
30th International Conference, TACAS 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings, Part III

Tools and Algorithms
for the Construction
and Analysis of SystemsLN

CS
 1

45
72

AR
Co

SS
Bernd Finkbeiner
Laura Kovács (Eds.)

Lecture Notes in Computer Science 14572

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Bernd Finkbeiner • Laura Kovács
Editors

Tools and Algorithms
for the Construction
and Analysis of Systems
30th International Conference, TACAS 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings, Part III

123

Editors
Bernd Finkbeiner
CISPA Helmholtz Center for Information
Security
Saarbrücken, Germany

Laura Kovács
TU Wien
Vienna, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-57255-5 ISBN 978-3-031-57256-2 (eBook)
https://doi.org/10.1007/978-3-031-57256-2

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-4280-8441
https://orcid.org/0000-0002-8299-2714
https://doi.org/10.1007/978-3-031-57256-2
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérôme Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wa sowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also

organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wa sowski (Copenhagen), Thomas Noll (Aachen), Jan Kofroň (Prague),
Barbara König (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Křetínský (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luı s Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hähnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovács (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This three-volume proceedings contains the papers presented at the 30th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2024). TACAS 2024 was part of the 27th European Joint Conferences on
Theory and Practice of Software (ETAPS 2024), which was held between April 6–11,
2024, in Luxembourg City, Luxembourg.

TACAS is a forum for researchers, developers and users interested in rigorous tools
and algorithms for the construction and analysis of systems. The conference aims to
bridge the gaps between different communities with this common interest and to
support them in their quest to improve the utility, reliability, flexibility, and efficiency
of tools and algorithms for building systems. TACAS 2024 interleaves and integrates
various disciplines, including formal verification of software and hardware systems,
static analysis, probabilistic programming, program synthesis, concurrency, testing,
simulations, verification of machine learning/autonomous systems, Cyber-Physical
Systems, SAT/SMT solving, automated and interactive theorem proving, and proof
checking.

There were four submission categories for TACAS 2024:

1. Regular research papers identifying and justifying a principled advance to the
theoretical foundations for the construction and analysis of systems.

2. Case study papers describing the application of techniques developed by the
community to a single problem or a set of problems of practical importance,
preferably in a real-world setting.

3. Regular tool papers presenting a novel tool or a new version of an existing tool
built using novel algorithmic and engineering techniques.

4. Tool demonstration papers demonstrating a new tool or application of an existing
tool on a significant case-study.

Regular research, case study, and regular tool paper submissions were restricted to
16 pages, whereas tool demonstration papers to 6 pages, excluding the bibliography
and appendices.

TACAS 2024 received 159 submissions, consisting of 114 regular research papers,
10 case study papers, 28 regular tool papers, and 7 tool demonstration papers. Each
submission was assigned for review to at least three Program Committee (PC) mem-
bers, who made use of subreviewers. Regular research papers were reviewed in double-
blind mode, whereas case study, regular tool, and tool-demonstration papers were
reviewed using a single-blind reviewing process.

Similarly to previous years, it was possible to submit an artifact alongside a paper.
Artifact submission was mandatory for regular tool and tool demo papers, and vol-
untary for regular research and case study papers at TACAS 2024. An artifact might
consist of a tool, models, proofs, or other data required for validation of the results
of the paper. The Artifact Evaluation Committee (AEC) was tasked with reviewing the

artifacts, based on their documentation, ease of use, and, most importantly, whether the
results presented in the corresponding paper could be accurately reproduced. Most
of the evaluation was carried out using a standardized virtual machine to ensure
consistency of the results, except for those artifacts that had special hardware or
software requirements. Artifact evaluation at TACAS 2024 consisted of two rounds.
The first round implemented the mandatory artifact evaluation of regular tool and tool
demonstration papers; this round was carried out in parallel with the work of the PC.
The judgment of the AEC was communicated to the PC and weighed in their dis-
cussion. The second round of artifact evaluation carried out the voluntary artifact
evaluation of regular research and case study papers, and took place after paper
acceptance notifications were sent out; authors of accepted regular research and case
study papers were able to update and revise their respective artifacts before artifact
evaluation started. In both rounds, the AEC provided 3 reviews per artifact and
anonymously communicated with the authors to resolve apparent technical issues. In
total, 104 artifacts were submitted and the AEC evaluated a total of 62 artifacts
regarding their availability, functionality, and/or reusability. Papers with an artifact that
were successfully evaluated include one or more badges on the first page, certifying the
respective properties.

Selected papers were requested to provide a rebuttal in case a PC review gave rise to
questions. Using the review reports and rebuttals, the PC had a thorough discussion on
each paper. For regular tool and tool demonstration papers, the PC also discussed the
corresponding artifact, using the AEC recommendations. As a result, the PC decided to
accept 53 papers, out of which there were 35 regular research papers, 11 regular tool
papers, 3 case study papers, and 4 tool demonstration papers. This corresponds to an
overall acceptance rate of 33%. Each accepted paper at TACAS 2024 had either all
positive reviews and/or a “championing” PC member who argued in favor of accepting
the paper. All accepted papers at TACAS 2024 had a positive average review score.

TACAS 2024 also hosted SV-COMP 2024, the 13th International Competition on
Software Verification. This event to compare tools evaluated 59 software systems for
automatic verification of C and Java programs and 17 software systems for witness
validation. The TACAS 2024 proceedings contains a competition report by the SV-
Comp chair and organizer. From the 46 actively participating teams, the SV-Comp jury
selected 16 short papers that describe the participating verification and validation
systems. These 16 short papers are also published in the proceedings and were
reviewed by a separate program committee (jury); each of these short papers was
assessed by at least four jury members. Two sessions in the TACAS 2024 program
were reserved for the presentation of the results: (1) a presentation session with a report
by the competition chair and summaries by the developer teams of participating tools,
and (2) an open community meeting in the second session.

We would like to thank everyone who helped to make TACAS 2024 successful. We
thank the authors for submitting their papers to TACAS 2024. The PC members and
additional reviewers did an excellent job in reviewing papers: they provided detailed
reports and engaged in the PC discussions. We thank the TACAS steering committee,
and especially its chair, Joost-Pieter Katoen, for his valuable advice. We are grateful to
the ETAPS steering committee, and in particular its chair, Marieke Huisman, for
supporting our changes and suggestions on the TACAS 2024 review process and final

viii Preface

program. We also acknowledge the invaluable support provided by the EasyChair
developers. Lastly, we would like to thank the overall organization team of ETAPS
2024.

April 2024 Bernd Finkbeiner
Laura Kovács

PC Chairs

Hadar Frenkel
Michael Rawson

AEC Chairs

Dirk Beyer
SV-Comp Chair

Preface ix

Organization

Program Committee Chairs

Bernd Finkbeiner CISPA Helmholtz Center for Information Security,
Germany

Laura Kovács TU Wien, Austria

Program Committee

Alessandro Abate University of Oxford, UK
Erika Ábrahám RWTH Aachen University, Germany
S. Akshay IIT Bombay, India
Elvira Albert Universidad Complutense de Madrid, Spain
Leonardo Alt Ethereum Foundation
Suguman Bansal Georgia Institute of Technology, USA
Nikolaj Bjørner Microsoft Research, USA
Ahmed Bouajjani IRIF, Université Paris Cité, France
Claudia Cauli Amazon Web Services, UK
Rance Cleaveland University of Maryland, USA
Mila Dalla Preda University of Verona, Italy
Rayna Dimitrova CISPA Helmholtz Center for Information Security,

Germany
Madalina Erascu West University of Timişoara, Romania
Javier Esparza Technical University of Munich, Germany
Carlo A. Furia USI - Università della Svizzera Italiana, Switzerland
Alberto Griggio Fondazione Bruno Kessler, Italy
Arie Gurfinkel University of Waterloo, Canada
Holger Hermanns Saarland University, Germany
Marijn Heule Carnegie Mellon University, USA
Hossein Hojjat Tehran Institute for Advanced Studies, Iran
Nils Jansen Ruhr-University Bochum, Germany and Radboud

University, Netherlands
Sebastian Junges Radboud University, Netherlands
Amir Kafshdar Goharshady Hong Kong University of Science and Technology,

China
Benjamin Lucien Kaminski Saarland University, Germany and University College

London, UK
Guy Katz The Hebrew University of Jerusalem, Israel
Gergely Kovásznai Eszterházy Károly University, Eger, Hungary
Tamás Kozsik Eötvös Loránd University, Budapest, Hungary
Anthony Widjaja Lin TU Kaiserslautern, Germany
Dorel Lucanu Alexandru Ioan Cuza University, Romania

Filip Maric University of Belgrade, Serbia
Laura Nenzi University of Trieste, Italy
Aina Niemetz Stanford University, USA
Elizabeth Polgreen University of Edinburgh, UK
Kristin Yvonne Rozier Iowa State University, USA
Cesar Sanchez IMDEA Software Institute, Spain
Mark Santolucito Barnard College, USA
Anne-Kathrin Schmuck Max-Planck-Institute for Software Systems, Germany
Sharon Shoham Tel Aviv University, Israel
Mihaela Sighireanu University Paris-Saclay, ENS Paris-Saclay, CNRS,

LMF, France
Martin Suda Czech Technical University in Prague, Czech Republic
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Caterina Urban Inria & ENS—PSL, France
Yakir Vizel Technion, Israel
Tomas Vojnar Brno University of Technology, Czech Republic
Georg Weissenbacher TU Wien, Austria
Sarah Winkler Free University of Bozen-Bolzano, Italy
Ningning Xie University of Toronto and Google Brain, Canada

Artifact Evaluation Committee Chairs

Hadar Frenkel CISPA Helmholtz Center for Information Security,
Germany

Michael Rawson TU Wien, Austria

Artifact Evaluation Committee

Tripti Agarwal University of Utah, USA
Guy Amir The Hebrew University of Jerusalem, Israel
Ahmed Bhayat The University of Manchester, UK
Martin Blicha University of Lugano, Switzerland
Alexander Bork RWTH Aachen University, Germany
Lea Salome Brugger ETH Zürich, Switzerland
Marco Campion Inria & École Normale Supérieure—Université PSL,

France
David Cerna Czech Academy of Sciences Institute of Computer

Science, Czech Republic
Kevin Cheang Amazon Web Services, USA
Md Solimul Chowdhury Carnegie Mellon University, USA
Vlad Craciun BitDefender, UAIC, Romania
Jip J. Dekker Monash University, Australia
Rafael Dewes CISPA Helmholtz Center for Information Security,

Germany
Oyendrila Dobe Michigan State University, USA
Clemens Eisenhofer TU Wien, Austria

xii Organization

Yizhak Elboher The Hebrew University of Jerusalem, Israel
Raya Elsaleh The Hebrew University of Jerusalem, Israel
Ferhat Erata Yale University, USA
Zafer Esen Uppsala University, Sweden
Aoyang Fang Chinese University of Hong Kong, Shenzhen, China
Pritam Gharat Microsoft Research, India
R. Govind Uppsala University, Sweden
Thomas Hader TU Wien, Austria
Philippe Heim CISPA Helmholtz Center for Information Security,

Germany
Maximilian Heisinger Johannes Kepler University Linz, Austria
Alejandro

Hernández-Cerezo
Complutense University of Madrid, Spain

Singh Hitarth Hong Kong University of Science and Technology,
China

Petra Hozzová TU Wien, Austria
Jingmei Hu Amazon, USA
Tobias John University of Oslo, Norway
Martin Jonáš Masaryk University, Czech Republic
Aniruddha Joshi UC Berkeley, USA
Cezary Kaliszyk University of Innsbruck, Austria
Elad Kinsbruner Technion – Israel Institute of Technology, Israel
Åsmund Aqissiaq Arild

Kløvstad
University of Oslo, Norway

Paul Kobialka University of Oslo, Norway
Kerim Kochekov Hong Kong University of Science and Technology,

China
Satoshi Kura National Institute of Informatics, Japan
Lorenz Leutgeb Max Planck Institute for Informatics, Germany
Marco Lewis Newcastle University, UK
Jing Liu University of California, Irvine, USA
Yonghui Liu Monash University, Australia
Ioan Vlad Luca West University of Timişoara, Romania
Kaushik Mallik Institute of Science and Technology Austria, Austria
Denis Mazzucato École Normale Supérieure, France
Baoluo Meng GE Global Research, USA
Niklas Metzger CISPA Helmholtz Center for Information Security,

Germany
Srinidhi Nagendra Chennai Mathematical Institute, India
Jens Otten University of Oslo, Norway
Jiří Pavela FIT VUT, Czech Republic
Bartosz Piotrowski IDEAS NCBR, Poland
Sumanth Prabhu TRDDC, India
Jyoti Prakash University of Passau, Germany
Siddharth Priya University of Waterloo, Canada
Felipe R. Monteiro Amazon Web Services, USA

Organization xiii

Idan Refaeli Hebrew University of Jerusalem, Israel
Simon Robillard Université de Montpellier, France
Clara Rodríguez-Núñez Complutense University of Madrid, Spain
Hans-Jörg Schurr University of Iowa, USA
Tobias Seufert University of Freiburg, Germany
Akshatha Shenoy Tata Consultancy Services, India
Boris Shminke Independent Researcher
Julian Siber CISPA Helmholtz Center for Information Security,

Germany
Cristian Simionescu Alexandru Ioan Cuza University, Romania
Abhishek Kr Singh Tel Aviv University, Israel
Alexander Steen University of Greifswald, Germany
Geoff Sutcliffe University of Miami, USA
Joseph Tafese University of Waterloo, Canada
Jinhao Tan University of Hong Kong, China
Abhishek Tiwari University of Passau, Germany
Divyesh Unadkat Synopsys, India
Lena Verscht Saarland University and RWTH Aachen University,

Germany
Christoph Wernhard University of Potsdam, Germany
Haoze Wu Stanford University, USA
Jiong Yang National University of Singapore, Singapore
Yi Zhou Carnegie Mellon University, USA

SV-COMP Program Committee and Jury

(more info: https://sv-comp.sosy-lab.org/2024/committee.php, sorted by tool name)

Dirk Beyer (Chair) LMU Munich, Germany
Viktor Malík Brno University of Technology, Czech Republic
Zhenbang Chen National University of Defense Technology, China
Lei Bu Nanjing University, China
Marek Chalupa ISTA, Austria
Levente Bajczi Budapest University of Technology and Economics,

Hungary
Daniel Baier LMU Munich, Germany
Thomas Lemberger LMU Munich, Germany
Po-Chun Chien LMU Munich, Germany
Hernán Ponce de León Huawei Dresden Research Center, Germany
Fei He Tsinghua University, China
Fatimah Aljaafari University of Manchester, UK
Franz Brauße University of Manchester, UK
Martin Spiessl LMU Munich, Germany
Falk Howar TU Dortmund, Germany
Simmo Saan University of Tartu, Estonia

xiv Organization

https://sv-comp.sosy-lab.org/2024/committee.php

Hassan Mousavi University of Tehran, Tehran Institute for Advanced
Studies, Iran

Peter Schrammel University of Sussex and Diffblue, UK
Zaiyu Cheng University of Manchester, UK
Gidon Ernst LMU Munich, Germany
Raphaël Monat Inria and University of Lille, France
Jana (Philipp) Berger RWTH Aachen, Germany
Veronika Šoková Brno University of Technology, Czech Republic
Ravindra Metta TCS, India
Vesal Vojdani University of Tartu, Estonia
Nils Loose University of Luebeck, Germany
Paulína Ayaziová Masaryk University, Brno, Czech Republic
Martin Jonáš Masaryk University, Brno, Czech Republic
Matthias Heizmann University of Freiburg, Germany
Dominik Klumpp University of Freiburg, Germany
Frank Schüssele University of Freiburg, Germany
Daniel Dietsch University of Freiburg, Germany
Priyanka Darke Tata Consultancy Services, India
Marian Lingsch-Rosenfeld LMU Munich, Germany

TACAS Steering Committee

Dirk Beyer LMU Munich, Germany
Rance Cleaveland University of Maryland, USA
Dana Fisman Ben-Gurion University, Israel
Holger Hermanns Universität des Saarlandes, Germany
Joost-Pieter Katoen (Chair) RWTH Aachen, Germany and Universiteit Twente,

Netherlands
Kim G. Larsen Aalborg University, Denmark
Corina Păsăreanu NASA Ames, USA

Additional Reviewers

Parosh Aziz Abdulla
Guy Amir
Andrei Arusoaie
Shaun Azzopardi
Thom Badings
Milan Banković
Chinmayi Prabhu Baramashetru
Sebastien Bardin
Ludovico Battista
Anna Becchi
Lena Becker
Sidi Mohamed Beillahi
Yoav Ben Shimon

Csaba Biró
León Bohn
Alberto Bombardelli
Wael-Amine Boutglay
Eline Bovy
Matías Brizzio
Gianpiero Cabodi
Francesca Cairoli
Marco Campion
Marco Carbone
Martin Ceresa
Kevin Cheang
Md Solimul Chowdhury

Organization xv

Alessandro Cimatti
Stefan Ciobaca
Cayden Codel
Jesús Correas
Arthur Correnson
Florin Craciun
Philipp Czerner
Tomáš Dacík
Luis Miguel Danielsson
Alessandro De Palma
Aldric Degorre
Rafael Dewes
Antonio Di Stasio
Denisa Diaconescu
Crystal Chang Din
Clemens Dubslaff
Serge Durand
Alec Edwards
Neta Elad
Yizhak Elboher
Raya Elsaleh
Constantin Enea
Zafer Esen
Soroush Farokhnia
Csaba Fazekas
Jan Fiedor
Emmanuel Fleury
James Fox
Felix Freiberger
Eden Frenkel
Florian Frohn
Maris Galesloot
Samir Genaim
Blaise Genest
Pamina Georgiou
Debarghya Ghoshdastidar
Adwait Godbole
Miguel Gomez-Zamalloa
Pablo Gordillo
Felipe Gorostiaga
R. Govind
Orna Grumberg
Roland Guttenberg
Serge Haddad
Philippe Heim
Martin Helfrich

Alejandro Hernández-Cerezo
Ivan Homoliak
Dániel Horpácsi
Karel Horák
Tzu-Han Hsu
Attila Házy
Miguel Isabel
Omri Isac
Radoslav Ivanov
Predrag Janicic
Chris Johannsen
Eduard Kamburjan
Ambrus Kaposi
Joost-Pieter Katoen
Lutz Klinkenberg
Paul Kobialka
Wietze Koops
Katherine Kosaian
David Kozák
Merlijn Krale
Valentin Krasotin
Loes Kruger
Gabor Kusper
Maximilian Alexander Köhl
Faezeh Labbaf
Nham Le
Matthieu Lemerre
Ondrej Lengal
Dániel Lukács
Michael Luttenberger
Viktor Malík
Alessio Mansutti
Niccolò Marastoni
Oliver Markgraf
Enrique Martin-Martin
Ruben Martins
Denis Mazzucato
Tobias Meggendorfer
Roland Meyer
Marcel Moosbrugger
Federico Mora
Alexander Nadel
Satya Prakash Nayak
Tobias Nießen
Andres Noetzli
Mohammed Nsaif

xvi Organization

Robin Ohs
Emanuel Onica
Michele Pasqua
Andrea Pferscher
Zoltan Porkolab
Kostiantyn Potomkin
Mathias Preiner
Siddharth Priya
Tim Quatmann
Peter Rakyta
Omer Rappoport
Jakob Rath
Rodrigo Raya
Adrian Rebola Pardo
Gianluca Redondi
Joseph Reeves
Luke Rickard
Andoni Rodriguez
Clara Rodríguez-Núñez
Adam Rogalewicz
Enrique Román Calvo
Guillermo Román-Díez
Vlad Rusu
Krishna S.
Irmak Saglam
Matteo Sammartino
Raimundo Saona Urmeneta
Gaia Saveri
Andre Schidler
Christoph Schmidl
Andreas Schmidt
Yannik Schnitzer

Philipp Schröer
Stefan Schwoon
Traian Florin Serbanuta
Daqian Shao
Xujie Si
Mate Soos
Martin Steffen
Gregory Stock
Sana Stojanović-Ɖurđević
Bernardo Subercaseaux
Marnix Suilen
Mantas Šimkus
Máté Tejfel
Simon Thompson
Hazem Torfah
Dmitriy Traytel
Marck van der Vegt
Sarat Varanasi
Sarat Chandra Varanasi
Ennio Visconti
Sebastian Wolff
Yechuan Xia
Mitsuharu Yamamoto
Raz Yerushalmi
Emre Yolcu
Pian Yu
Hanwei Zhang
Zhiwei Zhang
Shufang Zhu
Djordje Zikelic
Zoltán Zimborás
Dominic Zimmer

Organization xvii

Contents – Part III

Neural Networks

Provable Preimage Under-Approximation for Neural Networks 3
Xiyue Zhang, Benjie Wang, and Marta Kwiatkowska

Training for Verification: Increasing Neuron Stability to Scale DNN
Verification . 24

Dong Xu, Nusrat Jahan Mozumder, Hai Duong, and Matthew B. Dwyer

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 45
Matthias Cosler, Christopher Hahn, Ayham Omar, and Frederik Schmitt

Testing and Verification

HaliVer: Deductive Verification and Scheduling Languages Join Forces 71
Lars B. van den Haak, Anton Wijs, Marieke Huisman,
and Mark van den Brand

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage . . . 90
Martin Jonáš, Jan Strejček, Marek Trtík, and Lukáš Urban

Fast Symbolic Computation of Bottom SCCs . 110
Anna Blume Jakobsen, Rasmus Skibdahl Melanchton Jørgensen,
Jaco van de Pol, and Andreas Pavlogiannis

Btor2-Cert: A Certifying Hardware-Verification Framework Using
Software Analyzers . 129

Zsófia Ádám, Dirk Beyer, Po-Chun Chien, Nian-Ze Lee,
and Nils Sirrenberg

Games

Auction-Based Scheduling . 153
Guy Avni, Kaushik Mallik, and Suman Sadhukhan

Most General Winning Secure Equilibria Synthesis in Graph Games 173
Satya Prakash Nayak and Anne-Kathrin Schmuck

On-The-Fly Algorithm for Reachability in Parametric Timed Games 194
Mikael Bisgaard Dahlsen-Jensen, Baptiste Fievet, Laure Petrucci,
and Jaco van de Pol

Rabin Games and Colourful Universal Trees . 213
Rupak Majumdar, Irmak Sağlam, and K. S. Thejaswini

Concurrency

Decidable Verification under Localized Release-Acquire Concurrency 235
Abhishek Kr Singh and Ori Lahav

OxiDD: A Safe, Concurrent, Modular, and Performant Decision
Diagram Framework in Rust. 255

Nils Husung, Clemens Dubslaff, Holger Hermanns,
and Maximilian A. Köhl

Verification under TSO with an infinite Data Domain 276
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Florian Furbach,
and Shashwat Garg

13th Competition on Software Verification—SV-Comp 2024

State of the Art in Software Verification and Witness Validation:
SV-COMP 2024 . 299

Dirk Beyer

ConcurrentWitness2Test: Test-Harnessing the Power of Concurrency
(Competition Contribution). 330

Levente Bajczi, Zsófia Ádám, and Zoltán Micskei

GOBLINT VALIDATOR: Correctness Witness Validation by Abstract
Interpretation (Competition Contribution) . 335

Simmo Saan, Julian Erhard, Michael Schwarz, Stanimir Bozhilov,
Karoliine Holter, Sarah Tilscher, Vesal Vojdani, and Helmut Seidl

WITCH 3: Validation of Violation Witnesses in the Witness Format 2.0
(Competition Contribution). 341

Paulína Ayaziová and Jan Strejček

AISE: A Symbolic Verifier by Synergizing Abstract Interpretation
and Symbolic Execution (Competition Contribution) 347

Zhen Wang and Zhenbang Chen

xx Contents – Part III

BUBAAK-SpLit: Split what you cannot verify (Competition contribution) 353
Marek Chalupa and Cedric Richter

CPACHECKER 2.3 with Strategy Selection (Competition Contribution) 359
Daniel Baier, Dirk Beyer, Po-Chun Chien, Marek Jankola,
Matthias Kettl, Nian-Ze Lee, Thomas Lemberger,
Marian Lingsch-Rosenfeld, Martin Spiessl, Henrik Wachowitz,
and Philipp Wendler

CPV: A Circuit-Based Program Verifier (Competition Contribution) 365
Po-Chun Chien and Nian-Ze Lee

EmergenTheta: Verification Beyond Abstraction Refinement (Competition
Contribution) . 371

Levente Bajczi, Dániel Szekeres, Milán Mondok, Zsófia Ádám,
Márk Somorjai, Csanád Telbisz, Mihály Dobos-Kovács,
and Vince Molnár

ESBMC v7.4: Harnessing the Power of Intervals (Competition
Contribution) . 376

Rafael Sá Menezes, Mohannad Aldughaim, Bruno Farias, Xianzhiyu Li,
Edoardo Manino, Fedor Shmarov, Kunjian Song, Franz Brauße,
Mikhail R. Gadelha, Norbert Tihanyi, Konstantin Korovin,
and Lucas C. Cordeiro

GOBLINT: Abstract Interpretation for Memory Safety and Termination
(Competition Contribution). 381

Simmo Saan, Julian Erhard, Michael Schwarz, Stanimir Bozhilov,
Karoliine Holter, Sarah Tilscher, Vesal Vojdani, and Helmut Seidl

Mopsa-C: Improved Verification for C Programs, Simple Validation of
Correctness Witnesses (Competition Contribution). 387

Raphaël Monat, Marco Milanese, Francesco Parolini, Jérôme Boillot,
Abdelraouf Ouadjaout, and Antoine Miné

PROTON: PRObes for Termination Or Not (Competition Contribution). 393
Ravindra Metta, Hrishikesh Karmarkar, Kumar Madhukar,
R. Venkatesh, and Supratik Chakraborty

SWAT: Modular Dynamic Symbolic Execution for Java Applications using
Dynamic Instrumentation (Competition Contribution) 399

Nils Loose, Felix Mächtle, Florian Sieck, and Thomas Eisenbarth

Contents – Part III xxi

Symbiotic 10: Lazy Memory Initialization and Compact Symbolic
Execution (Competition Contribution) . 406

Martin Jonáš, Kristián Kumor, Jakub Novák, Jindřich Sedláček,
Marek Trtík, Lukáš Zaoral, Paulína Ayaziová, and Jan Strejček

Theta: Abstraction Based Techniques for Verifying Concurrency
(Competition Contribution). 412

Levente Bajczi, Csanád Telbisz, Márk Somorjai, Zsófia Ádám,
Mihály Dobos-Kovács, Dániel Szekeres, Milán Mondok,
and Vince Molnár

Ultimate Automizer and the Abstraction of Bitwise Operations
(Competition Contribution). 418

Frank Schüssele, Manuel Bentele, Daniel Dietsch, Matthias Heizmann,
Xinyu Jiang, Dominik Klumpp, and Andreas Podelski

Author Index . 425

xxii Contents – Part III

Neural Networks

Provable Preimage Under-Approximation for
Neural Networks

Xiyue Zhang(�), Benjie Wang, and Marta Kwiatkowska

Department of Computer Science, University of Oxford, Oxford, UK
{xiyue.zhang,benjie.wang,marta.kwiatkowska}@cs.ox.ac.uk

Abstract. Neural network verification mainly focuses on local robust-
ness properties, which can be checked by bounding the image (set of
outputs) of a given input set. However, often it is important to know
whether a given property holds globally for the input domain, and if not
then for what proportion of the input the property is true. To analyze
such properties requires computing preimage abstractions of neural net-
works. In this work, we propose an efficient anytime algorithm for gener-
ating symbolic under-approximations of the preimage of any polyhedron
output set for neural networks. Our algorithm combines a novel tech-
nique for cheaply computing polytope preimage under-approximations
using linear relaxation, with a carefully-designed refinement procedure
that iteratively partitions the input region into subregions using input
and ReLU splitting in order to improve the approximation. Empirically,
we validate the efficacy of our method across a range of domains, includ-
ing a high-dimensional MNIST classification task beyond the reach of
existing preimage computation methods. Finally, as use cases, we show-
case the application to quantitative verification and robustness analysis.
We present a sound and complete algorithm for the former, which ex-
ploits our disjoint union of polytopes representation to provide formal
guarantees. For the latter, we find that our method can provide useful
quantitative information even when standard verifiers cannot verify a
robustness property.

1 Introduction

Despite the remarkable empirical success of neural networks, guaranteeing their
correctness, especially when using them as decision-making components in safety-
critical autonomous systems [7, 13, 43], is an important and challenging task.
Towards this aim, various approaches have been developed for the verification
of neural networks, with extensive effort devoted to local robustness verifica-
tion [20, 22, 44, 11, 35, 32, 40, 41, 36]. While local robustness verification focuses
on deciding the absence of adversarial examples within an ϵ-perturbation neigh-
bourhood, an alternative approach for neural network analysis is to construct
the preimage of its predictions [27, 15]. Given a set of outputs, the preimage is
defined as the set of all inputs mapped by the neural network to that output set.
By characterizing the preimage symbolically in an abstract representation, e.g.,

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 3–23, 2024.
https://doi.org/10.1007/978-3-031-57256-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_1&domain=pdf

polyhedra, one can perform more complex analysis for a wider class of properties
beyond local robustness, such as computing the proportion of inputs satisfying a
property (quantitative verification) even if standard robustness verification fails.

Exact preimage generation [27] is intractable, taking time exponential in the
number of neurons in a network; thus approximations are necessary. Unfortu-
nately, existing methods are limited in their applicability. The inverse abstrac-
tion method in [15] bypasses the intractability of exact preimage generation by
leveraging symbolic interpolants [14, 2] for abstraction of neural network layers.
However, due to the complexity of interpolation, the time to compute the ab-
straction also scales exponentially with the number of neurons in hidden layers.
A concurrent work [23] proposed an input bounding algorithm targeting back-
ward reachability analysis for control policies and out-of-distribution (OOD)
detection in low-dimensional domains. Their method produces a preimage over-
approximation, which cannot be used for quantitative verification. Therefore,
more efficient and flexible computation methods for (symbolic abstraction of)
preimages of neural networks are needed.

The main contribution of this paper is a scalable method for preimage ap-
proximation, which can be used for a variety of robustness analysis tasks. More
specifically, we propose an efficient anytime algorithm for generating symbolic
under-approximations of the preimage of piecewise linear neural networks as a
union of disjoint polytopes. The algorithm computes a sound preimage under-
approximation leveraging linear relaxation based perturbation analysis (LiRPA)
[40, 41, 32], applied backwards from a polyhedron output set. It iteratively re-
fines the preimage approximation by adding input and/or intermediate (ReLU)
splitting (hyper)planes to partition the input region into disjoint subregions,
which can be approximated independently in parallel in a divide-and-conquer
approach. The refinement scheme uses a novel differential objective to optimize
the quality (volume) of the polytope subregions. We also show that our method
can be generalized to generate preimage over-approximations. We illustrate the
application of our method to quantitative verification, input bounding for control
tasks, and robustness analysis against adversarial and patch attacks. Finally, we
conduct an empirical analysis on a range of control and computer vision tasks,
showing significant gains in efficiency compared to exact preimage generation
methods and scalability to high-input-dimensional tasks compared to existing
preimage approximation methods.

For space reasons, proofs and additional technical details have been moved
to Appendix of the full version of the paper [45].

2 Preliminaries

We use f : Rd → Rm to denote a feedforward neural network. For layer i, we use
W(i) to denote the weight matrix, b(i) the bias, h(i) the pre-activation neurons,
and a(i) the post-activation neurons, such that we have h(i) = W(i)a(i−1)+b(i).
In this paper, we focus on ReLU neural networks with a(i)(x) = ReLU(h(i)(x)),

4 X. Zhang et al.

Provable Preimage Under-Approximation for Neural Networks 5

𝑙!
(#) 𝑢!

(#)

𝑎!
(#)

ℎ!
(#)

𝑙!
(#) 𝑢!

(#)

𝑎!
(#)

ℎ!
(#)

𝑙!
(#) 𝑢!

(#)

𝑎!
(#)

ℎ!
(#)

Fig. 1: Linear bounding functions for inactive, active, unstable ReLU neurons.

where ReLU(h) := max(h, 0) is applied element-wise. However, our method can
be generalized to other activation functions bounded by linear relaxation [44].

Linear Relaxation of Neural Networks. Nonlinear activation functions
lead to the NP-completeness of the neural network verification problem [22].
To address such intractability, linear relaxation is often used to transform the
nonconvex constraints into linear programs. As shown in Figure 1, given concrete
lower and upper bounds l(i) ≤ h(i)(x) ≤ u(i) on the pre-activation values of layer
i, there are three cases to consider. In the inactive (u(i)j ≤ 0) and active (l(i)j ≥ 0)

cases, the post-activation neurons a(i)j (x) are linear functions a(i)j (x) = 0 and
a
(i)
j (x) = h

(i)
j (x) respectively. In the unstable case, a(i)j (x) can be bounded by

α
(i)
j h

(i)
j (x) ≤ a

(i)
j (x) ≤ − u

(i)
j l

(i)
j

u
(i)
j −l

(i)
j

+
u
(i)
j

u
(i)
j −l

(i)
j

h
(i)
j (x), where α(i)

j is a configurable

parameter that produces a valid lower bound for any value in [0, 1]. Linear bounds
can also be obtained for other non-piecewise linear activation functions [44].

Linear relaxation can be used to compute linear upper and lower bounds of
the form Ax+b ≤ f(x) ≤ Ax+b on the output of a neural network, for a given
bounded input region C. These methods are known as linear relaxation based per-
turbation analysis (LiRPA) algorithms [40, 41, 32]. In particular, backward-mode
LiRPA computes linear bounds on f by propagating linear bounding functions
backward from the output, layer-by-layer, to the input layer.

Polytope Representations. Given an Euclidean space Rd, a polyhedron T
is defined to be the intersection of a set of half spaces. More formally, suppose we
have a set of linear constraints defined by ψi(x) := cTi x+ di ≥ 0 for i = 1, ...K,
where ci ∈ Rd, di ∈ R are constants, and x = x1, ..., xd is a set of variables. Then
a polyhedron is defined as T = {x ∈ Rd|

∧K
i=1 ψi(x)}, where T consists of all

values of x satisfying the first-order logic (FOL) formula α(x) :=
∧K

i=1 ψi(x). We
use the term polytope to refer to a bounded polyhedron, that is, a polyhedron T
such that ∃R ∈ R>0 : ∀x1, x2 ∈ T , ∥x1 − x2∥2 ≤ R holds. The abstract domain
of polyhedra [32, 6, 8] has been widely used for the verification of neural networks
and computer programs. An important type of polytope is the hyperrectangle
(box), which is a polytope defined by a closed and bounded interval [xi, xi] for
each dimension, where xi, xi ∈ Q. More formally, using the linear constraints
ϕi := (xi ≥ xi) ∧ (xi ≤ xi) for each dimension, the hyperrectangle takes the
form C = {x ∈ Rd|x |=

∧d
i=1 ϕi}.

3 Problem Formulation

3.1 Preimage Approximation

In this work, we are interested in the problem of computing preimages for neural
networks. Given a subset O ⊂ Rm of the codomain, the preimage of a function
f : Rd → Rm is defined to be the set of all inputs x ∈ Rd that are mapped to
an element of O by f . For neural networks in particular, the input is typically
restricted to some bounded input region C ⊂ Rd. In this work, we restrict the
output set O to be a polyhedron, and the input set C to be an axis-aligned
hyperrectangle region C ⊂ Rd, as these are commonly used in neural network
verification. We now define the notion of a restricted preimage:

Definition 1 (Restricted Preimage). Given a neural network f : Rd → Rm,
and an input set C ⊂ Rd, the restricted preimage of an output set O ⊂ Rm is
defined to be the set f−1

C (O) := {x ∈ Rd|f(x) ∈ O ∧ x ∈ C}.

Example 1. To illustrate our problem formulation and approach, we introduce a
vehicle parking task [3] as a running example. In this task, there are four parking
lots, located in each quadrant of a 2× 2 grid [0, 2]2, and a neural network with
two hidden layers of 10 ReLU neurons f : R2 → R4 is trained to classify which
parking lot an input point belongs to. To analyze the behaviour of the neural
network in the input region [0, 1]× [0, 1] corresponding to parking lot 1, we set
C = {x ∈ R2|(0 ≤ x1 ≤ 1)∧ (0 ≤ x2 ≤ 1)}. Then the restricted preimage f−1

C (O)
of the set O = {y ∈ R4|

∧
i∈{2,3,4} y1 − yi ≥ 0} is the subspace of the region

[0, 1]× [0, 1] that is labelled as parking lot 1 by the network.

We focus on provable approximations of the preimage. Given a first-order
formula A, α is an under-approximation (resp. over-approximation) of A if it
holds that ∀x.α(x) =⇒ A(x) (resp. ∀x.A(x) =⇒ α(x)). In our context, the
restricted preimage is defined by the formula A(x) = (f(x) ∈ O) ∧ (x ∈ C),
and we restrict to approximations α that take the form of a disjoint union of
polytopes (DUP). The goal of our method is to generate a DUP approximation
T that is as tight as possible; that is, to maximize the volume vol(T) of an
under-approximation, or minimize the volume vol(T) of an over-approximation.

Definition 2 (Disjoint Union of Polytopes). A disjoint union of polytopes
(DUP) is a FOL formula α of the form α(x) :=

∨D
i=1 αi(x), where each αi is

a polytope formula (conjunction of a finite set of linear half-space constraints),
with the property that αi ∧ αj is unsatisfiable for any i ̸= j.

3.2 Quantitative Properties

One of the most important verification problems for neural networks is that of
proving guarantees on the output of a network for a given input set [18, 19, 30].
This is often expressed as a property of the form (I,O) such that ∀x ∈ I =⇒
f(x) ∈ O. We can generalize this to quantitative properties:

6 X. Zhang et al.

Definition 3 (Quantitative Property). Given a neural network f : Rd →
Rm, a measurable input set with non-zero measure (volume) I ⊆ Rd, a measur-
able output set O ⊆ Rm, and a rational proportion p ∈ [0, 1] we say that the
neural network satisfies the property (I,O, p) if vol(f−1

I (O))

vol(I) ≥ p. 1

Neural network verification algorithms [25] can be divided into two categories:
sound, which always return correct results, and complete, guaranteed to reach a
conclusion on any verification query. We now define soundness and completeness
of verification algorithms for quantitative properties.

Definition 4 (Soundness). A verification algorithm QV is sound if, whenever
QV outputs True, the property (I,O, p) holds.

Definition 5 (Completeness). A verification algorithm QV is complete if (i)
QV never returns Unknown, and (ii) whenever QV outputs False, the property
(I,O, p) does not hold.

If the property (I,O) holds, then the quantitative property (I,O, 1) holds,
while quantitative properties for 0 ≤ p < 1 provide more information when
(I,O) does not hold. Most neural network verification methods produce ap-
proximations of the image of I in the output space, which cannot be used to
verify quantitative properties. Preimage over-approximations include false re-
gions, thereby not applicable for quantitative verification. In contrast, preimage
under-approximations provide a lower bound on the volume of the preimage,
allowing us to soundly verify quantitative properties.

4 Methodology

Overview. In this section we present the main components of our methodology.
Firstly, in Section 4.1, we show how to cheaply and soundly under-approximate
the (restricted) preimage with a single polytope, using linear relaxation meth-
ods (Algorithm 2). Secondly, in Section 4.2, we propose a novel differentiable
objective to optimize the quality (volume) of the polytope under-approximation.
Thirdly, in Section 4.3, we propose a refinement scheme that improves the ap-
proximation by partitioning a (sub)region into subregions with splitting planes,
with each subregion then being under-approximated more accurately. The main
contribution of this paper (Algorithm 1) integrates these three components and
is described in Section 4.4. Finally, in Section 4.5, we apply our method to quan-
titative verification (Algorithm 3) and prove its soundness and completeness.

4.1 Polytope Under-Approximation via Linear Relaxation

We first show how to adapt linear relaxation techniques to efficiently generate
valid under-approximations to the restricted preimage for a given input region C.
1 In particular, the restricted preimage of a polyhedron under a neural network is

Lebesgue measurable since polyhedra (intersection of a finite set of half-spaces) are
Borel measurable and NNs are continuous functions.

Provable Preimage Under-Approximation for Neural Networks 7

Algorithm 1: Preimage Approximation
Input: Neural network f , Input region C, Output region O, Volume threshold

v, Maximum iterations R, Boolean SplitOnInput
Output: Disjoint union of polytopes T

1 T ← GenUnderApprox(C, O) ; // Initial preimage polytope
2 v̂olT , v̂olf−1

C (O)
← EstimateVol(T), EstimateVol(f−1

C (O)) ;

3 Dom ← {(C, T, v̂ol
f−1
C (O)

− v̂olT)} ; // Priority queue

// TDom is the union of polytopes in Dom
4 while EstimateVol(TDom) < v and Iterations ≤ R do
5 Csub, T,Priority ← Pop(Dom) ; // Subregion with highest priority
6 if SplitOnInput then
7 id ← SelectInputFeature(FeatureI) ; // FeatureI is the set of

input features/dimensions

8 else
9 id← SelectReLUNode(NodeZ); // NodeZ is the set of unstable

ReLU nodes

10 [Clsub,Cusub] ← SplitOnNode(Csub, id); // Split on the selected node
11 [T l, Tu] ← GenUnderApprox([Clsub,Cusub], O) ; // Generate preimage
12 [v̂olT l , v̂olTu] ← EstimateVol([T l, Tu]);
13 v̂ol

f−1

Cl
sub

(O)
, v̂ol

f−1
Cu
sub

(O)
← EstimateVol(f−1

Cl
sub

(O)),EstimateVol(f−1
Cu
sub

(O)) ;

14 Dom ← Dom ∪ {(Clsub, T l,v̂ol
f−1

Cl
sub

(O)
− v̂olT l)} ∪

{(Cusub, Tu,v̂ol
f−1
Cu
sub

(O)
− v̂olTu)}; // Disjoint polytope

15 return TDom

Recall that LiRPA methods enable us to obtain linear lower and upper bounds
on the output of a neural network f , that is, Ax + b ≤ f(x) ≤ Ax + b, where
the linear coefficients depend on the input region C.

Now, suppose that we are interested in computing an under-approximation
to the restricted preimage, given the input hyperrectangle C = {x ∈ Rd|x |=∧d

i=1 ϕi}, and the output polytope specified using the half-space constraints
ψi(y) = (cTi y+ di ≥ 0) for i = 1, ...,K over the output space. Given a constraint
ψi, we append an additional linear layer at the end of the network f , which maps
y 7→ cTi y+di, such that the function gi : Rd → R represented by the new network
is gi(x) = cTi f(x) + di. Then, applying LiRPA bounding to each gi, we obtain
lower bounds gi(x) = aTi x+ bi for each i, such that gi(x) ≥ 0 =⇒ gi(x) ≥ 0 for
x ∈ C. Notice that, for each i = 1, ...,K, aTi x+bi ≥ 0 is a half-space constraint in
the input space. We conjoin these constraints, along with the restriction to the
input region C, to obtain a polytope TC(O) := {x|

∧K
i=1(gi(x) ≥ 0)∧

∧d
i=1 ϕi(x)}.

Proposition 1. TC(O) is an under-approximation to the restricted preimage
f−1
C (O).

8 X. Zhang et al.

Algorithm 2: GenUnderApprox
Input: List of subregions C, Output set O, number of samples N
Output: List of polytopes T

1 T = [];
2 for subregion Csub ∈ C // Parallel over subregions
3 do
4 [g1(x,α1), ..., gK(x,αK)]← LinearLowerBound(Csub, O);
5 x1, ..., xN ← Sample(Csub, N);
6 Loss(α1, ...,αK)← −

∑
j=1,...,N σ(−LSE(−g1(xj ,α1), ...,−gK(xj ,αK));

7 α∗
1, ...,α

∗
K ← Optimize(Loss(α1, ...,αK));

8 T = Append(T, [g1(x,α
∗
1) ≥ 0, ..., gK(x,α∗

K) ≥ 0, x ∈ Csub])
9 return T

Example 2. Returning to Example 1, the output constraints (for i = 2, 3, 4) are
given by ψi = (y1 − yi ≥ 0) = (cTi y + di ≥ 0), where ci := e1 − ei (where
ei is the ith standard basis vector) and di := 0. Applying LiRPA bounding,
we obtain the linear lower bounds g2(x) = −3.79x1 + x2 + 2.65 ≥ 0; g3(x) =
0.34x1 − x2 − 0.60 ≥ 0; g4(x) = −1.11x1 − x2 + 1.99 ≥ 0 for each constraint.
The intersection of these constraints, shown in Figure 2a, represents the region
where any input is guaranteed to satisfy the output constraints.

We generate the linear bounds in parallel over the output polyhedron con-
straints i = 1, ...,K using the backward mode LiRPA [44], and store the resulting
input polytope TC(O) as a list of constraints. This highly efficient procedure is
used as a sub-routine LinearLowerBound when generating a preimage under-
approximation as a polytope union using Algorithm 2 (Line 4).

4.2 Local Optimization

One of the key components behind the effectiveness of LiRPA-based bounds
is the ability to efficiently improve the tightness of the bounding function by
optimizing the relaxation parameters α, via projected gradient descent. In the
context of local robustness verification, the goal is to optimize the concrete lower
or upper bounds over the (sub)region C [40], i.e., minx∈C A(α)x+b(α), where we
explicitly note the dependence of the linear coefficients on α. In our case, we are
instead interested in optimizing α to refine the polytope under-approximation,
that is, increase its volume. Unfortunately, computing the volume of a polytope
exactly is a computationally expensive task, and requires specialized tools [12]
that do not permit easy optimization with respect to the α parameters.

To address this challenge, we propose to use statistical estimation. In par-
ticular, we sample N points x1, ..., xN uniformly from the input domain C then
employ Monte Carlo estimation for the volume of the polytope approximation:

v̂ol(TC,α(O)) =

∑N
i=1 1xi∈TC,α(O)

N
× vol(C) (1)

Provable Preimage Under-Approximation for Neural Networks 9

where we highlight the dependence of TC(O) = {x|
∧K

i=1 gi(x,αi) ≥ 0∧
∧d

i=1 ϕi(x)}
on α = (α1, ...,αK), and αi are the α-parameters for the linear relaxation of the
neural network gi corresponding to the ith half-space constraint in O. However,
this is still non-differentiable w.r.t. α due to the identity function. We now show
how to derive a differentiable relaxation which is amenable to gradient-based
optimization:

v̂ol(TC,α(O)) =
vol(C)
N

N∑
j=1

1xj∈TC,α(O) =
vol(C)
N

N∑
j=1

1mini=1,...K gi(xj ,αi)≥0

≈ vol(C)
N

N∑
j=1

σ

(
min

i=1,...K
gi(xj ,αi)

)

≈ vol(C)
N

N∑
j=1

σ
(
−LSE(−g1(xj ,α1), ...,−gK(xj ,αK))

)
The second equality follows from the definition of the polytope TC,α(O); namely
that a point is in the polytope if it satisfies gi(xj ,αi) ≥ 0 for all i = 1, ...,K,
or equivalently, mini=1,...K gi(xj ,αi) ≥ 0. After this, we approximate the iden-
tity function using a sigmoid relaxation, where σ(y) := 1

1+e−y , as is commonly
done in machine learning to define classification losses. Finally, we approximate
the minimum over specifications using the log-sum-exp (LSE) function. The log-
sum-exp function is defined by LSE(y1, ..., yK) := log(

∑
i=1,...,K eyi), and is

a differentiable approximation to the maximum function; we employ it to ap-
proximate the minimization by adding the appropriate sign changes. The final
expression is now a differentiable function of α. We employ this as the loss
function in Algorithm 2 (Line 6) for generating a polytope approximation, and
optimize volume using projected gradient descent.

Example 3. We revisit the vehicle parking problem in Example 1. Figure 2a and
2b show the computed under-approximations before and after local optimization.
We can see that the bounding planes for all three specifications are optimized,
which effectively improves the approximation quality.

4.3 Global Branching and Refinement

As LiRPA performs crude linear relaxation, the resulting bounds can be quite
loose even with α-optimization, meaning that the polytope approximation TC(O)
is unlikely to constitute a tight under-approximation to the preimage. To address
this challenge, we employ a divide-and-conquer approach that iteratively refines
our under-approximation of the preimage. Starting from the initial region C
represented at the root, our method generates a tree by iteratively partitioning
a subregion Csub represented at a leaf node into two smaller subregions Cl

sub, Cu
sub,

which are then attached as children to that leaf node. In this way, the subregions
represented by all leaves of the tree are disjoint, such that their union is the initial
region C.

10 X. Zhang et al.

For each leaf subregion Csub we compute, using LiRPA bounds (Line 4, Algo-
rithm 2), an associated polytope that under-approximates the preimage in Csub.
Thus, irrespective of the number of refinements performed, the union of the poly-
topes corresponding to all leaves forms an anytime DUP under-approximation
T to the preimage in the original region C. The process of refining the subregions
continues until an appropriate termination criterion is met.

Unfortunately, even with a moderate number of input dimensions or un-
stable ReLU nodes, naïvely splitting along all input- or ReLU-planes quickly
becomes computationally infeasible. For example, splitting a d-dimensional hy-
perrectangle using bisections along each dimension results in 2d subdomains to
approximate. It thus becomes crucial to identify the subregion splits that have
the most impact on the quality of the under-approximation. Another important
aspect is how to prioritize which leaf subregion to split. We describe these in
turn.

Subregion Selection. Searching through all leaf subregions at each itera-
tion is computationally too expensive. Thus, we propose a subregion selection
strategy that prioritizes splitting subregions according to (an estimate of) the
difference in volume between the exact preimage f−1

Csub
(O) and the (already com-

puted) polytope approximation TCsub
(O) on that subdomain, that is:

Priority(Csub) = vol(f−1
Csub

(O))− vol(TCsub
(O)) (2)

which measures the gap between the polytope under-approximation and the
optimal approximation, namely, the preimage itself.

Suppose that a particular leaf subdomain attains the maximum of this metric
among all leaves, and we partition it into two subregions Cl

sub, Cu
sub, which we ap-

proximate with polytopes TCl
sub

(O), TCu
sub

(O). As tighter intermediate concrete
bounds, and thus linear bounding functions, can be computed on the partitioned
subregions, the polytope approximation on each subregion will be refined com-
pared with the single polytope restricted to that subregion.

Proposition 2. Given any subregion Csub with polytope approximation TCsub
(O),

and its children Cl
sub, Cu

sub with polytope approximations TCl
sub

(O), TCu
sub

(O) re-
spectively, it holds that:

TCl
sub

(O) ∪ TCu
sub

(O) ⊇ TCsub
(O) (3)

Corollary 1. In each refinement iteration, the volume of the polytope approxi-
mation TDom does not decrease.

Since computing the volumes in Equation 2 is intractable, we sample N
points x1, ..., xN uniformly from the subdomain Csub and employ Monte Carlo
estimation to estimate the volume for both the preimage and the polytope ap-
proximation using the same set of samples, i.e., v̂ol(f−1

Csub
(O)) = vol(Csub) ×

1
N

∑N
i=1 1xi∈f−1

Csub
(O), and v̂ol(TCsub

(O)) = vol(Csub) × 1
N

∑N
i=1 1xi∈TCsub

(O). We

Provable Preimage Under-Approximation for Neural Networks 11

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=3.79x-2.65
y=0.34x+0.60
y=-1.11x+1.99

(a) No optimization

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=4.13x-2.99
y=0.32x+0.64
y=-1.08x+1.97
y=3.79x-2.65
y=0.34x+0.60
y=-1.11x+1.99

(b) After optimization

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=2.37x-1.92
y=0.89x+1.19
y=-6.33x+16.77
y=8.37x-7.31
y=0.14x+0.83
y=-0.80x+1.75
y=0.5

(c) Input split

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=-0.99x+0.97
y=5.61x-4.43
y=0.24x+0.72
y=-1.07x+1.97
y=3.12x-2.39
y=0.43x+0.68
y=-1.10x+2.44

(d) ReLU split

Fig. 2: Refinement and optimization for preimage approximation.

stress that volume estimation is only used to prioritize subregion selection, and
does not affect the soundness of our method.

Input Splitting. Given a subregion (hyperrectangle) defined by lower and
upper bounds xi ∈ [xi, xi] for all dimensions i = 1, ..., d, input splitting partitions
it into two subregions by cutting along some feature i. This splitting procedure
will produce two subregions which are similar to the original subregion, but have
updated bounds [xi,

xi+xi

2], [
xi+xi

2 , xi] for feature i instead. In order to determine
which feature/dimension to split on, we propose a greedy strategy. Specifically,
for each feature, we generate a pair of polytopes for the two subregions resulting
from the split, and choose the feature that results in the greatest total volume
of the polytope pair. In practice, another commonly-adopted splitting heuristic
is to select the dimension with the longest edge [10], that is, to select feature i
with the largest range: argmaxi(xi−xi). However, this method falls short in per-
iteration approximation volume improvement compared to our greedy strategy.

Example 4. We revisit the vehicle parking problem in Example 1. Figure 2b
shows the polytope under-approximation computed on the input region C before
refinement, where each solid line represents the bounding plane for each output
specification (y1 − yi ≥ 0). Figure 2c depicts the refined approximation by split-
ting the input region along the vertical axis, where the solid and dashed lines
represent the bounding planes for the two resulting subregions. It can be seen
that the total volume of the under-approximation has improved significantly.

Intermediate ReLU Splitting. Refinement through splitting on input fea-
tures is adequate for low-dimensional input problems such as reinforcement learn-
ing agents. However, it may be infeasible to generate sufficiently fine subregions
for high-dimensional domains. We thus propose an algorithm for ReLU neural
networks that uses intermediate ReLU splitting for preimage refinement. After
determining a subregion for refinement, we partition the subregion based upon
the pre-activation value of an intermediate unstable neuron z

(i)
j = 0. As a re-

sult, the original subregion Csub is split into two new subregions C+

z
(i)
j

= {x ∈

Csub | z(i)j = h
(i)
j (x) ≥ 0} and C−

z
(i)
j

= {x ∈ Csub | z(i)j = h
(i)
j (x) < 0}.2

2 To obtain a polytope under-approximation, we can utilize linear lower/upper bounds
on h

(i)
j (x) as an approximation to the subregion boundary.

12 X. Zhang et al.

In this procedure, the order of splitting unstable ReLU neurons can greatly
influence the refinement quality and efficiency. Existing heuristic methods of
ReLU prioritization select ReLU nodes that lead to greater improvement in the
final bound (maximum or minimum value) of the neuron network on the input
domain [10], i.e. minx∈C f(x). However, these ReLU prioritization methods are
not effective for preimage analysis, because our objective is instead to refine
the overall preimage approximation. We thus propose a heuristic method to pri-
oritize unstable ReLU nodes for preimage refinement. Specifically, we compute
(an estimate of) the volume difference between the split subregions |vol(C+

z
(i)
j

)−

vol(C−
z
(i)
j

)|, using a single forward pass for a set of sampled datapoints from the

input domain; note that this is bounded above by the total subregion volume
vol(Csub). We then propose to select the ReLU node that minimizes this differ-
ence. Intuitively, this choice results in balanced subdomains after splitting.

Another advantage of ReLU splitting is that we can replace the unstable
neuron bound ch(i)j (x)+d ≤ a

(i)
j (x) ≤ ch

(i)
j (x)+d with the exact linear function

a
(i)
j (x) = h

(i)
j (x) and a

(i)
j (x) = 0, respectively, as shown in Figure 1 (unstable

to stable). This can then tighten the linear bounds for the other neurons, thus
tightening the under-approximation on each subdomain.

Example 5. We now apply our algorithm with ReLU splitting to the vehicle
parking problem in Example 1. Figure 2d shows the refined preimage polytope
by adding the splitting plane (black solid line) along the direction of a selected
unstable ReLU node. Compared with Figure 2b, we can see that the volume of
the approximation is improved.

Remark 1 (Preimage Over-approximation). While Algorithms 1 and 2 focus on
preimage under-approximations, they can be easily configured to generate over-
approximations with two key modifications. Firstly, we generate polytope over-
approximations by using LiRPA to propagate a linear upper bound gi(x) =
aTi x + bi for each output constraint, such that gi(x) ≥ 0 =⇒ gi(x) ≥ 0 for
x ∈ C. Secondly, the refinement and optimization objective is to minimize the
volume of the over-approximation instead of maximizing the volume as in the
case of under-approximation.

4.4 Overall Algorithm

Our overall preimage approximation method is summarized in Algorithm 1. It
takes as input a neural network f , input region C, output region O, target poly-
tope volume threshold v (a proxy for approximation precision), termination itera-
tion number R, and a Boolean indicating whether to use input or ReLU splitting,
and returns a disjoint polytope union T representing an underapproximation to
the preimage.

The algorithm initiates and maintains a priority queue of (sub)regions ac-
cording to Equation 2. The initialization step (Lines 1-3) generates an initial
polytope approximation on the whole region using Algorithm 2 (Sections 4.1,

Provable Preimage Under-Approximation for Neural Networks 13

Algorithm 3: Quantitative Verification
Input: Neural network f , Property (I,O, p), Maximum iterations R
Output: Verification Result ∈ {True, False, Unknown}

1 vol(I)← ExactVolume(I);
2 C ← OuterBox(I) ; // For general polytopes I
3 T ← InitialRun(f, C, O);
4 while Iterations ≤ R do
5 T ← Refine(f, T , C, O);
6 if EstimateVolume(T) ≥ p× vol(I) then
7 if ExactVolume(T) ≥ p× vol(I) then
8 return True

9 if AllReLUSplit then
10 return False

11 return Unknown

4.2). Then, the preimage refinement loop (Lines 4-14) partitions a subregion in
each iteration, with the preimage restricted to the child subregions then being
re-approximated (Line 10-11). In each iteration, we choose the region to split
(Line 5) and the splitting plane to cut on (Line 7 for input split and Line 9 for
ReLU split), as detailed in Section 4.3. The preimage under-approximation is
then updated by computing the priorities for each subregion (by approximating
volumes) (Lines 12-14). The loop terminates and the approximation returned
when the target volume threshold v or maximum iteration limit R is reached.

4.5 Quantitative Verification

We now show how to use our efficient preimage under-approximation method
(Algorithm 1) to verify a given quantitative property (I,O, p), where O is a
polyhedron, I a polytope and p the desired proportion value, summarized in
Algorithm 3. To simplify assume that I is a hyperrectangle, so that we can take
C = I (in view of space constraints the case of general polytopes is discussed in
Appendix of [45]). We utilize Algorithm 1 by setting the volume threshold to
p×vol(I), such that we have v̂ol(T)

vol(I) ≥ p if the algorithm terminates before reach-
ing the maximum number of iterations. However, the Monte Carlo estimates of
volume cannot provide a sound guarantee that vol(T)

vol(I) ≥ p. To resolve this prob-
lem, we propose to run exact volume computation [5] only when the Monte Carlo
estimate reaches the threshold. If the exact volume vol(T) ≥ p×vol(I), then the
property is verified. Otherwise, we continue running the preimage refinement.

In Algorithm 3, InitialRun generates an initial approximation to the preim-
age as in Lines 1-3 of Algorithm 1, and Refine performs one iteration of approx-
imation refinement (Lines 5-14). Termination occurs when we have verified or
falsified the quantitative property, or when the maximum number of iterations
has been exceeded.

14 X. Zhang et al.

Proposition 3. Algorithm 3 is sound for quantitative verification with input
splitting.

Proposition 4. Algorithm 3 is sound and complete for quantitative verification
on piecewise linear neural networks with ReLU splitting.

5 Experiments

We have implemented our approach as a prototype tool 3 for preimage approx-
imation for polyhedron-type output sets/specifications. In this section, we per-
form experimental evaluation of the proposed approach on a set of benchmark
tasks and demonstrate its effectiveness in approximation generation and its ap-
plication to quantitative analysis of neural networks.

5.1 Benchmark and Evaluation Metric

We evaluate our preimage analysis approach on a benchmark of reinforcement
learning and image classification tasks. Besides the vehicle parking task [3] shown
in the running example, we use the following (trained) benchmarks: (1) aircraft
collision avoidance system (VCAS) [21] with 9 feed-forward neural networks
(FNNs); (2) neural network controllers from VNN-COMP 2022 [1] for three
reinforcement learning tasks (Cartpole, Lunarlander, and Dubinsrejoin) [9]; and
(3) the neural network from VNN-COMP 2022 for MNIST classification. Details
of the models and additional experiments can be found in Appendix of [45].

Evaluation Metric To evaluate the quality of the preimage approximation,
we define the coverage ratio to be the ratio of volume covered to the volume
of the exact preimage, i.e., cov(T , f−1

C (O)) := vol(T)

vol(f−1
C (O))

. Note that this is a
normalized measure for assessing the quality of the approximation, as shown in
Algorithm 3 when comparing with target coverage proportion p for termination
of the refinement loop, and not as a measure for formal verification guarantees. In
practice, we estimate vol(f−1

C (O)) as v̂ol(f−1
C (O)) = vol(C) × 1

N

∑N
i=1 1f(xi)∈O,

where x1, ...xN are samples from C. In Algorithm 1, the target volume (stopping
criterion) is set as v = r × v̂ol(f−1

C (O), where r is the target coverage ratio.

5.2 Evaluation

Effectiveness in Preimage Approximation with Input Split We apply Al-
gorithm 1 with input splitting to the input bounding problem for low-dimensional
reinforcement learning tasks to evaluate its effectiveness. For comparison, we also
run the exact preimage (Exact) [27] and preimage over-approximation (Invprop)
[23, 24] methods.

Vehicle Parking & VCAS. Table 1 presents experimental results on the vehicle
parking and VCAS tasks. In the table, we show the number of polytopes (#Poly)
3 The source code is at https://github.com/Zhang-Xiyue/PreimageApproxForNNs.

Provable Preimage Under-Approximation for Neural Networks 15

Table 1: Performance comparison in preimage generation.

Models Exact Invprop Our

#Poly Time Time Cov(%) #Poly Time Cov(%)

Vehicle (FNN 1× 20) 10 3110.979 2.642 92.1 4 1.175 95.7
VCAS (FNN 1× 21) 131 6363.272 - - 12 11.281 91.0

Table 2: Performance of preimage approximation for reinforcement learning tasks.

Task Property Config #Poly Cov(%) Time

Cartpole
(FNN 2× 64) {y ∈ R2| y1 ≥ y2}

θ̇ ∈ [−2,−1] 8 82.0 8.933
θ̇ ∈ [−2,−0.5] 17 75.5 14.527
θ̇ ∈ [−2, 0] 32 76.5 27.344

Lunarlander
(FNN 2× 64) {y ∈ R4| ∧i∈{1,3,4} y2 ≥ yi}

v̇ ∈ [−0.5, 0] 38 75.5 34.311
v̇ ∈ [−1, 0] 71 75.1 63.333
v̇ ∈ [−2, 0] 159 75.0 134.929

Dubinsrejoin
(FNN 2× 256)

{y ∈ R8| ∧i∈[2,4] y1 ≥ yi∧
∧i∈[6,8] y5 ≥ yi}

xv ∈ [−0.1, 0.1] 26 75.8 34.558
xv ∈ [−0.2, 0.2] 61 75.4 78.437
xv ∈ [−0.3, 0.3] 1002 57.6 1267.272

in the preimage, computation time (Time(s)), and the approximate coverage ra-
tio (Cov(%)) when the preimage approximation algorithm terminates with target
coverage 90%. Compared with the exact method, our approach yields orders-of-
magnitude improvement in efficiency. It can also characterize the preimage with
much fewer (and also disjoint) polytopes (average reduction of 91.1% for VCAS).

The Invprop method [23] cannot be directly applied as it computes preim-
age over-approximations. We adapt it to produce an under-approximation by
computing over-approximations for the complement of each output constraint;
the resulting approximation is then the complement of a union of polytopes,
rather than a DUP. On the 2D vehicle parking task, we find that the results
(see Table 1) are comparable with ours in time and approximation coverage.
Their implementation currently only supports two-dimensional input tasks [24].
While their algorithm, which employs input splitting, can in theory be extended
to higher-dimensional tasks, a significant unaddressed technical challenge is in
how to choose the input splits effectively in high dimensions. This is confounded
by the fact that, to generate an under-approximation, we need separate runs of
their algorithm for each output constraint. In contrast, our method naturally in-
corporates a principled splitting and refinement strategy, and can also effectively
employ ReLU splitting for further scalability, as we will show below. Our method
can also be configured to generate over-approximations (Section 4.3, Remark 1).

Neural Network Controllers. In this experiment, we consider preimage under-
approximation for neural network controllers in reinforcement learning tasks.
Note that [27] (Exact) is unable to deal with neural networks of these sizes and

16 X. Zhang et al.

Table 3: Refinement with ReLU split for MNIST (FNN 6× 100)

.

L∞ attack #Poly Cov(%) Time Patch attack #Poly Cov(%) Time

0.05 2 100.0 3.107 3× 3(center) 1 100.0 2.611
0.07 247 75.2 121.661 4× 4(center) 678 38.2 455.988
0.08 522 75.1 305.867 6× 6(corner) 2 100.0 9.065
0.09 733 16.5 507.116 7× 7(corner) 7 84.2 10.128

[23, 24] (Invprop) does not support these higher-dimensional input domains. Ta-
ble 2 summarizes the experimental results. We evaluate Algorithm 1 with input
split on a range of tasks/properties and configurations of the input region (e.g.,
angular velocity θ̇ for Cartpole). Empirically, for the same coverage ratio, our
method requires a number of polytopes and time roughly linear in the input re-
gion size, with the exception of Dubinsrejoin, where the larger number of output
constraints and larger network size contribute to greater relaxation error.
MNIST Preimage Approximation with ReLU Split Next, we evaluate the
scalability of Algorithm 1 with ReLU splitting by applying it to MNIST image
classifiers. To our knowledge, this is the first time preimage computation has
been attempted for this challenging, high-dimensional task.

Table 3 summarizes the evaluation results for two types of image attacks:
l∞ and patch attack. For L∞ attacks, bounded perturbation noise is applied
to all image pixels. The patch attack applies only to a smaller patch area but
allows arbitrary perturbations covering the whole valid range [0, 1]. The task is
then to produce a DUP under-approximation of the perturbation region that
is guaranteed to be classified correctly. For L∞ attack, our approach generates
a preimage approximation that achieves the targeted coverage of 75% for noise
up to 0.08. Notice that, from e.g. 0.05 to 0.07, the volume of the input region
increases by tens of orders of magnitude due to the high dimensionality. The
fact that the number of polytopes and computation time remains manageable is
due to the effectiveness of ReLU splitting. Interestingly, for the patch attack, we
observe that the number of polytopes required increases sharply when increasing
the patch size at the center of the image, while this is not the case for patches
in the corners of the image. We hypothesize this is due to the greater influence
of central pixels on the neural network output, and correspondingly a greater
number of unstable neurons over the input perturbation space.
Comparison with Robustness Verifiers We now illustrate empirically the
utility of preimage computation in robustness analysis compared to robustness
verifiers. Table 4 shows comparison results with α, β-CROWN, winner of the
VNN competition [1]. We set the tasks according to the problem instances from
VNN-COMP 2022 for local robustness verification (localized perturbation re-
gions). For Cartpole, α, β-CROWN can provide a verification guarantee (yes/no
or safe/unsafe) for both of the problem instances. However, in the case where the
robustness property does not hold, our method explicitly generates a preimage
approximation in the form of a disjoint polytope union (where correct classi-

Provable Preimage Under-Approximation for Neural Networks 17

Table 4: Comparison with a robustness verifier.

Task α, β-CROWN Our

Result Time Cov(%) #Poly Time

Cartpole (θ̇ ∈ [−1.642,−1.546]) yes 3.349 100.0 1 1.137

Cartpole (θ̇ ∈ [−1.642, 0]) no 6.927 94.9 2 3.632

MNIST (L∞ 0.026) yes 3.415 100.0 1 2.649

MNIST (L∞ 0.04) unknown 267.139 100.0 2 3.019

fication is guaranteed), and covers 94.9% of the exact preimage. For MNIST,
while the smaller perturbation region is successfully verified, α, β-CROWN with
tightened intermediate bounds by MIP solvers returns unknown with a timeout
of 300s for the larger region. In comparison, our algorithm provides a concrete
union of polytopes where the input is guaranteed to be correctly classified, which
we find covers 100% of the input region (up to sampling error). Note also (Table
3) that our algorithm can produce non-trivial under-approximations for input
regions far larger than α, β-CROWN can verify.
Quantitative Verification We now demonstrate the application of our preim-
age generation framework to quantitative verification of the property (I,O, p);
that is, to check whether f(x) ∈ O for at least proportion p of input values x ∈ I.
This leverages the disjointness of our approximation, such that we can exactly
compute the volume covered by exactly computing the volume of each polytope.

Vehicle Parking. We consider the quantitative property with input set I =
{x ∈ R2 | x ∈ [0, 1]2}, output set O = {y ∈ R4|

∧4
i=2 y1 − yi ≥ 0}, and

quantitative proportion p = 0.95. We use Algorithm 3 to verify this property,
with iteration limit 1000. The computed under-approximation is a union of two
polytopes, which takes 0.942s to reach the target coverage. We then compute
the exact volume ratio of the under-approximation against the input region.
The final quantitative proportion reached by our under-approximation is 95.2%,
verifying the quantitative property.

Aircraft Collision Avoidance. In this example, we consider the VCAS sys-
tem and a scenario where the two aircraft have negative relative altitude from
intruder to ownship (h ∈ [−8000, 0]), the ownship aircraft has a positive climb-
ing rate ḣA ∈ [0, 100] and the intruder has a stable negative climbing rate
˙hB = −30, and time to the loss of horizontal separation is t ∈ [0, 40], which

defines the input region I. For this scenario, the correct advisory is “Clear Of
Conflict” (COC). We apply Algorithm 3 to verify the quantitative property where
O = {y ∈ R9|

∧9
i=2 y1 − yi ≥ 0} and the proportion p = 0.9, with an iteration

limit of 1000. The under-approximation computed is a union of 6 polytopes,
which takes 5.620s to reach the target coverage. The exact quantitative propor-
tion reached by the generated under-approximation is 90.8%, which verifies the
quantitative property.

18 X. Zhang et al.

6 Related Work

Our paper is related to a series of works on robustness verification of neural
networks. To address the scalability issues with complete verifiers [20, 22, 35]
based on constraint solving, convex relaxation [31] has been used for develop-
ing highly efficient incomplete verification methods [44, 39, 32, 40]. Later works
employed the branch-and-bound (BaB) framework [11, 10] to achieve complete-
ness, using incomplete methods for the bounding procedure [41, 36, 17]. In this
work, we adapt convex relaxation for efficient preimage approximation. Further,
our divide-and-conquer procedure is analogous to BaB, but focuses on maxi-
mizing covered volume rather than maximizing a function value. There are also
works that have sought to define a weaker notion of local robustness known as
statistical robustness [37, 26], which requires that a proportion of points under
some perturbation distribution around an input point are classified in the same
way. Verification of statistical robustness is typically achieved by sampling and
statistical guarantees [37, 4, 34, 42]. In this paper, we apply our symbolic approx-
imation approach to quantitative analysis of neural networks, while providing
exact quantitative rather than statistical guarantees [38].

Another line of related works considers deriving exact or approximate ab-
stractions of neural networks, which are applied for explanation [33], verifica-
tion [16, 29], reachability analysis [28], and preimage approximation [15, 23]. [15]
leverages symbolic interpolants [2] for preimage approximations, facing expo-
nential complexity in the number of hidden neurons. Concurrently, [23] employs
Lagrangian dual optimization for preimage over-approximations. Our anytime
algorithm, which combines convex relaxation with principled splitting strategies
for refinement, is applicable for both under- and over-approximations. Their
work may benefit from our splitting strategies to scale to higher dimensions.

7 Conclusion

We present an efficient and flexible algorithm for preimage under-approximation
of neural networks. Our anytime method derives from the observation that linear
relaxation can be used to efficiently produce under-approximations, in conjunc-
tion with custom-designed strategies for iteratively decomposing the problem
to rapidly improve the approximation quality. Unlike previous approaches, it is
designed for, and scales to, both low and high-dimensional problems. Experi-
mental evaluation on a range of benchmark tasks shows significant advantage in
runtime efficiency and scalability, and the utility of our method for important
applications in quantitative verification and robustness analysis.

Acknowledgments This project received funding from the ERC under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (FUN2MODEL,
grant agreement No. 834115) and ELSA: European Lighthouse on Secure and
Safe AI project (grant agreement No. 101070617 under UK guarantee). This
work was done in part while Benjie Wang was visiting the Simons Institute for
the Theory of Computing.

Provable Preimage Under-Approximation for Neural Networks 19

References

1. VnnComp 2022. https://github.com/ChristopherBrix/vnncomp2022_benchmarks,
accessed: 2022-09-30

2. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Computer Aided
Verification - 25th International Conference, CAV 2013, Proceedings. Lec-
ture Notes in Computer Science, vol. 8044, pp. 313–329. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_22

3. Ayala, D., Wolfson, O., Xu, B., DasGupta, B., Lin, J.: Parking slot assignment
games. In: 19th ACM SIGSPATIAL International Symposium on Advances in Ge-
ographic Information Systems, ACM-GIS, Proceedings. pp. 299–308. ACM (2011)

4. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification
for deep neural networks. In: Proceedings of the 43rd International Conference on
Software Engineering: Companion Proceedings. p. 248–249. ICSE ’21, IEEE Press
(2021)

5. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algo-
rithm for convex hulls. ACM Trans. Math. Softw. pp. 469–483 (1996).
https://doi.org/10.1145/235815.235821

6. Benoy, P.M.: Polyhedral domains for abstract interpretation in logic programming.
Ph.D. thesis, University of Kent, UK (2002)

7. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

8. Boutonnet, R., Halbwachs, N.: Disjunctive relational abstract interpretation for
interprocedural program analysis. In: Verification, Model Checking, and Ab-
stract Interpretation - 20th International Conference, VMCAI 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11388, pp. 136–159. Springer (2019).
https://doi.org/10.1007/978-3-030-11245-5_7

9. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. CoRR (2016), http://arxiv.org/abs/1606.01540

10. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning
Research pp. 1–39 (2020)

11. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS. pp. 4795–4804 (2018)

12. Chevallier, A., Cazals, F., Fearnhead, P.: Efficient computation of the the vol-
ume of a polytope in high-dimensions using piecewise deterministic markov pro-
cesses. In: International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2022, 28-30 March 2022, Virtual Event. Proceedings of Machine Learning
Research, vol. 151, pp. 10146–10160. PMLR (2022)

13. Codevilla, F., Müller, M., López, A.M., Koltun, V., Dosovitskiy, A.: End-to-end
driving via conditional imitation learning. In: Proceedings of the 2018 IEEE In-
ternational Conference on Robotics and Automation. pp. 1–9. IEEE, Brisbane,
Australia (2018). https://doi.org/10.1109/ICRA.2018.8460487

14. Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic pp. 269–285 (1957)

15. Dathathri, S., Gao, S., Murray, R.M.: Inverse abstraction of neural net-
works using symbolic interpolation. In: The Thirty-Third AAAI Conference

20 X. Zhang et al.

on Artificial Intelligence, AAAI 2019. pp. 3437–3444. AAAI Press (2019).
https://doi.org/10.1609/aaai.v33i01.33013437

16. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: Computer Aided Verification: 32nd International Con-
ference, CAV 2020, Proceedings, Part I 32. pp. 43–65. Springer (2020)

17. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net (2022)

18. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: Safety and robustness certification of neural networks with abstract in-
terpretation. In: 2018 IEEE symposium on security and privacy (SP). pp. 3–18.
IEEE (2018)

19. Gopinath, D., Converse, H., Păsăreanu, C.S., Taly, A.: Property inference for deep
neural networks. In: Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering. p. 797–809. ASE ’19, IEEE Press (2020).
https://doi.org/10.1109/ASE.2019.00079

20. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Computer Aided Verification - 29th International Conference, CAV
2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 3–29.
Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_1

21. Julian, K.D., Kochenderfer, M.J.: A reachability method for verifying
dynamical systems with deep neural network controllers. CoRR (2019),
http://arxiv.org/abs/1903.00520

22. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: Computer Aided Ver-
ification: 29th International Conference, CAV 2017, Proceedings, Part I 30. pp.
97–117. Springer (2017)

23. Kotha, S., Brix, C., Kolter, Z., Dvijotham, K., Zhang, H.: Provably bound-
ing neural network preimages. Accepted to NeurIPS 2023, CoRR (2023).
https://doi.org/10.48550/arXiv.2302.01404

24. Kotha, S., Brix, C., Kolter, Z., Dvijotham, K., Zhang, H.: INVPROP for provably
bounding neural network preimages. https://github.com/kothasuhas/verify-input
(accessed October, 2023)

25. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for verifying deep neural networks. Foundations and Trends in Opti-
mization pp. 244–404 (2021)

26. Mangal, R., Nori, A.V., Orso, A.: Robustness of neural networks: a probabilistic
and practical approach. In: Sarma, A., Murta, L. (eds.) Proceedings of the 41st In-
ternational Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER) 2019. pp. 93–96. IEEE / ACM (2019)

27. Matoba, K., Fleuret, F.: Exact preimages of neural network aircraft collision avoid-
ance systems. In: Proceedings of the Machine Learning for Engineering Modeling,
Simulation, and Design Workshop at Neural Information Processing Systems 2020
(2020)

28. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural net-
works. In: Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019. pp. 15762–
15772 (2019)

Provable Preimage Under-Approximation for Neural Networks 21

29. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Computer Aided Verification: 22nd International
Conference, CAV 2010, Proceedings 22. pp. 243–257. Springer (2010)

30. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2018. pp. 2651–2659. ij-
cai.org (2018)

31. Salman, H., Yang, G., Zhang, H., Hsieh, C., Zhang, P.: A convex relaxation barrier
to tight robustness verification of neural networks. In: Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019. pp. 9832–9842 (2019)

32. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages pp. 1–30
(2019)

33. Sotoudeh, M., Thakur, A.V.: Syrenn: A tool for analyzing deep neural networks. In:
Tools and Algorithms for the Construction and Analysis of Systems: 27th Interna-
tional Conference, TACAS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Proceedings, Part II 27. pp.
281–302. Springer (2021)

34. Tit, K., Furon, T., Rousset, M.: Efficient statistical assessment of neural network
corruption robustness. In: Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual. pp. 9253–9263 (2021)

35. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019. OpenReview.net (2019)

36. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C., Kolter, J.Z.: Beta-crown:
Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In: Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual. pp. 29909–29921 (2021)

37. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to as-
sessing neural network robustness. In: 7th International Conference on Learning
Representations, ICLR 2019. OpenReview.net (2019)

38. Wicker, M., Laurenti, L., Patane, A., Kwiatkowska, M.: Probabilistic safety for
bayesian neural networks. In: In Proc. 36th Conference on Uncertainty in Artificial
Intelligence (UAI-2020). PMLR (2020)

39. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: International conference on machine learning. pp.
5286–5295. PMLR (2018)

40. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K., Huang, M., Kailkhura, B., Lin,
X., Hsieh, C.: Automatic perturbation analysis for scalable certified robustness and
beyond. In: Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (2020)

41. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.: Fast and
complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In: 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event. OpenReview.net (2021)

22 X. Zhang et al.

42. Yang, P., Li, R., Li, J., Huang, C., Wang, J., Sun, J., Xue, B., Zhang, L.: Improving
neural network verification through spurious region guided refinement. In: Tools
and Algorithms for the Construction and Analysis of Systems - 27th International
Conference, TACAS 2021, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2021, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 12651, pp. 389–408. Springer (2021)

43. Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y.: Action-decision networks for visual
tracking with deep reinforcement learning. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017. pp. 1349–1358. IEEE Computer
Society (2017)

44. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018. pp. 4944–4953 (2018)

45. Zhang, X., Wang, B., Kwiatkowska, M.: Provable preimage under-approximation
for neural networks. arXiv preprint arXiv:2305.03686 (2023)

Provable Preimage Under-Approximation for Neural Networks 23

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Training for Verification: Increasing Neuron
Stability to Scale DNN Verification

1 University of Virginia, Charlottesville, VA 22904, USA
{dx3yy,nm8tm,matthewbdwyer}@virginia.edu

2 George Mason University, Fairfax, VA 22030, USA
hduong22@gmu.edu

Abstract. With the growing use of deep neural networks(DNN) in mis-
sion and safety-critical applications, there is an increasing interest in
DNN verification. Unfortunately, increasingly complex network struc-
tures, non-linear behavior, and high-dimensional input spaces combine
to make DNN verification computationally challenging. Despite tremen-
dous advances, DNN verifiers are still challenged to scale to large ver-
ification problems. In this work, we explore how the number of stable
neurons under the precondition of a specification gives rise to verifica-
tion complexity. We examine prior work on the problem, adapt it, and
develop several novel approaches to increase stability. We demonstrate
that neuron stability can be increased substantially without compromis-
ing model accuracy and this yields a multi-fold improvement in DNN
verifier performance.

Keywords: neural network verification · neuron stability · pruning

1 Introduction

In recent years, there has been significant research on adapting formal verification
to target deep neural network(DNN) model behavior. Approaches have been
developed that incorporate a diverse range of algorithmic approaches including
reachability [19,27,39–42,45,51,52], optimization [5,12,15,30,31,34,44,50], and
search [1,7,9,21,26,46,47,49,58]. These techniques aim to verify the validity of a
network’s behavior for a wide range of inputs, e.g., perturbations of test samples
that capture models of noise or malicious manipulation.

DNN verification is challenging due to the high input dimension of mod-
els, the ever-growing complexity of network layers, the inherent non-linearity of
learned function approximations, and the algorithmically complex methods re-
quired to formulate the verification problem [25]. Several approaches [4,14,16,38]
have been proposed to address the scalability issue, but as the results of recent
DNN verifier competitions show scalability remains a challenge [2, 22,32].

Stable neurons exhibit linear behavior and thereby have the potential to
reduce DNN verification costs. Several researchers have explored how DNNs

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 24–44, 2024.
https://doi.org/10.1007/978-3-031-57256-2_2

Dong Xu1(B) , Nusrat Jahan Mozumder1 , Hai Duong2 ,
and Matthew B. Dwyer1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_2&domain=pdf
http://orcid.org/0000-0001-5643-7197
http://orcid.org/0009-0003-1802-5150
http://orcid.org/0000-0002-3341-9794
http://orcid.org/0000-0002-1937-1544
http://eapls.org/pages/artifact_badges/

can be defined to increase the number of stable neurons and thereby facilitate
verification. For example, one can incorporate a loss term that uses an estimate
of neuron stability to train a network that can be verified more efficiently [53].
Another training time approach identifies neurons that are likely to be stable and
active and replaces them with linear functions [10], while this approach requires
customization of the verifier to show performance improvement.

Whereas prior work studied individual methods for increasing neuron stabil-
ity in combination with individual verifiers, in this paper we conduct a broad
exploratory study considering 18 different stabilizers paired with 3 state-of-the-
art verifiers across DNNs for different datasets and comprising different architec-
tures. We use three algorithmic approaches to increase stability: RS Loss [53]
incorporates a stability-oriented loss term, Bias Shaping is a novel training
time method that only modifies bias parameters to increase stability, and Sta-
ble Pruning is a novel approach that adapts structural DNN pruning [43] to
increase stability. These are paired with stability estimation algorithms that op-
erate at training time to guide them towards increasing stability. We develop 4 es-
timators based on prior work: NIP [53], SIP [46,47], ALR [56], and ALRo [57],
and 2 novel estimators SDD and SAD.

Neuron instability can be a source of verification complexity for the two
primary algorithmic approaches to DNN verification: abstraction-based meth-
ods and constraint-based methods. Abstraction-based verifiers [3, 17, 40, 42, 48]
overapproximate neuron behavior, but when the approximation is too coarse –
due to unstable neurons – the approximations must be refined which can slow
down verification. Constraint-based verifiers [13,23,24,44] are challenged by the
disjunctive nature of constraints that encode unstable neurons. Orthogonal to
these approaches, branch and bound techniques [9, 17, 48] are also sensitive to
neuron stability since they need to generate sub-problems for each of the active
phases of unstable neurons. In our exploratory study, we evaluate the perfor-
mance of verifiers that span several of these algorithmic approaches and that
also constitute the state-of-the-art based on their performance in the most re-
cent VNN-COMP [32]. This allows us to assess the extent to which increasing
neuron stability can improve the state-of-the-art.

In § 5 we report the findings of a study spanning 18 stable training algo-
rithms, 3 state-of-the-art verifiers, 3 network architectures, and a large number
of challenging property specifications. Our primary finding is that stable train-
ing can significantly increase the number of verifications problem solved – by as
much as 5-fold – and significantly speed up verification – by as much as a factor
of 14 – without compromising test accuracy or training time. Moreover, we find
that if one is willing to tolerate a modest loss in test accuracy, then even greater
improvement in verifier performance can be achieved.

The contributions of the work lie in a comprehensive evaluation of the poten-
tial for optimizing DNN verifier performance by increasing the number of stable
neurons. More specifically, (1) we adapt RS Loss with different stability esti-
mators and evaluate its performance across multiple verifiers and benchmarks;
(2) we propose two novel approaches (Bias Shaping and Stable Pruning) to

Training for Verification via Neuron Stabilizers 25

n1

n2

n3

n4

n5

=2

=3

=1

=-1

=-4

=6

[0.3,0.9]

[0.1,0.7]

=2

=2

=2

=3

=6

=-0.5

ReLU1

ReLU2

ReLU3

Hidden layer

Output layer

Input layer

Target output>0

Target output<0

(a) Original network

n1

n2

n3

n4

n5

=3

=1

=-4

=6

[0.3,0.9]

[0.1,0.7]
=2

=3

=6

=-0.5

ReLU1

ReLU2

ReLU3

Hidden layer

Output layer

Input layer

Target output>0

Target output<0

(b) Stable Pruning

Fig. 1. Illustration of the applying Stable Pruning to verifying that a small original
network outputs a pair of values where the first is negative and the second positive for
inputs x ∈ [0.3, 0.9]× [0.1, 0.7]. Unstable neurons are shown in red and pruned neurons
and their edges are dashed.

increase neuron stability and evaluate their performance across multiple verifiers
and benchmarks; (3) we integrate these state-of-the-art neuron stabilizers into an
open-source framework that supports experimentation with stability optimiza-
tion by the DNN verification research community; and (4) show empirically that
the performance of state-of-the-art verifiers can be significantly enhanced using
stable training methods. These contributions set the stage for further work on
training for verification that aim to further characterize the best stable training
strategy for a given verifier and verification problem.

2 Overview

The popularity of the rectified linear unit (ReLU) activation function, z =
max(ẑ, 0), which allows for more efficient training and inference [20, 29], has
led verification researchers to target networks using them. In this section, we
illustrate how ReLU leads to exponential verification costs and how training can
mitigate that cost.

For a DNN with ReLU activation functions, N : Rn → Rm, comprised of
k neurons, an inference, N (x), results in each neuron being either active, when
z = max(ẑ, 0) = ẑ, or inactive, when z = max(ẑ, 0) = 0. The status of each
neuron in a network during inference defines an activation pattern, ap(x) – a
Boolean vector of length k. Verifying a set of inputs, ϕx ⊆ Rn, involves symbol-
ically reasoning about the set of activation patterns, and the associated neuron
outputs, for each x ∈ ϕx. In the worst case, there are 2k possible activation
patterns which lead to the exponential complexity of ReLU verification [23].

For a given set of inputs, ϕx, a neuron, ni, is stable and active if ∀x ∈ ϕx :
ap(x)[i], and stable and inactive if ∀x ∈ ϕx : ¬ap(x)[i]. A neuron’s stability is
dependent on the computation performed by its cone of influence [6] taking into
account both ϕx and the behavior of neurons on which ni depends. In Fig. 1a,

26 D. Xu et al.

consider verification of a local robustness property centered at x = (0.6, 0.4)
with a radius of ϵ = 0.3 – so ϕx = [0.3, 0.9]× [0.1, 0.7]. For such inputs, a single
neuron, n2, is stable – its pre-activation values are all positive, ẑ2 = [2.1, 5.1].

In §4, we define a set of techniques that aim to estimate which neurons are
unstable during training and then bias the training process to stabilize them.
Fig. 1b shows the application of one pair of those techniques to the original
network and property. More specifically, the NIP estimator propagates interval
approximations of neuron pre-activation values to estimate whether they are
stable and then the Stable Pruning technique removes neurons that are stable
and inactive. During training this method estimates the pre-activation value for
n1 to be ẑ1 = [−0.2, 2.2] which is nearly stable. Stable Pruning ranks neurons
based on the distance they need to be shifted to be stable; for ẑ1 that distance
is 0.2. We adapt the iterative pruning approach of DropNet [43] to use this
ranking. The intuition is that when a neuron is nearly stable it can be removed
and in subsequent training, the parameters of the remaining neurons will adapt
to compensate and preserve accuracy [18]. As illustrated in Fig. 1b, the number
of unstable neurons is halved which can reduce verification costs.

3 Background & Related Work

Deep Neural Networks (DNN) are trained to accurately approximate a
target function, f : Rn → Rm. A network, N : Rn → Rm, is comprised of a
sequence of L hidden layers, l1, . . . , lL, along with an input layer, lin = l0, and
output layer, lout = lL+1(e.g. (a) in Fig. 1) Hidden layers are comprised of a set
of neurons that accumulate a weighted sum of their inputs from the prior layer
and then apply an activation function to determine how to non-linearly scale
that sum to compute the output from the layer. Different activation functions
have been explored in the literature, including: Rectified Linear Units (ReLU),
Sigmoid, and Tanh.

Given a neural network architecture, N (·), the network is trained to define
weight values, denoted θ, and bias values, denoted b, that are associated with
each neuron’s input. A trained network defines for input x, the output N (x; θ, b);
when it is clear from the context we drop θ, b and write N (x).

Specifying DNN Properties Given a network N : Rn → Rm, a property,
ϕ, defines a set of constraints over the inputs, ϕx, and an associated set of
constraints over the outputs, ϕy. Verification of N |= ϕ seeks to prove: ∀x ∈ Rn :
ϕx(x) ⇒ ϕy(N (x)).

Recent work has demonstrated that a general class of specifications, where
ϕx and ϕy are defined as half-space polytopes, can be reduced to local robustness
specifications [35, 36]. This means that the essential complexity of DNN verifi-
cation is present when verifying simpler local robustness specifications, which
state that ∀x ∈ c± ϵ : ϕy(N (x)), for some constant input(centerpoint), c, and
radius, ϵ, around it. Consequently, in §5, we explore the performance of verifiers
on local robustness specifications.

Training for Verification via Neuron Stabilizers 27

Verifying DNN Properties The inherent complexity of the DNN verification
problem arises from the non-linear expressive power of DNNs – so it is generally
unavoidable. We explain the source of this complexity below for a network with
L fully-connected layers, each with M neurons.

Let ẑi,j denote the value computed for the input of neuron j in hidden layer i
prior to the application of the activation function – the pre-activation value – and
zi,j the post-activation value. For a ReLU activation function, zi,j = max(ẑi,j , 0).
The input to layer i is computed as the weighted sum of the output of the prior
layer, using the learned weights θ, and bias b. The semantics of N (x; θ, b) is
given by the constraints as shown in Eq. (1)

∧
i∈[1,L],j∈[1,M]

(
ẑi,j =

∑
k∈[1,M]

(θi,j,k · zi−1,j) + bi,j ∧ zi,j = max(ẑi,j , 0)

)
(1)

with additional constraints relating the zL,j to the output layer, lout, and x = z0.
Computing N (x) for a single input value, x, results in a pattern of ReLU

activations in which each neuron is either active, max(ẑi,j , 0) = ẑi,j , or inactive,
max(ẑi,j , 0) = 0. However, a property specification, ϕ, constrains lin to define a
set of input values, e.g., as in the case of local robustness x ∈ c ± ϵ. Through
Eq. (1), this may give rise to constraints on ẑi,j that define values for which
the neuron is both active, ẑi,j ≥ 0, and inactive, ẑi,j < 0. When the set of
pre-activation values spans 0 in this way, we say that neuron ni,j is unstable.

Unstable neurons require that verification approaches reason about the dis-
junctions present in Eq. (1). In the worst case, if all neurons are unstable, then
there are 2L∗M different ways of resolving the disjunctions. More generally, for a
property, ϕ, only a subset of neurons will be unstable, Uϕ ⊆ L×M , and, as we
discuss in §4, controlling the size of this subset is a means of reducing the cost
of DNN verification.

Several approaches have been introduced to verify a DNN behavior in recent
years [28]. One class of verifiers, including α,β-CROWN [48], NNEnum [3],
ERAN [40], and MN-BAB [17] overapproximate ReLU behavior which allows
them to efficiently calculate an overapproximation of Eq. (1), which we denote N .
When N ̸|= ϕ some techniques, like ERAN, simply return unknown, but others,
like NNEnum, α,β-CROWN or MN-BAB, perform a case split on unstable
neurons to refine the over-approximation. Another class of verifiers, including
Marabou [24] and Planet [13], explore the space of case-splits to formulate
separate constraint queries that constitute verification conditions. Here again,
the number of possible case-splits leads to exponential complexity.

RS Loss [53] is a regularization technique that induces neuron stability in the
training process. The RS Loss, LR is blended with the regular training loss LT

to yield a weighted sum as the optimization target, L = LT + wR × LR, where
wR is the hyperparameter to control the degree of stabilization. The RS Loss
term LR is formulated as LR =

∑n
i=1 −Tanh(1+ ẑi × ẑi) where ẑ and ẑ are the

lower and upper bounds of the pre-activation values. NRS Loss [59] is a variant
of RS Loss that regularizes the pre-batch normalization (BN) bounds instead of

28 D. Xu et al.

pre-activation bounds. Whereas RS Loss indirectly biases the network toward
neuron stability, in §4 we introduce Bias Shaping which directly manipulates
neuron bias towards the same goal.

DropNet [43] is a structured model compression method to generate sparse and
reduced neural networks based on the lottery ticket hypothesis [18]. According to
the hypothesis, a dense network contains a sub-network that can match the test
accuracy of the base network if trained in isolation. DropNet iteratively prunes
a predefined percentage of less important neurons by setting their weights to
zero. Although the iteration process is resource expensive, the flatness of the
error landscape at the end of training limits the fraction of weights that can be
pruned, hence sharp pruning at once reduces the network accuracy [33].

While the initial purpose of pruning was preserving network accuracy only,
recent studies have revealed that pruning can significantly increase a network’s
robustness and scale robustness verification [59]. The removal of non-linearity
from the insignificant neurons by converting them to linear functions has been
proposed in literature [10]. However, the existence of linear activation functions
in a network can sometimes result in unnecessary computational costs, as the
networks are supposed to work on complex data and linear functions are inca-
pable of handling the complexity. Also, special treatments are required to handle
these non-standard architectures in network inference and verification. Thus, we
propose to use iterative pruning to remove the redundant non-linearity from the
network using the pre-activation values of the ReLU function during mini-batch
training. In §4, we present a variant of DropNet named Stable Pruning that
uses stability measures to determine how neurons should be pruned.

4 Approach

Alg. 1: Training with Stabilizers

input : neural network N , data loader D,
stabilization method A, stability
estimator B, ratio i, and step s

output : stabilized network N ′

1 for j, (X, Y) in D do
2 Train Mini-Batch(N , X, Y)
3 if j ≡ 0 (mod s) then

4 Ẑ ← Estimate Stability(B, N)

5 N ′ ← Stablize(A, N , Ẑ, i)

6 return N ′

This section presents the
two novel neuron stabilization
methods: Bias Shaping and
Stable Pruning, as well as
six different stability estima-
tors. Alg. 1 shows the general
training iterations for a neural
network with stabilizers(pairs
of stabilization method, A,
and stability estimator, B).
The conventional neural net-
work training process of a
mini-batch is shown in Line 2.
Stabilizers are applied at every sth mini-batch (line 3). Line 4 determines each
neuron’s stability estimation by calculating their boundaries, Ẑ, using differ-
ent estimators described in §4.1. Lastly, Line 5 applies the main stabilization
algorithms, e.g. Bias Shaping (Alg. 2) and Stable Pruning (Alg. 3).

Training for Verification via Neuron Stabilizers 29

4.1 Neuron Stability Estimation

The neural network training process is performed on the data samples, while the
verification process seeks to prove certain properties on an effectively unbounded
set of inputs. Hence, there exists a gap between the two stages since a neuron that
is stable on the training dataset is not guaranteed to also be stable based on the
set of values described by the precondition of the verification problem. Guiding
the training process to produce neural networks with more stable neurons in
the verification stage requires reducing this gap. This is achieved by estimating
neuron stability over a broader set of values representative of those encountered
during the verification process and then stabilizing the unstable neurons.

We identify two general categories of neuron stability estimators that can
be calculated during the training phase: Sampled[S] and Reachability[R]
estimators. The sampled estimators consider a finite set of sampled data gathered
directly or inferred from the training dataset. The reachability estimators operate
on set propagations that generalize the training dataset. The six neuron stability
estimators are defined as follows:

B(D) = {x|x = β(x′) ∧ x′ ∼ D}

where β ∈ {SDD,SAD,NIP,SIP,ALR,ALRo} and D is the network train-
ing dataset distribution. The SDD (Sampled Dataset Distribution[S]) estimator
uses the training mini-batch samples directly and takes advantage of the train-
ing process’s forward propagations to determine whether neurons are stable. The
SAD (Sampled Adjacent Distribution[S]) estimator samples from the robust-
ness radii of the training mini-batch and runs extra forward propagations on
the adjacent examples to determine the stability of neurons. The NIP (Naive
Interval Propagation[R]) [53] estimator generates a set of intervals based on the
mini-batch samples and the given robustness radii. However, instead of prop-
agating exact samples, it propagates the intervals through the network. The
SIP (Symbolic Interval Propagation[R]) [46, 47] extends NIP by using sym-
bolic intervals instead of concrete intervals when propagating through the net-
work. The symbolic intervals are concretized whenever neuron stability needs
to be evaluated. The ALR and ALRo (Auto LiRPA[R]) [56, 57] estimators
further improve SIP by applying more precise but computationally expensive
over-approximation constraints and parameterizing upper and lower bounds of
hidden neurons to optimize objectives with respect to the property of interest.
ALRo applies the α optimization [57] when compared to the base approach.
Note that although many of these approaches were developed for other uses, the
integration of them to induce stable neurons during training is novel.

4.2 Bias Shaping

To increase the number of stable neurons in the neural network, we adapt
training to ensure the same polarity of lower and upper bounds of neuron pre-
activation values. In Eq. (1), the pre-activations of the current ReLU function

30 D. Xu et al.

are controlled by the parameters of the neural network and the post-activations
of the previous layer. The weighted-sum term depends on the weights, bias, and
the post-activations of the previous layer. The pre-activation values can be easily
manipulated by changing the bias term. We refer to this as Bias Shaping, as
described in Alg. 2.

Alg. 2: Bias Shaping

input : neural network N , stability
estimation boundaries Ẑ,
ratio i

output : stabilized network N ′

1 Ẑ, Ẑ ← Get Bounds(Ẑ)

2 Nu ← {ni in N where ẑi < 0∧ ẑ i > 0}
3 Zu ← {Min(−ẑni , ẑni) where ni ∈ Nu}
4 γ ← Sort(Zu)[|Ẑ| × i]
5 for ni in Nu do

6 if (ẑi < γ) ∧ (ẑi < −ẑi) then
7 ni.b← ni.b− ẑi

8 else if
∣∣ẑi∣∣ < γ then

9 ni.b← ni.b− ẑi

10 N ′ ← Load Parameters(Nu)
11 return N ′

Instead of using just the na-
tive pre-activation of the mini-
batch samples, the stability esti-
mators are applied to further close
the gap between neuron stability
during training and verification.
Alg. 2 takes the set of stability
estimations for all neurons, Ẑ =
[ẑ1, ẑ2, ..., ẑm], the neural network
N with m neurons (n1, n2, ..., nm),
and the ratio i as inputs. Line 1
calculated the lower and upper
bounds of the estimation Ẑ. Using
those bounds, the algorithm first
finds the unstable neurons of the
input network (line 2). Next, those
neurons are ranked based on their
distance to zero(lines 5 - 9), and
the smallest subset of neurons will

be selected for shaping if their distances are less than an adaptive threshold γ
(lines 3, 4). Note that the number of selections is controlled by a parameter i
– a percentage of neurons would be shaped at a time. Each neuron’s bias term
of the subset is modified by (a) shifting left by the value of the upper bound if
the upper bound is closer to zero (line 7); or (b) shifting right by the absolute
value of lower bound if the lower bound is closer to zero (line 9). As a result, the
stabilized network is created by loading the new parameters at line 10.

4.3 Stable Pruning

Inspired by the DropNet [43] approach, we developed a new pruning method
to reduce unstable neurons, named Stable Pruning as shown in Alg. 3. It
uses iterative structured pruning to modify the global weight matrix by selec-
tively masking neurons. Its novel criteria target specifically unstable neurons for
masking. Stable Pruning sets weight and bias to zero to softly “remove” the
neuron from the network, allowing back-propagation to recover accuracy loss by
the harsh parameter modifications.

Given the stability estimation ẑ for a neuron, ẑ and ẑ denote the lower and
upper bounds respectively. When lower bound ẑ is greater than 0, although
the neuron is stable-active, it cannot be pruned without changing the network’s
behavior, as the ReLU function is treated as an identity function. When ẑ is
less than 0, the ReLU function is treated as a zero-function, and this neuron

Training for Verification via Neuron Stabilizers 31

can be removed safely (line 3). In order to prune unstable neurons with minimal
effects on network behavior, Stable Pruning ranks the unstable neurons by
the distance between ẑ and 0, from smallest to largest (line 4), and a subset of
neurons (also controlled by the ratio parameter, i) will be selected for pruning if
their distances are less than an adaptive threshold γ (line 5). Initially, all neurons
are enabled in the mask, m, (line 1) and those that fall below the threshold are
updated to be removed from the network (line 6). Finally, the stabilized network
is generated by applying the pruning mask on the network (line 7).

4.4 Implementation

Alg. 3: Stable Pruning

input : neural network N , stability
estimation boundaries Ẑ,
ratio i

output : stabilized network N ′

1 m = {1}|n|

2 Ẑ ← Get Upper Bound(Ẑ)

3 m[Ẑ ≤ 0]← 0

4 Z′
u = sort(Ẑ > 0)

5 γ = Zu[|Z′
u| × i]

6 m[Ẑ < γ]← 0
7 N ′ ← N

⊙
m

8 return N ′

We implemented all of the above
techniques, including: SDD, SAD,
NIP, SIP,ALR,ALRo,RS Loss
(§3), Bias Shaping (§4.2), and
Stable Pruning (§4.3), into the
OCTOPUS framework. OCTO-
PUS allows training neural net-
works with stabilizer methods and
stability estimators, including their
free combinations. It can be eas-
ily applied to different datasets and
network architectures and presents
a rich hyper-parameter space that
can be tuned by hand or algorithmi-
cally, e.g., by search methods. RS

Loss [53] is reimplemented to support all the additional neuron stability esti-
mators. The SIP estimator uses the Symbolic Interval Analysis Library devel-
oped in [46], and the ALR and ALRo estimators integrate the Auto LiRPA
Library [57]. OCTOPUS also allows combinations of various neuron stabilizers
and estimators, i.e., training with multiple stabilizers sequentially or simultane-
ously. The framework is built for ease of extension to adopt new techniques and
is available at both FigShare [54] and GitHub.3

5 Evaluation

We explore two research questions to understand how stabilizers can be benefi-
cial for DNN verification:
RQ1. How effective are the stabilizers in increasing the proportion of stable
neurons?
RQ2. How effective are stabilizers in enhancing DNN verification performance?

3 OCTOPUS GitHub link: https://github.com/edwardxu0/octopus

32 D. Xu et al.

https://github.com/edwardxu0/octopus

Tab. 1. Experimental parameter space

Parameters Choices

Architectures
M2: MNIST FC2(FC(256)×2), M6: MNIST FC6(FC(256)×6))

C3: CIFAR2020(Conv(32,5,2), Conv(128,4,2), FC(250))

Verifiers α,β-CROWN, MN-BAB, NNEnum

Properties [0,1,. . . ,9]

Epsilon Radii
M2, M6:[12e-3, 14e-3, 16e-3, 18e-3, 20e-3]

C3:[18e-4, 20e-4,22e-4, 24e-4, 26e-4]

Stabilization Methods Baseline, Bias Shaping, RS Loss, Stable Pruning

Stability Estimators SDD, SAD, NIP, SIP, ALR, ALRo

Seeds [0,1,2,3,4]

5.1 Study Design

To answer these questions, we design a broad study considering different neural
network architectures, specifications, and verifiers. Tab. 1 shows the full experi-
mental parameter space we consider across the research questions.

The annual VNN-COMP DNN verification competition [2,22,32] provides a
range of benchmarks with standard network and property formats to evaluate
state-of-the-art verifiers. These benchmarks cover a variety of network archi-
tectures and activation functions. This architectural variety evaluates verifiers’
applicability across a range of network graph operations, e.g. ResNets with skip
connections, max-pooling layers, non-linear activation, and domain-specific net-
works. Benchmarks also vary in scale with some having large numbers of layers,
neurons, and parameters under the assumption that this will yield challenging
benchmarks.

We conducted an exploratory study of the VNN-COMP 2022 benchmarks
and found that 1156 of 1288 (89%) could be solved within 30 seconds. Nearly all
of the solved problems were proven (UNSAT) with coarse over-approximation
or falsified (SAT) with adversarial attacks. Such benchmarks do not exhibit the
exponential complexity that is inherent in DNN verification [23]. To address this
limitation, we designed a set of benchmarks that are better suited to assessing
DNN verification algorithm performance.

Selecting Networks A retrospective analysis of VNN-COMP benchmarks
determined that small weakly-regularized networks exhibit exponential complex-
ity and medium-sized with large numbers of neurons are hard to scale for precise
methods, such as branch and bound [8]. Of course, large weekly-regularized net-
works with large numbers of neurons are even harder, but it was found that
these incur significant memory requirements which makes experimentation chal-
lenging, e.g., due to hardware limitations. Based on this analysis, we focus on
three small and medium-sized networks with traditional network architectures
selected from the VNN-COMP 2022 benchmarks, since these proved capable of
forcing verifier algorithms to cope with exponential complexity.

Selecting Properties Rather than focusing on a variety of structurally dis-
tinct property specifications, we exploit the fact that general reachability proper-

Training for Verification via Neuron Stabilizers 33

0.00 0.02 0.04 0.06 0.08 0.10
Radii()

0

10

20

30

40

50

Ve
rif

ie
d(

--)
/Fa

lsi
fie

d(
··)

- -CROWN
MN-Bab
NNEnum

0

50

100

150

200

250

300

Ve
rif

ica
tio

n
Ti

m
e(

s,
)

Fig. 2. Solved problems and verification time vs. epsilon radii

ties can be reduced to local robustness properties [37]. This allows us to vary the
verification problem difficulty by controlling the robustness property’s epsilon-
radius. Conceptually, we know that verification problems with sufficiently small
(large) radii will be verified (falsified) – a radius of 0 is trivially verified and
a radius comprising the full input domain requires that a network produce a
constant output. Verifier developers have incorporated techniques, like apply-
ing adversarial attacks and using coarse overapproximations, to quickly handle
such cases [3, 48]. To sidestep these verification fast paths and exercise the core
verification algorithms in our study, we select epsilon values for properties as
follows.

For each network, we conducted a preliminary study with varying radii to
assess the difficulty of the verification problems. Fig. 2 shows the results for M2
on 50 different center-points with the three verifiers. The dashed lines show the
number of verified problems and the dotted lines the number of falsified problems
(left y-axis). We observe the trend that small epsilon leads to uniformly verified
problems and large epsilon to uniformly falsified problems. Moreover, one can
observe low verification times (right y-axis) in these extreme epsilon regimes,
due to the fast path optimizations.

Our strategy for selecting harder verification properties is to choose a sample
of radii around the point where the number of verified and falsified problems
crossover, e.g., 0.018 in this plot for MN-BAB. We choose the crossover point
of the best verifier who solved the most problems to design the radii shown
in Tab. 1. This leads to a balance in verification ground truth between SAT
and UNSAT answers, and these more challenging problems force the underlying
algorithms to more precisely model network behavior, e.g., splitting of unstable
neurons into branch and bound cases.

Selecting Verifiers Unlike other research that focuses on improving the per-
formance of a single verifier with a single customized pruning techniques [10,53,

34 D. Xu et al.

59], our goal is to explore how the space of stabilization strategies impact a range
of verification approaches. Towards this goal, we select the three best-performing
verifiers from VNN-COMP 2022 [32] that were available: α,β-CROWN, MN-
BAB, and NNEnum 4. Improving the performance of these verifiers will extend
the state-of-the-art in scalable DNN verification.

Network Training Stabilizers are incorporated into training, so we use a
baseline(Baseline) trained without any stabilizers using the Adam optimizer
with a 10−3 learning rate and 0.99 decay for 20 epochs. All stabilizers are cus-
tomizable with hyperparameters, as described in §3 and §4. We use the well-
tuned parameter for RS Loss introduced in [53], and perform a binary search
of the parameter space for Bias Shaping and Stable Pruning. To elaborate,
RS Loss uses always-active scheduling with 10−4 weight parameter; Bias Shap-
ing uses interval scheduling activated every 5/25/50 mini-batches and adjusts
2%/5%/5% of unstable neurons each time it is applied for M2/M6/C2 archi-
tectures respectively; Stable Pruning undertakes an interval scheduling that
is activated for every 5/50/50 mini-batches with a pruning ratio of 2%/5%/5%
respectively. The resulting neural networks with the largest test accuracy of
the last five epochs are selected for verification. To account for stochasticity in
training, we train each network 5 times and report the mean data for each.

These choices for the space of experiments yield a total of 1,215 training tasks
and 36,450 verification tasks. Each training task is run with one GTX 1080 Ti
GPU with 11G VRAM. Each verification task is run with 8GB of memory on one
core of the Intel Xeon Gold 6130 CPU @ 2.10GHz with a timeout of 300 seconds.
The total CPU time spent on training and verification across our experiments
is 1858 and 1052 hours, respectively.

5.2 RQ1: Stabilizing Neurons

Stabilizers aim to linearize a portion of the behavior encoded by ReLU activation
across the set of computations activated for a property precondition. In this
experiment, we directly measure this by recording the percentage of neurons that
are stable during verification. We also record model test accuracy to understand
the trade-offs of the stabilization methods and stability estimators. Existing
verifiers do not record the number of stable neurons, so we modified an open-
source DNN verifier, NeuralSAT [11], to record the number of stable neurons
computed during verification.

Fig. 3 presents the average test accuracy and the average number of stable
neurons computed across the five training seeds for the three architectures across
the stabilizers in the benchmark as described in §5.1. The black ✚ sign indicates
the Baseline (Baseline), the ● sign represents RS Loss (RS), ✖ means the
Bias Shaping (BS) method, and ■ is Stable Pruning (SP). Six different col-
ors denote the different stability estimators. Across all three architectures, most
techniques can increase the number of stable neurons, but some of the techniques

4 Verinet performed well in the competition, but it required a custom solver that is
not freely available.

Training for Verification via Neuron Stabilizers 35

95 96 97 98
Test Accuracy(%)

65

70

75

80

85

90

95

St
ab

le
 N

eu
ro

ns
(%

) Estimator
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(a) M2

70 80 90 100
Test Accuracy(%)

40

50

60

70

80

90

(b) M6

56 58 60 62
Test Accuracy(%)

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

(c) C3

Fig. 3. Stable neurons(%) vs. test accuracy(%) per model

lead to a loss in test accuracy. For the M2 architecture, RS Loss with NIP can
significantly increase the number of stable neurons by more than 26 percent-
age points without compromising accuracy. For M6, RS Loss yields an even
greater increase of 55 percentage points but in combination with the SIP esti-
mator. For the Convolutional C3 network, a very high percentage of neurons are
already stable so only marginal improvement can be achieved. Here the Stable
Pruning method performs best while preserving accuracy, but it only yields a
percentage point increase. For all of the architectures, if one is willing to sacrifice
a degree of accuracy then further increases in stability can be achieved. For ex-
ample, forM2 bias shaping can achieve an additional 7 percentage point increase
in stable neurons at the cost of just over 1 percentage point in test accuracy.

RS BS SP
Approach

0

1

2

3

4

5

No
rm

al
ize

d
Tr

ai
ni

ng
 T

im
e

SDD
SAD
NIP
SIP
ALR
ALRo
Baseline

Fig. 4. Normalized training time

Incorporating stabilization in training can
increase training time. Fig. 4 shows the aver-
age training time for M2 normalized to the
Baseline. The trend for M6 is similar to
the other architectures. The clear outlier in
terms of cost is the ALRo estimator when
used with RS Loss, which incurs more than
a 5-fold increase in training time. This over-
head even prevents RS Loss from practically
training with ALR and ALRo on the C3 ar-
chitecture. The overhead of most of the other
estimators is negligible, including those that
yielded significant increases in stable neurons.

RQ1 Findings Across the study there are
combinations of stabilization methods and stability estimators that are capable
of increasing the number of stable neurons, in many cases substantially, without
compromising test accuracy or training time.

36 D. Xu et al.

95 96 97 98
Test Accuracy(%)

30

35

40

45

50
Pr

ob
le

m
 S

ol
ve

d

(a) α,β-CROWN on M2

70 80 90 100
Test Accuracy(%)

15

20

25

30

35

40

45

50

Estimator
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(b) α,β-CROWN on M6

56 58 60 62
Test Accuracy(%)

40

41

42

43

44

45

46

47

(c) α,β-CROWN on C3

95 96 97 98
Test Accuracy(%)

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

50.00

Pr
ob

le
m

 S
ol

ve
d

(d) MN-BAB on M2

95 96 97 98
Test Accuracy(%)

20

25

30

35

40

45

50

(e) NNEnum on M2

70 80 90 100
Test Accuracy(%)

10

20

30

40

50

(f) NNEnum on M6

Fig. 5. Solved verification problems vs. test accuracy(%)

5.3 RQ2: Enhancing Verification

RQ1 demonstrates the ability of stabilizers to increase the number of stable
neurons across a space of verification problems. This question explores whether
those increases lead to improvements in verifier performance. To assess the gen-
eralization of the stabilizers to variations of DNN properties, we verify 50 local
robustness properties per trained network, pairing 10 center points with each of
the 5 epsilon radii. We run the three selected state-of-the-art verifiers on each
problem.

We measure two metrics to assess verification performance: (1) the number
of problems, i.e., the network, center-point, and radii combination, each verifier
can solve, i.e., produce either an SAT or UNSAT result, and (2) the time taken
to solve those problems. Note that our metrics exclude runs that produce errors,
exceed a 300-second timeout, or an 8GB memory bound. These metrics are stan-
dard for assessing verifier performance and while sometimes they are aggregated,
as in PAR2 [55], we keep them separate here to explore them independently.

Fig. 5 shows six plots of the number of verification problems solved versus test
accuracy across the three architectures using three of the verifiers. The trends in

Training for Verification via Neuron Stabilizers 37

95 96 97 98
Test Accuracy(%)

0

5

10

15

20

25

30

Sp
ee

du
p

(a) α,β-CROWN on M2

70 80 90 100
Test Accuracy(%)

100

101
Estimator
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(b) α,β-CROWN on M6

56 58 60 62
Test Accuracy(%)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c) α,β-CROWN on C3

95 96 97 98
Test Accuracy(%)

0

5

10

15

20

25

30

Sp
ee

du
p

(d) MN-BAB on M2

95 96 97 98
Test Accuracy(%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(e) NNEnum on M2

70 80 90 100
Test Accuracy(%)

100

101

(f) NNEnum on M6

Fig. 6. Verification time speedup vs. test accuracy(%)

these plots are largely consistent with the findings of RQ1 - when more neurons
are stable the verifiers are more effective in solving problems. RS Loss, with
different estimators, increases the number of problems solved by factors up to
5.92 for these verifier network combinations without sacrificing test accuracy. As
in RQ1, further performance improvements are possible by sacrificing accuracy.
For example, on M2 α,β-CROWN can improve by a factor of 1.67 using Bias
Shaping with a reduction of 1 percentage point in accuracy.

The trends shown here are consistent with the performance of α,β-CROWN
and NNEnum across the study, but MN-BAB exhibited different performance.
For M2 and M6, the baseline technique was able to solve all 50 problems so
there is no opportunity for improvement, while almost all the stabilizers can
maintain the 50 problems solved. Note that the implementation of MN-BAB
just doesn’t support the C3 architecture. While the number of problems does
not change for MN-BAB with stabilization as we discuss below its runtime is
reduced.

Fig. 6 plots the verification time speedup over Baseline against test accuracy
for 6 verifier network pairs. We observe a similar trend to what was observed for
the number of neurons stabilized and the number of verification problems solved

38 D. Xu et al.

– stabilization can speed up verification without compromising test accuracy. For
MN-BAB on M2 while the number of problems solved did not change, using
RS Loss with NIP yielded a factor of 14 speedup. For M6 we see a speedup
of up to a factor of 5 with NNEnum and for C3 more modest speedups for
α,β-CROWN. The MN-BAB plot also shows, as observed above, that further
speedups – greater than 30 fold – can be achieved if one compromises accuracy
by about 1 percentage point.

RQ2 Findings Stabilizing neurons during training can substantially increase
the number of problems solved and reduce the time required to solve them
by state-of-the-art DNN verifiers without compromising test accuracy. Further
improvement in verifier performance can be achieved with a small sacrifice in
test accuracy.

5.4 Discussion

The data show a significant degree of variability in the effectiveness of particu-
lar stable training approaches with verifiers and verification problems. Broadly
speaking RS Loss seems to perform well when one is unwilling to sacrifice test
accuracy, but the best estimator varies depending on the verifier and problem –
with SDD, NIP, and SIP yielding the best performance. For the large Convolu-
tional network, Stable Pruning also performs well without compromising test
accuracy. We believe this to be consistent with the broader results from the field
of structured pruning [18,43], where it has been found that large networks tend
to be over-parameterized and can thus accommodate significant pruning without
compromising accuracy. While the study shows that many of the methods can
yield benefits, we believe that it also demonstrates that certain stabilization ap-
proaches, e.g., RS Loss with ALRo, are too costly for use in practice. Further
study should focus on how to select the best stable training approach, and its
hyperparameters, to yield the best improvement for a given verifier and class
of verification problems. We believe it will be fruitful to develop such training
for verification approaches in concert with algorithmic and engineering improve-
ments to verification algorithms.

5.5 Threats to Validity

The chief threats to internal validity relate to whether the collection of test
accuracy, stable neurons, verification problems solved, and verification time were
accurate. We tested the accuracy of all stabilizer-trained networks, cross-checked
problem solutions across verifiers, and thoroughly tested our instrumentation of
NeuralSAT for recording neuron stability. Regarding external validity, while
our study was scoped to manage experimental costs, it spanned: 3 verifiers, 3
network architectures, 50 property specifications, and 5 seeds. We used fixed
sets of training and stabilizer parameters per neural network architecture, which
potentially underestimated the benefit that might be observed by customizing
parameters. While broadening the study further would be a valuable direction

Training for Verification via Neuron Stabilizers 39

for future work, the scope of the study is sufficient to support the finding that
stabilizers can enhance DNN verification across a breadth of contexts.

6 Conclusion

Verifying neural networks is a challenging task due to their high computational
complexity. In this work, we propose two novel approaches Bias Shaping and
Stable Pruning, to enhance the scalability of DNN verifiers by inducing more
stable neurons during the training process. In addition, we designed six neuron
stability estimators to drive stability-oriented training. Across a significant study,
we found that focusing on stability yields a viable method to achieve training
for verification that can significantly improve the ability to solve problems and
speed up state-of-the-art verifiers.

Besides the promising results, we identified more opportunities when working
on this project. In the future, we plan to (1) extend our methods to real-world
large neural network architectures; (2) explore automatic ways to tune hyper-
parameters that lead to better performance; (3) further enhance the stabilizers’
performance while minimizing accuracy trade-offs; (4) study the applicability
of stabilizer combinations; and lastly (5) study the verification algorithms to
understand how to customize stabilizers to benefit the most.

Acknowledgment

This material is based in part upon work supported by National Science Foun-
dation awards 1900676, 2019239, 2129824, 2217071, and 2312487.

References

1. Bak, S.: Execution-guided overapproximation (ego) for improving scalability of
neural network verification. In: International Workshop on Verification of Neural
Networks (2020)

2. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498 (2021)

3. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying relu neural networks. In: International Conference on Computer
Aided Verification. pp. 66–96. Springer (2020)

4. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification
for deep neural networks. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). pp. 312–323. IEEE (2021)

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. Advances in neural information
processing systems 29 (2016)

6. Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying safety properties of a powerpc-
microprocessor using symbolic model checking without bdds. In: Computer Aided
Verification: 11th International Conference, CAV’99 Trento, Italy, July 6–10, 1999
Proceedings 11. pp. 60–71. Springer (1999)

40 D. Xu et al.

7. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of relu-based neural networks via dependency analysis. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 34(04), pp. 3291–3299 (2020)

8. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First three years of the
international verification of neural networks competition (vnn-comp). International
Journal on Software Tools for Technology Transfer pp. 1–11 (2023)

9. Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning
Research 21(2020) (2020)

10. Chen, T., Zhang, H., Zhang, Z., Chang, S., Liu, S., Chen, P.Y., Wang, Z.: Linearity
grafting: Relaxed neuron pruning helps certifiable robustness. In: International
Conference on Machine Learning. pp. 3760–3772. PMLR (2022)

11. Duong, H., Li, L., Nguyen, T., Dwyer, M.: A dpll (t) framework for verifying deep
neural networks. arXiv preprint arXiv:2307.10266 (2023)

12. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: UAI. vol. 1(2), p. 3 (2018)

13. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 269–286. Springer (2017)

14. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: International Conference on Computer Aided Verifica-
tion. pp. 43–65. Springer (2020)

15. Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE
Transactions on Automatic Control (2020)

16. Feng, C., Chen, Z., Hong, W., Yu, H., Dong, W., Wang, J.: Boosting the ro-
bustness verification of dnn by identifying the achilles’s heel. arXiv preprint
arXiv:1811.07108 (2018)

17. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net (2022), https://openreview.net/forum?id=l_amHf1oaK

18. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019),
https://openreview.net/forum?id=rJl-b3RcF7

19. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: Safety and robustness certification of neural networks with abstract in-
terpretation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3–18.
IEEE (2018)

20. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

21. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International conference on computer aided verification. pp. 3–29.
Springer (2017)

22. Johnson, T.T., Liu, C.: Vnn-comp2020 report, https://www.overleaf.com/read/
rbcfnbyhymmy

23. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification. pp. 97–117. Springer (2017)

Training for Verification via Neuron Stabilizers 41

https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=rJl-b3RcF7
https://www.overleaf.com/read/rbcfnbyhymmy
https://www.overleaf.com/read/rbcfnbyhymmy

24. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided
Verification. pp. 443–452. Springer (2019)

25. Khedher, M.I., Ibn-Khedher, H., Hadji, M.: Dynamic and scalable deep neural
network verification algorithm. In: ICAART (2). pp. 1122–1130 (2021)

26. Khedr, H., Ferlez, J., Shoukry, Y.: Effective formal verification of neural networks
using the geometry of linear regions. arXiv preprint arXiv:2006.10864 (2020)

27. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural net-
works with symbolic propagation: Towards higher precision and faster verification.
In: International Static Analysis Symposium. pp. 296–319. Springer (2019)

28. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for verifying deep neural networks. Foundations and Trends® in Op-
timization 4(3-4), 244–404 (2021)

29. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of train-
ing neural networks. Advances in neural information processing systems 27 (2014)

30. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. arXiv preprint arXiv:1706.07351 (2017)

31. Lu, J., Kumar, M.P.: Neural network branching for neural network verifica-
tion. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020), https://

openreview.net/forum?id=B1evfa4tPB
32. Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international

verification of neural networks competition (vnn-comp 2022): summary and results.
arXiv preprint arXiv:2212.10376 (2022)

33. Paul, M., Chen, F., Larsen, B.W., Frankle, J., Ganguli, S., Dziugaite, G.K.:
Unmasking the lottery ticket hypothesis: What’s encoded in a winning ticket’s
mask? In: The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net (2023), https:

//openreview.net/pdf?id=xSsW2Am-ukZ
34. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversar-

ial examples. In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net (2018), https://openreview.net/forum?id=Bys4ob-Rb

35. Shriver, D., Elbaum, S., Dwyer, M.: Artifact: Reducing dnn properties to enable
falsification with adversarial attacks. In: 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion). pp.
162–163 (2021). https://doi.org/10.1109/ICSE-Companion52605.2021.00068

36. Shriver, D., Elbaum, S., Dwyer, M.B.: Dnnv: A framework for deep neural network
verification. In: International Conference on Computer Aided Verification. pp. 137–
150. Springer (2021)

37. Shriver, D., Elbaum, S., Dwyer, M.B.: Reducing dnn properties to enable falsifica-
tion with adversarial attacks. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). pp. 275–287. IEEE (2021)

38. Shriver, D., Xu, D., Elbaum, S., Dwyer, M.B.: Refactoring neural networks for
verification. arXiv preprint arXiv:1908.08026 (2019)

39. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron convex
barrier for neural network certification. Advances in Neural Information Processing
Systems 32, 15098–15109 (2019)

40. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. NeurIPS 1(4), 6 (2018)

42 D. Xu et al.

https://openreview.net/forum?id=B1evfa4tPB
https://openreview.net/forum?id=B1evfa4tPB
https://openreview.net/pdf?id=xSsW2Am-ukZ
https://openreview.net/pdf?id=xSsW2Am-ukZ
https://openreview.net/forum?id=Bys4ob-Rb
https://doi.org/10.1109/ICSE-Companion52605.2021.00068

41. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: International Conference on Learning Representations (2018)

42. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

43. Tan, C.M.J., Motani, M.: Dropnet: Reducing neural network complexity via iter-
ative pruning. In: International Conference on Machine Learning. pp. 9356–9366.
PMLR (2020)

44. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net
(2019), https://openreview.net/forum?id=HyGIdiRqtm

45. Tran, H.D., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xiang, W., Bak,
S., Johnson, T.T.: Nnv: The neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: International Conference
on Computer Aided Verification. pp. 3–17. Springer (2020)

46. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. Advances in neural information processing systems 31 (2018)

47. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th {USENIX} Security Symposium
({USENIX} Security 18). pp. 1599–1614 (2018)

48. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-
crown: Efficient bound propagation with per-neuron split constraints for neural
network robustness verification. Advances in Neural Information Processing Sys-
tems 34, 29909–29921 (2021)

49. Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Daniel, L., Boning, D.,
Dhillon, I.: Towards fast computation of certified robustness for relu networks. In:
International Conference on Machine Learning. pp. 5276–5285. PMLR (2018)

50. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: International Conference on Machine Learning. pp.
5286–5295. PMLR (2018)

51. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and veri-
fication for multilayer neural networks. IEEE transactions on neural networks and
learning systems 29(11), 5777–5783 (2018)

52. Xiang, W., Tran, H.D., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation
and safety verification for piecewise linear systems with neural network controllers.
In: 2018 Annual American Control Conference (ACC). pp. 1574–1579. IEEE (2018)

53. Xiao, K.Y., Tjeng, V., Shafiullah, N.M.M., Madry, A.: Training for faster adversar-
ial robustness verification via inducing relu stability. In: 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net (2019), https://openreview.net/forum?id=BJfIVjAcKm

54. Xu, D., Mozumder, N.J., Duong, H., Dwyer, M.B.: The OCTOPUS Framework |=
Training for Verification: Increasing Neuron Stability to Scale DNN Verification (1
2024). https://doi.org/10.6084/m9.figshare.24916248.v3

55. Xu, D., Shriver, D., Dwyer, M.B., Elbaum, S.: Systematic generation of diverse
benchmarks for dnn verification. In: International Conference on Computer Aided
Verification. pp. 97–121. Springer (2020)

56. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.W., Huang, M., Kailkhura, B., Lin,
X., Hsieh, C.J.: Automatic perturbation analysis for scalable certified robustness
and beyond. Advances in Neural Information Processing Systems 33 (2020)

Training for Verification via Neuron Stabilizers 43

https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=BJfIVjAcKm
https://doi.org/10.6084/m9.figshare.24916248.v3

57. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.J.: Fast and
Complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In: International Conference on Learning Representa-
tions (2021), https://openreview.net/forum?id=nVZtXBI6LNn

58. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network ro-
bustness certification with general activation functions. In: Bengio, S., Wallach,
H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 4944–4953 (2018), https://proceedings.neurips.cc/paper/2018/
hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html

59. Zhangheng, L., Chen, T., Li, L., Li, B., Wang, Z.: Can pruning improve certified
robustness of neural networks? Transactions on Machine Learning Research (2022)

44 D. Xu et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://openreview.net/forum?id=nVZtXBI6LNn
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
http://creativecommons.org/licenses/by/4.0/

NeuroSynt: A Neuro-symbolic Portfolio Solver for
Reactive Synthesis

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{matthias.cosler,ayham.omar,frederik.schmitt}@cispa.de

2 X, the moonshot factory, Mountain View, USA⋆⋆

chrishahn@google.com

Abstract. We introduce NeuroSynt, a neuro-symbolic portfolio solver
framework for reactive synthesis. At the core of the solver lies a seamless
integration of neural and symbolic approaches to solving the reactive syn-
thesis problem. To ensure soundness, the neural engine is coupled with
model checkers verifying the predictions of the underlying neural models.
The open-source implementation of NeuroSynt provides an integration
framework for reactive synthesis in which new neural and state-of-the-art
symbolic approaches can be seamlessly integrated. Extensive experiments
demonstrate its efficacy in handling challenging specifications, enhancing
the state-of-the-art reactive synthesis solvers, with NeuroSynt contribut-
ing novel solves in the current SYNTCOMP benchmarks.

1 Introduction

The reactive synthesis problem [16] seeks to automatically construct an imple-
mentation from a system’s specification. Rather than delving into the intricate
nuances of how a system computes, hardware designers can describe what the
system should achieve and leave implementation details to the synthesis engine.
We introduce NeuroSynt, a portfolio solver for reactive synthesis that combines
the efficiency and scalability of neural approaches with the soundness and com-
pleteness of symbolic solvers.

The reactive synthesis problem has seen significant progress in recent years
[12,29,30,50] with active tooling development [1,11,25,27,46,39], and an annual
competition (SYNTCOMP [36]). However, applications beyond the competition
to an industrial scale are still limited. The advent of machine learning, empow-
ered by the advancements in deep learning architecture and hardware accelera-
tors, has the potential to drastically increase performance in reactive synthesis.
While deep learning approaches offer efficiency, they lack soundness and com-
pleteness guarantees, which are essential to the reactive synthesis problem.

We address this challenge by introducing NeuroSynt, a portfolio solver frame-
work for reactive synthesis that aims to bridge the gap between soundness, com-
pleteness, and practical efficiency through the combination of state-of-the-art
⋆⋆ Work done while being at Stanford University.
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 45–67, 2024.
https://doi.org/10.1007/978-3-031-57256-2_3

Matthias Cosler1(B) , Christopher Hahn2, Ayham Omar1 ,
and Frederik Schmitt1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_3&domain=pdf
http://orcid.org/0009-0007-3984-0997
http://orcid.org/0009-0009-2711-8993
http://orcid.org/0009-0001-7106-3725
http://eapls.org/pages/artifact_badges/

symbolic solver, model-checker, and deep learning techniques. The integrated
neural solver computes candidate implementations while model-checking tools
verify the candidate solutions to ensure soundness. To ensure completeness, the
neural solver is backed up by several state-of-the-art symbolic solvers running in
parallel.

In particular, our main contribution is the design and open-source implemen-
tation of the extensible and efficient portfolio solver. NeuroSynt’s design priori-
tizes extensibility: Its modular architecture facilitates the seamless integration of
new models, algorithms, or optimization techniques. This adaptability ensures
that NeuroSynt remains relevant amidst evolving methodologies, providing re-
searchers with a unified platform to experiment, validate, and advance their
innovations in the reactive synthesis domain.

Additionally, we contribute an advanced neural solver for reactive synthesis
(based on [57]) that handles larger and more complex specifications, improving
its performance on real-world instances from SYNTCOMP.

Our results show that deep learning methods can indeed increase the perfor-
mance of reactive synthesis tools. NeuroSynt provides smaller solutions faster
while maintaining soundness and completeness. Our portfolio solver enhances the
performance of the state-of-the-art Strix [46] by 31 samples on the SYNTCOMP
2022 benchmark, and the bounded synthesis tool BoSy [27] by 152 samples. No-
tably, a virtual best solver (VBS) that combines the neural solver with all tools
in the SYNTCOMP 2022 competition solves an additional 20 instances that a
VBS without the neural solver could not solve.

2 Background

Reactive Synthesis. The reactive synthesis problem is a well-known algorithmic
challenge, that dates back to Church [16,15] as the problem of automatically
constructing an implementation from a system’s specification. With the decid-
ability findings in 1969 [10] (using games) and 1972 [54] (using automata), a long
history of work on reactive synthesis was initiated. After the introduction of tem-
poral logics in 1977 [51], the complexity for LTL reactive synthesis was found
to be 2-EXPTIME complete [52] but undecidable for distributed systems [53].
Since then, many different approaches have been developed (e.g., [12,29,30,50])
and implemented in tools (e.g. [1,11,25,27,38,39,46,55]). Moreover, an annual
competition, the Reactive Synthesis Competition (SYNTCOMP [36]), associ-
ated with the International Conference on Computer Aided Verification (CAV)
is organized to track the improvement of algorithms and tooling.

Linear-time Temporal Logic (LTL). LTL extends propositional logic by intro-
ducing temporal operators U (until) and (next). Several additional opera-
tors can be derived: φ ≡ true U φ and φ ≡ ¬ ¬φ. φ is interpreted
as φ will eventually hold in the future and φ as φ holds globally. Oper-
ators can be nested, e.g. φ states that φ has to occur infinitely often.
Linear-time Temporal Logic (LTL) [51] is the prototypical temporal logic for

46 Cosler et al.

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 47

expressing requirements of reactive systems. For example, the following formula
describes an arbiter: Given two processes and a shared resource, the formula
(r0 → g0) ∧ (r1 → g1) ∧ ¬(g0 ∧ g1) describes that whenever a process

requests (r) access to a shared resource, it will eventually be granted (g). For-
mally, the reactive synthesis problem for LTL is defined over the notion of a
strategy as follows: An LTL formula φ over atomic propositions AP = I ∪̇ O is
realizable if there exists a strategy f : (2I)∗ → (2O) that satisfies φ. We show
the formal syntax and semantics of LTL and the definition of a strategy in the
full version [20].

And-Inverter Graphs. And-Inverter Graphs are directed acyclic graphs that rep-
resent reactive systems using three fundamental building blocks: the AND gate,
the inverter (NOT gate), and latches, which can store a single bit for one time-
step. The graph’s edges define the connections between gates, indicating how sig-
nals propagate through the circuit. And-Inverter Graphs, especially the AIGER
format [8,9], are widely used in formal verification and reactive synthesis. The
AIGER format follows a well-defined specification. The first line contains header
information: the maximal variable id, the number of inputs, outputs, latches, and
AND gates in the circuit. The circuit’s components are following in this order:
inputs, latches, outputs, AND-gates, with each component in one line. Each in-
put, AND-gate, and latch defines an even number (variable id) to which other
gates and outputs can refer to establish connections between gates. NOT gates
are implicitly encoded by the odd version of each number. True and False are
encoded by the numbers 1 and 0.

Deep Learning in Formal Methods. Deep Learning methods have been success-
fully applied to various domains in formal methods. Applications of deep learning
methods in symbolic reasoning include SAT/SMT solving [4,13,58,59], tempo-
ral logics such as generating satisfying traces [33], reactive synthesis and re-
pair [21,42,57], as well as generating symbolic reasoning problems in temporal
logics and symbolic mathematics [41]. Mathematical reasoning problems, includ-
ing integration and differential equations, have been approached with transform-
ers [43] and through code generation with Large Language Models (LLMs)[22].
Mathematical reasoning has also been tackled through automatic proof gener-
ation [44]. More general applications of deep learning to theorem proving are
guiding the proof search with clause selection for CNF formulas [45] and tactic
and premise selection/prediction for Coq and HOL light [5,6,34,48]. In contrast
to proof guidance, LLMs can be used for end-to-end generation and repair of
proofs in Isabelle/HOL [31]. LLMs have recently also enabled a step towards
autoformalization of unstructured natural language for theorem proving [37,64]
and temporal logic [19]. Further, deep learning has had a considerable impact on
program verification and synthesis, i.e., for termination analysis [3,32], creating
loop invariants [49,56,61] and program synthesis/induction [2,18,26,28].

