
Verification under TSO with an infinite Data
Domain

Abstract. We examine verification of concurrent programs under the
total store ordering (TSO) semantics used by the x86 architecture. In our
model, threads manipulate variables over infinite domains and they can
check whether variables are related for a range of relations. We show that,
in general, the control state reachability problem is undecidable. This
result is derived through a reduction from the state reachability problem
of lossy channel systems with data (which is known to be undecidable).
In the light of this undecidability, we turn our attention to a more
tractable variant of the reachability problem. Specifically, we study con-
text bounded runs, which provide an under-approximation of the pro-
gram behavior by limiting the possible interactions between processes.
A run consists of a number of contexts, with each context representing
a sequence of steps where a only single designated thread is active. We
prove that the control state reachability problem under bounded context
switching is PSPACE complete.

1 Introduction

Over the years, research on concurrent verification has been chiefly conducted
under the premise that the threads run according to the classical Sequential
Consistency (SC) semantics. Under SC, the threads operate on a set of shared
variables through which they communicate atomically, i.e., read and write op-
erations take effect immediately. In particular, a write operation is visible to all
the threads as soon as the writer thread carries out its operation. Therefore,
the threads always maintain a uniform view of the shared memory: they all see
the latest value written on any given variable and we can interpret program
runs as interleavings of sequential thread executions. Although SC has been
immensely popular as an intuitive way of understanding the behaviours of con-
current threads, it is not realistic to assume computation platforms guarantee SC
anymore. The reason is that, due to hardware and compiler optimizations, most
modern platforms allow more relaxed program behaviours than those permitted
under SC, leading to so-called weak memory models. Weakly consistent platforms
are found at all levels of system design such as multiprocessor architectures (e.g.,
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 276–295, 2024.
https://doi.org/10.1007/978-3-031-57256-2_14

Parosh Aziz Abdulla1 , Mohamed Faouzi Atig1, Florian Furbach2(B) ,
and Shashwat Garg3

1 Uppsala University, Uppsala, Sweden
2 Technical University of Denmark, Kongens Lyngby, Denmark

3 Indian Institute of Technology Bombay, Mumbai, India

fwafu@dtu.dk

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_14&domain=pdf
http://orcid.org/0000-0001-8229-3481
http://orcid.org/0009-0008-4922-9363

[33,32]), Cache protocols (e.g., [31,19]), language level concurrency (e.g., [24]),
and distributed data stores (e.g., [17]). Program behaviours change dramatically
when moving from the SC semantics to weaker semantics. Therefore, in recent
years, research on the verification of concurrent programs under weak memory
models have started to become popular. A classical example of weak memory
models is the Total Store Ordering (TSO) semantics which is a formalization
of the Intel x86 processor architecture [29]. The TSO semantics inserts an un-
bounded FIFO buffer, called the store buffer, between each thread and the main
memory. When a thread performs a write instruction, the corresponding opera-
tion is appended to the end of the buffer, and hence it is not immediately visible
to other threads. The write messages are non-deterministically propagated from
the store buffer of a given thread to the shared memory. Verification of pro-
grams that contain data races needs to take the underlying memory model into
account. This is crucial in hardware-close programming, especially in concurrent
libraries or kernels. Such applications are inherently racy; exploiting racy WMM
operations for efficiency is standard practice. Our work serves as a foundation
for ensuring the correctness of such systems, which often rely on these intricate
memory models to achieve optimal performance.

In a parallel development, significant research has been done on extending
model checking frameworks to programs with infinite state spaces. There are
two main reasons why a program might have an infinite state space. The first
is that the program has unbounded control structures, which means it can have
an unbounded number of threads. Examples include parameterized systems, in
which correctness of the system is checked regardless of the number of threads,
and programs that allow dynamic thread creation through spawning [11]. Sec-
ondly, the program may operate on unbounded data structures, such as clocks
[12], stacks [16], and queues ([10,1]). These works, including their extensions,
have been done under the SC assumption. Although recent works have started
to explore parameterized verification for weak memory models [6,4,22], the ver-
ification of programs that operate on a shared unbounded data structure with
weak memory semantics has remained unexplored until now.

In this paper, we combine infinite-state programs with weak memory mod-
els: we study the decidability and complexity of the reachability problem for
programs operating on unbounded data structures under the TSO semantics.
While the TSO semantics has been extensively studied (e.g., [15,5]), it has been
assumed that the data domain is finite. This means that the possible values of
a shared variable or a register are bounded. In contrast, our model allows for an
infinite domain such as natural numbers N or real numbers R. It contains register
assignments, an operator that may assign an arbitrary value to a register, and a
set of relations that act as guards. We focus on relations equality and "greater
than" on totally ordered sets and combinations, negations and inversions of
them. Our model finds practical utility in continuously running concurrent pro-
tocols. A prime example is the bakery ticket protocol used in various scenarios.
It is presented in Section 4. Here, an unbounded number of requests occur, each
assigned increasing numbers and the lowest-numbered request is serviced. This

Verification under TSO with an infinite Data Domain 277

presents a scenario with inherent races that requires an infinite domain which
our model can effectively capture. Note that our model is infinite in multiple
dimensions: the threads are infinite-state as they operate on unbounded data
domains, the store buffers are unbounded, and they carry write-messages over
an unbounded domain.

In order to perform safety verification, we need to decide whether there is an
execution that can reach some undesirable control state. We study the control
state reachability problem and show that for many domains and relations, it is
undecidable. Therefore, we propose an alternative approach by introducing an
under-approximation schema using context-bounding [30,28,25,23,14]. Context-
bounding has been proposed in [30] as a suitable approach for efficient bug de-
tection in multithreaded programs. Indeed, for concurrent programs, a bounding
concept that provides both good coverage and scalability must be based on as-
pects related to the interactions between concurrent components. It has been
shown experimentally that concurrency bugs usually show up after a small num-
ber of context switches [28]. In this work, we study a context bounded analysis
where only the active thread may perform an operation and update the memory.
We show that in this case, the state reachability problem is not only decidable,
but even PSPACE complete. To this end, we perform a two-step abstraction
that employs insights about context bounded runs of TSO semantics as well as
the structure of reachable configurations.

In the first step of our abstraction process, we refine the methods introduced
by [14]. Their construction introduces a code-to-code translation that abstracts
the buffer, simplifying the problem to state reachability under SC. Our approach
leverages the fact that this abstraction does not explicitly depend on variable
values. In our case, the abstraction step yields a register machine where the reg-
ister values are integers or real numbers, and the transitions are conditioned by
“gap-constraints" [9,18,27]. Gap constraints serve to identify, within each system
configuration, (i) the variables with identical values and (ii) the gaps (differ-
ences) between variable values. Notably, these gaps can be arbitrarily large. The
papers [9,18,27] analyze programs with gap constraints within the framework of
well-structured systems [8,20]. As a result, they do not provide upper bounds on
the complexity.

As another key contribution of this paper, we propose a method to achieve
PSPACE completeness. The fundamental idea behind our algorithm is that for
any system execution, there is an alternative execution with larger gaps among
the variables. This implies that we do not need to explicitly track the gaps
between variables, as is the case in [9,18,27]. Instead, we implement a second
(precise) abstraction step, focusing solely on the order of variables. For any pair
of variables x and y, we record whether x = y, x < y, or x > y.

278 Parosh A. Abdulla et al.

2 Related Work

Not much current work considers the complexity and decidability of infinite-state
state programs on weak memory models. Furthermore, most existing works con-
sider parameterized verification rather than programs with infinite data domains.
The paper [6] considers parameterized verification of programs running under
TSO, and shows that the reachability problem is PSPACE complete. However,
the work assumes that the threads are finite-state and, in particular, the threads
do not manipulate unbounded data domains. The paper [22] shows PSPACE
completeness when the underlying semantics is the Release-Acquire fragment of
C11. The latter semantics gives rise to a different semantics compared to TSO.
The paper also considers finite-state threads.

In [2], parameterized verification of programs running under TSO is con-
sidered. However, the paper applies the framework of well-structured systems
where the buffers of the threads are modelled as lossy channels, and hence the
complexity of the algorithm is non-primitive recursive. In particular, the paper
does not give any complexity bounds for the reachability problem (or any other
verification problems). The paper [15] considers checking the robustness prop-
erty against SC for parameterized systems running under the TSO semantics.
However, the robustness problem is entirely different from reachability and the
techniques and results developed in this work cannot be applied in our setting.

