rules induces the rewrite
relation →R ⊆ T (F ,V) × T (F ,V) such that t →R t′ if and only if one of the
following conditions is true:

1. There exist a rewrite rule ℓ → r [φ] ∈ R, a substitution σ which respects
ℓ → r [φ] and a context C[] such that t = C[ℓσ] and t′ = C[rσ].

2. There exist theory symbols v1 : A1, . . . , vn : An, v
′ : B and f : A1 → · · · →

An → B for n > 0 and A1, . . . , An, B ∈ Sϑ such that [[f v1 · · · vn]] = [[v′]],
and a context C[] such that t = C[f v1 · · · vn] and t′ = C[v′].

Note that the above conditions are mutually exclusive for any given context C[]:
f v1 · · · vn is a theory term, whereas ℓ in any rewrite rule ℓ → r [φ] is not. If
t →R t′ due to the second condition, we also write t →κ t′ and call it a step of
calculation. When no ambiguity arises, we may simply write → for →R.

Example 5. We can rework Example 1 into an LCSTRS:

take n l → nil [n ≤ 0] take n nil → nil

take n (cons x l) → cons x (take (n− 1) l) [n > 0]

where S = Sϑ ∪ { intlist }, Sϑ = { bool, int }, F = Fϑ ∪ { nil, cons, take }, Fϑ =
{≤, >,−, f, t } ∪ Z, V ⊇ { l, n, x }, ≤ : int → int → bool, > : int → int → bool,
− : int → int → int, f : bool, t : bool, v : int for all v ∈ Z, nil : intlist, cons : int →
intlist → intlist, take : int → intlist → intlist, l : intlist, n : int and x : int.

Here and henceforth we let integer literals and operators, e.g., 0, 1, ≤, > and
−, denote both the corresponding theory symbols and their respective images
under the interpretation—in contrast to Examples 3 and 4, where we pedantically
make a distinction between, say, 1̄ and 1. We also use infix notation for some
binary operators to improve readability, and omit the logical constraint of a
rewrite rule when it is t. Below is a rewrite sequence:

take 1 (cons x (cons y l)) → cons x (take (1− 1) (cons y l))

→κ cons x (take 0 (cons y l)) → cons x nil

Example 6. In Section 1, the rewrite rules implementing the factorial function
by fold constitute an LCSTRS. Below is a rewrite sequence:

fact 1 → fold (∗) 1 (genlist 1) → fold (∗) 1 (cons 1 (genlist (1− 1)))

→κ fold (∗) 1 (cons 1 (genlist 0)) → fold (∗) 1 (cons 1 nil)

→ (∗) 1 (fold (∗) 1 nil) → (∗) 1 1 →κ 1
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Example 7. Consider the rewrite rule readint → n, in which the variable n : int
occurs on the right-hand side of → but not on the left. Unconstrained STRSs do
not permit such a rewrite rule, but LCSTRSs do. It looks as if we might rewrite
readint to a variable but it is not the case: all the substitutions which respect
this rewrite rule must map n to a value. Indeed, readint is always rewritten to a
value of type int. We may have, say, readint → 42. Such variables can be used to
model user input.

Example 8. Getting input by means of the rewrite rule from Example 7 has
one flaw: in case of multiple integers to be read, the order of reading each is
non-deterministic. Even in the presence of an evaluation strategy, the order may
not be the desired one. We can use continuation-passing style to choose an order:

readint k → k n comp g f x → g (f x) sub → readint (comp readint (−))

where comp : ((int → int) → int) → (int → int → int) → int → int. If the first and
the second integers to be read were 1 and 2, respectively, the following rewrite
sequence would be the only one starting from sub:

sub → readint (comp readint (−)) → comp readint (−) 1

→ readint ((−) 1) → (−) 1 2 →κ −1

Since there is no way to specify the actual input within an LCSTRS, rewrite
sequences such as the one above cannot be derived deterministically. Nevertheless,
this example demonstrates that the newly proposed formalism can represent
relatively sophisticated control mechanisms utilized by functional programs.

Remarks. We reflect on some of the concepts presented in this section:

– We use the phrase “terms modulo theories” in line with “satisfiability modulo
theories”: some function symbols are interpreted within a theory. While such
an interpretation gives rise to a way of identifying certain terms, namely those
that are convertible to each other with respect to →κ, we do not consider
them identified (in other words, modulo κ) in this paper.

– First-order LCTRSs can be seen as instances of the newly proposed formalism,
i.e., ones in which the type order of each function symbol is no greater than
one, variables with a non-zero type order (i.e., higher-order variables) are
excluded, and the type of both sides of a rewrite rule is always a sort.

– Logical constraints are essentially first-order: the type order of a theory
symbol cannot be greater than one while higher-order variables are excluded.
This restriction rules out, for example, the following implementation:

filter f (cons x l) → cons x (filter f l) [f x] filter f nil → nil

filter f (cons x l) → filter f l [¬ (f x)]

The filter function can actually be implemented in an LCSTRS as follows:

filter f (cons x l) → if (f x) (cons x (filter f l)) (filter f l)

filter f nil → nil if t l l′ → l if f l l′ → l′
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In the former implementation, the problem is not the higher-order variable
f itself but its occurrence in logical constraints. In this case, because the
filter function is usually meant to be used in combination with “user-defined”
predicates—which are function symbols defined by rewrite rules and therefore
do not belong to the theories—it makes sense to disallow f from occurring in
logical constraints. In general, we may encounter use cases for higher-order
constraints; until then, we focus on first-order constraints, which are very
common in functional programs.

4 Constrained Higher-Order Recursive Path Ordering

Recall that an important part of our goal is to allow the abundant term rewriting
techniques to be applied toward program analysis. We have defined a formalism
for constrained higher-order term rewriting; now it remains to be seen that—or
how—existing techniques can be extended to it.

In the rest of this paper, we consider termination, an important aspect
of program analysis and a topic that has been studied by the term rewriting
community for decades. Not only is termination itself critical to the correctness of
certain programs, but it also facilitates other analyses by admitting well-founded
induction on terms.

In this section, we adapt HORPO [21] to our formalism. This is one of the
oldest, yet still effective techniques for higher-order termination. HORPO can be
used either as a stand-alone method or in a higher-order version of the dependency
pair framework [1,39,11,25]. Hence, this adaptation offers a solid basis for use in
an analysis tool’s termination module. We will discuss the use of HORPO within
the dependency pair framework in Section 5, and its automation in Section 6.

Constrained RPO for first-order LCTRSs was proposed in [27]. We take
inspiration from it for its approach to theory terms, formalize the ideas, and add
support for (higher) types as well as partial application.

4.1 HORPO, Unconstrained and Uncurried

We first recall HORPO in its original form. Note that the original definition is
based on an unconstrained and uncurried format, and a thorough discussion on it
is beyond the scope of this paper. The following presentation is mostly informal
and only serves the purposes of comparison and inspiration.

We begin with two standard definitions:

Definition 3. Given relations ≿ and ≻ over X, the generalized lexicographic
ordering ≻l ⊆ X∗ ×X∗ is induced as follows: x1 . . . xm ≻l y1 . . . yn if and only
if there exists k ≤ min(m,n) such that xi ≿ yi for all i < k and xk ≻ yk.

Definition 4. Given relations ≿ and ≻ over X, the generalized multiset ordering
≻m ⊆ X∗ ×X∗ is induced as follows: x1 . . . xm ≻m y1 . . . yn if and only if there
exist a non-empty subset I of { 1, . . . ,m } and a mapping π from { 1, . . . , n } to
{ 1, . . . ,m } such that
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1. ∀i ∈ I. ∀j ∈ π−1(i). xi ≻ yj,
2. ∀i ∈ { 1, . . . ,m } \ I. ∀j ∈ π−1(i). xi ≿ yj, and
3. ∀i ∈ { 1, . . . ,m } \ I.

∣∣π−1(i)
∣∣ = 1.

Here the generalized multiset ordering is formulated in terms of lists because
we will compare argument lists by this ordering and this formulation facilitates
implementation. In the following definition of HORPO, when we refer to the
above definitions, ≿ is the equality over terms and ≻ is HORPO itself.

Roughly, HORPO extends a given ordering over function symbols, and when
considering terms headed by the same function symbol, compares the arguments
by either of the above orderings. Given a well-founded ordering ▶ ⊆ F × F ,
called the precedence, and a mapping s : F → { l,m }, called the status, HORPO
is a type-preserving relation ≻ such that s ≻ t if and only if one of the following
conditions is true:

1. s = f(s1, . . . , sm), f ∈ F and ∃k. sk ⪰ t.
2. s = f(s1, . . . , sm), f ∈ F , t = @(. . .@(@(t0, t1), t2) . . . , tn) and ∀i. s ≻

ti ∨ ∃k. sk ⪰ ti.
3. s = f(s1, . . . , sm), t = g(t1, . . . , tn), f ∈ F , g ∈ F , f ▶ g and ∀i. s ≻

ti ∨ ∃k. sk ⪰ ti.
4. s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ F , s(f) = l, s1 . . . sm ≻l t1 . . . tm

and ∀i. s ≻ ti ∨ ∃k. sk ⪰ ti.
5. s = f(s1, . . . , sm), t = f(t1, . . . , tm), f ∈ F , s(f) = m and s1 . . . sm ≻m

t1 . . . tm.
6. s = @(s0, s1), t = @(t0, t1) and s0s1 ≻m t0t1.
7. s = λx. s0, t = λx. t0 and s0 ≻ t0.

Here ⪰ denotes the reflexive closure of ≻.
We call this format uncurried because every function symbol has an arity, i.e.,

the number of arguments guaranteed for each occurrence of the function symbol
in a term. This is indicated by the functional notation f(s1, . . . , sm) as opposed to
f s1 · · · sm. If f has arity m, its occurrence in a term must take m arguments so
f(s1, . . . , sm−1) is not a well-formed term, for example. A function symbol’s type
(or more technically, its type declaration) can permit more arguments than its
arity guarantees. Such an extra argument is supplied through the syntactic form
@(·, ·). For example, if the same function symbol f is given an extra argument
sm+1, we write @(f(s1, . . . , sm), sm+1). This syntactic form is also used to pass
arguments to variables and λ-abstractions.

The difference between an uncurried and a curried format is more than a
notational issue, and poses technical challenges to our extension of HORPO.
Another source of challenges is, as one would expect, constrained rewriting.

4.2 Rule Removal

HORPO is defined as a reduction ordering ≻, which is a type-preserving, stable
(i.e., t ≻ t′ implies tσ ≻ t′σ), monotonic (i.e., t ≻ t′ implies C[t] ≻ C[t′]) and
well-founded relation. Note that despite its name, HORPO is not necessarily
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transitive. If such a relation orients all the rewrite rules in R (i.e., ℓ ≻ r for all
ℓ → r ∈ R), we can conclude that the rewrite relation →R is well-founded.

A similar strategy for LCSTRSs requires a few tweaks. First, stability should
be tightly coupled with rule orientation because every rewrite rule now is equipped
with a logical constraint, which decides what substitutions are expected when the
rewrite rule is applied. Second, the monotonicity requirement can be weakened
because ℓ is never a theory term in a rewrite rule ℓ → r [φ]. We define as follows:

Definition 5. A type-preserving relation ⇒ ⊆ T (F ,V)× T (F ,V) is said

1. to stably orient a rewrite rule ℓ → r [φ] if ℓσ ⇒ rσ for each substitution σ
which respects the rewrite rule, and

2. to be rule-monotonic if t ⇒ t′ implies C[t] ⇒ C[t′] when t /∈ T (Fϑ,V).

Besides having rewrite rules stably oriented, we need to deal with calculation.
It turns out to be unnecessary to search for a well-founded relation which includes
→κ, given the following observation:

Lemma 1. →κ is well-founded.

Proof. The term size strictly decreases through every step of calculation. ⊓⊔

We rather look for a type-preserving and well-founded relation ≻ which stably
orients every rewrite rule, is rule-monotonic, and is compatible with →κ, i.e.,
→κ ; ≻ ⊆ ≻+ or ≻ ; →κ ⊆ ≻+. This strategy is an instance of rule removal :

Theorem 1. Given an LCSTRS R, the rewrite relation →R is well-founded
if and only if there exist sets R1 and R2 such that →R1 is well-founded and
R1 ∪R2 = R, and type-preserving, rule-monotonic relations ⇒ and ≻ such that

1. ⇒ includes →κ and stably orients every rewrite rule in R1,
2. ≻ is well-founded and stably orients every rewrite rule in R2, and
3. ⇒ ; ≻ ⊆ ≻+ or ≻ ; ⇒ ⊆ ≻+.

Here →R1 assumes the same term formation and interpretation as →R does.

Proof. If →R is well-founded, take R1 = ∅, R2 = R, ⇒ = →κ and ≻ = →R.
Note that →∅ = →κ by definition.

Now assume given R1, R2, ⇒ and ≻. Since ⇒ is rule-monotonic, includes
→κ and stably orients every rewrite rule in R1, →R1 ⊆ ⇒. So the compatibility
of ≻ with ⇒ implies its compatibility with →R1 , which in turn implies the
well-foundedness of →R1

∪ ≻, given that both →R1
and ≻ are well-founded.

Since R1 ∪R2 = R and ≻ is a rule-monotonic relation which stably orients every
rewrite rule in R2, →R ⊆ →R1

∪ ≻. Hence, →R is well-founded. ⊓⊔

In a termination proof of R, Theorem 1 allows us to remove rewrite rules that
are in R2 from R. If none of the rewrite rules are left after iterations of rule
removal, the termination of the original system can be concluded with Lemma 1.
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4.3 Constrained HORPO for LCSTRSs

Before adapting HORPO for LCSTRSs, we discuss how the theories may be
handled. Let us consider the following system:

rec n x f → x [n ≤ 0] rec n x f → f (n− 1) (rec (n− 1) x f) [n > 0]

where rec : int → int → (int → int → int) → int. In the second rewrite rule,
the left-hand side of → is rec n x f while the right-hand side has a subterm
rec (n− 1) x f . It is natural to expect n ≻ n− 1 in the construction of HORPO.
Note that this is impossible with respect to any recursive path ordering for
unconstrained rewriting because n is a variable occurring in n− 1; in an uncon-
strained setting, we actually have n− 1 ≻ n. Hence, we must somehow take the
logical constraint n > 0 into account. To this end, we largely follow the ideas of
constrained RPO for first-order LCTRSs [27].

The occurrence of n in the logical constraint ensures that n is instantiated
to a value, say 42, when the rewrite rule is applied, and it is sensible to have
42 ≻ 42− 1. Also, n > 0 guarantees that all the sequences of such descents are
finite, i.e., the ordering λm. λn.m > 0 ∧m > n, denoted by ⊐, is well-founded.
Let φ |= φ′ denote, on the assumption that φ and φ′ are logical constraints such
that Var(φ) ⊇ Var(φ′), that [[φσ]] = 1 implies [[φ′σ]] = 1 for each substitution σ
which maps variables in Var(φ) to values. Then we have n > 0 |= n ⊐ n− 1. We
thus would like to have s ≻ t if φ |= s ⊐ t.

However, with the same ordering ⊐, we have both m > 0 ∧m > n |= m ⊐ n
and n > 0 ∧ n > m |= n ⊐ m, whereas we cannot have both m ≻ n and n ≻ m
without breaking the well-foundedness of ≻. To resolve this issue, we split ≻ into
a family of relations (≻φ) indexed by logical constraints, and let s ≻φ t be true if
φ |= s ⊐ t. We also introduce a separate family of relations (≿φ) such that s ≿φ t
if φ |= s ⊒ t where ⊒ is the reflexive closure of ⊐. Hence, ≿φ is not necessarily
the reflexive closure of ≻φ; if it was, even n ≿n≥1 1 would not be obtainable.

Now we have a family of pairs (≿φ,≻φ), which does not seem to suit rule
removal; after all, the essential requirement is a fixed relation which is type-
preserving, rule-monotonic, well-founded and at least compatible with →κ. When
the definition of constrained HORPO is fully presented, we will show that ≻t—the
irreflexive relation indexed by the boolean t—is such a relation and stably orients
a rewrite rule ℓ → r [φ] if ℓ ≻φ r.

The annotation φ of HORPO does not capture variables in Var(r) \Var(ℓ),
which also have a part to play in the decision of what substitutions are expected
when ℓ → r [φ] is applied. We may use a new annotation to accommodate
these variables but there is a hack (also present in [38]): given a variable in
Var(r) \Var(ℓ), it can be harmlessly appended to φ, syntactically and without
tampering with any interpretation. We henceforth assume that Var(r) \Var(ℓ) ⊆
Var(φ) for each rewrite rule ℓ → r [φ]. We also say that a substitution σ respects
a logical constraint φ if σ(x) is a value for all x ∈ Var(φ) and [[φσ]] = 1.

Before presenting constrained HORPO, we recall that in [21] all sorts collapse
into one, and for example, int → int → int and int → intlist → intlist are
considered equal. The idea is that the original rewrite relation can be embedded
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in the single-sorted one, and if the latter is well-founded, so is the former. We
follow this convention and henceforth compare types by their →-structure only.

Below ≻l
φ and ≻m

φ are induced by ≿φ and ≻φ:

Definition 6. Constrained HORPO depends on the following parameters:

1. The interpretation of theory symbols ⊐A: A → A → bool for all A ∈ Sϑ such
that [[⊐A]] is a well-founded ordering over XA. The interpretation [[⊒A]] is
assumed to be the reflexive closure of [[⊐A]]. We usually write just ⊐ and ⊒
because sorts collapse. Consider [[⊐]] the union

⋃
A∈Sϑ

[[⊐A]], and [[⊒]] likewise.
2. The precedence ▶, a well-founded ordering over F such that f ▶ g for all

f ∈ F \ Fϑ and g ∈ Fϑ.
3. The status s, a mapping from F to { l,m2,m3, . . . }.

The higher-order recursive path ordering (HORPO) is a family of pairs of type-
preserving relations (≿φ,≻φ) indexed by logical constraints and defined by the
following conditions:

1. s ≿φ t if and only if one of the following conditions is true:

(a) s and t are theory terms whose type is a sort, Var(s) ∪Var(t) ⊆ Var(φ)
and φ |= s ⊒ t.

(b) s ≻φ t.
(c) s ↓κ t.
(d) s is not a theory term, s = s0 s1, t = t0 t1, s0 ≿φ t0 and s1 ≿φ t1.

2. s ≻φ t if and only if one of the following conditions is true:

(a) s and t are theory terms whose type is a sort, Var(s) ∪Var(t) ⊆ Var(φ)
and φ |= s ⊐ t.

(b) s and t have equal types and s ▷φ t.
(c) s is not a theory term, s = f s1 · · · sn for some f ∈ F , t = f t1 · · · tn,

∀i. si ≿φ ti and ∃k. sk ≻φ tk.
(d) s is not a theory term, s = x s1 · · · sn for some x ∈ V, t = x t1 · · · tn,

∀i. si ≿φ ti and ∃k. sk ≻φ tk.

3. s ▷φ t if and only if s is not a theory term, s = f s1 · · · sm for some f ∈ F
and one of the following conditions is true:

(a) ∃k. sk ≿φ t.
(b) t = t0 t1 · · · tn, ∀i. s ▷φ ti.
(c) t = g t1 · · · tn, f ▶ g, ∀i. s ▷φ ti.
(d) t = f t1 · · · tn, s(f) = l, s1 . . . sm ≻l

φ t1 . . . tn, ∀i. s ▷φ ti.
(e) t = f t1 · · · tn, s(f) = mk, k ≤ n, s1 . . . smin(m,k) ≻m

φ t1 . . . tk, ∀i. s ▷φ ti.
(f) t is a value or a variable in Var(φ).

Here s ↓κ t if and only if there exists a term r such that s →∗
κ r and t →∗

κ r.
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Comparison to the Original HORPO. Conditions 1d, 2c and 2d are included
in the definition so that ≿φ and ≻φ are rule-monotonic. We stress that it
is mandatory to use the weakened, rule-monotonicity requirement instead of
the traditional monotonicity requirement: if ≻t is monotonic, 1 ≻t 0 implies
1− 1 ≻t 1− 0, but t |= (1− 0) ⊐ (1− 1), i.e., ≻t cannot possibly be well-founded.

From curried notation, another issue related to rule-monotonicity arises,
which leads to the above definition of ▷φ. If we had the original HORPO naively
mirrored, the definition of ≻φ would include a condition which corresponds to
condition 3b and reads: “s ≻φ t if s is not a theory term, s = f s1 · · · sm for
some f ∈ F , t = t0 t1 · · · tn and ∀i. s ≻φ ti ∨ ∃k. sk ≿φ ti”. Assume given such
terms s and t, and that, say, s ≻φ t1. Now if there is a term r to which s can
be applied, we have a problem with proving s r ≻φ t r = t0 t1 · · · tn r because
s r ≻φ t1 is not obtainable due to the type restriction. Note that ≿φ and ≻φ are
by definition type-preserving, whereas ▷φ is not.

This limitation is overcome by means of ▷φ, which actually makes the overall
definition more powerful, and is reminiscent of the distinction between ≻ and
≻TS

in later versions of HORPO (e.g., [5]). Other extensions from these works,
however, are not yet included in the above definition, and except for the type
restriction and uncurried notation, the conditions of ▷φ largely match those of
the original HORPO.

Another subtle difference is the use of generalized lexicographic and multiset
orderings: in the original HORPO, ≿ is the reflexive closure of ≻, and therefore
it suffices to use the more traditional definitions of lexicographic and multiset
orderings. Here, as observed above, this would be unnecessarily restrictive.

The split of a single multiset status label in m2,m3, . . . is due to curried
notation—in particular, the possibility of partial application. If we had only a
single multiset status label, which would admit, for example, both f 2 2 ▷t f 1
and f 1 3 ≻t f 2 2, it would be possible that ≻t is not well-founded: note that
g (f 1) ≻t f 1 3 due to, among others, conditions 2b and 3b, and if f ▶ g, we
would then have f 2 2 ≻t g (f 1) due to, among others, conditions 2b and 3c. This
change adds some power to constrained HORPO: we can prove, for example, the
termination of the single-rule system f x a y → f b x (g y) by choosing s(f) = m2,
which is not possible if all arguments must be considered, as the original HORPO
requires. We do not need m1 because this case is already covered by choosing l.

Given an LCSTRS R, if we can divide the set of rules into two subsets R1

and R2, and find a combination of [[⊐]], ▶ and s that guarantees ℓ ≿φ r for all
ℓ → r [φ] ∈ R1 and ℓ ≻φ r for all ℓ → r [φ] ∈ R2, the termination of R is reduced
to that of R1. Before proving the soundness, we check out some examples:

Example 9. We continue the analysis of the motivating example rec. Let [[⊐int]]
be λm. λn.m > 0∧m > n as above. There is only one function symbol in F \Fϑ,
and it turns out that ▶ can be any precedence. Let s be a mapping such that
s(rec) = l. The first rewrite rule can be removed due to conditions 2b and 3a.
The second rewrite rule can be removed as follows:

1. rec n x f ≻n>0 f (n− 1) (rec (n− 1) x f) by 2b, 2.
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2. rec n x f ▷n>0 f (n− 1) (rec (n− 1) x f) by 3b, 3, 4, 5.
3. rec n x f ▷n>0 f by 3a, 6.
4. rec n x f ▷n>0 n− 1 by 3a, 7.
5. rec n x f ▷n>0 rec (n− 1) x f by 3d, 8, 4, 9, 3.
6. f ≿n>0 f by 1c.
7. n ≿n>0 n− 1 by 1a.
8. n ≻n>0 n− 1 by 2a.
9. rec n x f ▷n>0 x by 3a, 10.

10. x ≿n>0 x by 1c.

Example 10. Consider Example 5. Let [[⊐int]] be λm. λn.m > 0 ∧ m > n. Let
▶ be a precedence such that take ▶ nil and take ▶ cons. Let s be a mapping
such that s(take) = l. Then we can remove all of the rewrite rules. Note that to
establish take n (cons x l) ≻n>0 cons x (take (n− 1) l), we need cons x l ≿n>0 x,
which is obtainable because intlist is not distinguished from int.

4.4 Properties of Constrained HORPO

The soundness of constrained HORPO as a technique for rule removal relies on
the following properties, which we now prove.

Rule Orientation. The goal consists of two parts: ≿t stably orients a rewrite
rule ℓ → r [φ] if ℓ ≿φ r, and ≻t stably orients a rewrite rule ℓ → r [φ] if ℓ ≻φ r.
The core of the argument is to prove the following lemma:

Lemma 2. Given logical constraints φ and φ′ such that Var(φ) ⊇ Var(φ′) and
φ |= φ′, t |= φ′σ holds for each substitution σ which respects φ.

Proof. It follows from φ |= φ′ that [[φ′σ]] = 1. Note that Var(φ′σ) = ∅, and
therefore φ′σσ′ = φ′σ for all σ′. Hence, t |= φ′σ. ⊓⊔

And the rest is routine:

Theorem 2. Given a logical constraint φ, terms s and t, the following statements
are true for each substitution σ which respects φ:

1. s ≿φ t implies sσ ≿t tσ.
2. s ≻φ t implies sσ ≻t tσ.
3. s ▷φ t implies sσ ▷t tσ.

Proof. By mutual induction on the derivation. Note that →κ is stable. ⊓⊔

Rule-Monotonicity. Both ≿φ and ≻φ are rule-monotonic for all φ. The former
is trivial to prove, and the key to proving the latter is the following lemma:

Lemma 3. f s1 · · · sm r ▷φ t if f s1 · · · sm ▷φ t.

Proof. By induction on the derivation. ⊓⊔
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Now we can prove the rule-monotonicity:

Theorem 3. ≻φ is rule-monotonic.

Proof. By induction on the context C[]. Essentially, we ought to prove that given
terms s and t which have equal types, if s is not a theory term and s ≻φ t,
s r ≻φ t r for all r, and r s ≻φ r t for all r. We prove the former by case
analysis on the derivation of s ≻φ t, and prove the latter by case analysis on r:
r = f r1 · · · rn for some f ∈ F or r = x r1 · · · rn for some x ∈ V . ⊓⊔

Compatibility. The strict relation ≻t is compatible with its non-strict counter-
part ≿t; we prove that ≿t ; ≻t ⊆ ≻t ∪ (≻t ; ≻t), given the following observation:

Theorem 4. ≿t = ≻t ∪ ↓κ.

Proof. By definition, ≿t ⊇ ≻t ∪ ↓κ. We prove ≿t ⊆ ≻t ∪ ↓κ by induction on
the derivation of s ≿t t. Only two cases are non-trivial. If s and t are ground
theory terms whose type is a sort and [[s ⊒ t]] = 1, we have either [[s ⊐ t]] = 1 or
[[s]] = [[t]], and the former implies s ≻t t while the latter implies s ↓κ t. On the
other hand, if s is not a theory term, s = s0 s1, t = t0 t1, s0 ≿t t0 and s1 ≿t t1,
by induction, if s0 ≻t t0 or s1 ≻t t1, we can prove s ≻t t in the same manner as
we prove the rule-monotonicity of ≻t, or s0 ↓κ t0 and s1 ↓κ t1, then s ↓κ t. ⊓⊔

Theorem 4 plays an important role in the well-foundedness proof of ≻t as well.
For the compatibility of ≻t with ≿t, it remains to prove that ↓κ ; ≻t ⊆ ≻t,

which is implied by the following lemma:

Lemma 4. Given terms s and s′ such that s →κ s′, the following statements are
true for all t:

1. s ≿t t if and only if s′ ≿t t.
2. s ≻t t if and only if s′ ≻t t.
3. s ▷t t if and only if s′ ▷t t.

Proof. By mutual induction on the derivation for “if” and “only if” separately.
Note that →κ is confluent. ⊓⊔

The compatibility follows as a corollary:

Corollary 1. ≿t ; ≻t ⊆ ≻t ∪ (≻t ; ≻t).

Well-Foundedness. Following [21], we base the well-foundedness proof of ≻t on
the predicate of computability [40,17]. There are, however, two major differences,
which pose new technical challenges: ≿t is no more the reflexive closure of ≻t

and curried notation instead of uncurried notation is in use.
In Definition 6, ≻l

φ and ≻m
φ are induced by ≿φ and ≻φ. We need certain

properties of ≻l
t and ≻m

t to prove that ≻t is well-founded. Because ≿t is neither
the equality over terms nor the reflexive closure of ≻t, those properties are less
standard and deserve inspection. The property of ≻l

t is relatively easy to prove:
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Theorem 5. Given relations ≿ and ≻ over X such that ≻ is well-founded and
≿ ; ≻ ⊆ ≻+, ≻l is well-founded over Xn for all n.

Proof. The standard method used when ≿ is the equality still applies. ⊓⊔

We refer to [41] for the proof of the following property of ≻m
t :

Theorem 6. Given relations ≿ and ≻ over X such that ≿ is a quasi-ordering,
≻ is well-founded and ≿ ; ≻ ⊆ ≻, ≻m is well-founded over X∗.

Proof. See Theorem 3.7 in [41]. ⊓⊔

In comparison to [41], we waive the transitivity requirement for ≻ above, but we
cannot get around the requirement that ≿ is a quasi-ordering without significantly
changing the proof. This seems problematic because ≿t is not necessarily transitive
due to its inclusion of ≻t. Fortunately, one observation resolves this issue: ≻m

t

can equivalently be seen as induced by ↓κ and ≻t due to Theorem 4. In the same
spirit, we can prove the following property:

Theorem 7. ↓mκ ; ≻m
t ⊆ ≻m

t where s1 . . . sn ↓mκ t1 . . . tn if and only if there exists
a permutation π over { 1, . . . , n } such that sπ(i) ↓κ ti for all i.

