
Measuring Similarities in Model Structure
of Metaheuristic Rule Set Learners

David Pätzel1(B) , Richard Nordsieck2 , and Jörg Hähner1

1 University of Augsburg, Augsburg, Germany
david.paetzel@uni-a.de

2 XITASO GmbH IT & Software Solutions, Augsburg, Germany

Abstract. We present a way to measure similarity between sets of rules
for regression tasks. This was identified to be an important but missing
tool to investigate Metaheuristic Rule Set Learners (MRSLs), a class
of algorithms that utilize metaheuristics such as Genetic Algorithms to
solve learning tasks: The commonly-used predictive performance-based
metrics such as mean absolute error do not capture most users’ actual
preferences when they choose these kinds of models since they typically
aim for model interpretability (i. e. low number of rules, meaningful rule
placement etc.) and not low error alone. Our similarity measure is based
on a form of metaheuristic-agnostic edit distance. It is meant to be used—
in conjunction with a certain class of benchmark problems—for analysing
and improving an as-of-yet underresearched part of MRSL algorithms:
The metaheuristic that optimizes the model’s structure (i. e. the set of
rule conditions). We discuss the measure’s most important properties
and demonstrate its applicability by performing experiments on the best-
known MRSL, XCSF, comparing it with two non-metaheuristic Rule Set
Learners, Decision Trees and Random Forests.

Keywords: Benchmarking · Metaheuristic Rule Learning · Model
Similarity · Learning Classifier Systems · Rule Learning

1 Introduction

This paper presents a novel tool for evaluating Metaheuristic Rule Set Learners
(MRSL) for regression tasks. MRSLs are a subclass of Rule Set Learners (RSLs)
which are machine learning (ML) algorithms that learn sets of rules. While non-
metaheuristic RSLs like the well-known C4.5 algorithm [34] typically use local
heuristics to generate sets of rules, MRSLs use metaheuristics such as Genetic
Algorithms (GAs) to perform some form of global search for well-performing
rule sets. Examples for MRSL systems are Learning Classifier Systems such
as XCS [41], Fuzzy Rule-based Systems [7] or Ant-Miner [26]. While there are
MRSL approaches for unsupervised learning (e. g. [38]), reinforcement learning
(e. g. [5]) and classification (e. g. [3,26]) as well, the present paper focusses on
regression tasks. MRSL systems solving regression tasks include [2,17,42].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 256–272, 2024.
https://doi.org/10.1007/978-3-031-56855-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56855-8_16&domain=pdf
http://orcid.org/0000-0002-8238-8461
http://orcid.org/0000-0002-2043-3300
http://orcid.org/0000-0003-0107-264X
https://doi.org/10.1007/978-3-031-56855-8_16

Measuring Similarities in Model Structure of MRSLs 257

In the regression tasks that we are concerned with, the goal is to find an in
some sense optimal model ̂f : X → Y that maps inputs x ∈ X = R

DX to outputs
y ∈ Y = R. At that, the only guidance given in order to find that optimal model
is a training set consisting of N inputs (xn)Nn=1 � X and outputs (yn)Nn=1 � Y.
A common way to measure and improve model optimality is to compute predic-
tive error measures such as the mean absolute error (MAE) or the mean squared
error. While MRSLs are commonly evaluated using these kinds of metrics as
well, Pätzel et al. [27] as well as Kovacs and Kerber [20,21] argue that during
their development, MRSLs should actually be handled differently due to the
fact that these algorithms not only optimize some parametric model’s fixed set
of parameters (like, for example, fitting neural network connection weights) but
actually optimize the number, the conditions and the model parameters of a set
of rules. This means that MRSLs actually perform both parameter optimization
and model structure optimization (which in the neural network example trans-
lates to fitting connection weights and optimizing the network’s architecture).
This dual nature of MRSL algorithms entails that predictive error measures alone
can typically not capture a user’s actual preferences: They chose MRSL algo-
rithms over other high-predictive-performance options such as Neural Networks
for their increased interpretability and therefore also require the created model
to have a low number of rules, meaningfully placed rules, little rule overlap and
similar properties. That being said, the optimization target of supervised MRSL
algorithms is far from clear and that may be one of the reasons why most MRSL
research has focussed on improving these systems’ predictive performance alone.

Pätzel et al. [27] present a concept to resolve that mismatch between MRSL
research targets and MRSL user preferences. That concept is based on generating
certain data-generating processes that serve as a new form of benchmark learning
tasks for MRSL algorithms (this is summarized in Sect. 3). The advantage of
these processes over other approaches is that they are of the same form as the
models built by MRSL algorithms: Each process is a set of rules. The goal is to
enable the following workflow for investigating MRSL algorithms:

1. Generate a random data-generating process (or, rather, many of them).
2. Generate training data using that process.
3. Apply an MRSL algorithm to the generated training data.
4. Compare the model (a set of rules) created by the MRSL algorithm with the

set of rules of the original data-generating process.

At that, the very last step is what Pätzel et al.’s proposal is all about: The data-
generating process being a set of rules allows to not only consider predictive
performance but also whether the MRSL algorithm was able to reconstruct the
original data-generating process. This enables directly measuring the progress
made by the MRSL algorithm’s metaheuristic since the model structures of the
learnt model and of the data-generating process can be compared.

