
DeepEMO: A Multi-indicator
Convolutional Neural Network-Based

Evolutionary Multi-objective Algorithm

Emilio Bernal-Zubieta(B) , Jesús Guillermo Falcón-Cardona ,
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{a01570751,jfalcon,jorge.cruz}@tec.mx

Abstract. Quality Indicators (QIs) have been used in numerous Evolu-
tionary Multi-objective Optimization Algorithms (EMOAs) as selection
mechanisms within the evolutionary process. Because each QI prefers
specific point-distribution properties, an Indicator-based EMOA (IB-
EMOA) that uses a single QI has an intrinsically limited scope of prob-
lems it can solve accurately. To overcome the issues that IB-EMOAs
have, we present the first results of a new general multi-indicator-based
multi-objective evolutionary algorithm, denoted as DeepEMO. It uses
a Convolutional Neural Network (CNN) as a hyper-heuristic to choose,
depending on the Pareto-front geometry, the appropriate indicator-based
selection mechanism at each generation of the evolutionary process. We
employ state-of-the-art benchmark problems with different Pareto front
geometries to test our approach. Our experimental results show that
DeepEMO obtains competitive performance across multiple QIs. This is
because the CNN is employed to classify the geometry of the point cloud
that approximates the Pareto front. Hence, DeepEMO compensates for
the weaknesses of a single QI with the strengths of others, showing that
its performance is invariant to the Pareto front geometry.

Keywords: Quality Indicators · Multi-Objective Optimization ·
Convolutional Neural Networks · Hyper-heuristics · Higher Education ·
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1 Introduction

In many scientific, industrial, and engineering fields, some problems involve
simultaneously optimizing m conflicting objective functions. These problems are
known as Multi-objective Optimization Problems (MOPs) [8]. Unlike single-
objective optimization problems, the solution to a MOP is a set denoted as the
Pareto set of optimal solutions, and its corresponding image in objective space
is the so-called Pareto front that shows the trade-off between the conflicting
objectives. (In multi-objective optimization, it is expected to use the Pareto
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dominance relation to induce a strict partial order and, thus, define an optimal-
ity criterion.) It is worth noting that the Pareto front is a manifold of dimension
at most m − 1.

In the specialized literature, different techniques exist to solve MOPs, rang-
ing from mathematical programming to bio-inspired metaheuristics [8]. Despite
mathematical programming methods ensuring optimal solutions, they require
the objectives to be differentiable once (or even twice), which is only possi-
ble if the objectives have an analytical definition. Another critical issue is that
these techniques often generate a single solution per execution. In consequence,
bio-inspired metaheuristics, such as Evolutionary Multi-objective Optimization
Algorithms (EMOAs) [12,24,28,32,34], have emerged as promising methods
to tackle MOPs. EMOAs are stochastic, population-based, and derivative-free
methods that approximate the MOP’s solution. Although they cannot ensure
the optimality of solutions, EMOAs have been successfully applied to different
complex real-world problems where mathematical programming techniques have
difficulties.

In this regard, the output of an EMOA stands for a finite set of approximately
optimal solutions whose image composes a Pareto front approximation. Such
an approximation is a finite representation of the manifold associated with the
Pareto front, i.e., an N -point cloud. Ideally, the Pareto front approximation
should be as close to the true Pareto front as possible. Hence, these points
should also cover the whole Pareto front, showing a good distribution regardless
of the Pareto front shape [21]. Nevertheless, in recent years, Ishibuchi et al.
emphasized that the performance of some EMOAs depends on the Pareto front
shape [15]. Consequently, different approaches have been proposed to tackle this
critical issue [12,24,28,32,34].

On the one hand, an effective approach to designing EMOAs with perfor-
mance invariant to the Pareto front geometry is the use of multiple indicator-
based selection mechanisms, giving rise to the Multi-Indicator-based EMOAs
(MIB-EMOAs) [12,32]. Quality indicators (QIs) are the core of every MIB-
EMOA [21]. A unary QI is a set function that evaluates a Pareto front approxima-
tion’s quality (convergence, spread, or distribution) based on specific preferences.
In other words, a QI assigns a real number to a Pareto front approximation.
Hence, it is possible to search for the Pareto front approximation that optimizes a
QI. That is, we can define an Indicator-based Subset Selection Problem (IBSSP)
that, in terms of EMOAs, involves the selection of the fittest solutions according
to the QI value. Thus, those objective vectors that approximate the solution of
an IBSSP exhibit the preferences of the baseline QI; i.e., they approach the opti-
mal μ-distribution of the QI. Considering the previous concepts, an MIB-EMOA
exploits the strengths of a set of QIs to compensate for the weaknesses of a partic-
ular one. For instance, Wang et al. proposed the Two Arch2 algorithm that uses
two archives, each based on a specific QI, to improve the convergence and diver-
sity properties of a Pareto front approximation [32]. Notwithstanding, another
design strategy is conceptualized by the Island-based Multi-Indicator Algorithm
(IMIA), where the cooperation between multiple Indicator-based EMOAs (IB-
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EMOAs) is exploited [12]. In this strategy, each island of IMIA evolves a micro-
population using an IB-EMOA with a different QI. After some generations, some
individuals migrate between islands, aiming to improve the diversity of the other
islands.

