
Fully Generalized Reactivity(1) Synthesis⋆

Abstract. Generalized Reactivity(1) (GR(1)) synthesis is a reactive
synthesis approach in which the specification is split into two parts: a
symbolic game graph, describing the safe transitions of a system, a live-
ness specification in a subset of Linear Temporal Logic (LTL) on top of it.
Many specifications can naturally be written in this restricted form, and
the restriction gives rise to a scalable synthesis procedure – the reasons
for the high popularity of the approach. For specifications even slightly
beyond GR(1), however, the approach is inapplicable. This necessitates a
transition to synthesizers for full LTL specifications, introducing a huge
efficiency drop. This paper proposes a synthesis approach that smoothly
bridges the efficiency gap from GR(1) to LTL by unifying synthesis for
both classes of specifications. The approach leverages a recently intro-
duced canonical representation of omega-regular languages based on a
chain of good-for-games co-Büchi automata (COCOA). By constructing
COCOA for the liveness part of a specification, we can then build a
fixpoint formula that can be efficiently evaluated on the symbolic game
graph. The COCOA-based synthesis approach outperforms standard ap-
proaches and retains the efficiency of GR(1) synthesis for specifications
in GR(1) form and those with few non-GR(1) specification parts.

1 Introduction

Reactive synthesis is the process of automatically computing a provably correct
reactive system from its formal specification [13]. A safety-critical system is
often developed twice: first, when it is described using a formal specification,
and second, when a system is implemented according to this specification. The
dream of reactive synthesis is to fully eliminate manual implementation phase.

Reactive synthesis is however computationally hard. For specifications in the
commonly used linear temporal logic (LTL), checking whether an implementa-
tion exists is 2EXPTIME-complete [30]. The classical approach to solve reactive
synthesis from LTL is to first translate the LTL formula into a deterministic
parity automaton, followed by solving the induced two-player parity game [7].
The system player wins this game if and only if there is an implementation
satisfying the specification. It is the first phase of translating LTL to parity au-
tomaton that usually represents a bottleneck. This observation spurred a series

⋆ This work has been partially supported by the DFG through Grant No. 322591867
(GUISynth) and the BMWi through Grant No. 19A21026E (SafeWahr).

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 83–102, 2024.
https://doi.org/10.1007/978-3-031-57246-3_6

Rüdiger Ehlers and Ayrat Khalimov(B)

TU Clausthal, Clausthal-Zellerfeld, Germany

rudiger.ehlers,ayrat.khalimov{ }@tu-clausthal.de

https://doi.org/10.1007/978-3-031-57246-3_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_6&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

of synthesis approaches. For instance, in bounded synthesis, either the maximal
number of states that a system can have [22] or the longest system response
time [20] is restricted. If there exists a system realizing the specification, then
there exists one that adheres to some bounds, and bounded synthesis works well
whenever small bounds suffice for realizing the given specification. Another ap-
proach is to synthesize implementations for parts of the specification, and to then
compose them into one that realizes the whole specification [25,31,21]. The ap-
proach of [26] avoids constructing one large deterministic parity automaton and
instead constructs many smaller ones that—when composed together—represent
the original specification. Such decomposition proved beneficial on practical ex-
amples [1]. Finally, there are approaches that consider “synthesis-friendly” sub-
sets of LTL. Alur and La Torre identified a number of such LTL fragments with
a simpler synthesis problem [3], and this eventually led to the introduction of
Generalized Reactivity(1) synthesis by Piterman et al. [28], GR(1) for short.
GR(1) synthesis gained a lot of prominence and was applied in domains such
as robotics [34,24], cyber-physical system control [36,35], and chip component
design [8,23]. We describe it in more detail.

In GR(1) synthesis, the specification is divided into two parts. The first part
represents the safety properties of a system and encodes a symbolic game graph.
Each graph vertex encodes a valuation of last system inputs and outputs. The
transitions in the graph represent how these variables can evolve in one step.
For instance, a robot on a grid can move from its current cell to the left, right,
up, or down, but cannot jump; this is easily encoded as a symbolic game graph.
Secondly, there are liveness properties of the following form: if certain vertices
are visited infinitely often, then certain other vertices must be visited infinitely
often as well. The liveness properties are encoded symbolically using LTL formu-
las of the shape

∧
i GFφi →

∧
j GFψj , where φi and ψj are Boolean formulas over

input and output system propositions. Synthesis problems from many domains
can be encoded naturally, or after some manual effort, into the GR(1) setting.

Constraining specifications to GR(1) form reduces the synthesis problem’s
complexity from doubly-exponential to singly-exponential (in the number of
propositions), or polynomial when the number of propositions is fixed [8]. The
GR(1) synthesis problem can be solved by evaluating a fixpoint formula on the
symbolic game arena. The fixpoint formula defines the set of vertices from which
the system player satisfies the GR(1) liveness properties while staying in the
game arena. The simple shape of GR(1) liveness properties makes the fixpoint
formula simple. Moreover, evaluating the fixpoint formula on the symbolic game
graph can be done efficiently using Binary Decision Diagrams (BDDs, [12]) as the
underlying data structure. These factors together — efficient implementation and
relatively expressive specification language — made GR(1) synthesis popular.

GR(1) synthesis has a drawback. A single property outside of GR(1) – for in-
stance, “eventually the robot always stays in some stable zone” (FG inStableZone)
– makes GR(1) synthesis inapplicable. Switching to full-LTL synthesizers intro-
duces an abrupt efficiency drop, as they do not take advantage of the simple
structure of GR(1)-like specifications. For improving the practical applicability

84 R. Ehlers and A. Khalimov

of reactive synthesis, a synthesis approach exhibiting a smooth efficiency curve
on the way from GR(1) to LTL would hence be useful. While there are are
some GR(1) synthesis extensions (e.g., [4,17]), they only extend it by certain
specification classes and consequently do not support full LTL.

This paper unifies synthesis for GR(1) and full LTL. Like in GR(1) synthesis,
we aim at synthesis for specifications split into the safety part encoded as a
symbolic game graph and the liveness part. Unlike the standard GR(1) synthesis,
the liveness part can be any LTL or omega-regular property. For standard GR(1)
specifications, our approach inherits the efficiency of GR(1) synthesis, including
when a specification does not fall syntactically into this class, but is semantically
a GR(1) specification. At the same time, for specifications that go beyond GR(1)
and only have a few non-GR(1) components, our approach scales well.

Our solution is based on the same fixpoint-evaluation-of-symbolic-game-graph
idea. Our starting point is a folklore approach based on solving parity games by
evaluating fixpoint equations [11]. We modify it so that it becomes applicable to
specifications given in the form of a chain of good-for-games co-Büchi automata
(COCOA). Such chains have recently been proposed as a new canonical repre-
sentation of omega-regular languages [19], and it has been shown how minimal
and canonical COCOA can be computed in polynomial time from a deterministic
parity automaton of the language. Our COCOA-based synthesis approach con-
verts the liveness part of the specification into a parity automaton, constructs
the chain, builds the fixpoint formula from the chain, and finally evaluates it
on the symbolic game graph. We show that the fixpoint formula built from the
chain has a structure similar to GR(1) fixpoint formulas. This is not the case
for the folklore approach via parity games, and as a result, our COCOA-based
synthesizer is roughly an order of magnitude faster. The COCOA-based synthe-
sis approach inherits the efficiency of GR(1) synthesis, and it is also efficient on
specifications slightly beyond GR(1). Finally, our approach is the first applica-
tion of the new canonical representation of omega-regular languages.

