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Abstract. Animals often demonstrate a remarkable ability to adapt to
their environments during their lifetime. They do so partly due to the
evolution of morphological and neural structures. These structures cap-
ture features of environments shared between generations to bias and
speed up lifetime learning. In this work, we propose a computational
model for studying a mechanism that can enable such a process. We
adopt a computational framework based on meta reinforcement learn-
ing as a model of the interplay between evolution and development. At
the evolutionary scale, we evolve reservoirs, a family of recurrent neural
networks that differ from conventional networks in that one optimizes
not the synaptic weights, but hyperparameters controlling macro-level
properties of the resulting network architecture. At the developmental
scale, we employ these evolved reservoirs to facilitate the learning of a
behavioral policy through Reinforcement Learning (RL). Within an RL
agent, a reservoir encodes the environment state before providing it to
an action policy. We evaluate our approach on several 2D and 3D simu-
lated environments. Our results show that the evolution of reservoirs can
improve the learning of diverse challenging tasks. We study in particu-
lar three hypotheses: the use of an architecture combining reservoirs and
reinforcement learning could enable (1) solving tasks with partial observ-
ability, (2) generating oscillatory dynamics that facilitate the learning of
locomotion tasks, and (3) facilitating the generalization of learned behav-
iors to new tasks unknown during the evolution phase.

Keywords: Meta Reinforcement Learning · Reservoir Computing ·
Evolutionary Computation

1 Introduction

Animals demonstrate remarkable adaptability to their environments, a trait
honed through the evolution of their morphological and neural structures [30,46].
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They are born equipped with both hard-wired behavioral routines (e.g. breath-
ing, motor babbling) and learning capabilities for adapting based on their own
experience. The costs and benefits of evolving hard-wired behaviors vs. learning
capabilities depend on different factors, a central one being the level of unpre-
dictability of environmental conditions across generations [17,42]. Environmen-
tal challenges that are shared across many generations favor the evolution of
hard-wired behavior (e.g. breathing). On the other hand, traits whose utility
can hardly be predicted from its utility in previous generations are likely to
be learned through individual development (e.g. learning a specific language).
Some brain regions might have evolved to generically facilitate the learning
of diverse behaviors. For example, central pattern generators (CPGs) enable
limb bambling, which may facilitate locomotion, pointing and vocalizations in
humans [24]. Another example is the prefrontal cortex (PFC), a brain region
that maps inputs within a high-dimensional non-linear space from which they
can be decoded by other brain regions, acting as a reservoir for computations
[14,23].

Fig. 1. (left) A simplified view of the evolution of brain structures. The generating
parameters of neural structures are modified at an evolutionary loop. In the develop-
mental loop, agents equipped with these neural structures learn to interact with their
environment (right) Parallel to our computational approach. We propose a compu-
tational framework where an evolutionary algorithm optimizes hyperparameters that
generate neural structures called reservoirs. These reservoirs are then integrated into
RL agents that learn an action policy to maximize their reward in an environment

This prompts an intriguing question: How can neural structures, optimized
at an evolutionary scale, enhance the capabilities of agents to learn complex
tasks at a developmental scale? To address this question, we propose to model
the interplay between evolution and development as two nested adaptive loops:
neural structures are optimized through natural selection over generations (i.e.
at an evolutionary scale), while learning specific behaviors occurs during an
agent’s lifetime (i.e. at a developmental scale). Figure 1 illustrates the inter-
actions between evolutionary-scale and developmental-scale optimization. This
model agrees with recent views on evolution that emphasize the importance of
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both scales for evolving complex skills [19,20]. It is also compatible with the
biological principle of a genomic bottleneck, i.e. the fact that the information
contained in the genome of most organisms is not sufficient to fully describe
their morphology [52]. In consequence, genomes must instead encode macro-level
properties of morphological features such as synaptic connection patterns.

In line with these biological principles, we propose a novel computational app-
roach, called Evolving Reservoirs for Meta Reinforcement Learning (ER-MRL),
integrating mechanisms from Reservoir Computing (RC), Meta Reinforcement
Learning (Meta-RL) and Evolutionary Algorithms (EAs). We use RL as a model
of learning at a developmental scale [9,29]. In RL, an agent interacts with a simu-
lated environment through actions and observations, receiving rewards according
to the task at hand. The objective is to learn an action policy from experience,
mapping the observations perceived by the agent to actions in order to maxi-
mize cumulative reward over time. The policy is usually modeled as a deep neural
network which is iteratively optimized through gradient descent. We use RC as
a model of how a genome can encode macro properties of the agent’s neural
structure. In RC, the connection weights of a recurrent neural network (RNN)
are generated from a handful of hyperparameters (HPs) controlling macro-level
properties of the network related to connectivity, memory and sensitivity. Our
choice of using RC relies on its parallels with biological brain structures such as
CPGs and the PFC [15,50], as well as on the fact that its indirect encoding of a
neural network in global hyperparameters makes it compatible with the genomic
bottleneck principle mentioned above. Being a cheap and versatile computational
paradigm, RCs may have been favored by evolution [39].

