Hindsight Experience Replay
with Evolutionary Decision Trees
for Curriculum Goal Generation

Erdi Sayar!®) Vladislav Vintaykin', Giovanni Iacca?, and Alois Knoll!

! Technical University of Munich, Munich, Germany
{erdi.sayar,vladislav.vintaykin}@tum.de, knoll@mytum.de
2 University of Trento, Trento, Italy
giovanni.iacca@unitn.it

Abstract. Reinforcement learning (RL) algorithms often require a sig-
nificant number of experiences to learn a policy capable of achieving
desired goals in multi-goal robot manipulation tasks with sparse rewards.
Hindsight Experience Replay (HER) is an existing method that improves
learning efficiency by using failed trajectories and replacing the original
goals with hindsight goals that are uniformly sampled from the visited
states. However, HER has a limitation: the hindsight goals are mostly
near the initial state, which hinders solving tasks efficiently if the desired
goals are far from the initial state. To overcome this limitation, we intro-
duce a curriculum learning method called HERDT (HER with Deci-
sion Trees). HERDT uses binary DTs to generate curriculum goals that
guide a robotic agent progressively from an initial state toward a desired
goal. During the warm-up stage, DTs are optimized using the Gram-
matical Evolution algorithm. In the training stage, curriculum goals
are then sampled by DTs to help the agent navigate the environment.
Since binary DT's generate discrete values, we fine-tune these curriculum
points by incorporating a feedback value (i.e., the Q-value). This fine-
tuning enables us to adjust the difficulty level of the generated curriculum
points, ensuring that they are neither overly simplistic nor excessively
challenging. In other words, these points are precisely tailored to match
the robot’s ongoing learning policy. We evaluate our proposed approach
on different sparse reward robotic manipulation tasks and compare it
with the state-of-the-art HER approach. Our results demonstrate that
our method consistently outperforms or matches the existing approach
in all the tested tasks.

Keywords: Decision Tree - Reinforcement Learning - Curriculum
Learning + Sparse Reward - Multi-goal Tasks

1 Introduction

®
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Reinforcement learning (RL) is a well-known computational paradigm for dis-
covering optimal actions through trial and error, so as to maximize rewards
without explicit guidance [1]. In recent years, deep RL, which combines RL with
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deep neural network (DNN)-based function approximators, has made remark-
able advancements and achieved impressive outcomes, exceeding human-level
performance e.g. in playing Atari games [2,3], beating Go champions [4], and
solving robotic tasks [5-8]. In these scenarios, the design of an effective reward
function [9] is one of the most challenging aspects. This is because the reward
function must be carefully tailored to the specific task at hand, and it must be
able to capture the desired behavior of the agent. However, in many cases, the
admissible behavior of the agent is not known in advance, which makes it diffi-
cult to design an effective reward function. As a result, binary rewards are often
used in RL algorithms. This is particularly true for robotic tasks, where binary
rewards are used to simply indicate task success or failure, offering a compara-
tively simpler alternative to the intricate design of more complex reward func-
tions. However, as binary rewards only provide information about whether the
task is completed or not, without providing more detailed information about the
actual agent’s progress towards the goal, RL algorithms encounter difficulties at
learning effectively [10]. To address the challenge of sparse rewards, Hindsight
Experience Replay (HER) [11] offers a promising solution. HER substitutes the
desired goals with the achieved goals, which are sampled uniformly from the vis-
ited states. In this way, HER can convert failed episodes into successful ones.
However, a limitation of HER, lies in its disregard for the importance of the
states visited during the learning process, resulting in sample inefficiency. Dif-
ferent methods have been introduced to address the issue of sample inefficiency
in RL, e.g. through prioritization of the replay buffer, such as Energy-Based
Prioritization [12], which prioritizes experiences with higher energy, and Maxi-
mum Entropy-based Prioritization [13], which samples replay trajectories more
frequently based on entropy.