While Pätzel et al. [27] explained the overall concept of these principled
benchmarks such as how data-generating processes can be generated, their paper
fell short of proposing an actual way to compare model structures consisting of

258 D. Pätzel et al.

sets of rules. This is where the present paper comes in: We identify and dis-
cuss the desired properties of dissimilarity measures that could be used for this
task and then present a novel dissimilarity measure between sets of rules that
fulfills them. In combination with above-mentioned benchmark tasks, the mea-
sure allows improving characteristics of MRSL algorithms other than predic-
tive performance. Specifically, in the context of XAI, this allows to play to the
strengths of MRSL (inherent explainability) and quantify the tradeoff between
raw predictive performance and comprehensible model structures. We demon-
strate our measure’s applicability by applying it to the analysis of differences
between several parametrizations of one of the best-known MRSLs, XCSF, and
two non-metaheuristic RSLs, namely DTs and Random Forests (RFs).

2 Metaheuristic Rule Set Learners

In this section, we try to give a, due to space restrictions very rough, idea of
the models built and assumptions made by Metaheuristic Rule Set Learners
(MRSLs; for more details see [27]). This is necessary in order to be able to
describe in Sect. 3 how the benchmark learning tasks look like and in Sect. 4 the
dissimilarity measure between model structures.

As was already said above, this paper focusses on regression tasks (i. e. learn-
ing a mapping X → Y with X = R

DX and Y = R, DX ∈ N). Common and well-
established MRSLs (e. g. XCSF [42]) as well as more recently developed systems
(e. g. SupRB [17]) solve regression tasks by building discriminative models of the
following form [27]:

̂fM(θ, x) =
K

∑

k=1

m(ψk;x) γk
̂fk(θk;x) (1)

At that,

– m(ψk; ·) : X → {0, 1} is the condition or matching function of rule k
(parametrized by ψk) which states for any x ∈ X whether rule k applies
or not and correspondingly whether it will influence the overall prediction for
that input (if m(ψk;x) = 1, we say m(ψk; ·) matches data point x),

– γk is the mixing weight of rule k which allows to weigh rules against each
other in areas of overlap,

– ̂f(θk; ·) : X → Y is the local model of rule k (parametrized by θk and fitted on
the subset of the training data that m(ψk; ·) matches) which gives the rule’s
output for any input x ∈ X ,

– the model’s parameters form θ =
(

(γk)
K
k=1 , (θk)

K
k=1

)

,

– the model’s model structure is M =
(

K, (ψk)
K
k=1

)

.

Given a certain fixed model structure, a model’s parameters’ optimization
is often straightforward: Each local model k’s parameters θk only have to be
optimized on a subset of the training data (i. e. the data points where the local

Measuring Similarities in Model Structure of MRSLs 259

model’s condition is fulfilled) and local model families are typically simple such
as linear regression models or just constants [27]. While optimal mixing weights
γk are often computationally expensive to obtain, there exist well-performing
heuristics which are often-used in MRSL algorithms [9].

Other than model parameter optimization, optimization of the model struc-
ture is a difficult task and, correspondingly, most of the compute of (M)RSLs
goes into doing so. While non-evolutionary RSLs such as Decision Trees (DTs)
choose the model structure based on (often, local) heuristics, MRSLs use meta-
heuristics and often some form of global search (e. g. Genetic Algorithms [41]); a
recent overview of techniques used was given by Heider et al. [14]. How exactly
model structure optimization is done strongly depends on the condition family
used. For real-valued tasks such as the regression tasks considered in the present
paper, a common choice are interval-based conditions where

m(ψk, x) = m((lk, uk), x) =

{

1, x ∈ [lk, uk)
0, otherwise.

(2)

Since intervals are easily comprehensible greater-/less-than statements, interval-
based conditions often yield models with higher interpretability than more
sophisticated condition families (e. g. ellipsoid-based matching [37]) and are thus
often preferred [15]. At the same time, they are reasonably expressive and share
a lot of similarity with other axis-parallel ways to subdivide the input space
(e. g. the axis-parallel cuts made by DT algorithms); the latter being especially
important if comparisons with such algorithms are being conducted—which we
do in this paper. Overall, this led us to use interval-based conditions for the
purposes of this paper as well and as a result, the (m(ψk, ·))Kk=1 correspond to
(and are sometimes called) a set of (DX -dimensional) intervals.

3 Generating Benchmark Tasks

As was already said in the introduction, Pätzel et al.’s framework [27] is based
on generating a set of benchmark learning tasks that have the same form as the
common MRSL models introduced in Sect. 2 (cf. Eq. (1)). This means that each
benchmark learning task is a data-generating process which corresponds to, for
each input x ∈ DX , a random variable of the following form:

Y =
K

∑

k=1

m(ψk;x) γk (fk(θk;x) + εk) (3)

where the {εk}K
k=1 are normally distributed random variables corresponding to

the respective local model’s noise. These processes can be generated randomly
by drawing all of the required parameters from suitable random distributions.

Compared to the original work [27,33], we introduced a minimum coverage
parameter that allows us to ensure that the generated rules properly cover the
input space. Since the exact way how the learning tasks are generated is not

260 D. Pätzel et al.

relevant for the discussion of our dissimilarity measure, we refer to our code [31]
for details on this. We further changed the local model family to constant models
since they are less expensive to compute and the algorithms we use for our
demonstration in Sect. 5 use constant local models as well.

4 Measuring Dissimilarity of Sets of Rules

This section describes our proposal for measuring dissimilarity between the
model structures of models generated by MRSL algorithms. There are many
existing ways (e. g. the Hausdorff distance [10] or intersection over union) to
measure the dissimilarity between sets and most can be adapted to work on
the sets corresponding to MRSL model structures (i. e. sets of rule conditions).
However, due to the nature of MRSL model structures, the dissimilarity measure
should fulfill certain properties which we found difficult or impossible to fulfill
using the available dissimilarity measures. We start this section with a discussion
of said properties and then introduce our dissimilarity measure.