The paper [4] considers parameterized verification under the TSO semantics
when the individual threads are infinite-state. However, the authors study a
restricted model, where it assumes that (i) all threads are identical and (ii) the
threads do not use atomic operations. Generally, parameterized verification for
the restricted model is easier than non-parameterized verification. For instance,
in the case of TSO where the threads are finite-state, the restricted parameterized
verification problem is in PSPACE [6] while the non-parameterized problem has
a non-primitive recursive complexity [13].

The are many works on extending infinite-state systems with unbounded
data domains. Well studied examples are Petri nets with data tokens [27], stacks
with unbounded stack alphabets [7], and lossy channel systems with unbounded
message alphabets [1]. All these works assume the SC semantics and are hence
orthogonal to this work.

3 Total Store Order (TSO)

Let B = {true, false}. Given a function f : A→ B with a ∈ A, b ∈ B, f [a← b]
is defined as follows: f [a← b](a) := b, f [a← b](a′) := f(a′) for any a′ ∈ A with
a′ ̸= a. We write x ∈ w for letter x ∈ Σ occurring in word w ∈ Σ∗ and w′ ≤ w
for w′ ∈ Σ∗ being a subsequence of w.

Let x and y be two natural (real) numbers. Let n ∈ N, we use x <n y (resp.
≤n y) to denote that x + n < y (resp. x + n ≤ y). A data theory is defined
by a pair (D,Rl) where D is an infinite data domain and Rl ⊆ D × D → B is a
finite set of relations over D. In this paper, we restrict ourselves to the set of

Verification under TSO with an infinite Data Domain 279

natural/real numbers as data domain, and the set of relations Rl to be a subset
of Rl≤n = {=, ̸=, <,≤, <n,≤n| n ∈ N}. We assume w.l.o.g. that 0 ∈ D.

Transition Systems A labelled transition system is a tuple T S = (Γ,L, T , γinit)
that consists of a set of configurations Γ , a finite set of labels L, a labelled
transition relation T ⊆ Γ × L × Γ , and an initial configuration γinit ∈ Γ . We
write γ

ℓ−→ γ′ for ⟨γ, ℓ, γ′⟩ ∈ T . We say that π = t1 . . . tn ∈ T ∗ is a run of T S if
there is a sequence of configurations γ1, γ2, . . . , γn+1 such that ti = γi

ℓi−→ γi+1

for i ≤ n and γ1 = γinit. The run π ends in configuration γn+1. We say that γ is
reachable if there is a run π of T S that ends in γ.

Programs A concurrent program Prog consists of finite set of threads T . Each
thread t ∈ T is a finite state machine that works on its own set of local registers
Rt. The local registers of different threads are disjoint. Let R = ∪t∈TRt. The
threads communicate over a finite set of shared variables X . The registers and
the shared variables take their values from a data theory (D,Rl). Formally, a
thread is a tuple t = ⟨Qt,Rt, ∆t, q

t
init⟩ where Qt is a finite set of states of thread

t, qtinit ∈ Qt is the initial state of t, and ∆t ⊆ Qt × Op × Qt is a finite set
of transitions that change the state and execute an operation op ∈ Op. Let
x ∈ X , r1, r2 ∈ Rt. A transition δ ∈ ∆t is a tuple δ = ⟨q, op, q′⟩ where the
operation op ∈ Op has one of the following forms: (1) r1 := r2 assigns the value
of register r2 to register r1, (2) r1 := ⊛ non-deterministically assigns a value to
register r1, (3) rl(r1, r2) checks if the values of the two registers r1 and r2 satisfy
the relation rl ∈ Rl, (4) rd(x, r1) reads the value of shared variable x and stores
it in register r1, (5) wt(x, r1) writes the value of register r1 to shared variable
x, and (6) arw(x, r1, r2) is the atomic read write operation which atomically
executes a read followed by a write operation.

TSO Semantics The TSO memory model [33] is used by the x86 processor ar-
chitecture. Each thread has its own FIFO write buffer. Write operations wt(x, r)
in a thread t do not update the memory immediately; if d ∈ D is the value of
r, then (x, d) is appended to the buffer of t. The buffer contents are updated to
the shared memory non-deterministically. A read operation rd(x, r) in t accesses
the latest write in the buffer of t. In case there is no such write, it accesses the
shared memory. For the atomic read write operation arw(x, r1, r2) in thread t,
the buffer of t must be empty (ϵ), and the value of x in the memory must be
same as the value of r1. Then x is set to the value of r2.

Formally, the TSO memory model is a labelled transition system. A configu-
ration γ is defined as a tuple γ = ⟨St,RVal,Buf,Mem⟩ where St : T → ⋃

t∈T Qt

maps each thread to its current state, RVal : R → D maps each register in a
thread to its current value, Buf : T → (X × D)∗ maps each thread buffer to
its content, which is a sequence of writes. Finally, Mem : X → D maps each
shared variable to its current value in the memory. The initial configuration of
Prog is defined by a tuple γinit = ⟨Stinit,RValinit,Buf init,Meminit⟩ where Stinit maps
each thread t to its initial states qtinit, RValinit and Meminit assign all registers

280 Parosh A. Abdulla et al.

P. A. Abdulla et al. 23:23

23:4 Verification under TSO with an infinite Data Domain

�q, r1 := r2, q
�� � �t

�St,RVal,Buf,Mem� t,r1:=r2������ �St[t � q�],RVal[r1 � RVal(r2)],Buf,Mem�
assign

�q, r1 := ~, q�� � �t d � D

�St,RVal,Buf,Mem� t,r1:=~������ �St[t � q�],RVal[r1 � d],Buf,Mem�
new value

�q, rl(r1, r2), q�� � �t rl(R(t)(r1), R(t)(r2))

�St,RVal,Buf,Mem� t,rl(r1,r2)������� �St[t � q�],RVal,Buf,Mem�
relation

�q,wt(x, r1), q�� � �t

�St,RVal,Buf,Mem� t,wt(x,r1)������� �St[t � q�],RVal,Buf[t � (x,RVal(r1)).Buf(t)],Mem�
write

�q, rd(x, r1), q�� � �t @d � D : (x, d) � B(t)

�St,RVal,Buf,Mem� t,rd(x,r1)������� �St[t � q�],RVal[r1 � Mem(x)],Buf,Mem�
global read

�q, rd(x, r1), q�� � �t Buf(t) = �.(x, d).� �,� � (X · D)� @d� � D : (x, d�) � �

�St,RVal,Buf,Mem� t,rd(x,r1)������� �St[t � q�],RVal[r1 � d],Buf,Mem�
local read

�q, arw(x, r1, r2), q�� � �t B(t) = � RVal(r1) = Mem(x)

�St,RVal,Buf,Mem� t,arw(x,r1,r2)��������� �St[t � q�],RVal,Buf,Mem[x � RVal(r2)]�
atomic read write

�St,RVal,Buf[t � B(t).(x, d)],Mem� t,u��� �St,RVal,Buf,Mem[x � d]�
memory update

Figure 1 The transition relation of TSO. We assume that St(t) = q.

whether the values of r1 and r2 are equal (di�erent), (4) rd(x, r1) reads the value of shared135

variable x and stores it in register r1, (5) wt(x, r1) writes the value of register r1 to shared136

variable x, and (6) arw(x, r1, r2) is the atomic read write operation which atomically executes137

a read followed by a write operation.138

TSO Semantics The TSO memory model [29] is used by the x86 processor architecture.139

Each thread has its own FIFO write bu�er. Write operations wt(x, r) in a thread t do not140

update the memory immediately; if v is the value of r, then (x, v) is appended to the bu�er141

of t. The bu�er contents are updated to the shared memory non-deterministically. A read142

operation rd(x, r) in thread t accesses the latest write in the bu�er of t. In case there is no143

such write, it accesses the shared memory. For the atomic read write operation arw(x, r1, r2)144

in thread t, the bu�er of t must be empty (�), and the value of x in the memory must be145

same as the value of r1. Then (x, v) is appended to the bu�er of t, where v is the value of r2.146

Formally, the TSO memory model is a labelled transition system between configurations.147

A configuration � is defined as a tuple � = �St,RVal,Buf,Mem� where St : T � �
t�T Qt148

maps each thread to its current state, RVal : R � D maps each register in a thread to its149

current value, Buf : T � (X �D)� maps each thread bu�er to its content, which is a sequence150

of writes. Finally, Mem : X � D maps each shared variable to its current value in the memory.151

The initial configuration of Prog is defined by a tuple �init = �Stinit,RValinit,Bufinit,Meminit�152

where Stinit maps t each thread to its initial states qtinit, RValinit,Meminit assign all registers153

and shared variables the value 0, and Buf init initializes all thread bu�ers to the empty word154