2 Preliminaries

Automata and languages

Let N = {0, 1, 2, . . .} be the set of natural numbers including 0. Let AP be a
set of atomic propositions ; 2AP denotes the valuations of these propositions. A
Boolean formula represents a set of valuations: for instance, ā ∧ b, also written
āb, encodes valuations in which proposition a has value false and b is true. A
Boolean function maps valuations of propositions to either true or false. Binary
decision diagrams (BDDs) are a data structure for manipulating such functions.

A word is a sequence of proposition valuations w = x0x1 . . . ∈ (2AP)ω∪(2AP)∗.
A word can be finite or infinite. A language is a set of infinite words. Given a
language L, the suffix language of L for some finite word p ∈ (2AP)∗ is L(L, p) =
{x0x1 . . . ∈ (2AP)ω | p · x0x1 . . . ∈ L}. The words in this set are called suffix
words. The set of all suffix languages of L is the set {L(L, p) | p ∈ (2AP)∗}.

Fully Generalized Reactivity(1) Synthesis 85

Automata over infinite words are used to finitely represent languages. We
consider parity and co-Büchi automata with transition-based acceptance. A par-
ity automaton is a tuple A = (Σ,Q, q0, δ) with a finite alphabet Σ (usually
Σ = 2AP), a finite set of states Q, an initial state q0 ∈ Q, and a finite transition
relation δ ⊆ Q × Σ × Q × N satisfying (q, x, q′, c) ∈ δ ⇒ (q, x, q′, c′) ̸∈ δ for all
q, x, q′ and c′ ̸= c. An automaton is complete if for every state q and letter x
there exists at least one pair (q′, c) ∈ Q × N s.t. (q, x, q′, c) ∈ δ; it is determin-
istic if exactly one such pair (q′, c) exists. Wlog. we assume that automata are
complete. An automaton is co-Büchi if only colors 1 and 2 occur in δ, and then
we call the transitions with color 1 rejecting and those with color 2 accepting.

A run of A on a word w = x0x1 . . . ∈ Σω is a sequence π = π0π1 . . . ∈ Qω

starting in π0 = q0 and such that (πi, xi, πi+1, ci) ∈ δ for some ci for every i ∈ N;
the induced color sequence c = c0c1 . . . is uniquely defined by w and π. A run
is accepting if the lowest color occurring infinitely often in the induced color
sequence is even (“min-even acceptance”). When this minimal color is uniquely
defined, e.g. when there is only one accepting run, it is called the color of w
wrt. A. A word is accepted if it has an accepting run. The automaton’s language
L(A) is the set of accepted words. The language of the automaton A′ derived
from A by changing the initial state to q is denoted by L(A, q).

A co-Büchi language is a language representable by a nondeterministic (equiv.,
deterministic) co-Büchi automaton. The Co-Büchi languages are a strict subset
of the omega-regular languages.

An automaton is good-for-games if there exists a strategy f : Σ∗ → Q to
resolve the nondeterminism to produce accepting runs on the accepted words,
formally: for every infinite word w = x0x1 . . ., the sequence π0π1 . . . defined by
πi = f(x0 . . . xi−1) for all i ∈ N is a run, and it is accepting whenever w belongs
to the language.

Games and our realizability problem

LTL. A commonly used formalism to represent system specifications is Linear
Temporal Logic (LTL, [29]). It uses temporal operators U, X, and derived ones
G and F, which we do not define here. For details, we refer the reader to [27].

Games. An edge-labelled game is a tuple G = (API ,APO, V, v0, δ, obj) where
V is a finite set of vertices, v0 ∈ V is initial, δ : V × 2API × 2APO ⇀ V is
a partial function describing possible moves (safety specification), and obj is a
winning objective (liveness specification). A play is a maximal (finite or infinite)
sequence of transitions of the form (v0, i0, o0, v1)(v1, i1, o1, v2)(v2, i2, o2, v3) . . .;
the corresponding sequence (i0 ∪ o0)(i1 ∪ o1) . . . is called the action sequence.
An infinite play is winning for the system if it satisfies the objective obj; when
obj is an LTL objective over API ∪ APO, the infinite play satisfies obj iff the
action sequence satisfies it. A system strategy is a function f : (2API)+ → 2APO .
The game is won by the system if it has a strategy f such that every play
(v0, i0, o0, v1)(v1, i1, o1, v2) . . . is infinite and it satisfies the objective, where oj =
f(i0 . . . ij) for all j. To define parity games, the winning objective obj is set to be

86 R. Ehlers and A. Khalimov

a parity-assigning function obj : V → N, and then an infinite play satisfies obj
iff the minimal parity visited infinitely often in the sequence obj(v0)obj(v1) . . .
is even (min-even acceptance on states).

The enforceable predecessor operator reads a set of tuples Φ ⊆ 2AP × V
and returns the set of positions from which the system can enforce taking one
of the transitions into the destination set:

(Φ) = {v ∈ V | ∀i.∃o : (i ∪ o, δ(v, i, o)) ∈ Φ} (1)

Symbolic games with LTL objectives. Games can be represented symbolically.
For instance, the vertices can be encoded as valuations of Boolean variables AP,
and transitions between the vertices can be encoded using a Boolean formula.
This paper focuses on solving symbolic games with LTL objectives:

Given a symbolic game with LTL objective. Who wins the game?

The particular symbolic representation is not important as long as it provides
the operations for union, intersection, and complementation of sets of label-
position tuples, and the enforceable predecessor operator . This paper focuses
exclusively on the realizability problem; the extraction of compact and efficient
implementations merits a separate study.

Mu-calculus fixpoint formulas. For an introduction to using fixpoint formulas in
synthesis, we refer the reader to [7], and to [10,5] for mu-calculus in general. The
fixpoint formulas use the greatest (ν) and least (µ) fixpoint operators, and the
enforceable-predecessor operator . For instance, the formula νY.µX. (Y ∧
(x ∨X)) represents the biggest set of vertices such that from all vertices in the
set, the system can enforce that either x does not hold along the next transition
and this transition leads back to the same set, or the play gets closer to a position
from which this can be enforced. This formula hence characterizes the positions
from which the system can enforce that x holds infinitely often along a play.

Generalized Reactivity(1)

Generalized Reactivity(1) is a class of assume-guarantee specifications that in-
cludes safety and liveness components. It gained popularity because many spec-
ifications naturally fall into the GR(1) class, and the restricted nature of GR(1)
admits an efficient synthesis approach. For the purpose of this paper, we define
a GR(1) specification as a game Ggr1 = (API ,APO, V, v0, δ, Φ) with an LTL win-
ning objective of the form Φ =

∧m
i=1 GFai →

∧n
j=1 GFgj , where each assumption

ai and guarantee gj are Boolean formulas over API ∪ APO. The original GR(1)
specification class [28] uses logical formulas to describe the symbolic arena.

