
Training for Verification: Increasing Neuron
Stability to Scale DNN Verification

1 University of Virginia, Charlottesville, VA 22904, USA
{dx3yy,nm8tm,matthewbdwyer}@virginia.edu

2 George Mason University, Fairfax, VA 22030, USA
hduong22@gmu.edu

Abstract. With the growing use of deep neural networks(DNN) in mis-
sion and safety-critical applications, there is an increasing interest in
DNN verification. Unfortunately, increasingly complex network struc-
tures, non-linear behavior, and high-dimensional input spaces combine
to make DNN verification computationally challenging. Despite tremen-
dous advances, DNN verifiers are still challenged to scale to large ver-
ification problems. In this work, we explore how the number of stable
neurons under the precondition of a specification gives rise to verifica-
tion complexity. We examine prior work on the problem, adapt it, and
develop several novel approaches to increase stability. We demonstrate
that neuron stability can be increased substantially without compromis-
ing model accuracy and this yields a multi-fold improvement in DNN
verifier performance.

Keywords: neural network verification · neuron stability · pruning

1 Introduction

In recent years, there has been significant research on adapting formal verification
to target deep neural network(DNN) model behavior. Approaches have been
developed that incorporate a diverse range of algorithmic approaches including
reachability [19,27,39–42,45,51,52], optimization [5,12,15,30,31,34,44,50], and
search [1,7,9,21,26,46,47,49,58]. These techniques aim to verify the validity of a
network’s behavior for a wide range of inputs, e.g., perturbations of test samples
that capture models of noise or malicious manipulation.

DNN verification is challenging due to the high input dimension of mod-
els, the ever-growing complexity of network layers, the inherent non-linearity of
learned function approximations, and the algorithmically complex methods re-
quired to formulate the verification problem [25]. Several approaches [4,14,16,38]
have been proposed to address the scalability issue, but as the results of recent
DNN verifier competitions show scalability remains a challenge [2, 22,32].

Stable neurons exhibit linear behavior and thereby have the potential to
reduce DNN verification costs. Several researchers have explored how DNNs

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 24–44, 2024.
https://doi.org/10.1007/978-3-031-57256-2_2

Dong Xu1(B) , Nusrat Jahan Mozumder1 , Hai Duong2 ,
and Matthew B. Dwyer1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_2&domain=pdf
http://orcid.org/0000-0001-5643-7197
http://orcid.org/0009-0003-1802-5150
http://orcid.org/0000-0002-3341-9794
http://orcid.org/0000-0002-1937-1544
http://eapls.org/pages/artifact_badges/

can be defined to increase the number of stable neurons and thereby facilitate
verification. For example, one can incorporate a loss term that uses an estimate
of neuron stability to train a network that can be verified more efficiently [53].
Another training time approach identifies neurons that are likely to be stable and
active and replaces them with linear functions [10], while this approach requires
customization of the verifier to show performance improvement.

Whereas prior work studied individual methods for increasing neuron stabil-
ity in combination with individual verifiers, in this paper we conduct a broad
exploratory study considering 18 different stabilizers paired with 3 state-of-the-
art verifiers across DNNs for different datasets and comprising different architec-
tures. We use three algorithmic approaches to increase stability: RS Loss [53]
incorporates a stability-oriented loss term, Bias Shaping is a novel training
time method that only modifies bias parameters to increase stability, and Sta-
ble Pruning is a novel approach that adapts structural DNN pruning [43] to
increase stability. These are paired with stability estimation algorithms that op-
erate at training time to guide them towards increasing stability. We develop 4 es-
timators based on prior work: NIP [53], SIP [46,47], ALR [56], and ALRo [57],
and 2 novel estimators SDD and SAD.

Neuron instability can be a source of verification complexity for the two
primary algorithmic approaches to DNN verification: abstraction-based meth-
ods and constraint-based methods. Abstraction-based verifiers [3, 17, 40, 42, 48]
overapproximate neuron behavior, but when the approximation is too coarse –
due to unstable neurons – the approximations must be refined which can slow
down verification. Constraint-based verifiers [13,23,24,44] are challenged by the
disjunctive nature of constraints that encode unstable neurons. Orthogonal to
these approaches, branch and bound techniques [9, 17, 48] are also sensitive to
neuron stability since they need to generate sub-problems for each of the active
phases of unstable neurons. In our exploratory study, we evaluate the perfor-
mance of verifiers that span several of these algorithmic approaches and that
also constitute the state-of-the-art based on their performance in the most re-
cent VNN-COMP [32]. This allows us to assess the extent to which increasing
neuron stability can improve the state-of-the-art.

In § 5 we report the findings of a study spanning 18 stable training algo-
rithms, 3 state-of-the-art verifiers, 3 network architectures, and a large number
of challenging property specifications. Our primary finding is that stable train-
ing can significantly increase the number of verifications problem solved – by as
much as 5-fold – and significantly speed up verification – by as much as a factor
of 14 – without compromising test accuracy or training time. Moreover, we find
that if one is willing to tolerate a modest loss in test accuracy, then even greater
improvement in verifier performance can be achieved.

The contributions of the work lie in a comprehensive evaluation of the poten-
tial for optimizing DNN verifier performance by increasing the number of stable
neurons. More specifically, (1) we adapt RS Loss with different stability esti-
mators and evaluate its performance across multiple verifiers and benchmarks;
(2) we propose two novel approaches (Bias Shaping and Stable Pruning) to

Training for Verification via Neuron Stabilizers 25

n1

n2

n3

n4

n5

=2

=3

=1

=-1

=-4

=6

[0.3,0.9]

[0.1,0.7]

=2

=2

=2

=3

=6

=-0.5

ReLU1

ReLU2

ReLU3

Hidden layer

Output layer

Input layer

Target output>0

Target output<0

(a) Original network

n1

n2

n3

n4

n5

=3

=1

=-4

=6

[0.3,0.9]

[0.1,0.7]
=2

=3

=6

=-0.5

ReLU1

ReLU2

ReLU3

Hidden layer

Output layer

Input layer

Target output>0

Target output<0

(b) Stable Pruning

Fig. 1. Illustration of the applying Stable Pruning to verifying that a small original
network outputs a pair of values where the first is negative and the second positive for
inputs x ∈ [0.3, 0.9]× [0.1, 0.7]. Unstable neurons are shown in red and pruned neurons
and their edges are dashed.

increase neuron stability and evaluate their performance across multiple verifiers
and benchmarks; (3) we integrate these state-of-the-art neuron stabilizers into an
open-source framework that supports experimentation with stability optimiza-
tion by the DNN verification research community; and (4) show empirically that
the performance of state-of-the-art verifiers can be significantly enhanced using
stable training methods. These contributions set the stage for further work on
training for verification that aim to further characterize the best stable training
strategy for a given verifier and verification problem.