4.1 Desired Properties

A dissimilarity measure d(·, ·) for MRSL model structures should have the fol-
lowing properties:

Property 1 (Symmetry). Since we may not only want to examine dissimilarities
to the data-generating process model but also between two models generated by
two different (or even the same) algorithm, we want the dissimilarity measure to
be symmetric in order to avoid having to choose which of the two models should
be used as a reference. Symmetry can be expressed formally as

d(M1,M2) = d(M2,M1) (4)

Property 2 (Same training match sets1 should yield minimal dissimilarity).
While the training data and with it, the input space X , is typically scaled (e. g.
min-max normalized) before it is fed into an ML algorithm, we still would like
the dissimilarity measure to be agnostic of input-space-based distances between
interval bounds. The reason for this is that we do not want to punish cases where
a metaheuristic has bad luck : Any predictive-performance-based part of a fitness
function of a metaheuristic in an MRSL algorithms can only ever distinguish
model structures if there is a change in at least one rule’s training match set
(See footnote 1). If we did not require this property, then a model structure
M1 may be considered less or more similar to a reference model structure M0

than another model structure M2 despite M1 and M2 resulting in the exact
same overall model with respect to the training data (i. e. despite differing ψk,
all match sets are equal due to where in input space the training data points

1 A rule k’s training match set is the set of training data points that m(ψk; ·) is fulfilled
for, i. e. {x ∈ X | m(ψk;x) = 1}.

Measuring Similarities in Model Structure of MRSLs 261

lie). Since most metaheuristics are non-deterministic, we conjecture that this
occurring is not merely pathological. In short: If this property is fulfilled then
two model structures that induce the same training data set for each local model
have zero dissimilarity—even if the model structure parameters are actually dif-
ferent. Formally,2

(mk(ψ1k;X))K1
k=1 = (mk(ψ2k;X))K2

k=1 ⇔ d(M1,M2) = 0 (5)

Property 3 (Different training match sets should yield non-minimal dissimilar-
ity). This is somewhat of an inverse of Property 2. Whenever two model struc-
tures differ enough that the training data of at least one of the local models
changes, the two model structures should not be considered maximally similar:

(mk(ψ1k;X))K1
k=1 �= (mk(ψ2k;X))K2

k=1 ⇔ d(M1,M2) > 0 (6)

Property 4 (Sensible behaviour even if conditions do not overlap). Even if two
conditions (or sets of conditions) do not overlap, they can still be more or less
similar to each other from both a metaheuristics point of view and also from a
human user’s perspective. For example, a single condition (corresponding to a
set of rules of size one) should be seen as more similar to a set of conditions that
lies closer to it than to a set that lies further away—even if it does not overlap
with either of both sets. We therefore want the dissimilarity measure to be able
to sensibly differentiate between pairs of conditions even if these conditions do
not overlap. Since the concept of sensibility is rather vague, we deliberately do
not try to formalize this property.

4.2 Dissimilarity Measure

Before we define our dissimilarity measure formally, we try to provide some
intuition about it. The dissimilarity measure is ultimately meant to allow inves-
tigating the progress and behaviour of metaheuristics which optimize the model
structures of MRSL models. As previously mentioned we consider MRSLs with
interval-based conditions and hard binary matching (i. e. either a training data
point is matched or it is not). For these MRSLs, a finite data supervised learn-
ing setting effectively induces a form of quantization of the training data signal
when the model structure is changed: The model’s output for the training data
will only be different if at least one of the conditions is changed enough that at
least one of the local models is fitted on a different subset of the training data.
This gave us the idea of developing a measure similar to edit distances which are
often used in discrete spaces (e. g. in graphs [12]): We compute an upper bound
on the maximum number of training data prediction-changing edits required to
transform rules into each other. This can be seen as an edit operator-agnostic

2 We slightly abuse notation here and overload the matching function m to be able to
pass the training data input N × DX matrix X consisting of N vectors xn ∈ X to a
single condition m(ψ; ·) to get an N -vector, i. e. m(ψ;X) = (m(ψ;xn))

N
n=1 ∈ {0, 1}N .

262 D. Pätzel et al.

(and thus metaheuristic operator-agnostic) edit distance; we count an edit only
if it would change behaviour on the training data.

This can be defined formally using two measures at two levels: δX(·, ·) mea-
sures the dissimilarity between two particular rule conditions whereas dX(·, ·)
combines these condition-wise dissimilarities into a dissimilarity measure over
sets of conditions (i. e. over model structures). We start by explaining δX(·, ·)
which is parametrized with a given training set’s input data points X. As was
already explained above, we use interval-based conditions and a condition’s
m(ψ; ·) parameter vector ψ therefore induces a (DX -dimensional) interval [l, u].
In order to measure the dissimilarity between two such intervals, we count the
number of edits required to transform each of the bounds into the correspond-
ing bound of the other interval. At that, a single edit corresponds to moving
one bound so that one more (or one less) training data point is included in the
interval. We consider each dimension independently of the others (which is why
this is an upper bound on the worst-case edit distance) because computing opti-
mal sequences of edits is computationally infeasible. We can compute the edit
count by considering each training data point independently and counting which
interval bounds could traverse it. This traversal count can be formalized as (a
visualization of this for two two-dimensional intervals is given in Fig. 1):

δX(ψ1, ψ2) = δX([l1, u1], [l2, u2]) (7)

=
DX
∑

d=1

|{x ∈ X | x ∈ H(ψ1, ψ2), Lmin(d) ≤ xd ≤ Lmax(d)}| 1
DX (8)