NeuroSynt

TLSF / LTL
speci cation

AIGER
circuit

LTL
speci cation

AIGER
circuit

Neural Solver
- multiple

models
 - di erent

con gurations
 - constantly

improved
Spot

Model Checker

NuXmv

Validation

AIGER circuit

LTL speci cation

Symbolic Solver

Strix

isolated docker container
and grpc server

BoSy ltlsynt

TLSF speci cation

LTL speci cation

SyFCo

Fig. 1. An overview of NeuroSynt.

3 The Neuro-symbolic Portfolio Solver NeuroSynt

The portfolio solver provides a unified approach to neural and symbolic meth-
ods for reactive synthesis. For a seamless integration of the neural method,
NeuroSynt relies on model checking (for soundness) and is backed up by symbolic
synthesis tools (for completeness).

3.1 Overview

We provide an overview of NeuroSynt in the following. Figure 1 shows the sys-
tem design of NeuroSynt. With a single call, a sample is 1) translated from TLSF
[35], the standardized input format for reactive synthesis, to LTL assumptions
and guarantees. 2) Fed into the neural solver described in Section 4 with candi-
date solutions being verified by a model-checker. This is a feasible approach since
LTL model checking is computationally significantly easier than reactive synthe-
sis (PSPACE [62] vs. 2-EXPTIME [52]). 3) A symbolic solver is queried simulta-
neously with the neural solver. The final result is an implementation in the form
of an AIGER [8] circuit, which is either a verified candidate circuit of the neural
solver or the circuit returned by the symbolic solver. Depending on the speci-
fication’s realizability, the circuit either represents the system implementation
(proving realizability) or the environment behavior (proving unrealizability).

All components, neural solver, symbolic solver, and model-checker, are iso-
lated Docker containers. All communication channels between components are
defined through a standardized API. Therefore, extending, maintaining, and
updating tools are uncoupled from NeuroSynt’s implementation. Currently inte-
grated are solvers based on the Python library ML23, including the neural solver
3 https://github.com/reactive-systems/ml2

48 Cosler et al.

https://github.com/reactive-systems/ml2

described in Section 4, nuXmv [14], NuSMV [17], Spot [23], Strix [46], and BoSy
[27]. We use SyFCo [35] to convert from TLSF to assumptions and guarantees
in LTL.

3.2 Usage

Since NeuroSynt comprises multiple tools that operate in conjunction during
each execution, users must specify arguments to tailor the behavior of these
tools. We categorize these arguments into tool-specific and general arguments to
simplify this process. General arguments are unrelated to any specific tool and
are passed with the execution command in the command-line interface.

For tool-specific arguments, we use the YAML format [7] to create configura-
tion files that encompass the neural engine arguments, the chosen tool for model
checking, and symbolic synthesis tasks, along with their respective arguments.
These configuration files facilitate reproducibility and provide a structured way
to manage tool-specific settings.

Depending on user choice, NeuroSynt can either wait for all tools to fin-
ish/timeout and report all results or return the fastest solution. We allow the
standardized input format TLSF [35] and simple assume-guarantee structured
files in LTL.

NeuroSynt offers two primary execution commands: benchmark for solving a
dataset of samples and synthesize for processing individual samples. For bench-
mark, all results are saved in a CSV file, which can be further analyzed. In
all other cases, the result is printed to the command line. First, we indicate
whether the specification was found to be REALIZABLE or UNREALIZABLE,
after which we print the system in AIGER format [8].

We refer to the full version [20] for more usage instructions and examples.

3.3 Implementation and Extensibility

The central design goal of NeuroSynt is to provide interfaces that are easy to
implement when adding and integrating new components. We first describe the
communication interfaces between components. Secondly, we detail some of the
messages, and lastly, we describe the options to extend the portfolio solver.

Each solver or model-checker is isolated in a Docker container and com-
municates with other components through gRPC interfaces. gRPC is a high-
performance open-source framework initially developed by Google for building
remote procedure call (RPC) APIs. Protocol buffers (protobuf) are used as
the interface definition language, ensuring programming-language-agnostic in-
terfaces.

In Figure 2, we show the communication through gRPC APIs for the run of
NeuroSynt with one specification. In the first step, each tool is initialized using
setup messages, ensuring the components’ successful connection. After setup, a
synthesis problem call is sent to the symbolic and neural solver in parallel. Both
solvers eventually report with a synthesis solution. Before responding, the neural

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 49

Neural Solver

P
or

tf
o
lio

 S
o
lv

er

Model Checker

MCProblem

params
speci cation

system
realizable

SetupRequest

SetupResponse

SetupRequest

SetupResponse

SynProblem
params

speci cation

system
realizable

SynSolution

system
realizable

SynSolution

MCSolution

Symbolic Solver

SetupRequest

SetupResponse

SynProblem
params

speci cation

MCSolution
status

counterexample

Fig. 2. Communication diagram of gRPC calls for a run of NeuroSynt, calling the
Symbolic Solver and the neural solver, including model-checking.

solver makes one or multiple calls to the model checker with candidate solutions,
the specification, and the information on whether the specification is suspected
to be realizable. The model checker answers a status and optionally a counterex-
ample. The neural solver then selects one solution if multiple candidates have
been generated and responds to NeuroSynt. The following details the specific
protobuf messages that can be exchanged between components.

SetupRequest and SetupResponse. As initialization, the components exchange
simple messages through a JSON-like object. This message establishes the suc-
cessful connection and allows the user to provide some tool- but not run-specific
arguments. In the case of the neural solver, the model name and other param-
eters are transmitted to load the model into the memory. The component then
responds with a simple success flag or error message.

SynProblem, SynSolution, and UnsoundSynSolution. The SynProblem (request)
contains an LTL Specification and a set of JSON-like parameters to configure
the run- and tool-specific arguments, such as timeout or the number of threads.
The LTL specification is decomposed into guarantees and assumptions, both
strings in infix or prefix notation. A SynSolution contains the system as the
string representation of an AIGER circuit or mealy machine, a status (realiz-
able, unrealizable, error, timeout, nonsuccess), the calculation duration, and the
tool’s name. No system must be returned if error, timeout, or nonsucces were
reported. The UnsoundSynSolution consists of a SynSolution and MCSolution
and is returned by the neural solver. We show the protobuf definition for the
SynSolution, SynProblem, and Specification in Figure 3. More definitions can be
found in the full version [20].

50 Cosler et al.

// An LTL Synthesis solution. Used as response message for Synthesis.
message LTLSynSolution {

// AIGER circuit. It is allowed to pass no system , e.g. if a timeout
// happened.
optional AigerCircuit circuit = 1;
// Shows , whether the specification was found to be realizable or
// unrealizable. May not be set , e.g. if a timeout happened.
optional bool realizable = 2;
// A status that includes useful information about the run.
LTLSynStatus status = 3;
// Here additional information should be supplied if the status value
// requires more details.
string detailed_status = 4;
// which tool has created the response.
Tool tool = 5;
// How long the tool took to create the result.
optional google.protobuf.Duration time = 6;

}

message LTLSynProblem {
// Defines run - and tool -specific parameters. As Map (Dict in Python).
// Typical examples are threads , timeouts etc. Can be empty.
map <string , string > parameters = 1;
// A decomposed specification (assumptions + guarantees).
DecompLTLSpecification decomp_specification = 2;

}

message DecompLTLSpecification {
// All input atomic propositions that occur in guarantees or assumptions.
repeated string inputs = 1;
// All output atomic propositions that occur in guarantees or assumptions
repeated string outputs = 2;
// A set of guarantees that make up the specifications. All inputs and
// outputs occurring in any guarantee must be part of input/output.
repeated LTLFormula guarantees = 3;
// A set of assumptions that make up the specifications. All inputs and
// outputs occurring in any guarantee must be part of input/output.
repeated LTLFormula assumptions = 4;

}

Fig. 3. The protobuf definition for a SynSolution, SynProblem, and decomposed LTL
specification. Slightly simplified for easier comprehension. We refer the reader to the
artifact and our repository for the full definitions.

MCProblem and MCSolution. A tool can request its candidate solutions to be
model-checked by sending an MCProblem request. This message contains a set of
JSON-like parameters to configure the run- and tool-specific arguments, an LTL
specification (see SynProblem), and a system and status (see SynSolution). The
MCSolution contains the status of the model-checking and, if violating, a coun-
terexample in the form of an error trace and the duration of the computation.
We show the relevant protobuf definitions in the full version [20].

NeuroSynt can be extended in three major ways. New neural solvers, sym-
bolic solvers, and model-checking tools can be integrated. Although not required,
we recommend wrapping all components into Docker containers as it helps re-
producibility, portability, and isolation, especially when run on high-performance
clusters.

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 51

Neural Solver. The neural solver sits at the core of the portfolio solver, with con-
nections to both the model-checking component and the main portfolio solver.
This component has to support receiving and responding to a SetupRequest and
a SetupResponse for initialization. Furthermore, it should respond to SynProb-
lem requests with UnsoundSynSolution. To verify candidate solutions, the neural
solver should initiate communication with the model-checking component to ver-
ify candidate solutions. Therefore, it should also support sending MCProblem
requests and receiving MCSolution responses. The neural solver can be inde-
pendent of the ML2 library if it implements the two communication interfaces
mentioned above. It can also be based on the ML2 library, where one could
benefit from the existing infrastructure ML2 provides.

Model checking tools. A model checker should respond to a SetupRequest with
a SetupResponse and receive the MCProblem request, perform model checking
and answer with an MCSolution.

Symbolic Solver. New symbolic solvers can be integrated into NeuroSynt by
implementing the server side of our generic protocol buffer interface for sym-
bolic solvers. As for all components, a symbolic solver should implement a setup
message (SetupRequest, SetupResponse). For a synthesis call, the symbolic solver
receives a SynProblem, performs the synthesis task, and eventually responds with
a SynSolution. At the time of writing, we do not require the output of synthe-
sis tools to be model-checked. However, one can implement the interface to the
model checking component to increase the trust in the output of new symbolic
approaches.

4 The Neural Solver

The neural solver is at the heart of the portfolio solver and is developed jointly
with NeuroSynt. We report on the methodology of the neural solver, including
architecture, datasets, data generation, training, and evaluation. We clearly dis-
tinguish between previous work [57], introducing a neural approach for reactive
synthesis, and improvements that are integrated into NeuroSynt, leading to the
significantly increased performance on the SYNTCOMP benchmarks.

4.1 Data and Data Generation Improvement

We significantly improved the training data generation compared to previous
work. While the basic algorithm is taken from [57], we scale the size of the
training samples, tweak the data generation parameters to fit the larger samples,
and combine multiple data generation strategies to lift previous limitations.

We aim for a dataset containing specifications (assumptions and guaran-
tees) and circuits. Depending on the specification, the circuit is either a winning
strategy for the system (realizable) or a winning strategy for the environment
(unrealizable). For each sample, we use an additional token to show whether the

52 Cosler et al.

system is realizable or unrealizable. The dataset is for supervised training, with
the specification being the input and the circuit, along with the realizability
token being the model’s target.

In total, we combine three datasets and generation techniques. For the first
two datasets, we utilize the generation method from [57] with 1) the minor tweak
of having a variable number of inputs and outputs (up to five) in the circuit
instead of exactly five (denoted previous), and 2) extensions to handle a larger
number of patterns, larger patterns, and patterns with more atomic propositions
(denoted new). The third dataset is a data augmentation method based on the
result of new (denoted augmented).

Data Generation. We first report on the data generation algorithm for previous
and new. The data generation has two major steps. In the first step, we mined
LTL formula patterns that are common in research and practice. Considering
formula patterns is a widespread idea, e.g., [24]. We collect patterns from 1075
(previously 346) benchmarks from the LTL synthesis track of SYNTCOMP 2022.
We extract a list of 627 assumption patterns and 7948 guarantee patterns. An
assumption restricts the environment, and a guarantee defines the implemen-
tation’s behavior. To fit the model requirements, we filtered out LTL formulas
with more than 15 inputs and 15 outputs (previously 5). Additionally, we fil-
ter out specifications with an abstract syntax tree (AST) size greater than 30
(formerly 25), resulting in 519 (formerly 157) assumption patterns and 6841
(previously 1942) guarantee patterns. In the second step, we constructed syn-
thesis specifications by combining the mined patterns. For each specification,
we alternate between sampling guarantees until the specification becomes un-
realizable, and sampling assumptions until the specification becomes realizable.
Whether we aim for a realizable or unrealizable specification, we either collect
the last successfully mined specification (realizable) or the second-to-last mined
specification (unrealizable). We aim for an even split between realizable and
unrealizable specifications. To handle more atomic propositions while reducing
patterns that do not share atomic propositions, we now favor atomic proposi-
tions present in the already constructed part of the specification with a bias of
4 when instantiating the patterns. We continue this process until we reach one
of the following stopping criteria:

a) the specification has the maximal number of guarantees (10),
b) the specification has the maximal number of assumptions (3),
c) the synthesis tool timed out (120s timeout), or
d) no suitable assumption was found after 7 (formerly 5) attempts.

To ensure an even distribution of challenging instances, we filter AIGER
circuits exceeding a maximum variable index of 60 and only allow a certain
amount (20%) of circuits with the same number of AND gates.

Data Augmentation. We augment the dataset new as a third approach to artifi-
cially force larger properties for a share of the final dataset. For each specification

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 53

Fig. 4. Previous dataset[57], compared with the new final dataset. Comparing the
number of atomic propositions in a sample, the largest variable id in the AIGER
circuit, and the average size of properties.

in new, we combine multiple patterns into one property until we reach an AST
size of 30. Having longer properties in the training dataset leads to better gen-
eralization to even larger properties. Compared to new, the augmented dataset
has an average of 3 guarantees instead of 5.6, with an average size of 22.9 per
guarantee instead of 12.3.

Final Dataset. All three resulting datasets are combined into a single dataset,
consisting of 600 000 training samples and 75 000 validation and test samples.
Figure 4, shows the key differences in features of the new final dataset compared
to the previous dataset [57]. While the previous dataset used only up to 5 inputs
and outputs in the specification, we now have up to 15 inputs and outputs,
leading to up to 25 atomic propositions in a specification. We also have slightly
more latches in the new dataset (1.23 instead of previously 1.16). Note that the
same version and configuration of Strix [46] was used in both approaches. The
most apparent distinction to previous datasets[57] is in the size of the properties,
where we clearly see the effects of the data augmentation process.

4.2 Architecture & Training

Transformer Architecture. The core of the neural solver implemented in
NeuroSynt is a Transformer neural network [63]. The vanilla Transformer ar-
chitecture follows a basic encoder-decoder structure. The encoder constructs
a hidden embedding zi for each input embedding xi of the input sequence
x = (x0, . . . , xn) in parallel. An embedding is a mapping from plain input, for
example, words or characters, to a high dimensional vector, for which learn-
ing algorithms and toolkits exist, e.g., word2vec [47]. Given the encoders out-
put z = (z0, . . . , zk), the decoder generates a sequence of output embeddings

54 Cosler et al.

assumptions and guarantees AIGER circuit

Self-Attention

Encoder-Decoder Attention

Softmax

next token

12

Fig. 5. Schematic view of the Hierarchical Transformer, with illustrated inputs/outputs
of the reactive synthesis application. The encoder shows the hierarchical self-attention
with separation into local and global layers. For simplicity, we show one local and global
layer and only two assumptions and guarantees with two tokens each.

y = (y0, . . . , ym) autoregressively. Since the transformer architecture contains
no recurrence nor convolution, we apply a tree positional encoding [60].

The main idea of the Transformer is a self-attention mechanism to compute
a score for each pair of input elements, representing which positions in the se-
quence should be considered the most when computing the hidden embeddings.
For each input embedding xi, we compute 1) a query vector qi, 2) a key vector
ki, and 3) a value vector vi by multiplying xi with weight matrices Wk, Wv, and
Wq, which are learned during the training process. The embeddings can be cal-
culated simultaneously using matrix operations [63]. Specifically, let Q,K, V be
the matrices obtained by multiplying the input vector X consisting of all xi with
the weight matrices Wk, Wv, and Wq: Attention(Q,K, V) = softmax (QKT

√
dk

)V ,
with dk being the model’s dimension. For details, we refer the interested reader
to [63]. The Transformer variation used in this paper is a so-called hierarchical
Transformer [44], separating the encoder self-attention into local and global lay-
ers. Local layers embed assumptions and guarantees individually and invariant
against their order. Global layers calculate the self-attention across all assump-
tions and all guarantees. We show an illustration in Figure 5.

Model Hyperparameter & Training. We train our model on the 600 000 samples
from our training dataset for 80 000 steps with early stopping and a batch size
of 512. We show a plot of the accuracy per sequence in Figure 6. We train data
parallel on two Nvidia A100 40GB from a Nvidia DGX A100 system, which
takes approximately 10 hours. We use the Adam optimizer [40] with β1 = 0.9,
β2 = 0.98 and ϵ = 10−9. We use learning rate scheduling as proposed in [63]
with 4000 warmup-steps. Our model consists of 4 local, 4 global, and 8 decoder
layers, each having 4 heads. All feed-forward networks have 1024 nodes to which

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 55

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k 70k 75k 80k
0%

10%

20%

30%

40%

50%

training
validation

steps

ac
cu

ra
cy

 p
er

 s
eq

ue
nc

e

Fig. 6. Accuracy per sequence during training. Measured on training and validation
data.

we apply a dropout of 0.2. Our model has a total size of 14 791 748 parameters.
Input and output tokens have an embedding of size 256. The maximum input and
target lengths are set according to the training data with at most 12 properties,
a maximum AST size of 32 per property for the specification, and a maximum
circuit length of 128 tokens after encoding.

We show that our model significantly improved compared to previous work
[57] by reimplementing and adapting the previous model to evaluate the 2022
SYNTCOMP benchmarks. With 21.8%, the new model improved by 13 percent-
age points to 34.83%. We explore more details of the evaluation of the model in
Section 5.1.

5 Experiments & Benchmarks

We split our experiments into two segments. In Section 5.1, we first perform
generalization experiments on the integrated neural solver. The neural solver
can generalize on its training distribution but also to more complex instances,
longer specifications, and out-of-distribution instances, which we show using the
datasets test, large, timeouts, and syntcomp.

Secondly, in Section 5.2, we evaluate the performance of the NeuroSynt frame-
work on the SYNTCOMP 2022 benchmarks. To this end, we use NeuroSynt to
compare the performance of the neural solver against multiple symbolic solvers
and highlight efficiency gains and enhancements that arise from the combination
of both methodologies. We show that the combined effort of neural and sym-
bolic solvers leads to a performance gain that symbolic solvers alone could not
achieve.

The evaluation is performed on a GPU cluster (1 Nvidia DGX A100 40GB,
AMD EPYC 7F32 @ 1.8GHz base, 3.7GHz max, 8 cores + 8 SMT cores, 256GB
RAM), on a CPU cluster (Intel Xeon E7-8867 v3 @ 2.50GHz, 64 cores + 64 HT
cores, and 1536 GB RAM) and additionally did some early experiments on an
Apple M1 Max (64GB memory, 10 cores, 32 neural cores).

Similar to different configurations of symbolic solvers, we have multiple mod-
els with slightly different performances. This paper reports the results of the

56 Cosler et al.

model that performed best on the SYNTCOMP benchmark. Whenever we con-
sider additional models, we mention that explicitly.

5.1 Generalization

We analyze the generalization capabilities of the model in the neural solver in
four ways. Firstly on our test set, secondly on samples that are significantly
larger than seen during training (large), thirdly samples that are arguably
more difficult than training samples, and fourthly on out-of-distribution sam-
ples (syntcomp). Here, we consider instances that are not from the same data
generation algorithm out-of-distribution samples. Results on these datasets are
in Table 1.

Generalization on test and large. On the datasets test and large, addition-
ally to measuring correct solutions (semantic accuracy, 84.2%), we collect how
many solutions are syntactically identical to the solution from our data gener-
ation algorithm (38.6%). The large difference of 45.6 percentage points on our
test dataset indicates that the neural solver generalizes to the semantics of the
synthesis problem instead of learning the particularities of the data generator.

The dataset large consists of larger samples than seen during training. Sam-
ples in large have at least 10, on average 14.5 properties, and the largest prop-
erty in each sample has an AST of 37.9 on average. In contrast, training samples
have 5.3 properties on average, with the largest property having an AST of 22.2
on average.

For a more detailed analysis, we join datasets test and large and plot the
share of correct solutions partitioned by the number of properties as well as the
size of the largest property in each sample in Figure 7. The largest property seen
during training is 30, and the largest number of properties per specification is
12. While we see a decrease in performance for larger samples, there is no clear
drop after 12 or 30, respectively, which indicates generalization with the number
of properties and the length of the properties. Note that results from larger sizes
naturally have less significance as fewer samples per bucket exist. We refer to
the full version [20] for more details on the count of samples in each displayed
bucket.

Table 1. Performance of the neural model on different datasets.

test large timeouts syntcomp-
small

syntcomp-
large

syntcomp-
full

syntactic
accuracy 38.6% 10.2% - - - -

semantic
accuracy 84.2% 57.7% 33% 65.8% 54.5% 34.83%

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 57

58 Cosler et al.

Fig. 7. Share of correct solutions on the joint dataset of large and test over the
number of properties in a sample and the size of the largest property in each sample.
A darker background indicates sizes larger than seen during training.

Generalization on timeouts. The dataset timeouts consists of samples on which
Strix timed out after 120s during our data generation. Therefore, such samples
can be seen as significantly harder, while not larger than samples in the training
data. We achieve 33% correct solutions on this dataset, showing that our model
generalizes from the training data to more challenging specifications and solu-
tions that could not have not been solved by Strix during the data generation.
This experiment prognosticates the potential of combining neural methods with
symbolic methods.

Generalization on out-of-distribution dataset. While large and timeouts were
generated with the same data generation approach as the training data,
syntcomp-full consists of all 1075 real-world specifications collected in the
SYNTCOMP benchmark, on which the neural solver achieves 34.83% accuracy
(see Table 1). syntcomp-large contains all such samples that are in the size
of our evaluation constraints (i.e. max 30 properties, max AST size of 70 per
property, 54.5% accuracy). syntcomp-small contains only such samples that are
in the training data size (i.e., max 12 properties, max AST size of 30 per prop-
erty, 65.8% accuracy). We see a remarkable generalization to out-of-distribution
samples with an accuracy of 64.8% on syntcomp-small. We additionally observe
generalization on specification size that we also see on the large dataset.

Fig. 8. A cactus plot showing the number of solved samples vs. accumulated wall-clock
time. Each sample per solver is a dot on the respective line. The lower and further
right a line, the better the solver. We compare the neural solver, Strix and BoSy
alone, NeuroSyntBoSy which couples BoSy and the neural solver and NeuroSyntStrix

which couples the neural solver and Strix. Further, we virtually combine the results
of all tools and all configurations from the SYNTCOMP to a virtual best solver and
compare that with the evaluations of multiple neural models.

5.2 Comparisons and Advantages of Combination

We demonstrate the advantage of NeuroSynt by comparing the neural solver
to the performance of multiple symbolic solvers: Strix [46], the current state-of-
the-art, BoSy [27], a bounded synthesis method, and additionally rely on the
results of SYNTCOMP 2022 (ltlsynt [55], Otus [1], sdf [38]). Whenever we write
SYNTCOMP in this paper, we refer to the 2022 iteration.

We initiate the evaluation by comparing the neural solver and NeuroSynt to
the specified symbolic tools, illustrating the number of problems that can be
solved within a specific time frame. Then we dive into details on instances that
could only be solved by NeuroSynt and no other symbolic solver (novel solves),
show details on the time-to-solution differences between the solvers, and lastly,
look at circuit sizes of their respective solutions.

In Figure 8, we display the performance of the neural solver, the perfor-
mance of several symbolic tools and the performance of NeuroSynt that unites
the neural solver with a symbolic solver. We additionally show a Virtual Best
Solver (VBS) of all SYNTCOMP 2022 results without and including the neural
solver. We further report what the previously published neural reactive synthesis
approach [57] would have achieved if it had been integrated into the portfolio
solver. With 374 solved instances, the neural solver alone can already solve more
samples than BoSy (347) with 120s timeout on the CPU cluster. Its true advan-
tage becomes evident when combining the neural solver with symbolic solvers.
NeuroSyntBoSy solves 152 (previous: 59) samples more than BoSy alone, which

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 59

is 20.8% of the samples that BoSy could not solve. Similarly, NeuroSyntStrix
solves 31 (previous: 2) samples more than Strix alone (1h timeout on the CPU
cluster), which is 14.2% of the samples that Strix could not solve in 1h. To show
the full potential of NeuroSynt, we combined all results from the SYNTCOMP
and our experiments with BoSy and Strix. All symbolic solvers combined were
able to solve 945 instances of the total of 1075. Adding the neural solver of
NeuroSynt to the virtual best solver, we solve an additional 20 (previous: 0)
samples exclusively that no other tool tested did solve (novel solves). This is
15.4% of the samples that none of the symbolic tools could solve in 1h. No other
tool in SYNTCOMP 2022 except the state-of-the-art Strix, solved more samples
that no other tool could solve. We refer to the full version [20] for exact numbers.
This signifies that even for specifications that pose computational challenges to
symbolic synthesis tools, there exist patterns that a neural network can recognize
and exploit post-training.

Novel Solves. Of the 20 novel solves, 6 instances are parameterized versions of
full arbiters with 3 processes. This version of the full arbiter is unrealizable as
the specification additionally enforces two grants to hold at the same time step
(step 11 to step 16 respectively). These are the largest parameterizations of this
problem class in the SYNTCOMP dataset. Similarly, 11 instances are full arbiter
with 3 processes, where two grants are enforced simultaneously (step 6 to 16,
respectively). These parameterizations are also the largest parameterizations of
this problem class in the SYNTCOMP dataset. One instance is a full arbiter
with 6 processes and the requirement of two grants to hold at any time step.
Finally, we have one instance of a load balancer with 6 grants and the additional
unrealizable requirement of two grants at time step 5. This is also the largest
parameterization of this problem class in the SYNTCOMP dataset. For examples
of the novel solves, we refer the reader to the artifact or the full version [20]

Time To Solution. For experiments with NeuroSynt, we record the wall-clock
time of the neural solver, the symbolic solver, and the model checker. The neural
solver (including model checking) is fastest on the GPU cluster, with 8.6s and
a standard deviation of only 3.3s. The time for model-checking using NuXmv is
almost negligible, with 0.35s on average per sample. The low standard deviation
highlights the advantage of the neural solver, as the time does not depend on the
complexity of the specification. Strix with a timeout of 1h on the CPU cluster
takes 33.4s on average, with a standard deviation of 185.3s. We find that the
neural solver can also be run on CPU-only hardware (CPU cluster) with an
average of 79.4s and on hybrid desktop hardware such as the Apple M1 Max
with an average of 17.8s. For an extensive overview over the experiments with
different timeouts, we refer the reader to the full version [20].

Circuit Sizes. We find that on instances where the neural solver and the symbolic
solver both found a solution, the solution by the neural solver is often smaller
than the symbolic solver’s. This holds for BoSy and Strix, but also for all other
tools in SYNTCOMP (on the realizable fraction). On samples solved by Strix

60 Cosler et al.

Fig. 9. No. of latches per instance. On instances that the neural solver and Strix
commonly solved

and the neural solver, the solutions by the neural solver have 54.9% fewer latches
than those by Strix. In Figure 9, we show the distribution of latches for this
comparison. For more details, we refer the reader to the full version [20].

6 Conclusion

We introduced NeuroSynt, a neuro-symbolic portfolio solver for reactive synthe-
sis. At the core of the portfolio solver lies an integrated neural solver that com-
putes candidate implementations, which are automatically checked by model-
checking tools. We reported on the neural solver’s methodology and training and
the API framework’s implementation to isolate components. The open-source
implementation of NeuroSynt provides an interface in which new neural and
symbolic approaches alike can be seamlessly integrated.

Our experiments on the generalization capabilities of the Transformer show
the ability to generalize to larger specifications, more difficult specifications,
and out-of-distribution specifications. The relatively small size of the underly-
ing Transformer neural network suggests that the overall performance of neural
solvers can be further increased.

We evaluated the overall performance of NeuroSynt, enhancing the state-
of-the-art in reactive synthesis with the integrated neural solver contributing
novel solves in the SYNTCOMP 2022 benchmark. With the almost constant
evaluation time of the neural solver, the portfolio solver is often faster than
previous approaches. Furthermore, the integrated neural solver yields smaller
implementations than state-of-the-art symbolic tools, including Strix and BoSy.

7 Data Availability Statement

NeuroSynt is published open-source on GitHub (https://github.com/react
ive-systems/neurosynt). All data, models, and experiments supporting this
paper’s results are publicly available. A digital artifact is available at (https:
//doi.org/10.5281/zenodo.10046523).

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 61

https://github.com/reactive-systems/neurosynt
https://github.com/reactive-systems/neurosynt
https://doi.org/10.5281/zenodo.10046523
https://doi.org/10.5281/zenodo.10046523

References

1. Abraham, R.: Symbolic LTL reactive synthesis. Master’s thesis, University of
Twente, Enschede (Jul 2021)

2. Alet, F., Lopez-Contreras, J., Koppel, J., Nye, M., Solar-Lezama, A., Lozano-Perez,
T., Kaelbling, L., Tenenbaum, J.: A large-scale benchmark for few-shot program
induction and synthesis. In: International Conference on Machine Learning. pp.
175–186. PMLR (2021)

3. Alon, Y., David, C.: Using graph neural networks for program termination. In:
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 910–921. ESEC/FSE
2022, Association for Computing Machinery, New York, NY, USA (Nov 2022).
https://doi.org/10.1145/3540250.3549095

4. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In: Ben-
gio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada. pp. 10338–10349 (2018)

5. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: An Envi-
ronment for Machine Learning of Higher-Order Theorem Proving. In: Proceedings
of the 36th International Conference on Machine Learning. pp. 454–463. PMLR
(May 2019). https://doi.org/10.48550/arXiv.1904.03241

6. Bansal, K., Szegedy, C., Rabe, M.N., Loos, S.M., Toman, V.: Learning to reason
in large theories without imitation (Jun 2020). https://doi.org/10.48550/arXiv.1
905.10501

7. Ben-Kiki, O., Evans, C., döt Net, I.: YAML Ain’t Markup Language (YAML™)
revision 1.2.2. Tech. rep. (Oct 2021)

8. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler Univer-
sity, Altenbergerstr. 69, 4040 Linz, Austria (October 2007, 2007)

9. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2, In-
stitute for Formal Models and Verification, Johannes Kepler University, Altenberg-
erstr. 69, 4040 Linz, Austria (July 2011, 2011)

10. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society 138, 295–311 (1969).
https://doi.org/10.2307/1994916

11. Cadilhac, M., Pérez, G.A.: Acacia-bonsai: a modern implementation of downset-
based LTL realizability. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 29th International
Conference, TACAS 2023, Paris, France, April 22-27, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13994, pp. 192–207. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_14

12. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017. pp. 252–263. ACM (2017). https:
//doi.org/10.1145/3055399.3055409

13. Cameron, C., Chen, R., Hartford, J., Leyton-Brown, K.: Predicting propositional
satisfiability via end-to-end learning. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 34, pp. 3324–3331 (2020)

62 Cosler et al.

https://doi.org/10.1145/3540250.3549095
https://doi.org/10.1145/3540250.3549095
https://doi.org/10.48550/arXiv.1904.03241
https://doi.org/10.48550/arXiv.1904.03241
https://doi.org/10.48550/arXiv.1905.10501
https://doi.org/10.48550/arXiv.1905.10501
https://doi.org/10.48550/arXiv.1905.10501
https://doi.org/10.48550/arXiv.1905.10501
https://doi.org/10.2307/1994916
https://doi.org/10.2307/1994916
https://doi.org/10.1007/978-3-031-30820-8_14
https://doi.org/10.1007/978-3-031-30820-8_14
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409

14. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) Computer Aided Verification - 26th International Conference,
CAV 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in Com-
puter Science, vol. 8559, pp. 334–342. Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_22

15. Church, A.: Logic, arithmetic, and automata (1962)
16. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.

In: Summaries of the Summer Institute of Symbolic Logic. vol. 1, pp. 3–50. Cornell
University, Ithaca, NY (1957)

17. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an OpenSource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification. pp.
359–364. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0_29

18. Clymo, J., Manukian, H., Fijalkow, N., Gascón, A., Paige, B.: Data generation for
neural programming by example. In: Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics. pp. 3450–3459. PMLR (2020)

19. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: interactively
translating unstructured natural language to temporal logics with large language
models. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th Interna-
tional Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13965, pp. 383–396. Springer (2023).
https://doi.org/10.1007/978-3-031-37703-7_18

20. Cosler, M., Hahn, C., Omar, A., Schmitt, F.: NeuroSynt: A Neuro-symbolic Port-
folio Solver for Reactive Synthesis (Full version) (Jan 2024). https://doi.org/10.4
8550/arXiv.2401.12131

21. Cosler, M., Schmitt, F., Hahn, C., Finkbeiner, B.: Iterative circuit repair against
formal specifications. In: The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023 (2023)

22. Drori, I., Zhang, S., Shuttleworth, R., Tang, L., Lu, A., Ke, E., Liu, K., Chen,
L., Tran, S., Cheng, N., Wang, R., Singh, N., Patti, T.L., Lynch, J., Shporer, A.,
Verma, N., Wu, E., Strang, G.: A neural network solves, explains, and generates
university math problems by program synthesis and few-shot learning at human
level. Proceedings of the National Academy of Sciences 119(32), e2123433119 (Aug
2022). https://doi.org/10.1073/pnas.2123433119

23. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From
Spot 2.0 to Spot 2.10: what’s new? In: Shoham, S., Vizel, Y. (eds.) Computer Aided
Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10,
2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13372, pp.
174–187. Springer (2022). https://doi.org/10.1007/978-3-031-13188-2_9

24. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st international conference on Soft-
ware engineering. pp. 411–420. ICSE ’99, Association for Computing Machinery,
New York, NY, USA (May 1999). https://doi.org/10.1145/302405.302672

25. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 17th
International Conference, TACAS 2011, Saarbrücken, Germany, March 26-April
3, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6605, pp. 272–275.
Springer (2011). https://doi.org/10.1007/978-3-642-19835-9_25

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 63

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.48550/arXiv.2401.12131
https://doi.org/10.48550/arXiv.2401.12131
https://doi.org/10.48550/arXiv.2401.12131
https://doi.org/10.48550/arXiv.2401.12131
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-642-19835-9_25

26. Ellis, K., Wong, L., Nye, M., Sablé-Meyer, M., Cary, L., Anaya Pozo, L., Hewitt,
L., Solar-Lezama, A., Tenenbaum, J.B.: DreamCoder: growing generalizable, in-
terpretable knowledge with wake–sleep Bayesian program learning. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 381(2251), 20220050 (Jun 2023). https://doi.org/10.1098/rsta.2022.0050

27. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10427,
pp. 325–332. Springer (2017). https://doi.org/10.1007/978-3-319-63390-9_17

28. Fijalkow, N., Lagarde, G., Matricon, T., Ellis, K., Ohlmann, P., Potta, A.N.: Scal-
ing neural program synthesis with distribution-based search. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 36, pp. 6623–6630 (Jun 2022).
https://doi.org/10.1609/aaai.v36i6.20616

29. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesis from
hyperproperties. Acta Informatica 57(1-2), 137–163 (2020). https://doi.org/10.1
007/s00236-019-00358-2

30. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan, A.
(eds.) Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9779, pp. 118–135. Springer (2016). https://doi.org/10.1
007/978-3-319-41528-4_7

31. First, E., Rabe, M.N., Ringer, T., Brun, Y.: Baldur: Whole-Proof Generation and
Repair with Large Language Models (Mar 2023). https://doi.org/10.48550/arXiv
.2303.04910

32. Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. In: Roy-
choudhury, A., Cadar, C., Kim, M. (eds.) Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18,
2022. pp. 633–645. ACM, Singapore Singapore (Nov 2022). https://doi.org/10.114
5/3540250.3549120

33. Hahn, C., Schmitt, F., Kreber, J.U., Rabe, M.N., Finkbeiner, B.: Teaching tempo-
ral logics to neural networks. In: 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021)

34. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: GamePad: a learning environment
for theorem proving. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

35. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Piskac, R., Dimitrova, R. (eds.) Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016. EPTCS, vol. 229, pp. 112–
132 (2016). https://doi.org/10.4204/EPTCS.229.10

36. Jacobs, S., Perez, G.A., Abraham, R., Bruyere, V., Cadilhac, M., Colange, M.,
Delfosse, C., van Dijk, T., Duret-Lutz, A., Faymonville, P., Finkbeiner, B., Khal-
imov, A., Klein, F., Luttenberger, M., Meyer, K., Michaud, T., Pommellet, A.,
Renkin, F., Schlehuber-Caissier, P., Sakr, M., Sickert, S., Staquet, G., Tamines,
C., Tentrup, L., Walker, A.: The reactive synthesis competition (SYNTCOMP):
2018-2021 (Jun 2022). https://doi.org/10.48550/arXiv.2206.00251

37. Jiang, A.Q., Welleck, S., Zhou, J.P., Lacroix, T., Liu, J., Li, W., Jamnik, M., Lam-
ple, G., Wu, Y.: Draft, Sketch, and Prove: Guiding Formal Theorem Provers with
Informal Proofs. In: The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023 (2023)

64 Cosler et al.

https://doi.org/10.1098/rsta.2022.0050
https://doi.org/10.1098/rsta.2022.0050
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1609/aaai.v36i6.20616
https://doi.org/10.1609/aaai.v36i6.20616
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.48550/arXiv.2206.00251
https://doi.org/10.48550/arXiv.2206.00251

38. Khalimov, A.: Game-based bounded synthesis via BDDs
39. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token

rings. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8044, pp. 928–933. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_66

40. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015).
https://doi.org/10.48550/arXiv.1412.6980

41. Kreber, J.U., Hahn, C.: Generating symbolic reasoning problems with transformer
GANs (May 2023). https://doi.org/10.48550/arXiv.2110.10054

42. Křetínský, J., Meggendorfer, T., Prokop, M., Rieder, S.: Guessing winning policies
in LTL synthesis by semantic learning. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification. pp. 390–414. Lecture Notes in Computer Science, Springer Nature
Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-37706-8_20

43. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020 (2020)

44. Li, W., Yu, L., Wu, Y., Paulson, L.C.: IsarStep: a benchmark for high-level math-
ematical reasoning. In: 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021)

45. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May
7-12, 2017. EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017).
https://doi.org/10.29007/8mwc

46. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification. pp.
578–586. Lecture Notes in Computer Science, Springer International Publishing,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_31

47. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. In: Bengio, Y., LeCun, Y. (eds.) 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings (2013)

48. Paliwal, A., Loos, S.M., Rabe, M.N., Bansal, K., Szegedy, C.: Graph representa-
tions for higher-order logic and theorem proving. In: The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12,
2020. pp. 2967–2974. AAAI Press (2020). https://doi.org/10.1609/aaai.v34i03.5689

49. Pei, K., Bieber, D., Shi, K., Sutton, C., Yin, P.: Can large language models reason
about program invariants? In: International Conference on Machine Learning. pp.
27496–27520. PMLR (2023)

50. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) Verification, Model Checking, and Abstract Interpre-
tation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January
8-10, 2006, Proceedings. Lecture Notes in Computer Science, vol. 3855, pp. 364–
380. Springer (2006). https://doi.org/10.1007/11609773_24

51. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. pp. 46–57 (Oct 1977). https://doi.org/10.1109/SFCS.1977.32

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 65

https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.2110.10054
https://doi.org/10.48550/arXiv.2110.10054
https://doi.org/10.1007/978-3-031-37706-8_20
https://doi.org/10.1007/978-3-031-37706-8_20
https://doi.org/10.29007/8mwc
https://doi.org/10.29007/8mwc
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1609/aaai.v34i03.5689
https://doi.org/10.1609/aaai.v34i03.5689
https://doi.org/10.1007/11609773_24
https://doi.org/10.1007/11609773_24
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

52. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989. pp. 179–190. ACM Press
(1989). https://doi.org/10.1145/75277.75293

53. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, October 22-24, 1990, Volume II. pp. 746–757. IEEE Computer Society (1990).
https://doi.org/10.1109/FSCS.1990.89597

54. Rabin, M.: Automata on infinite objects and church’s problem. CBMS Regional
Conference Series in Mathematics, vol. 13. American Mathematical Society, Prov-
idence, Rhode Island (1972). https://doi.org/10.1090/cbms/013

55. Renkin, F., Schlehuber, P., Duret-Lutz, A., Pommellet, A.: Improvements to ltlsynt
(2022). https://doi.org/10.48550/arXiv.2201.05376

56. Ryan, G., Wong, J., Yao, J., Gu, R., Jana, S.: CLN2INV: Learning Loop Invari-
ants with Continuous Logic Networks. In: International Conference on Learning
Representations (Sep 2019)

57. Schmitt, F., Hahn, C., Rabe, M.N., Finkbeiner, B.: Neural circuit synthesis from
specification patterns. In: Advances in Neural Information Processing Systems.
vol. 34, pp. 15408–15420. Curran Associates, Inc. (2021)

58. Selsam, D., Bjørner, N.S.: Guiding high-performance SAT solvers with unsat-core
predictions. In: Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiabil-
ity Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portu-
gal, July 9-12, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11628,
pp. 336–353. Springer (2019). https://doi.org/10.1007/978-3-030-24258-9_24

59. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a
SAT solver from single-bit supervision. In: 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

60. Shiv, V.L., Quirk, C.: Novel positional encodings to enable tree-based transformers.
In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. pp.
12058–12068. Vancouver, BC, Canada (Dec 2019)

61. Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invariants
for program verification. In: Advances in Neural Information Processing Systems.
vol. 31 (2018)

62. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of the ACM (JACM) 32(3), 733–749 (1985). https://doi.org/10.1145/38
28.3837

63. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 30. pp. 5998–6008. Long Beach, CA,
USA (Dec 2017)

64. Wu, Y., Jiang, A.Q., Li, W., Rabe, M., Staats, C., Jamnik, M., Szegedy, C.: Aut-
oformalization with large language models. Advances in Neural Information Pro-
cessing Systems 35, 32353–32368 (2022)

66 Cosler et al.

https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1090/cbms/013
https://doi.org/10.1090/cbms/013
https://doi.org/10.48550/arXiv.2201.05376
https://doi.org/10.48550/arXiv.2201.05376
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 67

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Testing and Verification

HaliVer: Deductive Verification and Scheduling
Languages Join Forces

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{l.b.v.d.haak,a.j.wijs,m.g.j.v.d.brand}@tue.nl
2 University of Twente, Enschede, The Netherlands

m.huisman@utwente.nl

Abstract. The HaliVer tool integrates deductive verification into the
popular scheduling language Halide, used for image processing pipelines
and array computations. HaliVer uses VerCors, a separation logic-
based verifier, to verify the correctness of (1) the Halide algorithms and
(2) the optimised parallel code produced by Halide when an optimisa-
tion schedule is applied to an algorithm. This allows proving complex,
optimised code correct while reducing the effort to provide the required
verification annotations. For both approaches, the same specification is
used. We evaluated the tool on several optimised programs generated
from characteristic Halide algorithms, using all but one of the essen-
tial scheduling directives available in Halide. Without annotation effort,
HaliVer proves memory safety in almost all programs. With annota-
tions HaliVer, additionally, proves functional correctness properties.
We show that the approach is viable and reduces the manual annotation
effort by an order of magnitude.

Keywords: Program correctness · Deductive verification · Scheduling
language.

1 Introduction

To meet the continuously growing demands on software performance, parallelism
is increasingly often needed [13]. However, introducing parallelism tends to in-
crease the risk of introducing errors, as the interactions between parallel compu-
tations can be hard to predict. Moreover, a plethora of optimisation techniques
exists [10], so identifying when an optimisation can be applied safely, without
breaking correctness, can be very challenging. Also, applying optimisations tends
to make a program more complex, making it harder to reason about.

To address this, on the one hand, various domain-specific languages (DSLs)
have been proposed that separate the algorithm (what it does) from the par-
allelisation schedule (how it does it). These are called scheduling languages [3,
⋆ This work is supported by NWO grant 639.023.710 for the Mercedes project and by

NWO TTW grant 17249 for the ChEOPS project.
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 71–89, 2024.
https://doi.org/10.1007/978-3-031-57256-2_4

Lars B. van den Haak1 , Anton Wijs1 , Marieke Huisman2

van den Brand1

(B)

and Mark
,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_4&domain=pdf
http://orcid.org/0000-0002-0330-5016
http://orcid.org/0000-0002-2071-9624
http://orcid.org/0000-0003-4467-072X
http://orcid.org/0000-0003-3529-6182
http://eapls.org/pages/artifact_badges/

Halide Algorithm

Annotations

Optimised C Program

Annotations Matching
Optimised C Program

Back-end

Schedule

+

Front-endVerCors Encoding

VerCors Annotations

✓ X
VerCors

✓ X
VerCors

Fig. 1. High level overview of our approach.

6–8, 22, 23, 28]. Given an algorithm and a schedule, a compiler generates an op-
timised parallel program. This approach crucially depends on the schedule not
introducing any errors in the functionality, which is not always obvious.

On the other hand, deductive program verification [9] has been successfully
applied to verify the functionality of parallel programs [4]. This requires that the
intended functionality is formalised as a contract, for instance using permission-
based separation logic [1,5]. A major hurdle, preventing this technique from being
adopted at a large scale, is that if a program becomes more complicated, the
required annotations rapidly grow in size and complexity [25,26].

In this paper, we combine the best of both worlds. We propose the HaliVer
tool, which focusses on Halide [22,23], a scheduling language for portable image
computations and array processing. It has been widely adopted in industry, for
instance to produce parts of Adobe Photoshop and to implement the YouTube
video-ingestion pipeline. For verification, we use the VerCors program veri-
fier [4]. In this paper we define two verification approaches (1) front-end and (2)
back-end, as seen in Figure 1. Our approaches verify that the program adheres
to the same functional specification. This specification is detailed by annotat-
ing the algorithmic part of a Halide program, thereby keeping the annotations
focussed on the functionality, and therefore relatively straightforward. With the
front-end verification approach we verify the correctness of the algorithmic part
of a Halide program. HaliVer transforms the algorithm and the annotations
to an annotated VerCors program. With back-end verification approach we
verify the C code that the Halide compiler generates, given a Halide algo-
rithm and a schedule. HaliVer transforms the given annotations to match the
generated code. Furthermore, where possible, HaliVer generates annotations,
such as permission specifications, to relieve the user from having to manually
write these. This contributes to making the annotation process straightforward.

In this way, HaliVer allows the user to succinctly specify the intended
functionality of optimised, parallel code, and it checks that the resulting program
indeed has the desired functionality. A major advantage of our approach is that
it is flexible to use in a setting where multiple compiler passes are made. Also, it
can be easily extended if a new compiler pass or schedule optimisation is added.
An alternative would be to prove correctness of the compiler, but this would
require a large amount of initial work and additionally for each change to the
compiler.

Concretely, this paper provides the following contributions:

72 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

HaliVer: Deductive Verification and Scheduling Languages Join Forces 73

Listing 1. Halide blur example with annotations added to verify the code.
1 requires inp.x.min == blur_y.x.min ∧ inp.x.max == blur_y.x.max+2 ∧ inp.y.min ==

blur_y.y.min ∧ inp.y.max == blur_y.y.max+2;
2 ensures ∀ x, y . blur_y.x.min≤x<blur_y.x.max ∧ blur_y.y.min≤y<blur_y.y.max ⇒

blur_y(x,y) == ((inp(x,y)+inp(x+1,y)+inp(x+2,y))/3 + (inp(x,y+1) +inp(x+1,y+1)+
inp(x+2,y+1))/3 + (inp(x,y+2)+inp(x+1,y+2) + inp(x+2,y+2))/3)/3);

3 void blur(Buffer<2,int> inp, Func &blur_y){
4 Func blur_x; Var x, y;
5 blur_x(x,y) = (inp(x,y) + inp(x+1,y) + inp(x+2,y))/3
6 blur_x.ensures(blur_x(x,y) == (inp(x,y) + inp(x+1,y) + inp(x+2,y))/3);
7 blur_y(x,y) = (blur_x(x,y) + blur_x(x,y+1) + blur_x(x,y+2))/3;
8 blur_y.ensures(blur_y(x,y) == ((inp(x,y)+inp(x+1,y)+inp(x+2,y))/3 + (inp(x,y+1)+inp

(x+1,y+1) + inp(x+2,y+1))/3 + (inp(x,y+2)+inp(x+1,y+2)+inp(x+2,y+2))/3)/3;}

– An annotation language to describe the functionality of Halide algorithms,
which is integrated into the Halide algorithm language;

– Tool support for the front-end verification approach of Halide algorithms;
– Tool support for the back-end verification approach, which can verify pro-

grams generated by the Halide compiler from an algorithm and a schedule;
– Evaluation of the HaliVer tool on Halide examples using all but one

of the essential scheduling directives available in various combinations. We
evaluated the tool on 23 different optimised programs, generated from eight
characteristic Halide algorithms, to prove memory safety with no annota-
tion effort. For 21 cases, HaliVer proves safety, for the remaining two cases
we discuss the limitations. For 20 programs, based on five algorithms, we
also add annotations for functional correctness properties. For 19 of these
programs HaliVer proves correctness, for the remaining one we run into a
similar limitation.
The remainder of this paper is organised as follows. Section 2 gives brief

background information on Halide and VerCors. Section 3 introduces Halide
annotations, and describes how HaliVer supports the verification of an algo-
rithm and an optimised program. The approach is illustrated on characteristic
examples. Section 4 evaluates the HaliVer tool, and Sections 5 and 6 address
related work, conclusions and future work.

2 Background

Halide. Halide is a DSL embedded in C++, targeting image processing
pipelines and array computations [22, 23].3 Halide separates the algorithm,
defining what you want to calculate, from the schedule, defining how the cal-
culation should be performed. Typically, when optimising code for a specific
architecture, the code becomes much more complex and loses portability. By
separating the schedule, the code expressing the functionality is not altered.

Listing 1 presents the Halide algorithm for a box filter, or blur function.
The reader can ignore the requires and ensures annotations for now. Images
3 A Halide tutorial can be found here: https://halide-lang.org/tutorials/.

https://halide-lang.org/tutorials/

Listing 2. A reduction to count the positive numbers of each row in matrix inp.
1 void cnt(Buffer<2,int> inp, Func count) {
2 Var x; RDom r(0,10);
3 count(x) = 0;
4 count.ensures(count(x) == 0);
5 count(x) = select(inp(x, r) > 0, count(x)+1, count(x))
6 count.invariant(0≤count(x)≤r);
7 count.ensures(0≤count(x)≤10);}

are represented as pure (side-effect free) functions that point-wise map coordi-
nates to values. A blur function defines how every pixel, referred to by its two-
dimensional coordinates, should be updated. In the example, the coordinates are
represented by the variables x and y. Halide uses a functional style, allowing
algorithms to be compact and loop-free. Halide functions are denoted by the
keyword Func. In the example, the input image is stored in a two-dimensional
integer buffer inp, and the output is given by defining the function blur_y, a
reference to which is a parameter of blur. A pipeline of function calls is defined:
the function blur_x is applied on the input image (line 5). The output of that
function is used to compute the final image with the function blur_y (line 7).
With inp.x.min and inp.x.max we refer to the minimum and maximum value
of the dimension inp.x, respectively.

A function may involve update definitions, which (partially) update the value
of a function. A reduction domain is a way to apply an update a finite number of
times and is typically used to express sums or histograms in Halide. A function
is called a reduction when such a domain is used, and an initialisation and an
update definition are given. Listing 2 presents a reduction example. For now,
ignore the ensures and invariant lines. The reduction domain (RDom) r ranges
from 0 to 9, i.e. it consists of 10 values. The initial value of the count function is
defined at line 3, and line 5 is executed once for every value in r. The statement
select(a,b,c) returns b if a evaluates to true, c otherwise. For a given matrix
of integers inp, cnt counts the number of non-zeros at the first ten positions of
each row in inp.

A Halide schedule is given in Listing 5 and further explained in Section 3.3.

VerCors. VerCors4 [4] is a deductive verifier to verify the functional cor-
rectness of, possibly concurrent, software. Its specification language uses permis-
sion-based separation logic [5], a combination of first-order logic and read/write
permissions. The latter are used for concurrency-related verification, to express
which data can be accessed by a thread at which moment. Programs written
in a number of languages, such as Java and C, can be verified. VerCors also
has its own language, Pvl. VerCors’s verification engine relies on Viper [16],
which applies symbolic execution to analyse programs with persistent mutable
state.

4 An online tutorial can be found at https://vercors.ewi.utwente.nl/wiki/.

74 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

https://vercors.ewi.utwente.nl/wiki/

Intended functional behaviour can be specified by means of pre- and post-
conditions, indicated by the keywords requires and ensures, respectively. The
statement context P is an abbreviation for requires P; ensures P. Loop in-
variants and assertions can be added to the code to help VerCors in proving
the pre- and postconditions. We refer to the pre- and postconditions, loop invari-
ants and assertions together as the annotations of a code fragment. A permission
Perm(x, f) gives permission to memory location x, where f is a fractional, with
1\1 indicating a write and anything between 0\1 and 1\1 a read. For a state-
ment s, we have the Hoare triple

{
P
}
s
{
Q
}
. This indicates that if P holds in the

pre-state then after s, Q holds in the post-state. A pure function is without side-
effects, thus can be used in annotations. It has the keyword pure in the header,
and its body is a single expression. Annotations and pure function definitions
in C files are given in special comments, like //@ or /*@...@*/ for multi-line
comments. (See Listing 6 for examples.)

VerCors can prove termination of recursive functions. Whenever the clause
decreases r is added to a function contract, VerCors will try to prove that
the function terminates, by showing that all recursive calls will strictly decrease
the value of r while r has a lower bound.

3 Verification of Scheduling Languages with HaliVer

HaliVer works directly on a Halide program and its intermediate representa-
tions, adding and transforming annotations where necessary. The tool is embed-
ded in the Halide compiler. From a user’s point of view, the general approach
is as follows, using the front-end and back-end approach as in Figure 1.
1. Write a Halide algorithm and add annotations. Annotations are

the functional specification of the Halide algorithm. Since a user can write
an incorrect Halide algorithm, its correctness is ideally checked against a
user-supplied specification.

2. The front-end approach produces a Pvl encoding. This encoding
contains the algorithm and the specified annotations.

3. VerCors verifies the encoding. If verification succeeds, we know that
the front-end algorithm conforms to the functional specification. Otherwise,
the verification fails; VerCors produces a counterexample and we return
to step 1.

4. Write a Halide schedule.
5. The back-end approach produces an annotated C file. The tool au-

tomatically generates permission annotations. These allow us to prove data-
race freedom and the absence of out-of-bound errors. The tool transforms
the annotations and generates additional annotations to match the scheduled
back-end code. This is highly non-trivial, as each for-loop requires precise
annotations to guide VerCors in the verification. However, it is ensured
that the same property is verified.

6. VerCors verifies the back-end C file. If the verification fails, the lines
of C code that caused the failure are given, which can be traced back to the
Halide algorithm. The cause of a verification failure may be that

HaliVer: Deductive Verification and Scheduling Languages Join Forces 75

– The Halide compiler produced incorrect code w.r.t. the specifications.
– More auxiliary annotations from step 1 are needed to guide VerCors.
– A limitation has been encounter of the tools HaliVer relies on, e.g.,

VerCors or the underlying SMT solver.

In the remainder of this section we explain how to write annotations, and ad-
dress front-end and back-end verification approaches. We also discuss the sound-
ness and current limitations of the technique.

3.1 Halide Annotations

HaliVer makes it possible to add annotations when writing a Halide algo-
rithm. Intuitively, these annotations are added as a Hoare triple. We consider
three types of annotation: pipeline, intermediate and reduction invariant anno-
tations.

In Listing 1 annotations have been added. The lines 1–2 are pipeline anno-
tations : they specify the pre- and postconditions of the whole function and can
only contain references to input buffers or output functions. Note that the re-
sults are stored directly in the blur_y function. Line 1 specifies how the input
and output bounds should be related. Line 2 indicates what the output values
are. One can add intermediate annotations after any (update) function call to
specify state predicates for particular locations in the pipeline. Examples are the
blur_x.ensures and blur_y.ensures state predicates of Listing 1 (lines 6 and
8).

Halide functions map coordinates to values pointwise. To achieve a one-to-
one relationship between function and annotations, the intermediate annotations
for a function should also specify how coordinates relate to values pointwise.
However, input buffers can be used freely with any point. For example, blur_x
.ensures(blur_x(x,y)≥inp(x+1,y)) is valid, but blur_x.ensures(blur_x(
x+1,y)≥0) is not, because the latter refers to blur_x(x+1,y) as opposed to
blur_x(x,y). HaliVer requires this because each point of the function may be
computed in parallel in the back-end, so it must be possible to reason about the
points individually.

For ease of annotation, HaliVer automatically generates a pipeline post-
condition. This postcondition is derived from the intermediate annotation of the
last pipeline function in the algorithm. For Listing 1, HaliVer can generate line
2, which is included here for completeness, based on line 8.

To prove that a reduction is correct, reduction invariant annotations must be
provided for reduction domains. In Listing 2, an example is given of a reduction
(line 5) together with its reduction invariant (line 6) and post-state predicate
(line 7). Intuitively, a reduction invariant is similar to a loop invariant. First, it
must hold before the reduction starts. In our example this means that count(x)
has the value 0, which is ensured by the previous definition of count (line 4).
Second, it must be preserved by each step of the reduction. In our example, count
is bounded by the reduction variable. Finally, after each reduction variable has
reached its maximum value, the reduction invariant should imply the post-state

76 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

Listing 3. The front-end Pvl code for the blur example (Listing 1). We omitted the
decreases clauses for brevity.
1 pure int inp(int x, int y);
2 pure int inp_x_min(); pure int inp_x_max(); pure int inp_y_min(); pure int inp_y_max();
3 pure int blur_y_x_min(); pure int blur_y_x_max();
4 pure int blur_y_y_min(); pure int blur_y_y_max();
5
6 ensures \result ≡ (inp(x, y) + inp(x+1, y) + inp(x+2, y))/3;
7 pure int blur_x(int x, int y) = (inp(x, y) + inp(x+1, y) + inp(x+2, y))/3;
8
9 ensures \result ≡ ((inp(x, y) + inp(x+1, y) + inp(x+2, y))/3

10 + (inp(x, y+1) + inp(x+1, y+1) + inp(x+2, y+1))/3
11 + (inp(x,y+2) + inp(x+1,y+2) + inp(x+2,y+2))/3)/3;
12 pure int blur_y(int x, int y) = (blur_x(x, y) + blur_x(x, y+1) + blur_x(x, y+2))/3;
13
14 requires inp_x_min() ≡ blur_y_x_min() ∧ inp_x_max() ≡ blur_y_x_max()+2
15 ∧ inp_y_min() ≡ blur_y_y_min() ∧ inp_y_max() ≡ blur_y_y_max()+2;
16 ensures (∀ x, y; blur_y_x_min()≤x ∧ x<blur_y_x_max() ∧ blur_y_y_min()≤y ∧ y<

blur_y_y_max();
17 blur_y(x,y) ≡ ((inp(x, y) + inp(x+1, y) + inp(x+2, y))/3
18 + (inp(x, y+1) + inp(x+1, y+1) + inp(x+2, y+1))/3
19 + (inp(x, y+2) + inp(x+1, y+2) + inp(x+2, y+2))/3)/3);
20 void pipeline() { }

predicate of the function. For the example, note that the invariant implies the
post-state predicate when r has reached the value 10. The actual used value goes
to 9, and r==10 indicates that the reduction is done.

3.2 Front-end Verification Approach

For verifying the algorithm part of a Halide program, an annotated Halide
algorithm is encoded into annotated Pvl code. Listings 3 and 4 show how
HaliVer translates the examples of Listings 1 and 2, respectively. Input buffers
are translated into abstract functions to verify the pipeline w.r.t. arbitrary in-
put. The bounds of input buffers and functions are modelled via functions that
are abstract if the bound is unknown or otherwise return a concrete value. For
example, the inp buffer of the blur example is translated to a function inp in
Listing 3 (line 1), with its bounds represented by the pure functions on line 2.

Update-free Halide functions are translated directly into pure Pvl func-
tions, and post-state predicates are translated into postconditions of these func-
tions. In the example, blur_x and blur_y are translated to the functions on
lines 6–7 and 9–12 of Listing 3, respectively, and the ensures lines express the
postconditions of those functions, using \result to refer to the expected result.

The pre- and postconditions of a Halide algorithm are translated into a
Pvl lemma to be checked by VerCors. In the example, lines 14–19 of Listing 3
address the pre- and postconditions on lines 1–2 of Listing 1. On line 20, a
method called pipeline is given, which represents the Halide pipeline.

For an update definition, references to itself are replaced by references to the
previous definition, thus the output of one definition is the input of the next.

HaliVer: Deductive Verification and Scheduling Languages Join Forces 77

Listing 4. The front-end Pvl code for the reduction example of Listing 2.
1 decreases;
2 pure int inp(int x, int y);
3 decreases;
4 pure int inp_x_min(); pure int inp_x_max(); pure int inp_y_min(); pure int inp_y_max();
5
6 ensures \result ≡ 0;
7 decreases;
8 pure int count0(int x) = 0;
9

10 requires 0≤r ∧ r≤10;
11 ensures (0≤\result ∧ \result≤r);
12 decreases r;
13 pure int count1r(int x, int r) = r ≡ 0 ? count0(x)
14 : inp(x, r-1) > 0 ? count1r(x, r-1) + 1 : count1r(x, r-1);
15
16 ensures (0≤\result ∧ \result≤10);
17 decreases;
18 pure int count(int x) = count1r(x, 10);

For a reduction, the initialisation and update parts are translated into sepa-
rate functions, and reduction domain variables are explicitly added as function
parameters. Listing 4 illustrates this for the cnt example. The function count0
on line 8 corresponds to the initialisation (line 3 of Listing 2), with the translated
post-state predicate on line 6. The function count1r (lines 13–14) corresponds
to the update function (line 5 of Listing 2). Note that the annotation on line
10 refers to the reduction domain. The reason for using references to r-1 on
line 14 is that the result of the whole computation corresponds to r with its
maximum value 10 (see line 18). This is computed by recursively decrementing
r. The invariant on line 6 of Listing 2 is translated into the postcondition of
count1r (line 11), reflecting that the invariant should hold after each reduction
iteration. For the decreases r annotation added on line 12, VerCors will try
to prove that this recursive function terminates. The reduction postcondition is
represented by the ensures annotation on line 16.

Guarantees. For the front-end verification approach, HaliVer straightfor-
wardly encodes a Halide function without reductions, as it defines the function
pointwise in Pvl. For reductions, HaliVer mimics the iterative updates with
recursion, as shown in the cnt example of Listings 2 and 4. HaliVer adds
decreases clauses to check that the recursive functions terminate.

With HaliVer’s approach, functional correctness of the algorithm part can
be proven. Since memory safety depends on how a Halide algorithm is compiled
into actual code according to a schedule, this is checked using the back-end
verification approach.

3.3 Back-end Verification Approach

For verifying a Halide algorithm with a schedule, HaliVer adds annotations
to the generated C code that can be checked by VerCors. First, HaliVer gen-

78 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

Listing 5. A schedule for the blur example (Listing 1), together with the loop nest the
Halide compiler produces, given in the intermediate representation of Halide. The
blur_y bounds are assumed to be from 0 up to 1,024 for dimensions x and y.
1 blur_y.split(y, yo, yi, 8).parallel(yo).split(x, xo, xi, 2).unroll(xi);
2 blur_x.store_at(blur_y, yo).compute_at(blur_y, yi).split(x, xo, xi, 2).unroll(xi);
3 // Below is the loop nest produced (not part of the schedule)
4 produce blur_y:
5 parallel y.yo in [0, 127]:
6 store blur_x:
7 for y.yi in [0, 7]:
8 produce blur_x:
9 for y:

10 for x.xo in [0, 511]:
11 unrolled x.xi in [0, 2]:
12 blur_x(...) = ...
13 consume blur_x:
14 for x.xo in [0, 511]:
15 unrolled x.xi in [0, 2]:
16 blur_y(...) = ...

erates read and write permissions and preconditions for functions used in defini-
tions. This generation of permissions makes it possible to keep the annotations of
Halide algorithms concise, since the user does not have to specify permissions.
Second, HaliVer transforms the annotations and adds them to the interme-
diate representation used by the Halide compiler. Finally, HaliVer adds the
annotations to the code, during the code generation of the Halide compiler.

Annotation Generation. Since Halide algorithms consist of pure point-wise
functions, permissions are relatively straightforward: for a function f(x,...),
HaliVer generates the write permission Perm(f(x,...),1\1). For the blur ex-
ample from Listing 1, HaliVer generates blur_x.context(Perm(blur_x(x,y
), 1\1) and blur_y.context(Perm(blur_y(x,y), 1\1) for function blur_x
and blur_y, respectively.

For update functions and reductions, HaliVer generates (1) read permis-
sions for function values that are not being updated, and (2) a pre-state predi-
cate, using the post-state predicate of the previous update step.

Once a function is fully defined, read permission is given to all values wherever
the function is used, along with a context predicate containing any intermediate
annotations of the function.

Transformation of Annotations. Next, HaliVer transforms the annota-
tions according to the schedule given by the user and associates them with the
corresponding parts of the optimised Halide program expressed in Halide’s
intermediate language.

HaliVer supports the split, fuse, parallel, unroll, store_at, reorder
and compute_at scheduling directives. Of the most commonly used directives in
the Halide example apps5, only vectorize is not supported because VerCors

5 https://github.com/halide/Halide/tree/main/apps

HaliVer: Deductive Verification and Scheduling Languages Join Forces 79

https://github.com/halide/Halide/tree/main/apps

does not yet support verification of vectorised code as produced by Halide.6
With these directives, HaliVer provides the means to verify optimised programs
w.r.t. memory locality, parallelism and recomputation. This is the optimisation
space in which Halide resides [22]. We illustrate the meaning of these directives
with an example. Listing 5 shows a schedule for blur on lines 1–2, and below
that the loop nest structure of the resulting program. Loop nests are program
statements of nested for loops. The loops can be sequentially executed or be
parallelized, unrolled or vectorized. The allocation of space for a function result
is indicated by store, and produce and consume refer to writing and reading
function results, respectively. This loop nesting corresponds to the actual code
produced by the Halide compiler.

Assuming that the output dimensions in the example are both of size 1,024,
the directive split(y, yo, yi, 8) (line 1 of Listing 5) splits the dimension
y into two nested dimensions y.yo (line 5) and y.yi (line 7) of sizes 128 and
8, respectively. HaliVer similarly renames references to y in annotations. The
parallel(yo) directive (line 1) expresses that y.yo should be executed in paral-
lel (line 5). The store_at(blur_y, yo) directive (line 2) expresses that blur_x
must be stored at the start of the y.yo loop (line 6). The directive compute_at
(blur_y, yi) (line 2) defines that the values for blur_x should be produced
at y.yi (line 8). The directive unroll(xi) (line 1 and 2) expresses that the
dimension xi should be completely unrolled.

The for loops are sequential. In this example, fuse and reorder are not
used; they express that two dimensions should be fused into one and the nesting
order of the loops should be changed, respectively.

HaliVer moves bottom-up through the program, constructing loop invari-
ants for each loop by taking the constructed state predicates from the loop body
and extending them with quantifications over the loop variables. Below, we give
an example of this exact process for the blur example of Listing 1.7

Encoding of Halide Program. Finally, HaliVer adds annotations to the
C code during the code generation of the Halide compiler. As an example,
we show how HaliVer adds annotations of the blur_y function of Listing 1
with the schedule of Listing 5. The result of this can be found in Listing 6. It
shows the structure of the whole program, but is focussed on the code below the
consume blur_x node (line 13 of Listing 5).

First, HaliVer updates its pipeline annotations (lines 1–2 of Listing 1), to
match the flattened array structure the Halide back-end uses, and adds them
to the function contract (lines 8–15 of Listing 6). HaliVer also uses the Halide
definition of division (hdiv), i.e., Euclidean8 [12] with x/0 ≡ 0.
6 The vectorize scheduling directive is the same as the unroll directive from the per-

spective of transforming annotations. So they can be treated exactly the same and
already are in HaliVer.

7 For the interested reader, we explain the approach in a more general way in Appendix
C of the version available at https://arxiv.org/abs/2401.10778.

8 The Halide compiler uses bit operators to define euclidean division. However, bit
operators are not supported in VerCors, so HaliVer uses an equivalent definition.

80 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

https://arxiv.org/abs/2401.10778

Listing 6. The C code and annotations the Halide compiler produces together with
HaliVer for the function blur_y, focussing on the consume blur_x node (see line 13
of Listing 5). The complete encoding for the blur_y pipeline is available in Appendix
B of the version available at https://arxiv.org/abs/2401.10778
1 struct halide_dimension_t {int32_t min, max;};
2 struct buffer {int32_t dimensions;struct halide_dimension_t *dim;int32_t *host;};
3 int div_eucl(int x, int y);
4 //@ pure int hdiv(int x, int y) = y ≡ 0 ? 0 : div_eucl(x, y);
5 //@ pure int p_i(int x);
6 /*@ ... // Buffers annotations
7 context (∀ int x,int y;0≤x∧x<1026∧0≤y∧y<1026; inpb�host[y*1026+x]≡p_i(y*1026+x));
8 // Pipeline preconditions
9 requires inpb�dim[0].min≡blur_yb�dim[0].min∧ inpb�dim[0].max≡blur_yb�dim[0].max+2;

10 requires inpb�dim[1].min≡blur_yb�dim[1].min∧ inpb�dim[1].max≡blur_yb�dim[1].max+2;
11 // Pipeline postconditions
12 ensures (∀ int x, int y; 0≤x∧x<1024∧0≤y& y<1024; blur_yb�host[y*1024+x] ≡ hdiv(
13 hdiv(inpb�host[y*1026+x+1027]+inpb�host[y*1026+x+1028]+inpb�host[y*1026+x+1026],3)+
14 hdiv(inpb�host[y*1026+x+2053]+inpb�host[y*1026+x+2054]+inpb�host[y*1026+x+2052],3)+
15 hdiv(inpb�host[y*1026+x+1]+inpb�host[y*1026+x+2]+inpb�host[y*1026+x],3),3));@*/
16 int blur_3(struct buffer *inpb, struct buffer *blur_yb) {
17 int32_t* blur_y = blur_yb�host;
18 int32_t* inp = inpb�host;
19 // produce blur_y
20 #pragma omp parallel for
21 for (int yo = 0; yo<0 + 128; yo++)
22 ... // Annotations blur_y.y.yo
23 {
24 int64_t _2 = 10240;
25 int32_t *blur_x = (int32_t *)malloc(sizeof(int32_t)*_2);
26 int32_t _t11 = (yo * 8);
27 ... // Annotations blur_y.y.yi
28 for (int yi = 0; yi<0 + 8; yi++)
29 {... // produce blur_x
30 // consume blur_x
31 int32_t _t16 = (yi + _t11) * 512;
32 int32_t _t15 = yi * 512;
33 /*@ loop_invariant 0≤xo ∧ xo≤0 + 512;
34 loop_invariant (∀* int x, int y; 0≤x ∧ x<1024 ∧ yo*8≤y ∧ y<yo*8 + 10;
35 Perm(&blur_x[(y-yo*8)*1024+x], 1\2));
36 loop_invariant (∀ int xo, int y; 0≤xo ∧ xo<1024 ∧ yo*8+yi≤y ∧ y≤yo*8+yi+2;
37 blur_x[(y-yo*8)*1024+xo] ≡ hdiv(p_i(y*1026+xo) + p_i(y*1026+xo+1) + p_i(y*1026+xo

+2),3));
38 loop_invariant (∀* int xif, int xof; 0≤xof ∧ xof<512 ∧ 0≤xif ∧ xif<2;
39 Perm(&blur_y[(yo*8+yi)*1024+xof*2+xif], 1\1));
40 loop_invariant (∀ int xof, int xif; 0≤xof ∧ xof<xo ∧ 0≤xif ∧ xif<2; blur_y[(

yo*8+yi)*1024+xof*2+xif] ≡
41 hdiv(hdiv(p_i((yo*8+yi)*1026+xof*2+xif) + p_i((yo*8+yi)*1026+xof*2+xif+1) + p_i((

yo*8+yi)*1026+xof*2+xif+2), 3) +
42 hdiv(p_i((yo*8+yi)*1026+xof*2+xif+1026) + p_i((yo*8+yi)*1026+xof*2+xif+1027) + p_i

((yo*8+yi)*1026+xof*2+xif+1028), 3) +
43 hdiv(p_i((yo*8+yi)*1026+xof*2+xif+2052) + p_i((yo*8+yi)*1026+xof*2+xif+2053) + p_i

((yo*8+yi)*1026+xof*2+xif+2054), 3), 3)); @*/
44 for (int xo = 0; xo<0 + 512; xo++)
45 {
46 int32_t _t9 = (xo + _t15);
47 blur_y[(xo + _t16) * 2] = div_eucl(blur_x[_t9 * 2] + blur_x[_t9 * 2 + 1024] +

blur_x[_t9 * 2 + 2048], 3);
48 blur_y[(xo + _t16) * 2 + 1] = div_eucl(blur_x[_t9 * 2 + 1] + blur_x[_t9 * 2 + 1025]

+ blur_x[_t9 * 2 + 2049], 3);
49 } // for xo
50 } // for yi
51 free(blur_x);
52 } // for yo
53 return 0;}

HaliVer: Deductive Verification and Scheduling Languages Join Forces 81

https://arxiv.org/abs/2401.10778

Next, HaliVer transforms the annotations added to the blur_y function,
before it adds them to any loop nest. The Halide compiler flattens the two-
dimensional function blur_y(x,y) into a one-dimensional array blur_y[y*102
4+ x], so HaliVer does the same for all function references in the annotations.
Next, from the schedule, the directive split(x, xo, xi, 2) splits x into xo
and xi of sizes 512 and 2, respectively. A similar split is performed for y. The
generated annotation context (Perm(blur_y(x,y), 1\1)) becomes context
Perm(&blur_y[(yo*8+yi)+ xo*2+ xi], 1\1)).

For the annotation ensures(blur_y(x,y)==(((inp(x,y)+..., HaliVer
replaces the calls to inp(x,y) with calls to an abstract pure function p_i. This
is done because quantification instantiation in VerCors can become unstable if
inp is used frequently. Where inp is used in the code, HaliVer adds annotations
stating that inp and p_i have the same value (line 7 of Listing 6).

HaliVer adds these annotations to the first loop nest, starting bottom up.
In Listing 5, this is xi, but since this loop is unrolled, additional annotations are
not needed. After passing this loop nest, anything for xi=0 and xi=1 now holds.
HaliVer changes the annotations by quantifying over xi’s domain. It uses xif
as variable and changes any references to xi towards xif. The resulting permis-
sions are (∀xif; 0≤xif ∧xif<2; Perm(blur_y[(yo*8+yi)+ xo*2+xif], 1\
1)). The other annotations are processed in a similar way.

Next, HaliVer arrives at the loop nest for xo, which needs loop invariants.
First, the tool adds the bounds of the xo dimension (line 33 of Listing 6). The
annotation is transformed depending on whether it was a requires, ensures
or context annotation. The write permission (context), should hold before the
loop starts and after the loop ends. Therefore, HaliVer adds the permission,
but quantifies over dimension xo, which results in a loop invariant (lines 38–39
of Listing 6). The ensure annotation does not hold at the start of the loop, but
after each iteration of the loop, one more value for xo holds. Therefore, HaliVer
quantifies over xof bounded by zero and the iteration variable xo, and replaces
occurrences to xo with xof, which leads to a loop invariant (lines 40–43 of
Listing 6). For loops above this loop nest, the ensure annotations hold for the
whole domain of xo, resulting in ensures (∀xof, xif; 0≤xof ∧xof<512∧0
≤xif ∧xif<2; blur_y[(yo*8+yi)*1024+xof*2+xif] ≡.... This annotation
is added to the parallel for loop.

After constructing the produce node for blur_y, the produce node for
blur_x is constructed in a similar way. The bound inferencer of Halide de-
tects it only needs to calculate for y values of 8*y0+yi up to 8*y0+yi+2. The
annotations are transformed respecting that fact. After the produce node, the
blur_x is consumed (line 30 of Listing 6). So for each loop below the consume
statement, HaliVer adds read permission (lines 34–35 of Listing 6s) and the
post-state predicate of blur_x (lines 36-37 of Listing 6) as context annotations.
For the loop of xo, this means they are valid for any value of xo.

Guarantees. With the back-end verification approach, HaliVer can prove that
the optimised code produced by the Halide compiler is correct w.r.t. specifica-
tions. Memory safety is proven without any additional effort, as the permission

82 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

Table 1. Number of lines of code and annotations for different Halide algorithms,
schedules and resulting programs, and the verification times required by VerCors
to prove memory safety, given that no annotations are provided by the user. The
letters after each schedule denote the used directives: compute_at, fuse, parallel,
reorder, split, store_at and unroll. F stands for verification failed. Times with †

are inconsistent, i.e. they are succesfully verified, but can also sometimes fail or timeout.

Name Halide Sched. C
LoC Dir. LoC LoA. Loops T. (s).

blur V0 38 0 178 60 2 18
V1-{f,p} " 2 172 56 1 19
V2-{c,p,r,s} " 6 212 74 6 29
V3-{c,p,s,st,u} " 8 211 72 5 24

hist V0 71 2 299 98 11 30
V1-{c,p,r,u} " 4 308 99 11 38
V2-{c,p,r,u} " 6 311 105 13 48
V3-{c,p,r,u} " 13 312 101 13 48

conv_ V0 44 0 273 148 7 90
layer V1-{c,f,p,u} " 4 281 145 8 97

V2-{p,r,s,u} " 6 302 166 10 209
V3-{c,p,r,s,u} " 15 279 148 7 168

gemm V0 70 0 218 105 3 41
V1-{c,p,r,s} " 8 274 136 10 89
V2-{c,p,r,s} " 16 342 173 19 196†
V3-{c,f,p,r,s,u} " 24 451 221 31 F

auto_ V0 112 0 443 118 19 35
viz V1-{c} " 9 402 139 23 180

V2-{c,p} " 12 440 156 27 170
V3-{c,p,r,s} " 27 443 152 25 105

camera_pipe-{c,p,r,s,st} 345 27 701 236 25 F

bilateral_grid-{c,p,r,u} 88 18 562 180 39 140

depthwise_separable_conv-{c,p,r,s} 94 13 562 315 44 480

annotations for this are generated automatically. For functional correctness, a
specification needs to be provided. For any non-inlined function, an intermediate
annotation is required to guide VerCors in correct functional verification.

The approach is sound, but not necessarily complete. One concern is that,
since we have not formally proved the correctness of the transformation, our
implementation could in principle be wrong. HaliVer addresses this by keeping
the pipeline annotations very close to what the user has written as annotations.
These pipeline annotations act as the formal contract that will be verified, and
the user can inspect these at any time. If an intermediate annotation is not
correctly transformed, the verification will fail, thus remaining sound but not
complete. Of course we have not constructed any transformations to be wrong,
but even if there is an oversight, we will remain sound. Moreover, in Section 4,
we show that our approach works for real world examples.

4 Evaluation

The goal of the evaluation of HaliVer is four-fold. (1) We evaluate that the
front-end verification approach of HaliVer can verify functional correctness
properties for a representative set of Halide algorithms. (2) For the back-end
verification approach, the annotations that HaliVer generates and transforms
should lead to successful verification for a representative set of Halide programs,
with schedules that use the most important scheduling directives in different

HaliVer: Deductive Verification and Scheduling Languages Join Forces 83

Table 2. Number of lines of code and annotations for different Halide algorithms,
schedules and resulting programs, and the verification times required by VerCors.

Name Halide Front-end Sched. C LoA
LoC LoA T. (s) LoC LoC LoA Loops T. (s) incr.

blur V0 38 2 8 0 178 63 2 21 31.5x
V1-{f,p} " " " 2 172 58 1 23 29.0x
V2-{c,p,r,s} " " " 6 212 83 6 52 41.5x
V3-{c,p,s,st,u} " " " 8 211 79 5 97† 39.5x

hist V0 71 10 8 0 299 118 11 34 11.8x
V1-{c,p,r,u} " " " 4 308 118 11 47 11.8x
V2-{c,p,r,u} " " " 6 311 123 13 56 12.3x
V3-{c,p,r,u} " " " 13 312 125 13 64 12.5x

conv_ V0 44 7 8 0 273 177 7 111 25.3x
layer V1-{c,f,p,u} " " " 4 281 174 8 108 24.9x

V2-{p,r,s,u} " " " 6 302 204 10 283 29.1x
V3-{c,p,r,s,u} " " " 15 279 177 7 207 25.3x

gemm V0 70 12 7 0 218 120 3 43 10.0x
V1-{c,p,r,s} " " " 8 274 169 10 133 14.1x
V2-{c,p,r,s} " " " 16 342 230 19 368 19.2x
V3-{c,f,p,r,s,u} " " " 24 451 310 31 F 25.8x

auto_ V0 112 15 8 0 443 158 19 152† 10.5x
viz V1-{c} " " " 9 402 210 23 216 14.0x

V2-{c,p} " " " 12 440 235 27 230† 15.7x
V3-{c,p,r,s} " " " 27 443 229 25 192† 15.3x

combinations. (3) We evaluate the verification speed for front-end and back-
end verification. (4) Lastly, we evaluate how many annotations are needed in
HaliVer compared to manually annotating the generated C programs.9

Set-up. We used a machine with an 11th Gen Intel(R) Core(TM) i7-11800H @
2.30GHz with 32GB running Ubuntu 23.04.

We used eight characteristic programs from the Halide repository.10 These
are representative Halide algorithm examples. They cover all scheduling direc-
tives supported by HaliVer, in commonly-used combinations. We removed any
scheduling directives that we do not support. VerCors is unable to deal with
large dimensions that are unrolled, thus we removed some unroll directives as
well.11

The original schedule, as found in the Halide repository, is indicated with
V3 if there are multiple schedules present. For five of these programs we defined
annotations that express functional properties. These five programs are also
evaluated with the standard schedule (V0), which tries to inline functions as
much as possible, and two additional schedules (V1 and V2) we constructed.

Memory Safety Results. We evaluate 8 Halide programs, with in total 23
schedules, and prove data race freedom and memory safety for 21 of them. No
user provided annotations are needed. The results can be found in Table 1.

For each case, we provide: the number of lines of code (LoC)12 for the Halide
algorithm, without the schedule and number of scheduling directives (Sched.
9 The experiments can be found at https://github.com/sakehl/HaliVerExperiments.

10 https://github.com/halide/Halide/tree/main/apps gemm is part of linear_algebra.
11 For the interested reader, we explain this further in Appendix A of the version

available at https://arxiv.org/abs/2401.10778.
12 These lines are counted automatically and indicate the size of the programs.

84 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

https://github.com/sakehl/HaliVerExperiments
https://github.com/halide/Halide/tree/main/apps
https://arxiv.org/abs/2401.10778

Dir.). For the generated programs (C) we list: lines of code (LoC), lines of anno-
tations (LoA.), number of (parallel) loops (Loops). These numbers indicate how
large programs tend to become w.r.t. Halide algorithms, and how much anno-
tation effort would be required to manually annotate the programs. Verification
running times (T. (s)) are given in seconds, averaged over five runs.

For camera_pipe, VerCors gives a verification failure. It could not prove a
loop_invariant, but after simplifying parts of the generated C program not re-
lated to this specific invariant, it leads to a successful verification. This indicates
that the program is too complex for the underlying solvers. We also coded this
example in similar Pvl code instead of C, which verifies in 193s. We suspect
the failure is caused by quantifier instantiation, which instantiates too many
quantifiers, resulting in the SMT solver on which VerCors relies stopping the
exploration of quantifiers that are needed for successful verification.

For gemm V3, verification fails due to VerCors not sufficiently rewriting
annotations of the fuse directive.13

Functional correctness results. Next, we evaluate five14 algorithms with
annotations and 20 schedules, both for the front-end and back-end. HaliVer
proves functional correctness for the front-end, and both functional correctness
and data race freedom and memory safety for the back-end for 19 of the 20
schedules. These results are given in Table 2. The table additionally has the
amount of user provided annotations (LoA.) and the last column (Ann. incr.)
indicates the growth of the annotations. The annotations of the C file (LoC)
contain both the generated annotations, which are already present in Table 1
and the transformed user annotations.

For optimised programs, the annotation size is strongly related to the number
of loops, as each loop needs its own loop invariants. Front-end verification is suc-
cessful for all examples and is relatively fast compared to back-end verification.
In verification of the C files produced by the back-end verification approach,
time increases as the number of scheduling directives increases. Here, gemm V3
also fails for the same reason as outlined above.

Inconsistent Results. For gemm V2 for the memory benchmarks and for blur
V3 and auto_viz V0, V2 and V3, VerCors does not always succeed with the
verification. In the case of gemm V2, the verification sometimes hangs, which
is timed out after 10 minutes. In the other cases, VerCors sometimes gave a
verification failure. This inconsistency is due to the non-deterministic nature of
the underlying SMT solvers.

Conclusions. With the front-end verification approach of HaliVer we are able
to prove functional correctness properties for representative Halide algorithms.
13 For the interested reader, we explain this further in Appendix A of the version

available at https://arxiv.org/abs/2401.10778.
14 The other three algorithms from the memory safety results are typical image pro-

cessing pipelines. They are therefore less suitable for checking functional correctness
and are not used here.

HaliVer: Deductive Verification and Scheduling Languages Join Forces 85

https://arxiv.org/abs/2401.10778

Using HaliVer’s back-end verification approach, the tool provides correct an-
notations for the generated C programs. VerCors successfully verifies all but
two programs. However, in the unsuccessful cases, HaliVer runs into limita-
tions of the underlying tools. The verified programs are all verified within ten
minutes. Finally, the manual annotation effort required is an order of magnitude
larger than the effort required for HaliVer’s approach.

5 Related Work

There is much work on optimising program transformations, either applied au-
tomatically or manually [2,11], sometimes using scheduling languages [3,6–8,22,
23,28]. The vast majority of this does not address functional correctness.

Work on functional correctness consists of techniques that apply verification
every time a program is transformed, and techniques that verify the compiler.

Liu et al. [15] propose an approach inspired by scheduling languages, with
proof obligations generated when a program is optimised, for automatic verifi-
cation using Coq. The Cogent language [20] uses refinement proofs, to be ver-
ified in Isabelle/HOL. However, it does not separate algorithms from sched-
ules. In [17, 18] an integer constraint solver and a proof checker are used, re-
spectively, to verify the transformation of a program. In all these approaches,
semantics-preservation is the focus, as opposed to specifying the intended be-
haviour. Model-to-model transformations can be verified w.r.t. the preservation
of functional properties [21]. However, that work targets models, not code.

Regarding the verification of compilers, CompCert [14] is a framework in-
volving a formally verified C compiler. In [19], Halide’s Term Rewriting System,
used to reason about the applicability of schedules, is verified using Z3 and Coq.
These approaches do not require verification every time an optimisation is ap-
plied, but verifying the compiler is time-consuming and complex, and has to be
redone whenever the compiler is updated. Furthermore, they focus on semantics-
preservation, not the intended behaviour of individual programs.

Alpinist [27] is most closely related. This tool automatically optimises Pvl
code, along with its annotations, for verification with VerCors. It allows the
specification of intended behaviour, but it does not separate algorithms from
schedules, forcing the user to reason about the technical details of parallelisation.

6 Conclusions & Future Work

We presented HaliVer, a tool for verifying optimised code by exploiting the
strengths of scheduling languages and deductive verification. It allows focussing
on functionality when annotating programs, keeping annotations succinct.

For future work, we want to extend the HaliVer tool with aspects not
directly supported by VerCors, such as vectorisation. The master thesis of [24]
defines a natural semantics for Halide. We want to formalise our front-end Pvl
encoding with an axiomatic semantics to match this semantics. We also want to

86 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

investigate the inconsistent results and see whether annotations with quantifiers
can be rephrased to allow VerCors to be more consistent. In this work we
have focussed on parallel CPU code, but we have designed our approach to be
extendable to GPU code produced by Halide.

With the current expressiveness of the annotations, when reduction domains
are present, HaliVer proves functional correctness for specific inputs. For ex-
ample, in Listing 2 we can prove that count(x)==9 if we require that input
(x,y)==x. This can also be done for any input if the reduction domain is of
known size, but then many annotations are needed. To make the annotations
concise, a user needs to be able to use axiomatic data types15 and pure functions
in their annotations. We expect that these annotations can be similarly trans-
formed by our approach, and that is thus orthogonal to this contribution, but
this is planned as future work.

Most Halide programs use floating point numbers. These are currently mod-
elled as reals in VerCors. How to efficiently verify programs with floats using
deductive verifiers is still an open research question. Once this is addressed,
HaliVer will be able to give better guarantees.

We require that the bounds of a Halide program are set to concrete values
for our back-end verification approach. HaliVer transforms the annotations the
same way for not know bounds, but the underlying tools have difficulty verifying
these programs. With unknown bounds, we end up with nonlinear arithmetic
due to the flattening of multi-dimensional functions on one-dimensional arrays.
This is generally undecidable, so the SMT solvers that VerCors rely on cannot
handle it. We will investigate if there are ways to tackle this in our domain-
specific case.

Acknowledgements We are grateful to the anonymous reviewers of TACAS
2024 for their thorough reading and constructive feedback. We want to thank
Jan Martens for their discussions and feedback on this work.

References

1. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs. LMCS 11(1) (2015). https://doi.org/10.2168/
LMCS-11(1:2)2015

2. Bacon, D., Graham, S., Sharp, O.: Compiler Transformations for High-Performance
Computing. ACM Computing Surveys 26(4), 345–420 (1994). https://doi.org/10.
1145/197405.197406

3. Baghdadi, R., Ray, J., Romdhane, M.B., Sozzo, E.D., Akkas, A., Zhang, Y.,
Suriana, P., Kamil, S., Amarasinghe, S.P.: Tiramisu: A Polyhedral Compiler
for Expressing Fast and Portable Code. In: CGO. pp. 193–205. IEEE (2019).
https://doi.org/10.1109/CGO.2019.8661197

4. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors Tool Set: Ver-
ification of Parallel and Concurrent Software. In: Polikarpova, N., Schneider,

15 https://vercors.ewi.utwente.nl/wiki/#axiomatic-data-types

HaliVer: Deductive Verification and Scheduling Languages Join Forces 87

https://doi.org/10.2168/LMCS-11(1:2)2015
https://doi.org/10.2168/LMCS-11(1:2)2015
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/197405.197406
https://doi.org/10.1109/CGO.2019.8661197
https://vercors.ewi.utwente.nl/wiki/#axiomatic-data-types

S. (eds.) Integr. Form. Methods. pp. 102–110. Lecture Notes in Computer Sci-
ence, Springer International Publishing, Cham (2017). https://doi.org/10.1007/
978-3-319-66845-1_7

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL. pp. 259–270 (2005). https://doi.org/10.1145/1040305.
1040327

6. Chame, C.C.J., Hall, M.: CHiLL: A framework for composing high-level loop trans-
formations. 08-897, University of Southern California (2008)

7. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., Shen, H., Wang,
L., Hu, Y., Ceze, L., Guestrin, C., Krishnamurthy, A.: TVM: An Automated End-
to-End Optimizing Compiler for Deep Learning. In: 13th USENIX Symp. Oper.
Syst. Des. Implement. OSDI 18. pp. 578–594. USENIX Association, USA (2018)

8. Hagedorn, B., Elliott, A.S., Barthels, H., Bodik, R., Grover, V.: Fireiron: A Data-
Movement-Aware Scheduling Language for GPUs. In: Proc. ACM Int. Conf. Par-
allel Archit. Compil. Tech. pp. 71–82. ACM, Virtual Event GA USA (Sep 2020).
https://doi.org/10.1145/3410463.3414632

9. Hähnle, R., Huisman, M.: Deductive Software Verification: From Pen-and-Paper
Proofs to Industrial Tools. In: Computing and Software Science - State of the Art
and Perspectives. LNCS, vol. 10000, pp. 345–373. Springer (2019). https://doi.org/
10.1007/978-3-319-91908-9_18

10. Hijma, P., Heldens, S., Sclocco, A., van Werkhoven, B., Bal, H.: Optimization
Techniques for GPU Programming. ACM Computing Surveys 55(11), 239:1–239:81
(2023). https://doi.org/10.1145/3570638

11. Kowarschik, M., Weiß, C.: An Overview of Cache Optimization Techniques
and Cache-Aware Numerical Algorithms. In: Algorithms for Memory Hierar-
chies. LNCS, vol. 2625, pp. 213–232. Springer (2003). https://doi.org/10.1007/
3-540-36574-5_10

12. Leijen, D.: Division and modulus for computer scientists (July
2003), https://www.microsoft.com/en-us/research/publication/
division-and-modulus-for-computer-scientists/, short note about division defini-
tions in programming languages

13. Leiserson, C.E., Thompson, N.C., Emer, J.S., Kuszmaul, B.C., Lampson, B.W.,
Sanchez, D., Schardl, T.B.: There’s plenty of room at the top: What will drive
computer performance after Moore’s law? Science 368(6495) (2020). https://doi.
org/10.1126/science.aam9744

14. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning
43(4), 363–446 (2009). https://doi.org/10.1007/s10817-009-9155-4

15. Liu, A., Bernstein, G.L., Chlipala, A., Ragan-Kelley, J.: Verified tensor-program
optimization via high-level scheduling rewrites. Proc. ACM Program. Lang.
6(POPL), 55:1–55:28 (Jan 2022). https://doi.org/10.1145/3498717

16. Müller, P., Schwerhoff, M., Summers, A.: Viper - a verification infrastruc-
ture for permission-based reasoning. In: VMCAI (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

17. Namjoshi, K.S., Singhania, N.: Loopy: Programmable and formally verified
loop transformations. In: International Static Analysis Symposium. pp. 383–402.
Springer (2016). https://doi.org/10.1007/978-3-662-53413-7_19

18. Namjoshi, K.S., Xue, A.: A Self-certifying Compilation Framework for We-
bAssembly. In: International Conference on Verification, Model Checking, and
Abstract Interpretation. pp. 127–148. Springer (2021). https://doi.org/10.1007/
978-3-030-67067-2_7

88 L. B. van den Haak, A.J. Wijs, M. Huisman and M.G.J. van den Brand

https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1145/3570638
https://doi.org/10.1007/3-540-36574-5_10
https://doi.org/10.1007/3-540-36574-5_10
https://www.microsoft.com/en-us/research/publication/division-and-modulus-for-computer-scientists/
https://www.microsoft.com/en-us/research/publication/division-and-modulus-for-computer-scientists/
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/3498717
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-53413-7_19
https://doi.org/10.1007/978-3-030-67067-2_7
https://doi.org/10.1007/978-3-030-67067-2_7

19. Newcomb, J.L., Adams, A., Johnson, S., Bodik, R., Kamil, S.: Verifying and Im-
proving Halide’s Term Rewriting System with Program Synthesis. Proc. ACM
Program. Lang. 4(OOPSLA), 166:1–166:28 (Nov 2020). https://doi.org/10.1145/
3428234

20. O’Connor, L., Chen, Z., Rizkallah, C., Jackson, V., Amani, S., Klein, G., Mur-
ray, T., Sewell, T., Keller, G.: Cogent: Uniqueness Types and Certifying Compi-
lation. Journal of Functional Programming 31(e25), 1–66 (2021). https://doi.org/
10.1017/S095679682100023X

21. de Putter, S., Wijs, A.: Verifying a verifier: on the formal correctness of an LTS
transformation verification technique. In: FASE. pp. 383–400. Springer (2016).
https://doi.org/10.1007/978-3-662-49665-7_23

22. Ragan-Kelley, J., Adams, A., Sharlet, D., Barnes, C., Paris, S., Levoy, M., Ama-
rasinghe, S., Durand, F.: Halide: Decoupling algorithms from schedules for high-
performance image processing. Commun. ACM 61(1), 106–115 (Dec 2017). https:
//doi.org/10.1145/3150211

23. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe,
S.: Halide: A Language and Compiler for Optimizing Parallelism, Locality, and
Recomputation in Image Processing Pipelines. SIGPLAN Not. 48(6), 519–530 (Jun
2013). https://doi.org/10.1145/2499370.2462176

24. Reinking, A., Bernstein, G., Ragan-Kelley, J.: Formal Semantics for the Halide
Language. Master’s thesis, EECS Department, University of California, Berkeley
(2020, May)

25. Safari, M., Huisman, M.: Formal verification of parallel stream compaction
and summed-area table algorithms. In: International Colloquium on Theoreti-
cal Aspects of Computing. pp. 181–199. Springer (2020). https://doi.org/10.1007/
978-3-030-64276-1_10

26. Safari, M., Oortwijn, W., Joosten, S., Huisman, M.: Formal Verification of Parallel
Prefix Sum. In: Lee, R., Jha, S., Mavridou, A. (eds.) NASA Form. Methods. pp.
170–186. Lecture Notes in Computer Science, Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_10

27. Sakar, Ö., Safari, M., Huisman, M., Wijs, A.: Alpinist: An Annotation-Aware GPU
Program Optimizer. In: TACAS, LNCS, vol. 13244, pp. 332–352. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99527-0_18

28. Zhang, Y., Yang, M., Baghdadi, R., Kamil, S., Shun, J., Amarasinghe, S.P.:
GraphIt: a high-performance graph DSL. Proc. ACM Program. Lang. 2(OOPSLA),
1–30 (2018). https://doi.org/10.1145/3276491

HaliVer: Deductive Verification and Scheduling Languages Join Forces 89

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3428234
https://doi.org/10.1145/3428234
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.1007/978-3-662-49665-7_23
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1007/978-3-030-64276-1_10
https://doi.org/10.1007/978-3-030-64276-1_10
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1145/3276491
http://creativecommons.org/licenses/by/4.0/

Gray-Box Fuzzing via Gradient Descent
and Boolean Expression Coverage⋆

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{martin.jonas,strejcek,trtikm,492717}@mail.muni.cz

Abstract. We present a gray-box fuzzing approach based on several
new ideas. While standard gray-box fuzzing aims to cover all branches
of the input program, our approach primarily aims to cover both results
of each Boolean expression. To achieve this goal, we track the distances
to flipping these results and we dynamically detect the input bytes that
influence the distance. Then we use this information to efficiently flip the
results. More precisely, we apply gradient descent on the detected bytes
or we create new inputs by using detected bytes from different inputs.
We implemented our approach in a tool called Fizzer. An evaluation
on the benchmarks of Test-Comp 2023 shows that Fizzer is fully com-
petitive with the winning tools of the competition, which use advanced
formal methods like symbolic execution or bounded model checking, usu-
ally in combination with fuzzing.

1 Introduction

Fuzzing is a technique for automated generation of test inputs for a given pro-
gram. The goal of fuzzing is to generate tests with high code coverage and to
quickly detect bugs in the code. We distinguish three basic kinds of fuzzing
based on their use of the given program. Black-box fuzzing [18] only runs the
given program on various inputs and observes the outputs. Gray-box fuzzing [18]
first instruments the program to get some information about performed execu-
tions. The instrumented code typically tracks the information about the basic
blocks visited during the execution. While black-box and gray-box fuzzing rely
on dynamic analysis of the original or instrumented code, white-box fuzzing [18]
combines dynamic analysis with some static analysis of the code, typically con-
colic execution, symbolic execution, or bounded model checking.

Black-box fuzzers have only limited efficiency due to the lack of information.
Gray-box fuzzers and white-box fuzzers proved to be very efficient and they
are routinely applied in software industry. For example, the gray-box fuzzer
AFL [27] discovered dozens of bugs in many recognized open-source projects
and the white-box fuzzer Sage [11] is intensively used in Microsoft.

The standard approach of successful gray-box fuzzers is to collect only a
very limited information about each program execution and to quickly perform
⋆ This work has been supported by the Czech Science Foundation grant GA23-06506S.
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 90–109, 2024.
https://doi.org/10.1007/978-3-031-57256-2_5

Martin Jonáš , Jan Strejček , Marek Trtík(B) , and Lukáš Urban

https://orcid.org/0000-0003-4703-0795
https://orcid.org/0000-0001-5873-403X
https://orcid.org/0009-0009-6122-9574
https://orcid.org/0009-0004-9781-3071
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_5&domain=pdf
http://eapls.org/pages/artifact_badges/

as many executions as possible. In this paper we suggest an approach that gath-
ers slightly more information about program executions and uses it to select
uncovered parts of the code and make more targeted attempts to cover it. We
can illustrate some ideas of our approach on a simple example. Consider a pro-
gram that contains a branching statement if (x > 42) and assume that some
program execution passed its true branch. During this program execution, we
saved the value of x - 42 to know the distance to entering the false branch.
When we decide to cover the false branch, we first repeatedly execute the pro-
gram on modified inputs to detect the bytes of the input that have some influence
on the distance value. This is called a sensitivity analysis and the detected bytes
are called sensitive. We then propose two analyses that use the sensitive bytes to
cover the uncovered branch. One analysis performs a dynamic gradient descent
on the sensitive bytes with the aim to minimize the absolute value of the distance
and to enter the false branch. Alternatively, if we already know another input
that entered the false branch of this statement in a different calling context,
we can try to use the value of its sensitive bytes instead of the sensitive bytes
of the current input. This analysis is called byteshare analysis. Now consider a
slightly different program where the branching statement has the form if (res)
where res is a Boolean variable assigned before by res = x > 42. Clearly, we
want to track the distance to changing the value of res. Hence, we in fact do not
track distances for branching conditions, but the distances for values of atomic
Boolean expressions. Roughly speaking, our approach aims to generate tests
such that each atomic Boolean expression in each calling context is evaluated
to true and to false in some program executions. Our fuzzing approach tracks
its progress with the use of atomic Boolean execution tree and we talk about
Boolean expression coverage.

The following section introduces the basic terminology used in the paper and
states our assumptions on the analysed programs. Section 3 then describes the
basic concepts of our approach, in particular the Boolean expression coverage,
the information we collect from each program execution and how we obtain this
information, the atomic Boolean execution tree, and the fuzzing algorithm. This
algorithm iteratively tries to close vertices of the tree by generating inputs in
which each of the vertices evaluates both to true and to false in order to
either increase the Boolean expression coverage or to discover new parts of the
tree. These inputs are generated by sensitivity analysis, byteshare analysis, and
gradient descent analysis presented in Section 4. The selection strategy of the
vertex to be closed is briefly explained in Section 5. Note that the page limit
does not allow describing all the technical details of the approach. They can be
found in the corresponding technical report [15].

We have implemented the presented fuzzing approach in a tool called Fizzer.
The architecture and some implementation aspects of the tool are described in
Section 6. Further, we have run Fizzer on all benchmarks of the Cover-Branches
category of the Competition on Software Testing (Test-Comp) 2023 [5]. We eval-
uated the tests generated by Fizzer using the competition infrastructure which
measures the achieved branch coverage. The results presented in Section 7 show

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 91

that our tool is competitive with the top-ranking tools of Test-Comp 2023,
namely FuSeBMC [2], VeriFuzz [21], and CoVeriTest [6]. Note that our
tool is a pure gray-box fuzzer while FuSeBMC and VeriFuzz combine dy-
namic analysis with static analyses like symbolic execution and bounded model
checking. CoVeriTest fully relies on static methods like predicate analysis with
the CEGAR loop and value analysis. Finally, Section 8 discusses some related
work and Section 9 sums up the presented results and outlines future work.

2 Preliminaries

The ideas presented in this paper can be adopted for various kinds of programs.
For ease of presentation, here we consider sequential C programs that get input
only via functions nondet_char(), nondet_int(), and nondet_float() which
return values of the corresponding type.

For simplicity, we assume that these are the only types that can be read from
the input and we define the set InputTypes = {char, int, float}. We define the
set of typed values TypedValues = {(v, t) | t ∈ InputTypes , v is a value of type t}
and denote the pairs (v, t) ∈ TypedValues as v : t, e.g., 3 : int is the value 3 of
type int. We also work with untyped inputs, which are arbitrary finite sequences
of bits 0 and 1. Untyped inputs are denoted by a standard language-theoretic
notation, e.g., 112 is a sequence of 12 elements 1.

An expression occurring in a program is called an atomic Boolean expression
(abe) if it has type bool and it is not a variable, not a call of a function whose
definition is a part of the program, and not a result of applying logical operators,
i.e., conjunction, disjunction, and negation. For example, the expression (x > 3)
&& foo(x,y) && cond, where foo is a function defined in the program and cond
is a variable, contains only one abe x > 3. By abe we always mean a particular
occurrence of the expression in the program.

We assume that the control flow is fully determined by the values of abes.
This property may not hold for programs with switch statements, function
calls via input-dependent function pointers, etc. However, such programs can be
transformed into equivalent ones satisfying our assumption.

By a calling context we mean the sequence of function calls that are currently
being evaluated. The outermost function call is the first element of the sequence
and the last one is the function whose body is executed at the moment. In other
words, the calling context roughly corresponds to the call stack.

We sometimes denote a sequence x1x2 . . . xn as ⟨x1, x2, . . . , xn⟩ or ⟨xi⟩1≤i≤n.

3 Overview of Our Fuzzing Approach

This section provides an overview of the key concepts that are used in our fuzzing
algorithm and presents the high-level view of the algorithm. The key heuristics
for input generation are explained later in Sections 4 and 5.

92 M. Jonáš et al.

void main() {
int x = nondet_int ();
if (x < 42) {

// branch 1
} else {

// branch 2
}

}

(a) Trivial case.

void main() {
int x = nondet_int ();
bool res1 = x < 42;
x++;
bool res2 = x < 42;
if (res1 || res2) {

// branch 1
} else {

// branch 2
}

}

(b) Depends on a non-
local comparison.

bool compare(int v) {
return v < 42;

}

void main() {
int x = nondet_int ();
bool res1 = compare(x);
x++;
bool res2 = compare(x);
if (res1 || res2) {

// branch 1
} else {

// branch 2
}

}

(c) Depends on a comparison
coming from a different scope.

Listing 1.1: Example C codes showing that the values that influence which branch
is taken can be both lexically far away from the branching statement and can
be behind several layers of indirection.

3.1 Branch Coverage via Boolean Expression Coverage

The main idea of the proposed approach is to assign to each executed branching
statement a metric called distance reflecting how far the current program state is
from evaluating the branching expression to the opposite Boolean value. Thanks
to this metric, we can use gradient descent to generate inputs that either flip the
Boolean value or are close enough to the flipping point so that the actual flip
can be achieved by small mutations of the input.

It is easy to define the distance for branchings like if (x > 42): we set the
distance to x−42 and minimize the absolute value |x−42| to get close to the point
where the result of the branching expression changes. However, as Listing 1.1
shows, the situation can be far more complex. The comparison does not have
to occur in the branching expression itself, but it can be precomputed earlier in
the program, it can come from a function call or be read from an array, etc.

We sidestep this issue by assigning the distances to atomic Boolean expres-
sions and trying to flip their values rather than doing the same for branch-
ing expressions. In other words, we approach the goal of generating tests with
maximal branch coverage indirectly by maximizing Boolean expression coverage.
Intuitively, we try to generate a set of inputs such that every atomic Boolean
expression evaluates to true on some input and to false on some input. In fact,
we want to generate inputs leading to both Boolean values of each abe in each
possible calling context. The importance of the calling context is illustrated on
the abe v < 42 in the code of Listing 1.1c: we clearly want to distinguish the
case when the value of v < 42 is used to set the value of res1 from the case
when it is used to set the value of res2. The precise goal of our approach will
be formulated later using the terms atomic Boolean execution tree and covered
vertex of the tree introduced in Definitions 1 and 2, respectively.

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 93

Every time an abe e is evaluated, its distance is computed by the expression

dist(e) =

{
value(l)− value(r), if e = l ▷◁ r where ▷◁ ∈ {=, ̸=, <,≤, >,≥},
value(e), otherwise.

In the first case, the value(l) and value(r) refer to the numerical values of l and
r, respectively, before the evaluation of e. In the second case, value(e) is defined
as 1 if e evaluates to true and it is defined as 0 if e evaluates to false.

Note that the branch coverage and the atomic Boolean expression coverage
do not precisely match. For example, we can achieve the full branch coverage of
the code in Listing 1.1b by two tests; with input values 40 : int and 41 : int.
However, the true branch of the first abe x < 42 is not covered by either of
these tests. Nevertheless, our experimental evaluation shows that maximizing the
atomic Boolean expression coverage also leads to test inputs with high branch
coverage.

3.2 Instrumentation and Execution

From each program execution, our approach needs to get the sequence of eval-
uated abes including their calling contexts, their Boolean values, and their dis-
tances. To obtain this information, the program is instrumented with the follow-
ing functions:

– To track the calling context, we assign a unique identifier id to each function
call (except nondet_* function calls) and insert __instr_call(id) before
the call and __instr_return() after the call. The inserted function calls
maintain the current stack of open function calls.

– To track all evaluated abes and their values, distances, and calling con-
texts, we assign a unique identifier id to each abe e and insert the call
__instr_abe(id, e, dist(e)) before the abe. The calling context is inter-
nally retrieved from the tracked stack of open function calls.

Listing 1.2 provides the instrumented programs from Listings 1.1b and 1.1c.
Besides the inserted function calls, we also alter the functions nondet_type()

to collect the information about the values and types read from the input stream
and when they were read.

In the following, we assume that there exists a function execute(P ′, input)
that gets an instrumented program P ′ and an untyped input input ∈ {0, 1}∗ and
returns the trace of the execution of P ′ on input .0ω, i.e., input extended with
infinitely many zero bits. The trace is a pair (usedInput , π) where

– usedInput is the sequence of TypedValues that were read by the program P ′

during the execution.
– π is the sequence ⟨(ei, ci, ri, di, ni)⟩1≤i≤k of tuples, where each tuple repre-

sents one evaluation of an abe: ei is the evaluated abe, ci is the calling
context in which it was evaluated, ri is the result of the evaluation, di is the
corresponding value of dist(ei), and ni is the number of bytes of the input
that have been read before the evaluation.

94 M. Jonáš et al.

void main() {
int x = nondet_int ();
__instr_abe (1, x < 42, x - 42);
bool res1 = x < 42;
x++;
__instr_abe (2, x < 42, x - 42);
bool res2 = x < 42;
if (res1 || res2) {

// branch 1
} else {

// branch 2
}

}

(a) Instrumentation of Listing 1.1b

bool compare(int v) {
__instr_abe (1, v < 42, v - 42);
return v < 42;

}

void main() {
int x = nondet_int ();
__instr_call (1);
bool res1 = compare(x);
__instr_return ();
x++;
__instr_call (2);
bool res2 = compare(x);
__instr_return ();
if (res1 || res2) {

// branch 1
} else {

// branch 2
}

}

(b) Instrumentation of Listing 1.1c

Listing 1.2: Instrumented programs from Listings 1.1b and 1.1c

Note that the trace is always finite as P ′ is executed with some limits on the
number of evaluated abes.

Example 1. Let P ′ be the instrumented program from Listing 1.2b. The function
execute(P ′, 032) returns the trace (⟨0 : int⟩, π), where

π =
〈
(v < 42, ⟨1⟩, true,−42, 4), (v < 42, ⟨2⟩, true,−41, 4)

〉
.

In other words, the execution read only a single int of value 0 from the input
and these 4 bytes were read before the first abe evaluation. Further, the abe
v < 42 with identifier 1 (for readability denoted directly by the expression) has
been evaluated twice: once in the calling context ⟨1⟩, value true, and distance
−42 and later with the calling context ⟨2⟩, value true, and distance −41.

3.3 Atomic Boolean Execution Tree

Each execution trace (usedInput , ⟨(ei, ci, ri, di, ni)⟩1≤i≤k) determines the sequence
r1r2 . . . rk of abe values. Our fuzzing approach tracks the information about all
such sequences seen so far by maintaining an atomic Boolean execution tree.

Definition 1 (atomic Boolean execution tree, abet). An atomic Boolean
execution tree (abet) is a nonempty prefix-closed finite set T ⊆ {true, false}∗.
Elements of T are vertices, ε is the root, and elements v.true, v.false are chil-
dren of v. We assume that each vertex is either a leaf or it has two children, i.e.,
for each v ∈ T it holds v.true ∈ T ⇐⇒ v.false ∈ T .

Our method starts with the tree T = {ε}. Whenever we obtain a trace
(usedInput , ⟨(ei, ci, ri, di, ni)⟩1≤i≤k), we update T to contain the sequence r1 . . . rk

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 95

ε

expr : v < 42
ctx : [1]
trc: ([0 : int], π)false

expr : ⊥

true

expr : v < 42
ctx : [2]
trc: ([0 : int], π)true.false

expr : ⊥
true.true
expr : end

false true

false true

Fig. 1: An example of an abet.

and all its prefixes. Further, with each newly added vertex we also add its sibling.
We say that the trace visits a vertex v if v is a prefix of r1r2 . . . rk.

As we mentioned in the preliminaries, we assume that the next evaluated
abe of each program is fully determined by the values of abes evaluated before
it. This means that each inner vertex v ∈ T determines the corresponding abe
and its calling context. The abe and the calling context corresponding to v are
denoted by expr(v) and ctx (v). We extend the notation expr(v) also to leaves.
We set expr(v) = end if we have seen a trace with the sequence v of abe values.
If this is not the case and v is in T only because of its sibling (or as the only node
in the initial tree {ε}), we set expr(v) = ⊥. Note that a leaf v with expr(v) = ⊥
can become a leaf with expr(v) = end or even an inner node if we later obtain
a trace that visits v. Similarly, a leaf v with expr(v) = end can become an inner
node. This happens for example when v originally represents a trace that ends
with an error (e.g., division by zero) and later we found a longer trace visiting
v that avoids the error.

Finally, to each inner vertex v ∈ T we associate some trace that visits it. The
trace is denoted as trc(v).

An example of an abet can be found in Figure 1. It represents the tree
for the instrumented program from Listing 1.2b after obtaining the first trace
(⟨0 : int⟩, π) given in Example 1.

Definition 2 (Covered vertex). An inner vertex v ∈ T is said to be covered
if there are inner vertices vt, vf ∈ T satisfying expr(v) = expr(vt) = expr(vf),
ctx (v) = ctx (vt) = ctx (vf), expr(vt.true) ̸= ⊥, and expr(vf .false) ̸= ⊥. An
inner vertex that is not covered is called uncovered.

Definition 3 (Open/closed vertex). An inner vertex v ∈ T is said to be
open if expr(v.true) = ⊥ or expr(v.false) = ⊥. An inner vertex that is not
open is called closed.

3.4 Fuzzing Algorithm

A high-level description of the fuzzing algorithm is given in Algorithm 1. The
algorithm starts with instrumentation of the given program P (line 1) and ini-

96 M. Jonáš et al.

Algorithm 1 Fuzzing algorithm
1: create instrumented program P ′ from P (see Section 3.2)
2: T ← {ε}
3: (usedInput , π) ← execute(P ′, ε)
4: processTrace(usedInput , π)
5: while some inner vertex of T is not covered do
6: select an unprocessed open vertex v from T (see Section 5)
7: if no v is selected then end test generation
8: try to close v in T using an input generation analysis (see Section 4)

tialization of the abet T (line 2). Then it executes the instrumented program
on the stream of zero bits (line 3) to obtain an initial trace (usedInput , π) where
π is of the form ⟨(ei, ci, ri, di, ni)⟩1≤i≤k.

On line 4, the trace is processed by processTrace(usedInput , π). This func-
tion updates T with the sequence r1r2 . . . rk as described in Section 3.3. For
each inner vertex v ∈ T visited by the current trace and not visited by any trace
before, we set trc(v) to the current trace. Further, for each vertex v ∈ T visited
by the current trace and another trace before, we compute the value

∑|v|+1
i=1 d2i

and if it is smaller than the corresponding value for trc(v), we set trc(v) to the
current trace. Our practical experiments showed that keeping the trace with
the smaller sum of squares of di leads to better results than minimizing only
the current distance |d|v|+1|. Finally, the function processTrace(usedInput , π)
saves usedInput to the output test suite if it is in trc(v) of some vertex v at this
moment. Otherwise, the trace is completely discarded.

The main fuzzing loop (line 5) iterates until all vertices in T are covered. In
each iteration, we select an unprocessed open vertex v ∈ T (line 6). A vertex is
processed if it has been analyzed by all input generation analyses. If we fail to
select v, the fuzzing algorithm terminates (line 7). Otherwise, we try to close v
by some input generation analysis (line 8). The selection process and the input
generation analyses are described in Sections 5 and 4, respectively.

4 Input Generation

We propose three methods to generate new inputs with the aim to close the
selected vertex: sensitivity analysis, byteshare analysis, and gradient descent.
When a vertex is selected, we execute the first of these analyses that has not
been executed yet for the vertex. The order is important, as byteshare and gra-
dient descent analyses need the information about sensitive bytes, and byteshare
analysis is significantly cheaper than the gradient descent analysis.

In all the analyses, v is the vertex we want to close, we assume without loss
of generality that expr(v.true) = ⊥, and we define l = |v| + 1, i.e., the depth
of v. The goal of all analyses is to generate an input for which the resulting trace
visits v and continues to v.true. In all the analyses, trc(v) = (usedInput , π)
denotes the current trace assigned to the vertex v, with the typed values read

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 97

by the trace usedInput = ⟨ini : ti⟩1≤i≤n and the sequence of abe evaluations
π = ⟨(ei, ci, ri, di, ni)⟩1≤i≤k. Moreover, whenever any of the analyses executes
P ′, the resulting execution trace is processed by processTrace function.

4.1 Sensitivity Analysis

The goal of the analysis is twofold. First, it detects so-called sensitive bytes of
vertex v, denoted as sbytes(v). Let us denote as bi,j the j-th byte in the i-th
typed value ini. We check whether bi,j is sensitive by mutating each bit of the
byte bi,j separately and executing the program P ′ on each one-bit mutation. If
the resulting trace with π′ = ⟨(e′i, c′i, r′i, d′i, n′

i)⟩1≤i≤k′ still visits v and the value
of the distance function in the node v changes, i.e., d′l ̸= dl, the whole byte is
considered sensitive and is added to sbytes(v). We also try changing the whole
value ini to several selected special values, e.g., the smallest and the greatest
value of the type ti and special floating-point values, if ti is float.

Second, during the computation of sensitive bytes, we also extend the tree
with each executed trace. The sensitivity analysis therefore also effectively works
as a local neighborhood search around the previous input of the vertex v.

Observe that when computing sensitive bytes of the vertex v, we can simul-
taneously use the resulting traces to determine the sensitive bytes of all prede-
cessors of v. We use this observation as an optimization in the implementation
to reduce the number of sensitivity analysis executions.

4.2 Byteshare Analysis

Let u be an inner vertex of the current tree T with the same abe as v (the
contexts may differ), with a non-empty set of the sensitive bytes, and whose suc-
cessor u.true is not a leaf. For each such vertex u, the analysis combines inputs
from trc(u.true) and trc(v) into a new input. More precisely, the new input is
the same as trc(v), but for each j ∈ {1, 2, . . . ,min(|sbytes(v)|, |sbytes(u)|)}, we
replace the value of the j-th sensitive byte of v by the value of the j-th sensitive
byte of u in trc(u.true). The idea behind this construction is that we keep the
new input similar to the original input of trc(v) so that the execution trace will
likely visit v, but we replace the sensitive bytes of v by those of u.true, which
might steer the execution to the desired child.

Note that sbytes(v) and sbytes(u) may be completely different bytes. The
size of the sets may also differ. Since we lack information for building a mapping
between sbytes(v) and sbytes(u), we simply map the bytes based on their order.

4.3 Gradient Descent with Multi-sampling and Locking

We extend the notion of sensitivity to the typed inputs. An element of the
sequence usedInputs is called sensitive in v if it contains at least one byte sensitive
in v. The gradient descent analysis tries to minimize the absolute value of the
distance for v by changing only the sensitive typed inputs of the vertex v. We

98 M. Jonáš et al.

Algorithm 2 Gradient descent for vertex v from seed x and distance f(x)

1: while v is open and the number of steps is below the predefined bound do
2: for all i ∈ {1, . . . ,m} do
3: compute ∇if(x) as |ComputeDistance(x1,...,xi−1,xi+∆xi,xi+1,...,xm)|−|f(x)|

∆xi

4: lock each ∇if(x) which is not finite
5: while ||∇f(x)||2 is finite and non-zero do
6: λ ← |f(x)| / ||∇f(x)||2
7: if λ is zero or not finite then return
8: V ′ ← ∅
9: for all e ∈ {0,−1, 1,−2, 2,−3, 3} do

10: x′ ← x− 10eλ∇f(x)
11: V ′ ← V ′ ∪ {(x′, ComputeDistance(x′))}
12: let (x′, f(x′)) ∈ V ′ be the pair with the smallest finite |f(x′)|
13: if |f(x′)| < |f(x)| then
14: x ← x′, f(x) ← f(x′)
15: break
16: else
17: lock all extreme coordinates ∇if(x)
18: if no coordiate was locked then return

fix the values of the inputs that were not identified as sensitive as they likely do
not influence the value of the distance. In particular, we minimize the function
f(x) that receives an input vector of m values that correspond to sensitive
inputs of the vertex v. The value of the function f(x) is computed by a function
ComputeDistance(x) that:

1. Creates the input sequence input ′ by replacing the sensitive inputs of the
original input from trc(v) by the values specified in x.

2. Executes the program on input ′ and obtains the trace (usedInput ′, π′), where
π′ = ⟨(e′i, c′i, r′i, d′i, n′

i)⟩1≤i≤k′ .
3. If the trace π′ does not visit v, returns ∞.
4. Otherwise returns the obtained distance value at the vertex v, i.e., d′l.

The search for the desired values of x is motivated by the following idea. If
x is chosen from a small neighborhood around the global minimum of |f(x)|,
the value f(x) has roughly the same chance of being positive as negative. I.e.,
there is roughly the same chance of expr(v) being evaluated to true as false.
Therefore, we repeatedly run the gradient descent from randomly chosen seeds
x to approach towards the minimum. Along the way, we perform sampling in
the descent direction. This sampling also helps escaping from local minima by
trying more values of the function f(x).

Our gradient descent starting from one random seed x is formally described
in Algorithm 2. We repeatedly perform gradient descent steps from the initial
seed x until we generate an input that closes the open vertex v or reach the
predefined bound on gradient descent steps. In the loop at line 2, we numerically
compute coordinates ∇if(x), one for each variable xi, of the gradient vector

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 99

∇f(x). The coordinates are computed using forward differences, where ∆xi > 0
is the smallest change of that variable. Since the algorithm works only with finite
values, all non-finite coordinates ∇if(x) are locked, i.e., they are set to zero and
we do not move in these coordinates in the gradient step.

The loop at line 5 performs a single gradient step. It first computes the value
of learning rate λ at line 6, which has the property that the linear approximation
of the function f at x is zero at the input x− λ∇f(x). Next we compute a set
V ′ of samples x′ (see the loop at line 9), each representing a candidate for
the gradient step. Observe that the samples are separated by multipliers 10e

ranging over several orders of magnitude. These are the samples we mentioned
earlier, which can both explore the small neighborhood of the global minimum
and escape from local minima. Only the sample x′ with the smallest |f(x′)| is
considered in the gradient step (see line 12). If none of the samples decreases
the value of the function, we are stuck in a local minimum and try to escape
it by locking more coordinates of the gradient. Namely, we identify and lock
coordinates with high absolute values compared to others as they dominate
the descent direction. By their locking, we can dramatically change the descent
direction and potentially move towards the global minimum. If all coordinates are
locked, i.e., set to zero, ||∇f(x)||2 =

∑
i(∇if(x))

2 will be zero and the gradient
descent terminates.

The gradient descent algorithm is repeatedly called with randomly chosen
seed inputs x and the starting distance f(x) = ComputeDistance(x), until the
target vertex is closed1 or we exceed the predefined bound on the number of
seeds to try. We skip all the seeds x for which ComputeDistance(x) is infinite.
More details of the algorithm can be found in the technical report [15].

5 Target Vertex Selection

We now briefly describe how we select vertices that are targeted by the analyses
from the previous section. First, the heuristic tries to select a suitable uncovered
vertex that has not been processed yet. Second, if all uncovered vertices have
been processed, it means that none of the analyses was able to cover them. In this
case, we try to select an open unprocessed vertex and try to close it. The detailed
description of the selection process is available in the technical report [15].

5.1 Selecting an Uncovered Vertex

Primarily, we want to target uncovered vertices. Before that, we want to explore
program executions with diverse numbers of loop iterations. To this end, we
would like to identify all loop head vertices in the abet, which can be expensive.
Therefore, we perform loop head detection lazily on the fly. We maintain a
worklist of loop heads H and if it is not empty, we remove its random vertex

1 In fact, Algorithm 2 is immediately terminated when the target vertex is closed by
any execution of ComputeDistance.

100 M. Jonáš et al.

and select it as the target. Only if the worklist H is empty, we select a suitable
vertex v in the tree based on vertex selection heuristics and detect loop heads
on the path to the vertex v. If there are loop heads on the path to v, we put
some of them to H based on the loop head selection heuristics and randomly
take one of them as the target vertex. If there are no loop heads on the path to
v or the loop heads on the path to v have been processed, we select v itself as
the target vertex. We now describe the heuristics that we use for selection the
suitable vertex v and for selection of loop heads on the path to v.

Vertex Selection Heuristics The selection relies on the classification of the
uncovered vertices into three categories: input-sensitive vertices with sbytes(v) ̸=
∅, input-insensitive vertices with sbytes(v) = ∅, and vertices with unknown sensi-
tivity, on which the sensitivity analysis has not been performed yet. Additionally,
we call a vertex likely input-insensitive (lii), if it has unknown sensitivity and
there is an input-insensitive vertex with the same abe and calling context in the
current abet.

The input-insensitive vertices often arise in practice. For example, when pro-
cessing the loop for (int i = 0; i < 1000; ++i), all the abet vertices with
the abe i < 1000 will be input-insensitive as the number of iterations does not
depend on the input. Moreover, both byteshare and gradient descent analyses are
useless on input-insensitive vertices, so we prefer not processing the lii vertices
to avoid useless sensitivity computations. However lii vertices cannot be ignored
completely as they can be in fact input-sensitive. For this reason, we first try se-
lecting uncovered vertices that are either input-sensitive, or that have unknown
sensitivity but are not lii. We sort such vertices lexicographically according to
the following criteria and select the best vertex v.

1. Input-sensitive vertices are preferred to vertices with unknown sensitivity as
we want to exploit the computed information about sensitive bytes.

2. Vertices with fewer sensitive bytes are preferred, as the analyses are more
expensive with more sensitive bytes.

3. Vertices with the number of input bytes closer to the half of the maximal
number of input bytes of all abet vertices are preferred, as it helps to explore
loop iterations that are deep enough to be interesting and at the same time
to keep the number of input bytes reasonably small.

4. Vertices closer to the root of the execution tree are preferred, as they are
easier to process.

If no such vertex exists, we fall back to choosing an lii vertex. We use the
distance function to select a promising lii vertex in the following way. We select
the uncovered vertex v if it is lii and all identified input-insensitive vertices with
the same abe and context have greater absolute value of the distance function. If
there are more such vertices v, we first prefer the ones with the smallest absolute
value of the distance function and then according to the criteria similar to the
previous ones.

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 101

Loop Head Selection Heuristics To fill the worklist H, we detect all loop
heads on the path to v. The identified loop heads are grouped to buckets of ex-
ponentially increasing size according to the number of bytes read from the input.
This ensures that we do not process too many loop heads to make the search im-
practical, but we still explore loop heads with diverse depths of loop iterations.
We then pick from each bucket the vertex that lexicographically minimizes the
number of input bytes and the depth and add it to the worklist H.

5.2 Selecting an Open Vertex

If the previous algorithm failed to select a vertex, it means that all uncovered
vertices are processed. We try to make progress by selecting a vertex that is
covered but still open. The rationale is that by exploring the open vertex, albeit
otherwise covered, we hope to extend the abet with new vertices where the
analyses can continue further and some open vertices might become covered.

In particular, we choose an open input-independent vertex with a small value
of the distance function and identify an earlier loop head on the path to the root
as in the previous subsection. We then perform a random abet traversal from
the loop head and select the first open unprocessed vertex for which the search
tries to visit to its unvisited child. If this search fails as well, then the analysis
cannot make any further progress, returns null and the fuzzing loop terminates.

6 Implementation

We implemented the approach in an experimental tool called Fizzer. The tool
is implemented in C++, consists of around 11,000 lines of code (in 125 files),
and the only external tool it depends on is the clang compiler and its libraries.
The tool is open-source and available under zlib license either as an artifact at
Zenodo [13] or at the repository [14].

Given a C program to be analyzed, Fizzer first compiles it into llvm bit-
code using the clang compiler. The bitcode is then instrumented using our
instrumenter, which first applies a standard llvm pass to replace all switch
instructions by sequences of if-else statements2 and then finds and instru-
ments all abes and function calls. Observe that we ignore br instructions, i.e.,
we do not care about the actual control flow. After the instrumentation, we link
the instrumented llvm bitcode with our implementations of nondet_type() and
__instr_*() functions into the final executable program, called target, which
will be repeatedly executed by the main Fizzer process.

Whenever Fizzer wants to execute the target with some input, it spawns
a new process with the target executable. During the execution of target,
the instrumented code tracks the current call context, collects data about the
executed abes, and stores them to the shared memory, which is accessible by the
parent Fizzer process. The separation of Fizzer and target to independent
processes allows handling crashes of the target.
2 We should also replace calls via function pointers by sequences of if-else state-

ments. This pass is not implemented yet.

102 M. Jonáš et al.

7 Evaluation

Experimental setup. For evaluation of the implemented tool Fizzer, we use
all branch-coverage benchmarks from Test-Comp 2023, the 5th Competition on
Software Testing [5]. The benchmark set consists of 2933 benchmarks divided
into 16 families. For the presentation purposes, “ReachSafety” and “SoftwareSys-
tems” substrings in the family names are shortened to “rs” and “ss”, respectively,
in the rest of this section. For comparison, we used three best-scoring tools3 from
Test-Comp 2023, namely FuSeBMC [2], VeriFuzz [21], and CoVeriTest [6],
in the versions in which they entered Test-Comp 2023. To obtain reproducible
results, we asked the organizer of Test-Comp to evaluate Fizzer on the official
infrastructure of Test-Comp and compare the obtained results with the official
results of Test-Comp 2023. We stress out that this means that the results were
produced by an independent third party and thus are independently reproducible.
The resource limits of the competition are 15 minutes of cpu time and 15 GB
of ram. A detailed description of the infrastructure and the setting used for the
experimental evaluation we refer to the competition report [5].

Results. The average branch coverage for each tool and each benchmark family
is shown in Table 1. The table shows that the approach proposed in this paper
and implemented in the tool Fizzer is competitive with FuSeBMC – the winner
of Test-Comp 2023 – in most of the benchmark families except rs-Combinations,
rs-ECA, and rs-Sequentialized. It is also competitive with the other state-of-
the-art tools on all of the benchmark families. Although the table shows that
Fizzer is the best on average in benchmark families rs-ControlFlow and ss-
SQLite-MemSafety, we do not consider these particular results significant due
to the small size of these families.

Figure 2 provides a comparison of the branch coverage achieved by Fizzer
and the other considered tools on individual benchmarks. It can be seen that
while on most of the benchmarks, Fizzer provides the same or worse coverage
than FuSeBMC, there are some benchmarks where it provides better coverage.
It is also comparable with VeriFuzz and provides better branch coverage than
CoVeriTest on a large number of benchmarks.

Out of all 2933 evaluated programs, there are 145 programs where Fizzer
provides better coverage than any other of the compared tools. For comparison,
CoVeriTest provides the best coverage for 129 programs, FuSeBMC for 318,
and VeriFuzz for 180. The distribution of these benchmarks to the individual
benchmark families can be found in Table 2.

Finally, note that Fizzer participated in Test-Comp 2024 and placed third
in the category Cover-Branches after FuSeBMC and FuSeBMC-AI.4

3 We do not compare against FuSeBMC IA [1], the runner-up in Test-Comp 2023,
as we want to compare only with the best variant of each individual tool, not all
their variants.

4 https://test-comp.sosy-lab.org/2024/results/results-verified/

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 103

https://test-comp.sosy-lab.org/2024/results/results-verified/

Table 1: Average branch-coverage of the tests generated by the individual tools
for individual benchmark families and for all benchmarks. The results are in
percents. The best result of each benchmark family is printed typeset in bold.

Fa
m

ily

Fa
m

ily
si

ze

C
o
V

er
iT

es
t

F
iz

ze
r

F
u
S
eB

M
C

V
er

iF
u
zz

rs-Arrays 292 71.2 84.6 86.5 81.6
rs-BitVectors 61 78.8 77.3 79.5 73.8
rs-Combinations 671 34.8 42.0 50.7 37.6
rs-ControlFlow 11 4.0 14.1 13.7 13.5
rs-ECA 29 18.3 25.1 32.3 34.9
rs-Floats 197 46.9 48.2 50.8 49.8
rs-Heap 110 68.9 72.5 72.7 70.6
rs-Loops 661 79.6 80.3 82.1 81.4
rs-ProductLines 263 29.0 28.8 29.2 29.2
rs-Recursive 51 78.4 84.2 85.8 76.0
rs-Sequentialized 91 80.4 66.5 87.8 88.4
rs-XCSP 114 99.8 88.5 91.7 92.6
ss-BusyBox-MemSafety 62 16.9 32.9 33.2 0.0
ss-DeviceDriversLinux64-rs 287 20.6 20.5 20.6 19.7
ss-SQLite-MemSafety 1 0.0 3.7 3.4 3.5
Termination-MainHeap 32 95.6 95.3 95.1 90.9

All 2933 54.3 57.3 61.0 56.2

8 Related Work

The sensitivity analysis is a form of taint analysis, which is a technique popular
in fuzzing [17,8,22,9,4,10,12,23,25,7,19,26]. The most frequent approach to taint
analysis is propagating the taint information explicitly from taint sources (e.g.,
sources of input) through the program instructions [17,8,22,9,4,10,12,23,25]. Most
of the approaches propagate taint information dynamically. However, some of
them compute it statically [23], with use of control flow information [25], or
using concrete and symbolic execution [7]. There are two papers [19,26] that
compute the tainted bytes by identifying input bytes that lead to different pro-
gram executions. This is most similar to our approach. But our approach also
tries extreme values of typed inputs and performs more precise one-bit muta-
tions, which are then extended to byte boundaries, while the mentioned papers
[19,26] only mutate whole bytes.

Gradient descent is used in fuzzing [8,26,9,16,24] in different forms. For in-
stance, there is a paper [8] that uses forward and backward method of finite
differences for computation of the partial derivatives. Additional constraints ap-
pearing in the control flow have been also considered [9]. Another approach [16]

104 M. Jonáš et al.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Coverage FuSeBMC

C
ov

er
ag

e
F

iz
ze

r

0.00 0.25 0.50 0.75 1.00
Coverage VeriFuzz

0.00 0.25 0.50 0.75 1.00
Coverage CoveriTest

Fig. 2: Scatter plots comparing branch coverage achieved by Fizzer and the
other considered tools.

exponentially decreases the learning rate λ as the gradient descent progresses.
Our approach differs especially in taking multiple samples along the gradient
direction in each descent step. The samples span several orders of magnitude
along the line, which can both provide samples in the small region close to
the global minimum and help escaping from local minima. We further compute
the learning rate λ from the linear approximation of the function. Thanks to
multi-sampling, this simplification is sufficient in practice. Lastly, our approach
is extended with locking coordinates, which can contribute to escaping from local
minima by avoiding extreme directions.

Our approach further uses a unique coverage goal. Other fuzzers monitor
actual control flow of the program execution (to measure, e.g., branch coverage),
while we ignore it completely. We instead monitor values of all abes and aim
for their coverage. The byteshare analysis is also a novel approach inspired by
genetic algorithms. The random search we apply to select the target vertex is
novel among fuzzers, but it was used in the context of concolic execution [20].

The experimental evaluation of the paper compares the proposed approach
with the best test-generation tools participating in Test-Comp 2023. All of these
combine several analyses. Namely, FuSeBMC [2,3] combines bounded model-
checking (bmc), symbolic execution, and two fuzzers (afl [27] and a selective
fuzzer) and FuSeBMC IA [1] extends it further with interval analysis. Ver-
iFuzz [21] is built on top of afl and an engine based on Coverage Guided
Fuzzing, combined with the bounded model checker cbmc and the prism frame-
work. CoVeriTest [6] combines several model checkers.

9 Conclusion

We presented a novel approach to gray-box fuzzing, which aims to generate
tests that cover both possible values of each atomic Boolean expression. To
reach this goal, our approach uses a dynamic computation to identify the bytes
that influence the value of a given Boolean expression. Further, it employs two

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 105

Table 2: The numbers of benchmarks in individual benchmarks families where a
given tool achieved better branch coverage than the other considered tools.

