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Preface

This volume contains the proceedings of EvoApplications 2024, the International Con-
ference on the Applications of Evolutionary Computation. The conference was part
of Evo*, the leading event on bio-inspired computation in Europe, and was held in
Aberystwyth, UK, as a hybrid event, between Wednesday, April 3, and Friday, April 5,
2023.

EvoApplications, formerly known as EvoWorkshops, aims to bring together high-
quality research focusing on applied domains of bio-inspired computing. At the same
time, under the Evo* umbrella, EuroGP focused on the technique of genetic program-
ming, EvoCOP targeted evolutionary computation in combinatorial optimization, and
EvoMUSART was dedicated to evolved and bio-inspired music, sound, art, and design.
The proceedings for these co-located events are available in the LNCS series.

EvoApplications 2024 received 77 high-quality submissions distributed among the
main session on Applications of Evolutionary Computation and 10 additional special
sessions chaired by leading experts on the different areas: Analysis of Evolutionary
ComputationMethods: Theory, Empirics, and Real-World Applications (Thomas Bartz-
Beielstein, Carola Doerr, and Christine Zarges); Applications of Bio-inspired Tech-
niques on Social Networks (Giovanni Iacca and Doina Bucur); Computational Intel-
ligence for Sustainability (Valentino Santucci, Fabio Caraffini, and Jamal Toutouh);
Evolutionary Computation in Edge, Fog, and Cloud Computing (Diego Oliva, Seyed
Jalaleddin Mousavirad, and Mahshid Helali Moghadam); Evolutionary Computation in
Image Analysis, Signal Processing, and Pattern Recognition (Pablo Mesejo and Harith
Al-Sahaf); Machine Learning and AI in Digital Healthcare and Personalized Medicine
(Stephen Smith andMarta Vallejo); ProblemLandscapeAnalysis for Efficient Optimisa-
tion (BogdanFilipič and PavelKrömer); Resilient Bio-inspiredAlgorithms (CarlosCotta
and Gustavo Olague); Soft Computing Applied to Games (Alberto P. Tonda, AntonioM.
Mora, and Pablo García-Sánchez); and Surrogate-Assisted Evolutionary Optimisation
(Tinkle Chugh, Alma Rahat, and George De Ath). We selected 24 of these papers for
full oral presentation, while 9 works were presented in short oral presentations and as
posters. Moreover, these proceedings also include contributions from the Evolutionary
Machine Learning (EML) joint track, a combined effort of the International Conference
on the Applications of Evolutionary Computation (EvoAPPS) and European Confer-
ence on Genetic Programming (EuroGP), organized by Penousal Machado and Mengjie
Zhang. EML received 28 high-quality submissions. After careful review, eleven were
selected for oral presentations and six for short oral presentations and posters. Since
EML is a joint track, the “Evolutionary Machine Learning” part of these proceedings
contains 16 of these papers. The remaining one is published in the EuroGP proceedings.
All accepted contributions, regardless of the presentation format, appear as full papers
in this volume.

An event of this kindwould not be possiblewithout the contribution of a large number
of people:
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– We express our gratitude to the authors for submitting their works and to the members
of the Program Committee for devoting selfless effort to the review process.

– We would also like to thank Nuno Lourenço (University of Coimbra, Portugal) for
his dedicated work as Submission System Coordinator.

– We thank Evo* Graphic Identity Team, Sérgio Rebelo, Jéssica Parente, and João
Correia (University of Coimbra, Portugal), for their dedication and excellence in
graphic design.

– We are grateful to Zakaria Abdelmoiz (University of Málaga, Spain) and João Cor-
reia (University of Coimbra, Portugal) for their impressive work managing and
maintaining the Evo* website and handling the publicity, respectively.

– We credit the invited keynote speakers, Jon Timmis (Aberystwyth University, UK)
and Sabine Hauert (University of Bristol, UK), for their fascinating and inspiring
presentations.

– Wewould like to express our gratitude to the Steering Committee of EvoApplications
for helping organize the conference.

– Special thanks to Christine Zarges (Aberystwyth University, UK) as local orga-
nizer and to Aberystwyth University, UK, for organizing and providing an enriching
conference venue.

– We are grateful to the support provided by SPECIES, the Society for the Promotion
of Evolutionary Computation in Europe and its Surroundings, for the coordination
and financial administration.

Finally, we express our continued appreciation to Anna I. Esparcia-Alcázar, from
SPECIES, Europe, whose considerable efforts in managing and coordinating Evo*
helped build a unique, vibrant, and friendly atmosphere.

April 2024 Stephen Smith
João Correia

Christian Cintrano
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Abstract. Reinforcement learning (RL) algorithms often require a sig-
nificant number of experiences to learn a policy capable of achieving
desired goals in multi-goal robot manipulation tasks with sparse rewards.
Hindsight Experience Replay (HER) is an existing method that improves
learning efficiency by using failed trajectories and replacing the original
goals with hindsight goals that are uniformly sampled from the visited
states. However, HER has a limitation: the hindsight goals are mostly
near the initial state, which hinders solving tasks efficiently if the desired
goals are far from the initial state. To overcome this limitation, we intro-
duce a curriculum learning method called HERDT (HER with Deci-
sion Trees). HERDT uses binary DTs to generate curriculum goals that
guide a robotic agent progressively from an initial state toward a desired
goal. During the warm-up stage, DTs are optimized using the Gram-
matical Evolution algorithm. In the training stage, curriculum goals
are then sampled by DTs to help the agent navigate the environment.
Since binary DTs generate discrete values, we fine-tune these curriculum
points by incorporating a feedback value (i.e., the Q-value). This fine-
tuning enables us to adjust the difficulty level of the generated curriculum
points, ensuring that they are neither overly simplistic nor excessively
challenging. In other words, these points are precisely tailored to match
the robot’s ongoing learning policy. We evaluate our proposed approach
on different sparse reward robotic manipulation tasks and compare it
with the state-of-the-art HER approach. Our results demonstrate that
our method consistently outperforms or matches the existing approach
in all the tested tasks.

Keywords: Decision Tree · Reinforcement Learning · Curriculum
Learning · Sparse Reward · Multi-goal Tasks

1 Introduction

Reinforcement learning (RL) is a well-known computational paradigm for dis-
covering optimal actions through trial and error, so as to maximize rewards
without explicit guidance [1]. In recent years, deep RL, which combines RL with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 3–18, 2024.
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deep neural network (DNN)-based function approximators, has made remark-
able advancements and achieved impressive outcomes, exceeding human-level
performance e.g. in playing Atari games [2,3], beating Go champions [4], and
solving robotic tasks [5–8]. In these scenarios, the design of an effective reward
function [9] is one of the most challenging aspects. This is because the reward
function must be carefully tailored to the specific task at hand, and it must be
able to capture the desired behavior of the agent. However, in many cases, the
admissible behavior of the agent is not known in advance, which makes it diffi-
cult to design an effective reward function. As a result, binary rewards are often
used in RL algorithms. This is particularly true for robotic tasks, where binary
rewards are used to simply indicate task success or failure, offering a compara-
tively simpler alternative to the intricate design of more complex reward func-
tions. However, as binary rewards only provide information about whether the
task is completed or not, without providing more detailed information about the
actual agent’s progress towards the goal, RL algorithms encounter difficulties at
learning effectively [10]. To address the challenge of sparse rewards, Hindsight
Experience Replay (HER) [11] offers a promising solution. HER substitutes the
desired goals with the achieved goals, which are sampled uniformly from the vis-
ited states. In this way, HER can convert failed episodes into successful ones.
However, a limitation of HER lies in its disregard for the importance of the
states visited during the learning process, resulting in sample inefficiency. Dif-
ferent methods have been introduced to address the issue of sample inefficiency
in RL, e.g. through prioritization of the replay buffer, such as Energy-Based
Prioritization [12], which prioritizes experiences with higher energy, and Maxi-
mum Entropy-based Prioritization [13], which samples replay trajectories more
frequently based on entropy.

Another challenge in deep RL is its explainability. In this regard, the grow-
ing interest in explainable RL [14] has been driven by the general lack of inter-
pretability of deep RL, being built on top of opaque DNN [15]. Interpretability
can be achieved by using interpretable models, such as Decision Trees (DTs),
which can be highly interpretable, as long as they are shallow [16]. To interpret
an RL agent with a DT, various approaches have been proposed. Coppens et al.
[17] proposed distilling the output of a pre-trained deep RL policy network into
a “soft” DT. Another method, called VIPER [18], uses a policy extraction tech-
nique to convert a complex, high-performing DNN-based policy into a simpler
DT-based policy. Ding et al. [19] used Cascading DTs (CDTs), where the feature
learning tree is cascaded with a decision-making tree. Roth et al. [20] proposed
Conservative Q-Improvement (CQI) to produce a policy in the form of a DT,
resulting in smaller trees compared to existing methods, without sacrificing pol-
icy performance. Hallawa et al. [21] proposed a methodology based on Genetic
Programming (GP) to produce Behavior Trees (BTs) combined with various
forms of RL such as Q-learning, DQN, and PPO. Other authors extended this
approach by using Grammatical Evolution (GE) to produce DTs in combination
with Q-learning performing online learning on the leaves of the tree, and testing
the resulting agents on various RL tasks, including tasks with discrete action
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spaces [22–24], tasks with continuous action spaces [25], and multi-agent tasks
[26]. However, most of these approaches focus on the use of DTs for defining
the policy of the agent. To the best of our knowledge, no previous work has
used DTs to generate curriculum goals during the training process, hence guid-
ing the agent to the desired goal even in contexts with sparse rewards. This is
precisely the main focus of the present work. Our hypothesis is that by using
DTs, it is possible to generate curriculum waypoints in a straightforward and
interpretable way, hence facilitating the agent’s navigation and task solving, as
opposed to directly generating control commands to the agent using DTs. Here,
we propose a curriculum learning approach based on DTs, that we dub Hindsight
Experience Replay with Decision Trees (HERDT). Our methodology works as
follows. Initially, we transform a robotic environment into a straightforward grid
representation, comprising an initial position and a desired goal. Subsequently,
we employ GE to optimize the DT structures, which are then further optimized
by means of Q-learning, as done in [22]. By doing so, we ensure that the DTs
effectively capture the environment’s characteristics and decision-making pro-
cess. Then, we leverage the optimized DTs to generate curriculum goals that
serve as navigational waypoints for guiding the agent through the environment.
In the experimentation, we compare our method with the baseline HER on stan-
dard multi-goal RL benchmark tasks and perform thorough ablation studies. To
summarize, the main contributions of this paper are the following:

– We propose HERDT, a curriculum learning approach composed of two stages,
namely: (1) A warm-up stage, where we construct a grid environment with
the same initial and desired positions as in the robotic environment. We then
use the GE algorithm to optimize binary DTs with the grid environment. As a
result, DTs acquire capabilities to provide guidance to an agent in the robotic
environment. (2) A training stage, where we sample curriculum goals from
those optimized binary DTs to guide the robotic agent toward the desired
goal. Since binary DTs output discrete values given an input state, we further
fine-tune these curriculum points to adjust their difficulty and ensure that
they are neither too easy nor too hard for the robot’s ongoing learning policy.

– We compare our approach against HER on a set of benchmark tasks with the
7-DOF Fetch Robotic-arm MuJoCo simulation environment [27].

– In the ablation studies, we investigate the impact of recursively generated
curriculum goals and the effect of the fine-tuning of the curriculum points on
the success rate of the tasks at hand.

The rest of the paper is structured as follows. The next section provides the
background concepts. Then, Sect. 3 describes our proposed method. Section 4
presents the numerical results. Finally, Sect. 5 provides the conclusions.

2 Background

Hindsight Experience Replay (HER). As mentioned earlier, RL methods
often struggle to explore the environment effectively, especially under sparse
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reward conditions. HER [11] addresses this sample efficiency problem by enabling
agents to learn from their failures. When an agent fails to achieve its desired
goal, HER replays the experience as if the agent had achieved a different and
achievable goal. By doing so, the agent can receive a reward and learn at least
how to accomplish a task from the achieved states. In this way, HER converts
failed episodes into successful ones.

GE with Q-Learning. According to the GE with Q-learning approach pro-
posed in [22], a population of genotypes, each one encoded as a fixed-length list
of codons, is evolved. During the evaluation, each genotype is converted into a
phenotype, which represents the policy of the agent based on a binary DT. Then,
the agent acts accordingly in the environment and receives a reward signal. A
Q-value is calculated from the reward signal, using the Q-learning approach [28],
and the cumulative reward is used as a fitness value for selecting the individ-
uals in GE (here, an “individual” refers to a DT). Then, a standard one-point
crossover operator is applied, which simply sets a random cutting point and cre-
ates two individuals by mixing the two sub-strings of the genotype. This means
that individuals whose genes are not expressed in the phenotype are not pruned.
Then, a classical uniform mutation operator mutates each gene according to a
given probability. In this way, DT policies can be optimized to perform optimal
actions leading to receiving a high reward from the environment.

Multi-goal RL. Multi-goal RL, in which an agent learns to achieve multiple
goals sampled from a goal distribution, can be modeled as a goal-directed Markov
decision process with continuous state and action spaces 〈S,A,G, T , r, p, γ〉,
where S is a continuous state space, A is a continuous action space, G is a
goal distribution (indicating with g a desired goal sampled from G), T (s′|s, a)
is the transition function, r(s, g) denotes the immediate reward obtained by an
agent upon reaching state s ∈ S given goal g, p(s0, g) is a joint probability dis-
tribution over initial states and desired goals, and γ ∈ [0, 1] is a discount factor.
Specifically, the reward function is defined as:

r(s, g) = 1[‖φ (s) − g‖2 ≤ ε] − 1, (1)

where 1 is the indicator function, φ is a predefined function that maps a state
to the achieved goal1, and ε is a fixed threshold. In this context, the learning
task can be modeled as an RL problem that seeks a policy π : S × G → A, with
the primary objective of maximizing the expected discounted sum of rewards for
any given goal.

While HER can be applied with various off-policy RL algorithms, in this work
we opt for utilizing DDPG [29], in alignment with the HER setting presented in

1 The physical interpretation of the achieved goal depends on the task at hand. For
some robotic manipulation tasks, the robot needs to pick and place (Fig. 5b), push
(Fig. 5c), or slide (Fig. 5d) an object. In this case, the achieved goal corresponds to
the x-y-z position of the object. Conversely, if there is no object in the task (Fig. 5a),
the achieved goal is defined as the position of the end-effector of the robot.
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[30]. DDPG is an off-policy actor-critic algorithm that consists in a deterministic
policy πθ(s, g) : S×G → A, parameterized by θ, and a state-action value function
Qφ(s, a, g) : S ×A×G → R, parameterized by φ. Gaussian noise with zero mean
(μ = 0) and constant std. dev. is added to the deterministic policy πθ to improve
exploration. The behavior policy, π, is then used for collecting the results over
the episodes:

π(s, g) = πθ(s, g) + N (μ, σ2). (2)

The Q-value is trained by minimizing the Temporal Difference (TD) error, which
is defined as the following loss function:

Lcritic = E(st,at,rt,st+1,g)∼B
[
(yt − Qφ(st, at, g))2

]
(3)

where t is the timestep and yt = rt+1 + γQφ(st+1, πθ(st+1, g), g). Subsequently,
the policy π is updated using policy gradient on the following loss function:

Lactor = −E(st,g)∼B [(Q(st, πθ(st, g), g))] . (4)

As Q-function, we use the universal value function (UVF), which is defined as
Qφ(st, at, g), where st is the current state, at is the current action, gt is the
goal, and π is the policy. The UVF is a generalization of the traditional value
function that integrates the goal into the value estimation and it has been shown
to be able to successfully generalize to unseen goals, which makes it a promising
approach for multi-goal RL [31]. The UVF estimates the expected return from
state s under policy π, given goal g.

3 Proposed Method

Our proposed HERDT method builds on some of the aforementioned related
works and consists of two main parts:

– Warm-up stage: before starting to train the robotic agent, as in [22] we opti-
mize binary DTs with GE while using Q-learning to learn the state-action
value of the grid environment constructed starting from the robot environ-
ment, see Fig. 1. The first environment is a discrete representation of the
latter, including the initial position and target position.

– Training stage: during this stage, the current state of the robot is provided to
the DTs in each episode, and the next curriculum goals are sampled accord-
ingly. Since the DTs produce discrete values, we refine these generated cur-
riculum points by adjusting them based on the Q-value of the robotic agent.
This refinement ensures that these points are appropriately calibrated, i.e.,
that they are neither overly simplistic nor excessively challenging for the
robotic agent during the learning process.

The conversion to the grid environment is motivated by two primary factors.
Firstly, evolving a DT in a continuous environment using GE would be too
computationally intensive. Secondly, employing a binary DT to generate discrete
curriculum goals is particularly suitable for grid environments.
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Fig. 1. Constructing a grid environment (right) from a robotic environment (left).

Table 1. Grammar rules used to evolve DTs. The symbol “|” indicates the option to
select from various symbols. “comp op” is a concise term for “comparison operator”,
with “lt” and “gt” representing “less than” and “greater than” operators, respectively.
“input var” indicates one of the potential inputs. It is important to emphasize that
each input variable is associated with the same set of constants.

Rule Production

dt < if >

if if < condition > then < action > else < action >

condition input var < comp op >< const >

action leaf | < if >

comp op lt|gt

const [0, 20) with step 1

3.1 Optimizing DTs

The grid environment is constructed using the same initial and target positions
as the robotic task. As mentioned earlier, some robotic tasks, such as pushing and
sliding, inherently require that robots move objects only on a flat table surface.
These can be effectively modeled using a 2D grid environment, as curriculum
points are generated only on the table. In contrast, tasks like reaching and pick-
and-place, require the robot to navigate in a 3D space and as such they can
be modeled using a 3D grid environment. We assume that we have an agent in
the grid environment that can only move forward, backward, right, and left (in
addition, up and down in the 3D case). For the grid environment, we define the
following reward function:

r(s, g)grid =

{
1 if goal is reached

−1
10 s−g||2 otherwise

(5)

where s and g are the agent state and target position, respectively. The DTs are
evolved with the grammar rules given in Table 1, as described in [22,32]. The
genotype of an individual is encoded as a fixed-length list of codons, which are
represented as integers. The genotype is then translated to the corresponding
phenotype, which is a DT. The policy at = πDT (·) encoded by the tree is exe-
cuted and the reward signals are obtained from the grid environment for each
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timestep t. Then, the average reward Rt = 1
n

∑n
t rt is used as fitness value for

GE and at the same time the Q-values of the DT’s leaves are updated using the
Q-learning approach [28]:

Q(st, at) = Q(st, at) + α
(
Rt+1 + γ max

a
Q(st+1, a) − Q(st, at)

)
. (6)

Then, the action for each leaf is selected as arg maxaQ(s, a). Each action cor-
responds to a fixed-step movement on the grid environment. These actions are
employed as curriculum goals during the robot’s training and are scaled by the Q-
value of the critic network to ensure they are appropriately challenging, without
being overly difficult for the robot. In the selection process, a parent is replaced
if its offspring has a better fitness value. The standard one-point crossover oper-
ator is used as a crossover mechanism, randomly selecting a cutting point and
generating two individuals by mixing the two sub-strings of the genotype. A
standard uniform mutation operator is utilized to randomly select a new value
from within the variable’s range of variation. This process is visually illustrated
in Fig. 2.

Fig. 2. Evolutionary process for the DTs.

Table 2. DT actions.

a = πDT Description

0 +x direction

1 −x direction

2 +y direction

3 −y direction

4 +z direction

5 −z direction

3.2 Generating Curriculum Goals

As seen, the actions generated by the DT policy in the grid environment serve as
intermediate goals for guiding the robot toward the final goal. These actions are
discrete values that describe the next step to move into the grid environment,
thus determining the curriculum points for the robot.

After optimizing the DT policies, we provide the current state of the robot,
st, to the state-to-goal mapping function φ(s), which is given to the DT policy,
which in turn outputs a discrete value between 0 and 5 (0 and 3 in 2D) as the
action. All the actions and their corresponding definitions are listed in Table 2.
Each value corresponds to the next step in the grid environment. For example,
the action 0 means that the robot should move an object to the next position
in the positive x dimension in the grid environment.

The action (i.e., the next target) of the DT policy depends on the grid size.
Specifically, if the grid size is small, then the next target will be closer to a task
location that has already been reached by the robot. However, this can lead
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to a slower optimization process for the DTs. Consequently, the robot cannot
efficiently improve its policy further as it has already explored the area around its
current position. On the other hand, if the grid size is large, then the next target
will be far from the robot’s current position. This can lead to faster optimization
of the DT, but it may not be optimal for the robot as it will not guide the robot
efficiently.

Because of these reasons, we multiply the action output from the DT policy
by a feedback value (i.e., the Q-value from the critic network) so that we can
adjust the next target position to be neither too difficult nor too easy for the
robot. An example of curriculum goals generated throughout the entire training
process is shown in Fig. 3, with colors ranging from red to blue representing the
curriculum goals across different episodes of the training.

Fig. 3. Visualization of the generated curriculum goals in the FetchPush task. The
colors (ranging from red to light blue) represent the curriculum goals across different
episodes of the training. The gray color represents the desired positions. (Color figure
online)

The overall HERDT algorithm is given, in the form of pseudo-code, in Algo-
rithm 1.

In the warm-up stage (lines 7–14), as explained in Sect. 3.1, the DT policy
generates discrete actions, such as ‘up’ or ‘down’, based on the corresponding grid
location of the given achieved goal. These actions are interpreted according to
Table 2. By integrating the action from the DT policy into the current achieved
goal, we can determine the subsequent goal for the robotic agent to pursue.
Since the DT policy outputs discrete actions, directly adding these actions to
the current achieved goal might lead to abrupt jumps from one goal to the next
one, which may be hard for the robot to achieve. To address this, we introduce a
refinement step in line 18, where κ (the curriculum goal) is multiplied by a factor
proportionate to the Q-value. The Q-value represents the expected return for the
robot when it starts from a specific state and acts according to the policy. A
higher Q-value indicates a higher expected reward for that state, suggesting that
the robot has effectively learned that particular state-action pair. As a result, in
situations where the Q-value is high, we infer that the robot has learned the state
well, and we adjust the next desired goal to be slightly farther away compared to
scenarios with lower Q-values. We can achieve this by calculating ν = κ · |c−Q′|,
where ν indicates the adjusted curriculum goal, c is a hyperparameter, and Q′

is defined as follows:
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Q′ =

⎧
⎪⎨
⎪⎩

−1 if Q < −1
0 if Q > 0
Q otherwise.

(7)

For each timestep, the current policy π of the robotic agent (the actor neu-
ral network) outputs the action at, given the current state st and the desired
goal ν (line 20), which is then executed in the robotic environment, and the
next state and reward are received (line 21). Subsequently, the experiences
(st, at, rt, st+1, ν) are collected and added to the replay buffer (line 22). If the
achieved state is regarded as a hindsight goal (HER idea), then the reward is
recalculated and added to the replay buffer (lines 23–25). A minibatch is sampled
from the replay buffer. The Q-value function and the policy π are updated using
minibatch in the loss functions Eq. (3) and Eq. (4), respectively (lines 29–30).
In the test rollout, we calculate the success rate by setting the target goal and

Algorithm 1. Hindsight Experience Replay with Decision Trees (HERDT)
1: Input: no. of iterations K, no. of epochs L, no. of episodes M , no. of timesteps T , no. of test

rollouts ntest, ε
2: Select an off-policy algorithm A � In our case A is DDPG
3: Initialize replay buffer B ← ∅
4: Sample initial state s0 and target goal g from robotic environment
5: Construct grid environment
6: Initialize DTs with the grammar rules in Table 1 and randomly assign values to leaf nodes
7: for t = 1 . . . K do � Warm-up stage
8: Encode genotype of a DT
9: Translate the genotype into a phenotype aDT = πDT (s)
10: Execute the action aDT in the grid environment
11: Obtain the next state st+1 and reward rt

12: Update Q-value in Eq. (6) and use it as fitness value for GE
13: Select individuals, apply crossover and mutation operators
14: end for
15: for epoch = 1 . . . L do � Training stage
16: for episode = 1 . . . M do
17: Sample state s and curriculum goal κ = φ(s) + πDT (φ(s))
18: ν = κ · |c − Q′| � Eq. (7)
19: for t = 1 . . . T do � Rollout episode
20: at = π(st, ν)
21: Execute the action at, obtain the next state st+1 and reward rt

22: Store transition (st, at, rt, st+1, ν) in replay buffer B
23: Sample additional goals from achieved states for replay G := S(episode)
24: for g′ ∈ G do � Hindsight goal
25: Recompute reward r′

t
26: Store transition

(
st, at, r′

t, st+1, g′) in replay buffer B
27: end for
28: end for
29: Sample a minibatch b from replay buffer B
30: Update Q and π with b to minimize Lcritic in Eq. (3) and Lactor in Eq. (4)
31: end for
32: success rate ← 0
33: for t = 1 . . . ntest do � Test rollouts
34: at = π(st, g)
35: Execute the action at, obtain a next state st+1 and reward rt

36: if ‖φ (st+1) − g‖2
2 ≤ ε then � Eq. (1)

37: success rate ← success rate + 1/ntest−rollouts

38: end if
39: end for
40: end for
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evaluating how many rollouts out of ntest successfully achieve the target goal
(lines 32–39).

4 Experimental Results

In this section, we assess the proposed HERDT approach by experimenting with
a 7-degree-of-freedom robotic arm [33] within the MuJoCo simulation environ-
ment [27]. Robotic manipulation tasks are indeed well-established benchmark
tasks for multi-goal RL [30]. In this study, four standard manipulation tasks
(FetchReach, FetchPickAndPlace, FetchPush, and FetchSlide) are selected, as
shown in Fig. 5 and the selected tasks are briefly described below:

– FetchReach: This task consists of controlling the robotic arm to move its
gripper to a target position in a 3D space (shown as a red dot in Fig. 5a).

– FetchPickAndPlace: This task consists of controlling the robotic arm to grasp
the black object with its gripper and place it at the target position in a 3D
space (shown as a red dot in Fig. 5b).

– FetchPush: This task consists of controlling the robotic arm to push the black
object with its clamped gripper to the target position in a 2D space (shown
as a red dot in Fig. 5c).

– FetchSlide: This task consists of controlling the robotic arm to make the
black object slide along the sliding table from its initial position to the target
position in a 2D space (shown as a red dot in Fig. 5d).

In the warm-up stage, we optimize the DTs using the GE algorithm. These
optimized DTs are employed to generate curriculum goals during the training
stage for the robotic tasks. For example, we illustrate an optimized DT and
its corresponding grid word environment for the FetchPush task in Fig. 4. The
mechanism behind how DTs generate curriculum goals during training-stage is
explained below: As an example, the initial and target positions are indicated
as (x = 8, y= 10) and (x = 9, y = 16) in Fig. 4, respectively. For each episode, the
initial position (x = 8, y = 10) is given to the DT, and node 0 checks whether x
is lower than 9 or not. In our case, x= 8, so it is lower than 9, then the DT goes
to node 1. This node checks if y is greater than 11 (in our case, it is not), and
then it selects node 4, which checks y. Since y in our case is lower than 13, the
DT selects node 7, which again checks y. In our case y is greater than 7, then
node 9 is selected, which outputs action 0, i.e., movement in the +x direction.
So, our next curriculum goal will be in (x = 9, y = 10). If this position is given to
the DT, then node 0 will check again x. In this case, x is not lower than 9. Then,
the DT selects node 2, which outputs action 2, corresponding to movement in
the +y direction. Our next curriculum goal will be in (x = 9, y = 11) and after
that position, the DT will always select action 0, which results in arriving at the
target position after 6 iterations. The other action (2) is the movement in the
−y direction as specified in Table 2.

After every epoch, the performance is evaluated by running 100 deterministic
test rollouts. Then, the success rate of the tests is calculated by averaging the
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results, as detailed between lines 32 and 39. In the selected tasks, the state vector
incorporates multiple components, including the target position and the current
position, orientation, linear velocity, and angular velocity of both the end-effector
and the object. The goal represents the desired position for an object. If an object
reaches the target within a threshold distance, as defined in Eq. (1), then the
task is considered successfully completed and the agent obtains a 0 reward value.
If the object falls outside the defined range of the goal, the agent is penalized
with a negative reward of −1. We test the proposed approach with 10 different
seeds for all the experimental settings.