Proof. See Lemma 3.2 in [41]. ⊓⊔

Our definition of computability (or reducibility [17]) is standard:

Definition 7. A term t0 is called computable if either

1. the type of t0 is a sort and t0 is terminating with respect to ≻t, or
2. the type of t0 is A → B and t0 t1 is computable for all computable t1 : A.

In [21], a term is called neutral if it is not a λ-abstraction. Due to the exclusion
of λ-abstractions, one might consider all LCSTRS terms neutral. This naive
definition, however, does not capture the essence of neutrality: if a term t0 is
neutral, a one-step reduct (with respect to ≻t) of t0 t1 can only be t′0 t′1 where t′0
and t′1 are reducts of t0 and t1, respectively. Because of curried notation, neutral
LCSTRS terms should be defined as follows:

Definition 8. A term is called neutral if it assumes the form x t1 · · · tn for some
variable x.

And we recall the following results:

Theorem 8. Computable terms have the following properties:

1. Given terms s and t such that s ≻t t, if s is computable, so is t.
2. All computable terms are terminating with respect to ≻t.
3. Given a neutral term s, if t is computable for all t such that s ≻t t, so is s.

Proof. The standard proof still works despite the seemingly different definition
of neutrality. ⊓⊔
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In addition, we prove the following lemma:

Lemma 5. Given terms s and t such that s ↓κ t, if s is computable, so is t.

Proof. By induction on the type of s and t. ⊓⊔

And we have the following corollary due to Theorem 4:

Corollary 2. Given terms s and t such that s ≿t t, if s is computable, so is t.

The goal is to prove that all terms are computable. To do so, the key is
to prove that f s1 · · · sm is computable where f is a function symbol if si is
computable for all i. In [21], this is done on the basis that f s1 · · · sm is neutral,
which is not true in our case. We do it differently and start with a definition:

Definition 9. Given f : A1 → · · · → An → B where f ∈ F and B ∈ S, let ar(f)
be n. We introduce a special symbol ⊤ and extend our previous definitions so
that ⊤ ≻t t for all t ∈ T (F ,V) and ⊤ ↓κ ⊤. This way ⊤ ≿t t if t ∈ T (F ,V) or
t = ⊤. Given terms t̄ = t1 . . . tn, let (t̄)k be tk if k ≤ n, and ⊤ if k > n. Given
terms s = f s1 · · · sm and t = g t1 · · · tn where f ∈ F , g ∈ F , all si and ti are
computable, we define ≻c such that s ≻c t if and only if f ▶ g, or f = g and

– s(f) = l and (s̄)1 . . . (s̄)ar(f) ≻l
t (t̄)1 . . . (t̄)ar(f), or

– s(f) = mk and
• (s̄)1 . . . (s̄)k ≻m

t (t̄)1 . . . (t̄)k, or
• (s̄)1 . . . (s̄)k ↓mκ (t̄)1 . . . (t̄)k, ∀i > k. (s̄)i ≿t (t̄)i and ∃i > k. (s̄)i ≻t (t̄)i.

This gives us a well-founded relation:

Lemma 6. ≻c is well-founded.

Proof. Since all computable terms are terminating with respect to ≻t, ≻t is
well-founded over computable terms. The introduction of ⊤ clearly does not
break this well-foundedness. The outermost layer of ≻c regards ▶, which is
well-founded by definition. We need only to fix the function symbol f and to go
deeper. If s(f) = l, we know that ≻l

t is well-founded over lists of length ar(f)
because of Theorem 5. If s(f) = mk, ≻c splits each list of arguments in two and
performs a lexicographic comparison. We can go past the first component because
of Theorems 6 and 7. And the rest, a pointwise comparison, is also well-founded.
So we can conclude that ≻c is well-founded. ⊓⊔

Now we prove the aforementioned statement:

Lemma 7. Given a term s = f s1 · · · sm where f is a function symbol, if si is
computable for all i, so is s.

Proof. By well-founded induction on ≻c. We consider the type of s:
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– If the type is a sort, we ought to prove that s is terminating with respect
to ≻t. We need only to consider the cases in which s is not a theory term
because all theory terms are terminating with respect to ≻t due to the
well-foundedness of [[⊐]]. Take an arbitrary term t such that s ≻t t. We prove
that t is terminating with respect to ≻t by case analysis on the derivation
of s ≻t t. If t = f t1 · · · tm, ∀i. si ≿t ti and ∃k. sk ≻t tk, we can prove that
s ≻c t. By induction, t is computable and therefore terminating with respect
to ≻t. If s ▷t t, we prove that t is computable for all t such that s ▷t t (t is
generalized) by inner induction on the derivation of s ▷t t:
1. If ∃k. sk ≿t t, t is computable due to Corollary 2.
2. If t = t0 t1 · · · tn and ∀i. s ▷t ti, ti is computable for all i by inner

induction. By definition, t is computable.
3. If t = g t1 · · · tn, f ▶ g and ∀i. s ▷t ti, ti is computable for all i by inner

induction. It follows from f ▶ g that s ≻c t, and t is computable by outer
induction.

4. If t = f t1 · · · tn, s(f) = l, s1 . . . sm ≻l
t t1 . . . tn and ∀i. s ▷t ti, ti is

computable for all i by inner induction. Likewise, s ≻c t.
5. If t = f t1 · · · tn, s(f) = mk, k ≤ n, s1 . . . smin(m,k) ≻m

t t1 . . . tk and
∀i. s ▷t ti, ti is computable for all i by inner induction. Likewise, s ≻c t.

6. If t is a value, t is terminating with respect to ≻t and its type is a sort.
– If the type is A → B, take an arbitrary computable sm+1 : A. We prove

that s ≻c s sm+1 = f s1 · · · sm+1. Note that (s1 . . . sm)i = (s1 . . . sm+1)i for
all i ≤ m and (s1 . . . sm)m+1 = ⊤ ≻t (s1 . . . sm+1)m+1. Consider s(f) = l,
s(f) = mk while k > m, and s(f) = mk while k ≤ m. We have s ≻c s sm+1

in each case. By induction, s sm+1 is computable. Hence, s is computable.

We conclude that s is computable. ⊓⊔

Now the well-foundedness of ≻t follows immediately:

Theorem 9. ≻t is well-founded.

Proof. We prove that every term t is computable by induction on t. Given
Lemma 7, we need only to prove that variables are computable, which is the case
because variables are neutral and in normal form with respect to ≻t. ⊓⊔

5 Discussion: HORPO and Dependency Pairs

In Section 4, we discussed rule removal, and presented a reduction ordering to
prove termination. However, in practice it is not so common to directly use
reduction orderings as a termination method. Rather, the norm in the literature
nowadays is to use dependency pairs.

The dependency pair framework [1,16] allows a single term rewriting system
to be split into multiple “DP problems”, each of which can then be analyzed
independently. The framework operates by iteratively simplifying DP problems
until none remain, in which case the original system is proved terminating. There
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are variants for many styles of term rewriting, including first-order LCTRSs [25]
and unconstrained higher-order TRSs [39,25,11].

Importantly, many existing techniques can be reformulated as “processors”
(DP problem simplifiers) in the dependency pair framework. Such techniques
include reduction orderings, which are at the heart of the dependency pair
framework. This combination is far more powerful than using reduction orderings
directly because the monotonicity requirement is replaced by weak monotonicity,
and we do not have to orient the entire system in one go.

Consider the following first-order LCTRS:

u x y → u (x+ 1) (y ∗ 2) [x < 100] v y → v (y − 1) [y > 0]

u 100 y → v y

This system cannot be handled by HORPO directly: the ordering [[⊐int]] needs to
be fixed globally, so we can either orient the rewrite rule at the top-left corner or
the one at the top-right corner, but not both at the same time. We could address
this dilemma by using a more elaborate definition of HORPO (for example,
by giving every function symbol an additional status that indicates the theory
ordering to be used for each of its arguments), but this seems redundant: in
practice, such a system would be handled by the dependency pair framework.
Following the definition in [25], the above system would be split in two separate
DP problems corresponding to the two loops:{

u♯ x y → u♯ (x+ 1) (y ∗ 2) [x < 100]
} {

v♯ y → v♯ (y − 1) [y > 0]
}

which could then be handled independently.
While dependency pairs for LCSTRSs are not yet defined (and beyond the

scope of this paper), we postulate that the definitions for curried higher-order
rewriting in [11] and first-order constrained rewriting in [25] can be combined
in a natural way. In this setting, HORPO would naturally be combined with
argument filterings [1,11]. That is, since we only require weak monotonicity, some
arguments can be removed. For example, the first DP problem above can be
handled by showing the following inequalities:

u♯ x ≻x<100 u♯ (x+ 1) u ≿x<100 u v ≿y>0 v u ≿t v

This is the case with u ▶ v.

6 Implementation

A preliminary implementation of LCSTRSs is available in Cora through the link:

https://github.com/hezzel/cora

Cora is an open-source analyzer for constrained rewriting, which can be used
both as a stand-alone tool and as a library. Note that Cora is still in active
development, and its functionalities, as well as its interface, are subject to change.
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Nevertheless, Cora is already used in several student projects. Cora supports only
the theories of integers and booleans so far, but is intended to eventually support
any theory, provided that an SMT solver is able to handle it. Example input files
are supplied in the above repository. The version of this paper is available in [28].

Automating Constrained HORPO. Cora includes an implementation of
constrained HORPO. Following existing termination tools such as AProVE [14],
NaTT [42] and Wanda [26], we use an SMT encoding such that a satisfying
assignment to variables in the SMT problem corresponds to a combination of the
precedence ▶, the status s and the ordering [[⊐int]] that proves the termination of
the encoded system by constrained HORPO. As for booleans, we simply choose
the ordering [[⊐bool]] such that [[t ⊐bool f]] = 1.

To encode the precedence and the status, we introduce integer variables
precf and statf for each function symbol f that is not a value. We require
that precf < 0 if f is a theory symbol, and that precf ≥ 0 otherwise—so that
precf > precg corresponds to f ▶ g. The value k of statf indicates s(f) = l if
k = 1, and s(f) = mk if k > 1. We let down be a boolean variable which indicates
the choice between two possibilities for [[⊐int]]: λm. λn.m > −M ∧m > n and
λm. λn.m < M ∧m < n (the choice of M is discussed below).

In the derivation of s ≻φ t, all assertions assume the form s′ Rφ t′ where
s′ and t′ are subterms of s and t, respectively (see Example 9). Hence, given
a finite set of rewrite rules, there are only finitely many possible assertions to
be analyzed. By inspecting the definition of constrained HORPO, we also note
that there are no cyclic dependencies. For all ℓ → r [φ], respective subterms s
and t of ℓ and r, and R ∈ {≿,≻, ▷, 1a, 1b, . . . , 3f }, we thus introduce a variable
⟨s Rφ t⟩ with its defining constraint. Without going into detail for all the cases,
we provide a few key examples:

– If s and t do not have equal types, we add ¬⟨s ≿φ t⟩; otherwise, we add
⟨s ≿φ t⟩ =⇒ ⟨s 1aφ t⟩ ∨ ⟨s 1bφ t⟩ ∨ ⟨s 1cφ t⟩ ∨ ⟨s 1dφ t⟩, which states that
if s ≿φ t holds, it must hold in one of the defining cases 1a, 1b, 1c and 1d.
Each of these cases in turn has its defining constraint.

– ⟨f s1 · · · sm 3cφ g t1 · · · tn⟩ =⇒ precf > precg ∧
∧

j⟨f s1 · · · sm ▷φ tj⟩.
– We come up with the defining constraint of ⟨s 2aφ t⟩ by case analysis:

• If either of s and t is not a theory term, or their respective types are not
the same theory sort, or Var(s) ∪Var(t) ⊈ Var(φ), we add ¬⟨s 2aφ t⟩.

• Otherwise, we consider the type of s and t:
∗ The type is int. We respectively check if φ =⇒ s > −M ∧ s > t

and φ =⇒ s < M ∧ s < t are valid. If the former is not valid,
we add ⟨s 2aφ t⟩ =⇒ ¬down; if the latter is not valid, we add
⟨s 2aφ t⟩ =⇒ down. That is, if both of the validity checks fail, both
of the constraints are added, which is equivalent to adding ¬⟨s 2aφ t⟩.

∗ The type is bool. We add ¬⟨s 2aφ t⟩ if φ =⇒ s ∧ ¬t is not valid; if
it is valid, nothing is added and the SMT solver is free to set true for
the variable ⟨s 2aφ t⟩.
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Here M is twice the largest absolute value of integers occurring in the
rewrite rules, or just 1000 if that is too large—this value is chosen arbitrarily.
Note that the validity checks are not included as part of the SMT problem:
if they were included, the satisfiability problem would contain universal
quantification, which is typically hard to solve. We rather pose a separate
question to the SMT solver every time we encounter theory comparison,
and for integers, consider whether the pair can be oriented downward with
λm. λn.m > −M ∧m > n, upward with λm. λn.m < M ∧m < n, or not at
all. Hence, we must fix the bound M beforehand.

– The hardest is 3e: we need not only to encode the multiset comparison, but
also to make sure that only k arguments are to be considered on both sides
(should there be more). Following Definition 4, we introduce boolean variables
strict1, . . . , strictm where stricti indicates i ∈ I, and integer variables
π(1), . . . , π(n). The defining constraint of ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ is the
conjunction of the following components:
• ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ =⇒ 2 ≤ statf ≤ n.
• ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ =⇒

∧
j⟨f s1 · · · sm ▷φ tj⟩.

• ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ =⇒
∨

i stricti.
• For all i ∈ { 1, . . . ,m }, ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ ∧ stricti =⇒ i ≤
statf . That is, I ⊆ { 1, . . . , k } if s(f) = mk.

• For all j ∈ { 1, . . . , n }, ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ ∧ j ≤ statf =⇒ 1 ≤
π(j) ∧ π(j) ≤ m ∧ π(j) ≤ statf . That is, 1 ≤ π(j) ≤ min(m, k) for all
j ∈ { 1, . . . , k } if s(f) = mk.

• For all i ∈ { 1, . . . ,m }, j ∈ { 1, . . . , n− 1 } and j′ ∈ { j + 1, . . . , n },
⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ =⇒ stricti ∨ π(j) ̸= i ∨ π(j′) ̸= i. That is,∣∣π−1(i)

∣∣ ≤ 1 for all i ∈ { 1, . . . ,m } \ I—which suffices because we can
add to I all i ∈ { 1, . . . ,min(m, k) } \ I such that

∣∣π−1(i)
∣∣ = 0 without

changing the generalized multiset ordering if s(f) = mk.
• For all i ∈ { 1, . . . ,m } and j ∈ { 1, . . . , n }, ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ ∧
π(j) = i ∧ stricti =⇒ ⟨si ≻φ tj⟩.

• For all i ∈ { 1, . . . ,m } and j ∈ { 1, . . . , n }, ⟨f s1 · · · sm 3eφ f t1 · · · tn⟩ ∧
π(j) = i ∧ ¬stricti =⇒ ⟨si ≿φ tj⟩.

Cora succeeds in proving that all the examples in this paper are terminating,
except Example 2, which is non-terminating.

7 Related Work

In this section, we assess the newly proposed formalism and the prospects for its
application by comparing and relating it to the literature.

Term Rewriting. The closest related work is LCTRSs [27,12], the first-order
formalism for constrained rewriting upon which the present work is built. Similarly,
there are numerous formalisms for higher-order term rewriting, but without
built-in logical constraints, e.g., [21,22,31]. It seems likely that the methods for
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analyzing those can be extended with support for SMT, as what is done for
HORPO in this paper.

Also worth mentioning is the K Framework [35], which, like our formalism,
can be used as an intermediate language for program analysis and is based on a
form of first-order rewriting. The K tool includes techniques through reachability
logic, rather than methods like HORPO.

There are several works that analyze functional programs using term rewriting,
e.g., [2,15]. However, they typically use translations to first-order systems. Hence,
some of the structure of the initial problem is lost, and their power is weakened.

HORPO. Our definition of constrained HORPO is based on the first-order
constrained RPO for LCTRSs [27] and the first definition of higher-order RPO
[21]. There have been other HORPO extensions since, e.g., [5,6], and we believe
that the ideas for these extensions can also be applied to constrained HORPO.
We have not done so because the purpose of this paper is to show that and how
techniques for analyzing higher-order systems extend, not to introduce the most
powerful (and consequently more elaborate) ones.

Also worth mentioning is [4], a higher-order RPO for λ-free systems. This
variant is defined for the purpose of superposition rather than termination analysis,
and is ground-total but generally not monotonic.

Functional Programming. There are many works performing direct analyses
of functional programs, including termination analysis, although they typically
concern specific programming languages such as Haskel (e.g., [19]) and OCaml
(e.g., [20]). A variety of techniques have been proposed, such as sized types [33]
and decreasing measures on data [18], but as far as we can find, there is no
real parallel of many rewriting techniques such as RPO. We hope that, through
LCSTRSs, we can help make the techniques of term rewriting available to the
functional programming community.

8 Conclusion and Future Work

In summary, we have defined a higher-order extension of logically constrained
term rewriting systems, which can represent realistic higher-order programs in a
natural way. To illustrate how such systems may be analyzed, we have adapted
HORPO, one of the oldest higher-order termination techniques, to handle logical
constraints. Despite being a very basic method, this is already powerful enough
to handle examples in this paper. Both LCSTRSs and constrained HORPO are
implemented in our new analysis tool Cora.

In the future, we intend to extend more techniques, both first-order and
higher-order, to this formalism, and to implement them in a fully automatic
tool. We hope that this will make the methods of the term rewriting community
available to other communities, both by providing a powerful backend tool, and
by showing how existing techniques can be adapted—so they may also be natively
adopted in program analysis.
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A natural starting point is to increase our power in termination analysis by
extending dependency pairs [1,39,11,25] and various supporting methods like the
subterm criterion and usable rules. In addition, methods for analyzing complexity,
reachability and equivalence (e.g., through rewriting induction [34,12]), which
have been defined for first-order LCTRSs, are natural directions for higher-order
extension as well.
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Abstract. Sound static analyses are an important ingredient for com-
piler optimizations and program verification tools. However, mathemat-
ically proving that a static analysis is sound is a difficult task due to
two problems. First, soundness proofs relate two complicated program
semantics (the static and the dynamic semantics) which are hard to rea-
son about. Second, the more the static and dynamic semantics differ,
the more work a soundness proof needs to do to bridge the impedance
mismatch. These problems increase the effort and complexity of sound-
ness proofs. Existing soundness theories address these problems by de-
riving both the dynamic and static semantics from the same artifact,
often called generic interpreter. A generic interpreter provides a com-
mon structure along which a soundness proof can be composed, which
avoids having to reason about the analysis as a whole. However, a generic
interpreter restricts which analyses can be derived, as all derived analyses
must roughly follow the program execution order.
To lift this restriction, we develop a soundness theory for the blackboard
analysis architecture, which is capable of describing backward, demand-
driven, and summary-based analyses. The architecture describes static
analyses with small independent modules, which communicate via a cen-
tral store. Soundness of a compound analysis follows from soundness of
all of its modules. Furthermore, modules can be proven sound indepen-
dently, even though modules depend on each other. We evaluate our
theory by proving soundness of four analyses: a pointer and call-graph
analysis, a reflection analysis, an immutability analysis, and a demand-
driven reaching definitions analysis.

1 Introduction

Developing static analyses is a laborious and complicated task due to the com-
plexity of modern programming languages. A significant part of the complica-
tion pertains to ensuring that static analyses are sound, i.e., over-approximate
the runtime behavior of analyzed programs. Unfortunately, even well-established
static analyses are shown to be unsound, e.g., since 2010, more than 80 sound-
ness bugs have been found in different analyses used in the LLVM compiler [46].
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Testing helps finding soundness bugs but cannot prove their absence, leaving the
trustworthiness of these analyses in question.

Mathematical soundness proofs ensure the absence of soundness bugs. How-
ever, such proofs are difficult for two reasons: First, soundness proofs relate two
program semantics: the static semantics and the dynamic semantics [12]—each
in its own can individually be complex. Especially modern programming lan-
guage features such as reflection [30], concurrency [29], or native code [1] are
notoriously difficult to analyze and hard to reason about. Second, the style of
static and dynamic semantics can differ significantly, e.g., the static semantics
of Doop [7], which is described in Datalog, differs significantly from dynamic
semantics described with small-step rules [6]. This impedance mismatch makes
soundness proofs monolithic, i.e., it is difficult to determine which parts of the
static semantics relate to which parts of the dynamic semantics, requiring the
soundness proofs to reason about both semantics as a whole. These problems
complicate soundness proofs such that only leading experts with multiple years
of experience can conduct them [13,26].

To deal with the complexity of soundness proofs, existing works modularize
static and dynamic semantics [5,14,28]. This modularization allows to compose
a soundness proof for the entire analysis from soundness lemmas of small parts
of the analysis. This allows reasoning about small parts of the analysis one at a
time. These existing works require that both the static and dynamic semantics
are derived from the same artifact, often called a generic interpreter. A generic
interpreter describes the operational semantics of a language, without referring
to details of dynamic or static semantics, and provides a common structure along
which a soundness proof can be composed. However, generic interpreters restrict
what types of analyses can be derived. In particular, generic interpreters derive
analyses that follow the program execution order, specifically, forward whole-
program abstract interpreters. But it is unclear how other types of analyses can
be derived that do not follow the program execution order, such as backward,
demand-driven/lazy, or summary-based analyses.

The work presented in this paper lifts this restriction by developing a sound-
ness theory for the blackboard analysis architecture. The architecture is the foun-
dation of the OPAL framework [21], which has been used to develop differ-
ent kinds of analyses, including backward analyses [17], on-demand/lazy analy-
ses [19,41], and summary-based analyses [21]. In the architecture, complex static
analyses are modularly composed from smaller, simpler static modules that han-
dle individual language features, e.g., reflection, or program properties, e.g.,
immutability. These modules are decoupled—they are not allowed to call each
other directly; instead, they communicate with each other by exchanging infor-
mation via a central data store called blackboard [39] orchestrated by a fixpoint
solver.

To develop a soundness theory for the blackboard analysis architecture, we
define a dynamic semantics, which follows the same style as the static seman-
tics and thus avoids the impedance mismatch problem. Specifically, the dynamic
semantics is composed of dynamic modules that communicate with each other
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via a store. Our soundness theory is compositional, which means that each static
module can be proven sound individually and soundness for the compound anal-
ysis follows from a meta theorem. Furthermore, we extend the theory to make
soundness proofs of existing static modules reusable across different analyses. In
particular, we prove that the soundness proof of an static module remains valid,
even if (a) the compound analysis processes source code elements unknown to the
module and (b) the store contains other types of analysis information unknown
to the module. Furthermore, our proofs are polymorphic in the lattices on which
static modules operate, i.e., the lattices can be changed without affecting sound-
ness. For instance, we can reuse a pointer-static module, which typically depends
on an allocation-site lattice, in a reflection analysis to propagate string informa-
tion by extending this lattice without invalidating the pointer-static modules’
soundness proof.

We demonstrate the applicability of our theory by implementing four different
analyses and their dynamic semantics in the blackboard analysis architecture: (1)
a pointer and call-graph analysis, (2) an analysis for reflection, (3) an immutabil-
ity analysis, and (4) a demand-driven reaching-definitions analysis. Our choice
of analyses is inspired by existing state-of-the-art analyses for Java implemented
in the OPAL framework [21, 41]. We implemented and tested each analysis and
dynamic semantics in Scala to ensure they are executable. Furthermore, we used
our theory to prove each analysis sound, where each analysis exercises a different
aspect of our theory: (1) static modules can be proven sound independently de-
spite mutually depending on each other, (2) soundness of modules remains valid
even though the lattice changes, (3) soundness of a module remains valid even
though different source code elements are analyzed, and (4) our theory applies
to analyses which do not follow the program execution order.
In summary, we make the following contributions:

– We give the first formalization of the blackboard analysis architecture (Sec-
tion 2).

– We develop a theory of compositional soundness proofs for the formal model
of the blackboard analysis architecture. We prove that soundness of an anal-
ysis follows from independent soundness proofs for each of its modules (Sec-
tion 3).

– We show how to make soundness proofs reusable by extending our the-
ory (Section 4).

– We demonstrate the applicability of our theory on four different types of
analyses (Section 5).

All proofs of theorems, lemmas, and case studies are provided in the paper’s
supplementary material.

2 Blackboard Analysis Architecture

In this section, we introduce and formalize the static and dynamic semantics of
the blackboard analysis architecture used in the OPAL framework [21].
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2.1 Static Semantics

Static analyses in the blackboard analysis architecture consist of multiple static
modules exchanging information via a central data store called blackboard [39].
This avoids coupling between modules as they are not allowed to call each other
directly: Modules store analysis results in the blackboard using keys. These keys
allow other modules to retrieve results without needing to know their producer.

Definition 1 (Static Semantics). We define basic notions and datatypes of
the static semantics of the blackboard analysis architecture:

1. Entities (ê ∈ Êntity)4 are parts of programs an analysis can compute in-
formation for. For example, entities could be classes, methods, statements,
fields, variables, or allocation sites of objects. Entities are ordered discretely:
ê1 ⊑ ê2 iff ê1 = ê2.

2. Kinds (κ ∈ Kind) identify analysis information that can be computed for
an entity. For example, a class entity could have kinds for its immutability
or thread safety, a variable entity could have kinds for its definition site or
approximations of its value. Kinds are also ordered discretely.

3. Properties (p̂ ∈ ̂Property[κ] where ̂Property : Kind → Lattice) denote analysis
information which is identified by a kind κ. For instance, a class entity could
have an immutability property “mutable” or “ immutable”. Properties of a kind
are partially ordered and form a lattice.

4. A central store (σ̂ ∈ Ŝtore ⊆ Êntity × (κ : Kind) ⇀ ̂Property[κ])5 contains all
properties for each entity and kind. We use the notation σ̂(ê, κ) for a store
lookup of an entity ê and kind κ, which results in the bottom element ⊥ in case
the property is not present. Furthermore, we use the notation σ̂ ⊔ [ê, κ 7→ p̂]
for writing a new property p̂ to the store. If a property for the entity ê and
κ already exists in the store, then the old property is joined with the new
property. Stores are ordered point-wise.

5. Static modules (f̂ ∈ M̂odule = Êntity×Ŝtore → Ŝtore) are monotone functions
that compute properties of a given entity. The store allows multiple static
modules to communicate and exchange information without having to call
each other directly. Each static module has access to the entire store and can
contribute to one or more properties.

6. The fixpoint algorithm (fix : P(M̂odule)× Ŝtore → Ŝtore) computes a fixpoint
of a compound analysis F̂ ∈ P(M̂odule) for an initial store σ̂1. More specifi-
cally, the fixpoint fix(F̂ , σ̂1) is a store σ̂n ⊒ σ̂1 such that static modules f̂ ∈ F̂
do not add new information, i.e., f̂(ê, σ̂n) = σ̂n for all ê ∈ dom(σ̂n). The
fixpoint is unique and guaranteed to exist when all properties are lattices of
finite height [10].

4 We use a hat symbol ̂ to disambiguate static definitions from dynamic definitions
with the same name but without hat.

5 The syntax A ⇀ B denotes a partial function from A to B. Furthermore, dom(f) is
the set of all inputs for which a partial function f is defined.
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The types Êntity, Kind, and ̂Property are defined by analysis developers, whereas
the other types and functions are fixed by this definition. ⊓⊔

We illustrate Definition 1 at the example of a text-book reaching-definitions
analysis [38] for an imperative language with labeled assignments and expres-
sions:

Êntity = Stmt
̂Property[κControlFlowPred] = P(Stmt)
̂Property[κReachingDefs] = Var ⇀ P(Assign)

Ŝtore = [Stmt× κControlFlowPred ⇀ P(Stmt)]
∪ [Stmt× κReachingDefs ⇀ (Var ⇀ P(Assign))]

̂reachingDefs(stmt: Êntity, σ̂: Ŝtore): Ŝtore =
predecessors = σ̂(stmt, κControlFlowPred)
în =

⊔
p∈predecessors σ̂(p, κReachingDefs)

ôut = stmt match
case Assign(x,_,_) => în[x 7→ {stmt}]
case _ => în

σ̂ ⊔ [stmt, κReachingDefs 7→ ôut]

The static module ̂reachingDefs is implemented with Scala-like pseudo code.
Module ̂reachingDefs computes for every statement of the program which vari-
able definitions reach it. Therefore, entities are statements and the module’s
property is a mapping from variables to assignments that may have defined it.
Module ̂reachingDefs joins the reaching definitions of all control-flow predecessors
and then updates them on variable assignments. Note that module ̂reachingDefs
neither computes the control-flow predecessors directly nor does it call another
module which computes this information. Instead, it retrieves this information
from the store σ̂. This decoupling avoids dependencies between static modules
and enables compositional soundness proofs.

2.2 Dynamic Semantics

Static analyses in the blackboard analysis architecture are proven sound with
respect to a dynamic semantics in the same style, which we define formally in
this subsection:

Definition 2 (Dynamic Semantics). We define the dynamic semantics used
to prove soundness of analyses in the blackboard analysis architecture:

1. The dynamic semantics depends on concrete versions of entities (e ∈ Entity),
properties (p ∈ Property[κ] where Property : Kind → Set) and stores (σ ∈
Store ⊆ Entity × (κ : Kind) → Property[κ]). The kinds are the same as for
static modules.

