
A Hierarchical Dissimilarity Metric
for Automated Machine Learning
Pipelines, and Visualizing Search

Behaviour

Angus Kenny1(B) , Tapabrata Ray1 , Steffen Limmer2 ,
Hemant Kumar Singh1 , Tobias Rodemann2 , and Markus Olhofer2

1 University of New South Wales, Canberra, Australia
angus.kenny@unsw.edu.au

2 Honda Research Institute Europe, Offenbach, Germany

Abstract. In this study, the challenge of developing a dissimilarity met-
ric for machine learning pipeline optimization is addressed. Traditional
approaches, limited by simplified operator sets and pipeline structures,
fail to address the full complexity of this task. Two novel metrics are
proposed for measuring structural, and hyperparameter, dissimilarity in
the decision space. A hierarchical approach is employed to integrate
these metrics, prioritizing structural over hyperparameter differences.
The Tree-based Pipeline Optimization Tool (TPOT) is utilized as the
primary automated machine learning framework, applied on the abalone
dataset. Novel visual representations of TPOT’s search dynamics are
also proposed, providing some deeper insights into its behaviour and
evolutionary trajectories, under different search conditions. The effects
of altering the population selection mechanism and reducing population
size are explored, highlighting the enhanced understanding these meth-
ods provide in automated machine learning pipeline optimization.

Keywords: AutoML · TPOT · Visualization · Search characteristics

1 Introduction

Automated machine learning (AutoML) is a rapidly growing field, focusing on
automating the application of machine learning to classification and regression
tasks [6]. In this domain, machine learning models can function independently
or sequentially, with one model’s output feeding into the next. Such configua-
tions, called machine learning pipelines [9], harness the combined strengths of
multiple models to enhance overall performance. Despite growing interest, fit-
ness landscape analysis in AutoML, especially regarding pipeline optimization,
remains an area with significant unresolved questions [18]. A primary issue is

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-56855-8 7.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 115–129, 2024.
https://doi.org/10.1007/978-3-031-56855-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56855-8_7&domain=pdf
http://orcid.org/0000-0003-4860-9803
http://orcid.org/0000-0003-1950-5917
http://orcid.org/0000-0003-2385-7886
http://orcid.org/0000-0003-1653-232X
http://orcid.org/0000-0001-6256-0060
http://orcid.org/0000-0002-3062-3829
https://doi.org/10.1007/978-3-031-56855-8_7
https://doi.org/10.1007/978-3-031-56855-8_7

116 A. Kenny et al.

the development of an effective metric for measuring the dissimilarity between
solutions in the decision space. This task is complex, as pipeline hyperparam-
eters can take continuous, discrete or categorical values, are often conditional,
and typically have hierarchical relationships.

State-of-the-art investigations in this area typically operate on a severely
reduced operator set or rely on restricting pipeline complexity [3,11,13,15–17].
These approaches are very limiting, and do not generalize to arbitrary pipelines.
So far, there are no attempts (to the authors’ knowledge) to define a dissimi-
larity metric for arbitrarily complex machine learning pipelines, and addressing
this gap in the literature would represent a significant contribution to both the
AutoML and broader machine learning communities.

The tree-based pipeline optimization tool (TPOT) [10], a well known Python
library for automating machine learning, exemplifies this. It employs genetic pro-
gramming to optimize machine learning pipelines, searching for the best combi-
nation of data preprocessing and modeling steps. Section 2 explains how TPOT
produces new pipelines through mutation and crossover, highlighting unique
aspects of its methodology. Within TPOT, mutations can alter both pipeline
operators and hyperparameters. Consequently, this paper proposes two metrics:
one for measuring the dissimilarity between pipeline structures, and another
for hyperparameter differences, as detailed in Sect. 3. These metrics are inte-
grated using a hierarchical approach to emphasize structural over hyperparam-
eter changes, reflecting their greater impact on pipeline behaviour. To this end,
the concept of pipeline structure is formally defined.

In Sect. 4, novel methods of visually representing the behaviour and evolu-
tionary trajectory of TPOT search are introduced. Experiments conducted on
the well-studied abalone dataset [4] demonstrate the utility of these visualiza-
tions under various conditions, including the effects of changing the population
selection mechanism to focus solely on cross-validation error and reducing pop-
ulation size. These experiments underscore the enhanced insights into TPOT’s
search dynamics offered by the proposed visual representations.