Another challenge in deep RL is its explainability. In this regard, the grow-
ing interest in explainable RL [14] has been driven by the general lack of inter-
pretability of deep RL, being built on top of opaque DNN [15]. Interpretability
can be achieved by using interpretable models, such as Decision Trees (DTs),
which can be highly interpretable, as long as they are shallow [16]. To interpret
an RL agent with a DT, various approaches have been proposed. Coppens et al.
[17] proposed distilling the output of a pre-trained deep RL policy network into
a “soft” DT. Another method, called VIPER [18], uses a policy extraction tech-
nique to convert a complex, high-performing DNN-based policy into a simpler
DT-based policy. Ding et al. [19] used Cascading DTs (CDTs), where the feature
learning tree is cascaded with a decision-making tree. Roth et al. [20] proposed
Conservative Q-Improvement (CQI) to produce a policy in the form of a DT,
resulting in smaller trees compared to existing methods, without sacrificing pol-
icy performance. Hallawa et al. [21] proposed a methodology based on Genetic
Programming (GP) to produce Behavior Trees (BTs) combined with various
forms of RL such as Q-learning, DQN, and PPO. Other authors extended this
approach by using Grammatical Evolution (GE) to produce DTs in combination
with @-learning performing online learning on the leaves of the tree, and testing
the resulting agents on various RL tasks, including tasks with discrete action
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spaces [22-24], tasks with continuous action spaces [25], and multi-agent tasks
[26]. However, most of these approaches focus on the use of DTs for defining
the policy of the agent. To the best of our knowledge, no previous work has
used DTs to generate curriculum goals during the training process, hence guid-
ing the agent to the desired goal even in contexts with sparse rewards. This is
precisely the main focus of the present work. Our hypothesis is that by using
DTs, it is possible to generate curriculum waypoints in a straightforward and
interpretable way, hence facilitating the agent’s navigation and task solving, as
opposed to directly generating control commands to the agent using DTs. Here,
we propose a curriculum learning approach based on DT's, that we dub Hindsight
Experience Replay with Decision Trees (HERDT). Our methodology works as
follows. Initially, we transform a robotic environment into a straightforward grid
representation, comprising an initial position and a desired goal. Subsequently,
we employ GE to optimize the DT structures, which are then further optimized
by means of @-learning, as done in [22]. By doing so, we ensure that the DTs
effectively capture the environment’s characteristics and decision-making pro-
cess. Then, we leverage the optimized DTs to generate curriculum goals that
serve as navigational waypoints for guiding the agent through the environment.
In the experimentation, we compare our method with the baseline HER on stan-
dard multi-goal RL benchmark tasks and perform thorough ablation studies. To
summarize, the main contributions of this paper are the following:

— We propose HERDT, a curriculum learning approach composed of two stages,
namely: (1) A warm-up stage, where we construct a grid environment with
the same initial and desired positions as in the robotic environment. We then
use the GE algorithm to optimize binary DT's with the grid environment. As a
result, DTs acquire capabilities to provide guidance to an agent in the robotic
environment. (2) A training stage, where we sample curriculum goals from
those optimized binary DTs to guide the robotic agent toward the desired
goal. Since binary DTs output discrete values given an input state, we further
fine-tune these curriculum points to adjust their difficulty and ensure that
they are neither too easy nor too hard for the robot’s ongoing learning policy.

— We compare our approach against HER on a set of benchmark tasks with the
7-DOF Fetch Robotic-arm MuJoCo simulation environment [27].

— In the ablation studies, we investigate the impact of recursively generated
curriculum goals and the effect of the fine-tuning of the curriculum points on
the success rate of the tasks at hand.

The rest of the paper is structured as follows. The next section provides the
background concepts. Then, Sect.3 describes our proposed method. Section 4
presents the numerical results. Finally, Sect. 5 provides the conclusions.