�. We formally define the labelled transition relation ��� on configurations in Figure 1 where155

the label � is either of the form t, op or t, u with t � T and op � Op.156

�q, r1 := r2, q
�� � �t

�St,RVal,Buf,Mem� t,r1:=r2������ �St[t � q�],RVal[r1 � RVal(r2)],Buf,Mem�
assign

�q, r1 := ~, q�� � �t d � D

�St,RVal,Buf,Mem� t,r1:=~������ �St[t � q�],RVal[r1 � d],Buf,Mem�
new value

�q, rl(r1, r2), q�� � �t rl(R(r1), R(r2))

�St,RVal,Buf,Mem� t,rl(r1,r2)������� �St[t � q�],RVal,Buf,Mem�
relation

�q,wt(x, r1), q�� � �t

�St,RVal,Buf,Mem� t,wt(x,r1)������� �St[t � q�],RVal,Buf[t � (x,RVal(r1)).Buf(t)],Mem�
write

�q, rd(x, r1), q�� � �t @d � D : (x, d) � B(t)

�St,RVal,Buf,Mem� t,rd(x,r1)������� �St[t � q�],RVal[r1 � Mem(x)],Buf,Mem�
global read

�q, rd(x, r1), q�� � �t Buf(t) = �.(x, d).� �,� � (X · D)� @d� � D : (x, d�) � �

�St,RVal,Buf,Mem� t,rd(x,r1)������� �St[t � q�],RVal[r1 � d],Buf,Mem�
local read

�q, arw(x, r1, r2), q�� � �t Buf(t) = � RVal(r1) = Mem(x)

�St,RVal,Buf,Mem� t,arw(x,r1,r2)��������� �St[t � q�],RVal,Buf,Mem[x � RVal(r2)]�
atomic read write

�St,RVal,Buf[t � B(t).(x, d)],Mem� t,u��� �St,RVal,Buf,Mem[x � d]�
memory update

Figure 1 The transition relation of TSO. We assume that St(t) = q.

CVIT 2016

hq, r1 := r2, q
0i 2 �t

hSt,RVal,Buf,Memi t,r1:=r2�����! hSt[t q0],RVal[r1 RVal(r2)],Buf,Memi
assign

hq, r1 := ~, q0i 2 �t d 2 D

hSt,RVal,Buf,Memi t,r1:=~�����! hSt[t q0],RVal[r1 d],Buf,Memi
new value

hq, rl(r1, r2), q0i 2 �t rl(R(r1), R(r2))

hSt,RVal,Buf,Memi t,rl(r1,r2)������! hSt[t q0],RVal,Buf,Memi
relation

hq,wt(x, r1), q0i 2 �t

hSt,RVal,Buf,Memi t,wt(x,r1)������! hSt[t q0],RVal,Buf[t (x,RVal(r1)).Buf(t)],Memi
write

hq, rd(x, r1), q0i 2 �t @d 2 D : (x, d) 2 Buf(t)

hSt,RVal,Buf,Memi t,rd(x,r1)������! hSt[t q0],RVal[r1 Mem(x)],Buf,Memi
global read

hq, rd(x, r1), q0i 2 �t Buf(t) = ↵.(x, d).� ↵,� 2 (X · D)⇤ @d0 2 D : (x, d0) 2 ↵

hSt,RVal,Buf,Memi t,rd(x,r1)������! hSt[t q0],RVal[r1 d],Buf,Memi
local read

hq, arw(x, r1, r2), q0i 2 �t Buf(t) = ✏ RVal(r1) = Mem(x)

hSt,RVal,Buf,Memi t,arw(x,r1,r2)��������! hSt[t q0],RVal,Buf,Mem[x RVal(r2)]i
atomic read write

hSt,RVal,Buf[t B(t).(x, d)],Memi t,u��! hSt,RVal,Buf,Mem[x d]i
memory update

Fig. 1. The transition relation of TSO. We assume that St(t) = q.
hq, r1 := r2, q

0i 2 �t

hSt,RVal,Buf,Memi t,r1:=r2�����! hSt[t q0],RVal[r1 RVal(r2)],Buf,Memi
assign

hq, r1 := ~, q0i 2 �t d 2 D

hSt,RVal,Buf,Memi t,r1:=~�����! hSt[t q0],RVal[r1 d],Buf,Memi
new value

hq, rl(r1, r2), q0i 2 �t rl(R(r1), R(r2))

hSt,RVal,Buf,Memi t,rl(r1,r2)������! hSt[t q0],RVal,Buf,Memi
relation

hq,wt(x, r1), q0i 2 �t

hSt,RVal,Buf,Memi t,wt(x,r1)������! hSt[t q0],RVal,Buf[t (x,RVal(r1)).Buf(t)],Memi
write

hq, rd(x, r1), q0i 2 �t @d 2 D : (x, d) 2 Buf(t)

hSt,RVal,Buf,Memi t,rd(x,r1)������! hSt[t q0],RVal[r1 Mem(x)],Buf,Memi
global read

hq, rd(x, r1), q0i 2 �t Buf(t) = ↵.(x, d).� ↵,� 2 (X · D)⇤ @d0 2 D : (x, d0) 2 ↵

hSt,RVal,Buf,Memi t,rd(x,r1)������! hSt[t q0],RVal[r1 d],Buf,Memi
local read

hq, arw(x, r1, r2), q0i 2 �t Buf(t) = ✏ RVal(r1) = Mem(x)

hSt,RVal,Buf,Memi t,arw(x,r1,r2)��������! hSt[t q0],RVal,Buf,Mem[x RVal(r2)]i
atomic read write

hSt,RVal,Buf[t Buf(t).(x, d)],Memi t,u��! hSt,RVal,Buf,Mem[x d]i
memory update

Fig. 1. The transition relation of TSO. We assume that St(t) = q.
Fig. 1. The transition relation of TSO. We assume that St(t) = q.

and shared variables the value 0, and Buf init initializes all thread buffers to the
empty word ϵ. We formally define the labelled transition relation ℓ−→ on config-
urations in Figure 1 where the label ℓ is either of the form t, op (to denote a
thread operation) or t, u (to denote an update operation) with t ∈ T is a thread
and op ∈ Op is an operation.

The Reachability Problem Reach Given a concurrent program Progand a state
qfinal ∈ Qt of thread t, Reach asks, if a configuration γ = ⟨St,RVal,Buf,Mem⟩
with St(t) = qfinal is reachable by the transition system given by the TSO
semantics of Prog. In this case, we say that the state qfinal is reachable by Prog.
We use Reach[D,Rl] to denote the reachability problem for a concurrent program
with the data theory (D,Rl).

4 Lamport’s Bakery Algorithm

To demonstrate the practical application of our model, we use it to model Lam-
port’s Bakery Algorithm [26]. Created by Leslie Lamport in 1974, it is a cor-
nerstone solution for achieving mutual exclusion in concurrent systems. Picture
threads as patrons entering a bakery, each is handed a unique ticket upon arrival.
These tickets, representing the order of entry, dictate the sequence for access-
ing critical sections. They ensure an orderly execution flow and preventing race
conditions in a critical section.

Verification under TSO with an infinite Data Domain 281

Each thread is assigned a unique number that is larger then the numbers
currently assigned to other threads. The thread possessing the lowest number is
granted entry to the critical section. This thread may access the critical section
an unbounded number of times. This means the assigned tickets keep increasing
and thus an infinite domain is required. Note that the algorithm does not rely
on precise tickets values, we only need to compare the tickets to each other. This
makes the protocol well suited to our program model.

The protocol contains n threads where each thread i ≤ n is associated with
two variables: The ticket number ticketi and the flag choseni which signals
whether the thread has chosen a ticket number. We assume rTRUE and rFALSE

are initialized with different values that represent the boolean values of a flag
and that ticketi is initially the same as rFALSE for all i ≤ n.

The algorithm for thread i is given in Algorithm 1. For the sake of simplicity
and compactness we present the transition system as pseudocode. This is equiv-
alent to a program definition since the code only accesses variables and registers
using operations Op with relations Rl<. The remaining instructions only affect
the finite control flow and can be expressed using transitions.