Fig. 4. An example DT generated for the FetchPush task (left) and its convergence
graph (right).

Fig. 5. Overview of the robotic manipulation benchmark tasks.

The trend of the test success rate, shown for all environments in Fig. 6, clearly
shows the impact of generating curriculum goals on the success rate. From the
figures, it can be evidently inferred that HERDT outperforms HER (in terms
of success rate and convergence) across all the considered robotic manipulation
environments, except for the FetchSlide. It should be noted in fact that, for the
FetchSlide task, HERDT converges faster and has a lower standard deviation
than HER. However, the success rate of HER becomes slightly better than our
method in the final episodes of the FetchSlide task. HERDT converges to the
near-optimal policy after 5, 75, 35, and 50 epochs, while HER requires 6, 400,
65 and 300 epochs to converge for FetchReach, FetchPickAndPlace, FetchPush,
and FetchSlide, respectively.
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Fig. 6. Test success rate for the tasks. The mean success rate (line) and inter-quartile
range (shaded area) are shown for 10 random seeds.

This can be attributed to the fact that our approach, HERDT, employs a
DT that generates curriculum goals, guiding the agent step by step from its
initial position to the target goal. In other words, generating curriculum goals
decomposes the task into simpler sub-tasks. In contrast, HER directly instructs
the robot to reach the target goal without providing any curriculum goals.

4.1 Ablation Studies

Experiments with Curriculum Goals. As discussed earlier, in our method
the DT policy takes the achieved goals as input by converting the state st using
the state-to-goal mapping function φ(st). In the first ablation study, we then
aim to answer the following question: What if we recursively feed the generated
goal gt into the DT policy back again, such that gt+1 = gt +πDT (gt), and repeat
this process n times such that gt+n = 1

n

∑n
i=1 gi? How would this affect the

performance of the agent, compared to generating the curriculum goal gt and
using it as the next desired goal during the next episode?

The idea behind this experiment is that we can generate the next curriculum
goals gt+1 given the previous curriculum goal gt, recursively. Such curriculum
goals represent positions in a 3D space. We can repeat this process n times and
obtain different future curriculum goals gt+1, gt+2, . . . , gn. However, these goals
might be very far away from gt, making the task excessively challenging for the
robot. Additionally, some generated goals might lie outside the designated task
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environment. To mitigate this issue, we scale the recursively generated curricu-
lum goals by multiplying their sum by 1/n, where n is the number of curriculum
goals.

Figure 7 illustrates the impact of the parameter n on the success rate. It can
be inferred that when n = 1, the performance dwindles in the FetchPickAnd-
Place, FetchPush, and FetchSlide tasks. This is because curriculum goals app-
roach the desired goals slowly and may not cover the entire distribution of sam-
pled desired goals within the given number of training epochs. On the other hand,
as n increases, the curriculum goals approach the desired goals more quickly. Yet,
these curriculum goals might be too challenging for the robot to achieve, result-
ing in a lower success rate at the beginning of the training in all tasks except
for the FetchPush task, where the parameter n does not significantly affect the
outcomes.

Fig. 7. Through this ablation study, we analyze the impact of recursively generated
curriculum goals on the success rate of robotic manipulation tasks. The mean success
rate (line) and inter-quartile range (shaded) are shown for 10 random seeds.

Experiments Without Feedback from Q-Value. In the second ablation
study, we aim to answer the following question: How does the feedback from the
Q-value (from the critic network) affect the success rate?

As discussed earlier, after optimizing the binary DTs, we modify the cur-
riculum goals generated during the training process by multiplying them by the
Q-value. This adjustment is made to ensure that their positions are optimized
accordingly, making them neither too challenging nor too easy for the robot to
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Fig. 8. Through this ablation study, we analyze the impact of the feedback on the
success rate for the robot manipulation tasks. The average success rate (line) and
inter-quartile range (shaded) are shown for 10 random seeds.

reach. Figure 8 depicts the impact of feedback on the success rate in benchmark
tasks. Based on the simulation results, it becomes evident that the feedback
value plays a crucial role in enhancing learning performance and fine-tuning the
generated curriculum points to align with the robot’s ongoing learning policy.

5 Conclusion

In this study, we introduced a novel curriculum learning RL method, HERDT,
which leverages binary Decision Trees (DTs) to generate curriculum goals for
the robotic agent. Prior to training the robotic agent, a warm-up phase is per-
formed, during which DTs are optimized using the Grammatical Evolution (GE)
algorithm. In the training stage, the optimized DTs generate curriculum goals
to guide the agent toward the target goal. Since DTs output discrete values,
we further refine these curriculum points based on feedback from the robotic
agent. This fine-tuning helps the robotic agent find the right balance in the dif-
ficulty of the generated curriculum points. As a limitation, our method, which
adds an additional DT-based curriculum generation to HER, obviously takes a
longer time to compute than the original HER. However, as seen in our experi-
ments, HERDT is more sample-efficient than HER. Another notable constraint
of our implementation is that the DTs only accepts integer numbers. To address
this limitation, we multiply floating-point numbers (position parameters) by a
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hyper-parameter and then truncate the fractional part. However, this truncation
process reduces the algorithm’s accuracy, as it treats positions with different frac-
tional parts as the same position. To address this limitation and as part of future
work, we will explore the use of multi-branch DTs as well as regression trees to
handle continuous positions.
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Abstract. Inspired by biological evolution’s ability to produce complex
and intelligent beings, neuroevolution utilizes evolutionary algorithms for
optimizing the connection weights and structure of artificial neural net-
works. With evolutionary algorithms often failing to produce the same
level of diversity as biological evolution, explicitly encouraging diversity
with additional optimization objectives has emerged as a successful app-
roach. However, there is a lack of knowledge regarding the performance
of different types of diversity objectives on problems with different char-
acteristics. In this paper, we perform a systematic comparison between
objectives related to structural diversity, behavioral diversity, and our
newly proposed representational diversity. We explore these objectives’
effects on problems with different levels of modularity, regularity, decep-
tiveness and discreteness and find clear relationships between problem
characteristics and the effect of different diversity objectives – suggesting
that there is much to be gained from adapting diversity objectives to the
specific problem being solved.

Keywords: Neuroevolution · Diversity · Evolutionary Algorithm ·
Neural Networks

1 Introduction

Traditionally, artificial neural networks are trained using gradient-based learn-
ing through a combination of backpropagation and stochastic gradient descent
[13]. An alternative to gradient-based learning, partly inspired by the ability of
biological evolution to produce the complexity that is natural brains in animals
and humans, is neuroevolution (NE). Neuroevolution harnesses the capabilities of
an evolutionary algorithm to optimize the hyperparameters, but also the topol-
ogy and activation function of neural networks, which are capabilities typically
unavailable to gradient-based approaches [26]. Additionally, instead of optimiz-
ing a single neural network, neuroevolution employs and maintains a population
of neural networks, enabling extreme exploration and parallelization of solutions.

Evolutionary algorithms attempt to emulate the diversity of complex organ-
isms produced by biological evolution but are typically far from achieving the

Source code: https://github.com/dreilstad/Neuroevolution.
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Fig. 1. The mapping between genotype-, phenotype-, and behavior space, including
our proposed representation space. The mappings (i.e. grey lines) are non-injective.
Thus, different genotypes can correspond to the same phenotype, structurally different
neural networks can produce identical behavior, and unique neural networks producing
different behaviors can learn the same representation. Figure adapted from [23]. (Color
figure online).

same level of diversity that we see in nature. This lack of diversity often results
in sub-optimal solutions as the population has converged to a local optimum. A
way to explicitly increase diversity in evolutionary algorithms while maintaining
good performance is to use a multi-objective evolutionary algorithm to simulta-
neously optimize solutions according to a performance objective and a diversity
objective.

Using an additional diversity objective has demonstrated the ability to
discover novel solutions and ultimately lead to better performance more effi-
ciently [26]. A common type of diversity objective is behavioral diversity, which
encourages different behaviors [20,23]. Genetic diversity objectives can be used
to encourage genetically different solutions [9,28], whereas structural diversity
objectives encourages structurally different solutions [1,6,9] (Fig. 1).

Encouraging diversity in neuroevolution with diversity objectives has demon-
strated impressive results. Still, there is a lack of knowledge regarding the rela-
tionship between the type of diversity objective and the characteristics of the
problem. For instance, is there a type of diversity objective that is more effec-
tive for problems with certain characteristics? Behavioral diversity objectives can
be quite effective but are limited by usually being domain-dependent and hav-
ing to be adapted to each problem. In contrast, structural diversity objectives
are domain-independent but can be expensive to compute. A research gap in
diversity-driven neuroevolution is combining the advantages of both behavioral
and structural diversity into a new type of diversity.

Our main contributions are 1) A systematic evaluation of the effects of dif-
ferent types of diversity objectives on problems with different characteristics,
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revealing relationships between the performance of diversity objectives and task
characteristics, and 2) Introducing a new objective called representational diver-
sity that is designed to encourage a diversity of learned neural network repre-
sentations (Fig. 1).

2 Related Work

2.1 Diversity-Driven Neuroevolution

One of the most remarkable feats of biological evolution is the ability to produce
a diversity of complex organisms that are all high-performing in their niche. The
biological diversity seen in nature today is the result of an evolutionary process
that is millions of years in the making. In recent years, research on neuroevolution
(and evolutionary computing in general) has focused more and more on diversity
[26]. Population-based evolutionary algorithms should, in theory, create diversity
by themselves through evolutionary operators. In practice, they often converge
too early and lack the diversity needed to avoid local optima.

Explicitly encouraging diversity will drive exploration and avoid early conver-
gence to local optima. Novelty Search [15] does this by rewarding novel behaviors
instead of performance, which was seen to be effective in deceptive domains. The
success of Novelty Search has inspired research into Quality-Diversity optimiza-
tion methods [16,21], where the goal is to generate a collection of diverse yet
high-performing solutions rather than a single solution.

2.2 Diversity Objectives in Neuroevolution

Another successful approach has been to employ a multi-objective evolutionary
algorithm (MOEA) with both a performance objective and an additional diver-
sity objective (i.e. multiobjectivization [20]). The effect of encouraging diversity
will depend on the space in which one tries to encourage diversity. As illustrated
in Fig. 1, diversity in one space does not guarantee diversity in the others, due
to the non-injective mapping between them.

Behavioral Diversity. Encouraging behavioral diversity alone or in addition
to performance has been successfully applied to a variety of tasks [15,20,22,23].
To encourage behavioral diversity, one first needs to specify a way to measure
the behavioral distance between two individuals. Commonly used distances are
divided into two categories: (1) domain-dependent ad hoc distances, and (2)
domain-independent generic distances.

Ad hoc behavioral distances, by being designed for each domain, are often
quite effective compared to generic behavioral distances [23], but defining the
behavioral distance can be difficult when applied to complex real-world prob-
lems. Generic behavioral distances can be applied directly across domains with
minimal adjustments (e.g. using the Hamming distance on input-output history
vectors of networks [23]). This generality can be less informative and lead to
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a performance trade-off, but generic distances can perform on par with ad hoc
distances on certain problems [5]. In a comparison of multiple generic behavioral
distances, the Hamming distance was found to perform well, with a relatively
low computational cost [7].

Structural Diversity. A more problem-independent alternative to behavioral
diversity is to encourage structurally different individuals with structural diver-
sity. However, computing the distance between two neural networks (i.e. graphs)
is an NP-hard problem, making a complete one-to-one connectivity distance met-
ric not feasible due to the algorithmic complexity involved [22]. One solution is
to use approximate structural distance metrics, which are less computationally
expensive at the cost of accuracy.

Recent research suggests benefits to encouraging certain structural proper-
ties inspired by biology instead. Inspired by the adaptability, flexibility, and
robustness of natural brains, it is believed that the structure of a neural net-
work should express traits such as modularity, regularity, and hierarchy in order
to exhibit the same behavioral complexity as humans and animals [27]. As a
result, encouraging modularity [1,9] in the neural network structure has been
shown to improve the performance. Encouraging modularity diversity [6] (that
is, a diverse set of modular neural network decompositions in the population)
has also been suggested as a way to diversify the population at an abstraction
level above individual connections.

Representational Diversity. As described above, there are advantages and
limitations to behavioral and structural diversity objectives. Therefore, we
explore a new type of diversity called representational diversity which attempts
to encompass both the structure and behavior of neural networks, including the
generality of structural diversity and the effectiveness of behavioral diversity.

Inspired by work in neuroscience, researchers proposed using similarity met-
rics such as centered kernel alignment (CKA) and canonical correlation analysis
(CCA) for measuring the similarities between learned representations of deep
neural networks using neuron activations [11]. The purpose was to study the
similarity between the learned representations of two neural networks that were
initialized differently, and the proposed similarity index was found to reliably
identify correspondences between learned representations.

In neuroevolution, encouraging a diversity of neural network representations
has not been extensively explored except in the Creative Thinking Approach
(CTA) [18] by using the neuron activations of hidden layers to characterize the
neural network representation. An important difference between CTA and our
approach is that the neuron activation values are not binarized and a more infor-
mative distance measure is used (e.g. an activation of 0.51 and 1.0 is interpreted
the same with CTA when binarizing and using the Hamming distance).
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2.3 Problem Characteristics of Interest

A number of interesting problem characteristics are studied to determine which
diversity objectives are more suitable for different problems. The following char-
acteristics have previously been studied individually and have been shown to
significantly impact the evolutionary search.

Modularity. Modularity is understood to be the degree to which the problem
structure can be decomposed into independent sub-tasks and the potential for a
modular neural network structure to evolve. Modularity been studied extensively
in neuroevolution [1,6,10], and is an important organizing principle in biological
neural networks of human and animal brains [19] and a key driver of evolvability
– the ability to rapidly adapt to novel environments [1].

Regularity. Regularity is expressed if there is a repeating or oscillatory nature
to the problem and its structure. Examples of problems exhibiting regularity are
problems where solving a repeating sub-task is required, a sequence of different
sub-tasks is required to be solved, or discovering an oscillatory pattern is useful
for solving the task. Discovering oscillatory patterns is an important aspect of
robot locomotion tasks that are often targeted in neuroevolution (e.g. [6,15,17]).

Deceptiveness. Deceptiveness as a problem characteristic has been the subject
of several studies on evolutionary algorithms (EAs), especially with a focus on
diversity maintenance techniques [12,15,17]. The deceptiveness of a problem is
often linked to the objective function and is the degree to which the problem con-
tains obvious sub-optimal solutions (i.e. local optima) that are easily converged
to and normally hard to avoid.

Environment Representation. Environment representation as a character-
istic is understood to be whether the problem structure and representation is
discrete or continuous. Defining an appropriate representation of a problem is
an important aspect of evolutionary computation (and optimization in general)
that can greatly affect performance. Different studies may use vastly different
representations for the same problem, which changes the problem difficulty and
with it the reported performance of evolutionary algorithms [25].

3 Targeted Problems

For the comparison of diversity objectives, the following problems are targeted:
The Retina problem, The Tartarus problem, Maze navigation, and Robot loco-
motion. The main reasons for choosing the targeted problems are: 1) They have
previously been used in related research to study diversity-driven neuroevolution;
2) They are easy to set up and reproduce from scratch or with existing simula-
tor frameworks available for a few of the problems; and 3) They have distinct
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characteristics, thus giving more valuable insight into the relationship between
the type of problem and the effectiveness of the diversity objectives. Only a brief
description of each problem is presented due to space constraints. The targeted
problems are described in more detail in [24], including implementation details.

To measure generic behavioral diversity, we follow previous work in applying
the Hamming distance on the binarized input-output history of networks [6,23].
The ad hoc behavioral diversity of individuals is defined as the distance to its
k-nearest neighbors of an archive of previously novel individuals, as in [15] –
where this distance is a problem-dependent measurement, described below for
each problem.

3.1 The Retina Problem

The Retina problem is a pattern-recognition problem (see Fig. 2). The problem
has been used in several previous studies focused on the evolution of modu-
lar structures in neural networks. In particular, to study if modular structures
appear in neural networks when applied to modular problems [1,10] and to study
structural diversity objectives in neuroevolution [6,9].

Fig. 2. The 3× 3 Retina problem, a classification problem which can benefit from
neural networks with modular structure.

Early testing of the original Retina problem with 2× 2 patterns as used in
[1,6], indicated similar performance across treatments and was not informative.
Therefore, a harder version of the Retina problem with larger and more target
patterns is implemented (see Fig. 2). For the problem-specific ad hoc behavioral
distance, we apply the euclidean distance between the outputs of two neural
networks for a set of user-defined test patterns as follows:

dad-hoc(x, y) = ‖βx − βy‖ (1)

where the behavior vector βx of individual x consists of the set of raw output o
of the neural network for k test patterns.

βx = {o(1), . . . , o(k)} (2)



Cultivating Diversity 25

Fig. 3. In the Tartarus problem, the task is for an agent (black) to move blocks (brown)
to the edge of the environment within 80 moves. The agent and the blocks are initialized
randomly away from the edge (gray). 1 point is awarded for blocks at edges and 2 points
for blocks in corners. Figures adapted from [8]. (Color figure online).

3.2 The Tartarus Problem

The Tartarus problem [2,7,8] is a grid-based optimization problem. The goal
of the agent is to move blocks to the edges and corners of the environment (see
Fig. 3). The setup for the Tartarus problem follows the setup in [7]. In addition,
there exists an explicitly deceptive version of the Tartarus problem used in [2].
In the Deceptive-Tartarus problem, blocks in the corners are still awarded 2
points but blocks at the edges are awarded −1 point.

The ad hoc behavioral distance, first described in [2], rewards individuals for
solving board configurations differently from others. The distance between indi-
viduals x and y is defined as the Manhattan distance between the corresponding
blocks in the two sets of final board configurations:

dad-hoc(x, y) = Manhattan(βx(i), βy(i)) (3)

where the behavior vector βx of individual x contains the final positions p(c) of
corresponding blocks for all k board configurations:

p(c) = {(x1, y1) , . . . , (x6, y6)} (4)

βx =
{

p(c), c ∈ [1, k]
}

(5)

3.3 Deceptive Maze Navigation Problem

A deceptive Maze Navigation problem was used to demonstrate the efficiency of
Novelty Search [15] and has since been used in various other studies [14,17,20,
23]. The task is for a mobile robot to navigate a maze domain from a starting
point and find the goal within a fixed time limit using sensor inputs (see Fig. 4).

The maze domains are designed to be deceptive to a reasonable fitness func-
tion and contain multiple dead-ends (i.e. local optima) that prevent a direct
route to the goal and require the robot to navigate the environment properly.

The setup of the maze domains, mobile robot, and ad hoc behavioral distance
follows the setup in [15]. The ad hoc behavioral distance between two individuals,
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Fig. 4. The mobile robot in (a), equipped with a 4-pie slice goal radar (blue) and 3
range sensors (red), is tasked with navigating the mazes in (b) and (c) from a starting
position (blue circle) and find the goal (red star). Maze domains are from [15]. (Color
figure online)

first described in [15] for Novelty Search, is defined as the euclidean distance
between their end locations px and py in the maze at the end of simulation:

dad-hoc(x, y) = ‖px − py‖ (6)

3.4 Robot Locomotion Problem

The Robot Locomotion problem is, as the name implies, a locomotion problem
where a robot has to transport itself from one location to another. This type of
problem has previously been targeted in neuroevolution studies [6,9,15,17] with
various robot configurations (e.g. bipedal robot or hexapod). A Bipedal-Walker
is simulated (see Fig. 5), where the objective is to reach the end of the environ-
ment within a set time limit without falling. The task is difficult because the
neural network must learn a gait that is efficient and fast enough to reach the
end within the time limit. Learning such a gait requires coordination of the two
legs, balancing the hull, and discovering an oscillatory pattern [15].

Fig. 5. Simulated bipedal walker for the Robot locomotion problem. Its goal is to reach
the end of the environment (not pictured) within a time limit.

The ad hoc behavioral distance previously defined in [15,17] is used in this
work. The offset of the bipedal robot’s center of mass is sampled during the
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simulation and concatenated in a behavior vector βi to define its behavior:

βi = {(x′
1, y

′
1, . . . , x

′
m, y′

m)} (7)

where (x′
k, y

′
k) is the offset of the center of gravity at the kth sample during the

simulation of m samples. The ad hoc behavioral distance between two individu-
als, x and y, is the euclidean distance between behavior vectors:

dad-hoc(x, y) = ‖βx − βy‖ (8)

This way of measuring novel behaviors rewards individuals with unique gaits.

3.5 Characterizing the Targeted Problems

A systematic characterization of commonly targeted problems is lacking in pre-
vious work. This work attempts to characterize the targeted problems with the
purpose of potentially gaining more valuable insight into the various diversity
objectives: Are some diversity objectives more suitable for problems with certain
characteristics? A summary is given in Table 1, where the targeted problems are
classified according to which degree it expresses the characteristics introduced
in Sect. 2.3. It should be noted that the characterization performed in this work
is subjective.

Table 1. Characterization of the targeted problems.

Targeted problem Modularity Regularity Deceptiveness Environment

None Partially A lot None Partially A lot None Partially A lot Discrete Continuous

Retina (2x2 and 3x3) � � � �
Tartarus � � � �
Deceptive-Tartarus � � � �
Medium-Maze � � � �
Hard-Maze � � � �
Bipedal-Walker � � � �

4 Comparison of Diversity Objectives

4.1 Neuroevolution Setup

Neural Network Encoding. A graph-based direct neural network encoding is
used to represent and evolve neural networks. The encoding is a simplified version
of the NEAT encoding, where neural networks are represented as a list of nodes
and a list of edges with weight and bias values. This simple and lightweight
encoding has been employed in many previous studies (e.g. [5,6,20,22,23]).
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Evolving Neural Networks. Neural networks are initialized as fully con-
nected with no hidden neurons (i.e. every input neuron is connected to every
output neuron), with randomly sampled weights and biases. Following previous
studies (e.g. [6,20,23]), only mutations are employed to evolve networks with no
crossover. Two types of mutations are implemented: (1) Structural mutation –
(add/remove neuron, add/remove connection), and (2) Parametric mutation –
(weight/bias mutation). As in previous neuroevolution studies [6,23], the poly-
nomial mutation [4] scheme is used in this work for parametric mutation.

Multi–objective Evolutionary Algorithm. Non-dominated Sorting Genetic
Algorithm–II (NSGA–II) is used as the evolutionary algorithm for optimizing
multiple objectives. The NSGA–II algorithm is well-established and has pre-
viously been used in various neuroevolution studies, such as [5,6,17,20,23] to
name a few. In the case of a single objective, NSGA–II is equivalent to an elitist
evolutionary algorithm with tournament-based selection [3].

4.2 Introducing Representational Diversity for Neuroevolution

Fig. 6. (a) The learned representation of a neural network is characterized by a matrix
of the neuron activations of pi neurons for n samples (or simulation steps). n for two
individuals can be different if either solves the task before the other. (b) To perform
matrix multiplication when computing representation similarity (CKA or CCA), either
the number of samples or neurons has to be equal. To allow for neural networks to evolve
different topologies with different numbers of neurons, only the corresponding samples
of the representation matrix with the smallest number of samples are considered when
computing the similarity.

With representational diversity measures (Sect. 2.2), we aim to capture differ-
ences in how neural networks represent their input – by looking at their activation
patterns (Fig. 6). The similarity metrics centered kernel alignment (CKA) and



Cultivating Diversity 29

canonical correlation analysis (CCA) [11] can be applied to measure the similar-
ity between learned representations of two individuals using the representation
matrix (see Fig. 6a). Originally, these metrics were used on neural networks with
identical topologies. Using neuroevolution in this work, the metrics are adapted
to evolved neural networks with different topologies (see Fig. 6b). In short, the
similarity metrics are adapted to allow neural networks to be evolved with a
different number of neurons but only an equal number of samples are considered
when computing the similarity between representations.

4.3 Treatments, Parameter Settings, and Statistical Testing

A comparison of diversity objectives is performed on four targeted problems. In
total, seven experimental treatments are applied to every problem (see Table 2).
Experimental parameters specific to each targeted problem are listed in [24]. To
ensure differences between treatments are only due to different diversity objec-
tives, the same parameters are used for treatments applied to the same problem.
Parameter setting is done by using similar values used in previous studies and
further adjusting them based on initial testing. Comprehensive parameter tuning
has not been performed due to computational constraints, time, and the large
number of possible combinations. Experiments were performed on a HPC clus-
ter1 with 128 CPUs and 512 GiB RAM. All experiments are repeated 50 times
with random seeds (i.e. different stochastic events). All statistical significance
testing of results presented in Sect. 5 apply the Mann-Whitney U test.

Table 2. Summary of all experimental treatments and their abbreviations.

Abbreviation Objectives Treatment

PA Performance Alone Maximize F (x)

Novelty Performance + Novelty Maximize

{
F (x)

D(x) = 1
k

∑k
i=1 dad-hoc(x, µi)

Hamming Performance + Hamming distance Maximize

{
F (x)

D(x) = 1
|P |

∑
j∈P dham(x, j)

Mod Performance + Modularity (Q-score) Maximize

{
F (x)

D(x) = Q(x)

ModDiv Performance + Modularity Diversity Maximize

{
F (x)

D(x) = 1
|P |

∑
j∈P Δdecomp(x, j)

CKA Performance + CKA Maximize

{
F (x)

D(x) = 1
|P |

∑
j∈P 1 − CKA(x, j)

CCA Performance + CCA Maximize

{
F (x)

D(x) = 1
|P |

∑
j∈P 1 −R2

CCA(x, j)

1
https://www.uio.no/english/services/it/research/hpc/fox/.

https://www.uio.no/english/services/it/research/hpc/fox/
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Fig. 7. The median best performance of all experimental treatments on the 3× 3–
Retina, Deceptive–Tartarus, Hard–Maze, and Bipedal–Walker problems with boot-
strapped 95% confidence interval for 50 runs per treatment. Only figures with the
most significant correlations are shown, but all figures can be found in [24].

5 Results

The results for the 2x2-Retina and 3x3-Retina problems show that the struc-
tural diversity treatments, Mod and ModDiv, outperform the rest (see Fig. 7a).
The results for 2x2-Retina were consistent with previous work [6], and the same
trends match closely the results for the harder 3x3-Retina introduced in this
work. Interestingly, the Mod treatment was slightly more efficient compared to
in [6]. The reason for this is likely due to setup differences where Mod potentially
benefits from no restriction on the number of layers and the number of neurons
per layer in our setup. Unexpectedly, PA performed surprisingly well unlike in
[6], which could be explained by structural diversity becoming less important to
the search when no neural network restrictions are used.

For the Tartarus problem, the Novelty and PA treatments outperformed
the rest. None of the treatments reach the maximum performance score and
converge to a score between 4.0–6.0, which is in line with previous work [7].
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However, the Hamming treatment performed slightly worse in this work. A
possible explanation is the use of a recurrent neural network architecture as a
memory element in [7] compared to only using the previous action as input.

As for the Deceptive-Tartarus problem, Novelty significantly outper-
formed the rest of the treatments (see Fig. 7b). Achieving a score of over 2.0
means that the agent is able to move more than a single box to the corners on
average for all 30 board configurations (or alternatively more than one box in
the corners but negative scores from boxes at edges) with the remaining treat-
ments converge to the local optimum of 2.0. The results for Novelty and PA
are similar to the results in previous work [2].

The results for the Medium-Maze showed Novelty significantly outperform-
ing all other treatments. The treatments ModDiv, PA, and Hamming were
all able to consistently reach the goal, albeit slower than Novelty. For the
Hard-Maze problem, Novelty is the only treatment able to reach the goal (see
Fig. 7c). The rest of the treatments all converge to the attractive local optima
near the goal with a performance score of 0.81. Only 850 of 1500 simulated
generations are shown due to no further change in performance. The results for
the Medium-Maze and Hard-Maze problems are consistent with previous work,
wherein only the Novelty treatment reliably reaches the goal [15,20].