2 Background

Hindsight Experience Replay (HER). As mentioned earlier, RL methods
often struggle to explore the environment effectively, especially under sparse
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reward conditions. HER [11] addresses this sample efficiency problem by enabling
agents to learn from their failures. When an agent fails to achieve its desired
goal, HER replays the experience as if the agent had achieved a different and
achievable goal. By doing so, the agent can receive a reward and learn at least
how to accomplish a task from the achieved states. In this way, HER converts
failed episodes into successful ones.

GE with Q-Learning. According to the GE with @Q-learning approach pro-
posed in [22], a population of genotypes, each one encoded as a fixed-length list
of codons, is evolved. During the evaluation, each genotype is converted into a
phenotype, which represents the policy of the agent based on a binary DT. Then,
the agent acts accordingly in the environment and receives a reward signal. A
Q@-value is calculated from the reward signal, using the Q-learning approach [2§],
and the cumulative reward is used as a fitness value for selecting the individ-
uals in GE (here, an “individual” refers to a DT). Then, a standard one-point
crossover operator is applied, which simply sets a random cutting point and cre-
ates two individuals by mixing the two sub-strings of the genotype. This means
that individuals whose genes are not expressed in the phenotype are not pruned.
Then, a classical uniform mutation operator mutates each gene according to a
given probability. In this way, DT policies can be optimized to perform optimal
actions leading to receiving a high reward from the environment.

Multi-goal RL. Multi-goal RL, in which an agent learns to achieve multiple
goals sampled from a goal distribution, can be modeled as a goal-directed Markov
decision process with continuous state and action spaces (S, A,G,7,r,p,7),
where S is a continuous state space, A is a continuous action space, G is a
goal distribution (indicating with ¢ a desired goal sampled from G), 7 (s'|s,a)
is the transition function, r(s, g) denotes the immediate reward obtained by an
agent upon reaching state s € S given goal g, p(sg, g) is a joint probability dis-
tribution over initial states and desired goals, and v € [0, 1] is a discount factor.
Specifically, the reward function is defined as:

r(s,9) = 1|6 (s) = gll2 < e = 1, (1)

where 1 is the indicator function, ¢ is a predefined function that maps a state
to the achieved goal®, and € is a fixed threshold. In this context, the learning
task can be modeled as an RL problem that seeks a policy 7 : S x G — A, with
the primary objective of maximizing the expected discounted sum of rewards for
any given goal.

While HER can be applied with various off-policy RL algorithms, in this work
we opt for utilizing DDPG [29], in alignment with the HER setting presented in

! The physical interpretation of the achieved goal depends on the task at hand. For
some robotic manipulation tasks, the robot needs to pick and place (Fig.5b), push
(Fig. 5¢), or slide (Fig.5d) an object. In this case, the achieved goal corresponds to
the x-y-z position of the object. Conversely, if there is no object in the task (Fig. 5a),
the achieved goal is defined as the position of the end-effector of the robot.
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[30]. DDPG is an off-policy actor-critic algorithm that consists in a deterministic
policy my(s, g) : SxG — A, parameterized by 0, and a state-action value function
Qy(s,a,9) : Sx Ax G — R, parameterized by ¢. Gaussian noise with zero mean
(= 0) and constant std. dev. is added to the deterministic policy 7y to improve
exploration. The behavior policy, 7, is then used for collecting the results over
the episodes:

m(s.g) = mo(s,9) + N (u, 0?). (2)

The Q-value is trained by minimizing the Temporal Difference (TD) error, which
is defined as the following loss function:

£critic = E(st,at,rt,stJrl,g)NB (yt - Qqﬁ(sta Qat, g))2:| (3)

where t is the timestep and y¢ = 7141 + YQ¢(St4+1, To(St4+1, 9), ). Subsequently,
the policy 7 is updated using policy gradient on the following loss function:

»Cactor = _]E(s,,,g)NB [(Q(Stv’fra(stag)vg))] . (4)

As @Q-function, we use the universal value function (UVF), which is defined as
Q¢ (st,as,9), where sy is the current state, a; is the current action, g; is the
goal, and 7 is the policy. The UVF is a generalization of the traditional value
function that integrates the goal into the value estimation and it has been shown
to be able to successfully generalize to unseen goals, which makes it a promising
approach for multi-goal RL [31]. The UVF estimates the expected return from
state s under policy m, given goal g.