Algorithm 1 Lamport Bakery Protocol
1: wt(choseni, rFALSE) {Begin choosing}
2: ri := ⊛ {Pick random ticket}
3: for all 1 ≤ j ≤ n do
4: rd(ticketj , rj)
5: if (ri < rj) then
6: goto line 1 {New ticket needed.}
7: end if
8: end for
9: wt(ticketi, ri) {Ticket accepted}

10: wt(choseni, rTRUE) {Choosing finished}
11: for all 1 ≤ j ≤ n do
12: rd(chosenj , rj)
13: if (rj ̸= rTRUE) then
14: goto line 12 {Thread j is still choosing}
15: end if
16: rd(ticketj , rj)
17: if (rj ̸= rFALSE & rj < ri) then
18: goto line 16 {Lower ticket j found}
19: end if
20: end for
21: CRITICAL Section
22: ri := rFALSE

23: goto line 1 {Back to NON-CRITICAL}

282 Parosh A. Abdulla et al.

5 State Reachability for TSO with (Dis)-Equality
Relation

We show that the reachability problem for concurrent programs under TSO is
undecidable when {=, ̸=} ⊆ Rl. The proof is achieved through a reduction from
the state reachability problem of Lossy Channel Systems with Data (DLCS) [1],
which is already known to be undecidable. To simulate the lossy channel, we
employ write buffers, as both are implemented as first-in-first-out queues. How-
ever, there are three main distinctions that must be considered: (i) write buffers
do not contain letters, (ii) write buffers are not lossy, and (iii) the semantics of
reads differ from receives.

We address these distinctions as follows: (i) We encode the letters as variables.
(ii) We model writes being lost by avoiding to read them. (iii) To prevent buffer
reads, we transfer the writes into a write buffer of a second thread with a different
variable. We ensure that every write is accessed only once by overwriting them
immediately with a different value.

Theorem 1. Reach[D,Rl] is undecidable for {=, ̸=} ⊆ Rl.

The rest of this section is devoted to the proof of the above theorem. We first
recall the definition of Lossy Channel Systems with Data (DLCS) [1]. Then, we
present the reduction from state reachability problem of DLCS to Reach[D,Rl].

⟨q, x := y, q′⟩ ∈ ∆L

⟨q,XVal, w⟩ x:=y−−−→ ⟨q′,XVal[x← XVal(y)], w⟩
assign

⟨q, x := ⊛, q′⟩ ∈ ∆L d ∈ D \ {XVal(y) | y ∈ XL}
⟨q,XVal, w⟩ x:=⊛−−−→ ⟨q′,XVal[x← d], w⟩

new value

⟨q, x = y, q′⟩ ∈ ∆L XVal(x) = XVal(y)

⟨q,XVal, w⟩ x=y−−−→ ⟨q′,XVal, w⟩
equality

⟨q, x ̸= y, q′⟩ ∈ ∆L XVal(x) ̸= XVal(y)

⟨q,XVal, w⟩ x ̸=y−−−→ ⟨q′,XVal, w⟩
disequality

⟨q, !⟨a, x⟩, q′⟩ ∈ ∆L

⟨q,XVal, w⟩ !⟨a,x⟩−−−−→ ⟨q′,XVal, (a,XVal(x)).w⟩
send

⟨q, ?⟨a, x⟩, q′⟩ ∈ ∆L

⟨q,XVal, w.(a, d)⟩ ?⟨a,x⟩−−−−→ ⟨q′,XVal[x← d], w⟩
receive

w′ ≤ w

⟨q,XVal, w⟩ loss−−→ ⟨q,XVal, w′⟩
lossiness

Fig. 2. The transition relation of DLCS

Verification under TSO with an infinite Data Domain 283

Lossy Channel Systems with Data A DLCS L = ⟨QL,XL, ΣL, ∆L, qinit⟩ consists
of a finite set of states QL, a finite number of variables XL ranging over an infinite
domain D, a finite channel alphabet ΣL, qinit ∈ Q is the initial state, and a finite
set of transitions ∆L. The set ∆L of transitions is a subset of QL × OpL ×QL.
Let x, y ∈ XL. The set OpL consists of the following operations (1) x := y which
assigns the value of y to x, (2) x := ⊛, which assigns a fresh value from D that
is different from the existing values of all variables4, (3) x = y (x ̸= y) which
compares the value of variables x and y, (4) !⟨a, x⟩ which appends letter a ∈ ΣL
together with the value of x to the channel, (5) ?⟨a, x⟩ which deletes the head
of the channel ⟨a, d⟩ and stores the value d in x, and (6) loss which removes
elements in the channel.

A configuration γ of DLCS is defined by the tuple ⟨q,XVal, w⟩ where q ∈ QL
is the current state, XVal : XL → D is the current valuation of the variables,
and w ∈ (Σ × D)∗ is the content of the lossy channel. The system is lossy,
which means any element in the channel may disappear anytime. The initial
configuration γinit of L is defined by (qinit,XValinit, ϵ) where XValinit(x) = 0 for all
x ∈ XL. The transition relation of DLCS is given in Figure 2.

The state reachability problem for L asks whether, for a given final state
qfinal ∈ Q, there is a reachable configuration γ of the form γ = ⟨qfinal ,XVal, w⟩.
In this case, we say that the state qfinal is reachable by L.

Theorem 2 ([1]). The state reachability problem for DLCS is undecidable.

q q′
rtmp := ⊛ rtmp ̸= r$ rtmp ̸= rx1 rtmp ̸= rxn rx := rtmp

Gadt
x:=⊛ : (q, x := ⊛, q′)

q q′

Gadt
?⟨a,x⟩ : (q, ?⟨a, x⟩, q′)

rd(ya, rx) rx ̸= r$ rd(ya, rtmp) rtmp = r$

q q′
wt(xa, rx) wt(xa, r$)

Gadt
!⟨a,x⟩ : (q, !⟨a, x⟩, q′)

qch

rd(xa, r
ch
tmp) rchtmp ̸= rch$

wt(ya, r
ch
tmp)

rd(xa, r
ch
tmp)rchtmp = rch$

wt(ya, r
ch
tmp)

Fig. 3. Prog(L) with threads t (pink states) and tch (yellow states).

4 This differs from the ⊛ in TSO where the value d ∈ D assigned by the operation
x := ⊛ can be anything.

284 Parosh A. Abdulla et al.

Reduction from DLCS reachability Given a DLCS L = ⟨QL,XL, ΣL, ∆L, qinit⟩
over data domain D with XL = {x1 . . . xn}, we reduce the state reachability of L
to the reachability problem Reach[D, {=, ̸=}] of a concurrent program Prog(L),
with two threads t, tch. The thread t simulates the operations of L, while thread
tch simulates the lossy channel of L using its write buffer. Let Rt = {r$, rtmp} ∪
{rx | x ∈ XL}, Rtch = {rch$, rchtmp} be the local registers of threads t and tch.
Corresponding to each x ∈ XL, we have the register rx in thread t, which stores
the current values of x. Registers rtmp and rchtmp are used to temporarily store
certain values. The shared variables of Prog(L) are X = {xa, ya | a ∈ ΣL}, they
help in simulating the behavior of the lossy channel of L.
Simulating the DLCS. The transitions of Prog(L) are sketched in Figure 3. The
initialization of the program is omitted in the figure and goes as follows. The
thread tch starts by assigning a non-deterministic value (say $) to the register
rch$ (i.e., rch$:= ⊛), then checks that the new value $ is different from 0 (i.e., by
checking that rch$ ̸= rchtmp), and finally performs an atomic read write operation
arw(x, rchtmp, r

ch
$) on each variable x ∈ X . The thread t starts by reading the value

of each shared variable x ∈ X (i.e., performing rd(x, r$)) and checks if its value
is different from 0 (i.e., r$ ̸= rtmp). At the end of this initialization phase, all
the shared variables have the new value $, the registers rtmp and rchtmp have the
value 0 and the registers r$ and rch$ have the value $. The current state of thread
t is the initial state qinit of L while the thread tch is in a state qch.

Every transition ⟨q, x := y, q′⟩ ∈ ∆L is simulated in Prog(L) by threat t with
a gadget—a sequence of transitions that starts in q and ends in q′. The transitions
(q, x := y, q′), (q, x = y, q′) and (q, x ̸= y, q′) in the DLCS are simulated by the
thread t as gadgets with single transitions (q, rx := ry, q

′), (q, rx = ry, q
′) and

(q, rx ̸= ry, q
′), respectively. We omit their description in Figure 3.

To simulate x := ⊛, we load the new value in register rtmp and ensure that it
is different from the values in registers r$ and rx1 . . . rxn . This is depicted by the
gadget Gadtx:=⊛ in thread t. The send operation !⟨a, x⟩ in the DLCS is simulated
by the gadget Gadt!⟨a,x⟩. In the DLCS, the send appends the letter a and the
value of x to the channel. This is simulated by the write wt(xa, rx), thereby
appending (xa, val(rx)) to the buffer of t. To simulate reads of the DLCS, we
first make note of a crucial difference in the way reads happen in DLCS and
TSO. In DLCS, a read happens from the head of the channel, and the head is
deleted immediately after the read. In TSO however, we can read from the latest
write in the shared memory multiple times. In order to simulate the “read once”
policy of the DLCS, we follow each wt(xa, rx) with another write wt(xa, r$).