We use Meta-RL to model how evolution shapes development [8,32]. Meta-
RL considers an outer loop, akin to evolution, optimizing HPs of an inner loop,
akin to development. At the evolutionary scale, we use an evolutionary algo-
rithm to optimize a genome specifying HPs of reservoirs. At a developmental
scale, an agent equipped with a generated reservoir learns an action policy to
maximize cumulative reward in a simulated environment. Thus, the objective of
the outer evolutionary loop is to optimize hyperparameters of reservoirs in order
to facilitate the learning of an action policy in the inner developmental loop.

Using this computational model, we run experiments in diverse simulated
environments, e.g. 2D environments where the agent learns how to balance a
pendulum and 3D environments where the agent learns how to control complex
morphologies. These experiments provide support to three main hypotheses for
how evolved reservoirs can affect development. First, they can facilitate solving
partially-observable tasks, where the agent lacks access to all the information
necessary to solve the task. In this case, we test the hypothesis that the recur-
rent nature of the reservoir will enable inferring the unobservable information.
Second, it can generate oscillatory dynamics useful for solving locomotion tasks.
In this case, the reservoir acts as a meta-learned CPG. Third, it can facilitate
the generalization of learned behaviors to new tasks unknown during the evolu-
tion phase, a core hypothesis in meta-learning. In our case, our expectation is
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that HPs of reservoirs evolved across different environments will capture some
abstract properties useful for adaptation.

In Sect. 2, we detail the methods underlying our proposed model, includ-
ing RL (Sect. 2.1), Meta-RL (Sect. 2.2), RC (Sect. 2.3) and EAs (Sect. 2.4). We
then explain their integration into our ER-MRL architecture (Sect. 3). Our
results, aligned with the three hypotheses, are presented in Sect. 4. Computa-
tional specifics and supplementary experiments can be found in the appendix.
The source code and videos are accessible at this link.

2 Background

Fig. 2. Our proposed architecture, called ER-MRL, integrates several ML paradigms.
We consider an RL agent learning an action policy (a), having access to a reservoir
(c). We consider two nested adaptive loops in the spirit of Meta-RL (b). Our proposed
architecture (d) consists in evolving HPs φ for the generation of reservoirs in an outer
loop. In an inner loop, the agent learns an action policy, that takes as input the neural
activation of the reservoir. The policy is trained using RL in order to maximize episodic
return. Section 2 provides the computational details of each ML paradigm.

2.1 Reinforcement Learning as a Model of Development

Reinforcement Learning (RL) involves an agent that interacts with an envi-
ronment by taking actions, receiving rewards, and learning an action policy in

https://github.com/corentinlger/ER-MRL
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order to maximize its accumulated rewards (Fig. 2a). This interaction is formal-
ized as a Markov Decision Process (MDP) [33]. An MDP is represented as a
tuple (S,A, P, p0, R), where S is the space of possible states of the environment,
A is the space of available actions to the agent, P (st+1|st, at) is the transition
function specifying how the state at time t+1 is determined by the current state
and action at time t, p0 represents the initial state distribution, and R(st, at)
defines the reward received by the agent for a specific state-action pair. At each
time step of an episode lasting T time steps, the agent observes the environ-
ment’s state st, takes an action at, and receives a reward rt. The environment
then transitions to the next step according to P (st+1|st, at). The objective of
RL is to learn a policy πθ(a|s) that maps observed states to actions in order to
maximize the cumulative discounted reward G over time, where G =

∑T
t=0 γtrt

[44]. The parameter γ < 1 discounts future rewards during decision making.
In Deep RL [21], the policy is implemented as an artificial neural network,

whose connection weights are iteratively updated as the agent interacts with
the environment. In all conducted experiments, we employ the Proximal Policy
Optimization (PPO) RL algorithm [38] (see details in Sect. 6.1).

2.2 Meta Reinforcement Learning as a Model of the Interplay
Between Evolution and Development

While RL has led to impressive applications [4,25,40], it suffers from several
limitations: the learned policy is specific to the task at hand and does not nec-
essarily generalize well to variations of the environment while requiring a large
amount of data to converge. To address these issues Meta Reinforcement Learn-
ing (Meta-RL) [3] aims at training agents that learn how to learn, i.e. agents
that can quickly adapt to new tasks or environments unknown during training.
It is based on two nested adaptive loops: an outer loop, analogous to evolu-
tion, optimizes the HPs of an inner loop, analogous to development (Fig. 2b)
[31,32]. The objective of the outer loop is to maximize the average performance
of the inner loop on a distribution of environments. Formally, a set of HPs Φ are
meta-optimized in the outer loop, with the objective of maximizing the average
performance of a population of RL agents conditioned by Φ. In this paper, we
leverage the RC framework where Φ corresponds to HPs encoding macro-level
properties of a RNN, as explained in the next subsection.

2.3 Reservoir Computing as a Model of Neural Structure
Generation

Meta-RL algorithms often directly optimize the weights of a RNN through back-
propagation in the outer loop [10,11]. While this technique has demonstrated
remarkable efficacy, it is ill-suited for addressing the research question outlined
in the introduction. This is due to its lack of biological plausibility in two main
aspects: (1) evolutionary-scale adaptation cannot rely on backpropagation mech-
anisms [43] and (2) the notion that evolution directly fine-tunes neural network
weights contradicts the genomic bottleneck principle mentioned in the introduc-
tion [52]. Instead our method evolves RNNs based on the Reservoir Computing
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(RC) paradigm. Instead of directly optimizing the neural network weights at the
evolutionary scale, it optimizes HPs encoding macro-level properties of randomly
generated recurrent networks.