On the other hand, data processing by learning models is at the heart of
today’s artificial intelligence revolution. Point clouds, like those produced by the
EMOA approximation sets, are an essential data type that these models can pro-
cess. Some applications of point clouds worth mentioning include robotics, indoor
navigation, and self-driving vehicles. Plus, their analysis, namely point cloud
classification and segmentation, has become relevant in recent years. Though
traditional Deep Neural Networks (DNNs) require input data with a regular
structure, point clouds have an irregular structure. Thus, it is clear that permu-
tation invariance within the DNN is crucial due to point clouds’ lack of topo-
logical information. Consequently, designing a DNN that can extract topological
features from them is relevant. One can corroborate this claim from several
point cloud classifiers proposed to tackle these issues. For instance, PointNet [6]
uses the max-pooling symmetric function to deal with the unordered input set
of points. Later, PointNet++ [26] builds upon PointNet’s design and adds a
local feature extractor by grouping points into neighborhoods similar to CNNs.
Finally, Dynamic Graph CNN (DGCNN) [33] further exploits the CNNs imple-
mentation in point clouds by analyzing dynamically computed graphs in each
network layer.

Despite EMOAs generating a point cloud in the objective space at each iter-
ation, learning mechanisms do not exploit this information. In addition, we find
no research done into using the type of geometry associated with the Pareto front
approximation as a mechanism that selects from a pool the best-fitted indicator-
based mechanism. So, exploiting geometric information from the point cloud can
eliminate the need for sophisticated methods by leveraging the geometric biases
inherent to QIs. In this regard, CNNs have yet to be used to classify Pareto
front geometries and guide the selection process of an MIB-EMOA. Hence, our
proposal is a pioneer work in this area. Geometric classification as a guide for
MIB-EMOAs allows for exploiting the properties of individual indicator-based
selection mechanisms as a hyper-heuristic. The main contributions of our work
are the following.

– We propose the first CNN-based MIB-EMOA, called DeepEMO, that uses
DGCNN to classify the geometry associated with the current Pareto front
approximation at each generation. Then, DeepEMO chooses the best-fitted
one from a pool of indicator-based selection mechanisms to guide the selection
process. This is based on predefined rules that consider the effectiveness of
indicator-based selection mechanisms on different geometries. For this proof-
of-concept, we employed the Hypervolume Indicator (HV) [2], the discrete R2
indicator [4], and the Riesz s-energy (Es) [3].

– We constructed a particular dataset to train DGCNN based on the Pareto
fronts from several state-of-the-art benchmark problems. We also selected
problems with different Pareto front geometries.



DeepEMO 133

– We present a comprehensive study of the performance of DeepEMO, consid-
ering two- and three-objective problems with different Pareto front shapes.
Moreover, we validate the performance of DeepEMO by comparing it to IB-
EMOAs that use the baseline QIs, i.e., HV, R2, and Es. Based on different
QIs, we realize that DeepEMO is a promising direction to combine EMOAs
and Deep Learning.

The remainder of this paper is structured as follows. Section 2 provides the
concepts that make this paper self-contained. Section 3 details DeepEMO, and
Sect. 4 presents and analyzes the experimental results. Finally, Sect. 5 outlines
the conclusions and possible improvements for future work.

2 Background

This section introduces some mathematical concepts that sustain our proposed
approach. Thus, we start defining a MOP, then the notion of QI, HV, R2, and
Es, the generic IB-EMOA, and DGCNN.