Thread tch is a loop from the state qch which continuously reads from xa a
value from a simulated send followed by the separator $. It copies these values
to ya using local register rchtmp. The first time it reads from xa, it reads the value
d of x from a simulated send !⟨a, x⟩. It ensures that this is not the $ symbol
(rchtmp ̸= rch$), and writes this value from rchtmp into variable ya, thus appending
(ya, d) in the buffer of tch. It then reads again the value of xa into rchtmp. This
time, it makes sure to read $ with the check rchtmp = rch$. The receive ?⟨a, x⟩ of
the DLCS is simulated by Gadt?⟨a,x⟩. First, we read from ya and store it in rx,

Verification under TSO with an infinite Data Domain 285

ensuring this value d is not $. Then, we read $ from ya. This ensures that the
earlier value d is overwritten in the memory and is not read twice.

A loss in the channel of the DLCS results in losing some messages ⟨a, d⟩.
This is accounted for in ProgL in two ways. Thread tch may not pass on a value
written from xa to ya since the loop may not execute for every value. Thread
t may not read a value written by tch in ya since it was already overwritten by
some later writes.

Lemma 1. The state qfinal is reachable by L if and only if qfinal is reachable
by Prog(L).

The formal proof is given in Appendix A of the full version [3]. Theorem 1 extends
to any set of relations that we can use to simulate equality and disequality. For
instance ≤,≰∈ Rl.

6 Context Bounded Analysis

In the light of this undecidability, we turn our attention to a variant of the
reachability problem which is tractable. We study context bounded runs, an
under-approximation of the program behavior that limits the possible interac-
tions between processes. A run consists of a number of contexts. A context is
a sequence of steps where only a certain fixed thread t is active. We say that
π ∈ CB(k) if and only if there is a partitioning π = π1 . . . πk such that for
all contexts i ≤ k there is an active thread ti ∈ T such that only the active
thread updates the memory and performs operations: If γ

ℓ−→ γ′ ∈ πi, then
ℓ ∈ {ti} × (Op ∪ {u}).

In the following, we show PSPACE completeness of CB(k)-Reach[D,Rl≤n]
for relations such as (dis) equality, “greater than” or even “greater by at least
n” for n ∈ N (see Theorem 4). Our approach begins with a proof of PSPACE
hardness through a reduction from the non-emptiness problem of the intersection
of regular languages [21].

Next, we demonstrate PSPACE membership by reducing the problem to
state reachability of a finite transition system which we solve in polynomial
space. This reduction faces challenges from two main sources, namely, (i) the
unbounded size of the write buffers, and (ii) the infinite data domain D. In this
section, we show how to construct a finite transition system while preserving
state reachability in two key steps.

Following [14], we first perform a buffer abstraction. An in-depth analysis
of the TSO semantics within context bounded runs reveals a critical insight:
Even though the buffer may contain an unbounded number of writes, only a
bounded number of these writes can be read later on. This allows us to non-
deterministically identify and store the necessary writes using variables.

Finally, we implement a domain abstraction. A popular approach is to ab-
stract the values into equivalence classes based on the supported relations. This
reveals our next challenge: (iii) the set of relations Rl≤n is infinite. We conduct

286 Parosh A. Abdulla et al.

an analysis of the reachable configurations and discover the following: If a config-
uration is reachable, then any configuration that is the same except with greater
distances between differing values is reachable as well. It follows that, for control
state reachability, the abstraction does not require the precise distances between
variables; their relative order is sufficient.

6.1 Lower-bound

We establish PSPACE hardness by polynomially reducing the problem of
checking non-emptiness of the intersection of regular languages to CB(k)-
Reach[D,Rl≤n]. Given a set of finite automata A1 . . .An with Ai =
⟨Qi, ∆i, q

init
i QF

i ⟩, where ∆i ⊆ Qi × Σ ×Qi, qiniti ∈ Qi, and QF
i ⊆ Qi for i ≤ n,

the problem asks whether there is a word w ∈ Σ∗ that is accepted by each
automaton Ai with i ≤ n. This is known to be PSPACE hard[21].

We construct a program Prog(A1 . . .An) that consists of a single thread
and reaches a state qfinal if and only if there is such a word. The idea of the
construction is that we assign each state qi ∈ Qi a unique value stored in a
register rqi and we store the value of the current state of each automaton Ai

in a register ri. To begin, we ensure that the current states are the initial ones.
This means ri = rqiniti

holds for each i ≤ n. Then, we choose a letter a ∈ Σ

and simulate some transition qi
a−→ q′i ∈ ∆i for each automaton. This is done by

ensuring that the current state is qi with ri = rqi and then updating the current
state with ri := rq′i . We repeat this step until each current state is a final state.
At this point, we know we have simulated runs for each automaton that accept
the same word and we reach qfinal .

The formal definition of the construction as well as the proof of correctness
is given in Appendix B of [3]. This is a polynomial reduction of non-emptiness of
the intersection of regular languages to CB(k)-Reach[D,Rl≤n]. Observe that we
only need test for equality and disequality. The disequalitiy checks are necessary
to ensure that each register rqi has been assigned a different value.

Theorem 3. CB(k)-Reach[D,Rl≤n] is PSPACE hard.

6.2 PSPACE Upper-bound

Assume that we are given a program Prog and a context bound k. As an in-
termediary step towards finite state space we construct a finite state machine
AB(Prog, k) with variables, over the infinite data domain D. The name AB stands
for abstract buffer as it abstracts from the unbounded write buffers using a finite
number of variables. We show that AB(Prog, k) is state reachability equivalent
with the TSO semantics of Prog bound by CB(k).

While abstracting away the buffers, the main challenge is to simulate read
operations. Recall from Section 3 that each read operation in a thread accesses
either a write from its own buffer or from the shared memory. A buffer read
always reads from the threads latest write on the same variable. Since only the
active thread may interact with the memory during the context, we can assume

Verification under TSO with an infinite Data Domain 287

w.l.o.g. that all memory updates occur at the end of a context. This means
a memory read accesses the last write on the same variable that updated the
memory in an earlier context, and hence we do not need to store the whole buffer
content. For memory reads, we need the latest writes leaving the buffer at the
end of each context for each variable. For buffer reads, we only require the latest
writes on each variable that are issued by each thread.

Construction of the abstract machine The abstract machine AB(Prog, k) is de-
fined by the tuple ⟨QAB,XAB, ∆AB, q

AB
init⟩ where QAB is the finite set of states, XAB

is the finite set of variables, ∆AB is the transition relation, and qABinit is the ini-
tial state. A control state qAB ∈ QAB is a tuple (St, act, j, c, u) where: (i) the
current state of every thread is stored using function St : T → Q; (ii) function
act : {1 . . . k} → T assigns to each context an active thread; (iii) the current con-
text is stored in variable j ∈ {1 . . . k}; (iv) the function c : X × T → {0, 1 . . . k}
assigns to each variable x ∈ X and thread t ∈ T , the (future) context j′ in
which the latest write on x will leave the write buffer of t. This determines
when t can access the shared memory on that variable again; and (v) function
u : {1 . . . k} → 2X assigns each context j the set of variables that are updated
during j. Additionally, we will introduce some helper states with the transitions
relation. We omit them from the definition of QAB. The initial state qABinit is such
a helper state.

The set of variables XAB contains: (i) the set of variables X in Prog, (ii) the
set of registers R, (iii) for each each context j ≤ k and each variable x ∈ X , we
introduce a variable xj , which stores the value of the last write on x that leaves
the write buffer in context j, (iv) for each thread t and each variable x ∈ X ,
we introduce a variable xt which stores the value of the newest write of t on x
that is still in the buffer of t. Notice that this is the write that t accesses when
reading x (if such a write exists).

We define the transition relation ∆AB in Figure 4. Let cinit(x, t) = 0 for all x ∈
X and t ∈ T , and uinit(i) = ∅ for all i ∈ {1, . . . , k}. The outgoing transitions of
state qABinit are the outgoing transitions of (Stinit, act, 0, cinit, uinit) for every possible
function act. This means the construction guesses a function act and behaves as
if the other elements in the tuple have the initial values. Local transitions are
adapted in a straightforward manner. A read on x from the buffer occurs if there
is a write on x in the buffer. This means the latest write on x leaves the buffer
in a context c(x, t) after (or in) the current context j. In such a case, we access
xt which holds the latest write on x in the buffer of t. If there is no such write
on x in the buffer, i.e. c(x, t) < j holds, then the read fetches the value of x from
the shared memory.