The fundamental idea behind RC is to create a dynamic ‘reservoir’ of compu-
tation, where inputs are nonlinearly and recurrently recombined over time [22].
This provides a set of dynamic features from which a linear ’readout’ can be
easily trained: such training equivalent to selecting and combining interesting
features to solve the given task (Fig. 2c).

A reservoir is generated from a few HPs which play a crucial role in shaping
the efficiency of the reservoir dynamics. This includes the number of neurons in
the reservoir, the spectral radius sr (controlling the level of recurrence in the
generated network), input scaling iss (controlling the strength of the network’s
inputs), and leak rate lr (controlling how much the neurons retain past informa-
tion); we explain reservoir HPs in more details in Appendix 6.1. In this paper, we
propose to meta-optimize reservoir’s HPs Φ = (sr, iss, lr) in a Meta-RL outer
loop, using evolutionary algorithms explained in the next subsection. We will
then explain how we propose to integrate RC with RL in Sect. 3.

2.4 Evolutionary Algorithms as a Model of Evolution

Evolutionary Algorithms (EAs) draw inspiration from the fundamental princi-
ples of biological evolution [2,36], where species improve their fitness through the
selection and variation of their genomes. EAs iteratively enhance a population of
candidate parameterized solutions to a given optimization problem, iteratively
selecting those with higher fitness levels (i.e. higher performance of the solution)
and mutating their parameters for the next generation.

In our approach, we utilize the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [13] as our designated evolutionary algorithm in order to
meta-optimize HPs Φ of reservoirs. In CMA-ES, a population of HPs candidates
is sampled from a multivariate Gaussian distribution, with mean μ and covari-
ance matrix V . The fitness of each sample Φi of the population is evaluated (see
Sect. 3 for how we do it in our proposed method). The Gaussian distribution is
then updated by weighting each sample proportionally to its fitness; resulting in
a new mean and covariance matrix that are biased toward solutions with higher
fitness. This process continues iteratively until either convergence towards suffi-
ciently high fitness values of the generated HPs is achieved, or until a predefined
threshold of candidates is reached.

3 Evolving Reservoirs for Meta Reinforcement Learning
(ER-MRL)

General Approach. Our objective is to devise a computational framework to
address a fundamental question: How can neural structures adapt at an evolu-
tionary scale, enabling agents to better adapt to their environment at a develop-
mental scale? For this aim, we aim to integrate the Machine Learning paradigms
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presented above. The architecture is illustrated in Fig. 2d and the optimization
procedure in Fig. 3. We call our method ER-MRL, for “Evolving Reservoirs for
Meta Reinforcement Learning".

The ER-MRL method encompasses two nested optimization loops (as in
Meta-RL, Sect. 2.2). In the outer loop, operating at an evolutionary scale, HPs
Φ for generating a reservoir (Sect. 2.3) are optimized using an evolutionary algo-
rithm (Sect. 2.4). In the inner loop, focused on a developmental scale, a RL algo-
rithm (Sect. 2.1) learns an action policy πθ using the reservoir state as inputs. In
other words, the outer loop meta-learns HPs able to generate reservoirs resulting
in maximal averages performance on multiple inner loops. The whole process is
illustrated in Fig. 3 and detailed below.

Inner Loop. To represent the development of an agent, we consider a RL
agent (Sect. 2.1) that interacts with an environment through observation ot,
actions at and rewards rt at each time step t (Fig. 2a). In our proposed ER-
MRL method, this agent is composed of three main parts: a reservoir generated
by HPs Φ = {iss, lr, sr} (see Sect. 6.1 for more details), a feed forward action
policy network πθ and a RL algorithm. At each time step, we feed the reservoir
with the current ot, and the previous action and reward at and rt (Fig. 2d).
Contrarily to standard RL, the policy πθ does not directly access the observation
of the environment’s state ot, but the context ct of the reservoir instead (i.e.
the vector of all reservoir’s neurons activations at time t). Because reservoirs
are recurrent neural networks, ct not only encompasses information about the
current time step, but also integrates information over previous time steps. In
some experiments, we also use ER-MRL with multiple reservoirs. In this case,
we still generate the reservoirs from a set of HPs Φ, and the context ct given to
the policy is the concatenation of hidden states of all reservoirs. We then train
our policy πθ(a|ct) using RL.

Outer Loop. The outer loop employs the Covariance Matrix Adaptation Evolu-
tionary Strategy (CMA-ES) (Sect. 2.4) to optimize reservoir HPs Φ. The objec-
tive is to generate reservoirs which, on average over multiple agents, improve
learning abilities. For each set of HPs, we assess the performance of our agents
in multiple inner loops (we utilize 3 in our experiments), each one with a dif-
ferent random seed. Using different random seeds implies that, while using the
same HPs set, each agent will be initialized with different connection weights of
both their reservoirs, their policies and the initial environment state. Note that
while the generated reservoirs have different connection weights, they share the
same macro-properties in terms of spectral radius sr, input scaling iss and leak
rate lr (since they are generated from the same HPs set). In assessing an agent’s
fitness within its RL environment, we compute the mean episodic reward over
the final 10 episodes of its training. To obtain the fitness of a reservoir HPs,
we calculate the mean fitness of three agents across three different versions of
the same environment. These steps are iterated until we reach a predetermined
threshold of CMA-ES iterations (set at 900 in our experiments).
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Fig. 3. In the evolution phase (top), CMA-ES refines Reservoir HPs Φ. At each gen-
eration i of the evolution loop (left), a population Φi : {Φ1