2 Background

2.1 TPOT Pipeline Representation

As its name suggests, the tree-based pipeline optimization tool (TPOT) uses a
tree-based representation to manage its pipelines. The pipelines are composed
of a combination of transformation operators—each with their own set of hyper-
parameters. These operators take the form:

OpA(input matrix, OpA paramA1=True, OpA paramA2=2.7).

Here, the operator is called OpA and has an input and two hyperparameters. The
input (input matrix) is always first, followed by the associated hyperparame-
ters, which use the naming convention operatorName hyperparameterName.

The set of operators—along their associated hyperparameters and possible
hyperparameter values—are maintained in an object called the pset. When the

Measuring and Visualizing AutoML Search Behaviour 117

Fig. 1. Nested tree (a) and tree graph (b) representation of pipeline p.

pipeline is evaluated on some set of input data, the data is transformed by each
operator in turn, passing the output of one operator to the input of the next,
until the root of the tree is reached. During search, TPOT maintains the set of
evaluated pipelines using a Python dictionary, which employs a nested bracket
string representation of each pipeline as its keys, e.g.,

p = OpA(OpB(OpC(input matrix, OpC paramC1=0.5, OpC paramC2=0.1),

OpB paramB1=catX), OpA paramA1=True, OpA paramA2=2.7).

Figure 1 gives two visual representations of pipeline p: a nested tree representa-
tion showing the operators and their respective hyperparameter values; and an
abstract tree graph representation, emphasizing the connections between oper-
ators. In the tree graph representation, the input nodes are always uppermost.

Although the pipeline representations in Fig. 1 have the appearance of being
tree-like, the “branches” of these trees are simply the hyperparameters of each
operator. Stripped of these hyperparameters, the pipeline structures shown are
essentially linear. In order to allow for more complex structures, TPOT makes
use of the CombineDFs operator. This operator puts the “tree” in TPOT, and
has the form,

CombineDFs(input matrix, input matrix).

Each of the input matrix nodes may contain an entire subtree, the output
matrices of which are merged—by horizontal stacking—to produce a combined
input for the next operator in the pipeline. Figure 2(a) illustrates this principle.

2.2 Producing New Pipelines

Throughout its execution, TPOT uses the genetic programming (GP) tools avail-
able in the DEAP Python library [2] to search the space of possible pipelines.
With each generation, a population of N parent solutions is chosen using a
non-dominated sort, with cross-validation error and number of operators as the
selection criteria. A set of N offspring solutions is produced from this population,
using standard one-point crossover, or one of three mutation operations.

The insert operation creates a new tree by slicing the main tree at an
arbitrary input node and inserting a new operator between the two halves of the
sliced tree.

118 A. Kenny et al.

Fig. 2. The CombineDFs operator allows more complex pipeline structures to be con-
structed (a). However, when the shrink operation is applied to it (b), the entire subtree
in its second input is removed as well.

The shrink operation reduces the size of the pipeline by arbitrarily removing
one of its operators. It does this by slicing the pipeline tree at an arbitrary (non-
leaf) input node, deleting the subtree of the operator that the slice occurred at,
and repairing the tree.

Finally, the replace operation can be used to substitute both operator and
hyperparameter nodes in the pipeline tree. An arbitrary node in the pipeline is
selected and, depending on whether it is an input or hyperparameter node, the
pset is used to replace the existing operator subtree with a new operator, or the
value of the hyperparameter node with another hyperparameter value.

The default probabilities of crossover and mutation are 0.1 and 0.9, respec-
tively. In the case of crossover, two pipelines that share at least one operator are
selected, but only the first offspring is retained.
A special case for CombineDFs: Typically, the mutation operations modify the
pipeline by at most 1 operator. insert adds an operator, shrink removes an
operator and replace has no effect on the number of operators in the resulting
pipeline. The exception to this is when the shrink, or replace, mutation is
applied to the CombineDFs operator. As the CombineDFs operator merges the
output of two entire subtrees, there is no simple way to reconcile them, once
CombineDFs is removed. TPOT addresses this issue by only treating the first
input of CombineDFs as a “true” input, with the second input being considered
a de facto hyperparameter. The consequence of this is that, when CombineDFs is
removed from a pipeline, any subtree in its second input is also removed. Figure 2
illustrates the effect of removing CombineDFs on subtrees in both input positions.
Because the subtree in either input of CombineDFs can be arbitrarily large,

arbitrarily large jumps in pipeline complexity can occur. A similar phenomenon
is also observed for the replace mutation operation.