Solving GR(1) games using fixpoints

We now show how to solve GR(1) games by evaluating fixpoint formulas on
GR(1) game arenas. Consider a GR(1) game Ggr1 = (API ,APO, V, v0, δ, Φ) with

Fully Generalized Reactivity(1) Synthesis 87

Φ =
∧m

i=1 GFai →
∧n

j=1 GFgj . The set of positions W ⊆ V from which the
system player wins the game is characterized by the fixpoint equation [18,8]:

W = νZ.

n∧
j=1

µY.

m∨
i=1

νX.
[
(gj ∧ Z) ∨ Y ∨ (¬ai ∧X)

]
(2)

This fixpoint formula ensures that the system chooses to move into states of
one of the three kinds: (1) states where it waits for an environment goal ai to
be reached, possibly forever (¬ai ∧ X), (2) states that move the system closer
to reaching its goal number j (Y), or (3) winning states that satisfy system
goal number j (gj ∧ Z). The conjunction over all guarantees to the right of
νZ ensures that all liveness guarantees are satisfied from all winning positions
(unless some environment liveness assumption is violated). The disjunction over
the environment goals permits the system to wait for the satisfaction of any of
the environment liveness goals. At the end of evaluating the fixpoint formula,
Z consists of the winning positions for the system. The system wins the GR(1)
game if and only if W includes v0.

Example. Consider a GR(1) game with API = {u}, APO = {x, y}, and Φ =
GFu→ (GFx ∧ GFy). Equation 2 becomes:

W = νZ.

[
µY.νX. (xZ ∨ Y ∨ ūX) ∧
µY.νX. (yZ ∨ Y ∨ ūX)

]
(3)

For conciseness, we write xZ instead of x ∧ Z, and ā instead of ¬a.

Solving symbolic parity games using fixpoints

Consider a parity game (API ,APO, V, v0, δ, c) with colors {0, . . . , n}. The winning
positions for the system player in such game are characterized by the fixpoint
formula from [33,11] adapted to our setting:

W = νX0µX1 . . . σXn. (∨n
i=1colori ∧Xi) (4)

The operators ν and µ alternate, so the symbol σ is µ if n is odd and ν if n is
even; colori = {v | c(v) = i} denotes the set of vertices of color i.

Solving symbolic LTL games using fixpoints

Let G be a game with LTL objective Φ. We can construct a deterministic parity
automaton A for Φ, build the product parity game G⊗A, and solve it with the
help of Equation 4. An alternative approach is to embed the product into the
fixpoint formula by using vector notation [10].

Consider an example. Let G = (API ,APO, V, v0, δ, Φ) be a game with Φ =
GFu → (GFx ∧ GFy). The parity automaton for Φ is shown on Figure 1. It has
two states, q0 and q1, and uses three colors. For three colors, the parity fixpoint

88 R. Ehlers and A. Khalimov

q0 q1x̄ū:2

x̄u:1

x:0
ȳū:2

ȳu:1

y:0

Fig. 1. Parity automaton for GFu → (GFx ∧ GFy). Transitions are labeled by the
proposition valuations for which they can be taken as well as the color of the transition.

formula in Equation 4 has structure νZ.µY.νX. We index each set variable with
the state of the automaton, thus Z is split into Z0 and Z1, etc. The formula is:[

W0

W1

]
= ν

[
Z0

Z1

]
.µ

[
Y0
Y1

]
.ν

[
X0

X1

]
.

[
xZ1 ∨ x̄uY0 ∨ x̄ūX0

yZ0 ∨ ȳuY1 ∨ ȳūX1

]
(5)

The top row encodes the transitions from state q0 of the parity automaton:
q0

x:0→ q1 becomes xZ1, q0
x̄u:1→ q1 becomes x̄uY1, q0

x̄ū:2→ q0 becomes x̄ūX0. After
formula evaluation, the variable W0 contains game positions winning for the
system wrt. the parity automaton Aq0 , while W1 does so wrt. Aq1 .

In general, suppose we are given a game whose winning objective is a deter-
ministic parity automaton (2AP, Q, q0, δ) with transition function δ : Q × Σ →
Q × N that uses n colors {0, . . . , n − 1}. The set of winning game positions is
characterized by the fixpoint formula: W1

...

W|Q|

 = ν

 X0
1

...

X0
|Q|

.µ
 X1

1
...

X1
|Q|

 . . . σ
Xn−1

1
...

Xn−1
|Q|

.
 ψ1

...

ψ|Q|

 (6)

where for all j ∈ {1, . . . , |Q|},we have ψj =
∨

x ∈ 2AP

let (q, c) = δ(qj , x)

x ∧Xc
ind(q)

where ind : Q → {1, . . . , |Q|} is some state numbering (one-to-one) that maps
the initial automaton state q0 to 1. The game is won by the system if and only
if the initial game position belongs to W1.

3 Chains of Good-for-Games co-Büchi Automata

This section reviews the chain of good-for-games co-Büchi automata represen-
tation [19] for ω-regular languages used by our synthesis approach in Section 4.

Like parity automata, a chain of co-Büchi automaton representation of a
language assigns colors to words. The central difference is that the chain repre-
sentation relies on a sequence of automata, each taking care of a single color.

Definition 1. Let L ⊆ Σω be an omega-regular language. A falling chain of
languages L1 ⊃ L2 ⊃ . . . ⊃ Ln is a chain-of-co-Büchi representation of L if

– every language Li for i ∈ {1, . . . , n} is a co-Büchi language, and

Fully Generalized Reactivity(1) Synthesis 89

– for every w ∈ Σω, the word w is in L if and only if w ̸∈ L1 or the highest
index i such that w ∈ Li is even.

Examples. The universal language Σω has the singleton-chain L1 = ∅, and the
empty language has the chain (L1 = Σω) ⊃ (L2 = ∅). The language of the LTL
formula GFa over a single atomic proposition a is expressed by the chain (L1 =
L(FGa)) ⊃ (L2 = ∅), and L(FGa) by (L1 = Σω) ⊃ (L2 = L(FGa)) ⊃ (L3 = ∅).

The definition of the natural color of a word from [19] provides a canonical
way to represent L as a chain of co-Büchi languages L1 ⊃ L2 ⊃ . . . ⊃ Ln, which
uses the minimal number of colors. Moreover, Abu Radi and Kupferman describe
a procedure to construct a minimal and canonical good-for-games co-Büchi au-
tomaton for a given co-Büchi language [2]. Thus, every omega-regular language
has a canonical minimal chain-of-co-Büchi-automata representation (COCOA).

The canonization procedure in [2, Thm.4.7] ensures the following property.

Lemma 1 ([2]). Fix a canonical GFG co-Büchi automaton A computed by [2,
Thm.4.7]. For every state q and letter x, either there is

– exactly one accepting transition, or there are
– one or more rejecting transitions. In this case:

• all successors of q on x share the same suffix language L′, i.e., for every
two successors s1 and s2 of q on x: L(A, s1) = L(A, s2), and

• for every state q′ with suffix language L′, there is a rejecting transition
to q′ from q on x.