2 Overview

The popularity of the rectified linear unit (ReLU) activation function, z =
max(ẑ, 0), which allows for more efficient training and inference [20, 29], has
led verification researchers to target networks using them. In this section, we
illustrate how ReLU leads to exponential verification costs and how training can
mitigate that cost.

For a DNN with ReLU activation functions, N : Rn → Rm, comprised of
k neurons, an inference, N (x), results in each neuron being either active, when
z = max(ẑ, 0) = ẑ, or inactive, when z = max(ẑ, 0) = 0. The status of each
neuron in a network during inference defines an activation pattern, ap(x) – a
Boolean vector of length k. Verifying a set of inputs, ϕx ⊆ Rn, involves symbol-
ically reasoning about the set of activation patterns, and the associated neuron
outputs, for each x ∈ ϕx. In the worst case, there are 2k possible activation
patterns which lead to the exponential complexity of ReLU verification [23].

For a given set of inputs, ϕx, a neuron, ni, is stable and active if ∀x ∈ ϕx :
ap(x)[i], and stable and inactive if ∀x ∈ ϕx : ¬ap(x)[i]. A neuron’s stability is
dependent on the computation performed by its cone of influence [6] taking into
account both ϕx and the behavior of neurons on which ni depends. In Fig. 1a,

26 D. Xu et al.

consider verification of a local robustness property centered at x = (0.6, 0.4)
with a radius of ϵ = 0.3 – so ϕx = [0.3, 0.9]× [0.1, 0.7]. For such inputs, a single
neuron, n2, is stable – its pre-activation values are all positive, ẑ2 = [2.1, 5.1].

In §4, we define a set of techniques that aim to estimate which neurons are
unstable during training and then bias the training process to stabilize them.
Fig. 1b shows the application of one pair of those techniques to the original
network and property. More specifically, the NIP estimator propagates interval
approximations of neuron pre-activation values to estimate whether they are
stable and then the Stable Pruning technique removes neurons that are stable
and inactive. During training this method estimates the pre-activation value for
n1 to be ẑ1 = [−0.2, 2.2] which is nearly stable. Stable Pruning ranks neurons
based on the distance they need to be shifted to be stable; for ẑ1 that distance
is 0.2. We adapt the iterative pruning approach of DropNet [43] to use this
ranking. The intuition is that when a neuron is nearly stable it can be removed
and in subsequent training, the parameters of the remaining neurons will adapt
to compensate and preserve accuracy [18]. As illustrated in Fig. 1b, the number
of unstable neurons is halved which can reduce verification costs.

3 Background & Related Work

Deep Neural Networks (DNN) are trained to accurately approximate a
target function, f : Rn → Rm. A network, N : Rn → Rm, is comprised of a
sequence of L hidden layers, l1, . . . , lL, along with an input layer, lin = l0, and
output layer, lout = lL+1(e.g. (a) in Fig. 1) Hidden layers are comprised of a set
of neurons that accumulate a weighted sum of their inputs from the prior layer
and then apply an activation function to determine how to non-linearly scale
that sum to compute the output from the layer. Different activation functions
have been explored in the literature, including: Rectified Linear Units (ReLU),
Sigmoid, and Tanh.

Given a neural network architecture, N (·), the network is trained to define
weight values, denoted θ, and bias values, denoted b, that are associated with
each neuron’s input. A trained network defines for input x, the output N (x; θ, b);
when it is clear from the context we drop θ, b and write N (x).

Specifying DNN Properties Given a network N : Rn → Rm, a property,
ϕ, defines a set of constraints over the inputs, ϕx, and an associated set of
constraints over the outputs, ϕy. Verification of N |= ϕ seeks to prove: ∀x ∈ Rn :
ϕx(x) ⇒ ϕy(N (x)).

Recent work has demonstrated that a general class of specifications, where
ϕx and ϕy are defined as half-space polytopes, can be reduced to local robustness
specifications [35, 36]. This means that the essential complexity of DNN verifi-
cation is present when verifying simpler local robustness specifications, which
state that ∀x ∈ c± ϵ : ϕy(N (x)), for some constant input(centerpoint), c, and
radius, ϵ, around it. Consequently, in §5, we explore the performance of verifiers
on local robustness specifications.

Training for Verification via Neuron Stabilizers 27

Verifying DNN Properties The inherent complexity of the DNN verification
problem arises from the non-linear expressive power of DNNs – so it is generally
unavoidable. We explain the source of this complexity below for a network with
L fully-connected layers, each with M neurons.

Let ẑi,j denote the value computed for the input of neuron j in hidden layer i
prior to the application of the activation function – the pre-activation value – and
zi,j the post-activation value. For a ReLU activation function, zi,j = max(ẑi,j , 0).
The input to layer i is computed as the weighted sum of the output of the prior
layer, using the learned weights θ, and bias b. The semantics of N (x; θ, b) is
given by the constraints as shown in Eq. (1)

∧
i∈[1,L],j∈[1,M]

(
ẑi,j =

∑
k∈[1,M]

(θi,j,k · zi−1,j) + bi,j ∧ zi,j = max(ẑi,j , 0)

)
(1)

with additional constraints relating the zL,j to the output layer, lout, and x = z0.
Computing N (x) for a single input value, x, results in a pattern of ReLU

activations in which each neuron is either active, max(ẑi,j , 0) = ẑi,j , or inactive,
max(ẑi,j , 0) = 0. However, a property specification, ϕ, constrains lin to define a
set of input values, e.g., as in the case of local robustness x ∈ c ± ϵ. Through
Eq. (1), this may give rise to constraints on ẑi,j that define values for which
the neuron is both active, ẑi,j ≥ 0, and inactive, ẑi,j < 0. When the set of
pre-activation values spans 0 in this way, we say that neuron ni,j is unstable.