2.1 Multi-objective Optimization Problem (MOP)

Throughout this paper, we focus on tackling, without loss of generality, uncon-
strained MOPs for minimization, which are defined as follows:

min
�x∈Ω

{f(x) := (f1(�x), f2(�x), . . . , fm(�x))ᵀ} (1)

where x = (x1, . . . , xn)ᵀ is an n-dimensional decision vector and Ω ⊆ R
n is the

decision space. f : Ω �→ R
m is the objective vector of m ≥ 2 conflicting objective

functions fi : Ω �→ R, ∀ i = 1, 2, . . . ,m.
The most common definition of optimality in multi-objective optimization

is based on the Pareto dominance relation that induces a strict partial order
among the decision vectors. Then, given two solutions �x, �y ∈ Ω, �x is said to
Pareto dominate �y (denoted as �x ≺ �y) if fi(�x) ≤ fi(�y), ∀ i = 1, 2, . . . ,m, and
there exists at least an index j ∈ {1, 2, . . . ,m} such that fj(�x) < fj(�y). One can
claim that �x∗ ∈ Ω is a Pareto optimal solution if there is no other �x ∈ Ω such
that �x ≺ �x∗. Due to the conflict among the objectives, there is not a single Pareto
optimal solution but a set of Pareto optimal solutions denoted as the Pareto set,
whose image is the so-called Pareto front. Since the Pareto set cardinality could
be infinite, some algorithms that tackle MOPs produce a finite approximation set
A = {�a1,�a2, . . . ,�aN}, where �ai ∈ Ω. Ideally, �ai 
≺ �aj and �aj 
≺ �ai for every i 
= j,
i.e., A has mutually non-dominated solutions. The Pareto front approximation
is the image f(A).

2.2 Quality Indicator (QI)

A QI (I) is a set function that assigns a real value to a given number k of Pareto
front approximations [21]. That is, a k-ary indicator is defined as I : Ψk �→ R,
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where Ψ is the set of all possible finite Pareto front approximations. When k = 1,
the QI is known as a unary indicator. Currently, many QIs measure the three
main properties of a Pareto front approximation, i.e., convergence, uniformity,
and spread [21]. In the following lines, we briefly describe three well-known
indicators considered in this work.

The Hypervolume Indicator (HV) is the most popular QI due to its math-
ematical properties [2]. HV measures the region weakly dominated by A and
bounded by an anti-optimal reference point �r. It simultaneously measures con-
vergence and spread and is the only Pareto-compliant QI. Therefore, given an
approximation set A and a reference point �r ∈ R

m dominated by all points in
A, HV is defined as:

HV(A, �r) = L
( ⋃

�a∈A

{
�b | �a ≺ �b ≺ �r

})
, (2)

where L is the Lebesgue measure in R
m. It is worth mentioning that we abuse

notation since �r is in the objective space. However, the Pareto dominance relation
(defined above) induces a strict partial order in Ω by checking the objective
vectors of the solutions. Thus, we can compare f(�a), f(�b), and �r.

Another well-known QI is the discrete R2 indicator [4]. R2 is a convergence-
uniformity indicator that uses a set of weight vectors (W ) in R

m to measure
the average minimum utility value generated by a Pareto front approximation.
Unlike HV, whose computational cost is high, the cost of R2 is O(m|A||W |),
but it is weakly Pareto-compliant. So, for a given set of m-dimensional weight
vectors W and a utility function u�w : Rm �→ R, the R2 indicator is defined as
follows:

R2(A,W ) =
1

|W |
∑
�w∈W

min
�a∈A

u�w(f(�a)). (3)

Lastly and more recently, the Riesz s-energy (Es) has been employed in
evolutionary multi-objective optimization to generate well-diversified solution
sets [11]. Es is a pair-potential energy function taken from physics that mea-
sures the interaction between pairs of particles in an N -point set. Despite Es

being used mainly for subset selection in EMO, it can also be used as a diver-
sity indicator. Hence, given a Pareto front approximation A and s > 0, Es is
determined by:

Es(A) =
N∑

i=1

N∑
j=1
j �=i

1
‖f(�ai) − f(�aj)‖s . (4)

2.3 Indicator-Based EMOA (IB-EMOA)

This section introduces a generic steady-state IB-EMOA, which is based on the
framework of S-Metric Selection EMOA (SMS-EMOA), that employs HV [2].
Regardless of the QI, the backbone of this generic IB-EMOA is the contribution
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(C) of a single solution (�x ∈ A) to the overall indicator value. This contribution
value is calculated as:

CI(�x,A) = |I(A) − I(A \ {�x})|. (5)

Considering the contribution value, it is possible to define a heuristic method
to approximate the solution of an indicator-based subset selection problem. In
other words, given a Pareto front approximation of size μ + λ, we aim to find
A′ such that |A′| = μ and I(A′) is maximum. (Without loss of generality, we
assume that maximizing I implies better quality.)