Analyzing the results in Fig. 7d for the Bipedal-Walker problem, CCA sig-
nificantly outperformed the rest of the treatments. CKA performs on par with
PA but significantly worse than CCA. The structural and behavioral diversity
treatments all converged to approximately the same performance.

5.1 Summary of Experiments

Figure 8 shows the median best performance score for all treatments across all
targeted problems. A notable observation is that Novelty generally performs
well on deceptive problems with the exception of the Bipedal-Walker problem.
Furthermore, Mod performs well on the 2x2-Retina and 3x3-Retina problems
but performs much worse on the other targeted problems. CCA resulted in
much higher performance compared to other treatments on the Bipedal-Walker
problem. Both CKA and Hamming appear to perform poorly or at least result
in mediocre performance on all problems. Overall, the control treatment PA
performs well and is never the worst treatment.

A clear correlation between the performance of diversity objectives and the
problem characteristics was found. Ad hoc behavioral diversity was found to out-
perform all other types of diversity on deceptive problems, as domain knowledge
may be required to solve the task in contrast to domain-independent diversity
objectives. The results for Novelty are not surprising as it has been shown to
perform well on deceptive tasks in previous studies [12,15,20,23], but there was
a lack of knowledge about how other types of diversity objectives performed on
deceptive problems such as the ones targeted in this work. Structural diversity
objectives performed best on problems expressing a high degree of modularity,
consistent with the findings of [6] where structural diversity outperformed behav-
ioral diversity. Representational diversity showed promising results on a problem
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Fig. 8. Median best performance for 50 runs of treatments across all targeted problems.
The axis for each problem is scaled to show the differences between treatments if there
is one, and does not always show the maximum possible performance score.

with the characteristic of regularity, consistent with previous work indicating a
diversity of representations can be beneficial for tasks with regularities [18].

A significant performance difference between diversity objectives of the same
type was found for many of the targeted problems. (a) Of the behavioral diversity
objectives, the ad hoc behavioral diversity objective outperformed the generic
behavioral diversity objective on all targeted problems, (b) For the structural
diversity objectives, encouraging a diversity of modular decomposition of the
input neurons was more effective in the early phase of the evolutionary search
than encouraging a diversity of modular decomposition of the network as a whole
but converged earlier on certain problems, and (c) The difference in the perfor-
mance of representational diversity objectives with different similarity metrics
was significant. Results suggest that similarity metrics with invariance to invert-
ible linear transformations (i.e. CCA) are more suitable for neuroevolution (i.e.
neural networks with different topologies) than those without (i.e. CKA).

6 Conclusion

Encouraging diversity in neuroevolution with diversity objectives has seen
increased interest in recent years, and demonstrated impressive results in terms
of efficiency and performance of the evolutionary search. What is not yet clear is
the relationship between the type of diversity objective and the characteristics
of the problem, and if there is one, how to determine which types of diversity
objectives are more suitable for which problems. Additionally, a type of diversity
objective that is able to encompass both the structure and behavior of neural
networks has not been extensively explored yet.

This work has presented initial indications of a correlation between the per-
formance of different diversity objectives and the characteristics of the problem
being solved. These correlations reinforce findings of previous work and reveal
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new relationships between diversity objectives and characteristics. More specifi-
cally, (1) Behavioral diversity is important for deceptive problems, (2) Structural
diversity is effective on modular problems, and (3) Representational diversity
works well on problems with regularities. Additionally, clear differences between
diversity objectives of the same type were found (e.g. ad hoc vs generic). Fur-
thermore, representational diversity was proposed as its own diversity type with
early promising results on a robot locomotion problem.

Future work should validate the findings of this work on other problems
to see if the correlation still holds. More parameter tuning, a different network
initialization scheme, and an alternative neural network encoding or architecture
(e.g. NEAT, CPPN, RNN) should be explored. Further study of representational
diversity is needed, especially to validate that representational diversity is more
suitable for problems with a high degree of regularity. In particular, combining
the ability of CPPNs to produce complex patterns and representational diversity
could potentially be effective on problems with a high degree of regularity.
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Abstract. Animals often demonstrate a remarkable ability to adapt to
their environments during their lifetime. They do so partly due to the
evolution of morphological and neural structures. These structures cap-
ture features of environments shared between generations to bias and
speed up lifetime learning. In this work, we propose a computational
model for studying a mechanism that can enable such a process. We
adopt a computational framework based on meta reinforcement learn-
ing as a model of the interplay between evolution and development. At
the evolutionary scale, we evolve reservoirs, a family of recurrent neural
networks that differ from conventional networks in that one optimizes
not the synaptic weights, but hyperparameters controlling macro-level
properties of the resulting network architecture. At the developmental
scale, we employ these evolved reservoirs to facilitate the learning of a
behavioral policy through Reinforcement Learning (RL). Within an RL
agent, a reservoir encodes the environment state before providing it to
an action policy. We evaluate our approach on several 2D and 3D simu-
lated environments. Our results show that the evolution of reservoirs can
improve the learning of diverse challenging tasks. We study in particu-
lar three hypotheses: the use of an architecture combining reservoirs and
reinforcement learning could enable (1) solving tasks with partial observ-
ability, (2) generating oscillatory dynamics that facilitate the learning of
locomotion tasks, and (3) facilitating the generalization of learned behav-
iors to new tasks unknown during the evolution phase.

Keywords: Meta Reinforcement Learning · Reservoir Computing ·
Evolutionary Computation

1 Introduction

Animals demonstrate remarkable adaptability to their environments, a trait
honed through the evolution of their morphological and neural structures [30,46].
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They are born equipped with both hard-wired behavioral routines (e.g. breath-
ing, motor babbling) and learning capabilities for adapting based on their own
experience. The costs and benefits of evolving hard-wired behaviors vs. learning
capabilities depend on different factors, a central one being the level of unpre-
dictability of environmental conditions across generations [17,42]. Environmen-
tal challenges that are shared across many generations favor the evolution of
hard-wired behavior (e.g. breathing). On the other hand, traits whose utility
can hardly be predicted from its utility in previous generations are likely to
be learned through individual development (e.g. learning a specific language).
Some brain regions might have evolved to generically facilitate the learning
of diverse behaviors. For example, central pattern generators (CPGs) enable
limb bambling, which may facilitate locomotion, pointing and vocalizations in
humans [24]. Another example is the prefrontal cortex (PFC), a brain region
that maps inputs within a high-dimensional non-linear space from which they
can be decoded by other brain regions, acting as a reservoir for computations
[14,23].

Fig. 1. (left) A simplified view of the evolution of brain structures. The generating
parameters of neural structures are modified at an evolutionary loop. In the develop-
mental loop, agents equipped with these neural structures learn to interact with their
environment (right) Parallel to our computational approach. We propose a compu-
tational framework where an evolutionary algorithm optimizes hyperparameters that
generate neural structures called reservoirs. These reservoirs are then integrated into
RL agents that learn an action policy to maximize their reward in an environment

This prompts an intriguing question: How can neural structures, optimized
at an evolutionary scale, enhance the capabilities of agents to learn complex
tasks at a developmental scale? To address this question, we propose to model
the interplay between evolution and development as two nested adaptive loops:
neural structures are optimized through natural selection over generations (i.e.
at an evolutionary scale), while learning specific behaviors occurs during an
agent’s lifetime (i.e. at a developmental scale). Figure 1 illustrates the inter-
actions between evolutionary-scale and developmental-scale optimization. This
model agrees with recent views on evolution that emphasize the importance of
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both scales for evolving complex skills [19,20]. It is also compatible with the
biological principle of a genomic bottleneck, i.e. the fact that the information
contained in the genome of most organisms is not sufficient to fully describe
their morphology [52]. In consequence, genomes must instead encode macro-level
properties of morphological features such as synaptic connection patterns.

In line with these biological principles, we propose a novel computational app-
roach, called Evolving Reservoirs for Meta Reinforcement Learning (ER-MRL),
integrating mechanisms from Reservoir Computing (RC), Meta Reinforcement
Learning (Meta-RL) and Evolutionary Algorithms (EAs). We use RL as a model
of learning at a developmental scale [9,29]. In RL, an agent interacts with a simu-
lated environment through actions and observations, receiving rewards according
to the task at hand. The objective is to learn an action policy from experience,
mapping the observations perceived by the agent to actions in order to maxi-
mize cumulative reward over time. The policy is usually modeled as a deep neural
network which is iteratively optimized through gradient descent. We use RC as
a model of how a genome can encode macro properties of the agent’s neural
structure. In RC, the connection weights of a recurrent neural network (RNN)
are generated from a handful of hyperparameters (HPs) controlling macro-level
properties of the network related to connectivity, memory and sensitivity. Our
choice of using RC relies on its parallels with biological brain structures such as
CPGs and the PFC [15,50], as well as on the fact that its indirect encoding of a
neural network in global hyperparameters makes it compatible with the genomic
bottleneck principle mentioned above. Being a cheap and versatile computational
paradigm, RCs may have been favored by evolution [39].

We use Meta-RL to model how evolution shapes development [8,32]. Meta-
RL considers an outer loop, akin to evolution, optimizing HPs of an inner loop,
akin to development. At the evolutionary scale, we use an evolutionary algo-
rithm to optimize a genome specifying HPs of reservoirs. At a developmental
scale, an agent equipped with a generated reservoir learns an action policy to
maximize cumulative reward in a simulated environment. Thus, the objective of
the outer evolutionary loop is to optimize hyperparameters of reservoirs in order
to facilitate the learning of an action policy in the inner developmental loop.

Using this computational model, we run experiments in diverse simulated
environments, e.g. 2D environments where the agent learns how to balance a
pendulum and 3D environments where the agent learns how to control complex
morphologies. These experiments provide support to three main hypotheses for
how evolved reservoirs can affect development. First, they can facilitate solving
partially-observable tasks, where the agent lacks access to all the information
necessary to solve the task. In this case, we test the hypothesis that the recur-
rent nature of the reservoir will enable inferring the unobservable information.
Second, it can generate oscillatory dynamics useful for solving locomotion tasks.
In this case, the reservoir acts as a meta-learned CPG. Third, it can facilitate
the generalization of learned behaviors to new tasks unknown during the evolu-
tion phase, a core hypothesis in meta-learning. In our case, our expectation is
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that HPs of reservoirs evolved across different environments will capture some
abstract properties useful for adaptation.

In Sect. 2, we detail the methods underlying our proposed model, includ-
ing RL (Sect. 2.1), Meta-RL (Sect. 2.2), RC (Sect. 2.3) and EAs (Sect. 2.4). We
then explain their integration into our ER-MRL architecture (Sect. 3). Our
results, aligned with the three hypotheses, are presented in Sect. 4. Computa-
tional specifics and supplementary experiments can be found in the appendix.
The source code and videos are accessible at this link.

2 Background

Fig. 2. Our proposed architecture, called ER-MRL, integrates several ML paradigms.
We consider an RL agent learning an action policy (a), having access to a reservoir
(c). We consider two nested adaptive loops in the spirit of Meta-RL (b). Our proposed
architecture (d) consists in evolving HPs φ for the generation of reservoirs in an outer
loop. In an inner loop, the agent learns an action policy, that takes as input the neural
activation of the reservoir. The policy is trained using RL in order to maximize episodic
return. Section 2 provides the computational details of each ML paradigm.

2.1 Reinforcement Learning as a Model of Development

Reinforcement Learning (RL) involves an agent that interacts with an envi-
ronment by taking actions, receiving rewards, and learning an action policy in

https://github.com/corentinlger/ER-MRL
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order to maximize its accumulated rewards (Fig. 2a). This interaction is formal-
ized as a Markov Decision Process (MDP) [33]. An MDP is represented as a
tuple (S,A, P, p0, R), where S is the space of possible states of the environment,
A is the space of available actions to the agent, P (st+1|st, at) is the transition
function specifying how the state at time t+1 is determined by the current state
and action at time t, p0 represents the initial state distribution, and R(st, at)
defines the reward received by the agent for a specific state-action pair. At each
time step of an episode lasting T time steps, the agent observes the environ-
ment’s state st, takes an action at, and receives a reward rt. The environment
then transitions to the next step according to P (st+1|st, at). The objective of
RL is to learn a policy πθ(a|s) that maps observed states to actions in order to
maximize the cumulative discounted reward G over time, where G =

∑T
t=0 γtrt

[44]. The parameter γ < 1 discounts future rewards during decision making.
In Deep RL [21], the policy is implemented as an artificial neural network,

whose connection weights are iteratively updated as the agent interacts with
the environment. In all conducted experiments, we employ the Proximal Policy
Optimization (PPO) RL algorithm [38] (see details in Sect. 6.1).

2.2 Meta Reinforcement Learning as a Model of the Interplay
Between Evolution and Development

While RL has led to impressive applications [4,25,40], it suffers from several
limitations: the learned policy is specific to the task at hand and does not nec-
essarily generalize well to variations of the environment while requiring a large
amount of data to converge. To address these issues Meta Reinforcement Learn-
ing (Meta-RL) [3] aims at training agents that learn how to learn, i.e. agents
that can quickly adapt to new tasks or environments unknown during training.
It is based on two nested adaptive loops: an outer loop, analogous to evolu-
tion, optimizes the HPs of an inner loop, analogous to development (Fig. 2b)
[31,32]. The objective of the outer loop is to maximize the average performance
of the inner loop on a distribution of environments. Formally, a set of HPs Φ are
meta-optimized in the outer loop, with the objective of maximizing the average
performance of a population of RL agents conditioned by Φ. In this paper, we
leverage the RC framework where Φ corresponds to HPs encoding macro-level
properties of a RNN, as explained in the next subsection.

2.3 Reservoir Computing as a Model of Neural Structure
Generation

Meta-RL algorithms often directly optimize the weights of a RNN through back-
propagation in the outer loop [10,11]. While this technique has demonstrated
remarkable efficacy, it is ill-suited for addressing the research question outlined
in the introduction. This is due to its lack of biological plausibility in two main
aspects: (1) evolutionary-scale adaptation cannot rely on backpropagation mech-
anisms [43] and (2) the notion that evolution directly fine-tunes neural network
weights contradicts the genomic bottleneck principle mentioned in the introduc-
tion [52]. Instead our method evolves RNNs based on the Reservoir Computing
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(RC) paradigm. Instead of directly optimizing the neural network weights at the
evolutionary scale, it optimizes HPs encoding macro-level properties of randomly
generated recurrent networks.

The fundamental idea behind RC is to create a dynamic ‘reservoir’ of compu-
tation, where inputs are nonlinearly and recurrently recombined over time [22].
This provides a set of dynamic features from which a linear ’readout’ can be
easily trained: such training equivalent to selecting and combining interesting
features to solve the given task (Fig. 2c).

A reservoir is generated from a few HPs which play a crucial role in shaping
the efficiency of the reservoir dynamics. This includes the number of neurons in
the reservoir, the spectral radius sr (controlling the level of recurrence in the
generated network), input scaling iss (controlling the strength of the network’s
inputs), and leak rate lr (controlling how much the neurons retain past informa-
tion); we explain reservoir HPs in more details in Appendix 6.1. In this paper, we
propose to meta-optimize reservoir’s HPs Φ = (sr, iss, lr) in a Meta-RL outer
loop, using evolutionary algorithms explained in the next subsection. We will
then explain how we propose to integrate RC with RL in Sect. 3.

2.4 Evolutionary Algorithms as a Model of Evolution

Evolutionary Algorithms (EAs) draw inspiration from the fundamental princi-
ples of biological evolution [2,36], where species improve their fitness through the
selection and variation of their genomes. EAs iteratively enhance a population of
candidate parameterized solutions to a given optimization problem, iteratively
selecting those with higher fitness levels (i.e. higher performance of the solution)
and mutating their parameters for the next generation.

In our approach, we utilize the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [13] as our designated evolutionary algorithm in order to
meta-optimize HPs Φ of reservoirs. In CMA-ES, a population of HPs candidates
is sampled from a multivariate Gaussian distribution, with mean μ and covari-
ance matrix V . The fitness of each sample Φi of the population is evaluated (see
Sect. 3 for how we do it in our proposed method). The Gaussian distribution is
then updated by weighting each sample proportionally to its fitness; resulting in
a new mean and covariance matrix that are biased toward solutions with higher
fitness. This process continues iteratively until either convergence towards suffi-
ciently high fitness values of the generated HPs is achieved, or until a predefined
threshold of candidates is reached.

3 Evolving Reservoirs for Meta Reinforcement Learning
(ER-MRL)

General Approach. Our objective is to devise a computational framework to
address a fundamental question: How can neural structures adapt at an evolu-
tionary scale, enabling agents to better adapt to their environment at a develop-
mental scale? For this aim, we aim to integrate the Machine Learning paradigms
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presented above. The architecture is illustrated in Fig. 2d and the optimization
procedure in Fig. 3. We call our method ER-MRL, for “Evolving Reservoirs for
Meta Reinforcement Learning".

The ER-MRL method encompasses two nested optimization loops (as in
Meta-RL, Sect. 2.2). In the outer loop, operating at an evolutionary scale, HPs
Φ for generating a reservoir (Sect. 2.3) are optimized using an evolutionary algo-
rithm (Sect. 2.4). In the inner loop, focused on a developmental scale, a RL algo-
rithm (Sect. 2.1) learns an action policy πθ using the reservoir state as inputs. In
other words, the outer loop meta-learns HPs able to generate reservoirs resulting
in maximal averages performance on multiple inner loops. The whole process is
illustrated in Fig. 3 and detailed below.

Inner Loop. To represent the development of an agent, we consider a RL
agent (Sect. 2.1) that interacts with an environment through observation ot,
actions at and rewards rt at each time step t (Fig. 2a). In our proposed ER-
MRL method, this agent is composed of three main parts: a reservoir generated
by HPs Φ = {iss, lr, sr} (see Sect. 6.1 for more details), a feed forward action
policy network πθ and a RL algorithm. At each time step, we feed the reservoir
with the current ot, and the previous action and reward at and rt (Fig. 2d).
Contrarily to standard RL, the policy πθ does not directly access the observation
of the environment’s state ot, but the context ct of the reservoir instead (i.e.
the vector of all reservoir’s neurons activations at time t). Because reservoirs
are recurrent neural networks, ct not only encompasses information about the
current time step, but also integrates information over previous time steps. In
some experiments, we also use ER-MRL with multiple reservoirs. In this case,
we still generate the reservoirs from a set of HPs Φ, and the context ct given to
the policy is the concatenation of hidden states of all reservoirs. We then train
our policy πθ(a|ct) using RL.

Outer Loop. The outer loop employs the Covariance Matrix Adaptation Evolu-
tionary Strategy (CMA-ES) (Sect. 2.4) to optimize reservoir HPs Φ. The objec-
tive is to generate reservoirs which, on average over multiple agents, improve
learning abilities. For each set of HPs, we assess the performance of our agents
in multiple inner loops (we utilize 3 in our experiments), each one with a dif-
ferent random seed. Using different random seeds implies that, while using the
same HPs set, each agent will be initialized with different connection weights of
both their reservoirs, their policies and the initial environment state. Note that
while the generated reservoirs have different connection weights, they share the
same macro-properties in terms of spectral radius sr, input scaling iss and leak
rate lr (since they are generated from the same HPs set). In assessing an agent’s
fitness within its RL environment, we compute the mean episodic reward over
the final 10 episodes of its training. To obtain the fitness of a reservoir HPs,
we calculate the mean fitness of three agents across three different versions of
the same environment. These steps are iterated until we reach a predetermined
threshold of CMA-ES iterations (set at 900 in our experiments).
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Fig. 3. In the evolution phase (top), CMA-ES refines Reservoir HPs Φ. At each gen-
eration i of the evolution loop (left), a population Φi : {Φ1

i , . . . , Φ
n
i } of HPs is sampled

from the CMA-ES Gaussian distribution. Each Φj
i undergoes evaluation on multiple

random seeds, generating multiple reservoirs. An ER-MRL agent is created for each
reservoir, with its action policy being trained from the states of that reservoir (lighter
grey frames). The fitness of a sampled Φj

i is determined by the average score of all
ER-MRL agents generated from it (mid-grey frames). The fitness values are used to
update the CMA-ES distribution for the next generation (dotted arrow). This process
iterates until a predetermined threshold is reached. In the Testing phase (bottom),
the best set of HPs Φ∗ from all CMA-ES samples is employed. Multiple reservoirs are
generated within ER-MRL agents, and their performance is evaluated.

Evaluation. To evaluate our method, we select the HPs Φ∗ that generated the
best fitness function during the whole outer loop optimization with CMA-ES (see
bottom of Fig. 3). We then generate 10 ER-MRL agents with different random
seeds (with a different reservoir sampled from Φ∗ for each seed, together with
random initial policy weights θ) and train the action policy πθ of each agent
using RL. We report our results in the next section, comparing the performance
of these agents against vanilla RL agents using a feedfoward policy.
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4 Results

We designed experiments to study the following hypotheses: The ER-MRL archi-
tecture combining reservoirs and RL could enable (1) solving tasks with partial
observability, (2) generating oscillatory dynamics that facilitate the learning of
locomotion tasks, and (3) facilitating the generalization of learned behaviors to
new tasks unseen during evolution phase.

4.1 Evolved Reservoirs Improve Learning in Highly Partially
Observable Environments

In this section, we evaluate our approach on tasks with partial observability,
where we purposefully remove information from the agent observations. Our
hypothesis is that the evolved reservoir can help reconstructing this missing
information. Partial observability is an important challenge in the field of RL,
where agents have access to only a limited portion of environmental information
to make decisions. This is referred to as a Partially Observable Markov Decision
Process (POMDP) [26] rather than a traditional MDP. In this context, the task
becomes harder to learn, or even impossible, as the agent needs to make decisions
based on an incomplete observation of the environment state. To explore this
issue, our experimental framework is based on control environments, such as
CartPole, Pendulum, and LunarLander (see details in Fig. 9 of the appendix).
We modify these environments by removing velocity-related observations, thus
simulating a partially-observable task.

Let’s illustrate this issue with the first environment (CartPole), where the
agent’s goal is to keep the pole upright on the cart while it moves laterally. If
we remove velocity-related observations (both for the cart and the pole’s angle),
a standard feedfoward RL agent cannot effectively solve the task. The reason
is straightforward: without this information, the agent doesn’t know the cart’s
movement direction or whether the pole is falling or rising. We apply the same
process to the other two environments, removing all velocity-related observa-
tions for our agents. Can the ER-MRL architecture address this challenge? To
find out, we independently evolve reservoirs using ER-MRL for each task. We
search for effective HPs tailored to the partial observability of each environment.
To evaluate our approach, we compare the learning curves of ER-MRL agents
(from the test phase, see bottom of Fig. 3) on these three partially observable
environments against an agent with a feedforward policy.

Figure 4 presents the results for the three selected partially observable tasks.
We observe, as expected, that vanilla RL agents cannot learn how to solve the
task under partial observability (for the reasons mentioned above). In compari-
son, our approach leads to performance scores close to those obtained by a RL
algorithm with full observability. This indicates that the evolved reservoir is able
to reconstruct missing information related to velocities from its own internal
recurrent dynamics. This confirms the hypothesis that an agent with a reser-
voir can solve partially observable tasks by using the internal reservoir state to
reconstruct missing information. We explain with more details why this method
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Fig. 4. Learning curves for partially observable tasks. The x-axis represents the num-
ber of timesteps during the training and the y-axis the mean episodic reward. Learning
curves of our ER-MRL methods correspond to the testing phase described in the bot-
tom of Fig. 3. Vanilla RL corresponds to a feedforward policy RL agent. The curves
and the shaded areas represent the mean and the standard deviation of the reward for
10 random seeds. See Sect. 6.3 for a comparison with another method.

could work in Sect. 6.3 of the appendix. The difference in results between the
model with 2 reservoirs on LunarLander environment suggests that solving it
requires encoding at least two different timescales dynamics. Our interpretation
here is that solving LunarLander requires to deal with both an “approaching"
and “landing" phase, unlike the two other environments.

4.2 Evolved Reservoirs Could Generate Oscillatory Dynamics
that Facilitate the Learning of Locomotion Tasks

In this section, we evaluate our approach on agents with 3D morphology having
to learn locomotion tasks shown in Fig. 10. We postulate that the integration of
an evolved reservoir can engender oscillatory patterns that aid in coordinating
body movements, akin to Central Pattern Generators (CPGs). CPGs, rooted
in neurobiology, denote an interconnected network of neurons responsible for
generating intricate and repetitive rhythmic patterns that govern movements or
behaviors [24] such as walking, swimming, or other cyclical movements. Existing
scientific literature hypothesizes that reservoirs, possessing significant rhythmic
components, share direct connections with CPGs [37]. We propose to study this
hypothesis using motor tasks involving rhythmic movements.

We employed 3D MuJoCo environments (detailed in Fig. 10 of the appendix),
where the goal is to exert forces on various rotors of creatures to propel
them forward. Notably, while the ultimate goal across these tasks remains con-
stant (forward movement), the creatures exhibit diverse morphologies, including
humanoids, insects, worms, bipeds, and more. Furthermore, the action and obser-
vation spaces vary for each morphology. We individually evaluate our ER-MRL
architecture on each of these tasks.
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Fig. 5. Learning curves for locomotion tasks. Same conventions as Fig. 4

Our approach demonstrates improved performance in some tasks (Ant,
HalfCheetah, and Swimmer) compared to a standard RL baseline, particularly
noticeable in the early stages of learning, as illustrated in Fig. 5. This suggests
that the evolved reservoir may generate beneficial oscillatory patterns, facili-
tating the learning of locomotion tasks, in line with the notion that reservoirs
could potentially function as CPGs, aiding in solving motor tasks. Although care-
fully testing this hypotheses would require more analysis, we present in Sect. 6.4
in the appendix preliminary data suggesting that the evolved reservoir is able
to generate oscillatory dynamics that could facilitate learning in the Swimmer
environment. However, as shown in Fig. 5, performance enhancement was not
observed in the Walker and Hopper environments compared to the RL baseline.
Locomotion in both environments demands precise closed-loop control strategies
to maintain an agent’s equilibrium. In such cases, generated oscillatory patterns
may not be as beneficial.

4.3 Evolved Reservoirs Improve Generalization on New Tasks
Unseen During Evolution Phase

In this section, we address a key aspect of our study: the ability of evolved reser-
voirs to facilitate adaptation to novel environments. This inquiry is crucial in
assessing the potential of evolved neural structures to generalize and enhance
an agent’s adaptability beyond the evolution phase. Building on the promis-
ing results of ER-MRL with two reservoirs in previous experiments, we focus
exclusively on this configuration for comparison with the RL baseline.

Generalizing Across Different Morphologies with Similar Tasks. In
prior experiments, ER-MRL demonstrated effectiveness in environments like
Ant, HalfCheetah, and Swimmer. This success led us to explore whether reser-
voirs evolved for two of these tasks could be adaptable to the third, indicating
potential generalization across different morphologies. However, due to variations
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in environments, including differences in morphology, observation and action
spaces, and reward functions, generalization from one set of tasks to another
presents a complex challenge. To ensure fair task representation of each envi-
ronment in the final fitness, we employ the normalization formula detailed in
Sect. 6.6. Subsequently, we select the reservoir HPs Φ∗ that yielded the highest
fitness and evaluate them in a distinct environment. For instance, if we evolve
reservoirs on Ant and HalfCheetah, we test them in the Swimmer task.

Fig. 6. Learning curves for generalization on similar locomotion tasks with different
morphologies. The curves evaluate the performance of ER-MRL on an environment that
was unseen during the evolution phase. For instance, the left plot shows performance
of an agent on Ant, using reservoirs evolved on only HalfCheetah and Swimmer.

In Fig. 6, we observed a notable improvement in the performance of ER-MRL
agents with reservoirs evolved for different tasks, particularly in HalfCheetah and
Swimmer environments. This substantiates the capacity of evolved reservoirs to
generalize to new tasks and encode diverse dynamics from environments with
distinct morphologies. However, it’s worth noting that this improvement wasn’t
replicated in the Ant task. This could be attributed to the unique characteristics
of the Ant environment, with its stable four legged structure, in contrast to the
simpler anatomies of Swimmer and HalfCheetah. For a detailed analysis, please
refer to Sect. 6.7 in the appendix.