Unstable neurons require that verification approaches reason about the dis-
junctions present in Eq. (1). In the worst case, if all neurons are unstable, then
there are 2L∗M different ways of resolving the disjunctions. More generally, for a
property, ϕ, only a subset of neurons will be unstable, Uϕ ⊆ L×M , and, as we
discuss in §4, controlling the size of this subset is a means of reducing the cost
of DNN verification.

Several approaches have been introduced to verify a DNN behavior in recent
years [28]. One class of verifiers, including α,β-CROWN [48], NNEnum [3],
ERAN [40], and MN-BAB [17] overapproximate ReLU behavior which allows
them to efficiently calculate an overapproximation of Eq. (1), which we denote N .
When N ̸|= ϕ some techniques, like ERAN, simply return unknown, but others,
like NNEnum, α,β-CROWN or MN-BAB, perform a case split on unstable
neurons to refine the over-approximation. Another class of verifiers, including
Marabou [24] and Planet [13], explore the space of case-splits to formulate
separate constraint queries that constitute verification conditions. Here again,
the number of possible case-splits leads to exponential complexity.

RS Loss [53] is a regularization technique that induces neuron stability in the
training process. The RS Loss, LR is blended with the regular training loss LT

to yield a weighted sum as the optimization target, L = LT + wR × LR, where
wR is the hyperparameter to control the degree of stabilization. The RS Loss
term LR is formulated as LR =

∑n
i=1 −Tanh(1+ ẑi × ẑi) where ẑ and ẑ are the

lower and upper bounds of the pre-activation values. NRS Loss [59] is a variant
of RS Loss that regularizes the pre-batch normalization (BN) bounds instead of

28 D. Xu et al.

pre-activation bounds. Whereas RS Loss indirectly biases the network toward
neuron stability, in §4 we introduce Bias Shaping which directly manipulates
neuron bias towards the same goal.

DropNet [43] is a structured model compression method to generate sparse and
reduced neural networks based on the lottery ticket hypothesis [18]. According to
the hypothesis, a dense network contains a sub-network that can match the test
accuracy of the base network if trained in isolation. DropNet iteratively prunes
a predefined percentage of less important neurons by setting their weights to
zero. Although the iteration process is resource expensive, the flatness of the
error landscape at the end of training limits the fraction of weights that can be
pruned, hence sharp pruning at once reduces the network accuracy [33].

While the initial purpose of pruning was preserving network accuracy only,
recent studies have revealed that pruning can significantly increase a network’s
robustness and scale robustness verification [59]. The removal of non-linearity
from the insignificant neurons by converting them to linear functions has been
proposed in literature [10]. However, the existence of linear activation functions
in a network can sometimes result in unnecessary computational costs, as the
networks are supposed to work on complex data and linear functions are inca-
pable of handling the complexity. Also, special treatments are required to handle
these non-standard architectures in network inference and verification. Thus, we
propose to use iterative pruning to remove the redundant non-linearity from the
network using the pre-activation values of the ReLU function during mini-batch
training. In §4, we present a variant of DropNet named Stable Pruning that
uses stability measures to determine how neurons should be pruned.

4 Approach

Alg. 1: Training with Stabilizers

input : neural network N , data loader D,
stabilization method A, stability
estimator B, ratio i, and step s

output : stabilized network N ′

1 for j, (X, Y) in D do
2 Train Mini-Batch(N , X, Y)
3 if j ≡ 0 (mod s) then

4 Ẑ ← Estimate Stability(B, N)

5 N ′ ← Stablize(A, N , Ẑ, i)

6 return N ′

This section presents the
two novel neuron stabilization
methods: Bias Shaping and
Stable Pruning, as well as
six different stability estima-
tors. Alg. 1 shows the general
training iterations for a neural
network with stabilizers(pairs
of stabilization method, A,
and stability estimator, B).
The conventional neural net-
work training process of a
mini-batch is shown in Line 2.
Stabilizers are applied at every sth mini-batch (line 3). Line 4 determines each
neuron’s stability estimation by calculating their boundaries, Ẑ, using differ-
ent estimators described in §4.1. Lastly, Line 5 applies the main stabilization
algorithms, e.g. Bias Shaping (Alg. 2) and Stable Pruning (Alg. 3).

Training for Verification via Neuron Stabilizers 29

4.1 Neuron Stability Estimation

The neural network training process is performed on the data samples, while the
verification process seeks to prove certain properties on an effectively unbounded
set of inputs. Hence, there exists a gap between the two stages since a neuron that
is stable on the training dataset is not guaranteed to also be stable based on the
set of values described by the precondition of the verification problem. Guiding
the training process to produce neural networks with more stable neurons in
the verification stage requires reducing this gap. This is achieved by estimating
neuron stability over a broader set of values representative of those encountered
during the verification process and then stabilizing the unstable neurons.

We identify two general categories of neuron stability estimators that can
be calculated during the training phase: Sampled[S] and Reachability[R]
estimators. The sampled estimators consider a finite set of sampled data gathered
directly or inferred from the training dataset. The reachability estimators operate
on set propagations that generalize the training dataset. The six neuron stability
estimators are defined as follows:

B(D) = {x|x = β(x′) ∧ x′ ∼ D}

where β ∈ {SDD,SAD,NIP,SIP,ALR,ALRo} and D is the network train-
ing dataset distribution. The SDD (Sampled Dataset Distribution[S]) estimator
uses the training mini-batch samples directly and takes advantage of the train-
ing process’s forward propagations to determine whether neurons are stable. The
SAD (Sampled Adjacent Distribution[S]) estimator samples from the robust-
ness radii of the training mini-batch and runs extra forward propagations on
the adjacent examples to determine the stability of neurons. The NIP (Naive
Interval Propagation[R]) [53] estimator generates a set of intervals based on the
mini-batch samples and the given robustness radii. However, instead of prop-
agating exact samples, it propagates the intervals through the network. The
SIP (Symbolic Interval Propagation[R]) [46, 47] extends NIP by using sym-
bolic intervals instead of concrete intervals when propagating through the net-
work. The symbolic intervals are concretized whenever neuron stability needs
to be evaluated. The ALR and ALRo (Auto LiRPA[R]) [56, 57] estimators
further improve SIP by applying more precise but computationally expensive
over-approximation constraints and parameterizing upper and lower bounds of
hidden neurons to optimize objectives with respect to the property of interest.
ALRo applies the α optimization [57] when compared to the base approach.
Note that although many of these approaches were developed for other uses, the
integration of them to induce stable neurons during training is novel.