Algorithm 1 outlines the generic steady-state IB-EMOA whose main loop
comprises lines 3 to 14. First, a new solution �y is generated via variation operators
and joined with the current population Pt to define a temporary population Q
of size N + 1. Then, in line 6, Q is sorted using the non-dominated sorting
algorithm [9] to define a set of layers {L1,L2, . . . ,Lp}. It is worth noting that
layer Lp contains a subset of solutions of Q, which are the worst regarding the
Pareto dominance relation. If the cardinality of Lp is greater than 1, then we
calculate which is the worst-contributing �xworst solution to I according to (5).
Otherwise, �xworst is the sole solution in Lp. In line 12, �xworst is deleted from Q
to determine the population for the next iteration t + 1. The algorithm outputs
the last population as the approximation set.

Algorithm 1. Generic Steady-State IB-EMOA
Input: Indicator I
Output: Approximation set A
1: Randomly initialize population P0
2: Set t ← 0
3: while Stopping criterion is not fulfilled do
4: �y ← Variation(Pt)
5: Q ← Pt ∪ {�y}
6: {L1, L2, . . . , Lp} ← NonDominatedSorting(Q)
7: if |Lp| > 1 then
8: �xworst ← argmin

�x∈Lp

CI(�x, Lp)

9: else
10: �xworst ← the sole individual in Lp

11: end if
12: Pt+1 ← Q \ {�xworst}
13: t ← t + 1
14: end while
15: return A ← Pt

Algorithm 1 follows the framework of the SMS-EMOA, which is a steady-
state IB-EMOA. To reproduce the SMS-EMOA behavior with Algorithm1, we
have to set I = HV. So, HV is to be maximized; the worst-contributing solu-
tion to HV is the one with the minimum contribution value. Depending on the
definition of �r, the preferences of SMS-EMOA may change. For instance, if �r is
approximately equal to the nadir point, SMS-EMOA generates uniform Pareto
front approximations in linear triangular Pareto fronts, or it can produce solu-
tions in the boundary and around the Pareto front’s knee when the geometry
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is concave triangular. Since SMS-EMOA has to perform multiple calculations
of HV (which increases super-polynomially with the number of objectives), it
is computationally expensive. Other less computationally expensive but weaker
QIs have been used to avoid this issue. For instance, Brockhoff et al. proposed
R2-EMOA that uses the I = R2 indicator [5]. Unlike SMS-EMOA, R2-EMOA
generates uniform Pareto front approximations in both linear triangular and con-
cave triangular Pareto fronts. However, it has issues when tackling disconnected
or degenerate Pareto fronts. Finally, in case that I = Es, we can generate an
IB-EMOA that will show the preferences of Es, and we denote it as Es-EMOA.

Fig. 1. Dynamic Graph Convolutional Neural Network (DGCNN) architecture.

2.4 Dynamic Graph Convolutional Neural Network (DGCNN)

DGCNN [33] is a point cloud classifier inspired by similar works like Point-
Net [6]. Its main feature is its ability to capture local geometric structures
while maintaining permutation invariance. This is achieved through an operation
called edge convolution (EdgeConv). Given a point cloud, EdgeConv constructs
a directed graph using the k-Nearest Neighbors (k-NN) algorithm, similar to
graph CNNs. According to the authors, DGCNN outperforms other point cloud
classifiers because the EdgeConv process is recomputed after each layer of the
CNN. Hence, the graph is dynamically updated and not fixed like in traditional
graph CNNs. [33]

Due to the DNN architecture employed, the hidden layers work in the feature
space created by the previous layer. DGCNN features four hidden layers and the
input and output layers, as shown in Fig. 1. The first three hidden layers are
made up of 64 neurons, while the last hidden layer is made up of 128 neurons.
The input layer of DGCNN consists of a set of N three-dimensional real-valued
points. Hence, we could feed DGCNN with f(A), where A is the approximation
set generated by an EMOA for a three-objective MOP. At each layer of DGCNN,
EdgeConv constructs a directed graph, extracting local geometric information
by connecting neighboring points. The graph’s edges are then used to compute
edge features via a nonlinear function hΘ with parameters Θ. The edge features
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are then fed into a max-pooling operation with a ReLU activation function
that captures global shape structure and local neighborhood information. The
features outputted by the last EdgeConv layer are then globally aggregated by
another max-pooling operator, forming a 1D global descriptor used to generate
the c classification label in the output layer.

3 Proposed Approach

Our proposal, called DeepEMO, is a steady-state MIB-EMOA that employs
a heuristic selection mechanism (based on the classification label produced by
DGCNN) to execute the best-fitted indicator-based selection mechanism accord-
ing to specific rules. The following sections introduce DeepEMO’s general frame-
work and how we incorporate DGCNN into an EMOA.