i , . . . , Φ
n
i } of HPs is sampled

from the CMA-ES Gaussian distribution. Each Φj
i undergoes evaluation on multiple

random seeds, generating multiple reservoirs. An ER-MRL agent is created for each
reservoir, with its action policy being trained from the states of that reservoir (lighter
grey frames). The fitness of a sampled Φj

i is determined by the average score of all
ER-MRL agents generated from it (mid-grey frames). The fitness values are used to
update the CMA-ES distribution for the next generation (dotted arrow). This process
iterates until a predetermined threshold is reached. In the Testing phase (bottom),
the best set of HPs Φ∗ from all CMA-ES samples is employed. Multiple reservoirs are
generated within ER-MRL agents, and their performance is evaluated.

Evaluation. To evaluate our method, we select the HPs Φ∗ that generated the
best fitness function during the whole outer loop optimization with CMA-ES (see
bottom of Fig. 3). We then generate 10 ER-MRL agents with different random
seeds (with a different reservoir sampled from Φ∗ for each seed, together with
random initial policy weights θ) and train the action policy πθ of each agent
using RL. We report our results in the next section, comparing the performance
of these agents against vanilla RL agents using a feedfoward policy.
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4 Results

We designed experiments to study the following hypotheses: The ER-MRL archi-
tecture combining reservoirs and RL could enable (1) solving tasks with partial
observability, (2) generating oscillatory dynamics that facilitate the learning of
locomotion tasks, and (3) facilitating the generalization of learned behaviors to
new tasks unseen during evolution phase.

4.1 Evolved Reservoirs Improve Learning in Highly Partially
Observable Environments

In this section, we evaluate our approach on tasks with partial observability,
where we purposefully remove information from the agent observations. Our
hypothesis is that the evolved reservoir can help reconstructing this missing
information. Partial observability is an important challenge in the field of RL,
where agents have access to only a limited portion of environmental information
to make decisions. This is referred to as a Partially Observable Markov Decision
Process (POMDP) [26] rather than a traditional MDP. In this context, the task
becomes harder to learn, or even impossible, as the agent needs to make decisions
based on an incomplete observation of the environment state. To explore this
issue, our experimental framework is based on control environments, such as
CartPole, Pendulum, and LunarLander (see details in Fig. 9 of the appendix).
We modify these environments by removing velocity-related observations, thus
simulating a partially-observable task.

Let’s illustrate this issue with the first environment (CartPole), where the
agent’s goal is to keep the pole upright on the cart while it moves laterally. If
we remove velocity-related observations (both for the cart and the pole’s angle),
a standard feedfoward RL agent cannot effectively solve the task. The reason
is straightforward: without this information, the agent doesn’t know the cart’s
movement direction or whether the pole is falling or rising. We apply the same
process to the other two environments, removing all velocity-related observa-
tions for our agents. Can the ER-MRL architecture address this challenge? To
find out, we independently evolve reservoirs using ER-MRL for each task. We
search for effective HPs tailored to the partial observability of each environment.
To evaluate our approach, we compare the learning curves of ER-MRL agents
(from the test phase, see bottom of Fig. 3) on these three partially observable
environments against an agent with a feedforward policy.

Figure 4 presents the results for the three selected partially observable tasks.
We observe, as expected, that vanilla RL agents cannot learn how to solve the
task under partial observability (for the reasons mentioned above). In compari-
son, our approach leads to performance scores close to those obtained by a RL
algorithm with full observability. This indicates that the evolved reservoir is able
to reconstruct missing information related to velocities from its own internal
recurrent dynamics. This confirms the hypothesis that an agent with a reser-
voir can solve partially observable tasks by using the internal reservoir state to
reconstruct missing information. We explain with more details why this method
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Fig. 4. Learning curves for partially observable tasks. The x-axis represents the num-
ber of timesteps during the training and the y-axis the mean episodic reward. Learning
curves of our ER-MRL methods correspond to the testing phase described in the bot-
tom of Fig. 3. Vanilla RL corresponds to a feedforward policy RL agent. The curves
and the shaded areas represent the mean and the standard deviation of the reward for
10 random seeds. See Sect. 6.3 for a comparison with another method.

could work in Sect. 6.3 of the appendix. The difference in results between the
model with 2 reservoirs on LunarLander environment suggests that solving it
requires encoding at least two different timescales dynamics. Our interpretation
here is that solving LunarLander requires to deal with both an “approaching"
and “landing" phase, unlike the two other environments.

4.2 Evolved Reservoirs Could Generate Oscillatory Dynamics
that Facilitate the Learning of Locomotion Tasks

In this section, we evaluate our approach on agents with 3D morphology having
to learn locomotion tasks shown in Fig. 10. We postulate that the integration of
an evolved reservoir can engender oscillatory patterns that aid in coordinating
body movements, akin to Central Pattern Generators (CPGs). CPGs, rooted
in neurobiology, denote an interconnected network of neurons responsible for
generating intricate and repetitive rhythmic patterns that govern movements or
behaviors [24] such as walking, swimming, or other cyclical movements. Existing
scientific literature hypothesizes that reservoirs, possessing significant rhythmic
components, share direct connections with CPGs [37]. We propose to study this
hypothesis using motor tasks involving rhythmic movements.