Fa
m

ily

C
o
V

er
iT

es
t

F
iz

ze
r

F
u
S
eB

M
C

V
er

iF
u
zz

ReachSafety-Arrays 0 12 18 4
ReachSafety-BitVectors 0 3 1 2
ReachSafety-Combinations 96 23 243 139
ReachSafety-ControlFlow 2 1 1 1
ReachSafety-ECA 1 1 6 15
ReachSafety-Floats 0 16 1 0
ReachSafety-Heap 1 8 0 2
ReachSafety-Loops 0 6 6 0
ReachSafety-ProductLines 0 33 0 3
ReachSafety-Recursive 0 1 4 0
ReachSafety-Sequentialized 0 2 16 14
ReachSafety-XCSP 14 0 0 0
SoftwareSystems-BusyBox-MemSafety 4 27 19 0
SoftwareSystems-DeviceDriversLinux64-ReachSafety 9 11 3 0
SoftwareSystems-SQLite-MemSafety 0 1 0 0
Termination-MainHeap 2 0 0 0

All 129 145 318 180

analyses to find the value of these bytes to get the desired value of the Boolean
expression. One of these analyses is based on gradient descent.

We implemented the proposed approach in an experimental tool called Fizzer.
An independent evaluation shows that, despite being a pure gray-box fuzzer, it
is competitive with the state-of-the-art tools competing in Test-Comp 2023.

In future, we plan to add the support for calls via function pointers and
gradient descent tailored for floating-point values. We will also investigate an
extensible architecture that allows running different external analyses on the
vertices of the execution tree. In particular, this would allow running techniques
such as symbolic execution on vertices that cannot be covered by gradient descent
alone, which could improve the performance of our tool even further.

Acknowledgement

The authors would like to thank Dirk Beyer for running the experiments on the
original Test-Comp infrastructure and for his technical assistance.

106 M. Jonáš et al.

References

1. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R., de Freitas, R., Cordeiro, L.C.:
FuSeBMC_IA: Interval analysis and methods for test case generation (competi-
tion contribution). In: Lambers, L., Uchitel, S. (eds.) Fundamental Approaches to
Software Engineering - 26th International Conference, FASE 2023, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2023, Paris, France, April 22-27, 2023, Proceedings. Lecture Notes in Computer
Science, vol. 13991, pp. 324–329. Springer (2023). https://doi.org/10.1007/
978-3-031-30826-0_18, https://doi.org/10.1007/978-3-031-30826-0_18

2. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC: An
energy-efficient test generator for finding security vulnerabilities in C programs.
In: Loulergue, F., Wotawa, F. (eds.) Tests and Proofs - 15th International Con-
ference, TAP 2021, Held as Part of STAF 2021, Virtual Event, June 21-22, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12740, pp. 85–105. Springer
(2021). https://doi.org/10.1007/978-3-030-79379-1_6, https://doi.org/10.
1007/978-3-030-79379-1_6

3. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC v4: Smart
seed generation for hybrid fuzzing. In: Johnsen, E.B., Wimmer, M. (eds.) Funda-
mental Approaches to Software Engineering. pp. 336–340. Springer International
Publishing, Cham (2022)

4. Bekrar, S., Bekrar, C., Groz, R., Mounier, L.: A taint based approach for smart
fuzzing. In: Proceedings of the 2012 IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation. p. 818–825. ICST ’12, IEEE Com-
puter Society, USA (2012). https://doi.org/10.1109/ICST.2012.182, https:
//doi.org/10.1109/ICST.2012.182

5. Beyer, D.: Software testing: 5th comparative evaluation: Test-Comp 2023. In: Lam-
bers, L., Uchitel, S. (eds.) Fundamental Approaches to Software Engineering - 26th
International Conference, FASE 2023, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April
22-27, 2023, Proceedings. Lecture Notes in Computer Science, vol. 13991, pp. 309–
323. Springer (2023). https://doi.org/10.1007/978-3-031-30826-0_17, https:
//doi.org/10.1007/978-3-031-30826-0_17

6. Beyer, D., Jakobs, M.: Cooperative verifier-based testing with CoVeriTest. Int. J.
Softw. Tools Technol. Transf. 23(3), 313–333 (2021). https://doi.org/10.1007/
s10009-020-00587-8, https://doi.org/10.1007/s10009-020-00587-8

7. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: 2015
IEEE Symposium on Security and Privacy. pp. 725–741 (2015). https://doi.org/
10.1109/SP.2015.50

8. Chen, P., Chen, H.: Angora: Efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy (SP). pp. 711–725 (2018). https://doi.org/
10.1109/SP.2018.00046

9. Chen, P., Liu, J., Chen, H.: Matryoshka: Fuzzing deeply nested branches. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 499–513. CCS ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3363225,
https://doi.org/10.1145/3319535.3363225

10. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: Pro-
ceedings of the 31st International Conference on Software Engineering. p. 474–484.
ICSE ’09, IEEE Computer Society, USA (2009). https://doi.org/10.1109/ICSE.
2009.5070546, https://doi.org/10.1109/ICSE.2009.5070546

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 107

https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546

11. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Communications of the ACM 55(3), 40–44 (2012)

12. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows:
A guided fuzzer to find buffer boundary violations. In: Proceedings of the 22nd
USENIX Conference on Security. p. 49–64. SEC’13, USENIX Association, USA
(2013)

13. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Fizzer: Artifact for TACAS 2024
evaluation (Dec 2023). https://doi.org/10.5281/zenodo.10440311

14. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Fizzer: Git repository (2023), https:
//github.com/staticafi/sbt-fizzer

15. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Gray-box fuzzing via gradient descent
and Boolean expression coverage. Tech. rep., Masaryk University, Brno (2024),
https://arxiv.org/abs/2401.12643

16. Kim, Y., Yoon, J.: Maxafl: Maximizing code coverage with a gradient-based
optimization technique. Electronics 10(1) (2021). https://doi.org/10.3390/
electronics10010011, https://www.mdpi.com/2079-9292/10/1/11

17. Liang, G., Liao, L., Xu, X., Du, J., Li, G., Zhao, H.: Effective fuzzing based on dy-
namic taint analysis. In: 2013 Ninth International Conference on Computational In-
telligence and Security. pp. 615–619 (2013). https://doi.org/10.1109/CIS.2013.
135

18. Liang, H., Pei, X., Jia, X., Shen, W., Zhang, J.: Fuzzing: State of the art. IEEE
Transactions on Reliability 67(3), 1199–1218 (2018). https://doi.org/10.1109/
TR.2018.2834476

19. Liang, J., Wang, M., Zhou, C., Wu, Z., Jiang, Y., Liu, J., Liu, Z., Sun, J.: PATA:
Fuzzing with path aware taint analysis. In: 2022 IEEE Symposium on Security and
Privacy (SP). pp. 1–17 (2022). https://doi.org/10.1109/SP46214.2022.9833594

20. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: Legion: Best-first concolic
testing. In: Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. p. 54–65. ASE ’20, Association for Comput-
ing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3324884.
3416629, https://doi.org/10.1145/3324884.3416629

21. Metta, R., Yeduru, P., Karmarkar, H., Medicherla, R.K.: VeriFuzz 1.4: Checking
for (non-)termination (competition contribution). In: Sankaranarayanan, S., Shary-
gina, N. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
- 29th International Conference, TACAS 2023, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April
22-27, 2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13994,
pp. 594–599. Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_
42, https://doi.org/10.1007/978-3-031-30820-8_42

22. Paduraru, C., Melemciuc, M.C., Ghimis, B.: Fuzz testing with dynamic taint anal-
ysis based tools for faster code coverage. In: Proceedings of the 14th International
Conference on Software Technologies. p. 82–93. ICSOFT 2019, SCITEPRESS -
Science and Technology Publications, Lda, Setubal, PRT (2019). https://doi.
org/10.5220/0007921300820093, https://doi.org/10.5220/0007921300820093

23. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: VUzzer:
Application-aware evolutionary fuzzing. In: NDSS. vol. 17, pp. 1–14 (2017)

24. She, D., Pei, K., Epstein, D., Yang, J., Ray, B., Jana, S.: Neuzz: Efficient fuzzing
with neural program smoothing. In: 2019 IEEE Symposium on Security and Pri-
vacy (SP). pp. 803–817. IEEE (2019)

108 M. Jonáš et al.

https://doi.org/10.5281/zenodo.10440311
https://doi.org/10.5281/zenodo.10440311
https://github.com/staticafi/sbt-fizzer
https://github.com/staticafi/sbt-fizzer
https://arxiv.org/abs/2401.12643
https://doi.org/10.3390/electronics10010011
https://doi.org/10.3390/electronics10010011
https://doi.org/10.3390/electronics10010011
https://doi.org/10.3390/electronics10010011
https://www.mdpi.com/2079-9292/10/1/11
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.5220/0007921300820093
https://doi.org/10.5220/0007921300820093
https://doi.org/10.5220/0007921300820093
https://doi.org/10.5220/0007921300820093
https://doi.org/10.5220/0007921300820093

25. Wang, T., Wei, T., Gu, G., Zou, W.: TaintScope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection. In: 2010 IEEE Sym-
posium on Security and Privacy. pp. 497–512 (2010). https://doi.org/10.1109/
SP.2010.37

26. You, W., Liu, X., Ma, S., Perry, D., Zhang, X., Liang, B.: SLF: Fuzzing without
valid seed inputs. In: Proceedings of the 41st International Conference on Soft-
ware Engineering. p. 712–723. ICSE ’19, IEEE Press (2019). https://doi.org/
10.1109/ICSE.2019.00080, https://doi.org/10.1109/ICSE.2019.00080

27. Zalewski, M.: American fuzzy lop (2013), http://lcamtuf.coredump.cx/afl/.

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 109

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
http://lcamtuf.coredump.cx/afl/.
http://creativecommons.org/licenses/by/4.0/

Fast Symbolic Computation of Bottom SCCs

Anna Blume Jakobsen , Rasmus Skibdahl Melanchton Jørgensen,
Jaco van de Pol , and Andreas Pavlogiannis

Aarhus University, Aarhus, Denmark
{jaco,pavlogiannis}@cs.au.dk

Abstract. The computation of bottom strongly connected components
(BSCCs) is a fundamental task in model checking, as well as in character-
izing the attractors of dynamical systems. As such, symbolic algorithms
for BSCCs have received special attention, and are based on the idea
that the computation of an SCC can be stopped early, as soon as it is
deemed to be non-bottom.

In this paper we introduce Pendant, a new symbolic algorithm for com-
puting BSCCs which runs in linear symbolic time. In contrast to the stan-
dard approach of escaping non-bottom SCCs, Pendant aims to start the
computation from nodes that are likely to belong to BSCCs, and thus is
more effective in sidestepping SCCs that are non-bottom. Moreover, we
employ a simple yet powerful deadlock-detection technique, that quickly
identifies singleton BSCCs before the main algorithm is run. Our exper-
imental evaluation on three diverse datasets of 553 models demonstrates
the efficacy of our two methods: Pendant is decisively faster than the
standard existing algorithm for BSCC computation, while deadlock de-
tection improves the performance of each algorithm significantly.

Keywords: BDDs · strongly connected components · symbolic algorithms

1 Introduction

The decomposition of a graph to its strongly connected components (SCCs) is one
of the most standard tasks in automated system verification. For example, model
checking against LTL and ω-regular properties reduces to computing cycles [30],
while fairness conditions are typically checked given an SCC decomposition of
the graph [21,34]. Of special interest are bottom/terminal SCCs (or BSCCs), i.e.,
SCCs that, once entered, cannot be escaped. BSCCs are used to speed up LTL
model checking [28], and they capture the long-run properties of Markov Chains
[4,11] and Markov Decision Processes [23,13], while they also correspond to the
attractors of dynamical systems, as in signal transduction networks [29,33].

Large-scale model-checking settings comprise huge systems that suffer from the
state-space explosion problem. These systems are usually represented compactly
by a model, e.g., by means of a programming language, a logic or a reaction net-
work, and have size that is exponentially large in its description. Nevertheless,
the system typically exhibits numerous symmetries that can be preserved when
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 110–128, 2024.
https://doi.org/10.1007/978-3-031-57256-2_6

(B)

https://orcid.org/0009-0005-7892-7230
https://orcid.org/0000-0003-4305-0625
https://orcid.org/0000-0002-8943-0722
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_6&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

the state space is represented symbolically rather than explicitly. One predomi-
nant symbolic representation is via (reduced/ordered) Binary Decision Diagrams
(BDDs) [10], which are found at the core of many classic and modern model
checkers [14,24,20,26,5]. To benefit from the symbolic representation, analysis
algorithms typically only have coarse-grained access to the graph, querying for
the successors (Post(X)) and predecessors (Pre(X)) of a set of nodes X rep-
resented by a single BDD. Each such operation counts as a symbolic step. As
symbolic steps are significantly slower than primitive operations, they serve as
the complexity measure of symbolic algorithms [9,18,12,25].

Due to the prevalence of SCC decomposition, the problem has been studied ex-
tensively in the symbolic setting, starting with the Xie-Beerel algorithm [32]
of symbolic complexity O(n2); LockStep [8] improves this bound to O(n log n),
while Skeleton [17] achieves O(n) time at the expense of Θ(n) symbolic space
(i.e., number of BDDs). The most recent step in this progression is Chain [25]
which achieves both O(n) symbolic time and O(log n) symbolic space. In prac-
tice, heuristics aim to further improve the running time [31,16,34].

Naturally, the computation of BSCCs can be achieved by using one of the afore-
mentioned algorithms to obtain an SCC decomposition, and check whether each
SCC is indeed a BSCC. In practice, however, computing an SCC can be ex-
pensive, as it typically requires traversing it multiple times. For this reason,
algorithms dedicated to BSCCs have received special attention. Although these
do not offer theoretical improvements, they attempt to minimize the number of
non-bottom SCCs computed and thus perform better in practice.

The predominant, general-purpose BSCC-decomposition algorithm is BwdFwd,
which is a modification of Xie-Beerel [32], and has O(n) complexity. Effec-
tively, this algorithm aborts the computation of an SCC S as soon as it deter-
mines that S cannot be a BSCC, and removes it from the graph, as well as any
node that can reach S. A recently-introduced preprocessing technique, called
interleaved transition-guided reduction (ITGR) [6], aims to further detect and
discard non-bottom SCCs before the main algorithm is run. ITGR is general-
purpose, and was shown to be effective in handling asynchronous Boolean Net-
work models [3,1,2]. However, as these algorithms are typically executed on huge
inputs, issues of scalability often remain. We address this challenge here.

1.1 Our contributions

The Pendant algorithm. We develop a new, linear-time algorithm for sym-
bolic BSCC computation, called Pendant, drawing inspiration from the recent
Chain algorithm [25]. In contrast to the existing BSCC paradigm based on stop-
ping the computation of SCCs that are deemed non-bottom, Pendant aims to
start such computations from SCCs that are likely to be bottom. To achieve this,
while Pendant computes an SCC, it also implicitly (at no extra cost) traverses
the quotient graph Q downwards, making future SCC computations start from
nodes that are close to the bottom of Q, and thus discover a BSCC quickly.

Fast Symbolic Computation of Bottom SCCs 111

Deadlock detection. We employ a simple yet powerful preprocessing tech-
nique, called deadlock-detection. This is based on the insights that (i) each dead-
lock (singleton SCC) is a BSCC, and (ii) all deadlocks can be computed effec-
tively in a single symbolic step.

Experimental evaluation. We implement Pendant and the deadlock-
detection preprocessing, and evaluate their performance on computing the
BSCCs of a large pool of models from three diverse datasets, namely, (i) Petri
Nets from the Model Checking Contest [22], (ii) DiVinE models from the Bench-
mark of Explicit Models [27], and (iii) Asynchronous Boolean Network mod-
els [3,1,2]. Our experiments conclude that (i) Pendant is decisively more effi-
cient than BwdFwd, (ii) deadlock-detection improves the performance of both
algorithms, and (iii) after deadlock-detection, ITGR is scarcely effective.

2 Preliminaries

In this section we present standard definitions and the BwdFwd algorithm.

2.1 Graphs, Bottom SCCs and Symbolic Representations

Graphs. We consider directed graphs G = (V,E), where V is a set of nodes and
E ⊆ V ×V is a set of edges. We often write u → v to denote an edge (u, v) ∈ E.
For a node v, the image of v is Post(v) = {u | v → u}, while the pre-image of v
is Pre(v) = {u | u → v}. These notions are extended to sets of nodes X in the
natural way, i.e., Post(X) =

⋃
v∈X Post(v) and Pre(X) =

⋃
v∈X Pre(v).

A path is a sequence P = v1 → v2 → · · · → vk, in which case we also write
v1 ⇝ vk, and say that vk is reachable from v1. The length of P is |P | = k − 1.
For a set of nodes X we write Fwd(X) = {u | ∃v ∈ X, v ⇝ u} for the forward
set of X and Bwd(X) = {u | ∃v ∈ X,u ⇝ v} for the backward set of X. We
call a set X ⊆ V forward-closed if Fwd(X) ⊆ X. The restriction of G on a set
X ⊆ V is the graph G[X] = (X, (X×X)∩E). A node v ∈ V is called a deadlock
if it has no outgoing edges, i.e., Post(v) = ∅.

Bottom Strongly Connected Components (BSCCs). A strongly connected
component (SCC) of G is a maximal set of nodes S such that for all u, v ∈ S we
have u⇝ v. Each node v belongs to one SCC, written SCC(v). A set X ⊆ V is
called SCC-closed if for each v ∈ X, we have SCC(v) ⊆ X. The diameter of an
SCC S is the maximum distance between two nodes in S, i.e.,

δ(S) = max
u,v∈S

min
P : u⇝v

|P |

The quotient graph of G represents each SCC of G by a single node, and has
a directed edge S → S′ iff Post(S) ∩ S′ ̸= ∅, i.e., there exists nodes u ∈ S and
v ∈ S′ with u → v. The quotient graph is a directed acyclic graph. The leaf
nodes of a quotient graph represent the SCCs that have no outgoing edges to

112 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

any other SCCs, called bottom SCCS (or BSCCs). We denote by SCCs(G) and
BSCCs(G) the set of SCCs and BSCCs of G, respectively.

The problem targeted in this paper is the computation of BSSCs. The following
two simple properties of BSCCs are used throughout the paper.

Proposition 1. An SCC S is a BSCC if and only if Fwd(S) = S.

Proposition 2. If S is a BSCC then there is no BSCC in Bwd(S) \ S.

Symbolic operations and complexity. In large-scale model-checking settings,
graphs are typically represented symbolically. One popular symbolic representa-
tion is Binary Decision Diagrams (BDDs) [19]. In particular, the node set V and
edge relation E are represented compactly as BDDs, while algorithms use BDDs
as data structures for representing subsets of V and E. The basic BDD oper-
ations give only coarse-grained access to the graph: given a BDD representing
a set of nodes X, an algorithm can access Pre(X) and Post(X), each of which
counts as one symbolic step. The complexity of symbolic algorithms is measured
in the number of symbolic steps they execute [12,25], since these are much slower
than elementary operations (e.g., incrementing a counter). Basic set operations
on BDDs (union, intersection, etc.) also do not count towards the time complex-
ity∗. Finally, given a set X represented as a BDD, we use a Pick(X) operation
which returns an arbitrary node v ∈ X. This operation is natural and efficient
for BDDs, and has been common in symbolic SCC algorithms [17,8,25].

2.2 The BwdFwd Algorithm for BSCCs

The symbolic computation of BSCCs(G) can be performed by computing each
S ∈ SCCs(G) using some existing symbolic algorithm [32,17,8,25], and then re-
porting that S is a BSCC iff Post(S) ⊆ S (following Proposition 1). Although this
approach runs in O(n) symbolic steps when using Chain [25] or Skeleton [17],
it can be unnecessarily slow in practice, as it typically spends considerable time
computing SCCs that are not BSCCs. For this reason, the computation of BSCCs
is targeted by algorithms dedicated to this task. The standard symbolic BSCC
algorithm is BwdFwd, which we briefly present here.

The Backward-Forward BSCC algorithm. BwdFwd is an adaptation
of the standard Xie-Beerel algorithm [32]. Algorithm 2 follows its recent pre-
sentation in [6], adapted to our setting. The algorithm uses the standard
mechanism for computing SCCs symbolically: given a pivot node v, we have
SCC(v) = Fwd(v) ∩ Bwd(v). Given such a node v, BwdFwd first calls Algo-
rithm 1 (Line 3) to retrieve the backward set Bwd(v) (called the basin of v)
using a standard fixpoint computation. Then, it uses a similar fixpoint compu-
tation to retrieve Fwd(v) (Line 5) in F . This computation is terminated early

∗For many algorithms, including ours, counting set operations does not affect the
asymptotic complexity.

Fast Symbolic Computation of Bottom SCCs 113

Algorithm 1: Bwd
Input: A graph G = (V,E) and a node v ∈ V

1 B = {v}
2 while Pre (B) ̸⊆ B do // Fixpoint not reached
3 B = B ∪ Pre (B) // Update with new predecessors
4 return B

Algorithm 2: BwdFwd
Input: A graph G = (V,E)

1 if V = ∅ then return
2 v = Pick(V) // Pick a pivot
3 B = Bwd (G, v) // Compute safe-to-remove nodes
4 F = ∅; Layer = {v}
5 while Layer ̸= ∅ andF ⊆ B do // Compute and detect BSCC
6 F = F ∪ Layer
7 Layer = Post (Layer) \ F
8 if F ⊆ B then // Output if BSCC
9 outputFwd

10 BwdFwd (G[V \B]) // Recursive call w/o safe nodes

if the algorithm discovers that Fwd(v) ̸⊆ Bwd(v), as then Fwd(v) ̸⊆ SCC(v),
and due to Proposition 1, we have that SCC(v) is not a BSCC. On the other
hand, if the computation is carried to a fixpoint, we have that Fwd(v) ⊆ Bwd(v)
and thus Fwd(v) = SCC(v); then, Proposition 1 guarantees that SCC(v) is a
BSCC. Since the check in Line 9 succeeds, BwdFwd correctly outputs SCC(v)
as a BSCC. Finally, Proposition 2 guarantees that the basin Bwd(v) contains no
BSCC, except possibly SCC(v) which was just outputted. The algorithm hence
safely removes Bwd(v) from G, and proceeds recursively (Line 10).

It is not hard to see that BwdFwd runs in O(n) symbolic steps, but offers two
practical improvements over general SCC-decomposition algorithms. In each re-
cursive call, the algorithm avoids computing SCCs in Bwd(v) \ SCC(v) as they
are guaranteed to be non-bottom; nodes in this set are only accessed during the
basin computation in Algorithm 1, which is cheaper. Moreover, it stops comput-
ing SCC(v) as soon as it discovers that Fwd(v) ̸⊆ Bwd(v) (as SCC(v) is not a
BSCC). However, the algorithm can spend significant time in computing Fwd(v)
before it discovers that Fwd(v) ̸⊆ Bwd(v), which results in wasteful symbolic
operations. The following example illustrates this issue on a small graph.

Example. Fig. 1 shows a graph G = (V,E) (a) and two recursion trees. The
left-most tree (b) illustrates the execution of BwdFwd on G. Each node in the
tree has its variables subscripted by the pivot node v chosen in the corresponding
recursive call, with the variables showing their values in that recursive call. E.g.,

114 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

Fv is the value of F after the loop of Line 5 has completed, given that v was
chosen as pivot in that recursive call. The number of a node is underlined in
Fv if it is a node is outside the backward set Bv and cuts the computation
of Fv short (Line 5). Observe that the algorithm makes four recursive calls,
where the second (v = 2) and third (v = 3) call spend considerable time in
the forward computation (of the sets F2 and F3, respectively), and essentially
compute SCC(2) and SCC(3) before determining that these are not BSCCs.

1

2

4

6

8

10

3

5

7

9

(a)

V1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
B1 = {1}, F1 = {1, 2, 3}

V2 = {2, 3, 4, 5, 6, 7, 8, 9, 10}
B2 = {2, 4, 6, 8}, F2 = {2, 4, 6, 8, 10}

V3 = {3, 5, 7, 9, 10}
B3 = {3, 5, 7, 9}, F3 = {3, 5, 7, 9, 10}

V10 = {10}
B10 = {10}, F10 = {10}

(b)

W1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
F1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

L1 = {10}, S1 = {1}

W10 = {2, 3, 4, 5, 6, 7, 8, 9, 10}
F10 = {10}
L10 = {10}
S10 = {10}

B10 = {1, 2, 3, 4, 5, 6, 7, 8, 9}

(c)

Fig. 1: An example input graph (a) and the recursion trees of the BwdFwd (b)
and Pendant (c) algorithms on it.

3 The Pendant Algorithm for BSCCs

In this section we present our new algorithm, Pendant, for computing BSCCs
symbolically. Like BwdFwd, Pendant spends linear time in the number of
nodes of the input graph. In particular, we have the following theorem.

Theorem 1. Given a graph G = (V,E) of n nodes, Pendant computes
BSCCs(G) in O(

∑
S∈SCCs(G) δ(S)) = O(n) symbolic time.

However, as we will see in Section 5, in practice Pendant typically requires fewer
symbolic steps than BwdFwd. Intuitively, this is achieved by making, over time,
smarter choices of pivot nodes v to start the SCC computation, meaning nodes
v that are more likely to have SCC(v) close to the leaves of the quotient graph.

Fast Symbolic Computation of Bottom SCCs 115

In turn, this reduces the number of non-bottom SCCs computed throughout the
execution of the algorithm, which reduces the number of symbolic steps.

3.1 Pendant

Pendant is shown in Algorithm 4, and uses FwdLastLayer, shown in Algo-
rithm 3, as a sub-procedure.

Algorithm 3: FwdLastLayer
Input: A graph G = (V,E) and a node v ∈ V

1 F = ∅; Layer = {v}; L = ∅
2 while Layer ̸= ∅ do // Fixpoint not reached
3 F = F ∪ Layer // Update with new successors
4 L = Layer // L stores the last layer of nodes reached
5 Layer = Post (Layer) \ F // Compute the new layer
6 return F,L

FwdLastLayer. FwdLastLayer computes the forward set Fwd(v) of a
node v using a standard fixpoint computation. The algorithm also keeps track
of the last layer L of nodes discovered during the fixpoint computation, and
returns both Fwd(v) (represented in F) and L. Intuitively, Fwd(v) is used by
Pendant for computing SCC(v) and testing whether it is a BSCC, while L is
used to guide the selection of future pivots downwards in the quotient graph.

Pendant. On input G = (V,E), Pendant begins by Pick’ing an arbitrary
pivot node v (Line 2), with the aim to compute SCC(v) and test whether it is a
BSCC. For this purpose, it calls FwdLastLayer to retrieve F = Fwd(v), and
L being the last layer of Fwd(v) (Line 5). It then computes S = SCC(v), by
calling Bwd (Algorithm 1, Line 6) to compute the backward set of v restricted
to Fwd(v). At this point, there are two cases.

– If F \ S ̸= ∅, then S is not a BSCC. At this point, the set W = F \ S is
guaranteed to contain a BSCC, and the algorithm resumes its search for a
BSCC in this set, running a new iteration of the main loop. Moreover, the
algorithm attempts to pick a new pivot in the last layer of Fwd(v) (Line 10),
as opposed to an arbitrary node in W . Intuitively, this effectively allows
Pendant to traverse the quotient graph downwards towards its leaves, and
thus quickly pick a pivot v such that SCC(v) is a BSCC.

– If F \S = ∅, then D = SCC(v) is guaranteed to be a BSCC; this is reported
(Line 15), and the loop breaks (Line 4). Then the backwards set of B is
computed and removed from the graph, as it is guaranteed to not contain
any other BSCC, and the algorithm proceeds recursively in the remaining
graph (Line 17). Note that the number of recursive calls of Pendant thus
equals the number of BSCCs in the input graph.

116 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

Algorithm 4: Pendant
Input: A graph G = (V,E)

1 if V = ∅ then return
2 v = Pick (V) // Pick a pivot
3 W = V ;D = ∅ // D stores a BSCC, once found
4 while D = ∅ do // Find a BSCC
5 F,L = FwdLastLayer (G[W], v) // Get Fwd(v) and its last layer
6 S = Bwd (G[F], v) // Compute SCC(v)

7 if F \ S ̸= ∅ then // Not a BSCC
8 W = F \ S // W contains a BSCC, continue here
9 if L ∩W ̸= ∅ then // If there are candidates in last layer,

10 v = Pick (L ∩W) // pick new pivot from the last layer
11 else
12 v = Pick (W) // otherwise, pick any v from W

13 else
14 D = S
15 output D

16 B = Bwd (D,G) // Compute safe-to-remove nodes
17 Pendant (G[V \B]) // Recursive call w/o safe nodes

Observe the qualitative differences between Pendant and BwdFwd. First,
BwdFwd begins with a backward search from the pivot v, while Pendant be-
gins with a forward search from v. Second, BwdFwd removes the basin Bwd(v)
from G as soon as SCC(v) is deemed to be non-bottom, while Pendant de-
lays this step, and only computes (and removes) the basin of BSCCs. Third,
BwdFwd picks pivots completely arbitrarily, whereas Pendant, any time it
computes an SCC S that is not bottom, it picks the next pivot from a distant
successor of S in the quotient graph, which allows it to discover BSCCs quickly.

Example. Let us revisit our example in Fig. 1. The right-most recursion tree (c)
illustrates the computation of Pendant. Since there is only one BSCC, there
is only one recursive call, but the node is subdivided to show each iteration of
the loop in Line 4. As before, variables are subscripted with the pivot node v of
that iteration. Initially, Pendant chooses arbitrarily v = 1, like BwdFwd, and
computes Fwd(1). Then, it deems SCC(1) as a non-bottom SCC, and the next
pivot is chosen from the last layer of Fwd(1), i.e., v = 10. Effectively, Pendant
has reached a leaf of the quotient graph (the only leaf, in this case), and thus
identifies a BSCC quickly. Importantly, it skips the expensive computation of two
SCCs with large diameters (SCC(2) and SCC(3)), in contrast to BwdFwd.

3.2 Correctness

We now turn our attention to the correctness of Pendant. We start with two
simple lemmas regarding forward-closed sets.

Fast Symbolic Computation of Bottom SCCs 117

Lemma 1. Assume that X ⊆ V is forward-closed, and D ⊆ X is a BSCC.
Then X \ Bwd(D) is forward-closed.

Proof. For any node v ∈ X, if Fwd(v) ∩ Bwd(D) ̸= ∅ then clearly v ∈ Bwd(D)
and hence v ̸∈ X \ Bwd(D). Thus, for every node v ∈ X \ Bwd(D), we have
Fwd(v)∩Bwd(D) = ∅, and since X is forward-closed, we have Fwd(v) ⊆ X. ⊓⊔

Lemma 2. For any node v, the set Fwd(v) \ SCC(v) is forward-closed.

Proof. For any node u ∈ Fwd(v), if Fwd(u) ∩ SCC(v) ̸= ∅, then u ∈ SCC(v).
Hence for every node u ∈ Fwd(v) \ SCC(v), we have Fwd(u)∩ SCC(v) = ∅, and
thus Fwd(u) ⊆ Fwd(v) \ SCC(v). The desired result follows. ⊓⊔

We now prove the soundness of Pendant, i.e., every SCC outputted in Line 15
is a BSCC. For this, we prove the following stronger lemma, which states three
invariants maintained by the algorithm.

Lemma 3. At each iteration of the main loop of Pendant, the following in-
variants hold: (a) V and W are forward-closed, (b) S is an SCC, and (c) D is
a BSCC.

Proof. Before entering the first iteration of the loop, we have that each of W
and V is the whole node set of the input graph, hence both are trivially forward-
closed. Now, assuming that W is forward-closed, we have that F = Fwd(v)
in Line 5. In turn, this implies that S = SCC(v) in Line 6. Moreover, due to
Proposition 1, if F ⊆ S in Line 7, then S is a BSCC, thus D outputted in Line 15
is indeed a BSCC.

To complete the invariant proof, it remains to argue that V ′ and W ′ remain
forward-closed after they have been updated. There are two cases.

1. If the algorithm proceeds with another iteration of the main loop, we have
V ′ = V and W ′ = F \ S. Since F = Fwd(v) and S = SCC(v), Lemma 2
implies that W ′ is forward-closed.

2. Otherwise, the algorithm proceeds with a new recursive call in Line 17. We
have that W ′ = V ′ = V \ B, where B = Bwd(D), and D is a BSCC. By
Lemma 1, we have that V \B is forward-closed, as desired. ⊓⊔

Observe that case (c) of Lemma 3 establishes the soundness of Pendant. Next
we establish its completeness, thereby concluding the correctness of Pendant.

Lemma 4. Pendant outputs every BSCC of the input graph.

Proof. First, observe every time Pendant calls itself recursively in Line 17,
it has outputted a BSCC D, and the recursion proceeds on the subgraph V \
Bwd(D). Due to Proposition 2, the algorithm has outputted all BSCCs in V \

118 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

Bwd(D). Hence, in each recursive call on a graph G = (V,E), the node set V
contains all the BSCCs not already outputted by the algorithm. It thus suffices
to argue that, in each recursive call, the main loop eventually terminates, as in
doing so it outputs a BSCC.

In each iteration of the main loop, the set W is updated to W ′ = F \S (Line 8),
where F = Fwd(v) and S = SCC(v), where v is the current pivot. Since F ⊆ W
and S ̸= ∅, it follows that W ′ ⊊ W , and thus the loop must eventually terminate.

⊓⊔

3.3 Complexity

Although the linear upper-bound of BwdFwd is trivial, the case of Pendant is
more involved. This is because a call to FwdLastLayer may compute forward
sets that consist of many layers (and thus cost many symbolic steps), while these
sets are not immediately removed from the graph (as opposed to the backward
set computed by BwdFwd), and are again accessed in future iterations of the
algorithm. Nevertheless, a careful analysis shows that the complexity is indeed
linear. We start with a simple lemma.

Lemma 5. Assume that X ⊆ V is forward-closed and D ⊆ X is a BSCC. Then
Bwd(D) ∩X is SCC-closed.

Proof. Consider any node v ∈ Bwd(D) ∩X. Since X is forward-closed, we have
Fwd(v) ⊆ X and thus SCC(v) ⊆ X. Moreover, Bwd(v) ⊆ Bwd(D) and thus
SCC(v) ⊆ X. Hence SCC(v) ⊆ Bwd(D) ∩X.

We now prove the complexity of Pendant.

Lemma 6. Pendant runs in O(
∑

S∈SCCs(G) δ(S)) = O(n) symbolic steps.

Proof. In each recursive call, Pendant makes symbolic steps to (i) compute the
SCCs of the picked pivots (Lines 5 and 6), and (ii) compute the backwards set
of the outputted BSCC (Line 16). We will argue that, in total, case (i) takes∑

S∈SCCs(G) 3δ(S) time, while case (ii) takes
∑

S∈SCCs(G) δ(S) time.

We start with case (i). For a given pivot v, computing SCC(v) is done in two
steps: (a) Line 5 computes the forward set F of v restricted to the node set
W , while (b) Line 6 computes SCC(v) as the backward set of v restricted to F .
Clearly, (b) takes δ(SCC(v)) symbolic steps, thus summing over all pivots v, we
have that Line 6 takes at most

∑
S∈SCCs(G) δ(S) time. To bound the time spent in

(a), denote by Levels(v) the number of iterations executed in FwdLastLayer,
i.e., Pendant spends Levels(v) symbolic steps in Line 5. If F \ SCC(v) = ∅
or L \ SCC(v) = ∅, we have Levels(v) = δ(SCC(v)). Otherwise, the next pivot
v′ is Pick’ed from L (Line 10). Consider a shortest-path P : v ⇝ v′, and let
{S1, . . . Sk} be the SCCs of nodes along P (except v), and note that Levels(v) ≤

Fast Symbolic Computation of Bottom SCCs 119

∑k
i=1 δ(Si). Moreover, we have Si ⊆ Bwd(v′) for each i ∈ {1, . . . , k}, and thus

each Si is not touched again by FwdLastLayer, except if Si = SCC(v′), but
this case is accounted for already. Summing over all such Si across all pivots v,
we have that

∑
v Levels(v) ≤

∑
S∈SCCs(G) δ(S). Hence the total symbolic time

spent for case (i) is bounded by
∑

S∈SCCs(G) 3δ(S).

We now turn our attention to case (ii). Due to Lemma 3, W is forward closed
and D is a BSCC. By Lemma 5, the set B computed in Line 16 is SCC-closed.
The number of symbolic steps is hence bounded by

∑
S∈SCCs(B) δ(S). Finally, B

is removed from the graph in the recursive call, hence it will not be processed
again. Thus the total time for case (ii) is

∑
S∈SCCs(G) δ(S). ⊓⊔

4 Deadlock Detection

We now outline a simple but effective preprocessing technique for BSCCs.

Recall that a deadlock is a node v without outgoing edges, i.e., Post(v) = ∅.
Observe that all deadlocks are BSCCs: formally we have Fwd({v}) = {v} =
SCC(v), and thus the statement follows from Proposition 1 (the opposite is, of
course, not true in general). Thus, deadlock-detection can be seen as a natural
preprocessing step to any BSCC algorithm.

The key observation in this approach is that the set of all deadlocks can be
computed efficiently, in only one symbolic step; this is achieved by Algorithm 5.
In particular, the deadlock set is computed as D = V \ H where H is the set
of nodes u that have a successor. In turn, H can be computed by a single Pre
operation on the entire node set. Finally, due to Proposition 2, the set Bwd(D)
is guaranteed to contain no BSCCs other than those in D, and thus it can be
removed. The resulting graph is then passed to the main BSCC algorithm.

Algorithm 5: Deadlock detection (preprocessing)
Input: A graph G = (V,E)

1 H = Pre (V,G) // Compute all nodes that have a successor
2 D = V \H // Compute all deadlocks
3 B = Bwd (D,G) // Compute safe-to-remove nodes
4 output each node in D // Output BSCCs
5 return G[V \B] // Return remaining graph for further computation

5 Experiments

Here we report on an implementation of Pendant, including the deadlock-
detection technique, and an experimental evaluation of its performance on a
large dataset of standard model-checking benchmarks across various domains.

120 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

Baselines. To assess the performance of Pendant and deadlock detection, we
compare it with BwdFwd (Algorithm 2), as well as the recently introduced
interleaved transition guided reduction (ITGR) [6], which we have implemented
in our setting. ITGR is applicable when the transition relation is partitioned into
a number of smaller relations E = (R1, . . . , Rk) (as is the case in our setup),
and works as a preprocessing step, much like our deadlock detection. At a high
level, ITGR employs some local reasoning for each relation Ri to identify sets of
nodes that do not contain BSCCs. Such sets can be removed, reducing the size
of the graph that is further processed by a BSCC-computation algorithm.

Research Questions. Our setup is centered around the following questions.

RQ1 How does the performance of Pendant compare to that of BwdFwd?
RQ2 How does deadlock detection impact the performance of Pendant and

BwdFwd?
RQ3 How does ITGR impact the performance of Pendant and BwdFwd?
RQ4 How does the performance of Pendant compare to the performance of

BwdFwd when both use deadlock detection?
RQ5 How does ITGR impact the performance of Pendant after deadlock de-

tection?

Datasets. We use benchmarks from the following categories.

– Petri Net models from MCC, the Model Checking Contest [22].
– DiVinE models from BEEM, the Benchmark of Explicit Models [27].
– Asynchronous Boolean Network models [3,1,2].

We do not apply any selection criteria, except discarding models that are too slow
to handle by all algorithms in our timed experiments. This results in 553 models
in total.† In each model, the edge relation is naturally partitioned into subre-
lations R1, . . . , Rk, following the structure of the high-level specifications (tran-
sitions in Petri Nets and DiVinE state machines, and reactions in the Boolean
Networks). We use the language-independent model checker LTSmin [20] to gen-
erate symbolic graphs for the DVE and PNML models. Since LTSmin does not
handle Boolean Networks, these graphs are generated by a custom parser. The
time taken for the graph generation is not measured in the running time of each
algorithm. We use the BDD package Sylvan as our symbolic representation [15].

Experimental setup. Our experiments are run on a Linux machine with
2.4GHz CPU speed and 60GB of memory. We measure both symbolic steps
and run time, but only present the results on symbolic steps here, as they reflect
the true symbolic time-complexity of the algorithms, and are independent of the
choice of the underlying BDD package. The results on time are qualitatively the
same. Each run is timed out after 400 seconds, indicated as the graph taking
109 symbolic steps on the figures. Since our input relation is partitioned into

†Tool and data set available at https://doi.org/10.5281/zenodo.10427894.

Fast Symbolic Computation of Bottom SCCs 121

https://doi.org/10.5281/zenodo.10427894

several sub-relations E = (R1, . . . , Rk), each Pre/Post operation incurs k sym-
bolic steps (for all algorithms). Our setup is completely deterministic, however
certain operations, like Pick’ing a node, are executed arbitrarily.

Experimental results. We now present our experimental results for addressing
the above research questions. Note that all figures are plotted in log-scale.

101 102 103 104 105 106 107 108 109
101

102

103

104

105

106

107

108

109

BwdFwd

P
en

d
a
n
t

Symbolic Steps

DVE
PNML
Bool Net

Fig. 2: The number of symbolic steps executed by Pendant and BwdFwd.

RQ1: Pendant vs BwdFwd. The performance of Pendant and BwdFwd
is shown in Fig. 2, across all three datasets. Both algorithms manage to han-
dle many models within the time limit, though there are a few time outs. We
see that Pendant is generally no slower than BwdFwd, with the clear ex-
ception of three timeout outliers. For the rest, the models that are slower for
Pendant sit only slightly above the x = y line, meaning that the slowdown
is comparatively small. On the other hand, there are several models on which
Pendant is generally faster than BwdFwd, and the speedup increases as we
go towards more demanding benchmarks (more than two orders of magnitude).
Finally, Pendant times out on much fewer models than BwdFwd. Overall,
Pendant is measurably faster than BwdFwd, and this trend persists across all
three datasets (DVE, PNML and Boolean Networks).

RQ2: The impact of deadlock detection. The impact of deadlock detection to
both Pendant and BwdFwd is shown in Fig. 3. We see that deadlock detection
improves the performance of both algorithms significantly. Indeed, detecting

122 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

102 104 106 108

102

104

106

108

Pendant

P
en

d
a
n
t

+
de

ad
lo

ck
Symbolic Steps

Deadlock
No Deadlock

102 104 106 108

102

104

106

108

BwdFwd

B
w

d
F
w

d
+

de
ad

lo
ck

Symbolic Steps

Deadlock
No Deadlock

Fig. 3: The impact of deadlock detection in the number of symbolic steps ex-
ecuted by Pendant (left) and BwdFwd (right). Data points are classified as
those having at least one deadlock, and those having no deadlock.

deadlocks requires only one symbolic step (per relation Ri), hence it is natural
to expect that it does not slow down any algorithm, and has no effect on models
that have no deadlocks. On the other hand, it leads to a measurable speedup on
the models that have deadlocks, and the impact varies depending on the fraction
of the graph that is removed during deadlock removal. Interestingly, deadlock
detection also reduces significantly the number of timeouts for both Pendant
and BwdFwd. In conclusion, deadlock detection helps both algorithms.

RQ3: The impact of ITGR. The impact of ITGR to both Pendant and
BwdFwd is shown in Fig. 4. Perhaps surprisingly, we find that ITGR does
not have a consistent effect: it can both speed up and slow down each of the
algorithms. At closer inspection, we observe that ITGR has a positive effect on
most Boolean Network models, which is indeed the context in which it was in-
troduced [6]. On the other hand, it has both positive and negative effects on
DVE and PNML models, and even makes both algorithms time out on instances
that they could easily handle without ITGR.

RQ4: Pendant vs BwdFwd, with deadlock detection. Since deadlock detection
has a clear positive effect on both algorithms, it is natural to revisit RQ1 and ask
about the performance of the two algorithms when also using deadlock detection.
The result is shown in Fig. 5. Deadlock detection makes the performance of
the two algorithms more similar in many benchmarks (i.e., more data points
lie closer on the x = y line). However, Pendant remains decisively faster on
many models, and thus its benefit is not overshadowed by the positive impact of
deadlock detection. At closer inspection, we see that Pendant is faster on DVE
and PNML models, but not on Boolean Networks. This is due to the fact that

Fast Symbolic Computation of Bottom SCCs 123

102 104 106 108

102

104

106

108

Pendant

P
en

d
a
n
t

+
it

gr

Symbolic Steps

DVE
PNML
Bool Net

102 104 106 108

102

104

106

108

BwdFwd
B

w
d
F
w

d
+

it
gr

Symbolic Steps

DVE
PNML
Bool Net

Fig. 4: The impact of ITGR in the number of symbolic steps executed by
Pendant (left) and BwdFwd (right).

101 102 103 104 105 106 107 108 109
101

102

103

104

105

106

107

108

109

BwdFwd + deadlock

P
en

d
a
n
t

+
de

ad
lo

ck

Symbolic Steps

DVE
PNML
Bool Net

Fig. 5: The number of symbolic steps executed by Pendant and BwdFwd,
when also using deadlock detection.

124 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

most Boolean Networks have many deadlocks, and thus the common deadlock-
detection component simplifies such models considerably, making the remaining
performance of the two algorithms similar.

101 102 103 104 105 106 107 108 109
101

102

103

104

105

106

107

108

109

Pendant + deadlock + itgr

P
en

d
a
n
t

+
de

ad
lo

ck

Symbolic Steps

DVE
PNML
Bool Net

Fig. 6: The impact of ITGR after using deadlock detection.

RQ5: The impact of ITGR after deadlock detection. Finally, in Fig. 6 we examine
whether ITGR improves the performance of Pendant after deadlock detection
has run. Although ITGR improves the performance on a few models, it gener-
ally leads to a slowdown, as well as to more timeouts. Interestingly, ITGR has
the fewest positive effects (on top of deadlock detection) for Boolean Network
models, for which it was originally introduced. Since these models have several
deadlocks, the fast deadlock-detection preprocessing simplifies them consider-
ably, at which point the cost of ITGR is not worth its little (or no) impact.

6 Conclusion

We have introduced Pendant, a new symbolic algorithm for computing BSCCs,
as well as a deadlock-detection technique for this task. Though both Pendant
and the standard BwdFwd have O(n) symbolic-time complexity, our experi-
mental results show that Pendant is typically faster, and thus to be preferred
for this task. Moreover, deadlock-detection is an efficient and effective prepro-
cessing technique for reporting singleton BSCCs (and removing their basin),

Fast Symbolic Computation of Bottom SCCs 125

before handing the computation to the general algorithm. Finally, the recently
introduced ITGR, although effective on Boolean Network models, has mixed
effects on DVE and PNML models, while its effect is often negative after dead-
lock detection (but not always). Some opportunities for future research include
introducing saturation techniques [34] to Pendant, extending the algorithm to
symbolically handle colored graphs [7,25], and understanding better the settings
in which ITGR is effective.

Acknowledgements. This work was supported in part by Villum Fonden
(Project VIL42117).

References
1. EMBL-EBI’s BioModels model repository (2023), https://www.ebi.ac.uk/

biomodels/, Last accessed on 2023-10-10
2. PyBoolNet model repository (2023), https://github.com/hklarner/pyboolnet/

tree/master/pyboolnet/repository, Last accessed on 2023-10-10
3. SBML models repository (2023), https://github.com/sybila/

biodivine-lib-param-bn/tree/master/sbml_models, Last accessed 2023-10-10
4. Abraham, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model

checking by SCC reduction. In: Proceedings of the 2010 Seventh International
Conference on the Quantitative Evaluation of Systems. p. 37–46. QEST ’10, IEEE
Computer Society, USA (2010). https://doi.org/10.1109/QEST.2010.13

5. Amparore, E.G., Donatelli, S., Gallà, F.: starMC: an automata based CTL* model
checker. PeerJ Comput. Sci. 8, e823 (2022)

6. Benes, N., Brim, L., Pastva, S., Safránek, D.: Computing bottom SCCs sym-
bolically using transition guided reduction. In: Silva, A., Leino, K.R.M. (eds.)
Computer Aided Verification, CAV 2021, Part I. LNCS, vol. 12759, pp. 505–528.
Springer (2021). https://doi.org/10.1007/978-3-030-81685-8_24

7. Benes, N., Brim, L., Pastva, S., Safránek, D.: BDD-based algorithm for SCC de-
composition of edge-coloured graphs. Logical Methods in Computer Science 18(1)
(2022). https://doi.org/10.46298/lmcs-18(1:38)2022

8. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. Formal Methods in System Design 28(1),
37–56 (2006)

9. Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking
of linear time logic properties. In: Proceedings of the 11th International Conference
on Computer Aided Verification. p. 222–235. CAV ’99, Springer (1999)

10. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

11. Buchholz, P., Katoen, J.P., Kemper, P., Tepper, C.: Model-checking large
structured Markov chains. The Journal of Logic and Algebraic Pro-
gramming 56(1), 69–97 (2003). https://doi.org/https://doi.org/10.1016/
S1567-8326(02)00067-X, probabilistic Techniques for the Design and Analysis of
Systems

12. Chatterjee, K., Dvořák, W., Henzinger, M., Loitzenbauer, V.: Lower bounds for
symbolic computation on graphs: Strongly connected components, liveness, safety,
and diameter. In: Proc. 29th ACM-SIAM Symp. on Discrete Algorithms. p.
2341–2356. SODA ’18, Soc. for Industrial and Applied Mathematics, USA (2018)

126 A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

https://www.ebi.ac.uk/biomodels/
https://www.ebi.ac.uk/biomodels/
https://github.com/hklarner/pyboolnet/tree/master/pyboolnet/repository
https://github.com/hklarner/pyboolnet/tree/master/pyboolnet/repository
https://github.com/sybila/biodivine-lib-param-bn/tree/master/sbml_models
https://github.com/sybila/biodivine-lib-param-bn/tree/master/sbml_models
https://doi.org/10.1109/QEST.2010.13
https://doi.org/10.1109/QEST.2010.13
https://doi.org/10.1007/978-3-030-81685-8_24
https://doi.org/10.1007/978-3-030-81685-8_24
https://doi.org/10.46298/lmcs-18(1:38)2022
https://doi.org/10.46298/lmcs-18(1:38)2022
https://doi.org/https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/https://doi.org/10.1016/S1567-8326(02)00067-X

13. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: Proc. 22nd ACM-SIAM Symp. on Discrete Algorithms. p. 1318–1336. SODA
’11, Society for Industrial and Applied Mathematics, USA (2011)

14. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: CAV. LNCS, vol. 2404, pp. 359–364. Springer (2002)

15. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
Int. Journal on Software Tools for Technology Transfer 19(6), 675–696 (2017)

16. Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is there a best symbolic
cycle-detection algorithm? In: Proc. 7th IC on Tools and Algorithms for the Con-
struction and Analysis of Systems. p. 420–434. TACAS 2001, Springer (2001)

17. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. p. 573–582. SODA ’03, Society
for Industrial and Applied Mathematics, USA (2003)

18. Hardin, R.H., Kurshan, R.P., Shukla, S.K., Vardi, M.Y.: A new heuristic for bad
cycle detection using BDDs. Form. Methods Syst. Des. 18(2), 131–140 (mar 2001).
https://doi.org/10.1023/A:1008727508722

19. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press (2004)

20. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.:
LTSmin: High-performance language-independent model checking. In: TACAS.
Lecture Notes in Computer Science, vol. 9035, pp. 692–707. Springer (2015)

21. Kesten, Y., Pnueli, A., Raviv, L., Shahar, E.: Model checking with strong fairness.
Formal Methods Syst. Des. 28(1), 57–84 (2006)

22. Kordon, F., Garavel, H., Hillah, L., Paviot-Adet, E., Jezequel, L., Hulin-Hubard,
F., Amparore, E.G., Beccuti, M., Berthomieu, B., Evrard, H., Jensen, P.G., Botlan,
D.L., Liebke, T., Meijer, J., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf, K.:
MCC’2017 - the seventh model checking contest. Trans. Petri Nets Other Model.
Concurr. 13, 181–209 (2018)

23. Kučera, A., Stražovský, O.: On the controller synthesis for finite-state Markov
decision processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005: Foundations of
Software Technology and Theoretical Computer Science. pp. 541–552. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

24. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 6806,
pp. 585–591. Springer (2011)

25. Larsen, C.A., Schmidt, S.M., Steensgaard, J., Jakobsen, A.B., van de Pol, J., Pavlo-
giannis, A.: A truly symbolic linear-time algorithm for SCC decomposition (2023)

26. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2017)

27. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: SPIN. Lecture
Notes in Computer Science, vol. 4595, pp. 263–267. Springer (2007)

28. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Strength-Based Decom-
position of the Property Büchi Automaton for Faster Model Checking. In: Piter-
man, N., Smolka, S.A. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems. pp. 580–593. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_42

Fast Symbolic Computation of Bottom SCCs 127

https://doi.org/10.1023/A:1008727508722
https://doi.org/10.1023/A:1008727508722
https://doi.org/10.1007/978-3-642-36742-7_42
https://doi.org/10.1007/978-3-642-36742-7_42

29. Saadatpour, A., Albert, I., Albert, R.: Attractor analysis of asynchronous boolean
models of signal transduction networks. Journal of Theoretical Biology 266(4),
641–656 (2010). https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.
022

30. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: TACAS.
Lecture Notes in Computer Science, vol. 3440, pp. 174–190. Springer (2005)

31. Wang, C., Bloem, R., Hachtel, G.D., Ravi, K., Somenzi, F.: Divide and compose:
SCC refinement for language emptiness. In: Proceedings of the 12th International
Conference on Concurrency Theory. p. 456–471. CONCUR ’01, Springer-Verlag,
Berlin, Heidelberg (2001)

32. Xie, A., Beerel, P.A.: Implicit enumeration of strongly connected components and
an application to formal verification. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 19(10), 1225–1230 (2000)

33. Yuan, Q., Mizera, A., Pang, J., Qu, H.: A new decomposition-based method for de-
tecting attractors in synchronous boolean networks. Science of Computer Program-
ming 180, 18–35 (2019). https://doi.org/https://doi.org/10.1016/j.scico.
2019.05.001

34. Zhao, Y., Ciardo, G.: Symbolic computation of strongly connected components
and fair cycles using saturation. Innov. Syst. Softw. Eng. 7(2), 141–150 (2011)

128

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

A. B. Jakobsen, R. S. M. Jørgensen, J. van de Pol, A. Pavlogiannis

https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/https://doi.org/10.1016/j.scico.2019.05.001
https://doi.org/https://doi.org/10.1016/j.scico.2019.05.001
https://doi.org/https://doi.org/10.1016/j.scico.2019.05.001
https://doi.org/https://doi.org/10.1016/j.scico.2019.05.001
http://creativecommons.org/licenses/by/4.0/

Btor2-Cert: A Certifying Hardware-Verification
Framework Using Software Analyzers

Zsófia Ádám1,2 , Dirk Beyer2 , Po-Chun Chien2 ,

Nian-Ze Lee2 , and Nils Sirrenberg2

1Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary
2Department of Computer Science, LMU Munich, Munich, Germany

Abstract. Formal verification is essential but challenging: Even the best
verifiers may produce wrong verification verdicts. Certifying verifiers en-
hance the confidence in verification results by generating a witness for
other tools to validate the verdict independently. Recently, translating
the hardware-modeling language Btor2 to software, such as the pro-
gramming language C or LLVM intermediate representation, has been
actively studied and facilitated verifying hardware designs by software
analyzers. However, it remained unknown whether witnesses produced by
software verifiers contain helpful information about the original circuits
and how such information can aid hardware analysis. We propose a certi-
fying and validating framework Btor2-Cert to verify safety properties of
Btor2 circuits, combining Btor2-to-C translation, software verifiers, and
a new witness validator Btor2-Val, to answer the above open questions.
Btor2-Cert translates a software violation witness to a Btor2 violation
witness; As the Btor2 language lacks a format for correctness witnesses,
we encode invariants in software correctness witnesses as Btor2 circuits.
The validator Btor2-Val checks violation witnesses by circuit simulation
and correctness witnesses by validation via verification. In our evaluation,
Btor2-Cert successfully utilized software witnesses to improve quality as-
surance of hardware. By invoking the software verifier Cbmc on translated
programs, it uniquely solved, with confirmed witnesses, 8 % of the unsafe
tasks for which the hardware verifier ABC failed to detect bugs.

Keywords: Hardware verification · Software verification · Verification
witnesses · Witness validation · Word-level circuit · Btor2 · SMT · SAT

1 Introduction

Certifying algorithms [1] generate a certificate alongside the computed solution
such that proof checkers can independently validate the solution to increase users’
trust and the explainability of the results. In the model-checking community,
a certificate to explain a verdict for a verification task is called a witness [2],
and verifiers able to generate witnesses are called certifying verifiers. Witnesses
can be independently checked by witness validators to confirm the verification

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 129–149, 2024.
https://doi.org/10.1007/978-3-031-57256-2_7

https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0000-0002-8096-5595
https://orcid.org/0009-0000-7805-5931
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_7&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

Task T Certifying Verifier

Verdict v

Witness ω Witness Validator

Verdict v′Certified if v = v′

(a) Certifying and validating model checking

HW Task TH Task Translator SW Task TS Certifying SW Verifier

SW Witness ωSWitness Translator

HW Witness ωH HW Witness Validator

Verdict v′Verdict v

Certifying HW Verifier

Certified if v = v′

(b) Translating SW witnesses to HW for validation

Fig. 1: A certifying hardware-verification framework using software analyzers

results. Figure 1a shows a generic workflow for certifying and validating model
checking. After a certifying verifier produces a verdict v and a witness ω on a
task T , a witness validator takes T and ω as input and checks if the information
in ω is enough to reestablish the results of the verifier on T . The outcome of the
verifier is certified if its verdict v and the validator’s verdict v′ are consistent.
In the rest of the paper, we use certifying model checking interchangeably with
certifying and validating model checking when it is clear from the context that
a framework contains both a certifying verifier and a witness validator. For
reachability properties, if a model violates a safety specification, a violation
witness [3] may contain external inputs to the model to replay the erroneous
execution trace. If the safety specification is satisfied, a correctness witness [4]
could record invariants of the model to reconstruct a safety proof. Section 2
presents a brief survey on witness validation in the formal-methods community.

Recently, hardware-to-software translators [5, 6] from the hardware-modeling
language Btor2 [7], a prevailing format for word-level hardware model checking
used in the Hardware Model Checking Competitions (HWMCC) [8, 9], have
been proposed to facilitate the application of software analyzers to hardware
circuits. Tools Btor2C [5] and Btor2MLIR [6] translate Btor2 circuits to
behaviorally equivalent imperative software in the programming language C [10]
and the intermediate representation used by the compilation toolchain LLVM [11],
respectively, and enable any software analyzer for C or LLVM-bytecode programs
to inspect Btor2 circuits. In an experiment on more than 1 000 Btor2 circuits [5],
software verifiers for C programs are shown to detect more bugs than the best
hardware model checkers by preprocessing the original circuit with Btor2C
and analyzing the translated C program. However, in this previous work [5],
only the verdicts of software verifiers but not the witnesses, which contain the
information and reasoning behind a verdict, are transferred back to the hardware
domain. In other words, the results of software verifiers on Btor2 circuits are

130 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 131

not certified, and hence hardware designers may not trust software verifiers for
analyzing their circuits.

1.1 Our Motivation and Contributions

Motivated to mitigate the aforementioned threat to reliability and leverage the
capability of software verifiers to generate witnesses, we investigate the follow-
ing open questions in this work: (1) whether the software witnesses for trans-
lated programs contain useful information about original circuits and (2) how
to employ the information to aid hardware quality assurance. Our contributions
are summarized below.

A Certifying Framework for HW Verification with SW Analyzers.
Figure 1b shows the proposed certifying and validating hardware-verification
framework based on software analyzers to approach the open questions. The
framework translates a hardware-verification task TH to a software task TS and
applies software verifiers to TS . After obtaining a software witness ωS , it encodes
relevant information from ωS in the form of a hardware witness ωH and validates
the verdict returned by software verifiers with ωH . We instantiate the framework in
a tool Btor2-Cert for verifying Btor2 circuits with certified verdicts. In addition
to preprocessing Btor2 circuits with Btor2C [5] and invoking model checkers for
the translated C programs, such as CPAchecker [12], Cbmc [13], Esbmc [14], and
UAutomizer [15], Btor2-Cert features a translator from software witnesses to
Btor2 witnesses and a witness validator Btor2-Val to check Btor2 witnesses.
Section 4 shows our tool architecture.

Note that the framework in Fig. 1b is not limited to Btor2C and verifiers for C
programs. For example, one could also materialize the concept with the translator
Btor2MLIR [6], analyzers for LLVM-bytecode programs [11], such as Klee [16],
Smack [17], and SeaHorn [18], and a corresponding LLVM-to-Btor2 witness
translator. There also exist translators [19, 20, 21] from Verilog [22] circuits to C
programs or SMV [23] models. We choose Btor2C for task translation because
many verifiers for C programs participating in the International Competitions on
Software Verification (SV-COMP) [24] can generate witnesses in a standardized
and exchangeable format [2].

A Translator from Software Witnesses to Btor2 Witnesses. Btor2-Cert
translates software violation witnesses in the format used in SV-COMP [24] to the
format defined by the Btor2 language [7]. For tasks satisfying their specifications,
as there is no native format for correctness witnesses in Btor2, Btor2-Cert
extracts the invariants in software witnesses and represents them as Btor2 circuits,
whose inputs refer to the state variables of the original circuit. The advantages of
not inventing a new format but reusing the existing Btor2 language are twofold:
First, Btor2 extends SMT-LIB 2 [25] and provides the required operations on
the word level to accommodate most invariants derived by software verifiers.
Second, Btor2 is supported by many hardware model checkers participating in
HWMCC [8, 9] and offers a suite Btor2Tools [26] of utility tools for parsing and
simulation, which simplifies further development around the Btor2 format.

A Validator for Btor2 Witnesses. To validate the witnesses for Btor2
circuits, we develop Btor2-Val, a portfolio-based witness validator involving
hardware simulators and verifiers. Btor2-Val validates violation witnesses by
invoking the simulator BtorSim from Btor2Tools [26]. For correctness witnesses,
Btor2-Val follows the validation-via-verification approach [27] by instrumenting
the original Btor2 circuit with the circuit representing the invariant and verifying
the instrumented circuit. The instrumented circuit satisfies the modified safety
property if the invariant can be used to reconstruct the proof of correctness.
Hardware verifiers are employed to check the instrumented circuits. Btor2-Val
leverages CoVeriTeam [28], a framework for cooperative verification, to coordinate
the underlying hardware simulators and verifiers.

Enhancing Confidence in SW Verifiers on HW Designs. We evaluate
Btor2-Cert on more than 1 000 Btor2 circuits to study its capability of providing
certified verification results using software analyzers. In the experiment,

• the witness translator was able to translate every violation witness and 97 %
of the correctness witnesses produced by software verifiers,

• the combination of witness translation and Btor2-Val outperformed mature
software witness validators in both effectiveness and efficiency, and

• Btor2-Cert provided certified results computed by software verifiers on
some Btor2 circuits that the best hardware model checkers failed to verify.

The conceptual message conveyed by Btor2-Cert is software analyzers can
derive useful information about circuits and complement conventional hardware
model checkers with trustworthy results. Our contributions have a positive impact
on analyzing hardware designs with software verifiers. The proposed framework
Btor2-Cert is open-source and available online (more information in Sect. 4).

2 Related Work

Generating and validating witnesses for analysis results have been studied through-
out the entire verification toolchain from satisfiability solvers to model checkers.
In the following, we briefly review witness validation and compare our work to a
recent certifying verification framework [29, 30, 31] targeting k -induction [32].

2.1 Witness Validation

For satisfiability solving, the competitions on propositional SAT solvers [33, 34]
use the DRAT format [35] to encode the certificates of unsatisfiability and inde-
pendent validators [36, 37] to check the proofs. The competitions on SMT solving
verify models to satisfiable formulas with the tool Dolmen [38]. Certifications for
quantified Boolean formulas have also been investigated [39, 40].

For model checking, an early work [41] suggests generating a deductive proof
from the run of model checkers with extra bookkeeping steps. In HWMCC [8, 9],
the Btor2 [7] language defines a format for violation witnesses as a sequence of
input values and initial values for registers that lead to an erroneous execution.
However, Btor2 has no format for correctness witnesses. The competitions on

132 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

automated termination analysis [42] use the format CPF [43], and in SV-COMP [24],
a GraphML-based format [2] is used to describe software witnesses as automata.
In addition to the properties commonly used in tool competitions, a recent work
extends proof generation of model checking to full LTL properties [44].

Numerous approaches have been invented for validating software witnesses.
Methods to validate correctness witnesses include a parallel extension [45] of
k -induction, program instrumentation with invariants and re-verification [27]
(referred to as validation via verification in the publication), and program de-
composition into several straight-line sub-programs [46]. Execution-based vali-
dation [47] is an elegant approach to validate violation witnesses. It extracts a
sequence of external input values from a violation witness and employs debuggers
or simulators to testify the reachability of an error location. Our witness validator
Btor2-Val leverages validation via verification and execution-based validation.
More details are given in Sect. 5 and Sect. 6, respectively. In our evaluation, the
proposed validator Btor2-Val (together with the witness translator) competed
well against the winners in the witness-validation track of SV-COMP 2023 [24].

2.2 Validating k-Inductiveness of Properties in Hardware Models

Given a sequential circuit and a number k as input, the tool Certifaiger [29, 30]
aims to validate that the safety property of the input circuit is k-inductive.
Composing a k -induction-based hardware model checker and Certifaiger yields a
certifying and validating model checker (as depicted in Fig. 1a), whose witnesses
are the inductive length k. The key differences between the proposed framework
in Fig. 1b and this framework [29, 30] for k-inductiveness are as follows.

First, our validator Btor2-Val expects a candidate invariant in the correctness
witness but does not restrict the algorithms used by software verifiers. In contrast,
Certifaiger expects a candidate inductive length k and thus can only validate
results of k -induction-based model checkers. Second, to validate witnesses, Btor2-
Val relies on validation via verification [27] and invokes model checkers because
the candidate invariant may not be inductive. In comparison, Certifaiger avoids
model checking and reduces the validation problem to several SAT checks since
it assumes the safety property to be k-inductive. To sum up, our framework
complements the existing work [29, 30] by considering candidate invariants as
witnesses. Its applicability to algorithms other than k -induction comes at the
expense of potentially more complex validation procedure. Certifaiger is further
extended to accommodate temporal decomposition [48] as preprocessing to simplify
the verification tasks [31], which has not yet been considered in our framework
and is an important direction of future work.

3 Background

To facilitate the discussion in the rest of this manuscript, we provide prerequisite
knowledge on model checking and witness validation from the literature.

A state-transition system M is described by two predicates I(s) and TR(s, s′)
over states s and s′ of M, which encode the initial states and transition relation
(TR(s, s′) is true if s can transit to s′ via one step) of M, respectively. An

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 133

1 sort bitvec 8

2 sort bitvec 1

3 constd 1 42

4 constd 1 2

5 zero 1

6 state 1 ; a

7 state 1 ; b

8 input 1 ; in

9 init 1 6 4 ; a init to 2

10 init 1 7 5 ; b init to 0

11 eq 2 6 5 ; a == 0

12 eq 2 7 4 ; b == 2

13 eq 2 8 3 ; in == 42

14 and 2 11 12

15 and 2 13 14

16 bad 15

17 one 1

18 srl 1 6 17

19 xor 1 7 17

20 next 1 6 18

21 next 1 7 19

(a) Btor2 circuit

1 extern void abort(void);

2 extern unsigned char nondet_uchar();

3 void main() {

4 typedef unsigned char SORT_1;

5 SORT_1 a = nondet_uchar();

6 SORT_1 b = nondet_uchar();

7 a = 2;

8 b = 0;

9 for (;;) {

10 SORT_1 in = nondet_uchar();

11 if (a == 0 && b == 2 && in == 42) {

12 ERROR: abort();

13 }

14 a = a >> 1;

15 b = b ^ 1;

16 }

17 }

(b) C program (simplified for demo)

Fig. 2: An example Btor2 circuit and its translated C program

invariant Inv(s) of a system M is a predicate over states of M such that Inv(s)
is true for every reachable state s of M. We denote “Inv is an invariant of M”
by M |= Inv. A safety-verification task consists of a state-transition system M
and a safety property P (s). We say a safety-verification task (or a verification
task for short) is safe if M |= P and unsafe otherwise. Given a verification task
of M and P , the problem of model checking asks whether M |= P or not. In
practice, state-transition systems manifest themselves as sequential digital circuits
or programs. In the following, we briefly introduce the modeling languages used
in HWMCC [8, 9] and SV-COMP [24] with a running example.

3.1 The Btor2 Language for Word-Level Circuits

The Btor2 hardware-modeling language [7] was invented to describe model-
checking problems of word-level sequential circuits. It extends the bit-level AIGER
format [49] with data sorts of bit-vectors and arrays and inherits word-level
operations from SMT-LIB 2 [25]. Figure 2a shows an example Btor2 circuit.
The circuit has two state variables a and b and an external input in, defined
in lines 6-8, respectively. The states and input are bit-vectors of width 8 (the
sort bitvec 8 defined in line 1). Variables a and b are initialized to 2 and 0,
respectively. In each iteration, variable a is right-shifted by 1 bit (line 18), and
variable b is bitwise XOR-ed with 1 (line 19). Indicated by the keyword bad in
line 16, a property violation happens if variable a equals 0, variable b equals 2,
and input in equals 42. The example Btor2 circuit satisfies its safety property
because variable b never equals 2. However, if variable b is initialized to a different
value at line 10 (marked in red), say 2, a property violation will be triggered after
two steps of state transition if 42 is given as the external input in the last iteration.

Translating Btor2 Circuits to C Programs. Btor2C [5] is a lightweight
translator from the Btor2 language to the programming language C [10]. It

134 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

encodes Btor2 data sorts with unsigned integers and static arrays, expresses
Btor2 operations with corresponding operators of C, and uses an infinite loop
to model the execution of a sequential circuit. Given the example Btor2 circuit
in Fig. 2a as input, Btor2C generates a translated C program1 shown in Fig. 2b.
Btor2C follows the rules of SV-COMP [24] to encode safety-verification tasks
for C programs, so compositional hardware model checkers for Btor2 circuits can
be readily formed by combining software verifiers participating in SV-COMP as
verification engines and Btor2C as preprocessing. In an extensive experiment [5],
software verifiers are shown to detect more bugs in Btor2 circuits than the best
conventional hardware model checkers, such as ABC [50] and AVR [51].

3.2 Representing Software Witnesses as Automata

Software witnesses can be represented as protocol automata [2], describing program
invariants needed to construct a safety proof or program paths leading to a property
violation. A letter in the alphabet of such a protocol automaton is a pair of a set
of program edges and a condition over program variables. The set of program
edges indicates the control flow, and the condition can be used to restrict the
state space of the program. Program invariants that should hold at a certain
program location can be annotated to a protocol automaton. In the following, we
give an example correctness witness for the C program in Fig. 2b and an example
violation witness for the same C program but with line 8 commented out.

s0start

s1b>=0 && b<=1

o/w

o/w

8: ⊤

Fig. 3: A correctness witness

Correctness Witnesses. Figure 3 shows an exam-
ple correctness witness for the C program in Fig. 2b.
The correctness witness shows that a program in-
variant b>=0 && b<=1 is established once line 8 is
executed. Indeed, variable b switches between 0
and 1 after being initialized, and b>=0 && b<=1 is
an invariant at the loop head of the program. A program invariant is stored as
a C expression in a software witness and hence potentially more compact than
invariants represented in other formalisms, e.g., a bit-level AIGER [49] circuit.

q0start

q1

q2

q3

qE

o/w

o/w

o/w

o/w

6: b==2

10: ⊤

10: ⊤

10: in==42

Fig. 4: A violation witness

Violation Witnesses. Figure 4 shows an example
violation witness for the modified C program with
variable b uninitialized (by commenting out line 8
in Fig. 2b). The violation witness shows how to
reach the error in line 12 of the C program. First,
it assumes the value of variable b to be 2 via the
condition when line 6 is executed. Second, it goes to
the next state when line 10 is executed for the first
two times. Third, it assumes the external input
to be 42 when line 10 is executed for the third
time. Indeed, the error in line 12 can be reached if
variable b gets an initial value of 2 and the external
input equals 42 in the third loop iteration.

1 The intermediate variables in the actual output program of Btor2C are omitted.

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 135

https://www.sosy-lab.org/research/btor2c/

Invariant
Quality

C Program

Correctness
Witness

Btor2 Circuit

Invariant
Extractor

Btor2
Witness Circuit

Circuit
Instrumentor

Instrumented
Circuit(s) HW Verifier Verdict

Btor2-Val for Correctness WitnessesWitness Translation

(a) Validating correctness witnesses by circuit instrumentation and verification

C Program

Violation
Witness

Btor2 Circuit

Input/State Value
Extractor

Btor2
Violation Witness

HW Simulator
(BtorSim) Verdict

Btor2-Val for Violation WitnessesWitness Translation

(b) Validating violation witnesses by circuit simulation

Fig. 5: Witness translation and validation in Btor2-Cert and Btor2-Val

4 Architecture of Btor2-Cert and Btor2-Val

We instantiate the proposed certifying and validating hardware-verification frame-
work in Fig. 1b as Btor2-Cert2 with the Btor2-to-C translator Btor2C [5],
model checkers for C programs [52] that can produce verification witnesses in the
format discussed in Sect. 3, a C-to-Btor2 witness translator, and the witness
validator Btor2-Val. Figure 5 shows the translation and validation flows for
correctness (in Fig. 5a) and violation witnesses (in Fig. 5b). Both the translator
and the validator Btor2-Val for Btor2 witnesses are implemented in Python 3.
Btor2-Val is based on a portfolio of hardware verifiers and simulators, with differ-
ent tools coordinated by the cooperative-verification framework CoVeriTeam [28].

4.1 Validating Correctness Witnesses

Given a safe Btor2 circuit, its translated C program, and a correctness witness
produced by some software verifier, Btor2-Cert certifies the results of the software
verifier in two steps, as depicted in Fig. 5a. In the first step of witness translation,
Btor2-Cert extracts the invariant at the loop head of the C program and
represents it as a Btor2 circuit. The Btor2 circuit is named a witness circuit
and refers to the state variables of the original circuit from its primary inputs.
Second, in the validation step, Btor2-Val takes as input the original circuit, the
witness circuit, and a user-defined parameter called invariant quality that specifies
the level of strictness imposed on the invariant. Btor2-Val offers three levels
of invariant quality to users, based on which it instruments the original circuit.
Hardware verifiers are invoked on the instrumented circuit and will deem it safe
if the invariant meets the specified invariant quality for reconstructing a safety
proof. The details of validating correctness witnesses are presented in Sect. 5.
2 https://gitlab.com/sosy-lab/software/btor2-cert

136 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

https://github.com/Boolector/btor2tools
https://gitlab.com/sosy-lab/software/btor2-cert

4.2 Validating Violation Witnesses

Given an unsafe Btor2 circuit, its translated C program, and a violation witness
produced by some software verifier, Btor2-Cert certifies the results of the software
verifier in two steps, as depicted in Fig. 5b. In the first step of witness translation,
Btor2-Cert extracts the values for external inputs and uninitialized states from
the software violation witness and encodes the information as a Btor2 violation
witness [7]. Second, in the validation step, Btor2-Val invokes BtorSim [26], a
simulator for Btor2 circuits, to decide whether the Btor2 violation witness can
trigger a bug in the original circuit. The details of validating violation witnesses
are presented in Sect. 6.

5 Certifying Results of Software Verifiers: Correctness

In this section, we describe how Btor2-Cert certifies verification results for safe
verification tasks. The Btor2 circuit and its translated C program in Fig. 2
as well as the software correctness witness in Fig. 3 will be used to explain the
translation and validation of correctness witnesses, as outlined in Fig. 5a.

5.1 Witness Translation

Given a software correctness witness with a predicate annotated at the loop
head of the translated C program, which some software verifier claims to be an
invariant,3 Btor2-Cert considers the predicate as a candidate invariant for the

1 sort bitvec 8

2 sort bitvec 1

3 zero 1

4 one 1

5 input 1 ; state "b"

6 ugte 2 5 3 ; b >= 0

7 ulte 2 5 4 ; b <= 1

8 and 2 6 7

9 output 8

Fig. 6: A witness circuit

original Btor2 circuit and extracts it to reconstruct a
safety proof. We encode the candidate invariant, written
as an expression in the programming language C, into a
combinational Btor2 circuit whose inputs refer to the
state variables of the original Btor2 circuit and unique
output asserts the predicate. Translating C expressions
into Btor2 circuits is feasible thanks to the word-level
data sorts and operations in the Btor2 language [7].
We name the combinational Btor2 circuit a witness
circuit and refer to it as a Btor2 correctness witness.
Note that our notion of a witness circuit is different
from Certifaiger’s definition of a k-witness circuit [29], which is a sequential
circuit simulating k-step execution of the original circuit in one step. Figure 6
shows the witness circuit generated from the software correctness witness in Fig. 3.
The input defined in line 5 refers to state variable b of the Btor2 circuit in Fig. 2a.
The output defined in line 9 asserts the candidate invariant b >= 0 && b <= 1.

5.2 Witness Validation via Verification

Following the idea of validation via verification [27], the validator Btor2-Val in
Btor2-Cert checks Btor2 correctness witnesses by instrumenting the original
circuit with the witness circuit and invoking hardware model checkers. It distin-
guishes three levels of quality for a candidate invariant computed by software
3 Many mature verifiers in SV-COMP derive invariants at loop-head locations.

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 137

Table 1: Candidate invariants at the loop head of the program in Fig. 2b
Predicate Quality Reason

⊥ not invariant M |= Inv fails.
⊤ invariant but unsafe Inv ⇒ P fails.
b!=2 safe invariant but not inductive Inv(s) ∧ TR(s, s′) ⇒ Inv(s′) fails.
b>=0 && b<=1 safe and inductive invariant All checks succeed.

verifiers. According to the notation introduced in Sect. 3, we denote the state-
transition system of the original Btor2 circuit by M, with initial states I(s), a
transition relation TR(s, s′), and a safety property P (s). A predicate Inv(s) is

• an invariant if M |= Inv,
• a safe invariant if M |= Inv and Inv(s) ⇒ P (s), and
• a safe and inductive invariant if (1) Inv(s) ⇒ P (s), (2) I(s) ⇒ Inv(s), and

(3) Inv(s) ∧ TR(s, s′) ⇒ Inv(s′).

In the literature [29], the three conditions for safe and inductive invariants are
also named consistency, initiation, and consecution, respectively. Table 1 shows
four predicates and highlights their respective quality as an invariant at the loop
head of the program in Fig. 2b (P is the negated error condition).

Btor2-Val takes the original Btor2 circuit, the witness circuit, and a user-
specified invariant quality for the correctness witness as input and instruments the
original circuit accordingly. To check if Inv(s) is an invariant helpful to reestablish
a proof of P , Btor2-Val combines the witness circuit and the original circuit by
connecting the state variables of the original circuit to the corresponding inputs of
the witness circuit. That is, Btor2-Val builds a circuit that encodes M |= Inv∧P .
The instrumented circuit is given to hardware model checkers, which will utilize
the information provided by the witness circuit to find a proof of correctness or
refute the predicate if it is not an invariant. Note that the verification time of the
instrumented circuit is expected to be shorter than that of the original circuit
because the predicate can guide the search of hardware model checkers.

To implement the consistency, initiation, and consecution checks for safe
or inductive invariants, Btor2-Val also relies on circuit instrumentation and
hardware model checkers. While the three checks are not model checking but
satisfiability in essence, it is convenient to encode them as combinational Btor2
circuits. Moreover, some hardware model checkers, such as ABC [50], can simplify
the circuits before performing satisfiability solving, which is usually faster than
solving the queries directly with satisfiability solvers.

6 Certifying Results of Software Verifiers: Violation

In this section, we describe how Btor2-Cert certifies verification results for
unsafe verification tasks. The unsafe versions of the Btor2 circuit and its
translated C program in Fig. 2 with the state variable b being uninitialized
(namely, with line 10 in Fig. 2a and line 8 in Fig. 2b commented out) as well as

138 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

the software violation witness in Fig. 4 will be used to explain the translation
and validation of violation witnesses, as outlined in Fig. 5b.

The Btor2 language defines a format for violation witnesses [7]. A Btor2
violation witness contains a sequence of input values fed to the Btor2 circuit
in each cycle and the initial values for uninitialized state variables. Figure 7
shows an example violation witness for the unsafe version of the Btor2 circuit
in Fig. 2a. It demonstrates how to trigger the error specified by the 0th bad
statement (indicted by b0) via giving the initial value 2 to the 1st state variable b
(under #0; a is the 0th state variable) and 42 to the 0th input in in the 2nd
cycle (indicated by @2). The simulator BtorSim [26] takes a Btor2 circuit and
a Btor2 violation witness and executes the circuit with the values for inputs
and states in the witness. It confirms the violation witness if an error is triggered.
The violation witness in Fig. 7 does not specify input values in the first two
cycles because they are irrelevant to the error. In this case, BtorSim will assume
the unspecified values to be zero.

6.1 Witness Translation

sat

b0

#0

1 00000010 ; b==2

@0

@1

@2

0 00101010 ; in==42

.

Fig. 7: A Btor2 vio-
lation witness

Given a software violation witness of the translated C pro-
gram, Btor2-Cert extracts the conditions over program
variables from the protocol automaton. These conditions
are used by the software violation witness to prune out
irrelevant program paths and highlight an error path.
Btor2-Cert uses such information to give values to the
corresponding Btor2 inputs and state variables in the
form of a Btor2 violation witness. For example, the soft-
ware violation witness in Fig. 4 will be translated to the
Btor2 violation witness in Fig. 7.

6.2 Witness Validation via Execution

Following the idea of execution-based witness validation [47], Btor2-Val checks
Btor2 violation witnesses by invoking the simulator BtorSim on the original
Btor2 circuit and the translated Btor2 violation witness. An advantage of
execution-based witness validation is its speed: In our evaluation, Btor2-Val
was able to validate Btor2 violation witnesses translated from software vio-
lation witnesses much faster than software verifiers for finding the bugs. The
speed of Btor2-Val minimizes the overhead to validate the alarms reported by
software verifiers and makes the results of software verifiers more trustworthy
and transparent for hardware designers.

7 Evaluation

To address the open questions highlighted in Sect. 1.1, we evaluated the pro-
posed certifying hardware-verification framework Btor2-Cert on more than 1 000
Btor2 circuits and the witness validator Btor2-Val prepended with witness
translation against the top contenders in the witness-validation track of SV-COMP
2023 [24]. Our experiment is designed to answer the following research questions:

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 139

• RQ1: Can Btor2-Cert translate software witnesses to Btor2 witnesses?
• RQ2: Is Btor2-Val prepended with witness translation effective compared

to state-of-the-art software witness validators?
• RQ3: Is Btor2-Val prepended with witness translation efficient compared

to state-of-the-art software witness validators?
• RQ4: Is the run-time consumed by witness validators shorter than the run-

time consumed by software verifiers?
• RQ5: Can Btor2-Cert complement conventional hardware model checking

by providing additional certified verification results?

7.1 Benchmark Set

We executed our experiments on a benchmark set consisting of 1214 safety-
verification tasks of Btor2 circuits, among which 758 are safe and 456 are unsafe.
The verification tasks are collected from HWMCC as well as other sources and were
used to compare the performance of hardware and software model checkers [5].

7.2 Experimental Settings

All experiments were conducted on machines running Ubuntu 22.04 (64 bit),
each with a 3.4GHz CPU (Intel Xeon E3-1230 v5) with 8 processing units and
33 GB of RAM. The resource limits imposed on verifying translated C programs
and validating generated witnesses are both set to 2 CPU cores, 15min of CPU
time, and 15GB of RAM. We used BenchExec [53] to ensure reliable resource
measurement and reproducible results. Btor2-Cert uses Btor2C at commit
36c1ad52 for translating a Btor2 circuit to a C program. In our experiment, we
configure the witness validator Btor2-Val to use the PDR [54] implementation
in ABC [50] at commit 65ccd3cc and BtorSim [26] as the underlying hardware
model checker and simulator, respectively.4 We also tried AVR [51] for validating
correctness witnesses, but it encountered errors on many instrumented circuits
even though the circuits are syntactically valid according to Btor2Tools [26].

7.3 Evaluated Verifiers and Validators

To verify the translated C programs, we used CPAchecker [12] at revision 44619
and UAutomizer [15] at commit 6fd36663 on safe tasks because they are good
at constructing invariants in the competitions. We configured CPAchecker to
run four algorithms based on Craig interpolation [55], including IMC [56, 57],
ISMC [58], Impact [59], and predicate abstraction [60]. On unsafe tasks, we evalu-
ated the BMC [61] implementations in CPAchecker, Cbmc [13], and Esbmc [14]
because BMC is the prevailing technique for bug hunting. Both Cbmc and Esbmc
were downloaded from the archiving repository of SV-COMP 2023 [52]. For UAu-
tomizer, we used its default settings in SV-COMP for both safe and unsafe tasks.

To evaluate Btor2-Val, we prepended it with the witness-translation step and
compared the combination, which takes software witnesses as input, to validators
for software witnesses. For correctness witnesses, we evaluated the first place
4 As ABC works on the bit level, we bit-blasted Btor2 circuits into the AIGER format

with Btor2AIGER [26] before invoking ABC.

140 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/-/tree/6c2870427db379c9de050d54a1b74768b6a85d18
https://gitlab.com/sosy-lab/software/btor2c/-/tree/36c1ad528f1d6eb45a21728f5a1d66e48b3c200a
https://github.com/berkeley-abc/abc/tree/65ccd3cc692d2a7976d7d57954bc2572ddb9c9c9
https://svn.sosy-lab.org/software/cpachecker/branches/export-btor2c-invariants@44619
https://github.com/ultimate-pa/ultimate/tree/6fd36663860db5b5209d174c8d3ac52bc681e931

winner UAutomizer of the witness-validation track in SV-COMP 2023 [24]. We
also used an emerging validator LIV [46] at commit cf736e45, which decomposes
a program into straight-line sub-programs to check inductive invariants. We cannot
compare Btor2-Val to Certifaiger [29, 30] because Certifaiger consumes a
candidate inductive length as input, while Btor2-Val expects an invariant from
the witnesses. For violation witnesses, we compared Btor2-Val to execution-based
validators [47] CPA-w2t and FShell-w2t. The former is of the same version
as CPAchecker (i.e., at revision 44619) and the latter was downloaded from
the tool archive of SV-COMP 2023 [52]. We also evaluated MetaVal [27], a tool
using validation via verification, but it did not terminate when instrumenting the
translated C programs and failed to validate any witness in our experiment.

7.4 Results
RQ1: SW-to-HW Witness Translation. The upper part of Table 2 (resp.
Table 3) shows the numbers of correctness (resp. violation) witnesses produced by
the software verifiers and those successfully translated by the witness translator in
Btor2-Cert. Table 2 additionally shows in its 2nd row the numbers of software
witnesses with candidate invariants annotated to the loop head of a translated C
program. About 97 % of the candidate invariants in software correctness witnesses
can be translated to Btor2 witness circuits. The CPAchecker’s 14 candidate
invariants that cannot be translated were due to the C-expression parser5 exceed-
ing the time limit when constructing abstract syntax trees. This is a technical
limitation orthogonal to the proposed approach. Furthermore, all 4 candidate in-
variants of UAutomizer that could not be translated refer to undeclared program
variables, rendering the witnesses to be syntactically incorrect.6

For software violation witnesses, all of them were successfully translated by
Btor2-Cert. The median translation time was below 2 s for both correctness
and violation witnesses. Moreover, measured by the number of lines of a Btor2
witness, the translated correctness witnesses have a median size of 321, and the
violation witnesses have a median size of 308. The results show the feasibility to
translate and represent the information found by software verifiers in a native
hardware-modeling format.

RQ2: Effectiveness of Btor2-Val. The lower part of Table 2 (resp. Table 3)
summarizes the numbers of correctness (resp. violation) witnesses that were
validated by Btor2-Val and the compared validators.

Btor2-Val was able to validate the correctness witnesses produced by both
CPAchecker and UAutomizer. When configured to accept safe and inductive
invariants (recall the three levels of invariant quality in Sect. 5), it validates 329
out of 576 correctness witnesses translated to Btor2 witness circuits. In contrast,
UAutomizer, the winner of the witness-validation track in SV-COMP 2023 [24],
was not able to validate any correctness witness produced by CPAchecker (the
corresponding cells are marked as “-”). LIV is designed to confirm safe and
inductive invariants [46] and accepted 305 correctness witnesses in total, similar
5 Btor2-Cert uses pycparser 2.21 (https://github.com/eliben/pycparser).
6 https://github.com/ultimate-pa/ultimate/issues/660

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 141

https://gitlab.com/sosy-lab/software/liv/-/tree/cf736e4579e10cf6c909cfa2d12f2a8c167f51fb
https://svn.sosy-lab.org/software/cpachecker/branches/export-btor2c-invariants@44619
https://github.com/eliben/pycparser
https://github.com/ultimate-pa/ultimate/issues/660

Table 2: Summary of results on validating correctness witnesses

Val.
Verif. CPAchecker

UAutomizer
Sum of each analysis

IMC ISMC Impact PredAbs accepted rejected others

(proofs) 119 85 155 182 79 620 - -
w/ candidate inv. 114 79 148 178 75 594 - -
translated 113 79 139 174 71 576 - -

B
t-

V
a
l invariant 77 66 117 119 67 446 105 69

safe 27 47 90 118 45 327 228 65
safe& inductive 28 47 90 118 46 329 243 48

LIV 15 32 95 122 41 305 252 63
UAutomizer - - - - 74 74 2 3

Table 3: Summary of results on validating violation witnesses

Val.
Verif. Cbmc CPAchecker Esbmc UAutomizer

Sum of each analysis
accepted rejected others

(alarms) 369 197 302 31 899 - -

Btor2-Val 59 197 295 27 578 321 0
CPA-w2t 0 122 0 0 122 - 777
FShell-w2t 44 38 44 24 150 - 749

to Btor2-Val. Btor2-Val and LIV agreed on the majority of the correctness
witnesses, and the cases where they computed different verdicts were caused by
a bug7 in LIV, which has been fixed by its developers. The results show that
Btor2-Val is more robust than UAutomizer and achieves similar effectiveness
as LIV. We manually inspected several witnesses rejected by both Btor2-Val
and LIV and found that they indeed contain incorrect candidate invariants that
do not overapproximate the reachable state spaces. Such invalid invariants might
be caused by bugs in the conversion step of software verifiers from its internal
formula representation back to the programming language C.

Table 2 also reports the results when Btor2-Val is configured to accept
correctness witnesses with different levels of invariant quality. Overall, 77% of
the candidate invariants derived by software verifiers passed the invariant check
of Btor2-Val, but only 57% are deemed safe and inductive. As expected, the
number of rejections increases with the strictness for invariant quality. However,
there are 2 instances in Table 2 that passed the level “safe & inductive” but were
not confirmed at the level “safe” by Btor2-Val. Such cases occurred because
ABC, the backend verifier of Btor2-Val, ran into timeout when performing model
checking, whereas the consistency, initiation, and consecution checks based on
satisfiability easily went through. Among the four interpolation-based algorithms
in CPAchecker, predicate abstraction is the best in terms of invariant quality:
It generated the most safe and inductive invariants. The results demonstrate
the unique value of Btor2-Val to quantify the quality of invariants derived
by software verifiers.

For violation witnesses, Btor2-Val was far more effective than CPA-w2t
and FShell-w2t in our experiment. Among 899 violation witnesses generated
by software verifiers, Btor2-Val was able to validate 578 cases; It rejected

7 https://gitlab.com/sosy-lab/software/liv/-/issues/2

142 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

https://gitlab.com/sosy-lab/software/liv/-/issues/2

1 10 100 1000
1

10

100

1000

Verification (PredAbs of CPAchecker)

V
al

id
at

io
n

Btor2-Val (ind.)
LIV

(a) Correctness witnesses

1 10 100 1000
1

10

100

1000

Verification (BMC of CPAchecker)

V
al

id
at

io
n

Btor2-Val
CPA-w2t

FShell-w2t

(b) Violation witnesses

Fig. 8: CPU-time comparison of verification and witness validation (unit: s)

other witnesses because they contain an incomplete or infeasible error path. In
comparison, CPA-w2t and FShell-w2t only confirmed 122 and 150 witnesses,
respectively. The numbers of rejected witnesses for CPA-w2t and FShell-w2t
are not listed in Table 3 as the tools do not distinguish rejection of witnesses
from other errors. We also observed that only 11 violation witnesses produced
by CPAchecker, Esbmc, and UAutomizer were not validated by Btor2-Val,
but witnesses generated by Cbmc suffered from a high rejection rate. This is
because the violation witnesses of Cbmc often report an infeasible error path.
Moreover, we notice that for many cases, different error paths are printed in
Cbmc’s violation witnesses and the console logs for its execution.8 If we extract
Btor2 violation witnesses from the console logs instead, Btor2-Val could validate
359 out of the 369 cases where Cbmc found an alarm. The effectiveness of Btor2-
Val in confirming translated Btor2 violation witnesses showcases the value
of Btor2-Cert because hardware designers can now trust software verifiers to
detect bugs in their circuits and obtain a certified test case to trigger an error
if software verifiers reported one.

RQ3: Efficiency of Btor2-Val. We compared the CPU time required for
Btor2-Val and other state-of-the-art validators. From our experimental results,
Btor2-Val (configured to accept safe and inductive invariants) achieved a median
speedup of 2.2× over LIV for correctness witness validation, and a median
speedup of 11× and 1.1× over CPA-w2t and FShell-w2t for violation witness
validation, respectively. In addition, Fig. 8 shows the scatter plots for the CPU
time consumption of the compared validators. A data point (x, y) in the plots
corresponds to a case where CPAchecker took x seconds to produce a witness
and a validator took y seconds to validate the witness. Observe that most data
points of Btor2-Val are below those of other validators. The efficiency of the
proposed certifying framework in translating and validating violation witnesses
minimizes the overhead to apply software analyzers to find hardware bugs and
makes the results of software verifiers trustworthy for hardware designers.

8 https://github.com/diffblue/cprover-sv-comp/issues/70

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 143

https://github.com/diffblue/cprover-sv-comp/issues/70

RQ4: Verfication versus Validation Time. Figure 8a (resp. Figure 8b)
compares the CPU time for CPAchecker to compute a verdict and generate a
correctness (resp. violation) witness to the CPU time for a validator to check
the witness. We can see that almost all data points are below the diagonal,
indicating that validation time is typically shorter than verification time. Such
speedup shows that the validators are able to utilize the information in witnesses
to reconstruct proofs of correctness or violation more efficiently than verifying
the task from scratch.

RQ5: Complementing HW Model Checking with Btor2-Cert. The
empirical evaluation in the TACAS 2023 publication [5] on Btor2C demonstrates
that software verifiers are able to complement the state-of-the-art hardware model
checkers by finding more bugs and uniquely solving dozens of tasks. We take a
step further and investigate whether the verification results of those additional
alarms and uniquely solved tasks can be certified by Btor2-Cert.

Btor2-Cert certified 37, 1, and 4 alarms found by the BMC implementa-
tions of Cbmc, CPAchecker, and Esbmc, respectively, which cannot be detected
by the BMC implementation of ABC.9 The additional alarms found by Cbmc
alone account up to 8% of unsafe tasks in our benchmark set. With the help
of Btor2-Cert, the violation witnesses generated by software verifiers can be
translated to Btor2 witnesses and validated by BtorSim. That is, the property
violation reported by software verifiers can be replayed fully in the hardware
domain, demonstrating the unique ability of Btor2-Cert to provide trustworthy
verification results obtained by software analyzers.

For property satisfaction, although the previous study shows that software
verifiers are not as good at finding proofs for correctness as their hardware
counterparts, we still observed a case where ABC (the backend verifier used by
Btor2-Val) went into timeout but only required less than 3 s to reconstruct
a proof using the invariant generated by CPAchecker, and another case with
a 5× run-time speedup.

Summaries of Results. From the reported results, we conclude that (1) software
witnesses can be translated to hardware witnesses (Table 2 and Table 3), (2) Btor2-
Val is effective (Table 2 and Table 3) and efficient (Fig. 8), (3) witness validation by
Btor2-Val consumes less time than software verification (Fig. 8), and (4) Btor2-
Cert complements state-of-the-art hardware model checkers.

As a by-product of this work, our intensive investigation of software witnesses
led to the discovery of several bugs in software verifiers. We reported the issues
to the developers of the tools, and some of the bugs have been fixed. A complete
list of issues that we found in software analyzers during this project is available
on the supplementary webpage [62].

7.5 Threats to Validity

For external validity, our claims are established on a large set of Btor2 circuits
to increase confidence, but it is unclear if they will hold on tasks with different

9 We considered the 359 validated witnesses translated from console logs of Cbmc.

144 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/-/blob/6c2870427db379c9de050d54a1b74768b6a85d18/bv/btor2/goel-opensource/pipeline.btor2
https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/-/blob/6c2870427db379c9de050d54a1b74768b6a85d18/bv/btor2/goel-crafted/paper_v3.btor2

features that are not covered in the used benchmark set. For construct validity,
we report that witness validation is faster than verification, but validation and
verification were done on behaviorally equivalent but syntactically different models
(namely, a Btor2 circuit vs. a C program). While the setting is not exactly the
same as in a previous publication [4], it is necessary because our experiment is
designed to investigate how information in software witnesses can be used by
hardware analyzers. We compared Btor2-Val prepended with witness translation
to software witness validators. The former also uses the original Btor2 circuit
as input, but the validators for software do not leverage circuit information.
We performed the comparison this way because the hardware witness validator
Certifaiger [29] does not accept an invariant as input. For internal validity, we
ran the experiments with the popular benchmarking framework BenchExec [53]
to guarantee reproducibility.

8 Conclusion

Validating verification results is vital to make formal methods applicable in
practice, as it reinforces the trust of users and offers more insights into the
analyzed model. In this manuscript, we proposed Btor2-Cert, a certifying and
validating hardware-verification framework built upon translators and software
analyzers. Btor2-Cert is an open-source toolchain, involving the Btor2-to-C
translator Btor2C, certifying verifiers for C programs, a C-to-Btor2 witness
translator, the Btor2 simulator BtorSim, and the validator Btor2-Val. We
evaluated Btor2-Cert’s capability of transferring the information across software
and hardware analyzers and providing certified verification results on a large
benchmark set. By employing software model checkers for hardware verification, we
identified and certified 8 % of the unsafe tasks in our benchmark set that the state-
of-the-art conventional hardware model checker ABC overlooked. For future work,
we will augment Btor2-Cert to accommodate temporal decomposition [48], a
preprocessing technique used to simplify sequential circuits before model checking.
Such extension [31] has been made to k-inductiveness validators [29, 30].

Data-Availability Statement. All verification tasks, tools, and experimental
results from our evaluation are available in the reproduction artifact [63]. A
previous version [64] of the reproduction package was reviewed by the Artifact
Evaluation Committee. The updated version [63] fixes some bugs in the witness
translator. More information is available on the supplementary webpage [62].

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY). Zsófia Ádám is supported partially
by the Doctoral Excellence Fellowship Programme, which is funded by the Na-
tional Research, Development and Innovation Fund of the Ministry of Culture and
Innovation, and the Budapest University of Technology and Economics, under a
grant agreement with the National Research, Development and Innovation Office.

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 145

http://gepris.dfg.de/gepris/projekt/378803395

References

1. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Computer Science Review 5(2), 119–161 (2011). https://doi.org/10.1016/j.
cosrev.2010.09.009

2. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

3. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

5. Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis
with Btor2C: A word-level-circuit-to-C translator. In: Proc. TACAS. pp. 1–21.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_12

7. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector
3.0. In: Proc. CAV. pp. 587–595. LNCS 10981, Springer (2018). https://doi.org/
10.1007/978-3-319-96145-3_32

8. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Proc. FMCAD. p. 9. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.
8102233

9. Biere, A., Froleyks, N., Preiner, M.: 11th Hardware Model Checking Competition
(HWMCC 2020). http://fmv.jku.at/hwmcc20/, accessed: 2023-01-29

10. ISO/IEC JTC1/SC22: ISO/IEC 9899-2018: Information technology — Program-
ming Languages — C. International Organization for Standardization (2018),
https://www.iso.org/standard/74528.html

11. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: Proc. CGO. pp. 75–88. IEEE (2004). https://doi.
org/10.1109/CGO.2004.1281665

12. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

13. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Proc. TACAS. pp. 168–176. LNCS 2988, Springer (2004). https://doi.org/10.
1007/978-3-540-24730-2_15

14. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: An industrial-strength C model checker. In: Proc. ASE. pp. 888–891.
ACM (2018). https://doi.org/10.1145/3238147.3240481

15. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013). https:
//doi.org/10.1007/978-3-642-39799-8_2

16. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008). https://dl.acm.org/doi/10.5555/1855741.1855756

146 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

6. Tafese, J., Garcia-Contreras, I., Gurfinkel, A.: Btor2MLIR: A format and
toolchain for hardware verification. In: Proc. FMCAD. pp. 55–63. IEEE (2023).
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_13

https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_13
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
http://fmv.jku.at/hwmcc20/
https://www.iso.org/standard/74528.html
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://dl.acm.org/doi/10.5555/1855741.1855756

17. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from verifier
implementations. In: Proc. CAV. pp. 106–113. LNCS 8559, Springer (2014). https:
//doi.org/10.1007/978-3-319-08867-9_7

18. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Proc. CAV. pp. 343–361. LNCS 9206, Springer (2015). https://doi.
org/10.1007/978-3-319-21690-4_20

19. Mukherjee, R., Tautschnig, M., Kroening, D.: v2c: A Verilog to C translator. In:
Proc. TACAS. pp. 580–586. LNCS 9636, Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_38

20. Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Verilog2SMV:
A tool for word-level verification. In: Proc. DATE. pp. 1156–1159 (2016), https:
//ieeexplore.ieee.org/document/7459485

21. Minhas, M., Hasan, O., Saghar, K.: Ver2Smv: A tool for automatic Verilog to
SMV translation for verifying digital circuits. In: Proc. ICEET. pp. 1–5 (2018).
https://doi.org/10.1109/ICEET1.2018.8338617

22. IEEE standard for Verilog hardware description language (2006). https://doi.org/
10.1109/IEEESTD.2006.99495

23. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An open-source tool for symbolic
model checking. In: Proc. CAV. pp. 359–364. LNCS 2404, Springer (2002). https:
//doi.org/10.1007/3-540-45657-0_29

24. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Proc. TACAS (2). pp. 495–522. LNCS 13994, Springer (2023). https:
//doi.org/10.1007/978-3-031-30820-8_29

25. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0.
Tech. rep., University of Iowa (2010), https://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.0-r10.12.21.pdf

26. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Source-code repository of Btor2,
BtorMC, and Boolector 3.0. https://github.com/Boolector/btor2tools, ac-
cessed: 2023-01-29

27. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/
978-3-030-53291-8_10

28. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

29. Yu, E., Biere, A., Heljanko, K.: Progress in certifying hardware model checking
results. In: Proc. CAV. pp. 363–386. LNCS 12760, Springer (2021). https://doi.
org/10.1007/978-3-030-81688-9_17

30. Yu, E., Froleyks, N., Biere, A., Heljanko, K.: Stratified certification for k-induction.
In: Proc. FMCAD. pp. 59–64. IEEE (2022). https://doi.org/10.34727/2022/
isbn.978-3-85448-053-2_11

31. Yu, E., Froleyks, N., Biere, A., Heljanko, K.: Towards compositional hardware
model checking certification. In: Proc. FMCAD. pp. 1–11. IEEE (2023). https:
//doi.org/10.34727/2023/ISBN.978-3-85448-060-0_12

32. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Proc. FMCAD, pp. 127–144. LNCS 1954, Springer (2000).
https://doi.org/10.1007/3-540-40922-X_8

33. Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: SAT competition 2020.
Artif. Intell. 301, 103572:1–103572:25 (2021). https://doi.org/10.1016/j.artint.
2021.103572

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 147

https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://ieeexplore.ieee.org/document/7459485
https://ieeexplore.ieee.org/document/7459485
https://doi.org/10.1109/ICEET1.2018.8338617
https://doi.org/10.1109/ICEET1.2018.8338617
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://github.com/Boolector/btor2tools
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-81688-9_17
https://doi.org/10.1007/978-3-030-81688-9_17
https://doi.org/10.1007/978-3-030-81688-9_17
https://doi.org/10.1007/978-3-030-81688-9_17
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_11
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_11
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_11
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_11
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_12
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_12
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_12
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_12
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/10.1016/j.artint.2021.103572

34. Järvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Magazine 33(1) (2012). https://doi.org/10.1609/aimag.v33i1.
2395

35. Heule, M.J.H.: The DRAT format and DRAT-trim checker. CoRR 1610(06229)
(October 2016). https://doi.org/10.48550/arXiv.1610.06229

36. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

37. Wetzler, N., Heule, M.J.H., Jr., W.A.H.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Proc. SAT. pp. 422–429. LNCS 8561,
Springer (2014). https://doi.org/10.1007/978-3-319-09284-3_31

38. Bury, G., Bobot, F.: Verifying models with Dolmen. In: Proc. SMT Workshop.
CEUR Workshop Proceedings, CEUR (2023). https://ceur-ws.org/Vol-3429/
short9.pdf

39. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certifi-
cate extraction for QBF - (tool presentation). In: Proc. SAT. pp. 430–435. LNCS 7317,
Springer (2012). https://doi.org/10.1007/978-3-642-31612-8_33

40. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications.
Formal Methods Syst. Des. 41(1), 45–65 (2012). https://doi.org/10.1007/
s10703-012-0152-6

41. Namjoshi, K.S.: Certifying model checkers. In: Proc. CAV. pp. 2–13. LNCS 2102,
Springer (2001). https://doi.org/10.1007/3-540-44585-4_2

42. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination
competition (termCOMP 2015). In: Proc. CADE. pp. 105–108. LNCS 9195, Springer
(2015). https://doi.org/10.1007/978-3-319-21401-6_6

43. Sternagel, C., Thiemann, R.: The certification problem format. In: Proc. UITP. pp.
61–72. EPTCS 167, EPTCS (2014). https://doi.org/10.4204/EPTCS.167.8

44. Griggio, A., Roveri, M., Tonetta, S.: Certifying proofs for LTL model checking.
In: Proc. FMCAD. pp. 1–9. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.
8603022

45. Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In:
Proc. Int. Workshop on Parallel and Distributed Methods in Verification. pp. 55–62.
EPTCS 72, EPTCS (2011). https://doi.org/10.4204/EPTCS.72.6

46. Beyer, D., Spiessl, M.: LIV: A loop-invariant validation using straight-line programs.
In: Proc. ASE. pp. 2074–2077. IEEE (2023). https://doi.org/10.1109/ASE56229.
2023.00214

47. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

48. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification
by temporal decomposition. In: Proc. FMCAD. pp. 17–24. IEEE (2009). https:
//doi.org/10.1109/FMCAD.2009.5351146

49. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler University
(2007). https://doi.org/10.35011/fmvtr.2007-1

50. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proc. CAV. pp. 24–40. LNCS 6174, Springer (2010). https://doi.org/10.
1007/978-3-642-14295-6_5

51. Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc.
TACAS. pp. 413–422. LNCS 12078, Springer (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

148 Zs. Ádám, D. Beyer, P.-C. Chien, N.-Z. Lee, and N. Sirrenberg

https://doi.org/10.1609/aimag.v33i1.2395
https://doi.org/10.1609/aimag.v33i1.2395
https://doi.org/10.48550/arXiv.1610.06229
https://doi.org/10.48550/arXiv.1610.06229
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://ceur-ws.org/Vol-3429/short9.pdf
https://ceur-ws.org/Vol-3429/short9.pdf
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/978-3-319-21401-6_6
https://doi.org/10.1007/978-3-319-21401-6_6
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.23919/FMCAD.2018.8603022
https://doi.org/10.23919/FMCAD.2018.8603022
https://doi.org/10.23919/FMCAD.2018.8603022
https://doi.org/10.23919/FMCAD.2018.8603022
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1109/ASE56229.2023.00214
https://doi.org/10.1109/ASE56229.2023.00214
https://doi.org/10.1109/ASE56229.2023.00214
https://doi.org/10.1109/ASE56229.2023.00214
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1109/FMCAD.2009.5351146
https://doi.org/10.1109/FMCAD.2009.5351146
https://doi.org/10.1109/FMCAD.2009.5351146
https://doi.org/10.1109/FMCAD.2009.5351146
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23

52. Beyer, D.: Verifiers and validators of the 12th Intl. Competition on Software Verifica-
tion (SV-COMP 2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7627829

53. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions.
Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https://doi.org/10.
1007/s10009-017-0469-y

54. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Proc. FMCAD. pp. 125–134. FMCAD Inc. (2011). https:
//dl.acm.org/doi/10.5555/2157654.2157675

55. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

56. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1–
13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

57. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022).
https://doi.org/10.48550/arXiv.2208.05046

58. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Proc.
FMCAD. pp. 1–8. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351148

59. McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123–136.
LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14

60. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/
964001.964021

61. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

62. Ádám, Z., Beyer, D., Chien, P.C., Lee, N.Z., Sirrenberg, N.: Supplementary webpage
for TACAS2024 article ‘Btor2-Cert: A certifying hardware-verification framework
using software analyzers’. https://www.sosy-lab.org/research/btor2-cert/

63. Ádám, Z., Beyer, D., Chien, P.C., Lee, N.Z., Sirrenberg, N.: Reproduction package for
TACAS 2024 article ‘Btor2-Cert: A certifying hardware-verification framework using
software analyzers’. Zenodo (2023). https://doi.org/10.5281/zenodo.10548597

64. Ádám, Z., Beyer, D., Chien, P.C., Lee, N.Z., Sirrenberg, N.: Reproduction package
for TACAS2024 submission ‘Btor2-Cert: A certifying hardware-verification frame-
work using software analyzers’. Zenodo (2023). https://doi.org/10.5281/zenodo.
10013059

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Btor2-Cert: A Certifying HW-Verification Framework Using SW Analyzers 149

https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://dl.acm.org/doi/10.5555/2157654.2157675
https://dl.acm.org/doi/10.5555/2157654.2157675
https://doi.org/10.2307/2963593
https://doi.org/10.2307/2963593
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://www.sosy-lab.org/research/btor2-cert/
https://doi.org/10.5281/zenodo.10548597
https://doi.org/10.5281/zenodo.10548597
https://doi.org/10.5281/zenodo.10013059
https://doi.org/10.5281/zenodo.10013059
https://doi.org/10.5281/zenodo.10013059
https://doi.org/10.5281/zenodo.10013059
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Games

Auction-Based Scheduling

1 University of Haifa, Haifa, Israel
gavni@cs.haifa.ac.il,

ssadhukh@campus.haifa.ac.il
2 Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

kaushik.mallik@ist.ac.at

Abstract. Sequential decision-making tasks often require satisfaction
of multiple, partially-contradictory objectives. Existing approaches are
monolithic, where a single policy fulfills all objectives. We present auction-
based scheduling, a decentralized framework for multi-objective sequential
decision making. Each objective is fulfilled using a separate and indepen-
dent policy. Composition of policies is performed at runtime, where at
each step, the policies simultaneously bid from pre-allocated budgets for
the privilege of choosing the next action. The framework allows poli-
cies to be independently created, modified, and replaced. We study path
planning problems on finite graphs with two temporal objectives and
present algorithms to synthesize policies together with bidding policies
in a decentralized manner. We consider three categories of decentralized
synthesis problems, parameterized by the assumptions that the policies
make on each other. We identify a class of assumptions called assume-
admissible for which synthesis is always possible for graphs whose every
vertex has at most two outgoing edges.

1 Introduction

Sequential decision-making tasks often require satisfaction of multiple, partially-
contradictory objectives. For example, the control policy of a traffic light may
need to choose signals in a way that the traffic throughput is maximized while
the maximum waiting time is minimized [34], the control policy operating an
unmanned aerial vehicle may need to navigate in a way that the destination is
reached while no-fly zones are avoided [33], the policy of an operating-system
resource manager needs to allocate resources to tasks in a way that deadlocks
are avoided while fairness is maintained [3].

We propose a decentralized synthesis framework for policies when tasks are
given as a conjunction of two objectives Φ1 and Φ2, and the policies need to
choose actions from a common action space. The key idea is that Φ1 and Φ2 will
be accomplished, respectively, using two action policies α1 and α2—designed
independently, and the composition of α1 and α2 at runtime will generate a
policy for Φ1 ∧ Φ2. The challenge is that at each time point, one action needs
to be chosen, whereas α1 and α2 might select conflicting actions. For example,
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 153–172, 2024.
https://doi.org/10.1007/978-3-031-57256-2_8

Guy Avni1 , Kaushik Mallik2(B) , and Suman Sadhukhan1

https://orcid.org/0000-0001-5588-8287
https://orcid.org/0000-0001-9864-7475
https://orcid.org/0000-0002-4802-6803
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_8&domain=pdf

when developing a plan for a robot, Φ1 and Φ2 might specify two target locations,
and α1 and α2 may select opposite directions in a location.

We propose a novel composition mechanism called auction-based scheduling :
both policies are allocated bounded monetary budgets, and at each point in time,
an auction (aka bidding) is held, where the policies bid from their budgets for the
privilege to get scheduled for choosing the action. More formally, we equip each
action policy αi, for i ∈ {1, 2}, with a bidding policy βi, which is a function that
proposes a bid from the available budget based on the history of the interaction.
A tender for objective Ψ is a triple τ = ⟨α, β,B⟩, where α is an action policy, β
is a bidding policy, and B ∈ (0, 1) is a minimal budget required for the tender to
guarantee Ψ . Two tenders τ1 and τ2 are compatible if B1+B2 < 1, which is when
they can be composed at runtime as follows. Each Tender i, for i ∈ {1, 2}, is
allocated an initial budget that exceeds Bi, where the sum of budgets equals 1.
At each point in time, the tenders simultaneously choose bids using their bidding
policies, the higher bidder chooses an action using its action policy and pays the
bid to the other tender. Thus, the sum of budgets stays constant at 1. Note that
the composition gives rise to a path in the graph. The decentralized synthesis
problem asks: Given a graph G and objectives Φ1, Φ2 such that Φ1∧Φ2 ̸= false,
for each Φi compute τi such that no matter which tender it is composed with,
the composition generates a path that fulfills Φi. The framework is sound-by-
construction, namely the composition of compatible tenders satisfies Φ1 ∧ Φ2.

The advantage of auction-based scheduling is modularity at two levels. First,
since the designs of policies do not depend on each other, they can be created
independently and in parallel, e.g., by different vendors or in a parallel compu-
tation. Second, since the policies operate independently, they can be modified
and replaced separately. For example, when only the objective Φ1 changes, there
is no need to alter the policy α2, and vice versa.

Bidding for the next action encourages the policy with higher scheduling
urgency to bid higher, and at the same time, the bounds on budgets ensure
fairness, namely that no policy is starved. Auction-based scheduling adds new,
complementary features to the arsenal of modular approaches in multi-objective
decision-making. With the conventional decentralized synthesis approaches, the
policies are composed either concurrently [39] or in a turn-based manner [23].
Concurrent actions are meaningful if each policy needs to act on its own local
control variables, e.g., when the local control policies of two robots concurrently
move the robot towards their destinations in a shared workspace. In our case,
the set of actions is common between policies, and the concurrent interaction
is unsuitable. Likewise, turn-based actions are also unsuitable in our setting
because it is unclear how to assign turns to policies apriori. We will demonstrate
(Ex. 2) that an inappropriate turn-assignment to policies may violate some of
the objectives, while auction-based scheduling will succeed to fulfil all of them.

We study auction-based scheduling in the context of path planning on fi-
nite directed graphs with pairs of ω-regular objectives on its paths, and present
algorithms for the decentralized synthesis problem with increasing levels of as-
sumptions made by the tenders on each other: (a) Strong synthesis, with no as-

154 G. Avni et al.

Auction-Based Scheduling 155

sumptions and the most robust solution, (b) assume-admissible synthesis, with
the assumption that the other tender is not purely cynical and behaves ratio-
nally with respect to its own objective, and (c) assume-guarantee synthesis, with
explicit contract-based pre-coordination. We show for graphs whose every vertex
has at most two outgoing edges, for every pair of ω-regular objectives Φ1, Φ2, and
for all three classes of problems (a), (b), and (c), there exist PTIME decentral-
ized synthesis algorithms that either compute compatible tenders or output that
no compatible tenders with the respective assumptions exist; surprisingly, we
show that compatible tenders always exist for (b). For general graphs, we show
that the problems are in NP ∩ coNP. All our algorithms internally solve bidding
games using known algorithms from the literature [38,37]. Due to the lack of
space, some proofs are omitted, but can be found in the extended version [17].

2 Preliminaries

Let Σ be a finite alphabet. We use Σ∗ and Σω to respectively denote the set of
finite and infinite words over Σ, and Σ∞ to denote Σ∗ ∪Σω. Let for two words
u ∈ Σ∗ and v ∈ Σ∞, u ≤ v denote that u is a prefix of v, i.e., there exists a w
such that v = uw. Given a language L ⊆ Σ∞, define pref(L) to be the set of
every finite prefix in L, i.e., pref(L) := {u ∈ Σ∗ | ∃v ∈ L . u ≤ v}.

Graphs. We formalize path planning problems on graphs. A graph G is a tuple〈
V, v0, E

〉
where V is a finite set of vertices, v0 is a designated initial vertex,

and E ⊆ V × V is a set of directed edges. If (u, v) ∈ E, then v is a successor
of u. A binary graph is a graph whose every vertex has at most two successors.
A path over G is a sequence of vertices v0v1 . . . so that every (vi, vi+1) ∈ E.
Unless explicitly mentioned, paths always start at v0. We use Pathsfin(G) and
Paths inf(G) to denote the sets of finite and infinite paths, respectively.

A strongly connected component (SCC) of the graph G is a set S of vertices,
such that there is a path between every pair of vertices of S. An SCC S is called
a bottom strongly connected component (BSCC) if there does not exist any edge
from a vertex in S to a vertex outside of S. The graph G is itself called strongly
connected if V is an SCC.

Objectives. Fix a graph G. An objective Φ in G is a set of infinite paths, i.e.,
Φ ⊆ Paths inf(G). For an infinite path ρ, we use Inf (ρ) to denote the set of vertices
that ρ visits infinitely often. We focus on the following objectives:

Reachability: for S ⊆ V , ReachG(S) :=
{
v0v1 . . . ∈Paths inf(G) | ∃i ≥0. vi∈S

}
,

Safety: for S ⊆ V , SafeG(S) :=
{
v0v1 . . . ∈ Paths inf(G) | ∀i ≥ 0 . vi ∈ S

}
,

Büchi: for S ⊆ V , BüchiG(S) :=
{
ρ ∈ Paths inf(G) | Inf (ρ) ∩ S ̸= ∅

}
,

Parity (max, even): for Col : V → [0; k] for some k > 0, ParityG(Col) :={
ρ ∈ Paths inf(G) | max {i | ∃v ∈ Inf (ρ) . Col(v) = i} is even

}
,

Given an objective Φ, we will use Φc to denote its complement, i.e., Φc =
Paths inf(G) \ Φ. Observe that (ReachG(S))

c = SafeG(V \ S).

Action policies. Fix a graph G. An action policy is a function α : Pathsfin(G) →
V , choosing the next vertex to extend any given finite path ρv, where ⟨v, α(ρv)⟩ ∈
E. The action policy α is memoryless if for every pair of distinct finite paths
ρv, ρ′v that end in the same vertex v, it holds that α(ρv) = α(ρ′v); in this case
we simply write α(v). An action policy α generates a unique infinite path in G,
denoted out(α), and defined inductively as follows. The initial vertex is v0. For
every prefix v0, . . . , vi of out(α), for i ≥ 0, vi+1 = α(v0, . . . , vi). We say that the
policy α satisfies a given objective Φ, written α |= Φ iff out(α) ∈ Φ.

3 The Auction-Based Scheduling Framework

Consider a graph G =
〈
V, v0, E

〉
. A pair of objectives Φ1, Φ2 ⊆ V ω in G are

called overlapping if they have nonempty intersection (i.e., Φ1 ∩ Φ2 ̸= ∅). The
multi-objective planning problem asks to synthesize an action policy that satisfies
the global objective Φ1 ∩ Φ2 for overlapping Φ1, Φ2.

We propose a decentralized approach to the problem. Our goal is to design
two action policies α1 and α2 for Φ1 and Φ2, respectively. We will equip each
action policy with a bidding policy, which it will use at runtime to bid for choosing
the action at each time point. We formalize this below.

Definition 1 (Bidding policies). A bidding policy is a function β : V×[0, 1] →
[0, 1] with the constraint that β(v,B) ≤ B for every vertex v and every amount
of available budget B ∈ [0, 1].

We equip a pair of action and bidding policies with a threshold budget, which
represents the greatest lower bound on the initial budget needed for the policies
to guarantee their objective, and we call the resulting triple a tender.

Definition 2 (Tenders). A tender for a given graph G is a triple ⟨α, β,B⟩ of
an action policy α, a bidding policy β, and a threshold budget B ∈ [0, 1]. The set
of all tenders for G is denoted T G. A tender τ satisfies an objective Φ, denoted
τ |= Φ, iff α |= Φ (i.e., when the tender is operating alone on the graph).

Next, we formalize the composition of two tenders at runtime, which pro-
duces an action policy that uses a register of memory to keep track of the avail-
able budgets. We introduce some notation. A configuration is a pair ⟨v,B1⟩,
where v is a vertex and B1 is the budget available to the first tender. We nor-
malize the sum of budgets to 1, hence implicitly, the budget available to the
second tender is B2 = 1 − B1. Let C = V × [0, 1] be the set of all configura-
tions. For a given sequence of configurations s = (v0, B0

1)(v
1, B1

1) . . . ∈ C∞, let
projV (s) denote the path v0v1 A history is a finite sequence of configurations〈
v0, B0

1

〉
. . .

〈
vk, Bk

1

〉
∈ C∗ with the constraint that projV (s) ∈ Pathsfin(G). Let

H be the set of all histories.

Definition 3 (Composition of tenders). Let G be a graph, and τ1 = ⟨α , β ,1 1 B1⟩
and τ2 = ⟨α2, β2,B2⟩ be two tenders. The tenders τ1 and τ2 are compatible iff
B1+B2 < 1. If compatible, then their composition, denoted τ1 ▷◁τ2, is a function

156 G. Avni et al.

τ1 ▷◁τ2 : H → C defined as follows. Given a history h =
〈
v0, B0

1

〉
. . .

〈
vk, Bk

1

〉
∈ H,

let b1 := β1(v
k, Bk

1) and b2 := β2(v
k, 1−Bk

1). Then,

– if b1 ≥ b2, then τ1 ▷◁τ2(h) = (α1(ρv), B1 − b1), and
– if b1 < b2, then τ1 ▷◁τ2(h) = (α2(ρv), B1 + b2).

Given an initial configuration
〈
v0, B0

1

〉
with B0

1 > B1 and B0
2 = 1 − B0

1 > B2,
the composition outputs an infinite sequence of configurations, denoted out(τ1 ▷◁
τ2), where out(τ1 ▷◁ τ2) :=

〈
v0, B0

1

〉 〈
v1, B1

1

〉
. . . ∈ Cω such that for every k,〈

vk, Bk
1

〉
= τ1 ▷◁ τ2

(〈
v0, B0

1

〉
. . .

〈
vk−1, Bk−1

1

〉)
. We will say τ1 ▷◁ τ2 satisfies a

given objective Φ, written τ1 ▷◁τ2 |= Φ, iff projV (out(τ1 ▷◁τ2)) ∈ Φ.

We will often use the index i ∈ {1, 2} to refer to either of the two tenders or
their attributes, and will use −i = 3 − i for the “other” one, e.g., τi and τ−i.
Notice the difference between Bi and B0

i : Bi is the threshold budget at v0 which
is a constant attribute of τi, whereas B0

i is the actual budget initially allocated
to τi whose value can be anything above Bi.

3.1 Classes of decentralized synthesis problem

In this section, we describe three classes of decentralized synthesis problems that
we study. Throughout this section, fix a graph G and a given pair of overlapping
objectives Φ1 and Φ2.
Strong decentralized synthesis. Here, tenders make no assumptions on each
other, thus the solutions provide the strongest (the most robust) guarantees.
Formally, for each i ∈ {1, 2}, the goal is to construct τi such that for every
compatible τ−i, we have τi ▷◁τ−i |= Φi.

a

start

b

c

d

e

f

g

(a) Strong

a

start

b

c

d

e

f

g

(b) Assume-admissible

a

start

b

c

d

e

f

g

(c) Assume-guarantee

Fig. 1: Graphs with two reachability objectives given by targets: Tblue, depicted
in blue, Tred depicted in red, and Tblue ∩ Tred depicted in purple. The action
policies of the red and blue tenders choose edges with, respectively, red and blue
shadows (shared edges are in purple). If no edges from a vertex have red or blue
shadow, then the respective tender is indifferent about the choice made. Thick
edges depict the paths taken by the compositions of tenders.

Auction-Based Scheduling 157

Example 1. Consider the graph depicted in Fig. 1a with a pair of reachability
objectives having the targets Tblue = {c, d, g} and Tred = {d, f}, respectively.
Their intersection {d} is depicted in purple. We present a pair of robust tenders
τblue and τred with Bblue = 1/4 and Bred = 1/2, so that τblue and τred are compatible.
We will show that τblue guarantees that no matter which compatible tender it is
composed with, eventually Tblue is reached, and similarly τred ensures that Tred

is reached. Therefore, τblue ▷◁τred ensures that d is reached.
We first describe τblue. Consider an initial configuration ⟨a, 1/4 + ϵ⟩, for any

ϵ > 0. Note that the other tender’s budget is 3/4 − ϵ. The first action of τblue is
⟨b, 1/4⟩. There are two possibilities. First, τblue wins the bidding, then we reach
the configuration ⟨b, ϵ⟩, and since both successors of b are in Tblue, the objective is
satisfied in the next step. Second, τblue loses the bidding, meaning that the other
tender bids at least 1/4, and in the worst case, we proceed to the configuration
⟨e, 1/2 + ϵ⟩. Next, τblue chooses ⟨g, /1 2⟩ and necessarily wins as τred’s budget is
only 1/2− ϵ, and we reach g ∈ Tblue. We stress that τblue can be entirely oblivious
about τred, except for the implicit knowledge of τred’s budget.

We describe τred. Consider an initial configuration ⟨a, 1/2 + ϵ⟩, for any ϵ > 0.
Initially, τred bids 0, because it does not have a preference between going left or
right. In the worst case, the budget stays 1/2 + ϵ in the next turn. Since both b
and e have single successors in Tred, thus τred must win the bidding. It does so
by bidding 1/2, which exceeds the available budget 1/2 − ϵ of τred. △

We now use the same problem as in Ex. 1, and show that the conventional
turn-based interaction may fail to fulfill both objectives.

Example 2. Consider again the graph depicted in Fig. 1a with the targets Tblue =
{c, d, g} and Tred = {d, f}. Suppose αblue and αred are the two respective action
policies, and we arbitrarily decide to make their interaction turn-based, where
αred chooses actions in a and αblue chooses actions in b and e. It is clear that no
matter which edge αred chooses from a, it cannot guarantee satisfaction of Tred,
because αblue can take the game to c or g depending on αred’s choice. △

Assume-admissible decentralized synthesis. While the guarantees of strong
decentralized synthesis are appealing, it often fails as each tender makes the
pessimistic assumption that the other tender can behave arbitrarily—even ad-
versarially. We consider admissibility [23] as a stronger assumption based on ra-
tionality, ensuring compatible tenders to exist even when strong synthesis may
fail. We illustrate the idea in the following example.

Example 3. Consider the graph in Fig. 1b, with reachability objectives given by
targets Tblue = {d, g} and Tred = {d, f}. We argue that strong decentralized syn-
thesis is not possible. Indeed, using the same reasoning for τred in Ex. 1, we have
Thblue(a) = Th red(a) = 0.5. On the other hand, observe that when synthesizing
τred, since c /∈ Tblue, we know that a “rational” τblue—formally, admissible τblue
(see Sec. 6)—will not proceed from b to c, and we can omit the edge. In turn, the
threshold in a decreases to 1/4 for both objectives. Since the sum of thresholds
is now less than 1, two compatible tenders can be obtained. △

158 G. Avni et al.

In general, we seek an admissible-winning tender, which ensures that its
objective is satisfied when composed with any admissible tender. Admissible-
winning tenders are modular because they can be reused provided that the set
of admissible actions of the other tender remains unchanged. For example, even
when vertex g is added to the red target set, the blue tender can be used with
no change. Somewhat surprisingly, we show that in graphs in which all vertices
have out-degree at most 2, assume-admissible decentralized synthesis is always
possible, and a pair of admissible-winning tenders can be found in PTIME.
Assume-guarantee decentralized synthesis. Sometimes, even the admissi-
bility assumption is too weak, and we need more direct synchronization of the
tenders. We consider assume-guarantee decentralized synthesis, where each ten-
der needs to respect a pre-specified contract, and as a result, their composition
satisfies both objectives. We illustrate the idea below.

Example 4. Consider the graph depicted in Fig. 1c, with reachability objectives
given by targets Tblue = {c, d, g} and Tred = {d, f}. Here, the strong decentralized
synthesis fails due to reasons similar to Ex. 3. The assume-admissible decentral-
ized synthesis fails because from e, both objectives cannot be fulfilled, and from
b, no matter which tender wins the bidding can use an admissible edge that
violates the other objective (e.g., (b, c) is admissible for τblue but violates Tred).
We consider the contract ⟨Gblue, Gred⟩ = ⟨G¬c,G¬f⟩, which is satisfied when
(a) if αblue fulfills Gblue, then αred fulfills Gred, and (b) if αred fulfills Gred, then
αblue fulfills Gblue. Now whichever tender wins the bidding at b needs to fulfill
its guarantee, because it cannot judge from the past interaction if the other ten-
der violates its guarantee. Therefore, from b, the next vertex will be d under the
contract, and using the same tenders from Ex. 3, both objectives will be fulfilled.

4 An Aside on Bidding Games on Graphs

All our synthesis algorithms internally solve bidding games, which we briefly
review here; see the survey [8] for more details. A (two-player) bidding game
is played between Player X and Player Y , and is a tuple ⟨G, Φ⟩, where G =
⟨V,E⟩ is the (finite, directed) graph and Φ ⊆ V ω is the objective for Player X .
The game is zero-sum, meaning that the objective of Player Y is V ω \ Φ, i.e.,
the violation of Φ. This differs from auction-based scheduling where objectives
overlap; otherwise, the interaction between Player X and Player Y is the same
as the one between tenders. A strategy for a player is a pair ⟨α, β⟩ where α is an
action policy and β is a bidding policy. As in the composition of tenders, two
strategies and an initial configuration ⟨v,B1⟩ give rise to an infinite sequence of
configurations called a play. A strategy is winning if no matter which strategy
the opponent follows, the play satisfies the player’s objective. A central quantity
in bidding games is the threshold budget in a vertex v, which is intuitively, a
necessary and sufficient initial budget for Player X to guarantee winning.

Definition 4 (Threshold budgets). Consider a bidding game ⟨G, Φ⟩ with G =
⟨V,E⟩. The threshold of Player X is given by ThG

Φ : V → [0, 1], where for every
v ∈ V , we have ThG

Φ(v) = infB {Player X has a winning strategy from ⟨v,B⟩}.

Auction-Based Scheduling 159

The threshold of Player Y is denoted as ThG
Φc(v). The following theorem

characterizes the structure of thresholds and states that the two players’ thresh-
olds are complementary. The intuition can be found in the full version [17], where
we also show how winning strategies can be constructed from thresholds.

Theorem 1 ([38]). Consider a reachability bidding game ⟨G, Φ⟩ where Φ is
ReachG(T) where, without loss of generality, T is a given set of sink vertices. For
every vertex v, we have ThG

Φ(v) = 1−ThG
Φc(v). Moreover, for every sink vertex t,

we have ThG
Φ(t) = 0, if t ∈ T , and ThG

Φ(t) = 1 otherwise. For every vertex v, we
have ThG

Φ(v) = 0.5 · (ThG
Φ(v

+)+ThG
Φ(v

−)), where v− and v+ are successors of v,
such that for every other successor u, we have ThG

Φ(v
−) ≤ ThG

Φ(u) ≤ ThG
Φ(v

+).
Verifying if ThG

Φ(v) > 0.5 for a given vertex v is in NP∩ coNP in general and is
in PTIME for binary graphs.

For infinite-horizon objectives, like parity, it is known that eventually one of
the BSCCs will be reached, and inside every BSCC every vertex can be reached
by both players infinitely often with every arbitrary initial budget. This implies
that for every parity objective, the threshold of every vertex inside every BSCC
in a game graph is either 0 or 1, and fulfilling a given parity objective is equivalent
to reaching a BSCC whose every vertex has threshold 0. We state this formally.

Theorem 2 ([10]). Consider a bidding game ⟨G, Φ⟩ with a parity objective Φ.
Let S be a BSCC of G. Every vertex in S has threshold either 0 or 1, and it
is 1 iff the highest parity index in S is odd. Moreover, for a vertex v not in a
BSCC, we have ThG

Φ(v) = ThG
ReachG(T)(v), where T is the union of BSCCs whose

vertices have threshold 0.

5 Strong Decentralized Synthesis

We study the strong decentralized synthesis problem, where the goal is to syn-
thesize two compatible robust tenders, i.e., tenders that guarantee the fulfillment
of their objectives when composed with any compatible tender.

Definition 5 (Robust tenders). Let G be a graph and Φi be an objective in
G. A tender τi is robust for Φi if for every other compatible tender τ−i ∈ T G,
we have τi ▷◁τ−i |= Φi.

Problem 1 (STRONG-SYNT). Define STRONG-SYNT as the problem whose
input is a tuple ⟨G, Φ1, Φ2⟩, where G is a graph and Φ1 and Φ2 are overlapping
ω-regular objectives in G, and the goal is to decide whether there exists a pair of
tenders τ1, τ2 ∈ T G such that:

(I) τ1 and τ2 are compatible,
(II) τ1 is robust for Φ1, and

(III) τ2 is robust for Φ2.

Since each robust tender τi guarantees that Φi is satisfied when composed
with any tender, the composition of two robust tenders satisfies both objectives:

160 G. Avni et al.

Proposition 1 (Sound composition of robust tenders). Let τ1 and τ2 be
two compatible robust tenders for ⟨G, Φ1, Φ2⟩. Then τ1 ▷◁τ2 |= Φ1 ∩ Φ2.

We reduce the strong decentralized synthesis problem to the solution of two
independent bidding games, both played on the graph G, one with Player X ’s
objective Φ1 and the other one with Player X ’s objective Φ2. When the sum of
thresholds in v0 is less than 1, we set the two tenders to be winning Player X
strategies in the two games with the threshold budgets of the tenders being set as
the respective thresholds in v0. It follows from the construction that both tenders
are robust, and hence their composition will fulfill both objectives (Prop. 1).

Theorem 3 (Strong decentralized synthesis). Let G =
〈
V, v0, E

〉
be a

graph and Φ1 and Φ2 be a pair of overlapping ω-regular objectives. A pair of
robust tenders exists iff ThG

Φ1
(v0)+ThG

Φ2
(v0) < 1. Moreover, STRONG-SYNT is

in NP ∩ coNP in general and is in PTIME for binary graphs.

Proof. First, assume that ThG
Φ1
(v0) + ThG

Φ2
(v0) < 1. For i ∈ {1, 2}, let ⟨αi, βi⟩

denote a winning Player X strategy in the bidding game ⟨G, Φi⟩ from every
configuration ⟨v0, B⟩ with B > ThG

Φi
(v0). We argue that the render τ1 =

⟨α1, β1,Th
G
Φ1
(v0)⟩ is robust for Φ1, and the proof for τ2 is dual. Indeed, for

any compatible tender τ ′2 = ⟨α′
2, β

′
2,B′

2⟩, the pair ⟨α′
2, β

′
2⟩ corresponds to a

Player Y strategy in the bidding game ⟨G, Φ1⟩. The resulting play coincides
with out(τ1 ▷◁τ

′
2)(⟨v0, B⟩) and satisfies Φ1 since the strategy ⟨α1, β1⟩ is winning.

Second, suppose that ThG
Φ1
(v0) + ThG

Φ2
(v0) ≥ 1. For any allocation B1 +

B2 < 1, there is an i ∈ {1, 2} such that Bi ≤ ThG
Φi
(v0). Assume WLog that

B1 ≤ ThG
Φ1
(v0). Consider a winning Player Y strategy ⟨α2, β2⟩ in the bidding

game ⟨G, Φ1⟩ from ⟨v0,B1⟩. The tender τ ′2 = ⟨α2, β2, 1 − B1⟩ is compatible and
out(τ1 ▷◁τ

′
2(⟨v0,B1⟩)) violates Φ1.