4.2 Bias Shaping

To increase the number of stable neurons in the neural network, we adapt
training to ensure the same polarity of lower and upper bounds of neuron pre-
activation values. In Eq. (1), the pre-activations of the current ReLU function

30 D. Xu et al.

are controlled by the parameters of the neural network and the post-activations
of the previous layer. The weighted-sum term depends on the weights, bias, and
the post-activations of the previous layer. The pre-activation values can be easily
manipulated by changing the bias term. We refer to this as Bias Shaping, as
described in Alg. 2.

Alg. 2: Bias Shaping

input : neural network N , stability
estimation boundaries Ẑ,
ratio i

output : stabilized network N ′

1 Ẑ, Ẑ ← Get Bounds(Ẑ)

2 Nu ← {ni in N where ẑi < 0∧ ẑ i > 0}
3 Zu ← {Min(−ẑni , ẑni) where ni ∈ Nu}
4 γ ← Sort(Zu)[|Ẑ| × i]
5 for ni in Nu do

6 if (ẑi < γ) ∧ (ẑi < −ẑi) then
7 ni.b← ni.b− ẑi

8 else if
∣∣ẑi∣∣ < γ then

9 ni.b← ni.b− ẑi

10 N ′ ← Load Parameters(Nu)
11 return N ′

Instead of using just the na-
tive pre-activation of the mini-
batch samples, the stability esti-
mators are applied to further close
the gap between neuron stability
during training and verification.
Alg. 2 takes the set of stability
estimations for all neurons, Ẑ =
[ẑ1, ẑ2, ..., ẑm], the neural network
N with m neurons (n1, n2, ..., nm),
and the ratio i as inputs. Line 1
calculated the lower and upper
bounds of the estimation Ẑ. Using
those bounds, the algorithm first
finds the unstable neurons of the
input network (line 2). Next, those
neurons are ranked based on their
distance to zero(lines 5 - 9), and
the smallest subset of neurons will

be selected for shaping if their distances are less than an adaptive threshold γ
(lines 3, 4). Note that the number of selections is controlled by a parameter i
– a percentage of neurons would be shaped at a time. Each neuron’s bias term
of the subset is modified by (a) shifting left by the value of the upper bound if
the upper bound is closer to zero (line 7); or (b) shifting right by the absolute
value of lower bound if the lower bound is closer to zero (line 9). As a result, the
stabilized network is created by loading the new parameters at line 10.

4.3 Stable Pruning

Inspired by the DropNet [43] approach, we developed a new pruning method
to reduce unstable neurons, named Stable Pruning as shown in Alg. 3. It
uses iterative structured pruning to modify the global weight matrix by selec-
tively masking neurons. Its novel criteria target specifically unstable neurons for
masking. Stable Pruning sets weight and bias to zero to softly “remove” the
neuron from the network, allowing back-propagation to recover accuracy loss by
the harsh parameter modifications.

Given the stability estimation ẑ for a neuron, ẑ and ẑ denote the lower and
upper bounds respectively. When lower bound ẑ is greater than 0, although
the neuron is stable-active, it cannot be pruned without changing the network’s
behavior, as the ReLU function is treated as an identity function. When ẑ is
less than 0, the ReLU function is treated as a zero-function, and this neuron

Training for Verification via Neuron Stabilizers 31

can be removed safely (line 3). In order to prune unstable neurons with minimal
effects on network behavior, Stable Pruning ranks the unstable neurons by
the distance between ẑ and 0, from smallest to largest (line 4), and a subset of
neurons (also controlled by the ratio parameter, i) will be selected for pruning if
their distances are less than an adaptive threshold γ (line 5). Initially, all neurons
are enabled in the mask, m, (line 1) and those that fall below the threshold are
updated to be removed from the network (line 6). Finally, the stabilized network
is generated by applying the pruning mask on the network (line 7).

4.4 Implementation

Alg. 3: Stable Pruning

input : neural network N , stability
estimation boundaries Ẑ,
ratio i

output : stabilized network N ′

1 m = {1}|n|

2 Ẑ ← Get Upper Bound(Ẑ)

3 m[Ẑ ≤ 0]← 0

4 Z′
u = sort(Ẑ > 0)

5 γ = Zu[|Z′
u| × i]

6 m[Ẑ < γ]← 0
7 N ′ ← N

⊙
m

8 return N ′

We implemented all of the above
techniques, including: SDD, SAD,
NIP, SIP,ALR,ALRo,RS Loss
(§3), Bias Shaping (§4.2), and
Stable Pruning (§4.3), into the
OCTOPUS framework. OCTO-
PUS allows training neural net-
works with stabilizer methods and
stability estimators, including their
free combinations. It can be eas-
ily applied to different datasets and
network architectures and presents
a rich hyper-parameter space that
can be tuned by hand or algorithmi-
cally, e.g., by search methods. RS

Loss [53] is reimplemented to support all the additional neuron stability esti-
mators. The SIP estimator uses the Symbolic Interval Analysis Library devel-
oped in [46], and the ALR and ALRo estimators integrate the Auto LiRPA
Library [57]. OCTOPUS also allows combinations of various neuron stabilizers
and estimators, i.e., training with multiple stabilizers sequentially or simultane-
ously. The framework is built for ease of extension to adopt new techniques and
is available at both FigShare [54] and GitHub.3

5 Evaluation

We explore two research questions to understand how stabilizers can be benefi-
cial for DNN verification:
RQ1. How effective are the stabilizers in increasing the proportion of stable
neurons?
RQ2. How effective are stabilizers in enhancing DNN verification performance?

3 OCTOPUS GitHub link: https://github.com/edwardxu0/octopus

32 D. Xu et al.

https://github.com/edwardxu0/octopus

Tab. 1. Experimental parameter space

Parameters Choices

Architectures
M2: MNIST FC2(FC(256)×2), M6: MNIST FC6(FC(256)×6))

C3: CIFAR2020(Conv(32,5,2), Conv(128,4,2), FC(250))

Verifiers α,β-CROWN, MN-BAB, NNEnum

Properties [0,1,. . . ,9]

Epsilon Radii
M2, M6:[12e-3, 14e-3, 16e-3, 18e-3, 20e-3]

C3:[18e-4, 20e-4,22e-4, 24e-4, 26e-4]

Stabilization Methods Baseline, Bias Shaping, RS Loss, Stable Pruning

Stability Estimators SDD, SAD, NIP, SIP, ALR, ALRo

Seeds [0,1,2,3,4]

5.1 Study Design

To answer these questions, we design a broad study considering different neural
network architectures, specifications, and verifiers. Tab. 1 shows the full experi-
mental parameter space we consider across the research questions.