Generalizing Across Different Tasks with Similar Morphologies. We
have seen how reservoirs facilitated ER-MRL agent’s ability to generalize across
locomotion tasks with different morphologies. Now, we shift our focus to tasks
with consistent morphologies but distinct objectives. To delve into this, we turn
to the Humanoid and HumanoidStandup environments (shown in Fig. 12 of the
appendix), both presenting tasks within the realm of humanoid movement. One
task involves learning to walk as far as possible, while the other centers around
the challenge of standing up from the ground. As in our previous study, we follow
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Fig. 7. Learning curves for generalization on different locomotion tasks with similar
morphologies. The reservoirs are evolved on one task and tested on the other one.

the procedure of evolving reservoir-generating HPs on one task and evaluating
their performance on the other.

Figure 7 provides a visual representation of our findings. While the perfor-
mance improvement may not be dramatic, it underscores the generalization capa-
bilities of reservoirs across tasks with similar morphologies but differing objec-
tives. This observation, though promising, invites further investigation, given the
limited number of experiments conducted in this context. This aspect represents
an avenue for future research.

5 Discussion

In this paper, we have addressed the compelling question of whether reservoir-
like neural structures can be evolved at an evolutionary time scale, to facilitate
the learning of agents on a multitude of sensorimotor tasks at a developmen-
tal scale. Our results demonstrate the effectiveness of employing evolutionary
algorithms to optimize these reservoirs, especially on Reinforcement Learning
tasks involving partial observability, locomotion, and generalization of evolved
reservoirs to unseen tasks.

Our ER-MRL approach has parallels to previous algorithms in RL that
employ an indirect encoding for mapping a genome to a particular neural net-
work architecture [12,28,41]. Our choice of employing reservoirs comes with the
benefit of a very small genomic size (reservoirs are parameterised by a handful
of parameters that we show in Appendix 6.1) without reducing the complexity
of the phenotype (the number of weights of the reservoir policy is independent
of the number of hyper-parameters). Moreover, our approach clearly distinguish
neural structures optimized at the evolutionary scale (the reservoirs) vs. at the
developmental scale (the RL action policy).

Nonetheless, some limitations persist within our methodology. The combina-
tion of reservoir computing and reinforcement learning remains underexplored
in the existing literature [6,7], leaving substantial room for refining the algorith-
mic framework for improved performance. Moreover, our generalization experi-
ments and quantitative analyses warrant further extensive testing to gain deeper
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insights. Notably, our approach does incur a computational cost due to the time
required to train a new policy with RL for each generated reservoir. Future
studies could devise more efficient evolutionary strategies or employ alternative
optimization techniques.

However, because our method remains agnostic to specific environment and
agent’s characteristics (a reservoir architecture being independent of the shape
of its inputs and outputs), we could in theory evolve reservoirs across a very
wide range of environments and agent’s morphologies. Such evolved generalist
reservoirs could then result in highly reduced computational cost at the develop-
mental scale, as our results suggest, compared to training recurrent architectures
from scratch.

Moving forward, there are several promising avenues for exploration. Firstly,
a more comprehensive understanding of the interaction between RL and RC
could significantly improve the performance of such methods on developmen-
tal learning tasks. Secondly, integrating our approach with more sophisticated
Meta-RL algorithms could offer a mean to initialize RL policy weights with
purposefully selected values rather than random ones. Additionally, a broader
framework allowing for the evolution of neural structures with greater flexibil-
ity, such as varying HPs and neuron counts, could yield more intricate patterns
during the evolution phase, potentially resulting in substantial improvements in
agent performance across developmental tasks [28,41].

Our research bridges the gap between evolutionary algorithms, reservoir com-
puting and meta-reinforcement learning, creating a robust framework for mod-
elling neural architecture evolution. We believe that this integrative approach
opens up exciting perspectives for future research in RC and Meta-RL to propose
new paradigms of computations. It also provides a computational framework to
study the complex interplay between evolution and development, a central issue
in modern biology [16,18,27,49].
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6 Appendix

In this appendix, we provide comprehensive insights and clarifications on the
methodologies employed in our study. Specifically, we elaborate on aspects such
as the parameters governing our experiments, including the RL (PPO), the RC
and the evolutionary (CMA-ES) algorithms we used. Furthermore, we furnish
a detailed exposition of the environments utilized in our research. Lastly, we
conduct supplementary analyses aimed at enhancing our understanding of some
observed phenomena in the obtained results. In addition, we present results from
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experiments that were not featured in the main text to offer a more comprehen-
sive view of our findings.

6.1 Methods

Proximal Policy Optimization (PPO). PPO, categorized as a policy gradi-
ent technique [45], undertakes exploration of diverse policies through stochastic
gradient ascent. This process involves assigning elevated probabilities to actions
correlated with high rewards, subsequently adjusting the policy to aim for higher
expected returns. The adoption of PPO stems from its well-established reputa-
tion as a highly efficient and stable algorithm in the scientific literature, although
its use does not have major theoretical implications for this particular project.

Reservoir Hyperparameters. In Reservoir Computing, the spectral radius
controls the trade-off between stability and chaoticity of reservoir dynamics: in
general “edge of chaos” dynamics are often desired [5]. Input scaling determines
the strength of input signals, and the leak rate governs the memory capacity of
reservoir neurons over time. These HPs specify the generation of the reservoir
weights. Once the reservoir is generated, its weights are kept fixed and only a
readout layer, mapping the states of the reservoir neurons to the desired output
of the network are learned. Other HPs exist to initialize a reservoir, but they
have not been studied in the experiments of the paper (as it has been tested
that they have much less influence on the results).

6.2 Experiment Parameters

General Parameters. In our experiments, we adapted the number of timesteps
during the training phase of our ER-MRL agent in the inner loop, based on
whether we were evolving the reservoir HPs or testing the best HPs set discov-
ered during the CMA-ES evolution. For the evolution phase, which was com-
putationally intensive, we utilized 300,000 timesteps per training. Conversely,
when evaluating our agents against standard RL agents, we employed 1,000,000
timesteps. Notably, in the case of the LunarLander environment, we extended
the testing to 3,000,000 timesteps, as the learning curve had not yet converged
at 1,000,000 timesteps.

PPO Hyperparameters. Regarding the parameters of our RL algorithm,
PPO, we used the default settings provided by the Stable Baselines3 library [35].
For tasks involving partial observability, we made a slight adjustment by setting
the learning rate to 0.0001, as opposed to the standard 0.0003. This modification
notably enhanced performance, potentially indicating that reservoirs contained
a degree of noise, warranting a lower learning rate to stabilize RL training.

CMA-ES Hyperparameters. For the parameters of our evolutionary algo-
rithm, CMA-ES, we adopted the default settings of the CMA-ES sampler from
the Optuna library [1].

https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://optuna.readthedocs.io/en/v2.10.1/reference/generated/optuna.samplers.CmaEsSampler.html
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Reservoirs Hyperparameters. For the reservoirs, we only modified the
parameters mentioned in Sect. 6.1 and the number of neurons. We consistently
used 100 neurons per reservoirs during all experiments. All the other HPs were

Fig. 8. Rotated view of Fig. 2 presenting the background methods used, and how our
ER-MRL agents incorporate them
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kept the same and are the default reservoir parameters used in ReservoirPy [48].
We conducted additional analyses and observed that they exerted a relatively
modest influence on tasks of this nature. However, a more refined analysis of the
importance of these HPs could be interesting in future works.

6.3 Partially Observable Environments

In the following section, we present the different Reinforcement Learning envi-
ronments from the Gymnasium library [47], used during our experiments on
partial observability.

Fig. 9. Partially observable environments used, The goal of CartPole (left) is to learn
how to balance the pole on the cart. The goal of Pendulum (middle) is to learn how to
maintain the pendulum straight up by applying forces on it. The goal of LunarLander
(right) is to learn how to land between the two flags by generating forces on the different
spaceship reactors.

Results Analysis. To better understand the reservoir’s capabilities on these
tasks, we conducted several tests on supervised learning problems where a
sequence of actions, rewards, and observations (without velocity) was provided
to a reservoir with a linear readout. In one case, the model had to reconstruct full
observation information (position, angle, velocity, angular velocity), and in the
other, it had to reconstruct positions and angles over several time steps (doing
this only for the last 2 time steps allows a PPO to achieve maximum reward
later on). In both cases, this model successfully solved the tasks with very high
performance. Moreover, it was also capable of predicting future observations,
which can be extremely valuable to find an optimal action policy.

Benchmark Comparison. Regarding benchmarks, our approach compares
favorably with the results reported in the blog post from Raffin [34] where he
used another model combining a RNN (LSTM [51]) with a RL algorithm (PPO,
the one we also used) on the same partially observable tasks. The performance
on each environment are pretty similar, but it is the training timesteps needed
to reach the maximum performance that varies the most between the methods.
Indeed for the LunarLander environment, our method is able to learn in less
timesteps after evolving reservoirs, but it is the contrary with CartPole and
Pendulum tasks.

It is worth noting that even if both approaches have similarities, ER-MRL
consists in optimizing the HPs of reservoirs at an evolutionary scale, whereas the

https://reservoirpy.readthedocs.io/en/latest/user_guide/hyper.html
https://wandb.ai/sb3/no-vel-envs/reports/PPO-vs-RecurrentPPO-aka-PPO-LSTM-on-environments-with-masked-velocity--VmlldzoxOTI4NjE4
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method presented in the blog post trains a recurrent architecture from scratch.
This divergence complicates direct comparisons between both methods. Indeed,
our results are derived after an extensive phase of computation in a Meta-RL
outer loop, but the subsequent evaluation with the final reservoir configuration is
comparatively swift. as only the RL policy (linear readout) requires training. In
contrast, the LSTM-PPO method does not incorporate a computationally inten-
sive meta-learning phase, but their training process takes more time per timestep
update. Indeed, each training step of the this demands more computation, due
to having to train the LSTM from scratch in addition to PPO, compared to our
method where only the linear readout is trained at the developmental scale.

However to ensure a fair and comprehensive comparison with other base-
lines, especially in tracking the time required to achieve presented results, more
experiments are necessary.

6.4 MuJoCo Forward Locomotion Environments

Fig. 10. MuJoCo environments, the goal of these tasks is to apply force to the rotors
of the creatures to make them move forward. On the top row, we have from left to
right the Ant, HalfCheetah and Swimmer environments, and on the bottom row, the
Hopper, Walker and Humanoid environments. The environment observations comprise
positional data of distinct body parts of the creatures, followed by the velocities of those
individual components, while actions entail the torques applied to the hinge joints.
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Fig. 11. Differences between the observations of a RL agent (top) with the context
of an ER-MRL agent (bottom) at the same stage of training. Each episode lasts 1000
timesteps in the environment. The curves of the RL agent represent the real observation
values from the environment, and the curves of the ER-MRL one part of the context
given to the agent’s policy: the activation values of 20 reservoir neurons (out of 100).

Results Analysis. In this section, we present how reservoirs could act as Cen-
tral Pattern Generators within agents learning a locomotion task in these 3D
environments.

It can be observed that the separation between the two models seems to
occur starting from 100,000 timesteps at the top-right of Fig. 5. Therefore, we
recorded videos of the RL and ER-MRL agents to better understand the perfor-
mance difference between the two models. Furthermore, we conducted a study
at the level of the input vector in the agent’s policy (ot for RL agent, and ct for
ER-MRL agent). As seen in Fig. 11, it is noticeable that very early in the learn-
ing process, the reservoir exhibits much more rhythmic dynamics than the sole
observation provided by the environment. This could be due to the link between
the reservoir and CPGs, potentially facilitating the acquisition and learning of
motor control in these tasks.

Expanding on this, it’s notable that CPGs, shared across various species,
have evolved to embody common structures. Drawing parallels from nature, our
investigation delves into whether generalization (results in Sect. 4.3) across a
spectrum of motor tasks may mirror the principles found in biological systems.

However, further experiments, accompanied by robust quantitative analysis,
are necessary to gain valuable insights into whether reservoirs can function as
CPG-like structures.

6.5 MuJoCo Humanoid Environments

Interesting Reservoir Results. As seen in Sect. 2.3, one of the basic principles
of RC is to project input data into a higher-dimensional space. In the case of the
Humanoid tasks, where our results are displayed in Fig. 5 and Fig. 7, the initial
observation and action space is larger (400 dimensions) compared to the context
dimension for one or two reservoirs of 100 neurons (the dimension is equal to

https://docs.google.com/presentation/d/1F-p-FKROFdIWIUj0BY-TW2k6buaJskjX8p19S61inqE/edit?usp=sharing
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Fig. 12. MuJoCo environments with humanoid morphologies. On the left figure, the
goal is to learn how to stand up, and on the right the goal is to walk forward as far as
possible

the number of neurons). This means that even by reducing the input dimension
in the RL policy network, the reservoir improves the quality of the data. For
other morphologies, the dimension of input data is inferior to the dimension our
reservoir context.

6.6 Normalized Scores for Generalization

To prevent any particular task from disproportionately influencing the fitness
score due to variations in reward scales, we use a fitness function for CMA-ES
that aggregates the normalized score, denoted as nScore, across both environ-
ments. The normalization process is defined as :

nScore =
score − randomScore

baselineScore − randomScore

Where randomScore and baselineScore represent the performances of a ran-
dom and of a standard PPO agent, respectively.

6.7 Reservoir Hyperparameters Analysis

In preceding sections, we observed how HPs play a pivotal role in enabling ER-
MRL agents to generalize across tasks. Now, we delve deeper into understanding
why some reservoirs aid in generalization for specific tasks while others do not. To
gain this insight, we constructed a hyperparameter map to visualize the regions
of HPs associated with the best fitness in each environment. We selected the
best 30 sets of HPs, comprising the spectral radius and leak rate values of the
reservoirs, out of a pool of 900 for all MuJoCo locomotion tasks (refer to Fig. 10)
and plotted them on a 2D plane.
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Fig. 13. The left figure represents parameters obtained with a single reservoir, while
the right figure corresponds to configurations with two reservoirs (depicted as either
circles or triangles).

In Fig. 13, we observe that the HPs for most environments are clustered
closely together. Conversely, those for the Ant environment form a distinct clus-
ter, characterized by notably lower leak rates. The leak rate reflects how much
information a neuron retains in the reservoir, influencing its responsiveness to
input data and connections with other neurons. A lower leak rate implies a more
extended memory, possibly instrumental in capturing long-term dynamics. This
observation aligns with the stable morphology of the Ant, potentially allowing
the agent to prioritize long-term dynamics for efficient locomotion. This would
partially explain why generalization wasn’t successful on this environment in
Sect. 4.3, when reservoirs were evolved on other types of morphologies.

7 Additional experiments

We also led other experiments that we didn’t mention in the main text. As men-
tioned above in Sect. 6.1, we consistently employed reservoirs with a size of 100
neurons to ensure a standardized basis for result comparison. This configuration
equates one reservoir to 100 neurons, two reservoirs to 200 neurons, and so forth.
We conducted additional experiments to investigate the impact of varying the
number of reservoirs and neurons within them. We observed that altering the
number of neurons within a reservoir had a limited effect. For example, reducing
the number of neurons to as low as 25 did not significantly affect performance
on the partially observable environments. Increasing the size of the reservoirs
didn’t seem to improve the performance a lot either, except for the Humanoid
environments (with a large observation space) where reservoirs equipped with a
lot of neurons (1000) performed slightly better than others. While we opted for
100 neurons per reservoir in our experiments, there is surely potential for further
optimization.

Furthermore, we explored experiments involving partially observable reser-
voirs, in which only a subset of the observation was provided to the policy. The
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results demonstrated that it is not always necessary to fully observe the con-
textual information within the reservoir to successfully accomplish tasks. On
the CartPole environment, we tested 3 type of models with a reservoir of 100
fully observable neurons (the policy has access to 100 out of the 100 neurons), a
reservoir of 1000 fully observable neurons, and another reservoir with only 100
partially observable neurons out of 1000. We observed that the model with 1000
fully observable neurons performed worse than the two other, who had similar
results.

Regarding generalization experiments, we investigated the impact of varying
the number of reservoirs. Although experiments with three reservoirs yielded
intriguing insights, such as distinct memory types characterized by leak rate
in the different reservoirs, the overall performance was notably lower compared
to configurations with two reservoirs. This observation can likely be attributed
to the increased complexity of learning due to the larger observation space,
despite the potential for richer dynamics. We also noted instances where several
reservoirs maintained very similar hyperparameters for specific tasks, potentially
indicating the importance of capturing particular dynamics.

Additionally, we considered the possibility of employing smaller reservoirs
in greater numbers. This approach could capture a diverse range of interesting
features, such as different dynamics, while keeping the total number of neurons
low. This strategy would be particularly advantageous for tasks characterized
by small observation and action spaces, but would also imply a wider space of
reservoirs HPs search in return.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631 (2019)

2. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evol. Comput. 1(1), 1–23 (1993)

3. Beck, J., et al.: A survey of meta-reinforcement learning. arXiv preprint
arXiv:2301.08028 (2023)

4. Berner, C., et al.: Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019)

5. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in
recurrent neural networks. Neural Comput. 16(7), 1413–1436 (2004)

6. Chang, H., Futagami, K.: Reinforcement learning with convolutional reservoir com-
puting. Appl. Intell. 50, 2400–2410 (2020)

7. Chang, H.H., Song, H., Yi, Y., Zhang, J., He, H., Liu, L.: Distributive dynamic
spectrum access through deep reinforcement learning: a reservoir computing-based
approach. IEEE Internet Things J. 6(2), 1938–1948 (2018)

8. Clune, J.: Ai-gas: Ai-generating algorithms, an alternate paradigm for producing
general artificial intelligence. arXiv preprint arXiv:1905.10985 (2019)

9. Doya, K.: Reinforcement learning: computational theory and biological mecha-
nisms. HFSP J. 1(1), 30 (2007)

http://arxiv.org/abs/2301.08028
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1905.10985


58 C. Léger et al.

10. Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.: Rl
squared: fast reinforcement learning via slow reinforcement learning. arXiv preprint
arXiv:1611.02779 (2016)

11. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning, pp. 1126–
1135. PMLR (2017)

12. Ha, D., Dai, A., Le, Q.V.: HyperNetworks (2016). http://arxiv.org/abs/1609.
09106. arXiv:1609.09106 [cs]

13. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint
arXiv:1604.00772 (2016)

14. Hinaut, X., Dominey, P.F.: A three-layered model of primate prefrontal cortex
encodes identity and abstract categorical structure of behavioral sequences. J.
Physiol.-Paris 105(1–3), 16–24 (2011)

15. Hinaut, X., Dominey, P.F.: Real-time parallel processing of grammatical structure
in the fronto-striatal system: a recurrent network simulation study using reservoir
computing. PLoS ONE 8(2), e52946 (2013)

16. Hougen, D.F., Shah, S.N.H.: The evolution of reinforcement learning. In: 2019
IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1457–1464.
IEEE (2019)

17. Johnston, T.D.: Selective costs and benefits in the evolution of learning. In:
Rosenblatt, J.S., Hinde, R.A., Beer, C., Busnel, M.C. (eds.) Advances in the
Study of Behavior, vol. 12, pp. 65–106. Academic Press (1982). https://doi.org/10.
1016/S0065-3454(08)60046-7. http://www.sciencedirect.com/science/article/pii/
S0065345408600467

18. Johnston, T.D.: Selective costs and benefits in the evolution of learning. In:
Advances in the Study of Behavior, vol. 12, pp. 65–106. Elsevier (1982)

19. Kauffman, S.A.: The Origins of Order: Self Organization and Selection in Evolu-
tion. Oxford University Press, Oxford (1993)

20. Laland, K.N., et al.: The extended evolutionary synthesis: its structure, assump-
tions and predictions. Proc. Royal Soc. B: Biol. Sci. 282(1813), 20151019
(2015). https://doi.org/10.1098/rspb.2015.1019. https://royalsocietypublishing.
org/doi/10.1098/rspb.2015.1019

21. Li, Y.: Deep reinforcement learning: an overview. arXiv preprint arXiv:1701.07274
(2017)

22. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

23. Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T.: Context-dependent compu-
tation by recurrent dynamics in prefrontal cortex. Nature 503(7474), 78–84 (2013)

24. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic
movements. Curr. Biol. 11(23), R986–R996 (2001)

25. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

26. Monahan, G.E.: State of the art-a survey of partially observable Markov decision
processes: theory, models, and algorithms. Manag. Sci. 28(1), 1–16 (1982)

27. Moulin-Frier, C.: The ecology of open-ended skill acquisition. Ph.D. thesis, Uni-
versité de Bordeaux (UB) (2022)

28. Najarro, E., Sudhakaran, S., Risi, S.: Towards self-assembling artificial neural net-
works through neural developmental programs. In: Artificial Life Conference Pro-
ceedings, vol. 35, p. 80. MIT Press, Cambridge (2023)

http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1604.00772
https://doi.org/10.1016/S0065-3454(08)60046-7
https://doi.org/10.1016/S0065-3454(08)60046-7
http://www.sciencedirect.com/science/article/pii/S0065345408600467
http://www.sciencedirect.com/science/article/pii/S0065345408600467
https://doi.org/10.1098/rspb.2015.1019
https://royalsocietypublishing.org/doi/10.1098/rspb.2015.1019
https://royalsocietypublishing.org/doi/10.1098/rspb.2015.1019
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1312.5602


Evolving Reservoirs for Meta Reinforcement Learning 59

29. Nussenbaum, K., Hartley, C.A.: Reinforcement learning across development: what
insights can we draw from a decade of research? Dev. Cogn. Neurosci. 40, 100733
(2019)

30. Pearson, K.: Neural adaptation in the generation of rhythmic behavior. Ann. Rev.
Physiol. 62(1), 723–753 (2000)

31. Pedersen, J., Risi, S.: Learning to act through evolution of neural diversity in
random neural networks. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 1248–1256 (2023)

32. Pedersen, J.W., Risi, S.: Evolving and merging hebbian learning rules: increasing
generalization by decreasing the number of rules. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 892–900 (2021)

33. Puterman, M.L.: Markov decision processes. Handb. Oper. Res. Manag. Sci. 2,
331–434 (1990)

34. Raffin, A.: Ppo vs recurrentppo (aka ppo lstm) on environments with
masked velocity (sb3 contrib). https://wandb.ai/sb3/no-vel-envs/reports/
PPO-vs-RecurrentPPO-aka-PPO-LSTM-on-environments-with-masked-velocity-
VmlldzoxOTI4NjE4. Accessed Nov 2023

35. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res.
22(1), 12348–12355 (2021)

36. Reddy, M.J., Kumar, D.N.: Computational algorithms inspired by biological pro-
cesses and evolution. Curr. Sci. 370–380 (2012)

37. Ren, G., Chen, W., Dasgupta, S., Kolodziejski, C., Wörgötter, F., Manoonpong,
P.: Multiple chaotic central pattern generators with learning for legged locomotion
and malfunction compensation. Inf. Sci. 294, 666–682 (2015)

38. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

39. Seoane, L.F.: Evolutionary aspects of reservoir computing. Phil. Trans. R. Soc. B
374(1774), 20180377 (2019)

40. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017)

41. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009). https://doi.org/
10.1162/artl.2009.15.2.15202

42. Stephens, D.W.: Change, regularity, and value in the evolution of animal learning.
Behav. Ecol. 2(1), 77–89 (1991). https://doi.org/10.1093/beheco/2.1.77

43. Stork: Is backpropagation biologically plausible? In: International 1989 Joint Con-
ference on Neural Networks, pp. 241–246. IEEE (1989)

44. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

45. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. Adv. Neural Inf. Process.
Syst. 12 (1999)

46. Tierney, A.: Evolutionary implications of neural circuit structure and function.
Behav. Proc. 35(1–3), 173–182 (1995)

47. Towers, M., et al.: Gymnasium (2023). https://doi.org/10.5281/zenodo.8127026.
https://zenodo.org/record/8127025

48. Trouvain, N., Pedrelli, L., Dinh, T.T., Hinaut, X.: ReservoirPy : an efficient and
user-friendly library to design echo state networks. In: Farkaš, I., Masulli, P.,
Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12397, pp. 494–505. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-61616-8_40

https://wandb.ai/sb3/no-vel-envs/reports/PPO-vs-RecurrentPPO-aka-PPO-LSTM-on-environments-with-masked-velocity-VmlldzoxOTI4NjE4
https://wandb.ai/sb3/no-vel-envs/reports/PPO-vs-RecurrentPPO-aka-PPO-LSTM-on-environments-with-masked-velocity-VmlldzoxOTI4NjE4
https://wandb.ai/sb3/no-vel-envs/reports/PPO-vs-RecurrentPPO-aka-PPO-LSTM-on-environments-with-masked-velocity-VmlldzoxOTI4NjE4
http://arxiv.org/abs/1707.06347
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1093/beheco/2.1.77
https://doi.org/10.5281/zenodo.8127026
https://zenodo.org/record/8127025
https://doi.org/10.1007/978-3-030-61616-8_40


60 C. Léger et al.

49. Watson, R.A., Szathmáry, E.: How can evolution learn? Trends Ecol. Evol. 31(2),
147–157 (2016)

50. Wyffels, F., Schrauwen, B.: Design of a central pattern generator using reser-
voir computing for learning human motion. In: 2009 Advanced Technologies for
Enhanced Quality of Life, pp. 118–122. IEEE (2009)

51. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM
cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)

52. Zador, A.M.: A critique of pure learning and what artificial neural networks can
learn from animal brains. Nat. Commun. 10(1), 3770 (2019)



Hybrid Surrogate Assisted Evolutionary
Multiobjective Reinforcement Learning

for Continuous Robot Control

Atanu Mazumdar(B) and Ville Kyrki

Department of Electrical Engineering and Automation (EEA), Aalto University,
Espoo, Finland

{atanu.mazumdar,ville.kyrki}@aalto.fi

Abstract. Many real world reinforcement learning (RL) problems con-
sist of multiple conflicting objective functions that need to be optimized
simultaneously. Finding these optimal policies (known as Pareto optimal
policies) for different preferences of objectives requires extensive state
space exploration. Thus, obtaining a dense set of Pareto optimal policies
is challenging and often reduces the sample efficiency. In this paper, we
propose a hybrid multiobjective policy optimization approach for solving
multiobjective reinforcement learning (MORL) problems with continu-
ous actions. Our approach combines the faster convergence of multiob-
jective policy gradient (MOPG) and a surrogate assisted multiobjective
evolutionary algorithm (MOEA) to produce a dense set of Pareto opti-
mal policies. The solutions found by the MOPG algorithm are utilized
to build computationally inexpensive surrogate models in the parameter
space of the policies that approximate the return of policies. An MOEA
is executed that utilizes the surrogates’ mean prediction and uncertainty
in the prediction to find approximate optimal policies. The final solu-
tion policies are later evaluated using the simulator and stored in an
archive. Tests on multiobjective continuous action RL benchmarks show
that a hybrid surrogate assisted multiobjective evolutionary optimizer
with robust selection criterion produces a dense set of Pareto optimal
policies without extensively exploring the state space. We also apply the
proposed approach to train Pareto optimal agents for autonomous driv-
ing, where the hybrid approach produced superior results compared to a
state-of-the-art MOPG algorithm.

Keywords: Multiobjective reinforcement learning · multiobjective
evolutionary optimization · multiobjective policy gradient · Pareto
front · surrogate assisted optimization

1 Introduction

Deep reinforcement learning (RL) algorithms have been applied to solve complex
decision making problems in the field of robot control. However, many real world
control problems involve multiple conflicting objectives that are to be optimized
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simultaneously. For example, in the autonomous driving of a vehicle, we need to
find optimal policies that minimize travel time and CO2 emissions for the given
preferences of objectives (generally in the form of weights). Prior works such as
[11,21] optimize a single policy using gradient based methods for a given prefer-
ence. However, in certain cases, we need to find the set of Pareto optimal policies
that represent a diverse set of preferences between objectives (also known as
Pareto optimal policies). Finding a dense set of Pareto optimal policies requires
an extensive search of the state space, which reduces sample efficiency. Multi-
policy approaches [12] such as [19,23] used population based policy optimization
for different preferences to find a set of Pareto optimal policies. Most studies
on multi-policy approaches have utilized a scalarized multiobjective policy gra-
dient (MOPG) algorithm to find the Pareto optimal policies. These approaches
converge quickly but are generally unable to achieve well distributed Pareto opti-
mal policies. Furthermore, achieving a dense Pareto front requires executing the
MOPG algorithm for various weight preferences.