2. Dynamic modules (f ∈ Module = Entity×Store ⇀ Store) are partial functions
which may only be defined for a subset of entities. Furthermore, the partial
function is undefined in case it tries to lookup an element from the store
which is not present.
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3. Static analyses are proven sound with respect to a dynamic reachability se-
mantics (reachable : P(Module) × Store → P(Store)). The reachability se-
mantics returns the set of all reachable stores by iteratively applying a set
of dynamic modules. More specifically, the set reachable(F, σ1) contains store
σ1 and for all f ∈ F , reachable stores σ, and for entities e ∈ dom(σ), the set
contains f(e, σ), if it is defined. ⊓⊔

We illustrate these definitions again at the example of the reaching-definitions
analysis which we introduced in the previous subsection:

Entity = Stmt | Unit
Property[κControlFlowPred] = Stmt
Property[κReachingDefs] = Var ⇀ Assign
Property[κState] = ProgramState

Store = [Stmt× κControlFlowPred ⇀ Stmt] ∪ [Stmt× κReachingDefs ⇀ (Var ⇀ Assign)]
∪ [Unit× κState ⇀ ProgramState]

reachingDefs(stmt: Entity, σ: Store): Store =
predecessor = σ(stmt, κControlFlowPred)
in = σ(predecessor, κReachingDefs)
out = stmt match
case Assign(x,_,_) => in[x 7→ stmt]
case _ => in

σ[stmt, κReachingDefs 7→ out]

controlFlow(stmt1: Entity, σ: Store): Store =
state1 = σ[Unit, κState]
(stmt2, state2) = step(stmt1, state1)
σ[stmt2, κControlFlowPred 7→ stmt1][Unit, κState 7→ state2]

Dynamic module reachingDefs is analogous to its static counterpart ̂reachingDefs,
but computes the most recent definition of a variable instead of all possible def-
initions. The dynamic module depends on the control-flow predecessor, which is
the most recently executed statement. The control-flow predecessors are com-
puted by module controlFlow, which is based on a small-step operational seman-
tics step : Stmt× ProgramState ⇀ Stmt× ProgramState. Module controlFlow
demonstrates that the blackboard architecture is capable to integrate existing
dynamic operational semantics, such as those for Java [6] or WebAssembly [18].

The blackboard analysis architecture not only modularizes the static seman-
tics but also the dynamic semantics, which is crucial for enabling compositional
and reusable soundness proofs. In particular, each static module is proven sound
with respect to exactly one dynamic module, which limits the proof scope and
guarantees proof independence. Furthermore, for analyses that approximate non-
standard dynamic semantics, the standard dynamic semantics can be modularly
extended with further modules (e.g., Section 5.1).

To summarize, in this section we formally defined the blackboard analysis
architecture, which allows to implement static analyses modularly. Furthermore,
we defined a dynamic semantics in the same style against which analyses are
proven sound.
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3 Compositional Soundness Proofs

In this section, we develop a theory of compositional soundness proofs for anal-
yses in the blackboard style: Soundness of a compound analysis follows directly
from soundness of the individual static modules. This soundness theory simplifies
the soundness proof, because it allows analysis developers to focus on soundness
of individual static modules, instead of having to reason about soundness of
the interaction of all static modules with each other. Furthermore, the sound-
ness theory makes the proofs more maintainable, as a change to a module only
affects the proof of that module and nothing else.

We start the section by defining soundness of static modules and then work
up to soundness of whole analyses. The definitions of soundness are standard
and build upon the theory of abstract interpretation [12]:

Definition 3 (Soundness of Static Modules). An static module f̂ ∈ M̂odule
is sound if it overapproximates its dynamic counterpart f ∈ Module:

sound(f , f̂ ) iff ∀ê ∈ Êntity, σ̂ ∈ Ŝtore, e ∈ γEntity(ê), σ ∈ γStore(σ̂).

f (e, σ) ∈ γStore(f̂ (ê, σ̂)) ⊓⊔

The expression x ∈ γ(ŷ) reads as “element ŷ soundly overapproximates the
concrete element x.” Function γ : L̂ → P(L) is a monotone function from an
abstract domain L̂ to a powerset of a concrete domain L and is called concretiza-
tion function. We do not require that an abstraction function α : P(L) → L̂ in
the opposite direction exists nor that γ and α form a Galois connection, both of
which are not necessary for soundness proofs.

The soundness definition above requires that analysis developers define con-
cretizations for entities (γEntity : Êntity → P(Entity)) and properties (γProperty :
̂Property[κ] → P(Property[κ])). Often the abstract and concrete entities are of

the same type (Êntity = Entity). In this case, the concretization functions map
to singleton sets (γEntity(e) = {e}). Based on concretization functions for enti-
ties, kinds, and properties, we define a point-wise concretization on stores. The
definition can be found in the supplementary material.

In the following, we define soundness of compound analyses.

Definition 4 (Soundness of a Compound Analysis). Let Φ ⊆ Module ×
M̂odule be a set of static modules paired with corresponding dynamic modules.
A compound analysis is sound if the fixpoint of all of its static modules overap-
proximates the reachability semantics of the corresponding dynamic modules:

sound(Φ) iff ∀σ̂ ∈ Ŝtore. reachable(F, γStore(σ̂)) ⊆ γStore(fix(F̂ , σ̂))

where F = {f | (f,_) ∈ Φ} and F̂ = {f̂ | (_, f̂) ∈ Φ}. ⊓⊔

The compound analysis approximates the dynamic reachability semantics (Def-
inition 2.3), which collects the set of all stores reachable by applying dynamic
modules. The dynamic reachability semantics is a collecting semantics, com-
monly used to prove soundness of abstract interpreters [12].

We are now ready to state the main theorem of this work:
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Theorem 1 (Soundness Composition). Let Φ ⊆ Module× M̂odule be a set
of static modules paired with corresponding dynamic modules. Soundness of a
compound analysis follows from soundness of all of its static modules:

If sound(f , f̂ ) for all (f, f̂) ∈ Φ then sound(Φ).

Proof. We show reachable(F, γStore(σ̂1)) ⊆ γStore(fix(F̂ , σ̂1)) by well-founded in-
duction on X ⪯ reachable(F,X).

– Base case: reachable(F,∅) = ∅ ⊆ γStore(fix(F̂ , σ̂1))
– Inductive case: Suppose X ⊆ γStore(fix(F̂ , σ̂1)) and σ̂n = fix(F̂ , σ̂1). Then

for all σ ∈ X ⊆ γStore(fix(F̂ , σ̂1)), we get dom(σ) ⊆ γEntity×Kind(dom(σ̂n))
and σ(e, k) ∈ γProperty(σ̂n(ê, κ)) for all ∀(ê, κ) ∈ dom(σ̂n) and e ∈ γEntity(ê).
Furthermore, since σ̂n is a fixpoint, it holds f̂(ê, σ̂n) ⊑ σ̂n for all f̂ ∈ F̂
and ê ∈ dom(σ̂n). From sound(f, f̂) we conclude f(e, σ) ∈ γStore(f̂(ê, σ̂n)) ⊆
γStore(σ̂n) = γStore(fix(F̂ , σ̂1)) for all (f, f̂) ∈ Φ, (e,_) ∈ dom(σ), (ê,_) ∈
dom(σ̂n) with e ∈ γEntity(ê). It follows reachable(F,X) ⊆ γStore(fix(F̂ , σ̂1)).

⊓⊔

We illustrate this theorem by applying it to the reaching definitions analysis
from Section 2.1. Specifically, soundness of the compound analysis follows from
soundness of module ̂reachingDefs module ̂controlFlow by Theorem 1:

sound(reachingDefs, ̂reachingDefs)

sound(controlFlow, ̂controlFlow)

sound({(reachingDefs, ̂reachingDefs), (controlFlow, ̂controlFlow)})
This means ̂reachingDefs can be proven sound independently from ̂controlFlow,
even though the modules interact with each other in the compound analysis.
The proof independence is possible because neither module reachingDefs nor

̂reachingDefs call the control-flow modules directly. Instead, both the static and
dynamic module read the control-flow information from the stores, which are
guaranteed to be a sound overapproximation initially (assumption σ ∈ γStore(σ̂)).
Furthermore, only properties that the reaching-definitions modules themselves
wrote to the store need to be sound overapproximations. Properties that other
modules wrote to the store are not subject of the soundness proof of the reaching-
definitions modules. The soundness proof of module ̂reachingDefs is found in the
supplementary material.

To summarize, in this section we developed a theory of compositional sound-
ness proofs for analyses described in the blackboard architectural style. Each
static module can be proven sound independently from other modules. Further-
more, soundness of a whole analysis follows directly from soundness of each
module. In particular, no reasoning about the analysis as a whole is required.

4 Reusable Soundness Proofs

As of now, static modules refer to a specific type of entities, kinds, properties,
and stores. However, adding new modules to an analysis may require extending
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these types. This invalidates the soundness proofs of existing modules and they
need to be re-established. In this section, we extend our theory to make static
modules and their soundness proofs reusable.

4.1 Extending the Type of Entities and Kinds

We start by explaining how entities and kinds can be extended without invali-
dating existing soundness proofs.

For example, if we were to add a taint static module to an existing analysis
over types Êntity, Kind, and Ŝtore, we needed to extend these types to hold the
new analysis information:

Êntity′ = Êntity | Var Kind′ = Kind | κTaint

But this invalidates the proofs of existing modules that depend on the subsets
Êntity and Kind. To solve this problem, we first parameterize the type of modules
to make explicit what types of entities and kinds they depend on:

Definition 5 (Parameterized Modules (Preliminary)). We define a type
of module that is parameterized by the types of entities E, kinds K, and store S:

f ∈ Module[E,K] = ∀S : Store[E,K]. E × S → S ⊓⊔

Interface Store[E,K] defines read and write operations for an abstract store
type S, that restricts access to entities of type E and kinds of type K. The
store interface allows us to call parameterized modules with stores containing
supersets of the type of entities and kinds.

For these parameterized modules, we define a sound lifting to supersets of
entities and kinds:

lift : ∀E′,K′, E ⊆ E′,K ⊆ K′,Module[E,K] → Module[E′,K′]
lift(f)(e′, σ) = e′ match
case e : E => f(e, σ)
case _ => σ

The lifting calls module f on all entities of type E on which f is defined and
simply ignores all other entities, returning the store unchanged. For example,
the lifted reaching-definitions module lift[Stmt | Var, κReachingDefs |
κControlFlowPred | κTaint]( ̂reachingDefs) operates on the entities Stmt and the kinds
κReachingDefs | κControlFlowPred, but ignores entities Var and kinds κTaint.

The lifting preserves soundness of the lifted modules for disjoint extensions
of entities.

Definition 6 (Disjoint Extension). Entities Ê′ ⊇ Ê and E′ ⊇ E are a dis-
joint extension iff γEntity(Ê) ⊆ E and γEntity(Ê

′ \ Ê) ⊆ E′ \ E. ⊓⊔

In other words, the concretization function γEntity does not mix up entities in Ê
and Ê′ \ Ê.
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Lemma 1 (Lifting preserves Soundness). Let f̂ ∈ Module[Ê,K] and f ∈
Module[E,K] be a parameterized static module and dynamic module, Ê′ ⊇ Ê
and E′ ⊇ E be a disjoint extension of entities, and K ′ ⊇ K a superset of kinds.

If sound(f, f̂) then sound(lift[E′,K ′](f), lift[Ê′,K ′](f̂)).

Proof. Let f̂ : Module[Ê,K] and f : Module[E,K] be an analysis and dy-
namic module. Furthermore, let ê : Ê′ and e ∈ γEntity(ê) be an entity and
σ̂ : Store[Ê′,K ′] and σ ∈ γStore(σ̂) be an abstract and concrete store.

– In case ê ∈ Ê then also e ∈ E. Hence, lift(f̂)(ê, σ̂) = f̂(ê, σ̂) and lift(f)(e, σ) =
f(e, σ). Soundness follows by sound(f, f̂).

– In case ê ∈ Ê′ \ Ê then also e ∈ E′ \ E for all e ∈ γEntity(ê). Hence
lift(f̂)(ê, σ̂) = f̂(ê, σ̂) and lift(f)(e, σ) = f(ê, σ̂). ⊓⊔

This lemma means that we can prove the soundness of static modules once
for specific types of entities and kinds. Later, we can reuse the modules in a
compound analysis with extended entities and kinds without having to prove
soundness again.

4.2 Changing the Type of Properties

Next, we extend our theory to allow changing the type of properties without
invalidating the soundness proofs of existing modules that use them.

For example, consider we already have a pointer-static module that propa-
gates object allocation information ̂Property[κVal] = Ôbj. We may want to track
string information as well. This could be done with a independent string-tracking
static module with its own lattice. However, since tracking strings is mostly iden-
tical to tracking pointer information, such an additional module would duplicate
significant amounts of code and require a new proof from scratch.

Instead, we can thus reuse the same pointer-static module to propagate string
information Ŝtr by changing its lattice to ̂Property′[κVal] = Ôbj × Ŝtr. However,
this invalidates the soundness proof of the pointer-static module as it depends
on type ̂Property[κVal].

To solve this problem, we generalize the type of static modules again to be
polymorphic over the type ̂Property:

Definition 7 (Parameterized Modules (Final)). We define a type of mod-
ule that is parameterized by the type of entities E, kinds K, properties P , and
stores S:

f ∈ Module[E,K, I] = ∀P : I, S : Store[E,K,P ], E × S → S ⊓⊔

Interface Store[E,K,P ] restricts access to entities of type E and type K and
contains properties of type P . Interface I defines operations on properties P .

For example, a pointer-static module may depend on the Scala-like interface
Objects in Listing 1.1. Interface Objects depends on a type variable Value, which
refers to possible values of variables. Function newObj creates a new object of a
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trait Objects[Value]:
newObj(class: Class, ctx: Context): Value
forObj[S](Value, S)(f: (Class, Context, S) => S): S

object ̂AllocationSite extends Objects[Ôbj]:
newObj(class, ctx) = {(class, ctx)}
forObj[S](Ôbj(objs), σ̂)(f) =

⊔
(class,ctx)∈objs f(class,ctx,σ̂)

object ̂AllocationSiteAndStrings extends Objects[Ôbj× Ŝtr]:
newObj(class, ctx) = ({(class, ctx)}, ⊥)
forObj[S](value, σ̂)(f) = value match
case (objs,_) =>

⊔
(class,ctx)∈objs f(class, ctx, σ̂)

Listing 1.1: Interface for different Object Abstractions

certain class and context. Function forObj iterates over all such objects applying
continuation f. Continuation f takes a class name, context, and store and returns
a modified store. Interface Objects can be instantiated to support different value
abstractions. For example, instance ̂AllocationSite implements the interface with
an allocation-site abstraction Ôbj = Ôbj(P(Class × Context)) which abstracts
object allocations by their class names and a call string to their allocation site.
Instance ̂AllocationSiteAndStrings implements a reduced product [9] of objects
Ôbj and strings Ŝtr = Constant[String], which abstracts the value of strings
with a constant abstraction. This allows us to reuse the same pointer-static
module to propagate string information.

Note that certain interfaces may restrict what instances can be implemented.
For example, an abstract domain that only approximates strings but not objects,
cannot soundly implement operation forObj in interface Objects. In this case,
interfaces need to be generalized to allow a wider range of instances.

4.3 Soundness of Parameterized Modules

In this subsection, we define soundness of parameterized static modules and
prove a generalized soundness composition theorem.

Definition 8 (Soundness of Parameterized static Modules). A parame-
terized static module f̂ : M̂odule[Ê,K, I] is sound w.r.t. a parameterized dynamic
module f : Module[E,K, I] iff all their instances are sound:

sound(f, f̂) iff ∀P : I, P̂ : I, S : Store[E,K,P ], Ŝ : Store[Ê,K, P̂ ].

sound(P, P̂ ) =⇒ sound(f [P, S], f̂ [P̂ , Ŝ]). ⊓⊔

Parameterized static modules are proven sound for all sound instances of prop-
erty interface I. A static instance P̂ : I is sound w.r.t. to a dynamic instance
P : I, if all of its operations are sound. Soundness for dynamic and static in-
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stances of interface Objects in Listing 1.1 is defined as follows:

sound(newObj, n̂ewObj) iff ∀c, ĥ, h ∈ γ(ĥ), newObj(c, h) ∈ γObj(n̂ewObj(c, ĥ))

sound(forObj, f̂orObj) iff ∀f, f̂ , sound(f, f̂) =⇒ sound(forObj(f), f̂orObj(f̂))

Soundness of first-order operations like n̂ewObj is similar to that of static modules
(Definition 3). Soundness of higher-order operations like f̂orObj is proven w.r.t.
all sound functions f̂ .

Finally, we generalize the soundness composition Theorem 1 to parameter-
ized static modules. In particular, an analysis composed of parameterized static
modules is sound if all of its modules are sound and the instance of its property
interface is sound.

Theorem 2 (Soundness Composition for Parameterized Static Mod-
ules). Let Φ be parameterized static modules paired with corresponding dynamic
modules over families of entities Ê′ =

⋃
i Êi, E

′ =
⋃

i Ei, kinds K ′ =
⋃

i Ki,
properties P̂ , P .

If sound(f, f̂) for all (f, f̂) ∈ Φ and sound(P, P̂ ) then sound(Φ′),

where Φ′ = {(lift[E′,K ′](f), lift[Ê′,K ′](f̂)) | (f, f̂) ∈ Φ}

Proof. We instantiate the polymorphic modules f, f̂ with the compound types
to obtain sound[E′,K ′](lift(f), lift[E′,K ′](f̂)). Then the soundness composition
Theorem 3.4 for monomorphic modules applies. ⊓⊔

To summarize, in this section we explained how the type of entities, kinds, and
properties can be changed without invalidating the soundness proofs of existing
modules. To this end, we generalized the type of modules to be parametric over
the type of entities, kinds, and properties. The parameterized modules access
properties via an interface. The instances of this interface are specific to certain
types of properties and require a soundness proof.

5 Applicability of the Theory

In this section, we demonstrate the applicability of our theory by first develop-
ing four analyses in the blackboard architecture and then proving them sound
compositionally.

5.1 Case Studies

We developed four different analyses in the blackboard architecture (Section 2)
together with their dynamic semantics (Section 2.2). We proved each analysis
sound and discuss the proofs in Section 5.2. Each analysis exercises a specific
part of our soundness theory:

– A pointer analysis which mutually depends on a call-graph analysis (exercises
the part of our theory presented in Section 3).
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– A reflection analysis which reuses the pointer analysis to propagate string
information (exercises Section 4.2).

– A field and object immutability analysis depending on all above analyses
(exercises Section 4.1).

– A demand-driven reaching-definitions analysis which demonstrates that our
theory applies to this type of analyses.

Our choice of analyses was inspired by similar but more complex analyses for
JVM-bytecode implemented in OPAL, which scale to real-world applications [21,
41]. Our analyses operate on a simpler object-oriented language with the follow-
ing abstract syntax:

Class = Class(ClassName,ClassName,Field∗,Method∗)

Method = SourceMethod(MethodName,Var∗, Stmt∗) | NativeMethod(MethodName)

Stmt = Assign(Ref,Expr) | Return(Method,Expr) | If(Expr, Stmt∗, Stmt∗)

| While(Expr, Stmt∗)

Expr = Ref | New(ClassName, (Field× Expr)∗) | StringLit(String) | Concat(Expr,Expr)
| Call(Expr,MethodName,Expr∗) | BoolLit(Bool) | Equals(Expr,Expr)

Ref = VarRef(Var) | FieldRef(Ref,Field)

The language features inheritance, mutable memory, class fields, virtual method
calls, and Java-like reflection [35]. Reflection is modeled as virtual calls to native
methods. We also deliberately added features such as control-flow constructs and
boolean operations. These are ignored by the analyses, but need to be modeled
by dynamic semantics, complicating the soundness proof of the analyses.

We implemented and tested each analysis in Scala to ensure they are exe-
cutable. Furthermore, we implemented and tested the corresponding dynamic
semantics to ensure they are sensible. The code of analyses and dynamic seman-
tics can be found in the supplementary material accompanying this paper. In
the following, we discuss the implementation of each analysis in more detail.

Pointer and Call-Graph Analysis A pointer analysis for an object-oriented
language computes which objects a variable or field may point to. A call-graph
analysis determines which methods may be called at specific call sites. Pointer
and call-graph analyses are the foundation which many other analyses build
upon.

The analyses are composed from four static modules, whose dependencies
are visualized in Figure 1. An arrow from a store entry to a module represents a
read, an arrow in the other direction represents a write. Even though all modules
implicitly depend on each other, they can be proven sound independently from
each other (Section 3). This is possible because they do not call other modules
directly, instead, all communication happens via the store.

Module m̂ethod registers each statement of a method in the store to trig-
ger other modules. It disregards control flow as the analysis is flow-insensitive
and hence also registers statements that can never be executed. Flow-insensitive
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(Field× ̂HeapCtx)× κVal

(Stmt× ĈallCtx)× κVal

(Method× ĈallCtx)× κVal

(Expr × ĈallCtx)× κVal

(Call× ĈallCtx)× κCallTarget

Arrows represent reads and writes of store entries

̂pointsTo

̂virtualCall

m̂ethod

̂invokeReturn

Fig. 1: Points-To and Call-Graph Static Modules

analyses can be more performant than flow-sensitive ones, but traditional ap-
proaches using generic abstract interpreters do not allow for flow-insentitive anal-
yses. Module ̂pointsTo analyzes New expressions and assignments of variable and
field references. Module ̂virtualCall resolves target methods of virtual calls based
on the receiver object. Once a call is resolved, module ̂invokeReturn extends the
call context, assigns the method parameters and return value. Finally, it registers
the called method as an entity in the store, triggering module m̂ethod.

The entities of the analyses are fields, statements, expressions, methods, and
calls:

Êntity = (Field× ̂HeapCtx) | (Stmt× ĈallCtx) | (Expr × ĈallCtx)

| (Method× ĈallCtx) | (Call× ĈallCtx)

̂Property[κVal] = ⊥ | Ôbj
̂Property[κCallTarget] = ̂CallTarget

Ôbj = Ôbj(P(Class× ̂HeapCtx))
̂CallTarget = ̂CallTarget(P(Class× ̂HeapCtx×Method× Expr∗))

Each entity is paired with a call context or heap context, which allows to tune
the precision of the analysis. The static modules communicate via two kinds:
Kind κVal refers to possible values of expressions and fields and the return value
of methods. Values are abstract objects containing information about where
objects were allocated. Kind κCallTarget refers to possible targets of method calls.
Call targets are sets of receiver objects paired with the target method and their
arguments.

To illustrate the analysis, Listing 1.2 shows the code of modules ̂virtualCall
and ̂invokeReturn. They implicitly communicate with each other via the store but
do not call each other directly. Module ̂virtualCall resolves virtual method calls by
first fetching the points-to set of the receiver reference from the store. Afterwards,
it iterates over all possible receivers and fetches possible target methods from
the class table. Finally, it writes the new call target to the store. Storing the
receiver object and argument expressions as part of the call target allows to
reuse module ̂invokeReturn for different types of calls. If the entity is a Call
expression, module ̂invokeReturn first fetches the targets of the call from the
store. Then, it iterates over all targets, extends the call context with function
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̂virtualCall(e, σ̂) = e match
case (call@Call(receiver, methodName, args), callCtx) =>
receiverVal = σ̂((receiver, callCtx), κVal)
f̂orObj(receiverVal, σ̂) { (class, heapCtx, σ̂′) =>
method = classTable(class, methodName)
σ̂′ ⊔ [(call, callCtx), κCallTarget 7→ ̂newCallTarget(class, heapCtx, method, args)]

}
case _ => σ̂

̂invokeReturn(e, σ̂) = e match
case (call@Call(_,_,_), callCtx) =>
targets = σ̂((call, callCtx), κCallTarget)

̂forCallTarget(targets,σ̂){(class,heapCtx,method,args,σ̂′) => method match
case SourceMethod(_,params,_) =>
newCallCtx = ̂extendCtx(call.label,heapCtx,callCtx)
σ̂′ ⊔ [(call, callCtx), κVal 7→ σ̂′((method, newCallCtx), κVal)]

⊔ [(p, newCallCtx), κVal 7→ σ̂′((a, callCtx), κVal) | (p, a) ∈ zip(params, args)]
⊔ [(VarRef(”this”), newCallCtx), κVal 7→ ̂newObj(class, heapCtx)]
⊔ [(method, callCtx), κVal 7→ ̂nullPointer()]
⊔ [(call, callCtx), κVal 7→ σ̂((method, newCallCtx), κVal)]

case NativeMethod(_,_,_) => σ̂′

}
case Return(method,expr) =>

σ̂ ⊔ [(method, callCtx), κVal 7→ σ̂(expr, callCtx, κVal)]
case _ => σ̂

Listing 1.2: Static modules for invoking calls and resolving virtual calls.

̂extendCtx, binds the parameters to the values of the arguments and variable this
to the receiver object. Furthermore, it registers the called method as an entity in
the store, which in turn triggers module m̂ethod to process the statements of the
called method. Lastly, module ̂invokeReturn writes the return value of a method
to the method entity in the store and copies it to call entities of this method.

The modules depend on interface Objects shown in Listing 1.1 and an anal-
ogous interface for call targets. Operations n̂ewObj and ̂newCallTarget create
new abstract objects and call targets. Operations f̂orObj and ̂forCallTarget iter-
ate over all objects and call targets. Interface Objects also includes an opera-
tion ̂nullPointer not shown in the listing, which returns an empty set of object
allocation-sites (Ôbj(∅)). The dynamic instances are analogous except that they
operate on singleton types.

The dynamic modules compute a program’s heap and describe its changes
during execution. They are analogous to their static counterparts except that
they operate on singleton types Obj(Class × HeapCtx) and CallTarget(Class ×
HeapCtx×Method× Expr∗).

All dynamic modules combined do not cover the entire language. In particu-
lar, there are no dynamic modules that cover reflective calls. This means, as of
now, the dynamic semantics of reflection is undefined, and the soundness proof
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(Expr × ĈallCtx)× κVal

(Call× ĈallCtx)× κCallTarget

ŝtring

̂reflection
Arrows represent reads and writes of store entries

Fig. 2: Reflection Static Modules

only covers programs without reflective calls. We address this point with the
following case study.

Reflection Analysis Reflection is a language feature that allows to query infor-
mation about classes and methods at runtime [35]. Our language supports three
reflective methods: Methods Class.forName and Class.getMethod retrieve classes
and methods by a string, respectively. Method.invoke invokes a method, where
the target method is determined at runtime. Reflection is notoriously difficult to
statically analyze soundly and precisely [30]: analyses need to approximate the
content of the string passed into a reflective call. If the analysis cannot deter-
mine the string precisely, it needs to overapproximate or risk unsoundness. In
this case study, we choose the former to be able to prove the analysis sound.

This case study demonstrates two important features of our formalization:
First, the reflection analysis reuses all pointer and call-graph modules of the pre-
vious section ( ̂pointsTo, m̂ethod, ̂virtualCall, and ̂invokeReturn). It extends
the value lattice to propagate new types of analysis information about strings.
Even though the pointer analysis propagates new information, it does not re-
quire any changes and its soundness proof remains valid (Section 4.2). Second,
the reflection analysis cooperates with the call-graph static module ̂virtualCall

as reflective calls are regular virtual calls. For example, a call m.invoke(...) where
variable m is of type Method is first resolved by virtual call resolution and its
target Method.invoke is then resolved by reflective call resolution. Thus, both
analyses add elements to the same set of call targets but can be proven sound
independently from each other (Section 3).

The reflection analysis extends the Ôbj values of the pointer analysis with
three new types of values—Ŝtr, Ĉlass, and M̂ethod—as a reduced product [9]:

̂Property[κVal] = ⊥ | (Ôbj× Ŝtr × Ĉlass× M̂ethod)

Ŝtr = ⊥ | String | ⊤
Ĉlass = P(Class) | ⊤
M̂ethod = P(Method) | ⊤

String values are approximated with a constant lattice. Class and method val-
ues are approximated with a finite set of classes/methods or ⊤. We reuse the
modules of the pointer and call-graph analysis by implementing a new instance
of interface Objects in Listing 1.1 for the new values. The new instance is sim-
ilar to ̂AllocationSiteAndStrings and iterates over all allocation-site information
in strings, class/method values, and other objects.

The reflection analysis adds two new modules to the existing analysis in
Figure 1. The new modules and their dependencies are visualized in Figure 2.
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̂reflection(e, σ̂) = e match
case (call@Call(receiver, method, _), callCtx) =>
target = σ̂((call, callContext), κCallTarget)

̂forCallTarget(target, σ̂) { (_,heapCtx,method,args,σ̂′) =>
method match
case NativeMethod("invoke") => arguments match

case (invokeReceiver :: invokeArgs) =>
invokeRecVal = σ̂′((invokeReceiver, heapCtx), κVal)
methodVal = σ̂′((receiver, callContext), κVal)
reflectiveTarget = ̂methodInvoke(invokeRecVal, methodVal,

invokeArgs)
σ̂′ ⊔ [(call, callCtx), κCallTarget 7→ reflectiveTarget]

... }
case _ => σ̂

̂methodInvoke(recv:V̂alue,methodVal:V̂alue,invokeArgs:Expr∗) = methodVal match
case (_,_,_,methods) => ̂CallTarget({(c,h,m,invokeArgs) |

(c,h)∈recv, m ∈ methods, m ∈ classTable(c)})
case (_,_,_,⊤) => ̂CallTarget({ (c,h,m,invokeArgs) |

(c,h) ∈ recv, method ∈ classTable(class) })
case ⊥ => ⊥

Listing 1.3: Static modules and operations for reflection.

