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Abstract. Flower localization is a crucial image pre-processing step
for subsequent classification/recognition that confronts challenges with
diverse flower species, varying imaging conditions, and limited data.
Existing flower localization methods face limitations, including reliance
on color information, low model interpretability, and a large demand
for training data. This paper proposes a new genetic programming (GP)
approach called ACFGP with a novel representation to automated flower
localization with limited training data. The novel GP representation
enables ACFGP to evolve effective programs for generating aggregate
channel features and achieving flower localization in diverse scenarios.
Comparative evaluations against the baseline benchmark algorithm and
YOLOv8 demonstrate ACFGP’s superior performance. Further analy-
sis highlights the effectiveness of the aggregate channel features gener-
ated by ACFGP programs, demonstrating the superiority of ACFGP in
addressing challenging flower localization tasks.

Keywords: Genetic programming · Aggregate channel features ·
Flower localization

1 Introduction

Flower localization is a computer vision task focused on precisely determining
the location of flowers within images. As a common image pre-processing oper-
ation, flower localization contributes to the further identification and classifica-
tion of flower species, supporting botanical research and biodiversity monitoring
[12]. The main challenges of flower localization stem from the diversity of flower
classes, variations within specific flowers, various imaging conditions, and limited
data on some rare flower species.

To address the challenges above, manual segmentation methods, such as
GrabCut [17], are typically used to localize the flower and remove the background
as image pre-processing in the early stage, which requires labor-intensive efforts.
For automatic flower localization, traditional methods typically utilize flower
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color and shape information to design threshold-based methods [5,11,18]. How-
ever, these methods require domain knowledge about flowers for manual selec-
tion of feature descriptors and algorithm design. Furthermore, the performance
of common threshold-based techniques based on manually crafted image pro-
cessing programs might deteriorate when confronted with complex background
scenes and diverse imaging conditions in flower images. The aggregate channel
features (ACF) detector, which extends channels beyond typical color represen-
tations to non-color features, has proven effective in enhancing robustness for
localizing objects. It has been successfully applied in various object detection
tasks, such as localizing pedestrians [3], faces [22], and urine sediments [19].
However, its application in flower localization remains unexplored.

Convolutional neural network (CNN) methods such as Faster R-CNN [16] and
YOLO [6] have been widely applied in object detection, including localizing and
classifying flowers [15,20]. However, these methods need pre-trained models and
still demand a relatively large amount of training data for fine-tuning due to high
model complexity. Their large network structures require Graphics processing
units (GPUs) for training, resulting in high computational costs. Additionally,
the black-box nature of these models reduces the interpretability in explaining
object localization processes.

Genetic Programming (GP) is an evolutionary algorithm inspired by natu-
ral selection, designed to automatically evolve programs/solutions through the
iterative application of evaluation, selection, and genetic operations including
mutation and crossover [8]. The tree-based variable-length representation in
GP enables the generation of programs with flexible structures and good inter-
pretability. GP has been successfully applied in image classification with limited
data [1].

However, existing GP-based methods that involve region detection [2,21]
lack flexibility as the positions of the detected regions are randomly selected
and remain fixed across all images. Therefore, the region detection mechanism
employed in these methods lacks the capability to effectively capture flowers
with varying positions within an image.

1.1 Goals

The goal of this paper is to develop a GP approach, named aggregate channel
feature based GP (ACFGP), that can automatically generate effective aggregate
channel features to localize the flower within an image with limited training
data. This paper focuses on the single-object localization task, where the evolved
program is expected to produce a bounding box that accurately locates the flower
in each image. The specific objectives of this work are summarised as follows:

– Develop a new function set and a new terminal set that include image pro-
cessing operators to extract and aggregate channel features to enhance the
flower, and dynamically compute bounding boxes based on the specific char-
acteristics of each image;

– Design a new GP representation to evolve effective solutions/programs for
various flower localization tasks with limited training data;
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– Analyze and compare the performance of ACFGP with the baseline bench-
mark and the YOLOv8 method; and

– Further analyze the trees evolved by ACFGP along with the visualized results
to investigate the effectiveness of aggregate channel features.