Figure 2 on page 12 shows an example of a COCOA.

Strategies to get back on the track

Every GFG automaton has a strategy to resolve its nondeterminism such that
a word is accepted if and only if the run adhering to this strategy is accepting.
We allow such strategies to diverge for a finite number of steps, and show that
this divergence does not affect the acceptance by canonical GFG automata.

Given a COCOA A1, . . . ,An, define the natural color of a word to be the
largest level l such that Al accepts the word, or 0 if no such l exists. Thus, a
word is accepted by the COCOA if and only if the natural color is even.

GFGness strategies f l. Let f l : Σ∗ → Ql be a GFG witness resolving nondeter-
minism in Al, for every l ∈ {1, . . . , n}; we call f l a golden strategy of Al, and
the induced run for some given word is called its golden run.

Restrictions gl. The synthesis approach, which will be described later, considers
combined runs of all automata. Its efficiency depends on the number of reachable
states in Q1 × . . . × Qn, so it is beneficial to reduce this number. To this end,
we introduce a restriction on successor choices. We first define a helpful notion:
for a co-Büchi automaton A and its state q, let Lacc(q) denote the set of words
which have a run from q visiting only accepting transitions. For several automata

90 R. Ehlers and A. Khalimov

A1, . . . ,Al and their states q1, . . . , ql, define Lacc(q1, . . . , ql) =
∧

i L
acc(qi). Then,

for l ∈ {1, . . . , n}, define a restriction function gl : Ql ×Σ ×Q1 × . . .×Ql−1 →
2Q

l

: for every ql, x, r1, . . . , rl−1, let gl(ql, x, r1, . . . , rl−1) = S ⊆ δl(ql, x) be
a maximal set such that for every rl ∈ S there exists no other r̃l ∈ S with
Lacc(r1, . . . , rl−1, r̃l) ⊆ Lacc(r1, . . . , rl). Intuitively, given a current state ql of
the automaton Al, a letter x, and successor states r1, . . . , rl−1 of the automata
on lower levels, the function gl returns a set of states among which Al should
pick a successor. Runs ρ1 = q10q

1
1 . . . , . . . , ρ

n = qn0 q
n
1 . . . of A1, . . . ,An on a word

x0x1 . . . satisfy restrictions g1, . . . , gn if for every level l ∈ {1, . . . , n} and step
i ∈ N: qli+1 ∈ gl(qli, xi, q

1
i+1, . . . , q

l−1
i+1). Strategies f l : Σ∗ → Ql for l ∈ {1, . . . , n}

satisfy restrictions g1, . . . , gn if on every word the strategies yield runs satisfying
the restrictions.

The following lemma states that requiring runs of A1, . . . ,An to satisfy the
restrictions g1, . . . , gn preserves the natural colors and the GFGness.

Lemma 2. There exist strategies f l : Σ∗ → Ql for l ∈ {1, . . . , n} satisfying the
restrictions g1, . . . , gn such that for every word of a natural color c, the strategies
yield accepting runs ρ1, . . . , ρc of A1, . . . ,Ac.

Proof. Fix a word w of a natural color c. Each automaton Al of the chain has a
GFG witness in the form of a strategy hl : Σ∗ → Ql to resolve nondeterminism.
From such strategies and the restrictions g1, . . . , gn, we construct the sought
strategies f1, . . . , fn, inductively on the level, starting from the smallest level 1
and proceeding upwards to n.

Fix l ∈ {1, . . . , n}, and suppose the strategies f1, . . . , f l−1 are already de-
fined; we define the strategy f l : Σ∗ → Ql. Fix a moment i− 1. Let qli−1 be the
state of the run ρl proceeding according to f l, q̃li = hl(x0 . . . xi−1) the successor
state in the original run ρ̃l according to hl, q1i , . . . , q

l−1
i the successor states in

ρ1, . . . , ρl−1 adhering to f1, . . . , f l−1, and Ql
i = gl(qli−1, xi−1, q

1
i , . . . , q

l−1
i) the

allowed successors on level l. Then:

– if Ql
i = {qli} describes a unique choice, then f l(x0 . . . xi−1) = qli takes it,

– else f l picks any qli ∈ Ql
i s.t. Lacc(q1i , . . . , q

l−1
i , qli) ⊇ Lacc(q1i , . . . , q

l−1
i , q̃li).

Note that such qli always exists because in canonical GFG co-Büchi automata
a choice of a nondeterministic transition does not narrow the subsequent
nondeterminism resolution.

We now show that the strategies f1, . . . , f l preserve the natural colors. Fix a
word w. It suffices to prove that the original strategy hl yields an accepting run
ρ̃l if and only if f l yields an accepting run ρl. If ρ̃l is rejecting, then ρl is also
rejecting, for hl is a witness of GFGness. Now assume that ρ̃l is accepting. After
some momentm, the runs ρ1, . . . , ρl−1, ρ̃l never make a rejecting transition, hence
wmwm+1 . . . ∈ Lacc(q1m, . . . , q

l−1
m , q̃lm). Let m′ ≥ m be the first moment after m

when ρl visits a rejecting transition; if no such m′ exists, we are done. At moment
m′, the strategy f l picks a successor qlm′+1 such that Lacc(q1m′+1, . . . , q

l
m′+1) ⊇

Lacc(q1m′+1, . . . , q̃
l
m′+1). Since wm′+1 . . . ∈ Lacc(q1m′+1, . . . , q

l−1
m′+1, q̃

l
m′+1), that

suffix also belongs to a larger Lacc wrt. qlm′+1. Hence the run ρl is accepting. ⊓⊔

Fully Generalized Reactivity(1) Synthesis 91

Get-back strategies f l⋆. We now consider runs that diverge from golden runs.
Given an individual strategy f l : Σ∗ → Ql, define f l⋆ : Σ∗ ×Ql ×Σ ⇀ Ql to be
a strategy-like function which, when presented with a choice, makes the same
choice as f l. Formally: for every p ∈ Σ∗, q ∈ Ql reachable from the initial state
on reading p, and x ∈ Σ, the value f l⋆(p, q, x) = f l(p · x) if Al needs to take a
rejecting transition from q on x, otherwise there is no choice to be made and
f l⋆(p, q, x) = q′ for the unique successor q′ of q on reading x. It follows from
properties of canonical GFG automata (Lemma 1) that every successor chosen
by f l⋆ satisfies the transition relation of Al. We now prove that it is sufficent to
adhere to f l⋆ only eventually.

Lemma 3. Fix a COCOA and a word w. For l ∈ {1, . . . , n}, suppose Al on w
has a rejecting run ρl that eventually adheres to f l⋆, where f l⋆ is constructed from
f l of Lemma 2. Then Al rejects w.

The proof is based on Lemma 1, which implies that two diverging runs of a
canonical GFG automaton on the same word can always be converged once a
rejecting transition is taken.