Module ̂reflection analyzes reflective calls to Class.forName, Class.getMethod, and
Method.invoke. Module ŝtring analyzes string literals and concatenation. List-
ing 1.3 shows an excerpt of module ̂reflection for Method.invoke. Module ̂reflection
first fetches the targets of a call resolved by module ̂virtualCall. If the call target
is the native method invoke, module ̂reflection matches on the arguments of the
virtual call to extract the receiver and arguments of the reflective call target.
Finally, it calls operation ̂methodInvoke which returns the set of call targets.

Operation ̂methodInvoke is part of an interface for reflective calls. The in-
terface contains two other operations for retrieving class names and methods.

̂methodInvoke matches on the call receiver and the method value. If the method
value contains a finite set of methods, the operation checks if the receiver class
has these methods and adds them as call targets. If the method value contains
⊤, the operation adds all methods of the receiver class to the set of call targets.
This over-approximates the dynamic module reflection where only one method
is added as a call target.

The dynamic reflection modules are analogous except that different types of
values are alternatives. In contrast to Section 5.1, the dynamic pointer and call-
graph modules combined with the reflection and string modules now cover the
entire language. Thus, the analysis is sound for all programs, even those using
reflection.

Field and Object Immutability Analysis The analysis of this case study
computes the immutability of objects and their fields inspired by a class and field
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immutability analysis by Roth et al. [41]. This information is useful for assessing
the thread safety of programs, where multiple threads have access to the same
objects.

This case study highlights two important features of our formalization. First,
the core dynamic semantics of our language does not describe the immutability
property. Therefore, we need to prove the static immutability analysis sound
with respect to a dynamic immutability analysis. The case study demonstrates
that the immutability concern can be encapsulated with analysis and dynamic
modules, added modularly to the existing analysis and dynamic semantics, and
reasoned about independently (Section 3). It is unclear how this can be achieved
with a non-modular, monolithic analysis implementation. Second, the immutabil-
ity analysis adds new types of entities and kinds to the store and reuses all mod-
ules of the pointer, call-graph, and reflection analysis. Even though the reused
modules can be called with the new entities and have access to new kinds in the
store, their soundness proofs remain valid (Section 4.1).

The immutability analysis adds objects (Class×HeapCtx) to the types of en-
tities and adds kinds κMut and κAssign for their immutability and the assignability
of their fields:

Êntity′ = Êntity | (Class× HeapCtx)

̂Property[κMut] = ̂TransitivelyImmutable | ̂NonTransitivelyImmutable | M̂utable

̂Property[κAssign] = ̂Assignable | ̂NonAssignable

M̂utable describes objects whose fields are reassigned. ̂NonTransitivelyImmutable
describes objects whose fields are not reassigned, but some objects transitively
reachable via fields are mutated. ̂TransitivelyImmutable describes objects whose
fields are not reassigned and no transitively reachable objects are mutated. κAssign

uses two elements for reassigned and not reassigned fields.
The immutability analysis consists of three modules shown in Figure 3.

Module ̂fieldAssign sets fields f of objects o to ̂Assignable for every assign-
ment of the form x.f = e, where x may point to o. Module ̂fieldMutability
sets a field to M̂utable if the field is assignable, to ̂NonTransitivelyImmutable
if it is non-assignable but one of the pointed-to objects is mutable, and to

̂TransitivelyImmutable otherwise. Lastly, module ̂objectMutability sets an object’s
immutability to the least upper bound of the immutability of all of its fields.

The dynamic modules are analogous except that they operate on concrete
objects instead of abstract objects.

Demand-Driven Reaching-Definitions Analysis As a final case study, we
developed a demand-driven intra-procedural reaching-definitions analysis for our
object-oriented language. This case study demonstrates that our theory lifts a
restriction of existing soundness theories for generic interpreters. In particular,
our theory also applies to analyses that do not follow the program execution
order.

The analysis computes which definitions of variables and fields reach a state-
ment without being overwritten. The analysis is demand-driven, as it performs
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(Expr × ĈallCtx)× κVal

(Field× ̂HeapCtx)× κAssign

(Field× ̂HeapCtx)× κMut

(Class× ̂HeapCtx)× κMut

(Field× ̂HeapCtx)× κVal

Arrows represent reads and writes of store entries

̂fieldAssign

̂fieldMutability
̂objectMutability

Fig. 3: Immutability Static Modules

the minimum amount of work to compute the reaching definitions of a query
statement: the analysis only computes the reaching definitions of the query
statement and its predecessors. Also, the analysis does not compute the entire
control-flow graph, but only the query statement’s predecessors.

The analysis consists of two modules ̂reachingDefs and ̂controlFlow similar to
these discussed in Section 2. Module ̂controlFlow calculates the set of control-
flow predecessors of a given statement by computing the set of control-flow exits
of the preceding statement within the abstract syntax tree. For example, the
control-flow exits of an if statement are the exits of the last statements of both
branches. The dynamic module controlFlow computes the predecessor immedi-
ately executed before the given statement. To this end, the module remembers
the most recently executed statement in a mutable variable and only updates it
if the given statement is the control-flow successor.

The main challenge in this case study was to find a dynamic module con-
trolFlow that closely corresponds to the static module and still computes the
correct control-flow predecessor. With a suitable dynamic module, the sound-
ness proof of the static module became easier. Furthermore, we validated the
correctness of the dynamic module with several unit tests.

5.2 Soundness Proofs of the Case Studies

We apply our theory to compositionally prove the analyses from the previous
section sound. The proofs can be found in the supplementary material accom-
panying this paper. They are pen-and-paper proofs and do not make use of
mechanization; but due to modularization, they are small and easy to verify.

Proving each analysis sound includes (a) proving each of its modules sound
(Definition 8), (b) proving the instances of the property interface sound, and (c)
verifying that Theorem 2 applies. To ensure the latter, we checked that there
are no dependencies between modules and that all communication between them
happens via the store (Definition 1). This can be easily checked by inspecting
the code of the modules. Furthermore, we verified that modules do not make
any assumption about abstract domains and are polymorphic in the store (Def-
inition 7). This can be easily checked by inspecting the polymorphic type of the
modules.
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To prove the individual modules of an analysis sound, step (a) in the overall
soundness proof, we use two techniques. The first uses the observation that static
modules and their corresponding dynamic modules are often very similar, except
for the types of entities and properties. We can abstract over these differences
with a generic module, from which we derive both a dynamic and static module.
Then, soundness follows immediately as a free theorem from parametricity [28].
In cases where abstracting with a generic module is not possible or desirable, we
resort to a manual proof. We were able to use the first technique for all modules,
except for m̂ethod, ̂reachingDefs, and ̂controlFlow. For illustrating cases where
we need manual proofs, consider the flow-insensitive static module m̂ethod of
the pointer analysis and its corresponding dynamic module method. While we
could potentially derive them from the same generic module, the derived static
module would be less performant, because it would trigger the analysis of parts
of the code, e.g., if conditions, which our current flow-insensitive module does
not. This is an example where our approach leads to more freedom in the design
of static analyses than the existing approach based on a generic interpreter
(Section 6.1).

The soundness proofs of the static modules are reusable across different anal-
yses, because the modules can be soundly lifted to supersets of entities and kinds
(Lemma 1). For example, the immutability analysis adds class entities, requiring
to lift the modules of the pointer and reflection analysis. Furthermore, the sound-
ness proofs of static modules can be reused because the proofs are independent
of the lattices used (Definition 8). For example, the reflection analysis reuses all
modules of the pointer analysis, extending the value lattice with string, class,
and method information. The soundness proofs of the pointer static modules
remain valid because they do not depend on a specific value lattice. Instead, the
proofs of the pointer modules depend on soundness lemmas of the newObj and
forObj operations of Objects interface.

Finally, we consider step (b) in the overall soundness proof – the sound-
ness proof of the instances of the property interface. These instances need to
be proven sound manually, as the proof cannot be decomposed any further. To
prove them sound, we proved each of their operations sound. For the pointer
analysis we needed to prove 7 operations sound, for the reflection analysis 6
operations, for the immutability analysis 6 operations, and for the reaching-
definitions analysis 0 operations. Of these 19 operations, 13 could be proven
sound trivially, requiring only a single proof step after unfolding the defini-
tions. The remaining 6 operations required more elaborate proofs with multi-
ple steps and case distinctions. These include f̂orObj from the pointer analysis,

̂classForName, ̂getMethod, and ̂methodInvoke from the reflection analysis, and
̂getFieldMutability and ̂joinMutability from the immutability analysis.

6 Related Work

In this section, we discuss work related to compositional and reusable soundness
proofs as well as to modular analysis architectures.
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6.1 Theories for Compositional and Reusable Soundness Proofs

All works discussed in this subsection, including our own, build upon the theory
of abstract interpretation. Abstract interpretation is a formal theory of sound
static analyses, first conceived by Cousot et al. [12] but since then has found
wide spread adoption in academia and industry [13, 16, 22, 25, 33, 44]. Abstract
interpretation defines soundness of static analyses but does not explain how
soundness can be proved. As we elaborate in the introduction, soundness proofs
of practical analyses for real-world languages are difficult because they relate
two complicated semantics often described in different styles. Proof attempts of
such analyses often fail due to high proof complexity and effort. Furthermore,
existing proofs are prone to become invalid if the static or dynamic semantics
change and reestablishing proofs is laborious and complicated.

Domain constructions, such as reduced products and reduced cardinal pow-
ers [12], combine multiple existing abstract domains to improve their precision.
They can be used to compose the soundness proof of operations on the abstract
domain, e.g, primitive arithmetic, boolean, or string operations. However, they
cannot be used to compose the soundness proof of the analysis of statements, e.g.,
assignments, loops, or procedure calls. In contrast, the blackboard architecture
is capable to compose soundness proofs of both of these types of operations.

Darais et al. [14] developed a theory for soundness proofs, in which the static
and dynamic semantics are derived from a small-step generic interpreter that
describes the operational semantics of the language without mentioning details
of static or dynamic semantics. The small-step generic interpreter is instantiated
with reusable Galois transformers that capture aspects such as flow- or path-
sensitivity and allow to change an existing analysis while preserving soundness.
Galois transformers can be proven sound once and for all and their soundness
proofs are reusable across different analyses. However, the approach does not
compose soundness proofs of static semantics derived from the generic inter-
preter.

Keidel et al. [28] developed a theory for big-step abstract interpreters, deriv-
ing both the static and dynamic semantics from a generic big-step interpreter.
The theory enables soundness composition [28, Theorem 4 and 5] if the generic
interpreter is implemented with arrows [23] or in a meta-language which en-
joys parametricity. But there is no theory how parts of soundness proofs can be
reused between different analyses. Keidel et al. [27] later refined the theory by
introducing reusable analysis components that capture different aspects of the
language such as values, mutable state, or exceptions and are described with
arrow transformers [23]. While components can be proven sound independently
from each other, their composition requires glue code, which needs to be proven
sound. Furthermore, the composition creates large arrow transformer stacks –
that, unless optimized away by the compiler, may lead to inefficient analysis
code. For example, a taint analysis for WebAssembly developed by using the
approach depends on a stack of 18 arrow transformers.Eliminating the over-
head of an arrow transformer stack of this size requires aggressive inlining and
optimizations causing binary bloat and excessive compile times.
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Bodin et al. [5] developed a theory of compositional soundness proofs for
a style of semantics called skeletal semantics, which consists of hooks (recur-
sive calls to the interpreter), filters (tests if variables satisfy a condition), and
branches. The dynamic and static semantics are derived from the same skeleton.
Also, soundness of the instantiated skeleton follows from soundness of the dy-
namic and static instance [5, Lemma 3.4 and 3.5]. However, their work does not
describe how proofs can be reused across different analyses.

To recap, in all theories above the static and dynamic semantics must be
derived from the same generic interpreter. This restricts what types of analyses
can be derived. In particular, the static analysis must closely follow the pro-
gram execution order dictated by the generic interpreter and it is unclear how
static analyses can be derived that do not closely follow the program execution
order. For example, backward analyses process programs in reverse order, flow-
insensitive analyses may process statements in any order, and summary-based
analyses construct summaries in bottom-up order. Our work lifts the restric-
tion that static and dynamic semantics must be derived from the same artifact.
static modules and corresponding dynamic modules must follow the blackboard
architecture style, but else do not need to share any commonalities. This gives
greater freedom as to which types of analyses can be implemented. For exam-
ple, the blackboard analysis architecture has been used in prior work to develop
backward analyses [17], on-demand/lazy analyses [19, 41], and summary-based
analyses [21]. We also demonstrated in Section 5.1 that our theory applies to a
demand-driven reaching definitions analysis. It is unclear how such an analysis
can be derived from a generic interpreter.

6.2 Modular Analysis Architectures

These architectures describe how to implement static analyses modularly. Mod-
ular analysis architectures are a necessary requirement to develop theories for
compositional and reusable soundness proofs. The theories give formal guaran-
tees about proof independence, composition, and reuse.

Our work formally defines the blackboard analysis architecture used in the
OPAL framework [15,21]. In the past, OPAL has been used to implement state-
of-the-art analyses for method purity [19], class- and field-immutability [41], and
call-graphs [40] for Java Virtual Machine bytecode. Furthermore, OPAL features
escape analyses and a solver for IFDS analyses [21] as well as a fixpoint algorithm
that parallelizes the analysis execution [20].

Prior to the work presented in this paper, no formalization of the blackboard
analysis architecture and no theory for its soundness existed. Our formalization
captures the core of the OPAL framework, while deliberately ignoring imple-
mentation details. For example, our formalization does not describe the fixpoint
algorithm and the order in which it executes static modules to resolve their
dependencies. Proving the fixpoint algorithm correct is a separate concern com-
pared to proving analyses sound, which is the focus of our formalization. That
said, our formalization covers a variety of OPAL’s features described by Helm et
al. [21]. For example, OPAL supports default and fallback properties for missing
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properties in the store. Fallback properties can be described by our formaliza-
tion by adding them to the initial store passed to the fixpoint algorithm. We
deliberately leave out default properties, which are an edge case in OPAL to
mark properties not computed, e.g., because of dead code. They could be added
to our formalization by extending analyses with a second set of static modules
to be executed after the fixpoint is reached. Furthermore, OPAL supports opti-
mistic analyses which ascend the lattice and pessimistic analyses which descend
the lattice during fixpoint iteration. Both of these are covered by our formaliza-
tion which describes analyses as monotone functions that ascend or descend the
lattice. However, we deliberately do not cover OPAL’s mechanisms for allowing
interaction between optimistic and pessimistic analyses, another edge case.

Configurable program analysis (CPA) [4] is a modular analysis architecture
that describes analyses with transfer relation between control-flow nodes. CPAs
can be systematically composed with reduced products. Furthermore, soundness
of a component-wise transfer relation follows directly from soundness of its con-
stituents. However, it is unclear how soundness proofs of primitive CPAs can be
composed or how proof parts can be reused across analyses.

Doop [7] is a framework which describes analysis with relations in Datalog.
Each relation is defined as a set of rules. These rules can be modularly added
or replaced, without requiring changes to other rules. While individual analy-
ses in Doop have been proven sound [43], the proofs are not compositional or
reusable. In particular, if one rule changes, the proof becomes invalid and needs
to be reestablished. This is because the proof reasons about soundness of all
rules at once instead of individual rules or relations. The IncA framework [45]
also describes analyses in Datalog, but allows relations over lattices instead of
only sets. However, no soundness theory for its analyses exists. Similar to IncA,
the Flix framework [37] describes analyses with lattice-based Datalog relations
and functions. Flix proves individual functions sound with an automated the-
orem prover [36]. While an automated theorem prover reduces the proof effort
and increases proof trustworthiness, there is no guarantee that the automated
theorem prover is able to conduct a proof. Furthermore, the automated theorem
prover does not establish a soundness proof of Datalog relations.

Verasco [26] is a modular analysis for C#minor [32], an intermediate lan-
guage used by the CompCert C compiler [33]. Verasco is proven sound with
the Coq proof assistant [3]. The soundness proof of the abstract C#minor se-
mantics is independent of the abstract domain, which makes the proof reusable
for other abstract domains. However, the abstract semantics is proven sound
w.r.t. the standard concrete semantics. Thus, the proof cannot be reused for
abstract semantics which approximate non-standard concrete semantics, such as
information flow analyses [2] or liveness analyses [11].

Several other modular analysis architectures [24, 31, 42] do not have formal
theories for soundness.
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6.3 Monolithic Soundness Proofs

In this subsection, we compare compositional and reusable soundness proof the-
ories to ad-hoc monolithic proofs and discuss their trade-offs.

Monolithic soundness proofs consider the entire analysis and dynamic se-
mantics as a whole. This complicates the proof because there is no separation
of concerns to manage the complexity of modern programming languages. Fur-
thermore, monolithic soundness proofs are harder to maintain. In particular,
whenever the analysis needs to be updated to support a new version of the lan-
guage, or whenever the analysis is fine-tuned to improve precision and scalabil-
ity, the soundness proof becomes invalid and needs to be reestablished. However,
reestablishing the soundness proof is difficult because it is unclear which parts
of the proof have become invalid and need to be updated. In contrast, compo-
sitional soundness proofs narrow the proofscope to individual modules, which
decreases the proofs’ complexity. Furthermore, compositional soundness proofs
are easier to maintain as changes to individual modules only invalidate their
particular soundness proof, while the proofs of other modules remain valid.

The main benefit of monolithic soundness proofs over compositional proofs
is that analyses may be proven sound with respect to existing formal dynamic
semantics.However, often no suitable formal dynamic semantics exists and anal-
yses still have to be proven sound with respect to customly defined or modified
dynamic semantics. For example, HornDroid [8] is proven sound with respect to
a custom instrumented JVM small-step semantics and Jaam6 is proven sound
with respect to a custom JVM semantics in form of an abstract machine [22].
Furthermore, analyses of properties not present in standard language semantics
need to be proven sound with respect to instrumented dynamic semantics. For
example, a static taint analysis needs to be proven sound with respect to an
instrumented dynamic semantics with taint information. In contrast, composi-
tional soundness proofs require a one-time cost of formalizing a modular dynamic
semantics for a language. Once this is done, several analyses can be proven sound
with respect to this dynamic semantics. Furthermore, the dynamic semantics can
be modularly extended to describe new aspects such as taint information.

7 Future Work

In this section, we discuss limitations of our work and how these limitations can
be addressed in the future.

First, our soundness theory requires that static analyses and dynamic se-
mantics are described in the blackboard analysis architecture. It is unclear how
easily existing analyses and dynamic semantics be adapted to the architecture.
In Section 2.2, we showed how existing small-step dynamic semantics can be
described as a module and Helm et al. [21] implemented a wide range of static
analyses in the architecture. In the future, we want to investigate how other
styles of static and dynamic semantics can be adapted to the architecture.
6 https://github.com/Ucombinator/jaam
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Second, our soundness theory requires that all static modules are sound.
However, in practice static analyses are deliberately unsound due to complicated
language features [34]. In the future, we want to investigate how the blackboard
analysis architecture can be used to localize unsoundness. Specifically, unsound
analysis results could be tagged with the name of the module that produced
them. All results derived from unsound results then propagate the tags. This
way, it is always clear which results are potentially unsound and which modules
caused unsoundness.

Lastly, our work has focused on soundness, i.e., analyses do not produce
false-negative results. A complementary property to soundness is completeness,
i.e., analyses do not produce false-positives results. No false-positive results are
especially important if analyses produce warnings that are to be inspected by
developers. In the future, we want to investigate if our theory can be extended
to prove completeness of static analyses.

8 Conclusion

In this work, we developed a theory for compositional and reusable soundness
proofs for static analyses in the blackboard analysis architecture. The blackboard
analysis architecture modularizes the implementation of static analyses with
analyses composed of independent static modules. We proved that soundness of
an analysis follows directly from independent soundness proofs of each module.
Furthermore, we extended our theory to enable the reuse of soundness proofs
of existing modules across different analyses. We evaluated our approach by
implementing four analyses and proving them sound: A pointer, a call-graph, a
reflection, an immutability analysis, and a demand-driven reaching definitions
analysis.

9 Data Availability

The implementation of the case studies and proofs are provided as an artifact
available at https://doi.org/10.5281/zenodo.10418484.
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Detection of Uncaught Exceptions in Functional
Programs by Abstract Interpretation⋆

Inria, Campus universitaire de Beaulieu, Rennes, France
pierre.lermusiaux@inria.fr benoit.montagu@inria.fr

Abstract. Exception handling is a key feature in modern programming
languages. Exceptions can be used to deal with errors, or as a means
to control the flow of execution of a program. Since they might unex-
pectedly terminate a program, unhandled exceptions are a serious safety
concern. We propose a static analysis to detect uncaught exceptions in
functional programs, that is defined as an abstract interpreter. It com-
putes a description of the values potentially returned by a program using
a novel abstract domain, that can express inductively defined sets of
values. Simultaneously, the analysis infers the possibly raised exceptions,
by computing in the abstract exception monad. This abstract interpreter
has been implemented as an effective static analyser for a large subset of
OCaml programs, that supports mutable data types, the OCaml module
system, and dynamically extensible data types such as the exception type.
The analyser has been evaluated on several hundreds of OCaml programs.

Keywords: Static Analysis · Exceptions · Higher-Order Programs ·
Abstract Interpretation · Abstract Domain for Trees

1 Introduction

Programs that run in critical environments need to comply with strong safety
guarantees. The minimal guarantee one expects for critical software is the absence
of runtime failures. Sound static analyses can provide such guarantees statically,
for every possible execution of a program, and in a fully automatic manner.

The static typing discipline found in the ML family of languages is such a
static analysis technique, that brought strong safety guarantees to programs at a
very low cost: well-typed programs cannot “go wrong” [48]. This soundness theorem
for well-typed ML programs, however, does not preclude programs from abruptly
ending with uncaught exceptions. Several analyses for ML-like languages have
been developed to detect such undesirable behaviours, that were either leveraging
type and effect systems [38,54], or that were based on variants of control-flow
analyses or set constraints [68,67,14,15,66]. The recent success of algebraic effects
and their introduction in popular languages such as OCaml [37] has renewed the
interest in the static detection of uncaught exceptions and effects.
⋆ This work was funded by the Salto grant, supported by Nomadic Labs and Inria.
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Analysing uncaught exceptions in ML is a difficult problem, because data
flow and control flow are interdependent. This is not only due to the first class
nature of functions, but also due to the first class nature of exceptions themselves,
e.g., they can be taken as parameters, recorded in data structures or in mutable
references. Furthermore, exceptions can carry any value as argument—including
functions—and new exceptions can be dynamically generated at runtime.

In this paper, we propose a static analysis for a higher-order language, in
which exceptions are first-class values. The analysis is based on the abstract
interpretation framework [9]. It is a forward value analysis that infers which values
any program point can compute, and which exceptions they might raise. For this
purpose, we introduce a novel abstract domain that can represent recursively
defined sets of values. We define a widening operator for this abstract domain,
that is responsible for finding recursive generalisations of solutions.

Our analysis leverages this abstract domain to represent both possible values
and exceptions, thanks to the abstract exception monad. This monad—that can
also be used as an abstract domain—is an abstraction of the exception monad,
that collects all values and exceptions.

We define our analysis as a big-step monadic interpreter, written in the open
recursive style, that was emphasised in the “Abstracting Definitional Interpreter”
approach [11]. Then, we obtain an effective analyser by applying a generic,
dynamic fixpoint solver [6,63,59,24,12,30]. We prove that our analysis is sound,
under the soundness assumption of the fixpoint solver.

We extend the analysis to handle a large subset of the OCaml language. In
particular, it supports the dynamic creation of exceptions, mutable state, modules
and functors. The analysis is so far limited to sequential programs that do not
perform system calls, do not use the Gc or Obj modules, and do not employ
recursive modules, general recursive definitions of values, objects, classes, arrays,
or floats. We implemented an OCaml prototype for this analyser. It reports the
possibly thrown exceptions and an over-approximation of the data they carry,
along with an abstraction of the call trace that led to the program point where
the exception was raised. We discuss some implementation choices, and evaluate
the precision and performance of our analyser on 290 programs, that include
examples from the literature and from the OCaml compiler’s test suite.

2 Overview

Let us consider the classic example of the factorial function, as written below in
a continuation passing style.

let rec fact_cont n i k =
if i >= n then k i else
fact_cont n (i + 1) (fun x -> k (x * i))

let fact n = fact_cont n 1 (fun x -> x)
let result = fact 5

The fact_cont function recursively calls itself with increasing values of its
parameter i, until the value n is reached.
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We are interested in finding which values (and exceptions) this program might
return. To answer this question, we first need to find the possible continuations
the function fact_cont can be called with, and, importantly, we need an abstract
domain in which we can express this set, or an over-approximation thereof.

With the abstract domain that we introduce in §4, we can express such a set
as the following abstract value:

µα. {funs : {(λx. x) 7→ {}; (λx. k (x ∗ i)) 7→ {i 7→ {ints : [1,+∞]}; k 7→ α}; }}

This abstract value represents a recursively-defined set—as indicated by the µ
constructor—that is locally named α. This set is composed of function closures,
that can be either the identity function, or the function λx. k (x ∗ i), considered
in an environment where the variable i is bound to an integer that is greater or
equal to 1, and where the variable k is recursively bound to the local variable α,
i.e., to a value of the set we are defining.

Our abstract domain can also express structural invariants on data, such as
the one for red-black trees [52], that forbids red nodes from having red children:

µα.

constructs :


E : ();

R :

{constructs : {E : (), B : (α, {ints :⊤}, α)}};
{ints :⊤},
{constructs : {E : (), B : (α, {ints :⊤}, α)}}

 ;

B : (α, {ints :⊤}, α)




Our abstract domain bears a strong similarity with the theory of equi-recursive

types [56], in the sense that recursion is a core aspect of our definition. However,
it differs from recursive types, as function types are absent: sets of closures are
used instead. Moreover, it is parameterised by a non-relational abstract domain
used to represent integers values—which is not possible with simple type systems.

We leverage our abstract domain and define a static analysis for a call-by-value
λ-calculus with pattern matching, exception handling, and first-class exceptions
(§3). In this language, the order of evaluation is made explicit by let bindings,
and pattern matching is exhaustive and non-ambiguous [8]. These requirements
drastically simplify the semantics of programs and their analysis. The analysis is
defined as an abstract interpreter that performs a forward value analysis (§5).

Based on this small abstract interpreter, we sketch (§6) several extensions
that we implemented to obtain a static analyser for a subset of OCaml programs.
The implementation uses an intermediate language that is close to the one of §3,
into which we translated the OCaml typed abstract syntax tree. We evaluated
the precision and performance of our analyser on 290 OCaml programs, written
in a variety of styles (direct, CPS, monadic, etc.). We discuss these experimental
results (§7), cover related work (§8), and finish with conclusive remarks (§9).

3 A λ-calculus With Exceptions

We introduce as an intermediate language a λ-calculus with pattern matching
and exception handling. Its syntax resembles the monadic normal form, where
the order of evaluation is made explicit with let bindings.
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Definition 1. Given C a set of constructor symbols, we give the following in-
ductive definition of patterns p, q, and expressions t, u, r:

p, q ∈ P ::= x | n | c(p1, . . . , pk) | p1 + p2 | p \ q
t, u, r ∈ T ::= x | n | x1 op x2 | c(x1, . . . , xk)

| µf. λx. t | f y | let x = t in u | raise x
| match t with p1 ⇒ u1 | · · · | pn ⇒ un

| dispatch t with val x⇒ u | exn y ⇒ r

where n is a constant integer, c is a constructor of C, op is a binary operation
on integers, and where the pattern q cannot contain any complement p1 \ p2.

We consider a pattern syntax and formalism inspired from [8]. The pattern
disjunction p+q matches any value matched by p or q, and the pattern complement
p \ q matches any value that is matched by p but not by q.

As in the OCaml typed AST, variables carry a type. We may write xτ to
denote that the variable x is of type τ . Patterns are linear, i.e., sub-patterns of
constructor patterns cannot share variables. All functions are recursive by default.
If f does not occur in the expression t, then we write λx. t instead of µf. λx. t.

The values of this language are integer constants, constructors applied to
values, and function closures, that contain an environment of values:

v ∈ V ::= n | c(v1, . . . , vk) | ⟨E,µf. λx. t⟩ where domE = fv(µf. λx. t)
E ∈ E ::= [] | E, x 7→v

Patterns induce a matching relation over values, that is described, with regard
to a given environment E, by recursion on patterns:

x ≺≺E v ⇐⇒ E(x) = v
c(p1, . . . , pn) ≺≺E c(v1, . . . , vn) ⇐⇒

∧n
i=1 pi ≺≺E vi

p+ q ≺≺E v ⇐⇒ p≺≺E v ∨ q ≺≺E v
p \ q ≺≺E v ⇐⇒ p≺≺E v ∧ q ⊀≺ v

We say that a pattern p matches a value v, denoted p ≺≺ v, iff there exists an
environment E such that p≺≺E v. In such case, we write E⟨p≺≺ v⟩ the smallest
environment such that p≺≺E⟨p≺≺v⟩ v.

Thanks to this pattern-matching formalism, we can focus on the class of
programs where pattern matching is exhaustive and non-ambiguous, i.e.: In a
term match t with p1 ⇒ u1 | · · · | pn ⇒ un where t : τ , we require that for any
value v : τ , there exists a unique 1 ≤ i ≤ n such that pi≺≺v. The work presented
in [8] shows how to disambiguate patterns, i.e., how to make any pattern match
non-ambiguous. We restrict ourselves to non-ambiguous patterns, because it
simplifies both the dynamic semantics and the analysis of programs.