A write operation on x overwrites the latest entry in the write buffer on that
variable xt and determines a future (or current) context j′ with j′ ≥ j in which
it leaves the buffer. This is recorded in the variable xj′ and x is added to the
set u(j′) which holds the variables that are updated in context j′. Note that j′

cannot be smaller then any other context in which a write on a variable y leaves
the buffer of t. This information is obtained from the function c. Also, j′ must
be a context in which t is active.

288 Parosh A. Abdulla et al.

P. A. Abdulla et al. 23:9

ÈqÕ
AB, op, q

ÕÕ
ABÍ œ �AB qÕ

AB = (Stinit, act, 0, cinit, uinit)
ÈqABinit, op, qÕÕ

ABÍ
init

op œ {r1 := r2, r1 := ~, rl(r1, r2)}
ÈqAB, op, qAB [St(t) Ω qb]Í local

op = rd(x, r1) c(x, t) Ø j

ÈqAB, r1 := xt, qAB [St(t) Ω qb]Í bu�er read
op = rd(x, r1) c(x, t) < j

ÈqAB, r1 := x, qAB [St(t) Ω qb]Í
memory read

op = wt(x, r1) jÕ Ø j act(jÕ) = t jÕ Ø max{c((y, t)) | y œ X}
ÈqAB, xt := r1, q”Í, Èq”, xjÕ := r1, qAB[St(t) Ω qb, c(x, t) Ω jÕ, u(jÕ) Ω u(jÕ) fi {x}]Í write

op = arw(x, r1, r2) j = c(x, t) = max{c((y, t)) | y œ X}
ÈqAB, xt = r1, q”,1ÍÈq”,1, xj := r2, q”,2Í, Èq”,2, xt := r2, qAB[St(t) Ω qb, u(j) Ω u(j) fi {x}]Í bu�er arw

op = arw(x, r1, r2) j > c(x, t) j Ø max{c((y, t)) | y œ X}
ÈqAB, x = r1, q”Í, Èq”, x := r2, qAB[St(t) Ω qb]Í

memory arw

qAB œ QAB j < k u(j) = {x1, . . . , xn}
ÈqAB, x1 := x1

j , qnew,1Í . . . Èqnew,n≠1, x
n := xn

j , qAB [j Ω j + 1]Í context switch

Figure 4 The transition relation �AB of AB(Prog, k). Let ” = Èqa, op, qbÍ œ �t and qAB =
(St, act, j, c, u) with St(t) = qa and act(j) = t.

bu�er in a context c(x, t) after (or in) the current context j. In such a case, we access xt322

which holds the latest write on x in the bu�er of t. If there is no such write in the bu�er, i.e.323

c(x, t) < j holds, then the read fetches the value of x from the shared memory.324

A write operation on x overwrites the latest entry in the write bu�er on that variable325

xt and determines a future (or current) context jÕ with jÕ Ø j in which it leaves the bu�er.326

This is recorded in the variable xjÕ and x is added to the set u(jÕ) which holds the variables327

that are updated in context jÕ. Note that jÕ cannot be smaller then any other context in328

which a write on a variable y leaves the bu�er of t. This information is obtained from the329

function c. Also, jÕ must be a context in which t is active.330

At any time, the run can switch from a context j with j < k to j+1. Let u(j) = {x1 . . . xn}.331

These are the variables that are updated during context j. The values of the last updates on332

these variables in the context, stored in x1
j . . . x

n
j , are written to the corresponding variables in333

the shared memory. Since AB(Prog, k) only performs memory updates at the end of a context,334

an atomic read write arw(x, r1, r2) requires that the current bu�er content leaves the bu�er335

in the current context. This is ensured by using the condition j Ø max{c((y, t)) | y œ X}. If336

there is a write on x in the bu�er of t, then j = c(x, t). This is covered by the bu�er arw337

rule in Figure 4. Here, the current value of x is stored in xt, so we first check that it equals338

r1 and update xt as well as xj with r2. If j > c(x, t) holds, then there is no write on x in339

the bu�er of t (memory arw rule) and we compare the value of x in the shared memory with340

r1 and update it to r2.341

A configuration “ = (qAB,Mem) in the induced LTS of AB(Prog, k) consists of a state342

qAB œ QAB along with a variable assignment Mem. Let “init = (qABinit,Meminit) be the initial343

configuration of AB(Prog, k). Given the transitions �AB, we can define the transitions in344

the induced LTS in a straightforward manner. A state qfinal œ Qt of thread t is said to345

be reachable by AB(Prog, k) if and only if there is a reachable configuration of the form346

((St, act, j, c, u),Mem) such that St(t) = qfinal .347

I Lemma 4. A state of Prog is reachable under TSO by a run fi œ PMC(k) if and only if it348

is reachable by AB(Prog, k).349

CVIT 2016

Fig. 4. The transition relation ∆AB of AB(Prog, k). Let δ = ⟨qa, op, qb⟩ ∈ ∆t and qAB =
(St, act, j, c, u) with St(t) = qa and act(j) = t.

At any time, the run can switch from a context j with j < k to j + 1.
Let u(j) = {x1 . . . xn}. These are the variables that are updated during context
j. The values of the last updates on these variables in the context, stored in
x1
j . . . x

n
j , are written to the corresponding variables in the shared memory. Since

AB(Prog, k) only performs memory updates at the end of a context, an atomic
read write arw(x, r1, r2) requires that the current buffer content leaves the buffer
in the current context. This is ensured by using the condition j ≥ max{c((y, t)) |
y ∈ X}. If there is a write on x in the buffer of t, then j = c(x, t). This is covered
by the buffer arw rule in Figure 4. Here, the current value of x is stored in xt, so
we first check that it equals r1 and update xt as well as xj with r2. If j > c(x, t)
holds, then there is no write on x in the buffer of t (memory arw rule) and we
compare the value of x in the shared memory with r1 and update it to r2.

A configuration γ = (qAB,Mem) in the induced LTS of AB(Prog, k) consists of a
state qAB ∈ QAB along with a variable assignment Mem. Let γinit = (qABinit,Meminit)
be the initial configuration of AB(Prog, k). Given the transitions ∆AB, we can
define the transitions in the induced LTS in a straightforward manner. A state
qfinal ∈ Qt of thread t is said to be reachable by AB(Prog, k) if and only if
there is a reachable configuration of the form ((St, act, j, c, u),Mem) such that
St(t) = qfinal holds.

Lemma 2. A state of Prog is reachable under TSO by a run π ∈ CB(k) if and
only if it is reachable by AB(Prog, k).

The proof of Lemma 2 is given in Appendix C of [3]. Next, we abstract away
the infinite data domain from AB(Prog, k). We remove this last source of infinity
by constructing a finite state machine Rl<−AB(Prog, k) from AB(Prog, k).

Verification under TSO with an infinite Data Domain 289

hqAB, x := x0, q0ABi 2 �AB x=Rl0x
0 8rl 2 Rl<, 8z, y 2 XAB \ {x} : rlRl(y, z) , rlRl0(y, z)

h(qAB,Rl), x := x0, (q0AB,Rl
0)i 2 �

assign

hqAB, x := ~, q0ABi 2 �AB 8rl 2 Rl<, 8z, y 2 XAB \ {x} : rlRl(y, z) , rlRl0(y, z)

h(qAB,Rl), x := ~, (q0AB,Rl
0)i 2 �

new value

hqAB, rl00(x, y), q0ABi 2 �AB rl00 2 Rl< Rl = Rl0 rl00Rl(x, y)

h(qAB,Rl), rl00(x, y), (q0AB,Rl0)i 2 �
Rl< relation

hqAB, rl00(x, y), q0ABi 2 �AB rl00 62 Rl< Rl = Rl0 x <Rl y

h(qAB,Rl), rl00(x, y), (q0AB,Rl0)i 2 �
Rln relation

Figure 5. The transition relation of Rl<�AB(Prog, k). Sets Rl and Rl0 satisfy (i) equality
is an equivalence relation; (ii) disequality holds i↵ equality does not hold; (iii) ” < ” is
a total order on variables that are not equal.

Lemma 2. A state of Prog is reachable under TSO by a run ⇡ 2 CB(k) if and
only if it is reachable by AB(Prog, k).