3 Proposed Method

Our proposed HERDT method builds on some of the aforementioned related
works and consists of two main parts:

— Warm-up stage: before starting to train the robotic agent, as in [22] we opti-
mize binary DTs with GE while using @-learning to learn the state-action
value of the grid environment constructed starting from the robot environ-
ment, see Fig.1. The first environment is a discrete representation of the
latter, including the initial position and target position.

— Training stage: during this stage, the current state of the robot is provided to
the DTs in each episode, and the next curriculum goals are sampled accord-
ingly. Since the DTs produce discrete values, we refine these generated cur-
riculum points by adjusting them based on the @)-value of the robotic agent.
This refinement ensures that these points are appropriately calibrated, i.e.,
that they are neither overly simplistic nor excessively challenging for the
robotic agent during the learning process.

The conversion to the grid environment is motivated by two primary factors.
Firstly, evolving a DT in a continuous environment using GE would be too
computationally intensive. Secondly, employing a binary DT to generate discrete
curriculum goals is particularly suitable for grid environments.
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B Target Position
B Initial Position

-5 10

Fig. 1. Constructing a grid environment (right) from a robotic environment (left).

Table 1. Grammar rules used to evolve DTs. The symbol “|” indicates the option to
select from various symbols. “comp_op” is a concise term for “comparison operator”,
with “It” and “gt” representing “less than” and “greater than” operators, respectively.
“input_var” indicates one of the potential inputs. It is important to emphasize that
each input variable is associated with the same set of constants.

Rule Production
dt <if >
if if < condition > then < action > else < action >

condition | input_var < comp_op >< const >

action leaf| < if >

comp-op | lt|gt
const [0, 20) with step 1

3.1 Optimizing DTs

The grid environment is constructed using the same initial and target positions
as the robotic task. As mentioned earlier, some robotic tasks, such as pushing and
sliding, inherently require that robots move objects only on a flat table surface.
These can be effectively modeled using a 2D grid environment, as curriculum
points are generated only on the table. In contrast, tasks like reaching and pick-
and-place, require the robot to navigate in a 3D space and as such they can
be modeled using a 3D grid environment. We assume that we have an agent in
the grid environment that can only move forward, backward, right, and left (in
addition, up and down in the 3D case). For the grid environment, we define the
following reward function:

1 if goal is reached
T(S,g)gm‘d = _1

10 s—gl|2

(5)

otherwise

where s and g are the agent state and target position, respectively. The DTs are
evolved with the grammar rules given in Table1, as described in [22,32]. The
genotype of an individual is encoded as a fixed-length list of codons, which are
represented as integers. The genotype is then translated to the corresponding
phenotype, which is a DT. The policy a; = mpr(-) encoded by the tree is exe-
cuted and the reward signals are obtained from the grid environment for each
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timestep ¢. Then, the average reward R; = %Z? r¢ is used as fitness value for
GE and at the same time the Q)-values of the DT’s leaves are updated using the
Q-learning approach [28]:

Q(st,a:) = Q(s¢,a¢) + (Rt+1 + VmgXQ(StJrlya) — Q(st, at)) . (6)

Then, the action for each leaf is selected as argmax,Q(s,a). Each action cor-
responds to a fixed-step movement on the grid environment. These actions are
employed as curriculum goals during the robot’s training and are scaled by the Q-
value of the critic network to ensure they are appropriately challenging, without
being overly difficult for the robot. In the selection process, a parent is replaced
if its offspring has a better fitness value. The standard one-point crossover oper-
ator is used as a crossover mechanism, randomly selecting a cutting point and
generating two individuals by mixing the two sub-strings of the genotype. A
standard uniform mutation operator is utilized to randomly select a new value
from within the variable’s range of variation. This process is visually illustrated
in Fig. 2.