We present in Figure 1 a call-by-value big-step semantics for our language.
We write t ⇓val v to denote that the expression term t reduces to the value v, and
we write t ⇓exn v to denote that the reduction of t raises an exception evaluated
as v. In this language, any value can be raised as an exception. The evaluation
rules are mostly standard. We briefly explain the rules for match and dispatch.
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E ⊢ x ⇓val E(x)
Var

E ⊢ n ⇓val n
Int

E ⊢ x1 op x2 ⇓val E(x1) JopK E(x2)
Op

E ⊢ raise x ⇓exn E(x)
Raise

E ⊢ c(x1, . . . , xk) ⇓val c(E(x1), . . . , E(xk))
Const

E′ = E|fv(µf. λx. t)

E ⊢ µf. λx. t ⇓val ⟨E′, µf. λx. t⟩
Lam

E(y) = ⟨E′, µf. λx. t⟩
E′, f 7→E(y), x 7→E(z) ⊢ t ⇓m v

E ⊢ y z ⇓m v
App

E ⊢ t1 ⇓val v1 E, x 7→v1 ⊢ t2 ⇓m v2

E ⊢ let x = t1 in t2 ⇓m v2
Let

E ⊢ t1 ⇓exn v
E ⊢ let x = t1 in t2 ⇓exn v

LetRaise

E ⊢ t ⇓val v pi ≺≺ v E,E⟨pi ≺≺ v⟩ ⊢ ui ⇓m v′ 1 ≤ i ≤ n

E ⊢ match t with p1 ⇒ u1 | · · · | pn ⇒ un ⇓m v′
Match

E ⊢ t ⇓exn v
E ⊢ match t with p1 ⇒ u1 | · · · | pn ⇒ un ⇓exn v

MatchRaise

E ⊢ t ⇓m v E, xm 7→v ⊢ um ⇓m′ v′

E ⊢ dispatch t with val xval ⇒ uval | exn xexn ⇒ uexn ⇓m′ v′
Dispatch

Fig. 1. Big-step semantics.

The non-ambiguous pattern-matching simplifies the semantics of the term
match t with p1 ⇒ u1 | · · · | pn ⇒ un, as only one pattern can match the value
of t, and thus only one branch is considered during the evaluation.

The rule Dispatch deals with exception handling: the evaluation of the term
dispatch t with val xval ⇒ uval | exn xexn ⇒ uexn first evaluates t. If t reduces to a
value, then the value branch uval is evaluated. Otherwise, if t raises an exception,
the exception branch uexn is evaluated. In both cases, the value or the exception
is added to the environment of the corresponding branch.

4 An Abstract Domain for Regular Sets of Values

In this section, we define an abstract domain that is able to represent inductively
defined sets of values of our programming language. It is parameterised over a
non-relational, numeric abstract domain I, that provides a concretisation function
γI : I → ℘(Z), a test for the abstract inclusion pre-order, and operations for
union, intersection and widening, with the standard soundness conditions. For
instance, the soundness of abstract union is stated: γI(I1) ∪ γI(I2) ⊆ γI(I1 ⊔I I2).

The definition of our abstract domain follows:

Definition 2 (Abstract values).
A ∈ A ::= {ints : I; constructs :C; funs :F} | α | µα.A (Abstract value)
I ∈ I ::= any numeric abstract domain (Abstract integers)
C ::= {c 7→ (A, . . . ,A)} | ⊤ (Abstract constructs)
F ::= {µf. λx. t 7→ E} | ⊤ (Abstract closures)

E ∈ E ::=
{
x 7→ A

}
(Abstract environment)
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An abstract value, written A, describes which integers it denotes (in the
field ints), and which values whose head is a constructor it denotes (in the field
constructs), and which function closures it denotes (in the field funs). The integer
values are described by a numeric abstract domain that is taken as parameter.

The constructed values are described by a map whose keys are the possible
head constructors of the values, and whose data are tuples of abstract values,
that denote the possible values for all the arguments of that constructor. The
constructed values might also be described by ⊤, which means that the head
constructor could be any constructor, and the arguments may be any value.

Similarly, the possible function closures are described by a map that associates
possible codes of the function to abstract environments. The environments map
free variables of the corresponding function code to abstract values, denoting the
possible concrete values of these variables. The closures might also be described
by ⊤, to represent any closure made from any function code with any environment.

Finally, we can construct recursive sets of values through the use of variables α,
that are introduced by the µ constructor of fixpoints.

The bottom value is {ints :⊥; constructs : {}; funs : {}}, and the top value is
{ints :⊤; constructs :⊤; funs :⊤}. We may completely omit some of the fields
(ints, constructs or funs) when they are associated with a bottom value.

This informal explanation is formalised in the concretisation function:

Definition 3 (Concretisation). Assume Γ is a finite mapping from vari-
ables to abstract values. The concretisation γΓ : A → ℘(V) is defined by
γΓ {ints : I; constructs :C; funs :F} = γ(I) ∪ γΓ (C) ∪ γΓ (F), where:

γΓ (α) = Γ (α)
γΓ (µα.A) = lfp⊆(λS.γΓ,α:S(A))

γ(I) = γI(I)

γΓ (C) =


{c(v1, . . . , vn) | c ∈ C ∧ ∀1 ≤ i ≤ n, vi ∈ V} if C = ⊤{
c(v1, . . . , vn)

∣∣∣∣∣ (c 7→ (A1, . . . ,An)) ∈ C

∧∀1 ≤ i ≤ n, vi ∈ γΓ (Ai)

}
otherwise

γΓ (F) =

{
{⟨E,µf. λx. t⟩ | E ∈ E ∧ t ∈ T} if F = ⊤
{⟨E,µf. λx. t⟩ | (µf. λx. t 7→ E) ∈ F ∧ E ∈ γΓ (E)} otherwise

γΓ (E) = {E | domE = domE ∧ ∀x ∈ domE,E(x) ∈ γΓ (E(x))}

The definition is justified by the fact that the function λS.γΓ,α:S(A) is mono-
tonic, and thus has a least fixed point, thanks to the Knaster-Tarski theorem.
This is formalised by the following lemma:

Lemma 1. Consider the inclusion order ⊆ on ℘(S), and its pointwise extension
on environments Γ . For any abstract value A, the function λΓ.γΓ (A) is monotonic.

The fact that our abstract values may represent sets of values that might not
all have the same types may seem surprising, since our goal is, ultimately, to
analyse strongly typed programs. The crux of the explanation lies in the fact that
our abstract domain can only represent regular sets of values. If we restricted our
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abstract values so that they represent homogeneously typed values, it would be
difficult to represent sets of values that are induced by a non-regular recursive
type—like the type of finger trees [23]—or by generalised algebraic data types
(GADTs). Indeed, one would need to find an over-approximation of such sets, and
we would often approximate with the ⊤ abstract value. The ability to describe
regular sets of values that may not have all the same type gives us more freedom,
and allows to find more precise approximations. For instance, we can represent
finger trees as a recursive set whose values are either trees or fingers, although
trees and fingers have distinct types. In practice, the ⊤ value is never produced.

We write A1[α← A2] to denote the capture avoiding substitution. We write
γ(A) for γ[](A), i.e., when the environment is empty.

The unwinding of fixpoints preserves the concretisation of abstract values.

Lemma 2 (Unwinding). γ(µα.A) = γ(A[α← µα.A])

To define several operations on abstract values, we restrict them to well-formed
values, using the standard contractiveness property for recursive types [16]:

Definition 4 (Contractiveness). An abstract value A = µβ1. . . . µβn.A
′ is

α-contractive if n ≥ 0 and A′ does not start with µ and is not the variable α.

Well-formedness requires that fixpoints must be contractive, that constructors
are used with the correct arity, and that the environment in closures only define
bindings for the free variables of the functions.

Definition 5 (Well-formedness). An abstract value A is well-formed when
the following conditions are satisfied:
– For any µα.A′ that occurs in A, the abstract value A′ is α-contractive, and
– For any c 7→ (A1, . . . ,An) that occurs in A, the arity of c is n, and
– For any µf. λx. t 7→ E that occurs in A, domE = fv(µf. λx. t).

Well-formedness rules out the abstract value µα.α, whose concretisation is the
empty set. Well-formedness is preserved by substitution, provided contractiveness
for the substituted variable is satisfied. This ensures that unwinding fixpoints
preserves well-formedness. In the rest of this article, we only consider closed,
well-formed abstract values.

For any abstract value A, we can retrieve the subset of integer values (respec-
tively, constructed values, or function closures) by unwinding the top-level µs if
there are any, and eventually getting the ints field (respectively, constructs, or
funs). This is formalised in the following definition for projection on integers:

Definition 6 (Projection on integers). The projection on integers of a well-
formed abstract value A, written A.ints, is defined as follows:

{ints : I; constructs :C; funs :F} .ints = I
(µα.A).ints = (A[α← µα.A]).ints

The definition for projection is well founded, thanks to the contractiveness of
µs: only a finite number of unwindings is necessary. The projections A.constructs
and A.funs are defined in a similar way. Projection on integers is sound, as it
over-approximates the set of integers an abstract value contains:
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Lemma 3 (Soundness of projection on integers). γ(A) ∩ Z ⊆ γ(A.ints)

Projections for constructors and closures enjoy similar soundness properties.

4.1 Inclusion, Union and Intersection

Following the methodology employed in the context of recursive subtyping, we
define the inclusion relation between abstract values as a co-inductive relation.

Definition 7 (Abstract inclusion). The inclusion between abstract values,
written A1 ⊑ A2 is defined as a co-inductive relation by the following rules:

A1[α← µα.A1] ⊑ A2

µα.A1 ⊑ A2

A1 ̸= µβ.A′
1 A1 ⊑ A2[α← µα.A2]

A1 ⊑ µα.A2

I1 ⊑I I2 C1 ⊑C C2 F1 ⊑F F2

{ints : I1; constructs :C1; funs :F1} ⊑ {ints : I2; constructs :C2; funs :F2}

C1 ⊑C ⊤ F1 ⊑F ⊤
∀(c 7→ (A1,1, . . . ,A1,n)) ∈ C1,
∃(c 7→ (A2,1, . . . ,A2,n)) ∈ C2,
∀1 ≤ i ≤ n, A1,i ⊑ A2,i

C1 ⊑C C2

∀(µf. λx. t 7→ E1) ∈ F1,
∃(µf. λx. t 7→ E2) ∈ F2,
∀x ∈ domE1, E1(x) ⊑ E2(x)

F1 ⊑F F2

In this definition, the relation ⊑I is provided by the abstract domain on integers.
The inclusion relation unfolds fixpoints when necessary, and otherwise compares
each field (integers, constructed values, closures) separately, by treating the
finite maps for constructed values and closures as disjunctions, i.e., by using
the standard Hoare ordering. In practice, the inclusion test is implemented by
transforming abstract values into graphs that resemble tree automata: each graph
node corresponds to a sub-term of an abstract value, and µ-nodes create cycles.
Then, it suffices to check whether one automaton simulates the other [1,31,16].

Lemma 4 (Inclusion is a pre-order). The inclusion between closed, well-
formed abstract values is a pre-order, i.e., a reflexive and transitive relation.

The definitions for abstract union and intersection are defined in the compan-
ion research report [34] in a similar way, as co-inductive relations that unwind
fixpoints when needed.

The abstract operations enjoy the expected soundness properties:

Lemma 5 (Soundness of abstract operations). For any closed, well-formed
abstract values A1 and A2:
– A1 ⊑ A2 implies γ(A1) ⊆ γ(A2), and
– γ(A1) ∪ γ(A2) ⊆ γ(A1 ⊔ A2), and
– γ(A1) ∩ γ(A2) ⊆ γ(A1 ⊓ A2).
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The proof of Lemma 5 crucially relies on Lemma 2, that proves that unwinding
a recursive value preserves its concretisation.

Union and intersection are implemented by translating the values into graphs,
on which union and intersection are easily computed. Then, we transform them
back into trees with µ nodes. Our implementation exploits the locally nameless
representation [5], where bound variables are encoded as de Bruijn indices. We
leverage this canonical representation by hash-consing values and memoising the
operations [13]. This has proved essential to obtain acceptable performance.

4.2 Widening

The widening, written A1∇A2, is a binary operator on abstract values that over-
approximates the union of abstract values, and is used to approximate the Kleene
fixpoint iterations. The role of the widening is central in abstract interpretation,
as it serves two purposes. Firstly, the widening must find generalisations of
abstract values, in order to find invariants. This part impacts the precision of
the analysis, and relies on heuristics. Secondly, it must ensure the termination of
the analysis, by enforcing a stability property: every widening chain must reach
a limit in finite time. This part impacts the performance of the analyser.

In our abstract domain, the widening operator is responsible for finding
regularities in abstract values and for creating µ nodes. A similar idea was used
in the analysis of Prolog programs using type graphs [22], that are trees that
contain cycles. Our widening draws inspiration from type graphs.

We now give the informal procedure to compute the widening of two abstract
values A1 and A2. It operates in two phases. The first phase proceeds as follows:
1. Compute the union A12 of A1 and A2 where the widening of the numeric

abstract domain is used, instead of the standard union. This ensures that
the numeric parts of abstract values won’t grow indefinitely.

2. Compute Anew, which is a minimised version of A12. Minimisation is performed
by an algorithm on tree automata, that produces a semantically equivalent
abstract value, and whose size is smaller.

3. Compare the Anew and A1 (viewed as trees):
– If the height of Anew is not greater than the height of A1, return Anew;
– If, for each construct and each code of closures, the maximal number of

occurrences in each tree path of Anew is less than those occurrences in
A1, or a user-provided threshold, return Anew;

– Otherwise, go to the shrinking phase.
Steps 2 and 3 allow the size of abstract values to grow enough, before a shrinking
phase starts. In practice, this is important to find precise invariants.

The shrinking phase, which takes inspiration from the widening operation of
type graphs, tries to shrink Anew, by introducing µ nodes at appropriate positions
to “fold the abstract value on itself”. It proceeds as follows:
1. Find clashes between A1 and Anew, i.e., nodes that are reachable through the

same path (possibly unwinding µ nodes) in the two trees, and such that:
– Either, the two nodes have different sets of head constructors or codes of

functions: this means that the two nodes might differ semantically.
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– Or, the two nodes have different depths in the two trees: this means that
some path was followed through a µ-unwinding.

2. If no clash is found, then return Anew.
3. If a clash is found, then we try to create a cycle in Anew by merging the

clashing node with one of its ancestors:
– We search for the closest ancestor of the clashing node that is semantically

larger in the sense of the pre-order. If there is such an ancestor, then we
merge it with the clashing node, thus creating a cycle.

– If no such ancestor exists, we search for the closest ancestor that has at
least the same head constructors and function codes as the clashing node,
then we merge it with the clashing node too.

– If no such ancestor exists, then we return Anew unchanged, which allows
the abstract values to grow.

We repeat this operation until no clashing node remains, or until a maximal
number of iterations is reached. In the latter case, we truncate Anew, i.e., we
replace some nodes with ⊤, so that it has the same height as A1.

In practice, we could not find any case where the final truncation is needed. We
have observed that our widening operator finds precise generalisations in practice.

5 An Abstract Interpreter to Detect Uncaught Exceptions

To design our abstract interpreter, we took inspiration from the “Abstracting
Definitional Interpreter” approach [11]. This methodology prescribes to derive
an abstract interpreter from a concrete big-step interpreter that computes in a
monad, that is a parameter of the interpreter. Furthermore, the methodology
fosters the use of the open recursive style : the interpreter should be a function that
takes as extra parameter the function that was intended to be called recursively.

The first aspect—being parameterised by a monad—is motivated by the fact
that one could use a monad that computes over abstractions of values. In §5.1,
we present a monad that is an abstraction of the exception monad. It is also an
abstract domain, and is therefore well suited to define an abstract interpreter.

The second aspect—using open recursive style—permits the use of dynamic
fixpoint solvers [59,63,12,24,6,30]. Such solvers compute post-fixpoints, i.e., over-
approximations of solutions of systems of equations over abstract values, for
which the set of equations might be discovered dynamically, while solving the
equations. New equations can be discovered, for instance, when the control flow
of a program depends on its data flow. This is the case of higher-order programs,
as the function that can be called at a given call site can possibly result from
a computation. We present in §5.2 our abstract interpreter as a function that
computes in the abstract exception monad, and is defined in open recursive style.

5.1 The Abstract Exception Monad

A big-step interpreter for a programming language with exceptions can be defined
in an elegant manner using the exception monad, which we briefly recall. In the
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exception monad, a computation is either a success value, or an exception that
carries some value—typically of type exception—from the object language.

type mβ = Success β | ExceptionV
return :: β → mβ
returnx = Successx

>>= :: mβ1 → (β1 → mβ2)→ mβ2

(Successx)>>= f = f x
(Exception e)>>= f = Exception e

In this monad, the raise function expresses the action of throwing an excep-
tion, while the dispatch function, corresponds to the dispatch construct of our
prototype language (§3), and expresses the action of catching an exception.

raise :: V→ mA
raise e = Exception e

dispatch :: mβ1 → (β1→mβ2)→ (V→mβ2)→ mβ2

dispatch (Successx) f g = f x
dispatch (Exception e) f g = g e

The raise function simply injects its argument into the exception case, whereas
the dispatch function takes two continuations, to handle, respectively, the success
case, and the exception case, by performing a case analysis on the monadic value.

We can easily define a monad that mimics the behaviour of the exception
monad, with the difference that it deals with abstractions of sets of (possibly
exceptional) values, instead of mere exceptional values. The construction is based
on the observation that ℘(mβ) is isomorphic to ℘(β) × ℘(V), that can itself
be abstracted into ℘(β)× ℘(A) by using our abstract domain for sets of values.
Thus, we define the abstract exception monad, written m♯ β, as follows:

type m♯ β = β × A

return♯ :: β → m♯ β
return♯B = (B,⊥)

>>=♯ :: m♯ β1 → (β1 → m♯ β2)→ m♯ β2

(B,A)>>=♯ f = let (B′,A′) = f B in (B′,A ⊔ A′)

The return♯ operation records its argument as the set of possible values, and
asserts that no exception is returned: the set of possible exceptions is ⊥. The
>>=♯ operation retrieves the value part of its monadic argument and passes it to
the continuation. The final value is composed of the value part that was produced
by the continuation, and of the union of the exceptions that might have been
raised by the monadic value and by the evaluation of the continuation. The
functions return♯ and >>=♯ satisfy the monad laws if (⊥,⊔) is a monoid.

The fact that m♯ β is a monad does not suffice to use it in an abstract
interpreter, though. We also need m♯ β to be an abstract domain, i.e., one must
decide when two monadic values are included in each other, and how to compute
abstract unions, intersections, and widening.

Interestingly, the monad m♯ β acts as an abstract domain as soon as β is
an abstract domain: this is the standard cartesian product of abstract domains,
where operations are defined pointwise. In practice, we only need to consider the
instance m♯ A, i.e., the domain of exceptional abstract values.
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The remaining pieces that are needed to use m♯ β in an abstract interpreter
are the abstract versions of raise and dispatch. They are defined as follows:

raise♯ :: A→ m♯ A
raise♯A = (⊥,A)

dispatch♯ : m♯ β → (β → m♯ A)→ (A→ m♯ A)→ m♯ A
dispatch♯ (B,A) F G = F B ⊔GA

The raise♯ operation raises a set of possible exceptions, by recording the abstract
value for exceptions in the set of possibly returned exceptions, and by returning
the bottom value, since it can never return any value. It is the dual of return♯.

The dispatch♯ function executes the value continuation on the set of possible
values, and executes the exception continuation on the set of possible exceptions,
and then returns their abstract union in the domain of exceptional values.

We can easily show that the abstract operations compute over-approximations
of their counterpart in the exception monad. Assume the type β is equipped
with a concretisation function γβ : β → ℘(B) for some set B. Then, we define the
concretisation for the abstract monad:

γm♯ β : m♯ β → ℘(mB)
γm♯ β(B,A) = {Success b | b ∈ γβ(B)} ∪ {Exception v | v ∈ γ(A)}

The concretisation specifies that the first component of monadic values form the
success values, and that the second component describe possible exceptions.

The soundness results for the abstract operations show that they compute
over-approximations of their concrete counterparts:

Lemma 6. The following inclusions are satisfied:
– {returnb | b ∈ γβ(B)} ⊆ γm♯ β(return

♯B)
– {m>>= f | m ∈ γm♯ β1

(M), f ∈ γβ1→m♯ β2
(F )} ⊆ γm♯ β2

(M >>=♯ F )

– {raisev | v ∈ γ(A)} ⊆ γm♯ A(raise
♯A)

–

dispatchmf g

∣∣∣∣∣∣
m ∈ γm♯ β1

(M),
f ∈ γβ1→m♯ β2

(F ),
g ∈ γV→m♯ β2

(G)

 ⊆ γm♯ β2
(dispatch♯M F G)

where γβ1→β2
(F ) = {f | ∀X, ∀x ∈ γβ1

(X), f x ∈ γβ2
(F X)}.

5.2 A Monadic Abstract Interpreter in Open Recursive Style

In this section, we describe our whole-program static analyser. It infers an over-
approximation of the values that a program might compute, and the exceptions
that it might raise, with the possible values they carry. Although it analyses
programs that can deal with first-class functions, it is not defined as a control-flow
analyser [60], but rather as an abstract interpreter that performs a value analysis.
The insight is the following: since functions are first-class citizens in the language,
a value analysis also infers an approximation of the control flow. A value analysis
will indeed compute which functions may be called at every call site.

Our analyser follows the open recursive style, and has the following type:

(T→ E→ m♯ A)→ (T→ E→ m♯ A)
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Assuming eval :: T→ E→ m♯ A, we define J·Keval· :: T→ E→ m♯ A
JxKevalE =return♯E(x)

Jc(x1, . . . , xn)KevalE =


return♯⊥ if E(xi) = ⊥ for some 1≤ i≤n

return♯{constructs :{c 7→(E(x1), . . . ,E(xn))}}
otherwise

JnKevalE =return♯{ints : {n}}
Jx1 op x2KevalE =return♯{ints :E(x1).ints JopK E(x2).ints}
Jµf. λx. tKevalE =return♯{funs : {µf. λx. t 7→ E|fv(µf. λx. t)}}

Jx yKevalE = if E(y) = ⊥ then return♯⊥ else⊔
(µf. λx.t 7→E′)∈E(x).funs eval t E

′′

where E′′ = E′, f 7→ F, x 7→ E(y)
and F = {funs : {µf. λx.t 7→ E′}}

Jlet x = t in uKevalE =JtKevalE >>=♯ λv. if v = ⊥ then return♯⊥ else
JuKevalE,x:v

Jmatch twith p1⇒ t1 | · · · | pn⇒ tnKevalE =JtKevalE >>=♯λv.if v = ⊥ then return♯⊥ else⊔
1≤i≤n(pi ≺≺

♯ v)>>=♯ λE′.

if E′ = ⊥ then return♯⊥ else JtiKevalE,E′

Jraise xKevalE =raise♯E(x)
Jdispatchuwith val x⇒ t | exn y⇒rKevalE =dispatch♯ JtKevalE

(λv. if v = ⊥ then return♯⊥ else JuKevalE,x:v)

(λe. if e = ⊥ then return♯⊥ else JrKevalE,y:e)

Fig. 2. Definition of the abstract interpreter.

It takes as a parameter an analyser, that represents the information that has
been discovered so far on the program, and produces an analyser as output, that
exploits the input analyser to produce more analysis results, that are possibly less
precise. The role of the fixpoint solver is to find a post-fixpoint of this functional.
Similar approaches—leveraging fixpoint solvers to define static analysers—have
been successfully used in other work on static analysis [22,64,50,4].

Our abstract interpreter is defined in Figure 2, where JtKevalE denotes the
abstract value of type m♯ A obtained by analysing the program t under the
abstract environment E, and using the analysis function eval for recursive calls.
Importantly, the analyser does not call eval for every recursive call. Instead, eval
is only used when the analyser cannot be called on a strict sub-term. In practice,
this means that eval is only used to analyse function calls. In every other place,
we have the guarantee that the analysis is demanded on a strict sub-term, and a
standard recursive call is performed. This strategy saves time in practice, as it
lightens the burden of the fixpoint solver, that only needs to find post-fixpoints
for function calls rather than for every program point.

To analyse a variable, we return the abstract value found in the environment.
To analyse a construct, we retrieve the abstract values for every argument,

and return the corresponding abstract value for that constructor, or ⊥ if some of
the argument was ⊥, because of the eager semantics.

Detection of Uncaught Exceptions by Abstract Interpretation 403



The analysis of an integer returns this integer injected in the integer domain.
The analysis of binary operations on integers retrieves the integer parts of the
abstract values for the two arguments, and returns the result of the transfer
function from the integer domain for that binary operation.

The analysis of a function mimics the concrete semantics: it returns an abstract
closure composed of the code of the function and its abstract environment.

The analysis of function calls is more interesting. If the abstract value for
the argument is ⊥, then we return ⊥, because evaluation is eager. Otherwise, we
retrieve all the possible closures for the value at the call position, and analyse their
bodies by extending their environments with the abstract value for the argument,
and with the abstract closure itself (we are dealing with recursive functions). The
final result is the union—at the level of the abstract monad—of the analyses
of all the possible function bodies. Because the bodies of the functions that are
analysed are not strict sub-terms of the original term x y, we perform an external
recursive call to the analyser, by using the eval parameter.

The analysis of let bindings chains the analyses of its two parts, and, because
evaluation is eager, checks for emptiness before analysing the second sub-term.

The pattern matching construct is analysed by first analysing the scrutinee,
and then analysing each branch of the match independently. For each branch,
we retrieve the environment produced by matching the abstract value with the
pattern (written p ≺≺♯ v), and then we analyse the code of that branch if the
matching was possible. Then, we take the union—at the level of the abstract
monad—of the analysis results from each branch. Notably, the exceptions that
any branch might raise are reported in the final result. The definition for matching
abstract values against patterns is available in the companion research report [34].

Analysing the raise construct is easy: a call to the raise♯ function suffices.
Finally, the analysis of dispatch amounts to calling the dispatch♯ function from
the abstract monad, on the analysis of the scrutinee, and on two continuations,
that will analyse the codes of the two branches, if they are given non-⊥ arguments.

5.3 Soundness of the Abstract Interpreter

We show that the abstract interpreter of Figure 2 is sound, in the sense that it
computes an over-approximation of the behaviour of programs.

Definition 8 (Behaviour of programs). Let S be a set of evaluation environ-
ments: EVALS t =

⋃
E∈S{Success v | E ⊢ t ⇓val v} ∪ {Exception e | E ⊢ t ⇓exn e}

The behaviour of a program t as a function EVAL that takes a set of evaluation
environments as input, and produces a set of values with a tag that indicates
whether it results from normal or from exceptional evaluation.

Then, the soundness of the abstract interpreter follows:

Theorem 1 (Soundness). Assume eval is a post-fixpoint, i.e., JtKevalE ⊑ eval tE
for every t and E. Then, EVALγ(E) t ⊆ γmA(JtKevalE ).
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Proof. We have to show that for every E ∈ γ(E), m ∈ {val, exn} and v ∈ V,
if E ⊢ t ⇓m v, then r ∈ γmA(JtKevalE ), where r = Success v when m = val, and
r = Exception v when m = exn. The proof proceeds by induction on the evaluation
judgement, generalising over m and E. The only interesting case is the one for
function application, which exploits the induction hypothesis, the post-fixpoint
property of eval and the soundness of abstract inclusion ⊑. All other cases result
from the soundness of the abstract operations and from induction hypotheses. ⊓⊔

The soundness theorem assumes that eval is a post-fixpoint, i.e., JtKevalE ⊑
eval tE. This property is ensured by the soundness of the fixpoint solver, that
always returns a post-fixpoint. The function eval is, indeed, the result of the
fixpoint solver called on the function λeval.λt.λE.JtKevalE .

6 An Abstract Interpreter for OCaml Programs

Based on the abstract interpreter of §5, we implemented a static analyser for
OCaml programs (version 4.14), that returns a map from top-level identifiers of
the program to their abstract values. Our prototype and its test suite (see §7)
are available as a companion artefact [35].

We have implemented several optimisations, that are crucial to obtain decent
performance. For example, nodes of the analysed AST are indexed by program
points using unique integers as identifiers. This enables efficient comparison
of sub-terms and allows using efficient data structures like Patricia trees [53].
Moreover—this is of paramount importance for performance—we perform hash-
consing of abstract values and memoise the operations on these abstract values.

We present in the next sections some key implementation details that we
needed to analyse OCaml programs.

6.1 Refinements With Respect to the Formal Presentation

The abstract interpreter we implemented follows the structure we have presented
in §5.2, but implements three more refinements, that we purposely elided to
follow the presentation more easily. A thorough presentation of these refinements
would go beyond the scope of the current paper.

Context sensitivity. Our analyser is context sensitive : we implemented a form
of call site sensitivity, that is akin to an abstraction of the call stack. Following [50],
we retain full sensitivity until the list of call sites becomes maximal, i.e., when
a program point appears more than once in that list, which may indicate a
recursive call to some function. In addition, we always remember the last call
site. In practice, the list of call sites is an additional parameter to the abstract
interpreter. Following [50] again, we use this list of call sites to decide when
widening on the environments should be performed: it is performed only when
eval is called on a maximal list of call sites. The same list of call sites is also used
to derive dynamic exception names and abstract pointers (see §6.4 and §6.5).
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Flow sensitivity. Our abstract interpreter is able to exploit information that is
learned when a branch in a match is taken, or when branching on an arithmetic
test. For example, in the program match (x, y) with (None,_) ⇒ x | _ ⇒ t,
our analyser is able to refine the possible environments, by taking into account
that x = None in the first branch, and that this first branch necessarily returns
the value None. This is done by performing a backward analysis of the scrutinee
(x, y). This backward analysis infers an over-approximation of the environment,
knowing that the scrutinee successfully matched against the pattern (None,_).