The annual VNN-COMP DNN verification competition [2,22,32] provides a
range of benchmarks with standard network and property formats to evaluate
state-of-the-art verifiers. These benchmarks cover a variety of network archi-
tectures and activation functions. This architectural variety evaluates verifiers’
applicability across a range of network graph operations, e.g. ResNets with skip
connections, max-pooling layers, non-linear activation, and domain-specific net-
works. Benchmarks also vary in scale with some having large numbers of layers,
neurons, and parameters under the assumption that this will yield challenging
benchmarks.

We conducted an exploratory study of the VNN-COMP 2022 benchmarks
and found that 1156 of 1288 (89%) could be solved within 30 seconds. Nearly all
of the solved problems were proven (UNSAT) with coarse over-approximation
or falsified (SAT) with adversarial attacks. Such benchmarks do not exhibit the
exponential complexity that is inherent in DNN verification [23]. To address this
limitation, we designed a set of benchmarks that are better suited to assessing
DNN verification algorithm performance.

Selecting Networks A retrospective analysis of VNN-COMP benchmarks
determined that small weakly-regularized networks exhibit exponential complex-
ity and medium-sized with large numbers of neurons are hard to scale for precise
methods, such as branch and bound [8]. Of course, large weekly-regularized net-
works with large numbers of neurons are even harder, but it was found that
these incur significant memory requirements which makes experimentation chal-
lenging, e.g., due to hardware limitations. Based on this analysis, we focus on
three small and medium-sized networks with traditional network architectures
selected from the VNN-COMP 2022 benchmarks, since these proved capable of
forcing verifier algorithms to cope with exponential complexity.

Selecting Properties Rather than focusing on a variety of structurally dis-
tinct property specifications, we exploit the fact that general reachability proper-

Training for Verification via Neuron Stabilizers 33

0.00 0.02 0.04 0.06 0.08 0.10
Radii()

0

10

20

30

40

50

Ve
rif

ie
d(

--)
/Fa

lsi
fie

d(
··)

- -CROWN
MN-Bab
NNEnum

0

50

100

150

200

250

300

Ve
rif

ica
tio

n
Ti

m
e(

s,
)

Fig. 2. Solved problems and verification time vs. epsilon radii

ties can be reduced to local robustness properties [37]. This allows us to vary the
verification problem difficulty by controlling the robustness property’s epsilon-
radius. Conceptually, we know that verification problems with sufficiently small
(large) radii will be verified (falsified) – a radius of 0 is trivially verified and
a radius comprising the full input domain requires that a network produce a
constant output. Verifier developers have incorporated techniques, like apply-
ing adversarial attacks and using coarse overapproximations, to quickly handle
such cases [3, 48]. To sidestep these verification fast paths and exercise the core
verification algorithms in our study, we select epsilon values for properties as
follows.

For each network, we conducted a preliminary study with varying radii to
assess the difficulty of the verification problems. Fig. 2 shows the results for M2
on 50 different center-points with the three verifiers. The dashed lines show the
number of verified problems and the dotted lines the number of falsified problems
(left y-axis). We observe the trend that small epsilon leads to uniformly verified
problems and large epsilon to uniformly falsified problems. Moreover, one can
observe low verification times (right y-axis) in these extreme epsilon regimes,
due to the fast path optimizations.

Our strategy for selecting harder verification properties is to choose a sample
of radii around the point where the number of verified and falsified problems
crossover, e.g., 0.018 in this plot for MN-BAB. We choose the crossover point
of the best verifier who solved the most problems to design the radii shown
in Tab. 1. This leads to a balance in verification ground truth between SAT
and UNSAT answers, and these more challenging problems force the underlying
algorithms to more precisely model network behavior, e.g., splitting of unstable
neurons into branch and bound cases.

Selecting Verifiers Unlike other research that focuses on improving the per-
formance of a single verifier with a single customized pruning techniques [10,53,

34 D. Xu et al.

59], our goal is to explore how the space of stabilization strategies impact a range
of verification approaches. Towards this goal, we select the three best-performing
verifiers from VNN-COMP 2022 [32] that were available: α,β-CROWN, MN-
BAB, and NNEnum 4. Improving the performance of these verifiers will extend
the state-of-the-art in scalable DNN verification.

Network Training Stabilizers are incorporated into training, so we use a
baseline(Baseline) trained without any stabilizers using the Adam optimizer
with a 10−3 learning rate and 0.99 decay for 20 epochs. All stabilizers are cus-
tomizable with hyperparameters, as described in §3 and §4. We use the well-
tuned parameter for RS Loss introduced in [53], and perform a binary search
of the parameter space for Bias Shaping and Stable Pruning. To elaborate,
RS Loss uses always-active scheduling with 10−4 weight parameter; Bias Shap-
ing uses interval scheduling activated every 5/25/50 mini-batches and adjusts
2%/5%/5% of unstable neurons each time it is applied for M2/M6/C2 archi-
tectures respectively; Stable Pruning undertakes an interval scheduling that
is activated for every 5/50/50 mini-batches with a pruning ratio of 2%/5%/5%
respectively. The resulting neural networks with the largest test accuracy of
the last five epochs are selected for verification. To account for stochasticity in
training, we train each network 5 times and report the mean data for each.

These choices for the space of experiments yield a total of 1,215 training tasks
and 36,450 verification tasks. Each training task is run with one GTX 1080 Ti
GPU with 11G VRAM. Each verification task is run with 8GB of memory on one
core of the Intel Xeon Gold 6130 CPU @ 2.10GHz with a timeout of 300 seconds.
The total CPU time spent on training and verification across our experiments
is 1858 and 1052 hours, respectively.

5.2 RQ1: Stabilizing Neurons

Stabilizers aim to linearize a portion of the behavior encoded by ReLU activation
across the set of computations activated for a property precondition. In this
experiment, we directly measure this by recording the percentage of neurons that
are stable during verification. We also record model test accuracy to understand
the trade-offs of the stabilization methods and stability estimators. Existing
verifiers do not record the number of stable neurons, so we modified an open-
source DNN verifier, NeuralSAT [11], to record the number of stable neurons
computed during verification.