Multiobjective evolutionary algorithms (MOEAs) can effectively generate a
uniformly distributed Pareto front. However, optimizing deep neural networks for
solving MORL problems with MOEAs is still challenging and sample inefficient.
A two-stage policy optimization approach was proposed in [4] that used multiob-
jective soft actor-critic and a multiobjective covariance matrix adaptation evolu-
tion strategy (MO-CMA-ES) to harness the advantages of both algorithms. The
evolutionary stage first vectorizes the policy-independent parameters as chromo-
somes of individuals. It utilizes CMA-ES to generate offspring individuals that
are evaluated through simulations. Later, the offspring individuals go through a
multiobjective selection process, and after multiple generations, we have a uni-
formly distributed Pareto front. The disadvantage of such an evolutionary stage
is that it utilizes expensive simulation experiments in the evolutionary stage that
reduce sample efficiency.

In this paper, we propose a hybrid approach that utilizes the faster con-
vergence of MOPG and a surrogate (or meta-model) assisted MOEA to obtain
a uniformly distributed set of Pareto optimal policies. Computationally inex-
pensive random forest surrogate models are trained in the policy parameter
space using the optimal policies found by the MOPG algorithm. The MOEA
uses a robust selection method that finds the optimal policies using the surro-
gates’ prediction, reducing the requirement of expensive simulation runs. Tests
on benchmark MORL problems show that the hybrid approach produces solu-
tions with better hypervolume and sparsity. The proposed hybrid approach was
later applied to solve an end-to-end multiobjective autonomous driving prob-
lem, maximizing travel speed and fuel efficiency. Overall, the results show that
a hybrid MOEA and MOPG approach can reduce the extensive state space
exploration and provide a dense set of Pareto optimal policies.

The rest of the paper is arranged as follows. Section 2 provides a brief
background on multiobjective Markov decision processes and surrogate assisted
MOEA. In Sect. 3, we demonstrate the working of our proposed hybrid app-
roach. Experimental results on benchmark MORL problems and solutions to
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the autonomous driving problem are shown in Sect. 4. We conclude our paper
and provide remarks on future research directions in Sect. 5.

2 Background

2.1 Multiobjective Markov Decision Process

A multiobjective Markov decision process (MOMDP) for continuous control rein-
forcement learning problem is defined by the tuple 〈S,A,P,R, γ,D〉, where S
and A are the state and action spaces, respectively. The state transition proba-
bility, P(s′|s, a) and the reward vector R = [r1, . . . , rm]� where m is the number
of objectives. The initial state distribution is D, and the vector discount factor
is γ = [γ1, . . . , γm] ∈ [0, 1]m. The expected vector return is Jπ = [J1

π, . . . , Jm
π]

and the expected return of the ith objective for policy πθ : S → A is:

Jπ
i = E

[
T∑

t=0

γt
iri (st, at) | s0 ∼ D, at ∼ πθ (st)

]
, (1)

where θ represents the policy parameters. A state transition from st to st+1

occurs by action at with T being the horizon.
The overall multiobjective optimization problem can be formulated as

maxπ Jπ that simultaneously maximizes the expected return for all the objec-
tives. A solution Jπ′

is dominated by policy Jπ if Jπ
i ≥ Jπ′

i for all i = 1, . . . ,m
and Jπ

j > Jπ′
j for at least one index j. If any other policies do not dominate a

policy, it is called non-dominated. The set of not-dominated policies in the objec-
tive and policy parameter space is referred to as the Pareto front and Pareto
set, respectively. However, obtaining the true Pareto front of complex MORL
problems is generally not possible using computational methods and the Pareto
optimal policies are an approximation.

2.2 Prediction Guided MORL

The prediction guided MORL (PGMORL) algorithm proposed in [23] is a state-
of-the-art population based MORL algorithm. The algorithm optimizes a set of
policies with various weight vectors at each generation using multiobjective pol-
icy gradient (MOPG) workers. For a given policy πθ and a given weight vector
(or preference) ω where

∑
i ωi = 1 the goal of an MOPG is to train a multiobjec-

tive policy that maximizes the expected weighted sum return J (θ,ω) = ω�Jπ.
PGMORL is an evolutionary learning algorithm that selects policies and their
respective weights in each generation of the learning process. It uses a vectorized
value function Vπ(s) to estimate the expected return vector of a policy π for
state s. The parameters of the value function are updated by the squared loss
between the estimated and target value vectors. Therefore, the same policy can
be used with different weights during the training process without retraining the
value function from scratch. The policy gradient used to update the policy is:
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∇θJ (θ,ω) =
m∑

i=1

ωi∇θJi(θ)

= E

[
T∑

t=0

ω�Aπ
ω(st, at) log πθ (at, st)

]

= E

[
T∑

t=0

Aπ
ω (st, at) log πθ (at, st)

]
,

where Aπ
ω (st, at) = ω�Aπ

ω(st, at) is the weighted sum scalarized advantage.
PGMORL uses weighted sum Proximal Policy Optimization as the policy gra-
dient algorithm that uses clipped surrogate objectives.

PGMORL initiates with a warmup phase with n uniformly distributed
weights and randomly assigned policies that are trained in parallel for a pre-
defined number of timesteps. Each parallel training (or task) is done by the
previously defined MOPG algorithm here referred to as MOPG workers. The
improvement in the objectives for respective weights is stored, and a monotonic
hyperbolic model is fitted to estimate the improvement in the objective values.
Next, a mixed integer optimization (that is discretized to reduce computation
cost) is performed to find the best weight and policy combinations that improve
the objectives compared to the current Pareto archive EP. Finally, the Pareto
optimal policies are clustered by k-means clustering and a continuous Pareto
front is achieved by linear interpolation of the policy parameters in each cluster.

2.3 Surrogate Assisted Multiobjective Evolutionary Optimization

Many real-world multiobjective optimization problems consist of computation-
ally expensive objective functions that require extensive computational resources
or time. Solving these problems using MOEAs is usually impractical as MOEAs
require a high number of function evaluations. An alternative way to use MOEAs
is to use surrogate models that approximate (or emulate) the expensive objec-
tives. The proposed hybrid approach starts with a few samples of data (consisting
of parameters and their respective objective values) acquired through expensive
evaluations, and surrogate models are trained using the data. Choosing a suitable
model that utilizes the most out of the provided data and with superior predict-
ing accuracy is often challenging. The MOEA later utilizes the prediction of the
surrogate models as objective functions to find the optimal solutions. Certain
surrogate models, such as Gaussian process regression, have been widely used
in surrogate assisted optimization due to their ability to provide uncertainty in
the prediction. The uncertainty information has been widely used in the field
of Bayesian optimization [10] aims to maximize an acquisition function that
determines the next expensive function evaluation. Generally, these acquisition
functions (such as expected improvement, probability of improvement, expected
hypervolume improvement) [6,24] are designed to find the location that maxi-
mizes the objective values. The newly evaluated values are used to update the
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surrogates, which iteratively improves the approximation accuracy of the surro-
gates and converges the solutions towards the true Pareto front.

Decomposition-Based MOEAs. Decomposition-based MOEAs were design-
ed to solve multiobjective optimization problems (MOPs) with a high number of
objectives (generally m > 3). In general, these algorithms decompose the given
MOP into subproblems by scalarizing the objectives or multiple MOPs. In this
paper, we use RVEA [5], an MOEA that has shown superior performance in
solving problems with many objectives. New offspring individuals are generated
by simulated binary crossover and polynomial mutation [9] and added to the
population. The individuals in the population are divided into sub-populations
and assigned to uniformly distributed reference/weight vectors. Next, one indi-
vidual from each subpopulation is selected using angle penalized distance (APD)
as the selection criterion to improve both convergence and diversity of the solu-
tions in the objective space. The selected individuals are used as parents for the
next generation and the steps are repeated until the specified stopping criteria
are met.

2.4 Probabilistic Selection in Decomposition-Based Multiobjective
Evolutionary Algorithms

The probabilistic selection approaches proposed in [18] were originally designed
to solve offline data-driven multiobjective optimization problems where further
expensive function evaluations are not possible. The probabilistic selection app-
roach optimizes the mean predicted objective values by the surrogate and simul-
taneously minimizes the uncertainty in the predicted objective values. The solu-
tions produced by the probabilistic selection have a higher accuracy compared
to the generic selection operator of an MOEA that uses the mean prediction
from surrogates.

The algorithm initializes with the parent population that was used to build
the surrogates. For probabilistic RVEA, one individual from each sub-population
is selected using a probabilistic ranking of their APD. For each individual, Monte
Carlo samples are drawn using the predicted distribution of objective values
of the surrogates. The APD values of all the samples for each individual are
computed. The ith individual in the jth subpopulation P̄j is assigned a rank R′

i,j

using the distribution of APD, di,j :

R′
i,j =

|P̄j|∑
n=1

Prwrong(dn,j > di,j) − 0.5. (2)

The probability of wrongly selecting an individual with a higher APD value
Prwrong(dn,j > di,j) is calculated by utilizing the Monte Carlo samples. The
zth individual Iz is selected from subpopulation P̄j , where j = 1, . . . , N , for
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population of the next generation Pnext gen by:

Pnext gen =

⎧⎨
⎩Iz|z = argmin

i∈{1,...,|P̄j|}
R′

i,j

⎫⎬
⎭ . (3)

We used probabilistic RVEA in this paper and lower confidence bound (LCB)
[15] selection to find Pareto optimal policy parameters with high confidence.

3 Hybrid Surrogate Assisted Evolutionary Multiobjective
Policy Gradient

Obtaining a dense set of optimal policies in a multiobjective reinforcement learn-
ing problem requires extensive exploration of the state space that reduces the
sample efficiency. MOPG algorithms converge to the Pareto front quickly but
generally cannot provide a dense set of solutions. Furthermore, there is no mech-
anism to exchange the learned parameters between policies that lead us to inter-
mediate Pareto optimal policies. Operators in MOEAs such as crossover and
mutation are a way to generate intermediate policies as they directly alter the
parameter space. However, MOEAs generally require numerous function eval-
uations and thus are sample inefficient. A possible alternative to utilize evolu-
tionary methods is to train a surrogate model in the policy parameter space
predicting the returns. In what follows, we demonstrate the proposed hybrid
surrogate assisted MOEA and MOPG approach for solving MORL problems.

Fig. 1. Overview of the hybrid surrogate assisted MOEA and MOPG approach.
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The overview of the proposed approach is shown in Fig. 1. Overall, there are
two algorithm blocks: an MOPG algorithm and a surrogate assisted MOEA. The
MOPG algorithm starts by initializing n random worker policies for the MOPG
task and n uniformly distributed weight vectors. In the warm-up stage, each of
the initialized policies is assigned to a weight vector. The policies are optimized
by the MOPG algorithm for a certain number of iterations to take the policies out
of low performance regions. Later, a task selection method decides the policies
and their respective weights for the MOPG workers and optimizes the policies for
Imax iterations. The policies and their episodic returns are stored in an external
Pareto archive EP. At the end of each iteration in the MOPG loop, the data
in EP is transferred to the surrogate assisted MOEA block. Surrogate models
are trained to approximate the returns for each objective on the parameters of
the stored policies. The predicted vector objective values by the surrogates is
Ĵ(θx) with uncertainty in the prediction, σ(θx) for parameter θx. The MOEA
is initialized with a population of policy parameters and weight vectors (for
decomposition based MOEAs) [5,8,26]. The offspring individuals are created
by random crossover and mutation and added to the parent population. The
population of parameters is evaluated using the surrogates. A selection criterion
is used to select certain individuals from the population and these individuals
become the new parent population. The evolution process is executed for Gmax
generations, and the final solutions are evaluated with the expensive simulator.
An external Pareto archive EPMOEA stored the non-dominated policy parameters
and their respective evaluated objective values. The control is moved back to the
MOPG block and the final Pareto optimal policies are combined non-dominated
policies of EP and EPMOEA.

It should be noted that the MOPG algorithm used in this paper is PGMORL
[23], which is population based and referred to as evolutionary in the literature.
However, since our approach already has an MOEA, we use the term iterations
for the MOPG algorithm instead of generations as used in the [23].

3.1 Dataset for Surrogates

The quality of the solutions produced by surrogate assisted MOEA depends on
the approximation accuracy of the surrogates and the dataset used. The first step
in the proposed approach is to find a set of policies with good objective values and
low noise. Therefore, we utilize the state-of-art prediction guided multiobjective
policy gradient reinforcement learning (PGMORL) [23] to find a set of optimal
policies. At each iteration, PGMORL updates an external Pareto archive (EP)
that stores the non-dominated intermediate policies. Each element of EP consists
of the policy independent parameters of the deep network and the corresponding
objective vector as a tuple of two matrices: (Θ,J ), where Θ = [θ1, . . . ,θN ] and
J = [J1, . . . ,JN ], and N is the number of policies in EP. The data in EP is passed
to the surrogate assisted MOEA block to train the surrogates at each iteration’s
end. For our approach, we do not use all the intermediate policies for training
the surrogate models, which will become expensive, thereby slowing down the
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optimization process. In addition, we are interested in finding the Pareto optimal
policies and not the sub-optimal coverage set.

3.2 Surrogate Models

The data consists of the policy parameters and their respective objective vector.
The number of parameters in deep network policies is generally in the order of
103, which is quite high. The hypervolume of the solutions found by a surrogate
assisted MOEA depends on the approximation accuracy of the surrogates [6,
18]. The challenges in approximating the objective vector of the policies are as
follows:

– The parameter size (or dimension) is huge. Thus surrogates such as Gaussian
process regression as surrogates will become impractical. [3]

– The Pareto optimal policies are generally discontinuous in the policy space.
[23]

– The surrogates should be able to predict the uncertainty in the prediction in
addition to the mean prediction that the MOEA can utilize in the later stage.
[13,14,25]

In this paper, we used random forest regression as surrogates due to their ability
to handle high dimensional datasets [2,20]. They can also handle discontinu-
ities and are computationally inexpensive to train. Random forest surrogates
have also proven to have better accuracy than state-of-art deep neural net-
works [1] and can be trained with less amount data. We train a random for-
est model consisting of B bootstrapped regression tree for each objective. The
prediction of the ith objective’s random forest is Ĵi(θx) = 1/B

∑B
b=1 fb(θx) and

the estimated uncertainty (standard deviation) in the prediction is σ(θx) =
(
∑B

b=1(fb(θx) − Ĵi(θx))/(B − 1))1/2. The unseen policy parameters is θx and
fb(θx) is the prediction of the bth regression tree. The MOEA utilizes the predic-
tions of the random forest surrogates that maximize the approximated objective
values.

3.3 Optimization Method

Using Bayesian optimization techniques that aim to improve the optimal solu-
tions can be applied to improve the optimal solutions. However, a high number
of surrogate updates are required to sufficiently increase the approximation accu-
racy since the dimension of the policy space is large (with > 103 parameters)
[13,22]. In addition, we are interested in finding uniformly distributed policies
closer to the policies in EP. The MOEA should therefore optimize the objectives
and simultaneously try to minimize the uncertainty in the solutions. One such
approach is to modify the objective function and maximize the lower confidence
bound (LCB) [15] of the surrogates’ prediction. The modified objective function
for LCB is Ĵ LCB

i (θx) = Ĵi(θx) − σ(θx). Another approach that can be used
is probabilistic selection proposed for MOEA (PMOEA) [18] that modifies the
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selection criterion to select individuals with a higher probability of being close
to the true objective function value. In this paper, both LCB and PMOEA were
integrated with RVEA, and the predictions from random forest surrogates were
used for optimization.

The random forest surrogates are retrained with the updated EP, and the
MOEA is executed at the end of each iteration of PGMORL. The solutions
found by the MOEA are evaluated by running the simulation. The normalizing
parameters (of the observation) used for running the simulation were chosen from
EP that was closest to the solution in the objective space found by the MOEA.
An external Pareto archive (EPMOEA) consisting of the non-dominated policies
found by the MOEA stores the evaluated objective values of the solutions and
their respective policy parameters.

4 Results

4.1 Benchmark Experiments

An ablation study was conducted on four bi-objective continuous control Mujoco
environments previously proposed by [23] to test the performance of the pro-
posed hybrid MORL approach. The environments chosen were MO-Ant, MO-
HalfCheetah, MO-Swimmer and MO-Walker2d. The MOPG algorithm used was
PGMORL and we used the same experiment settings as provided in [23] for the
respective environment. One random forest surrogate model with 500 trees was
trained for each objective using the dataset. We ran RVEA for 1000 generations
after every iteration of PGMORL. Other hyper-parameters for RVEA were kept
the same as provided in [5]. All codes were implemented in Python and are
available for reproducibility.1

Table 1. Mean and standard deviation of hypervolume (higher is better) and sparsity
(lower is better) for three different approaches for various benchmark environments.
The best performing approach has been shown in bold.

Environments
Mean LCB PMOEA

Hypervolume Sparsity Hypervolume Sparsity Hypervolume Sparsity

MO-HalfCheetah-v2
Mean 5.44E+06 6.08E+04 5.76E+06 1.27E+03 5.73E+06 2.76E+03
Std 3.81E+04 2.54E+04 9.73E+03 7.56E+02 1.77E+04 2.06E+03

MO-Swimmer-v2
Mean 2.06E+04 2.94E+01 2.07E+04 9.74E+00 2.11E+04 2.25E+01
Std 6.81E+03 1.60E+01 6.82E+03 6.77E+00 6.59E+03 1.68E+01

MO-Walker2d-v2
Mean 4.25E+06 2.25E+04 4.63E+06 7.19E+02 4.45E+06 5.68E+03
Std 1.33E+05 3.71E+04 3.27E+05 4.53E+02 2.96E+05 5.04E+03

MO-Ant-v2
Mean 5.53E+06 4.47E+04 6.01E+06 8.19E+03 5.76E+06 1.20E+04
Std 4.91E+05 6.21E+04 3.27E+04 4.18E+03 9.17E+04 7.39E+03

1 Codes can be found at https://github.com/amrzr/SA-MOEAMOPG.

https://github.com/amrzr/SA-MOEAMOPG
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Fig. 2. Hypervolume (higher is better); on left, sparsity (lower is better); on middle,
showing the variation over iterations and three different approaches for four environ-
ments. The final non-dominated solutions (all objectives maximized); on right, for the
run with median hypervolume.

The proposed hybrid MOEA and MOPG with LCB and PMOEA was com-
pared with a baseline hybrid approach that used the mean prediction (Mean)
from the random forest surrogates as objectives that are optimized by the
MOEA. We used hypervolume and sparsity indicators [17,27] to measure the
performance of the approaches. Hypervolume measures both convergence and
diversity of the solutions and a higher hypervolume value is considered better.
The reference point chosen for hypervolume indicator was zero for all the objec-
tives. The sparsity indicator represents the density of the solutions, and a lower
value is considered better. Each approach was executed eleven times with ran-
dom seed, and statistical tests were performed to determine the best performing
approach. It should be noted that our tests did not consider the running times
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of the various approaches for comparison and only the final hypervolume and
sparsity of the solutions.

The overall mean and standard deviation of hypervolume and sparsity of the
solutions in EPMOEA (after evaluating with the simulator) for three approaches
across the tested benchmarks are shown in Table 1. The best performing app-
roach for each indicator is shown in bold. It can be observed that LCB performs
the best for both hypervolume and sparsity for almost all the benchmarks, with
PMOEA coming second. The approach using mean prediction from surrogates
was the worst for all benchmarks as the MOEA did not consider the uncertainty
in the surrogates’ prediction, which resulted in solutions with high approxima-
tion error. The progress of hypervolume and sparsity of EPMOEA with iterations
of PGMORL and the final nondominated solutions for the benchmark problems
are in Fig. 2. It can be observed that both LCB and PMOEA produce a dense
set of solutions with better objective values than the Mean approach. It can also
be noticed that both hypervolume and sparsity improve much faster for LCB
and PMOEA approaches compared to the Mean approach. Considering the MO-
HalfCheetah environment, we can observe that both hypervolume and sparsity
converge at around 10–15 iterations. Thus, the MOPG algorithm can be stopped
when solutions in EP have converged with sufficient sparsity and overall sample
efficiency can be further improved.

4.2 MORL for Autonomous Driving

Generally, an end-to-end autonomous driving reinforcement learning problem
considers a single objective in the form of average speed or time consumed for
travel to be optimized. Autonomous driving can be regarded as a MORL prob-
lem if fuel efficiency or CO2 emissions is considered the second objective to be
optimized in addition to the average speed. We used Gym HighwayEnv [16] and
designed a two-lane one-way highway environment as shown in Fig. 3. The obser-
vations were the Cartesian coordinates and velocities of the four closest vehicles
relative to the controlled vehicle, the presence that distinguished if less than
four vehicles were observed and the vehicle’s heading (S ⊆ R

24). The actions
were the steering angle and throttle (A ⊆ R

2). The first formulated reward R1

represents the average speed taken by the controlled vehicle:

R1 = 5 × speed × cos (heading) − 10 × (off + col).

The second reward R2 representing CO2 emissions is:

R2 = 5 × (1 − CO2) − 10 × (off + col),

where speed is the scalarized speed of the vehicle, heading is the angle of the
vehicle in radians (scaled from zero to one), off is the indicator for the vehicle
going outside the road and is set to one is the vehicle goes offroad; otherwise it
is set to zero. The variable col is the vehicle collision indicator and is set to one
if the vehicle collides; otherwise, it is set to zero. The CO2 emission is computed
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Fig. 3. Two lane highway environment. MORL agent controls the yellow vehicle. (Color
figure online)

using the NGM emissions model [7] and scaled from zero to one. The latter terms
in both R1 and R2 are penalties when the vehicle collides or goes offroad.

We used the hybrid approaches demonstrated in the benchmark tests to
solve the autonomous driving problem. For the PGMORL algorithm, the total
number of environment steps was set to 5 × 106, with the number of warmup
iterations set to 80 and evolutionary stage iterations set to 20. The settings for
the MOEA were kept the same as in the benchmark tests. The hypervolume
and sparsity of solutions in EPMOEA and EP after the final iteration of all the
hybrid approaches and PGMROL, respectively, are shown in Table 2. It can
be observed that PMOEA produces solutions with the best hypervolume and
sparsity. The final nondominated solutions are also shown in Fig. 4. The Pareto
front is disconnected, and PGMORL does not produce a dense set of solutions
like LCB and PMOEA. The controlled vehicle needs minimum threshold energy
to achieve the running speed for overtaking other vehicles. The disconnect in
the Pareto front is the region where the controlled vehicle tries overtaking other
vehicles.

Testing MORL algorithms is challenging since there are a handful of simula-
tion environments available. Most of these simulations are multiobjective vari-
ants of environments originally designed to be solved as single objective MORL
problems. Benchmark problems with a scaleable and wide variety of Pareto front
features [12] are required to test the performance of MORL algorithms thor-
oughly.

Fig. 4. The non-dominated policies obtained by the three different hybrid approaches
compared with the non-dominated policies found by PGMORL.
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Table 2. Comparison of hypervolume (higher is better) and sparsity (lower is better)
for the three hybrid approaches and PGMORL while solving the two-way highway
problem. Best performing approach has been shown in bold.

Indicators PGMORL Mean LCB PMOEA

Hypervolume 1.88E+08 1.86E+08 1.89E+08 1.90E+08
Sparsity 1.76E+05 4.85E+05 3.43E+04 3.26E+04

5 Conclusions

In this paper, we propose a hybrid approach that harnesses the capabilities of
MOPG algorithms and surrogate assisted MOEAs to produce a dense set of
Pareto optimal policies. We tested the proposed approach on MORL benchmark
problems. The hybrid approach produced Pareto optimal policies with supe-
rior hypervolume and sparsity without reducing the sample efficiency. Finally,
we applied our hybrid approach to solve a multiobjective autonomous driv-
ing problem where our approach performed better than the state-of-the-art
PGMORL algorithm. Therefore, we conclude that using a hybrid surrogate
assisted MOEA and MOPG approach with a robust selection mechanism such as
LCB or PMOEA reduces the requirement of extensive search in the state space
to find Pareto optimal policies for a diverse set of weight vectors.

Choosing an appropriate surrogate model to accurately approximate the
returns of policies with a high dimensional parameter space is challenging. In
addition, the model should be able to handle the discontinuities that exist in
the Pareto optimal policies. A model management method can be integrated to
select the best performing surrogates automatically. Tests should also be con-
ducted to compare the proposed hybrid approaches with other state-of-the-art
MORL algorithms and with a higher number of objectives. We used PGMORL,
an MOPG algorithm that focuses on maximizing both the hypervolume and
sparsity of the Pareto optimal policies. The MOPG can be tailored to focus on
improving only the hypervolume since the surrogate assisted MOEA performs
excellently in reducing the sparsity of the solutions. The proposed approach
currently does not have a mechanism to transfer the optimal policies found by
the MOEA to the MOPG. In the future, we plan to design a framework for
seamlessly exchanging optimal policies found by MOPG and surrogate assisted
MOEA with each other. Testing the proposed approach on real-world robotics
problems will also be one of our future works.
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Abstract. The increasing usage of Artificial Intelligence (AI) models,
especially Deep Neural Networks (DNNs), is increasing the power con-
sumption during training and inference, posing environmental concerns
and driving the need for more energy-efficient algorithms and hardware
solutions. This work addresses the growing energy consumption problem
in Machine Learning (ML), particularly during the inference phase. Even
a slight reduction in power usage can lead to significant energy savings,
benefiting users, companies, and the environment. Our approach focuses
on maximizing the accuracy of Artificial Neural Network (ANN) mod-
els using a neuroevolutionary framework whilst minimizing their power
consumption. To do so, power consumption is considered in the fitness
function. We introduce a new mutation strategy that stochastically rein-
troduces modules of layers, with power-efficient modules having a higher
chance of being chosen. We introduce a novel technique that allows train-
ing two separate models in a single training step whilst promoting one of
them to be more power efficient than the other while maintaining similar
accuracy. The results demonstrate a reduction in power consumption of
ANN models by up to 29.2% without a significant decrease in predictive
performance.

Keywords: Evolutionary Computation · Neuroevolution · Energy
Efficiency

1 Introduction

As the demand for Machine Learning (ML) continues to grow, so does the elec-
trical power required for training and assessment. According to Patterson et
al., GPT-3, the model behind ChatGPT, consumes 1287MWh, corresponding
to approximately 552 tons of CO2 equivalent emissions just for training during
15 days [16]. In addition to the environmental impacts of this power usage, it
can also burden individual users and organizations, who may face high energy
costs. Therefore, finding ways to reduce the power consumption of ML processes
is becoming increasingly important.

Artificial Neural Networks (ANNs) are a type of ML model inspired by bio-
logical neural networks [19]. They consist of multiple layers of artificial neurons,
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which are functions that take input data and produce an output based on it.
The connections between neurons have an associated weight value modified in
the training process to allow the network to “learn” how to solve a specific task.
Deep Neural Networks (DNNs) are ANNs with a considerable number of hidden
layers [9,10]. This allows them to avoid the feature engineering step, thus auto-
matically discovering the representations needed for classification and achieving
higher accuracy values. Training and executing ANNs is power-intensive due to
the required computational resources.

Evolutionary Algorithms (EAs) are algorithms inspired by natural selec-
tion [6,17]. To evolve solutions over multiple generations, they utilize mecha-
nisms, such as selection, crossover, and mutation. The process begins with a
randomly initialized population whose evolution is steered by a fitness function
that measures the quality of an individual. In conjunction with the mentioned
evolutionary mechanisms, the process is predicted to culminate in near-optimal
individuals.

Neuroevolution (NE) uses EAs to generate and optimize ANNs for a given
task [7]. It can optimize the ANN’s architecture and hyperparameters.