2 Backgrounds and Related Work

2.1 Existing Methods for Flower Localization

In the early days, manual segmentation algorithms such as GrabCut [17] are used
to segment flowers and remove background [14]. GrabCut is a semi-automatic
image segmentation algorithm developed based on the color distribution and
graph-cut approach, which requires manually framing the bounding box of the
flower as a rough segmentation. An automated flower segmentation algorithm
[11] is proposed as a pre-processing for automated flower classification [12]. This
method consists of two models, one color model for foreground/background seg-
mentation and a generic shape model for petal structure. However, the perfor-
mance of color-based segmentation might be affected by diverse illumination
situations. Threshold-based algorithms are commonly used to localize flowers as
pre-processing in traditional flower classification methods [5,18]. A flower is seg-
mented by the threshold calculated based on the intensity values transformed
from color information, whose performance might be affected under complex
background and lighting conditions.

Flower localization is commonly regarded as part of the flower detection task
within CNN methods, often coupled with classification. In [15], an improved
Region Proposal Network (RPN) is utilized to generate region proposals for flow-
ers, and a modified Faster R-CNN model is employed for bounding box regres-
sion. In [20], flower localization and classification are simultaneously addressed
using the YOLOv4 model [6]. Despite the model’s simplification via a channel
pruning algorithm, the pruned version still contains over two million parameters,
resulting in low interpretability. In addition, both methods in [15,20] require pre-
trained models, and thousands of flower images are required for fine-tuning.

2.2 Aggregate Channel Features (ACF) for Object Localization

A channel typically refers to a component of an image that represents specific
color information, such as red, green, and blue. In this paper, we borrow the con-
cept from [3], where channels are defined as a feature map of the original image,
whose pixels are computed from corresponding patches of original pixels. Based
on this definition, additional non-color channels are introduced that include a
series of feature maps generated through image filters and descriptors. The addi-
tional channels enable comprehensive image analysis beyond color information,
thus enhancing the capability to comprehend and interpret complex visual data.

ACF methods have been applied to diverse object localization methods. In
[3], integral/aggregate channel features are introduced via linear and non-linear
transformations. The experimental evaluation demonstrates that ACF enables
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accurate spatial localization during detection if designed properly. In [22], chan-
nel features including color channels, (i.e., Gray-scale, RGB, HSV, and LUV),
gradient magnitude, and gradient histograms are used for face detection. Simi-
larly, in [19], ten channel features, i.e., three color channels in LUV space, normal-
ized gradient magnitude, and histogram of oriented gradients (six orientations)
are used to localize urine sediments within images. However, these methods rely
on a sliding window for localization, which increases the computational cost and
limits the ability to localize objects with varying sizes.

In summary, traditional automated flower localization methods primarily rely
on thresholding based on color information, making them less effective under
complex backgrounds and diverse imaging conditions. CNN-based methods often
need fine-tuning with pre-trained models for flower localization, still demanding
thousands of images for fine-tuning, and lacking interpretability due to high
model complexity. Existing GP-based methods have limitations in flower local-
ization due to randomly selected regions that remain static across all images.
Existing ACF methods that rely on sliding windows for localization restrict the
adaptability to objects of varying sizes. Therefore, this paper aims to develop a
GP approach with ACF to flower localization with limited training data.

3 Proposed Approach

3.1 The New GP Representation

The proposed ACFGP approach has a new GP representation that is based on
strongly typed GP (STGP) [10]. In ACFGP, the input for the GP program/tree
is an RGB image, and the output is one bounding box identifying the salient
flower within the image. ACFGP comprises five layers from input to output,
each with a distinct role in the process:

– Input layer: Represents the input RGB image;
– Channel extension layer: Involves color channel selection and channel fea-

ture extraction. This layer begins by choosing one from seven color channels
(including RGB, LUV, and grayscale) and then applies an image processing
filter to the chosen channel, resulting in an extended channel feature.