+ |{x ∈ X | x ∈ H(ψ1, ψ2), Umin(d) ≤ xd ≤ Umax(d)}| 1
DX

where H(ψ1, ψ2) = Hull([l1, u1], [l2, u2]) is the convex hull (this arises naturally,
see Fig. 1) of the two intervals and

Lmin(d) = min(l1d, l2d), Lmax(d) = max(l1d, l2d), (9)
Umin(d) = min(u1d, u2d), Umax(d) = max(u1d, u2d). (10)

Equation (8) is a sum that iterates over all input space dimensions and for each
of them computes and sums the cardinality of two sets. The first set contains all
data points x ∈ X that lie in the interval’s convex hull and between the lower
of the two lower bounds of the two intervals in that dimension and the upper
of the two lower bounds of the two intervals in that dimension. The second set
analogously treats the intervals’ upper bounds. The traversal count counts each
x ∈ X multiple times since it computes each dimension independently of the
others which yields the aforementioned maximum number of traversals per data
point. We further take the DX th root of the set cardinalities in order to treat
each dimension independently and compute a per-dimension instead of a per-
volume value; without the DX th root, conditions that match more training data
points (i. e. larger intervals) would have a generally higher dissimilarity score
just due to their higher volume.

This dissimilarity measure fulfills at the conditon-level (i. e. for model struc-
tures of size K = 1) the properties that we introduced above: Symmetry

Measuring Similarities in Model Structure of MRSLs 263

(Property 1) is rather straightforward to show, Properties 2 and 3 follow directly
from how the measure considers training data points being matched and we
argue that Property 4 is fulfilled as well since the measure will continue to count
training data points between conditions even if they do not overlap.

Fig. 1. Condition-wise dissimilarity measurement for two two-dimensional interval-
based conditions. Top left: Data points as crosses, intervals as solid line rectangles (we
call the square interval on the left ψ1 and the non-square one on the right ψ2). Top
right: One data point x and the edit movements of the bounds that are relevant for
possible traversals of x marked. If ψ2’s y-axis upper bound is transformed into ψ1’s y-
axis upper bound first, then x is traversed when ψ2’s x-axis lower bound is transformed
into ψ1’s x-axis lower bound. If ψ2’s x-axis lower bound is transformed into ψ1’s x-axis
lower bound first, then x is traversed when ψ2’s y-axis upper bound is transformed
into ψ1’s y-axis upper bound. This yields two possible traversals for x. Bottom right:
All edit movements of this two-dimensional example. Bottom left: Data point crosses
replaced by their respective number of traversals; as can be seen, only data points in
the convex hull (dotted line) of the two intervals can ever be traversed and data points
within the intersection of the intervals are never traversed.

In order to compute the dissimilarity between two model structures M1 and
M2 (i. e. two sets of conditions), we compute the (mean) sum of minimum
distances, which is a known set-wise dissimilarity measure (cf. e. g. [10]):

dX(M1,M2) =
1
2

⎛

⎝

∑

ψ1∈M1

min
ψ2∈M2

δX(ψ1, ψ2) +
∑

ψ2∈M2

min
ψ1∈M1

δX(ψ1, ψ2)

⎞

⎠ (11)

Note that only taking one of the sums (instead of their mean) would not yield
a symmetric measure since minimizing dissimilarity may yield different results
depending on which set of conditions is minimized over. Further, there are other
options for combining the condition-wise dissimilarities into a set-wise dissimi-
larity; an overview of several is given by Eiter and Mannila [10].

264 D. Pätzel et al.

The properties given in Sect. 4.1 are fulfilled for dX(·, ·) as well, they carry
over naturally from δX(·, ·). As an aside, be aware that proving whether or not
d is a metric (it is not yet clear whether it fulfills the triangle equality—we
conjecture that it does not) is out of the scope of this paper.

Finally, it should be noted that computing dX(M1,M2) can be computa-
tionally expensive, especially if both M1 and M2 contain many rules. This is
due to having to compute δX(ψ1, ψ2) for all possible pairings of ψ1 ∈ M1 and
ψ2 ∈ M2 in order to compute the two summands in Eq. (11). At that, evaluating
δX(ψ1, ψ2) can in itself be expensive for higher dimensions and more training
data points.3 In many cases, this is not that much of a problem, though, since
the dissimilarity measure is meant mainly for post-hoc analysis and not for being
evaluated during the investigated algorithm’s runtimes.

5 Demonstration

To show the applicability of our dissimilarity measure, we apply it to the com-
parison of three different parametrizations each of DTs, RFs and XCSF.

5.1 Data-Generating Processes

We first generated a set of data-generating processes. Since the processes them-
selves are not relevant for the following demonstration of the dissimilarity mea-
sure, we will not go into detail here and refer the reader to our code [31]. We gen-
erated a range of learning tasks for dimensionalities DX ∈ {3, 5, 8}, rule counts
K ∈ {2, 4, 8, 10, 14, 18} and two minimum coverage rates κmin ∈ {0.75, 0.9}.
Sampling for these parameters produced a total of 132 learning tasks with an
average of 3.77 tasks per configuration (and correspondingly 7.54 tasks if pooling
over minimum coverage rates). From each learning task we generated training
and test data sets by uniformly sampling inputs from the respective input space
and based on those then sampling the random variable corresponding to out-
puts (see Eq. (3)). The number of training and test data points depended on the
learning task’s dimensionality: We generated 200 · 10DX /5 training data points
and ten times as many test data points for each task, this yielded 796, 2000 and
7962 training data points for the three dimensionalities considered.