Q Learning .
3 Table 2. DT actions.
Actions
[ S - o “—(" Grid World J
= Environment = wpr | Description
Reward - -
T l +x direction

—x direction
+y direction
—y direction
+z direction
—z direction

Mutation ] [ Selection ]

Crossover

Fig. 2. Evolutionary process for the DTs.

Ui W= ol

3.2 Generating Curriculum Goals

As seen, the actions generated by the DT policy in the grid environment serve as
intermediate goals for guiding the robot toward the final goal. These actions are
discrete values that describe the next step to move into the grid environment,
thus determining the curriculum points for the robot.

After optimizing the DT policies, we provide the current state of the robot,
st, to the state-to-goal mapping function ¢(s), which is given to the DT policy,
which in turn outputs a discrete value between 0 and 5 (0 and 3 in 2D) as the
action. All the actions and their corresponding definitions are listed in Table 2.
Each value corresponds to the next step in the grid environment. For example,
the action 0 means that the robot should move an object to the next position
in the positive x dimension in the grid environment.

The action (i.e., the next target) of the DT policy depends on the grid size.
Specifically, if the grid size is small, then the next target will be closer to a task
location that has already been reached by the robot. However, this can lead



10 E. Sayar et al.

to a slower optimization process for the DTs. Consequently, the robot cannot
efficiently improve its policy further as it has already explored the area around its
current position. On the other hand, if the grid size is large, then the next target
will be far from the robot’s current position. This can lead to faster optimization
of the DT, but it may not be optimal for the robot as it will not guide the robot
efficiently.

Because of these reasons, we multiply the action output from the DT policy
by a feedback value (i.e., the Q-value from the critic network) so that we can
adjust the next target position to be neither too difficult nor too easy for the
robot. An example of curriculum goals generated throughout the entire training
process is shown in Fig. 3, with colors ranging from red to blue representing the
curriculum goals across different episodes of the training.

\
)

Fig. 3. Visualization of the generated curriculum goals in the FetchPush task. The
colors (ranging from red to light blue) represent the curriculum goals across different
episodes of the training. The gray color represents the desired positions. (Color figure
online)

The overall HERDT algorithm is given, in the form of pseudo-code, in Algo-
rithm 1.

In the warm-up stage (lines 7-14), as explained in Sect. 3.1, the DT policy
generates discrete actions, such as ‘up’ or ‘down’, based on the corresponding grid
location of the given achieved goal. These actions are interpreted according to
Table 2. By integrating the action from the DT policy into the current achieved
goal, we can determine the subsequent goal for the robotic agent to pursue.
Since the DT policy outputs discrete actions, directly adding these actions to
the current achieved goal might lead to abrupt jumps from one goal to the next
one, which may be hard for the robot to achieve. To address this, we introduce a
refinement step in line 18, where & (the curriculum goal) is multiplied by a factor
proportionate to the @-value. The Q-value represents the expected return for the
robot when it starts from a specific state and acts according to the policy. A
higher Q-value indicates a higher expected reward for that state, suggesting that
the robot has effectively learned that particular state-action pair. As a result, in
situations where the @-value is high, we infer that the robot has learned the state
well, and we adjust the next desired goal to be slightly farther away compared to
scenarios with lower Q-values. We can achieve this by calculating v = k- |c—Q’|,
where v indicates the adjusted curriculum goal, ¢ is a hyperparameter, and @’
is defined as follows:



Hindsight Experience Replay with Decision Trees for Curriculum Learning 11

-1 ifQ< -1
Q=50 ifQ>0 (7)

@ otherwise.