Fig. 3 presents the average test accuracy and the average number of stable
neurons computed across the five training seeds for the three architectures across
the stabilizers in the benchmark as described in §5.1. The black ✚ sign indicates
the Baseline (Baseline), the ● sign represents RS Loss (RS), ✖ means the
Bias Shaping (BS) method, and ■ is Stable Pruning (SP). Six different col-
ors denote the different stability estimators. Across all three architectures, most
techniques can increase the number of stable neurons, but some of the techniques

4 Verinet performed well in the competition, but it required a custom solver that is
not freely available.

Training for Verification via Neuron Stabilizers 35

95 96 97 98
Test Accuracy(%)

65

70

75

80

85

90

95

St
ab

le
 N

eu
ro

ns
(%

) Estimator
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(a) M2

70 80 90 100
Test Accuracy(%)

40

50

60

70

80

90

(b) M6

56 58 60 62
Test Accuracy(%)

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

(c) C3

Fig. 3. Stable neurons(%) vs. test accuracy(%) per model

lead to a loss in test accuracy. For the M2 architecture, RS Loss with NIP can
significantly increase the number of stable neurons by more than 26 percent-
age points without compromising accuracy. For M6, RS Loss yields an even
greater increase of 55 percentage points but in combination with the SIP esti-
mator. For the Convolutional C3 network, a very high percentage of neurons are
already stable so only marginal improvement can be achieved. Here the Stable
Pruning method performs best while preserving accuracy, but it only yields a
percentage point increase. For all of the architectures, if one is willing to sacrifice
a degree of accuracy then further increases in stability can be achieved. For ex-
ample, forM2 bias shaping can achieve an additional 7 percentage point increase
in stable neurons at the cost of just over 1 percentage point in test accuracy.

RS BS SP
Approach

0

1

2

3

4

5

No
rm

al
ize

d
Tr

ai
ni

ng
 T

im
e

SDD
SAD
NIP
SIP
ALR
ALRo
Baseline

Fig. 4. Normalized training time

Incorporating stabilization in training can
increase training time. Fig. 4 shows the aver-
age training time for M2 normalized to the
Baseline. The trend for M6 is similar to
the other architectures. The clear outlier in
terms of cost is the ALRo estimator when
used with RS Loss, which incurs more than
a 5-fold increase in training time. This over-
head even prevents RS Loss from practically
training with ALR and ALRo on the C3 ar-
chitecture. The overhead of most of the other
estimators is negligible, including those that
yielded significant increases in stable neurons.

RQ1 Findings Across the study there are
combinations of stabilization methods and stability estimators that are capable
of increasing the number of stable neurons, in many cases substantially, without
compromising test accuracy or training time.

36 D. Xu et al.

95 96 97 98
Test Accuracy(%)

30

35

40

45

50
Pr

ob
le

m
 S

ol
ve

d

(a) α,β-CROWN on M2

70 80 90 100
Test Accuracy(%)

15

20

25

30

35

40

45

50

Estimator
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(b) α,β-CROWN on M6

56 58 60 62
Test Accuracy(%)

40

41

42

43

44

45

46

47

(c) α,β-CROWN on C3

95 96 97 98
Test Accuracy(%)

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

50.00

Pr
ob

le
m

 S
ol

ve
d

(d) MN-BAB on M2

95 96 97 98
Test Accuracy(%)

20

25

30

35

40

45

50

(e) NNEnum on M2

70 80 90 100
Test Accuracy(%)

10

20

30

40

50

(f) NNEnum on M6

Fig. 5. Solved verification problems vs. test accuracy(%)

5.3 RQ2: Enhancing Verification

RQ1 demonstrates the ability of stabilizers to increase the number of stable
neurons across a space of verification problems. This question explores whether
those increases lead to improvements in verifier performance. To assess the gen-
eralization of the stabilizers to variations of DNN properties, we verify 50 local
robustness properties per trained network, pairing 10 center points with each of
the 5 epsilon radii. We run the three selected state-of-the-art verifiers on each
problem.

We measure two metrics to assess verification performance: (1) the number
of problems, i.e., the network, center-point, and radii combination, each verifier
can solve, i.e., produce either an SAT or UNSAT result, and (2) the time taken
to solve those problems. Note that our metrics exclude runs that produce errors,
exceed a 300-second timeout, or an 8GB memory bound. These metrics are stan-
dard for assessing verifier performance and while sometimes they are aggregated,
as in PAR2 [55], we keep them separate here to explore them independently.

Fig. 5 shows six plots of the number of verification problems solved versus test
accuracy across the three architectures using three of the verifiers. The trends in

Training for Verification via Neuron Stabilizers 37

95 96 97 98
Test Accuracy(%)

0

5

10

15

20

25

30

Sp
ee

du
p

(a) α,β-CROWN on M2

70 80 90 100
Test Accuracy(%)

100

101
Estimator
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(b) α,β-CROWN on M6

56 58 60 62
Test Accuracy(%)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c) α,β-CROWN on C3

95 96 97 98
Test Accuracy(%)

0

5

10

15

20

25

30

Sp
ee

du
p

(d) MN-BAB on M2

95 96 97 98
Test Accuracy(%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(e) NNEnum on M2

70 80 90 100
Test Accuracy(%)

100

101

(f) NNEnum on M6

Fig. 6. Verification time speedup vs. test accuracy(%)

these plots are largely consistent with the findings of RQ1 - when more neurons
are stable the verifiers are more effective in solving problems. RS Loss, with
different estimators, increases the number of problems solved by factors up to
5.92 for these verifier network combinations without sacrificing test accuracy. As
in RQ1, further performance improvements are possible by sacrificing accuracy.
For example, on M2 α,β-CROWN can improve by a factor of 1.67 using Bias
Shaping with a reduction of 1 percentage point in accuracy.

The trends shown here are consistent with the performance of α,β-CROWN
and NNEnum across the study, but MN-BAB exhibited different performance.
For M2 and M6, the baseline technique was able to solve all 50 problems so
there is no opportunity for improvement, while almost all the stabilizers can
maintain the 50 problems solved. Note that the implementation of MN-BAB
just doesn’t support the C3 architecture. While the number of problems does
not change for MN-BAB with stabilization as we discuss below its runtime is
reduced.