We employed 3D MuJoCo environments (detailed in Fig. 10 of the appendix),
where the goal is to exert forces on various rotors of creatures to propel
them forward. Notably, while the ultimate goal across these tasks remains con-
stant (forward movement), the creatures exhibit diverse morphologies, including
humanoids, insects, worms, bipeds, and more. Furthermore, the action and obser-
vation spaces vary for each morphology. We individually evaluate our ER-MRL
architecture on each of these tasks.
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Fig. 5. Learning curves for locomotion tasks. Same conventions as Fig. 4

Our approach demonstrates improved performance in some tasks (Ant,
HalfCheetah, and Swimmer) compared to a standard RL baseline, particularly
noticeable in the early stages of learning, as illustrated in Fig. 5. This suggests
that the evolved reservoir may generate beneficial oscillatory patterns, facili-
tating the learning of locomotion tasks, in line with the notion that reservoirs
could potentially function as CPGs, aiding in solving motor tasks. Although care-
fully testing this hypotheses would require more analysis, we present in Sect. 6.4
in the appendix preliminary data suggesting that the evolved reservoir is able
to generate oscillatory dynamics that could facilitate learning in the Swimmer
environment. However, as shown in Fig. 5, performance enhancement was not
observed in the Walker and Hopper environments compared to the RL baseline.
Locomotion in both environments demands precise closed-loop control strategies
to maintain an agent’s equilibrium. In such cases, generated oscillatory patterns
may not be as beneficial.

4.3 Evolved Reservoirs Improve Generalization on New Tasks
Unseen During Evolution Phase

In this section, we address a key aspect of our study: the ability of evolved reser-
voirs to facilitate adaptation to novel environments. This inquiry is crucial in
assessing the potential of evolved neural structures to generalize and enhance
an agent’s adaptability beyond the evolution phase. Building on the promis-
ing results of ER-MRL with two reservoirs in previous experiments, we focus
exclusively on this configuration for comparison with the RL baseline.

Generalizing Across Different Morphologies with Similar Tasks. In
prior experiments, ER-MRL demonstrated effectiveness in environments like
Ant, HalfCheetah, and Swimmer. This success led us to explore whether reser-
voirs evolved for two of these tasks could be adaptable to the third, indicating
potential generalization across different morphologies. However, due to variations



Evolving Reservoirs for Meta Reinforcement Learning 47

in environments, including differences in morphology, observation and action
spaces, and reward functions, generalization from one set of tasks to another
presents a complex challenge. To ensure fair task representation of each envi-
ronment in the final fitness, we employ the normalization formula detailed in
Sect. 6.6. Subsequently, we select the reservoir HPs Φ∗ that yielded the highest
fitness and evaluate them in a distinct environment. For instance, if we evolve
reservoirs on Ant and HalfCheetah, we test them in the Swimmer task.

Fig. 6. Learning curves for generalization on similar locomotion tasks with different
morphologies. The curves evaluate the performance of ER-MRL on an environment that
was unseen during the evolution phase. For instance, the left plot shows performance
of an agent on Ant, using reservoirs evolved on only HalfCheetah and Swimmer.

In Fig. 6, we observed a notable improvement in the performance of ER-MRL
agents with reservoirs evolved for different tasks, particularly in HalfCheetah and
Swimmer environments. This substantiates the capacity of evolved reservoirs to
generalize to new tasks and encode diverse dynamics from environments with
distinct morphologies. However, it’s worth noting that this improvement wasn’t
replicated in the Ant task. This could be attributed to the unique characteristics
of the Ant environment, with its stable four legged structure, in contrast to the
simpler anatomies of Swimmer and HalfCheetah. For a detailed analysis, please
refer to Sect. 6.7 in the appendix.

Generalizing Across Different Tasks with Similar Morphologies. We
have seen how reservoirs facilitated ER-MRL agent’s ability to generalize across
locomotion tasks with different morphologies. Now, we shift our focus to tasks
with consistent morphologies but distinct objectives. To delve into this, we turn
to the Humanoid and HumanoidStandup environments (shown in Fig. 12 of the
appendix), both presenting tasks within the realm of humanoid movement. One
task involves learning to walk as far as possible, while the other centers around
the challenge of standing up from the ground. As in our previous study, we follow
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Fig. 7. Learning curves for generalization on different locomotion tasks with similar
morphologies. The reservoirs are evolved on one task and tested on the other one.

the procedure of evolving reservoir-generating HPs on one task and evaluating
their performance on the other.

Figure 7 provides a visual representation of our findings. While the perfor-
mance improvement may not be dramatic, it underscores the generalization capa-
bilities of reservoirs across tasks with similar morphologies but differing objec-
tives. This observation, though promising, invites further investigation, given the
limited number of experiments conducted in this context. This aspect represents
an avenue for future research.

5 Discussion

In this paper, we have addressed the compelling question of whether reservoir-
like neural structures can be evolved at an evolutionary time scale, to facilitate
the learning of agents on a multitude of sensorimotor tasks at a developmen-
tal scale. Our results demonstrate the effectiveness of employing evolutionary
algorithms to optimize these reservoirs, especially on Reinforcement Learning
tasks involving partial observability, locomotion, and generalization of evolved
reservoirs to unseen tasks.