For each timestep, the current policy 7 of the robotic agent (the actor neu-

ral network) outputs the action a;, given the current state s; and the desired
goal v (line 20), which is then executed in the robotic environment, and the
next state and reward are received (line 21). Subsequently, the experiences
(8¢, at, 14, S¢+1,v) are collected and added to the replay buffer (line 22). If the
achieved state is regarded as a hindsight goal (HER idea), then the reward is
recalculated and added to the replay buffer (lines 23-25). A minibatch is sampled
from the replay buffer. The Q)-value function and the policy 7 are updated using
minibatch in the loss functions Eq. (3) and Eq. (4), respectively (lines 29-30).

In

the test rollout, we calculate the success rate by setting the target goal and

Algorithm 1. Hindsight Experience Replay with Decision Trees (HERDT)

QRIS QU =

40:

. Input: no. of iterations K, no. of epochs L, no. of episodes M, no. of timesteps T, no. of test

rollouts niest, €
Select an off-policy algorithm A > In our case A is DDPG

: Initialize replay buffer B «

Sample initial state sgp and target goal g from robotic environment
Construct grid environment

. Initialize DTs with the grammar rules in Table 1 and randomly assign values to leaf nodes

fort =1... K do > Warm-up stage
Encode genotype of a DT
Translate the genotype into a phenotype apr = wpr(s)
Execute the action apr in the grid environment
Obtain the next state s;41 and reward r

Update Q-value in Eq. (6) and use it as fitness value for GE
Select individuals, apply crossover and mutation operators
. end for
: for epoch =1...L do > Training stage
for episode = 1... M do
Sample state s and curriculum goal kK = ¢(s) + mpr(d(s))
v==r-lc— Q| > Eq. (7)
fort=1...T7 do > Rollout episode

ay = m(s¢, V)

Execute the action a, obtain the next state s;41 and reward r¢

Store transition (s¢, at, ¢, St+1,v) in replay buffer B

Sample additional goals from achieved states for replay G := S(episode)

for ¢’ € G do > Hindsight goal
Recompute reward 7}
Store transition (st, a, rft, st+1,g') in replay buffer B

end for

end for

Sample a minibatch b from replay buffer B
Update Q and 7 with b to minimize L¢ritic in Eq. (3) and Lgctor in Eq. (4)
end for
success_rate «— 0
fort =1...n¢est do > Test rollouts

a¢ = m(st,9)
Execute the action a, obtain a next state s;41 and reward r¢
if |6 (st41) — gl|2 < ¢ then > Eq. (1)
success_rate <+ success_rate + l/ntﬁst,muoutS
end if
end for
end for
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evaluating how many rollouts out of msest successfully achieve the target goal
(lines 32-39).

4 Experimental Results

In this section, we assess the proposed HERDT approach by experimenting with
a 7-degree-of-freedom robotic arm [33] within the MuJoCo simulation environ-
ment [27]. Robotic manipulation tasks are indeed well-established benchmark
tasks for multi-goal RL [30]. In this study, four standard manipulation tasks
(FetchReach, FetchPickAndPlace, FetchPush, and FetchSlide) are selected, as
shown in Fig. 5 and the selected tasks are briefly described below:

— FetchReach: This task consists of controlling the robotic arm to move its
gripper to a target position in a 3D space (shown as a red dot in Fig. 5a).

— FetchPickAndPlace: This task consists of controlling the robotic arm to grasp
the black object with its gripper and place it at the target position in a 3D
space (shown as a red dot in Fig. 5b).

— FetchPush: This task consists of controlling the robotic arm to push the black
object with its clamped gripper to the target position in a 2D space (shown
as a red dot in Fig. 5c).

— FetchSlide: This task consists of controlling the robotic arm to make the
black object slide along the sliding table from its initial position to the target
position in a 2D space (shown as a red dot in Fig. 5d).