Proof. For l = 0 the claim trivially holds; assume l > 0. Let ρl⋆ be the golden
run of Al on the word. Let m be the moment starting from which ρl adheres
to the golden strategy of Al. Let n be the first moment n ≥ m when Al makes
a rejecting transition: by properties of canonical GFG automata (Lemma 1),
there must be a rejecting transition to the same state as in ρl⋆. The strategy f l⋆
moves the automaton Al in ρl into the same state at moment n + 1 as it is in
ρl⋆. Afterwards, the strategy f l⋆ ensures that Al in ρl follows exactly the same
transitions as Al in ρl⋆. Hence, the golden run ρl⋆ is rejecting: Al rejects w. ⊓⊔

COCOA product

In this section, we compose individual automata of COCOA into a product which
is a good-for-games alternating parity automaton [9]. The results above imply
that the languages of a COCOA and its product coincide. Later we use COCOA
products to solve games with LTL objectives.

Alternating automata. A simple1alternating parity automaton (Σ,Q, q0, δ) has
a transition function of type δ : Q × Σ → 2Q × N × {rej , acc}. For instance,
δ(q, x) = ({q1, q2}, 1, rej) means that from state q on reading letter x there are
transitions to q1 and q2, both labelled with color 1, and the choice between q1
and q2 is controlled by the rejector player. There are two players, rejector and
acceptor, and the acceptance of a word w = x0x1 . . . is defined via the following
word-checking game. Starting in q0, the two players resolve nondeterminism and
build a play (q0, c0, pl0, q1)(q1, c1, pl1, q2) . . .: suppose the play sequence is in state
1 ‘Simple’ refers to a simpler form of the transition function. We use δ : Q × Σ →
2Q × N × {rej , acc} while the general form is δ : Q × Σ → B+(Q) plus parity
assignment Q×Σ ×Q → N. We forbid mixing conjunctions and disjunctions.

92 R. Ehlers and A. Khalimov

qi, let δ(qi, xi) = (Qi+1, ci, pli): if pli = rej then the rejector chooses a state
qi+1 ∈ Qi+1, otherwise the acceptor chooses. The play sequence is then extended
by (qi, ci, pli, qi+1) and the procedure repeats from state qi+1. The play is won
by the acceptor if the minimal color appearing infinitely often in c0c1 . . . is even
(min-even acceptance), otherwise it is won by the rejector. The word-checking
game is won by the acceptor if it has a strategy fw : Q∗ → Q to resolve its
nondeterminism to win every play; otherwise the game is won by the rejector,
who then also has a winning strategy. Note that although the acceptor strategy
does not know the rejector choices beforehand, it knows the word w. The word
is accepted by the automaton if the word-checking game is won by the acceptor.

A simple alternating automaton is good-for-games, abbreviated A-GFG, if
the acceptor player has a strategy facc : (Q × Σ)∗ → Q to win the word-
checking game for every accepting word, and the rejector player has a strategy
frej : (Q × Σ)∗ → Q winning for every rejected word. These strategies depend
only on the currently seen word prefix, not the whole word. We remark that our
definition of GFGness differs from [9] but they show the equivalence [9, Thm.8].

COCOA product. The product is built in three steps. First, we define a naive
product, which combines individual chain automata into A-GFG in a straightfor-
ward way. The naive product may contain states whose removal does not affect
its language, hence in the second step we define a product with reduced sets of
states and transitions. In turn, the reduced product may miss transitions ben-
eficial for synthesis. Therefore, in the last step, we enrich the reduced product
with transitions to derive the optimized, and final, COCOA product.

Given a COCOA Al = (Σ,Ql, ql0, δ
l) with l ∈ {1, . . . , n}, the naive COCOA

product is the following simple alternating parity automaton (Σ,Q, q0, δ). Each
state is a tuple from Q1 × . . . × Qn, q0 = (q10 , . . . , q

n
0), and the set of states

consists of those reachable from the initial state under the transition relation
defined next. The transition relation δ : Q×Σ → 2Q ×N× {rej , acc} simulates
individual automata of the COCOA. Consider an arbitrary (q1, . . . , qn) ∈ Q,
x ∈ Σ; let r be the smallest number such that Ar has a rejecting transition from
qr on reading x, i.e., (qr, x, q̃r, 1) ∈ δr for some q̃r ∈ Qr, otherwise set r to n+1.
By abuse of notation, define δl(ql, x) = {q̃l | ∃p : (ql, x, q̃l, p) ∈ δl} to be the set
of successor states of ql on reading x in Al. Let plr be rej for odd r and acc for
even r. Then, δ((q1, . . . , qn), x) = (Q̃, r − 1, plr), where:

Q̃ = {(q̃1, . . . , q̃n) | q̃l ∈ δl(ql, x) for every l}.

Notice that the automata on levels l < r have unique successors (q̃l is unique) as
their transitions are accepting and hence deterministic (by Lemma 1 on page 8).
The automata on levels l ≥ r may need to resolve nondeterminism, which is
done by a single player plr in the product.

The reduced COCOA product is defined by replacing the definition of Q̃ by

Q̃ = {(q̃1, . . . , q̃n) | q̃l ∈ gl(q̃1, . . . , q̃l−1, x, ql) for every l}

where the restriction function gl was defined on page 9. As a result, this set Q̃ has
no two states (q1, . . . , qn) and (q̃1, . . . , q̃n) with Lacc(q1, . . . , qn) ⊆ Lacc(q̃1, . . . ,

Fully Generalized Reactivity(1) Synthesis 93

q0 q1x̄ ȳ

x yA1

FGx̄ ∨ FGȳ

x

y
p0 p1x̄ū ȳū

x ∨ u y ∨ uA2

FGx̄ū ∨ FGȳū

x ∨ u

y ∨ u

Fig. 2. COCOA for the language GFu → (GFx∧GFy). Rejecting transitions are dashed.

q̃n). The set of states of the reduced COCOA product is the set of states from
Q1 × . . .×Qn reachable under the above definition.

Finally, given a reduced COCOA product (Σ,Q, q0, δR), we now define the
optimized COCOA product (Σ,Q, q0, δO). It has the same states Q as the reduced
product but adds transitions. For (q1, . . . , qn) ∈ Q, x ∈ Σ, let (Q̃R, r− 1, plr) =
δR((q

1, . . . , qn), x). Then δO((q1, . . . , qn), x) = (Q̃, r − 1, plr), where

Q̃ = Q̃R ∪
{
(q̃1, . . . , q̃n) ∈ Q :

∀l ∈ {1, . . . , r − 1}: ql ∈ δl(ql, x) ∧
∀l ∈ {r, . . . , n}.∃(q̃1R, . . . , q̃nR) ∈ Q̃R: L(q̃

l) = L(q̃lR)
}
.

In the first condition, the successor ql for l ≤ r−1 is uniquely defined. The second
condition on levels higher than r − 1 allows for state jumping.

Lemma 4. For every COCOA, the optimized product is A-GFG and has the
same language as the COCOA.