Dynamic partitioning. Finally, we have employed a form of dynamic partition-
ing to avoid conflating some analyses results, that could degrade precision. Based
on a notion of similarity on the shapes of abstract values found in environments,
we decide whether to conflate contexts or not. The technique is inspired by the
silhouettes used in shape analysis [39].

6.2 Transformation of Typed OCaml ASTs

The actual language that our interpreter takes as input is more complex than
the one we presented in §3, but undoubtedly simpler than the OCaml AST. The
main differences between our intermediate language and the OCaml AST, is that
we deal with only one construct for pattern matching, and only one construct for
exception handling, and that those two constructs implement orthogonal features
in our language. This is in contrast with OCaml’s try t1 with p -> t2 and
match t with p1 -> t1 | exception p2 -> t2, that conflate pattern match-
ing with exception handling. The transformation into our two constructs is mostly
straightforward, and greatly simplifies the job of the static analyser.

Our intermediate language makes the evaluation order explicit using let
bindings. While the evaluation order in OCaml is generally unspecified, we did
our best to mimic the choices that the OCaml compiler makes.

We added specific application nodes for OCaml primitives. To ensure they are
called with the correct arity, we inserted λ-abstractions when they were partially
applied, or additional application nodes when they were given more arguments
than expected. We also handled specifically the short-circuiting primitives on
boolean expressions && and ||, as they change the evaluation order.

We kept the n-ary application nodes of the OCaml AST (instead of the binary
applications from §3), as this is important for the semantics of labelled/optional
function arguments. Nevertheless, the transformation from the OCaml AST
into our intermediate language needed a lot of care and effort. In particular,
missing labelled arguments required the insertion of λ-abstractions, which can
be particularly subtle when interacting with optional arguments.

6.3 Pattern Disambiguation

The last major difference between OCaml and our intermediate language is
the exhaustive and non-ambiguous requirements on pattern matching. These
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properties not only simplify the semantics of our intermediate language, but also
facilitate the analysis of programs. Indeed, each branch of the pattern-matching
can be analysed independently of the other ones, whereas in OCaml, branches
must be considered in order, until one pattern matches the inspected value. The
OCaml type-checker still provides warnings to verify the utility of each branch
and the exhaustiveness of the overall pattern matching.

Enforcing exhaustive and non-ambiguous pattern matchings in OCaml would
require to use of cumbersome patterns, and, furthermore, it is not always possible
to write such patterns in OCaml. It is, indeed, allowed to match on values whose
types may have an infinity of constructors, e.g., arrays, strings, or extensible
variant types (see §6.4 for details). To reach these requirements, we extend the
language of patterns with a complement p \ q [8]. A value v matches a pattern
p \ q if and only if it matches p but not q. In an ordered pattern matching
match t with p1 ⇒ u1 | · · · | pn ⇒ un, we can express that the value v of the
term t matches the ith pattern, unambiguously. It suffices to add that v does not
match any of the preceding patterns pj with j < i, i.e., v matches pi \ (Σpj)≺≺ v.

The method presented in [8] shows how to solve the disambiguation prob-
lem [32]. It relies on the notion of pattern semantics JpK that is the set of values
matched by a pattern: JpK = {v ∈ V | p≺≺ v}. The idea is to reduce any pattern
p into a purely disjunctive pattern q, i.e., a pattern containing no complements \,
while preserving its semantics : JpK = JqK. The reduction relies on rewriting rules
that correspond to algebraic laws of set theory: a constructor c behaves like a
labelled cartesian product, the disjunction + like set union, and the complement \
like set difference. Note that the pattern language proposed in §3 conflates the
different forms of OCaml constructors (constructor variant, polymorphic variant,
records, arrays and tuples) as they behave similarly w.r.t. to their semantics.

In order to fully reduce a pattern, the method also relies on the observation
that a variable xτ of a variant type τ must be matched by a value whose
head is a constructor of the type τ . Therefore, the semantics of this variable
xτ can be described as the union of semantics of all constructor instances
of τ : Jxτ K =

⋃
c∈Cτ

Jc(z1, . . . , zn)K, where Cτ is the finite set of constructors of
co-domain τ . Similarly, the utility [40] approach, implemented in the OCaml
compiler, relies on the ability to enumerate all the constructors of a type to
provide a non-ambiguous description of the useful patterns. For types that may
not be finitely described, the semantic approach can still be used to partially
reduce the complements [7]. We keep anti-patterns—patterns of the form x \ q
where q contains no complements—when there exists a value v such that x\q≺≺v.

Finally, to guarantee the exhaustiveness of pattern matching, it suffices to add
a rule z \ (p1+ · · ·+pn)⇒ raise Match_failure when necessary. Again, generating
such a non-ambiguous rule, for data types that may not be finitely described, is
only possible thanks to pattern complements.

6.4 Dynamic Exceptions

The exception type in OCaml is an extensible variant type : it can be dynamically
extended with new variant constructors. This means that new exception con-
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t ::= . . . | let exception c of τ1 ∗ · · · ∗ τn in t | let exception b = c in t
v ::= . . . | d | d(v1, . . . , vk)

E(c) = d

S;E ⊢ c(x1, . . . , xk) ⇓val S; d(E(x1), . . . , E(xn))
DynamicConstruct

S ⊎ {d};E, c 7→d ⊢ t ⇓m S′; v

S;E ⊢ let exception c of τ1 ∗ · · · ∗ τn in t ⇓m S′; v
LetException

S;E, b 7→d ⊢ t ⇓m S′; v E(c) = d

S;E ⊢ let exception b = c in t ⇓m S′; v
RebindException

A ::= {. . . ; names :V} | α | µα.A (Abstract value)
V ::= {(c, δ)} (Abstract names)

Jlet exception c of τ1 ∗ · · · ∗ τn in tKevalE = JtKevalE,c 7→{names=(c,δ)}
Jlet exception b = c in tKevalE = JtKeval

E,b 7→E(c)

Fig. 3. Changes to support dynamic exception naming (excerpts).

structors are dynamically generated during the execution of programs. Although
this section focuses on the exception type, the techniques we present apply to
any extensible variant type as well.

To model the dynamic behaviour of type extension, we introduce dynamic
constructors, written c, that, unlike static constructors c, are dynamically associ-
ated to a variant name d during the evaluation. We update the language of §3
and its semantics to support these dynamic constructors (Figure 3).

The let exception c of τ1 ∗ · · · ∗ τn in t construct defines the new exception
constructor c, that is dynamically bound to a fresh variant name in the sub-
term t. The exception alias construct let exception b = c in t defines the exception
constructor b, that is bound in the sub-term t to the variant name of c. Constructed
values can now have a dynamic variant name as their head constructor.

To account for the generative aspect of dynamic constructors, the evaluation
rules now carry an execution state S, that contains the set of the already generated
variant names. These are akin to the time-stamps from the CFA literature [25,44],
that are used to allocate data in memory locations. In the analysis, we use an over-
approximation δ of the list of call sites—that we used already in §6.1 to control
the widening strategy—to give abstract names (c, δ) to dynamic constructors.

Finally, as the variant name of an exception constructor is resolved dynami-
cally, the pattern matching relation depends on the evaluation environment E:
c(p1, . . . , pn)≺≺ d(v1, . . . , vn) if and only if E(c) = d, and pi≺≺ vi for all i ∈ [1, n].

As the exception type is extensible, a finite number of constructor patterns
never forms an exhaustive set of patterns for the exception type. Therefore, the
utility approach on pattern matching [40] used in OCaml for exhaustiveness check-
ing cannot provide an exhaustive list of non-ambiguous counter-examples: that
list is not known statically. In contrast, the disambiguation approach from §6.3 is
particularly well suited to such types, by leveraging anti-patterns [7]. Moreover,
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t ::= . . . | {f1 = x1; . . . ; fn = xn} | x.f | x.f ← y
v ::= . . . | ℓ (Heap locations)
S ::= {ℓ1 7→ r1; . . . ; ℓn 7→ rn} (Memory heaps)
r ::= {f1 7→ v1; . . . ; fn 7→ vn} (Record blocks)

ℓ /∈ domS S′ = S, ℓ 7→ {f1 7→ E(x1); . . . ; fn 7→ E(xn)}
S;E ⊢ {f1 = x1; . . . ; fn = xn} ⇓val S′; ℓ

Alloc

E(x) = ℓ S(ℓ) = {f1 7→ v1; . . . ; fn 7→ vn} 1 ≤ i ≤ n

S;E ⊢ x.fi ⇓val S; vi
GetField

E(x) = ℓ S(ℓ) = {f1 7→ v1; . . . ; fn 7→ vn}
1 ≤ i ≤ n S′ = S, ℓ 7→ {f1 7→ v1; . . . ; fi 7→ E(y); . . . ; fn 7→ vn}

S;E ⊢ x.fi ← y ⇓val S′; ()
SetField

A ::= { . . . ; locs : {ℓ♯1, . . . , ℓ♯n}} (Abstract locations in abstract values)
h♯ ::= {ℓ♯1 7→ r♯1; . . . ; ℓ

♯
n 7→ r♯n} (Abstract heaps)

r♯ ::= {f1 7→ A1; . . . ; fn 7→ An} (Abstract record blocks)

Fig. 4. Changes to support mutable records (excerpts).

the equality of two exception constructors b and c of the same arity can only be
resolved dynamically. Therefore, there is no way to statically prove, or disprove,
the utility of a pattern b(q1, . . . , qn) against a pattern c(p1, . . . , pn). On the other
hand, in our pattern formalism, we can simply write b(q1, . . . , qn) \ c(p1, . . . , pn)
to guarantee the non-ambiguity between the two.

6.5 Mutable Records and Global State

OCaml supports mutable records. While immutable records can be modelled in
the programming language of §3 in the form of constructs—an immutable record
is a variant with a single case—mutable records require extending the semantics
with a global memory heap S (Figure 4).

Heaps are maps from memory locations ℓ to record blocks. Record blocks are
structured memory blocks, that contain values for all the registered fields of the
record. The standard notion of reference can be modelled as a mutable record
with a single field. This is exactly how the type of references is defined in OCaml.

We adapt the big-step semantics in a standard way, so that it takes a heap as
input and returns an updated heap as output. The evaluation rules for record
creation, access, and update, either query or modify the memory heap as expected.

OCaml features pattern matching on mutable records. We adapt the rules for
pattern matching, so that matching on a mutable record first queries the memory
heap to retrieve the values for the fields of the record, before matching continues.

To analyse programs that involve mutable records, we add a new field to
abstract values, that contains the possible abstract locations ℓ♯ a value might be
equal to. Abstract locations denote sets of concrete locations. Similarly to the
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dynamic extension constructors of §6.4, fresh abstract locations are chosen by
following a naming scheme that is based on the abstract call stack.

The abstract interpreter is easily adapted to support global state, by lifting
the abstract exception monad to the state monad, where states are abstract heaps.
Abstract heaps map abstract locations to abstract record blocks, that themselves
map record fields to abstract values. The operations on abstract heaps and the
transfer functions on records are standard, and elided from the presentation.

6.6 Modules and Functors

The OCaml language includes an expressive module system [36], that supports
hierarchical structures, higher-order functors, and first-class modules. In this
section, we give the reader the main insights for the analysis of OCaml modules.

First, we consider an untyped semantics of modules, i.e., we do not propagate
type information. In particular, we do not take type abstraction boundaries into
account. We carefully to keep track of module coercions, however: signature
ascriptions may have, indeed, a computational content, as they can remove some
module fields. Coercions are automatically applied at functor applications to
“reshape” the functor argument. Coercions distribute on functors, contravariantly
on their formal arguments, and covariantly on their results.

Embracing further the untyped nature of our approach, we made the choice of
having a single class of values, that comprises both values from the core language
and values for module structures and functor closures. This simplifies both the
concrete semantics (for example, transfers from the module language to the core
language and back are no-ops), and the design of the abstract domain. As we
sketched in the previous sections, it suffices to add new fields to abstract values
to describe the possible structures and functor closures.

We represent structures as unordered records, i.e., maps from field names to
values. Functor closures hold the functor code, an environment, and coercions for
the argument and the result, that shall be applied when the functor is called.

Importantly, the support of dynamic exceptions (§6.4) was required to support
functors, since an exception might be declared in a functor’s body: this leads to
the creation of a fresh exception every time this functor is instantiated.

The analysis functions for the core language and the module language, of
types T→ E→ A and M→ E→ A, are mutually recursive. Still, the approach of
using a fixpoint solver to define our abstract interpreter remains applicable. The
two functions can be transformed into a single function of type (T+M)→ E→ A,
then given to the solver, and split back into two functions. Our untyped approach
was again crucial, as we could keep a single type of abstract values, and a single
type of abstract environments, which made the previous transformation possible.

7 Experiments

We tested our prototype analyser for OCaml programs on 290 programs, that
range from small, manually written programs, to larger examples extracted
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Table 1. Experiments: size of the programs, analysis time (with minimisation disabled,
and enabled). They are sorted by program decreasing size.

Program Size
(LoC)

Analysis
(w/o minim.)

Analysis
(w/ minim.)

heintze_mcallester_1000 4002 0.2 s 0.2 s
boyer 1292 26 m 57 m
kb 552 1.2 s 1.4 s
map_merge 152 4.5 s 5.6 s
sliding_window 122 4.4 s 5.8 s
skolemize 82 38 m 2.9 s
negative_normal_form 64 40 m 4.6 s
red_black_trees2 64 0.5 s 1.0 s
church 20 0.05 s 0.07 s
sieve 19 0.01 s 0.01 s
tak_cps 8 0.04 s 0.04 s
tak 4 < 0.01 s 0.01 s
mc91_cps 4 < 0.01 s < 0.01 s
mc91 2 < 0.01 s < 0.01 s

from the literature or from the OCaml compiler’s test suite. The test programs
include some classic functions such as the factorial program from §2, Takeuchi’s
function, McCarthy’s 91 function, fixpoint combinators, programs that compute
over church numerals, transformations of abstract syntax trees for arithmetic
expressions or logical formulas, and the algorithm for Knuth-Bendix completion of
rewriting systems. The test suite covers a large array of coding styles, e.g., direct
style, continuation-passing style, monadic style, or imperative style, and exhibits
different language features, e.g., assertions, exception-based control flow, GADTs
and non-regular types, polymorphic recursion, second-order polymorphism, etc.

We present in Table 1, a selection of the test results on some key examples.
The complete test results are reproducible via the companion artefact [35]. The
experimental results are encouraging, both in terms of performance and precision.

In terms of precision, our analyser infers the best achievable abstract values
on several programs: For McCarthy’s 91 function mc91, the result is shown to be
greater than 91; for the skolemisation of logical formulas skolemize, the analyser
correctly infers the form of returned terms, i.e., they cannot contain existential
quantifiers. For other programs, the analyser only infers an over-approximation:
for the red_black_tree program, it correctly infers the general shape of trees,
but cannot infer the structural invariant that no red node has red children.

The map_merge example calls the Map.Make functor of finite maps from the
standard library, builds several maps, and calls the merge function on those maps,
that merges the maps. The merge function has the following signature:

val merge: (key -> 'a option -> 'b option -> 'c option) ->
'a M.t -> 'b M.t -> 'c M.t
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Its first argument specifies what should be done when a key/value pair is found
in one of the maps, or in both. This argument is never called for keys that are
absent in both maps, i.e., the case where the second and third arguments are both
equal to None is unreachable. OCaml programmers often write assert false
in the corresponding pattern matching branch. The analyser infers that the
Assertion_failure exception is never raised, which means that this branch
cannot be reached. The analyser cannot show, however, that every assertion
present in Map.Make is satisfied: in the re-balancing function for pseudo-balanced
trees, assertion failures are reported, because the analyser cannot infer that the
heights that are recorded in the trees are strictly positive.

In terms of performance, most examples, and even some large programs, are
analysed in a couple of seconds, or in less than a second. In contrast, some
examples like boyer need approximately one hour for the analysis to terminate.
boyer is a tautology checker, that is run on a large formula (its definition takes
about 1000 lines). This formula, of mutable type, requires the creation of several
hundreds of abstract pointers, which makes abstract operations on abstract heaps
very costly. If we reduce context sensitivity to “the last call site”, fewer abstract
pointers are created, and the analysis completes in 31 s. This suggests that context
sensitivity choices for naming abstract pointers need further investigation.

Our experiments show that the minimisation of abstract values during widen-
ing and unions (§4.2) may impact performance positively or negatively. For
instance, for AST transformations like skolemize and negative_normal_form,
minimisation decreases the analysis time from about 45 m down to a few seconds.
For boyer, however, minimisation incurs a heavy cost, as it doubles the analysis
time. Further investigations are needed to reduce the cost of minimisation.

8 Related Work

The static detection of uncaught exceptions for ML programs has been the topic
of many related work. We only discuss a selection of them, and some results on
static analysis of functional programs that are also relevant to the current work.

Set Constraints. Several static analyses for functional programs were based set
constraints [21]. The principle is to transform a program into a constraint, that
features unions, intersections, negations, and a form of conditional constraint.
Then, the constraint is simplified and given to a solver, from which the analysis
result is obtained. Fähndrich and his coauthors built a exception analysis tool
that infers types and effects for SML programs [14,15] using the BANE constraint
analysis engine, using a mix of set constraints and type constraints.

Type and Effect Systems. Pessaux and Leroy have developed ocamlexc
[38,54,55], a tool that detects uncaught exceptions in OCaml programs. They
use a type and effect system to analyse programs modularly. Their analyser
extends unification-based type inference, and makes use of row variables [57]
and polymorphism to produce precise types for functions. They type variants
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structurally using equi-recursive types. Recursion may also occur through the
effect annotations on arrow types. They also describe an algorithm to improve the
accuracy of their analysis, that uses polymorphic recursion for row variables. The
programming language Koka [33] also leverages row variables to type algebraic
effects. Recently, de Vilhena and Pottier [62] devised a type system based on row
variables for a language that supports the dynamic creation of algebraic effects.

Control-Flow Analyses. An important family of analyses for higher-order
programs are control-flow analyses (CFA) [60,65,51,45,19]. The goal of CFA is to
determine which functions might be called at a call site, and on which arguments.
CFA can be expressed as instances of abstract interpretation [46,44,47,50]. CFA
can easily be extended to analyse exceptions. Yi developed an abstract interpreter
that detects uncaught exceptions in SML [68,67,66]. It implements an analysis
that is close to a 0-CFA analysis extended to support exceptions.

Abstract Domains in CFA. Most previous work on CFA share a common
representation for abstract values: Although they need to represent some induc-
tively defined sets, they refrain from using a native device to express fixpoints,
such as our µ constructor. Instead, cyclic definitions are encoded using indirec-
tions through abstract pointers, that point to an abstract heap. For example, the
inductive set of continuations from §2 is expressed as follows in CFA domains:

{funs : {(λx. x) 7→ {}; (λx. k (x ∗ i)) 7→ {i 7→ pi; k 7→ pk}}}
where: ĥ(pi) = {ints : [1,+∞]}

ĥ(pk) = {(λx. x) 7→ {}; (λx. k (x ∗ i)) 7→ {i 7→ pi; k 7→ pk}}

In this abstract value, the closures’ environments contain the pointers pi and pk,
that are defined in the abstract heap ĥ. This abstract heap contains a cycle, since
pk is used in the definition of the abstract value pointed by pk. This is in contrast
to our approach, where we make use of µ nodes to introduce cycles directly,
without referring to a heap. We only use the abstract heap for mutable data. In
CFA domains, all data (constructs, closures, etc.) are “abstractly allocated” in
the abstract heap, regardless of whether they are mutable or not.

A benefit of the approach with heap indirections is that abstract values have
a bounded height, and cycles need no special treatment: The equality of abstract
pointers is used to compute on abstract values. While this makes the operations
of CFA abstract domains easy to define, using pointer names limits drastically the
detection of semantically equivalent values. We argue that our approach allows to
detect more semantics inclusions, therefore decreasing the number of iterations
of the analysers, at the cost of more complex abstract domain operations.

Tree Grammars. Several analyses for functional languages have been defined
using tree grammars. For example, Reynolds [58] defined an analysis for pure first-
order LISP using data sets, i.e., tree grammars that denote the possible outputs of
function symbols. Extended tree grammars, i.e., grammars with selectors of the
form X → Y.hd, have been used by Jones and his coauthors to analyse full LISP
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[28], and, later, strict and lazy λ-calculi [26,27]. From a λ-term, they produce tree
grammars with selectors, that denote the possible inputs and outputs of function
symbols. Selectors can then be eliminated in order to simplify the grammars.
Deterministic tree grammars have been identified as an abstract domain to recast
analyses based on set constraints into the abstract interpretation framework [10].

Tree Automata. Generalising string automata, tree automata are an established
formalism to represent sets of trees. They have been used to define static analysers
for term-rewriting systems (TRSs) [3] and higher-order programs [20]. They have
been extended to lattice tree automata to support arbitrary non-relational abstract
domains at their leaves [17,18], and improve the performance of analysers for
TRSs. Recently, tree automata were combined with relational numeric abstract
domains [29], to express relations between scalar data contained in trees. Recent
work report on the design of relational domains for algebraic data types [2,61].

Cyclic Abstract Domains. Type graphs [22] are a form of deterministic tree
grammars, that are represented as cyclic graphs with no sharing, i.e., trees with
cycles. They have been used to analyse Prolog programs. We used a similar graph-
based representation as an intermediate form to compute union, intersection and
widening. We use, however, a term-based representation with binders as our main
representation, as it allows easy and efficient hash-consing and memoisation [13].
Our widening operator (§4.2) is inspired by the one from type graphs.

Mauborgne [42,43,41] studied graph-based abstract domains for sets of trees,
and defined ways to have minimal, canonical representations of such abstract
values. Using Mauborgne’s structures natively could improve our analyser’s
performance, as we could avoid translating back and forth from terms to graphs.

Finally, recursive types [56] were a strong inspiration for the abstract domain
of §4. Recursive types have been thoroughly studied in the context of subtyp-
ing [16,31,1], where polynomial algorithms have been devised to decide inclusion.
They proceed by translating types into variants of tree automata, that can also
deal with the contravariance of arrow types.

Fixpoint Solvers. To the best of our knowledge, Le Charlier and Hentenryck [6]
were the first to exploit a dynamic fixpoint solvers to define static analysers.
They used the top-down solver to analyse Prolog programs. The same approach
has been followed for the Goblint static analyser for C programs [64,59], and for
the analysis of WebAssembly programs [4]. Recent work introduced combinators
to define dynamic fixpoint solvers in a modular manner [30]. Several dynamic
fixpoint solvers have been successfully formally verified [24,63].

9 Conclusive Remarks and Future Work

We have introduced a λ-calculus that features pattern matching primitives and
exception handling, in which exceptions are first-class citizens. We have presented
a static analysis for this language, in the form of a monadic abstract interpreter,
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that can be used as an effective static analyser. This analyser detects uncaught
exceptions, and provides a description of the values that a program may return.
The abstract interpreter relies on a generic abstract domain, that is parameterised
over a domain for scalars, and that can represent regular sets of values of our
programming language. This is achieved by a fixpoint constructor in the syntax
of abstract values, that denotes an inductive set of values.

The abstract interpreter is defined in an open recursive style, where the
recursive knot is tied by calling a dynamic fixpoint solver. Importantly, the
analyser does not call the solver for every recursive call: it performs standard
recursive calls on strict sub-terms, but calls the solver to analyse function calls.

Based on this approach, we implemented a static analyser for OCaml programs.
We presented some extensions of our formalism to support several core features of
OCaml, including dynamic generation of exceptions, mutable records, the module
system. Our analyser starts with transforming the OCaml typed AST into a
simpler language where evaluation order is explicit. This transformation required
a lot of care and demanded a substantial implementation effort. One key aspect
of this transformation is the disambiguation of pattern matching, as we chose to
work with an exhaustive and non-ambiguous pattern matching primitive in order
to simplify the analysis of programs.

Our experiments on 290 OCaml programs show some encouraging results, both
in terms of performance and precision. Still, some improvements are needed for
the analysis to be applicable to larger code bases. In particular, the minimisation
of abstract values requires some more study and fine tuning: while it plays a
crucial role to analyse some examples in a reasonable time, it can also severely
undermine the analyser’s performance in some other cases.

At the moment, the analyser can deal with whole programs only. To analyse
libraries more modularly, we plan to experiment with generating abstract values
that over-approximate the inputs of a library’s function, based on their types. In
the near future, we also plan to extend the analyser with OCaml features that
are yet to be supported (e.g., arrays, laziness, floats, objects, recursive modules,
interactions with the operating system, etc.), most of which will require substantial
formalisation and implementation efforts. Recently introduced features, such as
algebraic effects and one-shot continuations, are also on our agenda, and are
likely to raise interesting challenges.

Finally, we hope that our abstract interpreter can be extended to perform
other kinds of static analyses for OCaml programs, such as a purity analysis,
or the detection of whether the behaviour of a program might depend on the
order of evaluation. We would also like our implementation to serve as a basis
for experimenting with recent relational domains for trees and scalars [29,61,2],
and with relational analyses of functional programs [49].

Data-Availability Statement. The companion artefact [35] is hosted on the
Zenodo platform and referenced by the DOI 10.5281/zenodo.10457925.
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Abstract. Legal expert systems routinely rely on date computations to
determine the eligibility of a citizen to social benefits or whether an ap-
plication has been filed on time. Unfortunately, date arithmetic exhibits
many corner cases, which are handled differently from one library to the
other, making faithfully transcribing the law into code error-prone, and
possibly leading to heavy financial and legal consequences for users.
In this work, we aim to provide a solid foundation for date arithmetic
working on days, months and years. We first present a novel, formal se-
mantics for date computations, and formally establish several semantic
properties through a mechanization in the F⋆ proof assistant. Building
upon this semantics, we then propose a static analysis by abstract inter-
pretation to automatically detect ambiguities in date computations. We
finally integrate our approach in the Catala language, a recent domain-
specific language for formalizing computational law, and use it to analyze
the Catala implementation of the French housing benefits, leading to the
discovery of several date-related ambiguities.

Keywords: Verification, Semantics, Abstract Interpretation

1 Introduction

From filesystems to web servers, time representations are pervasive in modern
computer systems. While several libraries and standards were proposed through-
out the years, current well-established approaches such as Unix time [53] used in
the standard C library or Windows’ FILETIME [36] represent dates and time as
a number of seconds or nanoseconds that have elapsed since an arbitrary date.

This approach is sufficient for many usecases, in particular when dates are
only used for logging purposes, or for determining the chronology of two events.
However, it does not permit more complex arithmetic, for instance the addition
of months or years, that span a variable number of days. For these usecases,
mainstream programming languages offer different libraries that adopt different
conventions. For example, Python’s datetime module [46] forbids the addition
of months, while Java’s java.time library [43] silently rounds invalid dates onto
the largest pre-existing date, hiding ambiguous computations from programmers.
⋆
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Given the variety of libraries and behaviors across languages, programming
with date arithmetic is thus highly error-prone, and developers’ assumptions
about how dates behave might vary from project to project. When developing
systems whose correctness is critical and that heavily depend on date compu-
tations, such as expert legal systems that rule our social and financial lives,
this issue becomes highly concerning. As an example, consider the following ex-
cerpt from Section 121 of the US Internal Revenue Code [25], which defines the
“Exclusion of gain from sale of principal residence”.

In the case of a sale or exchange of property by an unmarried individual whose
spouse is deceased on the date of such sale, paragraph (1) shall be applied by
substituting “$500,000” for “$250,000” if such sale occurs not later than 2 years
after the date of death of such spouse and the requirements of paragraph (2)(A)
were met immediately before such date of death.

This paragraph differentiates between two cases, depending on whether a
sale occurred not later than 2 years after a given date. While applying this para-
graph is straightforward in most real-world cases, corner cases raise interesting
questions. In particular, when considering leap years, what should be the result
of adding two years to February 29th? When manually computing taxes, lawyers
would be able to detect the ambiguity, and to reach a decision based on legal
precedents. If handled automatically by a computer however, the computation
may be done incorrectly; computing February 29 2004 + 2 years in Java using
java.time would return February 28 2006, while performing the same compu-
tation using the date utility from Coreutils returns March 1 2006.

Similar computations are pervasive in expert legal systems; the correspond-
ing regulations rely on them to determine whether a citizen is eligible to social
benefits or a resident for tax purposes. Errors in such systems can have dra-
matic consequences; case in point, the incorrect implementation of Louvois, the
former French military payroll system, led to several families either receiving
over-payments that they had to reimburse years later, or incomplete paychecks
totaling a few cents [42]. For such critical software, it is therefore paramount to
provide clear semantics for date computations to avoid mistakes based on erro-
neous assumptions about a library’s behavior. Additionally, such a semantics can
form the basis for further analyses, paving the way for the automated detection
of date-related ambiguities as part of the development process.