Finally, in order to obtain the complexity bounds, we guess memoryless action
policies in both games, which are known to exist [37], and verify that they
are optimal. Based on the guess, we devise a linear program to compute the
thresholds. Finally, we verify that the sum of thresholds in v0 is less than 1.
For binary graphs, there is no need to guess the action policy in order to find
thresholds (Thm. 1). ⊓⊔

We identify a setting where strong decentralized synthesis is always possible.
The following theorem follows from the result that threshold budgets in strongly-
connected Büchi games containing at least one accepting vertex are 0.

Theorem 4 (Strong decentralized synthesis on SCCs).Consider a strongly-
connected graph G and a pair of non-empty Büchi objectives in G. Then, a pair
of robust tenders exists in G.

We demonstrate the effectiveness of strong synthesis using path planning
problems with two reachability objectives. Consider a fixed grid but four differ-
ent instances of the problem, as shown in Fig. 2. For the first three cases, we
successfully obtain pairs of robust tenders whose compositions fulfill both objec-
tives. Moreover, since the blue target remained the same in all cases, we needed
to redesign only the red tender, saving us a significant amount of computation.

Auction-Based Scheduling 161

A B C D E F G H

8
7
6
5
4
3
2
1

A B C D E F G H

8
7
6
5
4
3
2
1

A B C D E F G H

8
7
6
5
4
3
2
1

A B C D E F G H

8
7
6
5
4
3
2
1

Fig. 2: Robust tenders for path planning with two reachability objectives on a
one-way grid, where the black cells are obstacles and the only permissible moves
are from lighter to darker green cells—and not the other way round. The cell B8
is the initial location. The cells with double circles of colors red (respectively, G7,
E5, E3, C3) and blue (G1) are the targets to reach. The path shows the output of
the composition of the two tenders, where the red and blue segments are actions
which were chosen by the red and blue tenders, respectively. The cells with red
and blue squares are locations where the respective tenders win the bidding; in
the rest of the cells on the paths, the bidding ended in ties which were resolved
randomly. Strong synthesis was successful in the first three instances and failed
in the last one. The pairs of thresholds of red and blue targets are, respectively
(left to right): (0.75, 0.125), (0.625, 0.125), (0.75, 0.125), (0.875, 0.125).

6 Assume-Admissible Decentralized Synthesis

In assume-admissible decentralized synthesis, each tender assumes that the other
tender is rational and pursues its own objective. We formalize rationality by
adapting the well-known concepts of dominance and admissibility from game
theory [1,22]. Intuitively, τi dominates τ ′i if τi is always at least as good as τi
and sometimes strictly better than τi; therefore, there is no reason to use τ ′i . An
admissible tender is one that is not dominated by any other tender.

Definition 6 (Dominance, admissibility). Let G be a graph and Φ be an
objective. We provide definitions for the first tender and the definitions for the
second tender are dual. Let B1 < 1. For two tenders τ1 and τ ′1 that have the
same budget allocation, τ1 dominates τ ′1 when

(a) τ1 performs as well as τ ′1 when composed with any compatible τ2; formally,
for every compatible tender τ2, τ ′1 ▷◁τ2 |= Φ implies τ1 ▷◁τ2 |= Φ, and

(b) there is a compatible tender τ2 for which τ1 performs better than τ ′1; formally,
there exists a compatible τ2 with τ1 ▷◁τ2 |= Φ, and τ ′1 ▷◁τ2 ̸|= Φ.

A tender τ1 is called Φ-admissible in G iff it is not dominated by any other
tender. We denote the set of Φ-admissible tenders in G by AdmG(Φ).

Next, we define admissible-winning tenders, which are tenders that fulfill
their objectives when composed with any admissible tender.

162 G. Avni et al.

Definition 7 (Admissible-winning tenders). Let G be a graph and Φ1, Φ2

be a pair of overlapping objectives in G. A tender τi is called Φ−i-admissible-
winning for Φi if and only if τi ∈ AdmG(Φi), and for every other tender τ−i ∈
AdmG(Φ−i) compatible with τi, we have τi ▷◁τ−i |= Φi.

When the objectives are clear from the context, we will omit them and will
simply write a tender is “admissible tender,” “admissible-winning tender,” etc.

Problem 2 (AA-SYNT). Define AA-SYNT as the problem whose input is a
tuple ⟨G, Φ1, Φ2⟩, where G is a graph and Φ1 and Φ2 are overlapping ω-regular
objectives in G, and the goal is to decide whether there exists a pair of tenders
τ1 ∈ AdmG(Φ1) and τ2 ∈ AdmG(Φ2) such that:

(I) τ1 and τ2 are compatible,
(II) τ1 is Φ2-admissible-winning for Φ1, and

(III) τ2 is Φ1-admissible-winning for Φ2.

The following proposition follows from the requirement that τ1 and τ2 are
admissible.

Proposition 2 (Sound composition of admissible-winning tenders). Let
τ1 and τ2 be tenders that fulfill the requirements stated in Prob. 2. Then, τ1 ▷◁
τ2 |= Φ1 ∩ Φ2.

Remark 1. Note that the synthesis procedure for each Φ−i-admissible-winning
tender τi for Φi requires the knowledge of AdmG(Φ−i). Assume-admissible de-
centralized synthesis is modular in the following sense. First, the specific imple-
mentation of the tender τ−i with which each τi is composed is not known during
synthesis. All that is known is the objective Φ−i for which τ−i is synthesized.
Second, each τi can remain unchanged even when Φ−i changes to Φ′

−i, as long
as AdmG(Φ′

−i) ⊆ AdmG(Φ−i).

6.1 Reachability objectives

Throughout this section we focus on overlapping reachability objectives Φ1 =
ReachG(T1) and Φ2 = ReachG(T2) with T1, T2 ⊆ V being sets of sink target
vertices. This is without loss of generality, as every graph with non-sink tar-
get vertices can be converted into a graph with sink target vertices by adding
memory (see the full version [17]).

We reduce the decentralized assume-admissible synthesis problem to solving
a pair of zero-sum bidding games on a sub-graph of G. Intuitively, an edge
e = ⟨u, v⟩ is dominated for the i-th tender, for i ∈ {1, 2}, if it is possible to
achieve the objective Φi from u but not from v. Clearly, a tender that chooses e
is dominated and is thus not admissible (see the proof of the lemma in the full
version [17]). Recall that ThG

Φi
(v) denotes the threshold in the zero-sum bidding

game played on G with the Player X objective Φi, and that ThG
Φi
(v) = 1 means

there is no path from v to Ti.

Auction-Based Scheduling 163

Lemma 1 (A necessary condition for admissibility). For every vertex u
having at least two successors v, w with ThG

Φi
(v) < 1 and ThG

Φi
(w) = 1, if a

Player i tender ⟨αi, βi,Bi⟩ is in AdmG(Φi), then αi(u) ̸= w, for both i ∈ {1, 2}.

Proof. We argue that choosing w from u is dominated by the action of choosing
v from u, no matter what the budget at u is. Firstly, Cond. (a) of Def. 6 trivially
holds. Secondly, consider the other tender τ−i which bids zero at u, and later
cooperates with τi to satisfy Φi. Clearly, the τi’s action policy that selects v at
u will be able to satisfy Φi, but the one that selects w will not. ⊓⊔

We obtain the reduced graph by omitting edges that are dominated for both
players. For example, in Fig. 1b, the edge ⟨b, c⟩ is dominated for both players
(see Ex. 3) and in Fig. 1c, no edge is dominated for both players (see Ex. 4).

Definition 8 (Largest admissible sub-graphs for reachability). The largest
admissible sub-graph of G with respect to two reachability objectives Φ1 and Φ2

is ĜΦ1,Φ2
= ⟨V ′, E′⟩ with V ′ = V \

{
v ∈ V | ThG

Φ1
(v) = 1 ∧ ThG

Φ2
(v) = 1

}
and

E′ = (V ′×V ′)∩E. We omit Φ1, Φ2 from ĜΦ1,Φ2
when it is clear from the context.

For a vertex v in G and i ∈ {1, 2}, recall that ThΦi

G (v) denotes the threshold
in G for objective Φi, and ThΦi

Ĝ
(v) denotes the threshold in the reduced graph.

Observe that a winning strategy in G will never cross a dominated edge. Remov-
ing dominated edges restricts the opponent, thus ThΦi

G (v) ≥ ThΦi

Ĝ
(v). The next

lemma shows that, surprisingly, the decrease in sum of thresholds is guaranteed
to be significant. The proof (see the full version [17]) which holds for non-binary
graphs, intuitively follows from observing that in Ĝ, necessarily a sink that is a
target for one of the players is reached, and since there is an overlap in at least
one sink, the sum of thresholds is at most 1.

Lemma 2 (On the sum of thresholds in Ĝ). For every vertex v, we have
Th Ĝ

Φ1
(v) + Th Ĝ

Φ2
(v) ≤ 1. Moreover, if G is binary then Th Ĝ

Φ1
(v) + Th Ĝ

Φ2
(v) < 1.

Our synthesis procedure proceeds as in strong decentralized synthesis: Find
and output a pair of robust tenders in Ĝ, which are guaranteed to exist when G
is binary. In order to maintain soundness (see Prop. 2), it is key to show that
a robust tender τi in Ĝ is admissible in G. The proof of the following lemma
is intricate (see the full version [17]). We show that even when one can find τ ′i
and τ−i such that τi ▷◁ τ−i ̸|= Φi but τ ′i ▷◁ τ−i |= Φi, it is possible to construct
τ ′−i for which τi ▷◁ τ

′
−i |= Φi but τ ′i ▷◁ τ

′
−i ̸|= Φi, thus τ ′i does not dominate τi.

Furthermore, such a tender wins against a set of tenders which over-approximates
admissible tender for Φ−i.

Lemma 3 (Algorithm for computing admissible-winning tenders). For
i ∈ {1, 2}, a robust tender for Φi in Ĝ is Φ−i-admissible-winning for Φi in G.

The following theorem is obtained by combining Lemmas 2 and 3.

164 G. Avni et al.

Theorem 5 (Assume-admissible decentralized synthesis for reachabil-
ity). The problem AA-SYNT is a tautology for binary graphs: for every binary
graph and two overlapping reachability objectives, there exists a pair of compatible
admissible-winning tenders. Moreover, the tenders can be computed in PTIME.

Remark 2. For general (i.e., non-binary) graphs, AA-SYNT is not a tautology
anymore; a counter-example is given in Ex. 4. However, the same PTIME algo-
rithm for computing tenders can still be used to obtain a sound solution; the
completeness question is left open for future work.

6.2 Büchi objectives

In this section, we consider binary graphs with a pair of overlapping Büchi
objectives. We first demonstrate that, unlike reachability, it is not guaranteed
that an assume-admissible decentralized solution exists.

Example 5. Consider the graph depicted in Fig. 3 with the Büchi objectives
given by the accepting vertices Sred = {b, d} and Sblue = {a, c}. Note that the
objectives are overlapping since the path (bc)ω satisfies both. We argue that no
pair of compatible admissible-winning tenders exist. Note that a robust (hence
dominant) red tender forces reaching d, thus forcing Φred to be satisfied. Dually,
a robust blue tender forces Φblue in a. It can be shown that ThG

Φred
(b) = 2/3 and

ThG
Φblue

(b) = 1/3. Thus, for any Bred and Bblue with Bred + Bblue < 1, there is a
robust tender that violates the other tender’s objective. △

a b

start

c d

Fig. 3: A graph with no assume-
admissible decentralized solution.

We generalize the concept of
largest admissible subgraphs to Büchi
objectives. It is not hard to show
that proceeding into a BSCC with
an accepting state is admissible. In-
deed, Thm. 2 shows that there is a
robust (hence admissible) tender in
such BSCCs. On the other hand, proceeding to a BSCC with no accepting ver-
tex is clearly not admissible. The largest admissible subgraph is obtained by
repeatedly removing BSCC that are not admissible for both tenders. Formally,
for a given action policy α and a given vertex v of G, we will write α ̸|=v Φ1 ∪Φ2

to indicate that the action policy cannot fulfill Φ1 ∪Φ2 from the initial vertex v.

Definition 9 (Largest admissible sub-graphs for Büchi). The largest ad-
missible sub-graph ĜB of G for the Büchi objectives Φ1, Φ2 is the graph ⟨V ′, E′⟩
with V ′ = V \{v ∈ V | ∀ action policy α . α ̸|=v Φ1 ∪ Φ2}, and E′ = (V ′×V ′)∩E.

We describe a reduction to reachability games. For i ∈ {1, 2}, let Ti denote
the union of BSCCs of ĜB in which there is at least one Büchi accepting vertex for
Φi. We call ⟨T1, T2⟩ the reachability core of ⟨Φ1, Φ2⟩ in ĜB. Let Φ′

1 = Reach ĜB
(T1)

and Φ′
2 = Reach ĜB

(T2). We proceed as in strong decentralized synthesis: we find

Auction-Based Scheduling 165

Th ĜB
Φ′

1
(v0) and Th ĜB

Φ′
2
(v0) and return a pair of robust tenders if their sum is strictly

less than 1. Note that unlike reachability objectives, in Büchi objectives the sum
might be 1 as in Ex. 5. Moreover, as Ex. 5 illustrates, when the sum is 1, no
pair of admissible-winning tenders exist. By adapting results from the previous
section, we obtain the following.

Theorem 6 (Assume-admissible decentralized synthesis for Büchi).
Let G be a binary graph and Φ1, Φ2 be a pair of overlapping Büchi objectives. Let
⟨T1, T2⟩ be the reachability core of ⟨Φ1, Φ2⟩ in the largest admissible sub-graph
of G (for Φ1, Φ2). A pair of admissible-winning tenders exists iff T1 ∩ T2 ̸= ∅.
Moreover, AA-SYNT for Büchi objectives is in PTIME.

Like reachability (see Rem. 2), for Büchi objectives the same algorithm for
AA-SYNT for binary graphs can be used to obtain a sound solution for general
graphs, and the completeness question is left open for future work.

7 Assume-Guarantee Decentralized Synthesis

We present the assume-guarantee decentralized synthesis problem, the one with
the highest degree of synchronization among the tenders, with the benefit of the
most applicability. In this synthesis procedure, we assume that we are given a
pair of languages A1, A2 ⊆ V ω, called the assumptions. Intuitively, each tender τi
can assume Ai is fulfilled by the other tender, and, in return, needs to guarantee
that A−i is fulfilled, in addition to fulfilling own objective.

Definition 10 (Contract-abiding tenders). Let G be a graph, Φi be an ω-
regular objective, and A1, A2 be a pair of ω-regular assumptions in G. We say
a tender τi = ⟨αi, ·, ·⟩ ∈ T G fulfills Φi under the contract ⟨A1, A2⟩, written
τi |= ⟨Ai ▷ Φi ▷ A−i⟩, iff

(a) for every finite path ρ, if ρ is in pref(Ai), then ρ ·αi(ρ) ∈ pref(A1 ∩A2), and
(b) for every other compatible tender τ−i ∈ T G, we have τi ▷◁τ−i |= SafeG(pref(A1

∩ A2)) =⇒ (A−i ∧ (Ai =⇒ Φi)).

Here, each tender τionly make safety assumption on the other tender (Cond. (a)),
namely that the path does not leave the safe set pref(Ai), and in return, provides
full guarantee on A−i (Cond. (b)). Normally, safety assumptions are not enough
for fulfilling liveness guarantees and objectives [5]. But in bidding games, within
the safe set, the players can use a known bidding tactic [9] to accumulate enough
budgets from time to time to reach the liveness goals always eventually. We use
A1, A2 as ω-regular sets, though we conjecture that safety assumptions suffice.
The assume-guarantee distributed synthesis problem asks to compute a pair of
tenders that fulfill their objectives under the given contract, as stated below.

Problem 3 (AG-SYNT). Define AG-SYNT as the problem that takes as input a
tuple ⟨G, Φ1, Φ2, A1, A2⟩, where G is a graph, Φ1 and Φ2 are overlapping objectives
in G, and A1 and A2 are two ω-regular languages over V with v0 ∈ pref(A1∩A2),
and the goal is to decide whether there exists a pair of tenders τ1, τ2 ∈ T G such
that:

166 G. Avni et al.

(I) τ1 and τ2 are compatible,
(II) τ1 |= ⟨A1 ▷ Φ1 ▷ A2⟩, and

(III) τ2 |= ⟨A2 ▷ Φ2 ▷ A1⟩.

When the assumptions allow all behaviors, i.e., A1 = A2 = V ω, then AG-SYNT
is equivalent to STRONG-SYNT. On the other hand, when the assumptions allow
only each other’s objectives, i.e., A1 = Φ1 and A2 = Φ2, then we obtain a purely
cooperative synthesis algorithm. We prove that satisfaction of the contracts by
a pair of tenders will imply satisfaction of Φ1 ∩ Φ2.

Proposition 3 (Sound composition of contract-abiding tenders). Let
τ1 and τ2 be tenders that fulfill the requirements stated in Prob. 3. Then, τ1 ▷◁
τ2 |= Φ1 ∩ Φ2.

Proof. In the following, for a given language L ∈ V ω, we write SafeG(pref(L))
to denote the set of infinite paths which can always be extended to L, i.e.,{
v0v1 . . . ∈ Paths inf(G) | ∀i ≥ 0 . v0 . . . vi ∈ pref(L)

}
.

We claim that both assumptions A1, A2 will be fulfilled, from which Cond. (b)
of Def. 10 will imply satisfaction of both Φ1 and Φ2 by τ1 and τ2, respectively.
Let A = A1∩A2, and A can be decomposed into safety and liveness components
as A = SafeG(pref(A)) ∩

(
SafeG(pref(A)) =⇒ A

)
. We prove the claim on the

two components separately. Firstly, the fact that τ1 ▷◁τ2 implements pref(A) on
G can be proven by induction over the length of the generated path: The base
case is given by the assumption v0 ∈ pref(A1 ∩A2), and for every finite path ρ,
if τi wins the bidding and if ρ ∈ pref(A1∩A2) ⊂ pref(Ai) then τi needs to ensure
that the next vertex v′ satisfies ρv′ ∈ pref(Ai∩A−i) (consequence of Cond. II-III
of Prob. 3 and Cond. (a) of Def. 10), thereby implying that the path will always
remain inside pref(A1 ∩A2), proving the safety part.

For the liveness part, we use known results from Richman bidding games,
which guarantee that in an infinite horizon game, with any arbitrary positive
initial budget, players can always eventually visit any vertex that can be reached
[37]. This implies that if the invariance SafeG(pref(A1 ∩ A2)) holds, then each
tender τi can actually fulfill A−i (they are required to do so by Cond. (b) of
Def. 10) when composed with any compatible tender in the long run. Therefore,
A1 ∩A2 will be fulfilled. ⊓⊔

In bidding games literature, it is unknown how to compute strategies for ob-
jectives which can be violated if a given assumption is violated by the opponent,
like in Cond. (a) in Def. 10. The challenge stems from the lack of separation of
the set of available actions to the players, preventing us to impose assumptions
only on the opponent’s behavior. We present a practically motivated sound, but
possibly incomplete, solution for the decentralized synthesis problem, by using
a stronger way of satisfying the contract, namely by requiring each tender τi to
use actions so that the generated path remains in pref(A1∩A2) all the time. For-
mally, we say that the tender τi strongly fulfills Φi under the contract ⟨A1, A2⟩,
written τi |=s ⟨Ai ▷ Φi ▷ A−i⟩, if, instead of Cond. (a) of Def. 10, for every finite
path ρ, we have ρ · αi(ρ) ∈ pref(A1 ∩ A2), regardless of whether ρ ∈ pref(Ai)

Auction-Based Scheduling 167

or not, and moreover Cond. (b) of Def. 10 is fulfilled. It is easy to show that
τi |=s ⟨Ai ▷Φi ▷A−i⟩ implies τi |= ⟨Ai ▷Φi ▷A−i⟩, so that Φ1∩Φ2 will be fulfilled.

Similar to AA-SYNT, we extract a sub-graph G′ of G, called the largest
contract-satisfying sub-graph, whose every path belongs to pref(A1 ∩ A2), and
vice versa; we omit the construction, which follows usual automata-theoretic
procedure from the literature [4]. For example, in Ex. 4, the largest contract-
satisfying sub-graph of the graph in Fig. 1c is the one that only excludes the
vertices c and f . It follows that when the tenders strongly fulfill their objectives
under the contracts, it is guaranteed that every path always remains in G′.

Theorem 7 (Assume-guarantee decentralized synthesis). Let G =
〈
V, v0, E

〉
be a graph, Φ1 and Φ2 be a pair of overlapping ω-regular objectives, and A1 and
A2 be ω-regular assumptions. Let G′ be the largest contract-satisfying sub-graph
of G. A pair of robust tenders exist if ThG′

A2∩Φ1
(v0)+ThG′

A1∩Φ2
(v0) < 1. Moreover,

AG-SYNT is in PTIME.

8 Related Work

Shielding [35] is a framework in which a runtime monitor called a shield enforces
an unverified policy π (e.g., generated using reinforcement learning [7]) to satisfy
a given specification. A shield operates by observing, at each point in time, the
action proposed by π and can alter it, e.g., if safety is violated. The choice of
who acts at each point in time, π or the shield, can be seen as a scheduling choice
similar to our setting. However, the goals of the two approaches are different:
our goal is to design tenders for modular policy synthesis, whereas a shield
is meant as a verified “wrapper” for a complex policy. Technically, in auction-
based scheduling, the scheduling depends on the auction which is external to the
policies, whereas in shielding, it is the shield who chooses whether to override π.

In distributed reactive synthesis [42,36,32], the goal is to design a collection
of Mealy machines whose communication is dictated by a given communication
architecture. Distributed synthesis is well studied and we point to a number of
works that considered objectives that are a conjunction Φ1 ∧ Φ2 ∧ . . . of sub-
objectives Φ1, Φ2, . . . [30,21,39,31,18,6]. While there is a conceptual similarity
between our synthesis of tenders and the synthesis of Mealy machines, there
is a fundamental difference between the approaches. Namely, our composition
is based on scheduling, i.e., exactly one policy is scheduled at each point in
time, whereas in distributed synthesis, the composition of the Mealy machines
is performed in parallel, i.e., they all read and write at each point in time.

Our algorithms build upon the rich literature on bidding games on graphs.
The bidding mechanism that we focus on is called Richman bidding [38,37,10].
Other bidding mechanisms have been studied: poorman [11], taxman [13], and
all-pay [14,15]. Auction-based scheduling can be instantiated with any of these
mechanisms and the properties from bidding games transfer immediately (which
differ significantly for quantitative objectives). Of particular interest in practice
is discrete bidding, in which the granularity of the bids is restricted [27,2,16]. To

168 G. Avni et al.

the best of our knowledge, beyond our work, non-zero-sum bidding games have
only been considered in [40]. The solution concept that they consider is subgame
perfect equilibrium (SPE). While it is suitable to model the interaction between
selfish agents, we argue that it is less suitable in decentralized synthesis.

There are many works on designing optimal policies for multi-objective se-
quential decision making problems for various different system models; see the
survey by Roijers et al. [43] and works on multi-objective stochastic
games [20,21,24]. To the best of our knowledge, no prior work considers the de-
composition of the problem into individual task-dependent policies like us. Auc-
tions to distribute tasks to agents have been considered
extensively [29,44,25,28,19,26,41]. Their goal is very different: their agents bid
for tasks, that is, a bid represents an agent’s cost (e.g., in terms of resources)
for performing a task. The auction then allocates the tasks to agents so as to
minimize the individual costs, giving rise to an efficient global policy.

9 Conclusion and Future Work

We present the auction-based scheduling framework. Rather than synthesizing a
monolithic policy for a conjunction of objectives Φ1∧Φ2, we synthesize two inde-
pendent tenders for each of the objectives and compose the tenders at runtime
using auction-based scheduling. A key advantage of the framework is modu-
larity; each tender can be synthesized and modified independently. We study
three instantiations of decentralized synthesis in planning problems with vary-
ing degree of flexibility and practical usability, and develop algorithms based
on bidding games. Interestingly, we show that a pair of admissible-winning ten-
ders always exists in binary graphs for reachability objectives and they can be
found in PTIME. This positive result illustrates the strength and potential of
the auction-based scheduling framework.

There are plenty of directions of future research and we list a handful. First,
we consider only qualitative objectives and it is interesting to lift the results
to quantitative objectives, where one can quantify the fairness achieved by the
scheduling mechanism in a fine-grained manner. Moreover, it is appealing to
employ the rich literature on mean-payoff bidding games. Second, we consider a
conjunction of two objectives, and it is interesting to extend the approach to a
conjunction of multiple objectives. This will require extending the theory of bid-
ding games to the multi-player setting, which have not yet been studied. Finally,
it is particularly interesting to extend the technique of auction-based scheduling
beyond path-planning problems, for example, it is interesting to consider decen-
tralized synthesis of controllers that operate in an adversarial or probabilistic
environment. Again, the corresponding bidding games need to be studied (so far
only sure winning has been considered for bidding games played on MDPs [12]).

Acknowledgements

This work was supported in part by the ERC project ERC-2020-AdG 101020093
and by ISF grant no. 1679/21.

Auction-Based Scheduling 169

References

1. Adam, B., Amanda, F., Keisler, H.J.: Admissibility in games. In: Econometrica
(2008)

2. Aghajohari, M., Avni, G., Henzinger, T.A.: Determinacy in discrete-bidding
infinite-duration games. Log. Methods Comput. Sci. 17(1) (2021)

3. de Alfaro, L., Faella, M., Majumdar, R., Raman, V.: Code aware resource man-
agement. In: Proceedings of the 5th ACM international conference on Embedded
software. pp. 191–202 (2005)

4. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed comput-
ing 2, 117–126 (1987)

5. Amla, N., Emerson, E.A., Namjoshi, K., Trefler, R.: Assume-guarantee based com-
positional reasoning for synchronous timing diagrams. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 465–
479. Springer (2001)

6. Anand, A., Nayak, S.P., Schmuck, A.K.: Contract-based distributed synthesis in
two-objective parity games. arXiv preprint arXiv:2307.06212 (2023)

7. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
Proc. 31st CAV. pp. 630–649 (2019)

8. Avni, G., Henzinger, T.A.: A survey of bidding games on graphs. In: Proc. 31st
CONCUR. LIPIcs, vol. 171, pp. 2:1–2:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2020)

9. Avni, G., Henzinger, T.A., Chonev, V.: Infinite-duration bidding games. In: Proc.
28th CONCUR. LIPIcs, vol. 85, pp. 21:1–21:18 (2017)

10. Avni, G., Henzinger, T.A., Chonev, V.: Infinite-duration bidding games. J. ACM
66(4), 31:1–31:29 (2019)

11. Avni, G., Henzinger, T.A., Ibsen-Jensen, R.: Infinite-duration poorman-bidding
games. In: Proc. 14th WINE. LNCS, vol. 11316, pp. 21–36. Springer (2018)

12. Avni, G., Henzinger, T.A., Ibsen-Jensen, R., Novotný, P.: Bidding games on markov
decision processes. In: Proc. 13th RP. pp. 1–12 (2019)

13. Avni, G., Henzinger, T.A., Zikelic, D.: Bidding mechanisms in graph games. J.
Comput. Syst. Sci. 119, 133–144 (2021)

14. Avni, G., Ibsen-Jensen, R., Tkadlec, J.: All-pay bidding games on graphs. In: Proc.
34th AAAI. pp. 1798–1805. AAAI Press (2020)

15. Avni, G., Jecker, I., Žikelić, Ð.: Infinite-duration all-pay bidding games. In: Proc.
32nd SODA. pp. 617–636 (2021)

16. Avni, G., Sadhukhan, S.: Computing threshold budgets in discrete-bidding games.
In: Proc. 42nd FSTTCS. LIPIcs, vol. 250, pp. 30:1–30:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022)

17. Avni, G., Mallik, K., Sadhukhan, S.: Auction-based scheduling. CoRR
abs/2310.11798 (2023), https://doi.org/10.48550/arXiv.2310.11798

18. Bansal, S., De Giacomo, G., Di Stasio, A., Li, Y., Vardi, M.Y., Zhu, S.: Composi-
tional safety ltl synthesis. In: Working Conference on Verified Software: Theories,
Tools, and Experiments. pp. 1–19. Springer (2022)

19. Basile, F., Chiacchio, P., Di Marino, E.: An auction-based approach to control
automated warehouses using smart vehicles. Control Engineering Practice 90, 285–
300 (2019)

20. Basset, N., Kwiatkowska, M., Topcu, U., Wiltsche, C.: Strategy synthesis for
stochastic games with multiple long-run objectives. In: Tools and Algorithms for

170 G. Avni et al.

https://doi.org/10.48550/arXiv.2310.11798

the Construction and Analysis of Systems: 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings 21. pp.
256–271. Springer (2015)

21. Basset, N., Kwiatkowska, M., Wiltsche, C.: Compositional strategy synthesis for
stochastic games with multiple objectives. Information and Computation 261, 536–
587 (2018)

22. Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.)
STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Aachen, Germany, February 22-24, 2007, Proceedings. Lecture Notes in Com-
puter Science, vol. 4393, pp. 188–199. Springer (2007)

23. Brenguier, R., Raskin, J.F., Sankur, O.: Assume-admissible synthesis. arXiv
preprint arXiv:1507.00623 (2015)

24. Chatterjee, K., Piterman, N.: Combinations of qualitative winning for stochastic
parity games. arXiv preprint arXiv:1804.03453 (2018)

25. Chong, C.Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and chal-
lenges. Proceedings of the IEEE 91(8), 1247–1256 (2003)

26. De Ryck, M., Versteyhe, M., Debrouwere, F.: Automated guided vehicle systems,
state-of-the-art control algorithms and techniques. Journal of Manufacturing Sys-
tems 54, 152–173 (2020)

27. Develin, M., Payne, S.: Discrete bidding games. The Electronic Journal of Combi-
natorics 17(1), R85 (2010)

28. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination:
A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)

29. Farber, D.J., Larson, K.C.: The structure of a distributed computing system–
software. In: Proceedings of the Symposium on Computer-communications Net-
works and Teletraffic. pp. 539–545 (1972)

30. Filiot, E., Jin, N., Raskin, J.F.: Compositional algorithms for ltl synthesis. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 112–127. Springer (2010)

31. Finkbeiner, B., Passing, N.: Compositional synthesis of modular systems. Innova-
tions in Systems and Software Engineering 18(3), 455–469 (2022)

32. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: 20th Annual IEEE
Symposium on Logic in Computer Science (LICS’05). pp. 321–330. IEEE (2005)

33. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Multi-
objective omega-regular reinforcement learning. Formal Aspects of Computing
(2023)

34. Houli, D., Zhiheng, L., Yi, Z.: Multiobjective reinforcement learning for traffic
signal control using vehicular ad hoc network. EURASIP journal on advances in
signal processing 2010, 1–7 (2010)

35. Könighofer, B., Alshiekh, M., Bloem, R., Humphrey, L., Könighofer, R., Topcu,
U., Wang, C.: Shield synthesis. Formal Methods in System Design 51(2), 332–361
(2017)

36. Kupermann, O., Varfi, M.: Synthesizing distributed systems. In: Proceedings 16th
Annual IEEE Symposium on Logic in Computer Science. pp. 389–398. IEEE (2001)

37. Lazarus, A.J., Loeb, D.E., Propp, J.G., Stromquist, W.R., Ullman, D.H.: Combi-
natorial games under auction play. Games and Economic Behavior 27(2), 229–264
(1999)

38. Lazarus, A.J., Loeb, D.E., Propp, J.G., Ullman, D.: Richman games. Games of No
Chance 29, 439–449 (1996)

Auction-Based Scheduling 171

39. Majumdar, R., Mallik, K., Schmuck, A.K., Zufferey, D.: Assume–guarantee dis-
tributed synthesis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39(11), 3215–3226 (2020)

40. Meir, R., Kalai, G., Tennenholtz, M.: Bidding games and efficient allocations.
Games and Economic Behavior 112, 166–193 (2018)

41. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing sys-
tems. Journal of scheduling 12, 417–431 (2009)

42. Pneuli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
pp. 746–757. IEEE (1990)

43. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective
sequential decision-making. Journal of Artificial Intelligence Research 48, 67–113
(2013)

44. Smith, R.G.: The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on computers 29(12), 1104–1113
(1980)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

172 G. Avni et al.

http://creativecommons.org/licenses/by/4.0/

Most General Winning Secure Equilibria
Synthesis in Graph Games⋆

Max Planck Institute for Software Systems, Kaiserslautern, Germany
{sanayak,akschmuck}@mpi-sws.org

Abstract This paper considers the problem of co-synthesis in k-player
games over a finite graph where each player has an individual ω-regular
specification ϕi. In this context, a secure equilibrium (SE) is a Nash
equilibrium w.r.t. the lexicographically ordered objectives of each player
to first satisfy their own specification, and second, to falsify other players’
specifications. A winning secure equilibrium (WSE) is an SE strategy
profile (πi)i∈[1;k] that ensures the specification ϕ ∶= ⋀i∈[1;k] ϕi if no player
deviates from their strategy πi. Distributed implementations generated
from a WSE make components act rationally by ensuring that a deviation
from the WSE strategy profile is immediately punished by a retaliating
strategy that makes the involved players lose.
In this paper, we move from deviation punishment in WSE-based imple-
mentations to a distributed, assume-guarantee based realization of WSE.
This shift is obtained by generalizing WSE from strategy profiles to speci-
fication profiles (φi)i∈[1;k] with ⋀i∈[1;k] φi = ϕ, which we call most general
winning secure equilibria (GWSE). Such GWSE have the property that
each player can individually pick a strategy πi winning for φi (against
all other players) and all resulting strategy profiles (πi)i∈[1;k] are guar-
anteed to be a WSE. The obtained flexibility in players’ strategy choices
can be utilized for robustness and adaptability of local implementations.
Concretely, our contribution is three-fold: (1) we formalize GWSE for
k-player games over finite graphs, where each player has an ω-regular
specification ϕi; (2) we devise an iterative semi-algorithm for GWSE
synthesis in such games, and (3) obtain an exponential-time algorithm
for GWSE synthesis with parity specifications ϕi.

Keywords: Distributed Synthesis, Parity Games, Secure Equilibria, Assume-
Guarantee Contracts

1 Introduction

Games over graphs provide a well known abstraction for many challenging correct-
by-construction synthesis problems for software and hardware in embedded cyber-
physical applications. In particular, the correct-by-construction co-synthesis of
⋆ Authors are supported by the DFG project 389792660 TRR 248-CPEC. Additionally

A.-K. Schmuck is supported by the DFG project SCHM 3541/1-1.
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 173–193, 2024.
https://doi.org/10.1007/978-3-031-57256-2_9

Satya Prakash Nayak(B) and Anne-Kathrin Schmuck

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_9&domain=pdf

multiple interacting (reactive) components – each with its own correctness spec-
ification – poses, as of today, severe challenges in automated system design.

While many of these challenges arise from the fact that not every component
has the same information about all relevant variables in the system, even in
the seemingly simple setting of full information – where all components see the
valuation to all variables – finding the right balance between centralized and local
reasoning for co-synthesis is surprisingly challenging. While assuming all players
to cooperate might demand too much commitment from individual components,
a fully adversarial setting where all other components are assumed to harm a
local implementation (independently of their own objective) might not capture
a realistic scenario either.

To address this issue, starting with the seminal work of Chatterjee et al. [13],
the concept of rationality – stemming from classical game theory – was brought
to graph games in order to formalize a more realistic model for interaction of mul-
tiple components in co-synthesis. The main conceptual contribution of [13] was
the introduction of secure equilibria (SE) – a special sub-class of Nash equilibria
– given as particular strategy profiles. Intuitively, an SE is a Nash equilibrium
w.r.t. the lexicographically ordered objectives of each player to first satisfy their
own specification, and only second, to falsify other players’ specifications. More
specifically, it is a strategy profile, i.e., a tuple (πi)i, with πi being the strategy
of Player i, such that no player can improve w.r.t. their lexicographically ordered
objective by deviating from this strategy.

As stated by [13, p.68], an SE can thus be interpreted as a contract between
the players which enforces cooperation: any unilateral selfish deviation by one
player cannot put the other players at a disadvantage if they follow the SE.
While this property makes SE very desirable, their main draw-back, as most
prominently pointed out by [5], is their restriction to a single strategy profile.
This, in combination with classical reactive synthesis engines typically prefer-
ring small and goal-oriented strategies, incentivizes “immediate punishment” of
deviations from an SE strategy profile in the final implementation.
Motivating Example. To illustrate this effect, let us consider the game de-
picted in Fig. 1, taken from [13]. Here, an SE can be described as follows: if
Player 1 always chooses v3 → v1 (forming π1) and Player 2 always chooses v0 → v2
and v2 → v3 (forming π2), then they both satisfy their specifications; if Player 1
deviates by choosing v3 → v2 (risking falsification of ϕ2), then Player 2 can retal-
iate by choosing v2 → v4 (ensuring falsification of both ϕi); similarly, if Player 2
deviates by choosing v0 → v3 (risking falsification of ϕ1), then Player 1 retali-
ate by choosing v3 → v4 (ensuring falsification of both ϕi). Clearly, the strategy
profile (π1, π2) is an SE. It is, in particular, a winning SE as both players sat-

v0 v2

v1 v3 v4

Figure 1: A two-player game with Player 1’s vertices (squares), Player 2’s vertices
(circles) where Player i’s specification ϕi = ◻◊vi is to visit vi infinitely often.

174 S. P. Nayak and A. Schmuck

Most General Winning Secure Equilibria Synthesis in Graph Games 175

isfy their specifications when following it. However, as the outlined retaliating
strategies (π′1, π′2) are also part of the final implementation generated from this
SE, any play that deviates from (π1, π2) only once, makes the game end up in a
loop at v4 resulting in neither player satisfying their objectives. Intuitively, this
way of implementing SE-based strategies makes components act rationally by
ensuring that a deviation from the contract is immediately punished.

Having the interpretation of an SE as a contract in mind, it is however very
appealing to think about the realization of this contract in the final implemen-
tation in a more permissive way. Intuitively, in the game depicted in Fig. 1, both
players can satisfy their specifications ϕi without the help by the other player, as
long as the play does not go to v4. In particular, whenever both players indepen-
dently chose a strategy πi which ensures that they (i) never take their edge to v4
and (ii) satisfy ϕi for every strategy π−i of the other player that also never takes
their edge to v4, forms an SE strategy profile (π1, π2). These minimal coopera-
tion obligations for an SE can be interpreted as a specification profile (φ1, φ2),
s.t. φ1 ∶= ψ1∧(ψ2 ⇒ ϕ1) and φ2 ∶= ψ2∧(ψ1 ⇒ ϕ2), where ψ1 = ◻¬(v3∧◯v4) and
ψ2 = ◻¬(v2 ∧◯v4) express the above discussed assumption that Player i does
not move to v4 from their vertex. It turns out, that this new specification profile
(φ1, φ2) has three nice properties: (i) it is most general meaning it does not lose
any cooperative solution, i.e., ϕ1 ∧ϕ2 = φ1 ∧φ2 , (ii) it is realizable, i.e., Player i
has a strategy πi that satisfies φi in a zero-sum sense, (i.e., no matter what the
other player does) and, most importantly (iii) it is secure (winning), i.e., every
strategy profile (π1, π2), where Player i’s strategy πi satisfies φi (in a zero-sum
sense) is a winning SE. While properties (i) and (iii) motivated us to call the
set of new specifications a most general winning secure equilibrium (GWSE),
property (ii) ensures that any specification φi from this tuple is locally and fully
independently realizable by every component. Conceptually, this allows us to
move from deviation-punishment in SE-based implementations to a distributed,
assume-guarantee based realization of SE.
Contribution. By moving from strategy profiles (WSE) to specification profiles
(GWSE) for SE realizations, our approach takes the conceptualisation of ratio-
nality for distributed synthesis to an extreme: as we are in the position to design
every component (as it is a computer system not a human that actually acts ra-
tionally) we can enforce that implementations respect the new specifications φi.
We only use the concept of rationality encoded in WSE to automatically obtain
meaningful and implementable distributed specifications φi for this co-design
process. Thereby the implementation of an accompanying punishment mecha-
nism to enforce rationality of players becomes obsolete. The obtained flexibility
in players’ strategy choices can be utilized for robustness and adaptability of
local implementations, which makes GWSE particularly suited for embedded
systems applications.

Concretely, our contribution is three-fold: (1) We formalize GWSE for k-
player games over finite graphs, where each player has an ω-regular specification.
(2) We devise an iterative semi-algorithm1 for GWSE synthesis under ω-regular
1 A semi-algorithm is an algorithm that is not guaranteed to halt on all inputs.

specifications. (3) We give a (sound but incomplete) exponential-time algorithm
for GWSE synthesis under parity specifications.
Other Related Work. After the introduction of secure equilibria (SE) by Chat-
terjee et al. [13], there has been several efforts on extending the notion to other
classes of games, e.g., games with sup, inf, lim sup, lim inf, and mean-payoff
measures [9], multi-player games with probabilistic transitions [17] or quanti-
tative reachability games [8]. Furthermore, a variant of secure equilibria, called
Doomsday equilibria was studied in [12], where if any coalition of players deviates
and violates one players’ objective, then the objective of every player is violated.
Moreover, the notion of secure equilibria has been applied effectively in the syn-
thesis of mutual-exclusion protocols [15,4] and fair-exchange protocols [21,23].

Motivated by similar insights, other concepts of rationality have also been
introduced in multi-player games, e.g. subgame perfect equilibria [29,7,28,10,6]
or rational synthesis [20,22,18]. Similar to the implementations of SE by [13],
these works restrict implementations to a single strategy profile. In contrast,
our work introduces a more flexible concept of rationality that is closely re-
lated to contract-based distributed synthesis, as in [24,19,16,2]. Here, an assume-
guarantee contract is synthesized, such that every strategy realizing the guaran-
tee is ensured to win whenever the other players satisfy the assumption. While
this is conceptually similar to our synthesis of GWSE, these works do not con-
sider the players to be adversarial, and hence, there is no notion of equilibria.

To the best of our knowledge, the only other work that also combines flexibil-
ity with equilibria is assume-admissible (AA) synthesis [5]. Their work utilizes
a different, incomparable definition of rationality based on a dominance order.
Both approaches are incomparable – there exist co-synthesis problems where our
approach successfully synthesizes a GWSE and no AA contract exists, and vice
versa (see Ex. 1 for details). Conceptually, AA contracts still require rational
behaviour of players within the contract, while our approach only uses rational-
ity as a concept to synthesize meaningful local specifications which can then be
implemented in an arbitrary (non-rational) manner. We believe that this is a
superior strength of our approach compared to AA synthesis.

2 Preliminaries

Notation. We use N to denote the set of natural numbers including zero. Given
a, b ∈ N with a < b, we use [a; b] to denote the set {n ∈ N ∣ a ≤ n ≤ b}. For any
given set [a; b], we write i ∈even [a; b] and i ∈odd [a; b] as short hand for i ∈
[a; b] ∩ {0,2,4, . . .} and i ∈ [a; b] ∩ {1,3,5, . . .} respectively. For a finite alphabet
Σ, Σ∗ and Σω denote the set of finite and infinite words over Σ, respectively.
Linear Temporal Logic (LTL). Given a finite set AP of atomic propositions,
linear temporal logic (LTL) formulas over AP are defined by the grammar:

ϕ ∶= p ∈ AP ∣ ϕ ∨ ϕ ∣ ¬ϕ ∣◯ϕ ∣ ϕ U ϕ,

where ∨, ¬, ◯, and U denotes the operators disjunction, negation, next, and
until, respectively. Furthermore, we use the usual derived operators, True = p∨¬p,

176 S. P. Nayak and A. Schmuck

False = ¬True, conjunction ϕ∧ϕ′ = ¬(¬ϕ∨¬ϕ′), implication ϕ⇒ ϕ′ = ¬ϕ∨ϕ′, and
other temporal operators such as finally ◊ϕ = True U ϕ and globally ◻ϕ = ¬◊¬ϕ.
The semantics of LTL formulas are defined as usual (see standard textbooks [3]).
Game Graphs. A k-player (turn-based) game graph is a tuple G = (V,E, v0)
where (V,E, v0) is a finite directed graph with vertices V and edges E, and
v0 ∈ V is an initial vertex. For such a game graph, let P = [1;k] be the set of
players such that V = ⋃i∈P Vi is partioned into vertices of k players in P. We write
Ei, i ∈ P, to denote the edges from Player i’s vertices, i.e., Ei = E ∩ (Vi × V).
Further, we write V−i and E−i to denote the set ⋃j≠i Vj and ⋃j≠iEj , respectively.
A play from a vertex u0 is a finite or infinite sequence of vertices ρ = u0u1 . . .
with (uj , uj+1) ∈ E for all j ≥ 0.
Specifications. Given a game graph G, we consider specifications specified us-
ing a LTL formula Φ over the vertex set V , that is, we consider LTL formulas
whose atomic propositions are sets of vertices V . In this case the set of desired
infinite plays is given by the semantics of ϕ over G, which is an ω-regular lan-
guage L(G,ϕ) ⊆ V ω. We just write L(ϕ) to denote this language when the game
graph G is clear in the context. Every game graph with an arbitrary ω-regular
set of desired infinite plays can be reduced to a game graph (possibly with an
extended set of vertices) with an LTL objective, as above. The standard defini-
tions of ω-regular languages are omitted for brevity and can be found in standard
textbooks [3]. To simplify notation we use e = (u, v) in LTL formulas as syntactic
sugar for u ∧◯v.
Games and Strategies. A k-player game is a pair G = (G, (ϕi)i∈P) where G is
a k-player game graph and each ϕi is an objective for Player i over G. A strategy
of Player i, i ∈ P, is a function πi∶V ∗Vi → V such that for every ρv ∈ V ∗Vi, it
holds that (v, πi(ρv)) ∈ E. A strategy profile for a set of players P′ ⊆ P is a tuple
Π = (πi)i∈P′ of strategies, one for each player in P′. To simplify notation, we
write P−i and π−i to denote the set P ∖ {i} and their strategy profile (πj)j∈P∖{i},
respectively. Given a strategy profile (πi)i∈P′ , we say that a play ρ = u0u1 . . . is
(πi)i∈P′-play if for every i ∈ P′ and for all ℓ ≥ 1, it holds that uℓ−1 ∈ Vi implies
uℓ = πi(u0 . . . uℓ−1).
Satisfying Specifications. Given a game graph G and a specification ϕ, a
play ρ satisfies ϕ if ρ ∈ L(ϕ). A strategy profile (πi)i∈P′ satisfies/winning w.r.t.
a specification ϕ, from a vertex v, denoted by (πi)i∈P′ ⊧v ϕ, if every (πi)i∈P′-play
from v satifies ϕ. We just write (πi)i∈P′ ⊧ ϕ if v is the initial vertex. We collect all
vertices from which there exists a strategy profile for players in P′ that satisfies ϕ
in the winning region2 ⟪P′⟫(G,ϕ). We just write ⟪P′⟫ϕ to denote this set if game
graph G is clear in the context. Furthermore, we write ϕ−i to denote ⋀j∈P−i

ϕj .
Parity Specifications. Give a game graph G = (V,E, v0), a specification ϕ
is called parity if ϕ = Parity(Ω) ∶= ⋀i∈odd[0;d] (◻◊Ωi ⇒ ⋁j∈even[i+1;d] ◻◊Ωj), with
Ωi = {v ∈ V ∣ Ω(v) = i} for some priority function Ω ∶ V → [0;d] that assigns
each vertex a priority. A play satisfies such a specification if the maximum of
priorities seen infinitely often is even.
2 Slightly abusing notation, we write ⟪i⟫ϕ for singleton sets of players P′ = {i}.

Most General Winning Secure Equilibria Synthesis in Graph Games 177

3 Most General Winning Secure Equilibria
This section formalizes most general winning secure equilibria (GWSE). In order
to do so, we first recall the notion of secure equilibria from [13].
Secure Equilibria. Given a k-player game G = (G, (ϕi)i∈P) and a strategy
profile Π ∶= (πi)i∈P one can define a payoff profile, denoted by payoff(Π), as the
tuple (pi)i∈P s.t. pi = 1 iff Π ⊧ ϕi. With this, we can define a Player j preference
order ≺j on payoff profiles lexicographiacally, s.t.
(pi)i∈P ≺j (p′i)i∈P iff (pj < p′j) ∨ ((pj = p′j) ∧ (∀i ≠ j.pi ≥ p′i) ∧ (∃i ≠ j.pi > p′i)).

Intuitively, this preference order captures the fact that every player’s main ob-
jective is to satisfy their own specification ϕi, and, as a secondary objective,
falsify the specifications of the other players.
Definition 1. Given a k-player game G = (G, (ϕi)i∈P), a strategy profile Π ∶=
(πi)i∈P is a secure equilibrium (SE) if for all i ∈ P, there does not exist a strategy
π′i of Player i such that payoff(Π) ≺i payoff(π′i, π−i).

It is well known that every secure equilibrium is also a nash equilibrium in
the classical sense. Within this paper, we only consider winning secure equilibria
(WSE) i.e., SE with the payoff profile (pi = 1)i∈P. As WSE have a trivial payoff
profile, they can be characterized without referring to payoffs as formalized next.
Definition 2. Give a k-player game (G, (ϕi)i∈P), a winning secure equilibrium
(WSE) is a strategy profile (πi)i∈P such that (i) (πi)i∈P ⊧ ⋀i∈P ϕi; and (ii) for
every strategy π′i of Player i, if (π′i, π−i) /⊧ ϕ−i holds, then (π′i, π−i) /⊧ ϕi holds.
Intuitively, item i ensures that the strategy profile satisfies all player’s objective,
whereas item ii ensures that no player can improve, i.e., falsify another player’s
objective without falsifying their own objective, by deviating from the prescribed
strategy.
Most General Winning Secure Equilibria. As illustrated by the motivating
example in Sec. 1, we aim at generalizing WSE from single strategy profiles to
specification profiles that capture an infinite number of WSE. These specification
profiles (φi)i∈P, which we call most general winning secure equilibria (GWSE),
allow each player to locally (and fully independently) pick a strategy πi that is
winning for φi (in a zero-sum sense). It is then guaranteed that any resulting
strategy profile (πi)i∈P is indeed a WSE. This is formalized next.
Definition 3. Give a k-player game (G, (ϕi)i∈P), a tuple (φi)i∈P of specifications
is said to be a most general winning secure equilibrium (GWSE) if it is

(i) (most) general: L(⋀i∈P φi) = L(⋀i∈P ϕi);
(ii) realizable: v0 ∈ ⟪i⟫φi for all i ∈ P; and

(iii) secure (winning): every strategy profile (πi)i∈P with πi ⊧ φi is a WSE.
Intuitively, generality ensures that the transformation of the specifications (ϕi)i∈P
into new specifications (φi)i∈P does not lose any winning play. Further, realiz-
ability ensures that every single player can enforce φi (without the help of other
players) from the initial vertex. Finally, security ensures that any locally chosen
strategy πi winning for φi fors a strategy profile which is indeed a WSE.

178 S. P. Nayak and A. Schmuck

4 Computing GWSE in ω-regular Games

This section proposes an iterative semi-algorithm3 to compute GWSE in this
paper which utilizes the concept of adequately permissive assumptions (APA)
introduced by Anand et al. [1]. Given a k-player game (G, (ϕi)i∈P), an APA is a
specification ψi that collects all Player i strategies which allow for a cooperative
solution if other players cooperate. It therefore overapproximates the set of all
Player i strategies which could possibly form a WSE with the other players. As
a consequence, the intersection ⋀i∈P ψi is an overapproximation of a GWSE. In
order to refine this approximation, the next computation round can now use the
APA’s of other players when computing new local APA’s. In order to properly
formalize this idea, we first recall the concept of APA’s from [1].

4.1 Adequately Permissive Assumptions

Following [1], we define an adequately permissive assumption (APA) as follows.

Definition 4. Given a k-player game graph G = (V,E, v0) and a specification ϕ,
we say that a specification ψi is an adequately permissive assumption (APA) on
Player i for ϕ if it is:

(i) sufficient: there exists a strategy profile π−i such that for every Player i
strategy πi with πi ⊧ ψi, we have (πi, π−i) ⊧ ϕ;

(ii) implementable: ⟪i⟫ψi = V ; and
(iii) permissive: L(ψi) ⊇ L(ϕ).

The intuition behind an APA is that even if a player can not realize a spec-
ification ϕ, they should at least satisfy an APA on them as it will allow them
to realize ϕ if the other players are willing to help (sufficiency). Further, such a
behavior by Player i does not prevent any WSE (permissiveness), and Player i
can individually choose to follow an APA (implementability).

Remark 1. While Def. 4 is an almost direct adaptation from [1, Def. 2-5] to k-
player games, it has a couple of noteable differences. First, Anand et al. define
APA’s for 2-player games and, conceptually, use APA’s to constraint the oppo-
nents moves. While we can simply view the k-player game as a 2-player game
between the protagonist Player i and (the collection of) its opponents P−i, we
will use the computed assumption ψi to constrain the protagonist’s moves (not
the opponent) in Def. 4. Second, the sufficiency condition for an APA in [1, Def.
2] does not depend on an initial vertex. An APA always exists in their setting
(possibly being True when ⟪P⟫ϕ = ∅). In contrast, the k-player games in this
paper have a designated initial vertex, hence, an APA only exists iff v0 ∈ ⟪P⟫ϕ.

With this insight, we can use the algorithm from [1] to compute APA’s for
parity specificatios ϕ = Parity(Ω) in polynomial time.
3 A semi-algorithm is an algorithm that is not guaranteed to halt on all inputs.

Most General Winning Secure Equilibria Synthesis in Graph Games 179

Lemma 1 ([1, Thm. 4]). Given a k-player game graph G = (V,E, v0) and a
parity specification ϕ = Parity(Ω), an APA on Player i for ϕ can be computed,
if one exists, in time O(∣V ∣4).
Let us write ComputeAPA(G,ϕ, i) to denote the procedure that returns this
APA if it exists; otherwise, it returns False.
Remark 2. We note that Lem. 1 also gives a method to compute APA’s for
games with LTL- or ω-regular specifications as such games can be converted
into parity games (possibly with an extended game graph) by standard meth-
ods [3]. Therefore, with a slight abuse of notation, we will also call the algorithm
ComputeAPA(G,ϕ, i) if ϕ is not a parity specification, which the understand-
ing, that the game is always converted into a parity game first. This might incur
an exponential blowup of the state space. As we call ComputeAPA repeatedly
to compute GWSE’s, this blowup might cause non-termination (see Sec. 4.6 for
details). In order to obtain a (non-optimal but) terminating algorithm for GWSE
computation, we will mitigate this blowup later in Sec. 5.

4.2 Iterative Computation of APA’s
Given the results of the previous section, we can use the algorithm ComputeAPA
on a given game (G, (ϕi)i∈P) to compute APA’s for each player, i.e.,
ψi ∶= ComputeAPA(G,ϕi, i). Intuitively, ψi overapproximates the set of all
Player i strategies which could possibly form a WSE with the other players. As
a consequence, the intersection ⋀i∈P ψi is an overapproximation of the GWSE.

As outlined previously, we will iteratively refine these computed APA’s to
finally compute the GWSE. In order to do so, we want to condition the compu-
tation of the next-round APA ψ′i on the previous-round APA’s of all other players
ψ−i, as any secure strategy of players in P−i is incentivized to comply with ψ−i.
The most intuitive method to do this is to simply consider ψ−i ⇒ ϕi as the spec-
ification for APA computation in the next round. However, the way sufficiency
is formulated for APA’s prevents this approach, as the implication ψ−i ⇒ ϕi is
true if ψ−i is false. As there obviously exists a strategy profile π−i which violates
ψ−i, the sufficiency condition becomes meaningless for this specification.

However, as we know that ψ−i are APA’s, their implementability constraint
(Def. 4.ii) ensures that Player i can neither enforce nor falsify them. Therefore, a
new specification ϕ′i ∶= ψ−i∧ϕi still puts all the burden of satisfying ψ−i to players
in P−i and hence, implicitly constrains the choices of P−i to strategies complying
with ψ−i for sufficiency of the new APA. However, using ϕ′i ∶= ψ−i ∧ ϕi indeed
weakens the permissiveness requirement L(ψ′i) ⊇ L(ϕ ∧ ψ−i), i.e., the new APA
ψ′i needs to be more general than the specification ϕ, only when the assump-
tion ψ−i holds. With these refined conditions for sufficiency and permissiveness,
it becomes evident that an APA for specification ϕ under assumption ψ−i is
equivalent to an APA for the modified specification ψ−i∧ϕ, as formalized below.
Definition 5. Given a k-player game, a specification ϕi and an assumption ψ−i,
we say that the specification ψi is an APA on Player i for ϕi under ψ−i if it is
an APA on Player i for specification ψ−i ∧ ϕ.

180 S. P. Nayak and A. Schmuck

Following Rem. 2, we denote by ComputeAPA(G,ψ−i ∧ ϕ, i) the algorithm
which computes APA’s on Player i for ϕ under assumptions ψ−i, even though
ψ−i ∧ ϕ is typically not a parity specification over G anymore.

4.3 Computing GWSE

Using all the intuition discussed before, we now give a semi-algorithm in Algo. 1
to compute GWSE for k-player games with ω-regular specifications for all play-
ers. The main idea is to iteratively compute assumptions (ψi)i∈P on every player
and check if they are stable enough so that every player can satisfy their actual
specification ϕi under the assumption ψ−i. If not, then, in the next iteration,
we compute new assumptions (ψ′i)i∈P that are stricter than earlier ones, i.e.,
L(ψ′i) ⊆ L(ψi) but still more general than their specifications under the earlier
assumption, i.e., L(ψ′i) ⊇ L(ψ−i ∧ ϕi).

Algorithm 1 ComputeGE(G)
Require: A k-player game G with game graph G = (V,E, v0) and parity specifications
(ϕi)i∈P.

Ensure: Either a GWSE (φi)i∈P or False.
1: ψi ← True ∀i ∈ P
2: return RecursiveGE(G, (ψi)i∈P)

3: procedure RecursiveGE(G, (ψi)i∈P)
4: φi ← ψi ∧ (ψ−i ⇒ ϕi) ∀i ∈ P
5: if v0 ∈ ⋂i∈P⟪i⟫φi then
6: return (φi)i∈P

7: ψ′i ← ψi ∧ComputeAPA(G,ψ−i ∧ ϕi, i) ∀i ∈ P
8: if ψ′i = ψi for all i ∈ P then
9: return False

10: return RecursiveGE(G, (ψ′i)i∈P)

More specifically, we start with ψi = True for each i ∈ P in the first it-
eration (line 1), and then in every iteration, we want each player to satisfy
φi = ψi ∧ (ψ−i ⇒ ϕi) (computed in line 4) by themselves, i.e., always satisfy
their assumption ψi and satisfy specification ϕi whenever others satisfy their
assumptions ψ−i. Note that, in this part of the algorithm it is correct to use this
implication-style specification, as it is used for solving a zero-sum 2-player game
between Player i and its opponent (i.e., the collection of all other players in
P−i) for the specification φi. The winning regions ⟪i⟫φi for each such zero-sum
2-player game are then intersected in line 5 to obtain the winning region that
is achievable by any strategy profile (πi)i∈P where πi is a winning strategy of
Player i w.r.t. φi (in a zero-sum sense). If this resulting winning region contains
the initial vertex, we return the specification (φi)i∈P (line 6), which is proven to
indeed be a GWSE in Thm. 1.

If this is not the case, we keep on strengthening APA’s, as discussed in
Sec. 4.2, to make the above mentioned zero-sum 2-player games easier to solve (as

Most General Winning Secure Equilibria Synthesis in Graph Games 181

they can rely on tighter assumptions now). Hence, we call ComputeAPA with
the modified specifications ϕ′i ∶= ψ−i∧ϕi for all players (line 7). If this assumption
refinement step was unsuccessful, i.e., assumptions have not changed (line 8), we
give up and return False. Otherwise, we recheck the termination condition for
the newly computed APA’s.

Example 1. Before proving the correctness of the (semi) Algo. 1, let us first
illustrate the steps using an example depicted in Fig. 2. In line 1, we begin with
ψ1 = ψ2 = True and run the recursive procedure RecursiveGE in line 2.

Within the first iteration of RecursiveGE, in line 4, we set φi = ϕi as
ψi = True for all i ∈ [1; 2]. Then, in line 5, we check whether each player can satisfy
φi = ϕi without cooperation (i.e., in a zero-sum sense), from the initial vertex v0.
As no player can ensure that, we move to line 7. Here, as ψi = True for i ∈ [1; 2],
the new assumptions ψ′i is an APA computed by ComputeAPA(G,ϕi, i). This
gives us ψ′1 = ◻¬(e12 ∧ e34) ∧ ◊ ◻ ¬e10 and ψ′2 = ◊ ◻ ¬e00, where eij = vi ∧◯vj .
Intuitively, ψ′1 ensures that edges, i.e., v1 → v2 and v3 → v4, leading to the region
from which it is not possible to satisfy ϕ1 are never taken; and the edge, i.e.,
v1 → v0, restricting the play to progress towards target vertex v5 (as in ϕ1) is
eventually not taken. Similarly, ψ2 ensures that the edge v0 → v0 is eventually
not taken that ensures progress towards ϕ2’s target vertices {v4, v5}. As ψ′i ≠ ψi

for all i ∈ [1; 2] in line 8, we go to the next iteration of RecursiveGE.
In the second iteration, we again compute the new potential GWSE (φ1, φ2)

with φi = ψi ∧ (ψ−i ⇒ ϕi) in line 4. In line 5, we find that v0 /∈ ⟪1⟫φ1. That is
because Player 1 cannot ensure satisfying ϕ1 even when Player 2 satisfies ψ2 as
Player 2 can always use edge v0 → v3 leading to the play (v0v3)ω /⊧ ϕ2. Hence,
in line 7, the APA under ψ1 gives a more restricted assumptions on Player 2:
ψ′2 = ◊◻¬(e00∧e03). As the assumption ψ2 on Player 2 was very weak, the APA
for Player 1 under ψ2 results in the same assumption as ψ1, and hence, ψ′1 = ψ1.
Then, we move to the third iteration.

In this iteration, we find that both players can indeed satisfy their new
specification φi from the initial vertex in line 5. Hence, we finally return a
GWSE (φ1, φ2) with φi = ψi ∧ (ψ−i ⇒ ϕi) where ψ2 = ◊ ◻ ¬(e00 ∧ e03) and
ψ1 = ◻¬(e12 ∧ e34) ∧ ◊ ◻ ¬(e10).

Remark 3. Let us remark that for the game depicted in Fig. 2, assume-admissible
(AA) synthesis [5] has no solution. AA-synthesis utilizes a different, incompara-
ble definition of rationality based on a dominance order. In their framework, a

v0 v1

v2

v5v3v4

Figure 2: A two-player game with initial vertex v0, Player 1’s vertices (squares),
Player 2’s vertices (circles) and specifications ϕ1 = ◊◻{v5} and ϕ2 = ◊◻{v4, v5}.

182 S. P. Nayak and A. Schmuck

Player i strategy πi is said to be dominated by π′i if the set of strategy profiles
that π′ is winning against (i.e., satisfies Player i’s specification) is strictly larger
than that of π. A strategy not dominated by any other strategy is called admis-
sible. In AA-synthesis, one needs to find an admissible strategy πi for Player i
such that for every admissible strategy π′−i for the other player, (πi, π

′
−i) ⊧ ϕi.

In this example, Player 1 has only one admissible strategy π1 that always uses
v1 → v5 and v3 → v0. However, with the admissible strategy π′2 of Player 2 that
always uses v0 → v3, we have (π1, π

′
2) /⊧ ϕ1.

The next theorem shows that Algo. 1 is indeed sound.
Theorem 1. Let G be a k-player game with game graph G = (V,E, v0) and
parity specifications (ϕi)i∈P such that (φ∗i)i∈P = ComputeGE(G), then (φ∗i)i∈P
is a GWSE for G.
Proof. First, observe that ComputeGE did not return False by the premise
of the theorem. So, if ComputeAPA returned False in line 7, i.e., ψ′i = False
for some i ∈ P, in some n-th iteration, then in the n + 1-th iteration, we have
ψi = False and ψ−j = False for all j ∈ P−i. So, it holds that v0 /∈ ⟪i⟫φi = ⟪i⟫False = ∅
and hence, it does not return in line 6. Furthermore, as ψ−j ∧ ϕj = False for
all j ∈ P−i, by sufficiency, ComputeAPA returns False for all j ∈ P−i. Hence,
ψ′j = False for all j ∈ P. This would imply (by similar arguments), in (n + 2)-th
iteration, ψ′j = ψj = False for all j ∈ P and hence, the algorithm would return False.
Therefore, we can assume ComputeAPA never returned False in any iteration.

Now, let us claim that in every iteration of RecursiveGE, for all i ∈ P:

(claim 1) L(ψi) ⊇ L(⋀j∈P ϕj), and (claim 2) L(ψi) ⊇ L(ψ−i ∧ ϕi).
We will prove the claim using induction on the number of itereative calls to
RecursiveGE. For the base case, observe ψi = True for all i ∈ P, hence, the
claim holds trivially. For the induction step, assume that claim 1+2 hold in the
n-th iteration. Then, for all i ∈ P, as ψ′i (computed in line 7) is ψ in the next
iteration, it suffices to show that L(ψ′i) ⊇ L(⋀j∈P ϕj) and L(ψ′i) ⊇ L(ψ′−i ∧ ϕi).

By permissiveness of APA (as in Def. 4), for all i ∈ P, we have
L(ComputeAPA(G,ψ−i ∧ ϕi, i)) ⊇ L(ψ−i) ∩ L(ϕi). Hence, by line 7, for all
i ∈ P, we have L(ψ′i) ⊇ L(ψi)∩L(ψ−i)∩L(ϕi) = (⋂j∈PL(ψj))∩L(ϕi), and hence,
by claim 1, L(ψ′i) ⊇ L(⋀j∈P ϕj).

Similarly, for all i ∈ P, as L(ψ′i) ⊇ L(ψi) ∩ L(ψ−i) ∩ L(ϕi), by claim 2, we
also have L(ψ′i) ⊇ L(ψ−i) ∩ L(ϕi). Furthermore, by line 7, for all j ∈ P, we
have L(ψj) ⊇ L(ψ′j), and hence, L(ψ−i) = ⋂j≠iL(ψj) ⊇ ⋂j≠iL(ψ′j) = L(ψ′−i).
Therefore, for all i ∈ P, we have L(ψ′i) ⊇ L(ψ′−i) ∩L(ϕi) = L(ψ′−i ∧ ϕi).

Now, we show that Def. 3 (i)-(ii) indeed holds for the tuple (φ∗i)i∈P.
(i) (general) By construction, φ∗i = ψi ∧ (ψ−i ⇒ ϕi) for the specifications (ψi)i∈P
computed in last iteration. Hence, it holds that

L(⋀
i∈P
φ∗i) =⋂

i∈P
L(ψi ∧ (ψ−i ⇒ ϕi)) =⋂

i∈P
L(ψi) ∩⋂

i∈P
L(ψ−i ⇒ ϕi)

=⋂
i∈P
L(ψ−i) ∩⋂

i∈P
L(ψ−i ⇒ ϕi) =⋂

i∈P
L(ψ−i ∧ (ψ−i ⇒ ϕi)) ⊆⋂

i∈P
L(ϕi) = L(⋀

i∈P
ϕi) .

Most General Winning Secure Equilibria Synthesis in Graph Games 183

For the other direction, it holds that

L(φ∗i) = L(ψi) ∧L(ψ−i ⇒ ϕi) ⊇ L(ψi) ∩L(ϕi) (1)

Then, by claim 1, for all i ∈ P, we have L(φ∗i) ⊇ L (⋀i∈P ϕi), and hence, L (⋀i∈P φ∗i) ⊇
L (⋀i∈P ϕi). Therefore, (φ∗i)i∈P is general.
(ii) (realizable) Holds trivially by line 5.
(iii) (secure) Let (πi)i∈P be a strategy profile with πi ⊧ φ∗i . Then, every (πi)i∈P-
play from v0 satisfies φ∗i for all i ∈ P, and hence, (πi)i∈P ⊧ ⋀i∈P φ∗i . So, by gener-
ality, we have (πi)i∈P ⊧ ⋀i∈P ϕi.

Now, to prove item ii of Def. 2, let π′i be a strategy of Player i, and let ρ be
the (π′i, π−i)-play from v0. As before, for all j ∈ P, we have φ∗j = ψj ∧ (ψ−j ⇒ ϕj).
So, for every j ≠ i, ρ ∈ L(φ∗j) ⊆ L(ψj). Hence, we have ρ ∈ ⋂j≠iL(ψj) = L(ψ−i).

Now, if ρ ∈ L(ϕi), then ρ ∈ L(ψ−i∧ϕi). Then, by (1) and claim 2, we have ρ ∈
L(φ∗i). Furthermore, as π−i ⊧ φ∗−i, we have ρ ∈ L(φ∗−i). Therefore, ρ ∈ L(φ∗i ∧φ∗−i),
and by generality, ρ ∈ L(ϕi ∧ ϕ−i) ⊆ L(ϕ−i). Then, by contraposition, item ii of
Def. 2 holds for (πi)i∈P. Hence, (πi)i∈P is an SE, and hence, (φ∗i)i∈P is secure. ⊓⊔

4.4 Games with an Environment Player

Up to this point, we have only considered games played between k players, each
representing a distinct system. However, in the context of reactive synthesis
problems, a different setup is often encountered. Here, the system players play
against an environment player, who is considered as being adversarial toward all
the system players. Consequently, the system players must fulfill their objectives
against all possible strategies employed by the environment player.

Interestingly, this framework can be seen as equivalent to a (k + 1)-player
game with the original k system players and a (k+1)-th player, representing the
environment. For this new player, the objective is simply ϕk+1 = True. Then, it
is easy to see that an APA for such specification ϕk+1 under any assumption is
True. Hence, in each iteration of RecursiveGE in Algo. 1, the associated as-
sumption ψk+1 is also True, and thus, φk+1 = True∧((⋀i∈[1;k] ψi)⇒ True) ≡ True.
Consequently, if ComputeGE yields a GWSE (φ∗i)i∈[1;k+1], the new objective of
the environment player, φ∗k+1 = True, doesn’t impose any constraints on the envi-
ronment’s actions. Therefore, the tuple (φ∗i)i∈[1;k] remains secure (as in Def. 3)
for the k system players because the environment player can never violate its
new specification φk+1. In sum, games featuring an environment player can be
effectively handled as a special case, as formally summarized below:

Corollary 1. Let G = (V,E) be a game graph with k system players, i.e., P =
[1;k], and an environment player env such that V = (⋃i∈P Vi)⊎Venv. Let (ϕi)i∈P
be the tuple of specifications, one for each system player. Then, a tuple (φi)i∈P is
a GWSE for (G, (ϕi)i∈P) if and only if (φi)i∈[1;k+1] with φk+1 = True is a GWSE
for the k + 1-player game (G, (ϕi)i∈[1;k+1]) with ϕk+1 = True.

Furthermore, in synthesis problems, the choices of the environment are some-
times restricted based on a certain assumption ϕenv. In such scenarios, a viable

184 S. P. Nayak and A. Schmuck

approach involves updating each system player’s specification ϕi to ϕenv ⇒ ϕi

and subsequently utilizing Cor. 1 to compute a GWSE. An alternative approach
is to consider a (k+1)-player game with specification ϕk+1 = ϕenv for the (k+1)-
th player. With this approach, the solution becomes more meaningful, as any
strategy profile for the system players satisfying the resulting GWSE allows the
environment to satisfy its own assumptions ϕenv. This approach nicely comple-
ments existing works [14,25] that aim to synthesize strategies for systems while
allowing the environment to fulfill its own requirement.

4.5 Partially Winning GWSE

In the preceding sections, we have presented a method for computing winning
SE, i.e., equilibria where all players satisfy their objectives. However, it’s worth
noting that in certain scenarios, WSE might not exist (see e.g. [13] for a detailed
discussion). In such cases, a subset P′ of players can still form a coalition, which
serves their interests by enabling them to compute a GWSE for their coalition
only, while treating the remaining players in P ∖ P′ as part of the environment.
This can be accomplished by computing a GWSE with updated specifications
denoted as (ϕ′i)i∈P, wherein ϕ′i = ϕi for all i ∈ P′ and ϕ′i = True for all i /∈ P′. This
scenario aligns with the concept of considering an environment from Sec. 4.4.

It is important to emphasize that for instances where no WSE exists, there
might not even exist a unique maximal outcome for which an SE is feasible,
see [13, Sec. 5] for a simple example. As a result, there may be multiple coalitions
that can offer different advantages to individual players from the initial vertex.
This scenario presents an intriguing, unexplored challenge for future research.

4.6 Computational Tractability and Termination

While Algo. 1 has multiple desirable properties, additionally supported by the
possible extensions discussed in Sec. 4.4 and 4.5, its computational tractability
and termination is questionable for the full class of ω-regular games.

As pointed out in Rem. 2, the application of ComputeAPA might require
changing the game graph for if the input is not a parity specification. While
the language of the computed APA is guarantee to shrink in every iteration (see
the proof of Thm. 1), this does not guarantee termination of Algo. 1 as such a
language still contains an infinite number of words. Due to the possibly repeated
changes in the game graph for APA computation, the finiteness of the underlying
model can also not be used as a termation argument.

In addition, the need to change game graphs induces a severe computational
burden. While this might be not so obvious for the polynomial time algorithm
ComputeAPA, this is actually also the case for the (zero-sum) game solver that
needs to be invoked line 5 of Algo. 1. As the specification for these games also
keeps changing in each iteration, a new parity game needs to be constructed in
each iteration, which might be increasingly harder to solve, depending on the
nature of the added assumptions. We will see in Sec. 5 how these problems can
be resolved by a suitable restriction of the considered assumption class.

Most General Winning Secure Equilibria Synthesis in Graph Games 185

5 Optimized Computation of GWSE in Parity Games

As discussed in Sec. 4.6, the potential need to repeatedly change game graphs in
the computations of lines 5 and 7 in Algo. 1 might incur increasing computational
costs and prevents a termination guarantee. To circumvent these problems, this
section proposes a different algorithm for GWSE synthesis which overapproxi-
mates APA’s by a simpler assumption class, called UCA’s. The resulting algo-
rithm is computationally more tractable and ensured to terminate. Nevertheless,
unlike the semi-algorithm discussed in the previous section, this algorithm may
not be able to compute a GWSE in all scenarios where the semi-algorithm can.

5.1 From APA’s to UCA’s

One of the main features of APA’s on Player i computed by ComputeAPA from
[1], is the fact that they can be expressed by well structured templates using
Player i’s edges, namely unsafe-edge-, colive-edge-, and (conditional)-live-group-
templates. Unsafe- and colive-edge-templates are structurally very simple. Given
a set of unsafe edges S ⊆ Ei and colive edges C ⊆ Ei the respective assumption
templates ψunsafe(S) ∶= ⋀e∈S ◻¬e and ψcolive(C) ∶= ⋀e∈C ◊ ◻ ¬e simply assert
that unsafe (resp. colive) edges should never (resp. only finitely often) be taken.
We call an assumption which can be expressed by these two types of templates
an Unsafe- and Colive-edge-template Assumption (UCA), as defined next.

Definition 6. Given a k-player game graph G = (V,E), a specification ψ is
called an unsafe- and colive-edge-template assumption (UCA) for Player i, if
there exist sets S,C ⊆ Ei s.t. ψ ∶= ψunsafe(S) ∧ ψcolive(C). We write ψ[S,C] to
denote such assumptions.

It was recently shown by Schmuck et al. [27] that two-player (zero-sum) parity
games under UCA assumptions, i.e., games (G,ψ⇒ ϕ) where ψ is an UCA and
ϕ is a parity specification over G, can be directly solved over G without compu-
tational overhead, compared to the non-augmented version (G,ϕ) of the same
game. Interestingly, the synthesis problem under assumptions becomes prove-
ably harder if live-group-templates ψcond are needed to express an assumption,
requiring a change of the game graph in most cases. Conditional-live-group-
templates ψcond, are structurally more challenging than UCA’s, as they impose
a Streett-type fairness conditions on edges in G (see [1, Sec.4] for details).

Motivated by this result, we will restrict the assumption class used for GWSE
computation to UCA’s in this section. Unfortunately, UCA’s are typically not
expressive enough to capture APA’s for parity games. This follows from one
of the main results of Anand et al., which shows that APA’s computed by
ComputeAPA for parity games are expressible by a conjunctions of all three
template types, as re-stated in the following proposition.

Proposition 1 ([1, Thm. 3]). Given the premisses of Lem. 1, the APA com-
puted by ComputeAPA on Player i can be written as the conjunction ψ ∶=
ψunsafe(S) ∧ ψcolive(C) ∧ ψcond where S,C ⊆ Ei.

186 S. P. Nayak and A. Schmuck

We therefore need to overapproximate APA’s by UCA’s, by simply dropping
the ψcond-term from their defining conjunction, as formalized next.

Definition 7. Given the premisses of Lem. 1, let ψ ∶= ComputeAPA(G,ϕ, i) =
ψunsafe(S) ∧ ψcolive(C) ∧ ψcond. Then we denote by ApproxAPA(G,ϕ, i) the
algorithm that computes ψ[S,C] by first executing ComputeAPA(G,ϕ, i) and
then dropping all ψcond-terms from the resulting APA.

It is easy to see that L(ψ) ⊆ L(ψ[S,C]). Therefore, it also follows that ψ[S,C]

is implementable and permissive (i.e., Def. 4(ii) and (iii) holds). Unfortunatly,
ψ[S,C] is in general no longer sufficient (i.e., Def. 4(i) does not necessarily hold).
As the proof of Thm. 1 only uses permissiveness of APA, even though sufficiency
is lost for UCA’s, replacing ComputeAPA by ApproxAPA in Algo. 1 does
not mitigate soundness, i.e., whenever ComputeGE terminates in line 6 with
a specification profile (φi)i∈P, this profile is indeed a GWSE, even if APA’s are
over-approximated by UCA’s. This is formalized next.

Theorem 2. Let AComputeGE be the algorithm obtained by replacing proce-
dure ComputeAPA by ApproxAPA in Algo. 1. Then, given a k-player game
G with parity specifications such that (φ∗i)i∈P = AComputeGE(G), the tuple
(φ∗i)i∈P is a GWSE for G.

The rest of this section will now show how the restriction to UCA’s allows
to execute lines 5 and 7 in Algo. 1 efficiently and allows to prove termination of
the resulting algorithm for GWSE computation.

5.2 Iterative Computation of UCA’s

We have seen in the previous section that UCA’s can be computed by utilizing
ComputeAPA and dropping all ψcond terms (called ApproxAPA). Of course,
this can be done in every iteration of ComputeGE. However, ComputeAPA
expects a party game as an input, and from the second iteration of ComputeGE
onward the input to ComputeAPA is given by (G,ψ−i ∧ ϕi, i), where ψ−i is an
assumption on players in P−i, which is not necessarily a parity game.

This section therefore provides a new algorithm, called ComputeUCA and
given in Algo. 2 which computes UCA’s for Player i directly on the game graph
G for games (G,ψ ∧ ϕ) where ψ = ψ[S,C] is an UCA for P−i with unsafe edges
S ⊆ E−i and colive edges C ⊆ E−i, and ϕ is a parity specification, both over G.
Intuitively, ComputeUCA first slightly modifies G to a new two-player game
graph Ĝ (lines 1 and 2) s.t. the specification ψ ∧ ϕ can be directly expressed
as a parity specification ϕ̂ on Ĝ (line 4). This allows to apply ApproxAPA to
construct and return an UCA for Player 1 on Ĝ (line 5). As the resulting UCA
is for Player i, the unsafe edge and colive edge sets are subsets of Ei. Further,
due to the mild modifications from G to Ĝ, the edges of Player i are retained in
Ĝ as E1, hence, the resulting UCA is a well-defined UCA for Player i in G.

We have the following soundness result for showing equivalence between the
UCA’s computed by ComputeUCA and ApproxAPA for UCA assumptions,
proven in extended version of this paper [26, App. A].

Most General Winning Secure Equilibria Synthesis in Graph Games 187

Algorithm 2 ComputeUCA(G,ψ[S,C] ∧ ϕ, i)
Require: A k-player game graph G = (V,E, v0) and specification ψ ∧ ϕ with UCA

ψ = ψ[S,C] for P−i, i.e., S,C ⊆ E−i, and ϕ = Parity(Ω) s.t. Ω ∶ V → [0; 2d + 1].
Ensure: An UCA ψ[S

′,C′] for Player i.
1: V̂1 ← Vi and V̂2 ← V−i ⊎C
2: Ê1 ← Ei and Ê2 ← E−i ∖ (S ∪C) ∪ {(u, c), (c, v) ∣ c = (u, v) ∈ C}

3: Ω̂ =
⎧⎪⎪
⎨
⎪⎪⎩

Ω(v) if v ∈ V
2d + 1 otherwise.

4: Ĝ = (V̂1 ⊎ V̂2, Ê1 ⊎ Ê2, v0); ϕ̂← Parity(Ω̂)
5: return ApproxAPA(Ĝ, ϕ̂,1)

Proposition 2. Given game graph G = (V,E, v0) with parity specification ϕ
and an UCA ψ = ψ[S,C] for P−i, let ψ′ ∶= ApproxAPA(G,ψ ∧ ϕ, i) and ψ′′ ∶=
ComputeUCA(G,ψ ∧ ϕ, i) then L(ψ′) = L(ψ′′). Furthermore, ComputeUCA
terminates in time O((∣V ∣ + ∣E∣)4).

The proof of this result is given in extended version [26, App. A], and essen-
tially relies on the observation that the parity specification ϕ̂ in Ĝ expresses the
language L(ψ ∧ ϕ) when restricted to V , i.e, L(Ĝ, ϕ̂)∣V = L(G,ϕ ∧ ψ) and the
fact that every UCA for Player 1 in Ĝ is also an UCA for Player i in G.

The usefulness of expressing the computed assumptions as unsafe and colive
edge sets S,C over the input game graph G is that there are only a finite number
of edges in that graph. Therefore, there obviously also exists only a finite number
of unsafe or colive edge sets, which could all be enumerated in the worst case.
Therefore, computing UCA’s on the same game graph in every iteration, will
ensure termination of the overall computation of GWSE.

5.3 Solving Parity Games under UCA’s

As the final step towards an optimized version of Algo. 1, we now address the
computations required in line 5 of Algo. 1. Observe that this line requires to
check v0 ∈ ⋂i∈P⟪i⟫φi for φi = ψi ∧ (ψ−i ⇒ ϕi). If this check returns True the
algorithm terminates, if it returns False new assumptions are computed. In both
cases, the game graph used to check this conditional will not have any effect on
the future behavior of the algorithm.

Nevertheless, we utilize the recent result by Schmuck et al. [27] to compute
⟪i⟫φi more efficiently if ψi and ψ−i are UCA’s on Player i and P−i, respectively.
The construction uses the same idea as presented in Algo. 2 to encode UCA’s into
a new, slightly modified two-player parity game (Ĝ, ϕ̂) which can then be solved
by a standard parity solver, such as Zielonka’s algorithm [30], which return the
winning region W of Player 1 in this new game that corresponds to the winning
region of Player i in G. The resulting algorithm is called ComputeWin given
in the extended version [26, Algo. 3] and has the property that v0 ∈ ⟪i⟫(G,φ) if
and only if v0 ∈ W . This is formalized and proven in the extended version [26,
Prop. 3].

188 S. P. Nayak and A. Schmuck

5.4 Computation of GWSE via UCA’s

With the previously discussed algorithms in place, we are now in the position to
propose an optimized, surely terminating algorithm to compute GWSE, called
OComputeGE. Within ComputeGE the recursive procedure RecursiveGE
is replaced by one which uses the algorithms ComputeUCA and ComputeWin
for UCA’s from Sec. 5.2 and 5.3, as follows
1: procedure RecursiveGE(G, (ψi)i∈P)
2: φi ← ψi ∧ (ψ−i ⇒ ϕi) ∀i ∈ P
3: Wi ← ComputeWin(G, φi, i)
4: if v0 ∈ ⋂i∈PWi then
5: return (φi)i∈P

6: ψ′i ← ψi ∧ComputeUCA(G,ψ−i ∧ ϕi, i) ∀i ∈ P
7: if ψ′i = ψi for all i ∈ P then
8: return False
9: return RecursiveGE(G, (ψ′i)i∈P)

We have the following main result of this section.

Theorem 3. Let G be a k-player game with game graph G = (V,E, v0) and
parity specifications (ϕi)i∈P such that (φ∗i)i∈P =OComputeGE(G), then (φ∗i)i∈P
is a GWSE for G. Moreover, OComputeGE terminates in time O(k2 ∣E∣⋅(2 ∣V ∣+
2 ∣E∣)d+2), where d is the number of priorities used in the parity specifications.

Proof. Combining results from Thm. 1 with Thm. 2 and Prop. 2 gives
us that (φ∗i)i∈P is indeed a GWSE for G. Furthermore, as ψi (for all i ∈ P)
in each iteration of the algorithm either remains the same or add more un-
safe/colive edges, it can only change 2 ∣E∣ times. Hence, as there are k players,
the algorithm OComputeGE will terminate within 2k ∣E∣ iterations. Moreover,
each iteration involves k calls to both ComputeWin and ComputeUCA. Us-
ing Zielonka’s algorithm4 [30] for solving parity games, each iteration will take
O((2 ∣V ∣+2 ∣E∣))d+2 time for d priorities (by Prop. 2). In total, this gives
us that OComputeGE terminates in time O(k2 ∣E∣ ⋅ (2 ∣V ∣ + 2 ∣E∣)d+2). ⊓⊔

Remark 4. As Anand et al. show that APA’s for games with co-Büchi specifica-
tions (i.e., ϕ = ◊ ◻ T for some T ⊆ V) are always expressible by UCA’s [1, Thm.
3], we note that ComputeAPA and ApproxAPA coincide for such games. This
implies that no over approximation of assumptions is needed in this case an the
optimizations discussed for ComputeUCA and ComputeWin can be directly
applied for APA’s.

We further note that OComputeGE also efficiently computes GWSE for
games with more expressive specifications than co-Büchi . For instance, all games
discussed in this paper as well as the mutual exclusion protocol discussed in [15]
can be solved by OComputeGE.

4 We note that the time complexity is exponential as we use Zielonka’s algorithm [30]
to solve parity games. One can also use a quasi-polynomial algorithm [11] for solving
parity games to get a quasi-polynomial time complexity for OComputeGE.

Most General Winning Secure Equilibria Synthesis in Graph Games 189

References
1. Anand, A., Mallik, K., Nayak, S.P., Schmuck, A.: Computing adequately permissive

assumptions for synthesis. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 29th International
Conference, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13994, pp. 211–
228. Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_15, https:
//doi.org/10.1007/978-3-031-30820-8_15

2. Anand, A., Nayak, S.P., Schmuck, A.: Contract-based distributed synthesis in
two-objective parity games. CoRR abs/2307.06212 (2023). https://doi.org/
10.48550/ARXIV.2307.06212, https://doi.org/10.48550/arXiv.2307.06212

3. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
4. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthesis

for concurrent reactive programs with partial information. In: Baier, C., Tinelli,
C. (eds.) Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9035, pp. 517–
532. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_50, https:
//doi.org/10.1007/978-3-662-46681-0_50

5. Brenguier, R., Raskin, J., Sankur, O.: Assume-admissible synthesis. Acta In-
formatica 54(1), 41–83 (2017). https://doi.org/10.1007/s00236-016-0273-2,
https://doi.org/10.1007/s00236-016-0273-2

6. Brice, L., Raskin, J., van den Bogaard, M.: Subgame-perfect equilibria in mean-
payoff games. In: Haddad, S., Varacca, D. (eds.) 32nd International Conference
on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Confer-
ence. LIPIcs, vol. 203, pp. 8:1–8:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.8, https://doi.
org/10.4230/LIPIcs.CONCUR.2021.8

7. Brice, L., Raskin, J., van den Bogaard, M.: Rational verification for nash and
subgame-perfect equilibria in graph games. In: Leroux, J., Lombardy, S., Peleg,
D. (eds.) 48th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France.
LIPIcs, vol. 272, pp. 26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPIcs.MFCS.2023.26, https://doi.org/10.
4230/LIPIcs.MFCS.2023.26

8. Brihaye, T., Bruyère, V., De Pril, J.: On equilibria in quantitative games
with reachability/safety objectives. Theory Comput. Syst. 54(2), 150–189
(2014). https://doi.org/10.1007/s00224-013-9495-7, https://doi.org/10.
1007/s00224-013-9495-7

9. Bruyère, V., Meunier, N., Raskin, J.: Secure equilibria in weighted games. In:
Henzinger, T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vi-
enna, Austria, July 14 - 18, 2014. pp. 26:1–26:26. ACM (2014). https://doi.org/
10.1145/2603088.2603109, https://doi.org/10.1145/2603088.2603109

10. Bruyère, V., Roux, S.L., Pauly, A., Raskin, J.: On the existence of weak subgame
perfect equilibria. Inf. Comput. 276, 104553 (2021). https://doi.org/10.1016/
j.ic.2020.104553, https://doi.org/10.1016/j.ic.2020.104553

190 S. P. Nayak and A. Schmuck

https://doi.org/10.1007/978-3-031-30820-8_15
https://doi.org/10.1007/978-3-031-30820-8_15
https://doi.org/10.1007/978-3-031-30820-8_15
https://doi.org/10.1007/978-3-031-30820-8_15
https://doi.org/10.48550/ARXIV.2307.06212
https://doi.org/10.48550/ARXIV.2307.06212
https://doi.org/10.48550/ARXIV.2307.06212
https://doi.org/10.48550/ARXIV.2307.06212
https://doi.org/10.48550/arXiv.2307.06212
https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.4230/LIPIcs.CONCUR.2021.8
https://doi.org/10.4230/LIPIcs.CONCUR.2021.8
https://doi.org/10.4230/LIPIcs.CONCUR.2021.8
https://doi.org/10.4230/LIPIcs.CONCUR.2021.8
https://doi.org/10.4230/LIPIcs.MFCS.2023.26
https://doi.org/10.4230/LIPIcs.MFCS.2023.26
https://doi.org/10.4230/LIPIcs.MFCS.2023.26
https://doi.org/10.4230/LIPIcs.MFCS.2023.26
https://doi.org/10.1007/s00224-013-9495-7
https://doi.org/10.1007/s00224-013-9495-7
https://doi.org/10.1007/s00224-013-9495-7
https://doi.org/10.1007/s00224-013-9495-7
https://doi.org/10.1145/2603088.2603109
https://doi.org/10.1145/2603088.2603109
https://doi.org/10.1145/2603088.2603109
https://doi.org/10.1145/2603088.2603109
https://doi.org/10.1145/2603088.2603109
https://doi.org/10.1016/j.ic.2020.104553
https://doi.org/10.1016/j.ic.2020.104553
https://doi.org/10.1016/j.ic.2020.104553
https://doi.org/10.1016/j.ic.2020.104553
https://doi.org/10.1016/j.ic.2020.104553

11. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding par-
ity games in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V.
(eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017. pp. 252–
263. ACM (2017). https://doi.org/10.1145/3055399.3055409, https://doi.
org/10.1145/3055399.3055409

12. Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.: Doomsday equilibria for omega-
regular games. Inf. Comput. 254, 296–315 (2017). https://doi.org/10.1016/j.
ic.2016.10.012, https://doi.org/10.1016/j.ic.2016.10.012

13. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria.
Theor. Comput. Sci. 365(1-2), 67–82 (2006). https://doi.org/10.1016/j.tcs.
2006.07.032, https://doi.org/10.1016/j.tcs.2006.07.032

14. Chatterjee, K., Horn, F., Löding, C.: Obliging games. In: Gastin, P., Laroussinie,
F. (eds.) CONCUR 2010 - Concurrency Theory, 21th International Confer-
ence, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6269, pp. 284–296. Springer (2010).
https://doi.org/10.1007/978-3-642-15375-4_20, https://doi.org/10.1007/
978-3-642-15375-4_20

15. Chatterjee, K., Raman, V.: Assume-guarantee synthesis for digital contract sign-
ing. Formal Aspects Comput. 26(4), 825–859 (2014). https://doi.org/10.1007/
s00165-013-0283-6, https://doi.org/10.1007/s00165-013-0283-6

16. Damm, W., Finkbeiner, B.: Automatic compositional synthesis of distributed sys-
tems. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM 2014: Formal Meth-
ods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings.
Lecture Notes in Computer Science, vol. 8442, pp. 179–193. Springer (2014).
https://doi.org/10.1007/978-3-319-06410-9_13, https://doi.org/10.1007/
978-3-319-06410-9_13

17. De Pril, J., Flesch, J., Kuipers, J., Schoenmakers, G., Vrieze, K.: Existence of secure
equilibrium in multi-player games with perfect information. In: Csuhaj-Varjú, E.,
Dietzfelbinger, M., Ésik, Z. (eds.) Mathematical Foundations of Computer Science
2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August
25-29, 2014. Proceedings, Part II. Lecture Notes in Computer Science, vol. 8635,
pp. 213–225. Springer (2014). https://doi.org/10.1007/978-3-662-44465-8_
19, https://doi.org/10.1007/978-3-662-44465-8_19

18. Filiot, E., Gentilini, R., Raskin, J.: Rational synthesis under imperfect informa-
tion. In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018. pp. 422–431. ACM (2018). https://doi.org/10.1145/3209108.3209164,
https://doi.org/10.1145/3209108.3209164

19. Finkbeiner, B., Passing, N.: Compositional synthesis of modular systems. In-
nov. Syst. Softw. Eng. 18(3), 455–469 (2022). https://doi.org/10.1007/
s11334-022-00450-w, https://doi.org/10.1007/s11334-022-00450-w

20. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majum-
dar, R. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
16th International Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6015,
pp. 190–204. Springer (2010). https://doi.org/10.1007/978-3-642-12002-2_
16, https://doi.org/10.1007/978-3-642-12002-2_16

Most General Winning Secure Equilibria Synthesis in Graph Games 191

https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/j.ic.2016.10.012
https://doi.org/10.1016/j.ic.2016.10.012
https://doi.org/10.1016/j.ic.2016.10.012
https://doi.org/10.1016/j.ic.2016.10.012
https://doi.org/10.1016/j.ic.2016.10.012
https://doi.org/10.1016/j.tcs.2006.07.032
https://doi.org/10.1016/j.tcs.2006.07.032
https://doi.org/10.1016/j.tcs.2006.07.032
https://doi.org/10.1016/j.tcs.2006.07.032
https://doi.org/10.1016/j.tcs.2006.07.032
https://doi.org/10.1007/978-3-642-15375-4_20
https://doi.org/10.1007/978-3-642-15375-4_20
https://doi.org/10.1007/978-3-642-15375-4_20
https://doi.org/10.1007/978-3-642-15375-4_20
https://doi.org/10.1007/s00165-013-0283-6
https://doi.org/10.1007/s00165-013-0283-6
https://doi.org/10.1007/s00165-013-0283-6
https://doi.org/10.1007/s00165-013-0283-6
https://doi.org/10.1007/s00165-013-0283-6
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/978-3-662-44465-8_19
https://doi.org/10.1007/978-3-662-44465-8_19
https://doi.org/10.1007/978-3-662-44465-8_19
https://doi.org/10.1007/978-3-662-44465-8_19
https://doi.org/10.1007/978-3-662-44465-8_19
https://doi.org/10.1145/3209108.3209164
https://doi.org/10.1145/3209108.3209164
https://doi.org/10.1145/3209108.3209164
https://doi.org/10.1007/s11334-022-00450-w
https://doi.org/10.1007/s11334-022-00450-w
https://doi.org/10.1007/s11334-022-00450-w
https://doi.org/10.1007/s11334-022-00450-w
https://doi.org/10.1007/s11334-022-00450-w
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-642-12002-2_16

21. Kremer, S., Raskin, J.: A game-based verification of non-repudiation and fair ex-
change protocols. J. Comput. Secur. 11(3), 399–430 (2003). https://doi.org/10.
3233/jcs-2003-11307, https://doi.org/10.3233/jcs-2003-11307

22. Kupferman, O., Shenwald, N.: The complexity of LTL rational synthesis. In: Fis-
man, D., Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 13243, pp. 25–45. Springer (2022). https://doi.org/10.1007/
978-3-030-99524-9_2, https://doi.org/10.1007/978-3-030-99524-9_2

23. Li, X., Li, X., Xu, G., Hu, J., Feng, Z.: Formal analysis of fairness for op-
timistic multiparty contract signing protocol. J. Appl. Math. 2014, 983204:1–
983204:10 (2014). https://doi.org/10.1155/2014/983204, https://doi.org/
10.1155/2014/983204

24. Majumdar, R., Mallik, K., Schmuck, A., Zufferey, D.: Assume-guarantee dis-
tributed synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11),
3215–3226 (2020). https://doi.org/10.1109/TCAD.2020.3012641, https://doi.
org/10.1109/TCAD.2020.3012641

25. Majumdar, R., Piterman, N., Schmuck, A.: Environmentally-friendly GR(1) syn-
thesis. In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems - 25th International Conference, TACAS 2019, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 11428, pp. 229–246. Springer (2019).
https://doi.org/10.1007/978-3-030-17465-1_13, https://doi.org/10.1007/
978-3-030-17465-1_13

26. Nayak, S.P., Schmuck, A.K.: Most general winning secure equilibria synthesis
in graph games. CoRR abs/2401.09957 (2024). https://doi.org/10.48550/
arXiv.2401.09957, https://doi.org/10.48550/arXiv.2401.09957

27. Schmuck, A.K., Thejaswini, K.S., Sağlam, I., Nayak, S.P.: Solving two-player games
under progress assumptions. In: Dimitrova, R., Lahav, O., Wolff, S. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation. pp. 208–231. Springer Nature
Switzerland, Cham (2024)

28. Steg, J.: On identifying subgame-perfect equilibrium outcomes for timing games.
Games Econ. Behav. 135, 74–78 (2022). https://doi.org/10.1016/j.geb.2022.
05.012, https://doi.org/10.1016/j.geb.2022.05.012

29. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer
games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006: Foundations of Soft-
ware Technology and Theoretical Computer Science, 26th International Confer-
ence, Kolkata, India, December 13-15, 2006, Proceedings. Lecture Notes in Com-
puter Science, vol. 4337, pp. 212–223. Springer (2006). https://doi.org/10.1007/
11944836_21, https://doi.org/10.1007/11944836_21

30. Zielonka, W.: Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183
(1998). https://doi.org/10.1016/S0304-3975(98)00009-7, https://doi.org/
10.1016/S0304-3975(98)00009-7

192 S. P. Nayak and A. Schmuck

https://doi.org/10.3233/jcs-2003-11307
https://doi.org/10.3233/jcs-2003-11307
https://doi.org/10.3233/jcs-2003-11307
https://doi.org/10.3233/jcs-2003-11307
https://doi.org/10.3233/jcs-2003-11307
https://doi.org/10.1007/978-3-030-99524-9_2
https://doi.org/10.1007/978-3-030-99524-9_2
https://doi.org/10.1007/978-3-030-99524-9_2
https://doi.org/10.1007/978-3-030-99524-9_2
https://doi.org/10.1007/978-3-030-99524-9_2
https://doi.org/10.1155/2014/983204
https://doi.org/10.1155/2014/983204
https://doi.org/10.1155/2014/983204
https://doi.org/10.1155/2014/983204
https://doi.org/10.1109/TCAD.2020.3012641
https://doi.org/10.1109/TCAD.2020.3012641
https://doi.org/10.1109/TCAD.2020.3012641
https://doi.org/10.1109/TCAD.2020.3012641
https://doi.org/10.1007/978-3-030-17465-1_13
https://doi.org/10.1007/978-3-030-17465-1_13
https://doi.org/10.1007/978-3-030-17465-1_13
https://doi.org/10.1007/978-3-030-17465-1_13
https://doi.org/10.48550/arXiv.2401.09957
https://doi.org/10.48550/arXiv.2401.09957
https://doi.org/10.48550/arXiv.2401.09957
https://doi.org/10.48550/arXiv.2401.09957
https://doi.org/10.48550/arXiv.2401.09957
https://doi.org/10.1016/j.geb.2022.05.012
https://doi.org/10.1016/j.geb.2022.05.012
https://doi.org/10.1016/j.geb.2022.05.012
https://doi.org/10.1016/j.geb.2022.05.012
https://doi.org/10.1016/j.geb.2022.05.012
https://doi.org/10.1007/11944836_21
https://doi.org/10.1007/11944836_21
https://doi.org/10.1007/11944836_21
https://doi.org/10.1007/11944836_21
https://doi.org/10.1007/11944836_21
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Most General Winning Secure Equilibria Synthesis in Graph Games 193

http://creativecommons.org/licenses/by/4.0/

On-The-Fly Algorithm for Reachability
in Parametric Timed Games ⋆

, Baptiste Fievet2 ,
Laure Petrucci2 , and Jaco van de Pol1

1 Aarhus University, Aarhus, Denmark
{mikael,jaco}@cs.au.dk

2 LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, Villetaneuse, France
{Baptiste.Fievet,Laure.Petrucci}@lipn.univ-paris13.fr

Abstract. Parametric Timed Games (PTG) are an extension of the
model of Timed Automata. They allow for the verification and synthe-
sis of real-time systems, reactive to their environment and depending on
adjustable parameters. Given a PTG and a reachability objective, we
synthesize the values of the parameters such that the game is winning
for the controller. We adapt and implement the On-The-Fly algorithm
for parameter synthesis for PTG. Several pruning heuristics are intro-
duced, to improve termination and speed of the algorithm. We evaluate
the feasibility of parameter synthesis for PTG on two large case stud-
ies. Finally, we investigate the correctness guarantee of the algorithm:
though the problem is undecidable, our semi-algorithm produces all cor-
rect parameter valuations “in the limit”.

1 Introduction

The seminal model of Timed Automata (TA) [1] equips finite automata with
real-valued clocks, to verify real-time reactive systems. Numerous extensions of
TA have been proposed. Timed Games (TG) [18] distinguish controllable and
uncontrollable actions, to study the interaction of a controller with its envi-
ronment (e.g. the plant, an attacker, or a system-under-test). Here, we focus
on reachability objectives, which require a strategy for the controller to sched-
ule controllable actions such that — no matter which and when uncontrollable
actions are executed by the environment — a desirable state is reached.

Since precise timing constraints are not always known, one might replace con-
crete values by symbolic parameters, to study a whole family of timed systems.
This leads to the model of Parametric Timed Automata (PTA) [2]. The problem
is to find (some or all) values for the parameters such that the system satisfies a
desired property. Most problems on PTA are undecidable [3], in particular the
reachability problem. Several decidable fragments are known, e.g. by restricting
the number of clocks or the positions of the parameters, as in L/U PTA [14].

⋆ This work was partially supported by CNRS international PhD programme, the
CNRS International Research Network CLoVe and Innovationsfonden Danmark’s
DIREC project SIoT (Secure Internet of Things).

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 194–212, 2024.
https://doi.org/10.1007/978-3-031-57256-2_10

Mikael Bisgaard Dahlsen-Jensen1(B)

https://orcid.org/0000-0003-0641-7635
https://orcid.org/0000-0002-4925-1105
https://orcid.org/0000-0003-3154-5268
https://orcid.org/0000-0003-4305-0625
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_10&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

This paper tackles the parameter synthesis problem for Parametric Timed
Games (PTG) [15] with reachability objectives. We provide the first implemen-
tation of a semi-algorithm for PTG parameter synthesis. It operates on-the-fly,
i.e. it starts solving the game while the symbolic state space is being gener-
ated. To avoid the generation of the full, potentially infinite, state space, we also
implement several state space reductions. These improve the termination and
efficiency of parameter synthesis. In particular, we lift inclusion/subsumption
from TA to PTG, generalize coverage pruning and losing state propagation from
TG to PTG, and we port cumulative pruning from PTA to PTG.

Interestingly, unlike the situation in PTA [5] and TG [10], the algorithm for
PTG is not guaranteed to terminate, even if the symbolic state space is finite.
But we claim that if the algorithm terminates, it produces the precise constraints
under which there exists a winning strategy. If the algorithm does not terminate,
the stronger guarantee holds, that (in the limit) it produces all valid parameter
valuations, provided the waiting list is handled fairly.

The implementation allows us to study the feasibility of parameter synthesis
for larger case studies in PTG. In particular, we synthesize parameters for the
correctness of a game version of the Bounded Retransmission Protocol [13] and a
parametric version of the Production Cell [19,10]. We measure the effectiveness
of the individual pruning heuristics on these case studies. It appears that the
state space reduction techniques are essential for feasible parameter synthesis.

Related Work. For TG, Maler et al. [18] proposed a strategy synthesis algo-
rithm based on classical reachability games, handling the uncountable set of
clock values using symbolic regions. Cassez et al. [10] improved the efficiency of
TG strategy synthesis by an on-the-fly algorithm, and working with symbolic
zones, represented by DBMs as implemented in UPPAAL Tiga [8]. Previous work
on PTG initially focused on decidable subcases, like the case for bounded inte-
gers [16] and the fragment of L/U PTG [15,17]. The latter two papers also provide
semi-algorithms for general PTG, either based on backward fixed points [17], or
an on-the-fly algorithm [15], directly extending the work on Timed Games [10].
That paper leaves an implementation of the algorithm (and hence an evaluation
on larger case studies) as future work. Our implementation extends the infras-
tructure of Imitator [4], which so far could only handle PTA. The symbolic
data structure is based on Parma’s convex Polyhedra Library [7].

Contributions. (1) We provide the first implementation of a parameter synthe-
sis algorithm for PTG (Sec. 4), and integrate this on-the-fly algorithm in the
Imitator toolset [4] (Sec. 6).

(2) We devise and implement several pruning heuristics to speed up param-
eter synthesis (Sec. 5).

(3) We evaluate the feasibility of parameter synthesis for PTG on two large
case studies, and measure the effect of the various pruning techniques (Sec. 6).

(4) We carefully introduce the model (Sec. 2) and solution principles (Sec. 3),
pointing out several semantic subtleties, and find that the semi-algorithm yields
all valid parameters in the limit (Sec. 4).

OTF Algorithm for Reachability in PTG 195

2 Model of Parametric Timed Games

A Parametric Timed Game (PTG) is a structure based on timed automata (TA).
Similarly to classical automata, it is composed of locations connected by discrete
transitions. Moreover, it is equipped with clocks. Locations are associated a
condition on clock valuations (invariant) that must be satisfied while staying
in the location. An action in a timed automaton is either to take a discrete
transition or to let some time pass. Discrete transitions have a guard that must be
satisfied in order to take the transition. In a parametric setting, these conditions
use linear terms over clocks and parameters. Parameters hold an unspecified
value, and remain constant during a run. A discrete transition also has a subset
of clocks which are reset when the transition is taken.

In a two-player timed game, discrete transitions are partitioned between con-
trollable transitions and uncontrollable environment transitions.

Definition 1 (PTG). A Parametric Timed Game is a tuple of the form G =
(L,X, P,Act, Tc, Tu, ℓ0, Inv) such that
– L, X, P , Act are sets of locations, clocks, parameters, transition labels.
– T = Tc ∪ Tu is the set of transitions in L × G(X,P) × Act × P(X) × L,

partitioned into sets Tc of controllable and Tu of uncontrollable transitions
of the form (ℓ, g, a, Y, ℓ′); ℓ, ℓ′ are source and target locations; g ∈ G(X,P)
is the guard (see Def. 4); a is the label; Y is the set of clocks to reset.

– ℓ0 is the initial location.
– Inv : L → G(X,P) associates an invariant with each location.

Example 1. Fig. 1 shows the example of a coffee machine. The controller repre-
sents the coffee machine and the environment represents the user. Uncontrollable
transitions are depicted as dashed arcs. From idle, the user can ask coffee. It re-
sets clock y that will measure the time since the demand. The machine is then
preparing coffee. Action serve coffee can happen after p3 (parameter featuring
the time to pour the coffee) and no later than p4 after the request. While the
coffee is being prepared, the user may add sugar. Adding sugar does not inter-
rupt the pouring of the coffee and lasts p2. The coffee cannot be served while

preparing coffee

coffee served

adding sugar

idle
ask coffee

y:=0

y<p1
ask sugar

x:=0

take coffee

p3<y<p4
serve coffee

x=p2
sugar added

Fig. 1. Parametric Timed Game of the coffee machine.

196 M. B. Dahlsen-Jensen et al.

sugar is being added. A situation that may arise is that sugar is being added to
the coffee when the time limit p4 is met, making it impossible for the coffee to
be served on time. To avoid this issue, ask sugar is disabled after waiting p1.

Our goal is to synthesize the constraints on parameters p1 to p4 for the coffee
to be timely served. Hence, the initial location is set to preparing coffee, with
both clocks at 0. One possible solution to the problem is p1+p2 ≤ p4∧p3 < p4.

2.1 Semantics of Parametric Timed Games

A state of a PTG consists of a location and a valuation of clocks and parameters.

Definition 2 (valuations). A clock valuation is a function vX ∈ RX
≥0 assign-

ing a positive real value to each clock. A parameter valuation vP ∈ QP
≥0 assigns

a positive rational value to each parameter. A valuation of the game G is a pair
v = (vX , vP). The set of all valuations of the game is denoted V = RX

≥0 ×QP
≥0.

A guard is a constraint that can be satisfied by some valuations of the game.

Definition 3 (linear terms). A linear term over P is a term defined by the
following grammar: plt := k | kp | plt+ plt where k ∈ Q and p ∈ P .

Definition 4 (guards). The set of guards G(X,P) is the set of formulas
defined inductively by the following grammar:

ϕ := ⊤ | ϕ ∧ ϕ | x ∼ plt | plt′ ∼ plt ,

where x ∈ X, ∼ ∈ {<;≤; =;≥;>} and plt, plt′ are linear terms over P .

We now introduce the notion of zone which will be used to solve a PTG.

Definition 5 (zones). The set of parametric zones Z(X,P) is the set of
formulas defined inductively by the following grammar:

ϕ := ⊤ | ϕ ∧ ϕ | x ∼ plt | x− y ∼ plt | plt′ ∼ plt ,

where x, y ∈ X, ∼ ∈ {<;≤; =;≥;>} and plt and plt′ are linear terms over P .

Function vP is naturally extended to linear terms on parameters, by replacing
each parameter in the term with its valuation. With v |= ϕ, we denote that
valuation v = (vX , vP) satisfies a guard or a zone ϕ, which is defined in the
expected manner. Zones, guards and invariants can also be seen as a convex
set in the space of valuations of the game by considering those valuations that
satisfy the condition.

Transitions modify clock valuations by letting time pass or resetting clocks.

Definition 6 (time delays). Let v = (vX , vP) be a valuation of the game and
δ ≥ 0 a delay.
– ∀x ∈ X : (vX + δ)(x) = vX(x) + δ
– v + δ = (vX + δ, vP)

OTF Algorithm for Reachability in PTG 197

Definition 7 (clock resets). Let v = (vX , vP) be a valuation of the game and
Y ⊆ X. vX [Y := 0] is the valuation obtained by resetting the clocks in Y , i.e.:
– ∀x ∈ Y : vX [Y := 0](x) = 0 and ∀x ∈ X \ Y : vX [Y := 0](x) = vX(x)
– v[Y := 0] = (vX [Y := 0], vP)

We can now define the semantics of a Parametric Timed Game.

Definition 8 (state). A state of a PTG is a pair (ℓ, v) where ℓ is a location
and v a valuation of the game satisfying its invariant: v |= Inv(ℓ). The state
space is then S = {(ℓ, v) ∈ L× V | v |= Inv(ℓ)} =

⋃
ℓ∈L

{ℓ} × Inv(ℓ) .

From a state in this state space, timed and discrete transitions can happen.

Definition 9 (timed and discrete transitions). Let δ ∈ R≥0 be a time delay.
A timed transition is a relation →δ ∈ S × S s.t. ∀(ℓ, v), (ℓ′, v′) ∈ S : (ℓ, v) →δ

(ℓ′, v′) iff ℓ = ℓ′ and v′ = v + δ.
Let t = (ℓ, g, a, Y, ℓ′) ∈ T be a transition. A discrete transition is a relation

→t ∈ S×S s.t. ∀(ℓ, v), (ℓ′, v′) ∈ S : (ℓ, v) →t (ℓ′, v′) iff v |= g and v′ = v[Y := 0].

Let 0⃗ be the clock valuation where all clocks have value 0. The set of possible
initial states of the PTG is ξ0 = {(ℓ0, (⃗0, vP)) | vP ∈ QP

≥0 : (⃗0, vP) |= Inv(ℓ0)}.

Definition 10 (run). A run of the PTG G is a finite or infinite sequence of
states s0s1s2 . . . s.t. s0 ∈ ξ0 and ∀i ∈ N, s2i →δ s2i+1 →t s2i+2. R(G)denotes
the set of runs, and R(G)(s) the set of those starting from state s.

A run alternates between (potentially null) delays and discrete transitions,
avoiding runs that let only time pass. However, there might still be Zeno runs
where infinitely many discrete transitions are taken in a finite amount of time.
When there is no ambiguity, we omit G in the notations.

Example 2. Let us consider again the coffee machine in Fig. 1. Assume the pa-
rameter valuations are: vP (p1) = 5, vP (p2) = 2, vP (p3) = 5 and vP (p4) = 6. Let
vX = (vX(x), vX(y)). We get the sequence: (preparing coffee, ((0, 0), vP)) →4

(preparing coffee, ((4, 4), vP)) →ask sugar (adding sugar, ((0, 4), vP)) →2

(adding sugar, ((2, 6), vP)) →sugar added (preparing coffee, ((2, 6), vP)) .

Definition 11 (history). A history is a finite prefix of a run. The set of his-
tories of game G is denoted H(G), and those starting in state s by H(G)(s).

The notion of coverage allows for capturing all states that can occur up to
some time, without a discrete transition.

Definition 12 (coverage). Let s, s′ ∈ S and δ ≥ 0 such that s →δ s′. The
coverage of the timed transition is the set of intermediate states traversed:
Cover(s →δ s′) = {s′′ ∈ S | ∃δ′ : 0 ≤ δ′ ≤ δ ∧ s →δ′ s′′} .

The coverage of state s is the set of states obtained from s with timed tran-
sitions only: Cover(s) = {s′ ∈ S | ∃δ ≥ 0 s →δ s′} .

The coverage of a run r = s0s1s2 . . . is the union of the coverage of its
timed transitions. When finite, it includes the coverage of its last state ls(r) :

Cover(r) =
(⋃
i∈N

Cover(s2i →δ s2i+1)
)
∪ Cover

(
ls(r)

)
.

198 M. B. Dahlsen-Jensen et al.

Definition 13 (reachability objective and winning runs). Let R ⊆ L be a
reachability objective. The set of winning runs ΩReach(R) is the subset of runs
that visit R: ΩReach(R) = {r ∈ R | ∃ ℓ ∈ R, ∃v ∈ V : (ℓ, v) ∈ Cover(r)} .

Example 3. In the coffee machine, the objective is to reach from the initial loca-
tion prepare coffee the location coffee served. The reachability objective is thus
R = {coffee served}, and the set of winning runs is ΩReach({coffee served}) .

2.2 Strategies in Parametric Timed Games

We introduce a definition of a strategy that deviates from [10], where at each
moment, a player decides to either wait, or take a discrete transition. So their
strategy returns values in T ∪{wait}. The problem with their strategy is that it
is not always clear what should happen: for instance, given a delay δ, a history
h = s0 →δ s1 and a strategy σ, where σ(h) = wait for 0 < δ ≤ 1 and σ(h) = t
for δ > 1, it is not clear when transition t happens: there is no minimal δ > 1.
Although this works formally, it is less clear what the allowed behaviour of the
winning player is precisely. For that reason, in our definition of strategy, players
must decide in advance which delay they will take. This makes the definition
more constructive, clarifying what move the winning player will actually take
(i.e. perform an action or decide to wait for some particular time) and in the
end simplifies the definition of what is winning.

Furthermore, following [10], the definition of strategy is asymmetric for con-
troller and environment: If both wish to do a discrete transition, we provide
priority to the environment; this corresponds to the safest situation from a soft-
ware controller point of view. Another subtle asymmetry is that the controller
cannot assume that the environment will take some uncontrollable transition,
even when waiting any longer would violate the location invariant. While this
is in line with the formal definition of strategy in TG [10], experiments with
UPPAAL Tiga [8] reveal that in that tool, an uncontrollable discrete transition
is actually forced when reaching the boundary of violating an invariant.

Definition 14 (strategy). A controller strategy σc (resp. environment strat-
egy σe) models decision-making. It is a function, depending on a history, decid-
ing either to wait some amount of time (possibly infinite) or to take a discrete
transition: σc : H → R∞

≥0 ∪Tc, σe : H → R∞
≥0 ∪Tu s.t. ∀h ∈ H and σ ∈ {σc, σe},

1. If σ(h) = (ℓ, g, a, Y, ℓ′) ∈ T
then ls(h) = (ℓ, v) such that v |= g and v[Y := 0] |= Inv(ℓ′)

2. If (σ(h) = δ ∈ R≥0) and the transition →δ is available in ls(h)
then σ(h →δ s) ∈ T

where h →δ s denotes the history obtained by adding the delay δ at the end of h.

A strategy can return a discrete transition if its guard is satisfied and the
resulting state satisfies the destination invariant (1). To respect the alternation
between timed and discrete transitions, we require that a strategy which returns
a finite delay δ ≥ 0 on a history returns a discrete transition after the delay (if
the run did not stop by violating an invariant)(2).

OTF Algorithm for Reachability in PTG 199

A controller strategy σc and an environment strategy σe can be combined
into a global strategy σ(σc,σe) as follows. If both players try to take a transition,
we consider that the controller cannot guarantee his transition will be taken, thus
the environment chooses. If one player decides on a discrete transition while the
other decides to wait, the discrete transition is taken. If both players decide to
wait, we wait for the smallest delay.

Definition 15 (global strategy). Let σc be a controller strategy and σe an
environment strategy. For all h ∈ H, the global strategy σ(σc,σe) is defined by:
– σe(h) = tu ∈ Tu =⇒ σ(σc,σe)(h) = tu
– σc(h) = tc ∈ Tc ∧ σe(h) = δ ≥ 0 =⇒ σ(σc,σe)(h) = tc
– σc(h) = δ ≥ 0 ∧ σe(h) = δ′ ≥ 0 =⇒ σ(σc,σe)(h) = min(δ, δ′)

Example 4. Let us look at possible strategies in location preparing coffee of the
running example. The machine can choose serve coffee while the user can select
ask sugar. If both want to do an action, the strategy chooses ask sugar, thus
giving priority to the user. If only one of them wants to take an action and the
other waits, the action is taken. Hence, the machine can do serve coffee if the
user is waiting. This is the expected behavior of a coffee machine and its user.

The global strategy induces a unique run, introducing null delays between
two discrete transitions to guarantee the alternation with timed transitions.

Definition 16 (run induced by a global strategy). Let an initial state s0
and a global strategy σ be given. The run induced by strategy σ is the unique
rσ = s0s1s2 . . . obtained by:

– If i is even, the next transition is a timed transition :
• If σ(⟨s0, . . . , si⟩) = t ∈ T a delay 0 is added: si →0 si+1 →t si+2

• If σ(⟨s0, . . . , si⟩) returns a delay δ ≥ 0 and there is a unique state s such
that si →δ s (invariant not violated), then si+1 = s.

• Otherwise, the invariant is violated and the run ends.
– If i is odd, the next transition is a discrete transition. By the properties of

a strategy σ(⟨s0, . . . , si⟩) returns a transition t such that there is a unique
state s where si →t s. Then, si+1 = s.

Definition 17 (winning strategy). A controller strategy σc is said to be win-
ning from a state s ∈ S w.r.t. a reachability objective R if and only if all runs
starting in s and adhering to σc are winning w.r.t. the objective. State s is said
to be winning if there exists a winning strategy from it.

Run r is adhering to a controller strategy σc if there exists an environment
strategy σe, such that r = rσ(σc,σe)

.

The question we now aim to answer is: Given a Parametric Timed Game G
and a Reachability Objective R, is there a winning controller strategy from the
initial state? The question depends on the value of the parameters. So, more
precisely, we are interested in the question: For which parameter valuations is
the corresponding initial state winning?

200 M. B. Dahlsen-Jensen et al.

3 Solving the Game

In this section, we introduce necessary elements for solving a game. We first
describe the symbolic state space on which the algorithm operates. Then we
characterize the set of winning states as a nested fixed point.

3.1 Parametric Zone Graph

Since clock valuations assign real numbers, the timed transition system of a
PTG has an uncountable number of states. Zones (cf. Def. 5) are a practical
tool to regroup these states in more manageable sets. Recall that zones (like
guards and invariants) are conjunctions of simple constraints on valuations, and
can be viewed as sets of valuations. Our algorithms operate on symbolic states
ξ = (ℓ, Z), which consist of a location and a zone. We require that Z ⊆ Inv(ℓ).
For instance, the set of initial states of a PTG ξ0 (cf. Def. 10) can be described
by the symbolic state (ℓ0, Inv(ℓ0) ∧

∧
x∈X x = 0).

In the notation, we identify a symbolic state (ℓ, Z) with its semantics as the
set of concrete states: {(l, v) | v ⊨ Z} ⊆ S. We will write ξ.ℓ to denote the
(common) location of a symbolic state ξ. Zones are closed under the following
operations, which we extend to symbolic states:

– Intersection between sets
– Temporal successors: ξ↗ = {s′ ∈ S | ∃s ∈ ξ, s →δ s′}
– Temporal predecessors: ξ↙ = {s′ ∈ S | ∃s ∈ ξ, s′ →δ s}
– Discrete successors: Succ(t, ξ) = {s′ ∈ S | ∃s ∈ ξ, s →t s′}
– Discrete predecessors: Pred(t, ξ) = {s′ ∈ S | ∃s ∈ ξ, s′ →t s}
– Projection onto parameters: ξ↓P = {vP | ∃vX , ℓ, (ℓ, (vX , vP)) ∈ ξ}

These operations can be implemented by standard operations on convex polyhe-
dra [7]. We also use union, set complement and set difference, which can return
non-convex shapes. These are represented as unions of zones, still denoting sets
of concrete states. All previous operations are extended to unions of zones.

Our algorithms operate on the Parametric Zone Graph (PZG). The PZG of a
PTG is not guaranteed to be finite, so our algorithms are in fact semi-algorithms.

Definition 18 (Parametric Zone Graph). Given a PTA of the form G =
(L,X,P,Act, Tc, Tu, ℓ0, Inv), its Parametric Zone Graph is defined as the tuple

(Ξ, ξ↗0 ,⇒t
c,⇒t

u), where Ξ ⊆ 2S; ∀ξ, ξ′ ∈ Ξ we have ξ ⇒t
c ξ

′ if ξ′ = Succ(t, ξ)↗

and t ∈ Tc; and ξ ⇒t
u ξ′ if ξ′ = Succ(t, ξ)↗ and t ∈ Tu.

3.2 Alternating Fixed Point Property

The algorithm works by alternating between exploring new states and back-
propagating winning-state information from discovered winning states, starting
from target states. The exploration relies on a fixed point property of the set
Reach(ξ0), defined as all symbolic states in some run from an initial state in ξ0:

OTF Algorithm for Reachability in PTG 201

Lemma 1 (from [15]). Reach(ξ0) is the smallest set S containing ξ↗0 such
that ∀t ∈ T, Succ(t, S)↗ ⊆ S.

Similarly, the set of winning states W (R) of the PTG with reachability ob-
jective R can be computed as a fixed point. Intuitively, we can win the game if
we can take a temporal transition (without being diverted by an uncontrollable
action leading us to a non-winning state) to a state that is either directly win-
ning, or has a controllable transition to a winning state. We formalize this with
three operators on sets of states. Let W be the set of winning states of the game.

We call WinningMoves(S) = {s ∈ S | ∃t ∈ Tc, s
′ ∈ S, s →t s′} the set of

states that have access to a controllable action leading to S. When applied to W ,
it gives us the states with a controllable action to reach W , from which we have
a winning strategy. WinningMoves(S) is increasing in S. It can be computed
using the previous operators as WinningMoves(S) =

⋃
tc∈Tc

Pred(tc, S) .
We call Uncontrollable(S) = {s ∈ S | ∃t ∈ Tu, s

′ /∈ S, s →t s′} the set of
states where an uncontrollable action leads to a state outside S. When applied to
W , it gives us the states where the environment can derail us into a state outside
W , from which we have no winning strategy. Uncontrollable(S) is decreasing
in S. It can be computed from the operators from the previous subsection by
Uncontrollable(S) =

⋃
tu∈Tu

Pred(tu, S\S) .
Finally, we call SafePred(S1, S2) the set of states that can reach S1 by a tem-

poral transition while avoiding S2. Since it aims to be applied to reach winning
moves while avoiding uncontrollable actions, if a state is in the intersection of
S1 and S2, priority is given to the environment and the state is not considered
safe. SafePred(S1, S2) = {s ∈ S | ∃s′ ∈ S1, s →δ s′ ∧ Cover(s →δ s′) ∩ S2 = ∅}.
SafePred(S1, S2) is increasing in S1 and decreasing in S2.

Thanks to the work of Cassez et al. [10], SafePred can be computed between
zones using the precedent operations and extended to union of zones:

Lemma 2 (from [10] for TG, [17] for PTG).

SafePred(S1, S2) = (S↙
1 \S↙

2) ∪ ((S1 ∩ (S↙
2))\S2)

↙

SafePred(
⋃
i

S1i,
⋃
j

S2j) =
⋃
i

(
S↙
1i ∩

⋂
j

SafePred(S1i

)
, S2j)

We can now formulate the fixed point property followed by W .

Lemma 3. W (R) is the smallest set S containing R such that
SafePred(S ∪WinningMoves(S),Uncontrollable(S)) ⊆ S .

Proof. See [12, App. B]

4 Algorithm and Correctness

We can now introduce the algorithm for parameter synthesis for PTG. Alg. 1
explores the state space and creates a map of symbolic states connected by

202 M. B. Dahlsen-Jensen et al.

Algorithm 1 For PTG G = (L,X,P,Act, Tc, Tu, ℓ0, Inv) and reachability ob-
jective R, returns the set of all parameter valuations that win the game.

1: Explored ,WaitingUpdate,WaitingExplore ← ∅, ∅, {ξ↗0 } ▷ Symbolic state sets
2: Win := {} ▷ Map from symbolic states to unions of zones
3: Depends := {} ▷ Map from symbolic states to sets of symbolic states
4: WinningParam := False

5: function solvePTG
6: while ¬terminate() do
7: Choose either explore() or update()
8: return WinningParam

9: procedure explore
10: ξ ← extract(WaitingExplore)
11: for t transition from ξ : do
12: ξ′ := Succ(t, ξ)↗

13: Depends[ξ′]← Depends[ξ′] ∪ {ξ}
14: if ξ′ not in Explored then
15: WaitingExplore ←WaitingExplore ∪ {ξ′}
16: if ξ.ℓ ∈ R then
17: Win[ξ]← ξ
18: WaitingUpdate ←WaitingUpdate ∪Depends[ξ]
19: WaitingUpdate ←WaitingUpdate ∪ {ξ}
20: Explored ← Explored ∪ {ξ}

21: procedure update
22: ξ ← extract(WaitingUpdate)
23: Uncontrollable←

⋃
{(ξ′,t)|ξ⇒t

uξ′}
Pred(t, ξ′ \Win[ξ′])

24: WinningMoves ←
⋃

{(ξ′,t)|ξ⇒t
cξ

′}
Pred(t,Win[ξ′])

25: NewWin := SafePred(Win[ξ] ∪WinningMoves , Uncontrollable) ∩ ξ
26: if NewWin ̸⊆Win[ξ] then
27: WaitingUpdate ←WaitingUpdate ∪Depends[ξ]
28: Win[ξ]←Win[ξ] ∪NewWin
29: WinningParam ← (Win[ξ] ∩ ξ0)↓P

30: function terminate
31: return WaitingExplore = ∅ ∧WaitingUpdate = ∅

OTF Algorithm for Reachability in PTG 203

a discrete transition through the operation Succ(ts,)↗. Simultaneously, any
newly found winning states in a symbolic state ξ, starting from the target lo-
cations, are propagated by marking the predecessors of ξ for an update. To
update a symbolic state ξ, we compute SafePred(Win ∪WinningMoves(Win),
Uncontrollable(Win)) within ξ and add the result to Win[ξ]. If new winning
states are found, we mark ξ predecessors for an update.

The algorithm is non-deterministic: it does not describe how we choose be-
tween explore and update, and which symbolic state in the waiting lists to explore
or update. These choices are left abstract on purpose, as optimization opportu-
nities. A fair strategy would be to join WaitingExplore and WaitingUpdate in
a single queue, whose head determines which operation to apply next. In our
implementation, we prioritized back-propagation from WaitingUpdate.

4.1 Invariants and Correctness

Recall that the algorithm works on a zone graph. We are looking for subsets of
winning states within symbolic states. The same state may appear in different
symbolic states and may not have the same status in each instance. Therefore,
the set Wtemp, the winning states found by the algorithm so far, and W , the
set of all winning states, also take into account the symbolic state considered.
Formally, W consists of all pairs (ξ, s) where s is a winning state contained in
the symbolic state ξ, and Wtemp =

⋃
ξ∈Explored

{ξ} ×Win[ξ].

Theorem 1. These invariants hold during the execution of the algorithm:
1. ξ↗0 ∈ Explored.
2. ∀ξ ∈ Explored , t ∈ T, ξ′, if ξ ⇒t ξ′, then ξ′ ∈ WaitingExplore ∪ Explored
3. ∀ξ ∈ Explored, if ξ.l ∈ R, {ξ} × ξ ⊆ Wtemp.
4. Wtemp ⊆ W .
5. ∀ξ ∈ Explored, we have either ξ ∈ WaitingUpdate or SafePred(Wtemp ∪

WinningMoves(Wtemp), Uncontrollable(Wtemp)) ∩ ({ξ} × ξ) ⊆ Wtemp.

Proof. See [12, App. B].

Invariant 4 guarantees that even if the algorithm times out the winning states
found by the algorithm are indeed winning. Furthermore, if the algorithm ter-
minates and the waiting lists are empty, we can apply the fixed point properties
of Reach(ξ0) and W , and Wtemp corresponds exactly to W over the explored
symbolic states that cover Reach(ξ0).

Theorem 2. Alg. 1 is correct (when it terminates).

Proof. See [12, App. B].

Example 5. For the coffee machine, the PZG is only finite after applying inclu-
sion subsumption (Sec. 5). However, even on this finite PZG, Alg. 1 does not
terminate, but keeps reporting solutions at Line 29. In fact, it produces increas-
ingly more general solutions, including n p2 ≥ p1 (for any n > 0). If we bound
these parameters in the initial specification, for instance p2 ≥ 1 ∧ p1 ≤ 5, our
algorithm synthesizes the extra constraints p1 +p2 ≤ p4 ∧ p3 < p4, as expected.

204 M. B. Dahlsen-Jensen et al.

Theorem 3. Provided the waiting lists are treated fairly, any explored winning
state is discovered as winning by the algorithm eventually.

Proof (sketch). For a classical TG, we can represent the underlying TA as a finite
classical automaton (e.g. the region graph). On this automaton, we can define a
(finite) turn-based reachability game equivalent to the initial TG. Hence, we can
use the notion of discrete distance to target in a reachability game, corresponding
to the smallest number of discrete transitions in which a controller can ensure
to reach a target. This is equivalent to solving a Min-Cost Reachability game as
studied in [9] where delay transitions have weight 0 and discrete transitions have
weight 1. The game graph is finite and the weights non-negative, so the discrete
distance to target of a winning state is positive and finite.

While the same construction is not necessarily finite in a PTG, any state of
a PTG is a state (ℓ, (vP , vX)) of the TG, where all parametric linear terms in
guards have been replaced by their valuation through vP . Therefore, this result
extends to winning states of a PTG.

Let s be an explored winning state of the PTG and n its distance to target.
We only need to explore states reachable in n discrete transitions from s. By
invariant 2 from Thm. 1, when all states reachable in k discrete transitions are
explored, all states reachable in k + 1 discrete transitions are either already
explored or in the exploration waiting list. Assuming fairness of the waiting
lists, at some time they have all been explored. Therefore, at some time, all
states reachable from s in n discrete steps have been explored.

When all states reachable in n discrete steps have been explored, all target
states within are discovered. Those are states with distance to target 0. For
0 ≤ k < n, when all winning states reachable in less than n−k discrete transitions
from s and with a distance to target less than k are discovered, then all winning
states reachable in less than n − (k + 1) discrete transitions from s and with a
distance to target less than k+1 are discoverable by update. Using the invariant
(5) of Thm. 1, those states are either already discovered as winning or they are
in the update waiting list. Assuming fairness of the waiting lists, at some time
they have all been discovered winning. Applying this recurrence until k = n, we
get that there is a time where s is discovered winning.

We can guarantee: (1) All winning parameter valuations reported in Line 29
are correct, since the algorithm satisfies the invariants of Thm. 1. (2) Every
winning parameter valuation will eventually be reported, provided the waiting
lists are treated fairly. Hence, Alg. 1 is “sound and complete in the limit” [5].

5 Optimizations

We present four optimizations to the algorithm presented in Section 4. All of
them adapt optimizations from previous works, three of them (coverage pruning,
inclusion checking and losing state propagation) from Cassez et al. [10] and one
of them (cumulative pruning) from André et al. [5]. We start by updating the
exploration procedure to include the optimizations, as shown in Alg. 2.

OTF Algorithm for Reachability in PTG 205

Algorithm 2 Adding optimizations to the explore procedure

1: procedure explore
2: ξ ← extract(WaitingExplore)

3: if ξ↓P ⊆WinningParam then ▷ Cumulative Pruning
4: return
5: if ξ.ℓ ∈ R then
6: Win[ξ]← ξ
7: WaitingUpdate ←WaitingUpdate ∪Depends[ξ]

8: if controller deadlock(ξ) ∧ Win[ξ] ̸= ξ then ▷ Losing state propagation
9: WaitingUpdateL ←WaitingUpdateL ∪Depends[ξ]

10: if Win[ξ] = ξ ∨ controller deadlock(ξ) then ▷ Coverage Pruning
11: return
12: for t transition from ξ : do
13: ξ′ := Succ(t, ξ)↗

14: if ∃ξ′′ ∈ Explored : ξ′ ⊆ ξ′′ then ▷ Inclusion check
15: Depends[ξ′′]← Depends[ξ′′] ∪ {ξ}
16: else
17: Depends[ξ′]← Depends[ξ′] ∪ {ξ}
18: WaitingExplore ←WaitingExplore ∪ {ξ′}
19: WaitingUpdateW ←WaitingUpdateW ∪ {ξ}
20: WaitingUpdateL ←WaitingUpdateL ∪ {ξ} ▷ Losing state propagation

21: Explored ← Explored ∪ {ξ}

5.1 Pruning

First, we present some pruning techniques, as these only require slight modifi-
cations in the exploration procedure. To this end, we introduce the notion of a
controller deadlock state. A state is a controller deadlock state if it has no con-
trollable transitions. We define it as the following predicate on symbolic states:

controller deadlock(ξ) = ∀t, ξ′ : if ξ ⇒t ξ′ then t ∈ Tu

Now, we introduce the two kinds of pruning:

– Cumulative Pruning: If the projected parameters of a zone in a new
symbolic state are included in the current set of winning parameters, we
can safely prune the successors of this state. Indeed, if the only possible
parameters in the zone already are determined to be winning, no new winning
parameter can be found by exploring the successors of this state. This check
can be seen in Lines 3 and 4 of Alg. 2.

– Coverage Pruning: If a symbolic state is either winning or a controllable
deadlock state, its successors can safely be pruned. Indeed, if the symbolic
state is winning, we gain nothing from exploring further. Dually, a controller
deadlock state can never become winning, since the controller has no action
to do. This check can be seen in Lines 10 and 11 of Alg. 2.

206 M. B. Dahlsen-Jensen et al.

5.2 Inclusion checking

Originally, checking if a symbolic state ξ′ has been explored already is done by
checking if ξ′ ∈ Explored . The optimization by inclusion checking instead checks
if ∃ξ′′ ∈ Explored : ξ′ ⊆ ξ′′. If this is the case, the newly discovered symbolic
state can safely be discarded since its superset has already been explored. Of
course, the new dependency that ξ depends on ξ′′ still must be added. This
optimization is done in the exploration procedure (Lines 14 to 18 of Alg. 2).