We hypothesise that we can address the energy inefficiency issue by using
NE to search for well-suited models for a particular problem while being power-
efficient. Fast Deep Evolutionary Network Structured Representation (Fast-
DENSER) is a method that utilizes an Evolution Strategy (ES) to find optimal
ANN models by using their accuracy as the fitness function, thus guiding the
search towards accurate models [2].

In this work, we propose novel approaches integrated into Fast-DENSER to
find power-efficient models. We have incorporated a new approach to measure
the power consumption of a DNN model during the inference phase. This metric
has been embedded into multi-objective fitness functions to steer the evolution
towards more power-efficient DNN models. We also introduce a new mutation
strategy that allows the reutilization of modules of layers with inverse probability
to the power usage of a module, thus (re)introducing efficient sets of layers in
a model. We propose the introduction of an additional output layer connected
to an intermediate layer of a DNN model and posterior partitioning into two
separate models to obtain smaller but similarly accurate models that utilize less
power. To the best of our knowledge, no prior works employ a similar approach.

The experiments are analyzed through two metrics: accuracy and mean power
usage during the validation step. The motive for using the power usage of the
validation step instead of the training step is that the training is usually per-
formed only once. Contrarily, the inference is executed multiple times. Moreover,
inference does not necessarily occur on the machine where the training was con-
ducted, which is vital since many devices are not optimized for these tasks.

The results of this work show that it is possible to have DNN models with
substantially inferior power usage. The best model found regarding power con-
sumes 29.18W (29.2%) less whilst having a tiny decrease in performance (less
than 1%).
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This work is structured as follows: Sect. 2 provides background information
on ANNs, and NE. Section 3 introduces our methodologies to enhance the power
efficiency of ANN models. Section 4 outlines the experimental setup. Section 5
presents the experimental results. Finally, in Sect. 6, we provide our conclusions
and prospects for future research.

2 Background

2.1 Artificial Neural Networks

Artificial Neural Networks are a type of supervised ML inspired by biologic
neural networks [19]. An ANN consists of connected processing units known
as neurons. The connections follow a specific topology to achieve the desired
application. A neuron’s input may be the output of other neurons, external
sources, or itself. Every connection has an associated weight, allowing the system
to simulate biological synapses. A weighted sum of the inputs is computed at
a given instant, considering the connection weights. It is also possible to sum
a bias value to this. An activation function is applied, and thus, the neuron’s
output is obtained.

DNNs are ANNs composed of many hidden layers. Due to this, DNNs can
avoid the feature engineering step – which usually requires human expertise –
by automatically discovering the representations needed for classification [9,10].
Thus, they can model more complex relationships and achieve higher accuracy
on tasks requiring pattern recognition. The development and usage of DNNs
have substantially increased due to the widespread deployment of more capable
hardware, such as Graphics Processing Units (GPUs) [3].

2.2 Neuroevolution

NE is the application of evolutionary techniques to search for DNN models. It is
used to optimize the structure and weights of DNNs to improve their performance
on specific tasks, such as image classification and natural language processing.
NE is a gradient-free method based on the concept of population [7]. It allows
for the simultaneous exploration of multiple zones of the search space through
parallelization techniques at the cost of taking a usually long time to execute
since each individual of the population is a DNN that requires training and
testing.

Deep Evolutionary Network Structured Evolution (DENSER) is a neuroevo-
lutionary framework that allows the search of DNNs through a grammar-based
neuroevolutionary approach that searches both network topology and hyperpa-
rameters [1].

The developed DNNs are structured according to a provided context-free
grammar. DENSER uses Dynamic Structured Grammatical Evolution (DSGE)
as the strategy that allows the modification of the network topology. DSGE is
built upon Structured Grammatical Evolution (SGE), with the main differences
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of allowing the growth of the genotype and only storing encoded genes [11].
Allied with dynamic production rules, DSGE allows the creation of multiple-
layer DNNs. SGE proves to perform better than Grammatical Evolution (GE),
and DSGE proves to be superior to SGE [12]. The individuals of the evolutionary
process are represented in two levels: the outer level encodes the topology of the
ANN, and the inner one encodes its hyperparameters.

Fast-DENSER was developed to overcome some limitations verified on
DENSER: evaluating the population consumes a considerable amount of time,
and the developed DNNs are not fully trained [2]. Fast-DENSER is an extension
of DENSER on which the evolutionary engine is replaced by a (1 + λ)-ES. This
modification dramatically reduces the required number of evaluations per gener-
ation, enabling executions 20 times faster than the original version of DENSER.

Moreover, individuals are initialized with shallow topologies, and the stop-
ping criterion is variable to allow an individual to be trained for a more extended
time.

On the CIFAR-10 dataset [8], DENSER obtained models with an accuracy
higher than most of the state-of-the-art results, and on the CIFAR-100 [8], it
obtained the best accuracy reported by NE approaches. Fast-DENSER proves to
be highly competitive relative to DENSER, achieving execution times far inferior
to its predecessor. Additionally, Fast-DENSER can develop DNNs that do not
require additional training after the evolutionary approach and are, therefore,
ready to be deployed.

3 Approach

This section outlines the approaches developed to address the challenge of reduc-
ing power consumption in ANN models.

3.1 Power Measurement

Measuring the power a GPU consumes is fundamental when developing
approaches that minimize a model’s energetic footprint. The ecosystem of devel-
oping a DNN model mainly consists of three phases: design, training, and deploy-
ment.

The design phase uses some energy, be it with manual design techniques or
automatic methods. DENSER is a NE framework and, as such, consumes energy
in the search for optimal models, and such consumption might be on par with
the energy used on manual, trial-and-error methods. Reducing the energy used
in this phase is out of the scope of this work.

The training of a DNN model is an expensive process in which a model is
trained on a large dataset to learn to predict unseen instances, taking a significant
toll on technological companies’ and individuals’ power bills. While diminishing
energy consumption during the training process remains a significant objective,
it is worth noting that the inference phase in DNNs holds vital importance
during software deployment, as the software obtains results through inference.



80 G. Cortês et al.

This becomes particularly relevant when considering the potential utilization of
these models by millions of users. As such, tackling the minimization of energy
consumption in this step is vital. For example, it is estimated that 80% to 90%
of NVIDIA’s ML computations are inference processing [13] and about 60% of
Google’s ML energy usage is for inference with the remaining portion being for
training [16].

Considering this, our work focuses on the power consumption in the inference
step to allow a large deployment, thus saving more computational resources and
energy and, on another layer, reducing financial expenses and reducing environ-
mental impact.

3.2 Model Partitioning

Training a DNN model requires a substantial amount of time and considerable
energy. Creating a process on which a single model is trained but can be split
posteriorly into two models would reduce the time spent on training two models
by, at most, two times. Pushing one of those two models into being smaller than
the other may produce a simpler, similarly accurate, yet more power-efficient
model.

Following this line of reasoning, we propose a modification to Fast-DENSER
on which an extra output layer is connected to an intermediate layer of the
model. The two-output model (Fig. 1a) is trained to optimize for two outputs.
At the validation step, it is split into left (Fig. 1b) and right (Fig. 1c) partitions.
These partitions are disjoint and can be evaluated similarly to how the complete
model is evaluated, and metrics such as accuracy and power consumption can
be obtained.

The intermediate point is a marker for where the additional output is added
at the model partitioning step. We can, for example, consider a model as an
array of layers, and the mentioned marker is the index of the layer to which the
additional output is connected. This point can be assigned to any intermediate
layer of the model. The input and output layers are excluded to prevent useless
and redundant partitions.

Since the maximum allowed value of the point is equal to the number of layers
of the model minus one, the grammar initializer – which generates individuals
according to the grammar – and the mutation mechanism for the macrostruc-
ture level of DENSER – which performs mutations on the hyperparameters of
the individuals – were modified to consider the maximum number of layers of the
model dynamically. To introduce the intermediate point in the evolutionary pro-
cess, it was considered part of the macrostructure and, as such, as a rule of the
grammar. The introduced rule is <middle_point> ::= [middle_point,int,1,0,x],
meaning that one integer value is obtained with the lower limit being zero. The
upper limit is an arbitrary variable x that is replaced at any instance by the
maximum number of layers of the model minus one.
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Fig. 1. Example of a two-output model and its left and right partitions, with the layer
marked by the intermediate point in red. (Color figure online)
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3.3 Fitness Functions

To consider accuracy and power consumption in the fitness function, some func-
tions were developed to take these parameters into account. Since our objective is
to maximize accuracy but minimize power consumption, we consider the inverse
of the latter, i.e., power−1.

Considering our approach of the division of a DNN model into two compa-
rably accurate partitions, with one smaller than the other, all of the presented
fitness functions consider the accuracy of both partitions, intending to enhance
both. These fitness functions only focus on minimizing power consumption within
the larger partition, which is anticipated to experience higher power usage.

Firstly, as presented in Eq. 1, we developed a fitness function that sums the
accuracy of both partitions with the inverse of the power usage of the left parti-
tion. The accuracy values have an upper limit, consisting of minimum satisfiable
values for the models, i.e., values below the state-of-the-art [15] to allow some
tradeoff between accuracy and power consumption. The upper limit is higher
on the right partition (0.85) than on the left partition (0.80) since it is desired
that the right partition obtains a higher accuracy value, if possible. The goal
of this function design was to obtain satisfiable models and, after that, guide
the evolutionary process only by their power usage to minimize the power usage
of the models. After testing, we observed that the power usage typically falls
within the range [30, 100] W, which, when inverted, resulted in values too small
to be able to properly steer the evolutionary process.

f1 = min(0.80, accleft) + min(0.85, accright) + power−1
left (1)

Considering this, another fitness function was designed (Eq. 2), where the
power usage is multiplied by 10, thus giving it a more considerable weight since
power usage values for the used GPU typically fall within the [30, 100] W range.
This weight is closely related to the used GPU and should be modified accord-
ingly. Preliminary experiments showed that although the evolution managed to
somewhat minimize the power usage of the models, their accuracy remained
around the chosen upper limits. Since this is not an optimal behaviour, a func-
tion that does not limit accuracy was developed.

f2 = min(0.80, accleft) + min(0.85, accright) + 10 ∗ power−1
left (2)

As shown in Eq. 3, this fitness function considers only the accuracy of the
partitions when both are below a threshold. After any of them surpass their
respective threshold, power consumption is also considered, with a weight of
10. This means that, at first, evolution is only steered by the accuracy of the
models. When satisfiable models are obtained, power consumption starts being
considered to evolve both accurate and energy-efficient models.

f3 =

{
accleft + accright if accleft ≤ 0.80 ∧ accright ≤ 0.85
accleft + accright + 10 ∗ power−1

left, otherwise
(3)
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3.4 Module Reutilization

Internally, Fast-DENSER considers modules of layers on each individual from
which a DNN is then unravelled. One way to encourage the evolution of energy-
efficient models is to provide an individual with a set of layers that are known
to be efficient. As such, a scheme of module reutilization is proposed through
the design of new mutation operators and the addition of an archive of modules
and their respective power consumption.

Since this strategy only considers power consumption, it is expected that
inaccurate models may sometimes be generated. Due to the nature of the evo-
lutionary process and the used fitness function (Eq. 3), inaccurate models are
intensely penalized and, as such, discarded in favour of better ones.

Whenever a module of layers is randomly generated or modified, its power
consumption is measured. To do this, a temporary model is created, which con-
sists of an input layer, the module’s layers, and an output layer. Since the mod-
ule’s accuracy is irrelevant, this temporary network is neither trained nor fed
with a proper dataset, i.e., it is given random values instead of a dataset.

An operator of mutation, reuse module, was introduced to take advantage of
this information. It selects a module with a probability inversely proportional
to its power consumption, i.e., modules with inferior power consumption have a
superior probability of being chosen. As shown in Eq. 4, to obtain the probability
of a module i being chosen, we divide the inverse of its power, poweri, by the sum
of the inverse power of all modules, with n the number of saved modules. The
selected module is introduced in a randomly chosen position. An operator that
randomly removes a module from an individual is also introduced to counteract
the described operator.

P (i) =
1

poweri∑n
j=0

1
powerj

(4)

4 Experimental Setup

We performed two experiments: the baseline, which uses the plain version of
Fast-DENSER with accuracy as the fitness function, and an experiment where
our proposed approaches were applied, using the fitness function presented in
Eq. 3. Table 1 presents the experimental parameters used across the experiments.
Note that DSGE-level rate refers to the probability of a grammar mutation
on the model’s layers, the Macro layer rate pertains to the probability of a
grammar mutation affecting the macrostructure, encompassing elements such as
hyperparameters or intermediate point mutation, and the Train longer rate is
the probability of allocating more time for an individual to be trained. The rates
of reusing and removing modules do not apply to the baseline experiment. The
experimental analyses consider the Mean Best Fitness (MBF) over 5 runs.

The experiments were performed on a server running Ubuntu 20.04.3 LTS
with an Intel Core i7-5930K CPU with a clock frequency of 3.50GHz, 32GB
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of RAM, and an NVIDIA TITAN Xp with CUDA 11.2, CuDNN 8.1.0, Python
3.10.9, Tensorflow 2.9.1 and Keras 2.9.0 installed as well as the pyJoules 0.5.1
Python module with the NVIDIA specialization.

Table 1. Experimental parameters

Evolutionary Parameter Value
Number of runs 5

Number of generations 150
Maximum number of epochs 10 000 000

Population size 5
Add layer rate 25%

Reuse layer rate 15%
Remove layer rate 25%
Reuse module rate 15%

Remove module rate 25%
Add connection 0%

Remove connection 0%
DSGE-level rate 15%
Macro layer rate 30%
Train longer rate 20%
Train Parameter Value
Default train time 10 min

Loss Categorical Cross-entropy

All experiments used the Fashion-MNIST dataset [18], which was developed
as a more challenging replacement for the well-known MNIST dataset [5] by
swapping handwritten digits with images of clothes such as shirts and coats,
aiming at a more realistic and relevant benchmark. It is a balanced dataset con-
sisting of a collection of 60 thousand examples for training and 10 thousand for
testing, where each example is a 28 × 28 grey-scale image representing clothing
items belonging to one of ten classes.

Since power usage is essential in making NE physically plausible, a func-
tion to measure power was developed using the pyJoules library. Its pseudocode
can be analyzed in Algorithm 1, with meter being the library tool that facili-
tates the measurement of energy consumed, and start and stop the functions
that allow controlling it. It wraps a function call (func, with corresponding
arguments args) while measuring the GPU energetic consumption during its
execution and the call’s duration. This measurement is converted from milli-
Joule to Watt and appended to the array of measures. These steps are per-
formed n_measures times, and then the mean value is calculated. In our work,
we considered n_measures = 30. The described function was integrated with
Fast-DENSER on the model’s validation step to measure the power used in the
inference phase.
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Algorithm 1. Power Measure Algorithm
Require: func, args, n_measures

measures ← ∅
i ← 1
while i ≤ n_measures do

start(meter)
output ← func(args)
stop(meter)
(energy, duration) ← measure(meter)
measure ← energy/1000/duration � Convert mJ to W
measures ← measures ∪ measure
i ← i + 1

end while
mean_power ← mean(measures)
return (output, mean_power)

It should be noted that ambient conditions of the server’s location, such
as temperature and humidity, were not considered, as well as other external
variables, and no other processes used the GPU during the execution of these
experiments.

5 Results

This section compares the results from the baseline experiment and the experi-
ment where our approaches were applied. The results show the mean accuracy
and the mean power consumption, which are derived from the best individuals
by fitness over 5 separate runs.

Since the results did not follow a normal distribution and the samples were
independent, the Kruskal-Wallis non-parametric test was employed to determine
if significant differences existed among the various approach groups. When sig-
nificant differences were observed, the Mann-Whitney post-hoc test with Bon-
ferroni correction was applied. We considered a significance level of α = 0.05 in
all statistical tests.

Figure 2 compares the accuracy obtained in the two experiments. The exper-
iments present a similar accuracy until generation 70, where it becomes possible
to observe a clear difference between them. The baseline experiment achieves a
higher accuracy than the other experiment, and, relative to that experiment, it
is visible that the smaller model obtains a marginally smaller accuracy than the
larger one. Table 2 provides statistical analysis, and Table 3 showcases statistical
values of the experiments. It is possible to see that, relative to the median val-
ues, the proposed method achieves inferior accuracy and that the smaller model
obtains the worst accuracy.

Figure 3 presents a comparison of the power consumption measured in the
two experiments. The baseline predominantly has an increasing behaviour, which
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Fig. 2. Evolution of the accuracy over 150 generations.

Table 2. Pair-wise comparison of used groups on accuracy metric, using Mann-
Whitney U post-hoc test with Bonferroni correction with bold values denoting sta-
tistically significant differences.

Baseline Proposed Method

Metric Accuracy Accuracyleft Accuracyright

Baseline Accuracy

Accuracyleft 1.09× 10−4Proposed
Method

Accuracyright 1.15× 10−7 1.16× 10−4

Table 3. Mean value, standard deviation, median and difference to baseline median
of the accuracy of the experiments.

Experiment Metric Mean SD Median Diff. to Baseline

Baseline Accuracy 0.904 0.037 0.916

Proposed
Method

Accuracyleft 0.902 0.024 0.911 −0.005

Accuracyright 0.895 0.034 0.907 −0.009

can be explained by the fact that the evolution is only being guided by accu-
racy, i.e., there are no incentives to favour models that consume less power.
Contrarily, the proposed method obtained relatively stable results over the evo-
lutionary process, with the smaller model presenting marginally lower results
than its counterpart. Table 4 provides statistical analysis, and Table 5 showcases
statistical values of the experiments. We can conclude that relative to the median
values, the proposed method achieves inferior power consumption and that the
smaller model is the most power-efficient.
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Fig. 3. Evolution of the power consumption over 150 generations.

Table 4. Pair-wise comparison of used groups on power metric, using Mann-Whitney
U post-hoc test with Bonferroni correction with bold values denoting statistically sig-
nificant differences.

Baseline Proposed Method

Metric Power Powerleft Powerright

Baseline Power

Powerleft 2.72× 10−29Proposed
Method

Powerright 8.84× 10−32 3.67× 10−19

Table 5. Mean value, standard deviation, median and difference to baseline median
of the experiments power consumption.

Experiment Metric Mean SD Median Diff. to Baseline

Baseline Power 97.80 W 18.84 W 99.89 W

Proposed
Method

Powerleft 71.92 W 1.60 W 72.20 W −27.69 W

Powerright 70.40 W 1.30 W 70.71 W −29.18 W

6 Conclusion

In this work, we developed approaches integrated into Fast-DENSER, which
empower it to generate DNN models with better power efficiency.

The most fundamental approach consists of measuring the power consumed
by the GPU on the inference phase of the DNN. We use the measure provided
by the GPU to do this. Using this metric, we developed multi-objective fitness
functions that steer the evolutionary process in a path that minimizes power
consumption.
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We created a process by which an additional output is added to a DNN model
and, after being trained, the model is split into two models – a larger one which
consists of all the layers and a smaller one composed of the layers up to the
one where the additional output is connected to. This allows us to create models
tuned for environments with fewer resources, such as smartphones, while creating
more power-intensive models tuned for environments with more resources, such
as servers. This is performed in one training, thus taking less time to develop the
two models and saving energy in the process. No prior work has been identified
that employs a similar approach.

We introduced a new mutation strategy to Fast-DENSER that allows the
reutilization of sets of layers – modules – according to the power consumption
of the modules. We stochastically favour the reintroduction of modules in a
model according to the inverse of the power they consume, thus incorporating
power-efficient modules into a model.

The results obtained by our proposals show that we can reduce the power
consumption of the ANNs without compromising their predictive performance,
showing that it is possible to minimize power consumption while, at the same
time, maximizing accuracy through the usage of NE frameworks such as Fast-
DENSER. The best model found regarding power consumes 29.18W (29.2%)
less whilst having a tiny decrease in performance (less than 1%), proving that
a small trade-off on accuracy can yield a considerable reduction in the power
consumed by the model.

6.1 Future Work

We introduced novel approaches and performed a baseline experiment and an
experiment where the mentioned strategies were applied. It could be valuable to
explore other approaches and perform more experiments in the future.

To better understand the individual impact of each strategy on the efficiency
of the models, it would be valuable to perform experiments with the employment
of only one strategy at a time. It would also be interesting to vary the fitness
functions (e.g., the weights used in them) and to vary evolutionary parameters
such as the probabilities of the mutations.

One of the most important constraints of our work is GPU-time due to
the amount of operations required to train every model of each generation. To
minimize the required time, it would be noteworthy to research how to employ
training-less strategies in Fast-DENSER, i.e., use strategies that estimate the
accuracy of a model without training it [4,14]. Such strategies would allow us to
perform more experiments in less time, saving energy in the design process.
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Abstract. In this paper, we survey the use of additional biologically
inspired mechanisms, principles, and concepts in the area of evolution-
ary reinforcement learning (ERL). While recent years have witnessed
the emergence of a swath of metaphor-laden approaches, many merely
echo old algorithms through novel metaphors. Simultaneously, numer-
ous promising ideas from evolutionary biology and related areas, ripe
for exploitation within evolutionary machine learning, remain in relative
obscurity. To address this gap, we provide a comprehensive analysis of
innovative, often unorthodox approaches in ERL that leverage additional
bio-inspired elements. Furthermore, we pinpoint research directions in
the field with the largest potential to yield impactful outcomes and dis-
cuss classes of problems that could benefit the most from such research.
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1 Introduction

Mimicking the process of biological evolution lies at the heart of the field of evo-
lutionary computation (EC). However, caution must be exercised when trans-
ferring ideas from the biological into the algorithmic realm. Despite this, the
field remains inundated with various metaphor-based metaheuristics, inspired by
everything from flocks of birds to the COVID-19 pandemic. In reality, they often
amount to no more than repackaging existing algorithms under the guise of new
analogies, with effects that are cosmetic at best. This practice has been strongly
criticized [1,2], partly for being used to obfuscate the lack of genuine novelty.
Even worse, it risks prejudicing researchers against the very idea of transfer-
ring unexploited biological concepts into EC, which could lead to false negatives
- rejections of sound ideas whose adoption would genuinely advance the field.
At the same time, numerous promising biological principles and mechanisms,
as well as most of the modern evolutionary synthesis [3,4], remain unexploited
[5] within EC (albeit with some exceptions [6]). This primarily stems from the
fact that EC and evolutionary biology developed mostly independently of each
other [7]. Yet many findings seem (even uncannily) transferable across them. For
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example, just like phenotypically different species in nature share a large part
of the genome and thus occupy a small subset of the genotypic space [8], elite
diverse solutions obtained via quality diversity (QD) algorithms tend to cluster
in a small genotypic region, referred to as the elite hypervolume [9].

In this survey paper, we focus on the current and future use of additional
bio-inspired mechanisms, principles, and concepts in the area of evolutionary
reinforcement learning (ERL). ERL [10] is a fusion of EC and reinforcement
learning (RL), in which evolutionary techniques (such as genetic algorithms or
evolutionary strategies) are used to explore the search space of RL policies1 and
ultimately find the optimal ones, i.e., those that “solve” the underlying Markov
decision process (MDP). The objectives of this paper are twofold. First, we offer
a comprehensive analysis of innovative, often unorthodox approaches in ERL
that utilize additional bio-inspired elements, which are shown in Fig. 1. This
includes research perched at the intersection of ERL, artificial life, and research
in evolutionary biology. Second, we identify research directions in the field with
the potential to yield fruitful results, and we discuss two broad classes of prob-
lems and their application areas that could benefit the most from this research.
We believe that the objectives are particularly timely and pertinent, given the
scarcity of literature that amalgamates prior findings, and the possible impact of
successfully incorporating additional bio-inspired elements into ERL. It is worth
noting that recent surveys and perspectives by Yuen et al. [5], Vie et al. [11],
Chelly Dagdia et al. [12], and Miikkulainen and Forrest [13] cover related topics.
However, they do not emphasize ERL and, therefore, place less importance on
concepts that are especially relevant in this context, like evolvability.

2 Evolutionary Reinforcement Learning

In recent years, deep RL (DRL) has been applied successfully to a wide range
of complex decision-making tasks, including the game of Go [14], robot manip-
ulation [15], and medical imaging [16]. While the majority of approaches in
(D)RL are gradient-based, including renowned algorithms such as Proximal Pol-
icy Optimization (PPO) [17], there has been a growing interest in derivative-free
and population-based methods [18]. This rise in popularity stems from earlier
research indicating that both vanilla genetic algorithms [19] (GA) and evolu-
tionary strategies [20] offer competitive alternatives to state-of-the-art gradient-
based DRL algorithms across a plethora of tasks. ERL methods share the advan-
tages of EC techniques, which particularly include their ability to a) tackle non-
convex and non-differentiable objective functions due to their black-box function
approximator nature, b) handle sparse RL rewards, c) jump over local optima by
the use of variation operators, d) accommodate both deterministic and stochastic
policies as they do not have to rely on stochasticity for exploration, e) leverage
parallelization as they are population-based, f) avoid issues related to high vari-
ance and errors when estimating first or second-order derivatives of the reward
function, and g) generate a range of diverse solutions through open-ended ERL
1 It should be noted that ERL also includes approaches in which different state-action

pairs are directly explored, as well as meta-RL methods.
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variants. However, ERL methods also inherit certain disadvantages from EC,
including a) sample inefficiency, b) the discarding of potentially useful gradient
information, and c) the lack of utilization of the inner reward structure (since
only the total return is considered, as in Monte Carlo RL methods).

2.1 Application Areas of Particular Importance

We anticipate certain classes of problems to especially benefit from the integra-
tion of additional bio-inspired principles, mechanisms, and concepts into ERL.
One of these is optimal stochastic control in dynamic (non-stationary)
environments, where swift reactions to environmental changes (i.e., changes in
the underlying MDP) are essential. Such challenges frequently appear in real-life
scenarios, many of which demand agents to dynamically adjust their behavior
without being explicitly provided with the properties or timings of environmen-
tal changes. Examples abound in application areas such as finance, medicine,
vehicle routing, and distributed communication systems [21]. Dynamic environ-
ments pose a significant challenge to DRL agents and are often tackled within
the context of areas of meta-RL, online RL, and RL in the presence of partial
observability. As a result, the most notable accomplishments achieved by DRL
techniques have been confined to static , highly controlled, and even determin-
istic environments, such as mazes and video games [22]. Problems characterized
by changing (dynamic) environments, i.e., dynamic fitness landscapes, have a
long history of research in the EC community [23]. Traditionally, the main lines
of such research endeavored to either a) track the moving optima by maintaining
diversity through a large population of solutions, b) find solutions that remain
robust in the face of new environmental conditions, or c) predict the environ-
mental changes [24], i.e., the new locations of the moving optima.

Another class involves unlocking the creative and exploratory potential of
evolution manifested by the open-endedness (OE) of biological evolution.
While various definitions of OE exist, it generally refers to the ability of a pro-
cess, system, or algorithm to continuously generate novel or increasingly diverse
or complex solutions [25]. Given that biological evolution has yielded a colossal
number of species (around 8.7 million eukaryotic species globally [26]), scat-
tered around different ecological niches, it can be interpreted as an open-ended
stochastic biological algorithm. Evolutionary processes in biology exhibit two
main modes: optimization and expansion [27]. During optimization, the number
of entities (variables) and their interactions are fixed, and the system as a whole
is static. In expansion, novel entities and interactions emerge, which is crucial
for OE. These two modes [28] can be seen as a type of exploitation-exploration
trade-off [28]. Different ERL algorithms correspond to varying levels of expan-
sion and optimization. For instance, novelty search (NS) [29] abandons classical
objectives (optimization) and promotes expansion through its divergent search
for behavioral diversity. It is particularly useful when dealing with sparse RL
rewards or ill-defined problems (e.g., design). A more balanced approach is given
by QD [30] which combines convergence (optimization) with divergence (explo-
ration) by generating a wide range of mutually different yet high-performing
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solutions across different niches [31]. Its applications include generating levels in
video games [32], evolutionary robotics [33], and many more.