In the warm-up stage, we optimize the DTs using the GE algorithm. These
optimized DTs are employed to generate curriculum goals during the training
stage for the robotic tasks. For example, we illustrate an optimized DT and
its corresponding grid word environment for the FetchPush task in Fig.4. The
mechanism behind how DTs generate curriculum goals during training-stage is
explained below: As an example, the initial and target positions are indicated
as (x=8,y=10) and (x=9, y=16) in Fig. 4, respectively. For each episode, the
initial position (x =38, y=10) is given to the DT, and node 0 checks whether x
is lower than 9 or not. In our case, x =38, so it is lower than 9, then the DT goes
to node 1. This node checks if y is greater than 11 (in our case, it is not), and
then it selects node 4, which checks y. Since y in our case is lower than 13, the
DT selects node 7, which again checks y. In our case y is greater than 7, then
node 9 is selected, which outputs action 0, i.e., movement in the +x direction.
So, our next curriculum goal will be in (x =9, y = 10). If this position is given to
the DT, then node 0 will check again x. In this case, x is not lower than 9. Then,
the DT selects node 2, which outputs action 2, corresponding to movement in
the 4y direction. Our next curriculum goal will be in (x=9, y=11) and after
that position, the DT will always select action 0, which results in arriving at the
target position after 6 iterations. The other action (2) is the movement in the
—y direction as specified in Table 2.

After every epoch, the performance is evaluated by running 100 deterministic
test rollouts. Then, the success rate of the tests is calculated by averaging the
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results, as detailed between lines 32 and 39. In the selected tasks, the state vector
incorporates multiple components, including the target position and the current
position, orientation, linear velocity, and angular velocity of both the end-effector
and the object. The goal represents the desired position for an object. If an object
reaches the target within a threshold distance, as defined in Eq. (1), then the
task is considered successfully completed and the agent obtains a 0 reward value.
If the object falls outside the defined range of the goal, the agent is penalized
with a negative reward of —1. We test the proposed approach with 10 different
seeds for all the experimental settings.

- W Target Position

m initial Position

8 9 10 11 12 13 14 15
z

Fig.4. An example DT generated for the FetchPush task (left) and its convergence
graph (right).

(a) FetchReach  (b) PickAndPlace (c) FetchPush (d) FetchSlide

Fig. 5. Overview of the robotic manipulation benchmark tasks.

The trend of the test success rate, shown for all environments in Fig. 6, clearly
shows the impact of generating curriculum goals on the success rate. From the
figures, it can be evidently inferred that HERDT outperforms HER (in terms
of success rate and convergence) across all the considered robotic manipulation
environments, except for the FetchSlide. It should be noted in fact that, for the
FetchSlide task, HERDT converges faster and has a lower standard deviation
than HER. However, the success rate of HER becomes slightly better than our
method in the final episodes of the FetchSlide task. HERDT converges to the
near-optimal policy after 5, 75, 35, and 50 epochs, while HER requires 6, 400,
65 and 300 epochs to converge for FetchReach, FetchPickAndPlace, FetchPush,
and FetchSlide, respectively.
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Fig. 6. Test success rate for the tasks. The mean success rate (line) and inter-quartile
range (shaded area) are shown for 10 random seeds.

This can be attributed to the fact that our approach, HERDT, employs a
DT that generates curriculum goals, guiding the agent step by step from its
initial position to the target goal. In other words, generating curriculum goals
decomposes the task into simpler sub-tasks. In contrast, HER directly instructs
the robot to reach the target goal without providing any curriculum goals.

4.1 Ablation Studies

Experiments with Curriculum Goals. As discussed earlier, in our method
the DT policy takes the achieved goals as input by converting the state s; using
the state-to-goal mapping function ¢(s;). In the first ablation study, we then
aim to answer the following question: What if we recursively feed the generated
goal g; into the DT policy back again, such that g;+1 = g+ +7p7(g:), and repeat
this process n times such that gy, = %Z?zl g;? How would this affect the
performance of the agent, compared to generating the curriculum goal g; and
using it as the next desired goal during the next episode?