Unfortunately, while elegant in theory, a universal semantics for dates and
date arithmetic would not be usable in practice; when possible ambiguities are
identified in law texts, legislators oftentimes extend or modify the law itself to
avoid them. For instance, article 641 of the French civil procedure code [30] spec-
ifies that, when adding a positive duration to a date to compute a deadline, the
rounding, if needed, should go down. Such articles often have narrow application
scopes; similar articles in other branches of the law might either leave rounding
unspecified, or adopt a different convention. In the US, date computations when
filing motions are heavily specified, however the complexity and amount of cor-
ner cases led to no less than 27 subsequent notes and amendments to provide
clarifications [14]. Other regulations instead attempt to escape ambiguities due
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to month or year additions by reducing such computations to a nonambiguous
number of days. Such regulations heavily vary depending on the country and the
branch of law considered: acts from the Council of European Communities con-
sider that a month should be treated as 30 days [15], while the Indian Supreme
Court took the opposite approach, enacting that the duration of a month for cus-
toms purposes is variable [4]. To enable their adoption in a variety of contexts,
date libraries therefore require their semantics to be configurable by developers.

The lowest granularity of date arithmetic we focus on is the day level. Our
literature review and communications with lawyers in different countries have
indeed shown that this kind of date arithmetic is sufficient for the kind of tax
and social benefits computations that are the core application target of Catala.

In this paper, we aim to provide a sound foundation for critical software
relying on date computations, through the following contributions:

Formally Capturing Date Computations. We first present a formal seman-
tics of date computations (Sec. 2). Our formalization relies on a base semantics,
which is universal and does not specify a rounding mode but instead provides
facilities to round on-demand. We leverage these facilities to derive a rounding-
specific semantics for different rounding policies. We mechanize this semantics
in the F⋆ proof assistant, and prove several theorems establishing necessary con-
ditions for, e.g., the monotonicity or associativity of computations (Sec. 3). As
part of this mechanization, we also identify seemingly intuitive properties that
do not hold in practice, and exhibit counter-examples.

Automatically Detecting Date Ambiguities. Building on the semantics,
we define a notion of rounding-insensitivity, which captures that the result of
evaluating a program’s expression does not depend on the chosen rounding policy
(Sec. 4). Aiming to automatically identify possibly harmful ambiguities, we then
propose a new static analysis based on abstract interpretation [16] targeting
this 2-safety hyperproperty. We implement our analysis in the Mopsa static
analyzer [28, 29]. We show that with relational numerical abstract domains,
our analysis enables precise reasoning. In addition, our implementation provides
actionable counter-example hints which will help users understand why a given
expression is rounding-sensitive.

Contribution to Date Arithmetic Libraries. To enable the adoption of
this work in existing projects, we implement an OCaml library abiding by our
formal semantics, which exposes common rounding modes, as well as an option
to abort when ambiguous computations are detected. Our library is standalone
and open-source, and easily integrable in OCaml developments. We also survey
the behavior of mainstream date arithmetic libraries (Sec. 6), and provide litmus
tests that can be used to easily understand how a library behaves with respect
to date rounding.

Case Study: Integration in the Catala Language. To demonstrate the
applicability of our approach in real-world programs, we replace previous han-
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date unit δ ::= y | m | d
rounding mode r ::= ↑ | ↓ | ⊥
values v ::= (y,m, d) | ⊥
expressions e ::= v | e +δ n | rndr e
period p ::= (nd, nm, ny)

Fig. 1. Date expressions

dling of dates in the Catala language [34], a recent domain-specific language for
formalizing computational law, by our library. We also extend the Mopsa [28, 29]
static analyzer to support a subset of the Catala language, enabling us to analyze
Catala programs for rounding-insensitivity. We evaluate our approach against an
existing Catala implementation of the French housing benefits, and automati-
cally identify several date-related ambiguities in the Catala model. This work is
in the process of being upstreamed in the Catala compiler.

2 Formalizing Date Arithmetic

We start this section by presenting a base semantics for date computations, which
does not explicitly specify a rounding policy to handle ambiguous dates. Dates
expressions are presented in Fig. 1. Dates values are represented in the year-
month-day format of the standard Gregorian calendar, where each component
will be represented as an integer. We also include a ⊥ element, which represents
an error case. Date expressions consist of either date values, or of the application
of one of the date operators. Date expressions also contain variables, however
their treatment is straightforward and orthogonal to this work; we omit them as
well as their associated environment in our presentation. Operators are of two
kinds: the addition +δ of n years, months, or days, where n is an integer, and the
rounding rndr of a date. Our semantics supports three types of rounding: rnd↑
rounds up the current date to the nearest valid date; rnd↓ rounds down, and
rnd⊥ raises an error if the current date is invalid. A period is a triple of relative
integers, respectively representing the numbers of days, months and years.

We now define a formal semantics for evaluating expressions. We start by de-
scribing the semantics of date addition, presented in Fig. 2. To match standard
date formats, we start counting at 1 for valid days and months; to simplify the
presentation, we will often represent months using their name instead of their
number (e.g., Jan instead of 1). Our semantics is designed to preserve the follow-
ing invariant: assuming the date on the left is initially valid, any non-ambiguous
computation will return a valid date. When the computation is ambiguous, the
resulting date is between the largest smaller and the smallest larger valid date.

Our semantics is defined recursively. Consider for instance the addition of
a number of days n. If n is small enough to remain in the same month and
year, we are in the terminal case and the rule Add-Days applies. The first
premise of the rule ensures that the date is initially valid. It relies on an auxiliary
function nb_days, omitted for brevity, which computes the number of days for a
month in a given year (e.g., 31 for January, and 28 or 29 for February depending
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Add-Year

(y,m, d) +y n → (y + n,m, d)

Add-Month-Under
m+ n < 1

(y,m, d) +m n → (y − 1,m, d) +m (n+ 12)

Add-Month
1 ≤ m+ n ≤ 12

(y,m, d) +m n → (y,m+ n, d)

Add-Month-Over
m+ n > 12

(y,m, d) +m n → (y + 1,m, d) +m (n− 12)

Add-Days-Over
1 ≤ d ≤ nb_days(y,m) d+ n > nb_days(y,m)

(y,m, d) +d n → ((y,m, 1) +m 1) +d (n− (nb_days(y,m)− d)− 1)

Add-Comp
e → e′

e+δ n → e′ +δ n

Add-Days-Under1
1 < d ≤ nb_days(y,m) d+ n ≤ 0

(y,m, d) +d n → (y,m, 1) +d (d− 1 + n)

Add-Days-Err1
d < 1

(y,m, d) +d n → ⊥

Add-Days-Under2
n+ 1 ≤ 0 (y,m, 1) +m (−1) → (y′,m′, d′)

(y,m, 1) +d n → (y′,m′, 1) +d (n+ nb_days(y′,m′))

Add-Days-Err2
d > nb_days(y,m)

(y,m, d) +d n → ⊥

Add-Days
1 ≤ d ≤ nb_days(y,m) 1 ≤ d+ n ≤ nb_days(y,m)

(y,m, d) +d n → (y,m, d+ n)

Fig. 2. Semantics for date addition

on the year). Otherwise, we either add a month (rule Add-Days-Over) or
remove a month (rule Add-Days-Under2) and perform a new addition with
an updated number of days. When the initial date is invalid, we return ⊥ to
avoid propagating large errors and maintain important properties about date
semantics that we prove in Sec. 3. When composing additions, it might therefore
be necessary to apply rounding operators presented later in this section to avoid
⊥. One last point of interest in these semantics is the dissymmetry between
the Add-Days-Over and Add-Days-Under-* rules. Since adding a number
of days is never ambiguous, we wish to ensure that, assuming the initial date is
valid, we never apply the Add-Days-Err1 or Add-Days-Err2 rules. To do so,
when updating the month or year during day addition, we always go through an
intermediate state corresponding to the first day of the month, which is always a
valid day independently of the month and year. For brevity, we also omit several
redundant error cases, where the current month does not belong to the interval
[1; 12]; these cases return ⊥. Following standard notations, we will denote the
transitive closure of our small-step semantics as ∗→.

The last step is now to define semantics for rounding, shown in Fig. 3. Com-
pared to additions, the rounding semantics is simpler: if the date is already
valid, any mode of rounding leaves the date unchanged (Round-Noop). Other-
wise, rounding down (Round-Down) returns the last day of the current month,
rounding up (Round-Up) returns the first day of the next month, while the
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Round-Err1
d < 1

rndr(y,m, d) → ⊥

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m, d) → ⊥

Round-Down
d > nb_days(y,m)

rnd↓(y,m, d) → (y,m, nb_days(y,m))

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m, d) → (y,m, d)

Round-Up
d > nb_days(y,m) (y,m, d) +m 1

∗→ (y′,m′, d′)

rnd↑(y,m, d) → (y′,m′, 1)

Fig. 3. Semantics for date rounding

strict rounding mode (Round-Err2) raises an error. In all cases, if the day is
initially negative, rounding returns ⊥; we will prove in Sec. 3 that this never
happens when starting from a valid date.

Separating additions and rounding has several benefits. Different use cases
might require different rounding modes, and different ways of adding days,
months, and years. For instance, when adding a period such as 1 year and 10
months, some settings might specify that months should be added first, or that
rounding must be performed after adding months, and again after adding years;
our formal semantics enables this flexibility.

The last remaining step is to define additions not just for individual days,
months, or years, but for composite time periods. Building upon our semantics,
we can define this generically for a rounding mode r as follows, and avoid the
need for users to manually call rounding operators.

e+r (y,m, d) ::= rndr(((e+y y) +m m)) +d d

One point of interest in our derived forms is that we only apply rounding
after performing addition of years and months. Indeed, adding a year should be
equivalent to adding 12 months. However, if we performed rounding after each
operation, adding 1 year and 1 month to February 29 2020 with the rounding-up
mode would return April 1, 2021 instead of Mar 29, 2021. We emphasize that,
in cases where this behavior would be expected, defining derived forms corre-
sponding to this semantics would be straightforward using our base semantics.

Based on this semantics, we can now formally define the notion of an am-
biguous date expression in Definition 1.

Definition 1 (Ambiguous expression). A date expression e is ambiguous
if and only if rnd⊥(e)

∗→ ⊥.

Note that this intensional definition of ambiguity is equivalent to stating that
the an expression e is ambiguous if and only if rounding e in different modes
yields different dates.

While the semantics presented in this section focuses on the core, possibly
ambiguous computations, our work also includes other non-ambiguous operators
(omitted for brevity), e.g., to retrieve the first or last day of a given month. This
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allows to encode a variety of patterns, for instance, the second-to-last day of a
month by combining date arithmetic with the “last day of month” operator, or
to rely on a preprocessing phase if months must be treated as 30 days [15]. Our
semantics supports reasoning on computations mixing rounding modes.

3 Mechanizing Semantics

Building upon the semantics presented in the previous section, we now present
several properties of interest related to date computations that we will rely
upon when designing a static analysis in Sec. 4. As part of our contributions, we
mechanize our semantics, related properties and their proofs inside the F⋆ proof
assistant [52].

3.1 Semantic properties

As part of our proof development, we separate semantic properties in two cate-
gories: properties established on the base semantics, valid for all derived forms,
and properties derived on specific rounding modes. In many cases, proofs on
derived forms can be performed efficiently by composing lemmas on base se-
mantics, thus simplifying the proof effort. During development, we also encode
our OCaml implementation of date computations and corresponding theorems
into qcheck [54], a QuickCheck [13] inspired property-based testing framework
for OCaml. We mostly used QuickCheck as a fast sanity check before spending
time proving lemmas in F⋆. In particular, our initial intuition for several of the
lemmas and theorems presented was often unreliable, omitting corner cases; we
used QuickCheck to gain more confidence in our intuition before moving to F⋆.
This encoding allowed us to automatically find most of the counter-examples
presented in Sec. 3.2.

We start by proving that expressions in our semantics always evaluate to a
value (possibly ⊥), i.e., reduction is never stuck and it terminates.

Theorem 1 (Normalization). For any date d, and any integer n, there exists
a value vδ such that d+δ n

∗→ vδ.

In addition to normalization, a useful property about our semantics is a char-
acterization of valid computations: when using any of the non-abort rounding
modes, an addition starting from a valid date will always return a valid date;
the definition of validity is straightforward, but omitted for brevity. To prove it,
we need the following properties on base semantics, which we prove by induction
on the reductions.

Lemma 1 (Well-formedness of day addition). For any valid date d, any
integer n, and any value v, d+d n

∗→ v ⇒ v ̸= ⊥.

Lemma 2 (Well-formedness of year/month addition). For any valid date
d, any integer n, any value v, and δ ∈ {y,m}, we have d +δ n

∗→ v ⇒ v ̸=
⊥ ∧ day_of(v) ≥ 1.
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Lemma 3 (Well-formedness of rounding). For any date d such that d ̸= ⊥,
any value v, and r ∈ {↑, ↓}, we have rndr d

∗→ v ⇒ valid(v).

We can now state the following theorem on the derived semantics.

Theorem 2 (Well-formedness). For any valid date d, any period p, any value
v, and r ∈ {↓, ↑}, we have d+r p

∗→ v ⇒ valid(v).

We now present several theorems related to the monotonicity of the addi-
tion in our semantics. Date comparison is defined in the standard way, as the
lexicographical order on (y,m, d). To simplify the presentation, we lift the com-
parison operators to operate on date expressions, defined as the comparison on
the values obtained by evaluating the expressions.

Theorem 3 (Monotonicity). For any dates d1, d2, for any period p, for r ∈
{↓, ↑}, if d1 < d2, then d1 +r p ≤ d2 +r p.

A point of interest in this theorem is the discrepancy between bounds: while
the bound in the premise is strict, the bound in the conclusion is loose. Un-
fortunately, a stronger version with strict bounds on both sides does not hold;
for instance, two additions involving rounding down of April 30 and April 31
respectively yield the same result. To prove this theorem, we again need several
intermediate lemmas operating on base semantics. First, we establish an equiva-
lence between adding years and adding months. We then state and prove several
monotonicity properties on the base semantics. The proof of Theorem 3 follows
by direct application of these lemmas.

Lemma 4 (Equivalence of year and month addition). For all date d, for
all integer n, d+y n = d+m (12 ∗ n).
Lemma 5 (Monotonicity of year and month addition). For all dates
d1, d2, for any integer n, for δ ∈ {y,m}, d1 < d2 ⇒ d1 +δ n < d2 +δ n.

Lemma 6 (Monotonicity of day addition). For all valid dates d1, d2, for
any integer n, d1 < d2 ⇒ d1 +d n < d2 +d n.

Lemma 7 (Monotonicity of rounding). For all dates d1, d2, for r ∈ {↓, ↑},
d1 < d2 ⇒ rndr(d1) ≤ rndr(d2).

Finally, we state the following lemma, which guarantees that rounding down
will always return a smaller date than rounding up. Additionally, when the
addition is not ambiguous, the two rounding modes return the same result.

Theorem 4 (Rounding).

1. For all date d, for all period p, d+↓ p ≤ d+↑ p.
2. For all date d, for all period p, d+⊥ p ̸= ⊥ ⇒ d+↓ p = d+↑ p = d+⊥ p.

We finally characterize the ambiguity of month addition, a property that we
will need to prove the soundness of the static analysis presented in Sec. 4.

Theorem 5 (Characterization of ambiguous month additions). For all
valid date d, for all integer n, for all value v such that d +m n

∗→ v, we have
nb_days(year_of(v),month_of(v)) < day_of(v) ⇔ rnd⊥(v)

∗→ ⊥.
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3.2 Non-properties and counter-examples

We now present several seemingly intuitive and ideally useful properties about
date semantics that do not hold in practice.

Non-Property 1 (Commutativity of addition) For all date d, for all peri-
ods p1, p2, for all r ∈ {↓, ↑}, we have (d+r p1) +r p2 = (d+r p2) +r p1

Consider the case where d = March 31, p1 = 1 day, and p2 = 1 month. When
adding p1 first and rounding down, the addition returns April 30, while the result
when adding p2 first will be May 1. Similar examples exist when rounding up,
for instance, by setting d = January 29 2023 , p1 = 30 days, and p2 = 1 month.

Non-Property 2 (Associativity of addition) For all date d, for all periods
p1, p2, for r ∈ {↓, ↑}, we have (d+r p1) +r p2 = d+r (p1 + p2)

Consider the case where d = March 31, p1 = 1 month, and p2 = 1 month. In
all rounding modes, adding p1 followed by p2 will require rounding, ultimately
yielding May 30 or June 1, while directly adding p1 + p2 returns May 31.

As the addition being associative and commutative is common among most
datatypes, we emphasize that its invalidity for dates can be a source of confusion
for programmers; common optimizations or rewritings of date computations in a
seemingly equivalent way (e.g., replacing 1 month + 1 month by 2 months) can
lead to different outcomes. However, these disparities are exclusively due to oc-
currences of rounding in computations. We thus aim to help programmers when
handling date computations by proposing a static analysis that automatically
detects when rounding might impact the evaluation of expressions.

4 A Static Analysis For Rounding-Insensitivity

In this section, we leverage our formal semantics to define a sound static analy-
sis automatically verifying date computations programs. Our goal is to statically
detect ambiguous computations, whose result depends on the chosen rounding
mode. Indeed, when writing programs whose specification is the law, choosing
the rounding mode arbitrarily is not a possibility; this would amount to a le-
gal interpretation that exposes the administration operating the program to be
challenged in court if the rounding mode is unfavorable to a user. The cost of
bearing the responsibility for making technical regulatory choices for adminis-
tration personnel has been documented by Torny [55].

A naive approach would be to flag any program which contains an ambiguous
addition. However, this solution can be overly restrictive: computations can be
ambiguous while having no impact on the final outcome of the program. Con-
sider for example the expression d + 1 month <= March 15 2023. If no rounding
happens when adding d and 1 month, then the expression is obviously safe. Oth-
erwise, we notice that the rounding may only happen to yield the last day of
a month, or the next day of the upcoming month. In both cases, comparing
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1 date current = random_date();
2 date birthday = random_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

Fig. 4. Example extracted from Catala code modeling the French housing benefits

this result with a date in the middle of a month is thus safe. Instead, we con-
sider a more interesting property called rounding-insensitivity, capturing that
the evaluation of an expression is the same for both rounding modes.

At a high-level, our analysis works by tracking constraints over the day,
month, and year of a date, through the YMD domain (Sec. 4.1). The YMD
domain is fully parametric in a numerical abstract domain, and works by trans-
lating date constraints into numerical constraints. We discuss the choice of nu-
merical abstract domains in Sec. 4.2, in order to obtain the best precision in the
presence of linear constraints and unconstrained dates. We analyze the compu-
tations with both rounding modes and compare the result to decide rounding-
insensitivity, which is a 2-safety hyperproperty. We explain how we lift the YMD
domain to these double computations in Sec. 4.3. We implemented our analysis
within the Mopsa static analysis platform [28, 29], described in Sec. 4.4. We have
taken special care in ensuring that actionable counter-examples can be generated
in Sec. 4.5, paving the way for use by non-experts.

We think that abstract interpretation hits a sweet spot to perform this analy-
sis. Its full automation makes it usable by non-specialists, especially with the pro-
vided counter-example hints. It allows to derive tailored approximations thanks
to Th. 5. The current definition of date addition is recursive and there are non-
linear arithmetic constraints involved, which does not work well with SMT.

We use as a motivating example the program shown in Fig. 4. This program
has been extracted from a Catala code snippet used to formalize the French
housing benefits [33, Sec. 3.1]. We will provide more details on Catala and the
extraction to date programs in Sec. 5. In this program, we pick two arbitrary,
unconstrained dates, perform a date-duration addition of two years, and project
the resulting date onto the first day of its month. The assertion at line 5 expresses
the rounding-insensitivity of the comparison between an arbitrary, unconstrained
date and the computed date.3 The sync predicate, formally defined in Sec. 4.3,
holds if and only if the evaluation of its expression in both rounding modes yields
the same result, meaning that the expression is rounding-insensitive.

The programs we consider in this section are written in a standard, toy
imperative language.

4.1 The YMD domain combinator

The YMD domain translates constraints on the year, month and day of a date
into numerical constraints over three integer variables. These numerical con-
straints are handled by a numerical abstract domain, described in Definition 2.
3 Here sync(current < limit) could be reduced to sync(limit). However our anal-

ysis will not need it, and will be able to provide counter-example hints also targeting
the values of current, improving readability of the output.
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dates_dom :

{
(V → Z) → P(V)

ρ 7→ {v | year(v),month(v), day(v) ∈ dom(ρ)}

γYMD :


N# → P(V → D)

n# 7→
⋃

ρ∈γN (n#){e | dom(e) = dates_dom(ρ) ∧ ∀v ∈ dom(e), e(v) = (y,m, d)

∧valid(y,m, d) ∧ y = ρ(year(v)) ∧m = ρ(month(v)) ∧ d = ρ(day(v))}

Fig. 5. Concretization of the YMD domain

The YMD domain can be seen as a domain combinator, or a functor relying on a
numerical abstract domain – we will discuss the chosen instantiation in Sec. 4.2.
This domain works at a fixed rounding mode.

Definition 2 (Numerical abstract domain). In the following, a numerical
abstract domain is a lattice N# on which the following operations are defined:
– The assignment, assign, between a variable and an expression in a given

abstract environment yields another abstract environment.
– The boolean filtering of a state, assume, filters an abstract environment to

enforce that a boolean expression holds.
This domain is further defined by a concretization function γN : N# → P(V →
Z) mapping numerical abstract environments to a set of concrete integer envi-
ronments it represents. We assume the numerical abstract domain is sound.

Given a date variable v, the YMD domain will create new auxiliary (or ghost)
variables year(v),month(v), day(v), which do not exist in the original program
but simplify reasoning. This is an approach we borrow from the deductive veri-
fication community, and that has been used in static analyses both in the work
of Chevalier and Feret [12] as well as in Mopsa.

We provide a formal definition of the concretization, which defines the mean-
ing of the YMD domain, and illustrate it on an example.

Definition 3 (Concretization of the YMD domain). The concretization of
the YMD domain is formally defined in Fig. 5. It explains how an abstract nu-
merical environment n# ∈ N# can be interpreted into a set of date environments
e ∈ V → D mapping variables to dates. To construct these date environments,
we first pick an integer environment ρ ∈ V → Z from the concretization of the
numerical abstract domain γN (n#). The date environments will have as domain
definition the date domain of function ρ, dates_dom(ρ), which is the set of vari-
ables where auxiliary year, month and day variables are defined in ρ. For each
of those variables v ∈ dates_dom(ρ), e(v) corresponds to the date defined by the
auxiliary variables in ρ, provided that the date is valid.

Example 1 (Concretization). Let us assume our numerical domain is a map from
variables to intervals, and consists of the following state: n# = day(d) ∈ [1, 31]∧
month(d) ∈ [1, 12] ∧ year(d) = 2023. In that case, the concretization is the set
of date environments e defined on variable d such that e(d) can be any valid
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date of 2023. Thus, there is a date environment e ∈ γYMD(n#) such that e(d) =
(2023, 1, 31). However, there is no date environment such that e(d) = (2023, 2, 29)
and e ∈ γYMD(n#) because the date is invalid (2023 is not a leap year).

The YMD domain handles the following transfer functions:
– Accessors to the day, month or year number of a date. Given a date encoded as

a variable v, these functions return the associated variable day(v),month(v),
year(v) respectively.

– Projection of a date on the first day of the month: given a date encoded as a
variable v, this function creates a new date having the same auxiliary month
and year variables. The day auxiliary variable is set to 1. A similar operator
working on the last day of the month can be defined.

– The main part of the YMD domain is the transfer function handling month
addition and potential rounding originating from this addition. We define it
below, argue it is sound, and illustrate it on an example (in Sec. 4.2). As we
have proved in Lemma 4, additions on years and months can be reduced to
additions on months. Our current, potentially ambiguous, real-world examples
taken from legislative code do not use day addition; as it is never ambiguous,
we thus do not currently implement it. Given its similarity to month addition,
we do not foresee any technical difficulty doing so.

– The YMD domain also provides a transfer function to compare two dates. It
is induced by the lexicographic definition of concrete date comparisons and
partitions the results to improve the precision.

Transfer function for month addition. We provide a simplified OCaml im-
plementation for the month addition transfer function in Fig. 6. The transfer
function takes as parameter a date, represented as a variable; a concrete num-
ber of months; an input abstract state; and a rounding mode chosen for date
computations. It will return a case disjunction4 of type cases: a list of case,
each consisting in an expression and an abstract state. We start by defining
day, month, year, which are expressions representing the day, month and year
number of date through auxiliary variables. The resulting month and year are
computed through non-linear expressions. Similarly to the semantics, we encode
months as integers to perform arithmetic operations, and start our numbering
at 1 for January. The transfer function performs a case disjunction to detect if
date rounding will happen, following the characterization of ambiguous month
additions (Th. 5). This case disjunction checks whether the day of the date is
compatible with the number of days in the resulting month (and year, as Febru-
ary has one more day during leap years). This disjunction is encoded thanks
to the switch utility, which takes as input an abstract state and a list of tuple
of expressions and continuations. Given a tuple (cond, k), the input abstract
state is filtered to satisfy the expression cond (by delegation to the numerical

4 These disjunctions can be seen as a partitioning of the abstract state. In this section
we consider everything is partitioned to improve the precision. Our implementation
supports limiting the number of partitions.
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abstract domain). The resulting abstract state is fed to the continuation, which
yields a case. The cases we encounter during the addition are:
Rounding to 29 Feb. of a leap year. If the resulting month is February of
a leap year, and the current day number is greater than 29, we will have to
perform date rounding. We do so using the auxiliary round function. Depending
on the rounding mode, it either chooses the provided date, or the first of the
month afterwards. This date is then returned in its corresponding abstract state
using mk_date, whose implementation is not detailed.
Rounding to 28 Feb. of a non-leap year. Similar case omitted for brevity.
Rounding to a 30-day month. If the current day number is 31 but the re-
sulting month has 30 days (i.e, it is either April, June, September or November),
we also have to perform a rounding, either to the 30th of the resulting month,
or the 1st of the month after.
Other cases. No rounding happens, the day number remains the same.

Note that add_months, round and is_leap define syntactic expressions,
which will be delegated through assign and assume to the numerical abstract
domain. The expressions at lines 6, 13, 14, 21–22, 26, 28, 30 are not directly
evaluated: they will be interpreted by the assume of the numerical abstract do-
main during the evaluation of the switch function. The definition of the transfer
function for month addition assumes the number of months to add is known as
a concrete integer. This is not restrictive in practice: all programs we extracted
from Catala in Sec. 5 only perform date-month addition with a concrete number
of months.

The proof of soundness of the abstract month addition, is not formalized in F⋆

and omitted for brevity. However, it is a direct application of the characterization
of ambiguous month additions established in Th. 5, and proved formally in F⋆.

The analysis may refine constraints on a day, month or year auxiliary variable.
These constraints could then entail new constraints on other auxiliary variables
of the same date to represent only valid dates. This propagation phase is per-
formed by the strengthening operator described below, which is sound as it only
removes invalid dates, which are not taken into account by the concretization.

Strengthening operator. The strengthening operator enforces the following:
– If the month is February, the day is less than 30.
– If the month is April, June, September of November, the day is less than 31.
– If the date is February 29, we know the current year is a leap year. We enforce

that the year number is divisible by 4, which is a necessary condition.

Comparison transfer function. The transfer function for date comparisons
is dates_lt in Fig. 6; it encodes a lexicographic comparison.

4.2 Instantiating YMD with a combination of numerical domains

The YMD domain is fully generic in the numerical abstract domain it relies on
to translate date constraints into constraints over integers. We describe how we
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1 type case = expr * state
2 type cases = case list
3
4 let switch abs = List.map (fun (cond : expr, k : state -> case) -> k (assume cond abs))
5
6 let is_leap (y : expr) : expr = (y % 4 = 0 && y % 100 <> 0) || (y % 400 = 0)
7
8 let round (r : rounding) (d m y : expr) (abs : state) : case =
9 match r with

10 | RoundDown ->
11 mk_date d m y abs
12 | RoundUp ->
13 let succ_m = 1 + res_month % 12 in
14 let succ_y = y + res_month / 12 in
15 mk_date 1 succ_m succ_y abs
16
17 let add_months (r : rounding) (date : var) (nb_m : int) (abs : state) : cases =
18 let day = day_of date in
19 let month = month_of date in
20 let year = year_of date in
21 let res_month = 1 + (month - 1 + nb_m) % 12 in
22 let res_year = year + (month - 1 + nb_m) / 12 in
23 switch abs
24 [
25 (* Rounding to 29 Feb. of a leap year *)
26 day > 29 && res_month = Feb && is_leap res_year, round r 29 res_month res_year;
27 (* Rounding to 28 Feb. of a non-leap year *)
28 day > 28 && res_month = Feb && not (is_leap res_year), round r 28 res_month res_year;
29 (* Rounding to a 30-day month *)
30 day > 30 && is_one_of res_month [Apr;Jun;Sep;Nov], round r 30 res_month res_year;
31 (* No rounding *)
32 mk_true, mk_date day res_month res_year
33 ]
34
35 let dates_lt (d1 d2 : var) (abs : state) : cases =
36 switch abs
37 [
38 (year_of d1) < (year_of d2), mk_true;
39 (year_of d1) > (year_of d2), mk_false;
40 (year_of d1) = (year_of d2) && (month_of d1 < month_of d2), mk_true;
41 (year_of d1) = (year_of d2) && (month_of d1 > month_of d2), mk_false;
42 (year_of d1) = (year_of d2) && (month_of d1 = month_of d2)
43 && (day_of d1 < day_of d2), mk_true;
44 (year_of d1) = (year_of d2) && (month_of d1 = month_of d2)
45 && (day_of d1 >= day_of d2), mk_false;
46 ]

Fig. 6. Abstract transfer functions for month addition and date comparison

chose a combination of numerical abstract domains to get the best precision
possible in the presence of non-linearity and unconstrained dates.