5.3 Losing state propagation

Losing state propagation is inspired by Cassez et al. [10] for TG. The idea is that
instead of only discovering and propagating winning states, we will now also do
the same for losing states, starting from controller deadlock states. A map Lose
will maintain the currently known losing states for a given symbolic state. Thus,
each symbolic state ξ can now be partitioned into three:

– Winning: Win[ξ],
– Losing: Lose[ξ]
– Unknown: ξ \ (Win[ξ] ∪ Lose[ξ]).

To initially mark a state as losing, we use the controller deadlock predicate again
while also making sure that the state is not winning, as shown in Alg. 2, Lines 8
and 9. On Lines 19 and 20, we partition the WaitingUpdate list into two lists
for propagating winning and losing states respectively.

While pruning and inclusion checking only required the modification of the
exploration procedure, the propagation of losing states influences all of the pro-
cedures of the original algorithm. We go through them now.

Update procedure. We create a new procedure for updating losing states, which
can be seen in Alg. 3. As the dual of the original update procedure, it is almost
identical. Instead of Uncontrollable, we compute Controllable, i.e. the union of
zones where the controller can lead to a non-losing state. Similarly, instead of
WinningMoves , we compute LosingMoves which is the set of states where the
environment can lead to a losing state. We then compute NewLosing which
is the set of states where the environment can lead us to a losing state while
avoiding states where only controllable transitions are enabled (Controllable \
LosingMoves). Finally, we update Lose[ξ] and WaitingUpdateL accordingly.

Terminate function. The terminate function is modified to allow for early ter-
mination if all possible information is already known, i.e. ξ↗0 \ (Win[ξ↗0] ∪
Lose[ξ↗0]) = ∅. Indeed, if for all valuations we have determined that we either
win or lose, the algorithm can safely terminate. This is shown in Alg. 4.

The final algorithm is then modified to include the new procedures and data
structures introduced. As a result, in the main loop we now have to choose
between three waiting lists instead of two: WaitingExplore, WaitingUpdateW
and WaitingUpdateL.

OTF Algorithm for Reachability in PTG 207

Algorithm 3 Adding new update procedure for losing state propagation

procedure update l
ξ ← extract(WaitingUpdateL)
Controllable ←

⋃
{(ξ′,t)|ξ⇒t

cξ
′}
Pred(t, ξ′ \ Lose[ξ′])

LosingMoves ←
⋃

{(ξ′,t)|ξ⇒t
uξ′}
Pred(t, Lose[ξ′])

NewLosing := SafePred(Lose[ξ]∪LosingMoves , Controllable \LosingMoves) ∩ ξ
if Lose[ξ] ⊊ NewLosing then

WaitingUpdateL ←WaitingUpdateL ∪Depends[ξ]; Lose[ξ]← NewLosing

Algorithm 4 New Terminate with early termination if initial zone is covered

function terminate
isEmpty ←WaitingExplore = ∅ ∧WaitingUpdate = ∅
initialZoneCovered← (ξ↗0) ⊆ (Win[ξ↗0] ∪ Lose[ξ↗0])
return isEmpty ∨ initialZoneCovered

6 Implementation and Experimental Evaluation

To evaluate the termination behavior and efficiency of the semi-algorithm and
the optimizations, we implement them in the Imitator toolset and measure the
performance on some realistic case studies.

6.1 Implementation

We have implemented our proposed algorithm and optimizations in the Imita-
tor model checker [4], which features a wide repertoire of synthesis algorithms
for PTA. We have extended its input language to PTG and added our PTG
parameter synthesis algorithm, including the optimizations described in Sec. 5.
The source code (in OCaml) is available on github3.

In Imitator, the user specifies a model consisting of parameters, clocks and
a network of parametric timed automata. The user can analyse the model using
an analysis or synthesis query. Imitator selects the corresponding algorithm to
use, after which it outputs the result of the query.

Our extension enables the user to specify edges in a PTA as (un)controllable,
effectively turning it into a PTG. Along with this we add a new property Win and
a corresponding algorithm AlgoPTG. In order to synthesize parameters for a PTG
one must use property := #synth Win(state predicate), using a predicate
to define which states are winning. Usually, this predicate is simply accepting,
meaning that any state in an accepting location of the PTG is winning.

In Alg. 1 we left the choice between exploration and back-propagation to be
non-deterministic. In the implementation back-propagation is prioritized over
exploration whenever possible (i.e. when WaitingUpdate is non-empty). This
seems to yield the fastest results in practice.

3 https://github.com/imitator-model-checker/imitator, branch: develop

208 M. B. Dahlsen-Jensen et al.

https://github.com/imitator-model-checker/imitator

6.2 Experiment Design

We selected two large case studies, one PTA and one TG, and extended them to
PTGs by adding (un)controllable actions, and clock parameters, respectively. An
artifact containing instructions to run all the experiments is available online [11].

Production Cell. This case study [19] has two conveyor belts (1 / 2), a robot
with two arms (A / B) and a press. Plates arrive at conveyor belt 1 and are
taken to the press by robot arm A, where they are processed for some time.
Robot arm B takes processed plates and removes them through conveyor belt 2.

We model systems with 1–4 plates in Imitator. In the goal location, every
plate made it safely to conveyor belt 2. If two plates collide before they are
picked up by arm A, the game is lost immediately. We assume that the rotation
speed of the robot arm, the speed of the conveyor belt and the time to press are
known constants. The aim is to synthesize a parameter MINWAIT, the minimum
time interval between two plates arriving at the conveyor belt. The maximum
time interval between two plates is fixed by an additional constant MAXWAIT.

Our PTG model is largely inspired by the TG model of Cassez et al. [10].
Besides adding parameters, we check for collisions between plates rather than
defining a maximum waiting time frame. For 2–4 plates, we create a winning
and a losing configuration of the constants; for 1 plate a collision is not possible.
The losing configurations are created by setting MAXWAIT too small, which will
deadlock the system for any value of MINWAIT.

The Imitator model for the 1-plate configuration can be seen in [12, App.
C].

Bounded Retransmission Protocol. The BRP provides reliable communication
over an unreliable channel. We create a PTG from a PTA model of the BRP [6],
in turn based on a TA model [13], by making message loss uncontrollable.

In the BRP, a sender sends message frames to a receiver, tagged with an
alternating bit, through a lossy channel. The receiver acknowledges all frames.
If the sender does not receive an acknowledgement in time, it retransmits the
message at most k times, after which the sender gives up. The goal location
indicates the successful transmission of the message, or the abort by the sender.

Experimental Setup. All experiments were run on a single core of a computer
with an Intel Core i5-10400F CPU @ 2.90GHz with 16GB of RAM running
Ubuntu 20.04.6 LTS. For each implementation (basic, inclusion checking, cumu-
lative pruning, coverage pruning, losing state propagation) we run the experi-
ments 5 times and report the average time and state space size. A timeout of 2
hours is used.

6.3 Experimental Results

We present the results of the experiments in Table 1. We do not include the
runs without optimizations as they all timed out. This indicates that inclusion
checking is the most vital optimization and should always be enabled.

OTF Algorithm for Reachability in PTG 209

Table 1. Experimental results for different optimizations: inclusion check (inc), cumu-
lative pruning (cm), coverage pruning (cv), losing state propagation (lp). Running time
in seconds (s) and number of symbolic states (size). Green indicates the best results.

inc inc+cm inc+cm+cv inc+cm+cv+lp
Time Size Time Size Time Size Time Size

p
la
te
s

Production Cell

1 Win 0.06s 86 0.06s 86 0.06s 86 0.08s 86

2
Win 7.19s 746 7.56s 746 6.60s 701 7.22s 701
Lose 1.43s 439 1.44s 439 2.03s 517 2.17s 517

3
Win 36.7s 1900 37.3s 1900 24.0s 1539 34.2s 1539
Lose 13.4s 1372 13.9s 1372 9.53s 1251 14.2s 1251

4
Win 4903s 10755 4750s 10755 2394s 9350 3522s 9350
Lose 34.8s 2605 35.6s 2605 21.6s 2372 153s 2372

Bounded Retransmission Protocol

34.3s 1042 32.2s 1042 7.1s 612 7.5s 612

Indicated in green cells are the best results for each row. We can clearly
see that coverage pruning has the biggest effect of all the optimizations in our
experiments. Losing state propagation seems to not provide much benefit in these
experiments, as the overhead overshadows any positive effect it might have had.

7 Conclusion

We provide the first implementation of parameter synthesis for Parametric Timed
Games with reachability objectives, based on an on-the-fly algorithm [10,16]. It
appears that without additional pruning heuristics, the algorithm cannot han-
dle the case studies, Bounded Retransmission Protocol and Production Cell.
Inclusion subsumption is a minimal requirement to achieve any result.

Contrary to previous algorithms for PTA [5] and TG [10], the parameter
synthesis algorithm does not terminate, even if the parametric zone graph is
finite. But we found that in the limit all parameter values will be enumerated.

We added additional pruning techniques (coverage pruning and cumulative
pruning) to further reduce the search space. These techniques generally increased
the speed. We also experimented with propagating losing states, but in our exam-
ples the overhead of checking and propagating losing states was not compensated
by any pruning potential. Future work could study under which circumstances
the propagation of losing states could be beneficial, but also strengthen the de-
tection of (partially) losing states. Another venue for future work is to study
other objectives, like safety games or liveness conditions.

Acknowledgment. We thank Étienne André for his help with integrating our
algorithm in the Imitator tool set.

210 M. B. Dahlsen-Jensen et al.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

2. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In STOC, pages 592–601. ACM, 1993.

3. Étienne André. What’s decidable about parametric timed automata? Int. J. Softw.
Tools Technol. Transf., 21(2):203–219, 2019.

4. Étienne André. IMITATOR 3: Synthesis of timing parameters beyond decidability.
In CAV (1), volume 12759 of Lecture Notes in Computer Science, pages 552–565.
Springer, 2021.

5. Étienne André, Jaime Arias, Laure Petrucci, and Jaco van de Pol. Iterative
bounded synthesis for efficient cycle detection in parametric timed automata. In
TACAS, LNCS 12651, pages 311–329. Springer, 2021.

6. Étienne André, Dylan Marinho, and Jaco van de Pol. A benchmarks library for
extended parametric timed automata. In TAP@STAF, volume 12740 of Lecture
Notes in Computer Science, pages 39–50. Springer, 2021.

7. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The parma polyhedra
library: Toward a complete set of numerical abstractions for the analysis and ver-
ification of hardware and software systems. Sci. Comp. Prog., 72(1-2):3–21, 2008.

8. Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim Guld-
strand Larsen, and Didier Lime. Uppaal-tiga: Time for playing games! In CAV,
volume 4590 of Lecture Notes in Computer Science, pages 121–125. Springer, 2007.

9. Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To
reach or not to reach? Efficient algorithms for total-payoff games. In CONCUR,
volume 42 of LIPIcs, pages 297–310. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2015.

10. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In Mart́ın
Abadi and Luca de Alfaro, editors, CONCUR 2005 – Concurrency Theory, pages
66–80, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

11. Mikael B. Dahlsen-Jensen, Jaco van de Pol, Laure Petrucci, and Baptiste Fievet.
Artifact for ”On-The-Fly Algorithm for Reachability in Parametric Timed Games”.
Zenodo, 10.5281/zenodo.10046945, October 2023.

12. Mikael Bisgaard Dahlsen-Jensen, Baptiste Fievet, Laure Petrucci, and Jaco van de
Pol. On-the-fly algorithm for reachability in parametric timed games (extended
version). arXiv, 10.48550/arxiv.2401.11287, 2024.

13. P. R. D’Argenio, J. P. Katoen, T. C. Ruys, and J. Tretmans. The bounded retrans-
mission protocol must be on time! In Ed Brinksma, editor, Tools and Algorithms
for the Construction and Analysis of Systems, pages 416–431, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.

14. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear
parametric model checking of timed automata. J. Log. Algebraic Methods Program.,
52-53:183–220, 2002.

15. Aleksandra Jovanovic, Sébastien Faucou, Didier Lime, and Olivier H. Roux. Real-
time control with parametric timed reachability games. In IFAC WODES, pages
323–330. Elseviers, 2012.

16. Aleksandra Jovanovic, Didier Lime, and Olivier H. Roux. Synthesis of bounded
integer parameters for parametric timed reachability games. In ATVA, volume
8172 of Lecture Notes in Computer Science, pages 87–101. Springer, 2013.

OTF Algorithm for Reachability in PTG 211

https://doi.org/10.5281/zenodo.10046945
https://doi.org/10.48550/arxiv.2401.11287

17. Aleksandra Jovanović, Didier Lime, and Olivier Henri Roux. A game approach
to the parametric control of real-time systems. International Journal of Control,
pages 1–12, January 2018.

18. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete con-
trollers for timed systems. In Ernst W. Mayr and Claude Puech, editors, STACS
95, pages 229–242, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

19. Helmut Melcher and Klaus Winkelmann. Controller synthesis for the “production
cell” case study. In Proceedings of the Second Workshop on Formal Methods in
Software Practice, FMSP ’98, page 24–33, New York, NY, USA, 1998. ACM.

212 M. B. Dahlsen-Jensen et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Rabin Games and Colourful Universal Trees⋆⋆⋆

Rupak Majumdar1 , Irmak Sağlam 1, and K. S. Thejaswini2,3

{rupak,isaglam}@mpi-sws.org

thejaswini.k.s@ista.ac.at

Abstract. We provide an algorithm to solve Rabin and Streett games over graphs

with n vertices, m edges, and k colours that runs in Õ
(
mn(k !)1+o(1)

)
time and

O(nk logk logn) space, where Õ hides poly-logarithmic factors. Our algorithm
is an improvement by a super quadratic dependence on k ! from the currently

best known run time of O
(
mn2(k !)2+o(1)

)
, obtained by converting a Rabin

game into a parity game, while simultaneously improving its exponential space
requirement.
Our main technical ingredient is a characterisation of progress measures for
Rabin games using colourful trees and a combinatorial construction of succinctly-
represented, universal colourful trees. Colourful universal trees are generali-
sations of universal trees used by Jurdziński and Lazić (2017) to solve parity
games, as well as of Rabin progress measures of Klarlund and Kozen (1991).
Our algorithm for Rabin games is a progress measure lifting algorithm where
the lifting is performed on succinct, colourful, universal trees.

Keywords: Rabin games· Parity games· Colourful trees

1 Introduction

A Rabin game is a two-player infinite-duration game played on a directed, coloured
graph, where each vertex has a finite set of good colours and a finite set of bad colours
associated with it [29]. The two players Controller and Environment take turns to
move a token along an edge to form a play, an infinite path in the graph. Such a play
is winning for Controller if there is a colour that is a good colour for some vertex seen
infinitely often along the path and is not a bad colour for any vertex seen infinitely
often. Rabin games lie at the core of reactive synthesis for omega-regular specifica-
tions and efficient algorithms for Rabin games are of practical interest in synthesis
tools.

⋆ This work is a part of the project VAMOS that has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme, grant agreements No 101020093. Rupak Majumdar was partially supported by
the DFG project 389792660 TRR 248—CPEC.

⋆⋆ The full version of the paper [25] is available on arXiv at http://arxiv.org/abs/2401.
07548

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 213–231, 2024.
https://doi.org/10.1007/978-3-031-57256-2_11

2,3(B)

1 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

2 Department of Computer Science, University of Warwick, Coventry, UK
3 Institute of Science and Technology, Klosterneuburg, Austria

https://orcid.org/0000-0003-2136-0542
https://orcid.org/0000-0002-4757-1631
https://orcid.org/0000-0001-6077-7514
http://arxiv.org/abs/2401.07548
http://arxiv.org/abs/2401.07548
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_11&domain=pdf

Rabin automata already appear in McNaughton’s solution of Church’s synthesis
problem [4,26] and in Rabin’s proof of the decidability of SnS [29], where it was first
defined in the setting of infinite trees. To solve Church’s synthesis problem for ω-
regular specifications, represented by non-deterministic Büchi automata, there are
two well-studied (polynomial-time equivalent) approaches: either reduce it to the
emptiness problem for Rabin tree automata or solve a Rabin game.

Rabin conditions are also known to be suitable specifications for general fair-
ness constraints [15]. Klarlund and Kozen [20] defined Rabin measures over graphs
and applied them to prove program termination under a general fairness constraint.
Indeed, the acceptance condition that defines strong fairness, i.e., if a given set of ac-
tions (edges) is enabled infinitely often (the source vertex is seen infinitely often), it
is taken infinitely often, is naturally expressed by the complement of the Rabin con-
dition, called the Streett condition [30].

Algorithmically, the problem of solving Rabin games was shown to be NP-comp-
lete by Emerson and Jutla [11,13] in the late 1980s. In the same paper, Emerson and
Jutla, and independently, Pnueli and Rosner [28], gave an algorithm that takes time
O

(
(nk)3k

)
time, where n is the number of vertices of the game graph and k the num-

ber of colours.

Steady progress was made to solve Rabin games, and within a decade, Kupferman
and Vardi [23] reduced the cubic dependence on nk to a quadratic one by giving
an algorithm to check non-emptiness in a Rabin tree automata in time O

(
mn2k k !

)
.

Later, Horn [16] gave a different solution to solve Streett games—and therefore Rabin
games—with the same running time.

A lot of progress was simultaneously made on parity games [12], a special case of
Rabin games where colours are assigned to each subset of states in a chain of sub-
sets. Inspired by fixpoint evaluation algorithms [12] and the small progress measure
algorithm [17] of Jurdziński for parity games, Piterman and Pnueli [27] gave a fast
O

(
mnk+1kk !

)
-time, O(nk)-space, algorithm for Rabin games. This algorithm used a

concept of a measure to solve Rabin games.

The work of Piterman and Pnueli remained state-of-the-art for Rabin games until
the quasi-polynomial breakthrough for parity games by Calude, Jain, Khoussainov,
Li, and Stephan [1]. They gave a fixed parameter tractable algorithm (FPT) for Rabin
games on k colours by converting it to a parity game and using the quasi-polynomial
algorithm.

A Rabin game with n vertices, m edges, and k colours, can be reduced to a par-
ity game over N = nk2k ! vertices, M = nk2k !m edges, and K = 2k + 1 colours [12].
By combining the reduction from Rabin to parity games and state-of-the-art algo-
rithms for parity games [18,8,14,9] in a “space-efficient” manner, say of Jurdziński
and Lazić [18], one can solve Rabin games in time O

(
max

{
M N 2.38,2O(K logK)

})
, but

exponential space (since the parity game is exponentially bigger).

On substitution of the values of M and N , the algorithm of Jurdziński and Lazić
would take time at least proportional to m(nk2 ·k !)3.38 for games with n vertices, m
edges and k colours. However, observe that the parity game obtained from a Rabin
game is such that the number of vertices N = nk2k ! is much larger than the num-
ber of colours K = 2k +1. Indeed, this results in K ∈ o

(
log(N)

)
. For cases where the

214 R. Majumdar, I. Sağlam, K. S. Thejaswini

Rabin Games and Colourful Universal Trees 215

number of vertices of the resulting parity game is much larger than the number of
priorities, say the number of colours (2k +1) is o

(
log(N)

)
—which is the case above

as k grows—Jurdziński and Lazić also give an analysis of their algorithm that would
solve Rabin games in time O

(
nmk !2+o(1)

)
. Closely matching this are the run times in

the work of Fearnley et al. [14] who provide, among other bounds, a quasi-bi-linear
bound of O

(
M Na(N)loglog N

)
, where a is the inverse-Ackermann function. In either

case above, this best-known algorithm has at least a (k !)2+o(1) dependence in its run
time, and takes space proportional to (nk2k !) log(nk2k !), which has a k ! dependence
again.

Our Contribution. Our result breaks through the 2+ o(1) barrier, while simultane-
ously using polynomial space, to give a fixed-parameter tractable algorithm for Ra-
bin games. We show a new algorithm for Rabin games on graphs that runs in time
Õ(mn(k !)1+o(1)) time and O(nk logk logn) space, for a game on n vertices, m edges,
and k colours. Our algorithm improves the quadratic (k !)2 dependence in the num-
ber of colours in the best current algorithms, while simultaneously using only poly-
nomial space.

Our first technical contribution is a characterisation of winning states in Rabin
games using “colourful trees,” by generalizing previous work on Rabin measures on
graphs by Klarlund and Kozen [20]. Using our characterisation, we provide an algo-
rithm to compute winning states and strategies as a fixed point of a lifting function
over the lattice of functions from vertices of a game to nodes of a colourful tree.

Our second contribution is the construction of a universal colourful tree that
embeds any colourful tree with a given number of leaves and fixed set of colours.
Universal trees are found underlying all the quasi-polynomial algorithms for parity
games [18,6,19,8,21]. Our construction uses the theory of universal trees developed
for parity games, especially that of Jurdziński and Lazić [18]. From our construction
of universal colourful trees, we can also naturally construct an instance of universal
graphs for Rabin objectives, where the definition of universal graph is as introduced
by Colcombet and Fijalkow. Although constructing universal graphs directly give us
a lifting algorithm, for the sake of completeness, we also provide a lifting algorithm
that uses our construction of colourful universal trees. Therefore, we show how to
construct a small universal colourful tree (our upper bound is tight up to a polyno-
mial factor) that can be succinctly encoded and efficiently navigated.

By applying the lifting algorithm to our succinct universal colourful tree, we get
our time and space bounds.

Just as Piterman and Pnueli’s result generalized ranking techniques and progress
measures for parity games, we generalize the notion of measures [20] and universal
trees [18] central to the fastest algorithms for parity games to obtain our algorithm.

2 Preliminaries

We use N to denote the set of all natural numbers {0,1,2, . . . }. A directed graph con-
sists of a finite set of vertices V along with a binary relation E over the set of vertices

called the edge set. We write u → v to denote an edge (u, v) ∈ E . A finite (resp. infi-
nite) path in a directed graph is a finite (resp. infinite) sequence of vertices such that
a tuple formed by any two consecutive vertices in this sequence is an edge in E .

(c0,C)-Colourful Ordered Trees. Let C be a finite set of colours and let c0 ∉C be a dis-
tinguished root colour. Informally, a (c0,C)-colourful ordered tree with root colour c0

is an ordered tree of height at most |C | +1 whose root is associated with the colour
c0 ∉ C , and whose every other node has a colour from C associated to it. As an ex-
ception, we allow some leaves to be left uncoloured, denoted by a “dummy colour”
⊥ ∉ C . We also require that along any path from the root to a leaf, each node must
have a different colour.

Formally, for a finite set C , we recursively define (c0,C)-colourful trees

– if C =;, (c0,〈〉) and (c0,〈(⊥,〈〉) , . . . , (⊥,〈〉)〉) are (c0,;)-colourful trees.
– if C ̸= ;, we say T is (c0,C)-colourful tree if it is either

• a (c0,C ′)-colourful tree rooted at c0 for some C ′ ⊊C ; or
• T = (c0,〈T1, . . . ,Tℓ〉), and for all i ∈ {1, . . . ,ℓ }, either there is a ci ∈ C and Ti

is a (ci ,C \{ci })-colourful ordered tree, or Ti = (⊥,〈〉). Note that these ci need
not be different from one another.

We define the concatenation of a (c0,C1)-colourful tree T1 = (
c0,

〈
T 1

1 , . . . ,T m
1

〉)
and

a (c0,C2)-colourful tree T2 =
(
c0,

〈
T 1

2 , . . . ,T ℓ
2

〉)
as the (c0,C1 ∪C2)-colourful tree de-

noted by T1 ·T2 as
(
c0,

〈
T 1

1 , . . . ,T m
1 ,T 1

2 , . . . ,T ℓ
2

〉)
. For a root colour c0, a number

ℓ ∈ N, and a (c,C)-colourful ordered tree T , we denote T ℓ to be the tree with ℓ

many copies of T , (c0,〈T ,T , . . . ,T 〉). When (c0,C) is clear from context, we simply
say “colourful tree.”

Embedding Colourful Trees. Given a (c0,C)-colourful tree U and a (c0,C ′)-colourful
tree T , such that C ′ ⊆C , we say U embeds T if T = (c0,〈〉), or T = (c0,〈T1, . . . ,Tℓ〉)
and U = (c0,〈U1, . . . ,Um〉) for some ℓ,m, and there is some increasing sequence of
indices 1 ≤ i1 < i2 < ·· · < iℓ ≤ m such that Ui j embeds T j recursively. Notice both

Ui j and T j must be rooted at the same colour, say c j and both are
(
c j ,C \ {c j }

)
-

colourful and
(
c j ,C ′ \ {c j }

)
-colourful trees respectively.

Labelled Colourful Trees. In what follows, we shall additionally label colourful trees
with labels from some linearly ordered set. It is more convenient to define such la-
belled colourful trees as prefix-closed sets of sequences, using the isomorphism be-
tween a (recursively defined) tree and its set of paths.

Let L be a set of labels with a linear ordering <L⊆ L× L. An L-labelled (c0,C)-
colourful tree is a prefix-closed set of sequences over L× (C ∪ {⊥}) where L× (C ∪ {⊥})
is the Cartesian product of L and (C ∪ {⊥}).

Given an element τ0 ∈ L×(C∪{⊥}) and a sequence
(
τ1,τ2, . . . ,τ j

)
in (L× (C ∪ {⊥}))∗,

we use ⊙ to denote concatenation to the tuple, where we say τ0 ⊙
(
τ1,τ2, . . .τ j

) =
(τ0,τ1,τ2, . . .τ j). We extend this notation to sets of sequences L , by also defining
τ0 ⊙L = {

(τ0,τ1,τ2, . . .τ j) | (τ1,τ2, . . .τ j) ∈L
}
.

We say a prefix-closed set L ⊆ (L×(C∪{⊥ }))∗ is an L-labelling of a (c0,C)-colourful
ordered tree T

216 R. Majumdar, I. Sağlam, K. S. Thejaswini

– if T = (c0,〈(⊥,〈〉)m〉), and L is the prefix closure of the set {(α1,⊥), . . . , (αm ,⊥) }
for some α1 <L α2 <L · · · <L αm ∈ L,

– if T = (c0,〈T1, . . . ,Tm〉) then L is the prefix closure of the set

(α1,c1)⊙L1 ∪ (α2,c2)⊙L2 ∪·· ·∪ (αm ,cm)⊙Lm

for some α1 ≤L α2 ≤L · · · ≤L αm in L, such that for all j ,

• T j is a C \ {c j }-colourful tree rooted at c j and L j is an L-labeling of T j ,
• c j ∈C ∪ {⊥}, and
• whenever α j =α j+1, we have c j ̸= c j+1

Note that the root colour c0 of T does not appear in L ; instead of tracking c0 along
with L explicitly, we implicitly assume the root colour of the tree L above is c0.

We refer to elements of the prefix-closed set L of a labelled tree as nodes of
the tree. For two nodes n1 and n2 in L , we define the greatest common ancestor,
written GCA(n1,n2), as the longest common prefix of n1 and n2. We define n1 to
be an ancestor of n2 if n1 = GCA(n1,n2). In particular, n1 is a parent of n2, written
n1 = parent(n2), if n1 is the largest node other than n2 such that n1 = GCA(n1,n2);
we then say n2 is a child of n1.

The colouring of a node is defined to be the last colour occurring in the sequence:
For the empty sequence (), we define colour(()) = c0, and colour((α1,ci1), . . . , (α j ,ci j)) =
ci j . Furthermore we define ColourSet : L → 2C∪{c0 }, which maps a node to the set of

colours seen from the root to that node:ColourSet(n) = {
colour(n′) | n′ =GCA(n′,n)

}
\

{⊥ }.

Ordering. We define an ordering ≺L on L . First, we fix some arbitrary linear order
on the set C and set colour ⊥ to be larger than all the colours in C in the ordering.
We compare elements by extending the linear order <L over L and an arbitrary fixed
order < over C to a linear order over the set L× (C ∪ {⊥}) lexicographically as follows:
for two elements in L× (C ∪ {⊥}), we declare (α1,c1) < (α2,c2) if either α1 <L α2 or
α1 =α2 and c1 < c2.

For two nodes n1,n2 ∈L , we define n1 ≺L n2 if either n1 is a strict prefix of n2, or
if n1 is lexicographically smaller than n2 when viewed as sequences over L×(C∪{⊥ }).

Due to space constraints, the missing proofs can be found in the full version of
the paper.

Example 1. Figure 1 depicts a (, { , , })-colourful tree, where the nodes denoted by
represents uncoloured nodes. A fixed ordering on the set of colours < < < ,

a labelling of this tree over L = {1,2} ⊆ N is the prefix closure of the following set
{(1 ,1 ,1), (1 ,1 ,2 ,1), (1 ,1 ,2 ,2), (1 ,1 ,1), (1 ,1 ,2 ,2), (1), (2 ,2),
(2 ,1 ,1 ,1), (2 ,1 ,2)}. The ordering ≺L , (represented by ≺) on some nodes is
as follows: () ≺ (1) ≺ (1 ,1) ≺ (1) ≺ (2 ,2). The ordering in the nodes of the tree in
the figure decreases when we go from a child to a parent, or we go “left” in the tree,
but otherwise increases.

Rabin Games and Colourful Universal Trees 217

1
1

11

1 2 1 2

221

2
2

2 2

1 1

2

Fig. 1: A colourful tree.

Fig. 2: A colourful Rabin graph G where all
infinite paths satisfy the Rabin condition

3 Rabin measure and Colourful Decompositions

In this section, our aim is to understand the Rabin acceptance condition on graphs.
We define such acceptance conditions and provide a local witness called a Rabin
measure for graphs where all paths satisfy the Rabin condition.

A (c0,C)-colourful Rabin graph G consists of (1) a directed graph (V ,E), (2) a finite
set C of colours and a special colour c0 ∉C , and (3) for each vertex v ∈V , a set of good
colours Gv ⊆C ∪ {c0 } for v and a set of bad colours Bv ⊆C for v . Observe that c0 ∉ Bv

for any v . We call each colour c in Gv a good colour for v , and each colour in Bv a bad
colour for v .

We assume every vertex has some outgoing edge in the directed graph. An infinite
path in G satisfies the Rabin condition if there is some colour c in C ∪ {c0} such that
c is a good colour for some v seen infinitely often along the path and c is not a bad
colour for any v seen infinitely often along the path.

Example 2. Consider the (, { , , })-colourful Rabin game in Fig. 2. The colours that
are in the good set of each vertex are represented with a smiley face in the same
colour and those that are bad colours appear with a sad face. Although a vertex can
have more than one colour assigned to it as a good colour (or a bad colour), we only
consider at most one good and bad colour per vertex for this example. In our exam-
ple, the leftmost vertex in the graph G in Fig. 2 has the singleton set { } as the set of
good colours and the set { } as the set of bad colours. Similarly, the topmost vertex
in Fig. 2 has the set { } as the set of good colours and an empty set of bad colours. Ob-
serve that in the graph G , any infinite path satisfies the Rabin condition. Indeed, for
any infinite path there is some colour that is not a bad colour for any of the vertices
that occur infinitely often and is a good colour for some vertex that occurs infinitely
often. For example, if a path is such that all the vertices of G are visited infinitely of-
ten, then the colour is not a bad colour of any vertex and the same colour is a
good colour of the topmost vertex.

As opposed to preexisting definition in literature of Rabin games that use Rabin pairs
to represent the acceptance condition, we instead define two sets of colours associ-
ated to a vertex rather than a pair of subsets of vertices associated to a colour. This
does not add more than a constant factor in terms of representation size.

218 R. Majumdar, I. Sağlam, K. S. Thejaswini

A Measure for Rabin Graphs. We fix a (c0,C)-colourful Rabin graph G with the under-
lying graph (V ,E) with good colours for a vertex v denoted by Gv and the bad colours
denoted by Bv . Let L be a linearly ordered set of labels, and let L be an L labelled
(c0,C) -coloured tree. We define L⊤ =L ∪ {⊤ } by adjoining an element ⊤ to L and
we extend the ordering ≺L (denoted henceforth by ≺) to L⊤, by declaring t ≺⊤ for
all t ∈L .

Consider a map µ : V → L⊤. We call an edge u → v consistent with respect to µ,
if either µ(u) is mapped to ⊤ or it satisfies the condition (G≻ OR G↓) AND B; for G≻,
G↓, and B defined below.

(G≻) µ(u) ≻µ(v)
(G↓) GCA(µ(u),µ(v)) =µ(u) and colour(µ(u)) ∈Gu .
(B) ColourSet(µ(u))∩Bu =;
In words, G≻ conveys that the measure µ decreases along the edge u → v and G↓ says
that the measure can increase along an edge but only into a descendent node and
only when the colour of the node that is currently mapped to is a good colour for u.
The condition represented by B says that none of the colours assigned to any ances-
tor of u is a bad colour for it.

If the map µ is clear from the context, we call an edge or a vertex consistent
without mentioning the mapping. We say the relation and function GCA(·,⊤) and
colour(⊤) are undefined, and the condition G↓ or B are not satisfied when µ(v) is
mapped to ⊤ and µ(u) is not mapped to ⊤.

We say the map µ is a (c0,C)-colourful Rabin measure for a graph G if all edges
in E are consistent with respect to µ. A mapping from the vertices of a Rabin graph
to the nodes of a tree ensures that an infinite play corresponds to an infinite set of
nodes in a tree. If a mapping is consistent, then such a mapping serves as a witness
to the fact that an infinite path in the Rabin graph satisfies the Rabin condition.

Our definition is a modification of Klarlund and Kozen’s [20] notion of Rabin mea-
sures, following recent approaches to faster algorithms for parity games [18,8].

Colourful Decomposition. The Rabin measure, as with other progress measures, is
based exclusively on local properties. Indeed, in the above case, we have a progress
measure when each edge satisfies certain conditions. Before we show that Rabin
measures capture winning sets of a graph, we define an intermediate structure, which
we call colourful decompositions. These colourful decompositions of a Rabin graph
highlight a recursive structure that captures the acceptance of all paths in a way
which relates naturally to colourful trees. Colourful decompositions generalise at-
tractor decompositions of parity games to Rabin games [7,19,8].

Consider a (c0,C)-colourful Rabin graph G . A (c0,C)-colourful decomposition D

of G is a recursive sub-division of vertices V of G into subsets of vertices defined as
follows. If C = ;, then we say D := 〈V 〉 is a (c0,C)-colourful decomposition if and
only if all infinite paths from all vertices in V visit a vertex v such that c0 ∈Gv . Else, if
C ̸= ; and if |V | ≥ 1, and

D = 〈
A, (c1,V1,D1, A1) , . . . ,

(
c j ,V j ,D j , A j

)〉
satisfies the following conditions:

Rabin Games and Colourful Universal Trees 219

– A is the set of all vertices in V such that all infinite paths starting from A in G

visit some vertex v ∈V such that c0 ∈Gv ;
– Set W1 =V \ A. For i ∈ 1, . . . , j ,

• Vi is a set of vertices which has no path to Wi \Vi and ci ∉ Bv for all v ∈Vi ;
• Di is a (ci ,C \ {ci })-colourful decomposition of Vi .
• Ai is the set of all vertices in Wi such that all infinite paths from Ai within

Wi visits some vertex in Vi ;
• Wi+1 =Wi \ Ai .

– W j+1 =;.

(a) A colourful decomposition of a Rabin
graph G where all paths satisfy the Rabin
condition

0
1

0

2
2

1

1

(b) A labelled colourful tree into which
the graph G has a Rabin measure.

Fig. 3: A colourful decomposition and tree for Rabin measure

The crux of this section is Theorem 1 below which shows the equivalence be-
tween Rabin measure, the existence of a colourful decomposition and a Rabin graph
where all paths satisfy the Rabin condition.

Theorem 1. The following three statements are equivalent for a (c0,C)-colourful Ra-
bin graph G .

1. All infinite paths in G satisfy the Rabin condition.
2. There is a (c0,C)-colourful decomposition D of the vertices of G .
3. There is an L-labelled (c0,C)-colourful Rabin measure for G , where no vertex is

mapped to ⊤ for some linearly ordered infinite set L.

The theorem above is proved by showing 1 =⇒ 2, 2 =⇒ 3, and finally 3 =⇒ 1.

Proof Sketch 1 =⇒ 2. If C is empty, then the decomposition is D = 〈V 〉 for a (c0,;)-
colourful graph where all paths satisfy the Rabin condition. If C is not empty, we first
remove all vertices A from G that can visit a vertex for which c0 is a good colour. In the
decomposition of the graph into Strongly Connected Components (SSCs) induced
by V \ A, each infinite path satisfies the Rabin condition, and therefore especially the

220 R. Majumdar, I. Sağlam, K. S. Thejaswini

infinite path which consists of all the vertices of some bottom SCC, V1. Hence, there
must be one colour c that is not a bad colour for any vertex and is a good colour for
at least some of the vertices V1. One can therefore inductively construct a (c,C \ {c})-
colourful decomposition D1 for the vertices of V1. Later, in the graph G without the
vertices of A and V1 and all vertices A1 from which all paths lead to V1, we again
get an other graph where all infinite paths satisfy the Rabin condition. This graph,
again by induction has a (c0,C)-colourful Rabin decomposition D′. We finally ‘glue’
together 〈A, (c,V1,D1, A1)〉 and D′ obtained above.

Proof Sketch 2 =⇒ 3. The proof follows a recursive construction of an L-labelled
(c0,C)-colourful tree where the recursion is based on the structure of the decomposi-
tion. An example of how such a mapping to a tree is obtained from a picture is exem-
plified in Fig. 3. The decomposition D of the game G is (A, (,V1,D1, A1), (,V2,D2, A2)).
Some of the sets of the decomposition are indicated in Fig. 3a. The measure obtained
from the decomposition into the given tree is intuitive. For example, the measure ob-
tained from the given decomposition of the game G is such that the vertex for which
the colour is a good colour is mapped to the root of the tree. Similarly, this measure
maps the vertex in V1 for which the colour is a good colour to the node 1 in the
tree. The only vertex in A2 \V2 is mapped to the node 2 .

Proof Sketch 3 =⇒ 1. If there is a Rabin measure, each edge in the infinite path satis-
fiesB, as well asG≻ orG↓. For such an infinite path, we consider the infinite sequence
of nodes of the colourful tree, obtained by taking the image of µ on the run. In this
sequence obtained, consider the smallest node of the tree t that is visited infinitely
often, and let c = colour(t). We show that t is a common ancestor for all elements of
the sequence after a finite prefix. Since all edges satisfy G≻ or G↓, c is a colour such
that c ∈ Gv for some v visited infinitely often. As all edges satisfy B, we have c ∉ Bv

for all vertices v in the run after some finite prefix.

Remark 1. A similar statement to the equivalence of item 1 and item 2 has been
proved in the work of Klarlund and Kozen [20], however, a reader familiar with their
work might have observed some differences in the definition of a measure as well
as a colourful tree. Our definition of colourful trees is more restrictive than theirs.
For instance, colourful trees in the work of Klarlund and Kozen have no restrictions
about the colours along a path in a tree, i.e, in their definition, the trees can have
the same colour along a path, and in fact only a partial colouring is required. How-
ever, an examination of their proof reveals that in the direction of the proof where
they construct a Rabin measure, they inherently use a construction which produces
a mapping into colourful trees as we have defined and therefore, it is enough to only
consider such trees. We make this explicit and also prove Theorem 1 in the appendix
to suit our situation.

4 A lifting algorithm

In this section, we define Rabin game formally and first show how such Rabin games
also have a notion of a Rabin measure.

Rabin Games and Colourful Universal Trees 221

Inspired by the breakthrough algorithms to solve parity games, Colcombet, Fi-
jalkow, Gawrychowski, and Ohlmann [5] proposed a formalism for algorithms that
solve games where one player has a positional strategy. They showed that if there is a
special kind of graph homomorphism into a graph with a total order on its vertices,
then one can obtain a lifting algorithm for such games. From their work [5, Theo-
rem 3.1] combined with Theorem 4, we can show that Rabin measures defined in
our previous section can also be used to provide a lifting algorithm for Rabin games.
However, to make this work self-contained and to provide an explicit space-efficient
algorithm using our non-trivial totally ordered set, we show how such lifting is per-
formed step-by-step in this section. We believe our following section would help fu-
ture implementation of such algorithms.

A (c0,C)-colourful Rabin game G consists of an arena which is a (c0,C)-colourful
Rabin graph G with vertices V , a start vertex v0 ∈V , and a partition of V into Vc and
Ve , the vertices of two players, whom we call Controller and Environment, respec-
tively.

A positional strategy σ for Controller over the game graph is a subset of edges
outgoing from each of Controller’s set of vertices Vc . We denote the graph restricted
to a strategy σ for the Controller by G |σ and it is defined as the Rabin graph over the
same vertex set with a new edge relation which contains exactly the edges in σ along
with all the edges from all vertices belonging to Environment.

The Rabin game G is winning for the Controller if and only if there exists a po-
sitional strategy σ for the Controller where, all infinite paths starting from v0 in G |σ
satisfy the Rabin condition. We describe an algorithm that identifies whether a Rabin
game G is winning for Controller, using Rabin measures on graphs.

Remark 2. We only consider strategies of the Controller that are positional, but this
is enough from the results of Emerson and Jutla [13], which shows that the Con-
troller always has a positional winning strategy in Rabin games if there is any winning
strategy at all.

Consistency in games. Consider a (c0,C)-colourful Rabin game G. Let µ be a function
from V , the vertices of the game graph to an L-labelled (c0,C)-colourful tree L . We
simply extend the definition of consistency from graphs to games by defining a vertex
to be consistent with respect to µ in G if either it belongs to the Environment and all
outgoing edges from it are consistent in G or if it belongs to the Controller and there
is at least one outgoing edge that is consistent in G . A map µ from V to a L⊤ is
a Rabin measure for a (c0,C)-colourful Rabin game G if and only if all vertices are
consistent with respect to µ.

An overview of the algorithm. We describe an algorithm that identifies whether a
Rabin game G is winning for Controller, using Rabin measures defined earlier for
Rabin graphs. The basic principle in the algorithm is that given a colourful tree, the
algorithm finds if there is a Rabin measure that maps vertices of the game into nodes
of that tree. The algorithm does so by starting with the smallest map (all vertices are
mapped to the root of this tree) and then at each step, if a vertex is not consistent,
increase the value of this map just at this vertex which is not consistent. The value

222 R. Majumdar, I. Sağlam, K. S. Thejaswini

is modified (increased) until either all vertices are consistent, or the value cannot be
increased anymore.

Toward our goal of formally defining this algorithm, we define monotonic, infla-
tionary operators on the set of all maps from vertices of a game to a tree such that the
simultaneous fixpoints of these operators exactly correspond to a Rabin measure.

Consider a Rabin measure µ which is a function mapping the vertices V of a
(c0,C)-colourful Rabin game G into an L-labelled (c0,C)-colourful tree L . We de-
fine a function liftµ, which maps edges E of the arena of the game to L⊤. For an
edge u → v of G , we define liftµ(u, v) to be the smallest element t in L⊤ such that
(1) t ⪰ µ(u) and (2) edge u → v is consistent with respect to the mapping µ[u := t],
where we use the notation µ[u := t] to indicate the mapping µ′ where µ′(x) = µ(x) if
x ̸= u and µ′(x) = t if x = u.

For each vertex v , we define an operator Liftv on the lattice of all maps from V
to L⊤. The operator Liftv only modifies an input map µ at v and nowhere else. We
define

Liftv (µ)(u) =

µ(u) for u ̸= v

min(v,w)∈E
{
liftµ(v, w)

}
if u = v ∈Vc

max(v,w)∈E
{
liftµ(v, w)

}
if u = v ∈Ve

Proposition 1. The function Liftv is monotonic for each v.

The above proposition follows from our definition of the Liftv function. Now that
we know that each Liftv is inflationary and monotonic. Therefore, the simultaneous
least fixpoint of Liftv on the map µ, which maps all vertices to the root of L exists
(from the Knaster-Tarski theorem [31]). We can moreover state the following propo-
sition that such fixpoints correspond to the Rabin measures, which almost follows
from our definitions.

Proposition 2. For a (c0,C)-colourful Rabin game G where the vertex set is V and a
fixed L-labelled (c0,C)-colourful tree L ,

– any simultaneous fixpoint of the set of functions Liftv for all v ∈ V is a Rabin
measure;

– any Rabin measure is a simultaneous fixpoint of Liftv for all v ∈V .

Our algorithm, like any other progress-measure algorithm, computes a fixpoint
and is described as follows. The correctness follows from Propositions 1 and 2.

Algorithm 1 The lifting algorithm on game (c0,C)-colourful Rabin game G with ver-
tices V to tree L

Require: For each v ∈V , µ(v) is declared to be root in L

1: while there is some vertex v that is inconsistent with respect to µ. do
2: µ← Liftv (µ).
3: end while
4: return µ

Rabin Games and Colourful Universal Trees 223

Remark 3. If there is a (c0,C)-colourful Rabin game G and an L-labelled (c0,C)-
colourful tree L ′, such that there is a Rabin measure µ′ from V to L ′, and L embeds
L ′, then there is also a Rabin measure µ to L such that all the elements that are not
mapped to ⊤ by µ′ are still not mapped to ⊤ by µ. This map is obtained by composing
µ′ with the embedding of L ′ into L .

Runtime. For a finer analysis of the runtime, we need to understand the size of the
lattice where the lifting algorithm takes place. In this section however, we restrict
ourselves to analysing the runtime of our algorithm for a fixed L . We write |L | to
represent the number of nodes in the labelled tree L . We write n to denote the num-
ber of vertices in a Rabin game, m to denote the number of edges, and k = |C ∪ {c0 } |
to denote the number of colours.

Lemma 1. Given a mapping from the vertices of a (c0,C)-colourful Rabin game G
to an L-labelled (c0,C)-colourful tree L , the value of Liftv (µ)(v) can be computed in
time O

(
deg(v) ·Tnext

)
, where deg(v) is the degree (number of outgoing edges) of v and

Tnext is defined as the maximum of the time taken to

– make a linear pass on a node in L (assuming the node is represented by a se-
quence of elements of L×C),

– compute the next node in L , and
– find the next node that uses colours only from C ′∪ {⊥} for a given node t ∈L and

subset of colours C ′ ⊆C such that colour(t) ∈C ′.

Proof (sketch). The proof of the above lemma reduces to arguing carefully that using
these above items as subroutines, we can find the node larger than Liftv (µ)(v) in the
given tree that satisfies the conditions B along with at least one of G≻ or G↓. To satisfy
condition B, we need to find the next node that does not use a bad colour of v (using
item 3 of the lemma) and then find its first child larger than the current node value
of µ(v) that either satisfies G≻ or G↓using the operations described above. The exact
details of how the last step are done are provided in the full version of the paper.

Theorem 2. For a (c0,C)-colourful Rabin game G with n vertices and m edges, and
an L-labelled (c0,C)-colourful tree L , Algorithm 1 on (G,L) returns the smallest Ra-
bin measure to L⊤ in time O (m|L |Tnext) where Tnext is as defined in Lemma 1 and
|L | denotes the number of nodes in L .

Proof. First, we observe that performing Liftv on the mapping strictly increases the
mapping for a vertex that is not consistent. Each operation of Liftv also calls at most
deg(v) many calls of liftµ(v,u) for some edge v → u. Suppose each operation liftµ(v)
takes time Tnext, to find the value of Liftv (µ)(v) takes time at most deg(v)·Tnext. Since
each non-trivial application of Liftv strictly increases the value that v is mapped to,
it can be called at most as many times as the number of nodes in tree L , this ensures
that the time taken is ∑

v∈V
deg(v)|L | (Tnext) ∈O (m|L |Tnext)

where m denotes the number of edges.

224 R. Majumdar, I. Sağlam, K. S. Thejaswini

5 Small Colourful Universal Trees

In the previous section, we concluded that our algorithm identifies correctly the
smallest Rabin measure into a fixed labelled colourful tree L . However, from The-
orem 1, there exists a Rabin measure into an L-labelled (c0,C)-colourful tree L with
at most n leaves. Observe that we only need to consider n leaves of L which corre-
spond exactly to the image of the Rabin measure. Therefore, for a Rabin game, there
is a Rabin measure into L⊤ where all start vertices from which the game is winning
for Controller are not mapped to ⊤. In order for the algorithm to successfully deter-
mine the winner of all (c0,C)-colourful Rabin games with n vertices, we need to en-
sure that the tree L used in Algorithm 1 would be able to embed all (c0,C)-colourful
trees with n leaves. Since the runtime is linearly dependent on the tree size, smaller
trees that satisfy the above property are desirable.

We now show that we can obtain colourful universal trees, i.e., colourful trees that
are large enough to embed any (c0,C)-colourful L with n-nodes. We also modify
the technique of succinct universal trees of Jurdziński and Lazić [18] to encode each
node of these colourful universal trees using polynomial space, which helps navigate
these labelled colourful trees efficiently.

Colourful universal trees. A (c0,C)-colourful tree U is n-universal, if it embeds any
(c0,C)-colourful tree T with at most n leaves. We henceforth assume that the set C
consists exactly of the colours c1, . . . ,ch , with the fixed ordering c1 < c2 < ·· · < ch on
the colours, and use k to denote h +1.

A näive attempt at constructing an n-universal (c0,C)-colourful tree could be to
take all possible (c0,C)-colourful trees with at most n leaves with the root colour
c0 and concatenate them. Clearly, such an n-universal (c0,C)-colourful tree can be
created as there are only finitely many such trees up to isomorphism (for a fixed C
and n). But of course, this tree is not only large, but can also be difficult to navigate.
A more tractable attempt is to construct a tree that branches n ·h many times at the
root. The subtrees at the root that occur from this n ·h branching have n repetitions
of the h colours c1,c2, . . . ,ch , in that order. Each of the children in-turn branch into
n ·(h−1) many times similarly, thus creating a tree of size bounded by nhh!. We claim
that indeed such a tree was exactly the one underlying the algorithm of Piterman and
Pnueli [27], which led to their O(mnk+1kk !) algorithm.

Below, we give a more involved construction of a significantly smaller universal
tree. In our construction, we inductively describe such a (c0,C)-colourful n-universal
tree, which we call U ℓ

C , for a fixed n ≤ 2ℓ.

– if C =;, then there is exactly one tree to embed, and therefore

U ℓ
(c0,C) =

(
c0,

〈
(⊥,〈〉)2ℓ

〉)
– if ℓ= 0, then the tree to be embedded has exactly one leaf and therefore, for each

colour ci in C , we have a child of colour ci which hosts a subtree whose colour at
the root is ci . This is defined inductively as

U 0
(c0,C) =

(
c0,

〈
U 0

(c1,C1), . . . ,U 0
(ch ,Ch), (⊥,〈〉)

〉)

Rabin Games and Colourful Universal Trees 225

U ℓ−1
(,{ , , }) U ℓ−1

(,{ , , })

U ℓ
(,{ , }) U ℓ

(,{ , }) U ℓ
(,{ , })

Fig. 4: Inductive construction of a smaller colourful n-universal tree

where Ci is C \ {ci }.
– if C ̸= ; and ℓ > 0, then we define the coloured tree to be two copies of an n/2-

universal tree, and h many copies of the n-universal tree where one colour is
dropped each time. More formally,

U ℓ
(c0,C) =U ℓ−1

(c0,C) ·
(
c0,

〈
U ℓ

(c1,C1), . . . ,U ℓ
(ch ,Ch), (⊥,〈〉)

〉)
·U ℓ−1

(c0,C).

In Fig. 4, we demonstrate how the inductive construction is done if c0 = and the
set of colours is C = { , , }. To the left and right are the (,C)-colorful n/2-universal
trees and between them, there are |C | many n-universal trees each of which uses one
fewer colour and one node with just the dummy colour represented there by .

Theorem 3. For C ̸= ;, and k = |C | + 1, U ℓ
(c0,C) constructed is a (c0,C)-colourful n-

universal tree with at most

nk !

(
min

{
n2k ,

(
ℓ+k

k −1

)})

many leaves, where ℓ= ⌈logn⌉.

Proof. Firstly, we need to show that U ℓ
(c0,C) is (c0,C)-colourful n-universal tree. Then,

we prove using induction that U ℓ
(c0,C) has at most 2k ·k ! ·4ℓ leaves and later show that

it also has at most
(ℓ+k

k−1

) ·2ℓ ·k ! leaves, leading to the proof of our theorem.

In fact, we have a lower bound for n-universal (c0,C)-colourful trees, which is
within a polynomial factor of the upper bound.

It is known from the work of Calude et al., as well as from Casares et al. [1,2] that
there are no algorithms that solve Rabin games in time nO(1) ·2o(k logk). But observe
that this does not exclude algorithms which is dependant on k ! by only a constant
smaller than 1 in the exponent. We have improved the current state-of-the art from
2+o(1) to 1+o(1) in the exponent. A natural question to ask would be if the k ! com-
ponent can be reduced further. We show below that we cannot improve our running
time much further using our techniques.

226 R. Majumdar, I. Sağlam, K. S. Thejaswini

Lemma 2 (Lower bound). Any n-universal (c0,C)-colourful tree must have size at
least

(ℓ+k−1
ℓ

)
(k −1)! where k = |C |+1 and ℓ= ⌊logn⌋.

Proof. Fix a permutation ci1 , . . . ,cih of the colours in C and consider any tree with
n leaves where the order of colours from the root to the leaf is exactly the same as
the given permutation. Moreover, we assume that the leaves all have the same depth
from the root. This tree must have size at least the size of a 2ℓ-universal tree (defined
for ordered tree without colours). Such universal trees have size at least

(ℓ+h−1
h−1

)
in the

work of Czerwiński et. al [6]. For each choice of permutation, the universal tree re-
stricted to that permutation must have size

(ℓ+h−1
h−1

)
. Furthermore, two universal trees

obtained by fixing different permutations cannot share a leaf since distinct colours
are assigned to some ancestor of such leafs. Therefore, we obtain a lower bound of(ℓ+h−1

h−1

)
h! on the size of any (c0,C)-colourful n-universal trees.

This immediately gives us the bound
(ℓ+k−2

ℓ

)
(k − 1)! for k = |C | + 1. Our lower

bound also matches one of the upper bounds of our construction up to a polyno-
mial factor in n and k.

Labelling Colourful Universal Trees. Here, we give a labelling of a universal colour-
ful tree described in the previous section by giving an W-labelling of any (c0,C)-
colourful tree where the set W = {0,1}∗. We let ε denote the empty string in {0,1}∗.
We define the ordering on {0,1}∗ as follows, similar to the succinct encoding of or-
dered trees [18]: 0 < ε< 1 and for b1,b2 ∈ {0,1} we have b1 ·w1 < b2 ·w2 if and only if
b1 < b2 or b1 = b2 and w1 < w2.

Any node t in a W-labelled (c0,C)-colourful tree can be represented by a word
generated by the following regular expression

{0,1}∗ci1 · {0,1}∗ci2 · . . . · {0,1}∗cim

where ci j ̸= cik if j ̸= k and ci j =⊥ if and only if j = m. We call the number of 0s and
1s occurring in the word, the number of bits used to label t . We show in the following
lemma that it is possible to have a labelling of our colourful universal tree U ℓ

(c0,C)
such that the labelling of each node in it is ‘short’.

Lemma 3. There is a W-labelling of the tree U ℓ
(c0,C), denoted by L ℓ

C such that the

number of bits used to label any node of L ℓ
C is at most ℓ.

Proof (sketch). For ℓ> 0, we have U ℓ
(c0,C) =U ℓ−1

(c0,C)·
(
c0,

〈
U ℓ

(c1,C1), . . . ,U(ch ,Ch)

〉)
·U ℓ−1

(c0,C).

We obtain recursively a labelling of U ℓ−1
(c0,C) and append the bit 0 for the copy on the

left and append with 1 for the copy on the right. For all the labellings of U ℓ
(ci ,Ci), we

add the element ε · ci as a prefix.

We rigorously prove this in the full version of the paper, but only state here that
the three operations defined in the statement of Lemma 1 can be computed in time
O(kℓ logk) (denoted by Tnext), where k = |C |+1.

Rabin Games and Colourful Universal Trees 227

Theorem 4. Finding the winner in a (c0,C)-colourful Rabin game with n vertices, m
edges, and k = |C |+1, takes time

Õ

(
mnk2k !min

{
n2k ,

(
⌈logn⌉+k

k −1

)})

and O(nk logk logn) space.

Proof. We know that the lifting Algorithm 1 for a (c0,C)-colourful tree finds the Rabin
measure into the tree L in time O(m|L |Tnext) from Theorem 2. All that remains is
to plug in the values of the size of the universal tree obtained from Theorem 3. For
a game with n vertices, we instantiate the algorithm with L being the W-labelling
of the (c0,C)-colourful 2ℓ-universal tree U ℓ

(c0,C) constructed, where ℓ= ⌈log(n)⌉. The

tree L therefore has at most
(
nk !min

{
n2k ,

(⌈logn⌉+k
k−1

)})
many leaves from Theorem 3,

and hence at most k times as many nodes, since each node has at most k ancestors.
Moreover, the time taken to navigate the tree Tnext is at most O(kℓ logk). The space
required by the algorithm at each step is just the space required to store the map. To
store a map, we need to store a node in the tree for each vertex. But from Lemma 3,
storing each node only requires us to store a sequence of the k colours and at most
logn bits. Since to store these k colours, we need k logk bits and, the total space
complexity is O(k logk logn) for each of the n vertices, giving us the desired space
complexity.

6 Conclusions, Discussion and Future Work

We have shown an algorithm for Rabin games that requires almost quadratic space
and takes time that is polynomial in n and (k !)1+o(1). Significantly more asymptotic
improvement to the running time may be difficult, as it was shown in the work of
Calude et al. [1,2] that there are no algorithms to solve Rabin games (as well as Muller
games) in time nO(1) · 2o(k logk) unless the Exponential Time Hypothesis fails (infor-
mally, it is the assumption that 3-SAT has no sub-exponential algorithms). However,
improvements in the exponents of the parameter k !, which contributes to the major-
ity of the running time would prove useful in any algorithm that solves Rabin games.
We have shown that using colourful universal trees cannot provide a significant im-
provement bound because of the k !1+o(1) lowerbound on the size of such a tree. How-
ever, any technique that improves, even on a few targeted cases, this 1+o(1) bound
could lead to faster algorithms. For instance, the recent unpublished work of Liang,
Khoussainov, and Xiao [24] improve the running time for specific values of k, where
the size of k is large (comparable to n).

While we focus on the theoretical advance in this paper, an obvious future direc-
tion is to implement the algorithm. There are tools that convert LTL specifications to
Rabin automata—such as Rabinizer 4 [22]. It will be interesting to see if solving the
obtained Rabin games using our algorithms outperforms converting them instead
to parity games and then using state-of-the-art parity game solvers such as Oink [10]
framework. We believe improvement in state space of solving Rabin games through

228 R. Majumdar, I. Sağlam, K. S. Thejaswini

our paper might lead to more efficient algorithms for the problem of reactive synthe-
sis of LTL formulas.

Our algorithm, like other progress measure algorithms, can display worst-case
behaviour in certain asymmetric examples. To show a vertex is losing for Controller,
the measure needs to increase until it reaches ⊤. This lack of symmetric treatment
of the players by our algorithm might lead to worst case behaviour on several ex-
amples. But circumventing this problem by constructing similar measures for Envi-
ronment in the hopes of finding a symmetric algorithm is not as straightforward, as
Environment does not have a positional strategy in this game.

In a different direction, symbolic algorithms for parity games are either implicitly
or explicitly guided by universal trees [3,19] constructed for both players. We believe
with some effort, our small colourful universal trees can be exploited to make sym-
bolic algorithms to solve Rabin games. One such algorithm would look like an asym-
metric variation of the universal algorithm in the work of Jurdziński, Morvan, and
Thejaswini [19] for parity games, combined with our construction of colourful uni-
versal trees. Indeed, we already have a definition of colourful decompositions which
one might hope to obtain as an end-result of such a recursive symbolic algorithm.

Acknowledgements. We would like to thank Marcin Jurdziński and Anne-Kathrin
Schmuck for valuable discussions and references. We also thank Aditya Prakash for
his valuable comments and, in particular, for reading the section on colourful trees
despite his colour blindness.

References

1. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasi-
polynomial time. SIAM Journal on Computing 51(2), STOC17–152–STOC17–188 (2022).
https://doi.org/10.1137/17M1145288

2. Casares, A., Pilipczuk, M., Pilipczuk, M., Souza, U., Thejaswini, K.S.: Simple and tight com-
plexity lower bounds for solving Rabin games (2023), accepted at SOSA 24.

3. Chatterjee, K., Dvořák, W., Henzinger, M., Svozil, A.: Quasipolynomial set-based symbolic
algorithms for parity games. In: LPAR-22. EPiC Series in Computing, vol. 57, pp. 233–253.
EasyChair, Awassa, Ethiopia (2018). https://doi.org/10.29007/5z5k

4. Church, A.: Application of recursive arithmetic to the problem of circuit syn-
thesis. Summaries of the Summer Institute of Symbolic Logic 1, 3–50 (1957).
https://doi.org/10.2307/2271310

5. Colcombet, T., Fijalkow, N., Gawrychowski, P., Ohlmann, P.: The theory of univer-
sal graphs for infinite duration games. Log. Methods Comput. Sci. 18(3) (2022).
https://doi.org/10.46298/lmcs-18(3:29)2022

6. Czerwiński, W., Daviaud, L., Fijalkow, N., Jurdziński, M., Lazić, R., Parys, P.: Universal
trees grow inside separating automata: Quasi-polynomial lower bounds for parity games.
In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019. pp. 2333–2349. SIAM (2019).
https://doi.org/10.1137/1.9781611975482.142

7. Daviaud, L., Jurdziński, M., Lehtinen, K.: Alternating weak automata from univer-
sal trees. In: 30th International Conference on Concurrency Theory, CONCUR 2019.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 140, pp. 18:1–18:14.

Rabin Games and Colourful Universal Trees 229

https://doi.org/10.1137/17M1145288
https://doi.org/10.29007/5z5k
https://doi.org/10.2307/2271310
https://doi.org/10.46298/lmcs-18(3:29)2022
https://doi.org/10.1137/1.9781611975482.142

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Amsterdam, the Netherlands (2019).
https://doi.org/10.4230/LIPIcs.CONCUR.2019.18

8. Daviaud, L., Jurdziński, M., Thejaswini, K.S.: The Strahler number of a parity game. In:
A. Czumaj, A.D., Merelli, A. (eds.) 47th International Colloquium on Automata, Languages,
and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Confer-
ence). LIPIcs, vol. 168, pp. 123:1–123:19. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.123

9. Dell’Erba, D., Schewe, S.: Smaller progress measures and separating automata for parity
games. Frontiers Comput. Sci. 4 (2022). https://doi.org/10.3389/fcomp.2022.936903

10. van Dijk, T.: Oink: An implementation and evaluation of modern parity game solvers. In:
Tools and Algorithms for the Construction and Analysis of Systems, 24th International
Conference, TACAS 2018. LNCS, vol. 10805, pp. 291–308. Springer, Thessaloniki, Greece
(2018). https://doi.org/10.1007/978-3-319-89960-2_16

11. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs (ex-
tended abstract). In: 29th Annual Symposium on Foundations of Computer Science,
White Plains, New York, USA, 24-26 October 1988. pp. 328–337. IEEE Computer Society
(1988). https://doi.org/10.1109/SFCS.1988.21949

12. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended
abstract). In: 32nd Annual Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, 1-4 October 1991. pp. 368–377. IEEE Computer Society (1991).
https://doi.org/10.1109/SFCS.1991.185392

13. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and log-
ics of programs. SIAM Journal on Computing 29(1), 132–158 (1999).
https://doi.org/10.1137/S0097539793304741

14. Fearnley, J., Jain, S., de Keijzer, B., Schewe, S., Stephan, F., Wojtczak, D.: An ordered ap-
proach to solving parity games in quasi-polynomial time and quasi-linear space. In-
ternational Journal on Software Tools for Technology Transfer 21(3), 325–349 (2019).
https://doi.org/10.1007/s10009-019-00509-3

15. Francez, N., Kozen, D.: Generalized fair termination. In: Proceedings of the 11th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages. p.
46–53. POPL ’84, Association for Computing Machinery, New York, NY, USA (1984).
https://doi.org/10.1145/800017.800515

16. Horn, F.: Streett games on finite graphs. In: Games in Design and Verification (2005)
17. Jurdziński, M.: Small progress measures for solving parity games. In: 17th Annual Sympo-

sium on Theoretical Aspects of Computer Science. LNCS, vol. 1770, pp. 290–301. Springer,
Lille, France (2000). https://doi.org/10.1007/3-540-46541-3_24

18. Jurdziński, M., Lazić, R.: Succinct progress measures for solving parity games. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017. pp. 1–9. IEEE
Computer Society, Reykjavik, Iceland (2017). https://doi.org/10.1109/LICS.2017.8005092

19. Jurdziński, M., Morvan, R., Thejaswini, K.S.: Universal algorithms for parity games and
nested fixpoints. In: Raskin, J.F., Chatterjee, K., Doyen, L., Majumdar, R. (eds.) Principles of
Systems Design - Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th
Birthday. Lecture Notes in Computer Science, vol. 13660, pp. 252–271. Springer (2022).
https://doi.org/10.1007/978-3-031-22337-2_12

20. Klarlund, N., Kozen, D.: Rabin measures and their applications to fairness and automata
theory. In: [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Sci-
ence. pp. 256–265 (1991). https://doi.org/10.1109/LICS.1991.151650

21. Koh, Z.K., Loho, G.: Beyond value iteration for parity games: Strategy iteration with univer-
sal trees. In: S. Szeider, R.G., Silva, A. (eds.) 47th International Symposium on Mathemat-
ical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria.

230 R. Majumdar, I. Sağlam, K. S. Thejaswini

https://doi.org/10.4230/LIPIcs.CONCUR.2019.18
https://doi.org/10.4230/LIPIcs.ICALP.2020.123
https://doi.org/10.3389/fcomp.2022.936903
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1007/s10009-019-00509-3
https://doi.org/10.1145/800017.800515
https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1007/978-3-031-22337-2_12
https://doi.org/10.1109/LICS.1991.151650

LIPIcs, vol. 241, pp. 63:1–63:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.MFCS.2022.63

22. Kretínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: From LTL to your
favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) Com-
puter Aided Verification - 30th International Conference, CAV 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 10981, pp. 567–577. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3_30

23. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata emptiness. In:
Symposium on the Theory of Computing (1998). https://doi.org/10.1145/276698.276748

24. Liang, Z., Khoussainov, B., Xiao, M.: Two new algorithms for solv-
ing Muller games and their applications. CoRR abs/2311.04655 (2023).
https://doi.org/10.48550/ARXIV.2311.04655

25. Majumdar, R., Saglam, I., Thejaswini, K.S.: Rabin games and colourful universal trees.
CoRR abs/2311.04655 (2024). https://doi.org/10.48550/ARXIV.2401.07548

26. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Infor-
mation and Control 9(5), 521–530 (1966). https://doi.org/10.1016/S0019-9958(66)80013-
X

27. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: 21st An-
nual IEEE Symposium on Logic in Computer Science (LICS’06). pp. 275–284 (2006).
https://doi.org/10.1109/LICS.2006.23

28. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. p. 179–190.
POPL ’89, Association for Computing Machinery, New York, NY, USA (1989).
https://doi.org/10.1145/75277.75293

29. Rabin, M.O.: Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society 141, 1–35 (1969).
https://doi.org/10.2307/1995086

30. Streett, R.S.: Propositional dynamic logic of looping and converse. In: Proceed-
ings of the Thirteenth Annual ACM Symposium on Theory of Computing. p.
375–383. STOC ’81, Association for Computing Machinery, New York, NY, USA (1981).
https://doi.org/10.1145/800076.802492

31. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics 5(2), 285 – 309 (1955). https://doi.org/10.2140/pjm.1955.5.285

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Rabin Games and Colourful Universal Trees 231

https://doi.org/10.4230/LIPIcs.MFCS.2022.63
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1145/276698.276748
https://doi.org/10.48550/ARXIV.2311.04655
https://doi.org/10.48550/ARXIV.2401.07548
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1109/LICS.2006.23
https://doi.org/10.1145/75277.75293
https://doi.org/10.2307/1995086
https://doi.org/10.1145/800076.802492
https://doi.org/10.2140/pjm.1955.5.285
http://creativecommons.org/licenses/by/4.0/

Concurrency

Decidable Verification under Localized
Release-Acquire Concurrency

Abstract. State reachability for finite state concurrent programs run-
ning under Release-Acquire (RA) semantics is known to be undecidable,
while under a weaker variant, called Weak-Release-Acquire (WRA), the
problem is decidable. However, WRA allows many counterintuitive be-
haviors not allowed under RA, in which threads locally oscillate between
observed values. We propose a strengthening of WRA in the form of
a new memory model, which we call Localized Release-Acquire (LRA),
that prunes these oscillatory behaviors. We provide semantics for LRA
and show that verification under LRA is decidable by extending the
potential-based technique used to prove decidability under WRA. The
LRA model is still weaker than RA, and thus our results can be used to
soundly verify programs under RA.

Keywords: Relaxed Memory Concurrency · State Reachability · Release-
Acquire Semantics

1 Introduction

The Release-Acquire memory model (RA), a prominent fragment of the C/C++
shared-memory concurrency specifications from 2011 [13,16,17,27], has recently
gained a lot of attention (see, e.g., [2, 7, 18, 23–25, 30]). For programmers, RA
combines the essential guarantees of coherence [11] (a.k.a. “sequential consistency
per-location”) and causal consistency [10, 20], which enable the implementation
of various concurrent algorithms and synchronization mechanisms with very few
barriers. For implementors, RA is weaker than the Total Store Order model
(TSO) [29, 31], which enables efficient mapping of memory accesses to Intel’s
x86 processors. Moreover, unlike TSO, RA is “monotone” [33], which, roughly
speaking, means that replacing parallel composition with sequential composition
can never introduce additional behaviors [26].

Unfortunately, the fundamental problem of state reachability in finite-state
concurrent programs running under RA was recently shown to be undecidable [2].
This is in contrast with state reachability assuming the well-known model of
sequential consistency (SC) [28], which amounts to standard reachability in a
finite state system, as well as with state reachability assuming TSO, which was
shown to be decidable [4,5,12] using the framework of well-structured transition
systems (WSTS) [1, 15]. More recently, decidability of state reachability was
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 235–254, 2024.
https://doi.org/10.1007/978-3-031-57256-2_12

Abhishek Kr Singh(B) and Ori Lahav

Tel Aviv University, Tel Aviv, Israel
abhishek.uor@gmail.com, orilahav@tau.ac.il

https://orcid.org/0000-0002-2760-5419
https://orcid.org/0000-0003-4305-6998
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_12&domain=pdf

established for two variants of RA [21,22], called Strong Release-Acquire (SRA)
and Weak Release-Acquire (WRA), which bound RA from above (every behavior
allowed by SRA is allowed by RA) and below (every behavior allowed by RA is
allowed by WRA). In particular, verification under WRA can be used to obtain
sound (but incomplete) verification under RA, since any buggy program under
RA is also buggy under WRA. The gap, however, between WRA and RA includes
some dubious behaviors:

Example 1. The annotated behaviors in the three litmus tests below are allowed
by WRA but disallowed by RA:

(Oscillation 1) (Oscillation 2) (Oscillation 3)

x := 2
x := 1
b := x //2
c := x //1

x := 2
a := x //1
b := x //2
c := x //1

x := 1 x := 2
a := y //1
b := x //2
c := x //1

x := 1
y := 1

Intuitively speaking, a thread in WRA can “change its mind” about the order of
concurrent writes. In RA, every shared variable is governed by a “modification
order” which dictates the (globally agreed upon) order of concurrent writes, and
reads have to respect that order.

In this paper, we aim to narrow the gap between models with decidable
reachability problem and RA by providing a model that lies between WRA and
RA and still allows for decidable verification. More concretely, we propose to
strengthen WRA in a way that eliminates the above oscillatory behaviors, while
still (1) being weaker than RA and (2) inducing a decidable state reachability
problem. The proposed model, which we call Localized Release-Acquire (LRA),
is obtained by adding one constraint (a.k.a. axiom) to WRA’s declarative consis-
tency predicate. In turn, decidability is established similarly to [22], by carefully
designing an operational “lossy” semantics based on maintaining thread poten-
tials, so that it fits well in the framework of WSTS, and it is equivalent to LRA.
Our proof establishes the equivalence of the lossy potential-based system with
LRA using forward simulation in one direction and backward simulation in the
converse.

The full version of this paper available in [32] contains detailed proofs for the
claims of the paper.

2 Preliminaries

In this section we present the formal preliminaries for our results, including
the representation of concurrent programs, memory systems, and declarative
execution graphs. We employ the following finite domains (and metavariables
ranging over them):

thread identifiers τ, π ∈ Tid = {T1, T2, ...}
variables x, y ∈ Loc ≜ {x, y, ...}

values v ∈ Val ≜ {0, 1, 2, ...}
We represent concurrent programs as labeled transition systems. A labeled tran-
sition system (LTS, for short) A over an alphabet Σ is a triple ⟨Q,Q0, T ⟩, where

236 Abhishek Kr Singh and Ori Lahav

Decidable Verification under Localized Release-Acquire Concurrency 237

Q is a set of states, Q0 ⊆ Q is the set of initial states, and T ⊆ Q × Σ × Q is
a set of transitions. We denote by A.Q, A.Q0, and A.T the three components of
an LTS A; we write σ−→A for the relation {⟨q, q′⟩ | ⟨q, σ, q′⟩ ∈ A.T} and −→A for⋃

σ∈Σ
σ−→A. A state q ∈ A.Q is reachable in A if q0 −→∗

A q for some q0 ∈ A.Q0. A
sequence σ1, ... ,σn is a trace of A if q0

σ1−→A q1
σ2−→A ··· qn−1

σn−−→A qn for some
q0 ∈ A.Q0 and q1, ... ,qn ∈ A.Q.

For brevity, we elide the definition of how concurrent programs in a pro-
gramming language are interpreted as LTSs (see [22] for such definition), but
only note that these LTSs are finite-state and they employ labels (a.k.a. “pro-
gram transition labels”) from the set ProgLab ≜ Tid × (Lab ∪ {ϵ}), where Lab
denotes the set of action labels, representing interactions that a program may
have with the memory, and ϵ denotes a thread-internal transition. Action labels
l ∈ Lab take one of the following forms: a read R(x, vR), a write W(x, vW), or a read-
modify-write RMW(x, vR, vW), where x ∈ Loc and vR, vW,∈ Val. The functions typ,
loc, valR, and valW respectively retrieve (when applicable) the type (R/W/RMW),
variable (x), read value (vR), and written value (vW) of an action label. Further-
more, for a program transition label α ∈ ProgLab, the functions tid and lab

respectively retrieve the thread identifier (τ) and the action label (or ϵ) of α,
and the functions on action labels (typ, loc, ...) are lifted to program transition
labels in the obvious way.

To represent concurrent programs running under a particular memory model,
we synchronize the transitions of a program Pr with a memory system. A mem-
ory system is another LTS M (but, possibly infinite-state) whose set of transition
labels consists of non-silent program transition labels (elements of Tid× Lab) as
well as a (disjoint) set M.Θ of memory-internal actions. Then, the composi-
tion of a program Pr and a memory system M, denoted by Pr⋊⋉M, is the LTS
whose transition labels are the elements of ProgLab ∪ M.Θ; states are pairs
⟨p,M⟩ ∈ Pr .Q×M.Q; initial state is ⟨pInit,M.Q0⟩; and transitions are given by:

α ∈ Tid× Lab
p α−→Pr p′ M α−→M M ′

⟨p,M⟩ α−→Pr⋊⋉M ⟨p′,M ′⟩

α ∈ Tid× {ϵ}
p α−→Pr p′

⟨p,M⟩ α−→Pr⋊⋉M ⟨p′,M⟩

α ∈ M.Θ
M α−→M M ′

⟨p,M⟩ α−→Pr⋊⋉M ⟨p,M ′⟩

The state reachability problem for a memory system M receives as input a
program Pr and a state p ∈ Pr .Q and asks whether ⟨p,M⟩ is reachable in Pr⋊⋉M
for some M ∈ M.Q.

Finally, we also need the notion of a declarative memory model, which ac-
cepts/rejects program behaviors based on constraints on the generated execution
graphs.

Definition 1. An execution graph G is a pair ⟨E, rf ⟩, where:

– E is a finite set of events. An event e is a tuple ⟨τ, s, l⟩, where τ ∈ Tid,
called the event’s thread identifier ; s ∈ N, called the event’s serial identifier,
and l ∈ Lab, called the event’s label. The functions tid, sn, and lab return
the thread identifier (τ), identifier (s), and action label (l) of an event. All

functions on action labels (typ, loc, ...) are lifted to events in the obvious
way. We denote by E the set of all events, and define the following subsets:

R ≜ {e ∈ E | typ(e) ∈ {R, RMW}} W ≜ {e ∈ E | typ(e) ∈ {W, RMW}}
RMW ≜ R ∩W Eτ = {e ∈ E | tid(e) = τ}

– rf is a reads-from relation for E, that is a relation on E satisfying:
• If ⟨w, r⟩ ∈ rf , then w ∈ W and r ∈ R.
• If ⟨w, r⟩ ∈ rf , then loc(w) = loc(r) and valW(w) = valR(r).
• w1 = w2 whenever ⟨w1, r⟩, ⟨w2, r⟩ ∈ rf (each read reads from at most

one write).
• For every r ∈ E∩R, there exists some w ∈ E such that ⟨w, r⟩ ∈ rf (each

read reads from some write).

We denote the components of G by G.E and G.rf. For any set E′ ⊆ E, we
write G.E′ for G.E ∩ E′ (e.g., G.W = G.E ∩ W). The program order induced
by an execution graph G, denoted by G.po, is defined as G.po ≜ {⟨e1, e2⟩ ∈
E × E | sn(e1) < sn(e2) ∧ tid(e1) = tid(e2)}.

Given a set E of events, τ ∈ Tid, and l ∈ Lab, NextEvent(E, τ, l) denotes
the event with thread identifier τ , label l, and a minimal fresh serial identifier
w.r.t. E, i.e., NextEvent(E, τ, l) ≜ ⟨τ, s, l⟩, where s = min{n ∈ N | ⟨τ, n, l⟩ ̸∈ E}.

Definition 2. An execution graph G is generated by a program Pr with final
state p ∈ Pr .Q if ⟨p0, G0⟩ →∗ ⟨p,G⟩ for some p0 ∈ Pr .Q0, where G0 denotes the
empty execution graph (given by G0 ≜ ⟨∅, ∅⟩) and → is defined by:

p
τ,l−→Pr p′ E′ = E ∪ {NextEvent(E, τ, l)} rf ⊆ rf ′

⟨E′, rf ′⟩ is an execution graph
⟨p, ⟨E, rf ⟩⟩ → ⟨p′, ⟨E′, rf ′⟩⟩

p
τ,ε−−→Pr p′

⟨p,G⟩ → ⟨p′, G⟩

Using the above definitions, a declarative memory model can be identified
with a set of so-called consistent execution graphs, and a program state p is
’emphreachable under a declarative memory model if some consistent execution
graph G is generated by Pr with final state p.

3 The Localized Release-Acquire Model

In this section we introduce the Localized Release-Acquire (LRA) model, start-
ing with its declarative presentation. LRA is obtained by adding a single con-
straint, called “local-read-coherence”, to WRA. We first briefly repeat the three
constraints of WRA (see [20] for more details). Figure 1 summarizes the four
constraints of LRA.

238 Abhishek Kr Singh and Ori Lahav

E

hb

irr-hb

Wx Wx

Rx

rf hb

hb

weak-coherence

Wx

RMWxRMWx

rf rf

weak-atomicity

Wx Rx

Rx

rf hb

hb \ rf

local-read-coherence

Fig. 1. Illustration of forbidden patterns in LRA

Notation for relations. Given a relation R, dom(R) denotes its domain; R? and
R+ denote its reflexive and transitive closures; and R−1 denotes its inverse. The
(left) composition of relations R1, R2 is denoted by R1 ; R2. We denote by [A]
the identity relation on a set A (e.g., [A] ;R ; [B] = R ∩ (A×B)).

First, we need a derived "happens-before" relation. For a given execution
graph G, we define G.hb ≜ (G.po ∪ G.rf)+. We require that G.hb is a partial
order, which results in our first constraint:

G.hb is irreflexive (irr-hb)

The next constraint intuitively makes sure that “a thread cannot read a
value when it is aware of a later value written to the same location”, where
“aware” and “later” are interpreted using G.hb. Formally, we define G.hb|loc ≜
{⟨e1, e2⟩ ∈ G.hb | loc(e1) = loc(e2)} (i.e., per-location restriction of the happens-
before relation), and require the following:

G.hb|loc ; [W] ;G.hb ;G.rf−1 is irreflexive (weak-coherence)

In particular, the following annotated outcome of the message-passing (MP)
test is forbidden:

(MP)

x := 0
x := 1
y := 1

a := y //1
b := x //0

W(x, 0)

W(x, 1)

W(y, 1)

R(y, 1)

R(x, 0)

rf

An execution graph justifying this outcome must have rf-edges as depicted
above. However, we have hb|loc from W(x, 0) to W(x, 1), hb from W(x, 1) to R(x, 0),
and rf from W(x, 0) to R(x, 0), which is forbidden by weak-coherence.

The final condition that comes from WRA ensures that distinct RMW events
never read from the same write event:

∀⟨w1, e1⟩, ⟨w2, e2⟩ ∈ G.rf ; [RMW]. w1 = w2 =⇒ e1 = e2 (weak-atomicity)

This concludes the consistency constraints of WRA. As noted above, unlike
RA, WRA admits behaviors in which threads oscillate between values that were
concurrently written to the same location. Our proposed condition of LRA that
prunes these behaviors is the following:

(G.hb|loc \G.rf) ; [R] ;G.hb ;G.rf−1 is irreflexive (local-read-coherence)

Decidable Verification under Localized Release-Acquire Concurrency 239

Intuitively, this constraint ensures that a thread cannot read from a certain
write w if it is already aware of a read r′ reading from the same location that is
later than w and reads from some other write w′. Again, “aware” and “later” are
interpreted using G.hb.

The following examples demonstrate “oscillations” between observed values
that are allowed in WRA but forbidden in LRA.

(Oscillation 1) (Oscillation 2) (Oscillation 3)

x := 2
x := 1
b := x //2
c := x //1

x := 2
a := x //1
b := x //2
c := x //1

x := 1 x := 2
a := y //1
b := x //2
c := x //1

x := 1
y := 1

T1 T2

W(x, 2)

W(x, 1)

R(x, 2)

R(x, 1)

rf
rf

T1 T2 T3

W(x, 2) W(x, 1)
R(x, 2)

R(x, 1)

R(x, 1)

rf
rf

rf

T1 T2 T3

W(x, 2)
W(x, 1)

W(y, 1)R(x, 2)

R(x, 1)

R(y, 1)

rf

rf

rf

hb?

(Order-Propagation)

x := 2
a := x //1
b := x //2
y := 1

d := y //1
c := x //1 x := 1

T1 T2 T3 T4

W(x, 2) W(x, 1)
R(x, 2)

W(y, 1)

R(x, 1)

R(x, 1)

R(y, 1)
rf

rf

rf
rf

It can be checked that local-read-coherence forbids these execution graphs:
in all of them we have (1) G.hb|loc \G.rf from W(x, 1) to R(x, 2); (2) G.hb from
R(x, 2) to the read R(x, 1) that represents the read to c; and (3) rf from W(x, 1)
to that read.

Next, we establish the relation between LRA and RA (see [22] for a definition
of RA).

Proposition 1. LRA is weaker than RA, that is: if a program state is reachable
under RA, then it is also reachable under LRA.

Proof. We establish this result by recalling the following “read-coherence” con-
sistency constraint of RA (see Figure 2 and [20] for more details). Note the
use of modification order G.mo in RA to interpret one write being “later” than
another, in the place of G.hb|loc in the “weak-coherence” in WRA. Here G.mo is
disjoint union of relations {G.mox}x∈Loc where each G.mox is a strict total order
on Wx.

G.mo ;G.hb ;G.rf−1 is irreflexive (read-coherence)

Since WRA is strictly weaker than RA, it suffices to show that the additional
constraint “local-read-coherence” of LRA is also guaranteed in RA. The proof
follows by contradiction. Assume otherwise, hence, for a given x ∈ Loc, we have
w,w′ ∈ Wx and r, r′ ∈ Rx where ⟨w, r′⟩ ∈ hb \ rf, ⟨w′, r′⟩ ∈ rf, ⟨w, r⟩ ∈ rf, and
w ̸= w′ (see right side of Figure 2). Since loc(w) = x = loc(w′), due to the RA
semantics, we have one of the following cases:

240 Abhishek Kr Singh and Ori Lahav

Wx Wx

Rx

rf hb

mo

read-coherence

w r′ w′

r

rf hb

hb \ rf rf

⟨w,w′⟩ ∈ mox∨⟨w′, w⟩ ∈ mox

Fig. 2. Axiom read-coherence in RA and illustration for proof of Proposition 1

– ⟨w,w′⟩ ∈ mox: In this case we have ⟨w, r⟩ ∈ rf while ⟨w, r⟩ ∈ mox ; hb, which
contradicts the axiom read-coherence of RA.

– ⟨w′, w⟩ ∈ mox: In this case we have ⟨w′, r′⟩ ∈ rf while ⟨w′, r′⟩ ∈ mox ; hb,
which again contradicts the axiom read-coherence of RA.

To see that LRA is strictly weaker than RA, we note that LRA does not
provide full coherence. Indeed, as the next example shows, even programs with
a single shared variable can exhibit weak behaviors:

(WW)

x := 2
a := x //1

x := 1
b := x //2

T1 T2

W(x, 2) W(x, 1)

R(x, 2)R(x, 1)

rfrf

Interestingly, our final example shows the LRA model is possibly blocking: it
may be the case that a thread simply cannot read from a certain location, since
any option for reading would violate local-read-coherence.

(Blocking)

x := 2
a := x //1
z := 1

x := 1
b := x //2
c := z //1
d := x //nothing can be read

T1 T2

W(x, 2) W(x, 1)

R(x, 2)R(x, 1)

W(z, 1) R(z, 1)

R(x,−)

rfrf

rf

Roughly speaking, the synchronization on z “joins” the threads and rules out
both options. More formally, if the final read reads from W(x, 1), we violate
local-read-coherence due to G.hb|loc \ G.rf from W(x, 1) to R(x, 2) and G.hb
from R(x, 2) to the final read. In turn, if the final read reads from W(x, 2), we
violate local-read-coherence due to G.hb|loc \ G.rf from W(x, 2) to R(x, 1) and
G.hb from R(x, 1) to the final read.

It is important to note that the blocking aspect of LRA model does not affect
the benefits of sound verification of the RA programs using LRA, since (due to
Proposition 1) forbidden outcomes in LRA model (possibly due to a blocked
run) are also forbidden in the RA model.

Decidable Verification under Localized Release-Acquire Concurrency 241

3.1 An Operational Presentation

Since LRA-consistency is “prefix-closed”, it is straightforward to “operational-
ize” LRA’s declarative presentation, which will help us below in relating the
potential-model to LRA. To do so, we define a memory system, called opLRA,
whose states are execution graphs, the only initial state is the empty execution
graph, and the transitions are as follows:

write
e = NextEvent(G.E, τ, W(x, vW))

G′ = ⟨G.E ∪ {e}, G.rf⟩

G
τ,W(x,vW)−−−−−→opLRA G′

read/rmw
l = R(x, vR) ∨ l = RMW(x, vR, vW)

e = NextEvent(G.E, τ, l) G′ = ⟨G.E ∪ {e}, G.rf ∪ {⟨w, e⟩}⟩
w ∈ G.Wx valW(w) = vR

w ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ])

w ̸∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ])
typ(l) = RMW =⇒ w ̸∈ dom(G.rf ; [RMW])

G
τ,l−−→opLRA G′

These transitions are enforcing consistency on every step, which allows us to
establish the following relation.

Proposition 2. LRA is equivalent to opLRA, that is: a program state is reach-
able under LRA iff it is reachable under opLRA.

4 Lossy semantics for LRA

In this section, we present loLRA, a potential-based memory system that is
equivalent to LRA and well suited for verification in the framework of WSTS.

The memory states of loLRA maintain a collection of "read/write-option"
lists for each thread, called the potential of the thread. Concretely, a state of
loLRA is a potential mapping B which maps each thread τ ∈ Tid to its potential
B(τ). Potentials are finite sets of option lists, where each option list stands for
a sequence of possible future reads (read options) and writes (write options)
that ascribe possible operations the thread may perform in the order it may
perform them. For instance, a list o1 · o2 consisting of two read options, o1 and
o2, allows the thread to read val(o1) from location loc(o1) and then val(o2)
from location loc(o2). Thread potentials are explicitly “lossy”—a thread can non-
deterministically lose whatever parts of its potential at any point. Initially, the
loLRA memory system non-deterministically starts in a state where all potentials
consist solely of write options.

Next, we present the full definitions (which, except for loLRA’s transitions
match precisely the definitions of the corresponding system for WRA in [22]).

242 Abhishek Kr Singh and Ori Lahav

Notation for sequences. We use ϵ to denote the empty sequence. The length of a
sequence s is denoted by |s| (in particular |ϵ| = 0). We often identify a sequence
s over Σ with its underlying function in {1, ... ,|s|} → Σ, and write s(k) for the
symbol at position 1 ≤ k ≤ |s| in s. We write σ ∈ s if the symbol σ appears
in s, that is if s(k) = σ for some 1 ≤ k ≤ |s|. We use “ ·” for the concatenation
of sequences, and lift it to concatenation of sets S1 and S2 of sequences in the
obvious way (S1 · S2 ≜ {s1 · s2 | s1 ∈ S1, s2 ∈ S2}). We identify symbols with
sequences of length 1 or their singletons when needed (e.g., in expressions like
σ · S for σ ∈ Σ and a set S of sequences over Σ).

Definition 3. Options, option lists, potentials, and potential mappings are de-
fined as follows:

1. An option o is either ⟨τ, x, v, πRMW⟩ (read option) or OW(x) (write option),
where τ, πRMW ∈ Tid, x ∈ Loc, and v ∈ Val. The functions typ, tid, loc, val,
and rmw-tid return (when applicable) the type (R/W), thread identifier (τ),
location (x), value (v), and RMW thread identifier (πRMW) of a given option.

2. An option list L is a finite sequence of (read or write) options. For a given
option list L, we define loc(L) ≜ {loc(o) | o ∈ L}.

3. A potential B is a finite non-empty set of option lists.
4. A potential mapping B is a function assigning a potential to every τ ∈ Tid.

We define a (well quasi) ordering on option lists that naturally extends to
potentials and to potential mappings.

Definition 4. The (overloaded) relation ⊑ is defined by:

1. on option lists: L ⊑ L′ if L is a (not necessarily contiguous) subsequence of
L′;

2. on potentials: B ⊑ B′ if ∀L ∈ B. ∃L′ ∈ B′. L ⊑ L′ (a.k.a. “Hoare ordering”);
3. on potential mappings: B ⊑ B′ if B(τ) ⊑ B′(τ) for every τ ∈ Tid (compo-

nentwise order).

The memory system loLRA is formally defined as follows.

Definition 5. The memory system loLRA is defined by:

– loLRA.Q is the set of potential mappings.
– loLRA.Q0 = {B | ∀τ ∈ Tid, L ∈ B(τ), o ∈ L. typ(o) = W}.
– The transitions of loLRA are given in Figure 3.

The transitions of loLRA are informally understood as follows:

– read: For a thread τ to read v from x, all lists of τ should start with an
option o with val(o) = v and loc(o) = x (since it is the same option o in
the head of all lists, all lists of τ also start with the same thread identifier,
which is important for the equivalence result; see [22, Example 5.5]). The
read step consumes these options by discarding the first element from each
of τ ’s lists.

Decidable Verification under Localized Release-Acquire Concurrency 243

write
o = ⟨τ, x, vW, πRMW⟩

∀π ∈ Tid, L′ ∈ B′(π).
((π = τ =⇒ OW(x) · L′ ∈ B(τ)) ∧ (π ̸= τ =⇒ L′ ∈ B(π))) ∨
(∃n ≥ 1, L0, ... ,Ln.

L′ = L0 · (o · L1) · (o · L2) ·...· (o · Ln) ∧
OW(x) · (L1 ·...· Ln−1) · OW(x) · Ln ∈ B(τ) ∧
(π = τ =⇒ OW(x) · L0 ·...· Ln−1 · OW(x) · Ln ∈ B(τ) ∧ x ̸∈ loc(L0 ·...· Ln−1)) ∧
(π ̸= τ =⇒ L0 ·...· Ln−1 · OW(x) · Ln ∈ B(π) ∧ x ̸∈ loc(L1 ·...· Ln−1)))

B τ,W(x,vW)−−−−−→loLRA B′

read
loc(o) = x
val(o) = vR

B = B′[τ 7→ o · B′(τ)]

B τ,R(x,vR)−−−−−→loLRA B′

rmw
loc(o) = x val(o) = vR rmw-tid(o) = τ

B = Bmid[τ 7→ o · Bmid(τ)]

Bmid
τ,W(x,vW)−−−−−→loLRA B′

B τ,RMW(x,vR,vW)−−−−−−−−→loLRA B′

lower
B′ ⊑ B

B ε−→loLRA B′

Fig. 3. Transitions of loLRA memory system

– write: For a thread τ to write v to x, an option OW(x) must be the first
in each of τ ’s lists. The write consumes these options, discarding the first
element from each of τ ’s lists. To allow future reads from the executed write,
the write may add a read option o with loc(o) = x, val(o) = v, tid(o) =
τ , and some rmw-tid(o) (possibly multiple times) in every existing list of
every thread (including the writer itself). The write step enforces carefully
tailored conditions on where these new options are added:
1. In the potential of the writer itself, a new option cannot be added after an

existing write option to x (except for the write option that is consumed
in this write step) and the last added read option should immediately
precede an existing write option to x.

2. In the potential of other threads the last added read option should im-
mediately precede an existing write option to x that is to be consumed
by the current write step.

3. If more than one option is added, the added read options can never
“surround” an existing read/write option with location x.

4. New read options can be placed in a list L only if the suffix of L after
the first occurrence of the newly added read options are present as an
option list of the writing thread τ .

– rmw: The only additional requirement when performing an RMW compared
to a non-interrupted execution of a read followed by a write is that two
RMWs should never read from the same event. This is achieved by including
RMW thread identifiers in read options, denoting the (unique) thread that
may consume this option when executing an RMW. When a thread writes,
it picks an (arbitrary) unique thread identifier (πRMW) for its added options;
reads ignore this field; and RMWs by thread τ can only consume read options
whose RMW thread identifier is τ .

244 Abhishek Kr Singh and Ori Lahav

W(x, 0)

W(x, 1)

W(y, 1)

R(y, 1)

R(x, 0)

rf

T1 T2

OW(x)

OW(x)

OW(y)

OW(y)

OW(x)

L′
0L0

T1 T2

W(x, 0)

OW(x)

OW(y)

OW(y)

ox,0

L′

1(a) 2(a)

T1 T2

W(x, 0)

OW(x)

OW(y)

OW(y)

ox,0ox,0

✗

T1 T2

W(x, 0)

W(x, 1)

OW(y)

OW(y)

ox,0

}L
′

T1 T2

W(x, 0)

W(x, 1)

W(y, 1)

oy,1

ox,0···

}✗

2(b) 3(a) 4(a)

Fig. 4. This figure shows the loLRA transitions for MP program. Here the dashed line
in 1(a) between OW(x) of T1 and OW(x) of T2 indicates that a future write W(x, 0) of T1
(see 2(a)) may replace the OW(x) of T2 with a read option ox,0. We follow a similar
depiction in all the remaining diagrams of the paper.

– lower: The step allows to remove read/write options as well as full option
lists at any time.

We revisit the examples from §3 to illustrate that loLRA forbids those out-
comes. In following discussions, shaded portions of the diagram for each thread
correspond to its option lists. We write ox,v to represent a read option o with
loc(o) = x and val(o) = v.

Example 2. Recall the execution graph of MP from §3 (see Figure 4). Since
no step in loLRA can introduce a write option, we observe the following facts
about the option lists L0 ∈ B0(T1) and L′

0 ∈ B0(T2) where B0 may lead to the
annotated program state (a = 1 and b = 0) using a trace in which L0 and L′

0

are not discarded by a lower step:

1. L0 contains OW(x) · OW(x) · OW(y) as a sub-list to enable W(x, 0), W(x, 1), and
W(y, 1) in T1.

2. For the reads R(y, 1) and R(x, 0) to happen the corresponding writes W(y, 1)
and W(x, 0) need to insert read options oy,1 and ox,0 at these locations (see
read step).

3. L′
0 contains OW(y) followed by OW(x) to enable future insertions of read options

oy,1 and ox,0 by the writes W(y, 1) and W(x, 0) respectively (see condition 2
of write step).

Starting in the state B0 (1(a) in Figure 4), one can reach state 3(a) through
state 2(a) in two successive steps corresponding to execution of the first two
writes, W(x, 0) and W(x, 1) of T1, where the first write W(x, 0) replaces OW(x) in
the option list of T2 with a read option ox,0 resulting in L′ = L′

0[OW(x) 7→ ox,0].

Decidable Verification under Localized Release-Acquire Concurrency 245

T1 T2

W(x, 2)

W(x, 1)

R(x, 2)

R(x, 1)

rf
rf

T1 T2

OW(x)

W(x, 1)

OW(x) ✗

T1 T2

W(x, 2)

W(x, 1)

ox,2 ✗

(Oscillation 1) 1(a) 1(b)

T1 T2 T3

W(x, 2) W(x, 1)
R(x, 2)

R(x, 1)

R(x, 1)

rf
rf

rf

T1 T2 T3

OW(x) W(x, 1)
OW(x)

✗

✗

T1 T2 T3

W(x, 2) W(x, 1)
ox,2

✗

✗

(Oscillation 2) 2(a) 2(b)

Fig. 5. loLRA transitions for Oscillation 1 and Oscillation 2 (Example 3).

In the next step (shown as 4(a)), we hope to perform the write W(y, 1) in T1 and
replace OW(y) in T2 with the read option oy,1. However, the current write step
requires that the suffix of L′ after OW(y) (here, ox,0) be present as an option list
of thread T1 (due to condition 4 of the write step). This is clearly not true and
hence we can not continue with the current execution trace. To circumvent this
blocking run the first write W(x, 0) of T1 might want to non-deterministically
insert a read option ox,0 at the specified location (see 2(b)) in its option list.
However, due to the presence of an earlier OW(x) in the option lists of T1 this is
not allowed. Therefore, the loLRA semantics successfully forbids the annotated
outcome of the message passing test.

Example 3. Recall the execution graphs of (Oscillation 1) and (Oscillation 2)
from §3 (see Figure 5), where T2 oscillates between the observed values of x.
Consider following two cases (and the corresponding execution graphs) to observe
a contradiction for each possible trace of loLRA:

– W(x, 1) executes before W(x, 2): For (Oscillation 1) and (Oscillation 2) this
is depicted as 1(a) and 2(a) of Figure 5 respectively. Note the presence of
OW(x) at the specified locations in the option lists of thread T2 to mark the
end of new read options due to the future write W(x, 2). In the current state
of (Oscillation 1), the write W(x, 1) of thread T2 is not allowed to put a read
option in its own option list due to the presence of an earlier OW(x) (see
condition 1 of write step). Similarly in the current state of (Oscillation 2),
the write W(x, 1) of thread T3 cannot place new read options in the list of
thread T2 because OW(x) appears between the new read options (see condition
3 of write step).

– W(x, 1) executes after W(x, 2): For (Oscillation 1) and (Oscillation 2) this is
depicted as 1(b) and 2(b) of Figure 5 respectively. Note the presence of ox,2
(instead of OW(x) in the previous case) at the specified location in the option

246 Abhishek Kr Singh and Ori Lahav

T1 T2 T3

W(x, 2)
W(x, 1)

W(y, 1)R(x, 2)

R(x, 1)

R(y, 1)

rf

rf

rf

hb?

T1 T2 T3

OW(x)

W(x, 1)

OW(y)

OW(x)

OW(y)

OW(x)✗ ✗

T1 T2 T3

W(x, 2)

W(x, 1)

OW(y)

ox,2

OW(y)

ox,2✗ ✗

(Oscillation 3) 3(a) 3(b)

Fig. 6. The loLRA transitions for the program Oscillation 3 (Example 4).

lists of thread T2 to allow the read R(x, 2) to read in future from the write
W(x, 2) of T1. Again in the states corresponding to 1(b) and 2(b), due to
conditions 1 and 3 of write step, W(x, 1) is not allowed to put new read
options at the specified locations.

Example 4. Recall the execution graph of (Oscillation 3) from §3, where T2 oscil-
lates between the observed values of x (see Figure 6). We consider the following
two cases and the resulting execution graphs, based on the order of execution
between the write events W(x, 1) and W(x, 2), to observe a contradiction in each
trace of loLRA:

– W(x, 1) executes before W(x, 2): This condition is depicted as 3(a). Note the
presence of OW(y) and OW(x) at the specified location in the option list of T2 to
mark the end of new read options due to the future writes W(y, 1) and W(x, 2)
of T3 and T1 respectively. Also note the presence of OW(x) in the option lists
of T3. We claim that this OW(x) is needed as justification for the future write
W(y, 1) of T3 (when the write W(y, 1) will be replacing the write option OW(y)
on T2 with the read option oy,1). To justify the claim, assume otherwise (i.e.,
OW(x) is absent in the option list of T3), and we observe that W(y, 1) of T3 can
not continue in any of the following possible cases:
• W(x, 2) has not occurred when W(y, 1) tries to execute: In this case OW(x) is

still present in the option list of T2 and hence is required at the specified
location in the option list of T3 as a justification for the current write
W(y, 1) (see condition 4 of the write step). Therefore, the write W(y, 1)
can not continue in this case.

• W(x, 2) has occurred when W(y, 1) tries to execute: In this case OW(x) on
T2 has been replaced with a ox,2 and hence ox,2 is also expected in the
option list of T3 (as justification for the current write step W(y, 1)).
However, the presence of ox,2 in T3 can only be ensured (as insertion of
new read option) by the corresponding write W(x, 2). The write W(x, 2)
can not add a ox,2 at the specified location due to the absence of OW(x)
at the same location to mark the end of newly added read options (see
condition 2 of write step). Hence, in this case again the write W(y, 1)
can not continue.

Assuming the presence of OW(x) in the option list of T3 (as shown in 3(a)) it
is easy to see that W(x, 1) of T3 can not put a read option in its own option

Decidable Verification under Localized Release-Acquire Concurrency 247

x := 2

d := x //2
a := y //1
b := x //2
c := x //1

x := 1
y := 1

T1 T2 T3

OW(x)

W(x, 1)

OW(y)

OW(x)

OW(y)

(Oscillation 4) 4(c)

T1 T2 T3

W(x, 2)
W(x, 1)

W(y, 1)R(x, 2)

R(x, 2)

R(x, 1)

R(y, 1)rf

rf

rf

T1 T2 T3

OW(x)

W(x, 1)

OW(y)

OW(x)

OW(y)

OW(x)✗ ✗

T1 T2 T3

W(x, 2)

W(x, 1)

OW(y)

ox,2

OW(y)

ox,2✗ ✗

(Osc 4) 4(a) 4(b)

Fig. 7. The loLRA transitions for the program Oscillation 4 (Example 5).

list (see condition 1 of write step) which is necessary as justification for the
future write W(y, 1) of T3 (again using similar arguments as discussed above).
Therefore, the current case is forbidden by the lossy loLRA semantics.

– W(x, 1) executes after W(x, 2): This condition is depicted as 3(b), where the
write W(x, 2) of T1 has replaced the write option OW(x) in the option lists
of T2 with a read option ox,2. Again, as discussed in the previous case (for
justifying the future write W(y, 1) of T3), the write W(x, 2) of T1 should also
place a read option ox,2 in the option lists of T3 at the specified location.
Now, as shown in 3(b), the write W(x, 1) of T3 can not put a read option in
its own option list (due to the presence of an earlier ox,2) which is necessary
as justification for the future write W(y, 1) of T3. Thus, the current case is
also forbidden by the lossy loLRA semantics.

In the discussions so far (particularly related to cases 1(a), 2(a), and 3(a) of
the previous examples), we observed that marking the end of newly added read
options (using a pre-existing write option) is helpful in forbidding oscillations. In
all of these cases it is easy to see (using exactly similar arguments) that we can
also forbid these oscillatory behaviors by requiring (in conditions 1 and 2 of the
write step) that the beginning of newly added read options be marked using a
pre-existing write option. Next example illustrates the distinctive advantage of
marking the end over marking the beginning.

Example 5. Consider execution graph (Osc 4) corresponding to the annotated
outcome of (Oscillation 4) shown in Figure 7. The constraint local-read-coherence
forbids this execution graph since we have (1) G.hb|loc \ G.rf from W(x, 1) to
the third read R(x, 2) of T2; (2) G.hb from the third read R(x, 2) of T2 to the last
read R(x, 1) of T2; and (3) rf from W(x, 1) to the last read R(x, 1) of T2.

Consider the following two possibilities (4(b) and 4(a) of Figure 7) corre-
sponding to this outcome where: (1) W(x, 1) executes after W(x, 2); and (2) W(x, 1)
executes before W(x, 2).

248 Abhishek Kr Singh and Ori Lahav

Assuming (1) and using arguments similar to Example 4, we land in config-
uration 4(b) which is not allowed by the lossy loLRA semantics. However, note
that assuming (2) we get a contradiction only because OW(x) is present at the
specified location in 4(a) to mark the end of new read options in the option list
of T2 (by the write W(x, 2) of thread T1). Instead, if we choose to mark the be-
ginning (and not the end) of new read options in the option list of T2 we result
in the configuration of 4(c) resulting in the absence of any pre-existing OW(x)
at the end of the new entries. In this case, we observe that there is a trace of
lossy loLRA (for the annotated outcome of (Oscillation 4)) in which W(x, 1) and
W(y, 1) of T3 appears before W(x, 2) of T1.

Next, we show that for a given program Pr , Pr⋊⋉loLRA admits the required
conditions of the WSTS framework that ensure decidability of the induced cov-
erability problem (see, e.g., [9, 15]). In particular, the compatibility condition
between the well-quasi-ordering on states and the transitions is trivial since we
explicitly include the (lower) step in loLRA.

Lemma 1. Given a program Pr , the LTS Pr⋊⋉loLRA equipped with the well-
quasi-ordering ⊑ (lifted to states of Pr⋊⋉loLRA by defining ⟨p,B⟩ ⊑ ⟨p′,B′⟩ iff
p = p′ and B ⊑ B′) is a WSTS that admits effective initialization and effective
pred-basis.

As a corollary, we obtain that state reachability under loLRA is decidable. We
refer the reader to [32] where we give more details and proofs (which generally
follow those in [22]).

5 Equivalence of the Memory Systems for LRA

In this section we establish the equivalence between loLRA and opLRA by
demonstrating a simulation between these systems. The states of loLRA and
opLRA are related to each other using write lists, which match read options in
loLRA’s potentials with concrete write event in opLRA’s execution graphs.

Definition 6. A write list is a sequence of write events and write options. Let
G be an execution graph, L an option list, and tidRMW : W → Tid. A write list
W is a ⟨G,L, tidRMW⟩-write-list if |L| = |W | and the following hold for every
1 ≤ k ≤ |W |:

– If L(k) is a write option, then W (k) = L(k).
– If L(k) = ⟨τ, x, v, πRMW⟩, then W (k) ∈ G.W, tid(W (k)) = τ , loc(W (k)) = x,

valW(W (k)) = v, and tidRMW(W (k)) = πRMW.

In addition to the above, we require that weak-coherence and local-read-
coherence are maintained by any extension of the execution graph G with a
sequence of reads and writes of thread τ that are obtained by following the write
list W . This is formalized in the following notion of ⟨G, τ⟩-consistency of a write
list W .

Decidable Verification under Localized Release-Acquire Concurrency 249

τ τ2

W (k)

w

L(k)

✗

hb|lochb ?

C1(a)

τ1 τ τ2

W (j) W (k)

w

L(j)

L(k)

✗

hb|lochb
?

C1(b)

τ τ2

W (k)

L(k)

OW(x) ✗

h
b ?

x = loc(W (k))

C2(a)

τ1 τ τ2

W (j) W (k)
L(j)

L(k)

OW(x) ✗

hb ?

x = loc(W (k))

C2(b)

τ1 τ τ2

w
W (k)

L(k)

rf

✗

hb ?
hb

?

loc(w) = loc(W (k))

w ̸= W (k)

C3(a)

τ1 τ τ2

w
W (k)

L(j)

L(k)

W (j)rf

✗

hb ?

hb
?

loc(w) = loc(W (k))

w ̸= W (k)

C3(b)

τ1 τ τ2

W (j) W (k)
L(j)

L(k)

✗

h
b ?

loc(W (j)) = loc(W (k))

W (j) ̸= W (k)

C4(a)

τ1 τ τ2

W (j) W (k)

W (i)

L(j)

L(k)

L(i)

✗

hb ?

loc(W (j)) = loc(W (k))

W (j) ̸= W (k)

C4(b)

Fig. 8. Illustration of conditions in Definition 7 for the ⟨G, τ⟩-consistency of W . Each
condition is split into two cases (e.g., C1 is summarized using C1(a) or C1(b)).

Definition 7. A write list W is ⟨G, τ⟩-consistent if for every 1 ≤ k ≤ |W | with
W (k) ∈ E:

C1 W (k) ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]).
C2 If W (i) = OW(loc(W (k))) for some i < k,

then W (k) ̸∈ dom(G.hb? ; [Eτ ∪ {W (j) | 1 ≤ j < i}]).
C3 W (k) ̸∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]).
C4 If loc(W (j)) = loc(W (k)) and W (k) ̸= W (j) for some j < k,

then W (k) ̸∈ dom(G.hb? ; [Eτ ∪ {W (i) | 1 ≤ i < j}]).

Intuitively, for any future extension of execution graph with a sequence of
events on τ , conditions C1 and C2 help in maintaining weak-coherence while C3
and C4 ensure that local-read-coherence is preserved. To assist readers, these
conditions are depicted using diagrams in Figure 8 where the shaded area of τ
represents a sequence of future events.

The simulation relation ⋎ is now defined as follows.

250 Abhishek Kr Singh and Ori Lahav

Definition 8. A state B ∈ loLRA.Q matches an execution graph G, denoted
by B ⋎ G, if there exists a function tidRMW : W → Tid, such that: (1) for every
τ ∈ Tid and L ∈ B(τ), there exists a ⟨G, τ⟩-consistent ⟨G,L, tidRMW⟩-write-list,
and (2) for every ⟨w, e⟩ ∈ G.rf ; [RMW], we have tid(e) = tidRMW(w).

Based on the simulation relation, we establish the equivalence of loLRA and
opLRA. The proof, given in [32], shows that ⋎ constitutes a forward simulation
from loLRA to opLRA, and ⋎−1 constitutes a backward simulation from opLRA
to loLRA.

Theorem 1. The traces of loLRA and the traces of opLRA coincide.

6 Conclusion, Related and Future Work

We established the decidability of state reachability for finite-state programs
under LRA, a memory model that lies strictly between WRA and RA. For that
matter, we adapted the potential-based semantics of WRA from [22] to LRA, and
showed that it meets the requirements for decidability of the WSTS framework.

In addition to the closely related work discussed in the introduction to this
paper, the paper [14] studies the problem of verifying whether a given memory
system provides causal consistency, which is a different verification problem than
the one discussed in the current paper. The CC model in [14] (when restricted
to single instruction transactions) is equivalent to (the RMW-free fragment of)
WRA, whereas CCv from [14] is equivalent to SRA.

Another line of related work concerns parametrized programs, where one has
an unknown number of threads but all of them run the same code. This arises
a decidable verification problem under SC and TSO [5], but decidability of this
problem is still unknown for WRA, SRA, and LRA. For the RMW-free fragment
this problem is PSPACE for TSO [8] as well as for RA [19] (the latter result
also allows a fixed number of distinguished threads running loop-free programs,
possibly including RMWs).

An interesting direction for future work is to try to further close the gap
between LRA and RA by introducing a restricted form of RA’s modification
order. A related problem that is still open (to the best of our knowledge) is
whether the fragment of RA without RMWs induces a decidable verification
problem. In addition, other models with undecidable reachability problems (such
as the promising semantics [6] and the full POWER model [3]) may be bounded
from below by decidable models.

Acknowledgements This work was supported by the Israel Science Founda-
tion (grant number 814/22) and the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant
agreement no. 851811).

Decidable Verification under Localized Release-Acquire Concurrency 251

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. The Bulletin of
Symbolic Logic 16(4), 457–515 (2010), http://www.jstor.org/stable/40961367

2. Abdulla, P.A., Arora, J., Atig, M.F., Krishna, S.: Verification of programs under
the release-acquire semantics. In: PLDI. pp. 1117–1132. ACM, New York, NY,
USA (2019). https://doi.org/10.1145/3314221.3314649

3. Abdulla, P.A., Atig, M.F., Bouajjani, A., Derevenetc, E., Leonardsson, C., Meyer,
R.: On the state reachability problem for concurrent programs under Power. In:
NETYS. pp. 47–59. Springer International Publishing, Cham (2021). https://doi.
org/10.1007/978-3-030-67087-0_4

4. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: The benefits of duality in
verifying concurrent programs under TSO. In: CONCUR. LIPIcs, vol. 59, pp. 5:1–
5:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016), https://doi.org/
10.4230/LIPIcs.CONCUR.2016.5

5. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: A load-buffer semantics for
total store ordering. Logical Methods in Computer Science Volume 14, Issue 1
(Jan 2018). https://doi.org/10.23638/LMCS-14(1:9)2018

6. Abdulla, P.A., Atig, M.F., Godbole, A., Krishna, S., Vafeiadis, V.: The decidability
of verification under PS 2.0. In: ESOP. pp. 1–29. Springer International Publishing,
Cham (2021). https://doi.org/10.1007/978-3-030-72019-3_1

7. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model checking
under the release-acquire semantics. Proc. ACM Program. Lang. 2(OOPSLA),
135:1–135:29 (Oct 2018). https://doi.org/10.1145/3276505

8. Abdulla, P.A., Atig, M.F., Rezvan, R.: Parameterized verification under TSO is
PSPACE-complete. Proc. ACM Program. Lang. 4(POPL) (Dec 2019). https://doi.
org/10.1145/3371094

9. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Information and Computation 160(1),
109–127 (2000). https://doi.org/10.1006/INCO.1999.2843

10. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
definitions, implementation, and programming. Distributed Computing 9(1), 37–
49 (1995). https://doi.org/10.1007/BF01784241

11. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (Jul 2014). https://doi.org/10.1145/2627752

12. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: ESOP. pp. 26–46. Springer-Verlag, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28869-2_2

13. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++
concurrency. In: POPL. pp. 55–66. ACM, New York, NY, USA (2011). https:
//doi.org/10.1145/1925844.1926394

14. Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consistency.
In: POPL. pp. 626–638. ACM, New York, NY, USA (2017). https://doi.org/10.
1145/3009837.3009888

15. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! The-
oretical Computer Science 256(1), 63 – 92 (2001). https://doi.org/10.1016/
S0304-3975(00)00102-X

16. ISO/IEC 14882:2011: Programming language C++ (2011)
17. ISO/IEC 9899:2011: Programming language C (2011)

252 Abhishek Kr Singh and Ori Lahav

http://www.jstor.org/stable/40961367
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1007/978-3-030-67087-0_4
https://doi.org/10.1007/978-3-030-67087-0_4
https://doi.org/10.1007/978-3-030-67087-0_4
https://doi.org/10.1007/978-3-030-67087-0_4
https://doi.org/10.4230/LIPIcs.CONCUR.2016.5
https://doi.org/10.4230/LIPIcs.CONCUR.2016.5
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1007/978-3-030-72019-3_1
https://doi.org/10.1007/978-3-030-72019-3_1
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1006/INCO.1999.2843
https://doi.org/10.1006/INCO.1999.2843
https://doi.org/10.1007/BF01784241
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X

18. Kaiser, J.O., Dang, H.H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for
weak memory: Reasoning about release-acquire consistency in Iris. In: ECOOP.
pp. 17:1–17:29. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2017). https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

19. Krishna, S., Godbole, A., Meyer, R., Chakraborty, S.: Parameterized verification
under release acquire is PSPACE-complete. In: PODC. pp. 482–492. ACM, New
York, NY, USA (2022). https://doi.org/10.1145/3519270.3538445

20. Lahav, O.: Verification under causally consistent shared memory. ACM SIGLOG
News 6(2), 43–56 (Apr 2019). https://doi.org/10.1145/3326938.3326942

21. Lahav, O., Boker, U.: Decidable verification under a causally consistent shared
memory. In: PLDI. pp. 211–226. ACM (2020). https://doi.org/10.1145/3385412.
3385966

22. Lahav, O., Boker, U.: What’s Decidable About Causally Consistent Shared Mem-
ory? ACM Trans. Program. Lang. Syst. 44(2), 8:1–8:55 (2022), https://doi.org/
10.1145/3505273

23. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
POPL. pp. 649–662. ACM, New York, NY, USA (2016). https://doi.org/10.1145/
2837614.2837643

24. Lahav, O., Margalit, R.: Robustness against release/acquire semantics. In: PLDI.
pp. 126–141. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3314221.
3314604

25. Lahav, O., Vafeiadis, V.: Owicki-gries reasoning for weak memory models. In:
ICALP. pp. 311–323. Springer-Verlag, Berlin, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6_25

26. Lahav, O., Vafeiadis, V.: Explaining relaxed memory models with program trans-
formations. In: FM. LNCS, vol. 9995, pp. 479–495. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-319-48989-6_29

27. Lahav, O., Vafeiadis, V., Kang, J., Hur, C.K., Dreyer, D.: Repairing sequential
consistency in C/C++11. In: PLDI. pp. 618–632. ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3062341.3062352

28. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

29. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
TPHOLs. pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03359-9_27

30. Raad, A., Lahav, O., Vafeiadis, V.: On parallel snapshot isolation and release/ac-
quire consistency. In: ESOP. pp. 940–967. Springer, Berlin, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-89884-1_33

31. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO: A
rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM
53(7), 89–97 (2010). https://doi.org/10.1145/1785414.1785443

32. Singh, A.K., Lahav, O.: Decidable verification under localized release-acquire con-
currency (extended version) (2024), https://www.cs.tau.ac.il/~orilahav/papers/
tacas24full.pdf

33. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.:
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. In: POPL. pp. 209–220. ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2676726.2676995

Decidable Verification under Localized Release-Acquire Concurrency 253

https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3505273
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-319-89884-1_33
https://doi.org/10.1007/978-3-319-89884-1_33
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://www.cs.tau.ac.il/~orilahav/papers/tacas24full.pdf
https://www.cs.tau.ac.il/~orilahav/papers/tacas24full.pdf
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2676726.2676995

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

254 Abhishek Kr Singh and Ori Lahav

http://creativecommons.org/licenses/by/4.0/

OxiDD
A Safe, Concurrent, Modular, and Performant

Decision Diagram Framework in Rust⋆

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{husung,hermanns,koehl}@cs.uni-saarland.de

2 Eindhoven University of Technology, Eindhoven, The Netherlands
c.dubslaff@tue.nl

Abstract. Decision diagrams (DDs) are an important data structure in
computer science with applications ranging from circuit design and verifi-
cation to machine learning. Most prominently, binary DDs are commonly
used to succinctly represent Boolean functions. Due to the practical im-
portance of DDs, there is an ongoing quest for high-performance software
libraries supporting the construction and manipulation of DDs. With
OxiDD, we present a new framework for DDs that focuses on safety,
concurrency, and modularity. Following a highly modular design we im-
plement OxiDD in Rust, which facilitates the integration of various kinds
of DDs such as MTBDDs, ZBDDs, and TDDs, all within safe code also in
a concurrent setting. Already in its initial release, OxiDD does not com-
promise performance, which we show to be on par with or even better
than established highly optimized DD libraries.

1 Introduction

Boolean functions play a central role in the design and analysis of computing
systems. They frequently appear in different representations through logics, cir-
cuits, machine learning classifiers, or binary decision diagrams (BDDs) [1,12]. In
particular, BDD representations are appealing as they are strongly normalizing
and provide efficient operations such as applying Boolean operators, finding and
counting satisfying assignments, or checking equivalence. Applications of BDDs
encompass a wide range, including symbolic model checking and logic synthe-
sis [13,15,26,20,16]. Much work on BDD research and implementations has been
conducted during the first two decades after Bryant’s seminal work [12]. This
lead to various other types of decision diagrams (DDs) that extend the core

⋆ OxiDD is open source and publicly available via https://oxidd.net.
This work was partially supported by the DFG under the projects TRR 248 (see
https://perspicuous-computing.science, project ID 389792660) and EXC 2050/1
(CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), as well as
the NWO Veni grant VI.Veni.222.431.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 255–275, 2024.
https://doi.org/10.1007/978-3-031-57256-2_13

Nils Husung1(B) , Clemens Dubslaff2 , Holger Hermanns1 ,
and Maximilian A. Köhl1

http://orcid.org/0009-0001-4375-3753
http://orcid.org/0000-0001-5718-8276
http://orcid.org/0000-0002-2766-9615
http://orcid.org/0000-0003-2551-2814
https://oxidd.net
https://perspicuous-computing.science
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_13&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

principles beyond Boolean functions or improving the efficiency for specific ap-
plications. Most prominently, multi-terminal BDDs (MTBDDs) [17,4] enable
pseudo-Boolean function representations, zero-suppressed BDDs (ZBDDs) [32]
usually provide more efficient representations for sparse sets than BDDs, or list
DDs (LDDs) [9] efficiently encode transition vectors.

The most frequently used BDD libraries that are still considered state-of-
the-art are BuDDy [27] and CUDD [40]. They originate from the 90s and do
not fully exploit recent scientific advancements and modern design opportuni-
ties. Therefore, DDs and in particular BDDs gain more and more attention
again, incorporating insights from satisfiability checking [8] but also providing
advances in distributed and parallel computation and feature selection algo-
rithms [18,39,7,23]. Sylvan [18] is a more recent BDD library that focuses on
multithreaded operators, which however is also entirely written in C. Hence, it
requires all memory management to be done manually, in particular challeng-
ing in the parallel setting. Manual resource management is one of the common
sources for bugs that lead to undefined behavior (UB), a situation where the
programming language does not assign any semantics to the code. Consequences
of UB are crashing programs or wrong results, the latter particularly being intol-
erable in verification tools or other critical applications where BDD libraries are
commonly employed. Further, while existing libraries provide support for differ-
ent kinds of BDDs such as MTBDDs or ZBDDs, the inherent lack of genericity
in C required specifically tailored implementations. More elaborate extensions,
e.g., towards ternary decision diagrams (TDDs) [38], would also require major
internal changes in the library implementations.

In this paper, we develop a new DD framework, called OxiDD, to provide the
basis for future developments in DD research and technology. As such, OxiDD
focuses on easing the implementation of new DD types, providing reusable com-
ponents commonly used in different kinds of DDs, and relying on modern tech-
nology. This leads to the following four major development goals for OxiDD:
safety, concurrency, modularity, and performance.

By safety, we mean the absence of undefined behavior. Concurrency refers
to thread-safety when used from multithreaded applications on the one hand.
On the other hand, the framework itself should leverage multicore architectures
for performance. Modularity should already be fulfilled by the nature of a frame-
work, clearly separating concerns and enhancing extensibility. Here, clear inter-
faces should separate algorithms from data structures and allow to easily replace
implementations of a component by another.

We tackle all the four development goals by implementing OxiDD in Rust,
which is considered to be a safe programming language. Rust achieves safety
via a rich type system but does not compromise performance: usually, Rust
programs do not show any runtime overhead compared to C/C++. Furthermore,
Rust allows us to define clear and generic interfaces, as well as efficient implemen-
tations of data structures. Also here, genericity does not come with any runtime
overhead, as the compiler generates specialized code at compile time. For high
performance, we opt into Unsafe Rust, a language syntactically separated from

256 N. Husung et al.

OxiDD 257

Library Version Last Release La
ng

ua
ge

BDD
BCDD

M
TBDD

ZB
DD

LD
D

TDD
Sh

ar
ed

Reo
rd

eri
ng

Thr
ea

d
Sa

fe

Pa
ra
lle

l O
p.

Ex
t.

M
em

or
y

Adiar [39] 1.2.2 2022/11 C++ ✓ ✓ ✓
Biddy [31] 2.2.1 2022/12 C ✓ ✓ ✓ ✓
BeeDeeDee [28] 2.0 2017/09 Java ✓ ✓ ✓
BuDDy [27] 2.4 2004 C ✓ ✓ ✓
CAL [33] 2.1.1 2022/01 C ✓ ✓ ✓ ✓
CUDD [40] 3.0.0 2015 C ✓ ✓ ✓ ✓ ✓
JDD [41] 111 2019 Java ✓ ✓ ✓
LibBDD [6] 0.5.10 2024/01 Rust ✓ ✓
PJBDD [7] 1.0.10 2021/07 Java ✓ ✓ ✓ ✓ ✓
Sylvan [18] 1.8.1 2023/11 C ✓ ✓ ✓ ✓ ✓ ✓
OxiDD Rust ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓ ✓

Fig. 1: Popular DD libraries

Safe Rust using the unsafe keyword. Unsafe Rust enables a few additional oper-
ations whose safety cannot be checked by the compiler. Connecting Unsafe and
Safe Rust requires safe abstractions upholding the central soundness property
of Safe Rust: “No matter what, Safe Rust can’t cause Undefined Behavior.” [36]
The art is to keep the portion of Unsafe Code as small as possible without vi-
olating the soundness property. One instance where we need Unsafe Rust is to
support reordering of variables without node-wise locking. In this case, design-
ing safe abstractions has been challenging. In the end, however, we gain both
performance and implementations of all DD operations entirely in Safe Rust.

Contributions and Outline. We report on generic implementations of BDDs,
MTBDDs, ZBDDs, and TDDs in OxiDD, focusing on implementation design and
evaluating OxiDD’s performance. Section 2 gives a detailed description of these
DD types and enhancements. For working with these DDs from Rust, we provide
high-level interfaces similar to those of existing libraries that—in contrast to
those—cannot cause UB, and also provide C and C++ bindings. Section 3 goes
into more detail about the framework’s architecture and implementation details.
We also point out some insights from tuning the data structures for performance.
For this, we design safe abstractions, a highly non-trivial process we report on in
Section 3.3. In Section 4, we finally evaluate the performance of OxiDD’s BDD
implementation. Our results show that OxiDD is on par with existing libraries,
and even outperforms them in certain scenarios. This lets us conclude that in
OxiDD, safety and modularity do not come at the expense of performance.

Further Related Work. For an overview comparing the features of popular
and recently maintained BDD libraries, see Fig. 1. Here, BCDD refers to BDDs
with complemented edges. The standard libraries BuDDy, CUDD, and Sylvan
are widely used in several communities due to their manifold BDD manipulation
operators and rich functionalities. Besides those, there are various other libraries
that mostly provide specialized implementations. Biddy [31] mainly started as

x0

x1

x2

f g

⊥ ⊤

(a) BDD

x0

x1

x2

f g

⊤

(b) BCDD

then

else
else complement

Fig. 2: Example decision diagrams for Boolean functions f, g : B3 → B where
f(x0, x1, x2) = ¬(x1 ∨ x2) and g(x0, x1, x2) = x0 ↔ x1 ↔ x2

an educational implementation but nowadays also supports a wide range of dif-
ferent BDD types such as tagged BDDs [19,14]. Java implementations such as
JDD [41], BeeDeeDee [28], or PJBDD [7] provide better safety properties than
C implementations, but usually cannot compete with performance. In case DDs
grow beyond the size of the entire main memory, it becomes especially important
to reduce the amount of random disk accesses. This is what the external memory
libraries Adiar [39] and CAL [37] focus on. Development of CAL ceased back in
1996, but it was recently brought back to life in context of research on Adiar.
Biodivine/LibBDD [6] is a notable BDD implementation in Rust and to the best
of our knowledge the only Rust library besides OxiDD that supports existential
and universal quantification. We are not aware of any DD implementation in the
spirit of a modular framework that emphasizes safety as much as OxiDD does,
while being concurrent and delivering high performance.

2 Background: Decision Diagrams and Rust

We recall kinds of DDs relevant for this paper, explain the role of variable orders
and variable reordering, as well as preliminaries on safe abstractions in Rust.

2.1 Kinds of Decision Diagrams

Decision trees (DTs) are tree-like structures that represent functions through
variable-labeled decision nodes and terminal nodes with function outcomes. Each
path from the root to a terminal stands for assigning variables with values with
the function outcome of the terminal. Decision diagrams (DDs) are rooted di-
rected acyclic graphs that arise from DTs by merging isomorphic subtrees. We
assume DDs to be ordered, i.e., variable occurrences follow a given total order
on all paths in the DD. The order restriction may also be formulated by assign-
ing each node a level, which we number from top to bottom. Then, a variable
order σ is a bijection between the levels 0, . . . , k − 1 and the k input variables.

258 N. Husung et al.

1 fn apply_and(n: &Node, m: &Node) -> &Node {
2 // "terminal cases"
3 if n == m { return n; } if n == ⊥ || m == ⊥ { return ⊥; }
4 if n == ⊤ { return m; } if m == ⊤ { return n; }
5 if n.level < m.level { // n is above m
6 level = n.level; t = apply_and(n.t, m); e = apply_and(n.e, m);
7 } else if n.level == m.level {
8 level = n.level; t = apply_and(n.t, m.t); e = apply_and(n.e, m.e);
9 } else { // n is below m

10 level = m.level; t = apply_and(n, m.t); e = apply_and(n, m.e);
11 }
12 return get_or_make_node(level, t, e);
13 }

Fig. 3: Apply algorithm for conjunctions (pseudocode)

Terminals are considered to be on a distinguished level ∞ at the bottom. Then,
every node at level i can only have successor nodes at levels greater than i.

Binary DDs (BDDs). The most prominent kind of DDs are BDDs, used to
represent Boolean functions f : Bk → B over B = {⊥,⊤}. They comprise termi-
nal nodes ⊤ and ⊥ as well as inner nodes n with outgoing “then” and “else” edges
pointing to nodes nt and ne, respectively. By n,m, ..., we usually denote nodes
and by x0, x1, . . . variables. BDDs are usually considered to be reduced, i.e., for
any inner nodes n,m (1) nt ̸= ne and (2) if level(n) = level(m), nt = mt,
and ne = me then n = m. One major advantage of such BDDs is that they
are strongly normalizing, i.e., they agree up to isomorphism for any Boolean
function [21]. Shared BDDs associate function names with nodes, allowing for
multiple functions to be represented in a single BDD structure. See Fig. 2a for
an example of a (shared reduced) BDD with two functions f and g.

The semantics JnK of a BDD node n is recursively defined as a Boolean
function. If n is a terminal, JnK is a constant function, mapping always to true
if n = ⊤ or false if n = ⊥, respectively. If n is an inner node at level i, then JnK
is (xσ(i) ∧ JntK)∨ (¬xσ(i) ∧ JneK), the Shannon decomposition of JnK w.r.t. xσ(i).

A BDD is typically created by successively applying Boolean connectives to
already existing BDDs. As an example, the apply algorithm for conjunctions
works as shown in Fig. 3. Here, it is assumed that the get_or_make_node func-
tion at the bottom also maintains reducedness, typically implemented using a
hash table called unique table [11]. Note that the runtime of a naïve apply_and
implementation is exponential in the number of variables of the functions rep-
resented by n and m. By applying memoization, the runtime can be reduced to
O(|n||m|), where | · | denotes the count of descendant nodes. Memoization is typ-
ically implemented using a fixed-size cache called apply cache or computed table.
The design of combining unique table and computed table towards an efficient
BDD implementation was originally proposed by Brace et al. [11]. Besides ap-
ply algorithms based on recursion, there are also breadth-first apply algorithms
implemented, e.g., in the BDD libraries CAL and Adiar [37,39].

OxiDD 259

Complement Edges. To reduce the number of nodes in a BDD and to support
negation in shared BDDs in O(1), Brace et al. proposed complement edges as
a new edge type in DDs [11]. We abbreviate BDDs that contain complement
edges by BCDD. The semantics of a complemented edge pointing to a node
n is just ¬JnK. To recover a strong normal form, we remove the ⊥ terminal
node and impose the restriction that a “then” edge is never complemented. The
latter forms, besides the two standard conditions on reduced BDDs, the third
condition rendering BCDDs reduced. To ensure this condition, any node n whose
“then” edge is complemented can be replaced by a node n′ whose “then” edge
is regular. The “else” edge of n′ is the complement of the “else” edge of n such
that Jn′K = ¬JnK. This means that all nodes that previously referred to n with
a regular edge now have to use a complemented edge to n′ and vice versa. This
is the reason why—in contrast to the apply_and in Fig. 3—we formulate all
algorithms based on edges (i.e., possibly tagged node references) rather than
simple node references. Since functions f and ¬f are represented by a single
node, BCDDs may halve the number of nodes compared to BDDs.

Zero-Suppressed BDDs. A function f : Bk → B may also be interpreted as a
characteristic function of a set S = {v ∈ Bk | f(v) = 1} ⊆ Bk. We can even view
a Boolean vector as a subset of some “universe” U , so we also have S ⊆ P(U). For
example, let U = {a, b}. The function a represents the set of all sets containing a,
i.e., {{a}, {a, b}}. Conversely, the set {{a}} is represented by the function a∧¬b.
This means that we can use BDDs to represent sets of Boolean vectors or sets of
finite sets. If these sets are sparse, however, the corresponding BDD can be very
large. Zero-suppressed BDDs (ZBDDs, ZDDs, or ZSDDs), which were introduced
by Minato [32], are more apt for this use case. Like BDDs, ZBDDs have inner
nodes with two outgoing edges we call hi and lo here. The terminal nodes are ∅
(“empty”) and {∅} (“base”). Their semantics is just J∅K = ∅ and J{∅}K = {∅}.
For an inner node n at level i, we have JnK = JnloK ∪ {xσ(i) ∪ α | α ∈ JnhiK}. To
ensure reduced ZBDDs, a different first condition than BDDs is imposed: While
for all nodes n in BDDs its children should represent different functions, i.e.,
(1) nt ̸= ne, in ZBDDs we require that the node itself and the lo-node should
represent different functions, i.e., (1’) nhi ̸= ∅.

Multi-Terminal BDDs (MTBDDs). While BDDs only contain two termi-
nal nodes ⊥ and ⊤, MTBDDs allow for arbitrary finitely many terminals [17].
Hence, MTBDDs can represent functions Bk → S, where S is an arbitrary set.
A prominent application for MTBDDs is in symbolic probabilistic model check-
ing [5] where S = [0, 1]. To allow such infinite sets, terminal nodes are usually
created on demand, ensuring finiteness due to finitely many inner nodes of the
MTBDD. MTBDDs are also known as algebraic decision diagrams (ADDs) [4].

Multivalued DDs (MDDs). Representing functions D0 × · · · × Dk−1 → S
imposes implementation challenges. For finite domains Di we could rely on a
binary encoding and resort to (MT)BDDs, then also called finite domain decision
diagram (FDD). However, the properties of such FDDs heavily depend on the
chosen bit-blasting encoding of the domains. As an alternative, MDDs directly

260 N. Husung et al.

encode multiple values as multiple outgoing edges [25]. Just like in MTBDDs,
there is one terminal node per (used) value of S. Ternary decision diagrams
(TDDs) may be viewed as one instance of MDDs, where D0 = · · · = Dk−1 =
S = {⊥, ?,⊤}. That is, TDDs represent functions of three-valued logic [38].

2.2 Reordering

The size of a DD—no matter of which kind—may heavily depend on its variable
order. There are functions Bk → B where different variable orders can lead
to node counts in the class of Θ(2k) but also Θ(k). Determining whether a
variable order is suboptimal itself is an NP-complete problem [10], but there
are heuristics to derive a good variable order from a (propositional) formula
describing the function [34,2]. However, there are applications where such a
formula is not available in advance. Furthermore, building the BDD for some
intermediate result may require a different variable order than building the final
BDD. In such cases, it is possible to reorder the existing DD, e.g., using Rudell’s
sifting algorithm [35]. The core of this algorithm is to pick a variable, try out all
positions for it, and then move it to the best position. This procedure is repeated
until no improvement is made.

There are various other reordering algorithms, but moving a variable to an-
other position usually boils down to swapping all nodes of adjacent levels. Key
characteristics of variable swap are that the semantics of nodes is preserved, and
the operation can be performed in-place, i.e., locally. This is crucial, because
nodes at levels i and i+1 may be referenced by many nodes at higher levels. To
explain the swap operator, we restrict ourselves to BDDs for simplicity. Let n
be a node initially at level i where at least one of nt and ne is initially at level
i + 1. The semantics of n then depends on both, the upper variable x = σ(i)
and the lower variable y = σ(i + 1). Hence, n is essential at level i, redirecting
the edge to nt towards a node for JnK[y := ⊤] (i.e., JnK with y set to true) and
ne towards a node for JnK[y := ⊥]. If new children already existed and the old
children have no incoming edges anymore, the node count decreases. Otherwise,
it is well possible that the node count stays the same or even increases.