Our ER-MRL approach has parallels to previous algorithms in RL that
employ an indirect encoding for mapping a genome to a particular neural net-
work architecture [12,28,41]. Our choice of employing reservoirs comes with the
benefit of a very small genomic size (reservoirs are parameterised by a handful
of parameters that we show in Appendix 6.1) without reducing the complexity
of the phenotype (the number of weights of the reservoir policy is independent
of the number of hyper-parameters). Moreover, our approach clearly distinguish
neural structures optimized at the evolutionary scale (the reservoirs) vs. at the
developmental scale (the RL action policy).

Nonetheless, some limitations persist within our methodology. The combina-
tion of reservoir computing and reinforcement learning remains underexplored
in the existing literature [6,7], leaving substantial room for refining the algorith-
mic framework for improved performance. Moreover, our generalization experi-
ments and quantitative analyses warrant further extensive testing to gain deeper
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insights. Notably, our approach does incur a computational cost due to the time
required to train a new policy with RL for each generated reservoir. Future
studies could devise more efficient evolutionary strategies or employ alternative
optimization techniques.

However, because our method remains agnostic to specific environment and
agent’s characteristics (a reservoir architecture being independent of the shape
of its inputs and outputs), we could in theory evolve reservoirs across a very
wide range of environments and agent’s morphologies. Such evolved generalist
reservoirs could then result in highly reduced computational cost at the develop-
mental scale, as our results suggest, compared to training recurrent architectures
from scratch.

Moving forward, there are several promising avenues for exploration. Firstly,
a more comprehensive understanding of the interaction between RL and RC
could significantly improve the performance of such methods on developmen-
tal learning tasks. Secondly, integrating our approach with more sophisticated
Meta-RL algorithms could offer a mean to initialize RL policy weights with
purposefully selected values rather than random ones. Additionally, a broader
framework allowing for the evolution of neural structures with greater flexibil-
ity, such as varying HPs and neuron counts, could yield more intricate patterns
during the evolution phase, potentially resulting in substantial improvements in
agent performance across developmental tasks [28,41].

Our research bridges the gap between evolutionary algorithms, reservoir com-
puting and meta-reinforcement learning, creating a robust framework for mod-
elling neural architecture evolution. We believe that this integrative approach
opens up exciting perspectives for future research in RC and Meta-RL to propose
new paradigms of computations. It also provides a computational framework to
study the complex interplay between evolution and development, a central issue
in modern biology [16,18,27,49].
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6 Appendix

In this appendix, we provide comprehensive insights and clarifications on the
methodologies employed in our study. Specifically, we elaborate on aspects such
as the parameters governing our experiments, including the RL (PPO), the RC
and the evolutionary (CMA-ES) algorithms we used. Furthermore, we furnish
a detailed exposition of the environments utilized in our research. Lastly, we
conduct supplementary analyses aimed at enhancing our understanding of some
observed phenomena in the obtained results. In addition, we present results from
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experiments that were not featured in the main text to offer a more comprehen-
sive view of our findings.

6.1 Methods

Proximal Policy Optimization (PPO). PPO, categorized as a policy gradi-
ent technique [45], undertakes exploration of diverse policies through stochastic
gradient ascent. This process involves assigning elevated probabilities to actions
correlated with high rewards, subsequently adjusting the policy to aim for higher
expected returns. The adoption of PPO stems from its well-established reputa-
tion as a highly efficient and stable algorithm in the scientific literature, although
its use does not have major theoretical implications for this particular project.

Reservoir Hyperparameters. In Reservoir Computing, the spectral radius
controls the trade-off between stability and chaoticity of reservoir dynamics: in
general “edge of chaos” dynamics are often desired [5]. Input scaling determines
the strength of input signals, and the leak rate governs the memory capacity of
reservoir neurons over time. These HPs specify the generation of the reservoir
weights. Once the reservoir is generated, its weights are kept fixed and only a
readout layer, mapping the states of the reservoir neurons to the desired output
of the network are learned. Other HPs exist to initialize a reservoir, but they
have not been studied in the experiments of the paper (as it has been tested
that they have much less influence on the results).

6.2 Experiment Parameters

General Parameters. In our experiments, we adapted the number of timesteps
during the training phase of our ER-MRL agent in the inner loop, based on
whether we were evolving the reservoir HPs or testing the best HPs set discov-
ered during the CMA-ES evolution. For the evolution phase, which was com-
putationally intensive, we utilized 300,000 timesteps per training. Conversely,
when evaluating our agents against standard RL agents, we employed 1,000,000
timesteps. Notably, in the case of the LunarLander environment, we extended
the testing to 3,000,000 timesteps, as the learning curve had not yet converged
at 1,000,000 timesteps.

PPO Hyperparameters. Regarding the parameters of our RL algorithm,
PPO, we used the default settings provided by the Stable Baselines3 library [35].
For tasks involving partial observability, we made a slight adjustment by setting
the learning rate to 0.0001, as opposed to the standard 0.0003. This modification
notably enhanced performance, potentially indicating that reservoirs contained
a degree of noise, warranting a lower learning rate to stabilize RL training.