5.2 Evaluation of Repeated Runs

Next, we performed a set of experiments for which we used the DT and RF
implementations provided by the Scikit-learn Python library [28] and the XCSF
implementation provided by Preen’s XCSF Python library [30]. We use three
3 For N = 768 training data points, our own (not at all optimized) code took around

0.0005 s per computation of δX (mean over all computations of dX with N = 768
performed for Fig. 2) and correspondingly around 0.2 s for computing dX for two
model structures of size 20. For N = 2000, we measured 0.002 s per δX computation
(and correspondingly 0.8 s for size 20 model structures).

Measuring Similarities in Model Structure of MRSLs 265

different parametrizations for each of the algorithm families by allowing a certain
range for the maximum number of rules in the final model: up to 50, up to 100
and up to 200 rules (and 20 times as many for RFs). Further, all three algorithms
are set to use constant models (for DTs and RFs this is already the default) and
XCSF is set to use interval-based conditions.

Fig. 2. Empirical cumulative distribution of d(·, M0) when pooling all the runs of
each algorithm (i. e. pool over repetitions and minimum coverage rate values) for each
combination of dimensionality DX (columns) and number of rules K (rows). Number
ranges in the legend show the respective variant’s range of allowed rule set sizes (in
case of RF, a fixed number of used DTs and a range of allowed sizes for each).

We performed hyperparameter optimization on each of the 132 generated
training data sets for each of the 9 algorithms used; we used the Optuna frame-
work [1] to do so. Due to this paper’s space constraints, we have to refer the
reader to our code [32] for the parameter ranges and configurations used.

For each of the nine algorithm variants listed above, we then performed
ten repetitions (ten consecutive random seeds) on each of the learning tasks

266 D. Pätzel et al.

Fig. 3. Empirical cumulative distribution of test MAE. See Fig. 2 for details.

yielding an overall number 132× 9× 10 = 11880 trials. Each final model is then
evaluated for its predictive performance (MAE) using the holdout test set which
was generated for the respective learning task. Further, we extract from each
final model the set of rules M in interval representation and compute d(M,M0),
its dissimilarity (see Eq. (11)) to the respective learning task’s data-generating
process’s model structure M0. It should be noted at this point that a DT creates
a set of non-overlapping rules that fully cover the input space, XCSF’s rules are
allowed to overlap, and an RF algorithm generates a fixed number d of DTs
which means that there are at any one point in input space d rules.

Figure 2 shows the empirical cumulative distributions of d(·,M0) when pool-
ing all the runs of each algorithm (i. e. pool over repetitions and minimum cover-
age rate values) for each combination of dimensionality DX (columns) and num-
ber of rules K (rows). In this figure, each graph in each diagram corresponds
to one of the nine algorithm variants. This figure first of all shows that XCSF
with a population size of 200 performs worse in terms of d(·,M0) than most of
the other algorithms in most cases. In fact it only outperforms RFs containing

Measuring Similarities in Model Structure of MRSLs 267

at least 20 DT for DX = 8 and K ≥ 4. Suprisingly, the three XCSF variants
are spaced roughly proportional to the their maximum population sizes; upon
closer investigation, this effect can be explained by the fact that the variants
with maximum population sizes 50 and 100 exhaust that maximum fully in all
cases and the variant with maximum population size 200 is only able to slightly
reduce the number of rules in some cases using the subsumption mechanism. The
DTs better performance is mainly due to creating models with an overall much
smaller number of rules (mean±std, rounded to one decimal, 10.3±4.9, 13.4±7.4
and 16.3±9.8 rules for the three DT variants) which means that there are much
fewer summands in Eq. (11). The RFs, on the other hand, perform worse than
the XCSF variants on a subset of the learning tasks because they have a larger
number of rules than XCSF (yielding more summands in Eq. (11)).

When comparing Fig. 2 which shows d(·,M0) with Fig. 3 which shows MAE
we can see that evaluating for MAE only separates the tree-based algorithms
from the XCSF variants while d(·,M0) provides more nuance. It is interesting
to note here that the RFs seem to perform better relative to the other algorithms
with respect to test MAE but not with respect to d(·,M0). One possible expla-
nation is the performance-interpretability tradeoff: RFs use more rules than DTs
and XCSF (worse interpretability) but at the same time the increase in param-
eters results in them being able to model the data better.

6 Related Work

This section discusses some more related work that has not yet been mentioned
in the preceding text.

In some sense the present work can be seen as being in the same spirit as
the work that Kovacs and Kerber did in the early 2000 s where they questioned
the common practice that performance of Learning Classifier Systems (LCSs,
which are a prominent member of the MRSL family), most notably XCS, was
measured using accuracy (or, more generally, error) alone [20,21]. They argued
that this does not fully capture the actual target one has in mind when thinking
about the performance of these systems.

To circumvent the weaknesses of only measuring predictive performance and
more directly assess progress of the metaheuristic, Kovacs defined several alter-
native measures [19,20] based on comparing the sets of rules to some form of
known optimal solution. However, Kovacs’s work was restricted to binary clas-
sification tasks with binary vector inputs and transfer to regression tasks does
not seem possible. That aside, the used notion of optimal rule sets was informed
by already observed behaviour of the systems to be investigated [20] whereas
we try hard to stay algorithm-agnostic with our approach. Another weakness of
Kovacs’s measures of closeness to the data-generating process is that they only
check how many of the rules in the optimal rule set the final rule set contains.
However, extracting optimal rules from a rule set that contains them is not solved
yet in general (there are merely some heuristics available, each with strengths
and weaknesses, that try to do that [25]). Other authors agree with us on that,

268 D. Pätzel et al.

e. g. Drugowitsch [9] writes in 2008 “[studies by Kovacs et al.] aimed at defining
the optimal set for limited classifier representations [but there] was still no gen-
eral definition available” and then continues to derive a probabilistic framework
for defining rule set fitness from first principles. However, that framework is, as
of now, computationally infeasible even for low input space dimensionalities.