Proof. We describe two strategies, facc : (Q × Σ)∗ → Q for the acceptor and
frej : (Q × Σ)∗ → Q for the rejector, and prove two claims: for every word,
(1) if the word is accepted by COCOA, the acceptor wins the word-checking
game using facc, (2) if the word is rejected by COCOA, the rejector wins the
word-checking game using frej. The lemma follows from these claims.

We define facc. Given a finite history h = ((q11 , ..., q
n
1), x1)...((q

1
i , ..., q

n
i), xi),

let facc(h) = (q1i+1, ..., q
n
i+1), where for l = 1, ..., n:

– if l is even: qli+1 = f l⋆(x1 . . . xi−1, q
l
i, xi);

– if l is odd, pick arbitrary qli+1 ∈ gl(q1i+1, . . . , q
l−1
i+1, q

l
i).

The strategy frej is built similarly but f l⋆ is used for odd l. Finally, the two items
are then proven using contraposition and then applying Lemma 3. ⊓⊔

Example. Figure 3 shows the optimized product for COCOA in Figure 2.

4 Solving LTL Games Using Chain of co-Büchi Automata

This section shows how to solve symbolic games with LTL objectives by going
through COCOA. For a given LTL specification we construct a deterministic

94 R. Ehlers and A. Khalimov

q0, p0 q1, p1x̄ū:2
rej

x̄u:1
acc

x:0
rej

ȳū:2
rej

ȳu:1
acc

y:0
rej

Fig. 3. Optimized COCOA product for GFu → (GFx ∧ GFy). It has only two nonde-
terministic transitions, connecting (q0, p0) and (q1, p1), controlled by the rejector. For
instance, δ((q0, p0), x) = ({(q0, p0), (q1, p1)}, 0, rej).

parity automaton and then a COCOA using the effective procedure of [19]. We
then compute the COCOA product. Finally, we encode the symbolic game with
a COCOA product objective into a fixpoint formula. The latter step is simple
because the COCOA product is a good-for-games alternating automaton, and
such automata are composable with games [9, Thm.8]. Finally, we show that the
GR(1) fixpoint equation is a special case of the COCOA fixpoint formula.

Fixpoint formula for games with COCOA objectives

Given a game with an objective in the form of an optimized COCOA product
(2AP, Q, q0, δ), we construct a fixpoint formula that characterizes the set of win-
ning positions. Since the COCOA product is a good-for-games parity automaton,
the formula resembles Equation 6. It has the structure νX0.µX1. . . . σXn where
n+ 1 is the number of colors in the COCOA product, and the operators ν and
µ alternate. As before, we use the vector notation, and split each variable X l

into |Q| variables X l
1, . . . , X

l
|Q|, one per state of the COCOA product, and the

kth row in the fixpoint formula encodes transitions from state qk of the product.
Let ind : Q → {1, . . . , |Q|} be some one-to-one state numbering with the initial
state of the COCOA product mapped to 1, and let OPpl denote

∨
when pl is

acc otherwise it is
∧

. The following fixpoint formula computes, for each state q
of the COCOA product, the set Wind(q) of game positions from which the system
player wins the game wrt. the COCOA product whose initial state is set to q: W1

...

W|Q|

 = ν

 X0
1

...

X0
|Q|

.µ
 X1

1
...

X1
|Q|

 . . . σ
 Xn

1
...

Xn
|Q|

.
 ψ1

...

ψ|Q|

, where for all j: (7)

ψj =
∨

x ∈ 2AP

let (Q̃, c, pl) = δ(qj , x)

(
x ∧OPpl

q∈Q̃
Xc

ind(q)

)

The game wrt. the COCOA product is won by the system player if and only
if v0 ∈ W1. Since the languages of COCOA and its optimized product coincide
(Lemma 4), we arrive at the following theorem.

Fully Generalized Reactivity(1) Synthesis 95

Theorem 1. A game with an LTL objective Φ is won by the system if and only if
the initial game position belongs to W1 computed by Equation 7 for the optimized
COCOA product for Φ.

Example. Consider the LTL specification GFu → (GFx ∧ GFy). The optimized
product contains only states (q0, p0) and (q1, p1). The fixpoint formula is:

ν

[
Z00

Z11

]
.µ

[
Y00
Y11

]
.ν

[
X00

X11

]
.

[
xZ00Z11 ∨ x̄uY00 ∨ x̄ūX00

yZ00Z11 ∨ ȳuY11 ∨ ȳūX11

]
where the subscript index ij denotes a state (qi, pj) of the optimized COCOA
product. The LTL game is won by the system if and only if at the end of eval-
uation the initial game position v0 belongs to Z00. This formula has a structure
similar to the GR(1) Equation 3, in particular it uses the conjunction over Z
variables which leads to a reduction of the number of fixpoint iterations. In
contrast, the parity formula in Equation 5 misses this acceleration.

GR(1) synthesis as a special case

We argue that for GR(1) specifications, the COCOA fixpoint Equation 7 be-
comes similar – in spirit – to GR(1) fixpoint Equation 2. Consider a GR(1)
formula

∧m
i=1 GFai →

∧n
j=1 GFgj . Its COCOA has two automata, A1 and A2.

The automaton A1 accepts exactly the words that violate one of the guarantees,
while A2 accepts exactly the words that violate one of the guarantees and one
of the assumptions. In order to reason able number of states in canonical au-
tomata, we assume henceforth that in the GR(1) formula, no assumption implies
another assumption or guarantee, and no guarantee implies another guarantee.
The structures of A1 and A2 are as follows. The automaton A1 has one state per
guarantee (n in total), while A2 has one per combination of liveness assumption
and guarantee (m · n in total). The optimized COCOA product has exactly one
state for each assumption-guarantee combination, m ·n in total, versus n · (m ·n)
for the non-optimized product. Let {1, . . . ,m} × {1, . . . , n} be the states of the
optimized product, and let (1, 1) be initial. For each state (i, j):

– for every x |= āiḡj : δ((i, j), x) =
(
{(i, j)}, 2, rej

)
,

– for every x |= aiḡj : δ((i, j), x) =
(
{(i′, j) | i′ ∈ {1, . . . ,m}}, 1, acc

)
, and

– for every x |= gj : δ((i, j), x) =
(
{1, . . . ,m}×{1, . . . , n}, 0, rej

)
.

The fixpoint formula for such COCOA product has the form:W1,1
...

Wm,n

 = ν

Z1,1
...

Zm,n

. µ
 Y1,1...

Ym,n

. ν
X1,1

...

Xm,n

.
 ψ1,1

...

ψm,n

 , where for all i, j:

ψi,j = gj(
∧

i′ ∈ {1, . . . ,m}
j′ ∈ {1, . . . , n}

Zi′,j′) ∨ aiḡj(
∨

i′∈{1,...,m}

Yi′,j) ∨ āiḡjXi,j

96 R. Ehlers and A. Khalimov

The conjunction
∧

i′, j′ Zi′, j′ and disjunctions
∨

i′ Yi′, j enable faster information
propagation which results in smaller number of fixpoint iterations. Such infor-
mation sharing is present in GR(1) fixpoint Equation 2, and it is in this sense the
COCOA approach generalizes GR(1) approach. In contrast, the parity fixpoint
formula for GR(1) specifications misses this acceleration.