– Channel aggregation layer: Aggregate the extended channel features from
different tree branches to create a saliency mask, highlighting the regions of
interest.

– Object localization layer: Detects the salient flower and identifies its bounding
box based on the saliency mask.

– Output layer: Represents the bounding box of the flower.

Figure 1 shows how the proposed ACFGP approach constructs a tree using
various functions and terminals.
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3.2 Terminal Set

Terminals serve as the leaf nodes in a GP tree. There are two types of terminals in
ACFGP, i.e., Img and Idx, as detailed in Table 1. Img denotes the RGB image
containing salient flowers. It’s a three-dimensional array with red, green, and
blue pixel values. Idx denotes the index used to select a color channel from the
RGB image. Idx is an integer ranging from 0 to 6, where each index corresponds
to one of the seven color channels, i.e., blue, red, green, L, U, V, and grayscale
channels.

Fig. 1. The program structure and an example program/tree of ACFGP.

Table 1. Terminal Set

Terminal Type Value range Description

Img array [0,255] The 3-channel RGB image

Idx integer [0,6] The index to generate a color channel from an RGB image.
Including RGB, LUV, and gray-scale channels

3.3 Function Set

The function set of ACFGP is presented in Table 2 and consists of three cat-
egories: channel extension functions, channel aggregation functions, and object
localization functions.

Channel extension functions are the image processing filters and descriptors,
i.e., Gau 1, Gau 2, Median, Min max, LoG 1, LoG 2, Sobel, HOG, and Saliency.
Gau 1, Gau 2, and Median are used for image smoothing and noise reduc-
tion. Gau 1 and Gau 2 execute Gaussian filtering with different σ, addressing
small/larger scale smoothing. Min max, LoG 1,LoG 2, and Sobel functions are
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different types of edge detectors. LoG 1 and LoG 2 focus on small/larger scale
of edge enhancement. HOG is a feature descriptor that extracts the distribution
and orientation of gradients in an image, capturing important structural infor-
mation from images, and allowing for robust and reliable pattern recognition.
The Saliency function is from OpenCV’s Saliency module, which detects visually
prominent areas in an image based on color, texture, and intensity.

Channel aggregation functions are used to aggregate channel features generated
by the channel extension functions into a saliency mask, which is used to localize
the salient flower. Since the channel features extracted by the channel extension
functions can be considered as a feature map, where pixel values represent feature
intensities at specific locations, channel aggregation functions perform addition
or subtraction operations on these intensities to enhance features in the region of
interest, generating a saliency mask. These functions include Sub2, Add2, Add3,
and Add4. Sub2 calculates the absolute difference between two channels, whereas
Add2, Add3, and Add4 functions perform addition operations on two, three,
and four channels, respectively. Sub2 and Add2 functions have the flexibility

Table 2. Function Set

Function Input Output Description

Channel extension functions

Gau 1 Img, Idx Channel Perform Gaussian filtering with stand deviation σ 1 on the
selected color channel

Gau 2 Img, Idx Channel Perform Gaussian filtering with stand deviation σ 2 on the
selected color channel

Median Img, Idx Channel Perform 5 × 5 median filtering on the selected color channel

Min max Img, Idx Channel Perform 3 × 3 min-max filtering on the selected color channel

LoG 1 Img, Idx Channel Perform Laplacian of Gaussian filtering with stand deviation
σ 1 on the selected color channel

LoG 2 Img, Idx Channel Perform Laplacian of Gaussian filtering with stand deviation
σ 2 on the selected color channel

Sobel Img, Idx Channel Perform 3 × 3 Sobel filtering on the selected color channel

HOG Img, Idx Channel Extract HOG feature vectors on the selected color channel
and transfer them into an image-based representation

Saliency Img Channel Perform static saliency detection and generate a Saliency map

Channel aggregation functions

Sub2 2 Channels Channel/Mask Perform the absolute difference operation between 2 channels

Add2 2 Channels Channel/Mask Perform the addition operation on 2 channels

Add3 3 Channels Mask Perform the addition operation on 3 channels

Add4 4 Channels Mask Perform the addition operation on 4 channels

Object localization functions

GBBox Mask BBox Calculate the bounding box based on the mask with a 5× 5
Gaussian filtering

oBBox Mask BBox Calculate the bounding box based on the mask with an
opening operation

cBBox Mask BBox Calculate the bounding box based on the mask with a closing
operation
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to produce either an intermediate channel feature for further aggregation or a
saliency mask for object localization.