Tan et al. look at different rule compaction approaches and in order to under-
stand their difference, they compute similarity scores of the rule sets that these
different approaches generate [39]. Their score is computed as the ratio of rules
preserved and is thus not symmetric (Property 1).

Heider et al. [16] investigate novelty search for discovering rules in an MRSL
algorithm called SupRB. In order to measure a candidate rule’s novelty (i. e. a
form of dissimilarity), they use the Hamming distance to compare its match set
to the matching vectors of its nearest neighbours. However, this measure assigns
to two rules that do not overlap a dissimilarity value that does not change with
spatial distance but only with the rules’ volumes (Property 4).

Setnes et al. [36] consider compacting models generated by fuzzy rule-based
systems. They define similarity between two rules using the fuzzy set-equivalent
to the rules’ match sets and therefore there is, again, no differentiation between
rule positions as soon as rules do not overlap anymore (Property 4).

Kharbat et al. [18] perform for binary classification with binary vector inputs
a form of rule set compaction based on clustering rules. They define rule similar-
ity using the Jaccard binary similarity coefficient which also shares the problem
of not differentiating between non-overlappying rules (Property 4).

[11] propose a dissimilarity measure between data sets which is based on
training DTs on the data sets and then computing a dissimilarity between the
resulting models. In order to compare two DTs, they compute a third DT (they
call this the greatest common refinement) which contains all the feature splits
from the two base DTs and allows to compare the DTs’ predictions region-by-
region. However, comparing predictions is not the target of our work.

Serpen and Sabhnani [35] compare two rule sets like the ones we consider
by computing their respective volumes as well as the volume of their overlap.
However, volume alone is too weak a signal to investigate MRSL metaheuristics;
in particular, this does not fulfill Property 4.

Earlier RSL literature explored heuristical detection of changes in data dis-
tributions. Some of these approaches (e. g. [22–24,29,40]) fit models to the data
repeatedly and then compare these models in order to detect changes in the
data distributions. However, since these approaches naturally assume the rate
of change is small, their dissimilarity measures are not suitable for models that
may be fundamentally different (e. g. Property 4). Aside from that, they handle
only classification tasks most of the time.

Edit distance (sometimes also called mutation distance) has been studied
for improving Genetic Programming algorithms; for example, Gustafson and
Vanneschi [13] give an overview of approaches and propose a crossover-based edit
distance measure. However, distances between trees are fundamentally different
from distances between sets of intervals that are allowed to overlap.

Measuring Similarities in Model Structure of MRSLs 269

Finally, while there have been proposed for metaheuristics many similarity
measures (cf. [4,6]) as well as diversity measures (e. g. [8]) that often also mea-
sure similarity, to our knowledge, none of the currently available ones consider
phenotypes that correspond to sets of intervals and even less so intervals that
correspond to the conditions of rules.

7 Future Work

The main segment of future work will be to use our proposed dissimilarity met-
ric to benchmark different variants of existing MRSL algorithms, analyse their
models and based on the findings develop for these systems new and better-
performing metaheuristic operators (or combinations thereof). Aside from that,
we conjecture that the measure is suited for a hyperparameter tuning regime:
Given an unknown learning task, one could capture one’s knowledge of and
beliefs about it (e. g. input space dimensionality, suspected number of rules that
can approximate the task well, distribution over condition volumes etc.) as a
set of helper tasks—a set of rule-set-based data-generating processes [27] with
matching properties. One could then minimize on the helper tasks an MRSL
algorithm’s hyperparameters with respect to the dissimilarity measure in order
to obtain a hyperparametrization for the unknown learning task.

Apart from measuring dissimilarity to a known data-generating process, the
measure may prove useful to be included within population-based MRSLs as a
measure of similarity between solutions (e. g. to build mechanisms that encourage
population diversity, increase exploration and reduce preliminary convergence).

We chose the sum of minimum distances in Eq. (11) for now for its simplicity
and the ease with which one can reason about it but intend to implement and
test Eiter and Mannila’s alternative, the link distance [10], as well.

As noted above, computing the dissimilarity measure can be expensive; how-
ever, large parts of that computation can be parallelized which should yield
significant speedups on now-typical hardware.

8 Conclusion

We proposed a way to measure dissimilarity between rule sets created by regres-
sion Metaheuristic Rule Set Learners (MRSLs). Dissimilarity between two rules
is defined as a lower bound on the maximum number of prediction-changing edits
required to transform one rule into the other; this is extended to sets of rules
using a well-known set distance measure. The measure tries to capture better the
preferences of a user using MRSL algorithms in scenarios where interpretability
is aimed at (i. e. a few well-placed rules are preferred over the highest possible
performance). Our dissimilarity measure provides an additional target for MRSL
development that allows to measure metaheuristic progress more directly than
would be possible using predictive error-based measures such as mean absolute
error. We expect that the presented tooling helps in overcoming the percieved
decline in research activity on MRLSs by allowing to better analyse the meta-
heuristic’s effects on model structure.