The proof of Lemma 2 is given in section C. Next, we abstract away the
infinite data domain from AB(Prog, k). We remove this last source of infinity by
constructing a finite state machine Rl<�AB(Prog, k) from AB(Prog, k).

Domain Abstraction We use domain abstraction to solve CB(k)-
Reach[D,Rln] by reducing state reachability of AB(Prog, k) to reachability of
a finite state machine. We introduce the set of relations Rl< = {=, 6=, <}. To
abstract away the infinite data domain, we abstract from the exact values of
the variables. Instead of storing actual values, we store which relations from Rl<
holds between which pairs of variables, which is finite information. This way, we
reduce the infinite domain D to the finite Boolean domain B. Given a variable
assignment Mem and a relation rl, we define rlMem(x, y) := rl(Mem(x),Mem(y)).
Any variable assignment Mem induces a set of relations RlMem = {rlMem | rl 2
Rl<} over the variables XAB. When considering multiple sets of relations we de-
note a relation rl 2 Rl as rlRl. For a variable assignment Mem, we say set of
relations Rl over variables is consistent with Mem if Rl = RlMem.

Given AB(Prog, k) = hQAB,XAB,�AB, q
AB
initi, we now construct the finite state

machine Rl<�AB(Prog, k) = hQ,�, qiniti as follows: Q := QAB ⇥ {rlXAB
: XAB ⇥

XAB ! B | rl 2 Rl<}. We abstract from a variable assignment by storing in
the states which relations are satisfied. The initial state is qinit = (qABinit,RlMeminit).
We define the transitions of Rl<�AB(Prog, k) in Figure 5. We construct the
transitions such that they abstract from the transitions of the LTS induced by
the semantics of AB(Prog, k). Where the semantics on transitions of AB(Prog, k)
require that certain values in the configurations before and after the operation
are the same, the transitions of Rl<�AB(Prog, k) only require that the relations
between variables before and after the relation are the same. For instance, the
assign rule for operation x := x0 requires that Rl and Rl0 are the same for all

Fig. 5. The transition relation of Rl<−AB(Prog, k). Sets Rl and Rl′ satisfy (i) equality
is an equivalence relation; (ii) disequality holds iff equality does not hold; (iii) ” < ” is
a total order on variables that are not equal.

Domain Abstraction We use domain abstraction to solve CB(k)-
Reach[D,Rl≤n] by reducing state reachability of AB(Prog, k) to reachability of
a finite state machine. We introduce the set of relations Rl< = {=, ̸=, <}. To
abstract away the infinite data domain, we abstract from the exact values of
the variables. Instead of storing actual values, we store which relations from Rl<
holds between which pairs of variables, which is finite information. This way,
we reduce the infinite domain D to the finite Boolean domain B. For example,
(qAB, x = y) is an abstraction of a configuration (qAB,Mem(x) = 1,Mem(y) = 1).
Given a variable assignment Mem and a relation rl, we define rlMem(x, y) :=
rl(Mem(x),Mem(y)). Any variable assignment Mem induces a set of relations
RlMem = {rlMem | rl ∈ Rl<} over the variables XAB. When considering multiple sets
of relations we denote a relation rl ∈ Rl as rlRl. For a variable assignment Mem,
we say set of relations Rl over variables is consistent with Mem if Rl = RlMem.

Given AB(Prog, k) = ⟨QAB,XAB, ∆AB, q
AB
init⟩, we now construct the finite state

machine Rl<−AB(Prog, k) = ⟨Q, ∆, qinit⟩ as follows: Q := QAB × {rlXAB
: XAB ×

XAB → B | rl ∈ Rl<}. We abstract from a variable assignment by storing in the
states which relations are satisfied. The initial state is qinit = (qABinit,RlMeminit). We
define the transitions of Rl<−AB(Prog, k) in Figure 5. We construct the transi-
tions such that they abstract from the transitions of the LTS induced by the
semantics of AB(Prog, k). Where the semantics on transitions of AB(Prog, k) re-
quire that certain values in the configurations before and after the operation
are the same, the transitions of Rl<−AB(Prog, k) only require that the relations
between variables before and after the relation are the same. For instance, the
assign rule for operation x := x′ requires that Rl and Rl′ are the same for all vari-
ables except x and x =Rl′ x

′ must hold after the operation. Conditions (i)-(iii)
in Figure 5 reflect the properties of Rl< on values. They ensure that Rl and Rl′

have consistent variable assignments. Note that for any operation <n (or ≤n),
we soften the condition to x <Rl y. We will show that this still results in an
abstraction precise enough to be state reachability equivalent.

Since Rl<−AB(Prog, k) is a finite state machine, it induces the obvious LTS
where a configuration consists of a state. The following lemma shows that the

290 Parosh A. Abdulla et al.

construction is indeed an abstraction of AB(Prog, k). We assume Prog uses Rl≤n.

Lemma 3. If qAB is reachable by AB(Prog, k), then a state (qAB,Rl) is reachable
by Rl<−AB(Prog, k).

Proof. Assume ⟨(qAB,Mem)
op−→ (q′AB,Mem′)⟩. We argue that

⟨(qAB,RlMem), op, (q
′
AB,RlMem′)⟩ ∈ ∆ holds as well. The lemma follows im-

mediately. We show this for operation x := ⊛. For all other operations, the
proof is analogue and we omit it.

It follows from the semantics of x := ⊛, that Mem(y) = Mem′(y) for any
y ∈ XAB\{x} holds. This means RlMem and RlMem′ satisfy the new value rule. The
equality relations in RlMem and RlMem′ are consistent with the equality relations
on values of Mem and Mem′. The equality relation given by the values is an
equivalence relation and thus Condition (i) is satisfied. Similarly, Condition (ii) is
satisfied since values are obviously not equal if and only if they are not related by
equality. Condition (iii) is satisfied since relation < on values forms a total order.
All conditions are satisfied. This means ⟨(qAB,RlMem), x := ⊛, (q′AB,RlMem′)⟩ ∈ ∆.

Lemma 4. If a state (qAB,Rl) is reachable by Rl<−AB(Prog, k), then qAB is reach-
able by AB(Prog, k).

We prove this by performing an induction over runs of Rl<−AB(Prog, k) and
constructing equivalent runs of AB(Prog, k). In order to do this, we construct
configurations with consistent variable assignments. The main challenge is that
these variable assignments may not have large enough distances between the
values. Take the operation x <n y, for instance. Here, Rl<−AB(Prog, k) only
requires x < y. Note that any value other than 0 was created by an x := ⊛
operation. We can modify a run so that some of these operations assign larger
values. This way, we can increase the distances of variable assignments of reach-
able configurations without changing their consistency with respect to relations.
The formal proof of this is given in Appendix E of [3].

Theorem 4. CB(k)-Reach[D,Rl≤n] is PSPACE complete.

Proof. While Rl≤n is an infinite set, Rl< has only 3 relations. This means
Rl<−AB(Prog, k) is a finite transition system where state reachability is decid-
able. According to Lemma 2, Lemma 3 and Lemma 4, deciding state reachability
of Rl<−AB(Prog, k) is equivalent to solving CB(k)-Reach[Rl≤n].

We non-deterministically solve the state reachability of Rl<−AB(Prog, k) by
guessing a run that is length-bounded by the size of the state space and checking
whether it reaches qfinal . We store the current state ((St, act, j, c, u),Rl) together
with a binary encoding of the current length of the run. Note that the state
only requires polynomial space. The number of states of Rl<−AB(Prog, k) is
exponential in the program size as well as k, which means the binary encoding
also requires polynomial space.

We extend the run by choosing to either perform a context switch or an
operation. We begin with the initial state qABinit, which is a special case since we

Verification under TSO with an infinite Data Domain 291

first need to guess a function act according to the init rule in Figure 4. To perform
an operation, we look at the current state of the active thread St(act(j)), pick
an outgoing transition from the program, and update the state according to the
corresponding rules given in Figure 4 and Figure 5.

We illustrate this on the new-value operation. Assume we pick the outgoing
transition ⟨qa, x := ⊛, qb⟩ ∈ ∆act(j). In this case, we update the state according
to the local rule in Figure 4. Then we update the set Rl according to the new-
value rule in Figure 5. We leave all relations that do not include x unchanged,
and we non-deterministically choose x to be either equal to some variable, or
to be between two other adjacent variables, or to be the largest or smallest
variable. We update the relations to x accordingly. For any other operation,
the changes to Rl are uniquely determined. For writes, we additionally need to
non-deterministically pick some future context j′ of the update according to the
write rule in Figure 4. In the case of a context switch, we perform a series of
variable assignments according to the context switch rule.