2.3 The Tree Edit Distance Algorithm

In algorithmic graph theory, a common method of quantifying the dissimilar-
ity between two arbitrary, labelled trees is through application of the tree edit
distance algorithm [14]. Similar to the string edit distance algorithm, tree edit
distance algorithms count the number of transformation operations needed to

Measuring and Visualizing AutoML Search Behaviour 119

convert one tree to another. Typically, tree edit distance algorithms consider the
following three operations:

– Insertion: Inserting a node into one of the trees.
– Deletion: Deleting a node from one of the trees.
– Substitution: Replacing a node in one tree with a differently labelled one.

Formally, let T1 and T2 be two labelled trees with m and n nodes, respectively. A
tree edit script is a sequence of edit operations that transforms T1 into T2. Each
edit operation has an associated cost. The tree edit distance between T1 and T2

is then defined as the minimum total cost of any tree edit script that transforms
T1 into T2. Typically, the cost of inserting or deleting a node is 1 and the cost
of substituting two nodes is 1 if their labels are different, and 0 otherwise.

3 A Metric for Pipeline Dissimilarity

3.1 Pipeline Structures

Although pipelines produced by crossover and mutation may be unique to each
other, they are not necessarily structurally unique. During its operation, TPOT
can be thought about as searching a hierarchy of two distinct classes of spaces.
The first is the space of all possible combinations of operators, which it explores
by using genetic programming to mutate and recombine tree representations
of previously evaluated pipelines. The second is the subspace of all possible
hyperparameter combinations for each unique combination of operators, which
it explores using a grid-based search (having discretized any continuous param-
eter spaces). It is not possible to keep improving a pipeline by optimizing its
hyperparameters alone; eventually a ceiling will be reached, and the only way
to achieve further improvement is to change the combination of operators. This
implies that search in the space of operator combinations is more influential
than search in the space of hyperparameter combinations, so it is useful to have
a method of grouping evaluated pipelines together by their so-called pipeline
structure.

Let p, and q be two pipelines. Pipelines p and q are said to be unique to each
other if they have at least one dissimilar hyperparameter value, or do not share
the same configuration of operators. A pipeline structure is a subset in the set of
evaluated pipelines, partitioned such that every pair of pipelines within a subset
are unique and share the same set of operators, in the same configuration. As
a given operator will have the same hyperparameters, regardless of its position
in the pipeline, a pipeline structure can be represented by its configuration of
operators and inputs alone. For example, let p and q be pipelines represented by
the two TPOT nested bracket strings:

p = OpA(OpB(input matrix, OpB paramB1=0.1, OpB paramB2=0.5),

OpA paramA1=True, OpA paramA2=0.7);
q = OpA(OpB(input matrix, OpB paramB1=0.6, OpB paramB2=0.5),

OpA paramA1=False, OpA paramA2=0.2).

120 A. Kenny et al.

These pipelines are clearly unique to each other, as they do not share the same
hyperparameter values. However, both have the same set of operators, organized
in the same way, and therefore share the same structure. This is denoted with a
bar over the pipeline symbol, and the tree-bracket string representation:

p̄ = q̄ = {OpA{OpB{input matrix}}}.

3.2 Quantifying Pipeline Dissimilarity

Comparing two machine learning pipelines in the decision space presents numer-
ous challenges. When applied to a pipeline, the mutation operations provided by
TPOT can modify either the entire structure or simply change the value of one
or more hyperparameters. The effects of structural and hyperparameter muta-
tions are typically asymmetrical, with structural changes having a much greater
effect on the behaviour of the resulting pipeline than hyperparameter ones.

This section proposes metrics for quantifying both structural dissimilarity
(denoted with δ̄) and hyperparameter dissimilarity (denoted with δ̂). These met-
rics are combined using a hierarchical approach to produce a general metric for
tree-based machine learning pipeline dissimilarity (denoted with Δ).

Quantifying Structural Dissimilarity: With the exception of the
CombineDFs operator, the insert operation typically adds one operator to a
given pipeline, shrink removes one operator and replace makes no change to
its structure. In the tree edit distance algorithm, inserting a node into the tree
increases its size by one, deleting a node from the tree reduces its size by one
and substituting a node has no effect on the size of the tree. This indicates that
there is a direct analogy between the insert, shrink and replace mutation
operations, and the insertion, deletion and substitution operations of tree edit
distance algorithm—implying that tree edit distance is an appropriate metric
by which to approximate the dissimilarity between pipeline structures, in the
decision space.