We initially started using intervals and congruences for our first tests. Due to
its convexity, the interval domain was unable to precisely represent months where
the day number may be rounded to 30 days during the date-month addition (line
30 of Fig. 6). Thus, we added a domain of powerset of integers (of size at most
4) to be precise enough for this usecase. When month is not a constant, the
congruence domain will be unable to precisely represent the resulting month
(line 21 of Fig. 6), and refine the potential values of month given constraints
on res_month. This situation happens often in our evaluation; it is shown in
our motivating example. We resolved this precision issue by switching from the
congruence domain to the relational, linear congruence domain [5]. We also added
the polyhedra domain [17] to keep track of equalities between different day,
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month and year variables, which happens during analyses on programs with
unconstrained dates, as we will show in the upcoming examples.

Our current numerical abstract domain is a reduced product between grids,
polyhedra, intervals, and a bounded powerset of integers. The relational domains
rely on the Apron library [27]. The approximation of non-linear computations is
performed through linearization techniques [37].

Example 2. Let us consider the program below picking an arbitrary, uncon-
strained date d and then adding one month to d. We illustrate the different
cases of the transfer function add_months in this case, assuming we round down.

date d = random_date(); date d2 = d + [0 years, 1 months, 0 days];

Rounding to 29 Feb. of a leap year. In the first case of the transfer func-
tion, the numerical domain is able to deduce from the expression day > 29 &&
res_month = Feb that the day of d is either 30 or 31, and the month is January.
In the rounding down mode, d2 is thus February 29th. The relational domain
additionally expresses that year(d) = year(d2).
Rounding to 28 Feb. of a non-leap year. Similar case, omitted for brevity.
Rounding to a 30-day month. The numerical abstract domain infers that d
represents the 31st of March, May, August or October, tracked thanks to the
bounded set of integers domain. As we round down, we deduce that the day of
d2 is 30, and month(d) ∈ {Apr, Jun, Sep, Nov}. In that case, the relational domain
can also infer that year(d) = year(d2), as m / 12 will always be zero.
Other cases. In the last case, the intervals and powerset domains cannot ex-
press interesting constraints on d and d2. The relational domains are however
able to capture key relations:
– The day does not change as there is no rounding: day(d) = day(d2).
– Thanks to the grids domain [5] we can infer linear relations modulo a constant,

and thus that the month of d2 is the month after d, even if the year changes:
month(d2) ≡12 month(d)+1, where ≡12 denotes congruence modulo 12. Note
that since month(d2) is not a constant, the non-relational congruence domain
is not sufficient to express this relation.

– The year number may be the same, or the successor provided that the month
of d is December. We lose a bit of precision, as the last month always creates
a year increase in the concrete.
12 year(d) +month(d) ≤ 12 year(d2) + 11 ∧ 12 year(d2) ≤ 12 year(d) +month(d) + 1

Example 3 (Addition and strengthening). We use our running example from
Fig. 4, and show what the date addition and the strengthening operator yield
for dates birthday and intermediate. In this example, we assume the dates are
rounded up. As we add two years to birthday, two of the four cases described
in the month addition previously presented will not apply; we omit them below.
Rounding to 28 Feb. of a non-leap year. In that case, birthday is a Feb.
29th, and intermediate rounds up to March 1st. We additionally know that
year(birthday) + 2 = year(intermediate). The strengthening ensures that
year(birthday) is divisible by 4.
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No rounding. The day and month numbers of birthday and intermediate
are equal. The year condition is similar to the one provided in Ex. 2.

Example 4 (Comparison). Let us continue with our running example, assuming
we are focusing on the partition where intermediate has been rounded up to
March 1st (as shown in Ex. 3). In that case, limit is equal to intermediate.
Assuming the comparison current < limit holds, we have three different cases,
described by the line number in Fig. 6. Line 38 yields year(current) < year(limit).
Line 40 enforces year(current) = year(limit),month(current) < month(limit),
so month(current) ∈ {Jan, Feb}. Line 42 yields that the year and month num-
bers of current and limit are the same and day(current) < day(limit). This
last case is impossible given that 1 ≤ day(current) ≤ 31 and day(limit) = 1.

4.3 Lifting to both rounding modes

The YMD domain operates at a given, fixed rounding mode. In this section,
we leverage the YMD domain to perform date computations in both rounding
modes and thus prove rounding-insensitivity. This lifting is inspired by Delmas
et al. [21], who analyze product programs to prove endianness portability of C
programs. Here, we keep the product of programs implicit: only the rounding
mode changes between the two executions we will consider.

We start by explaining how the concrete semantics are lifted from a single
rounding mode to both. We assume we have a semantics of expressions (respec-
tively statements) ErJexprK (resp. SrJstmtK) parameterized by a date rounding
mode r ∈ {↑, ↓}. They take as input sets of environments (E = V → Val) map-
ping variables to values (which are either integers or dates), and produce values
(resp. environments).

ErJexprK : P(E) → P(Val) SrJstmtK : P(E) → P(E)

We define in Fig. 7 the concrete semantics evaluating expressions and state-
ments over both rounding modes, written respectively E↕JexprK and S↕JstmtK.
We do not delve into the details of product programs, which are defined in
the work of Delmas et al. [21]. In this semantics, the state is now duplicated:
D = E × E . We ensure that random operations return the same value in both
rounding modes, to avoid spurious desynchronizations. The sync predicate re-
turns true if and only if the expression evaluates to the same values in both
rounding modes, capturing the rounding-insensitivity of the contained expres-
sion. We use it in the programs we analyze to target the expressions we want to
check, as we have already seen in Fig. 4. The evaluation of other expressions is
performed pointwise on both rounding modes, and similarly for the assignments.

Definition 4. An expression e is rounding-insensitive in a state d if and only
if E↕Jsync(e)K({d}) = {(true, true)}. This property is encoded in programs by
the statement assert(sync(e)).
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E↕JexprK : P(D) → P(Val2)

E↕Jrandom_date()K(D) = {(d, d) | d ∈ Z3, valid(d)}

E↕Jsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{(bu == bd, bu == bd) | (bu, bd) = E↕JeK(ρ↑, ρ↓)}

E↕JexprK(D) =
⋃

(ρ↑,ρ↓)∈D

{(v↑, v↓) | v↑ = E↑JeKρ↑, v↓ = E↓JeKρ↓)}

S↕JstmtK : P(D) → P(D)

S↕Jv = eK(D) =
⋃

(ρ↑,ρ↓)∈D

{(S↑Jv = v↑Kρ↑, S↓Jv = v↓Kρ↓), (v↑, v↓) ∈ E↕JeK{ρ↑, ρ↓}}

Fig. 7. Concrete semantics over double evaluation of rounding modes

The abstract semantics mimics the concrete behavior, but works on a sin-
gle abstract state instead of a set of concrete double states. The double state
is represented by duplicating variables according to their rounding mode in the
numerical abstract domain. A variable x is thus written ↑x (resp. ↓x) to represent
the variable when the upper (resp. lower) rounding mode is used. This duplica-
tion is performed in a shallow fashion to improve usability: when performing an
assignment x = e, if e evaluates into the same value in both rounding modes,
the variable x will not be duplicated into the numerical abstract domain.

Example 5 (Rounding-sensitivity of the comparison). Back to our running ex-
ample, we have shown so far how the YMD domain analyzes the program when
rounding up (Ex. 4). Continuing with the same relational abstract domain, we
show part of the abstract state in the partition focusing on rounding to Feb. 28
of a non-leap year in Eq. (1). In the rounding mode down, intermediate rounds
to Feb. 28, and thus limit rounds down to Feb. 1st.

day(current) ∈ [1, 31],month(current) ∈ [1, 12], year(current) ∈ [−∞,+∞]

day(birthday) = 29,month(birthday) = Feb, year(birthday) ≡4 0

↑day(intermediate) = 1, ↑month(intermediate) = Mar

↓day(intermediate) = 28, ↓month(intermediate) = Feb

↓year(intermediate) =↑year(intermediate) = year(birthday) + 2

↑day(limit) = 1, ↑month(limit) = Mar ↓day(limit) = 1, ↓month(limit) = Feb

↓year(limit) =↑year(limit) = year(birthday) + 2

(1)

We exhibit an abstract state where we cannot prove that the expression
current < limit is rounding-insensitive. The static analysis will consider all
cases in the comparison and the evaluation in both rounding modes. For the sake
of presentation here, we only highlight one case. The date comparison operator
between current and the rounded up version of limit yields a partition where
the years are the same and the month number is less. This partition refines the
abstract state above with the following constraints:

year(current) =↑year(limit)∧ ↑month(limit) < month(current) = Mar (2)
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Let us now consider the case where the comparison with the rounded down
version of limit does not hold, when the years and months are the same but
the days are not. We get the following additional constraints:

year(current) =↓year(limit) ∧month(current) =↓month(limit) = Feb∧
day(current) ≥↓day(limit) = 1

(3)

Combining the constraints from Eqs. (2) and (3) on the abstract state from
Eq. (1) gives the following result on current:

year(current) = year(birthday) + 2 ∧month(current) = Feb (4)

To summarize, our analysis has been unable to prove the rounding-insensitivity
of the expression current < limit, in particular in the case of the abstract state
presented in Eq. (1), refined with constraints from Eqs. (2) and (3). Thanks to
partitioning and relational abstract domains, we know that the proof fails when
birthday is a Feb. 29th (of a year y which is divisible by 4, a sound but not
complete way to express it is leap). In that case, intermediate will either be
Feb. 28th or March 1st of y + 2. This entails that limit will either be Feb. 1st
or March 1st of y + 2. In the cases where current is a day of February of y + 2
(Eq. (4)), the comparison will effectively be rounding-sensitive.

The original program did not contain any constraints on birthday or current.
Note that if we add in the program that the day of birthday is less than 28, our
analysis is able to automatically prove the program to be rounding-insensitive.

4.4 Implementation

We implemented our approach in the Mopsa static analysis platform [28, 29].
Mopsa is able to analyze C, Python and multilanguage Python/C programs [40,
41, 44], to prove the absence of runtime errors, and to perform portability anal-
ysis of C programs [21]. We modified the front-end of a toy imperative language
also available in Mopsa to analyze programs performing date arithmetic. We
chose to extend this language for our analysis as we do not require advanced
features from C nor Python. Thanks to Mopsa’s modular architecture, we have
been able to reuse iterators for intraprocedural analysis with little code changes.

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

# Sequence

∧ Reduced product

Universal

Double programs

Fig. 8. Date analysis configuration

The configuration used by Mopsa for
our analysis is illustrated in Fig. 8.
The “D.bidates” domain corresponds
to the abstract domain and transfer
functions described in Sec. 4.3. The
“U.ymd” domain is the YMD domain
(Sec. 4.1). The last part enclosed in a
gray box corresponds to the numerical
abstract domain on top of which the
YMD domain was built (Sec. 4.2).
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5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1,
↓month(intermediate) = 2, ↓day(intermediate) = 28,
month(birthday) = 2, day(birthday) = 29, month(current) = 2, day(current) = [1,29],
year(birthday) =[4] 0, year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Fig. 9. Mopsa’s output on the running example

4.5 Generating counter-example hints

We have extended our implementation to provide counter-examples hints when
a synchronization assertion cannot be proved safe. Given our usecase, it is
paramount to provide meaningful feedback to users translating law articles into
Catala code so they understand why their date computations might be ambigu-
ous (Sec. 5). These hints are precise constraints on the considered program that
may lead an expression to be rounding-sensitive. They are especially helpful to
provide more precise date ranges for unconstrained dates that may affect round-
ing sensitivity. As our approach is incomplete, these hints may be spurious; we
however did not encounter this issue in our case study on Catala programs.

This generation of counter-example hints is atypical for static analyses by
abstract interpretation. This approach is permitted here by a simplified setting
(variables are assigned once, and the abstract state is partitioned to ensure a
high precision) and the use of powerful relational abstract domains. In a general
setting with multiple variable assignments, joins and widenings, most approaches
need to perform backward analyses [1, 38, 49].

This generation of hints works in two steps: it first starts by heuristically se-
lecting the best partition of the abstract state. The YMD domain may partition
the abstract state in order to keep the best precision. Our heuristic selects the
partition with the highest number of desynchronized variables (meaning there
has been significant roundings), and the highest number of auxiliary variables
for days and months which are constants. The second step of the hint generation
extracts the relevant constraints from the considered abstract state. This ex-
traction starts by collecting all date variables defined in the program. For these
variables, we evaluate the auxiliary day, month and year variables into intervals,
and keep only intervals providing meaningful information (i.e., intervals strictly
included in [1, 31] for day variables, strictly included in [1, 12] for month vari-
ables, and bounded intervals for year variables). We then project the relational
abstract domain onto the set of auxiliary variables where no meaningful inter-
vals has been extracted to provide linear relations for those. We show in Fig. 9
the exact, unedited output of the hints generated by Mopsa in the case of our
running example and highlight their readability. They correspond exactly to the
constraints previously described in Ex. 5.

5 Case Study: Application to Catala

This section highlights how the results and methods established in the previous
section can be applied in the setting of legal expert systems, and more specifically
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within Catala [34], a recent domain-specific programming language designed to
be understandable by lawyers and close to the structure of legal texts, with
formal semantics that clearly define its behavior to reduce discrepancies between
legal texts and their implementation.

We start by describing rulings and implementations of the law where precise
and well-defined date arithmetic is paramount to ensure expected results. Then,
we describe how Catala’s implementation of date rounding has recently evolved:
from the issues we noticed in Catala’s previous off-the-shelf implementation, to
the port to our date calculation library and the introduction of a function-local
rounding definition when legal references or interpretations are known, reducing
the number of cases where the rounding mode is unspecified. We finish by ex-
plaining the latest implemented feature, which allows the Catala compiler to ex-
tract date computations and relies on Mopsa to (dis)prove rounding-insensitivity.

5.1 Date arithmetic and the law

Critical software relying on date computations is commonly used by companies
or government agencies to automatically enforce legal dispositions, e.g., to check
if an application has been filed within the correct time period, to compute age-
related conditions, or to aggregate periods between dates and compare the result
to a fixed duration for eligibility calculation.

In all these cases, there can be heavy financial and legal consequences when
a date computation goes wrong or is subject to diverging interpretation. In the
case Bowles v. Russell, 551 U.S. 205 (2007) cited by Bailey [7], the court gave
Bowles a 17-days notice to file an appeal but this notice was incorrectly computed
from Rule 4(a)(6) and paragraph 2107(c), as it should have been 14 days. When
Bowles filed his appeal on the 17th day, the court system dismissed the appeal
on the basis that Bowles should have filed on the 14th day and not trust the
notice the court gave him earlier. In more mundane cases, an incorrect date
computation can deprive someone of their social benefits, or impose a higher
late fee than what should be.

These doubts about date computation in software applying the law are all
the more concerning that previous research in code open-sourced by French gov-
ernment agencies did not show a great deal of transparency or trustful practices
on that particular matter. For instance, the custom programming language M,
used by the French tax authority to compute income tax [35], encodes dates
as mere floating-point numbers where the date is just a decimal number in the
format DDMMYYYY. The French unemployment agency, whose IT system is
mostly implemented in Java, uses a custom date library for its computation
(fr.unedic.util.temps.Damj) but its implementation is omitted from their
only open-source release [47].

5.2 Catala’s policy about date rounding

Recently, the Catala project [24, 34] has aimed to bring more accountability and
transparency to programs computing taxes or social benefits inside government
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agencies. The Catala language is specifically designed to allow the easy trans-
lation of computational law into code; in particular, it is based on prioritized
default logic [10], which enables programmers to closely follow the base case/ex-
ception pattern that permeates the law. To increase confidence and explainability
in its programs, Catala also comes with a formal semantics which is formalized in
the F⋆ proof assistant. These formal semantics mostly focus on Catala’s default
calculus, the encoding of prioritized default logic as a programming language,
and do not specify all Catala expressions, including date computations.

Initially, the semantics of the date computations was defined by the behavior
of the calendar OCaml library [50] used inside its interpreter. However, this
library relies on the POSIX behavior which is not always monotonic and may
appear quirky (for instance, it computes Jan 31st + 1 month as March 3rd for
non-leap years) despite its very complete set of features. These unusual behaviors
prompted a deeper investigation about the corner cases of date computations
and led to the implementation of the library presented in this paper. While
now integrated in the Catala interpreter, our library is standalone, and freely
available with an open-source license. As the Catala compiler is implemented in
OCaml, so is our library5, currently packaged with opam; however, by relying
on our semantics, its implementation is straightforward. We do not foresee any
difficulty porting it to other languages, and plan to do so to support more of the
Catala backends, including Python and JavaScript.

The default behavior of our date computation library inside the Catala in-
terpreter is to raise a runtime exception whenever a date rounding is needed
during a computation. This choice of behavior has been made conservatively be-
cause the decision to round up or down date computations in software enforcing
legal rules is itself a legal rule that has to be specified, as we described in the
introduction of this paper. To avoid runtime exceptions, rounding rules can be
specified at the scope level (a precise definition of Catala’s scopes is outside the
range of this paper, but it can be considered as a sort of function in Catala) and
should be justified, for example by a legal reference or interpretation.

We applied this methodology to fix the code of the biggest Catala program so
far, which computes the French housing benefits [32]. Articles L822-4, R823-4 of
the construction and housing Code, as well as article L512-3 of the social security
Code, all feature a comparison of the age of the user to an age constant. However,
as the input to the Catala program is not the age of the user but their birth date,
we know such a comparison can be ambiguous if the user was born on February
29th on a leap year and if the current date is March 1st. In those situations, we
took the decision to round up the date addition, as shown in Fig. 10, with the
date rounding increasing mention. We are currently trying to contact the
relevant government agencies operating the system for clarifications about how
this issue should be handled.

5 Our F⋆ formalization can be extracted to executable but non-idiomatic OCaml code.
In practice, we thus manually reimplement our library in OCaml to use features such
as named arguments or exceptions to provide a more idiomatic API.
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1 declaration scope CheckingAgeInferiorEqual:
2 input birth_date content date
3 input current_date content date
4 input target_age content duration # always a number of years
5 output age_is_inferior_or_equal_target content boolean
6
7 scope CheckingAgeInferiorEqual:
8 definition age_is_inferior_or_equal_target equals
9 birth_date + target_age <= current_date

10 date rounding increasing

Fig. 10. Catala code for checking the age of the user is lower than a constant

file.catala Slicing date-sensitive
computations Prog. gen. progs.u Mopsa

Í

o+ Hints

Fig. 11. Catala date ambiguity analysis pipeline

To best benefit the recipient and be in line with the general principle under-
pinning legal interpretations of social security law in France, a better solution
would be to perform the computation twice, by rounding up and down, and
select the outcome most favorable to the user in case of disagreement. The flex-
ibility offered by our library allows us to do that, and we intend to explore this
avenue in future work. Being able to control precisely where the rounding is
done and how is key for developers and maintainers of such programs, as they
are responsible for the legal effect of the program itself [22].

5.3 Detecting potentially ambiguous computations

Choosing the rounding mode for each date computation allows us to precisely
control the outcome of ambiguous computations. However, given the pervasive-
ness of such computations in legal texts, it is also extremely tedious, and figuring
out the cases where an ambiguous computation could happen is complex. For
these reasons, we expect some developers to delay this step and wait for inci-
dents to figure out the policy of the institution operating the program on the
matter. But figuring out this policy might itself be tricky because of the automa-
tion frontier [33] strictly separating the developers from the decision-makers in
charge of legal policy decisions.

To help developers reach out to the legal services of their institution with
concrete examples of where things can go wrong before production incidents, we
integrated the semantics and abstract domains presented in this paper inside
the ongoing initiative to provide a proof platform for Catala programs [20]. By
connecting the Catala compiler to the Mopsa static analyzer, we are able to check
whether a date computation can be ambiguous in the context of the program,
and often exhibit a counter-example if it is the case. We present in Fig. 11 our
analysis pipeline. It consists of three main phases: program slicing, verification
condition crafting, and analysis – which may generate counter-examples.

First, we scan the Catala program in one of its intermediate representation
and look for Catala expressions susceptible of raising a runtime exception be-
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cause of an ambiguous date computation. We use classic techniques of program
slicing for this step, selecting only the target sub-expression and then adding the
definitions of variables used in that sub-expression recursively to extract a small,
self-contained program with sufficient information to be analyzed. This will sim-
plify the counter-example hint generation of Mopsa, which outputs constraints
on variables rather than subexpressions of a computation.

Second, we augment the sliced program with the assertions and other infor-
mation about its variables that are declared in the original Catala program to
further constrain the search space. So far, our analysis is intraprocedural, but we
are planning to implement an inlining pass to make it inter-procedural. We then
translate the sliced program to Mopsa’s toy language (using the .u extension),
which can then be fed to the static analyzer.

Finally, we run Mopsa on the generated program. As we have mentioned in
Sec. 4.5, Mopsa is able to exhibit potential counter-examples hints. While these
hints are approximate due to incompleteness of the analysis, they are often suffi-
cient to yield real, actionable counter-examples on the Catala programs that we
analyzed. We extract relevant intervals and linear constraints and display them
to the user, in the format illustrated by Fig. 9. While the intervals and constraints
presented are descriptive, and sufficient for a programmer to identify concrete
counter-examples, they can however be difficult to grasp for non-experts. For-
matting these constraints in a more readable format is an interesting question,
requiring further interaction with lawyers; we leave it as future work.

The implementation of housing benefits in Catala currently consists of about
20,000 lines (including the text of the law directly specifying it) that were writ-
ten prior to this work. While automatically analyzing this implementation using
our verification pipeline, we found issues in two date computations (one of them
being our running example). In both cases, Mopsa was able to provide action-
able counter-example hints. Several other computations were age computations,
which are now handled by a custom scope with a legally interpreted date round-
ing mode, as shown in Fig. 10. Finally, remaining computations rely on durations
defined outside of the analyzed scope, which requires an inter-scope analysis in
Catala, which is being implemented. In the meantime, we performed a man-
ual duration extraction in these cases and detected 16 new unsafe (rounding-
sensitive) date comparisons, which are real issues. In all cases, the provided
counter-example hints are actionable. In 10 cases, the issues can only happen
with a current date before 2023. By constraining the year to be greater or equal
to 2023, these 10 cases are proved safe. All date arithmetic programs we have
currently extracted or written are small and analyzed within three seconds.

As the number of Catala programs grows, we hope to apply our analyzer at
a larger scale, possibly suggesting future avenues for improvement.

6 Related Work

We start by surveying the behavior of mainstream implementations of date arith-
metic. We created a suite of litmus tests involving date-duration additions, and
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the expected result depending on the rounding mode. We wrote test drivers for
each library, running those tests to decide which rounding mode applies.

The java.time library [43] provides a LocalDate class for dates and a Period
class to express durations. In our tests, the addition is performed by rounding
down. This behavior is explicitly described in the documentation [26]. To the
best of our knowledge, there is no option to use another rounding mode, or fail
during ambiguous computations. In the Python standard library, the datetime
module [46] provides a date class and timedelta to express durations. How-
ever these durations cannot be defined in terms of months, but only in terms of
days. A third party library called dateutil [45] provides a replacement feature,
relativedelta, able to express durations in months and years. This library
seems widely used, as it ranks within the top 20 most downloaded Python pack-
ages. On our tests, this library rounds down. This seems to be confirmed by
the documentation stating that “adding one month will never cross the month
boundary.” Similarly to Java, this rounding behavior is not configurable. The
boost C++ [9] and the luxon [31] JavaScript libraries exhibit similar behaviors.

The coreutils implementation of date arithmetic follows a different prin-
ciple, which is not expressible in our semantics. When adding months, this im-
plementation first computes an adjusted date which might not be valid. This
adjusted date da is then normalized using POSIX’s mktime function. For exam-
ple, adding one month to 2023-03-31 yields adjusted date 2023-04-31, which
does not exist and is normalized into 2023-05-01. In this case, the behavior is
the same as the upper rounding. There are however cases where its behavior dif-
fers: adding one month to 2023-01-31 yields adjusted date 2023-02-31, which is
normalized into 2023-03-03. This behavior breaks monotonicity of the addition
in the date argument (2023-02-01 + 1 month is 2023-03-01). In ambiguous
computations, the debug mode of the date utility outputs a warning with the
following message “when adding relative months/years, it is recommended to
specify the 15th of the months” – which is a sufficient condition to avoid any
ambiguity. This semantics is also followed by the calendar [50] library of OCaml.

We finish this survey with the case of spreadsheet editors (such as Google
Sheets), and highlight an inconsistent behavior we have found in them. The
EDATE function adds a given number of months to a date. In our experiments,
this function silently rounds down. As such, adding 18 years (that is, 216 months)
to 2004-02-29 yields the date 2022-02-28. These spreadsheets applications also
offer the DATEDIF function, which can compute the duration in years between
two dates. In that case, DATEDIF(2004-02-29, 2022-02-28) yields 17 years (18
years are reached when the second date is 2022-03-01). This behavior is incon-
sistent with EDATE. Cheng and Rival [11] focus on performing a type analysis of
spreadsheet applications, given that a runtime type casting may silently happen
and provide unwanted results (similarly to what JavaScript does). This analysis
supports a variety of types, including dates, but as it focuses on type information
there is no mention of the value semantics of operations on dates.

The book of Reingold and Dershowitz [48] can be seen as the hacker’s delight
of calendar computations, with many efficient formulas for day additions, and a
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wide range of different calendars being presented. Their work does not mention
nor address the issue of month addition, and potential date rounding, which is at
the core of our work. Although we have not needed it for now, we could leverage
their approach to optimize the recursive computations of our library. Similarly,
ISO 8601 defines the representation of dates in the Gregorian calendar, but does
not address date-duration additions with years or months.

The Formal Vindications start-up developed a mechanized, formally verified
implementation of a time management library [2, 3] in Coq, computing over
dates and time, including specific technical points (timezones, leap seconds).
Their duration of a month is defined as 30 days. Some recent changes allow
to round down dates. A similar effort was developed in Lean 4 by Bailey [6],
but this library only supports the addition of days to a date. As a reminder,
the Catala project currently targets laws that do not need to go beyond the
precision of a day in terms of time management. Formal Vindications developed
a formally verified, high-precision tachograph software for enforcing truck drivers
scheduling laws [19].

We finish this related work by highlighting similarities between floating-point
and date arithmetic. Floating-point arithmetic is more complex and widely used,
but both settings have rounding operators with different modes available. This
similarity has guided us in our search for properties that hold and counter-
examples presented in Sec. 3. The static analysis to prove non-ambiguity of date
computations presented in Sec. 4 can be seen as the abstract execution of the
computation under both rounding modes, to compare results. To the best of our
knowledge, no such static analysis for floating-point programs try to bound the
difference in computations between two rounding modes. Tools such as Daisy
[8, 18], Fluctuat [23] and FPTaylor [51] usually aim at upper-bounding errors
between ideal computations over reals and a machine computation using floating-
point.

7 Conclusion and Future Work

Legal expert systems rely on date computations, which are ambiguously de-
fined in some corner cases. There are different ways of solving these ambiguities
through different rounding operators, where no operator prevails over the oth-
ers. We have thus defined semantics for date computations, taking into account
these ambiguities to either raise errors, or round the result (either up or down).
This semantics has been implemented into a publicly available OCaml library.
We have studied this semantics and have formally proved several properties they
satisfy, and exhibited counter-examples to usual properties they do not satisfy.
We have defined and implemented an analysis that is able to prove an expression
to be rounding-insensitive in a given program. This analysis relies on partition-
ing and relational abstract domains to maintain the best possible precision, and
can generate understandable counter-examples hints. Both our library and the
rounding-sensitivity analysis have been integrated within the Catala language –
which focuses on implementing computational laws. Through our analysis, we
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found rounding-sensitivity issues in the implementation of the French housing
benefits in Catala. We surveyed the behavior of mainstream date arithmetic
libraries, and developed litmus tests that can be used to test new libraries.

There are limitations to our static analysis: its soundness has not been proved
mechanically, but the proofs simply lift theorems that have been formally ver-
ified. The current analyzed language is a core imperative language which was
sufficient for our case studies. Having an inter-scope analysis within the Catala
to Mopsa translation would improve our precision in the case study. We plan
to craft human-readable error messages from Mopsa’s output. We believe the
relevant constraints are already properly extracted by Mopsa and the rest of the
work consists in engineering, in order to inverse the translation from Catala date
computations to Mopsa programs.

In spite of these limitations, we believe this paper to be a crucial step into
clarifying and improving the robustness of many computer programs implement-
ing “business logic”, often overlooked by formal methods. The widespread use of
date arithmetic in programs used by companies or government agencies to op-
erate massive financial transfer should have prompted a formal analysis of date
rounding a long time ago, but the existing literature only indicates a recent
interest from the formal methods community on the matter.

This work was triggered by the problems we found during interdisciplinary
investigations about French housing benefits using the Catala programming lan-
guage. From these investigations surfaced the need for various formal analysis,
which we have thus started integrating into the programming language. We hope
to further develop the integration of static analysis into the Catala proof plat-
form, thus benefiting both legal and computer science users by including formal
methods advances into development processes of Catala programs.

Artifact Availability Statement. All our development is under open-source
licenses, public or in the process of being upstreamed into a public development.
To foster reproducibility of our results, we provide an artefact [39] containing
the formal proofs written in F⋆, our date calculation library, and our ambiguity
detection analysis as well as supporting evidence of our case study.
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