Algorithm 2. DeepEMO General Framework
Input: Certainty threshold β
Output: Approximation set A
1: Randomly initialize population P0
2: Set t ← 0
3: while Stopping criterion is not fulfilled do
4: �y ← Variation(Pt)
5: Q ← Pt ∪ {q}
6: Normalize Q
7: {L1, L2, . . . , Lp} ← NondominatedSorting(Q)
8: if |Lp| > 1 then
9: geometry, certainty ← DGCNN(f(Q))
10: if geometry is convex and certainty ≥ β then
11: �xworst ← argmin

�x∈Lp

CHV(Lp, �zref)

12: else if geometry is concave and certainty ≥ β then
13: �xworst ← argmin

�x∈Lp

CR2(Lp, W )

14: else
15: �xworst ← argmax

�x∈Lp

CEs (Lp)

16: end if
17: else
18: �xworst ← the sole individual in Lp

19: end if
20: Pt+1 ← Q \ {�xworst}
21: t ← t + 1
22: end while
23: return A = Pt

3.1 General Framework

The general framework of DeepEMO is presented in Algorithm 2. It follows a sim-
ilar structure to Algorithm 1. Lines 8 to 17 encompass the core idea of DeepEMO.
Our proposed EMOA employs a hyper-heuristic that uses a set of predefined
rules to select the best-fitted indicator-based density estimator. The selection
rules are based on previous studies on the convergence and diversity properties
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of indicator-based density estimators [23]. We used HV, R2, and Es for this
proof-of-concept to define individual density estimators. According to the liter-
ature, we know that an HV-based density estimator has a good performance on
MOPs whose Pareto front geometry is convex. This is because HV rewards solu-
tions around the Pareto front’s knee and on the boundaries. R2 is suitable for
triangular concave Pareto front shapes because of the utilization of the simplex-
like weight vectors. Es is an appropriate strategy for other Pareto front geome-
tries [11]. Hence, in line 9 of Algorithm2, we feed a previously trained DGCNN
(described in the next section) with the approximation set Q image. DGCNN
returns the classification label and a certainty value. We use the degree of
certainty in tandem with the geometric classification because the model might
not be entirely sure of the Pareto front geometry. In such a case, applying a
more general QI (e.g., the Riesz s-energy) would be preferable to other more
specialized indicators. If the geometry is convex and certainty is greater than
or equal to a user-supplied threshold (β), then the HV-based density estimator
is performed in line 11. In case the geometry is concave and certainty≥ β,
the R2-based density estimator is executed in line 13. Otherwise, the Es-based
density estimator is performed by default in line 15. It is worth noting that we
set β = 10% based on previous experiments. A limitation of DeepEMO is that it
can only tackle two- and three-objective MOPs. This problem stems from using
DGCNN, which can only classify two- and three-dimensional point clouds. This
is unsurprising since point clouds usually represent real-world objects; therefore,
DGCNN cannot classify point clouds of dimension four or more.

3.2 Using DGCNN in DeepEMO

To use DGCNN in DeepEMO, training the model with data related to
Pareto front approximations is mandatory. Hence, we constructed a special
dataset (using the format required by DGCNN) that contains m-dimensional
points from normalized Pareto front approximations of size 50, varying the
related geometries. We obtained the data from thirteen EMOAs, available
in PlatEMO [29], with distinct preferences: NSGA-II [9], MOEA/D [36],
MOEA/DD [18], MOMBI-II [13], AdaW [22], BiGE [20], SPEA2+SDE [19],
RPEA [25], RVEA-iGNG [24], SRA [17], SPEA-R [16], t-DEA [35], and
Two Arch2 [32]. Aiming to maximize the range of geometries, we selected prob-
lems from the following test suites: Deb-Thiele-Laumanns-Zitzler (DTLZ) [10],
Irregular MOPs (IMOPs) [30], Viennet test suite (VIE) [31], and the Walking-
Fish-Group (WFG) [14]. Specifically, we chose the problems DTLZ1, DTLZ2,
DTLZ5, DTlZ7, WFG1, WFG2, and WFG3 with two and three objectives,
and IMOP1-IMOP8 and VIE1-VIE3 using the given fixed number of objectives.
By default, DGCNN can only process three-dimensional point clouds; thus, we
added a fictional variable with a zero value to two-objective Pareto front approx-
imations to make them compatible with DGCNN. Finally, the dataset size was
then augmented by rotating the Pareto fronts 360◦ in 10◦ intervals over the
45◦ azimuth. After data curation, we obtained a dataset of 75,600 Pareto front
approximations. Then, we use a simple validation with 80% of the instances for
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the training set and the rest for the test set. The model we use in DeepEMO in
line 9 of Algorithm 2 is produced using the training set.