It is also important to stress the interconnections between stochastic opti-
mal control in dynamic environments, OE, and the leveraging of additional
bio-inspired elements. Biological mechanisms guide the evolution of organisms
(individuals) while they are situated in constantly changing, dynamic environ-
ments, with substantial noise (stochasticity), and relatively low levels of selective
pressure [13], all while they are under the influence of feedback loops between
themselves, their populations, and environments. This promotes the variance
and diversity in organisms and ultimately leads to the emergence of OE [34].

3 Concepts, Principles, and Mechanisms

Fig. 1. A possible diagram of considered bio-inspired terms and their relationships.
Two-headed (one-headed) arrows indicate bi-directional (one-directional) relationships,
with question marks denoting poorly understood ones.

3.1 Evolvability and Robustness

Simply put, evolvability [35] refers to the ability to evolve further. It is a pivotal
driver of the evolutionary process [36], and is said to be “to evolution as general-
isation is to learning” [37]. Evolution itself is suspected to select for evolvability
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through mechanisms such as the niche founder effect [38]. A plethora of defi-
nitions of evolvability exist, mostly differing with respect to whether they only
consider phenotypic variation, or also adaptive variation, as shown in Table 1.

Table 1. Characteristics of different evolvability definitions.

Type of variation Underlying goal Example Evo. pressure Problem

Phenotypic divergence novelty search low or none no adaptivity
Adaptive convergence-divergence multi-task opt higher fitness unknown

Focusing on phenotypic variation, Mengistu et al. [39] measure an individ-
ual’s evolvability through the behavioral diversity of its immediate offspring.
A direct search for the most evolvable individuals is then performed, result-
ing in adaptable RL agents capable of generalizing to unseen maze-based RL
environments. Building upon this, Gajewski et al. [40] propose a new algorithm
called evolvability-ES that optimizes an evolvability-based objective while
significantly reducing the computational costs and enabling scalability to large
deep neural networks (DNNs). The central idea is to estimate the gradients
of evolvability. The experiments on two DRL locomotion benchmarks point to
its competitiveness with Model-Agnostic Meta-Learning (MAML) [41], a staple
meta-RL approach. Katona et al. [42] expand evolvability-ES by simultane-
ously optimizing for both fitness and evolvability, bringing the approach closer
to QD optimization. The goal is to find a single individual whose distribution of
offspring is both diverse and high-performing. The results, again on a set of RL
locomotion tasks, show that the approach is capable of handling at least some
level of RL reward deceptiveness. Gasperov and Djurasevic [43] demonstrate on a
robotic arm task that divergent search improves evolvability even under low lev-
els of selective pressure and propose a new phenotypic definition of evolvability
that takes into account the evolvability of offspring as well. They also empha-
size the concept of behavior landscapes, and describe its relation with evolvable
solutions. Further research connecting evolvability and NS includes [44] and [45].

Some works employ the perspective of adaptive evolvability. Ferigo et al. use
the mean difference in fitness between the parents and their offspring as a mea-
sure of evolvability. Their approach is tested on a locomotion task performed by
Voxel-based Soft Robots, with the results indicating that evolvability depends on
the type of evolutionary algorithm used. Outside ERL, other approaches adher-
ing to the adaptive perspective study grammatical evolution [46] and multi-
objective genetic programming for symbolic regression [47]. Finally, a num-
ber of ERL approaches indirectly rely on evolvability through parameter self-
adaptation, exemplified by approaches like the covariance matrix adaptation
evolution strategy (CMA-ES) and its expansions [48–51].

Evolvability is particularly important for optimal control in dynamic (non-
stationary) RL environments. Highly evolvable solutions have genotypic neigh-
bors with mutually diverse phenotypes, meaning that only a few mutations (or
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steps of gradient ascent) may be sufficient to find a solution that works well
under the new conditions. Similar has also been studied in various applications
of EC [52]. Evolvability also holds significant promise for creating agents capable
of generalizing to a wider range of RL environments with only slight modifica-
tions. Exploring whether methods used to enhance generalization in RL, such
as robust adversarial RL [53], also contribute to improving evolvability presents
an interesting avenue for investigation. On the flip side, the key concerns across
most of the listed approaches lie in the high computational costs of calculat-
ing evolvability. Novel methods for cheaply approximating evolvability are hence
needed, perhaps also involving gradient-based techniques [40].

Robustness, the capacity of organisms to withstand genotypic or environmen-
tal changes, has been studied in conjunction with evolvability [54,55]. Research in
biology has revealed that very limited amounts of information suffice to encode
genetically strong organisms that can endure random genetic alterations. An
open question is whether this property can be achieved within (E)RL as well,
possibly through regulatory control mechanisms akin to those found in genetics.

3.2 Epistasis and Recombination

Recombination is known to facilitate both biological evolution [56] and EC meth-
ods [57] by enhancing exploration. Paixão and Barton [7,58], using ideas from
quantitative and population genetics, decompose phenotypic variance V into
multiple components: V = VA + VI + VD + VE . Here, VA represents the addi-
tive variance corresponding to individual effects of the alleles (genes), VI the
variance due to epistatic [59] interaction effects between them , VD the domi-
nance component (zero in asexual reproduction), and VE the variance that stems
from environmental effects. The sum of additive genetic effects is also called the
breeding value of an individual, measuring the value of its genes to progeny.
Notably, when recombination is at play, interaction effects (VI) are less inher-
ited by offspring since recombination separates existing gene combinations. On
this basis, the authors propose a novel GA variant in which the rate of recom-
bination is reduced when epistatic effects prevail (and vice versa) and show its
superiority over the vanilla GA variant on the royal road problem [60]. Polani and
Miikkulainen [61,62] pioneer the use of epistasis in ERL through their Eugenic
Algorithm (EuA) and showcase the algorithm’s efficiency on the 2-pole-balancing
benchmark task. They approximate epistasis as E = 1 −Dmax, where Dmax is
the maximum difference in selection probabilities among alleles across all genes.
When Dmax is small (large), all alleles are (not) approximately equally bene-
ficial, making epistasis more (less) important. Ventresca and Ombuki-Berman
[63] delve into the theoretical aspects of epistatic interactions in evolutionary
neuro-controllers, while using information theoretic measures.

Consideration of epistasis might lead to improved variants of ERL algorithms.
For example, parent selection could be performed on the set of solutions with
the largest pure breeding values (instead of fitnesses), as precisely these solutions
are expected to yield the highest quality offspring. However, challenges lie in
estimating the breeding values/epistasis levels, which is computationally costly,



Leveraging More of Biology in Evolutionary Reinforcement Learning 97

especially in DRL which employs highly complex DNNs. Also, ERL in uncertain
domains [64] might benefit from the variance decomposition into VE .

3.3 Developmental Canalization

The term developmental canalization describes the phenomenon in which certain
dimensions of variation are explored whereas others are suppressed, resulting in
mutations affecting only certain phenotypic properties. Canalization can enhance
evolvability by restricting exploration to dimensions with a higher potential for
novelty or complexity. Huizinga et al. [65] demonstrate the emergence of develop-
mental canalization in Picbreeder, a system of interactive evolution of pictures,
arguing that this is due to the system’s open-ended and goal-free [34] nature.
Katona et al. [66] discuss the links between canalization and indirect encoding,
highlighting that the latter alters the type of phenotypic variations mutations
can cause. They show that indirect encoding outperforms direct one when using
MAML [41], in which the objective is the ability to adapt. Finally, Mengistu
et al. [39] propose promoting canalization by directly maximizing behavioral
distributions of all the offspring, i.e., the evolvability of the entire population.

Canalization might be a prerequisite for evolving agents that can tackle highly
complex environments, as attempted by open-ended RL approaches, such as the
Paired Open-Ended Trailblazer (POET) [67]. Generally, much remains ripe for
discovery. Future endeavors might revolve around novel methods for parameter
self-adaptation that encode the loci, type, and magnitude of mutations as part
of the RL agent’s genotype, thereby enabling their coevolution. Ideally, such
methods would build upon the large body of research on self-adaptive parameter
control in EC [68–71]. Moreover, the identification of promising dimensions of
variation could inform the design of the behavior space in QD approaches, which
is traditionally handcrafted [72]. Some open questions also remain about the
choice and design of canalization metrics.

3.4 Epigenetics

In the biological realm, epigenetic layers above genes regulate gene expression
based on the current environmental conditions. This regulation is done through
methylation marks [73], which determine which genes are expressed (or muted)
by modifying histone levels. Histones are proteins around which DNA is spooled
[74,75]. Epigenetic mechanisms enable rapid phenotypic changes in response to
non-stationary environmental dynamics, increasing the probability of survival.
Information stored in the epigenetic layers, or simply epigenetic information,
representing the memory of former environmental conditions, is inherited by
the next generation [76]. Mukhlish et al. [77] put forth a novel epigenetic learn-
ing algorithm called EpiLearn, inspired by Lamarckian evolution, for use in
swarm robotics. The algorithm is shown to be capable of handling deceptive
problems. The same authors [78] then propose an ERL method RELEpi in which
reward, temporal difference, methylation, and epigenetic inheritance are utilized
to approximate optimal RL policies. In their approach, rewards provided by the
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RL environment directly affect the histone values. Finally, the method is suc-
cessfully demonstrated on a simulated search and rescue mission [79]. Sousa and
Costa [80] introduce EpiAL, an artificial life epigenetic model. Their main finding
is that the agents with epigenetic mechanisms find it much easier to flourish in
dynamic environments, in which the attributes, such as temperature, light, and
food, vary over time. Interestingly, this only applies to non-moving agents, as
moving agents do not require epigenetic enhancements and can simply move to
more favorable areas, thereby reflecting the biological findings in plants [81].

Similarly to evolvability, consideration of epigenetics is expected to be fruit-
ful when addressing certain types of dynamic RL environments. For instance,
in environments involving temporary shifts or changes, short-term epigenetic
changes might be preferred over modifying the genotype itself, which could be
optimal in the long term. In the framework of continual RL [82], epigenetic
markers can be used to dynamically change or fine-tune an RL agent’s behavior
during its lifetime, and then inherited by its offspring, enabling their immedi-
ate adaptation to the ongoing environmental circumstances. More specifically,
epigenetic effects could be implemented through binary masks overlaid on the
underlying (D)RL controller’s genotype (NN weights in DRL). This transforms
(D)NN learning into a combinatorial optimization task. The existing research
on DNN pruning through binary supermasks [83,84] and various forms of the
lottery ticket hypothesis [84,85] might also provide insights here.

3.5 Neutrality

Neutrality, a term stemming from Kimura’s neutral theory of molecular evolution
[86], refers to the phenomenon where most evolutionary changes are a product
of neutral mutations that have no effect on the phenotype or fitness. Galván [87]
studies the role of neutrality when evolving DNNs, with possible applications in
deep ERL. Neutrality is also discussed in [88], where experiments are performed
on pole balancing RL benchmarks, but from the perspective of multi-task opti-
mization. As there is currently no consensus [89] on whether neutrality hinders or
expedites the evolutionary search process, this topic presents yet another possi-
ble research pathway, especially in relation to different encodings and variational
operators used in ERL.

3.6 Niche Construction

Niche construction (NC) [90,91] is the process whereby organisms modify their
environments through their own activities. Such activities are related to the
concept of the extended phenotype [92], which defines phenotypes as encom-
passing not only biological mechanisms (e.g., protein synthesis) but also all the
other effects that genes have on their environment. The process of NC, in turn,
affects the selection pressures for organisms’ (and other) species, i.e., alters the
evolutionary fitness landscapes. Hence, NC is more than just a byproduct of
evolution - it is also an evolutionary driver itself [93]. The investigation of NC is
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usually undertaken from a multi-agent RL perspective, with applications span-
ning diverse areas such as common-pool resource appropriation [94] and robotic
learning of complex tool use skills [95]. Among pure ERL approaches, Hamon et
al. [96] continuously evolve RL agents without resetting their environment, lead-
ing to complex eco-evolutionary feedback effects. Additionally, Chiba et al. [12]
perform research at the intersection of evolutionary ecology and DRL, studying
NC in a two-dimensional environment in which virtual organisms, represented
by NNs, construct structures to avoid predation. It is concluded that such inter-
actions between agents and their environment can substantially contribute to
the emergence of open-ended evolutionary processes in real domains, such as
the embodied evolution of robots. Lastly, Berseth et al. [97] introduce SMiRL
- surprise minimizing RL, which shows that complex skills can be acquired by
carving out niches that sustain a degree of predictability despite the surrounding
entropy. This mirrors analogous findings from biology and cognitive sciences [98].
SMiRL represents a type of anti-NS; while in NS novelty is actively sought, here
the open-world environments themselves are treated as sources of high novelty,
and the challenge lies in maintaining a steady equilibrium amid environmental
chaos. Concretely, the goal is to reduce the entropy of the states visited by the
RL agent. In summary, alongside canalization, NC is an emergent phenomenon
indicative of the increasing complexity and OE of an evolutionary system.

3.7 Hierarchy/Modularity

Hierarchy can be defined as “the recursive composition of function and structure
into increasingly larger and adapted units”, called modules [99]. The modules
themselves are highly connected clusters of entities, only sparsely connected to
entities from other clusters [100]. It has been argued that the cost of neural con-
nections promotes the emergence of both hierarchy [100] and modularity [101],
which in turn drive the appearance of canalization. A related topic in (E)RL is
that of hierarchical RL [102] where problems are broken down into sub-problems,
which are solved separately and then combined by using a composition strat-
egy. To this end, different forms of temporal and state abstractions are utilized.
Abramowitz and Nitschke [103] merge Scalable Evolution Strategies (S-ES) with
hierarchical RL and come up with a novel method - Scalable Hierarchical Evo-
lution Strategies (SHES). It is used to train a two-level hierarchy of policies
- a higher-level controller policy which sets goals, and a lower-level primitive
policy which directs the agent to fulfill these goals. During training, the param-
eters associated with the controller and the primitive undergo coevolution. The
experimental results on evolutionary robotics RL environments indicate compet-
itive performance with state-of-the-art methods, with no hyperparameter tuning,
and with high behavioral robustness, but at the price of sample (in)efficiency.
A related topic in biology is given by genetic architecture and genotype-to-
phenotype (G-P) mappings [104]. Wright and Laue [105] compare the properties
of biological G-P mappings with those of the logic gate circuits, while focus-
ing on robustness, evolvability, and redundancy. They finally suggest strategies
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for facilitating the evolution of complexity, concluding that performing evolu-
tionary searches in the vicinity of complex phenotypes should result in complex
genotypes as well.

3.8 Phylogenetic Analysis

Phylogenetic analysis [106,107] studies the evolutionary relationships between
different species, individuals, or genes, aiming to understand their evolutionary
past. In the field of EC, phylogenetics has been used to study speciation dynam-
ics of algorithms [108], investigate links between phenotypic and phylogenetic
diversity [109], and characterize evolutionary dynamics in artificial life systems
[110]. Most of these analyses are post-hoc and used to delve deeper into the inner
workings of existing algorithms. An exception to this is research by Lalejini et al.
[111] in which runtime phylogeny tracking is leveraged to direct the evolution-
ary search process. More precisely, two methods of phylogeny-informed fitness
estimation in lexicase selection are introduced and shown to improve diversity
maintenance. The authors accentuate a possible use in ERL - in combination
with QD algorithms, where behavioral diversity is required.

A substantial amount of related work also exists in ERL. In their Few-shot
quality-diversity optimization (FAERY) approach, Salehi et al. [112] utilize paths
taken in the parameter space, i.e., study evolution forests comprised of parent-
offspring relationships between nodes to develop a few-shot QD algorithm. By
doing this, the authors tacitly employ phylogenetic ideas. The experiments per-
formed on navigation and robotic manipulation benchmarks point to the sig-
nificantly improved sample efficiency of QD optimization when solving novel
problems. Rainford and Porter [113] use phylogenetic analysis to study how dif-
ferent variational operators affect the fitness of a population. The adjustment
of mutation types in accordance with the findings is then shown to improve the
fitness of a genetic code improvement system by 20%. Knapp and Peterson [114]
improve upon the seminal NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [115] by proposing a new speciation strategy based on cladistics, a phy-
logenetic analysis method. This is done by changing the way innovation numbers
are allocated to new nodes and hence also the implementation of reproductive
compatibility. The resulting natural evolution NEAT (NENEAT) algorithm is
shown to demand fewer generations to solve the XOR problem and fewer evalua-
tions to solve the double pole cart problem when compared to the vanilla NEAT
algorithm. Lastly, in [116], phylogenetic trees are used primarily as a data visu-
alization tool to show the evolution of behaviors during coordination learning in
multi-agent systems.

3.9 Plasticity

In addition to phylogenesis, which involves developmental changes over evo-
lutionary time, intelligent agents can be developed through lifetime learning
or ontogenesis [117]. Ontogenetic approaches make up a significant portion of
research in continual RL. A related term is phenotypic plasticity, the ability of
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an organism to adapt to its environment during its lifetime [118]. This can be
done by altering the traits encoded by its fixed genotype in response to envi-
ronmental cues. The relationship between plasticity and evolvability is fiercely
debated, with several competing theories [35]. At the intersection of ontogenetic
and phylogenetic approaches, Abrantes et al. [119] propose Evolution via Evolu-
tionary Reward (EvER), which aligns the (ontogenetic) reward function with the
(phylogenetic) fitness function and successfully demonstrate its performance on
bio-inspired environments. Stanton and Clune [120] proposed curiosity search, a
step towards plasticity in ERL. In curiosity search, intra-life behavioral novelty
is promoted. Although the agents cannot learn within their lifetime and hence
exhibit no genuine plasticity, they rely on an intra-life novelty “compass” that
indicates the locations of new areas. The approach achieves excellent results on
the notoriously difficult RL benchmark Montezuma’s Revenge [121].

Schmidgall [122] demonstrates the use of evolved neuromodulated plastic-
ity on “Crippled Ant”, a high-dimensional continuous control RL task. Self-
modifying plastic networks are shown to outperform a standard NN architecture.
Yaman et al. [123] introduce an evolutionary approach to optimize and discover
synaptic plasticity rules, enabling autonomous learning in dynamic conditions.
The proposed algorithm was tested on agent-based foraging and prey-predator
tasks, achieving results comparable to those obtained using hill climbing. Further
research in this subfield could include reducing the cost of phenotypic plasticity
for an individual [118], ideally through novel few-shot learning approaches, and
developing learning systems that implicitly adjust the level of plasticity based
on the current conditions [5].

3.10 Homeogenesis

Homeogenesis happens when organisms adapt to environmental changes by
adding an “adapter” function to their existing functionality, rather than com-
pletely redeveloping the functionality [124], as the latter might be too expen-
sive. The adapter, which “converts” current environmental conditions into for-
mer ones, represents a shortcut in the evolutionary fitness landscape. It is closely
related to the chemistry conservation principle [125], which states that “chemical
traits or organisms are more conservative than the changing environment and
retain information about ancient conditions”. Along with “classical” adaptation
and NC, it is one of the classes of adaptation mechanisms, and a driver of com-
plexity through the accumulation of adapters. Homeogenesis is known to appear
in domains such as metabolism and chemical reaction networks [124], but is also
expected to appear generally in other evolutionary systems. In modular deep
learning [126], various adapter layers (e.g., sequential and parallel bottleneck)
are used to adapt pretrained models to novel tasks [127]. In ERL, homeogenesis
may be combined with NEAT-like approaches [115,128], for example, by using
adapters in the form of additional functions applied to the RL agent’s actions.
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3.11 Resource Constraints

Paradoxically at first glance, resource bottlenecks and constraints, such as energy
or size constraints or various forms of parsimony pressure, are hypothesized to
have contributed to the rise of complex and intelligent life. Tang et al. [129]
limit the attention of RL agents by incorporating self-attention bottlenecks in
their perception. This is argued to function similarly to indirect encoding, with
results indicating competitive results in game domains with significantly fewer
parameters. Similarly, constraints to RL agents have been introduced in the
form of NN weight agnosticism [130] and observational dropout [131]. These and
similar methods could serve as efficient regularizers guiding the exploration of
RL policy space. Furthermore, exploring the relationship between homeogenesis
and resource constraints might also be a worthwhile endeavor.

3.12 Other Mechanisms, Principles, and Concepts

A plethora of further biologically inspired mechanisms, principles, and concepts
are available to ERL practitioners. Barton and Paixão [7] rely on the infinites-
imal model [132] from population genetics and propose controlling popula-
tion sizes and selection intensities accordingly, as well as the mutation rate.
Smith et al. [133,134] employ conflicting objectives to promote phenotypic
diversity, as an alternative to NS. This is analogous to the conflicting selective
pressures faced by organisms. For example, there might be trade-offs between
traits that boost survival chances and those conducive to reproductive success.
When dealing with environmental stressors causing pressure in opposite direc-
tions, trade-offs are also inevitable [135]. On top of that, there is a certain ten-
sion between sensitivity to environmental response (plasticity) and robustness
[136]. Gender-specific ideas, which have been proven to increase diversity in
populations (reduce homogenization) in the context of GAs, might be used to
create gendered RL agents, with gender definitions derived from either their
behavioral or genotypic properties. This could be combined with the exploration
of different mating systems (panmictic and other) and mate selection strate-
gies. Genetic processes such as gene duplication, horizontal gene transfer,
or translocation might be used to devise new variation operators in ERL.
In a similar vein, Vassiliades and Mouret [9] studied the distribution of elite
solutions in the genotypic space to design novel variational operators utilizing
inter-elites correlations, hence touching upon comparative genetics. Utiliza-
tion of selective pressure [137], which represents the accumulation of all the
environmental forces that influence the survival and reproduction of individu-
als, is another possibility. Different selection operators in EC/ERL [138] (e.g.
truncation strategies), move strategies in local search algorithms [139], or walks
on the fitness landscape, can be constructed depending on the desired level of
selective pressure. Intrinsic motivations (IMs) [140,141] holds promise for
open-ended learning [142], and has been used to build autotelic [143] RL agents,
i.e., agents that self-select their own goals and collect data by pursuing those
goals. A variant called interactional motivation, espousing an RL paradigm in
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which the reward depends on the agent’s own observation and action, rather
than the environment [144], has also been proposed. Genetic drift, the change
in allele frequencies due to chance events [119], and evolutionary capacitors
[145,146] have also been investigated in ERL and related fields. Indirect encod-
ing, important for reducing the search space and ensuring scalability in DRL, has
extensive applications in ERL, including HyperNEAT [147] and compositional
pattern-producing networks, with links to artificial embryogeny [148]. Lastly,
complexity and entropy [105,149] and their interrelationship have also under-
gone analysis.

4 Discussion

The development of ERL methods entails numerous aspects, including the selec-
tion of fitness function or diversity metrics, and the construction of RL policy
regularization techniques and exploration-exploitation strategies. While clearly
valuable, many of the current approaches rely on ad hoc measures and artifi-
cial tricks, e.g., naive reward (fitness) function engineering, use of simple prox-
ies, or different types of manual engineering. For example, in divergent search
approaches in the spirit of NS, the k-NN distance is commonly used as the spar-
sity metric. But ideally, what we expect novel divergent search algorithms to do
is bypass the need for the promotion of diversity through an explicit design of
the fitness function. Diversity should arise as an emergent phenomenon, similar
to how a simple form of developmental canalization appeared in [150] without
directly optimizing for it. In the vernacular of evolutionary biology, we would
like favorable properties to be indirectly rather than directly selected for, and
discovered endogenously rather than chosen exogenously. Despite the striking
diversity of species on Earth, natural evolution does not optimize for it directly;
it is rather a reflection of the fact that invading empty phenotypic niches through
evolutionary expansion [151] enables organisms to coexist with others with less
or no local competition [152]. The result of all this is an abundance of promising
but still limited approaches that fail to consider or properly integrate some of
the core evolutionary principles, pointing to what seems to be a missing puzzle
at the heart of current efforts. In the context of OE, the current methods har-
ness its power only to a small degree, incomparable to that of natural evolution,
even if simple organisms like E. coli are considered [153]. Using the classification
system from [154], the majority of current methods primarily exhibit OE at the
elementary level of variation, meaning that novelty is achieved only within the
explicitly pre-defined state space. OE at higher levels of innovation, involving
systems unexpectedly enlarging their state space or introducing new mechanisms
during major transitions, has yet to be realized, perhaps by allowing the changes
in the genomic and regulatory architecture, as it happens in the biological realm
[35]. Importantly, biological evolution does not merely explore the predefined
state space of all possible designs but rather expands this space on the go, open-
ing floodgates for more complexity and even introducing novel replicators [155].
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Among (E)RL methods designed to address dynamic RL environments [156],
the impression is that they seldom leverage the power of OE, despite its poten-
tial. Moreover, these methods commonly rely on the meta-RL framework [41],
which requires that the distribution of tasks is given together and in advance.
In contrast to this, real-world environments involve unknown tasks that appear
only sequentially, rendering the former assumption highly questionable. There-
fore, combining ERL with the online learning (OL) framework [157], in which
adaptations to the evolving environment are done continuously (i.e., without
resetting the model and removing past information), may represent a promising
way toward attaining true adaptivity. Findings on the learning processes of bio-
logical systems indicating they perform well when sequentially presented with
novel environments (a key feature of intelligence), also resonate well with the
OL framework. Various combinations of meta-RL and OL [158–160] also present
topics worthy of investigation in the context of ERL. For instance, online meta-
learning can overcome the weaknesses of both meta-RL (the need for the pre-
sentation of the set of tasks beforehand) and online RL algorithms (the inability
to leverage past experiences due to catastrophic forgetting). Improving perfor-
mance in non-stationary environments may involve ensuring the diversity of poli-
cies, which can be obtained in multiple ways, for example by QD-like approaches
[161] combined with multi-armed bandit algorithms or by multi-agent ERL. Con-
nections with related research areas such as artificial life [162], synthetic biology
[163], and cultural evolution [164] should be leveraged as well.

The importance of developing realistic RL environments must also be empha-
sized. Instead of only having naively static environments, malleable environments
that allow two-way interactions with RL agents should also be considered, lead-
ing to the dynamic fitness function landscapes. In current approaches, the inter-
play between organisms and their environments is neglected despite compelling
evidence suggesting that effects such as NC can override external selection forces
and steer the course of evolution in new directions [90]. Fortunately, recent years
have seen the introduction of multiple RL environment frameworks, such as
MiniHack [165] a sandbox for open-ended RL research consisting of game-like
environments with varying levels of complexity, and escape room-based testbeds
[166], which are aimed at hierarchical RL.

We, perhaps ambitiously, expect the next generation of ERL approaches to
integrate biological mechanisms and principles more naturally, smoothly, and
systematically into their structure and inner workings, such that the desiderata
emerges through careful algorithm design, without resorting to ad hoc tricks.
Integration and reimagining of ideas from related fields such as multi-armed ban-
dits, complexity sciences, deep learning, and artificial life might also be fruitful
in enriching ERL. Many of the results might be transferable to wider EC set-
tings. With exceptions in the field of artificial life, the ultimate goal should not
be simply to replicate natural evolution with more fidelity, but rather to natu-
rally incorporate the principles that will lead to ERL approaches with improved
performance, whether that means achieving OE, maximizing classical fitness
functions, or achieving more sample-efficient or even few-shot learning [112].
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Multiple underlying tensions and trade-offs (exploration vs exploitation, muta-
tion vs stasis, risk aversion vs risk-seeking, etc.) must, however, be considered
as part of this endeavor, as well as the thorny issue of sample inefficiency.

5 Conclusion

In this paper, we have explored and categorized a wide array of relevant method-
ologies and approaches that combine ERL with additional biologically-inspired
mechanisms and principles. We have offered novel insights into research gaps,
strengths, and weaknesses in current methods, as well as some avenues for fur-
ther exploration. By harnessing the power of biological evolution to the fullest
extent, and prioritizing first principles over cheap metaphors, we are convinced
that multiple novel ERL approaches and frameworks rooted in the biological per-
spective await. Interdisciplinary efforts and collaborations covering related fields
such as theoretical evolutionary biology [167] and evolutionary systems biology
[168] and the cross-pollination of ideas between them and ERL are especially
desirable. Hopefully, this will lead to significant progress in this challenging and
exciting field, by narrowing the gap between what evolution entails and how it
is modeled in the EC realm.
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Abstract. In this study, the challenge of developing a dissimilarity met-
ric for machine learning pipeline optimization is addressed. Traditional
approaches, limited by simplified operator sets and pipeline structures,
fail to address the full complexity of this task. Two novel metrics are
proposed for measuring structural, and hyperparameter, dissimilarity in
the decision space. A hierarchical approach is employed to integrate
these metrics, prioritizing structural over hyperparameter differences.
The Tree-based Pipeline Optimization Tool (TPOT) is utilized as the
primary automated machine learning framework, applied on the abalone
dataset. Novel visual representations of TPOT’s search dynamics are
also proposed, providing some deeper insights into its behaviour and
evolutionary trajectories, under different search conditions. The effects
of altering the population selection mechanism and reducing population
size are explored, highlighting the enhanced understanding these meth-
ods provide in automated machine learning pipeline optimization.