CMA-ES Hyperparameters. For the parameters of our evolutionary algo-
rithm, CMA-ES, we adopted the default settings of the CMA-ES sampler from
the Optuna library [1].

https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://optuna.readthedocs.io/en/v2.10.1/reference/generated/optuna.samplers.CmaEsSampler.html
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Reservoirs Hyperparameters. For the reservoirs, we only modified the
parameters mentioned in Sect. 6.1 and the number of neurons. We consistently
used 100 neurons per reservoirs during all experiments. All the other HPs were

Fig. 8. Rotated view of Fig. 2 presenting the background methods used, and how our
ER-MRL agents incorporate them



52 C. Léger et al.

kept the same and are the default reservoir parameters used in ReservoirPy [48].
We conducted additional analyses and observed that they exerted a relatively
modest influence on tasks of this nature. However, a more refined analysis of the
importance of these HPs could be interesting in future works.

6.3 Partially Observable Environments

In the following section, we present the different Reinforcement Learning envi-
ronments from the Gymnasium library [47], used during our experiments on
partial observability.

Fig. 9. Partially observable environments used, The goal of CartPole (left) is to learn
how to balance the pole on the cart. The goal of Pendulum (middle) is to learn how to
maintain the pendulum straight up by applying forces on it. The goal of LunarLander
(right) is to learn how to land between the two flags by generating forces on the different
spaceship reactors.

Results Analysis. To better understand the reservoir’s capabilities on these
tasks, we conducted several tests on supervised learning problems where a
sequence of actions, rewards, and observations (without velocity) was provided
to a reservoir with a linear readout. In one case, the model had to reconstruct full
observation information (position, angle, velocity, angular velocity), and in the
other, it had to reconstruct positions and angles over several time steps (doing
this only for the last 2 time steps allows a PPO to achieve maximum reward
later on). In both cases, this model successfully solved the tasks with very high
performance. Moreover, it was also capable of predicting future observations,
which can be extremely valuable to find an optimal action policy.

Benchmark Comparison. Regarding benchmarks, our approach compares
favorably with the results reported in the blog post from Raffin [34] where he
used another model combining a RNN (LSTM [51]) with a RL algorithm (PPO,
the one we also used) on the same partially observable tasks. The performance
on each environment are pretty similar, but it is the training timesteps needed
to reach the maximum performance that varies the most between the methods.
Indeed for the LunarLander environment, our method is able to learn in less
timesteps after evolving reservoirs, but it is the contrary with CartPole and
Pendulum tasks.

It is worth noting that even if both approaches have similarities, ER-MRL
consists in optimizing the HPs of reservoirs at an evolutionary scale, whereas the

https://reservoirpy.readthedocs.io/en/latest/user_guide/hyper.html
https://wandb.ai/sb3/no-vel-envs/reports/PPO-vs-RecurrentPPO-aka-PPO-LSTM-on-environments-with-masked-velocity--VmlldzoxOTI4NjE4
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method presented in the blog post trains a recurrent architecture from scratch.
This divergence complicates direct comparisons between both methods. Indeed,
our results are derived after an extensive phase of computation in a Meta-RL
outer loop, but the subsequent evaluation with the final reservoir configuration is
comparatively swift. as only the RL policy (linear readout) requires training. In
contrast, the LSTM-PPO method does not incorporate a computationally inten-
sive meta-learning phase, but their training process takes more time per timestep
update. Indeed, each training step of the this demands more computation, due
to having to train the LSTM from scratch in addition to PPO, compared to our
method where only the linear readout is trained at the developmental scale.

However to ensure a fair and comprehensive comparison with other base-
lines, especially in tracking the time required to achieve presented results, more
experiments are necessary.

6.4 MuJoCo Forward Locomotion Environments

Fig. 10. MuJoCo environments, the goal of these tasks is to apply force to the rotors
of the creatures to make them move forward. On the top row, we have from left to
right the Ant, HalfCheetah and Swimmer environments, and on the bottom row, the
Hopper, Walker and Humanoid environments. The environment observations comprise
positional data of distinct body parts of the creatures, followed by the velocities of those
individual components, while actions entail the torques applied to the hinge joints.
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Fig. 11. Differences between the observations of a RL agent (top) with the context
of an ER-MRL agent (bottom) at the same stage of training. Each episode lasts 1000
timesteps in the environment. The curves of the RL agent represent the real observation
values from the environment, and the curves of the ER-MRL one part of the context
given to the agent’s policy: the activation values of 20 reservoir neurons (out of 100).

Results Analysis. In this section, we present how reservoirs could act as Cen-
tral Pattern Generators within agents learning a locomotion task in these 3D
environments.

It can be observed that the separation between the two models seems to
occur starting from 100,000 timesteps at the top-right of Fig. 5. Therefore, we
recorded videos of the RL and ER-MRL agents to better understand the perfor-
mance difference between the two models. Furthermore, we conducted a study
at the level of the input vector in the agent’s policy (ot for RL agent, and ct for
ER-MRL agent). As seen in Fig. 11, it is noticeable that very early in the learn-
ing process, the reservoir exhibits much more rhythmic dynamics than the sole
observation provided by the environment. This could be due to the link between
the reservoir and CPGs, potentially facilitating the acquisition and learning of
motor control in these tasks.