We now optimize the equation to reduce the number of variables. First, we
introduce variables Yj and Zj , for j ∈ {1, ..., n}, and transform the formula intoW1

...

Wn

 = ν

Z1
...

Zn

. µ
Y1...
Yn

.
∨i Φi,1

...∨
i Φi,n

, where

 Φ1,1
...

Φm,n

 = ν

X1,1
...

Xm,n

.
 ψ1,1

...

ψm,n

, where

ψi,j = gj(
∧

j′∈{1,...,n}

Zj′) ∨ aiḡjYj ∨ āiḡjXi,j

Note that for every i ∈ {1, . . . ,m}, the value Wi,j computed by the old formula
equals the value Wj computed by the new formula (Wi,j = Wi), where j ∈
{1, . . . , n}. We then introduce a fresh variable Z, and transform the formula to:

W = νZ.
∧

j∈{1,...,n}

Ψj , where

Ψ1
...

Ψn

 = µ

Y1...
Yn

.
∨i Φi,1

...∨
i Φi,n

, where

 Φ1,1
...

Φm,n

 = ν

X1,1
...

Xm,n

.
 g1Z ∨ a1ḡ1Y1 ∨ ā1ḡ1X1,1

...

gnZ ∨ amḡnYn ∨ āmḡnXm,n

After this transformation, we have W = Wj for every j ∈ {1, . . . , n}. Finally,
the last equations can be folded into the formula

W = νZ.

n∧
j=1

µY.

m∨
i=1

νX.
[
gjZ ∨ aiḡjY ∨ āiḡjX

]
which is equal to Equation 2 modulo expressions in front of the variables. Our
prototype tool implements a generalized version of such formula optimization.

5 Evaluation

Evaluation goals are: (G1) show that standard LTL synthesizers do not fit our
synthesis problem, (G2) compare our approach against specialized GR(1) syn-
thesizer, and (G3) compare the COCOA approach against the parity approach.

Fully Generalized Reactivity(1) Synthesis 97

We implemented COCOA and parity approaches in a prototype tool reboot.
It uses SPOT [16] to convert LTL specifications (the liveness part of GR(1))
to deterministic parity automata. From it, reboot builds COCOA using the
construction described in [19]. The COCOA is then compiled into a fixpoint for-
mula in Equation 7, and symbolically evaluated on the game graph. For symbolic
encoding of game positions and transitions, we use the BDD library CUDD [32].

We compare our approaches with GR(1) synthesis tool slugs [18] and the
LTL synthesis tool strix [26] which represent the state of the art. The experi-
ments were performed on a Linux machine with AMD EPYC 7502 processor; the
timeout was set to 1 hour. To implement the comparison, we collected existing
and created new benchmarks: AMBA, lift, and robot on a grid. Each specifica-
tion is written in an extension of the slugs format: it encodes a symbolic game
graph using logical formulas over system and environment propositions, and an
LTL property on top of it. In total, there are 80 benchmarks, all realizable.

The evaluation data is available at https://doi.org/10.5281/zenodo.10448487

AMBA and lift. We use two parameterized benchmarks inspired by [8], each
having two versions, a GR(1) and an LTL version. The first specification en-
codes an elevator behaviour and is parameterized by the number of floors. Its
GR(1) specification has one liveness assumption and a parameterized number
of guarantees (GF →

∧
i GF). Lift’s LTL version adds an additonal request-

response assumption and has the form GF∧ (GF → GF) →
∧

i GF, which requires
5 parity colors. There are 24 GR(1) instances and 21 LTL instances, with the
number of Boolean propositions ranging from 7 to 34. The AMBA specification
describes the behaviour of an industrial on-chip bus arbiter serving a param-
eterized number of clients. Its GR(1) version has the shape GF →

∧
i GF; our

new LTL modification replaces one safety guarantee φ by FGφ, which allows
the system to violate it during some initial phase, and we add an assumption
of the form GF → GF. Overall, the AMBA’s LTL specification has the form
GF∧ (GF → GF) → FG∧

∧
i GF, and requires 7 parity colors. There are 14 GR(1)

instances and 7 LTL instances; the number of Boolean propositions is 22 for the
specification serving two clients, and 77 for the 15-client version.

Robot on a grid. This benchmark describes the standard scenario from robotics
domain: a robot moves on a grid, there are walls, doors, pickup and delivery
locations, and a moving obstacle. When requested, the robot has to pickup a
package and deliver it to the target location, while avoiding collisions with the
walls and the obstacle and passing through the doors only when they are open.
The GR(1) specification has parameterized number of assumptions and guaran-
tees:

∧
i GF →

∧
i GF. The LTL version introduces preferential paths: the robot

has to eventually always use it assuming that the moving obstacle only moves
along her preferred path. This yields the shape FG ∧

∧
i GF → FG ∧

∧
i GF (5

colors). There are 16 maps of size 8×16 with varying number of delivery-pickup
locations and doors. The number of Boolean propositions ranges from 24 to 53.

98 R. Ehlers and A. Khalimov

https://doi.org/10.5281/zenodo.10448487

strix
parity
cocoa

ti
m

e

0

500

1000

2500

3000

3500

#
0 10 20 30 40 50 60 70

lift
amba
robot

co
co

a

0,01

0,1

1

100

1000

slugs
0,01 0,1 1 10 100 1000

lift
amba
robot

co
co

a	
(f

p
)

0,01

0,1

1

100

1000

slugs
0,01 0,1 1 10 100 1000

lift
amba
robot

co
co

a	
(f

p
)

0,01

0,1

1

100

1000

parity	(fp)
0,01 0,1 1 10 100 1000

Fig. 4. From left to right: (G1) Cactus plot comparing our approaches with LTL syn-
thesizer strix [26]; (G2a) Comparing COCOA-based approach with GR(1) synthesizer
slugs [17]; (G2b) The same but excluding LTL-to-parity translation time; (G3) Com-
paring COCOA and parity approaches (excluding LTL-to-parity translation time).

G1: Comparing with LTL synthesizer. Figure 4 shows a cactus plot. On these
problems, the LTL synthesizer strix is slower than specialized solvers. The rea-
son is the sheer number of states in benchmark game arenas: e.g., benchmark
amba15 uses 77 Boolean propositions, yielding the naive estimate of game arena
size in 277 states. Solver strix tries to construct an explicit-state automaton
describing this game arena and the LTL property, which is a bottleneck. In con-
trast, symbolic solvers like slugs or reboot represent game arenas symbolically
using BDDs, and reboot constructs explicit automata only for LTL properties.

G2: Comparing with GR(1) synthesizer. The second diagram in Figure 4 com-
pares the COCOA approach with slugs on the GR(1) benchmarks. The diagram
shows the total solving time, including the time reboot spends calling SPOT for
translating GR(1) liveness formula to parity automaton. On Lift examples, most
of the time is spent in this translation when the number of floors exceeds 15:
for instance, on benchmark lift20 reboot spent 650 out of total 670 seconds in
translation. If we count only the time spent in fixpoint evaluation – and that is a
more appropriate measure since GR(1) liveness formulas have a fixed structure
– the performances are comparable, see the third diagram.