Note that we do not explicitly construct the entire Rl<−AB(Prog, k) transition
system; the program and the rules given in Figure 4 and Figure 5 are sufficient to
guess a run. Each step can be performed in polynomial space. Once St(act(j)) =
qfinal holds, we know qfinal is reachable. The complexity of this process is in
PSPACE. According to Theorem 3, the problem is PSPACE hard as well.

7 Conclusion

We examined safety verification of concurrent programs running under TSO that
operate on variables ranging over an infinite domain. We have shown that this
is undecidable even if the program can only check the variables for equality and
non-equality. We studied a context bounded variant of the problem as well. Here,
we solved the problem for programs using relations in Rl≤n and showed that it
is PSPACE complete.

As future work, we plan to examine more expressive under-approximations
of the program behaviour than the presented context bounded analysis and how
these under-approximations affect decidability and complexity of the problem.
We also intend to explore the problem for additional relations and/or operations
a program may perform.

References

1. Abdulla, P.A., Aiswarya, C., Atig, M.F.: Data communicating processes with unre-
liable channels. In: LICS. pp. 166–175. ACM (2016). https://doi.org/10.1145/
2933575.2934535, https://doi.org/10.1145/2933575.2934535

2. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: A load-buffer semantics for
total store ordering. LMCS 14(1) (2018)

3. Abdulla, P.A., Atig, M.F., Furbach, F., Garg, S.: Verification under TSO with an
infinite data domain (2024)

292 Parosh A. Abdulla et al.

https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535

4. Abdulla, P.A., Atig, M.F., Furbach, F., Godbole, A.A., Hendi, Y.G., Krishna, S.N.,
Spengler, S.: Parameterized verification under TSO with data types. In: TACAS
2023. LNCS, vol. 13993, pp. 588–606. Springer (2023). https://doi.org/10.1007/
978-3-031-30823-9_30, https://doi.org/10.1007/978-3-031-30823-9_30

5. Abdulla, P.A., Atig, M.F., Phong, N.T.: The best of both worlds: Trading effi-
ciency and optimality in fence insertion for TSO. In: ESOP 2015. LNCS, vol. 9032,
pp. 308–332. Springer (2015). https://doi.org/10.1007/978-3-662-46669-8_
13, https://doi.org/10.1007/978-3-662-46669-8_13

6. Abdulla, P.A., Atig, M.F., Rezvan, R.: Parameterized verification under TSO is
PSPACE-complete. Proc. ACM Program. Lang. 4(POPL), 26:1–26:29 (2020).
https://doi.org/10.1145/3371094, https://doi.org/10.1145/3371094

7. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In:
LICS. pp. 35–44. IEEE Computer Society (2012). https://doi.org/10.1109/
LICS.2012.15, https://doi.org/10.1109/LICS.2012.15

8. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs
with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000). https://
doi.org/10.1006/inco.1999.2843, https://doi.org/10.1006/inco.1999.2843

9. Abdulla, P.A., Delzanno, G.: On the coverability problem for constrained multiset
rewriting. In: Proc. AVIS’06, The fifth Int. Workshop on on Automated Verification
of Infinite-State Systems (2006)

10. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS.
pp. 160–170. IEEE Computer Society (1993). https://doi.org/10.1109/LICS.
1993.287591, https://doi.org/10.1109/LICS.1993.287591

11. Abdulla, P.A., Sistla, A.P., Talupur, M.: Model checking parameterized sys-
tems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking, pp. 685–725. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8_21, https://doi.org/10.1007/978-3-319-10575-8_21

12. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–
235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8, https://doi.
org/10.1016/0304-3975(94)90010-8

13. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verifica-
tion problem for weak memory models. In: SIGPLAN-SIGACT. pp. 7–18.
ACM (2010). https://doi.org/10.1145/1706299.1706303, https://doi.org/
10.1145/1706299.1706303

14. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: CAV. LNCS, vol. 6806, pp. 99–115. Springer (2011). https://doi.org/10.
1007/978-3-642-22110-1_9, https://doi.org/10.1007/978-3-642-22110-1_9

15. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: ESOP 2013. LNCS, vol. 7792, pp. 533–553. Springer (2013).
https://doi.org/10.1007/978-3-642-37036-6_29, https://doi.org/10.1007/
978-3-642-37036-6_29

16. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown au-
tomata: Application to model-checking. In: CONCUR. LNCS, vol. 1243, pp.
135–150. Springer (1997). https://doi.org/10.1007/3-540-63141-0_10, https:
//doi.org/10.1007/3-540-63141-0_10

17. Burckhardt, S.: Principles of eventual consistency. FTPL 1(1-2), 1–150 (2014).
https://doi.org/10.1561/2500000011, https://doi.org/10.1561/2500000011

18. Cerans, K.: Deciding properties of integral relational automata. In: ICALP94 Pro-
ceedings. LNCS, vol. 820, pp. 35–46. Springer (1994). https://doi.org/10.1007/
3-540-58201-0_56, https://doi.org/10.1007/3-540-58201-0_56

Verification under TSO with an infinite Data Domain 293

https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/3-540-58201-0_56

19. Elver, M., Nagarajan, V.: TSO-CC: consistency directed cache coherence for TSO.
In: HPCA. pp. 165–176. IEEE Computer Society (2014). https://doi.org/10.
1109/HPCA.2014.6835927, https://doi.org/10.1109/HPCA.2014.6835927

20. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001). https://doi.org/10.1016/S0304-3975(00)
00102-X, https://doi.org/10.1016/S0304-3975(00)00102-X

21. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium
on Foundations of Computer Science (SFCS 1977). pp. 254–266 (1977). https:
//doi.org/10.1109/SFCS.1977.16

22. Krishna, S.N., Godbole, A., Meyer, R., Chakraborty, S.: Parameterized verifica-
tion under release acquire is PSPACE-complete. In: Milani, A., Woelfel, P. (eds.)
PODC. pp. 482–492. ACM (2022). https://doi.org/10.1145/3519270.3538445,
https://doi.org/10.1145/3519270.3538445

23. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concur-
rent reachability to sequential reachability. In: CAV. LNCS, vol. 5643, pp. 477–
492. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_36, https:
//doi.org/10.1007/978-3-642-02658-4_36

24. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency.
In: SIGPLAN-SIGACT. pp. 649–662. ACM (2016). https://doi.org/10.1145/
2837614.2837643, https://doi.org/10.1145/2837614.2837643

25. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound
to sequential analysis. FMSD 35(1), 73–97 (2009). https://doi.org/10.1007/
s10703-009-0078-9, https://doi.org/10.1007/s10703-009-0078-9

26. Lamport, L.: A new solution of dijkstra’s concurrent programming problem.
Commun. ACM 17(8), 453–455 (aug 1974). https://doi.org/10.1145/361082.
361093, https://doi.org/10.1145/361082.361093

27. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
tokens which carry data. Fundam. Informaticae 88(3), 251–274 (2008), http://
content.iospress.com/articles/fundamenta-informaticae/fi88-3-03

28. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI. pp. 446–455. ACM (2007). https://doi.org/
10.1145/1250734.1250785, https://doi.org/10.1145/1250734.1250785

29. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
TPHOLs. LNCS, vol. 5674, pp. 391–407. Springer (2009). https://doi.org/10.
1007/978-3-642-03359-9_27, https://doi.org/10.1007/978-3-642-03359-9_
27

30. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
TACAS. LNCS, vol. 3440, pp. 93–107. Springer (2005)

31. Ros, A., Kaxiras, S.: Racer: TSO consistency via race detection. In: MICRO.
IEEE Computer Society (2016). https://doi.org/10.1109/MICRO.2016.7783736,
https://doi.org/10.1109/MICRO.2016.7783736

32. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Under-
standing POWER multiprocessors. In: ACM SIGPLAN, PLDI. pp. 175–186.
ACM (2011). https://doi.org/10.1145/1993498.1993520, https://doi.org/
10.1145/1993498.1993520

33. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rig-
orous and usable programmer’s model for x86 multiprocessors. Commun. ACM
53(7), 89–97 (2010). https://doi.org/10.1145/1785414.1785443, https://doi.
org/10.1145/1785414.1785443

294 Parosh A. Abdulla et al.

https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-03
http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-03
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1109/MICRO.2016.7783736
https://doi.org/10.1109/MICRO.2016.7783736
https://doi.org/10.1109/MICRO.2016.7783736
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Verification under TSO with an infinite Data Domain 295

http://creativecommons.org/licenses/by/4.0/

	Verification under TSO with an infinite Data Domain