Object localization functions detect the salient flower in an image using the
saliency mask and determine the flower’s bounding box. The three functions,
GBBox, oBBox, and cBBox, employ OpenCV operations including threshold,
morphologyEx, findContours, and boundingRect, to execute the object localiza-
tion process, as shown in Fig. 2.

Fig. 2. The pipeline of the GBBox, oBBox, and cBBox functions.

The object localization process starts with the thresholding operation, which
converts the saliency mask into a binary mask using a dynamic threshold method
[13]. The main differences between GBBox, oBBox, and cBBox functions arise
from their approaches to enhancing the binary mask based on different scene
characteristics.

1) The opening operation in theoBBox function serves to eliminate noise,
smooth object boundaries, and separate closely spaced objects.

2) The closing operation in the cBBox function aims to fill gaps or holes within
objects, connect fragmented structures, and create more compact and com-
plete object representations.

3) The GBBox function applies to the case where binary mask quality is satisfied
and performs a 5× 5 Gaussian filtering operation to smooth the binary mask.

Following the enhancement of the binary mask, the findContours operation
identifies potential contours within this mask. The largest contour is considered
the salient flower. Finally, the boundingRect operation calculates the bounding
box of the largest contour as [x, y, w, h], where [x, y] represents the top-left point
of the bounding box, and w and h indicate the width and height of the bounding
box, respectively. The output of these object localization functions is represented
as [x, y, x + w, y + h], where [x + w, y + h] denotes the bottom-right point of the
bounding box. It’s worth noting that, unlike existing GP methods, the calculated
bounding boxes are different in each image, as they are based on the specific
content of the image.
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3.4 Fitness Function

The fitness function for ACFGP is the numerical sum of two metrics: detection
accuracy and intersection over union (IoU). The formulas for these two metrics
are given below.

Fitness = Detection accuracy + Average IoU (1)

Detection accuracy =
TP

TP + FP
(2)

Average IoU =
1
N

N∑

i

IoU (Predictioni,Groundtruthi) (3)

A bounding box is considered a true positive if it captures more than 50%
(including 50%) of the target in terms of IoU, while a bounding box with less
than 50% IoU is considered a false positive. However, detection accuracy alone
cannot differentiate between cases with 50% and 100% IoU. To provide a more
comprehensive evaluation for GP programs with the same detection accuracy,
the fitness function also incorporates the average of IoU, where N denotes the
number of training instances. As a result, the fitness function of ACFGP is a
value ranging between 0% and 200%.

3.5 Test Process

In the test process, the best GP tree/program obtained from the evolutionary
training process will be used to predict the images in the test set. According to
the best GP tree, a set of aggregate channel features will be extended and aggre-
gated to generate a saliency mask, and the bounding box of the salient flower
will be calculated in each test image. Similar to fitness evaluation, the detection
accuracy and average IoU will be calculated to evaluate the performance of the
ACFGP approach but the results are shown separately.

4 Experiment Design

4.1 Datasets

The proposed ACFGP approach is developed for flower localization, which could
be applied as image pre-processing for further fine-grained image classifica-
tion (FGIC). Therefore, the performance of ACFGP is examined on the FGIC
dataset: the Oxford 102 dataset. The Oxford 102 dataset contains 102 cate-
gories of flower images with 40–258 images per category. The images from the
Oxford 102 dataset vary in size, and to ensure uniformity, all images are resized
to 224 × 224 for input, which is also a commonly used size in training and
testing.