G3: COCOA vs. parity. The last diagram in Figure 4 compares COCOA and
parity approaches on all the benchmarks, and shows that the COCOA approach
is significantly faster than the parity one. We note that on these examples, the
number of states in the optimized COCOA product was equal to or less than
the number of states in the parity automaton. At the same time, the number of
fixpoint iterations performed by the COCOA approach was always significantly
smaller than for the parity one. Intuitively, this is due to the structure of COCOA
fixpoint equation that propagates information faster than the parity one.

Remarks. We did not compare with other symbolic approaches for solving parity
or Rabin games [15,14,6]: although they use symbolic algorithms, as input these
tools require games in explicit form or their game encoding separates positions
into those of player-1 and player-2; both significantly affects the performance.

While all our benchmarks were realizable, the prototype tool was system-
atically compared against other approaches on both realizable and unrealizable
random specifications using fuzz testing.

Fully Generalized Reactivity(1) Synthesis 99

References

1. Reactive synthesis competition SyntComp 2023: Results. http://www.syntcomp.
org/syntcomp-2023-results, accessed: 15-09-2023

2. Abu Radi, B., Kupferman, O.: Minimization and canonization of GFG transition-
based automata. Log. Methods Comput. Sci. 18(3) (2022)

3. Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments. ACM
Trans. Comput. Log. 5(1), 1–25 (2004)

4. Amram, G., Maoz, S., Pistiner, O.: GR(1)*: GR(1) specifications extended with
existential guarantees. In: Third World Congress on Formal Methods (FM). pp.
83–100 (2019)

5. Arnold, A., Niwiński, D.: Rudiments of mu-calculus. Elsevier (2001)
6. Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Fast symbolic

algorithms for omega-regular games under strong transition fairness. TheoretiCS
2 (2023)

7. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph Games and Reactive Synthesis,
pp. 921–962. Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-319-10575-8_27, https://doi.org/10.1007/978-3-319-10575-8_27

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

9. Boker, U., Lehtinen, K.: Good for Games Automata: From Nondeterminism to
Alternation. In: Fokkink, W., van Glabbeek, R. (eds.) 30th International Con-
ference on Concurrency Theory (CONCUR 2019). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 140, pp. 19:1–19:16. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/
LIPIcs.CONCUR.2019.19, http://drops.dagstuhl.de/opus/volltexte/2019/10921

10. Bradfield, J.C., Walukiewicz, I.: The mu-calculus and model checking. In: Hand-
book of Model Checking, pp. 871–919 (2018)

11. Bruse, F., Falk, M., Lange, M.: The fixpoint-iteration algorithm for parity games.
In: Fifth International Symposium on Games, Automata, Logics and Formal Ver-
ification (GandALF). pp. 116–130 (2014)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

13. Church, A.: Logic, arithmetic, and automata. In: International Congress of Mathe-
maticians (Stockholm, 1962), pp. 23–35. Institute Mittag-Leffler, Djursholm (1963)

14. Di Stasio, A., Murano, A., Vardi, M.Y.: Solving parity games: Explicit vs symbolic.
In: Implementation and Application of Automata: 23rd International Conference,
CIAA 2018, Charlottetown, PE, Canada, July 30–August 2, 2018, Proceedings 23.
pp. 159–172. Springer (2018)

15. van Dijk, T.: Oink: An implementation and evaluation of modern parity game
solvers. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 291–308. Springer International Publishing,
Cham (2018)

16. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A framework for LTL and \omega -automata manipulation. In: 14th
International Symposium on Automated Technology for Verification and Analysis
(ATVA). pp. 122–129 (2016)

17. Ehlers, R.: Generalized Rabin(1) synthesis with applications to robust system syn-
thesis. In: Third International NASA Formal Methods Symposium (NFM). pp.
101–115 (2011)

R. Ehlers and A. Khalimov100

http://www.syntcomp.org/syntcomp-2023-results
http://www.syntcomp.org/syntcomp-2023-results
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
http://drops.dagstuhl.de/opus/volltexte/2019/10921

18. Ehlers, R., Raman, V.: Slugs: Extensible GR(1) synthesis. In: 28th International
Conference on Computer Aided Verification. pp. 333–339 (2016)

19. Ehlers, R., Schewe, S.: Natural colors of infinite words. In: 42nd IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS) (2022), presentation available at https://www.youtube.com/
watch?v=RSd25TiELUo

20. Filiot, E., Jin, N., Raskin, J.: An antichain algorithm for LTL realizability. In:
21st International Conference on Computer Aided Verification (CAV). pp. 263–
277 (2009)

21. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for ltl
synthesis. Formal Methods in System Design 39, 261–296 (2011)

22. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
15(5-6), 519–539 (2013)

23. Godhal, Y., Chatterjee, K., Henzinger, T.A.: Synthesis of AMBA AHB from formal
specification: a case study. Int. J. Softw. Tools Technol. Transf. 15(5-6), 585–601
(2013)

24. Gritzner, D., Greenyer, J.: Synthesizing executable PLC code for robots from
scenario-based GR(1) specifications. In: Software Technologies: Applications and
Foundations - STAF 2017 Collocated Workshops. pp. 247–262 (2017)

25. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
International Conference on Computer Aided Verification. pp. 31–44. Springer
(2006)

26. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Computer Aided Verification: 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I. pp. 578–586. Springer (2018)

27. Piterman, N., Pnueli, A.: Temporal Logic and Fair Discrete Systems, pp. 27–
73. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8_2, https://doi.org/10.1007/978-3-319-10575-8_2

28. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. In: Verifica-
tion, Model Checking, and Abstract Interpretation: 7th International Conference,
VMCAI 2006, Charleston, SC, USA, January 8-10, 2006. Proceedings 7. pp. 364–
380. Springer (2006)

29. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (FOCS). pp. 46–57 (1977)

30. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: 16th International Colloquium on Automata, Languages and Programming
(ICALP). pp. 652–671 (1989)

31. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of
reactive systems. International Journal on Software Tools for Technology Transfer
15, 433–454 (2013)

32. Somenzi, F.: CUDD: CU Decision Diagram package release 3.0.0 (2016)
33. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theoretical

computer science 275(1-2), 311–346 (2002)
34. Wong, K.W., Kress-Gazit, H.: From high-level task specification to robot operating

system (ROS) implementation. In: First IEEE International Conference on Robotic
Computing, IRC 2017, Taichung, Taiwan, April 10-12, 2017. pp. 188–195 (2017)

35. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: 14th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC). pp. 313–314
(2011)

Fully Generalized Reactivity(1) Synthesis 101

https://www.youtube.com/watch?v=RSd25TiELUo
https://www.youtube.com/watch?v=RSd25TiELUo
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2

36. Zudaire, S.A., Nahabedian, L., Uchitel, S.: Assured mission adaptation of UAVs.
ACM Trans. Auton. Adapt. Syst. 16(3–4) (jul 2022)

R. Ehlers and A. Khalimov102

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Fully Generalized Reactivity(1) Synthesis