Let p and q be the unique pipelines:

p = OpA(OpB(input matrix, OpB paramB1=0.8, OpB paramB2=catX),

OpA paramA1=True, OpA paramA2=2.7);
q = OpC(OpB(OpD(input matrix, OpD paramD1=6, OpD paramD2=0.1),

OpB paramB1=0.8, OpB paramB2=catX), OpC paramC1=0.3).

The structural representations for p, q are:

p̄ ={OpA{OpB{input matrix}}};
q̄ ={OpC{OpB{OpD{input matrix}}}}.

The structural dissimilarity metric δ̄ uses the tree edit distance algorithm to
count the minimum number of mutations required to transform pipeline struc-
ture p̄ into q̄. In this case δ̄ = 2, as the transformation can be performed with a
replace mutation operation (OpA → OpC) and an insert operation (OpD).

Measuring and Visualizing AutoML Search Behaviour 121

Quantifying Hyperparameter Dissimilarity: The direct analogies that
exist between its node operations and the TPOT mutation operations, sug-
gest that tree edit distance is an appropriate metric to approximate the distance
between pipeline structures in the decision space. However, this relationship does
not extend to approximating the dissimilarity at the hyperparameter level. The
reasons for this are illustrated through the following example. Let p and q be
the pipelines:

p = OpA(OpB(input matrix, OpB paramB1=0.8, OpB paramB2=catX),

OpA paramA1=True, OpA paramA2=2.7);
q = OpC(OpB(input matrix, OpB paramB1=0.8, OpB paramB2=catX),

OpC paramC1=0.3).

Naively applying the tree edit distance metric in this situation suggests that two
node substitutions (OpA → OpC and OpA paramA1=True → OpC paramC1=0.3)
and one node deletion operation (OpA paramA2=2.7) are required to transform
p into q; when, in reality, this transformation could be achieved with a single
replace mutation operation (OpA → OpC). When OpA is replaced by OpC, all of
the hyperparameters are automatically removed, and the hyperparameters for
OpC are randomly assigned and inserted. The fact that changes at a structural
level can have a large impact on the pipeline at a hyperparameter level, reinforces
the notion that there is a hierarchical relationship between the two.

In the case where the structural dissimilarity between two unique pipelines
is 0, then they must be distinguished by the differences in their hyperparameter
values. Let r, s be the unique pipelines:

r = OpC(OpD(input matrix, OpD paramD1=3, OpD paramD2=0.8),

OpC paramC1=1.4);
s = OpC(OpD(input matrix, OpD paramD1=1, OpD paramD2=0.3),

OpC paramC1=0.6).

By inspection, both share the same structure: r̄ = s̄ =
{OpC{OpD{input matrix}}}. Normalizing the hyperparameter values to the
interval [0, 1], these two pipelines can be represented as unique points contained
within the unit hypercube, denoted with the notation, r̂, ŝ. The hyperparameter
dissimilarity between r and s is then the magnitude of the displacement vector
between points r̂ and ŝ:

δ̂(r, s) = ||r̂ − ŝ||,

where ||x|| is the Euclidean norm of vector x. For individual hyperparameters
ri, si that take Boolean or categorical values, the component-wise difference,
r̂i − ŝi, is set to 0 if the values are the same, and 1 otherwise.

122 A. Kenny et al.

A Hierarchical Dissimilarity Metric: While it is reasonable to directly com-
pare two different pipeline structures, it does not make sense to compare the dif-
ference between the values of two different hyperparameters. Therefore, a hier-
archical approach must be adopted when combining structural dissimilarity δ̄,
and hyperparameter dissimilarity δ̂, to compute the overall dissimilarity between
two pipelines, Δ. If any structural dissimilarity exists (δ̄ > 0), then the overall
dissimilarity is set to the structural dissimilarity (Δ = δ̄). However, if there are
no structural differences (δ̄ = 0), then a scaled version of the hyperparameter
dissimilarity is used.