To assess ACFGP’s ability to flexibly extend and aggregate different channel
features based on the characteristics of different flower species, experiments are
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conducted on five flower sub-datasets. Each sub-dataset consists of five classes
randomly selected from the original Oxford 102 dataset, namely s1-s5 of flower5.
To explore ACFGP’s performance with limited training data, 10 images from
each class are randomly selected as the training set, resulting in a training set
of 10 × 5 images. The remaining images (ranging from 30 to 248 images per
class) form the test set for each sub-dataset. For instance, to build flower5-s1,
five flower species are randomly selected from the Oxford 102 dataset, with 10
images per class (50 images in total) used for training and the remaining images
(279 images in total) assigned as the test set. This process is repeated five times
to establish the five sub-datasets. Figure 3 presents example images of the sub-
datasets used in the experiments. The flowers in the images vary in color and
size, and exist in diverse backgrounds and lighting conditions. Additionally, the
positions of the flowers differ in each image.

Fig. 3. Example training images of s1-s5 in flower5.

4.2 Comparison Methods

To assess ACFGP’s performance, we compare it with Baseline and YOLOv8.
Baseline serves as a benchmark for evaluating aggregate channel features against
single-channel features in flower localization. YOLOv8 is chosen as a well-known
and latest CNN method in object detection.

Baseline: The Baseline benchmark algorithm employs an exhaustive search
across all single-channel features, representing possible programs generated by
ACFGP’s function set without channel aggregation functions. The search space
comprises 171 possible solutions, which include 168 single-channel features
extracted by 8 image filters and edge detectors (7 color channels × 8 chan-
nel extension functions × 3 object localization functions) and 3 feature maps
generated by the Saliency function (with 3 object localization functions). For
each sub-dataset, Baseline explores all possible solutions, and the program with
the highest fitness value on the training set is selected as the best individual.
Given its exhaustive nature, only a single-run experiment is conducted on each
sub-dataset.
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YOLOv8: The YOLOv8 method is a well-known and latest object detection
model designed for identifying and localizing objects in images. Due to limited
training data, the YOLOv8s (small) model from the YOLOv8 series [7] is used
as a comparison method in this paper, which contains 11.2 million parameters.

4.3 Parameter Settings

ACFGP: The population size is 100 and the maximal number of generations is
50. The crossover rate is 0.5, the mutation rate is 0.49, and the elitism rate is
0.01. The Ramped-half-and-half method is used in population initialization and
the mutation operation. The minimal and maximal tree depth are set to 2 and 6,
respectively. Tournament selection with the size 5 is employed for selection. The
ACFGP method is implemented using the DEAP package [4]. 30 independent
runs of experiments are conducted with different random seeds for ACFGP on
each sub-dataset.

YOLOv8: The YOLOv8s model pre-trained on the COCO dataset [9] is used
for fine-tuning for comparison in this paper. The image size input is set to
224×224, the training epoch is set to 100, the batch size is set to 16, the optimizer
is SGD, the learning rate is set to 0.01, and the remaining parameters follow the
default setting in [7]. Ten independent experimental runs are performed with
different random seeds for YOLOv8 on each sub-dataset. In the testing stage,
considering that the YOLOv8 method permits multiple bounding box outputs
within an image, the final output that localizes the flower is determined by
selecting the bounding box with the highest confidence among multiple positive
predictions.

5 Results and Discussions

This section compares the object localization performance, including the aver-
age IoU and the detection accuracy, of ACFGP, YOLOv8, and Baseline meth-
ods over the 30/10/1 runs on the s1-s5 of flower5. The evaluation focuses on
two metrics: average IoU, which assesses the quality of object localization, and
detection accuracy, which emphasizes the correctness of detections. The testing
results, including the maximal (Max) and mean with standard deviation (Mean
± Std) for each metric, are presented in Tables 3 and 4, with the best results
highlighted in bold. The Wilcoxon rank-sum test is used for the significance test
with the p-value = 0.05. The symbols “+” or “–” in the tables indicate that
ACFGP achieves significantly better or worse performance than the compared
method. The symbol “=” indicates similar performance between ACFGP and
the compared method. The final row in each table summarizes the significance
test results on each sub-dataset.