270 D. Pätzel et al.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2019)

2. Alcala, R., Gacto, M.J., Herrera, F.: A fast and scalable multiobjective genetic
fuzzy system for linguistic fuzzy modeling in high-dimensional regression problems.
IEEE Trans. Fuzzy Syst. 19(4), 666–681 (2011). https://doi.org/10.1109/TFUZZ.
2011.2131657

3. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier sys-
tems: models, analysis and applications to classification tasks. Evolut. Comput.
11(3), 209–238 (2003). https://doi.org/10.1162/106365603322365289

4. Brusco, M., Cradit, J.D., Steinley, D.: A comparison of 71 binary similarity coef-
ficients: the effect of base rates. Plos One 16(4) (2021)

5. Butz, M.V., Stolzmann, W.: An algorithmic description of ACS2. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp.
211–229. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48104-4_13

6. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance
measures. J. Syst. Cybernet. Inform. 8(1), 43–48 (2010)

7. Cordón, O.: A historical review of evolutionary learning methods for mamdani-
type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int.
J. Approximate Reasoning 52(6), 894–913 (2011). https://doi.org/10.1016/j.ijar.
2011.03.004

8. Corriveau, G., Guilbault, R., Tahan, A., Sabourin, R.: Review and study of geno-
typic diversity measures for real-coded representations. IEEE Trans. Evol. Comput.
16(5), 695–710 (2012). https://doi.org/10.1109/TEVC.2011.2170075

9. Drugowitsch, J.: Design and Analysis of Learning Classifier Systems - A Proba-
bilistic Approach. SCI, vol. 139. Springer, Berlin (2008). https://doi.org/10.1007/
978-3-540-79866-8

10. Eiter, T., Mannila, H.: Distance measures for point sets and their computation.
Acta Informatica 34(2), 109–133 (1997). https://doi.org/10.1007/S002360050075

11. Ganti, V., Gehrke, J., Ramakrishnan, R.: A framework for measuring changes in
data characteristics. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 1999 pp. 126–137.
Association for Computing Machinery, New York (1999). https://doi.org/10.1145/
303976.303989

12. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010). https://doi.org/10.1007/S10044-008-0141-Y

13. Gustafson, S., Vanneschi, L.: Crossover-based tree distance in genetic program-
ming. IEEE Trans. Evol. Comput. 12(4), 506–524 (2008). https://doi.org/10.1109/
TEVC.2008.915993

14. Heider, M., Pätzel, D., Stegherr, H., Hähner, J.: A Metaheuristic Perspective
on Learning Classifier Systems, pp. 73–98. Springer Nature Singapore, Singapore
(2023). https://doi.org/10.1007/978-981-19-3888-7_3

15. Heider, M., Stegherr, H., Nordsieck, R., Hähner, J.: Learning classifier systems for
self-explaining socio-technical-systems (2022)

16. Heider, M., et al.: Discovering rules for rule-based machine learning with the help of
novelty search. SN Comput. Sci. 4(6), 778 (2023). https://doi.org/10.1007/s42979-
023-02198-x

https://doi.org/10.1109/TFUZZ.2011.2131657
https://doi.org/10.1109/TFUZZ.2011.2131657
https://doi.org/10.1162/106365603322365289
https://doi.org/10.1007/3-540-48104-4_13
https://doi.org/10.1016/j.ijar.2011.03.004
https://doi.org/10.1016/j.ijar.2011.03.004
https://doi.org/10.1109/TEVC.2011.2170075
https://doi.org/10.1007/978-3-540-79866-8
https://doi.org/10.1007/978-3-540-79866-8
https://doi.org/10.1007/S002360050075
https://doi.org/10.1145/303976.303989
https://doi.org/10.1145/303976.303989
https://doi.org/10.1007/S10044-008-0141-Y
https://doi.org/10.1109/TEVC.2008.915993
https://doi.org/10.1109/TEVC.2008.915993
https://doi.org/10.1007/978-981-19-3888-7_3
https://doi.org/10.1007/s42979-023-02198-x
https://doi.org/10.1007/s42979-023-02198-x

Measuring Similarities in Model Structure of MRSLs 271

17. Heider, M., Stegherr, H., Wurth, J., Sraj, R., Hähner, J.: Separating rule discovery
and global solution composition in a learning classifier system. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, GECCO 2022,
pp. 248–251. Association for Computing Machinery, New York(2022). https://doi.
org/10.1145/3520304.3529014

18. Kharbat, F., Odeh, M., Bull, L.: New approach for extracting knowledge from
the XCS learning classifier system. Inter. J. Hybrid Intell. Syst. 4, 49–62 (2007).
https://doi.org/10.3233/HIS-2007-4201

19. Kovacs, T.: Deletion schemes for classifier systems. In: Proceedings of the 1st
Annual Conference on Genetic and Evolutionary Computation, pp. 329–336 (1999)

20. Kovacs, T.: What should a classifier system learn and how should we measure it?
Soft. Comput. 6(3), 171–182 (2002)

21. Kovacs, T., Kerber, M.: High classification accuracy does not imply effective genetic
search. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 785–796. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-2_93

22. Liu, B., Hsu, W., Han, H.-S., Xia, Y.: Mining changes for real-life applications. In:
Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874,
pp. 337–346. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44466-
1_34

23. Liu, B., Hsu, W., Ma, Y.: Discovering the set of fundamental rule changes. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2001, pp. 335–340. Association for Computing
Machinery, New York (2001). https://doi.org/10.1145/502512.502561

24. Liu, B., Ma, Y., Lee, R.: Analyzing the interestingness of association rules from
the temporal dimension. In: Proceedings 2001 IEEE International Conference on
Data Mining, pp. 377–384 (2001). https://doi.org/10.1109/ICDM.2001.989542

25. Liu, Y., Browne, W.N., Xue, B.: A comparison of learning classifier systems’
rule compaction algorithms for knowledge visualization. ACM Trans. Evol. Learn.
Optim. 1(3) (2021). https://doi.org/10.1145/3468166

26. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: An ant colony algorithm for classifica-
tion rule discovery. In: Data Mining, pp. 191–208. IGI Global (2002). https://doi.
org/10.4018/978-1-930708-25-9.ch010

27. Pätzel, D., Heider, M., Hähner, J.: Towards principled synthetic benchmarks for
explainable rule set learning algorithms. In: Proceedings of the Companion Con-
ference on Genetic and Evolutionary Computation, GECCO 2023 Companion, pp.
1657–1662. Association for Computing Machinery, New York (2023). https://doi.
org/10.1145/3583133.3596416

28. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

29. Pekerskaya, I., Pei, J., Wang, K.: Mining changing regions from access-constrained
snapshots: a cluster-embedded decision tree approach. J. Intell. Inf. Syst. 27(3),
215–242 (2006). https://doi.org/10.1007/S10844-006-9951-9

30. Preen, R.J., Pätzel, D.: Xcsf (2023). https://doi.org/10.5281/zenodo.8193688
31. Pätzel, D.: dpaetzel/rslmodels.jl: v0.1.1. https://doi.org/10.5281/zenodo.10557400
32. Pätzel, D.: dpaetzel/run-rsl-bench: v1.1.0. https://doi.org/10.5281/zenodo.

10550923
33. Pätzel, D.: dpaetzel/syn-rsl-benchs: v1.0.0 (May 2023). https://doi.org/10.5281/

zenodo.7919420
34. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA (1993)

https://doi.org/10.1145/3520304.3529014
https://doi.org/10.1145/3520304.3529014
https://doi.org/10.3233/HIS-2007-4201
https://doi.org/10.1007/978-3-540-24855-2_93
https://doi.org/10.1007/3-540-44466-1_34
https://doi.org/10.1007/3-540-44466-1_34
https://doi.org/10.1145/502512.502561
https://doi.org/10.1109/ICDM.2001.989542
https://doi.org/10.1145/3468166
https://doi.org/10.4018/978-1-930708-25-9.ch010
https://doi.org/10.4018/978-1-930708-25-9.ch010
https://doi.org/10.1145/3583133.3596416
https://doi.org/10.1145/3583133.3596416
https://doi.org/10.1007/S10844-006-9951-9
https://doi.org/10.5281/zenodo.8193688
https://doi.org/10.5281/zenodo.10557400
https://doi.org/10.5281/zenodo.10550923
https://doi.org/10.5281/zenodo.10550923
https://doi.org/10.5281/zenodo.7919420
https://doi.org/10.5281/zenodo.7919420

272 D. Pätzel et al.

35. Serpen, G., Sabhnani, M.: Measuring similarity in feature space of knowledge
entailed by two separate rule sets. Knowl.-Based Syst. 19(1), 67–76 (2006). https://
doi.org/10.1016/j.knosys.2003.11.001

36. Setnes, M., Babuska, R., Kaymak, U., van Nauta Lemke, H.: Similarity measures
in fuzzy rule base simplification. IEEE Trans. Syst. Man Cybernet. Part B (Cyber-
netics) 28(3), 376–386 (1998). https://doi.org/10.1109/3477.678632

37. Stalph, P.O., Butz, M.V.: Guided evolution in XCSF. In: Proceedings of the 14th
Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, pp.
911–918. Association for Computing Machinery, New York (2012). https://doi.org/
10.1145/2330163.2330289

38. Tamee, K., Bull, L., Pinngern, O.: Towards clustering with XCS. In: Proceedings of
the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO
2007, pp. 1854–1860. Association for Computing Machinery, New York (2007).
https://doi.org/10.1145/1276958.1277326

39. Tan, J., Moore, J.H., Urbanowicz, R.J.: Rapid rule compaction strategies for global
knowledge discovery in a supervised learning classifier system. In: Liò, P., Miglino,
O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Proceedings of the Twelfth European
Conference on the Synthesis and Simulation of Living Systems: Advances in Arti-
ficial Life, ECAL 2013, Sicily, Italy, 2–6 September 2013, pp. 110–117. MIT Press
(2013). https://doi.org/10.7551/978-0-262-31709-2-CH017

40. Wang, K., Zhou, S., Fu, C.A., Yu, J.X.: Mining Changes of Classification by Cor-
respondence Tracing, pp. 95–106. https://doi.org/10.1137/1.9781611972733.9

41. Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175
(1995)

42. Wilson, S.W.: Classifiers that approximate functions. Nat. Comput. 1(2), 211–234
(2002). https://doi.org/10.1023/A:1016535925043

https://doi.org/10.1016/j.knosys.2003.11.001
https://doi.org/10.1016/j.knosys.2003.11.001
https://doi.org/10.1109/3477.678632
https://doi.org/10.1145/2330163.2330289
https://doi.org/10.1145/2330163.2330289
https://doi.org/10.1145/1276958.1277326
https://doi.org/10.7551/978-0-262-31709-2-CH017
https://doi.org/10.1137/1.9781611972733.9
https://doi.org/10.1023/A:1016535925043

	Measuring Similarities in Model Structure of Metaheuristic Rule Set Learners
	1 Introduction
	2 Metaheuristic Rule Set Learners
	3 Generating Benchmark Tasks
	4 Measuring Dissimilarity of Sets of Rules
	4.1 Desired Properties
	4.2 Dissimilarity Measure

	5 Demonstration
	5.1 Data-Generating Processes
	5.2 Evaluation of Repeated Runs

	6 Related Work
	7 Future Work
	8 Conclusion
	References