Because the structural dissimilarity counts the minimum number of muta-
tion operations required to transform one pipeline into another, δ̄ will always
take a positive integer value. In general, the maximum hyperparameter dis-
similarity between two pipelines occurs at the extremes of the hypercube, e.g.,
t̂ = (0, 0, . . . , 0), û = (1, 1, . . . , 1). In this case, δ̂(t, u) =

√
n, where n is the num-

ber of hyperparameters under consideration, is the geometric length of the main
diagonal of the hypercube, and is always greater than 1 for n > 1. This creates
potential confusion as to whether a value of Δ > 1 indicates that the change is
hyperparameter-based, or structural. To address this ambiguity between hyper-
parameter and structural changes, a scaling factor can be introduced to adjust
the hyperparameter dissimilarity relative to the number of hyperparameters
under consideration:

α =
(

1 − 1
n + 1

)
.

Multiplying the hyperparameter dissimilarity by this term ensures the scaled
hyperparameter dissimilarity will always satisfy 0 ≤ α · δ̂ < 1. This means that
the hierarchical dissimilarity metric explicitly indicates a structural transforma-
tion when Δ(p, q) ≥ 1, and explicitly indicates a hyperparameter transformation
when Δ(p, q) < 1.

Therefore, given two unique pipelines p, q, the formula for the hierarchical
pipeline dissimilarity metric can be expressed as the piecewise function,

Δ(p, q) =

{
δ̄(p, q) if δ̄(p, q) > 0
α · δ̂(p, q) if δ̄(p, q) = 0.

4 Visual Representations of TPOT Search

Having established a metric for comparing pipelines in the decision space, it
can be used to create a visual representation of the pipelines explored by
TPOT throughout its search process, in the decision space. Experiments on
the abalone [4] dataset are used to demonstrate these ideas.

4.1 Experimental Design

A modified version of TPOT v0.11.7 was employed for the experiments. The core
algorithmic functionality of TPOT was retained; however, modifications crucial

Measuring and Visualizing AutoML Search Behaviour 123

for enabling deeper insights into the evolutionary process were implemented.
These adjustments allowed for the tracking of several key properties throughout
the search process, such as the composition of the selected parent population for
each generation, and the specific details of each mutation operation.

The default TPOT values for crossover and mutation rates (0.1 and 0.9,
respectively) were used, along with the default population size and number of
generations, 100. Additionally, parallel experiments with a reduced population
size of 10 were conducted, with the aim of improving the readability, and inter-
pretability, of the visual representations. The default time-out per evaluation
of 5 min was used for all experiments, evaluated using mean-squared error and
five-fold cross-validation error.

Moreover, the impact of altering the selection mechanism was explored.
Typically, TPOT employs a multi-objective selection process, based on cross-
validation (CV) error and pipeline complexity—i.e., number of operators in
the pipeline. In these experiments, a variation was introduced where this was
replaced by a single-objective criterion, based purely on CV performance. This
modification allowed for the comparison of the evolutionary trajectories of TPOT
search, under different selection pressures.

Finally, the search data was collected using the abalone dataset [4]. This
choice was influenced by limitations in space and the intent to demonstrate
techniques rather than perform an empirical evaluation. The abalone dataset,
a well-studied regression benchmark dataset, comprises 4,177 data points, each
with eight features including categorical, integer, and floating-point types. To
ensure consistency, all examples in this section were initialized with the same
random seed. Yet, the observations were consistent across multiple experiments
with different initial seeds. Further examples, including those from experiments
with randomly generated and synthetically produced data exhibiting a strong
linear relationship, are provided in the supplementary materials, offering addi-
tional perspectives and validation of the techniques presented.

4.2 Results and Discussion

Figure 3 provides information about the pipeline structures explored during one
such search execution. The top plot in this figure illustrates the distribution
and quality of evaluated pipelines, by structure. The x axis gives the index for
each unique structure, in the order it was explored during the search, with the
number of unique pipelines for each structure on the y axis. Each point in the
plot represents a unique pipeline, with colour indicating its evaluated CV error,
sorted from worst at the bottom, to best at the top. To improve distinction in
the CV ranges of interest, the colour map is cut off at the 75th percentile value.
The bottom plot in this figure tracks the composition of the selected parent
population, for each generation, over the course of the search. The x axis gives
the structure indices, corresponding to the values in the top plot. The colour of
each point in this plot represents the number of pipelines from each structure,
selected in each generation, given on the y axis. Both plots have a red triangle
indicating the structure that produced the pipeline with the lowest CV error.

124 A. Kenny et al.

Fig. 3. Pipelines per structure (top) and selected pipeline structures per generation
(bottom), for default population selection mechanism.