5.1 Average IoU Results

Compared with Baseline: Table 3 demonstrates ACFGP consistently outperform-
ing the Baseline across all comparisons, highlighting its superior ability to extend
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and aggregate more effective channel features for precise flower localization.
This could be attributed to ACFGP’s aggregate channel features, which cap-
ture diverse and complementary information, enhancing the discrimination of
flower features.

Compared with YOLOv8: Table 3 illustrates that ACFGP significantly outper-
forms YOLOv8 on 3 out of 5 sub-datasets. While YOLOv8 achieves a higher
maximal average IoU on flower5-s5, ACFGP maintains competitive performance
overall on this sub-dataset. This suggests that ACFGP excels in localizing flowers
with limited training data in most comparisons. It’s worth noting that in 4 out of
5 comparisons, the standard deviation values of YOLOv8’s results are larger than
those of ACFGP, indicating that ACFGP achieves a more stable performance
than YOLOv8. Despite being pre-trained, YOLOv8 usually demands thousands
of flower images to fine-tune its model due to the high model complexity to
achieve stable and satisfactory performance. Given the limited training data in
this task, capturing discriminative features in flowers becomes challenging for
YOLOv8, so it is reasonable that YOLOv8 shows inferior flower localization
performance compared to ACFGP.

Table 3. Average IoU (%) of ACFGP, YOLOv8, and Baseline on flower5 sub-datasets

ACFGP YOLOv8 Baseline

Max Mean ± Std Max Mean ± Std Max/Mean

flower5 s1 79.12 77.53 ± 1.53 78.97 73.71 ± 3.33+ 75.65+

s2 81.66 77.20 ± 2.96 79.62 75.35 ± 3.02= 63.88+

s3 82.57 80.59 ± 0.85 77.30 73.01 ± 4.95+ 78.84+

s4 84.03 80.90 ± 1.96 82.22 79.23 ± 1.86+ 78.71+

s5 75.57 72.33 ± 1.79 77.30 73.95 ± 3.18= 72.21+

Overall 3+, 2= 5+

5.2 Detection Accuracy Results

Compared with Baseline: Table 4 reveals that ACFGP outperforms Baseline sig-
nificantly in all comparisons. This suggests that ACFGP’s aggregate channel
features excel in localizing more objects with IoU over 0.5 compared to the
single-channel feature in Baseline. Different channel features could highlight dif-
ferent aspects of the flower, such as the shape, texture, or color. Aggregating
these channel features improves robustness against variations in lighting condi-
tions and image noise. Consequently, ACFGP achieves better localization results
with IoU over 0.5.

Compared with YOLOv8: As shown in Table 4, although YOLOv8 achieves bet-
ter maximal detection accuracy on flower5-s1 and flower5-s5, ACFGP signifi-
cantly outperforms YOLOv8 on 4 out of 5 flower sub-datasets in significance
tests, and achieves competitive performance on flower5-s5. This indicates that
ACFGP outperforms YOLOv8 in localizing more flowers with IoU over 0.5 in
most comparisons, aligning with the performance observed in average IoU in
Table 3.
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Table 4. Detection accuracy (%) of ACFGP, YOLOv8, and Baseline on flower5 sub-
datasets

ACFGP YOLOv8 Baseline

Max Mean ± Std Max Mean ± Std Max/Mean

flower5 s1 89.42 87.06 ± 1.99 89.61 81.94 ± 4.21+ 84.67+

s2 91.74 88.20 ± 2.58 88.26 84.00 ± 4.08+ 74.35+

s3 92.50 90.97 ± 0.98 88.03 80.56 ± 4.76+ 89.79+

s4 94.50 91.88 ± 2.08 92.98 89.77 ± 1.85+ 90.64+

s5 87.06 82.77 ± 2.21 88.10 82.83 ± 3.37= 81.03+

Overall 4+, 1= 5+

6 Further Analysis

In this section, we analyze a GP tree/program evolved by ACFGP and compare
the object localization performance between ACFGP, Baseline, and YOLOv8 to
provide more insight into the effectiveness of the aggregate channel features.