4 Experimental Results

We compared DeepEMO with three IB-EMOAs resulting from setting I = HV,
R2, or Es in Algorithm 1. We denote these IB-EMOAs as SMS-EMOA, R2-
EMOA, and Es-EMOA. To determine if the DGCNN-based heuristic selection
is better than a simple random selection, we conducted a comparative analy-
sis of DeepEMO with a random version, which we denote as Rand-DeepEMO.
Since the five algorithms are genetic steady-state EMOAs, we used the simu-
lated binary crossover (SBX) and polynomial-based mutation (PBM). We set
the crossover and mutation probabilities equal to 0.9 and 1/n, where n is the
number of decision variables, respectively. Both crossover and mutation distri-
bution indexes are equal to 20. For a fair comparison, we employed a population
size of 55 solutions and a stopping criterion of 50,000 function evaluations for
all the algorithms. The population size equals the number of weight vectors R2-
EMOA uses, employing the Simplex-Lattice-Design (SLD) method. To calculate
R2, we implemented the Achievement Scalarizing Function (ASF). Plus, for Es-
EMOA, we set the parameter s to m − 1, and for DGCNN, we established a
g = 5 parameter to construct the local graph via k-NN. For each algorithm in
each instance, we performed 20 independent executions.

4.1 Test Problems

To test DeepEMO and the selected EMOAs, we used DTLZ1, DTLZ2, and
DTLZ7 with three objective and their inverted variants, denoted as DTLZ1−1,
DTLZ2−1, and DTLZ7−1 [15]. We used the inverted DTLZ problems because
they were not employed when training the DGCNN model. We set n = m+k−1
as the number of decision variables for these problems, where k = 5, 10, or 20 for
DTLZ1, DTLZ2, and DTLZ7, and their corresponding inverted versions, respec-
tively. The IMOP problems were also used in our comparative study because they
test the ability of an EMOA to maintain diversified solutions. We employed ten
decision variables for these problems, as suggested by the authors [30]. Finally, we
also considered VIE1-VIE3 problems, with two-dimensional decision spaces. We
must emphasize that all the selected problems have different Pareto front shapes.
It is worth mentioning that DGCNN was trained using Pareto front approxima-
tions of the selected MOPs to classify the geometry of the point clouds. However,
throughout the evolutionary process, DeepEMO feeds DGCNN with points not
even close to the Pareto front. Hence, the training process of DGCNN does not
provide DeepEMO and advantage over other EMOAs in terms of convergence
behavior.

4.2 Performance Assessment

To measure the performance of the selected EMOAs, we used multiple QIs,
i.e., HV, R2, Es, Inverted Generational Distance (IGD) [7], IGD+, Averaged
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Hausdorff Distance (Δp) [27], additive ε indicator (ε+) [21], and the Solow-
Polasky Diversity indicator (SPD) [1]. Table 1 specifies the reference point we
used for HV. A set of 55 weight vectors produced by SLD was employed to
define the same number of utility values based on the vector angle distance
scaling function to calculate R2. Moreover, we considered s = m − 1 for Es and
θ = 10 for SPD. Due to IGD, IGD+, Δp, and ε+ requiring a reference point set,
we obtained the image of 500 Pareto optimal solutions for each problem from
PlatEMO. Plus, we conducted a Wilcoxon rank-sum test with a significance level
α = 0.05 to get statistical confidence.

Table 2 shows the numerical comparison based on HV. Due to space limita-
tions, Tables 2 to 9 from the Supplementary Material (freely available at https://
github.com/eBernalZ/DeepEMO) show the numerical results of R2, Es, IGD,
IGD+, Δp, ε+, and SPD.

Table 1. Reference points employed for calculating HV per each MOP.