The frequency plot in Fig. 3 suggests that although TPOT is exploring over
1600 unique structures, its search is focused on 5 or 6 main ones. The most
frequently evaluated structure contains 948 unique pipelines, with the average
being 6.05 and the median being 1. This is supported by the population tracking
plot underneath, where the spikes in the frequency plot correspond to structures
which were selected from heavily at some stage in the search.

Performing a non-dominated sort on the evaluated pipelines enables TPOT to
maintain control over the complexity of the pipelines. Minimizing both CV error,
and number of operators, when selecting the parent population for each gener-
ation means that very complex pipelines are only selected when they are also
high-performing. This is important, as “bloat” is a well-documented phenomena
in many GP-based algorithms [12]; also, highly complex pipelines take longer to
evaluate and are prone to over-fitting data [5,7]. However, one significant draw-
back of using this method to control pipeline complexity growth is exemplified
by the largest structure in Fig. 3. Here, nearly 10% of the entire search budget
was spent evaluating pipelines with this structure, but the best CV error that
was achieved by any pipeline within it was around 4.56. The bracket represen-
tation for this pipeline structure is {RandomForestRegressor{input matrix}},
which only contains a single operator and is therefore unlikely to ever be domi-
nated, even when there are much better performing pipelines available. This can
also be observed in the population tracking plot beneath, where this structure
is selected from quite heavily for the first 50 or so generations, before fading
out—but never totally disappearing—from the selected parent population.

Figure 4 provides the structure frequency and population tracking plots for
a TPOT search where the selection pressure to minimize pipeline complexity
has been removed, by choosing the parent population based on CV error alone.
In these plots it can be seen that more than triple the number of structures
were explored (4959 vs. 1630, in the previous example) when using this selection
criteria. The budget is spread much more uniformly across the structures as

Measuring and Visualizing AutoML Search Behaviour 125

Fig. 4. Pipelines per structure (top) and selected pipeline structures per generation
(bottom), for single objective population selection mechanism.

well, with the largest structure having 368 pipelines, and the average number of
pipelines per structure being 2.0. The second example provided better quality
pipelines over all as well, with the best CV error being 4.23—compared to 4.28
with multi-objective search—and the 75th percentile being 4.53—compared to
4.68. While employing a single objective approach to population selection does
seem to yield pipelines with better CV errors, it also produced more complex
pipelines, with the most complex pipeline comprising 20 operators—compared
to a maximum complexity of 8 operators, in the previous example.

In order to gain further insight, the hierarchical pipeline dissimilarity metric
as described in Sect. 3 can be used to create a visual representation of the evo-
lutionary trajectory of the search, called a dissimilarity map. Figure 5 provides
dissimilarity maps for both the default and single objective population selection
mechanisms (larger versions are available as Figures S1 and S2 in the supple-
mentary materials for this paper). Having partitioned the evaluated pipelines by
structure, a pairwise structural dissimilarity (δ̄) matrix M is computed for each
explored structure. The multi-dimensional scaling (MDS) algorithm [8] from the
Scikit-learn Python package [1] is used to compute a 2D embedding of points,
representing structures, such that the distances between the points preserve the
values in M , as much as possible. The points are coloured based on the best
CV error achieved for each structure, and their size is scaled relative to the
number of pipelines each structure contains. The tracking data from the search
is used to draw in directed connections between the structures, with the colour
indicating how that structure was produced, and operations which transform
a structure into an existing structure denoted with dashed lines. The result is
a directed graph, which is acyclic when the dashed connections are removed.
Inset into the corner is a subplot which provides a 2D embedding that preserves
the pairwise hyperparameter dissimilarity (δ̂) for all the pipelines in the largest
structure, coloured with respect to their CV errors. This serves as a reminder
that each point in the dissimilarity map is representative of a set of pipelines.

126 A. Kenny et al.

Fig. 5. Pipeline dissimilarity maps for default population selection mechanism (a) and
single objective mechanism (b). Size indicates number of pipelines for each structure
and colour indicates best CV. Inset illustrates hyperparameter dissimilarity and CV
for all pipelines in largest structure.

The structures which comprise the initial population are highlighted with an
orange outline, and a red triangle is used to indicate the structure containing
the best pipeline over all.