2.3 The Power of Safe Abstractions

Rust’s central soundness property, “No matter what, Safe Rust can’t cause Unde-
fined Behavior” [36], is very powerful. In general, while software components may
seem sound in isolation, their composition can still cause UB. This is because
computer-checkable interface specifications, e.g., function types, are usually too
limited to capture all conditions required to prevent UB.

For Safe Rust, the situation regarding UB—notably including data races—is
different. Due to the soundness property, we can be sure that any composition
of components either does not cause UB or is forbidden by the type system.
While this translates to peace of mind for the user, it also requires a soundness
argument for every piece of unsafe Rust code. For instance, the following unsafe
code is unsound:

OxiDD 261

fn bad_deref(ptr: *const u32) -> u32 { unsafe { *ptr } }
Inside the unsafe block, we dereference a raw pointer, which is an unsafe opera-
tion. The unsafety arises from the fact that dereferencing a dangling pointer has
no defined semantics. Now, we would need to argue why ptr cannot be dangling.
But, any pointer can be passed to bad_deref, so the code is unsound.

To remedy this issue, the function must be marked unsafe as well, so that it
cannot be called from Safe Rust. Note that this now requires the use of unsafe by
the caller. To prevent the entire code base from becoming infected with unsafe,
a safe abstraction is required. For instance, the Box type in Rust’s standard
library encapsulates a raw pointer and maintains the safety invariant that this
pointer is always safe to dereference. As the pointer itself is inaccessible from
the outside, this invariant cannot be violated and Box can thus provide a safe
method for dereferencing it. The safety of this method is established entirely by
local reasoning on the Box type and its safety invariant.

3 Architecture and Implementation

OxiDD’s architecture is highly modular. In Rust, crates serve as counterparts to
packages in languages such as Python, OCaml, or Haskell. OxiDD’s implementa-
tion is split into multiple crates, to encapsulate functionality and expose a public
versioned API. Fig. 4 shows how OxiDD is decomposed into separate crates and
their dependencies on each other. Each crate has its own well-defined purpose.
The architecture is centered around the core crate that mainly consists of trait

core

cache
manager-index

manager-pointer
reorder

rules-bdd

rules-mtbdd

rules-tdd

rules-zbdd

rules-...oxidd

Fig. 4: OxiDD’s architecture: dependency graph of the main crates.

definitions which formalize the key concepts of DDs. Traits are Rust’s equivalent
to interfaces or abstract classes in object-oriented programming. By using traits
for abstracting from concrete implementations of key concepts, OxiDD achieves
its high degree of modularity. Notably, there are no dependencies between al-
gorithms and concrete implementations of data structures, all algorithms and
data structures are written in a generic way. To provide end users with default
implementations, e.g., towards the use of OxiDD as a BDD library, there is the
oxidd crate, which assembles standards that have been shown useful in practice.

262 N. Husung et al.

3.1 The OxiDD Framework

Instead of being yet another DD library, its modular architecture is what makes
OxiDD a framework (Fig. 4). Different implementations can be composed and
swapped out for alternatives. All functionality has clear interfaces and can be
separated into individually maintained and versioned crates. Third-party con-
tributors can easily develop crates for novel kinds of DDs, core data structures,
or reordering heuristics. Facilitated by OxiDD’s abstractions, those crates will
work seamlessly together, thereby making it ideal for future research on DDs. In
this section, we provide further details on key concepts of this framework.

Manager. The manager is the data structure that stores all nodes of a DD and
ensures their uniqueness via a unique table [11]. It also provides functionality for
delayed garbage collection (GC), where the removal of nodes is delayed as far as
possible. Early removal of nodes would lower performance, if nodes need to be
recreated. An implementation of the manager trait also defines an edge type. An
edge is a reference to a node, and may additionally have a tag. Tags are used,
e.g., to mark edges as complemented in BCDDs. An inner node consists of its
outgoing edges and optionally a level number. The latter is required for most
kinds of DDs but can be omitted, e.g., in quasi-reduced BDDs.

OxiDD allows for different manager implementations. The manager-index
crate contains a manager implementation that uses 32-bit unsigned integers to
represent edges. These 32-bit are split into an index referencing a node and a
tag. If 232 nodes are too limiting for a use case, it is well possible to implement
a different manager, e.g., one where nodes are referred to by pointers. In Fig. 4,
this is indicated by the dashed manager-pointer box.

Cache. Typically, each manager has an associated apply cache, which is re-
quired by our recursive apply implementations for DD manipulation. Notably,
the architecture of OxiDD is also open to other implementations, e.g., for a
breadth-first apply algorithm (cf. [37,39]). The cache crate provides an apply
cache as a fixed-size hash table. As with managers, alternative implementations
of the apply cache are possible, and they can be freely composed with other
implementations of the core infrastructure, e.g., managers.

Functions. Recall that shared DDs represent functions of various types (cf.
Section 2), represented in a single data structure. In the graphical DD repre-
sentation (cf. Fig. 2), functions correspond to the boxed fs and gs. From an
implementation perspective, functions are an edge paired with a reference to the
manager storing the respective node. For end users, functions provide a conve-
nient interface for creating and manipulating DDs.

Support for Various Kinds of DDs. The apply algorithms for the different
DD kinds are implemented in the crates starting with rules. Besides the reduc-
tion rules, these crates also define terminal node and edge-tag types. Depending
only on the abstractions provided by the core crate, other kinds of DDs can
easily be implemented. Notably, implementations are also shielded from UB as
they can be implemented entirely in safe code.

OxiDD 263

1 let manager_ref = oxidd::bdd::new_manager(2048, 1024, 8);
2 let (x1, x2, x3) = manager_ref.with_manager_exclusive(|manager| {(
3 BDDFunction::new_var(manager).unwrap(),
4 BDDFunction::new_var(manager).unwrap(),
5 BDDFunction::new_var(manager).unwrap(),
6)});
7 let res = x1.and(&x2)?.or(&x3)?;
8 println!("{}", res.satisfiable());

Fig. 5: Constructing a BDD for (x1 ∧ x2) ∨ x3 with OxiDD’s API.

Reordering. OxiDD provides the fundamental mechanism of swapping levels in
DDs for variable reordering (cf. Section 2). Currently, the reorder crate imple-
ments functionality to establish a given variable order, e.g., harmonize variable
orders of different DDs or impose a static variable order heuristic. Support for
dynamic reordering, e.g., via sifting [35], is planned for OxiDD’s next release.

End User Ergonomics. While achieving a high degree of modularity through
abstraction, this does not come at the expense of developer ergonomics for end
users. Fig. 5 shows an example for constructing a manager, creating three vari-
ables, building the expression (x1 ∧ x2) ∨ x3, and then checking satisfiability.
Here, 2048 and 1028 are the capacities of the manager for nodes and the apply
cache, respectively, and 8 is the number of threads to use (see Line 1).

The method with_manager_exclusive is used to obtain exclusive access
to the manager, required for creating variables. As existing libraries, OxiDD
offers functions for applying operators (Line 7) or checking satisfiability (Line 8).
Note that the interfaces provided by OxiDD shield from UB, whether caused by
memory mismanagement or data races. Therefore, Fig. 5 does not contain a
single line of unsafe code. The question marks ? are part of Rust’s mechanism
for handling errors, which may happen, e.g., when running out of memory.

3.2 Design Choices and Defaults

Implementing OxiDD, we also focused on providing a good set of default imple-
mentations, selected and tuned for performance.

Node Store. The manager-index implements a store for inner nodes as an
array, consisting of an initialized part followed by an uninitialized part. Each
element of this array may either be a node along with a reference counter, a free
slot with a reference to the next free slot, or uninitialized (see Fig. 6).

When creating a new node, we first check if the linked list of free slots con-
tains an element. If yes, this element is removed from the list and the node is
stored there. Otherwise, the first uninitialized slot is used. Should there be no
uninitialized slot in the array, then we return an out-of-memory error. When
deleting a node, we prepend the node’s slot to the list of free slots.

264 N. Husung et al.

In a concurrent setting, both the first-uninitialized index and the free slot
list head are shared state requiring synchronization. To prevent contention, every
worker thread gets its own first-uninitialized index and free slot list. Instead of
incrementing the shared first-uninitialized index by 1, the worker pre-allocates
the slots until the next multiple of 216. The free slot list is then split into multiple
lists of (approximately) 216 elements. The shared state maintains an array of
these lists, while the workers have just one of these lists. If GC reaches 216 nodes
for a worker, the local list is moved to the shared state. The large lists avoid
frequent synchronization with the shared state and thus contention.

Terminal nodes are managed independently of inner nodes. To distinguish
between inner and terminal nodes, we split the 32-bit “address space” into two
parts. The first N node IDs are used for terminal nodes, the remaining ones for
inner nodes. The actual array index is the node ID minus N . For example, we set
N = 2 in case of BDDs, where ID 0 is used for ⊥, and ID 1 for ⊤. Determining
the value of a terminal node does not require any memory operation here. For
MTBDDs, however, we have to store terminal nodes in a separate array, similar
to the inner node store described above.

Reference Counting. For GC, we use reference-counting instead of a mark-
and-sweep method. One reason for this design decision is in level-local GC
used for reordering. Iterating through the entire DD for mark-and-sweep GC
is very expensive. It would be possible to only materialize reference counters
during reordering and use mark-and-sweep GC otherwise (implemented, e.g., in
BuDDy [27]). However, this does not resolve the following issue: GC must not
remove any objects that are referenced by local variables. In languages like C,
C++, and Rust, we cannot simply inspect the program stack. BuDDy resolves this
issue using a second stack to register all locally referenced objects there. The
problem is that accidentally forgetting the registration may lead to use-after-
free bugs and ultimately UB. This would imply that apply algorithms need to
be written in Unsafe Rust, which is undesirable. Some solutions to this problem
have been discussed [22], but have no advantage over plain reference counting in
case of DDs. Our preliminary benchmarks indicate that the amount of runtime
spent on reference counting is in the order of 5 %. Given that mark-and-sweep
GC would probably not be zero cost either, this seems acceptable.

Unique Table. The unique table is split into multiple hash tables, one per
level. This split is useful for reordering, where we need to iterate over all nodes

42 43 44 45 46

· · ·

next: 44 then: 45

else: 7

level: 12
rc: 1

next: 0 then: 0

else: 1

level: 10
rc: 3

· · ·

free node free node uninitialized

Fig. 6: Node store array (binary nodes with level).

OxiDD 265

on a level. Since we need to grow these tables on demand, we protect each table
with a lock. The hash tables in use are designed with cache locality in mind. In
particular, we use linear probing to resolve hash collisions. For space efficiency,
the tables only contain IDs of the respective nodes, and not the nodes’ outgoing
edges. To improve performance when resizing the hash table, which normally
requires rehashing all nodes, we store the hash next to the node ID. Thus, we
can avoid rehashing any nodes. We further truncate the hash to 31 bits, so we
can use the same 32-bit integer to mark the bucket as empty or as tombstone.

Apply Cache. For the apply cache, we use a fixed-size hash table. Each entry
consists of the operator ID, a fixed-size array of operands, and the result of the
operation. To synchronize accesses on the table, we use a spinlock per bucket.
On usual lookups, we do not wait in case another thread has the lock, we rather
recompute the entry. When inserting a new entry, we always replace a previously
present entry in the bucket. We also experimented with bucket sizes larger than
one entry and replacement policies such as first in, first out (FIFO), and least
frequently used (LFU), but these turned out to be slower than the direct-mapped
apply cache. One reason might be that in our benchmarks, we generally observed
rather few cache hits (in the order of 20-30 %). Larger bucket sizes would require
checking more entries before concluding that an entry is not contained in the
cache. In addition, FIFO and LFU do not account for the different costs of
operations. Ideally, the apply cache would merely keep those entries that take
more time to recompute and are also used frequently. We plan to investigate
such a strategy in more detail in future work. Notably, such experiments are
facilitated by the modular architecture of OxiDD.

A particular important optimization is to elide reference counter updates
when inserting or removing entries from the apply cache. This is due to referenced
nodes rarely being in the CPU cache. Eliding reference counter updating implies
that we must ensure that no nodes are deleted while referenced from the apply
cache. Nodes can only be deleted during GC and reordering. Since a GC may
run in background, we lock and empty all buckets of the apply cache prior to
the GC. Only after the GC, we unlock the buckets again.

Concurrent Apply Algorithms. OxiDD has recursive apply algorithms, both
in a single-threaded and a concurrent version. The concurrent version uses task-
based parallelism with work-stealing, similarly to Sylvan [18]. The idea is to
execute the recursive calls (cf. Fig. 3) concurrently. For the implementation, we
use the rayon crate [30]. As splitting the work into tasks comes with a runtime
overhead (in the order of +35 %), we only split the tasks until a certain recursion
depth. From then on, we use the single-threaded apply algorithm.

3.3 Safe Abstraction for Modifying Nodes

A challenge when designing OxiDD was to find a safe abstraction for modifying
nodes, e.g., during reordering, as it requires synchronization. A lock per node
would lead to incorrect results when accessing nodes subject to a level swap, and

266 N. Husung et al.

1 func_a.with_manager_shared(|manager, edge_a /* &Edge<'1> */| {
2 let edge_b /* &Edge<'1> */ = func_b.as_edge(manager);
3 let edge_res /* Edge<'1> */ = apply_and(manager, edge_a, edge_b);
4 BDDFunction::from_edge(manager, edge_res)
5 })
6 // Mixing branded types leads to a compiler error.
7 func_a.with_manager_shared(|manager_a, edge_a /* &Edge<'1> */| {
8 func_b.with_manager_shared(|manager_b, edge_b /* &Edge<'2> */| {
9 let edge_res = apply_and(manager_a, edge_a, edge_b); // <-- Error

10 BDDFunction::from_edge(manager_a, edge_res)
11 })
12 })

Fig. 7: Usage of branded types.

moreover be diametral for performance. Instead, we use a single read/write lock
to coordinate exclusive access to the entire DD. A shared append-only view is
sufficient for apply algorithms and most other operations such as model counting
or satisfiability checking. Reordering requires exclusive access.

Once exclusive access is acquired, we must ensure that all nodes we modify
actually belong to the respective manager we have exclusive access on. To this
end, a safety invariant is required: All descendants of a node are stored in the
same manager. This is a very natural assumption, also needed for correctness,
avoiding a node in manager A to reference a node of manager B. As this invari-
ant is needed for safety, there must not be a way to violate it from Safe Rust.
The challenge is that when creating a node, there is no efficient way to check
the invariant. After all, we only work with edges here, and edges do not (nec-
essarily) provide any information about the manager the node belongs to. Only
the function type stores both a node reference and a reference to the respective
manager. So, before actually starting an apply operation, we must ensure that
the operands (of function type) belong to the same manager, and the entire code
in between needs to uphold the invariant. In a naïve implementation, without a
proper abstraction, this would require a lot of unsafe code.

We can drastically reduce the amount of unsafe code if every manager has its
own edge and node types, as this prevents mixing edges from different managers.
To realize this idea without fixing the number of managers upfront, we use
branded types as presented by Yanovski et al. [42]. Branded types leverage Rust’s
lifetimes. In Rust, a reference is essentially a pointer with the invariant that it
is always safe to dereference. As references may point to stack variables, the
compiler needs to make sure that the referenced variables do not go out of scope
as long as the reference is live. This is done by adding a lifetime to reference
types. The lifetime corresponds to the referenced variable’s scope.

As an example, computing the conjunction of functions func_a and func_b
works as in Lines 1-5 of Fig. 7. The with_manager_shared method acquires the
lock (for shared access) of the manager referenced by func_a. Further, it takes a
closure to which it passes the manager reference and edge. This is the place where
the new brand/lifetime is introduced. We denote it as '1 in the comment. When

OxiDD 267

converting func_b into its underlying edge in Line 2, we check that it belongs to
manager. If this is not the case, we abort the execution with an appropriate error
message. Otherwise, we obtain an edge of the same branded type as edge_a. This
means that when calling the recursive apply_and function, it can safely assume
that the nodes referenced by edge_a and edge_b, as well as all their descendants
are stored in the same manager. This simply follows from type safety. As the
branded type is only valid inside the closure, we convert the resulting edge back
into a function in Line 4. Notably, if we nest with_manager_shared calls as
shown in Lines 6-12 of Fig. 7, we get a compile time error because the types
of edge_a and edge_b have different brands. This safe abstraction enables the
implementation of apply algorithms entirely within safe code.

4 Evaluation

OxiDD is designed not only for modularity and safety, but also with performance
in mind. We (mostly) use zero cost abstractions and eliminate runtime checks
via type invariants. Our evaluation is driven by two research questions:

RQ1 How does the single-threaded runtime of OxiDD compare to other popular
BDD libraries?

RQ2 Can OxiDD achieve similar speed as Sylvan in the multithreaded setting?

As the set of libraries we compare against, we choose BuDDy 2.4, CUDD 3.0.0,
and Sylvan 1.8.0 since these are the most popular libraries. Furthermore, we com-
pare against LibBDD 0.5.10, a relatively mature Rust library, and Adiar (commit
ca4f7351), which apparently is the most performant external memory library in
the large scale. The version of OxiDD corresponds to commit 8113c12. Among
this set of libraries, Sylvan and OxiDD are the only multithreaded libraries. For a
fair comparison, we integrated OxiDD into the bdd-benchmark framework3 ini-
tially developed by Steffan Sølvsten for the evaluation of Adiar [39]. It contains
the following set of combinatorial and verification benchmarks:

– N -Queens: Given N ∈ [12, 15], how many ways are there to place N queens
on an N ×N chess board without threatening each other?

– Tic-Tac-Toe: Given N ∈ [20, 24], how many ways are there for player 1 to
place N crosses in a 3D 4× 4× 4 cube and tie if player 2 places naughts in
all remaining positions?

– Picotrav: Given a hierarchical circuit, a BDD is constructed for each output.
We use this to verify the equality of two circuits. In our case, the circuits
are a subset of the EPFL combinational benchmark suite [3].

Input sizes and files are selected based on preliminary experiments regarding
resource consumption. Note that complement edges are not beneficial for N -
Queens and Tic-Tac-Toe: Negations occur on variables only, the remaining op-
erations are just conjunctions and disjunctions. This is different for Picotrav.
3 github.com/SSoelvsten/bdd-benchmark, our version is available at Zenodo [24].

268 N. Husung et al.

https://github.com/SSoelvsten/bdd-benchmark

bdd-benchmark is designed in a way that is generic over the respective BDD
library. All benchmarks are written against an abstract adapter that provides
operations such as conjunction, disjunction, and negation in case of BDDs. This
means that the same operations are executed with the same variable order,
regardless of the DD library in use. In particular, dynamic reordering is disabled.
Note that bdd-benchmark is written in C++, so OxiDD’s adapter makes use of
the C++ bindings. All libraries except BuDDy use complemented edges. Only
OxiDD implements both BDDs and BCDDs, as the genericity easily allows us
to do so. Since both implementations are based on the same data structures,
we also get a relatively good estimate of the performance impact complemented
edges have. For the remainder of this section, we use “OxiDD” to refer to the
BDD implementation and explicitly add “BCDD” otherwise.

We executed the benchmarks on a 16 core / 32 thread AMD Ryzen 9 5950X
CPU with 128 GiB of RAM and approximately 800 GiB free SSD space, running
Ubuntu 22.04 (Linux kernel 5.15). The libraries were compiled using Clang 16.0.6
or rustc 1.71.1, which are both based on LLVM 16. We set a timeout of 3 hours.
To reduce the number of TLB misses during execution, we enabled transpar-
ent hugepages by setting /sys/kernel/mm/transparent_hugepage/enabled to
always. The default on many systems is that programs have to issue respective
madvise calls. OxiDD is the only library that does this to some extent. The
performance impact of this setting is quite large: In preliminary experiments we
observed a 1.6× speedup for 14-Queens with BuDDy. We ran each benchmark
three times and report the average running times.

4.1 RQ1: Single-thread Performance

Overall, our benchmarks show that for single-threaded execution, BuDDy per-
forms best. OxiDD is slightly slower and faster than all other libraries. In Fig. 8a,
we show the runtimes on the N -Queens benchmark relative to OxiDD. For
N = 12, OxiDD takes 4.2 s, 24.6 s for N = 13, 2.4 min for N = 14, and 16.1 min
for N = 15. On 15-Queens, OxiDD performs best. BuDDy runs out of memory,
mainly due to its limitation to 231 − 1 nodes. As the BDD construction pro-
duces more than 231 nodes, this only works with sufficiently many GCs. OxiDD
(BCDD) is restricted to 231 nodes (the last bit is needed for complement edges),
and the GCs cause OxiDD (BCDD) to be much slower than OxiDD in this spe-
cific benchmark instance. Still, OxiDD (BCDD) is faster than CUDD, Sylvan,
and LibBDD. For this problem size, breadth-first apply algorithms also start to
shine. Adiar is only 1.03× slower than OxiDD.

The situation is very similar for the Tic-Tac-Toe problem. For Picotrav, how-
ever, complement edges may have a notable impact on the node count. On many
instances, the BCDD variant of OxiDD performs slightly better than its BDD
variant and BuDDy, see Fig. 8b. All libraries solved the smallest 21 out of 23
instances, the remaining two timed out or ran out of memory.

So with respect to RQ1, we can say that OxiDD is among the best libraries.
However, a manager implementation that is not restricted to 231 or 232, respec-
tively, might be interesting for some use cases.

OxiDD 269

12 13 14 15

N

100

2× 100

3× 100

ru
nt

im
e

re
la

tiv
e

to
O

xi
D

D

(a) N -Queens single-threaded

10−2 100 102 104

time (s)

0

3

6

9

12

15

18

21

so
lv

ed
in

st
an

ce
s

(b) Picotrav single-threaded

12 13 14 15

N

100

101

ru
nt

im
e

re
la

tiv
e

to
O

xi
D

D

(c) N -Queens parallel up to 32 threads

10−2 100 102 104

time (s)

0

3

6

9

12

15

18

21

so
lv

ed
in

st
an

ce
s

(d) Picotrav up to 32 threads

1 2 4 8 16 32
threads

1

2

3

4

tim
e

(m
in

)

(e) 14-Queens parallel

1 2 4 8 16 32
threads

0

10

20

30

40

50

tim
e

(m
in

)

(f) Picotrav: largest item

OxiDD OxiDD (BCDD)
BuDDy LibBDD CUDD Adiar Sylvan

Fig. 8: N -Queens and Picotrav benchmark statistics

270 N. Husung et al.

4.2 RQ2: Multi-thread Performance

From Fig. 8e, we observe that OxiDD’s parallelization is already effective in
its initial release. However, for increasing number of threads, Sylvan performs
better. This is probably due locking on each level in the unique table of OxiDD
leads to contention. 14-Queens has 196 variables/levels, so it is not that unlikely
that two out of 32 threads try to acquire the same lock. Notably, OxiDD’s
performance for 32 threads is slightly worse than for 16 threads. Especially for the
smaller Picotrav instances (cf. Fig. 8d), we also observe a significant slowdown
using 32 threads. Sylvan shows a slowdown as well, but not as serious as OxiDD.
Only for the largest solved instance, Sylvan has a significant speedup of 10.5×
for 32 threads (cf. Fig. 8f).

Regarding RQ2, we conclude that Sylvan’s highly optimized parallel engine
leads to better performance on a high numbers of threads. In large combinatorial
problems with at most 16 threads, OxiDD’s parallelization outperforms Sylvan’s.
For the verification problems we tested, the current implementation does not
achieve parallel speedups. Still, we remark that OxiDD in single-threaded exe-
cution outperforms the multithreaded Sylvan significantly in all but one Picotrav
instance. Note that OxiDDs parallelization can still be optimized, e.g., by using
concurrent hash tables countering contention issues mentioned (cf. Section 3.2).

5 Conclusion

In this paper, we have presented OxiDD, a new decision diagram framework
in Rust. OxiDD emphasizes on modularity, which eases extension on function-
alities and new kinds of decision diagrams. Our implementations benefit from
high performance and can safely be used in concurrent contexts. Depending on
the workload, there may also be significant speedups in multithreaded execu-
tion. We demonstrated this by comparing OxiDD’s B(C)DD implementations to
other popular BDD libraries. Moreover, we showed how we can leverage Rust’s
type system to ensure that edges from different managers cannot accidentally
be mixed up. This allowed us to implement the building blocks for dynamic
reordering while keeping the apply algorithms entirely in Safe Rust.

Aiming at the basis for future research and developments, there are plenty of
opportunities. First, OxiDD’s B(C)DD, MTBDD, and ZBDD implementations
are not yet as feature-rich as matured BDD packages such as CUDD. Adding
the remaining operations is, however, facilitated by our modular design. Second,
we pointed out that the current unique table is likely to be a bottleneck for
concurrent performance. Recently, there have been interesting developments on
growing concurrent hash tables [29], which we plan to further investigate. Third,
we plan to implement dynamic reordering heuristics relying on our reordering
building blocks presented here. Last but not least, the argument that our unsafe
code upholds Rust’s invariant is currently informal. Formally verifying OxiDD
would be a challenging but rewarding avenue to pursue.

OxiDD 271

References

1. Akers, S.B.: Binary decision diagrams. IEEE Transactions Computers 27(6), 509–
516 (Jun 1978). https://doi.org/10.1109/TC.1978.1675141

2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: MINCE: A static global variable-ordering
heuristic for SAT search and BDD manipulation. Journal of Universal Computer
Science 10(12), 1562–1596 (2004). https://doi.org/10.3217/jucs-010-12-1562

3. Amarú, L., Gaillardon, P.E., De Micheli, G.: The EPFL combinational benchmark
suite. In: Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS) (2015), https://infoscience.epfl.ch/record/207551

4. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. In: Proceedings
of the 1993 IEEE/ACM International Conference on Computer-Aided Design. pp.
188–191. ICCAD ’93, IEEE Computer Society Press, Washington, DC, USA (1993).
https://doi.org/10.1109/ICCAD.1993.580054

5. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.:
Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri, R.,
Marchetti-Spaccamela, A. (eds.) Automata, Languages and Programming. pp. 430–
440. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

6. Benes, N., Brim, L., Kadlecaj, J., Pastva, S., Safránek, D.: AEON: attractor
bifurcation analysis of parametrised boolean networks. In: Lahiri, S.K., Wang,
C. (eds.) Computer Aided Verification - 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 12224, pp. 569–581. Springer (2020). https:
//doi.org/10.1007/978-3-030-53288-8_28

7. Beyer, D., Friedberger, K., Holzner, S.: PJBDD: A BDD library for Java and
multi-threading. In: Hou, Z., Ganesh, V. (eds.) Automated Technology for Veri-
fication and Analysis - 19th International Symposium, ATVA 2021, Gold Coast,
QLD, Australia, October 18-22, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12971, pp. 144–149. Springer (2021). https://doi.org/10.1007/
978-3-030-88885-5_10

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam, The Netherlands (2009)

9. Blom, S., van de Pol, J.: Symbolic reachability for process algebras with recur-
sive data types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigün, H. (eds.) The-
oretical Aspects of Computing - ICTAC 2008, 5th International Colloquium,
Istanbul, Turkey, September 1-3, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 5160, pp. 81–95. Springer (2008). https://doi.org/10.1007/
978-3-540-85762-4_6

10. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Transactions on Computers 45(9), 993–1002 (1996). https://doi.org/10.
1109/12.537122

11. Brace, K., Rudell, R., Bryant, R.: Efficient implementation of a BDD package.
In: 27th ACM/IEEE Design Automation Conference. pp. 40–45 (1990). https:
//doi.org/10.1109/DAC.1990.114826

12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986). https://doi.org/10.1109/
TC.1986.1676819

272 N. Husung et al.

https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.3217/jucs-010-12-1562
https://doi.org/10.3217/jucs-010-12-1562
https://infoscience.epfl.ch/record/207551
https://doi.org/10.1109/ICCAD.1993.580054
https://doi.org/10.1109/ICCAD.1993.580054
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-88885-5_10
https://doi.org/10.1007/978-3-030-88885-5_10
https://doi.org/10.1007/978-3-030-88885-5_10
https://doi.org/10.1007/978-3-030-88885-5_10
https://doi.org/10.1007/978-3-540-85762-4_6
https://doi.org/10.1007/978-3-540-85762-4_6
https://doi.org/10.1007/978-3-540-85762-4_6
https://doi.org/10.1007/978-3-540-85762-4_6
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819

13. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24(3), 293–318 (Sep 1992). https://doi.org/
10.1145/136035.136043

14. Bryant, R.E.: Chain reduction for binary and zero-suppressed decision diagrams.
Journal of Automated Reasoning 64(7), 1361–1391 (2020). https://doi.org/10.
1007/s10817-020-09569-6

15. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 1020 states and beyond. Inform. and Comp. 98(2), 142–170 (1992).
https://doi.org/10.1016/0890-5401(92)90017-A

16. Cimatti, R., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, O.: NuSMV 2: An opensource tool for symbolic model
checking. In: Proceedings of the 14th Conference on Computer Aided Verification
(CAV). vol. LNCS:2404, pp. 359–364. Springer (2002). https://doi.org/10.1007/
3-540-45657-0_29

17. Clarke, E.M., Fujita, M., McGeers, P.C., McMillan, K.L., Yang, J.C., Zhao, X.:
Multi-terminal binary decision diagrams: An efficient data structure for matrix
representation. In: Proc. International Workshop on Logic & Synthesis (1993)

18. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
International Journal on Software Tools for Technology Transfer 19(6), 675–696
(2017). https://doi.org/10.1007/s10009-016-0433-2

19. van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: Combining reduction rules
from different decision diagram types. In: Stewart, D., Weissenbacher, G. (eds.)
2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria,
October 2-6, 2017. pp. 108–115. IEEE (2017). https://doi.org/10.23919/FMCAD.
2017.8102248

20. Drechsler, R., Becker, B.: Binary Decision Diagrams - Theory and Implementation.
Springer (1998). https://doi.org/10.1007/978-1-4757-2892-7

21. Fortune, S., Hopcroft, J., Schmidt, E.M.: The complexity of equivalence and con-
tainment for free single variable program schemes. In: Ausiello, G., Böhm, C. (eds.)
Automata, Languages and Programming. pp. 227–240. Springer Berlin Heidelberg,
Berlin, Heidelberg (1978). https://doi.org/10.1007/3-540-08860-1_17

22. Goregaokar, M.: Designing a GC in Rust (2015), http://web.archive.org/
web/20230714074109/https://manishearth.github.io/blog/2015/09/01/
designing-a-gc-in-rust/

23. Harder, H., Jantsch, S., Baier, C., Dubslaff, C.: A unifying formal approach to im-
portance values in Boolean functions. In: Proceedings of the Thirty-Second Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August
2023, Macao, SAR, China. pp. 2728–2737. ijcai.org (2023). https://doi.org/10.
24963/ijcai.2023/304

24. Husung, N., Dubslaff, C., Hermanns, H., Köhl, M.A.: OxiDD: Artifact (2024).
https://doi.org/10.5281/zenodo.10578461

25. Kam, T., Villa, T., Brayton, R.K.: Multi-valued decision diagrams: theory and
applications (1998), https://api.semanticscholar.org/CorpusID:53828281

26. Lai, Y.T., Sastry, S., Pedram, M.: Boolean matching using binary decision diagrams
with applications to logic synthesis and verification. In: Proceedings 1992 IEEE
International Conference on Computer Design: VLSI in Computers & Processors.
pp. 452–458 (1992). https://doi.org/10.1109/ICCD.1992.276313

27. Lind-Nielsen, J.: BuDDy: A binary decision diagram package, version 2.4 (2004),
https://buddy.sourceforge.net/manual/

OxiDD 273

https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1007/s10817-020-09569-6
https://doi.org/10.1007/s10817-020-09569-6
https://doi.org/10.1007/s10817-020-09569-6
https://doi.org/10.1007/s10817-020-09569-6
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.23919/FMCAD.2017.8102248
https://doi.org/10.23919/FMCAD.2017.8102248
https://doi.org/10.23919/FMCAD.2017.8102248
https://doi.org/10.23919/FMCAD.2017.8102248
https://doi.org/10.1007/978-1-4757-2892-7
https://doi.org/10.1007/978-1-4757-2892-7
https://doi.org/10.1007/3-540-08860-1_17
https://doi.org/10.1007/3-540-08860-1_17
http://web.archive.org/web/20230714074109/https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
http://web.archive.org/web/20230714074109/https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
http://web.archive.org/web/20230714074109/https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
https://doi.org/10.24963/ijcai.2023/304
https://doi.org/10.24963/ijcai.2023/304
https://doi.org/10.24963/ijcai.2023/304
https://doi.org/10.24963/ijcai.2023/304
https://doi.org/10.5281/zenodo.10578458
https://doi.org/10.5281/zenodo.10578461
https://api.semanticscholar.org/CorpusID:53828281
https://doi.org/10.1109/ICCD.1992.276313
https://doi.org/10.1109/ICCD.1992.276313
https://buddy.sourceforge.net/manual/

28. Lovato, A., Macedonio, D., Spoto, F.: A thread-safe library for binary decision
diagrams. In: Giannakopoulou, D., Salaün, G. (eds.) Software Engineering and
Formal Methods. pp. 35–49. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-10431-7_4

29. Maier, T., Sanders, P., Dementiev, R.: Concurrent hash tables: Fast and gen-
eral(?)! ACM Trans. Parallel Comput. 5(4), 16:1–16:32 (2019). https://doi.org/
10.1145/3309206

30. Matsakis, N., Stone, J.: Rayon (2023), https://docs.rs/rayon/1.8.0/rayon/
31. Meolic, R.: The Biddy BDD package. Journal of Open Source Software 4(34), 1189

(2019). https://doi.org/10.21105/joss.01189
32. Minato, S.i.: Zero-suppressed BDDs for set manipulation in combinatorial prob-

lems. In: Proceedings of the 30th International Design Automation Conference.
pp. 272–277. DAC ’93, Association for Computing Machinery, New York, NY,
USA (1993). https://doi.org/10.1145/157485.164890

33. Ranjan, R., Gosti, W., Brayton, R., Sangiovanni-Vincenteili, A.: Dynamic reorder-
ing in a breadth-first manipulation based bdd package: challenges and solutions. In:
Proceedings International Conference on Computer Design VLSI in Computers and
Processors. pp. 344–351 (1997). https://doi.org/10.1109/ICCD.1997.628893

34. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient
bdd/mdd construction. University of California, Tech. Rep p. 130 (2008)

35. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proceedings of 1993 International Conference on Computer Aided Design (IC-
CAD). pp. 42–47 (1993). https://doi.org/10.1109/ICCAD.1993.580029

36. Rust Foundation: The Rustonomicon (2023), http://web.archive.org/web/
20230918045612/https://doc.rust-lang.org/nomicon/intro.html

37. Sanghavi, J.V., Ranjan, R.K., Brayton, R.K., Sangiovanni-Vincentelli, A.: High
performance BDD package by exploiting memory hierarchy. In: 33rd Design Au-
tomation Conference (DAC). pp. 635–640. Association for Computing Machinery
(1996). https://doi.org/10.1145/240518.240638

38. Sasao, T.: Ternary decision diagrams: Survey. In: 27th IEEE International Sym-
posium on Multiple-Valued Logic, ISMVL 1997, Antigonish, Nova Scotia, Canada,
May 28-30, 1997, Proceedings. pp. 241–252. IEEE Computer Society (1997).
https://doi.org/10.1109/ISMVL.1997.601404

39. Sølvsten, S.C., van de Pol, J.: Adiar 1.1 - zero-suppressed decision diagrams in
external memory. In: Rozier, K.Y., Chaudhuri, S. (eds.) NASA Formal Methods -
15th International Symposium, NFM 2023, Houston, TX, USA, May 16-18, 2023,
Proceedings. Lecture Notes in Computer Science, vol. 13903, pp. 464–471. Springer
(2023). https://doi.org/10.1007/978-3-031-33170-1_28

40. Somenzi, F.: CUDD: CU decision diagram package. Tech. rep., University of Col-
orado at Boulder (2015)

41. Vahidi, A.: JDD: A pure Java BDD and Z-BDD library (2003), https://
bitbucket.org/vahidi/jdd

42. Yanovski, J., Dang, H., Jung, R., Dreyer, D.: GhostCell: separating permissions
from data in Rust. Proc. ACM Program. Lang. 5(ICFP), 1–30 (2021). https:
//doi.org/10.1145/3473597

274 N. Husung et al.

https://doi.org/10.1007/978-3-319-10431-7_4
https://doi.org/10.1007/978-3-319-10431-7_4
https://doi.org/10.1145/3309206
https://doi.org/10.1145/3309206
https://doi.org/10.1145/3309206
https://doi.org/10.1145/3309206
https://docs.rs/rayon/1.8.0/rayon/
https://doi.org/10.21105/joss.01189
https://doi.org/10.21105/joss.01189
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/157485.164890
https://doi.org/10.1109/ICCD.1997.628893
https://doi.org/10.1109/ICCD.1997.628893
https://doi.org/10.1109/ICCAD.1993.580029
https://doi.org/10.1109/ICCAD.1993.580029
http://web.archive.org/web/20230918045612/https://doc.rust-lang.org/nomicon/intro.html
http://web.archive.org/web/20230918045612/https://doc.rust-lang.org/nomicon/intro.html
https://doi.org/10.1145/240518.240638
https://doi.org/10.1145/240518.240638
https://doi.org/10.1109/ISMVL.1997.601404
https://doi.org/10.1109/ISMVL.1997.601404
https://doi.org/10.1007/978-3-031-33170-1_28
https://doi.org/10.1007/978-3-031-33170-1_28
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

OxiDD 275

http://creativecommons.org/licenses/by/4.0/

Verification under TSO with an infinite Data
Domain

Abstract. We examine verification of concurrent programs under the
total store ordering (TSO) semantics used by the x86 architecture. In our
model, threads manipulate variables over infinite domains and they can
check whether variables are related for a range of relations. We show that,
in general, the control state reachability problem is undecidable. This
result is derived through a reduction from the state reachability problem
of lossy channel systems with data (which is known to be undecidable).
In the light of this undecidability, we turn our attention to a more
tractable variant of the reachability problem. Specifically, we study con-
text bounded runs, which provide an under-approximation of the pro-
gram behavior by limiting the possible interactions between processes.
A run consists of a number of contexts, with each context representing
a sequence of steps where a only single designated thread is active. We
prove that the control state reachability problem under bounded context
switching is PSPACE complete.

1 Introduction

Over the years, research on concurrent verification has been chiefly conducted
under the premise that the threads run according to the classical Sequential
Consistency (SC) semantics. Under SC, the threads operate on a set of shared
variables through which they communicate atomically, i.e., read and write op-
erations take effect immediately. In particular, a write operation is visible to all
the threads as soon as the writer thread carries out its operation. Therefore,
the threads always maintain a uniform view of the shared memory: they all see
the latest value written on any given variable and we can interpret program
runs as interleavings of sequential thread executions. Although SC has been
immensely popular as an intuitive way of understanding the behaviours of con-
current threads, it is not realistic to assume computation platforms guarantee SC
anymore. The reason is that, due to hardware and compiler optimizations, most
modern platforms allow more relaxed program behaviours than those permitted
under SC, leading to so-called weak memory models. Weakly consistent platforms
are found at all levels of system design such as multiprocessor architectures (e.g.,
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 276–295, 2024.
https://doi.org/10.1007/978-3-031-57256-2_14

Parosh Aziz Abdulla1 , Mohamed Faouzi Atig1, Florian Furbach2(B) ,
and Shashwat Garg3

1 Uppsala University, Uppsala, Sweden
2 Technical University of Denmark, Kongens Lyngby, Denmark

3 Indian Institute of Technology Bombay, Mumbai, India

fwafu@dtu.dk

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_14&domain=pdf
http://orcid.org/0000-0001-8229-3481
http://orcid.org/0009-0008-4922-9363

[33,32]), Cache protocols (e.g., [31,19]), language level concurrency (e.g., [24]),
and distributed data stores (e.g., [17]). Program behaviours change dramatically
when moving from the SC semantics to weaker semantics. Therefore, in recent
years, research on the verification of concurrent programs under weak memory
models have started to become popular. A classical example of weak memory
models is the Total Store Ordering (TSO) semantics which is a formalization
of the Intel x86 processor architecture [29]. The TSO semantics inserts an un-
bounded FIFO buffer, called the store buffer, between each thread and the main
memory. When a thread performs a write instruction, the corresponding opera-
tion is appended to the end of the buffer, and hence it is not immediately visible
to other threads. The write messages are non-deterministically propagated from
the store buffer of a given thread to the shared memory. Verification of pro-
grams that contain data races needs to take the underlying memory model into
account. This is crucial in hardware-close programming, especially in concurrent
libraries or kernels. Such applications are inherently racy; exploiting racy WMM
operations for efficiency is standard practice. Our work serves as a foundation
for ensuring the correctness of such systems, which often rely on these intricate
memory models to achieve optimal performance.

In a parallel development, significant research has been done on extending
model checking frameworks to programs with infinite state spaces. There are
two main reasons why a program might have an infinite state space. The first
is that the program has unbounded control structures, which means it can have
an unbounded number of threads. Examples include parameterized systems, in
which correctness of the system is checked regardless of the number of threads,
and programs that allow dynamic thread creation through spawning [11]. Sec-
ondly, the program may operate on unbounded data structures, such as clocks
[12], stacks [16], and queues ([10,1]). These works, including their extensions,
have been done under the SC assumption. Although recent works have started
to explore parameterized verification for weak memory models [6,4,22], the ver-
ification of programs that operate on a shared unbounded data structure with
weak memory semantics has remained unexplored until now.

In this paper, we combine infinite-state programs with weak memory mod-
els: we study the decidability and complexity of the reachability problem for
programs operating on unbounded data structures under the TSO semantics.
While the TSO semantics has been extensively studied (e.g., [15,5]), it has been
assumed that the data domain is finite. This means that the possible values of
a shared variable or a register are bounded. In contrast, our model allows for an
infinite domain such as natural numbers N or real numbers R. It contains register
assignments, an operator that may assign an arbitrary value to a register, and a
set of relations that act as guards. We focus on relations equality and "greater
than" on totally ordered sets and combinations, negations and inversions of
them. Our model finds practical utility in continuously running concurrent pro-
tocols. A prime example is the bakery ticket protocol used in various scenarios.
It is presented in Section 4. Here, an unbounded number of requests occur, each
assigned increasing numbers and the lowest-numbered request is serviced. This

Verification under TSO with an infinite Data Domain 277

presents a scenario with inherent races that requires an infinite domain which
our model can effectively capture. Note that our model is infinite in multiple
dimensions: the threads are infinite-state as they operate on unbounded data
domains, the store buffers are unbounded, and they carry write-messages over
an unbounded domain.

In order to perform safety verification, we need to decide whether there is an
execution that can reach some undesirable control state. We study the control
state reachability problem and show that for many domains and relations, it is
undecidable. Therefore, we propose an alternative approach by introducing an
under-approximation schema using context-bounding [30,28,25,23,14]. Context-
bounding has been proposed in [30] as a suitable approach for efficient bug de-
tection in multithreaded programs. Indeed, for concurrent programs, a bounding
concept that provides both good coverage and scalability must be based on as-
pects related to the interactions between concurrent components. It has been
shown experimentally that concurrency bugs usually show up after a small num-
ber of context switches [28]. In this work, we study a context bounded analysis
where only the active thread may perform an operation and update the memory.
We show that in this case, the state reachability problem is not only decidable,
but even PSPACE complete. To this end, we perform a two-step abstraction
that employs insights about context bounded runs of TSO semantics as well as
the structure of reachable configurations.

In the first step of our abstraction process, we refine the methods introduced
by [14]. Their construction introduces a code-to-code translation that abstracts
the buffer, simplifying the problem to state reachability under SC. Our approach
leverages the fact that this abstraction does not explicitly depend on variable
values. In our case, the abstraction step yields a register machine where the reg-
ister values are integers or real numbers, and the transitions are conditioned by
“gap-constraints" [9,18,27]. Gap constraints serve to identify, within each system
configuration, (i) the variables with identical values and (ii) the gaps (differ-
ences) between variable values. Notably, these gaps can be arbitrarily large. The
papers [9,18,27] analyze programs with gap constraints within the framework of
well-structured systems [8,20]. As a result, they do not provide upper bounds on
the complexity.

As another key contribution of this paper, we propose a method to achieve
PSPACE completeness. The fundamental idea behind our algorithm is that for
any system execution, there is an alternative execution with larger gaps among
the variables. This implies that we do not need to explicitly track the gaps
between variables, as is the case in [9,18,27]. Instead, we implement a second
(precise) abstraction step, focusing solely on the order of variables. For any pair
of variables x and y, we record whether x = y, x < y, or x > y.

278 Parosh A. Abdulla et al.

2 Related Work

Not much current work considers the complexity and decidability of infinite-state
state programs on weak memory models. Furthermore, most existing works con-
sider parameterized verification rather than programs with infinite data domains.
The paper [6] considers parameterized verification of programs running under
TSO, and shows that the reachability problem is PSPACE complete. However,
the work assumes that the threads are finite-state and, in particular, the threads
do not manipulate unbounded data domains. The paper [22] shows PSPACE
completeness when the underlying semantics is the Release-Acquire fragment of
C11. The latter semantics gives rise to a different semantics compared to TSO.
The paper also considers finite-state threads.

In [2], parameterized verification of programs running under TSO is con-
sidered. However, the paper applies the framework of well-structured systems
where the buffers of the threads are modelled as lossy channels, and hence the
complexity of the algorithm is non-primitive recursive. In particular, the paper
does not give any complexity bounds for the reachability problem (or any other
verification problems). The paper [15] considers checking the robustness prop-
erty against SC for parameterized systems running under the TSO semantics.
However, the robustness problem is entirely different from reachability and the
techniques and results developed in this work cannot be applied in our setting.

The paper [4] considers parameterized verification under the TSO semantics
when the individual threads are infinite-state. However, the authors study a
restricted model, where it assumes that (i) all threads are identical and (ii) the
threads do not use atomic operations. Generally, parameterized verification for
the restricted model is easier than non-parameterized verification. For instance,
in the case of TSO where the threads are finite-state, the restricted parameterized
verification problem is in PSPACE [6] while the non-parameterized problem has
a non-primitive recursive complexity [13].

The are many works on extending infinite-state systems with unbounded
data domains. Well studied examples are Petri nets with data tokens [27], stacks
with unbounded stack alphabets [7], and lossy channel systems with unbounded
message alphabets [1]. All these works assume the SC semantics and are hence
orthogonal to this work.

3 Total Store Order (TSO)

Let B = {true, false}. Given a function f : A→ B with a ∈ A, b ∈ B, f [a← b]
is defined as follows: f [a← b](a) := b, f [a← b](a′) := f(a′) for any a′ ∈ A with
a′ ̸= a. We write x ∈ w for letter x ∈ Σ occurring in word w ∈ Σ∗ and w′ ≤ w
for w′ ∈ Σ∗ being a subsequence of w.

Let x and y be two natural (real) numbers. Let n ∈ N, we use x <n y (resp.
≤n y) to denote that x + n < y (resp. x + n ≤ y). A data theory is defined
by a pair (D,Rl) where D is an infinite data domain and Rl ⊆ D × D → B is a
finite set of relations over D. In this paper, we restrict ourselves to the set of

Verification under TSO with an infinite Data Domain 279

natural/real numbers as data domain, and the set of relations Rl to be a subset
of Rl≤n = {=, ̸=, <,≤, <n,≤n| n ∈ N}. We assume w.l.o.g. that 0 ∈ D.

Transition Systems A labelled transition system is a tuple T S = (Γ,L, T , γinit)
that consists of a set of configurations Γ , a finite set of labels L, a labelled
transition relation T ⊆ Γ × L × Γ , and an initial configuration γinit ∈ Γ . We
write γ

ℓ−→ γ′ for ⟨γ, ℓ, γ′⟩ ∈ T . We say that π = t1 . . . tn ∈ T ∗ is a run of T S if
there is a sequence of configurations γ1, γ2, . . . , γn+1 such that ti = γi

ℓi−→ γi+1

for i ≤ n and γ1 = γinit. The run π ends in configuration γn+1. We say that γ is
reachable if there is a run π of T S that ends in γ.

Programs A concurrent program Prog consists of finite set of threads T . Each
thread t ∈ T is a finite state machine that works on its own set of local registers
Rt. The local registers of different threads are disjoint. Let R = ∪t∈TRt. The
threads communicate over a finite set of shared variables X . The registers and
the shared variables take their values from a data theory (D,Rl). Formally, a
thread is a tuple t = ⟨Qt,Rt, ∆t, q

t
init⟩ where Qt is a finite set of states of thread

t, qtinit ∈ Qt is the initial state of t, and ∆t ⊆ Qt × Op × Qt is a finite set
of transitions that change the state and execute an operation op ∈ Op. Let
x ∈ X , r1, r2 ∈ Rt. A transition δ ∈ ∆t is a tuple δ = ⟨q, op, q′⟩ where the
operation op ∈ Op has one of the following forms: (1) r1 := r2 assigns the value
of register r2 to register r1, (2) r1 := ⊛ non-deterministically assigns a value to
register r1, (3) rl(r1, r2) checks if the values of the two registers r1 and r2 satisfy
the relation rl ∈ Rl, (4) rd(x, r1) reads the value of shared variable x and stores
it in register r1, (5) wt(x, r1) writes the value of register r1 to shared variable
x, and (6) arw(x, r1, r2) is the atomic read write operation which atomically
executes a read followed by a write operation.

TSO Semantics The TSO memory model [33] is used by the x86 processor ar-
chitecture. Each thread has its own FIFO write buffer. Write operations wt(x, r)
in a thread t do not update the memory immediately; if d ∈ D is the value of
r, then (x, d) is appended to the buffer of t. The buffer contents are updated to
the shared memory non-deterministically. A read operation rd(x, r) in t accesses
the latest write in the buffer of t. In case there is no such write, it accesses the
shared memory. For the atomic read write operation arw(x, r1, r2) in thread t,
the buffer of t must be empty (ϵ), and the value of x in the memory must be
same as the value of r1. Then x is set to the value of r2.

Formally, the TSO memory model is a labelled transition system. A configu-
ration γ is defined as a tuple γ = ⟨St,RVal,Buf,Mem⟩ where St : T → ⋃

t∈T Qt

maps each thread to its current state, RVal : R → D maps each register in a
thread to its current value, Buf : T → (X × D)∗ maps each thread buffer to
its content, which is a sequence of writes. Finally, Mem : X → D maps each
shared variable to its current value in the memory. The initial configuration of
Prog is defined by a tuple γinit = ⟨Stinit,RValinit,Buf init,Meminit⟩ where Stinit maps
each thread t to its initial states qtinit, RValinit and Meminit assign all registers

280 Parosh A. Abdulla et al.

P. A. Abdulla et al. 23:23

23:4 Verification under TSO with an infinite Data Domain

�q, r1 := r2, q
�� � �t

�St,RVal,Buf,Mem� t,r1:=r2������ �St[t � q�],RVal[r1 � RVal(r2)],Buf,Mem�
assign

�q, r1 := ~, q�� � �t d � D

�St,RVal,Buf,Mem� t,r1:=~������ �St[t � q�],RVal[r1 � d],Buf,Mem�
new value

�q, rl(r1, r2), q�� � �t rl(R(t)(r1), R(t)(r2))

�St,RVal,Buf,Mem� t,rl(r1,r2)������� �St[t � q�],RVal,Buf,Mem�
relation

�q,wt(x, r1), q�� � �t

�St,RVal,Buf,Mem� t,wt(x,r1)������� �St[t � q�],RVal,Buf[t � (x,RVal(r1)).Buf(t)],Mem�
write

�q, rd(x, r1), q�� � �t @d � D : (x, d) � B(t)

�St,RVal,Buf,Mem� t,rd(x,r1)������� �St[t � q�],RVal[r1 � Mem(x)],Buf,Mem�
global read

�q, rd(x, r1), q�� � �t Buf(t) = �.(x, d).� �,� � (X · D)� @d� � D : (x, d�) � �

�St,RVal,Buf,Mem� t,rd(x,r1)������� �St[t � q�],RVal[r1 � d],Buf,Mem�
local read

�q, arw(x, r1, r2), q�� � �t B(t) = � RVal(r1) = Mem(x)

�St,RVal,Buf,Mem� t,arw(x,r1,r2)��������� �St[t � q�],RVal,Buf,Mem[x � RVal(r2)]�
atomic read write

�St,RVal,Buf[t � B(t).(x, d)],Mem� t,u��� �St,RVal,Buf,Mem[x � d]�
memory update

Figure 1 The transition relation of TSO. We assume that St(t) = q.

whether the values of r1 and r2 are equal (di�erent), (4) rd(x, r1) reads the value of shared135

variable x and stores it in register r1, (5) wt(x, r1) writes the value of register r1 to shared136

variable x, and (6) arw(x, r1, r2) is the atomic read write operation which atomically executes137

a read followed by a write operation.138

TSO Semantics The TSO memory model [29] is used by the x86 processor architecture.139

Each thread has its own FIFO write bu�er. Write operations wt(x, r) in a thread t do not140

update the memory immediately; if v is the value of r, then (x, v) is appended to the bu�er141

of t. The bu�er contents are updated to the shared memory non-deterministically. A read142

operation rd(x, r) in thread t accesses the latest write in the bu�er of t. In case there is no143

such write, it accesses the shared memory. For the atomic read write operation arw(x, r1, r2)144

in thread t, the bu�er of t must be empty (�), and the value of x in the memory must be145

same as the value of r1. Then (x, v) is appended to the bu�er of t, where v is the value of r2.146

Formally, the TSO memory model is a labelled transition system between configurations.147

A configuration � is defined as a tuple � = �St,RVal,Buf,Mem� where St : T � �
t�T Qt148

maps each thread to its current state, RVal : R � D maps each register in a thread to its149

current value, Buf : T � (X �D)� maps each thread bu�er to its content, which is a sequence150

of writes. Finally, Mem : X � D maps each shared variable to its current value in the memory.151

The initial configuration of Prog is defined by a tuple �init = �Stinit,RValinit,Bufinit,Meminit�152

where Stinit maps t each thread to its initial states qtinit, RValinit,Meminit assign all registers153

and shared variables the value 0, and Buf init initializes all thread bu�ers to the empty word154

�. We formally define the labelled transition relation ��� on configurations in Figure 1 where155

the label � is either of the form t, op or t, u with t � T and op � Op.156

�q, r1 := r2, q
�� � �t

�St,RVal,Buf,Mem� t,r1:=r2������ �St[t � q�],RVal[r1 � RVal(r2)],Buf,Mem�
assign

�q, r1 := ~, q�� � �t d � D

�St,RVal,Buf,Mem� t,r1:=~������ �St[t � q�],RVal[r1 � d],Buf,Mem�
new value

�q, rl(r1, r2), q�� � �t rl(R(r1), R(r2))

�St,RVal,Buf,Mem� t,rl(r1,r2)������� �St[t � q�],RVal,Buf,Mem�
relation

�q,wt(x, r1), q�� � �t

�St,RVal,Buf,Mem� t,wt(x,r1)������� �St[t � q�],RVal,Buf[t � (x,RVal(r1)).Buf(t)],Mem�
write

�q, rd(x, r1), q�� � �t @d � D : (x, d) � B(t)

�St,RVal,Buf,Mem� t,rd(x,r1)������� �St[t � q�],RVal[r1 � Mem(x)],Buf,Mem�
global read

�q, rd(x, r1), q�� � �t Buf(t) = �.(x, d).� �,� � (X · D)� @d� � D : (x, d�) � �

�St,RVal,Buf,Mem� t,rd(x,r1)������� �St[t � q�],RVal[r1 � d],Buf,Mem�
local read

�q, arw(x, r1, r2), q�� � �t Buf(t) = � RVal(r1) = Mem(x)

�St,RVal,Buf,Mem� t,arw(x,r1,r2)��������� �St[t � q�],RVal,Buf,Mem[x � RVal(r2)]�
atomic read write

�St,RVal,Buf[t � B(t).(x, d)],Mem� t,u��� �St,RVal,Buf,Mem[x � d]�
memory update

Figure 1 The transition relation of TSO. We assume that St(t) = q.

CVIT 2016

hq, r1 := r2, q
0i 2 �t

hSt,RVal,Buf,Memi t,r1:=r2�����! hSt[t q0],RVal[r1 RVal(r2)],Buf,Memi
assign

hq, r1 := ~, q0i 2 �t d 2 D

hSt,RVal,Buf,Memi t,r1:=~�����! hSt[t q0],RVal[r1 d],Buf,Memi
new value

hq, rl(r1, r2), q0i 2 �t rl(R(r1), R(r2))

hSt,RVal,Buf,Memi t,rl(r1,r2)������! hSt[t q0],RVal,Buf,Memi
relation

hq,wt(x, r1), q0i 2 �t

hSt,RVal,Buf,Memi t,wt(x,r1)������! hSt[t q0],RVal,Buf[t (x,RVal(r1)).Buf(t)],Memi
write

hq, rd(x, r1), q0i 2 �t @d 2 D : (x, d) 2 Buf(t)

hSt,RVal,Buf,Memi t,rd(x,r1)������! hSt[t q0],RVal[r1 Mem(x)],Buf,Memi
global read

hq, rd(x, r1), q0i 2 �t Buf(t) = ↵.(x, d).� ↵,� 2 (X · D)⇤ @d0 2 D : (x, d0) 2 ↵

hSt,RVal,Buf,Memi t,rd(x,r1)������! hSt[t q0],RVal[r1 d],Buf,Memi
local read

hq, arw(x, r1, r2), q0i 2 �t Buf(t) = ✏ RVal(r1) = Mem(x)

hSt,RVal,Buf,Memi t,arw(x,r1,r2)��������! hSt[t q0],RVal,Buf,Mem[x RVal(r2)]i
atomic read write

hSt,RVal,Buf[t B(t).(x, d)],Memi t,u��! hSt,RVal,Buf,Mem[x d]i
memory update

Fig. 1. The transition relation of TSO. We assume that St(t) = q.
hq, r1 := r2, q

0i 2 �t

hSt,RVal,Buf,Memi t,r1:=r2�����! hSt[t q0],RVal[r1 RVal(r2)],Buf,Memi
assign

hq, r1 := ~, q0i 2 �t d 2 D

hSt,RVal,Buf,Memi t,r1:=~�����! hSt[t q0],RVal[r1 d],Buf,Memi
new value

hq, rl(r1, r2), q0i 2 �t rl(R(r1), R(r2))

hSt,RVal,Buf,Memi t,rl(r1,r2)������! hSt[t q0],RVal,Buf,Memi
relation

hq,wt(x, r1), q0i 2 �t

hSt,RVal,Buf,Memi t,wt(x,r1)������! hSt[t q0],RVal,Buf[t (x,RVal(r1)).Buf(t)],Memi
write

hq, rd(x, r1), q0i 2 �t @d 2 D : (x, d) 2 Buf(t)

hSt,RVal,Buf,Memi t,rd(x,r1)������! hSt[t q0],RVal[r1 Mem(x)],Buf,Memi
global read

hq, rd(x, r1), q0i 2 �t Buf(t) = ↵.(x, d).� ↵,� 2 (X · D)⇤ @d0 2 D : (x, d0) 2 ↵

hSt,RVal,Buf,Memi t,rd(x,r1)������! hSt[t q0],RVal[r1 d],Buf,Memi
local read

hq, arw(x, r1, r2), q0i 2 �t Buf(t) = ✏ RVal(r1) = Mem(x)

hSt,RVal,Buf,Memi t,arw(x,r1,r2)��������! hSt[t q0],RVal,Buf,Mem[x RVal(r2)]i
atomic read write

hSt,RVal,Buf[t Buf(t).(x, d)],Memi t,u��! hSt,RVal,Buf,Mem[x d]i
memory update

Fig. 1. The transition relation of TSO. We assume that St(t) = q.
Fig. 1. The transition relation of TSO. We assume that St(t) = q.

and shared variables the value 0, and Buf init initializes all thread buffers to the
empty word ϵ. We formally define the labelled transition relation ℓ−→ on config-
urations in Figure 1 where the label ℓ is either of the form t, op (to denote a
thread operation) or t, u (to denote an update operation) with t ∈ T is a thread
and op ∈ Op is an operation.

The Reachability Problem Reach Given a concurrent program Progand a state
qfinal ∈ Qt of thread t, Reach asks, if a configuration γ = ⟨St,RVal,Buf,Mem⟩
with St(t) = qfinal is reachable by the transition system given by the TSO
semantics of Prog. In this case, we say that the state qfinal is reachable by Prog.
We use Reach[D,Rl] to denote the reachability problem for a concurrent program
with the data theory (D,Rl).

4 Lamport’s Bakery Algorithm

To demonstrate the practical application of our model, we use it to model Lam-
port’s Bakery Algorithm [26]. Created by Leslie Lamport in 1974, it is a cor-
nerstone solution for achieving mutual exclusion in concurrent systems. Picture
threads as patrons entering a bakery, each is handed a unique ticket upon arrival.
These tickets, representing the order of entry, dictate the sequence for access-
ing critical sections. They ensure an orderly execution flow and preventing race
conditions in a critical section.

Verification under TSO with an infinite Data Domain 281

Each thread is assigned a unique number that is larger then the numbers
currently assigned to other threads. The thread possessing the lowest number is
granted entry to the critical section. This thread may access the critical section
an unbounded number of times. This means the assigned tickets keep increasing
and thus an infinite domain is required. Note that the algorithm does not rely
on precise tickets values, we only need to compare the tickets to each other. This
makes the protocol well suited to our program model.

The protocol contains n threads where each thread i ≤ n is associated with
two variables: The ticket number ticketi and the flag choseni which signals
whether the thread has chosen a ticket number. We assume rTRUE and rFALSE

are initialized with different values that represent the boolean values of a flag
and that ticketi is initially the same as rFALSE for all i ≤ n.

The algorithm for thread i is given in Algorithm 1. For the sake of simplicity
and compactness we present the transition system as pseudocode. This is equiv-
alent to a program definition since the code only accesses variables and registers
using operations Op with relations Rl<. The remaining instructions only affect
the finite control flow and can be expressed using transitions.

Algorithm 1 Lamport Bakery Protocol
1: wt(choseni, rFALSE) {Begin choosing}
2: ri := ⊛ {Pick random ticket}
3: for all 1 ≤ j ≤ n do
4: rd(ticketj , rj)
5: if (ri < rj) then
6: goto line 1 {New ticket needed.}
7: end if
8: end for
9: wt(ticketi, ri) {Ticket accepted}

10: wt(choseni, rTRUE) {Choosing finished}
11: for all 1 ≤ j ≤ n do
12: rd(chosenj , rj)
13: if (rj ̸= rTRUE) then
14: goto line 12 {Thread j is still choosing}
15: end if
16: rd(ticketj , rj)
17: if (rj ̸= rFALSE & rj < ri) then
18: goto line 16 {Lower ticket j found}
19: end if
20: end for
21: CRITICAL Section
22: ri := rFALSE

23: goto line 1 {Back to NON-CRITICAL}

282 Parosh A. Abdulla et al.

5 State Reachability for TSO with (Dis)-Equality
Relation

We show that the reachability problem for concurrent programs under TSO is
undecidable when {=, ̸=} ⊆ Rl. The proof is achieved through a reduction from
the state reachability problem of Lossy Channel Systems with Data (DLCS) [1],
which is already known to be undecidable. To simulate the lossy channel, we
employ write buffers, as both are implemented as first-in-first-out queues. How-
ever, there are three main distinctions that must be considered: (i) write buffers
do not contain letters, (ii) write buffers are not lossy, and (iii) the semantics of
reads differ from receives.

We address these distinctions as follows: (i) We encode the letters as variables.
(ii) We model writes being lost by avoiding to read them. (iii) To prevent buffer
reads, we transfer the writes into a write buffer of a second thread with a different
variable. We ensure that every write is accessed only once by overwriting them
immediately with a different value.

Theorem 1. Reach[D,Rl] is undecidable for {=, ̸=} ⊆ Rl.

The rest of this section is devoted to the proof of the above theorem. We first
recall the definition of Lossy Channel Systems with Data (DLCS) [1]. Then, we
present the reduction from state reachability problem of DLCS to Reach[D,Rl].

⟨q, x := y, q′⟩ ∈ ∆L

⟨q,XVal, w⟩ x:=y−−−→ ⟨q′,XVal[x← XVal(y)], w⟩
assign

⟨q, x := ⊛, q′⟩ ∈ ∆L d ∈ D \ {XVal(y) | y ∈ XL}

⟨q,XVal, w⟩ x:=⊛−−−→ ⟨q′,XVal[x← d], w⟩
new value

⟨q, x = y, q′⟩ ∈ ∆L XVal(x) = XVal(y)

⟨q,XVal, w⟩ x=y−−−→ ⟨q′,XVal, w⟩
equality

⟨q, x ̸= y, q′⟩ ∈ ∆L XVal(x) ̸= XVal(y)

⟨q,XVal, w⟩ x ̸=y−−−→ ⟨q′,XVal, w⟩
disequality

⟨q, !⟨a, x⟩, q′⟩ ∈ ∆L

⟨q,XVal, w⟩ !⟨a,x⟩−−−−→ ⟨q′,XVal, (a,XVal(x)).w⟩
send

⟨q, ?⟨a, x⟩, q′⟩ ∈ ∆L

⟨q,XVal, w.(a, d)⟩ ?⟨a,x⟩−−−−→ ⟨q′,XVal[x← d], w⟩
receive

w′ ≤ w

⟨q,XVal, w⟩ loss−−→ ⟨q,XVal, w′⟩
lossiness

Fig. 2. The transition relation of DLCS

Verification under TSO with an infinite Data Domain 283

Lossy Channel Systems with Data A DLCS L = ⟨QL,XL, ΣL, ∆L, qinit⟩ consists
of a finite set of states QL, a finite number of variables XL ranging over an infinite
domain D, a finite channel alphabet ΣL, qinit ∈ Q is the initial state, and a finite
set of transitions ∆L. The set ∆L of transitions is a subset of QL × OpL ×QL.
Let x, y ∈ XL. The set OpL consists of the following operations (1) x := y which
assigns the value of y to x, (2) x := ⊛, which assigns a fresh value from D that
is different from the existing values of all variables4, (3) x = y (x ̸= y) which
compares the value of variables x and y, (4) !⟨a, x⟩ which appends letter a ∈ ΣL
together with the value of x to the channel, (5) ?⟨a, x⟩ which deletes the head
of the channel ⟨a, d⟩ and stores the value d in x, and (6) loss which removes
elements in the channel.

A configuration γ of DLCS is defined by the tuple ⟨q,XVal, w⟩ where q ∈ QL
is the current state, XVal : XL → D is the current valuation of the variables,
and w ∈ (Σ × D)∗ is the content of the lossy channel. The system is lossy,
which means any element in the channel may disappear anytime. The initial
configuration γinit of L is defined by (qinit,XValinit, ϵ) where XValinit(x) = 0 for all
x ∈ XL. The transition relation of DLCS is given in Figure 2.

The state reachability problem for L asks whether, for a given final state
qfinal ∈ Q, there is a reachable configuration γ of the form γ = ⟨qfinal ,XVal, w⟩.
In this case, we say that the state qfinal is reachable by L.

Theorem 2 ([1]). The state reachability problem for DLCS is undecidable.

q q′
rtmp := ⊛ rtmp ̸= r$ rtmp ̸= rx1 rtmp ̸= rxn rx := rtmp

Gadt
x:=⊛ : (q, x := ⊛, q′)

q q′

Gadt
?⟨a,x⟩ : (q, ?⟨a, x⟩, q′)

rd(ya, rx) rx ̸= r$ rd(ya, rtmp) rtmp = r$

q q′
wt(xa, rx) wt(xa, r$)

Gadt
!⟨a,x⟩ : (q, !⟨a, x⟩, q′)

qch

rd(xa, r
ch
tmp) rchtmp ̸= rch$

wt(ya, r
ch
tmp)

rd(xa, r
ch
tmp)rchtmp = rch$

wt(ya, r
ch
tmp)

Fig. 3. Prog(L) with threads t (pink states) and tch (yellow states).

4 This differs from the ⊛ in TSO where the value d ∈ D assigned by the operation
x := ⊛ can be anything.

284 Parosh A. Abdulla et al.

Reduction from DLCS reachability Given a DLCS L = ⟨QL,XL, ΣL, ∆L, qinit⟩
over data domain D with XL = {x1 . . . xn}, we reduce the state reachability of L
to the reachability problem Reach[D, {=, ̸=}] of a concurrent program Prog(L),
with two threads t, tch. The thread t simulates the operations of L, while thread
tch simulates the lossy channel of L using its write buffer. Let Rt = {r$, rtmp} ∪
{rx | x ∈ XL}, Rtch = {rch$, rchtmp} be the local registers of threads t and tch.
Corresponding to each x ∈ XL, we have the register rx in thread t, which stores
the current values of x. Registers rtmp and rchtmp are used to temporarily store
certain values. The shared variables of Prog(L) are X = {xa, ya | a ∈ ΣL}, they
help in simulating the behavior of the lossy channel of L.
Simulating the DLCS. The transitions of Prog(L) are sketched in Figure 3. The
initialization of the program is omitted in the figure and goes as follows. The
thread tch starts by assigning a non-deterministic value (say $) to the register
rch$ (i.e., rch$:= ⊛), then checks that the new value $ is different from 0 (i.e., by
checking that rch$ ̸= rchtmp), and finally performs an atomic read write operation
arw(x, rchtmp, r

ch
$) on each variable x ∈ X . The thread t starts by reading the value

of each shared variable x ∈ X (i.e., performing rd(x, r$)) and checks if its value
is different from 0 (i.e., r$ ̸= rtmp). At the end of this initialization phase, all
the shared variables have the new value $, the registers rtmp and rchtmp have the
value 0 and the registers r$ and rch$ have the value $. The current state of thread
t is the initial state qinit of L while the thread tch is in a state qch.

Every transition ⟨q, x := y, q′⟩ ∈ ∆L is simulated in Prog(L) by threat t with
a gadget—a sequence of transitions that starts in q and ends in q′. The transitions
(q, x := y, q′), (q, x = y, q′) and (q, x ̸= y, q′) in the DLCS are simulated by the
thread t as gadgets with single transitions (q, rx := ry, q

′), (q, rx = ry, q
′) and

(q, rx ̸= ry, q
′), respectively. We omit their description in Figure 3.

To simulate x := ⊛, we load the new value in register rtmp and ensure that it
is different from the values in registers r$ and rx1 . . . rxn . This is depicted by the
gadget Gadtx:=⊛ in thread t. The send operation !⟨a, x⟩ in the DLCS is simulated
by the gadget Gadt!⟨a,x⟩. In the DLCS, the send appends the letter a and the
value of x to the channel. This is simulated by the write wt(xa, rx), thereby
appending (xa, val(rx)) to the buffer of t. To simulate reads of the DLCS, we
first make note of a crucial difference in the way reads happen in DLCS and
TSO. In DLCS, a read happens from the head of the channel, and the head is
deleted immediately after the read. In TSO however, we can read from the latest
write in the shared memory multiple times. In order to simulate the “read once”
policy of the DLCS, we follow each wt(xa, rx) with another write wt(xa, r$).

Thread tch is a loop from the state qch which continuously reads from xa a
value from a simulated send followed by the separator $. It copies these values
to ya using local register rchtmp. The first time it reads from xa, it reads the value
d of x from a simulated send !⟨a, x⟩. It ensures that this is not the $ symbol
(rchtmp ̸= rch$), and writes this value from rchtmp into variable ya, thus appending
(ya, d) in the buffer of tch. It then reads again the value of xa into rchtmp. This
time, it makes sure to read $ with the check rchtmp = rch$. The receive ?⟨a, x⟩ of
the DLCS is simulated by Gadt?⟨a,x⟩. First, we read from ya and store it in rx,

Verification under TSO with an infinite Data Domain 285

ensuring this value d is not $. Then, we read $ from ya. This ensures that the
earlier value d is overwritten in the memory and is not read twice.

A loss in the channel of the DLCS results in losing some messages ⟨a, d⟩.
This is accounted for in ProgL in two ways. Thread tch may not pass on a value
written from xa to ya since the loop may not execute for every value. Thread
t may not read a value written by tch in ya since it was already overwritten by
some later writes.

Lemma 1. The state qfinal is reachable by L if and only if qfinal is reachable
by Prog(L).

The formal proof is given in Appendix A of the full version [3]. Theorem 1 extends
to any set of relations that we can use to simulate equality and disequality. For
instance ≤,≰∈ Rl.

6 Context Bounded Analysis

In the light of this undecidability, we turn our attention to a variant of the
reachability problem which is tractable. We study context bounded runs, an
under-approximation of the program behavior that limits the possible interac-
tions between processes. A run consists of a number of contexts. A context is
a sequence of steps where only a certain fixed thread t is active. We say that
π ∈ CB(k) if and only if there is a partitioning π = π1 . . . πk such that for
all contexts i ≤ k there is an active thread ti ∈ T such that only the active
thread updates the memory and performs operations: If γ

ℓ−→ γ′ ∈ πi, then
ℓ ∈ {ti} × (Op ∪ {u}).

In the following, we show PSPACE completeness of CB(k)-Reach[D,Rl≤n]
for relations such as (dis) equality, “greater than” or even “greater by at least
n” for n ∈ N (see Theorem 4). Our approach begins with a proof of PSPACE
hardness through a reduction from the non-emptiness problem of the intersection
of regular languages [21].

Next, we demonstrate PSPACE membership by reducing the problem to
state reachability of a finite transition system which we solve in polynomial
space. This reduction faces challenges from two main sources, namely, (i) the
unbounded size of the write buffers, and (ii) the infinite data domain D. In this
section, we show how to construct a finite transition system while preserving
state reachability in two key steps.

Following [14], we first perform a buffer abstraction. An in-depth analysis
of the TSO semantics within context bounded runs reveals a critical insight:
Even though the buffer may contain an unbounded number of writes, only a
bounded number of these writes can be read later on. This allows us to non-
deterministically identify and store the necessary writes using variables.

Finally, we implement a domain abstraction. A popular approach is to ab-
stract the values into equivalence classes based on the supported relations. This
reveals our next challenge: (iii) the set of relations Rl≤n is infinite. We conduct

286 Parosh A. Abdulla et al.

an analysis of the reachable configurations and discover the following: If a config-
uration is reachable, then any configuration that is the same except with greater
distances between differing values is reachable as well. It follows that, for control
state reachability, the abstraction does not require the precise distances between
variables; their relative order is sufficient.

6.1 Lower-bound

We establish PSPACE hardness by polynomially reducing the problem of
checking non-emptiness of the intersection of regular languages to CB(k)-
Reach[D,Rl≤n]. Given a set of finite automata A1 . . .An with Ai =
⟨Qi, ∆i, q

init
i QF

i ⟩, where ∆i ⊆ Qi × Σ ×Qi, qiniti ∈ Qi, and QF
i ⊆ Qi for i ≤ n,

the problem asks whether there is a word w ∈ Σ∗ that is accepted by each
automaton Ai with i ≤ n. This is known to be PSPACE hard[21].

We construct a program Prog(A1 . . .An) that consists of a single thread
and reaches a state qfinal if and only if there is such a word. The idea of the
construction is that we assign each state qi ∈ Qi a unique value stored in a
register rqi and we store the value of the current state of each automaton Ai

in a register ri. To begin, we ensure that the current states are the initial ones.
This means ri = rqiniti

holds for each i ≤ n. Then, we choose a letter a ∈ Σ

and simulate some transition qi
a−→ q′i ∈ ∆i for each automaton. This is done by

ensuring that the current state is qi with ri = rqi and then updating the current
state with ri := rq′i . We repeat this step until each current state is a final state.
At this point, we know we have simulated runs for each automaton that accept
the same word and we reach qfinal .

The formal definition of the construction as well as the proof of correctness
is given in Appendix B of [3]. This is a polynomial reduction of non-emptiness of
the intersection of regular languages to CB(k)-Reach[D,Rl≤n]. Observe that we
only need test for equality and disequality. The disequalitiy checks are necessary
to ensure that each register rqi has been assigned a different value.

Theorem 3. CB(k)-Reach[D,Rl≤n] is PSPACE hard.

6.2 PSPACE Upper-bound

Assume that we are given a program Prog and a context bound k. As an in-
termediary step towards finite state space we construct a finite state machine
AB(Prog, k) with variables, over the infinite data domain D. The name AB stands
for abstract buffer as it abstracts from the unbounded write buffers using a finite
number of variables. We show that AB(Prog, k) is state reachability equivalent
with the TSO semantics of Prog bound by CB(k).

While abstracting away the buffers, the main challenge is to simulate read
operations. Recall from Section 3 that each read operation in a thread accesses
either a write from its own buffer or from the shared memory. A buffer read
always reads from the threads latest write on the same variable. Since only the
active thread may interact with the memory during the context, we can assume

Verification under TSO with an infinite Data Domain 287

w.l.o.g. that all memory updates occur at the end of a context. This means
a memory read accesses the last write on the same variable that updated the
memory in an earlier context, and hence we do not need to store the whole buffer
content. For memory reads, we need the latest writes leaving the buffer at the
end of each context for each variable. For buffer reads, we only require the latest
writes on each variable that are issued by each thread.

Construction of the abstract machine The abstract machine AB(Prog, k) is de-
fined by the tuple ⟨QAB,XAB, ∆AB, q

AB
init⟩ where QAB is the finite set of states, XAB

is the finite set of variables, ∆AB is the transition relation, and qABinit is the ini-
tial state. A control state qAB ∈ QAB is a tuple (St, act, j, c, u) where: (i) the
current state of every thread is stored using function St : T → Q; (ii) function
act : {1 . . . k} → T assigns to each context an active thread; (iii) the current con-
text is stored in variable j ∈ {1 . . . k}; (iv) the function c : X × T → {0, 1 . . . k}
assigns to each variable x ∈ X and thread t ∈ T , the (future) context j′ in
which the latest write on x will leave the write buffer of t. This determines
when t can access the shared memory on that variable again; and (v) function
u : {1 . . . k} → 2X assigns each context j the set of variables that are updated
during j. Additionally, we will introduce some helper states with the transitions
relation. We omit them from the definition of QAB. The initial state qABinit is such
a helper state.

The set of variables XAB contains: (i) the set of variables X in Prog, (ii) the
set of registers R, (iii) for each each context j ≤ k and each variable x ∈ X , we
introduce a variable xj , which stores the value of the last write on x that leaves
the write buffer in context j, (iv) for each thread t and each variable x ∈ X ,
we introduce a variable xt which stores the value of the newest write of t on x
that is still in the buffer of t. Notice that this is the write that t accesses when
reading x (if such a write exists).

We define the transition relation ∆AB in Figure 4. Let cinit(x, t) = 0 for all x ∈
X and t ∈ T , and uinit(i) = ∅ for all i ∈ {1, . . . , k}. The outgoing transitions of
state qABinit are the outgoing transitions of (Stinit, act, 0, cinit, uinit) for every possible
function act. This means the construction guesses a function act and behaves as
if the other elements in the tuple have the initial values. Local transitions are
adapted in a straightforward manner. A read on x from the buffer occurs if there
is a write on x in the buffer. This means the latest write on x leaves the buffer
in a context c(x, t) after (or in) the current context j. In such a case, we access
xt which holds the latest write on x in the buffer of t. If there is no such write
on x in the buffer, i.e. c(x, t) < j holds, then the read fetches the value of x from
the shared memory.

A write operation on x overwrites the latest entry in the write buffer on that
variable xt and determines a future (or current) context j′ with j′ ≥ j in which
it leaves the buffer. This is recorded in the variable xj′ and x is added to the
set u(j′) which holds the variables that are updated in context j′. Note that j′

cannot be smaller then any other context in which a write on a variable y leaves
the buffer of t. This information is obtained from the function c. Also, j′ must
be a context in which t is active.

288 Parosh A. Abdulla et al.

P. A. Abdulla et al. 23:9

ÈqÕ
AB, op, q

ÕÕ
ABÍ œ �AB qÕ

AB = (Stinit, act, 0, cinit, uinit)
ÈqABinit, op, qÕÕ

ABÍ
init

op œ {r1 := r2, r1 := ~, rl(r1, r2)}
ÈqAB, op, qAB [St(t) Ω qb]Í local

op = rd(x, r1) c(x, t) Ø j

ÈqAB, r1 := xt, qAB [St(t) Ω qb]Í bu�er read
op = rd(x, r1) c(x, t) < j

ÈqAB, r1 := x, qAB [St(t) Ω qb]Í
memory read

op = wt(x, r1) jÕ Ø j act(jÕ) = t jÕ Ø max{c((y, t)) | y œ X}
ÈqAB, xt := r1, q”Í, Èq”, xjÕ := r1, qAB[St(t) Ω qb, c(x, t) Ω jÕ, u(jÕ) Ω u(jÕ) fi {x}]Í write

op = arw(x, r1, r2) j = c(x, t) = max{c((y, t)) | y œ X}
ÈqAB, xt = r1, q”,1ÍÈq”,1, xj := r2, q”,2Í, Èq”,2, xt := r2, qAB[St(t) Ω qb, u(j) Ω u(j) fi {x}]Í bu�er arw

op = arw(x, r1, r2) j > c(x, t) j Ø max{c((y, t)) | y œ X}
ÈqAB, x = r1, q”Í, Èq”, x := r2, qAB[St(t) Ω qb]Í

memory arw

qAB œ QAB j < k u(j) = {x1, . . . , xn}
ÈqAB, x1 := x1

j , qnew,1Í . . . Èqnew,n≠1, x
n := xn

j , qAB [j Ω j + 1]Í context switch

Figure 4 The transition relation �AB of AB(Prog, k). Let ” = Èqa, op, qbÍ œ �t and qAB =
(St, act, j, c, u) with St(t) = qa and act(j) = t.

bu�er in a context c(x, t) after (or in) the current context j. In such a case, we access xt322

which holds the latest write on x in the bu�er of t. If there is no such write in the bu�er, i.e.323

c(x, t) < j holds, then the read fetches the value of x from the shared memory.324

A write operation on x overwrites the latest entry in the write bu�er on that variable325

xt and determines a future (or current) context jÕ with jÕ Ø j in which it leaves the bu�er.326

This is recorded in the variable xjÕ and x is added to the set u(jÕ) which holds the variables327

that are updated in context jÕ. Note that jÕ cannot be smaller then any other context in328

which a write on a variable y leaves the bu�er of t. This information is obtained from the329

function c. Also, jÕ must be a context in which t is active.330

At any time, the run can switch from a context j with j < k to j+1. Let u(j) = {x1 . . . xn}.331

These are the variables that are updated during context j. The values of the last updates on332

these variables in the context, stored in x1
j . . . x

n
j , are written to the corresponding variables in333

the shared memory. Since AB(Prog, k) only performs memory updates at the end of a context,334

an atomic read write arw(x, r1, r2) requires that the current bu�er content leaves the bu�er335

in the current context. This is ensured by using the condition j Ø max{c((y, t)) | y œ X}. If336

there is a write on x in the bu�er of t, then j = c(x, t). This is covered by the bu�er arw337

rule in Figure 4. Here, the current value of x is stored in xt, so we first check that it equals338

r1 and update xt as well as xj with r2. If j > c(x, t) holds, then there is no write on x in339

the bu�er of t (memory arw rule) and we compare the value of x in the shared memory with340

r1 and update it to r2.341

A configuration “ = (qAB,Mem) in the induced LTS of AB(Prog, k) consists of a state342

qAB œ QAB along with a variable assignment Mem. Let “init = (qABinit,Meminit) be the initial343

configuration of AB(Prog, k). Given the transitions �AB, we can define the transitions in344

the induced LTS in a straightforward manner. A state qfinal œ Qt of thread t is said to345

be reachable by AB(Prog, k) if and only if there is a reachable configuration of the form346

((St, act, j, c, u),Mem) such that St(t) = qfinal .347

I Lemma 4. A state of Prog is reachable under TSO by a run fi œ PMC(k) if and only if it348

is reachable by AB(Prog, k).349

CVIT 2016

Fig. 4. The transition relation ∆AB of AB(Prog, k). Let δ = ⟨qa, op, qb⟩ ∈ ∆t and qAB =
(St, act, j, c, u) with St(t) = qa and act(j) = t.

At any time, the run can switch from a context j with j < k to j + 1.
Let u(j) = {x1 . . . xn}. These are the variables that are updated during context
j. The values of the last updates on these variables in the context, stored in
x1
j . . . x

n
j , are written to the corresponding variables in the shared memory. Since

AB(Prog, k) only performs memory updates at the end of a context, an atomic
read write arw(x, r1, r2) requires that the current buffer content leaves the buffer
in the current context. This is ensured by using the condition j ≥ max{c((y, t)) |
y ∈ X}. If there is a write on x in the buffer of t, then j = c(x, t). This is covered
by the buffer arw rule in Figure 4. Here, the current value of x is stored in xt, so
we first check that it equals r1 and update xt as well as xj with r2. If j > c(x, t)
holds, then there is no write on x in the buffer of t (memory arw rule) and we
compare the value of x in the shared memory with r1 and update it to r2.

A configuration γ = (qAB,Mem) in the induced LTS of AB(Prog, k) consists of a
state qAB ∈ QAB along with a variable assignment Mem. Let γinit = (qABinit,Meminit)
be the initial configuration of AB(Prog, k). Given the transitions ∆AB, we can
define the transitions in the induced LTS in a straightforward manner. A state
qfinal ∈ Qt of thread t is said to be reachable by AB(Prog, k) if and only if
there is a reachable configuration of the form ((St, act, j, c, u),Mem) such that
St(t) = qfinal holds.

Lemma 2. A state of Prog is reachable under TSO by a run π ∈ CB(k) if and
only if it is reachable by AB(Prog, k).

The proof of Lemma 2 is given in Appendix C of [3]. Next, we abstract away
the infinite data domain from AB(Prog, k). We remove this last source of infinity
by constructing a finite state machine Rl<−AB(Prog, k) from AB(Prog, k).

Verification under TSO with an infinite Data Domain 289

hqAB, x := x0, q0ABi 2 �AB x=Rl0x
0 8rl 2 Rl<, 8z, y 2 XAB \ {x} : rlRl(y, z) , rlRl0(y, z)

h(qAB,Rl), x := x0, (q0AB,Rl
0)i 2 �

assign

hqAB, x := ~, q0ABi 2 �AB 8rl 2 Rl<, 8z, y 2 XAB \ {x} : rlRl(y, z) , rlRl0(y, z)

h(qAB,Rl), x := ~, (q0AB,Rl
0)i 2 �

new value

hqAB, rl00(x, y), q0ABi 2 �AB rl00 2 Rl< Rl = Rl0 rl00Rl(x, y)

h(qAB,Rl), rl00(x, y), (q0AB,Rl0)i 2 �
Rl< relation

hqAB, rl00(x, y), q0ABi 2 �AB rl00 62 Rl< Rl = Rl0 x <Rl y

h(qAB,Rl), rl00(x, y), (q0AB,Rl0)i 2 �
Rln relation

Figure 5. The transition relation of Rl<�AB(Prog, k). Sets Rl and Rl0 satisfy (i) equality
is an equivalence relation; (ii) disequality holds i↵ equality does not hold; (iii) ” < ” is
a total order on variables that are not equal.

Lemma 2. A state of Prog is reachable under TSO by a run ⇡ 2 CB(k) if and
only if it is reachable by AB(Prog, k).

The proof of Lemma 2 is given in section C. Next, we abstract away the
infinite data domain from AB(Prog, k). We remove this last source of infinity by
constructing a finite state machine Rl<�AB(Prog, k) from AB(Prog, k).

Domain Abstraction We use domain abstraction to solve CB(k)-
Reach[D,Rln] by reducing state reachability of AB(Prog, k) to reachability of
a finite state machine. We introduce the set of relations Rl< = {=, 6=, <}. To
abstract away the infinite data domain, we abstract from the exact values of
the variables. Instead of storing actual values, we store which relations from Rl<
holds between which pairs of variables, which is finite information. This way, we
reduce the infinite domain D to the finite Boolean domain B. Given a variable
assignment Mem and a relation rl, we define rlMem(x, y) := rl(Mem(x),Mem(y)).
Any variable assignment Mem induces a set of relations RlMem = {rlMem | rl 2
Rl<} over the variables XAB. When considering multiple sets of relations we de-
note a relation rl 2 Rl as rlRl. For a variable assignment Mem, we say set of
relations Rl over variables is consistent with Mem if Rl = RlMem.

Given AB(Prog, k) = hQAB,XAB,�AB, q
AB
initi, we now construct the finite state

machine Rl<�AB(Prog, k) = hQ,�, qiniti as follows: Q := QAB ⇥ {rlXAB
: XAB ⇥

XAB ! B | rl 2 Rl<}. We abstract from a variable assignment by storing in
the states which relations are satisfied. The initial state is qinit = (qABinit,RlMeminit).
We define the transitions of Rl<�AB(Prog, k) in Figure 5. We construct the
transitions such that they abstract from the transitions of the LTS induced by
the semantics of AB(Prog, k). Where the semantics on transitions of AB(Prog, k)
require that certain values in the configurations before and after the operation
are the same, the transitions of Rl<�AB(Prog, k) only require that the relations
between variables before and after the relation are the same. For instance, the
assign rule for operation x := x0 requires that Rl and Rl0 are the same for all

Fig. 5. The transition relation of Rl<−AB(Prog, k). Sets Rl and Rl′ satisfy (i) equality
is an equivalence relation; (ii) disequality holds iff equality does not hold; (iii) ” < ” is
a total order on variables that are not equal.

Domain Abstraction We use domain abstraction to solve CB(k)-
Reach[D,Rl≤n] by reducing state reachability of AB(Prog, k) to reachability of
a finite state machine. We introduce the set of relations Rl< = {=, ̸=, <}. To
abstract away the infinite data domain, we abstract from the exact values of
the variables. Instead of storing actual values, we store which relations from Rl<
holds between which pairs of variables, which is finite information. This way,
we reduce the infinite domain D to the finite Boolean domain B. For example,
(qAB, x = y) is an abstraction of a configuration (qAB,Mem(x) = 1,Mem(y) = 1).
Given a variable assignment Mem and a relation rl, we define rlMem(x, y) :=
rl(Mem(x),Mem(y)). Any variable assignment Mem induces a set of relations
RlMem = {rlMem | rl ∈ Rl<} over the variables XAB. When considering multiple sets
of relations we denote a relation rl ∈ Rl as rlRl. For a variable assignment Mem,
we say set of relations Rl over variables is consistent with Mem if Rl = RlMem.

Given AB(Prog, k) = ⟨QAB,XAB, ∆AB, q
AB
init⟩, we now construct the finite state

machine Rl<−AB(Prog, k) = ⟨Q, ∆, qinit⟩ as follows: Q := QAB × {rlXAB
: XAB ×

XAB → B | rl ∈ Rl<}. We abstract from a variable assignment by storing in the
states which relations are satisfied. The initial state is qinit = (qABinit,RlMeminit). We
define the transitions of Rl<−AB(Prog, k) in Figure 5. We construct the transi-
tions such that they abstract from the transitions of the LTS induced by the
semantics of AB(Prog, k). Where the semantics on transitions of AB(Prog, k) re-
quire that certain values in the configurations before and after the operation
are the same, the transitions of Rl<−AB(Prog, k) only require that the relations
between variables before and after the relation are the same. For instance, the
assign rule for operation x := x′ requires that Rl and Rl′ are the same for all vari-
ables except x and x =Rl′ x

′ must hold after the operation. Conditions (i)-(iii)
in Figure 5 reflect the properties of Rl< on values. They ensure that Rl and Rl′

have consistent variable assignments. Note that for any operation <n (or ≤n),
we soften the condition to x <Rl y. We will show that this still results in an
abstraction precise enough to be state reachability equivalent.

Since Rl<−AB(Prog, k) is a finite state machine, it induces the obvious LTS
where a configuration consists of a state. The following lemma shows that the

290 Parosh A. Abdulla et al.

construction is indeed an abstraction of AB(Prog, k). We assume Prog uses Rl≤n.

Lemma 3. If qAB is reachable by AB(Prog, k), then a state (qAB,Rl) is reachable
by Rl<−AB(Prog, k).

Proof. Assume ⟨(qAB,Mem)
op−→ (q′AB,Mem′)⟩. We argue that

⟨(qAB,RlMem), op, (q
′
AB,RlMem′)⟩ ∈ ∆ holds as well. The lemma follows im-

mediately. We show this for operation x := ⊛. For all other operations, the
proof is analogue and we omit it.

It follows from the semantics of x := ⊛, that Mem(y) = Mem′(y) for any
y ∈ XAB\{x} holds. This means RlMem and RlMem′ satisfy the new value rule. The
equality relations in RlMem and RlMem′ are consistent with the equality relations
on values of Mem and Mem′. The equality relation given by the values is an
equivalence relation and thus Condition (i) is satisfied. Similarly, Condition (ii) is
satisfied since values are obviously not equal if and only if they are not related by
equality. Condition (iii) is satisfied since relation < on values forms a total order.
All conditions are satisfied. This means ⟨(qAB,RlMem), x := ⊛, (q′AB,RlMem′)⟩ ∈ ∆.

Lemma 4. If a state (qAB,Rl) is reachable by Rl<−AB(Prog, k), then qAB is reach-
able by AB(Prog, k).

We prove this by performing an induction over runs of Rl<−AB(Prog, k) and
constructing equivalent runs of AB(Prog, k). In order to do this, we construct
configurations with consistent variable assignments. The main challenge is that
these variable assignments may not have large enough distances between the
values. Take the operation x <n y, for instance. Here, Rl<−AB(Prog, k) only
requires x < y. Note that any value other than 0 was created by an x := ⊛
operation. We can modify a run so that some of these operations assign larger
values. This way, we can increase the distances of variable assignments of reach-
able configurations without changing their consistency with respect to relations.
The formal proof of this is given in Appendix E of [3].

Theorem 4. CB(k)-Reach[D,Rl≤n] is PSPACE complete.

Proof. While Rl≤n is an infinite set, Rl< has only 3 relations. This means
Rl<−AB(Prog, k) is a finite transition system where state reachability is decid-
able. According to Lemma 2, Lemma 3 and Lemma 4, deciding state reachability
of Rl<−AB(Prog, k) is equivalent to solving CB(k)-Reach[Rl≤n].

We non-deterministically solve the state reachability of Rl<−AB(Prog, k) by
guessing a run that is length-bounded by the size of the state space and checking
whether it reaches qfinal . We store the current state ((St, act, j, c, u),Rl) together
with a binary encoding of the current length of the run. Note that the state
only requires polynomial space. The number of states of Rl<−AB(Prog, k) is
exponential in the program size as well as k, which means the binary encoding
also requires polynomial space.

We extend the run by choosing to either perform a context switch or an
operation. We begin with the initial state qABinit, which is a special case since we

Verification under TSO with an infinite Data Domain 291

first need to guess a function act according to the init rule in Figure 4. To perform
an operation, we look at the current state of the active thread St(act(j)), pick
an outgoing transition from the program, and update the state according to the
corresponding rules given in Figure 4 and Figure 5.

We illustrate this on the new-value operation. Assume we pick the outgoing
transition ⟨qa, x := ⊛, qb⟩ ∈ ∆act(j). In this case, we update the state according
to the local rule in Figure 4. Then we update the set Rl according to the new-
value rule in Figure 5. We leave all relations that do not include x unchanged,
and we non-deterministically choose x to be either equal to some variable, or
to be between two other adjacent variables, or to be the largest or smallest
variable. We update the relations to x accordingly. For any other operation,
the changes to Rl are uniquely determined. For writes, we additionally need to
non-deterministically pick some future context j′ of the update according to the
write rule in Figure 4. In the case of a context switch, we perform a series of
variable assignments according to the context switch rule.

Note that we do not explicitly construct the entire Rl<−AB(Prog, k) transition
system; the program and the rules given in Figure 4 and Figure 5 are sufficient to
guess a run. Each step can be performed in polynomial space. Once St(act(j)) =
qfinal holds, we know qfinal is reachable. The complexity of this process is in
PSPACE. According to Theorem 3, the problem is PSPACE hard as well.

7 Conclusion

We examined safety verification of concurrent programs running under TSO that
operate on variables ranging over an infinite domain. We have shown that this
is undecidable even if the program can only check the variables for equality and
non-equality. We studied a context bounded variant of the problem as well. Here,
we solved the problem for programs using relations in Rl≤n and showed that it
is PSPACE complete.

As future work, we plan to examine more expressive under-approximations
of the program behaviour than the presented context bounded analysis and how
these under-approximations affect decidability and complexity of the problem.
We also intend to explore the problem for additional relations and/or operations
a program may perform.

References

1. Abdulla, P.A., Aiswarya, C., Atig, M.F.: Data communicating processes with unre-
liable channels. In: LICS. pp. 166–175. ACM (2016). https://doi.org/10.1145/
2933575.2934535, https://doi.org/10.1145/2933575.2934535

2. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: A load-buffer semantics for
total store ordering. LMCS 14(1) (2018)

3. Abdulla, P.A., Atig, M.F., Furbach, F., Garg, S.: Verification under TSO with an
infinite data domain (2024)

292 Parosh A. Abdulla et al.

https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535

4. Abdulla, P.A., Atig, M.F., Furbach, F., Godbole, A.A., Hendi, Y.G., Krishna, S.N.,
Spengler, S.: Parameterized verification under TSO with data types. In: TACAS
2023. LNCS, vol. 13993, pp. 588–606. Springer (2023). https://doi.org/10.1007/
978-3-031-30823-9_30, https://doi.org/10.1007/978-3-031-30823-9_30

5. Abdulla, P.A., Atig, M.F., Phong, N.T.: The best of both worlds: Trading effi-
ciency and optimality in fence insertion for TSO. In: ESOP 2015. LNCS, vol. 9032,
pp. 308–332. Springer (2015). https://doi.org/10.1007/978-3-662-46669-8_
13, https://doi.org/10.1007/978-3-662-46669-8_13

6. Abdulla, P.A., Atig, M.F., Rezvan, R.: Parameterized verification under TSO is
PSPACE-complete. Proc. ACM Program. Lang. 4(POPL), 26:1–26:29 (2020).
https://doi.org/10.1145/3371094, https://doi.org/10.1145/3371094

7. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In:
LICS. pp. 35–44. IEEE Computer Society (2012). https://doi.org/10.1109/
LICS.2012.15, https://doi.org/10.1109/LICS.2012.15

8. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs
with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000). https://
doi.org/10.1006/inco.1999.2843, https://doi.org/10.1006/inco.1999.2843

9. Abdulla, P.A., Delzanno, G.: On the coverability problem for constrained multiset
rewriting. In: Proc. AVIS’06, The fifth Int. Workshop on on Automated Verification
of Infinite-State Systems (2006)

10. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS.
pp. 160–170. IEEE Computer Society (1993). https://doi.org/10.1109/LICS.
1993.287591, https://doi.org/10.1109/LICS.1993.287591

11. Abdulla, P.A., Sistla, A.P., Talupur, M.: Model checking parameterized sys-
tems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking, pp. 685–725. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8_21, https://doi.org/10.1007/978-3-319-10575-8_21

12. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–
235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8, https://doi.
org/10.1016/0304-3975(94)90010-8

13. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verifica-
tion problem for weak memory models. In: SIGPLAN-SIGACT. pp. 7–18.
ACM (2010). https://doi.org/10.1145/1706299.1706303, https://doi.org/
10.1145/1706299.1706303

14. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: CAV. LNCS, vol. 6806, pp. 99–115. Springer (2011). https://doi.org/10.
1007/978-3-642-22110-1_9, https://doi.org/10.1007/978-3-642-22110-1_9

15. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: ESOP 2013. LNCS, vol. 7792, pp. 533–553. Springer (2013).
https://doi.org/10.1007/978-3-642-37036-6_29, https://doi.org/10.1007/
978-3-642-37036-6_29

16. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown au-
tomata: Application to model-checking. In: CONCUR. LNCS, vol. 1243, pp.
135–150. Springer (1997). https://doi.org/10.1007/3-540-63141-0_10, https:
//doi.org/10.1007/3-540-63141-0_10

17. Burckhardt, S.: Principles of eventual consistency. FTPL 1(1-2), 1–150 (2014).
https://doi.org/10.1561/2500000011, https://doi.org/10.1561/2500000011

18. Cerans, K.: Deciding properties of integral relational automata. In: ICALP94 Pro-
ceedings. LNCS, vol. 820, pp. 35–46. Springer (1994). https://doi.org/10.1007/
3-540-58201-0_56, https://doi.org/10.1007/3-540-58201-0_56

Verification under TSO with an infinite Data Domain 293

https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/3-540-58201-0_56

19. Elver, M., Nagarajan, V.: TSO-CC: consistency directed cache coherence for TSO.
In: HPCA. pp. 165–176. IEEE Computer Society (2014). https://doi.org/10.
1109/HPCA.2014.6835927, https://doi.org/10.1109/HPCA.2014.6835927

20. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001). https://doi.org/10.1016/S0304-3975(00)
00102-X, https://doi.org/10.1016/S0304-3975(00)00102-X

21. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium
on Foundations of Computer Science (SFCS 1977). pp. 254–266 (1977). https:
//doi.org/10.1109/SFCS.1977.16

22. Krishna, S.N., Godbole, A., Meyer, R., Chakraborty, S.: Parameterized verifica-
tion under release acquire is PSPACE-complete. In: Milani, A., Woelfel, P. (eds.)
PODC. pp. 482–492. ACM (2022). https://doi.org/10.1145/3519270.3538445,
https://doi.org/10.1145/3519270.3538445

23. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concur-
rent reachability to sequential reachability. In: CAV. LNCS, vol. 5643, pp. 477–
492. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_36, https:
//doi.org/10.1007/978-3-642-02658-4_36

24. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency.
In: SIGPLAN-SIGACT. pp. 649–662. ACM (2016). https://doi.org/10.1145/
2837614.2837643, https://doi.org/10.1145/2837614.2837643

25. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound
to sequential analysis. FMSD 35(1), 73–97 (2009). https://doi.org/10.1007/
s10703-009-0078-9, https://doi.org/10.1007/s10703-009-0078-9

26. Lamport, L.: A new solution of dijkstra’s concurrent programming problem.
Commun. ACM 17(8), 453–455 (aug 1974). https://doi.org/10.1145/361082.
361093, https://doi.org/10.1145/361082.361093

27. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
tokens which carry data. Fundam. Informaticae 88(3), 251–274 (2008), http://
content.iospress.com/articles/fundamenta-informaticae/fi88-3-03

28. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI. pp. 446–455. ACM (2007). https://doi.org/
10.1145/1250734.1250785, https://doi.org/10.1145/1250734.1250785

29. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
TPHOLs. LNCS, vol. 5674, pp. 391–407. Springer (2009). https://doi.org/10.
1007/978-3-642-03359-9_27, https://doi.org/10.1007/978-3-642-03359-9_
27

30. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
TACAS. LNCS, vol. 3440, pp. 93–107. Springer (2005)

31. Ros, A., Kaxiras, S.: Racer: TSO consistency via race detection. In: MICRO.
IEEE Computer Society (2016). https://doi.org/10.1109/MICRO.2016.7783736,
https://doi.org/10.1109/MICRO.2016.7783736

32. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Under-
standing POWER multiprocessors. In: ACM SIGPLAN, PLDI. pp. 175–186.
ACM (2011). https://doi.org/10.1145/1993498.1993520, https://doi.org/
10.1145/1993498.1993520

33. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rig-
orous and usable programmer’s model for x86 multiprocessors. Commun. ACM
53(7), 89–97 (2010). https://doi.org/10.1145/1785414.1785443, https://doi.
org/10.1145/1785414.1785443

294 Parosh A. Abdulla et al.

https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-03
http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-03
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1109/MICRO.2016.7783736
https://doi.org/10.1109/MICRO.2016.7783736
https://doi.org/10.1109/MICRO.2016.7783736
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Verification under TSO with an infinite Data Domain 295

http://creativecommons.org/licenses/by/4.0/

13th Competition on Software
Verification—SV-Comp 2024

State of the Art in Software Verification and
Witness Validation: SV-COMP 2024

Dirk Beyer B

LMU Munich, Munich, Germany

Abstract. The 13th edition of the Competition on Software Verification
(SV-COMP 2024) was the largest competition of its kind so far: A total
of 76 tools for verification and witness validation were compared. The
competition evaluated 59 verification systems and 17 validation systems
from 34 teams from 12 countries. This yields a good overview of the state
of the art in tools for software verification. The competition was executed
on a benchmark set with 30 300 verification tasks for C programs and
587 verification tasks for Java programs. The specifications again included
reachability, memory safety, overflows, and termination. This year was
the second time that the competition had an extra competition track
on witness validation. We introduced a new witness format 2.0, and a
new scoring schema for the validation track. All meta data about the
verification and validation tools are available in the FM-Tools repository.

Keywords: Formal Verification · Program Analysis · Competition · Soft-
ware Verification · Verification Tasks · Benchmark · Specification · Java Lan-
guage · C Language · SV-COMP · SV-Benchmarks · BenchExec · CoVeriTeam

1 Introduction

This report describes the results of the 2024 edition of SV-COMP, and is an
extension of the series of competition reports (see footnote). We also list important
processes and rules, and give insights into some aspects of the competition. The
13th Competition on Software Verification (https://sv-comp.sosy-lab.org/2024) is
again the largest comparative evaluation ever in this area. The objectives of the
competitions were discussed earlier (1-4 [22]) and extended over the years (5-6 [23]):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results,

This report extends previous reports on SV-COMP [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27].
Reproduction packages are available on Zenodo (see Table 3).
B dirk.beyer@sosy-lab.org

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 299–329, 2024.
https://doi.org/10.1007/978-3-031-57256-2_15

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-4832-7662
mailto:Dirk.Beyer@sosy.ifi.lmu.de
https://sv-comp.sosy-lab.org
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/software/coveriteam
https://sv-comp.sosy-lab.org/2024
mailto:Dirk.Beyer@sosy.ifi.lmu.de
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_15&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

4. accelerate the transfer of new verification technology to industrial practice by
identifying the strengths of the various verifiers on a diverse set of tasks,

5. educate PhD students and others on performing reproducible benchmarking,
packaging tools, and running robust and accurate research experiments,

6. provide research teams that do not have sufficient computing resources with
the opportunity to obtain experimental results on large benchmark sets, and

7. conserve tools for formal methods for later reuse by using a standardized
format to announce archives (via DOIs), default options, contacts, competition
participations, and other meta data in a central repository.

The SV-COMP 2020 report [23] discusses the achievements of the SV-COMP
competition so far with respect to these objectives.

Related Competitions. SV-COMP is one of many competitions that measure
progress of research in the are of formal methods [15]. Competitions can lead
to fair and accurate comparative evaluations because of the involvement of the
developing teams. The competitions most related to SV-COMP are RERS [80],
VerifyThis [65], Test-Comp [28], and TermCOMP [73]. A previous report [23]
provides a more detailed discussion.

Quick Summary of Changes. While we try to keep the setup of the com-
petition stable, there are always improvements and developments. For the 2024
edition, the following changes were made:

• New verification tasks were added, with an increase in C from 23 805 in 2023
to 30 300 in 2024.

• Tool archives are now uploaded to Zenodo, instead of GitLab, and the meta
data about the tools are hosted and maintained in the Repository for Formal-
Methods Tools (https://gitlab.com/sosy-lab/benchmarking/fm-tools).

• The improved witness format version 2.0 [7] (which is based on YAML instead
of GraphML) was used for the first time.

• The scoring schema for the witness validators [44] was changed based on the
2023 community meeting in Paris.

2 Organization, Definitions, Formats, and Rules

Procedure. The overall organization of the competition did not change in com-
parison to the earlier editions [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27]. SV-COMP is
an open competition (also known as comparative evaluation), where all verification
tasks are known before the submission of the participating verifiers, which is
necessary due to the complexity of the C language. The procedure is partitioned
into the benchmark submission phase, the training phase, and the evaluation
phase. The participants received the results of their verifier continuously via
e-mail (for preruns and the final competition run), and the results were publicly
announced on the competition web site after the teams inspected them.

Competition Jury. Traditionally, the competition jury consists of the chair and
one member of each participating team; the team-representing members circulate

300 Dirk Beyer

https://gitlab.com/sosy-lab/benchmarking/fm-tools

Software Verification and Witness Validation: SV-COMP 2024

Table 1: Scoring schema for SV-COMP 2024 (unchanged from 2021 [24])
Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True incorrect −32 Incorrect program reported as correct (wrong proof)

TASK

VERIFIER
true-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0
unknown

-16
false

2true (witness confirmed)

0unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32true

0

unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 1: Visualization of the scoring schema for the reachability property (unchanged
from 2021 [24])

every year after the candidate-submission deadline. This committee reviews the
competition contribution papers and helps the organizer with resolving any
disputes that might occur (cf. competition report of SV-COMP 2013 [17]). The
tasks of the jury were described in more detail in the report of SV-COMP 2022 [26].
The team representatives of the competition jury are listed in Table 5.

Scoring Schema and Ranking. The scoring schema of SV-COMP 2024 was
the same as for SV-COMP 2021. Table 1 provides an overview and Fig. 1 visually
illustrates the score assignment for the reachability property as an example. As
before, the rank of a verifier was decided based on the sum of points (normalized
for meta categories). In case of a tie, the rank was decided based on success
run time, which is the total CPU time over all verification tasks for which the
verifier reported a correct verification result. Opt-out from Categories and Score
Normalization for Meta Categories was done as described previously [17, page 597].

License Requirements. Starting 2018, SV-COMP required that the verifier
must be publicly available for download and has a license that

(i) allows reproduction and evaluation by anybody (incl. results publication),

301

Table 2: Publicly available components for reproducing SV-COMP 2024

Component Fig. 3 Repository Version

Verification Tasks (a) gitlab.com/sosy-lab/benchmarking/sv-benchmarks svcomp24
Benchmark Definitions (b) gitlab.com/sosy-lab/sv-comp/bench-defs svcomp24
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.21
Verifiers (d) gitlab.com/sosy-lab/benchmarking/fm-tools svcomp24
Benchmarking (e) github.com/sosy-lab/benchexec 3.21
Witness Format (f) gitlab.com/sosy-lab/benchmarking/sv-witnesses 2.0.2
Continuous Integration gitlab.com/sosy-lab/software/coveriteam 1.1

Table 3: Artifacts published for SV-COMP 2024

Content DOI Reference

Verification Tasks 10.5281/zenodo.10669723 [31]
Competition Results 10.5281/zenodo.10669731 [30]
Verifiers and Validators 10.5281/zenodo.10669735 [29]
Verification Witnesses 10.5281/zenodo.10669737 [32]
BenchExec 10.5281/zenodo.10671136 [122]
CoVeriTeam 10.5281/zenodo.10843666 [45]

(ii) does not restrict the usage of the verifier output (log files, witnesses), and
(iii) allows (re-)distribution of the unmodified verifier archive via SV-COMP

repositories and archives.

Task-Definition Format 2.0. SV-COMP 2024 used the task-definition format
in version 2.0. More details can be found in the report for Test-Comp 2021 [25].

Properties. Please see the 2015 competition report [19] for the definition of the
properties and the property format. All specifications used in SV-COMP 2024
are available in the directory c/properties/ of the benchmark repository.

Categories. The community significantly extended the benchmark set for
SV-COMP 2024. The (updated) category structure of SV-COMP 2024 is shown
in Fig. 2. We refer to the previous reports for a description and mention only the
changes here: Compared to SV-COMP 2023, we added two new sub-categories
ReachSafety-Hardness and ReachSafety-Fuzzle to main category ReachSafety. We
restructured main category SoftwareSystems as follows: We removed sub-categories
SoftwareSystems-BusyBox-ReachSafety, SoftwareSystems-BusyBox-MemSafety,
and SoftwareSystems-OpenBSD-MemSafety, and added sub-categories
SoftwareSystems-coreutils-MemSafety, SoftwareSystems-coreutils-NoOverflows,
SoftwareSystems-Other-ReachSafety, and SoftwareSystems-Other-MemSafety.
The categories are also listed in Tables 8, 9, and 10, and described in detail on
the competition web site (https://sv-comp.sosy-lab.org/2024/benchmarks.php).

Reproducibility. SV-COMP results must be reproducible, and consequently,
all major components are maintained in public version-control repositories. The

302 Dirk Beyer

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/tree/svcomp24
https://gitlab.com/sosy-lab/sv-comp/bench-defs/-/tree/svcomp24
https://github.com/sosy-lab/benchexec/tree/3.21/benchexec/tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools/tree/svcomp24
https://github.com/sosy-lab/benchexec/tree/3.21
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/tree/2.0.2
https://gitlab.com/sosy-lab/software/coveriteam/tree/1.1
https://doi.org/10.5281/zenodo.10669723
https://doi.org/10.5281/zenodo.10669731
https://doi.org/10.5281/zenodo.10669735
https://doi.org/10.5281/zenodo.10669737
https://github.com/sosy-lab/benchexec
https://doi.org/10.5281/zenodo.10671136
https://gitlab.com/sosy-lab/software/coveriteam
https://doi.org/10.5281/zenodo.10843666
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp24/c/properties
https://sv-comp.sosy-lab.org/2024/benchmarks.php

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

Combinations

Hardware

Hardness

Fuzzle

ReachSafety

Arrays

Heap

LinkedList

Other

Juliet

MemCleanup

MemSafety

Main

MemSafety

NoOverflows

NoDataRace-Main

ConcurrencySafety

Main

Juliet
NoOverflows

BitVectors

MainControlFlow

MainHeap

Other

Termination

AWS-C-Common ReachSafety

coreutils MemSafety

coreutils NoOverflows

BusyBox NoOverflows

DeviceDriversLinux64 ReachSafety

DeviceDriversLinux64Large ReachSafety

DeviceDriversLinux64 MemSafety

Other ReachSafety

Other MemSafety

uthash ReachSafety

uthash MemSafety

uthash NoOverflows

SoftwareSystems

C-Overall

Java-Overall

C-FalsificationOverall

Fig. 2: Category structure for SV-COMP 2024 (changed from 2023)

Software Verification and Witness Validation: SV-COMP 2024 303

(a) Verification Task

(e) Verification Run

(b) Benchmark Definition (c) Tool-Info Module (d) Tool Archive

FALSE UNKNOWN TRUE(f) Violation
Witness

(f) Correctness
Witness

Fig. 3: Benchmarking components of SV-COMP and competition’s execution flow
(same as for SV-COMP 2020, except that we now download the tool archives
from Zenodo instead of GitLab)

Table 4: Validation: Witness validators and witness linter

Validator Reference Jury Member Affiliation

ConcurWitness2Test new [13] L. Bajczi BME Budapest, Hungary
CPAchecker [33, 34, 36] D. Baier LMU Munich, Germany
CPA-witness2test [35] T. Lemberger LMU Munich, Germany
Dartagnan [106] H. Ponce de León Huawei Dresden, Germany
CProver-witness2test∅ [35] (hors concours) –
Goblint new [112] S. Saan U. of Tartu, Estonia
GWIT [81] F. Howar TU Dortmund, Germany
JCWIT new Z. Cheng U. of Manchester, UK
LIV new [43] M. Spiessl LMU Munich, Germany
MetaVal [41] M. Spiessl LMU Munich, Germany
Mopsa new [99] R. Monat Inria and U. of Lille, France
NITWIT [124] J. (P.) Berger RWTH Aachen, Germany
Symbiotic-Witch [8] P. Ayaziová Masaryk U., Brno, Czechia
UAutomizer [33, 34] M. Heizmann U. of Freiburg, Germany
WIT4JAVA∅ [123] (hors concours) –
Witch new [7, 9] P. Ayaziová Masaryk U., Brno, Czechia
WitnessLint [7] M. Lingsch-Rosenfeld LMU Munich, Germany

overview of the components is provided in Fig. 3, and the details are given
in Table 2. We refer to the SV-COMP 2016 report [20] for a description of all
components of the SV-COMP organization. There are competition artifacts at
Zenodo (see Table 3) to guarantee their long-term availability and immutability.

Competition Workflow. The workflow of the competition is described in
the report for Test-Comp 2021 [25] (SV-COMP and Test-Comp use a similar
workflow). For a description of how to reproduce single verification runs and a
trouble-shooting guide, we refer to the 2022 report [26, Sect. 3].

304 Dirk Beyer

https://github.com/ftsrg/ConcurrentWitness2Test
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://github.com/hernanponcedeleon/Dat3M
https://www.cprover.org/cbmc/
https://goblint.in.tum.de/
https://github.com/tudo-aqua/gwit
https://github.com/Chriszai/JCWIT
https://gitlab.com/sosy-lab/software/liv
https://gitlab.com/sosy-lab/software/metaval
https://gitlab.com/mopsa/mopsa-analyzer
https://github.com/moves-rwth/nitwit-validator/
https://github.com/ayazip/witch-klee
https://ultimate-pa.org
https://github.com/Anthonysdu/wit4java
https://github.com/ayazip/witch-klee
https://github.com/sosy-lab/sv-witnesses

Table 5: Verification: Participating verifiers with tool references and representing jury
members; new for first-time, ∅ for hors-concours (RELAY-SV new was not able to qualify)

Participant Ref. Jury member Affiliation

2ls [46, 96] V. Malík BUT, Czechia
aise new [121] Z. Chen NUDT, China
BRICK [47] L. Bu Nanjing U., China
Bubaak [49] M. Chalupa ISTA, Austria
Bubaak-SpLit new [50] M. Chalupa ISTA, Austria
CBMC∅ [54, 91] (h. c.) –
COASTAL∅ [118] (h. c.) –
CoVeriTeam-AlgSel∅ [37, 38] (h. c.) –
CoVeriTeam-ParPort∅ [37, 38] (h. c.) –
CPAchecker [10, 39] D. Baier LMU Munich, Germany
CPALockator∅ [5, 6] (h. c.) –
CPA-BAM-BnB∅ [4, 120] (h. c.) –
CPA-BAM-SMG∅ (h. c.) –
CPV new [53] P.-C. Chien LMU Munich, Germany
Crux∅ [64, 113] (h. c.) –
CSeq∅ [59, 85] (h. c.) –
Dartagnan [71, 105] H. Ponce de León Huawei Dresden, Germany
Deagle [76] F. He Tsinghua U., China
DIVINE∅ [14, 92] (h. c.) –
EBF [3] F. Aljaafari U. of Manchester, UK
EmergenTheta new [11] L. Bajczi BME Budapest, Hungary
ESBMC-incr∅ [55, 58] (h. c.) –
ESBMC-kind [70, 97] F. Brauße U. Manchester, UK
Frama-C-SV [42, 60] M. Spiessl LMU Munich, Germany
Gazer-Theta∅ [1, 75] (h. c.) –
GDart [101] F. Howar TU Dortmund, Germany
GDart-LLVM∅ (h. c.) –
Goblint [111, 119] S. Saan U. Tartu, Estonia
Graves-CPA∅ [93] (h. c.) –
Graves-Par∅ (h. c.) –
Infer∅ [48, 89] (h. c.) –
Java-Ranger∅ [82, 115] (h. c.) –
JayHorn [88, 114] H. Mousavi U. Tehran, TIAS, Iran
JBMC [56, 57] P. Schrammel U. Sussex / Diffblue, UK
JDart∅ [95, 100] (h. c.) –
Korn [67, 68] G. Ernst LMU Munich, Germany
Lazy-CSeq∅ [83, 84] (h. c.) –
LF-checker∅ (h. c.) –
Locksmith∅ [107] (h. c.) –
MLB L. Bu Nanjing U., China
Mopsa [87, 99] R. Monat Inria and U. Lille, France
(continues on next page)

Software Verification and Witness Validation: SV-COMP 2024 305

https://cseweb.ucsd.edu/~jvoung/race
https://github.com/diffblue/2ls
https://github.com/ZhenWang233/AISE
https://github.com/brick-tool-dev/BRICK-2.0
https://gitlab.com/mchalupa/bubaak
https://gitlab.com/mchalupa/bubaak
https://www.cprover.org/cbmc/
https://www.cs.sun.ac.za/coastal
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://zenodo.org/doi/10.5281/zenodo.10063681
https://crux.galois.com/
https://www.southampton.ac.uk/~gp1y10/cseq/cseq.html
https://github.com/hernanponcedeleon/Dat3M
https://github.com/thufv/Deagle
https://divine.fi.muni.cz/
https://github.com/fatimahkj/EBF
https://github.com/ftsrg/theta
https://esbmc.org/
http://esbmc.org/
https://gitlab.com/sosy-lab/software/frama-c-sv
https://github.com/ftsrg/gazer
https://github.com/tudo-aqua/gdart-svcomp
https://github.com/tudo-aqua/gdart-llvm
https://goblint.in.tum.de/
https://github.com/will-leeson/cpachecker
https://github.com/mgerrard/graves-par
https://fbinfer.com/
https://github.com/vaibhavbsharma/java-ranger
https://github.com/jayhorn/jayhorn
https://github.com/diffblue/cbmc
https://github.com/tudo-aqua/jdart
https://github.com/gernst/korn
https://github.com/omainv/cseq/releases
https://github.com/Anthonysdu/lf-checker
http://www.cs.umd.edu/projects/PL/locksmith/
https://github.com/MLB-SE/Experiment
https://gitlab.com/mopsa/mopsa-analyzer

Table 5: Competition candidates (continued)

Participant Ref. Jury member Affiliation

PeSCo-CPA∅ [109, 110] (h. c.) –
PIChecker∅ [116] (h. c.) –
Pinaka∅ [52] (h. c.) –
PredatorHP [79, 104] V. Šoková BUT, Czechia
Proton new [98] R. Metta TCS, India
SPF∅ [102, 108] (h. c.) –
sv-sanitizers new S. Saan U. of Tartu, Estonia
SWAT new [94] N. Loose U. of Luebeck, Germany
Symbiotic [51, 86] M. Jonáš Masaryk U., Czechia
Theta [12, 117] L. Bajczi BME Budapest, Hungary
UAutomizer [77, 78] M. Heizmann U. Freiburg, Germany
UGemCutter [69, 90] D. Klumpp U. Freiburg, Germany
UKojak [66, 103] F. Schüssele U. Freiburg, Germany
UTaipan [63, 74] D. Dietsch U. Freiburg, Germany
VeriAbs [2, 61] P. Darke TCS, India
VeriAbsL [62] P. Darke TCS, India
VeriOover∅ (h. c.) –

Table 6: Algorithms and techniques that the participating verification systems used;
new for first-time participants, ∅ for hors-concours participation

Verifier C
E
G

A
R

P
re

di
ca

te
A

bs
tr

ac
ti
on

Sy
m

bo
lic

E
xe

cu
ti
on

B
ou

nd
ed

M
od

el
C
he

ck
in

g
k-

In
du

ct
io

n
P
ro

pe
rt

y-
D

ire
ct

ed
R
ea

ch
.

E
xp

lic
it
-V

al
ue

A
na

ly
si
s

N
um

er
ic

.
In

te
rv

al
A

na
ly

si
s

Sh
ap

e
A

na
ly

si
s

Se
pa

ra
ti
on

Lo
gi

c
B

it
-P

re
ci

se
A

na
ly

si
s

A
R
G

-B
as

ed
A

na
ly

si
s

La
zy

A
bs

tr
ac

ti
on

In
te

rp
ol

at
io

n
A

ut
om

at
a-

B
as

ed
A

na
ly

si
s

C
on

cu
rr

en
cy

Su
pp

or
t

R
an

ki
ng

Fu
nc

ti
on

s
E
vo

lu
ti
on

ar
y

A
lg

or
it
hm

s
A

lg
or

it
hm

Se
le

ct
io

n
P
or

tf
ol

io

2ls ✓ ✓ ✓ ✓ ✓ ✓

aise new ✓

BRICK ✓ ✓ ✓ ✓ ✓

Bubaak ✓ ✓ ✓ ✓ ✓

Bubaak-SpLit new ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CBMC∅ ✓ ✓ ✓

COASTAL∅ ✓

CVT-AlgoSel∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVT-ParPort∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPAchecker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPALockator∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(continues on next page)

306 Dirk Beyer

https://github.com/cedricrupb/pesco
https://gitlab.com/Lapulatos/pichecker
https://github.com/sbjoshi/Pinaka
https://www.fit.vutbr.cz/research/groups/verifit/tools/predatorhp/
https://github.com/kumarmadhukar/term
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/sim642/sv-sanitizers
https://www.its.uni-luebeck.de/en/research/tools/swat/
https://github.com/staticafi/symbiotic
https://github.com/ftsrg/theta
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://www.tcs.com
https://www.tcs.com
https://github.com/PaperSheeper/VeriOover-SV
https://github.com/diffblue/2ls
https://github.com/ZhenWang233/AISE
https://github.com/brick-tool-dev/BRICK-2.0
https://gitlab.com/mchalupa/bubaak
https://gitlab.com/mchalupa/bubaak
https://www.cprover.org/cbmc/
https://www.cs.sun.ac.za/coastal
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org

Table 6: Algorithms and techniques (continued)

Verifier C
E
G

A
R

P
re

di
ca

te
A

bs
tr

ac
ti
on

Sy
m

bo
lic

E
xe

cu
ti
on

B
ou

nd
ed

M
od

el
C
he

ck
in

g
k-

In
du

ct
io

n
P
ro

pe
rt

y-
D

ire
ct

ed
R
ea

ch
.

E
xp

lic
it
-V

al
ue

A
na

ly
si
s

N
um

er
ic

.
In

te
rv

al
A

na
ly

si
s

Sh
ap

e
A

na
ly

si
s

Se
pa

ra
ti
on

Lo
gi

c
B

it
-P

re
ci

se
A

na
ly

si
s

A
R
G

-B
as

ed
A

na
ly

si
s

La
zy

A
bs

tr
ac

ti
on

In
te

rp
ol

at
io

n
A

ut
om

at
a-

B
as

ed
A

na
ly

si
s

C
on

cu
rr

en
cy

Su
pp

or
t

R
an

ki
ng

Fu
nc

ti
on

s
E
vo

lu
ti
on

ar
y

A
lg

or
it
hm

s
A

lg
or

it
hm

Se
le

ct
io

n
P
or

tf
ol

io

CPA-BAM-BnB∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPA-BAM-SMG∅

CPV new ✓ ✓ ✓ ✓

Crux∅ ✓

CSeq∅ ✓ ✓ ✓

Dartagnan ✓ ✓ ✓

Deagle ✓ ✓

DIVINE∅ ✓ ✓ ✓ ✓ ✓ ✓

EBF ✓

EmergenTheta new ✓ ✓ ✓ ✓ ✓ ✓ ✓

ESBMC-incr∅ ✓ ✓ ✓ ✓

ESBMC-kind ✓ ✓ ✓ ✓ ✓ ✓

Frama-C-SV ✓

Gazer-Theta∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GDart ✓ ✓ ✓

GDart-LLVM∅ ✓ ✓

Goblint ✓ ✓ ✓

Graves-CPA∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Graves-Par∅

Infer∅ ✓ ✓ ✓ ✓

Java-Ranger∅ ✓ ✓

JayHorn ✓ ✓ ✓ ✓ ✓ ✓

JBMC ✓ ✓ ✓

JDart∅ ✓ ✓ ✓

Korn ✓ ✓ ✓ ✓

Lazy-CSeq∅ ✓ ✓ ✓

LF-checker∅

Locksmith∅ ✓

MLB ✓ ✓ ✓

Mopsa ✓

PeSCo-CPA∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PIChecker∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pinaka∅ ✓ ✓ ✓

PredatorHP ✓

(continues on next page)

Software Verification and Witness Validation: SV-COMP 2024 307

https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://zenodo.org/doi/10.5281/zenodo.10063681
https://crux.galois.com/
https://www.southampton.ac.uk/~gp1y10/cseq/cseq.html
https://github.com/hernanponcedeleon/Dat3M
https://github.com/thufv/Deagle
https://divine.fi.muni.cz/
https://github.com/fatimahkj/EBF
https://github.com/ftsrg/theta
https://esbmc.org/
http://esbmc.org/
https://gitlab.com/sosy-lab/software/frama-c-sv
https://github.com/ftsrg/gazer
https://github.com/tudo-aqua/gdart-svcomp
https://github.com/tudo-aqua/gdart-llvm
https://goblint.in.tum.de/
https://github.com/will-leeson/cpachecker
https://github.com/mgerrard/graves-par
https://fbinfer.com/
https://github.com/vaibhavbsharma/java-ranger
https://github.com/jayhorn/jayhorn
https://github.com/diffblue/cbmc
https://github.com/tudo-aqua/jdart
https://github.com/gernst/korn
https://github.com/omainv/cseq/releases
https://github.com/Anthonysdu/lf-checker
http://www.cs.umd.edu/projects/PL/locksmith/
https://github.com/MLB-SE/Experiment
https://gitlab.com/mopsa/mopsa-analyzer
https://github.com/cedricrupb/pesco
https://gitlab.com/Lapulatos/pichecker
https://github.com/sbjoshi/Pinaka
https://www.fit.vutbr.cz/research/groups/verifit/tools/predatorhp/

Table 6: Algorithms and techniques (continued)

Verifier C
E
G

A
R

P
re

di
ca

te
A

bs
tr

ac
ti
on

Sy
m

bo
lic

E
xe

cu
ti
on

B
ou

nd
ed

M
od

el
C
he

ck
in

g
k-

In
du

ct
io

n
P
ro

pe
rt

y-
D

ire
ct

ed
R
ea

ch
.

E
xp

lic
it
-V

al
ue

A
na

ly
si
s

N
um

er
ic

.
In

te
rv

al
A

na
ly

si
s

Sh
ap

e
A

na
ly

si
s

Se
pa

ra
ti
on

Lo
gi

c
B

it
-P

re
ci

se
A

na
ly

si
s

A
R
G

-B
as

ed
A

na
ly

si
s

La
zy

A
bs

tr
ac

ti
on

In
te

rp
ol

at
io

n
A

ut
om

at
a-

B
as

ed
A

na
ly

si
s

C
on

cu
rr

en
cy

Su
pp

or
t

R
an

ki
ng

Fu
nc

ti
on

s
E
vo

lu
ti
on

ar
y

A
lg

or
it
hm

s
A

lg
or

it
hm

Se
le

ct
io

n
P
or

tf
ol

io

Proton new ✓

SPF∅ ✓ ✓ ✓

sv-sanitizers new ✓

SWAT new ✓

Symbiotic ✓ ✓ ✓ ✓ ✓ ✓ ✓

Theta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UAutomizer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UGemCutter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓ ✓ ✓

UTaipan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriAbs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriAbsL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriOover∅

Table 7: Solver libraries and frameworks that are used as components in the participating
verification systems (component is mentioned if used more than three times; new for
first-time participants, ∅ for hors-concours participation)

Verifier C
P
A

ch
ec

k
er

C
P
ro

v
er

E
sb

m
c

Jp
f

U
lt

im
at

e

Ja
va

S
M

T

M
at

h
S
A
T

C
vc

4

S
M

T
in

te
r
po

l

z3 M
in

iS
A
T

A
pr

o
n

2ls ✓ ✓

aise new

BRICK ✓ ✓

Bubaak ✓

Bubaak-SpLit new

CBMC∅ ✓ ✓

COASTAL∅ ✓

CVT-AlgoSel∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVT-ParPort∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPAchecker ✓ ✓ ✓ ✓

(continues on next page)

308 Dirk Beyer

https://github.com/kumarmadhukar/term
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/sim642/sv-sanitizers
https://www.its.uni-luebeck.de/en/research/tools/swat/
https://github.com/staticafi/symbiotic
https://github.com/ftsrg/theta
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://www.tcs.com
https://www.tcs.com
https://github.com/PaperSheeper/VeriOover-SV
https://github.com/diffblue/2ls
https://github.com/ZhenWang233/AISE
https://github.com/brick-tool-dev/BRICK-2.0
https://gitlab.com/mchalupa/bubaak
https://gitlab.com/mchalupa/bubaak
https://www.cprover.org/cbmc/
https://www.cs.sun.ac.za/coastal
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam
https://cpachecker.sosy-lab.org

Table 7: Solver libraries and frameworks (continued)

Verifier C
P
A

ch
ec

k
er

C
P
ro

v
er

E
sb

m
c

Jp
f

U
lt

im
at

e

Ja
va

S
M

T

M
at

h
S
A
T

C
vc

4

S
M

T
in

te
r
po

l

z3 M
in

iS
A
T

A
pr

o
n

CPALockator∅ ✓ ✓ ✓

CPA-BAM-BnB∅ ✓ ✓ ✓

CPA-BAM-SMG∅ ✓ ✓ ✓

Crux∅ ✓

CSeq∅ ✓ ✓

Dartagnan ✓

Deagle ✓

DIVINE∅

EBF ✓ ✓

EmergenTheta new

ESBMC-incr∅ ✓ ✓

ESBMC-kind ✓ ✓

Frama-C-SV
Gazer-Theta∅

GDart ✓ ✓

GDart-LLVM∅ ✓

Goblint ✓

Graves-CPA∅ ✓ ✓ ✓

Graves-Par∅

Infer∅

Java-Ranger∅ ✓

JayHorn
JBMC ✓ ✓

JDart∅ ✓ ✓ ✓

Korn ✓

Lazy-CSeq∅ ✓ ✓

LF-checker∅

Locksmith∅

MLB
Mopsa ✓

PeSCo-CPA∅ ✓ ✓ ✓

PIChecker∅ ✓ ✓ ✓ ✓

Pinaka∅

PredatorHP
Proton new

SPF∅ ✓

sv-sanitizers new

(continues on next page)

Software Verification and Witness Validation: SV-COMP 2024 309

https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://crux.galois.com/
https://www.southampton.ac.uk/~gp1y10/cseq/cseq.html
https://github.com/hernanponcedeleon/Dat3M
https://github.com/thufv/Deagle
https://divine.fi.muni.cz/
https://github.com/fatimahkj/EBF
https://github.com/ftsrg/theta
https://esbmc.org/
http://esbmc.org/
https://gitlab.com/sosy-lab/software/frama-c-sv
https://github.com/ftsrg/gazer
https://github.com/tudo-aqua/gdart-svcomp
https://github.com/tudo-aqua/gdart-llvm
https://goblint.in.tum.de/
https://github.com/will-leeson/cpachecker
https://github.com/mgerrard/graves-par
https://fbinfer.com/
https://github.com/vaibhavbsharma/java-ranger
https://github.com/jayhorn/jayhorn
https://github.com/diffblue/cbmc
https://github.com/tudo-aqua/jdart
https://github.com/gernst/korn
https://github.com/omainv/cseq/releases
https://github.com/Anthonysdu/lf-checker
http://www.cs.umd.edu/projects/PL/locksmith/
https://github.com/MLB-SE/Experiment
https://gitlab.com/mopsa/mopsa-analyzer
https://github.com/cedricrupb/pesco
https://gitlab.com/Lapulatos/pichecker
https://github.com/sbjoshi/Pinaka
https://www.fit.vutbr.cz/research/groups/verifit/tools/predatorhp/
https://github.com/kumarmadhukar/term
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/sim642/sv-sanitizers

Table 7: Solver libraries and frameworks (continued)

Verifier C
P
A

ch
ec

k
er

C
P
ro

v
er

E
sb

m
c

Jp
f

U
lt

im
at

e

Ja
va

S
M

T

M
at

h
S
A
T

C
vc

4

S
M

T
in

te
r
po

l

z3 M
in

iS
A
T

A
pr

o
n

SWAT new

Symbiotic ✓

Theta
UAutomizer ✓ ✓ ✓ ✓ ✓

UGemCutter ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓

UTaipan ✓ ✓ ✓ ✓ ✓

VeriAbs ✓ ✓ ✓ ✓

VeriAbsL ✓ ✓ ✓ ✓

VeriOover∅

3 Participating Verifiers and Validators

The participating verification systems are listed in Table 5. The table contains
the verifier name (with hyperlink), references to papers that describe the systems,
the representing jury member and the affiliation. The listing is also available on
the competition web site at https://sv-comp.sosy-lab.org/2024/systems.php. Table 6
lists the algorithms and techniques that are used by the verification tools, and
Table 7 gives an overview of commonly used solver libraries and frameworks.

Validation of Verification Results. The validation of the verification results
was done by 17 validation tools (16 proper witness validators, and one witness
linter for syntax checks), which are listed in Table 4, including references to
literature. The ten witness validators are evaluated based on all verification
witnesses that were produced in the verification track of the competition.

Hors-Concours Participation. As in previous years, we also included verifiers
to the evaluation that did not actively compete or that should not occur in the
rankings for some reasons (e.g., meta verifiers based on other competing tools, or
tools for which the submitting teams were not sure if they show the full potential of
the tool). These participations are called hors concours, as they cannot participate
in rankings and cannot “win” the competition. Those verifiers are marked as ‘hors
concours’ in Table 5 and others, and the names are annotated with a symbol (∅).