Fig. 6 plots the verification time speedup over Baseline against test accuracy
for 6 verifier network pairs. We observe a similar trend to what was observed for
the number of neurons stabilized and the number of verification problems solved

38 D. Xu et al.

– stabilization can speed up verification without compromising test accuracy. For
MN-BAB on M2 while the number of problems solved did not change, using
RS Loss with NIP yielded a factor of 14 speedup. For M6 we see a speedup
of up to a factor of 5 with NNEnum and for C3 more modest speedups for
α,β-CROWN. The MN-BAB plot also shows, as observed above, that further
speedups – greater than 30 fold – can be achieved if one compromises accuracy
by about 1 percentage point.

RQ2 Findings Stabilizing neurons during training can substantially increase
the number of problems solved and reduce the time required to solve them
by state-of-the-art DNN verifiers without compromising test accuracy. Further
improvement in verifier performance can be achieved with a small sacrifice in
test accuracy.

5.4 Discussion

The data show a significant degree of variability in the effectiveness of particu-
lar stable training approaches with verifiers and verification problems. Broadly
speaking RS Loss seems to perform well when one is unwilling to sacrifice test
accuracy, but the best estimator varies depending on the verifier and problem –
with SDD, NIP, and SIP yielding the best performance. For the large Convolu-
tional network, Stable Pruning also performs well without compromising test
accuracy. We believe this to be consistent with the broader results from the field
of structured pruning [18,43], where it has been found that large networks tend
to be over-parameterized and can thus accommodate significant pruning without
compromising accuracy. While the study shows that many of the methods can
yield benefits, we believe that it also demonstrates that certain stabilization ap-
proaches, e.g., RS Loss with ALRo, are too costly for use in practice. Further
study should focus on how to select the best stable training approach, and its
hyperparameters, to yield the best improvement for a given verifier and class
of verification problems. We believe it will be fruitful to develop such training
for verification approaches in concert with algorithmic and engineering improve-
ments to verification algorithms.

5.5 Threats to Validity

The chief threats to internal validity relate to whether the collection of test
accuracy, stable neurons, verification problems solved, and verification time were
accurate. We tested the accuracy of all stabilizer-trained networks, cross-checked
problem solutions across verifiers, and thoroughly tested our instrumentation of
NeuralSAT for recording neuron stability. Regarding external validity, while
our study was scoped to manage experimental costs, it spanned: 3 verifiers, 3
network architectures, 50 property specifications, and 5 seeds. We used fixed
sets of training and stabilizer parameters per neural network architecture, which
potentially underestimated the benefit that might be observed by customizing
parameters. While broadening the study further would be a valuable direction

Training for Verification via Neuron Stabilizers 39

for future work, the scope of the study is sufficient to support the finding that
stabilizers can enhance DNN verification across a breadth of contexts.

6 Conclusion

Verifying neural networks is a challenging task due to their high computational
complexity. In this work, we propose two novel approaches Bias Shaping and
Stable Pruning, to enhance the scalability of DNN verifiers by inducing more
stable neurons during the training process. In addition, we designed six neuron
stability estimators to drive stability-oriented training. Across a significant study,
we found that focusing on stability yields a viable method to achieve training
for verification that can significantly improve the ability to solve problems and
speed up state-of-the-art verifiers.

Besides the promising results, we identified more opportunities when working
on this project. In the future, we plan to (1) extend our methods to real-world
large neural network architectures; (2) explore automatic ways to tune hyper-
parameters that lead to better performance; (3) further enhance the stabilizers’
performance while minimizing accuracy trade-offs; (4) study the applicability
of stabilizer combinations; and lastly (5) study the verification algorithms to
understand how to customize stabilizers to benefit the most.

Acknowledgment

This material is based in part upon work supported by National Science Foun-
dation awards 1900676, 2019239, 2129824, 2217071, and 2312487.

References

1. Bak, S.: Execution-guided overapproximation (ego) for improving scalability of
neural network verification. In: International Workshop on Verification of Neural
Networks (2020)

2. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498 (2021)

3. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying relu neural networks. In: International Conference on Computer
Aided Verification. pp. 66–96. Springer (2020)

4. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification
for deep neural networks. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). pp. 312–323. IEEE (2021)

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. Advances in neural information
processing systems 29 (2016)

6. Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying safety properties of a powerpc-
microprocessor using symbolic model checking without bdds. In: Computer Aided
Verification: 11th International Conference, CAV’99 Trento, Italy, July 6–10, 1999
Proceedings 11. pp. 60–71. Springer (1999)

40 D. Xu et al.

7. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of relu-based neural networks via dependency analysis. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 34(04), pp. 3291–3299 (2020)

8. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First three years of the
international verification of neural networks competition (vnn-comp). International
Journal on Software Tools for Technology Transfer pp. 1–11 (2023)

9. Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning
Research 21(2020) (2020)

10. Chen, T., Zhang, H., Zhang, Z., Chang, S., Liu, S., Chen, P.Y., Wang, Z.: Linearity
grafting: Relaxed neuron pruning helps certifiable robustness. In: International
Conference on Machine Learning. pp. 3760–3772. PMLR (2022)

11. Duong, H., Li, L., Nguyen, T., Dwyer, M.: A dpll (t) framework for verifying deep
neural networks. arXiv preprint arXiv:2307.10266 (2023)

12. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: UAI. vol. 1(2), p. 3 (2018)

13. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 269–286. Springer (2017)

14. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: International Conference on Computer Aided Verifica-
tion. pp. 43–65. Springer (2020)

15. Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE
Transactions on Automatic Control (2020)

16. Feng, C., Chen, Z., Hong, W., Yu, H., Dong, W., Wang, J.: Boosting the ro-
bustness verification of dnn by identifying the achilles’s heel. arXiv preprint
arXiv:1811.07108 (2018)

17. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net (2022), https://openreview.net/forum?id=l_amHf1oaK

18. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019),
https://openreview.net/forum?id=rJl-b3RcF7

19. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: Safety and robustness certification of neural networks with abstract in-
terpretation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3–18.
IEEE (2018)

20. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

21. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International conference on computer aided verification. pp. 3–29.
Springer (2017)

22. Johnson, T.T., Liu, C.: Vnn-comp2020 report, https://www.overleaf.com/read/
rbcfnbyhymmy

23. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification. pp. 97–117. Springer (2017)

Training for Verification via Neuron Stabilizers 41

https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=rJl-b3RcF7
https://www.overleaf.com/read/rbcfnbyhymmy
https://www.overleaf.com/read/rbcfnbyhymmy

24. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided
Verification. pp. 443–452. Springer (2019)

25. Khedher, M.I., Ibn-Khedher, H., Hadji, M.: Dynamic and scalable deep neural
network verification algorithm. In: ICAART (2). pp. 1122–1130 (2021)

26. Khedr, H., Ferlez, J., Shoukry, Y.: Effective formal verification of neural networks
using the geometry of linear regions. arXiv preprint arXiv:2006.10864 (2020)

27. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural net-
works with symbolic propagation: Towards higher precision and faster verification.
In: International Static Analysis Symposium. pp. 296–319. Springer (2019)

28. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for verifying deep neural networks. Foundations and Trends® in Op-
timization 4(3-4), 244–404 (2021)

29. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of train-
ing neural networks. Advances in neural information processing systems 27 (2014)

30. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. arXiv preprint arXiv:1706.07351 (2017)

31. Lu, J., Kumar, M.P.: Neural network branching for neural network verifica-
tion. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020), https://

openreview.net/forum?id=B1evfa4tPB
32. Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international

verification of neural networks competition (vnn-comp 2022): summary and results.
arXiv preprint arXiv:2212.10376 (2022)

33. Paul, M., Chen, F., Larsen, B.W., Frankle, J., Ganguli, S., Dziugaite, G.K.:
Unmasking the lottery ticket hypothesis: What’s encoded in a winning ticket’s
mask? In: The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net (2023), https:

//openreview.net/pdf?id=xSsW2Am-ukZ
34. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversar-

ial examples. In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net (2018), https://openreview.net/forum?id=Bys4ob-Rb

35. Shriver, D., Elbaum, S., Dwyer, M.: Artifact: Reducing dnn properties to enable
falsification with adversarial attacks. In: 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion). pp.
162–163 (2021). https://doi.org/10.1109/ICSE-Companion52605.2021.00068

36. Shriver, D., Elbaum, S., Dwyer, M.B.: Dnnv: A framework for deep neural network
verification. In: International Conference on Computer Aided Verification. pp. 137–
150. Springer (2021)

37. Shriver, D., Elbaum, S., Dwyer, M.B.: Reducing dnn properties to enable falsifica-
tion with adversarial attacks. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). pp. 275–287. IEEE (2021)

38. Shriver, D., Xu, D., Elbaum, S., Dwyer, M.B.: Refactoring neural networks for
verification. arXiv preprint arXiv:1908.08026 (2019)

39. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron convex
barrier for neural network certification. Advances in Neural Information Processing
Systems 32, 15098–15109 (2019)

40. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. NeurIPS 1(4), 6 (2018)

42 D. Xu et al.

https://openreview.net/forum?id=B1evfa4tPB
https://openreview.net/forum?id=B1evfa4tPB
https://openreview.net/pdf?id=xSsW2Am-ukZ
https://openreview.net/pdf?id=xSsW2Am-ukZ
https://openreview.net/forum?id=Bys4ob-Rb
https://doi.org/10.1109/ICSE-Companion52605.2021.00068

41. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: International Conference on Learning Representations (2018)

42. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

43. Tan, C.M.J., Motani, M.: Dropnet: Reducing neural network complexity via iter-
ative pruning. In: International Conference on Machine Learning. pp. 9356–9366.
PMLR (2020)

44. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net
(2019), https://openreview.net/forum?id=HyGIdiRqtm

45. Tran, H.D., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xiang, W., Bak,
S., Johnson, T.T.: Nnv: The neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: International Conference
on Computer Aided Verification. pp. 3–17. Springer (2020)

46. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. Advances in neural information processing systems 31 (2018)

47. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th {USENIX} Security Symposium
({USENIX} Security 18). pp. 1599–1614 (2018)

48. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-
crown: Efficient bound propagation with per-neuron split constraints for neural
network robustness verification. Advances in Neural Information Processing Sys-
tems 34, 29909–29921 (2021)

49. Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Daniel, L., Boning, D.,
Dhillon, I.: Towards fast computation of certified robustness for relu networks. In:
International Conference on Machine Learning. pp. 5276–5285. PMLR (2018)

50. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: International Conference on Machine Learning. pp.
5286–5295. PMLR (2018)

51. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and veri-
fication for multilayer neural networks. IEEE transactions on neural networks and
learning systems 29(11), 5777–5783 (2018)

52. Xiang, W., Tran, H.D., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation
and safety verification for piecewise linear systems with neural network controllers.
In: 2018 Annual American Control Conference (ACC). pp. 1574–1579. IEEE (2018)

53. Xiao, K.Y., Tjeng, V., Shafiullah, N.M.M., Madry, A.: Training for faster adversar-
ial robustness verification via inducing relu stability. In: 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net (2019), https://openreview.net/forum?id=BJfIVjAcKm

54. Xu, D., Mozumder, N.J., Duong, H., Dwyer, M.B.: The OCTOPUS Framework |=
Training for Verification: Increasing Neuron Stability to Scale DNN Verification (1
2024). https://doi.org/10.6084/m9.figshare.24916248.v3

55. Xu, D., Shriver, D., Dwyer, M.B., Elbaum, S.: Systematic generation of diverse
benchmarks for dnn verification. In: International Conference on Computer Aided
Verification. pp. 97–121. Springer (2020)

56. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.W., Huang, M., Kailkhura, B., Lin,
X., Hsieh, C.J.: Automatic perturbation analysis for scalable certified robustness
and beyond. Advances in Neural Information Processing Systems 33 (2020)

Training for Verification via Neuron Stabilizers 43

https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=BJfIVjAcKm
https://doi.org/10.6084/m9.figshare.24916248.v3

57. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.J.: Fast and
Complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In: International Conference on Learning Representa-
tions (2021), https://openreview.net/forum?id=nVZtXBI6LNn

58. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network ro-
bustness certification with general activation functions. In: Bengio, S., Wallach,
H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 4944–4953 (2018), https://proceedings.neurips.cc/paper/2018/
hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html

59. Zhangheng, L., Chen, T., Li, L., Li, B., Wang, Z.: Can pruning improve certified
robustness of neural networks? Transactions on Machine Learning Research (2022)

44 D. Xu et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://openreview.net/forum?id=nVZtXBI6LNn
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
http://creativecommons.org/licenses/by/4.0/

	Training for Verification: Increasing Neuron Stability to Scale DNN Verification