The visual distinction between the pipeline dissimilarity maps in Fig. 5 sup-
ports observations made from Figs. 3 and 4. In Fig. 5(a), the default selection
mechanism appears to focus on a few large structures in central locations. Con-
versely, Fig. 5(b) demonstrates that the single objective mechanism yields a
greater number of structures, more evenly distributed in size. Notably, the indi-
vidual transformation chains, defined as the longest, non-cyclic paths in the
graph, vary in length, depending on the selection mechanism. Under the default
mechanism, the longest transformation chain reaches 10 steps, with an average
of 4.83 steps. In the single objective case, these numbers increase significantly,
with the longest chain at 19 steps, and the average at 9.97.

These findings are consistent with the calculated pipeline dissimilarity met-
ric. For the default mechanism, the maximum dissimilarity between any two
pipelines is 11, while the single objective mechanism records a maximum dissim-
ilarity of 22. However, it is important to recognize the limitations of the struc-
tural dissimilarity metric. This metric uses the tree edit distance to measure the
shortest possible transformation chain between two pipelines, assuming a single
transformation operation alters the pipeline complexity by at most one operator.
Such an approach does not account for the pipeline complexity jumps achiev-
able through crossover operations and the CombineDFs operator, as discussed in

Measuring and Visualizing AutoML Search Behaviour 127

Fig. 6. Pipeline dissimilarity maps for default population selection mechanism (a) and
single objective mechanism (b), with reduced population. Size indicates number of
pipelines for each structure and colour indicates best CV. Inset illustrates hyperpa-
rameter dissimilarity and CV for all pipelines in largest structure.

Sect. 2. Consequently, the metric often overestimates the actual shortest trans-
formation path. Since the metric must disregard the varied pipeline outcomes
producible by crossover - contingent on the context of the other pipelines in the
parent population - or by the CombineDFs operator, this overestimation becomes
an intrinsic limitation of any metric that compares pipelines in isolation.

While the pipeline dissimilarity maps in Fig. 5 provide an intuitive global
view of the evolutionary trajectory of TPOT search, there are so many elements,
making it difficult to analyse the behaviour at a local level. To improve read-
ability, Fig. 6 provides the pipeline dissimilarity maps for experiments conducted
with a reduced population size of 10 (larger versions are available as Figures S7
and S8 in the supplementary materials). Similar patterns are observed in these
experiments as for the full-size one. The default selection mechanism results in
larger centrally-located structures, with shorter transformation chains. In the
case of this reduced population experiment, the longest transformation chain
produced by the default selection mechanism was 5 steps long, and the average
was 3.3 steps, whereas the longest was still 19 for the single objective selection
mechanism, with the average being 11.37. The dissimilarity metric correlated
with this again, with the largest values for default and single objective selection
mechanisms being 7 and 22, respectively.

Somewhat apparent in Fig. 5, but made much more clear in the reduced popu-
lation size experiments, is the observation that a lot more unique structures were
produced using crossover when the single objective selection mechanism is used,

128 A. Kenny et al.

compared to the default. This is likely because the parent populations had more
diversity across generations when using this mechanism, so more opportunities
exist to make new combinations of operators; whereas selecting a similar set of
(and fewer) structures each generation is more likely to produce new pipelines
from existing structures. It can also be observed in both sets of dissimilarity
maps that some structures produced by crossover appear to only have a single
parent structure. When determining the crossover points, TPOT finds all the
operators shared by each parent, and then randomly selects one. In the case
where the parent structure contains two instances of the selected operator, this
can sometimes produce two unique crossover points—resulting in the production
of a new structure.

5 Conclusion

This paper combined the concepts of structural and hyperparameter dissimilar-
ity to produce a hierarchical metric, providing an intuitive reflection of evolu-
tionary changes throughout TPOT search. This metric was found to effectively
distinguish between structural transformations and hyperparameter optimiza-
tions, providing clearer insights into the decision space navigated by TPOT. The
importance of considering pipeline architectures in a holistic manner, as opposed
to focusing solely on individual component adjustments, was underlined by these
findings.

Through experiments on the abalone dataset, it was observed that TPOT’s
search behavior is predominantly influenced by the exploration of different oper-
ator combinations, rather than just hyperparameter tweaking. The utilization
of the metric in visual representations for tracing and interpreting the evolu-
tion of pipeline configurations was also presented, providing deeper insights into
TPOT’s search process. These observations were consistent with those of the
developed metric, suggesting it to be an appropriate approximation of pipeline
dissimilarity—with some limitations, as discussed in Sect. 4.