4 Results of the Verification Track

The results of the competition represent the the state of the art of what can be
achieved with fully automatic software-verification tools on the given benchmark
set. We report the effectiveness (number of verification tasks that can be solved

310 Dirk Beyer

https://www.its.uni-luebeck.de/en/research/tools/swat/
https://github.com/staticafi/symbiotic
https://github.com/ftsrg/theta
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://www.tcs.com
https://www.tcs.com
https://github.com/PaperSheeper/VeriOover-SV
https://sv-comp.sosy-lab.org/2024/systems.php

Table 8: Verification: Quantitative overview over all regular results; empty cells are used
for opt-outs; new for first-time participants; the number of tasks includes invalid tasks
that were excluded from scoring by the jury (details available on web site or in artifact)

Participant

R
ea

ch
S
af

et
y

17
74

6
po

in
ts

11
30

5
ta

sk
s

M
em

S
af

et
y

32
16

po
in

ts
21

35
ta

sk
s

C
on

cu
rr

en
cy

S
af

et
y

56
72

po
in

ts
32

59
ta

sk
s

N
oO

ve
rfl

ow
s

13
04

4
po

in
ts

81
88

ta
sk

s
T
er

m
in

at
io

n
40

00
po

in
ts

23
54

ta
sk

s
S
of

tw
ar

eS
ys

te
m

s
52

51
po

in
ts

38
13

ta
sk

s
F
al

si
fi
ca

ti
on

O
ve

ra
ll

88
17

po
in

ts
28

70
0

ta
sk

s

O
ve

ra
ll

49
09

7
po

in
ts

31
05

4
ta

sk
s

Ja
va

O
ve

ra
ll

82
8

po
in

ts
58

7
ta

sk
s

2ls 6000 224 0 5976 1584 10 1311 10564
aise new

BRICK

Bubaak 3788 1890 11 6465 1481 -1082 -617 12206
Bubaak-SpLit new 4692 1312 7 -41374 661 872 1959 -18177
CPAchecker 10084 1897 2029 8603 1195 784 4812 21568
CPV new 6330
Dartagnan 3547
Deagle

EBF 636
EmergenTheta new 1178
ESBMC-kind 8364 2077 1853 8272 1048 -1063 2394 17896
Frama-C-SV 1098
GDart 616
Goblint 2289 1304 2583 7059 890 536 15458
JayHorn 325
JBMC 618
Korn

MLB 676
Mopsa 2241 1516 8063 2197
PredatorHP 2321
Proton new 3526
sv-sanitizers new 290
SWAT new 566
Symbiotic 7052 2156 238 7370 1258 687 4050 17192
Theta 2119 2354
UAutomizer 6320 2110 3079 9497 3248 261 3139 26396
UGemCutter 3189
UKojak 4869 1400 0 7363 0 233 2291 10593
UTaipan 5751 2014 2655 9231 0 351 3157 18042
VeriAbs 10541
VeriAbsL 10735

Software Verification and Witness Validation: SV-COMP 2024 311

https://github.com/diffblue/2ls
https://github.com/ZhenWang233/AISE
https://github.com/brick-tool-dev/BRICK-2.0
https://gitlab.com/mchalupa/bubaak
https://gitlab.com/mchalupa/bubaak
https://cpachecker.sosy-lab.org
https://zenodo.org/doi/10.5281/zenodo.10063681
https://github.com/hernanponcedeleon/Dat3M
https://github.com/thufv/Deagle
https://github.com/fatimahkj/EBF
https://github.com/ftsrg/theta
http://esbmc.org/
https://gitlab.com/sosy-lab/software/frama-c-sv
https://github.com/tudo-aqua/gdart-svcomp
https://goblint.in.tum.de/
https://github.com/jayhorn/jayhorn
https://github.com/diffblue/cbmc
https://github.com/gernst/korn
https://github.com/MLB-SE/Experiment
https://gitlab.com/mopsa/mopsa-analyzer
https://www.fit.vutbr.cz/research/groups/verifit/tools/predatorhp/
https://github.com/kumarmadhukar/term
https://github.com/sim642/sv-sanitizers
https://www.its.uni-luebeck.de/en/research/tools/swat/
https://github.com/staticafi/symbiotic
https://github.com/ftsrg/theta
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://www.tcs.com
https://www.tcs.com

Table 9: Verification: Quantitative overview over all hors-concours results; empty cells
represent opt-outs, ∅ for hors-concours participation; the number of tasks includes invalid
tasks that were excluded from scoring by the jury (details available on web site or in
artifact)

Participant

R
ea

ch
S
af

et
y

17
74

6
po

in
ts

11
30

5
ta

sk
s

M
em

S
af

et
y

32
16

po
in

ts
21

35
ta

sk
s

C
on

cu
rr

en
cy

S
af

et
y

56
72

po
in

ts
32

59
ta

sk
s

N
oO

ve
rfl

ow
s

13
04

4
po

in
ts

81
88

ta
sk

s
T
er

m
in

at
io

n
40

00
po

in
ts

23
54

ta
sk

s
S
of

tw
ar

eS
ys

te
m

s
52

51
po

in
ts

38
13

ta
sk

s
F
al

si
fi
ca

ti
on

O
ve

ra
ll

88
17

po
in

ts
28

70
0

ta
sk

s
O

ve
ra

ll
49

09
7

po
in

ts
31

05
4

ta
sk

s
Ja

va
O

ve
ra

ll
82

8
po

in
ts

58
7

ta
sk

s

CBMC∅ 1269 1330 1229 5771 1125 -2569 -3764 8391
COASTAL∅ -2752
CVT-AlgoSel∅ 2635 41
CVT-ParPort∅ -6152 1655 911 -17812 1289 -1297 -9118 -7545
CPA-BAM-BnB∅ -2439
CPA-BAM-SMG∅ 2039 -2804
CPALockator∅ -4924
Crux∅ 2066 490
CSeq∅ -12478
DIVINE∅ 4655 298 390 0 0 76 256 3576
ESBMC-incr∅ 542
Gazer-Theta∅

GDart-LLVM∅

Graves-CPA∅ 3831 -322 -1538 5470
Graves-Par∅ 876 1627 53 -17650 1256 -2037 -9024 -6731
Infer∅ -99128 -8289 -73312 -24917
Java-Ranger∅ 398
JDart∅ 382
Lazy-CSeq∅ -15024
LF-checker∅ 772
Locksmith∅

PeSCo-CPA∅ 5814 -76 3247 17315
PIChecker∅ 521
Pinaka∅ 2418 1337 855
SPF∅ 182
VeriOover∅

and correctness of the results, as accumulated in the score) and the efficiency
(resource consumption in terms of CPU time). The results are presented in the
same way as in last years, such that the improvements compared to the last
years are easy to identify. The results presented in this report were inspected
and approved by the participating teams.

312 Dirk Beyer

https://www.cprover.org/cbmc/
https://www.cs.sun.ac.za/coastal
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://crux.galois.com/
https://www.southampton.ac.uk/~gp1y10/cseq/cseq.html
https://divine.fi.muni.cz/
https://esbmc.org/
https://github.com/ftsrg/gazer
https://github.com/tudo-aqua/gdart-llvm
https://github.com/will-leeson/cpachecker
https://github.com/mgerrard/graves-par
https://fbinfer.com/
https://github.com/vaibhavbsharma/java-ranger
https://github.com/tudo-aqua/jdart
https://github.com/omainv/cseq/releases
https://github.com/Anthonysdu/lf-checker
http://www.cs.umd.edu/projects/PL/locksmith/
https://github.com/cedricrupb/pesco
https://gitlab.com/Lapulatos/pichecker
https://github.com/sbjoshi/Pinaka
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/PaperSheeper/VeriOover-SV

Table 10: Verification: Overview of the top-three verifiers for each category; values for
CPU time rounded to two significant digits; new for first-time participants

Rank Verifier Score CPU Solved Unconf. False Wrong
Time Tasks Tasks Alarms Proofs
(in h)

ReachSafety
1 VeriAbsL 10735 190 7 075 1 138 2
2 VeriAbs 10541 190 6 720 1 032 1
3 CPAchecker 10084 200 6 468 286 2

MemSafety
1 PredatorHP 2321 1.2 1 823 3 3
2 Symbiotic 2156 0.77 1 855 0 5
3 UAutomizer 2110 62 1 637 4

ConcurrencySafety
1 Dartagnan 3547 14 2 086 0 5
2 UGemCutter 3189 32 1 851 4 1
3 UAutomizer 3079 28 1 791 3 1
NoOverflows
1 UAutomizer 9497 62 4 532 2
2 UTaipan 9231 66 4 420 11 1
3 CPAchecker 8603 18 5 596 192

Termination
1 Proton new 3526 19 1 888 126 1
2 UAutomizer 3248 18 1 631 11
3 2ls 1584 4.2 1 167 201

SoftwareSystems
1 Mopsa 2197 15 2 030 0
2 Bubaak-SpLit new 872 0.42 480 163 8
3 CPAchecker 784 43 1 756 71

FalsificationOverall
1 CPAchecker 4812 91 4 920 218 10
2 Symbiotic 4050 27 4 281 191 11
3 UTaipan 3157 33 1 602 34 1

Overall
1 UAutomizer 26396 290 13 617 114 3 7
2 CPAchecker 21568 320 17 968 698 16 1
3 UTaipan 18042 240 11 524 71 1 13
JavaOverall
1 MLB 676 0.93 484 34
2 JBMC 618 0.44 424 80
3 GDart 616 2.6 453 9

Quantitative Results. Tables 8 and 9 present the quantitative overview of all
tools and all categories. Due to the large number of tools, we need to split the
presentation into two tables, one for the verifiers that participate in the rankings
(Table 8), and one for the hors-concours verifiers (Table 9). The head row mentions
the category, the maximal score for the category, and the number of verification

Software Verification and Witness Validation: SV-COMP 2024 313

https://www.tcs.com
https://www.tcs.com
https://cpachecker.sosy-lab.org
https://www.fit.vutbr.cz/research/groups/verifit/tools/predatorhp/
https://github.com/staticafi/symbiotic
https://ultimate-pa.org
https://github.com/hernanponcedeleon/Dat3M
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://ultimate-pa.org
https://cpachecker.sosy-lab.org
https://github.com/kumarmadhukar/term
https://ultimate-pa.org
https://github.com/diffblue/2ls
https://gitlab.com/mopsa/mopsa-analyzer
https://gitlab.com/mchalupa/bubaak
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://github.com/staticafi/symbiotic
https://ultimate-pa.org
https://ultimate-pa.org
https://cpachecker.sosy-lab.org
https://ultimate-pa.org
https://github.com/MLB-SE/Experiment
https://github.com/diffblue/cbmc
https://github.com/tudo-aqua/gdart-svcomp

 1

 10

 100

 1000
M

in
.
ti

m
e
 i
n
 s

2LS
Bubaak

Bubaak-SpLit
CBMC

CVT-ParPort
CPAchecker

DIVINE
ESBMC-kind

Goblint
Graves-CPA
Graves-Par
PeSCo-CPA
Symbiotic

UAutomizer
UKojak

UTaipan

-10000 -5000 0 5000 10000 15000 20000 25000

Cumulative score

Fig. 4: Quantile functions for category C-Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by correct verification runs
below a certain run time (y-coordinate). More details were given previously [17].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear scale
is used for the time range between 0 s and 1 s.

tasks. The verification tasks consist of tasks with expected verdict True, expected
verdict False, and tasks that are Void (tasks that were excluded from scoring by
the jury). The tools are listed in alphabetical order; every table row lists the scores
of one verifier. We indicate the top three candidates by formatting their scores in
bold face and in larger font size. An empty table cell means that the verifier opted-
out from the respective main category (perhaps participating in subcategories
only, restricting the evaluation to a specific topic; Deagle was disqualified by
the jury, with details on the web site). More information (including interactive
tables, quantile plots for every category, and also the raw data in XML format) is
available on the competition web site (https://sv-comp.sosy-lab.org/2024/results)
and in the results artifact (see Table 3).

Table 10 reports the top three verifiers for each category. The run time (column
‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved Tasks’).
We also report the number of tasks for which no witness validator was able to
confirm the result (column ‘Unconf. Tasks’). The columns ‘False Alarms’ and
‘Wrong Proofs’ report the number of verification tasks for which the verifier
reported wrong results, i.e., reporting a counterexample when the property holds
(incorrect False) and claiming that the program fulfills the property although
it actually contains a bug (incorrect True), respectively.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [17, 40] because these visualizations make it easier to
understand the results of the comparative evaluation. The results archive (see Ta-
ble 3) and the web site (https://sv-comp.sosy-lab.org/2024/results) include such
a plot for each (sub-)category. As an example, we show the plot for category

314 Dirk Beyer

https://github.com/thufv/Deagle
https://sv-comp.sosy-lab.org/2024/results
https://sv-comp.sosy-lab.org/2024/results

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
0

20

40

60

10 6
5 13

17 11
4 10

6 4

14
9

7

5 10 9
18 21 17 11

22 26
33

43
52

E
va

lu
at

ed
ve

ri
fie

rs

Fig. 5: Number of evaluated verifiers for each year (first-time participants on top)

Table 11: New verifiers in SV-COMP 2023 and SV-COMP 2024; column ‘Sub-
categories’ gives the number of executed categories; new for first-time participants
in 2024; ∅ for those that were hors-concours participants in 2024

Verifier Language First Year Sub-categories

aise new C 2024 1
Bubaak-SpLit new C 2024 45
CPV new C 2024 20
EmergenTheta new C 2024 15
Proton new C 2024 5
sv-sanitizers new C 2024 13

SWAT new Java 2024 1

Bubaak C 2023 40
GDart-LLVM∅ C 2023 1
Graves-Par∅ C 2023 40
LF-checker∅ C 2023 3
Mopsa C 2023 32
PIChecker∅ C 2023 1
VeriAbsL C 2023 13
VeriOover∅ C 2023 1

MLB Java 2023 1

C-Overall (all verification tasks) in Fig. 4. A total of 16 verifiers participated in
category C-Overall, for which the quantile plot shows the overall performance over
all categories (scores for meta categories are normalized [17]). A more detailed
discussion of score-based quantile plots, including examples of what insights one
can obtain from the plots, is provided in previous competition reports [17, 20].

The winner of the competition, UAutomizer, achieves the best cumulative
score (the graph for UAutomizer has the longest width from its left to its right
end; the graph starts left from x = 0 because the verifier produced 7 wrong proofs
and 4 false alarms and therefore received some negative points). Also other verifiers
whose graphs start with a negative cumulative score produced wrong results.

Software Verification and Witness Validation: SV-COMP 2024 315

https://github.com/ZhenWang233/AISE
https://gitlab.com/mchalupa/bubaak
https://zenodo.org/doi/10.5281/zenodo.10063681
https://github.com/ftsrg/theta
https://github.com/kumarmadhukar/term
https://github.com/sim642/sv-sanitizers
https://www.its.uni-luebeck.de/en/research/tools/swat/
https://gitlab.com/mchalupa/bubaak
https://github.com/tudo-aqua/gdart-llvm
https://github.com/mgerrard/graves-par
https://github.com/Anthonysdu/lf-checker
https://gitlab.com/mopsa/mopsa-analyzer
https://gitlab.com/Lapulatos/pichecker
https://www.tcs.com
https://github.com/PaperSheeper/VeriOover-SV
https://github.com/MLB-SE/Experiment
https://ultimate-pa.org
https://ultimate-pa.org

New Verifiers. To acknowledge the verification systems that participate for
the first or second time in SV-COMP, Table 11 lists the new verifiers (in
SV-COMP 2023 or SV-COMP 2024). Figure 5 shows the growing interest in
the competition over the years.

Computing Resources. The CPU time and memory limits were the same
as in the previous competitions [20] (15GB of memory and 15min of CPU
time), but we reduced the number of processing units per run from 8 to 4
processing units. This has the disadvantage that the measurements are more
imprecise due to shared resources in the machine, but it roughly doubles the
throughput. This change was necessary because of the ever increasing number of
participating systems and the continuously increasing benchmark set. Witness
validation was again limited to 2 processing units, 7 GB of memory, and 1.5min
of CPU time for violation witnesses and 15min of CPU time for correctness
witnesses. The machines for running the experiments are part of a compute cluster
at the SoSy-Lab at LMU that consists of 168 machines, where each machine
has one Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency
of 3.4GHz, 33GB of RAM, and a GNU/Linux operating system (x86_64-linux,
Ubuntu 22.04 with Linux kernel 5.15). We used BenchExec [40] to measure and
control computing resources (CPU time, memory) and VCloud to distribute,
install, run, and clean-up verification runs, and to collect the results. The values
for the time are accumulated over all cores of the CPU.

To give an impression of the overall computation work, we report some
statistics: One complete verification execution of the competition consisted of
787 779 verification runs (each verifier on each verification task of the selected
categories according to the opt-outs), consuming 2 104 days of CPU time (without
validation). This is almost double the CPU time spent for the previous edition
of SV-COMP. Witness-based result validation required 13.6 million validation
runs in 21 243 run sets (each validator on each verification task for categories
with witness validation, and for each verifier), consuming 2290 days of CPU
time. Each tool was executed several times, in order to make sure no instal-
lation issues occur during the execution.

5 Results of the Witness-Validation Track

The validation of verification results, in particular, verification witnesses, becomes
more and more important for various reasons: verification witnesses justify and
help to understand and interpret a verification result, they serve as exchange
object for intermediate results, and they allow to make use of imprecise verification
techniques (e.g., via machine learning). A case study on the quality of the results
of witness validators [44] suggested that validators for verification results should
also undergo a periodical comparative evaluation and proposed a scoring schema
for witness-validation results. SV-COMP 2024 evaluated a total of 17 validators
on 100 998 correctness and 71 577 violation witnesses in format 1.0, and 45 614
correctness and 27 561 violation witnesses in format 2.0. Figure 6 shows the
growing importance of evaluating witness validators.

316 Dirk Beyer

https://github.com/sosy-lab/benchexec
https://vcloud.sosy-lab.org

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
0

5

10

15

20

1
1

2

2

1

4

6

1 2 2
4 4

6 7

11 11E
va

lu
at

ed
va

lid
at

or
s

Fig. 6: Number of witness validators for each year (first-time participants on top)

witness

validator

validator

validator

validator

0

2p

1

0

2

1p

0

2

1p

0

2p

1

correct wrong

violation

correctness

violation

correctness

unknown

true

false

unknown

true

false

unknown

true

false

unknown

true

false

points for pcorrect points for pwrong

Fig. 7: Scoring schema for evaluation of validators; p = −16 for SV-COMP 2024;
figure adopted from [44]; changed scores compared to 2023 are highlighted in red

Scoring Schema for Validation Track. The score of a validator in a sub-
category is computed as

score =

(
pcorrect

|correct|
+

pwrong

|wrong|

)
· |correct|+ |wrong|

2

where the points in pcorrect and pwrong are determined according to the schema in
Fig. 7 and then normalized using the normalization schema that SV-COMP uses for
meta categories [17, page 597] (note that the factor q is removed in comparison to
last year [27, page 513] from the formula, because it is not necessary to give a higher

Software Verification and Witness Validation: SV-COMP 2024 317

Table 12: Validation of correctness witnesses (version 2.0): Overview of the top-three
validators for each category; values for CPU time rounded to two significant digits

Rank Validator Score CPU Solved False Wrong
Time Tasks Alarms Proofs
(in h)

ReachSafety
1 UAutomizer 4545 69 3 830
2 Mopsa new 3284 17 2 816
3 CPAchecker 2872 23 2 784

MemSafety
1 UAutomizer 5213 190 5 701
2 Mopsa new 5015 2.5 5 658
3 Goblint new 4225 0.26 5 677

ConcurrencySafety
1 Goblint new 0 0 0
2 missing validator 0 0 0
3 missing validator 0 0 0

NoOverflows
1 UAutomizer 25441 220 17 913
2 Mopsa new 23601 7.8 17 333
3 Goblint new 17143 0.77 14 125

Termination
1 Goblint new 0 0 0
2 missing validator 0 0 0
3 missing validator 0 0 0

SoftwareSystems
1 Mopsa new 3521 23 6 102
2 Goblint new 2793 9.2 4 636
3 UAutomizer 1258 90 5 963 14
Overall
1 UAutomizer 20919 570 33 407 14
2 Mopsa new 20889 50 31 909
3 Goblint new 16186 11 26 224

weight to wrong witnesses anymore). Witnesses that do not agree with the expected
verification verdict are classified as wrong. Witnesses that agree with the expected
verification verdict can be wrong although they agree with the expected version, for
example, if a violation witness has a wrong path to the violation, or a correctness
witness has an invariant that does not hold. Therefore, we use the information
from the majority of the validators: a witness that agrees with the expected
verification result is classified as correct if at least 75% of the true/false results
from validators confirm the result, and as wrong if at least 75 % of the true/false
results from validators refute this result (and there must be at least 2 true/false
results). Further details are given in the proposal [44]. This schema relates to

318 Dirk Beyer

https://ultimate.informatik.uni-freiburg.de
https://gitlab.com/mopsa/mopsa-analyzer
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://gitlab.com/mopsa/mopsa-analyzer
https://goblint.in.tum.de/
https://goblint.in.tum.de/
https://ultimate.informatik.uni-freiburg.de
https://gitlab.com/mopsa/mopsa-analyzer
https://goblint.in.tum.de/
https://goblint.in.tum.de/
https://gitlab.com/mopsa/mopsa-analyzer
https://goblint.in.tum.de/
https://ultimate.informatik.uni-freiburg.de
https://ultimate.informatik.uni-freiburg.de
https://gitlab.com/mopsa/mopsa-analyzer
https://goblint.in.tum.de/

Table 13: Validation of correctness witnesses (version 1.0): Overview of the top-three
validators for each category; values for CPU time rounded to two significant digits

Rank Validator Score CPU Solved False Wrong
Time Tasks Alarms Proofs
(in h)

ReachSafety
1 UAutomizer 28020 540 21 331
2 CPAchecker 25183 250 29 082
3 LIV new -44060 3.7 2 527 31
MemSafety
1 UAutomizer 259 4.8 366
2 LIV new 87 0.22 186 6
3 MetaVal 0 0 0

ConcurrencySafety
1 UAutomizer 70 2.6 120
2 missing validator 0 0 0
3 missing validator 0 0 0

NoOverflows
1 CPAchecker 57309 170 45 618 9
2 UAutomizer 56467 320 42 011 2
3 MetaVal 0 0 0

Termination
1 missing validator 0 0 0
2 missing validator 0 0 0
3 missing validator 0 0 0

SoftwareSystems
1 CPAchecker 3275 28 5 812
2 UAutomizer 2211 240 13 916 18
3 LIV new 0 0 0

Overall
1 UAutomizer 47571 1 100 77 744 20
2 CPAchecker 35095 450 80 512 9
3 MetaVal -38172 1 300 44 296 504

each base category from the verification track a meta category that consists of
two sub-categories, one with the correct and one with the wrong witnesses.

Tables 12, 13, and 14 show the rankings of the validators. Violation witnesses
in format version 2.0 were not yet ranked, because the jury decided that in
SV-COMP 2024, this is a demonstration track. The score results for all validators
and all categories are available on the SV-COMP web site 1 and in the artifact [30].
Wrong proofs in Tables 12 and 13 are claims of a validator that the program
is correct according to invariants in a given correctness witness although the
program contains a bug (the validator confirms a wrong correctness witness).
False alarms in Table 14 are claims of a validator that the program contains

1 https://sv-comp.sosy-lab.org/2024/results/results-validated/

Software Verification and Witness Validation: SV-COMP 2024 319

https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://gitlab.com/sosy-lab/software/liv
https://ultimate.informatik.uni-freiburg.de
https://gitlab.com/sosy-lab/software/liv
https://gitlab.com/sosy-lab/software/metaval
https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://gitlab.com/sosy-lab/software/metaval
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://gitlab.com/sosy-lab/software/liv
https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://gitlab.com/sosy-lab/software/metaval
https://sv-comp.sosy-lab.org/2024/results/results-validated/

Table 14: Validation of violation witnesses (version 1.0): Overview of the top-three
validators for each category; values for CPU time rounded to two significant digits

Rank Validator Score CPU Solved False Wrong
Time Tasks Alarms Proofs
(in h)

ReachSafety
1 UAutomizer 24390 120 15 932 4
2 CProver-w2t 22251 18 16 970 2
3 CPAchecker 15686 83 16 602 71

MemSafety
1 Symbiotic-Witch 799 0.59 1 723
2 CPAchecker 626 3.7 1 570 6
3 UAutomizer 472 5.2 809

ConcurrencySafety
1 Dartagnan 9186 37 8 674
2 UAutomizer 6742 72 6 533
3 CPAchecker 2110 14 3 061 28

NoOverflows
1 UAutomizer 20030 63 10 236 5
2 CPAchecker 18892 81 14 323
3 CProver-w2t 18400 7.7 13 679 18

Termination
1 UAutomizer 692 7.0 1 004
2 MetaVal 0 0 0
3 CPAchecker -1496 5.3 993 26

SoftwareSystems
1 UAutomizer 2633 26 3 036 2
2 Symbiotic-Witch 1696 0.59 1 113
3 CPAchecker 1359 15 2 474

Overall
1 UAutomizer 43235 290 37 550 11
2 Symbiotic-Witch 20980 42 27 484 4
3 CProver-w2t 19651 27 32 936 178

a bug described by a given violation witness although the program is correct
(the validator confirms a wrong violation witness).

The adoption rate of the new witness format version 2.0 is discussed in the
article that defines the format [7]. Tables 12 and 13 shows that there are categories
that are supported still by less than three validators (‘missing validators’ for
categories ConcurrencySafety and Termination).

While there are six new validators in SV-COMP 2024 (Fig. 6), and while
there is a great adoption rate of the new witness format 2.0 (Table 12),
there is still a remarkable gap in software-verification research: There are
verification results that can not yet be independently confirmed.

320 Dirk Beyer

https://ultimate.informatik.uni-freiburg.de
https://www.cprover.org/cbmc/
https://cpachecker.sosy-lab.org/
https://github.com/ayazip/witch-klee
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://github.com/hernanponcedeleon/Dat3M
https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://www.cprover.org/cbmc/
https://ultimate.informatik.uni-freiburg.de
https://gitlab.com/sosy-lab/software/metaval
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://github.com/ayazip/witch-klee
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://github.com/ayazip/witch-klee
https://www.cprover.org/cbmc/

6 Conclusion

The 13th edition of the Competition on Software Verification (SV-COMP 2024)
again compared automatic tools for software verification and the validation of
the produced verification witnesses. SV-COMP again had a record number of
59 participating verification systems (incl. 7 new verifiers and 19 hors-concours;
see Fig. 5 for the participation numbers and Table 5 for the details). Furthermore,
the validation track compared 17 validation tools; the validation tools were
assessed in a similar manner as in the verification track, using a community-
agreed scoring schema. The number of verification tasks in SV-COMP 2024 was
significantly increased to 30 300 in the C category. Table 10 shows that the top
verification tools have an extremely low number of wrong results. However, there
are still wrong results, and validation of the verification results is absolutely
necessary. We hope that this overview and the competition leads to a broader
adoption of software verification, and in particular, that more and better validation
tools are developed in the near future.

Data-Availability Statement. The verification tasks and results of the competi-
tion are published at Zenodo, as described in Table 3. All components and data that
are necessary for reproducing the competition are available in public version repos-
itories, as specified in Table 2. For easy access, the results are presented also online
on the competition web site https://sv-comp.sosy-lab.org/2024. The main results of
last year’s competition were reproduced in an independent reproduction study [72].

Funding Statement. Some participants of this competition were funded in part
by the Deutsche Forschungsgemeinschaft (DFG) — 378803395 (ConVeY).

Acknowledgments. We thank the verification community for contributing
their tools to the evaluation, the jury for their work on improving the quality
of the verification tasks and for their advice in refining and applying to the
competition rules, Philipp Wendler for maintaining and improving BenchExec,
Matthias Kettl for his help with the competition scripts, and the VCloud team
for keeping the scheduling system up to speed.

References

1. Ádám, Zs., Sallai, Gy., Hajdu, Á.: Gazer-Theta: LLVM-based verifier portfolio
with BMC/CEGAR (competition contribution). In: Proc. TACAS (2). pp. 433–437.
LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_27

2. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: VeriAbs: Verification by abstraction and test generation. In:
Proc. ASE. pp. 1138–1141. IEEE (2019). https://doi.org/10.1109/ASE.2019.00121

3. Aljaafari, F., Shmarov, F., Manino, E., Menezes, R., Cordeiro, L.: EBF 4.2:
Black-Box cooperative verification for concurrent programs (competition con-
tribution). In: Proc. TACAS (2). pp. 541–546. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_33

4. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin, V.S., Volkov, A.: CPA-
BAM-BnB: Block-abstraction memoization and region-based memory models for

Software Verification and Witness Validation: SV-COMP 2024 321

predicate abstractions (competition contribution). In: Proc. TACAS. pp. 355–359.
LNCS 10206, Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_22

https://sv-comp.sosy-lab.org/2024
http://gepris.dfg.de/gepris/projekt/378803395
https://github.com/sosy-lab/benchexec
https://vcloud.sosy-lab.org
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-031-30820-8_33
https://doi.org/10.1007/978-3-662-54580-5_22

5. Andrianov, P., Mutilin, V., Khoroshilov, A.: CPALockator: Thread-modular
approach with projections (competition contribution). In: Proc. TACAS (2). pp. 423–
427. LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_25

6. Andrianov, P.S.: Analysis of correct synchronization of operating
system components. Program. Comput. Softw. 46, 712–730 (2020).
https://doi.org/10.1134/S0361768820080022

7. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strejček, J.: Software
verification witnesses 2.0. In: Proc. SPIN. Springer (2024)

8. Ayaziová, P., Strejček, J.: Symbiotic-Witch 2: More efficient algorithm and
witness refutation (competition contribution). In: Proc. TACAS (2). pp. 523–528.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_30

9. Ayaziová, P., Strejček, J.: Witch 3: Validation of violation witnesses in the witness
format 2.0 (competition contribution). In: Proc. TACAS. LNCS. pp. 341 346.
LNCS 14572, Springer (2024).

)10. Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger,
T., Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.: CPAchecker
2.3 with strategy selection (competition contribution). In: Proc. TACAS. LNCS.

11. Bajczi, L., Szekeres, D., Mondok, M., Ádám, Z., Somorjai, M., Telbisz, C., Dobos-
Kovács, M., Molnár, V.: EmergenTheta: Verification beyond abstraction refine-
ment (competition contribution).

12. Bajczi, L., Telbisz, C., Somorjai, M., Ádám, Z., Dobos-Kovács, M., Szekeres,
D., Mondok, M., Molnár, V.: Theta: Abstraction based techniques for verifying
concurrency (competition contribution). In: Proc. TACAS. LNCS. pp. 412–417.

13. Bajczi, L., Ádám, Z., Micskei, Z.: ConcurrentWitness2Test: Test-harnessing
the power of concurrency (competition contribution). In: Proc. TACAS. LNCS.

14. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai,
P., Štill, V.: Model checking of C and C++ with Divine 4. In: Proc. ATVA. pp. 201–
207. LNCS 10482, Springer (2017). https://doi.org/10.1007/978-3-319-68167-2_14

15. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

16. Beyer, D.: Competition on software verification (SV-COMP).
In: Proc. TACAS. pp. 504–524. LNCS 7214, Springer (2012).
https://doi.org/10.1007/978-3-642-28756-5_38

17. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

18. Beyer, D.: Status report on software verification (Competition summary SV-
COMP 2014). In: Proc. TACAS. pp. 373–388. LNCS 8413, Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_25

19. Beyer, D.: Software verification and verifiable witnesses (Report on SV-
COMP 2015). In: Proc. TACAS. pp. 401–416. LNCS 9035, Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_31

20. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Proc. TACAS. pp. 887–904. LNCS 9636,
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55

322 Dirk Beyer

https://doi.org/10.1007/978-3-031-57256-2_18
–

LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-031-
57256-2_21
pp. 359 364. –

LNCS 14572, Springer (2024).

https://doi.org/10.1007/978-3-031-
57256-2_16

In: Proc. TACAS. LNCS. pp. 371–375. LNCS
14572, Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_23

https://doi.org/10.1007/978-3-031-57256-2_30

pp. 330–334. LNCS 14752, Springer (2024).

https://doi.org/10.1007/978-3-030-72013-1_25
https://doi.org/10.1134/S0361768820080022
https://doi.org/10.1007/978-3-031-30820-8_30
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-54862-8_25
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-031-57256-2_18
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_23
https://doi.org/10.1007/978-3-031-57256-2_30
https://doi.org/10.1007/978-3-031-57256-2_16
https://doi.org/10.1007/978-3-031-57256-2_16

21. Beyer, D.: Software verification with validation of results (Report on SV-
COMP 2017). In: Proc. TACAS. pp. 331–349. LNCS 10206, Springer (2017).
https://doi.org/10.1007/978-3-662-54580-5_20

22. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

23. Beyer, D.: Advances in automatic software verification: SV-COMP 2020.
In: Proc. TACAS (2). pp. 347–367. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_21

24. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP
2021). In: Proc. TACAS (2). pp. 401–422. LNCS 12652, Springer (2021).
https://doi.org/10.1007/978-3-030-72013-1_24

25. Beyer, D.: Status report on software testing: Test-Comp 2021.
In: Proc. FASE. pp. 341–357. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_17

26. Beyer, D.: Progress on software verification: SV-COMP 2022. In:
Proc. TACAS (2). pp. 375–402. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_20

27. Beyer, D.: Competition on software verification and witness validation: SV-
COMP 2023. In: Proc. TACAS (2). pp. 495–522. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_29

28. Beyer, D.: Software testing: 5th comparative evaluation: Test-Comp
2023. In: Proc. FASE. pp. 309–323. LNCS 13991, Springer (2023).
https://doi.org/10.1007/978-3-031-30826-0_17

29. Beyer, D.: Fm-tools data set of metadata about verifiers and validators (SV-COMP
2024). Zenodo (2024). https://doi.org/10.5281/zenodo.10669735

30. Beyer, D.: Results of the 13th Intl. Competition on Software Verification (SV-COMP
2024). Zenodo (2024). https://doi.org/10.5281/zenodo.10669731

31. Beyer, D.: SV-Benchmarks: Benchmark set for software verification (SV-COMP
2024). Zenodo (2024). https://doi.org/10.5281/zenodo.10669723

32. Beyer, D.: Verification witnesses from verification tools (SV-COMP 2024). Zenodo
(2024). https://doi.org/10.5281/zenodo.10669737

33. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

34. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

35. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

36. Beyer, D., Friedberger, K.: Violation witnesses and result validation for multi-
threaded programs. In: Proc. ISoLA (1). pp. 449–470. LNCS 12476, Springer (2020).
https://doi.org/10.1007/978-3-030-61362-4_26

37. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative
verification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

38. Beyer, D., Kanav, S., Richter, C.: Construction of verifier combinations
based on off-the-shelf verifiers. In: Proc. FASE. pp. 49–70. Springer (2022).
https://doi.org/10.1007/978-3-030-99429-7_3

Software Verification and Witness Validation: SV-COMP 2024 323

https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.5281/zenodo.10669735
https://doi.org/10.5281/zenodo.10669731
https://doi.org/10.5281/zenodo.10669723
https://doi.org/10.5281/zenodo.10669737
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99429-7_3

39. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

40. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

41. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verifica-
tion. In: Proc. CAV. pp. 165–177. LNCS 12225, Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8_10

42. Beyer, D., Spiessl, M.: The static analyzer Frama-C in SV-COMP (competition
contribution). In: Proc. TACAS (2). pp. 429–434. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_26

43. Beyer, D., Spiessl, M.: LIV: A loop-invariant validation using
straight-line programs. In: Proc. ASE. pp. 2074–2077. IEEE (2023).
https://doi.org/10.1109/ASE56229.2023.00214

44. Beyer, D., Strejček, J.: Case study on verification-witness validators: Where we
are and where we go. In: Proc. SAS. pp. 160–174. LNCS 13790, Springer (2022).
https://doi.org/10.1007/978-3-031-22308-2_8

45. Beyer, D., Wachowitz, H.: Coveriteam Release 1.1. Zenodo (2024).
https://doi.org/10.5281/zenodo.10843666

46. Brain, M., Joshi, S., Kröning, D., Schrammel, P.: Safety verification and refutation
by k-invariants and k-induction. In: Proc. SAS. pp. 145–161. LNCS 9291, Springer
(2015). https://doi.org/10.1007/978-3-662-48288-9_9

47. Bu, L., Xie, Z., Lyu, L., Li, Y., Guo, X., Zhao, J., Li, X.: Brick: Path
enumeration-based bounded reachability checking of C programs (competition
contribution). In: Proc. TACAS (2). pp. 408–412. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_22

48. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional
shape analysis by means of bi-abduction. ACM 58(6), 26:1–26:66 (2011).
https://doi.org/10.1145/2049697.2049700

49. Chalupa, M., Henzinger, T.: Bubaak: Runtime monitoring of program verifiers
(competition contribution). In: Proc. TACAS (2). pp. 535–540. LNCS 13994,
Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_32

50. Chalupa, M., Richter, C.: Bubaak-SpLit: Split what you cannot verify (competi-
tion contribution). In: Proc. TACAS. LNCS. pp. 353–358. LNCS 14572, Springer

51. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for mem-
ory safety checking. In: Proc. SPIN. pp. 115–132. Springer (2018).
https://doi.org/10.1007/978-3-319-94111-0_7

52. Chaudhary, E., Joshi, S.: Pinaka: Symbolic execution meets incremental solving
(competition contribution). In: Proc. TACAS (3). pp. 234–238. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_20

53. Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier (competition contri-

54. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C pro-
grams. In: Proc. TACAS. pp. 168–176. LNCS 2988, Springer (2004).
https://doi.org/10.1007/978-3-540-24730-2_15

55. Cordeiro, L.C., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: Proc. ICSE. pp. 331–340. ACM (2011).
https://doi.org/10.1145/1985793.1985839

324 Dirk Beyer

(2024). https://doi.org/10.1007/978-3-031-57256-2_20

bution). In: Proc. TACAS. LNCS. pp. 365–370. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_22

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1109/ASE56229.2023.00214
https://doi.org/10.1007/978-3-031-22308-2_8
https://doi.org/10.5281/zenodo.10843666
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-030-99527-0_22
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-17502-3_20
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1007/978-3-031-57256-2_20
https://doi.org/10.1007/978-3-031-57256-2_22

56. Cordeiro, L.C., Kesseli, P., Kröning, D., Schrammel, P., Trtík, M.: JBmc: A
bounded model checking tool for verifying Java bytecode. In: Proc. CAV. pp. 183–
190. LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_10

57. Cordeiro, L.C., Kröning, D., Schrammel, P.: Jbmc: Bounded model checking for
Java bytecode (competition contribution). In: Proc. TACAS (3). pp. 219–223.
LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_17

58. Cordeiro, L.C., Morse, J., Nicole, D., Fischer, B.: Context-bounded model checking
with Esbmc 1.17 (competition contribution). In: Proc. TACAS. pp. 534–537.
LNCS 7214, Springer (2012). https://doi.org/10.1007/978-3-642-28756-5_42

59. Coto, A., Inverso, O., Sales, E., Tuosto, E.: A prototype for data race detection in
CSeq 3 (competition contribution). In: Proc. TACAS (2). pp. 413–417. LNCS 13244,
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_23

60. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J.,
Yakobowski, B.: Frama-C. In: Proc. SEFM. pp. 233–247. Springer (2012).
https://doi.org/10.1007/978-3-642-33826-7_16

61. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: A tool for scalable verification
by abstraction (competition contribution). In: Proc. TACAS (2). pp. 458–462.
LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_32

62. Darke, P., Chimdyalwar, B., Agrawal, S., Venkatesh, R., Chakraborty, S., Kumar,
S.: VeriAbsL: Scalable verification by abstraction and strategy prediction (com-
petition contribution). In: Proc. TACAS (2). pp. 588–593. LNCS 13994, Springer
(2023). https://doi.org/10.1007/978-3-031-30820-8_41

63. Dietsch, D., Heizmann, M., Klumpp, D., Schüssele, F., Podelski, A.: Ultimate
Taipan 2023 (competition contribution). In: Proc. TACAS (2). pp. 582–587.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_40

64. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D., Tomb,
A.: Constructing semantic models of programs with the software analy-
sis workbench. In: Proc. VSTTE. pp. 56–72. LNCS 9971, Springer (2016).
https://doi.org/10.1007/978-3-319-48869-1_5

65. Dross, C., Furia, C.A., Huisman, M., Monahan, R., Müller, P.: Verifythis 2019:
A program-verification competition. Int. J. Softw. Tools Technol. Transf. 23(6),
883–893 (2021). https://doi.org/10.1007/s10009-021-00619-x

66. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via interpolants.
In: Proc. VMCAI. pp. 186–201. LNCS 7148, Springer (2012).
https://doi.org/10.1007/978-3-642-27940-9_13

67. Ernst, G.: A complete approach to loop verification with invariants
and summaries. Tech. Rep. arXiv:2010.05812v2, arXiv (January 2020).
https://doi.org/10.48550/arXiv.2010.05812

68. Ernst, G.: Korn: Horn clause based verification of C programs (competition
contribution). In: Proc. TACAS (2). pp. 559–564. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_36

69. Farzan, A., Klumpp, D., Podelski, A.: Sound sequentialization for con-
current program verification. In: Proc. PLDI. pp. 506–521. ACM (2022).
https://doi.org/10.1145/3519939.3523727

70. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (February 2017). https://doi.org/10.1007/s10009-015-0407-9

71. Gavrilenko, N., Ponce de León, H., Furbach, F., Heljanko, K., Meyer,
R.: BMC for weak memory models: Relation analysis for compact SMT
encodings. In: Proc. CAV. pp. 355–365. LNCS 11561, Springer (2019).
https://doi.org/10.1007/978-3-030-25540-4_19

Software Verification and Witness Validation: SV-COMP 2024 325

https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-030-17502-3_17
https://doi.org/10.1007/978-3-642-28756-5_42
https://doi.org/10.1007/978-3-030-99527-0_23
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-031-30820-8_41
https://doi.org/10.1007/978-3-031-30820-8_40
https://doi.org/10.1007/978-3-319-48869-1_5
https://doi.org/10.1007/s10009-021-00619-x
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.48550/arXiv.2010.05812
https://doi.org/10.1007/978-3-031-30820-8_36
https://doi.org/10.1145/3519939.3523727
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-25540-4_19

72. Gerhold, M., Hartmanns, A.: Reproduction report for SV-COMP 2023. Tech. rep.,
University of Twente (2023). https://doi.org/10.48550/arXiv.2303.06477

73. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination
competition (termCOMP 2015). In: Proc. CADE. pp. 105–108. LNCS 9195, Springer
(2015). https://doi.org/10.1007/978-3-319-21401-6_6

74. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from coun-
terexamples. In: Proc. SAS. pp. 128–147. LNCS 10422, Springer (2017).
https://doi.org/10.1007/978-3-319-66706-5_7

75. Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based
model checking. J. Autom. Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

76. He, F., Sun, Z., Fan, H.: Deagle: An SMT-based verifier for multi-threaded pro-
grams (competition contribution). In: Proc. TACAS (2). pp. 424–428. LNCS 13244,
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_25

77. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele, F., Podel-
ski, A.: Ultimate automizer and the abstraction of bitwise operations (competition

78. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

79. Holík, L., Kotoun, M., Peringer, P., Šoková, V., Trtík, M., Vojnar,
T.: Predator shape analysis tool suite. In: Hardware and Software:
Verification and Testing. pp. 202–209. LNCS 10028, Springer (2016).
https://doi.org/10.1007/978-3-319-49052-6

80. Howar, F., Jasper, M., Mues, M., Schmidt, D.A., Steffen, B.: The RERS challenge:
Towards controllable and scalable benchmark synthesis. Int. J. Softw. Tools Technol.
Transf. 23(6), 917–930 (2021). https://doi.org/10.1007/s10009-021-00617-z

81. Howar, F., Mues, M.: GWit (competition contribution). In:
Proc. TACAS (2). pp. 446–450. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_29

82. Hussein, S., Yan, Q., McCamant, S., Sharma, V., Whalen, M.: Java
Ranger: Supporting string and array operations (competition contribu-
tion). In: Proc. TACAS (2). pp. 553–558. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_35

83. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A lazy
sequentialization tool for C (competition contribution). In: Proc. TACAS. pp. 398–
401. LNCS 8413, Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_29

84. Inverso, O., Tomasco, E., Fischer, B., Torre, S.L., Parlato, G.: Bounded verification
of multi-threaded programs via lazy sequentialization. ACM Trans. Program. Lang.
Syst. 44(1), 1:1–1:50 (2022). https://doi.org/10.1145/3478536

85. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking

https://doi.org/10.1145/3332466.3374529
86. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Trtík, M., Zaoral, L., Ayaziová, P.,

Strejček, J.: Symbiotic 10: Lazy memory initialization and compact symbolic
execution (competition contribution). In: Proc. TACAS. LNCS. pp. 406–411. LNCS

87. Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of reusable
abstract domains for a multilingual static analyzer. In: Proc. VSTTE. pp. 1–18.
LNCS 12031, Springer (2019)

326 Dirk Beyer

contribution). In: Proc. TACAS. LNCS. pp. 418–423. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_31

of multi-threaded programs. In: Proc. PPoPP. pp. 202–216. ACM (2020).

(2024). https://doi.org/10.1007/978-3-031-57256-2_29

https://doi.org/10.1007/978-3-319-21401-6_6
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-030-99527-0_25
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-49052-6
https://doi.org/10.1007/s10009-021-00617-z
https://doi.org/10.1007/978-3-030-99527-0_29
https://doi.org/10.1007/978-3-031-30820-8_35
https://doi.org/10.1007/978-3-642-54862-8_29
https://doi.org/10.1145/3478536
https://doi.org/10.1145/3332466.3374529
https://doi.org/10.1007/978-3-031-57256-2_31
https://doi.org/10.1007/978-3-031-57256-2_29
https://doi.org/10.48550/arXiv.2303.06477

88. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: A framework for
verifying Java programs. In: Proc. CAV. pp. 352–358. LNCS 9779, Springer (2016).
https://doi.org/10.1007/978-3-319-41528-4_19

89. Kettl, M., Lemberger, T.: The static analyzer Infer in SV-COMP (competition
contribution). In: Proc. TACAS (2). pp. 451–456. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_30

90. Klumpp, D., Dietsch, D., Heizmann, M., Schüssele, F., Ebbinghaus, M., Farzan, A.,
Podelski, A.: Ultimate GemCutter and the axes of generalization (competition
contribution). In: Proc. TACAS (2). pp. 479–483. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_35

91. Kröning, D., Tautschnig, M.: Cbmc: C bounded model checker (competition
contribution). In: Proc. TACAS. pp. 389–391. LNCS 8413, Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_26

92. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation via pro-
gram transformation. In: Proc. ICTAC. pp. 313–332. Springer (2018).
https://doi.org/10.1007/978-3-030-02508-3_17

93. Leeson, W., Dwyer, M.: Graves-CPA: A graph-attention verifier selector (com-
petition contribution). In: Proc. TACAS (2). pp. 440–445. LNCS 13244, Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0_28

94. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: SWAT: Modular dynamic sym-
bolic execution for java applications using dynamic instrumentation (competition

95. Luckow, K.S., Dimjasevic, M., Giannakopoulou, D., Howar, F., Isberner, M.,
Kahsai, T., Rakamaric, Z., Raman, V.: JDart: A dynamic symbolic analy-
sis framework. In: Proc. TACAS. pp. 442–459. LNCSS 9636, Springer (2016).
https://doi.org/10.1007/978-3-662-49674-9_26

96. Malík, V., Schrammel, P., Vojnar, T., Nečas, F.: 2LS: Arrays and loop unwinding
(competition contribution). In: Proc. TACAS (2). pp. 529–534. LNCS 13994,
Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_31

97. Menezes, R., Aldughaim, M., Farias, B., Li, X., Manino, E., Shmarov, F., Song, K.,
Brauße, F., Gadelha, M.R., Tihanyi, N., Korovin, K., Cordeiro, L.: ESBMC v7.4:
Harnessing the power of intervals (competition contribution). In: Proc. TACAS.

98. Metta, R., Karmarkar, H., Madhukar, K., Venkatesh, R., Chakraborty, S.: Proton:
Probes for non-termination and termination (competition contribution). In: Proc.

99. Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A., Miné, A.: Mopsa-
C: Improved verification for C programs, simple validation of correctness witnesses
(competition contribution). In: Proc. TACAS. LNCS. pp. 387–392. LNCS 14572,

100. Mues, M., Howar, F.: JDart: Portfolio solving, breadth-first search and SMT-Lib
strings (competition contribution). In: Proc. TACAS (2). pp. 448–452. LNCS 12652,
Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_30

101. Mues, M., Howar, F.: GDart (competition contribution). In:
Proc. TACAS (2). pp. 435–439. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_27

102. Noller, Y., Păsăreanu, C.S., Le, X.B.D., Visser, W., Fromherz, A.:
Symbolic Pathfinder for SV-COMP (competition contribution).
In: Proc. TACAS (3). pp. 239–243. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_21

Software Verification and Witness Validation: SV-COMP 2024 327

contribution). In: Proc. TACAS. LNCS. pp. 399–405. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_28

LNCS. pp. 376–380. LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-
031-57256-2_24

TACAS. LNCS. pp. 393–398. LNCS 14572, Springer (2024). https://doi.org/10.
1007/978-3-031-57256-2_27

Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_26

https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-030-99527-0_30
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-031-30820-8_31
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-030-17502-3_21
https://doi.org/10.1007/978-3-031-57256-2_28
https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1007/978-3-031-57256-2_27
https://doi.org/10.1007/978-3-031-57256-2_27
https://doi.org/10.1007/978-3-031-57256-2_24
https://doi.org/10.1007/978-3-031-57256-2_24

103. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak with
memory safety checks (competition contribution). In: Proc. TACAS. pp. 458–460.
LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_44

104. Peringer, P., Šoková, V., Vojnar, T.: PredatorHP revamped (not only) for
interval-sized memory regions and memory reallocation (competition contri-
bution). In: Proc. TACAS (2). pp. 408–412. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_30

105. Ponce-De-Leon, H., Haas, T., Meyer, R.: Dartagnan: Leveraging com-
piler optimizations and the price of precision (competition contribu-
tion). In: Proc. TACAS (2). pp. 428–432. LNCS 12652, Springer (2021).
https://doi.org/10.1007/978-3-030-72013-1_26

106. Ponce-De-Leon, H., Haas, T., Meyer, R.: Dartagnan: Smt-based violation wit-
ness validation (competition contribution). In: Proc. TACAS (2). pp. 418–423.
LNCS 13244, Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_24

107. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: Practical static race de-
tection for C. ACM Trans. Program. Lang. Syst. 33(1) (January 2011).
https://doi.org/10.1145/1889997.1890000

108. Păsăreanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic PathFinder: integrating symbolic execution with model check-
ing for Java bytecode analysis. Autom. Software Eng. 20(3), 391–425 (2013).
https://doi.org/10.1007/s10515-013-0122-2

109. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

110. Richter, C., Wehrheim, H.: PeSCo: Predicting sequential combinations of verifiers
(competition contribution). In: Proc. TACAS (3). pp. 229–233. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_19

111. Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S., Vojdani,
V., Seidl, H.: Goblint: Abstract interpretation for memory safety and termination

112. Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S., Vojdani,
V., Seidl, H.: Goblint Validator: Correctness witness validation by abstract
interpretation (competition contribution). In: Proc. TACAS. LNCS. pp. 335–340.

113. Scott, R., Dockins, R., Ravitch, T., Tomb, A.: Crux: Symbolic execution meets
SMT-based verification (competition contribution). Zenodo (February 2022).
https://doi.org/10.5281/zenodo.6147218

114. Shamakhi, A., Hojjat, H., Rümmer, P.: Towards string support in JayHorn
(competition contribution). In: Proc. TACAS (2). pp. 443–447. LNCS 12652,
Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_29

115. Sharma, V., Hussein, S., Whalen, M.W., McCamant, S.A., Visser, W.:
Java Ranger: Statically summarizing regions for efficient symbolic
execution of Java. In: Proc. ESEC/FSE. pp. 123–134. ACM (2020).
https://doi.org/10.1145/3368089.3409734

116. Su, J., Yang, Z., Xing, H., Yang, J., Tian, C., Duan, Z.: PIChecker: A POR
and interpolation-based verifier for concurrent programs (competition contri-
bution). In: Proc. TACAS (2). pp. 571–576. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_38

117. Tóth, T., Hajdu, A., Vörös, A., Micskei, Z., Majzik, I.: Theta: A framework
for abstraction refinement-based model checking. In: Proc. FMCAD. pp. 176–179
(2017). https://doi.org/10.23919/FMCAD.2017.8102257

328 Dirk Beyer

(competition contribution). In: Proc. TACAS. LNCS. pp. 381–386. LNCS 14572,
Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_25

https://doi.org/10.1007/978-3-031-57256-2_17LNCS 14572, Springer (2024).

https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-030-45237-7_30
https://doi.org/10.1007/978-3-030-72013-1_26
https://doi.org/10.1007/978-3-030-99527-0_24
https://doi.org/10.1145/1889997.1890000
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.5281/zenodo.6147218
https://doi.org/10.1007/978-3-030-72013-1_29
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1007/978-3-031-30820-8_38
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-031-57256-2_17
https://doi.org/10.1007/978-3-031-57256-2_25

118. Visser, W., Geldenhuys, J.: Coastal: Combining concolic and fuzzing for Java
(competition contribution). In: Proc. TACAS (2). pp. 373–377. LNCS 12079,
Springer (2020). https://doi.org/10.1007/978-3-030-45237-7_23

119. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race
detection for device drivers: The Goblint approach. In: Proc. ASE. pp. 391–402.
ACM (2016). https://doi.org/10.1145/2970276.2970337

120. Volkov, A.R., Mandrykin, M.U.: Predicate abstractions memory mod-
eling method with separation into disjoint regions. Proceedings of
the Institute for System Programming (ISPRAS) 29, 203–216 (2017).
https://doi.org/10.15514/ISPRAS-2017-29(4)-13

121. Wang, Z., Chen, Z.: AISE: A symbolic verifier by synergizing abstract interpretation
and symbolic execution (competition contribution). In: Proc. TACAS. LNCS.

122. Wendler, P., Beyer, D.: sosy-lab/benchexec: Release 3.21. Zenodo (2024).
https://doi.org/10.5281/zenodo.10671136

123. Wu, T., Schrammel, P., Cordeiro, L.: Wit4Java: A violation-witness validator
for Java verifiers (competition contribution). In: Proc. TACAS (2). pp. 484–489.
LNCS 13244, Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_36

124. J. Švejda, Berger, P., Katoen, J.P.: Interpretation-based violation witness validation
for C: NitWit. In: Proc. TACAS. pp. 40–57. LNCS 12078, Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_3

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Software Verification and Witness Validation: SV-COMP 2024 329

https://doi.org/10.1007/978-3-031-pp. 347–352. LNCS 14572, Springer (2024).
57256-2_19

https://doi.org/10.1007/978-3-030-45237-7_23
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.5281/zenodo.10671136
https://doi.org/10.1007/978-3-030-99527-0_36
https://doi.org/10.1007/978-3-030-45190-5_3
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-57256-2_19
https://doi.org/10.1007/978-3-031-57256-2_19

ConcurrentWitness2Test:
Test-Harnessing the Power of Concurrency

(Competition Contribution)

Levente Bajczi ⋆(B) , Zsófia Ádám , and Zoltán Micskei

Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

bajczi@mit.bme.hu

Abstract. ConcurrentWitness2Test is a violation witness valida-
tor for concurrent software. Taking both nondeterminism of data and
interleaving-based nondeterminism into account, the tool aims to use
the metadata described in the violation witnesses to synthesize an ex-
ecutable test harness. While plagued by some initial challenges yet to
overcome, the validation performance of ConcurrentWitness2Test
corroborates the usefulness of the proposed approach.

Funding. This research was partially funded by the ÚNKP-23-{2,3}-I New National

Excellence Program; and the Doctoral Excellence Fellowship Programme (funded by

the NRDI Fund of Hungary and the BME University).

1 Validation Approach

There are multiple violation witness validators in the ReachSafety category of
SV-COMP that are based on test harness generation [3]. However, none take
part in the category for concurrent programs, presumably due to the increased
complexity in orchestrating the different thread interleavings prescribed by the
witness files. ConcurrentWitness2Test aims to fill this gap, by providing
an enhanced test harness that takes not only the data-nondeterminism into ac-
count, but also the nondeterminism caused by concurrency. In this paper we
concentrate on solving the latter, as the former is already well documented by
the implementing tools [3].

The current witness format for concurrent software defines two edge data
fields that we can extract information from [3]:

createThread: The unique ID of the new thread that results from the execution
of the containing edge

threadId: Which thread is currently active when the containing edge is exe-
cuted. Valid values have at least one createThread entry in the witness
automaton that must be executed prior to the current edge

⋆ Jury member representing ConcurrentWitness2Test at SV-COMP 2024.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 330–334, 2024.
https://doi.org/10.1007/978-3-031-57256-2_16

https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0003-1846-261X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_16&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

line: 1
threadID: 1

line: 1
threadID: 2

line: 2
threadID: 1

Fig. 1: Witness

Thread 1:

yield(0);
1 a = 0 ;

release(0);
yield(2);

2 a s s e r t (a == 0) ;
release(2);

Thread 2:

yield(1);
1 a = 1 ;

release(1);

Fig. 2: Source

lock()

current >= targetyes no

unlock() broadcast()

wait()

yes
current < targetno

unlock()

Fig. 3: yield(target)

lock()

current >= targetyes no

unlock() current++

broadcast()

unlock()

Fig. 4: release(target)

Using these pieces of information, we insert a yield and release call around
each action (as seen in the example in Figure 2, based on the metadata from Fig-
ure 1), with the parameter target increasing at every encountered edge. These
functions are shown in Figure 3 and Figure 4, respectively. They rely on a shared
variable current denoting the next value where the functions need to take effect
(to handle revisited locations in the source, e.g., in a loop), alongside a mutex
and a condition variable. Locking and unlocking in the figures refer to operations
on the mutex variable; while broadcasting and waiting refer to operations on the
condition variable.

One of the main obstacles to overcome is the resolution of the threadID

metadata. In our experience, none of the tools produce fully specified witnesses
in terms of interleavings, i.e., not every action is totally ordered in the program.
While this is acceptable according to the witness format [3], a certain level
of nondeterminism might remain in the program after applying the witness.
To overcome this problem we rely on statistics, i.e., we execute the resulting
harness multiple times, and classify the results as always observable, sometimes
observable and never observable. Observability refers to that of the error state,
tested by inspecting the exit code of the program. At SV-COMP’24 we opted to
only refuse witnesses with never observable verdicts.

2 Software Architecture

ConcurrentWitness2Test is a Python project, relying on pycparser1 for
parsing C files, and networkx2 for parsing GraphML-based witnesses. As op-
posed to the harness-only solutions of other witness-to-test validators [3], Con-

1 https://github.com/eliben/pycparser
2 https://networkx.org/

ConcurrentWitness2Test 331

https://github.com/eliben/pycparser
https://networkx.org/

pycparser

Parse C

Parse witness

networkx

Patch AST

Create harness

Compile gcc

Execute

Í/?/ë
Verdict

ConcurrentWitness2Test
.c

.cex

Fig. 5: Architecture of ConcurrentWitness2Test

currentWitness2Test also needs to modify the AST of the C file to insert
the function calls to yield and release, therefore the intermediate output of
ConcurrentWitness2Test consists of a patched C file and a separate test
harness. We use gcc3 to compile these resulting files to an executable. We run
this executable at most 100 times, with an option for early termination if the
error becomes observable. See Figure 5 for an overview of this workflow.

3 Discussion of Strengths and Weaknesses of the
Approach

As seen in Table 14, ConcurrentWitness2Test lacks support for some tools’
witnesses. Since then, this limitation has been mostly rectified, but not in time
for SV-COMP. The main shortcoming of the competition version of Concur-
rentWitness2Test was the handling of cases where edge attributes were given
for complex syntactic elements, such as loops, and we tried to insert the func-
tion calls into the heads of loops instead of their body. This was an easy fix,
and we hope to further the support for various tools even more for next year’s
SV-COMP.

Despite these temporary shortcomings, ConcurrentWitness2Test still
correctly confirmed 1197 results[2]. In contrast, the validator was wrong only 239
times: 2 witnesses were confirmed and 237 witnesses were refused erroneously5.
These numbers highlight the strength of our approach.

We also note that ConcurrentWitness2Test confirmed 932 results with
only a sometimes observable verdict. This means that multiple tools produce
nondeterministic witnesses, where some interleaving leads the execution to an
error state, but not all. We suggest tool developers to concentrate on providing
better, deterministic witnesses in order for their results to always be validated.
We will aim to constrain our acceptance criteria to always observable in future
competitions.

3 https://gcc.gnu.org/
4 Unofficial results, since no official results were published at the time of writing.
5 Here, erroneous covers all cases when the tool could not reproduce the bug. There-
fore, this might not be our tool’s shortcoming, but the result of bad witnesses.

332 L. Bajczi et al.

https://gcc.gnu.org/

Table 1: Results per supported tool, results for wrong verdicts in parentheses

D
a
r
t
a
g
n
a
n

D
iv
in
e

T
h
e
t
a

U
A
u
t
o
m
iz
e
r

U
G
e
m
C
u
t
t
e
r

U
T
a
ip
a
n

Confirmed 178 179 (2) 191 186 235 228
Refused 79 25 (1) 8 74 22 29

Error 193 111 96 168 194 170

4 Tool Setup and Configuration

The binary archive available at Zenodo [1] contains all required dependencies in
the form a virtual environment except for the python 3 interpreter, which needs
to be installed separately (e.g., via the python3 package on Ubuntu 22.04).

The tool can be started either directly via the main.py file, or the convenience
script in start.sh. Either way, the tool expects two inputs: an argument provid-
ing the (preprocessed) C file, and the witness file with the --witness <file>

flag. Upon success, the tool always outputs a single line starting with the string
Verdict:, with the verdict SOMETIMES/ALWAYS/NEVER directly afterward. Some
handled exceptions also appear as verdicts.

Up-to-date badges on verification tool support can be seen on the main
GitHub page6. Tool support has been significantly enhanced since the version
nominated for the competition, in preparation for next year’s SV-COMP, and
for tools to use that may want to improve their witnesses in the meantime.

5 Software Project and Data Availability

ConcurrentWitness2Test is a validation tool maintained by the Critical
Systems Research Group7 of the Budapest University of Technology and Eco-
nomics. The project is available open-source on GitHub8 under an Apache 2.0
license. The version (1.0.0) used in the competition is available at [1].

References

1. Bajczi, L., Ádám, Z., Micskei, Z.: ConcurrentWitness2Test - SV-COMP’24 Validator
Archive (Nov 2023). https://doi.org/10.5281/zenodo.10184336

2. Beyer, D.: State of the art in software verification and witness validation: SV-COMP
2024. In: Proc. TACAS. LNCS , Springer (2024)

6 https://github.com/ftsrg/ConcurrentWitness2Test#tool-support
7 https://ftsrg.mit.bme.hu/en/
8 https://github.com/ftsrg/ConcurrentWitness2Test

ConcurrentWitness2Test 333

https://doi.org/10.5281/zenodo.10184336
https://github.com/ftsrg/ConcurrentWitness2Test#tool-support
https://ftsrg.mit.bme.hu/en/
https://github.com/ftsrg/ConcurrentWitness2Test

3. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses -
execution-based validation of verification results. In: Dubois, C., Wolff, B. (eds.)
Tests and Proofs - 12th International Conference, TAP@STAF 2018, Toulouse,
France, June 27-29, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10889, pp. 3–23. Springer (2018). https://doi.org/10.1007/978-3-319-92994-1 1

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

334 L. Bajczi et al.

https://doi.org/10.1007/978-3-319-92994-1_1
http://creativecommons.org/licenses/by/4.0/

Goblint Validator: Correctness Witness
Validation by Abstract Interpretation

(Competition Contribution)

Simmo Saan1(B) ⋆, Julian Erhard2,3 , Michael Schwarz2 ,
Stanimir Bozhilov2 , Karoliine Holter1 , Sarah Tilscher2,3 ,

Vesal Vojdani1 , and Helmut Seidl2

1 University of Tartu, Tartu, Estonia
{simmo.saan,karoliine.holter,vesal.vojdani}@ut.ee

2 Technische Universität München, Garching, Germany
{julian.erhard,m.schwarz,stanimir.bozhilov,

sarah.tilscher,helmut.seidl}@tum.de
3 Ludwig-Maximilians-Universität München, Munich, Germany

Abstract. Goblint is an abstract interpretation framework for C pro-
grams with a specialty in concurrency. Using a novel approach, we turn
it into a validator of YAML correctness witnesses for all SV-COMP cate-
gories. We describe its results at SV-COMP 2024 which includes the first
large-scale evaluation of our validator.

1 Validation Approach

Goblint Validator is an extension of the Goblint verifier [14–16] for validation
of correctness witnesses in the YAML format [1], consisting of location and loop
invariants. The extension involves two related but independent components:
witness invariants are checked for correctness and unassumed for speedup. We
present here a high-level overview of our recently-published approach to abstract-
interpretation–powered witness validation [17].

Correctness of witness invariants is determined by treating them as additional
proof obligations. However, instead of inserting assert statements into the program,
the validator uses the Goblint verifier as a black box to check whether its
computed abstract states satisfy the witness invariants. Hence, invalid witness
invariants cannot undermine soundness of the verification process via refinement.

Speedup from witness invariants is attained by incorporating novel unassume
statements with the invariants into the program. As opposed to refining the
abstract state like assume operations, these relax the state instead. Doing so in a
controlled manner, fixpoint iteration can converge faster, i.e., in fewer iterations.
In the best case, the witness invariant precisely characterizes the fixpoint, avoiding
further iteration. Unassuming can also make the abstract interpreter more precise,
without requiring more expressive abstract domains, by leading the solver to a
more precise fixpoint, which widening would otherwise extrapolate over [17].
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 335–340, 2024.
https://doi.org/10.1007/978-3-031-57256-2_17

https://orcid.org/0000-0003-4553-1350
https://orcid.org/0000-0002-1729-3925
https://orcid.org/0000-0002-9828-0308
https://orcid.org/0009-0002-1361-942X
https://orcid.org/0009-0008-3725-4131
https://orcid.org/0009-0009-9644-7475
https://orcid.org/0000-0003-4336-7980
https://orcid.org/0000-0002-2135-1593
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_17&domain=pdf
https://eapls.org/pages/artifact_badges/

Sound unassume operators must preserve all reaching concrete states, thus
preserving soundness of the entire analysis. Goblint Validator implements
two different unassume operators:

1. For non-relational domains (e.g., numeric intervals or points-to sets), a classic
propagating algorithm for assume operators [4, 7] is adapted with minimal
modifications. This admits relaxing abstract values in dynamically allocated
memory through pointers.

2. For relational domains (e.g., octagons), dual-narrowing [8] is employed to
retain more relations than a generic unassume operator definition [17].

2 Software Architecture

Goblint Validator builds on the Goblint verifier [14–16] which is imple-
mented in OCaml, uses an updated fork of CIL [12] as its frontend and Apron [9]
for relational domains.

Instead of altering the control-flow graphs, unassume statements are inserted
implicitly as events that activated analyses can handle. In the modular architec-
ture of Goblint [2] the unassume analysis is responsible for emitting these events
after transfer functions corresponding to witness invariants. Widening tokens [10]
are used to delay widening and allow the invariants to be incorporated without
immediate precision loss. The solution of a side-effecting constraint system [3, 18]
is post-processed to validate witness invariants and determine the verdict.

3 Strengths and Weaknesses

Overall, Goblint Validator inherits the strengths and weaknesses of Goblint,
which are described in its tool papers [14–16]. Thanks to the generic validation
approach, the validator works in all SV-COMP categories as the Goblint
verifier, including those that are currently excluded from correctness witness
validation, e.g., concurrency. Due to over-approximation, the verifier can only
prove the absence of bugs, but not their presence. Consequently, the validator
can currently only confirm correctness witnesses. However, it could be extended
to reject violation witnesses in the future.

We evaluate our validator according to the same three aspects considered
by Beyer et al. [6]: same-framework consistency, content-effort dependence and
cross-framework validation. The first two only focus on witnesses produced by
the Goblint verifier.

Regarding same-framework consistency, table 1 lists how many tasks with each
property it can verify and how many of those witnesses Goblint Validator
can confirm. The overall average confirmation rate of 78% is lower than the
90% Beyer et al. [6] report for CPAchecker and UAutomizer with GraphML
witnesses. Reasons for unconfirmed witnesses range from excessive precision
loss by unassuming to validator crashes. In some cases, the validator exceeds
resource limits, likely due to large witnesses with many unhelpful invariants. A

336 S. Saan et al.

Goblint: Correctness Witness Validation by Abstract Interpretation 337

Table 1. Number of tasks verified by Goblint and their witness validation verdicts by
Goblint Validator, grouped by property.

Goblint Validator

Property
Correct
tasks

Goblint
verified Confirmed Unconfirmed

unreach-call 11,351 1,894 1,064 (56%) 830
no-overflow 5,562 3,932 3,416 (87%) 516
termination 1,536 619 297 (48%) 322
no-data-race 781 695 510 (73%) 185
valid-memsafety 2,796 1,963 1,801 (92%) 162
valid-memcleanup 2 0 – –

Total 22,028 9,103 7,088 (78%) 2,015

0.1 1 10 100 1,000
0.1

1

10

100

1,000

CPU time for Goblint (s)

C
P

U
ti
m

e
fo

r
G

o
bl

in
t

V
a
li

d
at

o
r

(s
)

Fig. 1. CPU time scatter plot where each mark (in blue) indicates a task verified by
Goblint and whose witness was confirmed by Goblint Validator. Ordinary least
squares (OLS) regression (in red) follows y = 0.76x+ 0.14 (r2 = 0.94).

Table 2. Percentage of witnesses from other verifiers confirmed by Goblint Validator.

Ultimate

Verifier CPAchecker CPV Mopsa Automizer GemCutter Kojak Taipan

Confirmed 8% 6% 78% 46% 60% 57% 51%

handful of instances indicate mismatches between witness generation and their
interpretation due to implementation errors in either the verifier or the validator.
Fixing such issues could improve the overall quality of the framework [6].

Regarding content-effort dependence, fig. 1 plots the corresponding verification
and validation times in the 7,088 confirmed cases. While the results at the low
end (< 1 s) are noisy, the results at the high end (> 5 s) show the benefit of
witness validation, with up to 10× improvements. Regression analysis estimates
an average speedup of 24%, which matches our previous results [17], albeit with
greater variance. This is unlike CPAchecker and UAutomizer for which no
general performance improvement from consuming witnesses was observed [6].

Regarding cross-framework validation, table 2 presents the confirmation
rate of Goblint Validator of correctness witnesses from other tools. For
the Ultimate tool family, the percentage is between 46% and 60%, which is
similar to what Beyer et al. [6] observed. We have a high ratio for the Mopsa
abstract interpreter [11], although it only produces trivial witnesses containing
no invariants, on which Goblint Validator effectively reduces to the Goblint
verifier. Nevertheless, overwhelming success of Mopsa in the SoftwareSystems
category warrants independent validation of abstract interpretation results.

4 Tool Setup and Configuration

Goblint Validator version svcomp24-0-gc2e9465a7 took part in all categories
except FalsificationOverall of SV-COMP 2024 [5, 13]. It is available in both binary
(Ubuntu 22.04) and source code form at our GitHub repository.4 Instructions for
building from source can be found in the README.

The tool-info module for BenchExec is named goblint and the benchmark
definition for SV-COMP is goblint-validate-correctness-witnesses-2.0.
They correspond to running the tool as follows:

./goblint --conf conf/svcomp24-validate.json \
--set witness.yaml.unassume witness.yml \
--set witness.yaml.validate witness.yml \
--set ana.specification property.prp input.c

5 Software Project and Contributors

Goblint Validator development takes place alongside Goblint on GitHub,
while related publications are listed on its website.5 It is an MIT-licensed project
initiated by Technische Universität München and the University of Tartu.

Acknowledgments. This work was supported by Deutsche Forschungsgemeinschaft
(DFG) – 378803395/2428 ConVeY 2. We would like to thank everyone who has
contributed to the Goblint framework over the years, laying the foundation for our
validator.
4 https://github.com/goblint/analyzer/releases/tag/svcomp24
5 https://github.com/goblint/analyzer and https://goblint.in.tum.de

338 S. Saan et al.

https://github.com/goblint/analyzer/releases/tag/svcomp24
https://github.com/goblint/analyzer
https://goblint.in.tum.de

Data Availability Statement. All data of SV-COMP 2024 are archived as described
in the competition report [5] and available on the competition website. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of Goblint as used in the competition is archived on Zenodo [13].

Bibliography

[1] Format for correctness witnesses, version 2.0 (2023), URL https://sosy-lab.
gitlab.io/benchmarking/sv-witnesses/yaml/correctness-witnesses.html

[2] Apinis, K.: Frameworks for analyzing multi-threaded C. Ph.D. thesis, Tech-
nische Universität München (2014)

[3] Apinis, K., Seidl, H., Vojdani, V.: Side-Effecting Constraint Systems: A Swiss
Army Knife for Program Analysis. In: APLAS ’12, pp. 157–172, Springer
(2012), doi: 10.1007/978-3-642-35182-2_12

[4] Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and
box consistency. In: Logic Programming, p. 230–244, The MIT Press (1999),
doi: 10.7551/mitpress/4304.003.0024

[5] Beyer, D.: State of the art in software verification and witness validation:
SV-COMP 2024. In: TACAS ’24, Springer (2024)

[6] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses:
exchanging verification results between verifiers. In: FSE ’16, pp. 326–337,
ACM (2016), doi: 10.1145/2950290.2950351

[7] Cousot, P.: The calculational design of a generic abstract interpreter. In:
Calculational System Design, NATO ASI Series F. IOS Press, Amsterdam
(1999), URL https://www.di.ens.fr/~cousot/COUSOTpapers/publications.
www/Cousot-Marktoberdorf98.pdf.gz

[8] Cousot, P.: Abstracting induction by extrapolation and interpolation. In:
VMCAI ’15, pp. 19–42, Springer (2015), doi: 10.1007/978-3-662-46081-8_2

[9] Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: CAV ’09, pp. 661–667, Springer (2009), doi: 10.1007/
978-3-642-02658-4_52

[10] Mihaila, B., Sepp, A., Simon, A.: Widening as abstract domain. In:
NASA Formal Methods, pp. 170–184, Springer (2013), doi: 10.1007/
978-3-642-38088-4_12

[11] Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A., Miné,
A.: Mopsa-C: Improved verification for C programs, simple validation of
correctness witnesses. In: TACAS ’24, Springer (2024)

[12] Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate
language and tools for analysis and transformation of C programs. In: CC
’02, pp. 213–228, Springer (2002), doi: 10.1007/3-540-45937-5_16

[13] Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S.,
Vojdani, V., Seidl, H.: Goblint at SV-COMP 2024 (Nov 2023), doi: 10.5281/
zenodo.10202867, tool artifact

[14] Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S.,
Vojdani, V., Seidl, H.: Goblint: Abstract interpretation for memory safety
and termination (competition contribution). In: TACAS ’24, Springer (2024)

Goblint: Correctness Witness Validation by Abstract Interpretation 339

http://dx.doi.org/10.1007/978-3-642-35182-2_12
http://dx.doi.org/10.7551/mitpress/4304.003.0024
http://dx.doi.org/10.1145/2950290.2950351
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/Cousot-Marktoberdorf98.pdf.gz
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/Cousot-Marktoberdorf98.pdf.gz
http://dx.doi.org/10.1007/978-3-662-46081-8_2
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-38088-4_12
http://dx.doi.org/10.1007/978-3-642-38088-4_12
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.5281/zenodo.10202867
http://dx.doi.org/10.5281/zenodo.10202867

[15] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani,
V.: Goblint: Thread-modular abstract interpretation using side-effecting
constraints. In: TACAS ’21, pp. 438–442, Springer (2021), doi: 10.1007/
978-3-030-72013-1_28

[16] Saan, S., Schwarz, M., Erhard, J., Pietsch, M., Seidl, H., Tilscher, S.,
Vojdani, V.: Goblint: Autotuning thread-modular abstract interpreta-
tion. In: TACAS ’23, vol. 2, pp. 547–552, Springer (2023), doi: 10.1007/
978-3-031-30820-8_34

[17] Saan, S., Schwarz, M., Erhard, J., Seidl, H., Tilscher, S., Vojdani, V.:
Correctness witness validation by abstract interpretation. In: VMCAI ’24,
pp. 74–97, Springer (2024), doi: 10.1007/978-3-031-50524-9_4

[18] Seidl, H., Vogler, R.: Three improvements to the top-down solver.
Math. Struct. Comput. Sci. 31(9), 1090–1134 (2021), doi: 10.1017/
S0960129521000499

340 S. Saan et al.

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1007/978-3-031-50524-9_4
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1007/978-3-030-72013-1_28
http://dx.doi.org/10.1007/978-3-030-72013-1_28

Witch 3: Validation of Violation
Witnesses in the Witness Format 2.0⋆

(Competition Contribution)

⋆⋆ and Jan Strejček

Masaryk University, Brno, Czech Republic
{xayaziov,strejcek}@fi.muni.cz

Abstract. Witch 3 is a new validator of violation witnesses in the wit-
ness format 2.0. Note that our previous tool, Symbiotic-Witch 2, can
validate only violation witnesses in the old GraphML format. Witch 3
validates witnesses of reachability of an error function, overflows, and in-
valid dereferences and deallocations. Similarly to Symbiotic-Witch 2,
the tool is based on symbolic execution and uses parts of the Symbi-
otic framework. Support of the witness format 2.0 in Witch 3 includes
features not supported by Symbiotic-Witch 2, such as constraints on
the program variables and function return values, specifying statements
by column, and providing the concrete statement in which the violation
occurs. These additional features can further restrict the explored state
space, and, more importantly, allow for much more precise validation.

1 Witness Validation Approach

Witch 3 is a new validator of violation witnesses based on symbolic execu-
tion. It extends the line of validators Symbiotic-Witch [1] and Symbiotic-
Witch 2 [2], which are used to validate violation witnesses in the GraphML
witness format [6] (now called 1.0). The main difference of Witch 3 is that it
processes witnesses in the witness format 2.01 [3] (also known as “the YAML for-
mat”). Since this format is based on witness segments and waypoints as opposed
to witness automata from the GraphML format, there are large differences in the
validation process compared to Symbiotic-Witch 2.

Since the tool performs symbolic execution on the llvm IR [9] of the in-
put program and some information may be lost during the compilation, we first
preprocess both the witness and the input program. The preprocessing entails
wrapping the branching conditions in the program with a special function so
that the condition is not decomposed or flipped during compilation. This ensures
that the conditions in the branching statements and the corresponding branches
are correctly mapped to those described in the witness. Another crucial step is
adjusting the witness so that the identifiers of the waypoints will be preserved
⋆ This work has been supported by the Czech Science Foundation grant GA23-06506S.

⋆⋆ Jury member of SV-COMP 2024
1 Description is available at https://gitlab.com/sosy-lab/benchmarking/sv-witnesses.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 341–346, 2024.
https://doi.org/10.1007/978-3-031-57256-2_18

Paulína Ayaziová(B)

http://orcid.org/0000-0003-1072-8137
http://orcid.org/0000-0001-5873-403X
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_18&domain=pdf
https://eapls.org/pages/artifact_badges/

in the debug information in the llvm program. In this phase we also inject the
constraints from the assumption waypoints into the input program as calls to
a special function __VALIDATOR_assume which will be handled later. After this
preprocessing, the tool compiles the program into llvm IR and runs the internal
validator Witch-Klee on the llvm program and the preprocessed witness.

The validator begins symbolic execution in the entry point of the program, as-
sociating this state with the first segment of the witness. Throughout the process,
each state of symbolic execution is associated with one witness segment.

Whenever the tool executes an instruction that could be associated with a
waypoint of type function_enter, function_return, or branching (i.e. a func-
tion call, function return, or a branching instruction), it is checked whether this
instruction matches a waypoint of the associated segment and the corresponding
constraint is enforced on the state. More precisely, if the instruction matches
the type and location of an avoid waypoint in the segment, the negation of the
constraint in the witness is added to the path condition of the state to guarantee
that the waypoint is avoided. If the path condition is not satisfiable, the current
state of symbolic execution is terminated. Note that this is always the case for
waypoints of type function_enter, as their fixed constraint true is negated into
false. If the instruction matches the follow waypoint of a segment, we add the
given constraint to the path condition and the witness traversal moves to the
next segment.

The assumption waypoints are handled slightly differently. Since the con-
straints are already injected in the program, what remains is to enforce them
at the right time. Hence, whenever a __VALIDATOR_assume call is executed, the
tool checks whether the current state of symbolic execution is associated with
the corresponding segment. If it is not, the call is ignored and symbolic execution
continues normally. Otherwise, for a follow waypoint, the tool adds the constraint
to the path condition of the state and moves to the next segment. For an avoid
waypoint, we enforce the negation of the constraint in a similar manner. If the
resulting path condition is not satisfiable, the state is terminated.

If the symbolic executor detects a property violation, the tool investigates
whether the violating instruction matches the target waypoint, which is the last
waypoint of the violation witness. If the segment associated with the violating
state is not the last, the tool terminates the current state but continues exploring
other states of symbolic execution. This is also the case if the associated segment
is the last but the target waypoint of the segment does not match the instruction
violating the property. Otherwise, i.e., if the witness traversal reached the target
waypoint, Witch 3 confirms the witness by reporting false.

If the exploration ends without confirming the witness, there are two possible
results. Normally, Witch 3 outputs true to refute the witness. However, the
symbolic executor used by Witch 3 may replace a symbolic value by a concrete
one due to an unsupported feature (for example, it does not support symbolic
floats). This substitution can cause that not all possible execution paths are
explored and thus a valid witness can be refuted. Hence, in such instances, witness
refutation is suppressed and Witch 3 reports unknown.

342 P. Ayaziová and J. Strejček

2 Strengths and Weaknesses

The main strong point of Witch 3 is the support of all features of the for-
mat 2.0. This includes enforcing constraints on the values of program variables.
These constraints can be included also in the GraphML witnesses, but they are
ignored by both Symbiotic-Witch and Symbiotic-Witch 2 with the excep-
tion of the equality constraints on the return values of __VERIFIER_nondet_*
functions. These tools also ignore the attribute offset (replaced by column in
the witness format 2.0) specifying the exact location of an instruction on a given
program line. Such shortcomings of our older validators can lead to incorrectly
validated witnesses and more unknown results. In contrast, full support of the
new format allows Witch 3 to produce much more reliable results. Moreover,
even in the cases where our older validators produce a correct result without
using the contraints provided in the witness, Witch 3 can use the constraints to
reduce the explored state-space and thus speed up the validation.

On the negative side, the witness format 2.0 currently supports only witnesses
of reachability of an error function, overflows, and invalid dereferences and deal-
locations. Hence, Witch 3 can only be used in these categories. Once the format
is extended for more properties, we plan to implement their support.

Another shortcoming is that the tool currently requires the exact location
of a waypoint, including the optional column number. This does not cause any
incorrect results since the validation fails in the case of missing information.
Moreover, as of SV-COMP 2024, all tools which produced violation witnesses in
the format 2.0 included this information. Despite this, we consider it a weakness
and plan to fix it in future versions of the tool.

Witch 3 also inherits weaknesses from the technology that it uses. The fact
that the symbolic executor works with programs in llvm requires more prepro-
cessing on the program and the witness to ensure that no crucial information is
lost during the translation. For this reason, there are cases in which the valida-
tion process may be slower. Additionally, the program may contain some inner
nondeterminism, such as an unspecified order of evaluation, which is resolved
during the compilation. If this order is different to that prescribed by the wit-
ness, the witness may be incorrectly refuted. However, we have not yet found any
such incorrect result in practice. Most incorrect results stem from technical errors
such as missing models of library functions — these functions are then treated
as nondeterministic and pure, which may not be the case.

3 Software Architecture

Witch 3 can be divided into two components: Symbiotic [8], which is used as
a wrapper for the second component, and Witch-Klee, a witness validator for
llvm programs.

For the purposes of this tool, we extended Symbiotic 9 with scripts for pre-
processing the witness and the program as previously described. It also compiles
the program into llvm, links necessary function models, and parses the output
of the internal validator, Witch-Klee.

Witch 3: Validation of Violation Witnesses in the Witness Format 2.0 343

Witch-Klee takes the program in the llvm IR and the preprocessed wit-
ness and performs the validation. The tool is based on the symbolic executor
JetKlee, a fork of Klee [7] developed for the purposes of Symbiotic. Witch-
Klee uses the yaml-cpp2 library to parse the witness in the YAML format and
Z3 [10] as the SMT solver in symbolic execution.

Both components of Witch 3 use llvm 10.0.1.

4 Tool Setup and Configuration

The archive containing Witch 3 as it participated in SV-COMP 2024 is avail-
able on Zenodo [4]. The validation is invoked by the command

./symbiotic [--prp <prop>] [--32 | --64] --witness-check <witness> <prg>

where <prop> is the considered property, the switches --32 and --64 spec-
ify the considered architecture, <witness> is a violation witness in the YAML
format, and <prg> is the input C program. The property can be provided either
as a .prp file or one of the shortcuts no-overflow and valid-memsafety. The
default setting is the property of unreachability of the function reach_error and
the 64-bit architecture.

The version of Symbiotic used by Witch 3, as well as the internal validator
Witch-Klee, are available on GitHub (see below) under the tag svcomp24. To
build Witch 3 from its sources, build each of the components separately. To run
the validator, add the location of the Witch-Klee executable to $PATH and use
the command as presented above.

5 Software Project and Contributors

Both components of Witch 3 are available on GitHub. The source code of the
validator Witch-Klee is available at

https://github.com/ayazip/witch-klee

and the source code of the version of Symbiotic used by Witch 3 can be
found at

https://github.com/ayazip/symbiotic/tree/witch-klee.

The tool has been developed at the Faculty of Informatics of Masaryk Univer-
sity by Paulína Ayaziová under the supervision and with advice of Jan Strejček.
It is available under the MIT license and all internally used tools and libraries
(llvm, JetKlee, Z3, yaml-cpp, Symbiotic) are available under open-source
licenses that comply with SV-COMP’s policy for the reproduction of results.

2 https://github.com/jbeder/yaml-cpp

344 P. Ayaziová and J. Strejček

https://github.com/ayazip/witch-klee
https://github.com/ayazip/symbiotic/tree/witch-klee
https://github.com/jbeder/yaml-cpp

Data Availability Statement. All data of SV-COMP 2024 are archived as described
in the competition report [5] and available on the competition web site. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of Witch 3 used in the competition is archived on Zenodo [4].

References

1. Ayaziová, P., Chalupa, M., Strejček, J.: Symbiotic-Witch: A Klee-based violation
witness checker (competition contribution). In: Fisman, D., Rosu, G. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13244, pp. 468–473.
Springer (2022), https://doi.org/10.1007/978-3-030-99527-0_33

2. Ayaziová, P., Strejček, J.: Symbiotic-Witch 2: More efficient algorithm and wit-
ness refutation (competition contribution). In: Sankaranarayanan, S., Sharygina,
N. (eds.) Tools and Algorithms for the Construction and Analysis of Systems -
29th International Conference, TACAS 2023, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April
22-27, 2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13994,
pp. 523–528. Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_30

3. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strejček, J.: Software
verification witnesses 2.0. Submitted to SPIN 2024.

4. Ayaziová, P., Strejček, J.: Witch 3. Zenodo (2023). https://doi.org/10.5281/zenodo.
10064512

6. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579, https://doi.org/10.1145/3477579

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In: OSDI. pp. 209–
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/full_
papers/cadar/cadar.pdf

8. Chalupa, M., Mihalkovič, V., Řechtáčková, A., Zaoral, L., Strejček, J.: Symbi-
otic 9: String analysis and backward symbolic execution with loop folding (com-
petition contribution). In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 462–467. Springer (2022),
https://doi.org/10.1007/978-3-030-99527-0_32

9. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004. pp. 75–88. IEEE Computer Society (2004),
https://doi.org/10.1109/CGO.2004.1281665

10. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3_24

Witch 3: Validation of Violation Witnesses in the Witness Format 2.0 345

5. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 2024. LNCS, vol. 14572,
pp. xx–yy. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57256-2_15

https://sv-comp.sosy-lab.org
https://doi.org/10.1007/978-3-030-99527-0_33
https://doi.org/10.1007/978-3-031-30820-8_30
https://doi.org/10.1007/978-3-031-30820-8_30
https://doi.org/10.5281/zenodo.10064512
https://doi.org/10.5281/zenodo.10064512
https://doi.org/10.5281/zenodo.10064512
https://doi.org/10.5281/zenodo.10064512
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-031-57256-2_15

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

346 P. Ayaziová and J. Strejček

http://creativecommons.org/licenses/by/4.0/

AISE: A Symbolic Verifier by Synergizing
Abstract Interpretation and Symbolic Execution

(Competition Contribution)

⋆

1 College of Computer, National University of Defense Technology, Changsha, China
2 State Key Laboratory of Complex & Critical Software Environment, National

{wz,zbchen}@nudt.edu.cn

Abstract. AISE is a static verifier that can verify the safety properties
of C programs. The core of AISE is a program verification framework
that synergizes abstract interpretation and symbolic execution in a novel
manner. Compared to the individual application of symbolic execution
or abstract interpretation, AISE has better efficiency and precision. The
implementation of AISE is based on KLEE and CLAM.

Keywords: Abstract Interpretation · Symbolic Execution · Program
Verification.

1 Verification Approach

Given a program P and a property φ, a software verification technique or tool
verifies whether P satisfies φ, i.e., all the behavior (e.g., the program paths)
of P satisfies φ. If P does not satisfy φ, a counter-example (e.g., a program
input) will be given to demonstrate the violation of φ. Until now, many software
verification techniques and tools have been developed and applied in different
areas to result in successful stories [3,18,20,7,17].

AISE is a software verifier that verifies C programs with respect to reachability
properties [5]. AISE’s key idea is to synergize symbolic execution (SE) [4,21] and
abstract interpretation (AI) [10,11]. In the main loop, our tool performs symbolic
execution to analyze the program under verification. However, SE faces path ex-
plosion problem [23,16,9] when the program contains loops, which makes it infea-
sible for sound verification. AI can abstract a program in an over-approximation
manner and automatically infer the program invariants at different program loca-
tions, which can be used to verify the property. However, the imprecision caused
by over-approximation may result in false positives. AISE aims to combine these
two techniques in a synergic manner to improve the verification’s scalability as
much as possible while ensuring precision. When doing SE, AISE carries out AI
online to verify a part of the program, which can be used to prune the safe paths.
On the other hand, SE can also improve the precision of AI. AISE only reports
the violations detected by SE.
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 347–352, 2024.
https://doi.org/10.1007/978-3-031-57256-2_19

Zhen Wang1,2 and Zhenbang Chen1,2(B)

University of Defense Technology, Changsha, China

https://orcid.org/0009-0005-7947-3509
https://orcid.org/0000-0002-4066-7892
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_19&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

C Program

Property
/

Symbolic Execution

Abstract Interpretation

CFG
safe or
unsafe

AISE

Verified

Counter
Example

Fig. 1: AISE’s verification framework

2 Framework

Figure 1 shows AISE’s framework, which contains an AI module and a SE mod-
ule. The two modules communicate by delivering control-flow graph (CFG) and
verification results to help each other. On the one hand, SE constructs the sub-
CFG on which AI is carried out; On the other hand, the verification results of
AI are returned to SE to prune the redundant paths, i.e., the paths that are
guaranteed to satisfy the property.

2.1 Symbolic Execution Module

The SE module takes a C program as input and then executes the program with
symbolic inputs. The SE procedure is a state-forking procedure [4]. The whole
process is as follows. At the beginning of execution, the SE module constructs an
initial symbolic state for the input program. As the state is executed, the data
of the state is changed by executing instructions one by one. When the state
encounters a branch instruction, a new state is forked based on the original state.
A global state pool containing all forked states is maintained. After executing an
instruction, the current state is paused, and another state is selected from the
state pool to execute. When a state is terminated (i.e., a state after executing
the program exit instruction), AISE constructs a sub-CFG that contains all the
instructions and the edges of the execution path that led to the state and carries
out AI on the sub-CFG. Based on the AI’s verification result, the state pool
is updated, i.e., adding the newly forked states or removing the pruned states.
When SE finds a violation of an assertion, AISE reports the violation.

2.2 Abstract Interpretation Module

The AI module takes a sub-CFG as input and outputs safe or unsafe. Given the
abstract domain [11], the AI module analyses the CFG to produce an invariant
at each program location. The invariant describes the constraints of variables at
the program location. Then, based on the invariant I, we can check the property
φ by checking the validity of I ⇒ φ. If all assertions are checked, AISE can prune

348 Z. Wang and Z. Chen

states that can only reach the edges in the sub-CFG. Intuitively, all the possible
paths start from these states are contained in the sub-CFG, so they are all safe
paths. Therefore, we can prune all states from which only the nodes and edges
of the sub-CFG can be reached. Pruning states reduces the path space of SE
and improves the scalability of verification.

2.3 Example

Figure 2 gives an example3 to illustrate the idea of AISE. This program contains
a loop adding y to x. AI using interval domain [11] fails to verify this assertion
because y’s invariant at Line 11 is (−∞, 1000000], which is not sufficient to prove
the assertion. SE can verify this program by exploring all paths, but SE needs a
long time as the paths of this program are numerous.

1 int main() {
2 int x=__VERIFIER_nondet_int();
3 int y=__VERIFIER_nondet_int();
4 if (!(y <= 1000000))
5 return 0;
6 if (y>0) {
7 while(x<100) {
8 x=x+y;
9 }

10 }
11 assert(y<=0||(y>0 && x>=100));
12 return 0;
13 }

Fig. 2: C code segment

x=__VERIFIER_nondet_int()
y=__VERIFIER_nondet_int()

assume(y <= 1000000)

assume(y > 0)

while(x < 100)

x = x + y assert(y<=0 || (y>0 && x>=100)

exit

Fig. 3: CFG based on a path

AISE can verify this program successfully in a short time. The SE module
only needs to explore a few paths because many can be pruned. After SE module
explores the following path: 2→3→4→6→7→8→7→11→12, it constructs the
sub-CFG in Figure 3 based on this path. For this sub-CFG, the AI module
successfully verifies the assertion. Then, AISE framework updates the state pool
in the SE module, killing all the states forked from line 7. These states are forked
when encountering the loop head. Then, there are no more states in the pool and
SE terminates, i.e., a safe result. This also demonstrates that SE can improve
the precision of AI by considering the sub-CFG of a symbolic path.

3 Implementation, Results and Discussion

AISE’s implementation is based on the AI framework CLAM [2,17] and the SE
tool KLEE [7]. STP [15] is the SMT solver of SE. AISE accepts the input in
3 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/raw/main/c/loops/

terminator_03-2.i

AISE: A Symbolic Verifier by Synergizing Abstract Interpretation 349

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/raw/main/c/loops/terminator_03-2.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/raw/main/c/loops/terminator_03-2.i

LLVM [1] intermediate representation. The AI module of AISE uses the polyhedron
abstract domain [12], and we use the implementation in Apron library [19]. The
search strategy of the SE module is nurs:covnew. Besides, AISE also integrates
ESBMC [22] to handle floating-point programs because the SE’s module does not
support the analysis of floating-point programs.

AISE participants in the ReachSafety-Loops category of SV-COMP 2024 [6].
Table 1 shows AISE’s results. AISE achieved 847 points in this category, and there

Table 1: AISE’s results

number time(s)

total tasks 790

total correct 491 9400
correct true 356 6200
correct false 135 3200

total incorrect 0 0

score 847

were 4 tools ranked ahead of it: Bubbaak [8],
Symbiotic [20], VeriAbs [13], VeriAbsL [14].
The figure4 shows the score-based quantile
plots in this category. When the time is less
than about 100s, AISE achieved the high-
est score among all the tools. If the pruning
method works, AISE can verify a program in a
short time; otherwise, AISE may fail to finish
the job. Many of the AISE’s failed cases are
the programs with non-linear expressions. AI
is limited for non-linear polynomials. Besides,
AISE is also not efficient at handling large ar-
rays. For example, AISE does not support symbolic size array, which is an inher-
ited shortage from KLEE.

4 Software Project, Setup and Contributors

AISE only participats in the ReachSafety-Loops category of SV-COMP bench-
marks. The usage of AISE is as follows.

./bin/aise <program>

The <program> is the input program. AISE only needs the input program as the
parameter because all the properties in the ReachSafety-Loops benchmarks are
the same, i.e., (unreach-call, ILP32), and these properties are built in AISE.

AISE can be found at https://github.com/zbchen/aise-verifier. AISE is a pro-
totype project developed by National University of Defense Technology. The
license of AISE is GPL 3.0. People involved in the project are fully listed as the
authors of this paper.

Data-Availability Statement

AISE’s artifact is available at Zenodo: https://doi.org/10.5281/zenodo.10201159.

Acknowledgement This research was supported by National Key R&D Pro-
gram of China (No. 2022YFB4501903) and the NSFC Program (No. 62172429).
4 https://sv-comp.sosy-lab.org/2024/results/results-verified/

quantilePlot-ReachSafety-Loops.svg

350 Z. Wang and Z. Chen

https://github.com/zbchen/aise-verifier
https://doi.org/10.5281/zenodo.10201159
https://sv-comp.sosy-lab.org/2024/results/results-verified/quantilePlot-ReachSafety-Loops.svg
https://sv-comp.sosy-lab.org/2024/results/results-verified/quantilePlot-ReachSafety-Loops.svg

References

1. LLVM. https://llvm.org, accessed 2023-12-17
2. CLAM repository. https://github.com/seahorn/clam (2022)
3. Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger,

T., Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.: CPAchecker
with strategy selection (competition contribution). In: Proc. TACAS. LNCS ,
Springer (2024)

4. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3) (may 2018). https://
doi.org/10.1145/3182657, https://doi.org/10.1145/3182657

5. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoe-
belen, P., Mckenzie, P.: Reachability Properties, pp. 79–81. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04558-9_6,
https://doi.org/10.1007/978-3-662-04558-9_6

6. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

7. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI. vol. 8, pp.
209–224 (2008)

8. Chalupa, M., Henzinger, T.A.: Bubaak: Runtime monitoring of program verifiers.
In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 535–540. Springer Nature Switzerland,
Cham (2023)

9. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution to-
ward unverified program executions. In: Proceedings of the 38th International Con-
ference on Software Engineering. p. 144–155. ICSE ’16, Association for Computing
Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2884781.2884843,
https://doi.org/10.1145/2884781.2884843

10. Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28(2), 324–328 (jun
1996). https://doi.org/10.1145/234528.234740, https://doi.org/10.1145/234528.
234740

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. p. 238–252. POPL ’77, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973, https://doi.org/
10.1145/512950.512973

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. p. 84–96. POPL ’78, Association for Com-
puting Machinery, New York, NY, USA (1978). https://doi.org/10.1145/512760.
512770, https://doi.org/10.1145/512760.512770

13. Darke, P., Agrawal, S., Venkatesh, R.: Veriabs: A tool for scalable verification
by abstraction (competition contribution). In: Groote, J.F., Larsen, K.G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 458–462.
Springer International Publishing, Cham (2021)

14. Darke, P., Chimdyalwar, B., Agrawal, S., Kumar, S., Venkatesh, R., Chakraborty,
S.: Veriabsl: Scalable verification by abstraction and strategy prediction (com-
petition contribution). In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and

AISE: A Symbolic Verifier by Synergizing Abstract Interpretation 351

https://llvm.org
https://github.com/seahorn/clam
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-662-04558-9_6
https://doi.org/10.1007/978-3-662-04558-9_6
https://doi.org/10.1007/978-3-662-04558-9_6
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/234528.234740
https://doi.org/10.1145/234528.234740
https://doi.org/10.1145/234528.234740
https://doi.org/10.1145/234528.234740
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770

Algorithms for the Construction and Analysis of Systems. pp. 588–593. Springer
Nature Switzerland, Cham (2023)

15. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) Computer Aided Verification. pp. 519–531. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007)

16. Godefroid, P., Luchaup, D.: Automatic partial loop summarization in dynamic
test generation. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. p. 23–33. ISSTA ’11, Association for Computing Machinery,
New York, NY, USA (2011). https://doi.org/10.1145/2001420.2001424, https://
doi.org/10.1145/2001420.2001424

17. Gurfinkel, A., Navas, J.A.: Abstract interpretation of LLVM with a region-based
memory model. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds.) Soft-
ware Verification - 13th International Conference, VSTTE 2021, New Haven, CT,
USA, October 18-19, 2021, and 14th International Workshop, NSV 2021, Los An-
geles, CA, USA, July 18-19, 2021, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 13124, pp. 122–144. Springer (2021). https://doi.org/10.1007/
978-3-030-95561-8_8, https://doi.org/10.1007/978-3-030-95561-8_8

18. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele, F.,
Podelski, A.: Ultimate Automizer 2024 (competition contribution). In: Proc.
TACAS. LNCS , Springer (2024)

19. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. pp. 661–
667. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

20. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Trtík, M., Zaoral, L., Ayaziová,
P., Strejček, J.: Symbiotic 10: Lazy memory initialization and compact symbolic
execution (competition contribution). In: Proc. TACAS. LNCS , Springer (2024)

21. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385–394 (jul 1976). https://doi.org/10.1145/360248.360252, https://doi.org/10.
1145/360248.360252

22. Menezes, R., Aldughaim, M., Farias, B., Li, X., Manino, E., Shmarov, F., Song, K.,
Brauße, F., Gadelha, M.R., Tihanyi, N., Korovin, K., Cordeiro, L.: ESBMC v7.4:
Harnessing the power of intervals (competition contribution). In: Proc. TACAS.
LNCS , Springer (2024)

23. Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic ex-
ecution on binary programs. In: Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis. p. 225–236. ISSTA ’09, Association
for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/
1572272.1572299, https://doi.org/10.1145/1572272.1572299

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

352 Z. Wang and Z. Chen

https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299
http://creativecommons.org/licenses/by/4.0/

Bubaak-SpLit: Split what you cannot verify
(Competition contribution)

⋆

1 Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
mchalupa@ist.ac.at

2 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
cedric.richter@uol.de

Abstract. Bubaak-SpLit is a tool for dynamically splitting verifica-
tion tasks into parts that can then be analyzed in parallel. It is built
on top of Bubaak, a tool designed for running combinations of veri-
fiers in parallel. In contrast to Bubaak, that directly invokes verifiers
on the inputs, Bubaak-SpLit first starts by splitting the input program
into multiple modified versions called program splits. During the split-
ting process, Bubaak-SpLit utilizes a weak verifier (in our case symbolic
execution with a short timelimit) to analyze each generated program
split. If the weak verifier fails on a program split, we split this program
split again and start the verification process again on the generated pro-
gram splits. We run the splitting process until a predefined number of
hard-to-verify program splits is generated or a splitting limit is reached.
During the main verification phase, we run a combination of Bubaak-
Lee and Slowbeast in parallel on the remaining unsolved parts of the
verification task.

1 Verification approach

Bubaak [7] is a program analysis tool that runs multiple verifiers at the same
time, and uses ideas from runtime monitoring and enforcement [5,10] to mediate
the communication of useful information between the verifiers, such as invariants
or already explored parts of the program. As of this year, the verifiers can be
executed in an arbitrary combination of sequential and parallel portfolio, fully
dynamically based on the information learned during the verification process.

With Bubaak-SpLit, we explore program splitting [12,13] as a way to im-
prove the scalability of the verification process. The main idea behind program
splitting is to split a given program P into multiple subprograms P1, . . . , Pn

which then can be analyzed in parallel. As a result, Bubaak-SpLit can verify
multiple subprograms with multiple verifier instances at the same time.

⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 353–358, 2024.
https://doi.org/10.1007/978-3-031-57256-2_20

Marek Chalupa1(B) and Cedric Richter2

http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0003-2906-6508
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_20&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

1 int main(void) {
2 int x = nondet();
3 if(x >= 1000) abort();
4

5 if(x <= 10){
6 hard_to_verify_1(x);
7 } else {
8 hard_to_verify_2(x);
9 }

10 }

x >=
100

0

x <=
10

!(x <= 10)

!(x >= 1000)

hard_..._1(x) hard_..._2(x)||

Fig. 1. Overview over the verification process of Bubaak-SpLit for the given example.
Bubaak-SpLit splits program that are too hard to be verified by a weak verifier (gray
nodes), stops for easy-to-verify nodes (crossed out nodes) and it proceeds until n hard-
to-verify splits are found (green nodes).

Control-flow Splitting. Bubaak-SpLit adopts control-flow splitting3 [13] for
splitting programs into subprograms. Control-flow splitting splits a program P
at the first branching point B creating two subprograms P+ and P−. P+ and P−

each represent the program P when assuming that the branching condition at B
is evaluated to true or false respectively. For example, Figure 2 depicts P+ and
P− when splitting the program in Figure 1 at the first branching point in Line
3. Syntactically splitting a program might result in suboptimal splits [12] where
one part of the split is easy-to-verify and the other remains hard-to-verify. To
mitigate the problem of suboptimal splits, Bubaak-SpLit implements a dynamic
splitting strategy: (1) we first check if the given program (or split) is hard-to-
verify by running a weak verifier, (2) if it is hard-to-verify we split the program
and repeat the process on the generated splits, (3) if it is not hard-to-verify
we record the result of the weak verifier and continue with the other splits (if
any). We continue this process until a fixed number of hard-to-verify splits is
generated or a splitting limit is reached. If the problem is solved during the
splitting process, we report the results of the weak verifiers.

Figure 1 provides an example of the splitting process. After splitting two
times, Bubaak-SpLit identifies two hard-to-verify splits which are then verified
by two verifiers in parallel in the main verification phase. Existing static split-
ting strategies for C programs [12] might stop after the first split, resulting in a
suboptimal split (with little to no benefits for the verification process).

Verification technology. Bubaak-SpLit in SV-COMP 2024 utilizes verifiers
based on forward and backward symbolic execution.

(Forward) symbolic execution (SE) [14] systematically explores program’s ex-
ecutions from the initial location. Backward symbolic execution (BSE) [8] ex-
plores executions that reach a given (error) location and it does so by analyzing
the program backwards from the locations. We employ a variant of BSE with

3 Our variant of control-flow splitting was mainly inspired by Mooly Sagiv’s invited
talk "Scaling Formal Verification to Realistic Code with Applications to DeFi" at
ETAPS 2023. Our implementation however splits C programs, not Solidity contracts.

354 M. Chalupa and C. Richter

1 int main(void) { // P+
2 int x = nondet();
3 assume(x >= 1000);
4 abort();
5 }

1 int main(void) { // P-
2 int x = nondet();
3 assume(!(x >= 1000));
4 if(x <= 10) ...
5 }

Fig. 2. Result of splitting the program from Figure 1 at the first branching point.

loop folding (BSELF) [8] which allows us to generate loop invariants and prove
programs correct.

SE can very quickly identify easy-to-verify problems, so we use it with a short
timeout as the weak verifier during splitting. Strong verifiers in the main verifica-
tion phase are selected based on the property. For the property unreach-call, we
use BSELF and SE (with no timeout) in parallel – BSELF to prove programs
correct and SE to (mainly) find bugs. Other properties are not supported by
BSELF. For checking termination properties, we run SE and termination with
inductive invariants with progress (TIIP) [7]. For checking memory safety, we
use only SE. Note that the splitting phase is executed for all properties.

2 Software architecture

Bubaak runs verification tools in a combination of sequential and parallel port-
folio. The verifiers are not composed into a fixed scheme, but they are invoked
dynamically based on the information gathered during the verification process.
In a bit more detail, the architecture of Bubaak is inspired by process alge-
bras [4] and is centered about tasks and their rewriting. The tool starts with
the execution of a set of initial tasks; upon finishing, each task either yields a
result, or rewrites itself into a new task or a set of new tasks. Whenever a task
rewrites itself into a set of new tasks, it also specifies how the results of the new
tasks should be aggregated into a single result. The important feature is that
generating new tasks is not fixed in a static scheme: a task can rewrite itself
into new tasks based on the context and information hitherto gathered about
the program during the verification process.

What tasks are executed and how they are being rewritten is defined by a
selected workflow. The workflow for splitting in SV-COMP 2024 is depicted in
Figure 3. It defines the task Split(P) that takes program P and splits it into
two parts as described in Section 1. This task is invoked as the initial task on
the input program. After splitting the program, Split rewrites itself into two
identical tasks CCAndCheckWeak that are invoked on those two splits. As the
name suggests, the input split is compiled (into LLVM [1]) and the weak verifier
is ran on it to check if the split is easy to solve. If a split is not easy to solve,
the task Split is invoked on the split recursively, and this process continues until
a pre-defined depth is reached, at which point instead of splitting further the
workflow invokes the strong verifier.

Bubaak-SpLit: Split what you cannot verify (Competition contribution) 355

Split(P) : P+, P− := split(P)

CCAndCheckWeak(P+)

CCAndCheckWeak(P−)

∧

CCAndCheckWeak(P) : bc := compile(P) CheckWeak(bc,P)

CheckWeak(bc,P) : bubaak-lee(bc) Split(bc,P)

time ≥ 2s ∧ depth < 2

CheckStrong(bc)
time ≥ 2s ∧ depth ≥ 2

CheckStrong(bc) : ∨
bubaak-lee(bc)

slowbeast-bself(bc)

Fig. 3. The workflow of Bubaak-SpLit for SV-COMP 2024. For brevity, the scheme
does not show errors handling and the result propagation.

Workflows are only an abstraction: internally, task execution and rewriting
is implemented using an event loop that handles events coming from tasks, task
creation and destruction, and the results aggregation.

The weak verifier is based on Bubaak-Lee and we run a combination of
Bubaak-Lee and Slowbeast during the main verification phase. Bubaak
and Slowbeast are implemented in Python, Bubaak-Lee is in C++. Both
Slowbeast and Bubaak-Lee use Z3 [9] as the SMT solver.

3 Strengths and Weaknesses

Program splitting has been shown to improve the runtime efficiency [15] and
verification effectiveness [11] of symbolic execution engines. By splitting the
program into several parts, SE and BSE can analyze different parts of the pro-
gram at the same time, which can lead to results being decided more quickly.
In SV-COMP 2024 [6], Bubaak-SpLit was able to solve 60 benchmarks that
Bubaak was not able to solve and 456 benchmarks were solved faster, often
significantly. In comparison to Bubaak, Bubaak-SpLit misses several viola-
tions on the ReachSafety benchmarks. Most of them are due to the fact that we
severely limit the execution time of SE during verification. Another problem is
the scalability of our approach in the restricted setting of the SV-COMP. By
splitting the program up to n times, we currently run up to 2n verifiers at the
same time. While in praxis this might significantly reduce the walltime, it also
significantly reduces the cputime available to each verifier. Overall, Bubaak-
SpLit inherits the strengths of the underlying analyses which allows the tool
to perform well in the categories ReachSafety and SoftwareSystems. After SV-
COMP 2024, we have found and fixed several bugs in the implementation of
Bubaak-SpLit which might have severely limited its performance.

356 M. Chalupa and C. Richter

Acknowledgements This work was partially supported by the ERC-2020-AdG
10102009 grant.

Data-Availability Statement The submitted version of our tool contribution
is archived and available at Zenodo [2]. The source code is also available on
GitLab [3].

References

1. llvm.org. https://llvm.org, accessed: 2023-12-21
2. Bubaak-SpLit artifact (2023).
3. Bubaak-SpLit repository (2023), https://gitlab.com/mchalupa/bubaak
4. Baeten, J.C., Weijland, W.P.: Process algebra. Cambridge university press (1991)
5. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime

verification. In: Lectures on Runtime Verification - Introductory and Advanced
Topics, LNCS, vol. 10457, pp. 1–33. Springer (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

6. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

7. Chalupa, M., Henzinger, T.A.: Bubaak: Runtime monitoring of program verifiers
- (competition contribution). In: TACAS 2023. LNCS, vol. 13994, pp. 535–540.
Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_32

8. Chalupa, M., Strejcek, J.: Backward symbolic execution with loop folding. In: SAS
2021. LNCS, vol. 12913, pp. 49–76. Springer (2021). https://doi.org/10.1007/978-
3-030-88806-0_3

9. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: TACAS 2008. pp. 337–
340. Springer (2008)

10. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and re-
action. In: Lectures on Runtime Verification - Introductory and Advanced Topics,
LNCS, vol. 10457, pp. 103–134. Springer (2018). https://doi.org/10.1007/978-3-
319-75632-5_4

11. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Parallel program analysis
via range splitting. In: FASE 2023. LNCS, vol. 13991, pp. 195–219. Springer (2023).
https://doi.org/10.1007/978-3-031-30826-0_11

12. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Ranged program analysis
via instrumentation. In: SEFM 2023. LNCS, vol. 14323, pp. 145–164. Springer
(2023). https://doi.org/10.1007/978-3-031-47115-5_9

13. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning
using control flow. In: SAS 1998. LNCS, vol. 1503, pp. 200–214. Springer (1998).
https://doi.org/10.1007/3-540-49727-7_12

14. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

15. Siddiqui, J.H., Khurshid, S.: Scaling symbolic execution using
ranged analysis. In: OOPSLA 2012. pp. 523–536. ACM (2012).
https://doi.org/10.1145/2384616.2384654

Bubaak-SpLit: Split what you cannot verify (Competition contribution) 357

https://zenodo.org/records/10202207

https://zenodo.org/records/10202207
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-031-30826-0_11
https://doi.org/10.1007/978-3-031-47115-5_9
https://doi.org/10.1007/3-540-49727-7_12
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2384616.2384654

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

358 M. Chalupa and C. Richter

http://creativecommons.org/licenses/by/4.0/

CPAchecker 2.3 with Strategy Selection
(Competition Contribution)

Abstract. CPAchecker is a versatile framework for software verification,
rooted in the established concept of configurable program analysis. Com-
pared to the last published system description at SV-COMP 2015, the
CPAchecker submission to SV-COMP 2024 incorporates new analyses for
reachability safety, memory safety, termination, overflows, and data races.
To combine forces of the available analyses in CPAchecker and cover the
full spectrum of the diverse program characteristics and specifications in
the competition, we use strategy selection to predict a sequential portfolio
of analyses that is suitable for a given verification task. The prediction
is guided by a set of carefully picked program features. The sequential
portfolios are composed based on expert knowledge and consist of bit-
precise analyses using k -induction, data-flow analysis, SMT solving, Craig
interpolation, lazy abstraction, and block-abstraction memoization. The
synergy of various algorithms in CPAchecker enables support for all prop-
erties and categories of C programs in SV-COMP 2024 and contributes
to its success in many categories. CPAchecker also generates verification
witnesses in the new YAML format.

1 Software Architecture
CPAchecker [10] is a flexible framework for automatic software verification based
on the concept of Configurable Program Analysis (CPA) [9]. Abstract domains
needed by a verification approach are represented as CPAs, and multiple CPAs can
be combined in a modular fashion to achieve synergy. CPAchecker provides basic
functionalities for program analysis, such as tracking the control flow or callstack,
as standalone CPAs, which facilitate the implementation of new analyses. Through
its modular architecture, a rich collection of verification algorithms [7, 12, 14, 24]
has been implemented in CPAchecker, and its flexibility and extensibility have
been evidenced by many research projects.
Operating Platform. CPAchecker is platform-independent as it is written in
Java. However, its default SMT solver MathSAT5 [17] is bundled only for Linux.
Thanks to the versatility of the used library JavaSMT [23], a different SMT solver
can be chosen on other platforms.
⋆ Jury member

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 359–364, 2024.
https://doi.org/10.1007/978-3-031-57256-2_21

Daniel Baier⋆ , Dirk Beyer , Po-Chun Chien ,
Marek Jankola , Matthias Kettl , Nian-Ze Lee ,
Thomas Lemberger , Marian Lingsch-Rosenfeld ,

Martin Spiessl , Henrik Wachowitz , and Philipp Wendler
http://cpachecker.sosy-lab.org

LMU Munich, Munich, Germany

https://orcid.org/0000-0001-9116-1974
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0009-0008-7961-190X
https://orcid.org/0000-0001-7365-5030
https://orcid.org/0000-0002-8096-5595
https://orcid.org/0000-0003-0291-815X
https://orcid.org/0000-0002-8172-3184
https://orcid.org/0000-0002-9169-9130
https://orcid.org/0000-0002-4768-4054
https://orcid.org/0000-0002-5139-341X
http://cpachecker.sosy-lab.org
https://doi.org/10.1007/978-3-662-46681-0_34
https://mathsat.fbk.eu
https://github.com/sosy-lab/java-smt
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_21&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

Reach. Safety

Termination

NoOverflow

No Data Race

Mem. Safety

Recursion

Concurrency

Loop-free

Single loop

Non-int. data

Other

PredAbs + Val with BAM [21]

BDD-based analysis [8]

BMC [16]; PredAbs

Symbolic exec. [13]; Val; PredAbs; DF [2]; IMC [12]

Val; k-induction [6]

Symbolic exec.; Val; PredAbs; DF; k-induction

Liveness-as-safety [26]; lasso-based analysis [18]

Reduction to reach. safety + PredAbs [22]

Val [14] + memory-access-based POR [25]

Symbolic exec. [13] + SMG-based analysis [20]
P

ro
pe

rt
y?

P
ro

gr
am

S
tr

u
ct

u
re

?

Fig. 1: Strategy selection based on the property to verify and program structure
(New components since the last published system description [19] are marked in boldface.
‘+’ and ‘;’ denote component composition and sequential execution, respectively.)

Witnesses. CPAchecker produces correctness and violation witnesses for all
properties where the corresponding witness type is already defined by the com-
munity. These are exported in the established GraphML format [4, 5] as well as
in the new YAML format that is introduced with SV-COMP 2024.

2 Verification Approaches

To effectively solve the verification tasks from the heterogeneous benchmark
set used in the competition, we need different verification strategies. Given a
verification task, we select a suitable strategy with a two-level approach according
to the property of the task and the structure of the program. A strategy could be a
sequential portfolio of different verification techniques, each of which is assigned a
time limit that is determined with expert knowledge. Figure 1 shows the selection
procedure. The first-level selection is based on the property of the verification
task. If the property is among memory safety, no-dataraces, no-overflows, or
termination, a dedicated strategy is immediately assigned to solve the task. If the
property is reachability safety, we further distinguish the program structure of a
task into six classes by a set of carefully picked features, and a tailored strategy
is invoked for each class. The details for each property and program structure are
given below.
Memory Safety. Memory safety is checked by an unbounded analysis based
on symbolic memory graphs (SMGs) [20]. It utilizes symbolic execution [13] to
reason over non-concrete values, enabling us to verify the safety of low-level
memory operations. The graph-based approach allows us to not only represent
heap memory efficiently, but also to abstract linked memory structures (e.g.,
linked lists) that are created with low-level memory operations.
No Data Race. Data races are checked with a combination of value analysis
(Val) [14], the thread handling from our concurrency analysis [8], and a CPA that

Baier, Beyer, Chien, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Spiessl, Wachowitz, Wendler360

tracks read and write accesses to memory locations. We perform partial order
reduction (POR) [25] over thread-local memory accesses to improve performance.
No Overflow. Overflows are checked with a CPA that adds additional constraints
for overflow detection and a bit-accurate predicate abstraction (PredAbs) [7].
For recursive tasks we add block-abstraction memoization (BAM) [21, 27], which
summarizes the input-output behavior of recursive functions.
Termination. Our termination strategy consists of two techniques. The first
technique transforms liveness to a safety property [26]. With a combination of
predicate and value analyses we check whether there exists some program state at
a loop head that can be visited twice. If the program is recursive or the analysis
reaches a time limit of 300 s, we switch to the second techniques, which uses ideas
first implemented in Terminator [18]: We apply CPAchecker’s predicate-based
reachability analysis to detect potentially non-terminating program executions,
called candidate lassos. A lasso consists of a stem (a finite program path) that is
followed by a loop (a finite program path that describes a syntactic cycle in the
program). Found candidate lassos are analyzed with the library LassoRanker [24]
to synthesize termination and non-termination arguments. If a non-termination
argument is found for at least one candidate lasso, violation of the termination
property is reported. Otherwise, the analysis claims the program as terminating.
Reachability Safety. For the reachability of an error location, we tailor our
verification strategy based on the structure of the program. If the program
contains a recursive function, we apply block-abstraction memoization [21, 27] in
combination with value analysis (Val) and predicate abstraction (PredAbs). If the
program is multi-threaded, a concurrency analysis [8] that relies on binary decision
diagrams (BDD) is applied. We set an upper limit of five threads for the analysis,
and if this threshold is surpassed, the analysis is aborted. For non-recursive and
single-threaded programs, we assign one of the four verification strategies in Fig. 1
according to the following structural features: the number of loops and whether the
program contains non-integer data types, such as floating-point variables, arrays,
or composite data structures [3]. The four strategies are all based on sequential
combinations [19] of various bit-precise analyses with different time limits. For
loop-free programs, we apply bounded model checking (BMC) [16] with a fallback
to PredAbs [22]. For programs with a single loop, we apply a sequence of symbolic
execution [13], Val [14], PredAbs [11], interval-based data-flow analysis (DF) [2],
and interpolation-based model checking (IMC) [12]. For programs with multiple
loops and non-integer data types, we apply Val and k -induction [6]. For all other
programs, i.e., those with multiple loops but without non-integer data types,
we apply a sequential portfolio of symbolic execution, Val, PredAbs, DF, and
k -induction.

3 Strengths and Weaknesses

CPAchecker with strategy selection performed well in SV-COMP 2024 [1],
winning the second place in category Overall and the first place in category
FalsificationOverall. Notably, it produced 17 968 correct and confirmed results,
more than any other participant, and outperformed the winner in category Overall

CPAchecker 2.3 with Strategy Selection 361

https://www.ultimate-pa.org/?ui=tool&tool=lasso_ranker

by 32%. CPAchecker is also robust: More than 96% of its correct results were
confirmed by witness validators, and it produced only 17 wrong results (0.06% of
all tasks).

CPAchecker won the third place in category ReachSafety by using various
analyses orchestrated by strategy selection. For programs with non-integer data
types, k -induction was the most effective analysis. In programs with loops, most
alarms were found by symbolic execution, and most proofs were delivered by value
analysis and predicate abstraction.1

The only categories without a medal for CPAchecker were Termination, Con-
currencySafety, and MemSafety. In particular, all wrong results in the category
MemSafety are due to imprecise abstractions of nested lists. To alleviate them, we
intend to improve the precision of our list abstraction and incorporate SMT-based
array abstraction, which would make CPAchecker more effective in this category.
To improve the termination analysis, we plan to make the analyses more cooper-
ative and carry over partial proofs in the sequential combination. Additionally,
CPAchecker needs improvements for finding invariants with quantifiers, which
mainly affects verification tasks with large arrays.

4 Setup and Configuration

SV-COMP 2024 ran CPAchecker version 2.3 [15] on all categories with C pro-
grams. It runs on a standard GNU/Linux system with a Java 17 compatible
runtime environment. To start CPAchecker, execute the following command:

scripts/cpa.sh -svcomp24 -benchmark -heap 10000M -timelimit 900s
-spec property.prp program.i

For programs assuming a 64-bit memory model, append the argument -64 to the
command line. At the end of the execution, the verification result is printed to
the console output and the witnesses are written to the files witness.graphml
and witness.yml in the directory output/.

Note that the configuration -svcomp24 is optimized specifically for the resource
limits used in SV-COMP (15GB of RAM and 15min CPU time per task). For
other use cases (e.g., with less RAM or a different time limit), please apply a
different configuration (e.g., -default) and adjust the memory consumption with
the command-line option -heap as described in the documentation.

5 Project and Contributors

More than 100 developers have contributed to CPAchecker, mainly from LMU
Munich, TU Darmstadt, U Paderborn, U Passau, TU Prague, U Oldenburg, TU
Vienna, ISP RAS, and several other universities and institutes. We would like to
thank all contributors for their investment in CPAchecker. A complete list and
more information about the project is available at https://cpachecker.sosy-lab.
org. A list of bugs that CPAchecker found in the Linux kernel is also available.
1 Note that the observations are specific to our sequential portfolios and influenced by

the orders of analyses in the combination.

Baier, Beyer, Chien, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Spiessl, Wachowitz, Wendler362

https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/Achievements.md#bugs-found-with-cpachecker

Data-Availability Statement. The tool is available at https://cpachecker.
sosy-lab.org and the version used in SV-COMP 2024 is archived at Zenodo [15].

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY) and 496588242 (IDEFIX), and the
LMU Postdoc Support Fund.

References
1. Beyer, D.: State of the art in software verification and witness validation: SV-COMP

2024. In: Proc. TACAS. LNCS , Springer (2024)
2. Beyer, D., Chien, P.C., Lee, N.Z.: CPA-DF: A tool for configurable interval analysis

to boost program verification. In: Proc. ASE. pp. 2050–2053. IEEE (2023). https:
//doi.org/10.1109/ASE56229.2023.00213

3. Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean
features: A simple but effective approach. In: Proc. ISoLA. pp. 144–159. LNCS 11245,
Springer (2018). https://doi.org/10.1007/978-3-030-03421-4_11

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

5. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

6. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015). https://doi.
org/10.1007/978-3-319-21690-4_42

7. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software veri-
fication. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

8. Beyer, D., Friedberger, K.: A light-weight approach for verifying multi-threaded
programs with CPAchecker. In: Proc. MEMICS. vol. 233, pp. 61–71. EPTCS
(2016). https://doi.org/10.4204/EPTCS.233.6

9. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007). https://doi.org/10.1007/
978-3-540-73368-3_51

10. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

11. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010). https://dl.acm.
org/doi/10.5555/1998496.1998532

12. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022).
https://doi.org/10.48550/arXiv.2208.05046

13. Beyer, D., Lemberger, T.: CPA-SymExec: Efficient symbolic execution in CPAchecker.
In: Proc. ASE. pp. 900–903. ACM (2018). https://doi.org/10.1145/3238147.
3240478

14. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

CPAchecker 2.3 with Strategy Selection 363

https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
http://gepris.dfg.de/gepris/projekt/496588242
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://dl.acm.org/doi/10.5555/1998496.1998532
https://dl.acm.org/doi/10.5555/1998496.1998532
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11

15. Beyer, D., Wendler, P.: CPAchecker release 2.3 (unix) (2023). https://doi.org/
10.5281/zenodo.10203297

16. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

17. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_7

18. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Proc. CAV.
pp. 415–418. LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_37

19. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic (competition contribution). In: Proc. TACAS. pp. 423–
425. LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_
34

20. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list
manipulation. In: Proc. SAS. pp. 215–237. LNCS 7935, Springer (2013). https:
//doi.org/10.1007/978-3-642-38856-9_13

21. Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis
and predicate analysis (competition contribution). In: Proc. TACAS. pp. 912–915.
LNCS 9636, Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_58

22. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/
964001.964021

23. Karpenkov, E.G., Friedberger, K., Beyer, D.: JavaSMT: A unified interface for
SMT solvers in Java. In: Proc. VSTTE. pp. 139–148. LNCS 9971, Springer (2016).
https://doi.org/10.1007/978-3-319-48869-1_11

24. Leike, J., Heizmann, M.: Ranking templates for linear loops. Logical Methods in
Computer Science 11(1) (2015). https://doi.org/10.2168/LMCS-11(1:16)2015

25. Peled, D.: Ten years of partial order reduction. In: Proc. CAV. pp. 17–28. Springer
(1998). https://doi.org/10.1007/BFb0028727

26. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. Electr. Notes Theor. Comput. Sci. 149(1), 79–96 (2006). https://doi.org/
10.1016/j.entcs.2005.11.018

27. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoization.
In: Proc. ICFEM. pp. 332–347. LNCS 7635, Springer (2012). https://doi.org/10.
1007/978-3-642-34281-3_24

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Baier, Beyer, Chien, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Spiessl, Wachowitz, Wendler364

https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-319-48869-1_11
https://doi.org/10.1007/978-3-319-48869-1_11
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

CPV: A Circuit-Based Program Verifier
(Competition Contribution)

Po-Chun Chien ⋆

Abstract. We submit to SV-COMP 2024 CPV, a circuit-based software
verifier for C programs. CPV utilizes sequential circuits as its intermedi-
ate representation and invokes hardware model checkers to analyze the
reachability safety of C programs. As the frontend, it uses Kratos2, a re-
cently proposed verification tool, to translate a C program to a sequential
circuit. As the backend, state-of-the-art hardware model checkers ABC

and AVR are employed to verify the translated circuits. We configure the
hardware model checkers to run various analyses, including IC3/PDR,
interpolation-based model checking, and k -induction. Information discov-
ered by hardware model checkers is represented as verification witnesses.
In the competition, CPV achieved comparable performance against partici-
pants whose intermediate representations are based on control-flow graphs.
In the category ReachSafety, it outperformed several mature software veri-
fiers as a first-year participant. CPV manifests the feasibility of sequential
circuits as an alternative intermediate representation for program analysis
and enables head-to-head algorithmic comparison between hardware and
software verification.

Keywords: Software verification · Hardware verification · C programs ·
Sequential circuits · Btor2 · Aiger · Tool combination · Portfolio

1 Introduction

Software verification is challenging. Numerous intermediate representations have
been proposed to capture diverse software features and facilitate the development
of program verifiers. Among various encodings of a state-transition system, sequen-
tial circuits, consisting of memory elements to represent states and combinational
logic to capture state transitions, are commonly used in the hardware-verification
domain, and abundant techniques have been invented for hardware model checking.
Using sequential circuits as its intermediate representation, our tool CPV aims to
answer the following question: Are sequential circuits feasible as an alternative
foundation to build software verifiers? While previous studies on translating and
cross-applying verification techniques for hardware and software exist [1, 2, 3, 4],
to our knowledge, no participants in SV-COMP had used sequential circuits as
their intermediate representations. This competition report outlines the software
⋆ Jury member

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 365–370, 2024.
https://doi.org/10.1007/978-3-031-57256-2_22

and Nian-Ze Lee(B)

LMU Munich, Munich, Germany
{po-chun.chien,nian-ze.lee}@sosy.ifi.lmu.de

(B)

https://orcid.org/0000-0001-5139-5178
https://orcid.org/0000-0002-8096-5595
https://kratos.fbk.eu/
https://github.com/berkeley-abc/abc
https://github.com/aman-goel/avr
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_22&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

C prog. Instrumentor Instrumented C prog.

Kratos2 [6]ReachSafety property Btor2 [7] Btor2Aiger [8]

Aiger [9]

AVR [10]

ABC [11]

By CoVeriTeam [12]

Btor2
witness [7]

Witness
translator

Software
witness [13]

Verdict

Fig. 1: Software architecture of CPV

architecture and verification approach of CPV and discusses its results against
other mature program analyzers in SV-COMP 2024 [5].

2 Software Architecture

The software architecture of CPV is depicted in Fig. 1. Its verification workflow
is divided into two stages: (1) In the frontend (the upper half of Fig. 1), an
input C program with a reachability-safety property is first instrumented to
allow for witness translation (details in Sect. 3) and then translated into a word-
level Btor2 [7] circuit by Kratos2 [6]. The Btor2 language [7] is used in the
Hardware Model Checking Competitions [14, 15], and many powerful hardware
model checkers support this format. A bit-level Aiger [9] circuit is also generated
by the tool Btor2Aiger [8]; (2) In the backend (the lower half of Fig. 1), CPV
invokes hardware model checkers AVR [10] and ABC [11] to verify the translated
circuits. Btor2 verification witnesses produced for the circuits are translated to
software witnesses in the GraphML format [13] for the original program. CPV
configures and executes the backend model checkers (either solely or as portfolios)
via CoVeriTeam [12], a library for cooperative verification [16]. Thanks to the
versatility of CoVeriTeam, it is convenient to choose the verification algorithms
used by AVR and ABC, and the pool of the backend verifiers in CPV can be
expanded with little effort.

3 Verification Approach

The approach of CPV is to translate a program into a circuit and applies hardware
model checking to the translated verification task. To generate software-verification
witnesses, CPV instruments an input program before translating it to a circuit,
such that the information contained in a witness for the translated circuit can
be mapped back to the original program.

Program-to-Circuit Translation. CPV utilizes Kratos2 [6] as its frontend to
translate a verification task of a C program into a word-level sequential circuit in

366 P.-C. Chien and N.-Z. Lee

CPV: A Circuit-Based Program Verifier 367

the Btor2 format [7]. Kratos2 applies large-block encoding [17] and introduces a
symbolic program counter to fold the summarized program into a state-transition
system. Executing a maximal loop-free block of the program is a one-step transition
in the system. A call to an external function that models nondeterministic input
values to the program, e.g., the functions __VERIFIER_nondet_X() in SV-COMP,
is represented as an external input to the state-transition system. We configure
Kratos2 to export the system as a sequential circuit in the Btor2 format because
Btor2 is the prevailing format for hardware model checking. In order to leverage
bit-level hardware model checkers, CPV additionally invokes Btor2Aiger [8] to
translate the word-level Btor2 circuit into the Aiger format [9]. Currently, CPV
supports the property of reachability safety. Violation to the reachability-safety
property of the input program is captured by a circuit output asserting the
equivalence between the symbolic program counter and the error location.

Hardware Model Checking. CPV employs AVR [10] and ABC [11], two
state-of-the-art hardware model checkers for word-level Btor2 and bit-level
Aiger circuits, respectively, to analyze the translated circuits. A hardware model
checker decides whether the translated circuit has a computation trace to assert
its circuit output, which indicates the error location in the original program is
reachable. In this case, the verification verdict is false, and the original program
is unsafe. If there is no trace to assert the circuit output, the verdict is true,
and the original program is safe.

To achieve synergy, we combine the strengths of various hardware-verification
algorithms, including property-directed reachability (PDR) [18, 19], interpolation-
based model checking (IMC) [20], k -induction (KI) [21], and bounded model
checking (BMC) [22]. For the tasks that can be translated into Aiger circuits,1
a sequential portfolio of AVR-KI, AVR-PDR, ABC-IMC, ABC-PDR, and AVR-
BMC is applied. A pre-determined time limit is imposed on each component in
the portfolio by CoVeriTeam. AVR is executed first in the portfolio because it
can produce a Btor2 witness [7] for the translated circuit if a property violation
was found, whereas ABC does not export witnesses in a standardized format.
CPV can then translate a Btor2 witness back to a software violation witness.
Currently, CPV outputs a dummy violation witness if a bug is reported by
ABC. Since both the Btor2 and Aiger languages do not define a format for
correctness witnesses, CPV also outputs a dummy correctness witness in this
case. For the remaining tasks that cannot be translated into Aiger circuits, CPV
uses a sequential portfolio of AVR’s KI, PDR, and BMC.

Program Instrumentation for Witness Translation. To map the information
in a Btor2 witness back to the original program, CPV instruments the input
program prior to the program-to-circuit translation. A Btor2 violation witness
encodes a computation trace that asserts the output of the translated circuit. The
trace consists of a sequence of values given to the circuit’s external inputs, each
corresponding to a call to a function __VERIFIER_nondet_X() in the program.

1 The Btor2-to-Aiger translation may fail if a Btor2 circuit uses data sorts or oper-
ations unsupported by Aiger, such as arrays or non-constant register initialization.

Table 1: Summary of CPV’s correct results in SV-COMP 2024
ReachSafety #solved #tasks solved by respective approach

verdict #tasks AVR-KI AVR-PDR AVR-BMC ABC-IMC

true 8 323 3 860 3 405 323 0 132
false 2 899 1 092 867 172 2 51

To assume these values at the control-flow locations where they are relevant for
triggering the property violation, CPV’s instrumentor assigns a fresh counter
to each of these calls. A counter is incremented after each call, so its value can
be inferred from the Btor2 witness. An input value is relevant if accompanied
by a change in its counter. The witness translator of CPV traverses the Btor2
witness, extracts the relevant input values by tracking the changes in the counters,
and exports the software violation witness in the GraphML format [13].

4 Results in SV-COMP 2024

CPV participated in the category ReachSafety of SV-COMP 2024 [5]. As a first-
year participant, it surprisingly outperformed several mature software verifiers
in terms of the number of correctly solved tasks. CPV is especially effective in
the subcategory ReachSafety-Hardware and ReachSafety-ECA, solving the second
and third most tasks among all participants, respectively. Its impressive results
manifest the feasibility of using sequential circuits as an alternative intermediate
representation to construct program verifiers.

The overall results of CPV is summarized in Table 1. Among the 11 222 veri-
fication tasks in the category ReachSafety, 8 439 were successfully translated to
Btor2 circuits by Kratos2, and 7 773 could be further translated to Aiger
circuits by Btor2Aiger. In total, CPV produced 4 952 correct and confirmed
results. The k -induction implementation in AVR contributed the most correctly
solved and confirmed tasks, followed by PDR of AVR and IMC of ABC.2

We will improve CPV in the following directions: First, we will generate
non-trivial software correctness witnesses through extracting and translating
the fixed points computed by hardware model checkers. We aim to enhance the
witness-confirmation rate of CPV, currently about 90%, to the level of other
mature participants (more than 95%). Second, we will investigate the 27 false
alarms in the subcategory ReachSafety-Hardness.