MOP Reference point MOP Reference point

DTLZ1 (1, 1, 1) DTLZ1−1 (0.1, 0.1, 0.1)

DTLZ2 (1.2, 1.2, 1.2) DTLZ2−1 (0.1, 0.1, 0.1)

DTLZ7 (1, 1, 21) DTLZ7−1 (0.1, 0.1, 0.1)

IMOP1 IMOP2 IMOP3 (2, 2) IMOP4 IMOP6 IMOP7 (2, 2, 2)

IMOP5 (1.5, 1.5, 2) IMOP8 (2, 2, 4)

VIE1 (5, 6, 5) VIE2 (6, 6, 6)

VIE3 (19, 19, 19)

4.3 Discussion

An a posteriori EMOA should have a robust performance when tackling real-
world problems. By robust performance, we mean that its performance should be
good for different quality measures. This is why multiple QIs are used to evaluate
the performance of DeepEMO. Moreover, the core idea of DeepEMO is to com-
pensate for the weaknesses of a given QI with the strengths of others by using
the DGCNN-based heuristic selector. Figure 2 depicts the number of times that
each algorithm obtained either the first or second place in the comparison for
all the selected QIs. This figure reveals that SMS-EMOA and Es-EMOA often
obtain the first position in the comparisons, followed by DeepEMO. Regarding
the right-hand side of the figure, we can see that DeepEMO consistently obtains
the second place for all QIs. From these observations, we can argue the following.
First, the outstanding performance of SMS-EMOA comes with a high computa-
tional cost (as expected) and difficulty in setting the reference point to obtain
uniform Pareto front approximations. Regarding Es-EMOA, it produces Pareto

https://github.com/eBernalZ/DeepEMO
https://github.com/eBernalZ/DeepEMO


DeepEMO 141

front approximations with good diversity, but since Es is a diversity indica-
tor, Es-EMOA would lose convergence pressure in MOPs with more than three
objectives.

Fig. 2. Heatmap from the number of times an IB-EMOA was ranked first or second
according to the HV, Es, R2, SPD, IGD, IGD+, Δp, and ε+ indicators.

DeepEMO can be employed to compensate for the difficulties of always using
a single QI in an IB-EMOA. By analyzing Table 2 related to the HV comparison,
we can see that DeepEMO presents good convergence results. This is because
DeepEMO crushes solutions towards the Pareto front by taking advantage of
its baseline indicator-based mechanisms depending on the geometry classifica-
tion of the current Pareto front approximation. Hence, in most cases, DeepEMO
is less computationally expensive than SMS-EMOA because the probability of
constantly applying the HV-based selection is close to zero. In this regard, due
to the switching between selection mechanisms, DeepEMO generates more selec-
tion pressure, which makes it possible to scale its performance to MOPs with
three or more objectives (once DGCNN scales too). By consistently obtaining
the second place in the comparison as shown in Fig. 2, DeepEMO reveals that its
Pareto front approximations are not biased to fulfill the preferences of a single
QI (as in the case of SMS-EMOA or Es-EMOA). This behavior is because Deep-
EMO generates Pareto front approximations with good diversity as illustrated in
Fig. 3 for the three-objective DTLZ1−1. DeepEMO inherits this diversity prop-
erty due to utilizing Es, HV, and R2. Finally, by comparing DeepEMO and
Rand-DeedEMO, we can conclude that using the rule-based heuristic selection
in DeepEMO produces better results than randomly selecting indicator-based
mechanisms.



142 E. Bernal-Zubieta et al.

Table 2. Mean and standard deviation (in parentheses) of HV results. A symbol # is
placed when the outperforming EMOA performed significantly better than the other
EMOAs based on a one-tailed Wilcoxon test using a significance level of α = 0.05. The
two best values are shown in grayscale, where the darkest tone corresponds to the best.

MOP Dim. SMS-EMOA R2-EMOA Es-EMOA Rand-DeepEMO DeepEMO

DTLZ1 3
9.717413e−011

(6.986066e−05)
9.715930e−012#
(8.853934e−05)

9.715261e−014#
(1.570679e−04)

9.713076e−015#
(2.113887e−04)

9.715414e−013#
(1.349688e−04)

DTLZ1−1 3
1.634825e+074#
(1.660599e+05)

1.398368e+075#
(1.232136e+06)

1.897918e+072

(3.385136e+05)
1.786897e+073#
(5.839311e+05)

1.909096e+071

(2.877119e+05)

DTLZ2 3
7.408208e+001

(9.329663e−05)
7.394442e+004#
(3.066330e−04)

7.395424e+002#
(2.093433e−03)

7.395173e+003#
(2.893253e−03)

7.394185e+005#
(5.033179e−04)

DTLZ2−1 3
5.750160e+011

(1.960825e−02)
4.866969e+015#
(9.853446e−01)

5.725490e+013#
(8.940140e−02)

5.483055e+014#
(7.272273e−01)

5.738631e+012#
(7.059462e−02)

DTLZ7 3
1.624788e+011

(1.716603e−01)
1.574660e+015#
(1.278959e−01)

1.619470e+013#
(1.926495e−01)

1.611579e+014#
(1.483026e−01)

1.619684e+012#
(1.378072e−01)