Fig. 4. An example program evolved by ACFGP on flower5-s4 and the example images
to show the object localization process using the program.

6.1 Analysis of an Example GP Tree

Figure 4 presents an example GP tree evolved by ACFGP on flower5-s4, which
achieves 82.47% average IoU and 93.13% detection accuracy. The program
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extends and aggregates seven channel features derived from three color chan-
nels (U, V, and red channels), incorporating 5 Gaussian features, 1 Min max
feature, and 1 Saliency feature. The corresponding example images reveal that
the Gaussian features effectively suppress background noise, and the Min max
and Saliency features which contain edge information of the petal and visually
important areas highlight the flower. The generated saliency mask plays a crucial
role in reducing background noise and enhancing the flower, which results in a
precise bounding box output.

The example GP tree showcases the effectiveness of the ACFGP approach,
which autonomously selects informative color channels, extends them into effec-
tive channel features using diverse image filters and descriptors, and aggregates
these features to generate the saliency mask for precise object localization.

6.2 Visual Comparison Between ACFGP, Baseline, and YOLOv8

Figure 5 displays the results of ACFGP, Baseline, and YOLOv8 across the five
flower sub-datasets, alongside the saliency masks generated by ACFGP and
Baseline for flower localization. These results are based on the best-run results
of each method from the experiment.

Compared to the saliency mask created by the single-channel feature in
Baseline, the saliency mask produced by the aggregate channel features in
ACFGP exhibits greater robustness, leading to superior object localization per-
formance across the five flower sub-datasets. While Baseline might accurately
localize objects in certain instances using a single feature map (e.g., image a
in flower5-s3), it struggles with challenges like shadow interference and complex
backgrounds (as seen in images c and d in flower5-s3). In contrast, ACFGP’s
aggregated saliency mask integrates effective features from diverse perspectives,
successfully mitigating background noise and shadow interference. It dynami-
cally computes bounding boxes based on the image content, ensuring a robust
and consistent object localization performance.

Due to the black-box nature of YOLOv8, detailed insights into its object
localization process are unavailable, contributing to poor interpretability. When
comparing results between ACFGP and YOLOv8, ACFGP shows better preci-
sion. In some instances, YOLOv8 fails to enclose the flower within blue bounding
boxes (e.g., image b in flower5-s1, image c in flower5-s2, and image b in flower5-
s4). Additionally, YOLOv8’s results show notable background noise in several
cases (e.g., image e in flower5-s1; image d and e in flower5-s4; and image a, c,
and d in flower5-s5).

In summary, further analysis of the example GP tree/program evolved by
ACFGP shows its high interpretability. The program provides a clear explanation
of how the program extends and aggregates channel features to achieve precise
flower localization. In addition, the comparison between ACFGP, Baseline, and
YOLOv8 considering saliency masks and the corresponding results, highlights
the effectiveness and robustness of aggregate channel features for precise flower
localization.
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Fig. 5. The saliency masks and corresponding results of ACFGP, Baseline, and
YOLOv8 on five flower sub-datasets.
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7 Conclusions

The goal of this paper is to develop a GP-based approach to automatically
extend and aggregate channel features for flower object localization. The goal
has been successfully achieved by developing the ACFGP approach with a new
GP representation, a new function set, and a new terminal set. This enables the
simultaneous and automatic extension and aggregation of features, and dynam-
ically localizing the flower in each image. The results show that the ACFGP
outperforms the baseline benchmark and the YOLOv8 method. Further analysis
highlighted the interpretability of the programs evolved by ACFGP, showcas-
ing the effectiveness of the aggregate channel features for flower localization in
ACFGP.

In the future, we will explore large-scale flower classification using the local-
ization prediction results obtained through ACFGP.
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