5 Setup and Configuration

We submitted CPV at version 0.4 [23] to SV-COMP 2024 [5]. A Linux-based oper-
ating system is required to execute the tool, as the used library CoVeriTeam [12]
relies on Linux-specific features, such as control groups, name spaces, and over-
lay file systems. Additional Python package requirement and the instructions
to set up the execution environment can be found in the README file of the
submitted tool archive.
2 The observations are specific to the order of algorithms in CPV’s sequential portfolios.

368 P.-C. Chien and N.-Z. Lee

Data-Availability Statement. CPV is an open-source project, developed and
maintained by the Software and Computational Systems Lab at LMU Munich.
Its source code and executables are archived on Zenodo [23], and the project is
maintained on GitLab at https://gitlab.com/sosy-lab/software/cpv.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY) and the LMU Postdoc Support Fund.

References
1. Mukherjee, R., Tautschnig, M., Kroening, D.: v2c: A Verilog to C translator. In:

Proc. TACAS. pp. 580–586. LNCS 9636, Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_38

2. Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis
with Btor2C: A word-level-circuit-to-C translator. In: Proc. TACAS. pp. 1–21.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_12

3. Noureddine, M.A., Zaraket, F.A.: Model checking software with first order logic
specifications using AIG solvers. IEEE Trans. Softw. Eng. 42(8), 741–763 (2016).
https://doi.org/10.1109/TSE.2016.2520468

4. Long, J.: Reasoning about High-Level Constructs in Hardware/Software Formal
Verification. Ph.D. thesis, University of California, Berkeley (2017). http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-150.html

5. Beyer, D.: State of the art in software verification and witness validation: SV-COMP
2024. In: Proc. TACAS. LNCS , Springer (2024)

6. Griggio, A., Jonáš, M.: Kratos2: An SMT-based model checker for imperative
programs. In: Proc. CAV. pp. 423–436. Springer (2023). https://doi.org/10.1007/
978-3-031-37709-9_20

7. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector
3.0. In: Proc. CAV. pp. 587–595. LNCS 10981, Springer (2018). https://doi.org/
10.1007/978-3-319-96145-3_32

8. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Source-code repository of Btor2,
BtorMC, and Boolector 3.0. https://github.com/Boolector/btor2tools, ac-
cessed: 2023-01-29

9. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler University
(2007). https://doi.org/10.35011/fmvtr.2007-1

10. Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc.
TACAS. pp. 413–422. LNCS 12078, Springer (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

11. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proc. CAV. pp. 24–40. LNCS 6174, Springer (2010). https://doi.org/10.
1007/978-3-642-14295-6_5

12. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

13. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

14. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Proc. FMCAD. p. 9. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.
8102233

CPV: A Circuit-Based Program Verifier 369

https://gitlab.com/sosy-lab/software/cpv
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1109/TSE.2016.2520468
https://doi.org/10.1109/TSE.2016.2520468
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-150.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-150.html
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://github.com/Boolector/btor2tools
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233

15. Biere, A., Froleyks, N., Preiner, M.: 11th Hardware Model Checking Competition
(HWMCC 2020). http://fmv.jku.at/hwmcc20/, accessed: 2023-01-29

16. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA (1). pp. 143–167. LNCS 12476,
Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_8

17. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE (2009).
https://doi.org/10.1109/FMCAD.2009.5351147

18. Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. VM-
CAI. pp. 70–87. LNCS 6538, Springer (2011). https://doi.org/10.1007/
978-3-642-18275-4_7

19. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Proc. FMCAD. pp. 125–134. FMCAD Inc. (2011). https:
//dl.acm.org/doi/10.5555/2157654.2157675

20. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1–
13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

21. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Proc. FMCAD, pp. 127–144. LNCS 1954, Springer (2000).
https://doi.org/10.1007/3-540-40922-X_8

22. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

23. Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier. Zenodo (2023).
https://doi.org/10.5281/zenodo.10203472, version 0.4

370 P.-C. Chien and N.-Z. Lee

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://fmv.jku.at/hwmcc20/
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://dl.acm.org/doi/10.5555/2157654.2157675
https://dl.acm.org/doi/10.5555/2157654.2157675
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.5281/zenodo.10203472
https://doi.org/10.5281/zenodo.10203472

EmergenTheta:
Verification Beyond Abstraction Refinement

(Competition Contribution)

Levente Bajczi ⋆(B) , Dániel Szekeres , Milán Mondok , Zsófia Ádám ,
Márk Somorjai , Csanád Telbisz , Mihály Dobos-Kovács , and

Vince Molnár

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

bajczi@mit.bme.hu

Abstract. Theta is a model checking framework conventionally based
on abstraction refinement techniques. While abstraction is useful for a
large number of verification problems, the over-reliance on the technique
led to Theta being unable to meaningfully adapt. Identifying this prob-
lem in previous years of SV-COMP has led us to create EmergenTheta,
a sandbox for the new approaches we want Theta to support. By differ-
entiating between mature and emerging techniques, we can experiment
more freely without hurting the reliability of the overall framework. In
this paper we detail the development route to EmergenTheta, and its
first debut on SV-COMP’24 in the ReachSafety category.

Funding. This research was partially funded by the ÚNKP-23-{2,3}-I New National

Excellence Program; Project no. 2019-1.3.1-KK-2019-00004 (implemented with the

support provided from the NRDI Fund of Hungary under the 2019-1.3.1-KK fund-

ing scheme); and the Doctoral Excellence Fellowship Programme (funded by the NRDI

Fund of Hungary and the BME University).

1 Software Architecture

Theta is a modular and configurable verification framework in the sense that
multiple frontend subprojects are served by a vastly configurable, CEGAR-based
backend ([10,6]). Frontends include Petri-nets, AIGER models, timed automata,
and C programs among others (hence the modularity), and the CEGAR backend
provides fine-grained access to its internal settings such as refinement and search
strategy, abstract domains, and solver selection (hence the configurability). It is,
however, not conventionally capable of using non-CEGAR based analyses. This
behavior is engrained in the implementation in multiple ways, such as coun-
terexamples and safety proofs requiring a partial or full abstract reachability

⋆ Jury member representing EmergenTheta at SV-COMP 2024.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 371–375, 2024.
https://doi.org/10.1007/978-3-031-57256-2_23

https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0002-2912-028X
https://orcid.org/0000-0001-5396-2172
https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0001-7537-0469
https://orcid.org/0000-0002-6260-5908
https://orcid.org/0000-0002-0064-2965
https://orcid.org/0000-0002-8204-7595
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_23&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

graph, and the interface of the backend containing references to precision [6].
Our main contribution as part of SV-COMP’24 is the removal of such dependen-
cies on abstraction-specific classes. This enables the rapid prototyping and de-
velopment of diverse verification algorithms such as this year’s BMC, IMC, and
k-induction algorithms [5,7,9], building the low-level core of Theta including
the representation and manipulation of expressions and interfacing with several
SMT-solvers.

To facilitate the implementation of these algorithms, we introduced a new
MonolithicTransitionFunction interface to Theta, which returns a single non-
deterministic action representing the whole transition system (i.e., it represents
the structural information as additional variables and related guards). This is
a counterpart to the previously existing TransitionFunction interface, which di-
rectly relies on the structural information for the enabledness of actions. This
interface has been implemented for most of the formalisms supported by Theta.

Besides the changes detailed above, EmergenTheta still relies on Theta’s
Antlr-based C frontend and integrated support for SMT-solvers, as well as its
existing counterexample-to-witness projection [1].

2 Verification Approach

In bounded model checking (BMC) [5], the transition system and the safety prop-
erty are encoded as SMT [3] formulas. In each iteration of the algorithm, a path
constraint is created from the formulas characterizing all execution paths of a
given length k that start in an initial state and end in an error state. The satis-
fiability of the path constraint is checked using an SMT solver [8]. If a satisfying
assignment is found, it is returned as a counterexample, else the bound k is
increased until the available resources allow.

BMC is incomplete as it can only prove the absence of counterexamples
up to a finite depth. K-induction [9] and interpolation-based model checking
(IMC) [7] address this by adding checks that attempt to prove that the property
holds for unbounded depth based on the unsatisfiability of the BMC query. K-
induction does so by trying to prove the k-inductivity of the property with k
being the current BMC length, while IMC derives Craig interpolants to compute
an overapproximation of the set of reachable states.

Based on preliminary testing, we used a simple sequential portfolio (without
algorithm selection) that executed an IMC-only verification phase first (for at
most 90 seconds), then fell back to a combined BMC and k-induction-based
verification phase for the rest of the time limit. EmergenTheta did not employ
any of the CEGAR-based analysis methods already present it Theta, as we
wanted to evaluate the newly implemented ones separately.

372 L. Bajczi et al.

All False True
Tool EmergenTheta Theta EmergenTheta Theta EmergenTheta Theta
Category

Arrays 13 (7) 13 (7) 0 (0) 5 (5) 13 (7) 8 (2)
BitVectors 16 (1) 23 (8) 7 (0) 10 (3) 9 (1) 13 (5)
Combinations 1 (0) 138 (137) 1 (0) 121 (120) 0 (0) 17 (17)
ControlFlow 7 (4) 9 (6) 1 (0) 2 (1) 6 (4) 7 (5)
ECA 1 (1) 307 (307) 0 (0) 133 (133) 1 (1) 174 (174)
Floats 25 (6) 54 (35) 2 (0) 23 (21) 23 (6) 31 (14)
Hardness 378 (269) 116 (7) 0 (0) 0 (0) 378 (269) 116 (7)
Hardware 134 (15) 194 (75) 60 (10) 89 (39) 74 (5) 105 (36)
Heap 2 (0) 2 (0) 0 (0) 0 (0) 2 (0) 2 (0)
Loops 232 (117) 161 (46) 34 (11) 40 (17) 198 (106) 121 (29)
Sequentialized 1 (0) 47 (46) 1 (0) 34 (33) 0 (0) 13 (13)
XCSP 2 (0) 45 (43) 2 (0) 44 (42) 0 (0) 1 (1)

Overall 812 (420) 1153 (761) 108 (21) 530 (443) 704 (399) 623 (318)

Table 1: Comparison of Theta and EmergenTheta for each subcategory

3 Discussion of Strengths and Weaknesses of the
Approach

As our secondary goal (besides adapting Theta’s architecture to a more flexible
one) was to find out how the new algorithms implemented in EmergenTheta
performed, we mainly compare and contrast the results of EmergenTheta
(which used only the newly implemented algorithms) and Theta (which used
only CEGAR). In the future, we aim to integrate the new algorithms into our
mainline Theta tool, for which this evaluation is invaluable.

Table 1 compares the number of tasks correctly solved by Theta and Emer-
genTheta for each subcategory inReachSafety (using official results) [4], dis-
tinguishing between true and false outputs. The numbers in parentheses show
the number of correctly solved tasks that the other tool was unable to solve in
time.

Looking at the overall results, we can see that Theta and EmergenTheta
are suitable for different tasks: although Theta solved more tasks, Emergen-
Theta solved 420 tasks that Theta could not solve, which is 36% of the 1153
tasks solved by Theta. With an ideal portfolio, incorporating these algorithms
could significantly increase the number of tasks solved by Theta.

Theta was much better at finding counterexamples (108 vs 530 false out-
puts), while EmergenTheta was slightly better at proving correctness (704
vs 623 true outputs). This goes against our intuition, as abstraction refinement
is more tailored to proving correctness. This phenomenon warrants further in-
vestigation; our current hypothesis is that performing enough refinements to
eliminate all spurious counterexamples had too large an overhead. More than

EmergenTheta 373

half of the true results for each tool were for tasks that the other one could not
solve, highlighting their complementary nature.

EmergenTheta was significantly better in the Loops and the Hardness
categories, while it was worse in Combinations, ECA, Sequentialized and XCSP.
As for Combinations and Sequentialized, this could be attributed to Theta being
generally better at finding counterexamples, as false tasks are overrepresented
in these categories; but for ECA and XCSP, tasks of both types are represented
nearly equally.

These relatively positive results were achieved in spite of a misconfiguration:
although our preliminary measurements had shown that CVC5 and Math-
SAT performed best with K-IND and IMC respectively, we accidentally en-
rolled EmergenTheta with its default solver Z3. We consider this a failure in
the design of the portfolio engine of Theta, which allowed us to submit a faulty
configuration without this being evident in the logs (that no runs were using
solvers other than Z3). We will prioritize improving on this aspect of Theta for
next year.

4 Tool Setup and Configuration

EmergenTheta remains vastly configurable, and successfully choosing a per-
formant configuration for a verification task at hand can be complicated. If using
the competition archive [2] for software verification, we recommend using the pre-
assembled portfolio: theta-start.sh <input> --backend IMC THEN KIND. To
minimize the output verbosity and produce a witness in the working directory,
the flags --loglevel RESULT and --witness-only can be added to the argu-
ments. We also used these options at SV-COMP 2024.

5 Software Project and Contributors

EmergenTheta is integrated into the Theta verification framework main-
tained by the Critical Systems Research Group1 of the Budapest University of
Technology and Economics. The project is available open-source on GitHub2

under an Apache 2.0 license. The version (5.0.0) used in the competition is
available at [2].

References

1. Ádám, Z., Bajczi, L., Dobos-Kovács, M., Hajdu, Á., Molnár, V.: Theta: portfolio
of CEGAR-based analyses with dynamic algorithm selection (Competition Contri-
bution). In: Fisman, D., Rosu, G. (eds.) TACAS 2021. Lecture Notes in Computer
Science, vol. 13244, pp. 474–478. Springer (2022). https://doi.org/10.1007/978-3-
030-99527-0 34

1 https://ftsrg.mit.bme.hu/en/
2 https://github.com/ftsrg/theta/releases/tag/svcomp24

374 L. Bajczi et al.

https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1007/978-3-030-99527-0_34
https://ftsrg.mit.bme.hu/en/
https://github.com/ftsrg/theta/releases/tag/svcomp24

2. Bajczi, L., Szekeres, D., Mondok, M., Molnár, V.: EmergenTheta - SV-COMP’24
Verifier Archive (Nov 2023). https://doi.org/10.5281/zenodo.10198872

3. Barrett, C., Tinelli, C.: Satisfiability Modulo Theories.
https://doi.org/10.1007/978-3-319-10575-8 11

4. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: TACAS (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Hajdu, Á., Micskei, Z.: Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

7. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In:
Hunt, W.A., Somenzi, F. (eds.) Computer Aided Verification (2003).
https://doi.org/10.1007/978-3-540-45069-6 1

8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS 2008, LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

9. Sheeran, M., Singh, S., St̊almarck, G.: Checking Safety Properties Using Induc-
tion and a SAT-Solver. In: Formal Methods in Computer-Aided Design (2000).
https://doi.org/10.1007/3-540-40922-X 8

10. Tóth’, T.: Abstraction Refinement-Based Verification of Timed Automata. Ph.D.
thesis, Budapest University of Technology and Economics (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

EmergenTheta 375

https://doi.org/10.5281/zenodo.10198872
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-40922-X_8
http://creativecommons.org/licenses/by/4.0/

ESBMC v7.4: Harnessing the Power of Intervals

(Competition Contribution)

Abstract. ESBMC implements many state-of-the-art techniques that
combine abstract interpretation and model checking. Here, we report
on new and improved features that allow us to obtain verification re-
sults for previously unsupported programs and properties. ESBMC now
employs a new static interval analysis of expressions in programs to in-
crease verification performance. This includes interval-based reasoning
over booleans and integers, and forward-backward contractors. Other
relevant improvements concern the verification of concurrent programs,
as well as several operational models, internal ones, and also those of
libraries such as pthread and the C mathematics library. An extended
memory safety analysis now allows tracking of memory leaks that are
considered still reachable.

1 Software Architecture

ESBMC [4,6] is a mature, permissively licensed open-source context-bounded
model checker for the verification of single- and multi-threaded C programs for
various code safety violations (e.g., buffer overflows, dangling pointers, arith-
metic overflows) and user-defined assertions. It has been successfully participat-
ing in the SV-COMP competitions for many years due to our continuous work
towards improving its performance. ESBMC transforms a given C program using
a Clang-based [11] front-end into an intermediate representation in the GOTO
language [3], which is symbolically executed to produce verification formulae
passed to one or more SMT solvers. In addition, ESBMC implements state-of-
the-art incremental BMC and k -induction proof-rule algorithms based on SMT
and Constraint Programming (CP) solvers.

⋆ Jury member

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 376–380, 2024.
https://doi.org/10.1007/978-3-031-57256-2_24

Rafael Sá Menezes1,2, Mohannad Aldughaim1,6, Bruno Farias1, Xianzhiyu Li1,
Edoardo Manino1, Fedor Shmarov1,5, Kunjian Song1, Franz Brauße1(B) ,

Mikhail R. Gadelha3, Norbert Tihanyi4, Konstantin Korovin1,
and Lucas C. Cordeiro1,2

1 The University of Manchester, Manchester, UK
franz.brausse@manchester.ac.uk

2 Federal University of Amazonas, Manaus, Brazil
3 Igalia, A Coruña, A Coruña, Spain

4 Eötvös Loránd University, Budapest, Hungary
5 Newcastle University, Newcastle upon Tyne, UK
6 King Saud University, Riyadh, Saudi Arabia

⋆

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_24&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

2 Verification Approach

Interval analysis In this year, ESBMC interval analysis was improved using Ab-
stract Interpretation techniques [5]. We used the integer domain (with infinities)
as the abstract domain for SV-COMP. The domain consists of, for each state-
ment in the program, keeping the box interval (i.e., a minimum and maximum)
for all variables. ESBMC also supports interval arithmetic and widening strate-
gies (through extra- and interpolation). Once computed, the intervals are used
for optimizations (i.e., dead code elimination and constant folding) and invariant
instrumentation.

Regarding the new code instrumentation, the main use of intervals is to
generate invariants which the k-induction strategy benefits from most. This is
done by adding assumptions restricting the value of variables. In addition, the
set of variables used for these assumptions has been reduced to those occurring
in conditional statements and guards only. Lastly, we expanded the types of
instrumented statements: assertions, conditionals, and function calls.

Contractors ESBMC v7.4 employs another method to refine intervals based
on contractors. Contractors [10,14] are commonly used in the context of Con-
straint Satisfaction Problems (CSPs), that is, when variables, their (real-valued)
domains, and constraints over those variables are fixed. A contractor is an op-
eration on n-dimensional boxes (product of intervals) respecting the given con-
straints, i.e., it refines the domains such that no solutions to the CSP are lost. A
particularly efficient one for CSPs containing a single constraint is the Forward-
backward contractor [7,8,15]. It operates in two stages: forward evaluation and
backward propagation [14,1]. In scenarios with multiple constraints, the forward-
backward contractor is applied to each constraint independently.

ESBMC utilizes the forward-backward contractor implemented in the Ibex
library [2] to refine the results of the interval analysis mentioned above. That is,
conditions of statements such as “if” and loops in the program are relaxed to
conditions over reals, where possible, and then the contractor is applied to this
relaxed condition. The result is a refined set of intervals for the variables involved.
These refined intervals are then restricted to the original variable domains, which
– in case of, e.g., integers – results in a further reduction of the size of intervals.
The intervals contracted in this way generally enhance the results of the interval
analysis employed by ESBMC and benefit its k-induction strategy.

Memory leaks This year, ESBMC employs a refined check for the valid-memtrack
property. This property is loosely described as only allowing those dynamically
allocated objects to survive that are still reachable at the end of the program’s
execution by following a path of pointers stored in objects eventually referenced
by global variables. A property violation witness has to contain proof of unreach-
ability of a dynamic allocation starting from any global variable.

The new algorithm leverages the existing one tracking the lifetime of al-
locations for the valid-memcleanup property, but it specifically excludes still-
reachable objects from the check. This condition is encoded into an SMT formula

ESBMC v7.4: Harnessing the Power of Intervals 377

using the paths deterministically described by expressions of type struct, union,
pointer, or array with constant size. Each possible successor along the path is
obtained through the value-set, and the validity is encoded through guards which
have to hold at the end of execution.

C mathematical library ESBMC v7.4 offers extended support for the math.h

library. Accurate modeling of its semantics is crucial for reasoning on the behav-
ior of complex floating-point software. For example, most neural network code
relies on 32-bit floats and may invoke the math.h library to compute the result
of activation functions, positional encodings, and vector normalisations [12].

The IEEE 754 standard [9] mandates bit-precise semantics for a small subset
of the math.h library only. This subset includes addition, multiplication, division,
sqrt, fma, and other support functions such as remquo. In contrast, the behavior
of most transcendental functions (e.g., sin, exp, log) is platform-specific. Still,
the standard recommends implementing the correct rounding whenever possible.

As a tradeoff between precision and verification speed, ESBMC now features
a two-pronged design. For the most commonly-used float functions, we bor-
row the MUSL plain-C implementation of numerical algorithms [13]. For the
corresponding double functions, we employ less complex algorithms with ap-
proximate behavior.

Data races Data races occur when multiple threads concurrently access the same
memory location, and at least one of these accesses involves a write operation.
ESBMC’s algorithm for checking data races extends the static code instrumen-
tation CBMC [3] uses. The idea is to add a flag A′, initially true, to each variable
A involved in an assignment. Directly after the assignment to A, A′ is reset to
false. To identify races, we assert that the value of A′ is false when A is ac-
cessed. Subsequently, we outline the challenges encountered by ESBMC and the
improvements we have implemented.

As this method introduces additional instructions into the program, the
potentially larger number of thread interleavings is counteracted by inserting
atomic blocks appropriately – subject to ensuring accuracy, the atomic block
encompasses the assertion on A′, original assignment to A, and setting A′, in
sequence. Data races are now also checked on access of arrays with non-constant
indices. The most challenging aspect of data race detection is the dereference
of pointers, as the pointer would have to be instrumented but is not statically
known through the value-set analysis. Thus, the new implementation is hybrid,
addressing cases unsuitable for static analysis during symbolic execution, thereby
enabling ESBMC to detect more types of data races.

3 Strengths and Weaknesses

The interval analysis improved and provided better invariants for ESBMC. The
new optimizations help ESBMC to solve new benchmarks in categories with
multiple path conditions (i.e., ECA). The main weakness of the method is that

378 R. S. Menezes et al.

our Abstract Interpreter only has partial support for widening, and it is not
context-aware (i.e., function parameters and global variables cannot be tracked
globally). This results in a slowdown for categories with loops with thousands
of statements (e.g., Hardware).

While contractors are highly regarded for their ability to provide assured
limits on solutions, their cautious approach may lead to overly broad results and
less precise conclusions. Therefore, a more rigorous evaluation of contractors is
essential to assess their advantages and limitations effectively.

The new algorithm for the valid-memtrack sub-property allowed ESBMC to
identify 70/153 violations correctly with no incorrect verdicts (last year: 0/134).
There is a theoretical weakness in the current implementation concerning dy-
namic allocations only reachable through pointers stored in arrays of statically
unknown size. It could result in incorrect-false verdicts, but it has not been
observed in test cases, yet.

Without operational models of the math.h library, ESBMC would assign non-
deterministic results, which may cause incorrect counterexamples to be returned.
This behavior is especially evident for older versions of ESBMC on neural net-
work code [12], as it usually contains many mathematical operations. ESBMC
v7.4 fixes this semantic issue by providing explicit operational models for many
common functions in math.h, thus yielding no incorrect results on the bench-
marks in [12], and achieving second place in the ReachSafety-Floats sub-category.

From the competition results, the data race detection of ESBMC v7.4 is
promising. Compared to the previous version, the new algorithm supports more
types of expressions and reduces the verification time. The relatively high number
of 2.2% incorrect-true verdicts is mostly due to still missing support for detecting
data races during dereferences of pointers to compound types.

We will address the weaknesses identified in this competition in the future.

4 Tool Setup and Configuration

To setup and run ESBMC, follow the instructions in the README.md file. ESBMC
can also be run via the Python wrapper esbmc-wrapper.py for simplified usage
in the competition. An example command line is:
esbmc-wrapper.py -s kinduction -a 64 -p unreach-call.prp example.c

5 Software Project

The ESBMC development is funded by ARM, EPSRC EP/T026995/1, EPSRC
EP/V000497/1, Ethereum Foundation, EU H2020 ELEGANT 957286, UKRI
Soteria, Intel, and Motorola Mobility (through Agreement N° 4/2021). It is pub-
licly available at http://esbmc.org under the terms of the Apache License
2.0 and static release builds of ESBMC are provided at https://github.com/
esbmc/esbmc. The version that participated in SV-COMP 2024 is available at
https://doi.org/10.5281/zenodo.10198805.

ESBMC v7.4: Harnessing the Power of Intervals 379

http://esbmc.org
https://github.com/esbmc/esbmc
https://github.com/esbmc/esbmc
https://doi.org/10.5281/zenodo.10198805

References

1. M. Aldughaim, K. M. Alshmrany, M. R. Gadelha, R. de Freitas, and L. C. Cordeiro.
FuSeBMC IA: Interval analysis and methods for test case generation. In L. Lam-
bers and S. Uchitel, editors, Fundamental Approaches to Software Engineering,
pages 324–329, Cham, 2023. Springer Nature Switzerland.

2. G. Chabert and ibex team. ibex-lib, 2023. https://github.com/ibex-team/

ibex-lib [Accessed: 19 December 2023].
3. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

Tools and Algorithms for the Construction and Analysis of Systems, pages 168–176,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

4. L. C. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded model
checking for embedded ANSI-C software. IEEE Transactions on Software Engi-
neering, 38(4):957–974, 2012.

5. P. Cousot. Principles of Abstract Interpretation. MIT Press, 2021.
6. M. Y. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and D. A.

Nicole. ESBMC 5.0: an industrial-strength C model checker. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering
ASE, pages 888–891. ACM, 2018.

7. L. Granvilliers. Revising hull and box consistency. Logic Programming, pages
230–244, 1999.

8. E. Hansen and G. W. Walster. Global optimization using interval analysis: revised
and expanded, volume 264. CRC Press, 2003.

9. IEEE. IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008), pages 1–84, 2019.

10. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. In
Springer London, 2001.

11. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. In International symposium on code generation and
optimization, pages 75–88, San Jose, CA, USA, Mar 2004.

12. E. Manino, R. S. Menezes, F. Shmarov, and L. C. Cordeiro. NeuroCodeBench: a
plain C neural network benchmark for software verification, 2023.

13. musl community. musl libc, 2023. https://musl.libc.org/ [Accessed: 15 Decem-
ber 2023].

14. M. Mustafa, A. Stancu, N. Delanoue, and E. Codres. Guaranteed SLAM—An
interval approach. Robotics and Autonomous Systems, 100:160–170, 2018.

15. A. Neumaier. Interval methods for systems of equations, volume 37. Cambridge
University Press, 1990.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

380 R. S. Menezes et al.

https://github.com/ibex-team/ibex-lib
https://github.com/ibex-team/ibex-lib
https://musl.libc.org/
http://creativecommons.org/licenses/by/4.0/

Goblint: Abstract Interpretation for
Memory Safety and Termination

(Competition Contribution)

Simmo Saan1(B) ⋆, Julian Erhard2,3 , Michael Schwarz2 ,
Stanimir Bozhilov2 , Karoliine Holter1 , Sarah Tilscher2,3 ,

Vesal Vojdani1 , and Helmut Seidl2

1 University of Tartu, Tartu, Estonia
{simmo.saan,karoliine.holter,vesal.vojdani}@ut.ee
2 Technische Universität München, Garching, Germany

{julian.erhard,m.schwarz,stanimir.bozhilov,
sarah.tilscher,helmut.seidl}@tum.de

3 Ludwig-Maximilians-Universität München, Munich, Germany

Abstract. Goblint is an abstract interpreter of C programs, focusing
on the analysis of multi-threaded code. It is equipped with a variety of
abstract domains, as well as analyses which allow it to reason about an
array of program properties in a highly configurable manner. Goblint
has been extended with support for the detection of memory safety bugs
and non-termination.

1 Verification Approach

Goblint is an abstract-interpretation–based static analyzer of C code, with
an emphasis on the sound analysis of multi-threaded programs [14, 15]. It uses
side-effecting constraint systems [2] to combine context-sensitive analysis of local
states with flow-insensitive analysis of data possibly shared between threads.
Goblint is equipped with a range of different analyses that, in turn, build on
multiple abstract domains for expressing candidate program invariants.

1.1 Memory Safety

Techniques for detecting memory-related bugs have been extensively studied [6,
9, 10, 20]. While Goblint did not target such bugs in the past, new analyses
for the sound analysis of memory safety have been added for SV-COMP 2024.
The analyzer already tracks abstract address sets for pointer variables. A single
abstract address consists of a variable and an abstract offset. The analyzer distin-
guishes between regular program variables and allocated memory blocks, which
are identified by their respective allocation sites together with the allocating
thread and possibly an allocation counter.
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 381–386, 2024.
https://doi.org/10.1007/978-3-031-57256-2_25

https://orcid.org/0000-0003-4553-1350
https://orcid.org/0000-0002-1729-3925
https://orcid.org/0000-0002-9828-0308
https://orcid.org/0009-0002-1361-942X
https://orcid.org/0009-0008-3725-4131
https://orcid.org/0009-0009-9644-7475
https://orcid.org/0000-0003-4336-7980
https://orcid.org/0000-0002-2135-1593
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_25&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

The new analyses are concerned with the detection of the following memory-
safety bugs: invalid memory deallocations, invalid pointer dereferences, as well
as memory leaks. Beyond null-pointer dereferences, two further kinds of invalid
dereferences are now considered: memory out-of-bounds accesses and use-after-
free (UAF) bugs. Memory out-of-bounds accesses can be uncovered by obtaining
the size, as well as the offset from the base address of the memory being accessed.
To determine whether an access via some offset may be out of bounds, the anal-
ysis relies on an expressive combination of integer domains including intervals.

Invalid dereferences due to use-after-frees can be detected in the single-
and multi-threaded case. For the single-threaded setting, the analysis uses the
allocation-site abstractions in order to keep track of potentially already deal-
located memory, and warns on accesses to such memory. Regarding the multi-
threaded case, it additionally leverages Goblint’s side-effecting functionality
by maintaining a global invariant that, for each piece of deallocated memory,
collects the set of all threads that may free it. Goblint tracks abstract thread
IDs which allow reasoning about which threads may run in parallel [17]. The
may-happen-in-parallel (MHP) information from the abstract thread ID domain
(and a dedicated analysis of thread joins) is used to infer whether an access to
a piece of memory may happen in parallel with (or after) the deallocation of
the same piece of memory by another thread. In addition, invalid frees due to
possibly occurring double frees are flagged by this analysis as well.

Potential memory leaks can be detected thanks to a dedicated analysis. To
this end, all allocated memory blocks are tracked path- and context-sensitively.
Furthermore, the allocation counter is relied on to potentially exclude memory
leaks for a particular allocation site. Calls to deallocating functions, such as free,
have the effect of removing pieces of tracked (and now deallocated memory) from
the state, whenever the analysis determines that the passed pointer must point to
an abstract block of memory which describes a single concrete memory location.
At all exit points of the program, it is then checked whether the set of possibly
still allocated memory is empty. In case any such set is non-empty, a memory
leak is reported. In the multi-threaded case, the analysis checks the following
stronger property and warns whenever that property may be violated:

1. all threads have terminated at the end point of main, and
2. exit and similar functions, causing early termination, are not called, and
3. at its return, each thread has freed all the memory it allocated.

This property allows for a thread-modular analysis, where sets of allocated and
freed memory are maintained in a flow- and context-sensitive manner.

We remark that the analysis for memory leaks tracks which heap-allocated
memory may not be freed yet, while the analysis to detect UAF issues tracks
which memory may potentially already be freed. One direction of improvement
would be to consider tracking relational pointer information along the lines
of Seidl et al. [18] and, additionally, consider relational information about the
lengths of arrays and memory blocks. This may be useful in the case of vari-
able length arrays and dynamically allocated memory for which the size is not
statically known.

382 S. Saan et al.

1.2 Termination

A termination analysis has been added, largely leveraging existing features of
the framework. This highlights the versatility of the framework. To account for
non-termination due to loops, a counter variable is inserted into each loop and
incremented in every loop iteration. A relational polyhedra analysis based on
Apron [8] is then used to determine whether the counter variable is bounded.
To detect potential non-termination due to recursion, the notion of a call graph is
enhanced by considering functions together with their respective abstract calling
contexts and taking dynamic calls via pointers into account. This graph is a
posteriori extracted out of the analysis result and then checked for cycles in
a post-processing phase. In case no cycles (including self-loops) exist in the
abstract call graph, there can be no cycles in the concrete call graph.

The currently implemented termination analysis is just a first step in the real-
ization of related techniques. Future work may, e.g., be the tuning of the abstract
contexts for this use-case, or the incorporation of more involved techniques for
termination analysis by abstract interpretation [4, 5]. Extending the presented
approaches to the non-termination of concurrent programs while remaining as
thread-modular as possible seems particularly challenging.

2 Software Architecture

Goblint is implemented in ∼54,000 lines of OCaml and uses an updated fork
of CIL [12] as its parser frontend for the C language. It depends on Apron [8]
for relational analyses. No other major libraries or external tools are required.

The modular architecture of Goblint [1] allows a combination of analyses
to be selected and automatically configured at runtime [15]. Analyses are defined
through their abstract domains and transfer functions, which can communicate
with other analyses using predefined queries and events. The combined analyses
together with the control-flow graphs of the functions yield a side-effecting con-
straint system [2], which is solved using a local generic solver [19]. The solution
is post-processed to determine the verdict and construct a witness.

3 Strengths and Weaknesses

Goblint once again demonstrated its soundness in this year’s competition, i.e.,
it did not produce any false negatives. The only other tools that did not produce
any false negatives are Aise [21] (competing only in ReachSafety-Loops), Brick
(competing in three sub-categories of ReachSafety), and Mopsa [11] (competing
in all categories except ConcurrencySafety and Termination). Goblint is thus
the only sound tool in SV-COMP 2024 to support all properties, and the only
sound tool represented in the overall ranking. Among the tools participating in
the overall ranking, Goblint, despite targeting only proofs – which are tradi-
tionally considered to be more time-consuming than finding counter-examples –
leads the pack in terms of points achieved in ≤ 9 s. This is most pronounced when

Goblint: Abstract Interpretation for Memory Safety and Termination 383

considering runtimes ≤ 1 s. This highlights the efficiency of Goblint. Beyond
these observations, we briefly discuss the newly added analyses here. Support for
soundly detecting memory safety bugs greatly broadens the applicability of the
analyzer, evidencing the flexibility of the underlying framework. Of particular
note is the support for verifying the memory-safety of multi-threaded programs
in a thread-modular way, yielding the second-best score in ConcurrencySafety-
MemSafety, after Deagle [7]. Turning to termination analysis, the added anal-
ysis demonstrates that a considerable chunk of the SV-COMP benchmarks in
this category can be handled by using our extended dynamic call graph to deal
with recursion and ghost counters together with numerical relational domains to
deal with loops. Finally, Goblint now comes with dedicated support for ana-
lyzing programs using setjmp/longjmp and flagging their misuse [16]. We have
contributed programs using this language feature to the benchmark suite.

A general weakness of Goblint currently is that, while it supports expensive
but expressive relational domains such as polyhedra, it lacks a heuristic when
to activate them, and thus only uses them for termination analysis. Activating
these domains based on some program properties, or attempting analysis with
such expensive domains after an analysis without them was inconclusive, may
help to improve the precision of the analyzer without compromising its efficiency.

4 Tool Setup and Configuration

Goblint version svcomp24-0-gc2e9465a7 participated in SV-COMP 2024 [3,
13]. It is available in both binary (Ubuntu 22.04) and source code form at our
GitHub repository.4 Instructions for building from source can be found in the
README. Both the tool-info module and the benchmark definition for SV-COMP
are named goblint. They correspond to running the tool as follows:

./goblint --conf conf/svcomp24.json \
--set ana.specification property.prp input.c

Goblint participated in all the categories, while opting-out from Falsifica-
tionOverall.

5 Software Project and Contributors

Goblint development takes place on GitHub, while related publications are
listed on its website.5 It is an MIT-licensed project initiated by Technische Uni-
versität München and the University of Tartu.

Acknowledgments. This work was supported by Deutsche Forschungsgemeinschaft
(DFG) – 378803395/2428 ConVeY 2. We would like to thank everyone who has con-
tributed to Goblint over the years, especially the students who contributed the termi-
nation analysis, namely: Thomas Lagemann, Johanna Franziska Schinabeck, Alexander
Schlenga, and Isidor Zweckstetter.
4 https://github.com/goblint/analyzer/releases/tag/svcomp24
5 https://github.com/goblint/analyzer and https://goblint.in.tum.de

384 S. Saan et al.

https://github.com/goblint/analyzer/releases/tag/svcomp24
https://github.com/goblint/analyzer
https://goblint.in.tum.de

Data Availability Statement. All data of SV-COMP 2024 are archived as described
in the competition report [3] and available on the competition website. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of Goblint as used in the competition is archived on Zenodo [13].

Bibliography

[1] Apinis, K.: Frameworks for analyzing multi-threaded C. Ph.D. thesis, Tech-
nische Universität München (2014)

[2] Apinis, K., Seidl, H., Vojdani, V.: Side-Effecting Constraint Systems: A
Swiss Army Knife for Program Analysis. In: APLAS ’12, pp. 157–172,
Springer (2012), doi: 10.1007/978-3-642-35182-2_12

[3] Beyer, D.: State of the art in software verification and witness validation:
SV-COMP 2024. In: TACAS ’24, Springer (2024)

[4] Cousot, P., Cousot, R.: An abstract interpretation framework for termi-
nation. In: POPL ’12, pp. 245–258, ACM (2012), doi: 10.1145/2103656.
2103687

[5] Dimovski, A.S.: Lifted termination analysis by abstract interpretation and
its applications. In: GPCE ’21, pp. 96–109, ACM (2021), doi: 10.1145/
3486609.3487202

[6] Gui, B., Song, W., Xiong, H., Huang, J.: Automated use-after-free detection
and exploit mitigation: How far have we gone? IEEE Trans. Software Eng.
48(11), 4569–4589 (2022), doi: 10.1109/TSE.2021.3121994

[7] He, F., Sun, Z., Fan, H.: Deagle: An SMT-based verifier for multi-threaded
programs. In: TACAS ’22, vol. 2, pp. 424–428, Springer (2022), doi: 10.
1007/978-3-030-99527-0_25

[8] Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: CAV ’09, pp. 661–667, Springer (2009), doi: 10.1007/
978-3-642-02658-4_52

[9] Jones, J., Wasson, J., Brown, S., Poulsen, S., Aldous, P., Mercer, E.: Mem-
ory safety in C by abstract interpretation. SIGSOFT Softw. Eng. Notes
43(4), 56 (2019), doi: 10.1145/3282517.3282530

[10] Loginov, A., Yahav, E., Chandra, S., Fink, S., Rinetzky, N., Nanda, M.:
Verifying dereference safety via expanding-scope analysis. In: ISSTA ’08,
pp. 213–224, ACM (2008), doi: 10.1145/1390630.1390657

[11] Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A., Miné,
A.: Mopsa-C: Improved verification for C programs, simple validation of
correctness witnesses. In: TACAS ’24, Springer (2024)

[12] Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate lan-
guage and tools for analysis and transformation of C programs. In: CC ’02,
pp. 213–228, Springer (2002), doi: 10.1007/3-540-45937-5_16

[13] Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S.,
Vojdani, V., Seidl, H.: Goblint at SV-COMP 2024 (Nov 2023), doi: 10.
5281/zenodo.10202867, tool artifact

[14] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani,
V.: Goblint: Thread-modular abstract interpretation using side-effecting

Goblint: Abstract Interpretation for Memory Safety and Termination 385

https://sv-comp.sosy-lab.org/2024/
http://dx.doi.org/10.1007/978-3-642-35182-2_12
http://dx.doi.org/10.1145/2103656.2103687
http://dx.doi.org/10.1145/2103656.2103687
http://dx.doi.org/10.1145/3486609.3487202
http://dx.doi.org/10.1145/3486609.3487202
http://dx.doi.org/10.1109/TSE.2021.3121994
http://dx.doi.org/10.1007/978-3-030-99527-0_25
http://dx.doi.org/10.1007/978-3-030-99527-0_25
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1145/3282517.3282530
http://dx.doi.org/10.1145/1390630.1390657
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.5281/zenodo.10202867
http://dx.doi.org/10.5281/zenodo.10202867

constraints. In: TACAS ’21, pp. 438–442, Springer (2021), doi: 10.1007/
978-3-030-72013-1_28

[15] Saan, S., Schwarz, M., Erhard, J., Pietsch, M., Seidl, H., Tilscher, S.,
Vojdani, V.: Goblint: Autotuning thread-modular abstract interpreta-
tion. In: TACAS ’23, vol. 2, pp. 547–552, Springer (2023), doi: 10.1007/
978-3-031-30820-8_34

[16] Schwarz, M., Erhard, J., Vojdani, V., Saan, S., Seidl, H.: When long jumps
fall short: Control-flow tracking and misuse detection for non-local jumps
in C. In: SOAP ’23, pp. 20–26, ACM (2023), doi: 10.1145/3589250.3596140

[17] Schwarz, M., Saan, S., Seidl, H., Erhard, J., Vojdani, V.: Clustered relational
thread-modular abstract interpretation with local traces. In: ESOP ’23, pp.
28–58, Springer (2023), doi: 10.1007/978-3-031-30044-8_2

[18] Seidl, H., Erhard, J., Schwarz, M., Tilscher, S.: 2-pointer logic. In: Javier
Esparza’s 60th Birthday, pp. 254–264, Springer (2024)

[19] Seidl, H., Vogler, R.: Three improvements to the top-down solver.
Math. Struct. Comput. Sci. 31(9), 1090–1134 (2021), doi: 10.1017/
S0960129521000499

[20] Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse
value-flow analysis. In: ISSTA ’12, pp. 254–264, ACM (2012), doi: 10.1145/
2338965.2336784

[21] Wang, Z., Chen, Z.: AISE: A symbolic verifier by synergizing abstract in-
terpretation and symbolic execution. In: TACAS ’24, Springer (2024)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

386 S. Saan et al.

http://dx.doi.org/10.1007/978-3-030-72013-1_28
http://dx.doi.org/10.1007/978-3-030-72013-1_28
http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1145/3589250.3596140
http://dx.doi.org/10.1007/978-3-031-30044-8_2
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1145/2338965.2336784
http://dx.doi.org/10.1145/2338965.2336784
http://creativecommons.org/licenses/by/4.0/

Mopsa-C: Improved Verification for C Programs,
Simple Validation of Correctness Witnesses

(Competition Contribution)

Raphaël Monat1(�) ⋆, Marco Milanese2 , Francesco Parolini2,
Jérôme Boillot3 , Abdelraouf Ouadjaout4 , and Antoine Miné2

Abstract. We present advances we brought to Mopsa for SV-Comp
2024. We significantly improved the precision of our verifier in the pres-
ence of dynamic memory allocation, library calls such as memset, goto-
based loops, and integer abstractions. We introduced a witness validator
for correctness witnesses. Thanks to these improvements, Mopsa won SV-
Comp’s SoftwareSystems category by a large margin, scoring 2.5 times
more points than the silver medalist, Bubaak-SpLit.

Keywords: Static Analysis · Abstract Interpretation · Competition on
Software Verification · SV-Comp.

1 Verification Approach: the Mopsa platform

Mopsa is an open-source static analysis platform relying on abstract interpreta-
tion [6]. The implementation of Mopsa aims at exploring new perspectives for
the design of static analyzers. Journault et al. [8] describe the core Mopsa prin-
ciples, and Monat [12, Chapter 3] provides an in-depth introduction to Mopsa’s
design. The C analysis which we rely on for this competition is based on the work
of Ouadjaout and Miné [16]; it proceeds by induction on the syntax, is fully
context- and flow-sensitive, and committed to be sound. This is the second time
Mopsa participates in SV-Comp [15]. We have brought precision improvements,
described below; they have proved decisive for the SoftwareSystems category.

Dynamic memory allocation precision improvements. Mopsa relies on
the recency abstraction [1] to handle dynamic allocation. For each allocation site,
this abstraction keeps the last allocated block separated from the others, the
latter being summarized into a single, weak memory block. Allocation sites are
customizable [14], they are usually based on a program location. However, this
summarization can be detrimental to precision. We implemented an alternative
abstraction that keeps memory blocks separated during loop unrolling. This
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 387–392, 2024.
https://doi.org/10.1007/978-3-031-57256-2_26

1 Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
raphael.monat@inria.fr

2 LIP6, Sorbonne Université, F-75005 Paris, France
3 École Normale Supérieure, Université PSL, F-75005 Paris, France

4 Grenoble, France

mailto:raphael.monat@inria.fr
https://orcid.org/0000-0001-8487-0326
https://orcid.org/0000-0002-6215-7359
https://orcid.org/0009-0001-7286-337X
https://orcid.org/0000-0001-7248-5914
https://orcid.org/0000-0002-6375-3179
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_26&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

enhancement, combined with targeted loop unrolling helped us verify more tasks,
including 246 from the uthash categories. Specifically, we proved correct half the
tasks of uthash-NoOverflow category, which are out of reach of the other verifiers.

Integer abstractions. Mopsa only supported convex representations of inte-
ger sets, such as intervals. As such, it was impossible to precisely represent cases
where x ∈ [−10, 10] and x ̸= 0. We have resolved this issue by adding an ex-
cluded set domain, which tracks a set of values a given variable cannot take. We
have also implemented the symbolic rewriting domain of Boillot and Feret [4],
which simplifies arithmetic expressions with overflows into simpler ones. This
new implementation has been written in 1,200 lines of OCaml code.

Improved precision for goto-based loops. Since the analyzer iterates on the
syntax of the program, goto statements require the usage of flows tokens [12] and
a special fixpoint iteration scheme. We added support for a decreasing iteration
pass, which allows to recover some precision after the generalization performed
by the widening operator. In addition, we added a syntactical loop rewriting
pass which turns few special goto patterns into equivalent while loops which are
analyzed more precisely.

Precise stub initialization. Ouadjaout and Miné [16] implemented a stub
language and its interpretation for the C standard library in Mopsa. Contiguous
region initialization through functions such as memset were not handled precisely
by our implementation of the cells domain [11], mainly to be scalable. We im-
proved the domain to handle region initialization up to a given bound, and NULL
pointer synthesis from a contiguous block of 0 bytes.

Other improvements. Some SV-Comp programs have specific symbolic ar-
gument initialization performed by client code, with variable parameters on the
maximal size of all symbolic arguments. We have thus extended Mopsa to handle
a wide range of parameters for symbolic argument initialization, matching those
found in SV-Comp programs. We also rely on the flambda optimizer for OCaml,
which brings more than a 15% performance improvements.

2 Software Architecture: the SV-Comp driver
By default, the C analysis of Mopsa detects all the runtime errors that may hap-
pen in the analyzed program, while SV-Comp tasks focus on a specific property
at a time. We thus rely on an SV-Comp specific driver. It takes as input the
task description (program, property, data model). It runs increasingly precise C
analyses defined in Mopsa until the property of interest is proved or the most
precise analysis is reached (or the resources are exhausted). Each analysis result
is postprocessed by the driver to check if the property is proved.

An analysis configuration defines the set of domains used, and their parame-
ters allowing modifications of the precision-efficiency ratio. A breakdown of the
results is shown in Fig. 1. This year, we use five configurations. Conf. 1 relies on
intervals and cells [11]. Conf. 2 additionally enables the string length domain [9],
the excluded powerset domain, and congruences. It performs decreasing itera-
tions for goto statements, unrolls the first 10 iterations of loops, enables the

388 R. Monat et al.

Mopsa-C: Improved Verification, Simple Witness Validation 389

Max. Conf. Tasks proved correct Tasks yielding timeout

1 6995 368
2 7775 (+780) 717 (+349)
3 8197 (+422) 2954 (+2237)
4 8257 (+60) 3527 (+573)
5 8400 (+143) 9532 (+6005)

Fig. 1. Max. Conf. i represents the sequence of increasingly precise analyses from
Conf. 1 up to Conf. i. Max. Conf. 2 is able to prove 780 tasks correct in addition to the
6995 proved by conf. 1, although 717 tasks reach the resource limits when analyzed by
Conf. 1 and 2 (349 more than by Conf. 1 alone). There are 25885 tasks in total, and
17851 correctness tasks. Mopsa can only prove program correctness for now (68% of
the tasks); it yields “unknown” when unable to prove a program correct.

enhanced memory allocation abstraction, and the more precise evaluation of
stubs. Conf. 3 adds a polyhedra abstract domain, relying on a static packing
to scale [7]. This includes tracking numerical relations between string lengths
and scalar variables. A pointer sentinel domain is added to symbolically track
the position of the first NULL value of a pointer array. Decreasing iterations are
also enabled for/while loops, and the first 15 iterations of loops are unrolled.
Conf. 4 adds the symbolic rewriting domain of Boillot and Feret [4]. Loop un-
rolling is extended to 60 iterations. Conf. 5 performs a fully relational analysis
of the analyzed program without packing.

Witness Validation. We extended our driver to support the witness validation
phase of SV-Comp: we inject loop invariants of a witness, encoded as assertions
into the original program. We then check that this patched program is correct.
This approach is similar to Metaval’s [3], but we used the new YAML format. The
work of Saan et al. [22] is more involved: it leverages the witness to guide their
analysis and yields precision improvements, compared to their bare analysis.

3 Strengths and Weaknesses

Mopsa participated in the following categories, targeting C programs: Reach-
Safety, MemSafety, NoOverflows and SoftwareSystems. It did not compete in
the termination category and cannot precisely analyze concurrency-related veri-
fication tasks. The highlight of this year’s participation is Mopsa’s gold medal in
the SoftwareSystems track, focusing on verifying real software systems. Mopsa
scored 2.5 times more points than the second tool, Bubaak-SpLit [5]. Figure 2
breaks down the results of Mopsa in the subcategories of the SoftwareSystems
track, highlighting our progress, and the best results obtained by this year’s
verifiers. An overview of results can be found in the competition report [2].

Strengths. Mopsa is quite scalable: our cheapest configuration is able to analyze
a given program within the allocated resource budget in 98.6% of the cases. In
addition, Mopsa is the only verifier of 2023 and 2024 able to gain points in the
DDLL category, corresponding to large instances of instrumented Linux drivers.

Category Prop. |tasks| Mopsa’23 Mopsa’24 Best score (2024)

AWS R 197 32 36 137 Symbiotic
coreutils M 140 0 0 0 _
coreutils N 30 0 4 4 Mopsa
BusyBox N 54 4 8 8 Mopsa
DDL R 2442 3174 3476 3476 Mopsa
DDLL R 8 10 14 14 Mopsa
DDL M 141 0 8 71 Bubaak-SpLit
other R 22 0 10 10 Mopsa
other M 34 0 12 12 Mopsa
uthash R 138 0 192 228 Bubaak*, Symbiotic
uthash M 138 0 96 204 Bubaak*, Symbiotic
uthash N 114 0 204 204 Mopsa

Fig. 2. Mopsa’s improvements for subcategories of the SoftwareSystems track. Property
is either ReachSafety, MemSafety or NoOverflow. The last three columns show the
score of Mopsa submitted last year, this year, and the best score reached by a verifier.

Mopsa is committed to being sound. Thanks to this, we have been able to fix 20
mislabeled verdicts this year, mainly in the DDL category (DeviceDriversLinux).

Weaknesses. Mopsa can only prove programs correct for now, and is currently
unable to provide counterexamples otherwise. We plan to leverage the recent
work of Milanese and Miné [10] to address this issue. Our SV-Comp driver cur-
rently tries a fixed sequence of increasingly precise configurations. We plan to
reuse information between the different analyses of the sequence, and automati-
cally adapt the options of Mopsa to the analyzed program (similar to Goblint’s
autotuning [21]). Our analysis is not competitive enough in the tracks besides
SoftwareSystems : we plan to add new array abstractions as well as a partitioning
mechanism. We also noted that Mopsa is imprecise on longjmp, following the
addition of recent benchmarks from Schwarz et al. [23] to SV-Comp.

Methodology. We finish this section by explaining how we worked to im-
prove Mopsa this year. We focused on the most important subcategories of Soft-
wareSystems. We encountered a few runtime errors in our analysis: we used
automated testcase reduction [18] to pinpoint these issues and fix them. We in-
vestigated several timeouts in the DeviceDriversLinux-Large (DDLL) category,
by using standard profiling tools (such as perf), but also by profiling which
parts of a given program took long to analyze through custom plugins. The rest
of the work consisted in performing manual inspection of some tasks to see how
we could improve precision. We started by choosing tasks solved by competing
tools relying on similar approaches, starting from Goblint [20, 21, 19].

4 Software Project and Contributors
Mopsa is available on Gitlab [17], and released under an GNU LGPL v3 license.
Mopsa was originally developed at LIP6, Sorbonne Université following an ERC
Consolidator Grant award to Antoine Miné. Mopsa is now additionally developed
in other places, including Inria, ENS Airbus, and Nomadic Labs. The people who
improved Mopsa for SV-Comp 2024 are the authors of this paper.

390 R. Monat et al.

Data-Availability Statement. The exact version of Mopsa and the driver
that participated in SV-Comp 2024 are available as a Zenodo archive [13].

Bibliography

[1] Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated stor-
age. In: SAS, Lecture Notes in Computer Science, vol. 4134, pp. 221–239,
Springer (2006)

[2] Beyer, D.: State of the art in software verification and witness validation:
SV-COMP 2024. In: Proc. TACAS, LNCS , Springer (2024)

[3] Beyer, D., Spiessl, M.: Metaval: Witness validation via verification. In: CAV
(2), Lecture Notes in Computer Science, vol. 12225, pp. 165–177, Springer
(2020)

[4] Boillot, J., Feret, J.: Symbolic transformation of expressions in modular
arithmetic. In: SAS, Lecture Notes in Computer Science, vol. 14284, pp.
84–113, Springer (2023)

[5] Chalupa, M., Richter, C.: Bubaak-SpLit: Split what you cannot verify
(competition contribution). In: Proc. TACAS, LNCS , Springer (2024)

[6] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL, pp. 238–252 (1977)

[7] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: Combination of abstractions in the Astrée static analyzer. In:
ASIAN, pp. 272–300 (2006)

[8] Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of
reusable abstract domains for a multilingual static analyzer. In: VSTTE,
pp. 1–18 (2019)

[9] Journault, M., Miné, A., Ouadjaout, A.: Modular static analysis of string
manipulations in C programs. In: SAS, pp. 243–262 (2018)

[10] Milanese, M., Miné, A.: Generation of Violation Witnesses by Under-
Approximating Abstract Interpretation. In: VMCAI, Springer (2024)

[11] Miné, A.: Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In: LCTES (2006)

[12] Monat, R.: Static Type and Value Analysis by Abstract Interpretation of
Python Programs with Native C Libraries. Ph.D. thesis, Sorbonne Univer-
sité, France (2021)

[13] Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A., Miné, A.:
Mopsa at sv-comp 2024 (Nov 2023), https://doi.org/10.5281/zenodo.
10198570

[14] Monat, R., Ouadjaout, A., Miné, A.: Value and allocation sensitivity in
static python analyses. In: SOAP@PLDI, pp. 8–13, ACM (2020)

[15] Monat, R., Ouadjaout, A., Miné, A.: Mopsa-c: Modular domains and re-
lational abstract interpretation for C programs (competition contribution).
In: TACAS (2), Lecture Notes in Computer Science, vol. 13994, pp. 565–570,
Springer (2023)

Mopsa-C: Improved Verification, Simple Witness Validation 391

https://doi.org/10.5281/zenodo.10198570
https://doi.org/10.5281/zenodo.10198570
https://doi.org/10.5281/zenodo.10198570
https://doi.org/10.5281/zenodo.10198570

[16] Ouadjaout, A., Miné, A.: A library modeling language for the static analysis
of C programs. In: SAS, pp. 223–247 (2020)

[17] Ouadjaout, A., Monat, R., Miné, A., Journault, M.: Mopsa (2022), URL
https://gitlab.com/mopsa/mopsa-analyzer

[18] Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case
reduction for C compiler bugs. In: PLDI, pp. 335–346, ACM (2012)

[19] Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S., Voj-
dani, V., Seidl, H.: Goblint: Abstract interpretation for memory safety and
termination (competition contribution). In: Proc. TACAS, LNCS , Springer
(2024)

[20] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani,
V.: Goblint: Thread-modular abstract interpretation using side-effecting
constraints - (competition contribution). In: TACAS (2021)

[21] Saan, S., Schwarz, M., Erhard, J., Pietsch, M., Seidl, H., Tilscher, S., Vo-
jdani, V.: Goblint: Autotuning thread-modular abstract interpretation
(competition contribution). In: Proc. TACAS (2), LNCS , Springer (2023)

[22] Saan, S., Schwarz, M., Erhard, J., Seidl, H., Tilscher, S., Vojdani, V.: Cor-
rectness witness validation by abstract interpretation. In: VCMAI, LNCS ,
Springer (2024)

[23] Schwarz, M., Erhard, J., Vojdani, V., Saan, S., Seidl, H.: When long jumps
fall short: Control-flow tracking and misuse detection for non-local jumps
in C. In: SOAP@PLDI, pp. 20–26, ACM (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

392 R. Monat et al.

https://gitlab.com/mopsa/mopsa-analyzer
http://creativecommons.org/licenses/by/4.0/

PROTON: PRObes for Termination Or Not
(Competition Contribution)

Ravindra Metta1,2 ⋆(�) , Hrishikesh Karmarkar1 , Kumar Madhukar3 ,

1 TCS Research, Tata Consultancy Services, Pune, India
{r.metta,hrishi.karmarkar,r.venky}@tcs.com

2 School of CIT, Technical University of Munich, Munich, Germany

madhukar@cse.iitd.ac.in

supratik@cse.iitb.ac.in

Abstract. PROTON is a tool to check whether a given C program has
a non-terminating behaviour or not. It is built around the C Bounded
Model Checker (CBMC). CBMC cannot prove non-termination directly,
as all non-terminating runs are unbounded. PROTON annotates the
loops in a given program with assertions that check for a recurrent pro-
gram state. Violation of such an assertion shows the existence of a re-
current state and thereby proves non-termination. PROTON also trans-
forms the violating trace returned by CBMC into a non-termination
witness for the program.

P , or give a correct
verdict that P always terminates. For termination checking, PROTON reuses
the high confidence, but unsound, technique used in VeriFuzz 1.4 [9]. For proving
non-termination, PROTON implements a novel sound technique that attempts
to discover recurrent states inside loops. A recurrent state (RS) is a program
state at the head of a loop such that (1) RS entails the loop guard; (2) RS is
reachable from an initial state in some valid program execution and (3) RS is
reachable from itself after the loop body is executed. This notion of an RS is a
strengthening of the recurrent set definition proposed in [5].
Consider the example program P in Listing 1.1, adapted from the SV-COMP
benchmark WhileSingle.c. This program does not terminate for any nondet
value ≤ 3. For example, if nondet value on Line 1 is 3, then the if-condition
on Line 3 gets evaluated to false and hence the value of i remains unchanged,
causing the loop to run infinitely. PROTON works in three main phases, as
described below.

⋆ Jury member

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 393–398, 2024.
https://doi.org/10.1007/978-3-031-57256-2_27

R. Venkatesh1, and Supratik Chakraborty4

3 Dept. of Computer Science and Engineering, IIT Delhi, New Delhi, India

4 Dept. of Computer Science and Engineering, IIT Bombay, Bombay, India

1 Introduction

Given a program P for which we want to check termination under all inputs,
a checker should either provide a witness for non-termination of

http://orcid.org/0000-0001-7368-2389
http://orcid.org/0000-0002-9132-8356
http://orcid.org/0000-0001-5686-9758
http://orcid.org/0000-0002-7527-7675
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_27&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

Listing 1.1. Program P

1 i = __VERIFIER_nondet_int();

2 while (i < 10) {

3 if (i != 3) {

4 i = i+1;

5 }

6 }

Listing 1.2. Program P ′

1 i = __VERIFIER_nondet_int();

2 bool pStored0 = false;

3 while (i < 10) {

4 bool flag = __VERIFIER_nondet_bool();

5 static int oi; if(pStored0)

6 {__CPROVER_assert(!(oi==i),"RSF");}

7 if(flag){oi=i;pStored0=true;}

8 { if (i != 3) { i = i+1; }}}

Phase 1 - Program Instrumentation: PROTON instruments each loop in
P with a CPROVER assert to check for a recurrent state. This is illustrated
in Listing 1.2. PROTON first parses P using various Clang/LLVM APIs and
collects the set of all program variables visible in the scope of each loop Lk in
P . Following this, PROTON instruments each Lk as follows:-

– A boolean variable pStoredk is introduced just before the loop-guard of Lk

and initialized to false (Line 2 of Listing 1.2).
– Another boolean variable flag is added inside the loop, immediately past the

guard condition, which is nondeterministically initialized (Line 3).
– For each variable i, visible in the scope of Lk, a corresponding static variable

oi; i.e. i prefixed with o is added, which tracks the “old” value of i (Line 5).
– An assertion that the “old” state of P never repeats in any later iteration of

Lk (lines 5 and 6) is added.
– If flag is true, then the program state is stored as shown on line 7, and

pStoredk is set to true.
– Lastly, PROTON emits the loop body as is, but enclosed in braces (Line 8).

The above instrumentation ensures that the assertion gets checked (due to
the if-condition on Line 5), in every iteration after the one in which the state
is stored, as pStoredk is set to true after this if-statement. So, in the very first
iteration in which the program state is stored, the assertion is not invoked.

Phase 2 - Bounded Model Checking for recurrent states: After in-
strumenting P , PROTON iteratively invokes CBMC for different unwind bounds
until a pre-configured max unwind bound (empirically chosen to be 1000, for SV-
COMP 2024) for a pre-configured time limit (set to 2 minutes for SV-COMP
2024). If the recurrent state assertion ever gets violated, it proves the presence of
a recurrent state and hence non-termination. When this happens, CBMC gen-
erates a corresponding counterexample trace. During Phase 1 described above,
PROTON does additional instrumentation (not shown in Listing 1.2 for want of
space) to help generate a corresponding non-termination witness in the graphml

PROTON: PRObes for Termination Or Not (Competition Contribution) 394

This encoding allows a bounded model checker like CBMC [3,4] to check if the
program state stored during a non-deterministically chosen iteration of Lk recurs
during any subsequent iteration of Lk, subject to the loop iteration bound used
for checking.

format. If the recurrent state assertion does not get violated until the max bound
or if it times out, then PROTON moves to Phase 3, described below.

2 Software Architecture

P PbBracer Instrumenter RSA?

Iterative RSA
Check CBMC

YES

NT? Generate
Witness

YES

VeriFuzz 1.4
Termination

Check
T?

Report NT

Report T UNKNOWN or
ERROR

NO

NO

YES

NO

Pi

Fig. 1. PROTON architecture

Currently PROTON checks only termination and non-termination of pro-
grams. Figure 1 shows the tool flow of PROTON. Given an input program P ,
PROTON first invokes Bracer, which simply adds curly braces around all loop
bodies in P to produce Pb. PROTON then invokes Instrumenter on Pb, which
instruments Pb, as described in Phase 1, to produce Pi. Sometimes, due to in-
ternal errors, the Instrumenter may not be able to instrument the program. So,
PROTON then checks if Pi has at least one Recurrent State Assertion (RSA).
If so, it performs the non-termination check as described in Phase 2 above and
generates a corresponding witness if it detects non-termination.

PROTON is built using CBMC v5.95.0 [3] with Z3 4.12.2 [10] and Glucose
Syrup [1] as the backend SMT and SAT solvers respectively. The Bracer and
Instrumenter were implemented in C++ using the clang-14 and llvm-14 libraries.
The tool flow is implemented in a bash shell script.

395 R. Metta et al.

Phase 3 - Value-Bounded Termination Check In this phase, entered
only if PROTON could not find a non-termination witness in Phase 2, PROTON
invokes the termination check of VeriFuzz 1.4 [9], which is reimplemented in
PROTON, for a pre-configured time limit (set to 2 minutes for SV-COMP 2024).

If Pi does not contain any RSA, or if this non-termination check is unsuccess-
ful, PROTON then invokes confidence based termination check on P , mentioned
in Phase 3 above. If this termination check concludes that P terminates, PRO-
TON reports P to be terminating. Else, PROTON reports either UNKNOWN
(when both checks failed) or ERROR (if there is any internal error).

3 Strengths and Weaknesses

Here we present our analysis of strengths and weaknesses of PROTON’s non-
termination check, as that is the main novelty of PROTON.
Strengths: Of the 818 Non-termination tasks in SV-COMP 2024 [2], PROTON
correctly solved 627, out of which 501 witnesses could be successfully validated.
There are 18 tasks, all from systemc directory, such as token ring.10.cil-1.c

and transmitter.08.cil.c, for which PROTON was the only tool in the com-
petition that could identify them as non-terminating. These programs have sev-
eral function calls and while loops, with around 1000 lines of code. However,
none of the corresponding witnesses generated by PROTON could be validated.
Further, the total time taken by PROTON for the 818 tasks is 37000 seconds,
which is well below other top tools such as ULTIMATE Automizer [6] (correct
solved: 548, confirmed: 537, time 100000 seconds) and 2LS [8] (correctly solved:
685, confirmed: 484, time: 52000 seconds). This shows that PROTON’s approach
of checking for recurrent sets at shallow loop unwinding depths is both effective
and efficient.
Weaknesses: As mentioned above in Phase 2 - Bounded Model Checking for
recurrent states, PROTON checks for a recurrent state only up to an unwind
to 1000 in SV-COMP 2024. Therefore, it cannot handle cases where recurrent-
states occur beyond this unwind bound, such as in cohencu1-both-nt.c, where
the first recurrent state occurs after 232 iterations. Another technical limita-
tion of our approach is the inability to handle arrays, as it requires instru-
menting each array element, which does not scale for large arrays. So, we cur-
rently ignore loops that modify arrays, and hence could not solve cases such as
Arrays02-EquivalentConstantIndices.c. Also, since our instrumenter does
not handle recursion currently, PROTON could not identify benchmarks like
RecursiveNonterminating-1.c as non-terminating. Lastly, due to a bug in the
instrumenter

4 Tool Configuration and Setup

5 Software Project and Contributors

PROTON is developed and maintained by the authors at IIT Delhi, TCS Re-
search, and IIT Bombay. We thank everyone who has contributed to the devel-
opment of PROTON, Clang and LLVM Infrastructure, CBMC, Glucose Syrup,
and Z3.

PROTON: PRObes for Termination Or Not (Competition Contribution) 396

, one pointer was nottracked by our insutrmenter, leading to
TON incorrectly reporting the program as non-terminating.

PROTON comes with an MIT license, and is available at [7,11]. To install
and run the tool, follow the instructions in the file named README.txt.
The benchexec tool-info module is PROTON.py and the benchmark definition
file is PROTON.xml. A sample run command is: PROTON --graphml-witness

witness.graphml --propertyfile termination.prp --64 example.c.

PROTON opted to participate only in the Termination category in SV-COMP 2024.

PRO-

6 Data-Availability Statement

PROTON is publicly available at https://github.com/kumarmadhukar/term.
The SV-COMP 2024 competition version of PROTON is available at Zenodo:
https://doi.org/10.5281/zenodo.10185252. For any queries, please contact the
authors.

References

1. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
pp. 1840001:1–1840001:25 (2018). https://doi.org/10.1142/S0218213018400018

2. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

3. C Bounded Model Checker. https://github.com/diffblue/cbmc
4. Clarke E., Kroening D., L.F.: A tool for checking ansi-c programs. In: TACAS. pp.

168–176 (2004). https://doi.org/10.1007/978-3-540-24730-2 15
5. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving

non-termination. In: POPL. pp. 147–158. ACM (2008)
6. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele, F.,

Podelski, A.: Ultimate Automizer 2024 (competition contribution). In: Proc.
TACAS. LNCS , Springer (2024)

7. Karmarkar, H., Madhukar, K., Metta, R.: Proton sv-comp 2024 competition version
(Nov 2023). https://doi.org/10.5281/zenodo.10185252, https://doi.org/10.5281/
zenodo.10185252

8. Maĺık, V., Schrammel, P., Vojnar, T., Nečas, F.: 2LS: Arrays and loop unwind-
ing (competition contribution). In: Proc. TACAS (2). pp. 529–534. LNCS 13994,
Springer (2023). https://doi.org/10.1007/978-3-031-30820-8 31

9. Metta, R., Yeduru, P., Karmarkar, H., Medicherla, R.K.: Verifuzz 1.4: Checking
for (non-)termination (competition contribution). In: Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13994, pp. 594–599. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8 42

10. Moura, L.M.d., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS. pp. 337–340
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. Proton github. https://github.com/kumarmadhukar/term (2023), accessed: 22-
Dec-2023

397 R. Metta et al.

https://github.com/kumarmadhukar/term
https://doi.org/10.5281/zenodo.10185252
https://doi.org/10.1142/S0218213018400018
https://github.com/diffblue/cbmc
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.5281/zenodo.10185252
https://doi.org/10.5281/zenodo.10185252
https://doi.org/10.5281/zenodo.10185252
https://doi.org/10.1007/978-3-031-30820-8_31
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/kumarmadhukar/term

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

PROTON: PRObes for Termination Or Not (Competition Contribution) 398

http://creativecommons.org/licenses/by/4.0/

SWAT: Modular Dynamic Symbolic Execution for
Java Applications using Dynamic Instrumentation

(Competition Contribution)

⋆, Felix Mächtle, Florian Sieck, and Thomas Eisenbarth

{n.loose,f.maechtle,florian.sieck,thomas.eisenbarth}@uni-luebeck.de

Abstract. SWAT is a novel dynamic symbolic execution engine for Java
applications utilizing dynamic instrumentation. SWAT’s unique modular
design facilitates flexible communication between its symbolic explorer
and executor using HTTP endpoints, thus enhancing adaptability to di-
verse application scenarios. The symbolic executor’s ability to attach to
Java applications enables efficient constraint generation and path explo-
ration. SWAT employs JavaSMT for constraint generation and ASM for
bytecode instrumentation, ensuring robust performance. SWAT’s efficacy
is evaluated in the Java Track of SV-COMP 2024, achieving fourth place.

Keywords: Dynamic Symbolic Execution · Java · Dynamic Instrumen-
tation

1 Verification Approach

The symbolic execution of a System-under-Test (SuT) is a well-known verifica-
tion technique where the state space is systematically explored by using con-
straint modeling to compute new valid inputs for the SuT. Dynamic Symbolic
Execution (DSE), in particular, has shown recent successes with JDart [15] win-
ning the Java track of SV-COMP 2022 [4] as the first DSE tool and GDart [16]
achieving second place in 2023 [5]. Generally, DSE utilizes a symbolic executor
to evaluate a SuT by observing the concrete execution for a given assignment
of the symbolic variables. Constraints are recorded during execution, reflecting
all operations involving symbolic variables. In particular, each branching point
that depends on a symbolic variable is modeled as a path constraint. After the
execution terminates, the symbolic explorer can select a previously unexplored
branch. Given the recorded constraints, an SMT solver is used to determine
whether a model for the symbolic variables under the given constraints exists. If
so, a concrete instantiation for each value can be obtained to drive execution to
previously unexplored regions of the state space. By repeating this process, the
state space of the SuT can be systematically explored.

JDart, the winning candidate from 2022, relies on Java Pathfinder (JPF)
[9] and its implementation of the Java Virtual Machine (JVM) for symbolic
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 399–405, 2024.
https://doi.org/10.1007/978-3-031-57256-2_28

Nils Loose(B)

Institute for IT Security, University of Lübeck, Lübeck, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_28&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

execution [15]. While the JPF-JVM offers robust analysis tools, it limits JDart’s
applicability and causes a significant overhead. Coastal [8], on the other hand,
relies on a standard JVM. The symbolic execution is realized using dynamic
instrumentation. While Coastal provides a loosely coupled design between the
symbolic execution engine and the symbolic explorer, both components are still
located in the same Java program used as the driver to start and execute the
SuT symbolically. GDart extends the notion of modularity introduced by Coastal
with a fully decoupled explorer and executor that communicate using a custom
protocol [16]. SWAT offers a fully modular design comparable to GDart while
relying on HTTP endpoints for communication between the symbolic explorer
and executor. In addition, GDart relies on the GraalVM [20] for driving symbolic
execution while SWAT attaches to the SuT, thus enabling symbolic execution
inside native JVM implementations.

2 System Architecture

SWAT’s decoupled design allows for a persistent symbolic explorer that receives
relevant information from instances of the symbolic executor. The executor ob-
serves the SuT by attaching to the JVM and adding symbolic capabilities using
dynamic instrumentation. An overview of the design and interaction between the
different components is shown in Figure 1 and described in more detail below.

Symbolic executor The executor attaches to the JVM running the SuT via
the Java agent interface and dynamically instruments each class at load time with
additional (non-interfering) instructions that dynamically build and manage a
symbolic shadow state responsible for maintaining the symbolic constraints. This
leads to a symbolic executor that does not actively drive symbolic execution and
instead records relevant information during normal execution. SWAT utilizes the
ASM framework [6] for bytecode manipulation via the Java.lang.instrument
API [17]. Historically, this part builds on CATG [19] as a basis for dynamic
symbolic execution. Significant parts of CATG are reworked, and the language
support is lifted to Java 17, including most of its features. The symbolic shadow
state and the symbolic constraint handling are extended and wholly rewritten to
utilize the API offered by JavaSMT [1] as an abstraction layer between constraint
generation and the solver. The symbolic scope and variables, as well as the
entry and exit points for symbolic tracking, are fully configurable, allowing for
broad applicability of the system. The instrumentation logic is also modularized,
allowing us to easily extend SWAT to various use cases, such as the SV-COMP.

When the execution of the SuT reaches a symbolic entry point, the symbolic
executor records control-flow information as well as the constraints, and after the
exit point has been reached, both the trace and the corresponding constraints are
sent to the symbolic explorer using HTTP requests. Constraints are serialized
using the SMT-LIB v2 [3] format.

Symbolic explorer The explorer, written in Python using the FastAPI [18]
web framework, receives the language agnostic trace and constraint information.
These are stored in a binary execution tree. The tree can be searched using a

400 N. Loose et al.

SWAT: Modular Dynamic Symbolic Execution for Java 401

JVM

Symbolic Executor

ASM [6]

JavaSMT [1]

Java Agent

MemoryClass Loader

Instrumentation
void doPost(String);

...
4: invokestatic #13
...
8: aload_1
9: dup
10: invokestatic #20
11:invokevirtual #15
...

Instrumented Class

Symbolic Execution Support Library

Trace

Constraints

Shadow
State

void INIT(...);

void ...

void INVOKEVIRTUAL(...);

void ...

Symbolic Explorer

Strategy

HTTP API

Execution tree

Solver
Solver

SMT Solver

Z3 [14]
...

...

CVC5 [2]

SWAT
.jar

SuT
.jar

Fig. 1. Schematic overview of SWAT’s modular architecture.

configurable and modularized strategy to select unexplored branches. To obtain
new inputs, the constraints are sent to Z3 [14]. The inputs can either be made
available to external drivers, such as fuzzers, using an endpoint or, in the case of
SV-COMP, are directly used to initiate a new concrete execution. This structure
makes SWAT widely applicable and even enables straightforward testing of web
services, for example, where each controller is configured as the entry and exit
point and user-controlled values are tracked symbolically. This allows the same
JVM to keep running in between symbolic runs and even allows for multiple
(non-interfering) executions in parallel.

3 Evaluation

In the first participation on the Java category of SV-COMP 2024, SWAT reached
fourth place with 566 out of 828 total points while MLB [7], the winning can-
didate, scored 676 points. Overall, SWAT correctly classified 68% of test cases.
Figure 2a visualizes the result distribution for test cases containing violations
and those without. The number of correctly classified cases is similar for both
groups. However, due to issues during witness generation, several correctly iden-
tified violations did not produce correct witnesses. Hence, without considering
the witnesses, the number of identified violations rises significantly from 68% to
83%. Generally, DSE frameworks are expected to identify violations (one con-
crete path) better than proving their absence (full state-space exploration). This
is also reflected in the distribution of timeouts, with a five times increase between
violation and safe test cases. Roughly 10% of test cases are labeled as unknown
by SWAT. This case comprises several possibilities: Out-of-scope invocations

0 0.2 0.4 0.6 0.8 1

MinePump

Algorithms
Java Ranger Reg.

Jayhorn Rec.

JBMC Reg.
JDart Reg.

(a) SWAT results for safe and violation test cases (b) SWAT results for each subcategory

JPF Reg.No Violation

Violation

Juliet Java

Securibench

SWAT status

Correct
Unconfirmed
Unknown
Timeout
Error

0.17

0.03
0.01
0.03

0.110.15

0.12

0.69

0.68

Fig. 2. SWAT results divided based on the ground truth of each test case (a) and
results for each subcategory of the Java category (b).

without a symbolic model, inability to determine satisfiability or unsupported
behavior such as uncaught exceptions.

Further dividing the results based on the different subgroups (see Figure 2b)
highlights differences in the status distributions. SWAT generally performs well
for regression test categories, as these usually test specific functionalities, re-
sulting in small programs that do not lead to a state space explosion. With the
increasing complexity of test suites, the number of timeouts is expected to rise.
The Jayhorn recursive test cases cause many timeouts as SWAT currently does
not support advanced recursion handling. Lastly, SWAT is holistically unable to
solve the test cases provided by the Juliet test suite due to the extensive use of
socket connections, which require explicit mocking.

While the results demonstrate the impact of state space explosion on the
performance of DSE engines, generally, the results highlight the potential of
SWAT, especially when considering the overhead incurred by starting a new
JVM instance for each run of the test case. In SWAT’s current form, this causes
instrumentation at each iteration whereas test cases that can be re-initiated
without restarting the JVM would result in significantly faster executions.

4 Software Project

SWAT is developed by the Institute for IT Security at the University of Lübeck
and published on GitHub [12] under the BSD 2-Clause. Installation instructions,
documentation, and examples can be found on our GitHub Page [11]. Global
configuration options chosen for the participation include the exclusive usage
of the Z3 [14] solver, a breadth-first search strategy, and an SV-COMP specific
driver modules inside the symbolic explorer and executor.

Data-Availability Statement The version of SWAT used for the SV-
COMP 2024 Java category is available at Zenodo [13] and on GitHub [10].

5 Acknowledgments

This work has been supported by the Bundesministerium für Bildung und For-
schung (BMBF) through the PeT-HMR project.

402 N. Loose et al.

References

1. Baier, D., Beyer, D., Friedberger, K.: Javasmt 3: Interacting with SMT solvers
in java. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification -
33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12760, pp.
195–208. Springer (2021). https://doi.org/10.1007/978-3-030-81688-9_9, https:
//doi.org/10.1007/978-3-030-81688-9_9

2. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,
Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner,
M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and
industrial-strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13243, pp.
415–442. Springer (2022). https://doi.org/10.1007/978-3-030-99524-9_24, https:
//doi.org/10.1007/978-3-030-99524-9_24

3. Barrett, C., Stump, A., Tinelli, C., et al.: The smt-lib standard: Version 2.0. In:
Proceedings of the 8th international workshop on satisfiability modulo theories
(Edinburgh, UK). vol. 13, p. 14 (2010)

4. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Fisman, D.,
Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Ger-
many, April 2-7, 2022, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 13244, pp. 375–402. Springer (2022). https://doi.org/10.1007/978-3-030-99527-
0_20, https://doi.org/10.1007/978-3-030-99527-0_20

5. Beyer, D.: Competition on software verification and witness validation: Sv-
comp 2023. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems. pp. 495–522. Springer Nature
Switzerland, Cham (2023)

6. Bruneton, E., Lenglet, R., Coupaye, T.: Asm: a code manipulation tool to im-
plement adaptable systems. Adaptable and extensible component systems 30(19)
(2002)

7. Bu, L., Liang, Y., Xie, Z., Qian, H., Hu, Y., Yu, Y., Chen, X., Li, X.: Machine
learning steered symbolic execution framework for complex software code. For-
mal Aspects Comput. 33(3), 301–323 (2021). https://doi.org/10.1007/S00165-021-
00538-3, https://doi.org/10.1007/s00165-021-00538-3

8. Geldenhuys, J., Visser, W.: Coastal. https://github.com/DeepseaPlatform/
coastal, accessed 12/2023

9. Havelund, K., Pressburger, T.: Model checking JAVA programs using
JAVA pathfinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381
(2000). https://doi.org/10.1007/S100090050043, https://doi.org/10.1007/
s100090050043

10. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: SWAT Competition Version.
https://github.com/SWAT-project/SWAT/tree/SV-COMP-Submission-2024, ac-
cessed 12/2023

11. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: SWAT Documentation. https:
//swat-project.github.io/docs/, accessed 12/2023

SWAT: Modular Dynamic Symbolic Execution for Java 403

https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/S00165-021-00538-3
https://doi.org/10.1007/S00165-021-00538-3
https://doi.org/10.1007/s00165-021-00538-3
https://github.com/DeepseaPlatform/coastal
https://github.com/DeepseaPlatform/coastal
https://doi.org/10.1007/S100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://github.com/SWAT-project/SWAT/tree/SV-COMP-Submission-2024
https://swat-project.github.io/docs/
https://swat-project.github.io/docs/

12. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: SWAT Repository. https://
github.com/swat-project/swat, accessed 12/2023

13. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: Swat (2023).
https://doi.org/10.5281/zenodo.10418643, https://doi.org/10.5281/zenodo.
10418643

14. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3_24, https://doi.org/10.1007/978-3-540-78800-3_24

15. Mues, M., Howar, F.: Jdart: Dynamic symbolic execution for java bytecode
(competition contribution). In: Biere, A., Parker, D. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 26th International Con-
ference, TACAS 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12079, pp.
398–402. Springer (2020). https://doi.org/10.1007/978-3-030-45237-7_28, https:
//doi.org/10.1007/978-3-030-45237-7_28

16. Mues, M., Howar, F.: Gdart: An ensemble of tools for dynamic symbolic exe-
cution on the java virtual machine (competition contribution). In: Fisman, D.,
Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Ger-
many, April 2-7, 2022, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 13244, pp. 435–439. Springer (2022). https://doi.org/10.1007/978-3-030-99527-
0_27, https://doi.org/10.1007/978-3-030-99527-0_27

17. Oracle: Java Instrumentation. https://docs.oracle.com/en/java/javase/17/
docs/api/java.instrument/java/lang/instrument/package-summary.html, ac-
cessed 12/2023

18. Ramírez, S.: FastAPI, https://github.com/tiangolo/fastapi, accessed 12/2023
19. Tanno, H., Zhang, X., Hoshino, T., Sen, K.: Tesma and CATG: Automated test

generation tools for models of enterprise applications. In: Bertolino, A., Canfora,
G., Elbaum, S.G. (eds.) 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2. pp. 717–720.
IEEE Computer Society (2015). https://doi.org/10.1109/ICSE.2015.231, https:
//doi.org/10.1109/ICSE.2015.231

20. Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer,
C., Richards, G., Simon, D., Wolczko, M.: One VM to rule them all.
In: Hosking, A.L., Eugster, P.T., Hirschfeld, R. (eds.) ACM Symposium on
New Ideas in Programming and Reflections on Software, Onward! 2013, part
of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013. pp. 187–204.
ACM (2013). https://doi.org/10.1145/2509578.2509581, https://doi.org/10.
1145/2509578.2509581

404 N. Loose et al.

https://github.com/swat-project/swat
https://github.com/swat-project/swat
https://doi.org/10.5281/zenodo.10418643
https://doi.org/10.5281/zenodo.10418643
https://doi.org/10.5281/zenodo.10418643
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-030-99527-0_27
https://docs.oracle.com/en/java/javase/17/docs/api/java.instrument/java/lang/instrument/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.instrument/java/lang/instrument/package-summary.html
https://github.com/tiangolo/fastapi
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

SWAT: Modular Dynamic Symbolic Execution for Java 405

http://creativecommons.org/licenses/by/4.0/

Symbiotic 10: Lazy Memory Initialization
and Compact Symbolic Execution∗

(Competition Contribution)

Abstract. Symbiotic 10 brings four substantial improvements. First,
we extended our clone of Klee called JetKlee with lazy memory ini-
tialization. With this extension, JetKlee can symbolically execute a
function without knowing its context. In SV-COMP, we use it to han-
dle extern variables. Second, we have implemented the technique called
compact symbolic execution to Slowbeast. Third, we have implemented
a non-trivial may-happen-in-parallel analysis, which improves slicing of
parallel programs. Finally, we have implemented support for violation
witnesses in the new witness format 2.0.

1 Verification Approach

Just like previous versions, Symbiotic 10 relies on a combination of static anal-
ysis, code instrumentation, and several flavors of symbolic execution (SE) [8]. It
employs two symbolic executors: Slowbeast and our fork of Klee [2] called
JetKlee. Slowbeast implements standard (forward) SE, backward SE with
loop folding [5], and compact SE [13]. JetKlee implements standard SE.

The rest of the section describes the precise workflow for various types of
properties and discusses the differences between Symbiotic 10 and Symbi-
otic 9.1, which is the version that competed in SV-COMP 2023.

Verification of the Property unreach-call For this property, Symbiotic 10
performs slicing of the given program to remove the parts that have no influence
on reaching the target function, and executes sequential portfolio of the following
engines. Each of the engines is executed for the given number of seconds. The
execution can be shorter if the engine decides or fails to decide, e.g., due to an
unsupported feature of the input program like threads or symbolic floats.

1. Forward symbolic execution by JetKlee for 333 seconds. JetKlee is ef-
ficient industrial-strength symbolic executor and most of the solved bench-
marks are solved by JetKlee.

∗ This work has been supported by the Czech Science Foundation grant GA23-06506S.
B Jury member

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 406–411, 2024.
https://doi.org/10.1007/978-3-031-57256-2_29

Martin Jonáš1(B) , Kristián Kumor1, Jakub Novák1, Jindřich Sedláček1,
Marek Trt́ık1 , Lukáš Zaoral2, Pauĺına Ayaziová1 , and Jan Strejček1

1 Masaryk University, Brno, Czech Republic
martin.jonas@mail.muni.cz

2 Red Hat, Brno, Czech Republic

http://orcid.org/0000-0003-4703-0795
http://orcid.org/0009-0009-6122-9574
http://orcid.org/0000-0003-1072-8137
http://orcid.org/0000-0001-5873-403X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_29&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

2. Compact symbolic execution (CSE) [13] by Slowbeast for 60 seconds. In
most cases, CSE either finishes quickly or brings no benefit compared to
standard forward symbolic execution.

3. Backward symbolic execution with loop folding (BSELF) [5] by Slowbeast
without time limit.

4. If BSELF fails, we perform forward symbolic execution by Slowbeast with-
out time limit. The reason for this is that Slowbeast has better support
for floating point arithmetic and threads than JetKlee.

If an error is found by any of the engines, it is replayed on the unsliced
code. If the replay succeeds, we generate a violation witness. If the program
is decided safe by BSELF, we generate a correctness witness containing the
generated invariants. The other engines do not support invariant generation,
therefore if the program is decided safe by any other of the engines, we generate
a trivial correctness witness.

Verification of Other Properties For other properties, Symbiotic 10 uses
the same workflow as Symbiotic 9 [4]. In a nutshell, we identify program in-
structions that can violate the property, instrument the program with code that
dynamically checks the property violation before each of the identified instruc-
tions, slice the program, and run either JetKlee or Slowbeast.

Compact Symbolic Execution We extended Slowbeast with compact sym-
bolic execution (CSE) [13]. CSE analyzes each looping path of the execution and
tries to summarize it by a quantified formula that describes the effect of κ iter-
ations of that cyclic path, where κ is a free variable. For example, if we apply
compact symbolic execution to the loop

while (i < n) { if (A[i] = 0) { break; }; i += 2; },
the path condition will be augmented by the quantified formula

κ ≥ 0 ∧ ∀τ. (0 ≤ τ < κ → (i+ 2τ < n ∧A[i+ 2τ] ̸= 0)) .

This allows symbolic execution to fully explore some programs with unbounded
loops and find deep counterexamples. However, it works only for looping paths
of specific form and requires potentially expensive quantified smt reasoning.

Lazy Memory Initialization We extended JetKlee with lazy memory ini-
tialization, which constructs symbolic memory objects lazily during the first
access to that object, not during its initialization. This allows isolated symbolic
execution of functions without knowing their arguments and calling context. As
all programs in SV-COMP start with the main function and there is no need to
analyze an isolated function, we use this feature in the competition only to sup-
port externally defined variables. Note that this cannot be achieved by merely
making the externally defined variable symbolic, as it can be a pointer to exter-
nal memory, which needs to be properly initialized. For this reason, externally
defined variables were not supported by the previous version of Symbiotic.

Symbiotic 10: Lazy Memory Initialization and CSE 407

Table 1. The comparison of Symbiotic 9.1 and Symbiotic 10 on the intersection of
benchmarks from SV-COMP 2023 and SV-COMP 2024. The table is computed from
the official results of SV-COMP 2023 and SV-COMP 2024.

Property Benchmarks Both solved Only 10 solved Only 9.1 solved

no-data-race 783 0 0 0
no-overflow 7502 442 4102 1
termination 1809 1220 10 31
unreach-call 9537 3577 116 225
valid-memcleanup 61 35 0 0
valid-memsafety 4113 416 1427 34

May-Happen-in-Parallel Analysis We improved slicing of parallel programs
by employing a static may-happen-in-parallel analysis [11], which overapproxi-
mates the set of pairs of program locations that can happen in parallel in different
threads. Previously, Symbiotic assumed that all possible pairs of instructions
can happen in parallel, which reduced effectivity of slicing. The implementation
currently does not consider thread synchronization. For more details, see the
bachelor’s thesis about the implementation [12]. In the future, we want to use
this analysis also for proving some no-data-race properties.

Other Changes All external dependencies of Symbiotic 10 have been updated
to newer versions and all parts of Symbiotic 10 have been ported to llvm 14.
Notably, this concerns JetKlee, into which we merged most of the upstream
changes from the base Klee (more than 300 commits).

We extended JetKlee with support for generating yaml-based violation
witnesses in witness format 2.03. Slowbeast still supports only the older wit-
ness format 1.0 based on GraphML.

We also fixed incorrect overflow checking of 64-bit integers and incorrect
modeling of fscanf for the purposes of static analysis and instrumentation. Due
to these problems, Symbiotic 9.1 did not support any of *-Juliet benchmarks,
which are now fully supported.

Unlike the previous versions of Symbiotic, Symbiotic 10 does not employ
Predator [6] as a static analyzer. This is due to technical difficulties during
porting our version of Predator to llvm 14. This is a temporary solution and
we plan include Predator in the future versions of Symbiotic.

2 Strengths and Weaknesses

Standard forward symbolic execution suffers from path explosion and is unable
to fully analyze programs with unbounded loops. Backward symbolic execution
with loop folding and compact symbolic execution can finish analysis even for

3 https://gitlab.com/sosy-lab/benchmarking/sv-witnesses

408 M. Jonáš et al.

https://gitlab.com/sosy-lab/benchmarking/sv-witnesses

some programs with unbounded loops, yet they still suffer from path explosion
and will time out on programs with a large number of branching paths.

The results of SV-COMP 2024 show that the combination of static analysis,
instrumentation, program slicing, and several variants of symbolic execution are
efficient in practice, in particular for bug hunting. The static analyses are often
able to prove that some parts of the code are correct or do not influence the
property. These parts of the code then can be removed by slicing. This partly
mitigates the scalability problem caused by path explosion.

Results of Symbiotic 10 in SV-COMP 2024 Symbiotic 10 participated
in all categories of SV-COMP 2024 for C programs. It won silver medals in
categories MemSafety and FalsificationOverall [1]. Symbiotic 10 produced 19
wrong answers; most of these are caused by imprecise modeling of the system
functions setlocale and getopt long. They are not fundamental problems of
the approach and will be fixed.

Table 1 compares the results of Symbiotic 9.1 in SV-COMP 2023 and
Symbiotic 10 in SV-COMP 2024 on the benchmarks that were used in both
years. Symbiotic 10 was able to correctly solve 5655 benchmarks that were not
solved by Symbiotic 9.1. From these, 5366 benchmarks (3990 no-overflow +
1376 valid-memsafety) are from subcategories *-Juliet, which the previous
version of Symbiotic did not support. Unfortunately, 147 of the previously de-
cided benchmarks from ConcurrencySafety-main with property unreach-call

were not decided by Symbiotic 10 due to a bug in our version of Slowbeast.
Additionally, 31 of previously decided benchmarks (16 in Memsafety-Heap and
15 in Memsafety-LinkedLists) were not decided by Symbiotic 10 due to ex-
clusion of Predator. If Predator had not been excluded or the wrong results
had been fixed, Symbiotic 10 would have won the MemSafety category.

3 Software Architecture, Usage, and Contributors

All components of Symbiotic 10 use llvm 14 [9] for the intermediate repre-
sentation. To obtain the llvm bitcode from the verified C program, Symbiotic
relies on clang. Slicer and instrumentation module are written in C++ and rely
on the library DG [3]. JetKlee is implemented in C++ and Slowbeast [14] is
written in Python. Both symbolic executors use Z3 [10] as the smt solver. Con-
trol scripts are written in Python. All the components and external dependencies
have permissive open-source licenses.

Binary form of Symbiotic 10 is available Zenodo [7], source code is available
from https://github.com/staticafi/symbiotic under the tag svcomp24. You can
run Symbiotic with

bin/symbiotic --sv-comp --prp <prpfile> [--32] <source>.

For details, see the file README.md in the mentioned repository.
Symbiotic 10 has been developed at the Faculty of Informatics of Masaryk

University by the authors of this paper under the supervision of Jan Strejček.

Symbiotic 10: Lazy Memory Initialization and CSE 409

https://github.com/staticafi/symbiotic

References

1. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

2. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: OSDI. pp. 209–
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/full
papers/cadar/cadar.pdf

3. Chalupa, M.: DG: analysis and slicing of LLVM bitcode. In: ATVA 2020.
LNCS, vol. 12302, pp. 557–563. Springer (2020), https://doi.org/10.1007/
978-3-030-59152-6 33

4. Chalupa, M., Mihalkovič, V., Řechtáčková, A., Zaoral, L., Strejček, J.: Sym-
biotic 9: String analysis and backward symbolic execution with loop fold-
ing - (Competition Contribution). In: Fisman, D., Rosu, G. (eds.) TACAS
2022. Lecture Notes in Computer Science, vol. 13244, pp. 462–467. Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0 32, https://doi.org/10.1007/
978-3-030-99527-0 32

5. Chalupa, M., Strejček, J.: Backward symbolic execution with loop folding. In: SAS
2021. LNCS, vol. 12913, pp. 49–76. Springer (2021). https://doi.org/10.1007/978-
3-030-88806-0 3, https://doi.org/10.1007/978-3-030-88806-0 3

6. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for check-
ing manipulation of dynamic data structures using separation logic. In: CAV
2011. LNCS, vol. 6806, pp. 372–378. Springer (2011), https://doi.org/10.1007/
978-3-642-36742-7 49

7. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Shandilya, S., Trt́ık, M., Zao-
ral, L., Strejček, J.: Symbiotic 10: Submission to SV-COMP 2024 (Nov 2023).
https://doi.org/10.5281/zenodo.10202594

8. King, J.C.: Symbolic execution and program testing. Communications of ACM
19(7), 385–394 (1976)

9. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO 2004. pp. 75–88. IEEE Computer Society
(2004), https://doi.org/10.1109/CGO.2004.1281665

10. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3 24

11. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An Efficient Algorithm for Computing
MHP Information for Concurrent Java Programs. In: Nierstrasz, O., Lemoine, M.
(eds.) ESEC / SIGSOFT FSE 1999. Lecture Notes in Computer Science, vol. 1687,
pp. 338–354. Springer (1999). https://doi.org/10.1007/3-540-48166-4 21, https://
doi.org/10.1007/3-540-48166-4 21

12. Sedláček, J.: May-Happen-in-Parallel Analysis for Slicing of Parallel Programs.
Bachelor’s thesis, Masaryk University (2024), https://is.muni.cz/th/he6cd/

13. Slaby, J., Strejček, J., Trt́ık, M.: Compact symbolic execution. In: Hung, D.V.,
Ogawa, M. (eds.) ATVA 2013. Lecture Notes in Computer Science, vol. 8172, pp.
193–207. Springer (2013). https://doi.org/10.1007/978-3-319-02444-8 15, https://
doi.org/10.1007/978-3-319-02444-8 15

14. Slowbeast repository. https://gitlab.com/mchalupa/slowbeast (2021)

410 M. Jonáš et al.

http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-642-36742-7_49
https://doi.org/10.1007/978-3-642-36742-7_49
https://doi.org/10.5281/zenodo.10202594
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-48166-4_21
https://doi.org/10.1007/3-540-48166-4_21
https://doi.org/10.1007/3-540-48166-4_21
https://is.muni.cz/th/he6cd/
https://doi.org/10.1007/978-3-319-02444-8_15
https://doi.org/10.1007/978-3-319-02444-8_15
https://doi.org/10.1007/978-3-319-02444-8_15
https://gitlab.com/mchalupa/slowbeast

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Symbiotic 10: Lazy Memory Initialization and CSE 411

http://creativecommons.org/licenses/by/4.0/

Theta:
Abstraction Based Techniques for Verifying
Concurrency (Competition Contribution)

Levente Bajczi ⋆(B) , Csanád Telbisz , Márk Somorjai , Zsófia Adám´ ,
Mihály Dobos-Kovács , Dániel Szekeres , Milán Mondok , and

Vince Molnár

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

bajczi@mit.bme.hu

Abstract. Theta is a model checking framework, with a strong empha-
sis on effectively handling concurrency in software using abstraction re-
finement algorithms. In SV-COMP 2024, we use 1) an abstraction-aware
partial order reduction; 2) a dynamic statement reduction technique;
and 3) enhanced support for call stacks to handle recursive programs.
We integrate these techniques in an improved architecture with inherent
support for portfolio-based verification using dynamic algorithm selec-
tion, with a diverse selection of supported SMT solvers as well. In this
paper we detail the advances of Theta regarding concurrent and recur-
sive software support.

Funding. This research was partially funded by the ÚNKP-23-{2,3}-I New National

Excellence Program; Project no. 2019-1.3.1-KK-2019-00004 (implemented with the

support provided from the NRDI Fund of Hungary under the 2019-1.3.1-KK fund-

ing scheme); and the Doctoral Excellence Fellowship Programme (funded by the NRDI

Fund of Hungary and the BME University).

1 Verification Approach

Theta [15,8] first competed at SV-COMP as a standalone tool in 2022, with
initial support for some multi-threaded tasks using a crude version of a partial
order reduction (POR) algorithm [2], and no practical support for recursion.

This year, we implemented a novel abstraction-based partial order reduction
algorithm [13] that enables Theta to solve significantly more tasks compared
to previous SV-COMPs, especially in the ReachSafety category. Our algorithm
considers two program statements independent even if they use the same shared
variable when the current abstraction has no information about this variable. For
example, the statements y = x and x = 1 are classically considered dependent

⋆ Jury member representing Theta at SV-COMP 2024.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 412–417, 2024.
https://doi.org/10.1007/978-3-031-57256-2_30

https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0002-6260-5908
https://orcid.org/0000-0001-7537-0469
https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0002-0064-2965
https://orcid.org/0000-0002-2912-028X
https://orcid.org/0000-0001-5396-2172
https://orcid.org/0000-0002-8204-7595
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_30&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

due to x. However, if the current abstraction has no information about x (e.g.,
we only track the predicates y > 0 and z = y), we consider these statements
independent as they are commutative in the abstract state space. We extend a
static source-set based POR algorithm [1] with our abstraction-based technique.

A novel statement reduction algorithm has also been developed for the ver-
ification of concurrent programs [14]. Our algorithm is similar to program slic-
ing and cone-of-influence techniques in the sense that it detects and removes
statements that do not affect the verified property [5,9]. However, our approach
analyzes the current local states of concurrent threads and data-flow between
threads to dynamically detect irrelevant statements that do not affect the verified
property in the current thread interleaving. The evaluation of such statements is
skipped which considerably reduces the time cost of successor state calculation
during state space exploration. Our technique is especially useful for concurrent
tasks where the reducing capability of existing slicing and cone-of-influence tech-
niques is limited due to the many possible interleavings of threads: our algorithm
can skip (sub-)statements in certain contexts even if these statements cannot be
removed generally (that is, statements that may be important in other thread
interleavings). Our algorithm is different from dynamic program slicing [9] since
those techniques do not consider the current interleaving of threads for slicing.

Theta has been extended with enhanced interprocedural analysis [12]. Pre-
viously, all procedures have been inlined at all of their calls before verification.
Procedure support was implemented last year, which handles procedures dynam-
ically during verification, using a stack to keep track of calling locations. This
year, procedure support is further improved by applying abstraction to location
stacks. If an abstract state overapproximates another with the bottom of their
stacks abstracted away, then all abstract paths going out from the covered state
are present at the covering state until the current procedure returns. Therefore,
the top location of the covered state is popped and exploration continues from
the outer procedure, eliding unnecessary exploration [12].

The main advantage of handling procedures dynamically is that it allows
Theta to verify recursive programs, which was not possible with inlining. Ap-
plying abstraction to stacks also enables the verification of some infinitely recur-
sive programs. Additionally, it reduces the size of the abstract state-space and
improves Theta’s verification performance with predicate abstraction.

2 Software Architecture

Since last year, we opted to keep our initial portfolio-based approach [2], but
used a separate process for each configuration, which can easily be killed using
signals, as opposed to the thread-based approach of Theta at SV-COMP’22.
Furthermore, we created a generic interface that allows easy co-development of
portfolios without having to recompile Theta. The architecture of Theta can
be seen in Figure 1: Theta parses and transforms the input program into an
eXtended CFA, then, based on the configuration in the portfolio, spawns one or
more worker Theta processes that perform the verification. The portfolio en-

Theta 413

ANTLR
frontend

XCFA
passes

Main
Theta

Portfolio

Worker
Theta
Worker
Theta
Worker
Theta

SMT-SolverSMT-SolverSMT-Solver

Í/?/ë
Verdict

Main Theta Process

.c
Unoptimized

XCFA
Optimized

XCFA

.xcfa

.prp
.arg

Metadata

Fig. 1: The architecture of Theta for software verification

gine has been re-written this year to better support pre-compiled configurations
written in kotlin instead of kotlin scripts, due to uncovering the dire performance
implications of using the script execution engine, which often takes multiple tens
of seconds to initialize and start. Dynamic algorithm selection is used to select
a suitable configuration for each input task, with several ways of recovering,
should the first algorithm take too long or encounter an exception.

Theta uses Z3 [10] versions 4.12.2 and 4.5.0 (the latter is integrated natively
via the Java API, while the former is used via SMT-LIB), MathSAT [7] version
5.6.10, CVC5 [4] version 1.0.8 and Princess [11] version 2023-06-19 as SMT
solvers under the hood. Compared to previous years, Theta utilizes the new
interpolation API of Z3 to support interpolation-dependent refinement strategies
with the new solver (removed previously in 4.8.0).

Theta has seen several major updates in its C-frontend for the new tasks
introduced to the benchmark repository since SV-COMP’23. The most notable
improvements were made around its Antlr-based grammar for lexing and pars-
ing C files, and some further tweaks in the transformation step from the AST to
CFA to avoid some wrong verdicts that plagued Theta in earlier SV-COMPs.

3 Strengths and Weaknesses of the Approach

In ReachSafety, Theta achieved a score of 2119 [6]. Although Theta still has
known limitations regarding some C elements (e.g., structs), recent technical
improvements of the frontend resulted in Theta not giving any wrong results
in any categories, except for 3 wrong results in ConcurrencySafety-NoOverflows.
Furthermore, Theta achieved a score of 2354 in ConcurrencySafety. To show the
negative influence of frontend limitations, we recalculated the score for the par-
ticipating tools on those ConcurrencySafety tasks that did not end in a frontend
failure for Theta. In this alternative scoring Theta would move from the 7th
to the 3rd place, highlighting the serious need for further frontend development.

It is worth looking at Theta’s performance in the reachability category over
the years. As seen in Figure 2, Theta has dipped in performance for last year’s
installment of SV-COMP (the figure shows only those tasks that have been the
same for the last 3 years) from that of SV-COMP’22 [2]. This year we managed
to bring the performance back to even outperform Theta’22, especially in the
ConcurrencySafety, Sequentialized and Combinations subcategory. However, we
did lose a significant number of tasks in some other subcategories, such as Loops.

414 L. Bajczi et al.

Ar
ray

s

Bi
tV

ec
to
rs

Co
mbin

at
ion

s

Co
nt
ro
lF
low EC

A
Fl
oa
ts

He
ap

Lo
op

s

Pr
od

uc
tL
ine

s

Re
cu
rsi

ve

Se
qu

en
tia

liz
ed

XC
SP

Co
nc
ur
ren

cy
0

100
200
300

8 2
4

8
1

8

3
2
1

3
2

1

3
2
1

0 0 1
8 4
0 5
2

8 2
1 4
1

6

6
9

4
1

1

3
1
0

0 1
1

1
3

1
8

8
0

1
0 2
3

1
3
8

8

3
0
7

5
2

1

9
2

0 1
0 4
0

4
0

2
8
8

T
a
sk
s
so
lv
ed

Theta’22 Theta’23 Theta’24

Fig. 2: Overview of successful tasks for Theta per year on common tasks

This can either be a result of a suboptimal portfolio for such tasks, or the result
of some tweaks we had to make in order to achieve this year’s outstanding 0
incorrect tasks, a feat performed only by 3 other tools. We plan to prioritize the
analysis of these cases for future development. We also plan to support categories
such as ProductLines and Heap, where we have almost no successful results. This
entails supporting structs, function pointers, and heap manipulation.

The novel algorithms implemented in Theta especially helped recursive and
multithreaded programs. Theta gained support for recursive programs by imple-
menting the aforementioned stack-based approach, and support for reachability
queries in multithreaded programs grew more than 3.5-fold since last year, as
seen in Figure 2. In particular, our internal evaluation shows that the size of the
state space reduced by the abstraction-based partial order reduction algorithm
is 15% smaller on average compared to the case when we use traditional partial
order reduction. Our dynamic statement reduction technique can eliminate 22%
of statements reducing the time of successor state calculation by up to 60% and
the overall verification time by 15% on average depending on the configuration.

4 Tool Setup and Configuration

Theta is vastly configurable [8], and successfully choosing a performance config-
uration for a verification task at hand can be complicated. For software verifica-
tion, we recommend using the portfolio (complex) in the competition archive [3]:
./theta-start.sh <input> --portfolio COMPLEX. To minimize the output
verbosity and produce a witness, --loglevel RESULT and --witness-only can
be added to the arguments. We also used these options at SV-COMP 2024.

5 Software Project and Data Availability

Theta is a verification framework maintained by the Critical Systems Research
Group of the Budapest University of Technology and Economics. The project
is available open-source on GitHub1 under an Apache 2.0 license. The version
(5.0.0) used in the competition is available at [3].

1 https://github.com/ftsrg/theta/releases/tag/svcomp24

Theta 415

https://github.com/ftsrg/theta/releases/tag/svcomp24

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Comparing source sets and
persistent sets for partial order reduction. Lecture Notes in Computer Science,
vol. 10460, pp. 516–536. Springer (2017). https://doi.org/10.1007/978-3-319-63121-
9 26

2. Ádám, Z., Bajczi, L., Dobos-Kovács, M., Hajdu, Á., Molnár, V.: Theta: portfolio
of CEGAR-based analyses with dynamic algorithm selection (Competition Contri-
bution). In: Fisman, D., Rosu, G. (eds.) TACAS 2021. Lecture Notes in Computer
Science, vol. 13244, pp. 474–478. Springer (2022). https://doi.org/10.1007/978-3-
030-99527-0 34

3. Bajczi, L., Telbisz, C., Somorjai, M., Ádám, Z., Dobos-Kovács, M., Szek-
eres, D., Molnár, V.: Theta - SV-COMP’24 Verifier Archive (Nov 2023).
https://doi.org/10.5281/zenodo.10202679

4. Barbosa, H., et al.: cvc5: A Versatile and Industrial-Strength SMT Solver. In:
Fisman, D., Rosu, G. (eds.) TACAS 2022. pp. 415–442. Springer International
Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 24

5. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional Reasoning in Model
Checking. Lecture Notes in Computer Science, vol. 1536, pp. 81–102. Springer
(1997). https://doi.org/10.1007/3-540-49213-5 4

6. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

7. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: TACAS 2013, LNCS, vol. 7795, pp. 93–107. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7 7

8. Hajdu, Á., Micskei, Z.: Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

9. Harman, M., Hierons, R.M.: An overview of program slicing. Softw. Focus 2(3),
85–92 (2001). https://doi.org/10.1002/swf.41

10. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS 2008, LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

11. Rümmer, P.: A constraint sequent calculus for first-order logic with lin-
ear integer arithmetic. LNCS, vol. 5330, pp. 274–289. Springer (2008).
https://doi.org/10.1007/978-3-540-89439-1 20

12. Somorjai, M.: Abstraction-Based Interprocedural Software Verification. Stu-
dents’ scientific association (tdk) submission, Budapest University of Tech-
nology and Economics (2023), https://tdk.bme.hu/VIK/DownloadPaper/
Absztrakcioalapu-interproceduralis

13. Telbisz, C.: Partial Order Reduction for Abstraction-Based Verification of Con-
current Software in the Theta Framework. Bachelor’s thesis, Budapest University
of Technology and Economics (2022), https://tdk.bme.hu/VIK/DownloadPaper/
Reszleges-rendezes-redukcio-tobbszalu

14. Telbisz, C.: Abstract Data-Flow-Based Statement Reduction for Model Check-
ing Concurrent Software. Students’ scientific association (tdk) submission, Bu-
dapest University of Technology and Economics (2023), https://tdk.bme.hu/VIK/
DownloadPaper/Absztrakt-adatfolyamalapu-utasitasredukcio

15. Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: a Framework for
Abstraction Refinement-Based Model Checking. In: FMCAD 2017. pp. 176–179
(2017). https://doi.org/10.23919/FMCAD.2017.8102257

416 L. Bajczi et al.

https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.5281/zenodo.10202679
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/3-540-49213-5_4
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1002/swf.41
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-89439-1_20
https://tdk.bme.hu/VIK/DownloadPaper/Absztrakcioalapu-interproceduralis
https://tdk.bme.hu/VIK/DownloadPaper/Absztrakcioalapu-interproceduralis
https://tdk.bme.hu/VIK/DownloadPaper/Reszleges-rendezes-redukcio-tobbszalu
https://tdk.bme.hu/VIK/DownloadPaper/Reszleges-rendezes-redukcio-tobbszalu
https://tdk.bme.hu/VIK/DownloadPaper/Absztrakt-adatfolyamalapu-utasitasredukcio
https://tdk.bme.hu/VIK/DownloadPaper/Absztrakt-adatfolyamalapu-utasitasredukcio
https://doi.org/10.23919/FMCAD.2017.8102257

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Theta 417

http://creativecommons.org/licenses/by/4.0/

Ultimate Automizer and the Abstraction of
Bitwise Operations

(Competition Contribution)

Frank Schüssele� , Manuel Bentele , Daniel Dietsch ,
Matthias Heizmann⋆ , Xinyu Jiang , Dominik Klumpp , and

Andreas Podelski

University of Freiburg, Freiburg im Breisgau, Germany
schuessf@informatik.uni-freiburg.de

Abstract. The verification of Ultimate Automizer works on an SMT-
LIB-based model of a C program. If we choose an SMT-LIB theory of
(mathematical) integers, the translation is not precise, because we over-
approximate bitwise operations. In this paper we present a translation for
bitwise operations that improves the precision of this overapproximation.

1 Verification Approach

Ultimate Automizer (in the following abbreviated as UAutomizer) is a
software verifier that implements the trace abstraction approach [6,9]. In trace
abstraction, a verification problem is considered as a formal language and decom-
posed via automata-theoretic methods into smaller verification problems. While
verifying a C program, UAutomizer applies trace abstraction to a model of
the program that consists of a control-flow graph (CFG) and SMT-LIB formulas
that express how the program’s data is modified while moving along an edge
of the CFG. We obtain this model by first translating the C program into a
Boogie [10] program and afterwards translating the Boogie program into the
CFG and SMT-LIB formulas. We have two variants of these translations, we
call them the integer-based translation and the bitvector-based translation. The
integer-based translation results in a Boogie program over mathematical inte-
gers that is later translated to SMT-LIB formulas from the integer theory. The
bitvector-based translation results in a Boogie program over bitvectors that is
later translated to SMT-LIB formulas from the bitvector theory. The integer-
based translation uses modulo operations to make sure that the result of arith-
metic operation is in the correct range. It also overapproximates the result of
bitwise operations and is hence not very precise. If the trace abstraction-based
verification algorithm returns a counterexample that contains an overapprox-
imated operation, UAutomizer does not return the counterexample but un-
known instead. The bitvector-based translation returns a result that is precise
but whose verification is costly. In order to mitigate the shortcomings of both
translations, UAutomizer first runs the verification on the integer-based model.
If the result is unknown, the tool is run again on the bitvector-based model.

⋆ Jury Member: Matthias Heizmann

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 418–423, 2024.
https://doi.org/10.1007/978-3-031-57256-2_31

http://orcid.org/0000-0002-5656-306X
http://orcid.org/0009-0003-4794-958X
http://orcid.org/0000-0002-8947-5373
http://orcid.org/0000-0003-4252-3558
http://orcid.org/0009-0000-6539-6227
http://orcid.org/0000-0003-4885-0728
http://orcid.org/0000-0003-2540-9489
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_31&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

2 Abstraction of Bitwise Operations

In the past our integer translation overapproximated the bitwise operators, i.e. &,
|, ^, ~, <<, >> returned some non-deterministic value. In this paper we show how
to translate bitwise operators more precisely. Our translation is a generalization
of the work of Liu et al. [11]. First we describe the translation of the operators
&, |, ^. The remaining operators will be explained at the end of this section. For
the operators &, |, ^ we distinguish three different cases:

– If both operands are literals, we replace the operation by its result.
– If one operand is a literal with a specific bit-pattern, we rewrite the expres-

sion directly.
– Otherwise we overapproximate with additional constraints for the return

value.

Rewrite rules. If one of the operands is a literal, we try to replace the bitwise
operation by an arithmetic operation based on the bit-pattern of the literal.
These rewrite rules are shown in Table 1 (omitting symmetric cases). The first
two cases are simple. In the first row every bit is zero (i.e. the operand is 0). Zero
is the absorbing element for & and the neutral element for | and ^. In the second
row every bit is one (i.e. the operand is -1 for signed integers or the maximum
value for unsigned integers). This is the neutral element for & and the absorbing
element for |. The last two cases are motivated by typical bitmasks and are a
generalization of the first two cases. In a C program, bitmasks are used to set
bits to zero or to one. For example the expression x & 255 can be used to replace
every bit of x by zero except for the last 8 bits. The third row is motivated by
Liu et al. [11]. They rewrote x & 1 (i.e. only the last bit is one) to x % 2, whereas
we generalize this case for any pattern that only ends with ones. With the rule
on the third row the expression x & 255 is rewritten to x % 256. In the last row
only the starting bits are one. This case works analogously to the third row,
it is rewritten using a combination of modulo and other arithmetic operators.
We implemented these rules in our translation from C to Boogie. Boogie has
mathematical integer semantics, so the evaluation of the expressions in the table
can never lead to an overflow. The rules for the operators | and ^ are based on
the equalities a | b = a+ b− (a & b) and aˆb = a+ b− 2 · (a & b).

Constrained Overapproximation. If none of the operands are literals with a
bit-pattern from above, we translate the bitwise operations to calls to functions
as implemented in Fig. 1 in Boogie as follows: x & y is translated to and(x, y),
x | y is translated to or(x, y) and x ^ y is translated to xor(x, y). We omitted

Table 1: Rewrite rules based on the bit-pattern of c

bits(c) x & c x | c x ^ c

0...0 c x x

1...1 x c c - x

0...01...1 x % (c + 1) x + c - x % (c+1) x + c - 2 *(x % (c + 1))

1...10...0 x - x % (c + 1) c + x % (c + 1) c - x - 2 * (x % (c + 1))

Ultimate Automizer and the Abstraction of Bitwise Operations 419

procedure and(a: int , b: int) {
if (a == 0 || b == 0) return 0;
if (a == b) return a;

var r: int;
assume (a>=0 || b<0) ==> r<=a;
assume (a<0 || b>=0) ==> r<=b;
assume (a>=0 || b>=0) ==> r>=0;
assume (a<0 || b<0) ==> r>a+b;
return r;

}

procedure xor(a: int , b: int) {
if (a == 0) return b;
if (b == 0) return a;
if (a == b) return 0;

var r: int;
assume (a>=0 <==> b>=0) ==> r>0;
assume !(a>=0 <==> b>=0) ==> r<0;
assume (a>=0 || b>=0) ==> r<=a+b;
return r;

}

Fig. 1: Procedures to overapproximate the operators & and ^

the definition for the function or(a, b) here, because a possible implementation
could simply use the relation between & and | to return a + b - and(a, b). The
first lines of and and xor cover the cases that are handled precisely, i.e. where
one of the operands is zero or both are equal. For all other cases return a non-
deterministic value to overapproximate the behavior of the bitwise operators.
We constrain this value via the assumptions that often provide lower and upper
bounds. For example, if a and b are both non-negative, and(a, b) returns also
a non-negative value that is also smaller or equal to both a and b. Similarly
xor(a, b) returns a positive value that is smaller or equal to the sum a + b in
that case.

Negation and Shifts. We rewrite the negation ∼x to the equivalent expression
-1 - x. We rewrite shift operators if the second operand is a literal. The left shift
x << y is rewritten to x * c and the right shift x >> y is rewritten to x / c, where c
is the literal that is obtained by evaluating pow(2, y). The rewritten expression
x * c has an overflow if and only if the original expression x << y has an overflow.

3 Strengths and Weaknesses

UAutomizer won the overall category and the category NoOverflows in SV-
COMP 2024 [2]. UAutomizer reported 10 incorrect results, which were due to
incorrect modelling of C features.

We evaluated the abstraction of bitwise operations on selected benchmarks
from SV-COMP 2024. The evaluation was performed on a AMD Ryzen Thread-
ripper 3970X using 2 cores at 3.7GHz with a time limit of 900 s and a memory
limit of 8GB. In Table 2 you can see the results of the evaluation on the cat-
egory ReachSafety. We choose this category, because it contains a wide range
of benchmarks, including several that make use of bitwise operators. There we
compared three settings: the bitvector-based translation, the old integer-based
translation where every bitwise operation is allowed to return any value and the
integer-based translation with the optimizations described in Section 2. The re-
sults show that the new integer-based translation can verify 25 more benchmarks
than the old integer-based translation (from various folders, e.g. hardness-nfm22

420 F. Schüssele et al.

Table 2: Comparison on ReachSafety

Bitvector Integer (optimized) Integer (old)
time mem time mem time mem

(h) (GB) # (h) (GB) # (h) (GB)

total (10 205) 1 958 65 1 862 2 076 37 2 600 2 051 36 2 550
safe (7 557) 1 183 41 1 030 1 350 22 1 510 1 324 21 1 440
unsafe (2 648) 775 24 832 726 15 1 090 727 15 1 110

Table 3: Comparison on Termination-BitVectors

Integer (optimized) Integer (old)
time mem time mem

(s) (GB) # (s) (GB)

total (37) 31 410 12.1 12 122 4.2
safe (23) 23 325 9.2 7 73 2.5
unsafe (14) 8 85 2.9 5 49 1.7

and hardware-verification) and 118 more than the bitvector-based translation.
The bitvector-based translation is precise in contrast to the integer-based trans-
lation. Overall this precision does not pay off, as the result of the bitvector-based
translation is often too costly to verify. However, the precision can also be help-
ful, as the bitvector-based translation can find 48 (resp. 49) more bugs than the
integer-based translations.

We also evaluated our approach on the subcategory Termination-BitVectors,
where most of the benchmarks contain bitwise operations. For termination we
do not support bitvectors, therefore we compared only our approach with the
old integer-based translation. The results in Table 3 show that the our optimized
approach is sufficient to prove the (non-)termination of 31 of the total 37 tasks,
whereas the trivial overapproximation is only sufficient for 12.

4 Architecture, Setup, Configuration, and Project

UAutomizer is part of Ultimate [15,16], a program analysis framework writ-
ten in Java and licensed under LGPLv3. UAutomizer is an automaton-based
model checker using a CEGAR-loop approach [8]. The submitted version 0.2.4-
0e0057cc requires Java 11 and Python 3.6. Its Linux version, binaries of the
required SMT solvers Z3 [12,13], CVC4 [1,14], MathSAT [4,7], and a Python
wrapper script were submitted as a .zip archive. UAutomizer is invoked with

./Ultimate.py --spec <p> --file <f> --architecture <a> --full-output

where <p> is an SV-COMP property file, <f> is an input C file, <a> is the archi-
tecture (32bit or 64bit), and --full-output enables verbose output to stdout. A
witness is written to the files witness.graphml and witness.yml. The benchmark-
ing tool BenchExec [3] supports UAutomizer through the tool-info module
ultimateautomizer.py. UAutomizer participates in all categories, as declared
in its benchmark definition file uautomizer.xml.

Ultimate Automizer and the Abstraction of Bitwise Operations 421

Data Availability. The competition contribution for UAutomizer is available
as an archive on Zenodo [5].

References

1. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 14

2. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

3. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements
and solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

4. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 19th International Conference, TACAS
2013, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7795, pp. 93–107. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7 7

5. Dietsch, D., Bentele, M., Heizmann, M., Klumpp, D., Schüssele, F., Podelski,
A.: Ultimate Automizer SV-COMP 2024 Competition Contribution (Nov 2023).
https://doi.org/10.5281/zenodo.10203545

6. Dietsch, D., Heizmann, M., Klumpp, D., Naouar, M., Podelski, A., Schätzle, C.:
Verification of concurrent programs using Petri net unfoldings. In: Henglein, F.,
Shoham, S., Vizel, Y. (eds.) Verification, Model Checking, and Abstract Inter-
pretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark,
January 17-19, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12597,
pp. 174–195. Springer (2021). https://doi.org/10.1007/978-3-030-67067-2 9

7. Fondazione Bruno Kessler, D.: MathSAT, https://mathsat.fbk.eu, (retrieved
2024-02-12)

8. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate Automizer and
the search for perfect interpolants. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 24th International Conference, TACAS 2018.
Lecture Notes in Computer Science, vol. 10806, pp. 447–451. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3 30

9. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
SAS. Lecture Notes in Computer Science, vol. 5673, pp. 69–85. Springer (2009).
https://doi.org/10.1007/978-3-642-03237-0 7

10. Leino, K.R.M.: This is Boogie 2 (June 2008), https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/

11. Liu, Y.C., Pang, C., Dietsch, D., Koskinen, E., Le, T., Portokalidis, G., Xu, J.:
Proving LTL properties of bitvector programs and decompiled binaries. In: Oh, H.
(ed.) Programming Languages and Systems - 19th Asian Symposium, APLAS 2021,
Chicago, IL, USA, October 17-18, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 13008, pp. 285–304. Springer (2021). https://doi.org/10.1007/978-3-
030-89051-3 16

422 F. Schüssele et al.

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.5281/zenodo.10203545
https://doi.org/10.1007/978-3-030-67067-2_9
https://mathsat.fbk.eu
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-03237-0_7
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/978-3-030-89051-3_16
https://doi.org/10.1007/978-3-030-89051-3_16

12. Microsoft Corporation: Z3, https://github.com/Z3Prover/z3, (retrieved 2024-02-
12)

13. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

14. Stanford University, U.: CVC4, https://cvc4.github.io, (retrieved 2024-02-12)
15. University of Freiburg: Ultimate source code repository, https://github.com/

ultimate-pa/ultimate, (retrieved 2024-02-12)
16. University of Freiburg: Ultimate website, https://ultimate-pa.org, (retrieved

2024-02-12)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Ultimate Automizer and the Abstraction of Bitwise Operations 423

https://github.com/Z3Prover/z3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://cvc4.github.io
https://github.com/ultimate-pa/ultimate
https://github.com/ultimate-pa/ultimate
https://ultimate-pa.org
http://creativecommons.org/licenses/by/4.0/

Author Index

A
Abdulla, Parosh Aziz III-276
Ádám, Zsófia III-129, III-330, III-371,

III-412
Akshay, S. I-123
Aldughaim, Mohannad III-376
Aniva, Leni I-311
Artho, Cyrille II-3
Atig, Mohamed Faouzi III-276
Avni, Guy III-153
Ayaziová, Paulína III-341, III-406

B
Backes, John I-3
Badings, Thom II-258
Baier, Daniel III-359
Bajczi, Levente III-330, III-371, III-412
Barbosa, Haniel I-311
Barrett, Clark I-311
Basa, Eliyahu I-123
Bayless, Sam I-3
Beckert, Bernhard I-268
Bentele, Manuel III-418
Beutner, Raven II-196
Beyer, Dirk III-129, III-299, III-359
Blanchard, Allan I-331
Bocchi, Laura I-207
Bodden, Eric I-229
Boillot, Jérôme III-387
Bork, Alexander II-299
Bozhilov, Stanimir III-335, III-381
Brauße, Franz III-376

C
Cai, Yubo II-323
Chakraborty, Debraj II-299
Chakraborty, Supratik I-123, II-175, III-393
Chalupa, Marek III-353
Chatterjee, Prantik II-155

Chen, Xiaohong I-350
Chen, Yean-Ru II-363
Chen, Yu-Fang I-24
Chen, Zhenbang III-347
Chien, Po-Chun III-129, III-359, III-365
Chocholatý, David I-24, II-130
Chowdhury, Md Solimul I-34
Cimatti, Alessandro II-44
Codel, Cayden R. I-34
Cordeiro, Lucas C. III-376
Correnson, Loïc I-331
Cosler, Matthias III-45

D
D’Souza, Deepak II-175
Dacík, Tomáš I-188
Dahlsen-Jensen, Mikael Bisgaard III-194
de Pol, Jaco van III-194
Dierl, Simon II-87
Dietsch, Daniel III-418
Djoudi, Adel I-331
Dobos-Kovács, Mihály III-371, III-412
Dubslaff, Clemens III-255
Duong, Hai III-24
Dwyer, Matthew B. III-24

E
Ehlers, Rüdiger I-83
Eisenbarth, Thomas III-399
Erhard, Julian III-335, III-381

F
Farias, Bruno III-376
Fassbender, Dennis II-44
Fedyukovich, Grigory II-175
Feng, Nick I-3
Fiedor, Tomáš II-130
Fievet, Baptiste III-194
Fiterau-Brostean, Paul II-87

© The Editor(s) (if applicable) and The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 425–428, 2024.
https://doi.org/10.1007/978-3-031-57256-2

https://doi.org/10.1007/978-3-031-57256-2

426 Author Index

Fleury, Mathias I-311
Fried, Dror I-123
Furbach, Florian III-276

G
Gadelha, Mikhail R. III-376
Galgali, Varadraj II-3
Garcia-Contreras, Isabel I-43
Garg, Shashwat III-276
Griggio, Alberto II-44
Grover, Kush II-299
Gurfinkel, Arie I-43

H
Hahn, Christopher III-45
Hanselmann, Michael II-44
Hari Govind, V. K. I-43
Hasuo, Ichiro II-279
Havlena, Vojtěch I-24, II-130
He, Dongjie I-229
Heinzemann, Christian II-44
Heizmann, Matthias III-418
Henze, Franziska II-44
Hermanns, Holger III-255
Heule, Marijn J. H. I-34, I-61
Hilaire, Thibault I-370
Holík, Lukáš I-24, II-130
Holter, Karoliine III-335, III-381
Hou, Zhe II-363
Howar, Falk II-87
Hruška, Martin II-130
Hu, Alan J. I-3
Huerta y Munive, Jonathan Julián I-288
Huisman, Marieke III-71
Husung, Nils III-255

I
Ilcinkas, David I-370
Iqbal, Syed M. I-3

J
Jakobsen, Anna Blume III-110
Jankola, Marek III-359
Jansen, Nils II-258
Jeannin, Jean-Baptiste I-248
Jiang, Xinyu III-418
Jiménez-Pastor, A. II-343
Jonáš, Martin III-90, III-406
Jonsson, Bengt II-87

Jørgensen, Rasmus Skibdahl Melanchton
III-110

Jung, Jean Christoph I-167
Junges, Sebastian II-109, II-258, II-279

K
Kabra, Aditi I-144
Kapritsos, Manos I-248
Karakaya, Kadiray I-229
Karmarkar, Hrishikesh III-393
Katoen, Joost-Pieter II-237
Kettl, Matthias III-359
Khalimov, Ayrat I-83
King, Andy I-207
Klauck, Michaela II-44
Klauke, Jonas I-229
Klumpp, Dominik III-418
Köhl, Maximilian A. III-255
Kokologiannakis, Michalis II-66
König, Lukas II-44
Korovin, Konstantin III-376
Kosmatov, Nikolai I-331
Křetínský, Jan II-299
Kruger, Loes II-109
Kumor, Kristián III-406
Küperkoch, Stefan II-44
Kwiatkowska, Marta III-3

L
Lachnitt, Hanna I-311
Lahav, Ori III-235
Lal, Akash II-155
Larsen, K. G. II-343
Laurent, Jonathan I-144
Lee, Nian-Ze III-129, III-359, III-365
Lemberger, Thomas III-359
Lengál, Ondřej I-24, II-130
Leroux, Jérôme I-370
Li, Jianxin II-217
Li, Xianzhiyu III-376
Lima, Leonardo I-288
Lin, Shang-Wei II-363
Lingsch-Rosenfeld, Marian III-359
Loose, Nils III-399
Luo, Linghui I-229

M
Mächtle, Felix III-399
Madhukar, Kumar III-393

Author Index 427

Majumdar, Rupak II-66, III-213
Mallik, Kaushik III-153
Manino, Edoardo III-376
Menezes, Rafael Sá III-376
Mertens, Hannah II-237
Metta, Ravindra III-393
Micskei, Zoltán III-330
Milanese, Marco III-387
Miné, Antoine III-387
Mitsch, Stefan I-144
Mohr, Stefanie II-299
Molnár, Vince III-371, III-412
Monat, Raphaël III-387
Mondok, Milán III-371, III-412
Mozumder, Nusrat Jahan III-24
Murgia, Maurizio I-207

N
Nayak, Satya Prakash III-173
Neider, Daniel I-167
Neurohr, Christian I-167
Nötzli, Andres I-311
Novák, Jakub III-406

O
Omar, Ayham III-45
Osama, Muhammad II-23
Ouadjaout, Abdelraouf III-387

P
Panagou, Dimitra I-248
Parízek, Pavel II-3
Parolini, Francesco III-387
Pavlogiannis, Andreas III-110
Petrucci, Laure III-194
Pike, Lee I-3
Platzer, André I-144
Podelski, Andreas III-418
Pogudin, Gleb II-323

Q
Qu, Daohan II-3
Quatmann, Tim II-237

R
Reynolds, Andrew I-311
Richter, Cedric III-353

Rodrigues, Nishant I-350
Rogalewicz, Adam I-188
Roşu, Grigore I-350
Rot, Jurriaan II-109, II-279
Roy, Subhajit II-155

S
S, Sumanth Prabhu II-175
Saan, Simmo III-335, III-381
Sadhukhan, Suman III-153
Sağlam, Irmak III-213
Sagonas, Konstantinos II-87
Sanán, David II-363
Sanders, Peter I-268
Scheucher, Manfred I-61
Schmidt, Markus I-229
Schmitt, Frederik III-45
Schmuck, Anne-Kathrin III-173
Schott, Stefan I-229
Schüssele, Frank III-418
Schwarz, Michael III-335, III-381
Sebe, Mircea Octavian I-350
Sedláček, Jindřich III-406
Seidl, Helmut III-335, III-381
Shmarov, Fedor III-376
Shoham, Sharon I-43
Síč, Juraj I-24, II-130
Sieck, Florian III-399
Singh, Abhishek Kr III-235
Sirrenberg, Nils III-129
Solanki, Mayank II-155
Somorjai, Márk III-371, III-412
Song, Kunjian III-376
Spiessl, Martin III-359
Stoelinga, Marielle II-258
Strejček, Jan III-90, III-341, III-406
Szekeres, Dániel III-371, III-412

T
Tachna-Fram, Avi I-248
Tåquist, Fredrik II-87
Tekriwal, Mohit I-248
Telbisz, Csanád III-371, III-412
Temel, Mertcan I-340
Teo, Yon Shin II-363
Thejaswini, K. S. III-213
Tihanyi, Norbert III-376

428 Author Index

Tilscher, Sarah III-335, III-381
Tinelli, Cesare I-311
Tomov, Naum I-103
Tonetta, Stefano II-44
Traytel, Dmitriy I-288
Trentin, Patrick I-3
Tribastone, M. II-343
Trtík, Marek III-90, III-406
Tschaikowski, M. II-343

U
Ulbrich, Mattias I-268
Urban, Lukáš III-90

V
Vafeiadis, Viktor II-66
van Abbema, Feije I-103
van de Pol, Jaco III-110
van den Brand, Mark III-71
van den Haak, Lars B. III-71
van der Vegt, Marck II-279
van Dijk, Tom I-103
Venkatesh, R. II-175, III-393
Vojdani, Vesal III-335, III-381
Vojnar, Tomáš I-188
Volk, Matthias II-258

W
Wachowitz, Henrik III-359
Wang, Benjie III-3
Wang, Tzu-Fan II-363
Wang, Zhen III-347
Watanabe, Kazuki II-279
Wendler, Philipp III-359
Westhofen, Lukas I-167
Whalen, Mike I-3
Wiesler, Julian I-268
Wijs, Anton II-23, III-71
Winkler, Tobias II-237
Witt, Sascha I-268

X
Xu, Dong III-24

Y
Yi, Pu (Luke) II-3

Z
Zaoral, Lukáš III-406
Zhang, Leping II-217
Zhang, Xiyue III-3
Zhao, Yongwang II-217
Zuleger, Florian I-188

	ETAPS Foreword
	Preface
	Organization
	Contents – Part III
	Neural Networks
	Provable Preimage Under-Approximation for Neural Networks
	Training for Verification: Increasing Neuron Stability to Scale DNN Verification
	NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis
	Testing and Verification
	HaliVer: Deductive Verification and Scheduling Languages Join Forces
	Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage
	Fast Symbolic Computation of Bottom SCCs
	Btor2-Cert: A Certifying Hardware-Verification Framework Using Software Analyzers
	Games
	Auction-Based Scheduling
	Most General Winning Secure Equilibria Synthesis in Graph Games
	On-The-Fly Algorithm for Reachability in Parametric Timed Games
	Rabin Games and Colourful Universal Trees
	Concurrency
	Decidable Verification under Localized Release-Acquire Concurrency
	OxiDD A Safe, Concurrent, Modular, and Performant Decision Diagram Framework in Rust
	Verification under TSO with an infinite Data Domain
	13th Competition on Software Verification—SV-Comp 2024
	State of the Art in Software Verification and Witness Validation: SV-COMP 2024
	Concurrent Witness2Test: Test-Harnessing the Power of Concurrency (Competition Contribution)
	Goblint Validator: Correctness Witness Validation by Abstract Interpretation (Competition Contribution)
	Witch 3: Validation of Violation Witnesses in the Witness Format 2.0 (Competition Contribution)
	AISE: A Symbolic Verifier by Synergizing Abstract Interpretation and Symbolic Execution (Competition Contribution)
	Bubaak-SpLit: Split what you cannot verify (Competition contribution)
	CPAchecker 2.3 with Strategy Selection (Competition Contribution)
	CPV: A Circuit-Based Program Verifier (Competition Contribution)
	EmergenTheta: Verification Beyond Abstraction Refinement (Competition Contribution)
	ESBMC v7.4: Harnessing the Power of Intervals (Competition Contribution)
	Goblint: Abstract Interpretation for Memory Safety and Termination (Competition Contribution)
	Mopsa-C: Improved Verification for C Programs, Simple Validation of Correctness Witnesses (Competition Contribution)
	PROTON: PRObes for Termination Or Not (Competition Contribution)
	SWAT: Modular Dynamic Symbolic Execution for Java Applications using Dynamic Instrumentation (Competition Contribution)
	Symbiotic 10: Lazy Memory Initialization and Compact Symbolic Execution (Competition Contribution)
	Theta: Abstraction Based Techniques for Verifying Concurrency (Competition Contribution)
	Ultimate Automizer and the Abstraction of Bitwise Operations (Competition Contribution)
	Author Index