The idea behind this experiment is that we can generate the next curriculum
goals g¢4+1 given the previous curriculum goal g, recursively. Such curriculum
goals represent positions in a 3D space. We can repeat this process n times and
obtain different future curriculum goals g; 11, gi42, - - ., gn. However, these goals
might be very far away from g;, making the task excessively challenging for the
robot. Additionally, some generated goals might lie outside the designated task
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environment. To mitigate this issue, we scale the recursively generated curricu-
lum goals by multiplying their sum by 1/n, where n is the number of curriculum
goals.

Figure 7 illustrates the impact of the parameter n on the success rate. It can
be inferred that when n = 1, the performance dwindles in the FetchPickAnd-
Place, FetchPush, and FetchSlide tasks. This is because curriculum goals app-
roach the desired goals slowly and may not cover the entire distribution of sam-
pled desired goals within the given number of training epochs. On the other hand,
as n increases, the curriculum goals approach the desired goals more quickly. Yet,
these curriculum goals might be too challenging for the robot to achieve, result-
ing in a lower success rate at the beginning of the training in all tasks except
for the FetchPush task, where the parameter n does not significantly affect the
outcomes.

10 10
H!'
- |
0.8 —n=l 08 ‘
2 |
206 — =311 Zos
2 — =4l 2
g —n=s|| §
:A:J 0.4 — :g %) 0.4
ne
0.2 . 0.2
0.0 —n=9 0.0
2 3 4 3 6 7 % 0 100 200 300 400
Epoch Epoch
(a) FetchReach (b) FetchPickAndPlace

Success Rate
Success Rate

0 160 200 300 400
Epoch
(c) FetchPush (d) FetchSlide

Fig. 7. Through this ablation study, we analyze the impact of recursively generated
curriculum goals on the success rate of robotic manipulation tasks. The mean success
rate (line) and inter-quartile range (shaded) are shown for 10 random seeds.

Experiments Without Feedback from @Q-Value. In the second ablation
study, we aim to answer the following question: How does the feedback from the
Q@-value (from the critic network) affect the success rate?

As discussed earlier, after optimizing the binary DTs, we modify the cur-
riculum goals generated during the training process by multiplying them by the
@-value. This adjustment is made to ensure that their positions are optimized
accordingly, making them neither too challenging nor too easy for the robot to
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Fig. 8. Through this ablation study, we analyze the impact of the feedback on the
success rate for the robot manipulation tasks. The average success rate (line) and
inter-quartile range (shaded) are shown for 10 random seeds.

reach. Figure 8 depicts the impact of feedback on the success rate in benchmark
tasks. Based on the simulation results, it becomes evident that the feedback
value plays a crucial role in enhancing learning performance and fine-tuning the
generated curriculum points to align with the robot’s ongoing learning policy.

5 Conclusion

In this study, we introduced a novel curriculum learning RL method, HERDT,
which leverages binary Decision Trees (DTs) to generate curriculum goals for
the robotic agent. Prior to training the robotic agent, a warm-up phase is per-
formed, during which DTs are optimized using the Grammatical Evolution (GE)
algorithm. In the training stage, the optimized DTs generate curriculum goals
to guide the agent toward the target goal. Since DTs output discrete values,
we further refine these curriculum points based on feedback from the robotic
agent. This fine-tuning helps the robotic agent find the right balance in the dif-
ficulty of the generated curriculum points. As a limitation, our method, which
adds an additional DT-based curriculum generation to HER, obviously takes a
longer time to compute than the original HER. However, as seen in our experi-
ments, HERDT is more sample-efficient than HER. Another notable constraint
of our implementation is that the DTs only accepts integer numbers. To address
this limitation, we multiply floating-point numbers (position parameters) by a
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hyper-parameter and then truncate the fractional part. However, this truncation
process reduces the algorithm’s accuracy, as it treats positions with different frac-
tional parts as the same position. To address this limitation and as part of future
work, we will explore the use of multi-branch DT's as well as regression trees to
handle continuous positions.
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