DTLZ7−1 3
2.698252e+012

(1.027667 e−01)
2.679963e+015#
(1.101505e−01)

2.698817e+011

(3.117033e−03)
2.692513e+014#
(4.969799e−02)

2.695391e+013#
(6.691855e−02)

IMOP1 2
3.984844e+001

(8.313591e−06)
2.017798e+005#
(2.297379e−02)

3.983902e+003#
(7.384897e−05)

3.747995e+004#
(2.823840e−01)

3.984837e+002

(2.613447e−05)

IMOP2 2
3.065830e+001

(3.212894e−03)
2.000071e+004#
(4.775736e−05)

3.064269e+002#
(3.320674e−03)

2.094344e+003#
(2.732107e−01)

1.999785e+005#
(1.329149e−03)

IMOP3 2
3.639962e+001

(2.229995e−02)
2.379765e+005#
(2.478631e−02)

3.634140e+002

(2.272153e−02)
2.636026e+004#
(8.415924e−02)

3.633433e+003

(1.747447e−02)

IMOP4 3
6.329276e+001

(3.019870e−02)
2.040948e+005#
(1.462829e−02)

6.327558e+002

(2.733316e−02)
2.364078e+004#
(5.546803e−02)

6.324291e+003

(3.217523e−02)

IMOP5 3
6.860433e+001

(2.711298e−03)
6.192728e+005#
(1.151343e+00)

6.811442e+003#
(9.720637e−03)

6.681764e+004#
(2.125056e−02)

6.813510e+002#
(1.347183e−02)

IMOP6 3
6.796313e+003

(3.095751e−01)
3.906444e+005#
(4.870139e−01)

6.835016e+002#
(6.571779e−03)

3.981992e+004#
(6.573286e−01)

6.838866e+001

(3.501328e−03)

IMOP7 3
4.688555e+002#
(1.373135e+00)

4.001614e+005#
(1.939027e−03)

7.356681e+001

(4.169080e−03)
4.193473e+003#
(7.405203e−01)

4.187927e+004#
(7.393973e−01)

IMOP8 3
1.467495e+013

(1.703501e+00)
7.379639e+005#
(1.644353e+00)

1.490112e+011

(3.675314e−02)
1.211802e+014

(4.037208e+00)
1.485823e+012

(1.074160e−01)

VIE1 3
6.141673e+011

(9.511744e−03)
5.842468e+014#
(9.156291e−01)

6.072238e+012#
(7.808997e−02)

6.015306e+013#
(6.614788e−01)

6.141673e+011

(9.511744e−03)

VIE2 3
1.309430e+031

(3.082634e−03)
1.304450e+035#
(4.795875e+00)

1.309306e+032#
(2.438912e−02)

1.307448e+034#
(1.934688e+00)

1.309305e+033#
(2.176253e−02)

VIE3 3
1.420648e+031

(1.081860e−02)
1.192055e+035#
(1.719101e+02)

1.413235e+033#
(2.216500e+00)

1.410666e+034#
(3.997438e+00)

1.413311e+032#
(1.811991e+00)
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Fig. 3. Graphical performance comparison between (a) DeepEMO, (b) Rand-
DeepEMO, (c) SMS-EMOA, (d) Es-EMOA, and (e) R2-EMOA in DTLZ1−1.

5 Conclusions

This paper proposed DeepEMO, the first Multi-Indicator-based EMOA that
uses a CNN to detect the Pareto front geometry and choose the most appro-
priate indicator-based selection mechanism. Our proposal was compared with
SMS-EMOA, R2-EMOA, Es-EMOA, and a random version of DeepEMO. Our
experimental results show that DeepEMO consistently obtains evenly distributed
approximation sets, regardless of the Pareto front shape, with good conver-
gence regarding multiple state-of-the-art QIs. These results prove that Deep-
EMO can compensate for the weaknesses of a single indicator-based selection
method with the strengths of others. In other words, DeepEMO can tackle dif-
ferent MOPs without sacrificing convergence and diversity performance across
different QIs. A current drawback of DeepEMO is that its CNN can only classify
three-dimensional point clouds, making it unable to scale in objective space nat-
urally. For future work, we plan to refine the rule-based hyper-heuristic method
of DeepEMO to improve its performance in more MOPs. Furthermore, because
of our current limitation to two- and three-objective MOPs, we are interested
in expanding the capabilities of DeepEMO to four or more dimensional MOPs,
i.e., the so-called Many-objective Optimization Problems (MaOPs). We believe
this will allow DeepEMO to outperform the Es-EMOA, as the Riesz s-energy
function loses selection pressure when tackling MaOPs.
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