Building on the findings and methodologies established in this paper, several
key areas for future work have been identified. An extensive fitness landscape
analysis using the developed hierarchical metric could provide deeper insights
into the nature of evolutionary machine learning pipeline optimization. Addi-
tionally, the creation of an interactive tool for visualizing TPOT’s search pro-
cess would significantly enhance the usability and interpretability of the findings.
Such a tool could allow users to dynamically explore the evolutionary trajecto-
ries of machine learning pipelines, offering a more intuitive understanding of the
search process and its outcomes.

References

1. Buitinck, L., et al.: API design for machine learning software: experiences from the
scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pp. 108–122 (2013)

Measuring and Visualizing AutoML Search Behaviour 129

2. De Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
a Python framework for evolutionary algorithms. In: Proceedings of the 14th
Annual Conference Companion on Genetic and Evolutionary Computation, pp.
85–92 (2012)

3. Garciarena, U., Santana, R., Mendiburu, A.: Analysis of the complexity of the
automatic pipeline generation problem. In: 2018 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8. IEEE (2018)

4. Gijsbers, P., et al.: AMLB: an AutoML benchmark. arXiv preprint
arXiv:2207.12560 (2022)

5. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Sta-
tistical Learning. Data Mining, Inference, and Prediction, vol. 2. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-84858-7

6. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning. Methods,
Systems, Challenges. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05318-5

7. Kenny, A., Ray, T., Limmer, S., Singh, H.K., Rodemann, T., Olhofer, M.: Hybridiz-
ing TPOT with Bayesian optimization. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 502–510 (2023)

8. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

9. Müller, A.C., Guido, S.: Introduction to Machine Learning with Python: A Guide
for Data Scientists. O’Reilly Media, Inc. (2016)

10. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based
pipeline optimization tool for automating data science. In: 2016 Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 485–492 (2016)

11. Pimenta, C.G., de Sá, A.G.C., Ochoa, G., Pappa, G.L.: Fitness landscape analysis
of automated machine learning search spaces. In: Paquete, L., Zarges, C. (eds.)
EvoCOP 2020. LNCS, vol. 12102, pp. 114–130. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43680-3 8

12. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd. (2008)

13. Pushak, Y., Hoos, H.: AutoML loss landscapes. ACM Trans. Evol. Learn. 2(3),
1–30 (2022)

14. Selkow, S.M.: The tree-to-tree editing problem. Inf. Process. Lett. 6(6), 184–186
(1977)

15. Teixeira, M.C., Pappa, G.L.: Understanding AutoML search spaces with local
optima networks. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 449–457 (2022)

16. Teixeira, M.C., Pappa, G.L.: On the effect of solution representation and neigh-
borhood definition in AutoML fitness landscapes. In: Pérez Cáceres, L., Stützle, T.
(eds.) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2023.
LNCS, vol. 13987, pp. 227–243. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-30035-6 15

17. Teixeira, M.C., Pappa, G.L.: Fitness landscape analysis of TPOT using local
optima network. In: Naldi, M.C., Bianchi, R.A.C. (eds.) Intelligent Systems,
BRACIS 2023. LNCS, vol. 14197, pp. 65–79. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-45392-2 5

18. Tong, H., Minku, L.L., Menzel, S., Sendhoff, B., Yao, X.: What makes the dynamic
capacitated arc routing problem hard to solve: insights from fitness landscape anal-
ysis. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
305–313 (2022)

http://arxiv.org/abs/2207.12560
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-43680-3_8
https://doi.org/10.1007/978-3-030-43680-3_8
https://doi.org/10.1007/978-3-031-30035-6_15
https://doi.org/10.1007/978-3-031-30035-6_15
https://doi.org/10.1007/978-3-031-45392-2_5
https://doi.org/10.1007/978-3-031-45392-2_5

	A Hierarchical Dissimilarity Metric for Automated Machine Learning Pipelines, and Visualizing Search Behaviour
	1 Introduction
	2 Background
	2.1 TPOT Pipeline Representation
	2.2 Producing New Pipelines
	2.3 The Tree Edit Distance Algorithm

	3 A Metric for Pipeline Dissimilarity
	3.1 Pipeline Structures
	3.2 Quantifying Pipeline Dissimilarity

	4 Visual Representations of TPOT Search
	4.1 Experimental Design
	4.2 Results and Discussion

	5 Conclusion
	References