Expanding on this, it’s notable that CPGs, shared across various species,
have evolved to embody common structures. Drawing parallels from nature, our
investigation delves into whether generalization (results in Sect. 4.3) across a
spectrum of motor tasks may mirror the principles found in biological systems.

However, further experiments, accompanied by robust quantitative analysis,
are necessary to gain valuable insights into whether reservoirs can function as
CPG-like structures.

6.5 MuJoCo Humanoid Environments

Interesting Reservoir Results. As seen in Sect. 2.3, one of the basic principles
of RC is to project input data into a higher-dimensional space. In the case of the
Humanoid tasks, where our results are displayed in Fig. 5 and Fig. 7, the initial
observation and action space is larger (400 dimensions) compared to the context
dimension for one or two reservoirs of 100 neurons (the dimension is equal to

https://docs.google.com/presentation/d/1F-p-FKROFdIWIUj0BY-TW2k6buaJskjX8p19S61inqE/edit?usp=sharing
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Fig. 12. MuJoCo environments with humanoid morphologies. On the left figure, the
goal is to learn how to stand up, and on the right the goal is to walk forward as far as
possible

the number of neurons). This means that even by reducing the input dimension
in the RL policy network, the reservoir improves the quality of the data. For
other morphologies, the dimension of input data is inferior to the dimension our
reservoir context.

6.6 Normalized Scores for Generalization

To prevent any particular task from disproportionately influencing the fitness
score due to variations in reward scales, we use a fitness function for CMA-ES
that aggregates the normalized score, denoted as nScore, across both environ-
ments. The normalization process is defined as :

nScore =
score − randomScore

baselineScore − randomScore

Where randomScore and baselineScore represent the performances of a ran-
dom and of a standard PPO agent, respectively.

6.7 Reservoir Hyperparameters Analysis

In preceding sections, we observed how HPs play a pivotal role in enabling ER-
MRL agents to generalize across tasks. Now, we delve deeper into understanding
why some reservoirs aid in generalization for specific tasks while others do not. To
gain this insight, we constructed a hyperparameter map to visualize the regions
of HPs associated with the best fitness in each environment. We selected the
best 30 sets of HPs, comprising the spectral radius and leak rate values of the
reservoirs, out of a pool of 900 for all MuJoCo locomotion tasks (refer to Fig. 10)
and plotted them on a 2D plane.
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Fig. 13. The left figure represents parameters obtained with a single reservoir, while
the right figure corresponds to configurations with two reservoirs (depicted as either
circles or triangles).

In Fig. 13, we observe that the HPs for most environments are clustered
closely together. Conversely, those for the Ant environment form a distinct clus-
ter, characterized by notably lower leak rates. The leak rate reflects how much
information a neuron retains in the reservoir, influencing its responsiveness to
input data and connections with other neurons. A lower leak rate implies a more
extended memory, possibly instrumental in capturing long-term dynamics. This
observation aligns with the stable morphology of the Ant, potentially allowing
the agent to prioritize long-term dynamics for efficient locomotion. This would
partially explain why generalization wasn’t successful on this environment in
Sect. 4.3, when reservoirs were evolved on other types of morphologies.

7 Additional experiments

We also led other experiments that we didn’t mention in the main text. As men-
tioned above in Sect. 6.1, we consistently employed reservoirs with a size of 100
neurons to ensure a standardized basis for result comparison. This configuration
equates one reservoir to 100 neurons, two reservoirs to 200 neurons, and so forth.
We conducted additional experiments to investigate the impact of varying the
number of reservoirs and neurons within them. We observed that altering the
number of neurons within a reservoir had a limited effect. For example, reducing
the number of neurons to as low as 25 did not significantly affect performance
on the partially observable environments. Increasing the size of the reservoirs
didn’t seem to improve the performance a lot either, except for the Humanoid
environments (with a large observation space) where reservoirs equipped with a
lot of neurons (1000) performed slightly better than others. While we opted for
100 neurons per reservoir in our experiments, there is surely potential for further
optimization.

Furthermore, we explored experiments involving partially observable reser-
voirs, in which only a subset of the observation was provided to the policy. The
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results demonstrated that it is not always necessary to fully observe the con-
textual information within the reservoir to successfully accomplish tasks. On
the CartPole environment, we tested 3 type of models with a reservoir of 100
fully observable neurons (the policy has access to 100 out of the 100 neurons), a
reservoir of 1000 fully observable neurons, and another reservoir with only 100
partially observable neurons out of 1000. We observed that the model with 1000
fully observable neurons performed worse than the two other, who had similar
results.

Regarding generalization experiments, we investigated the impact of varying
the number of reservoirs. Although experiments with three reservoirs yielded
intriguing insights, such as distinct memory types characterized by leak rate
in the different reservoirs, the overall performance was notably lower compared
to configurations with two reservoirs. This observation can likely be attributed
to the increased complexity of learning due to the larger observation space,
despite the potential for richer dynamics. We also noted instances where several
reservoirs maintained very similar hyperparameters for specific tasks, potentially
indicating the importance of capturing particular dynamics.

Additionally, we considered the possibility of employing smaller reservoirs
in greater numbers. This approach could capture a diverse range of interesting
features, such as different dynamics, while keeping the total number of neurons
low. This strategy would be particularly advantageous for tasks characterized
by small observation and action spaces, but would also imply a wider space of
reservoirs HPs search in return.
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