Keywords: AutoML · TPOT · Visualization · Search characteristics

1 Introduction

Automated machine learning (AutoML) is a rapidly growing field, focusing on
automating the application of machine learning to classification and regression
tasks [6]. In this domain, machine learning models can function independently
or sequentially, with one model’s output feeding into the next. Such configua-
tions, called machine learning pipelines [9], harness the combined strengths of
multiple models to enhance overall performance. Despite growing interest, fit-
ness landscape analysis in AutoML, especially regarding pipeline optimization,
remains an area with significant unresolved questions [18]. A primary issue is
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the development of an effective metric for measuring the dissimilarity between
solutions in the decision space. This task is complex, as pipeline hyperparam-
eters can take continuous, discrete or categorical values, are often conditional,
and typically have hierarchical relationships.

State-of-the-art investigations in this area typically operate on a severely
reduced operator set or rely on restricting pipeline complexity [3,11,13,15–17].
These approaches are very limiting, and do not generalize to arbitrary pipelines.
So far, there are no attempts (to the authors’ knowledge) to define a dissimi-
larity metric for arbitrarily complex machine learning pipelines, and addressing
this gap in the literature would represent a significant contribution to both the
AutoML and broader machine learning communities.

The tree-based pipeline optimization tool (TPOT) [10], a well known Python
library for automating machine learning, exemplifies this. It employs genetic pro-
gramming to optimize machine learning pipelines, searching for the best combi-
nation of data preprocessing and modeling steps. Section 2 explains how TPOT
produces new pipelines through mutation and crossover, highlighting unique
aspects of its methodology. Within TPOT, mutations can alter both pipeline
operators and hyperparameters. Consequently, this paper proposes two metrics:
one for measuring the dissimilarity between pipeline structures, and another
for hyperparameter differences, as detailed in Sect. 3. These metrics are inte-
grated using a hierarchical approach to emphasize structural over hyperparam-
eter changes, reflecting their greater impact on pipeline behaviour. To this end,
the concept of pipeline structure is formally defined.

In Sect. 4, novel methods of visually representing the behaviour and evolu-
tionary trajectory of TPOT search are introduced. Experiments conducted on
the well-studied abalone dataset [4] demonstrate the utility of these visualiza-
tions under various conditions, including the effects of changing the population
selection mechanism to focus solely on cross-validation error and reducing pop-
ulation size. These experiments underscore the enhanced insights into TPOT’s
search dynamics offered by the proposed visual representations.

2 Background

2.1 TPOT Pipeline Representation

As its name suggests, the tree-based pipeline optimization tool (TPOT) uses a
tree-based representation to manage its pipelines. The pipelines are composed
of a combination of transformation operators—each with their own set of hyper-
parameters. These operators take the form:

OpA(input matrix, OpA paramA1=True, OpA paramA2=2.7).

Here, the operator is called OpA and has an input and two hyperparameters. The
input (input matrix) is always first, followed by the associated hyperparame-
ters, which use the naming convention operatorName hyperparameterName.

The set of operators—along their associated hyperparameters and possible
hyperparameter values—are maintained in an object called the pset. When the
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Fig. 1. Nested tree (a) and tree graph (b) representation of pipeline p.

pipeline is evaluated on some set of input data, the data is transformed by each
operator in turn, passing the output of one operator to the input of the next,
until the root of the tree is reached. During search, TPOT maintains the set of
evaluated pipelines using a Python dictionary, which employs a nested bracket
string representation of each pipeline as its keys, e.g.,

p = OpA(OpB(OpC(input matrix, OpC paramC1=0.5, OpC paramC2=0.1),

OpB paramB1=catX), OpA paramA1=True, OpA paramA2=2.7).

Figure 1 gives two visual representations of pipeline p: a nested tree representa-
tion showing the operators and their respective hyperparameter values; and an
abstract tree graph representation, emphasizing the connections between oper-
ators. In the tree graph representation, the input nodes are always uppermost.

Although the pipeline representations in Fig. 1 have the appearance of being
tree-like, the “branches” of these trees are simply the hyperparameters of each
operator. Stripped of these hyperparameters, the pipeline structures shown are
essentially linear. In order to allow for more complex structures, TPOT makes
use of the CombineDFs operator. This operator puts the “tree” in TPOT, and
has the form,

CombineDFs(input matrix, input matrix).

Each of the input matrix nodes may contain an entire subtree, the output
matrices of which are merged—by horizontal stacking—to produce a combined
input for the next operator in the pipeline. Figure 2(a) illustrates this principle.

2.2 Producing New Pipelines

Throughout its execution, TPOT uses the genetic programming (GP) tools avail-
able in the DEAP Python library [2] to search the space of possible pipelines.
With each generation, a population of N parent solutions is chosen using a
non-dominated sort, with cross-validation error and number of operators as the
selection criteria. A set of N offspring solutions is produced from this population,
using standard one-point crossover, or one of three mutation operations.

The insert operation creates a new tree by slicing the main tree at an
arbitrary input node and inserting a new operator between the two halves of the
sliced tree.
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Fig. 2. The CombineDFs operator allows more complex pipeline structures to be con-
structed (a). However, when the shrink operation is applied to it (b), the entire subtree
in its second input is removed as well.

The shrink operation reduces the size of the pipeline by arbitrarily removing
one of its operators. It does this by slicing the pipeline tree at an arbitrary (non-
leaf) input node, deleting the subtree of the operator that the slice occurred at,
and repairing the tree.

Finally, the replace operation can be used to substitute both operator and
hyperparameter nodes in the pipeline tree. An arbitrary node in the pipeline is
selected and, depending on whether it is an input or hyperparameter node, the
pset is used to replace the existing operator subtree with a new operator, or the
value of the hyperparameter node with another hyperparameter value.

The default probabilities of crossover and mutation are 0.1 and 0.9, respec-
tively. In the case of crossover, two pipelines that share at least one operator are
selected, but only the first offspring is retained.
A special case for CombineDFs: Typically, the mutation operations modify the
pipeline by at most 1 operator. insert adds an operator, shrink removes an
operator and replace has no effect on the number of operators in the resulting
pipeline. The exception to this is when the shrink, or replace, mutation is
applied to the CombineDFs operator. As the CombineDFs operator merges the
output of two entire subtrees, there is no simple way to reconcile them, once
CombineDFs is removed. TPOT addresses this issue by only treating the first
input of CombineDFs as a “true” input, with the second input being considered
a de facto hyperparameter. The consequence of this is that, when CombineDFs is
removed from a pipeline, any subtree in its second input is also removed. Figure 2
illustrates the effect of removing CombineDFs on subtrees in both input positions.
Because the subtree in either input of CombineDFs can be arbitrarily large,

arbitrarily large jumps in pipeline complexity can occur. A similar phenomenon
is also observed for the replace mutation operation.

2.3 The Tree Edit Distance Algorithm

In algorithmic graph theory, a common method of quantifying the dissimilar-
ity between two arbitrary, labelled trees is through application of the tree edit
distance algorithm [14]. Similar to the string edit distance algorithm, tree edit
distance algorithms count the number of transformation operations needed to
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convert one tree to another. Typically, tree edit distance algorithms consider the
following three operations:

– Insertion: Inserting a node into one of the trees.
– Deletion: Deleting a node from one of the trees.
– Substitution: Replacing a node in one tree with a differently labelled one.

Formally, let T1 and T2 be two labelled trees with m and n nodes, respectively. A
tree edit script is a sequence of edit operations that transforms T1 into T2. Each
edit operation has an associated cost. The tree edit distance between T1 and T2

is then defined as the minimum total cost of any tree edit script that transforms
T1 into T2. Typically, the cost of inserting or deleting a node is 1 and the cost
of substituting two nodes is 1 if their labels are different, and 0 otherwise.

3 A Metric for Pipeline Dissimilarity

3.1 Pipeline Structures

Although pipelines produced by crossover and mutation may be unique to each
other, they are not necessarily structurally unique. During its operation, TPOT
can be thought about as searching a hierarchy of two distinct classes of spaces.
The first is the space of all possible combinations of operators, which it explores
by using genetic programming to mutate and recombine tree representations
of previously evaluated pipelines. The second is the subspace of all possible
hyperparameter combinations for each unique combination of operators, which
it explores using a grid-based search (having discretized any continuous param-
eter spaces). It is not possible to keep improving a pipeline by optimizing its
hyperparameters alone; eventually a ceiling will be reached, and the only way
to achieve further improvement is to change the combination of operators. This
implies that search in the space of operator combinations is more influential
than search in the space of hyperparameter combinations, so it is useful to have
a method of grouping evaluated pipelines together by their so-called pipeline
structure.

Let p, and q be two pipelines. Pipelines p and q are said to be unique to each
other if they have at least one dissimilar hyperparameter value, or do not share
the same configuration of operators. A pipeline structure is a subset in the set of
evaluated pipelines, partitioned such that every pair of pipelines within a subset
are unique and share the same set of operators, in the same configuration. As
a given operator will have the same hyperparameters, regardless of its position
in the pipeline, a pipeline structure can be represented by its configuration of
operators and inputs alone. For example, let p and q be pipelines represented by
the two TPOT nested bracket strings:

p = OpA(OpB(input matrix, OpB paramB1=0.1, OpB paramB2=0.5),

OpA paramA1=True, OpA paramA2=0.7);
q = OpA(OpB(input matrix, OpB paramB1=0.6, OpB paramB2=0.5),

OpA paramA1=False, OpA paramA2=0.2).
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These pipelines are clearly unique to each other, as they do not share the same
hyperparameter values. However, both have the same set of operators, organized
in the same way, and therefore share the same structure. This is denoted with a
bar over the pipeline symbol, and the tree-bracket string representation:

p̄ = q̄ = {OpA{OpB{input matrix}}}.

3.2 Quantifying Pipeline Dissimilarity

Comparing two machine learning pipelines in the decision space presents numer-
ous challenges. When applied to a pipeline, the mutation operations provided by
TPOT can modify either the entire structure or simply change the value of one
or more hyperparameters. The effects of structural and hyperparameter muta-
tions are typically asymmetrical, with structural changes having a much greater
effect on the behaviour of the resulting pipeline than hyperparameter ones.

This section proposes metrics for quantifying both structural dissimilarity
(denoted with δ̄) and hyperparameter dissimilarity (denoted with δ̂). These met-
rics are combined using a hierarchical approach to produce a general metric for
tree-based machine learning pipeline dissimilarity (denoted with Δ).

Quantifying Structural Dissimilarity: With the exception of the
CombineDFs operator, the insert operation typically adds one operator to a
given pipeline, shrink removes one operator and replace makes no change to
its structure. In the tree edit distance algorithm, inserting a node into the tree
increases its size by one, deleting a node from the tree reduces its size by one
and substituting a node has no effect on the size of the tree. This indicates that
there is a direct analogy between the insert, shrink and replace mutation
operations, and the insertion, deletion and substitution operations of tree edit
distance algorithm—implying that tree edit distance is an appropriate metric
by which to approximate the dissimilarity between pipeline structures, in the
decision space.

Let p and q be the unique pipelines:

p = OpA(OpB(input matrix, OpB paramB1=0.8, OpB paramB2=catX),

OpA paramA1=True, OpA paramA2=2.7);
q = OpC(OpB(OpD(input matrix, OpD paramD1=6, OpD paramD2=0.1),

OpB paramB1=0.8, OpB paramB2=catX), OpC paramC1=0.3).

The structural representations for p, q are:

p̄ ={OpA{OpB{input matrix}}};
q̄ ={OpC{OpB{OpD{input matrix}}}}.

The structural dissimilarity metric δ̄ uses the tree edit distance algorithm to
count the minimum number of mutations required to transform pipeline struc-
ture p̄ into q̄. In this case δ̄ = 2, as the transformation can be performed with a
replace mutation operation (OpA → OpC) and an insert operation (OpD).
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Quantifying Hyperparameter Dissimilarity: The direct analogies that
exist between its node operations and the TPOT mutation operations, sug-
gest that tree edit distance is an appropriate metric to approximate the distance
between pipeline structures in the decision space. However, this relationship does
not extend to approximating the dissimilarity at the hyperparameter level. The
reasons for this are illustrated through the following example. Let p and q be
the pipelines:

p = OpA(OpB(input matrix, OpB paramB1=0.8, OpB paramB2=catX),

OpA paramA1=True, OpA paramA2=2.7);
q = OpC(OpB(input matrix, OpB paramB1=0.8, OpB paramB2=catX),

OpC paramC1=0.3).

Naively applying the tree edit distance metric in this situation suggests that two
node substitutions (OpA → OpC and OpA paramA1=True → OpC paramC1=0.3)
and one node deletion operation (OpA paramA2=2.7) are required to transform
p into q; when, in reality, this transformation could be achieved with a single
replace mutation operation (OpA → OpC). When OpA is replaced by OpC, all of
the hyperparameters are automatically removed, and the hyperparameters for
OpC are randomly assigned and inserted. The fact that changes at a structural
level can have a large impact on the pipeline at a hyperparameter level, reinforces
the notion that there is a hierarchical relationship between the two.

In the case where the structural dissimilarity between two unique pipelines
is 0, then they must be distinguished by the differences in their hyperparameter
values. Let r, s be the unique pipelines:

r = OpC(OpD(input matrix, OpD paramD1=3, OpD paramD2=0.8),

OpC paramC1=1.4);
s = OpC(OpD(input matrix, OpD paramD1=1, OpD paramD2=0.3),

OpC paramC1=0.6).

By inspection, both share the same structure: r̄ = s̄ =
{OpC{OpD{input matrix}}}. Normalizing the hyperparameter values to the
interval [0, 1], these two pipelines can be represented as unique points contained
within the unit hypercube, denoted with the notation, r̂, ŝ. The hyperparameter
dissimilarity between r and s is then the magnitude of the displacement vector
between points r̂ and ŝ:

δ̂(r, s) = ||r̂ − ŝ||,

where ||x|| is the Euclidean norm of vector x. For individual hyperparameters
ri, si that take Boolean or categorical values, the component-wise difference,
r̂i − ŝi, is set to 0 if the values are the same, and 1 otherwise.
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A Hierarchical Dissimilarity Metric: While it is reasonable to directly com-
pare two different pipeline structures, it does not make sense to compare the dif-
ference between the values of two different hyperparameters. Therefore, a hier-
archical approach must be adopted when combining structural dissimilarity δ̄,
and hyperparameter dissimilarity δ̂, to compute the overall dissimilarity between
two pipelines, Δ. If any structural dissimilarity exists (δ̄ > 0), then the overall
dissimilarity is set to the structural dissimilarity (Δ = δ̄). However, if there are
no structural differences (δ̄ = 0), then a scaled version of the hyperparameter
dissimilarity is used.

Because the structural dissimilarity counts the minimum number of muta-
tion operations required to transform one pipeline into another, δ̄ will always
take a positive integer value. In general, the maximum hyperparameter dis-
similarity between two pipelines occurs at the extremes of the hypercube, e.g.,
t̂ = (0, 0, . . . , 0), û = (1, 1, . . . , 1). In this case, δ̂(t, u) =

√
n, where n is the num-

ber of hyperparameters under consideration, is the geometric length of the main
diagonal of the hypercube, and is always greater than 1 for n > 1. This creates
potential confusion as to whether a value of Δ > 1 indicates that the change is
hyperparameter-based, or structural. To address this ambiguity between hyper-
parameter and structural changes, a scaling factor can be introduced to adjust
the hyperparameter dissimilarity relative to the number of hyperparameters
under consideration:

α =
(

1 − 1
n + 1

)
.

Multiplying the hyperparameter dissimilarity by this term ensures the scaled
hyperparameter dissimilarity will always satisfy 0 ≤ α · δ̂ < 1. This means that
the hierarchical dissimilarity metric explicitly indicates a structural transforma-
tion when Δ(p, q) ≥ 1, and explicitly indicates a hyperparameter transformation
when Δ(p, q) < 1.

Therefore, given two unique pipelines p, q, the formula for the hierarchical
pipeline dissimilarity metric can be expressed as the piecewise function,

Δ(p, q) =

{
δ̄(p, q) if δ̄(p, q) > 0
α · δ̂(p, q) if δ̄(p, q) = 0.

4 Visual Representations of TPOT Search

Having established a metric for comparing pipelines in the decision space, it
can be used to create a visual representation of the pipelines explored by
TPOT throughout its search process, in the decision space. Experiments on
the abalone [4] dataset are used to demonstrate these ideas.

4.1 Experimental Design

A modified version of TPOT v0.11.7 was employed for the experiments. The core
algorithmic functionality of TPOT was retained; however, modifications crucial
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for enabling deeper insights into the evolutionary process were implemented.
These adjustments allowed for the tracking of several key properties throughout
the search process, such as the composition of the selected parent population for
each generation, and the specific details of each mutation operation.

The default TPOT values for crossover and mutation rates (0.1 and 0.9,
respectively) were used, along with the default population size and number of
generations, 100. Additionally, parallel experiments with a reduced population
size of 10 were conducted, with the aim of improving the readability, and inter-
pretability, of the visual representations. The default time-out per evaluation
of 5 min was used for all experiments, evaluated using mean-squared error and
five-fold cross-validation error.

Moreover, the impact of altering the selection mechanism was explored.
Typically, TPOT employs a multi-objective selection process, based on cross-
validation (CV) error and pipeline complexity—i.e., number of operators in
the pipeline. In these experiments, a variation was introduced where this was
replaced by a single-objective criterion, based purely on CV performance. This
modification allowed for the comparison of the evolutionary trajectories of TPOT
search, under different selection pressures.

Finally, the search data was collected using the abalone dataset [4]. This
choice was influenced by limitations in space and the intent to demonstrate
techniques rather than perform an empirical evaluation. The abalone dataset,
a well-studied regression benchmark dataset, comprises 4,177 data points, each
with eight features including categorical, integer, and floating-point types. To
ensure consistency, all examples in this section were initialized with the same
random seed. Yet, the observations were consistent across multiple experiments
with different initial seeds. Further examples, including those from experiments
with randomly generated and synthetically produced data exhibiting a strong
linear relationship, are provided in the supplementary materials, offering addi-
tional perspectives and validation of the techniques presented.

4.2 Results and Discussion

Figure 3 provides information about the pipeline structures explored during one
such search execution. The top plot in this figure illustrates the distribution
and quality of evaluated pipelines, by structure. The x axis gives the index for
each unique structure, in the order it was explored during the search, with the
number of unique pipelines for each structure on the y axis. Each point in the
plot represents a unique pipeline, with colour indicating its evaluated CV error,
sorted from worst at the bottom, to best at the top. To improve distinction in
the CV ranges of interest, the colour map is cut off at the 75th percentile value.
The bottom plot in this figure tracks the composition of the selected parent
population, for each generation, over the course of the search. The x axis gives
the structure indices, corresponding to the values in the top plot. The colour of
each point in this plot represents the number of pipelines from each structure,
selected in each generation, given on the y axis. Both plots have a red triangle
indicating the structure that produced the pipeline with the lowest CV error.
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Fig. 3. Pipelines per structure (top) and selected pipeline structures per generation
(bottom), for default population selection mechanism.

The frequency plot in Fig. 3 suggests that although TPOT is exploring over
1600 unique structures, its search is focused on 5 or 6 main ones. The most
frequently evaluated structure contains 948 unique pipelines, with the average
being 6.05 and the median being 1. This is supported by the population tracking
plot underneath, where the spikes in the frequency plot correspond to structures
which were selected from heavily at some stage in the search.

Performing a non-dominated sort on the evaluated pipelines enables TPOT to
maintain control over the complexity of the pipelines. Minimizing both CV error,
and number of operators, when selecting the parent population for each gener-
ation means that very complex pipelines are only selected when they are also
high-performing. This is important, as “bloat” is a well-documented phenomena
in many GP-based algorithms [12]; also, highly complex pipelines take longer to
evaluate and are prone to over-fitting data [5,7]. However, one significant draw-
back of using this method to control pipeline complexity growth is exemplified
by the largest structure in Fig. 3. Here, nearly 10% of the entire search budget
was spent evaluating pipelines with this structure, but the best CV error that
was achieved by any pipeline within it was around 4.56. The bracket represen-
tation for this pipeline structure is {RandomForestRegressor{input matrix}},
which only contains a single operator and is therefore unlikely to ever be domi-
nated, even when there are much better performing pipelines available. This can
also be observed in the population tracking plot beneath, where this structure
is selected from quite heavily for the first 50 or so generations, before fading
out—but never totally disappearing—from the selected parent population.

Figure 4 provides the structure frequency and population tracking plots for
a TPOT search where the selection pressure to minimize pipeline complexity
has been removed, by choosing the parent population based on CV error alone.
In these plots it can be seen that more than triple the number of structures
were explored (4959 vs. 1630, in the previous example) when using this selection
criteria. The budget is spread much more uniformly across the structures as
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Fig. 4. Pipelines per structure (top) and selected pipeline structures per generation
(bottom), for single objective population selection mechanism.

well, with the largest structure having 368 pipelines, and the average number of
pipelines per structure being 2.0. The second example provided better quality
pipelines over all as well, with the best CV error being 4.23—compared to 4.28
with multi-objective search—and the 75th percentile being 4.53—compared to
4.68. While employing a single objective approach to population selection does
seem to yield pipelines with better CV errors, it also produced more complex
pipelines, with the most complex pipeline comprising 20 operators—compared
to a maximum complexity of 8 operators, in the previous example.

In order to gain further insight, the hierarchical pipeline dissimilarity metric
as described in Sect. 3 can be used to create a visual representation of the evo-
lutionary trajectory of the search, called a dissimilarity map. Figure 5 provides
dissimilarity maps for both the default and single objective population selection
mechanisms (larger versions are available as Figures S1 and S2 in the supple-
mentary materials for this paper). Having partitioned the evaluated pipelines by
structure, a pairwise structural dissimilarity (δ̄) matrix M is computed for each
explored structure. The multi-dimensional scaling (MDS) algorithm [8] from the
Scikit-learn Python package [1] is used to compute a 2D embedding of points,
representing structures, such that the distances between the points preserve the
values in M , as much as possible. The points are coloured based on the best
CV error achieved for each structure, and their size is scaled relative to the
number of pipelines each structure contains. The tracking data from the search
is used to draw in directed connections between the structures, with the colour
indicating how that structure was produced, and operations which transform
a structure into an existing structure denoted with dashed lines. The result is
a directed graph, which is acyclic when the dashed connections are removed.
Inset into the corner is a subplot which provides a 2D embedding that preserves
the pairwise hyperparameter dissimilarity (δ̂) for all the pipelines in the largest
structure, coloured with respect to their CV errors. This serves as a reminder
that each point in the dissimilarity map is representative of a set of pipelines.
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Fig. 5. Pipeline dissimilarity maps for default population selection mechanism (a) and
single objective mechanism (b). Size indicates number of pipelines for each structure
and colour indicates best CV. Inset illustrates hyperparameter dissimilarity and CV
for all pipelines in largest structure.

The structures which comprise the initial population are highlighted with an
orange outline, and a red triangle is used to indicate the structure containing
the best pipeline over all.

The visual distinction between the pipeline dissimilarity maps in Fig. 5 sup-
ports observations made from Figs. 3 and 4. In Fig. 5(a), the default selection
mechanism appears to focus on a few large structures in central locations. Con-
versely, Fig. 5(b) demonstrates that the single objective mechanism yields a
greater number of structures, more evenly distributed in size. Notably, the indi-
vidual transformation chains, defined as the longest, non-cyclic paths in the
graph, vary in length, depending on the selection mechanism. Under the default
mechanism, the longest transformation chain reaches 10 steps, with an average
of 4.83 steps. In the single objective case, these numbers increase significantly,
with the longest chain at 19 steps, and the average at 9.97.

These findings are consistent with the calculated pipeline dissimilarity met-
ric. For the default mechanism, the maximum dissimilarity between any two
pipelines is 11, while the single objective mechanism records a maximum dissim-
ilarity of 22. However, it is important to recognize the limitations of the struc-
tural dissimilarity metric. This metric uses the tree edit distance to measure the
shortest possible transformation chain between two pipelines, assuming a single
transformation operation alters the pipeline complexity by at most one operator.
Such an approach does not account for the pipeline complexity jumps achiev-
able through crossover operations and the CombineDFs operator, as discussed in
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Fig. 6. Pipeline dissimilarity maps for default population selection mechanism (a) and
single objective mechanism (b), with reduced population. Size indicates number of
pipelines for each structure and colour indicates best CV. Inset illustrates hyperpa-
rameter dissimilarity and CV for all pipelines in largest structure.

Sect. 2. Consequently, the metric often overestimates the actual shortest trans-
formation path. Since the metric must disregard the varied pipeline outcomes
producible by crossover - contingent on the context of the other pipelines in the
parent population - or by the CombineDFs operator, this overestimation becomes
an intrinsic limitation of any metric that compares pipelines in isolation.

While the pipeline dissimilarity maps in Fig. 5 provide an intuitive global
view of the evolutionary trajectory of TPOT search, there are so many elements,
making it difficult to analyse the behaviour at a local level. To improve read-
ability, Fig. 6 provides the pipeline dissimilarity maps for experiments conducted
with a reduced population size of 10 (larger versions are available as Figures S7
and S8 in the supplementary materials). Similar patterns are observed in these
experiments as for the full-size one. The default selection mechanism results in
larger centrally-located structures, with shorter transformation chains. In the
case of this reduced population experiment, the longest transformation chain
produced by the default selection mechanism was 5 steps long, and the average
was 3.3 steps, whereas the longest was still 19 for the single objective selection
mechanism, with the average being 11.37. The dissimilarity metric correlated
with this again, with the largest values for default and single objective selection
mechanisms being 7 and 22, respectively.

Somewhat apparent in Fig. 5, but made much more clear in the reduced popu-
lation size experiments, is the observation that a lot more unique structures were
produced using crossover when the single objective selection mechanism is used,
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compared to the default. This is likely because the parent populations had more
diversity across generations when using this mechanism, so more opportunities
exist to make new combinations of operators; whereas selecting a similar set of
(and fewer) structures each generation is more likely to produce new pipelines
from existing structures. It can also be observed in both sets of dissimilarity
maps that some structures produced by crossover appear to only have a single
parent structure. When determining the crossover points, TPOT finds all the
operators shared by each parent, and then randomly selects one. In the case
where the parent structure contains two instances of the selected operator, this
can sometimes produce two unique crossover points—resulting in the production
of a new structure.

5 Conclusion

This paper combined the concepts of structural and hyperparameter dissimilar-
ity to produce a hierarchical metric, providing an intuitive reflection of evolu-
tionary changes throughout TPOT search. This metric was found to effectively
distinguish between structural transformations and hyperparameter optimiza-
tions, providing clearer insights into the decision space navigated by TPOT. The
importance of considering pipeline architectures in a holistic manner, as opposed
to focusing solely on individual component adjustments, was underlined by these
findings.

Through experiments on the abalone dataset, it was observed that TPOT’s
search behavior is predominantly influenced by the exploration of different oper-
ator combinations, rather than just hyperparameter tweaking. The utilization
of the metric in visual representations for tracing and interpreting the evolu-
tion of pipeline configurations was also presented, providing deeper insights into
TPOT’s search process. These observations were consistent with those of the
developed metric, suggesting it to be an appropriate approximation of pipeline
dissimilarity—with some limitations, as discussed in Sect. 4.

Building on the findings and methodologies established in this paper, several
key areas for future work have been identified. An extensive fitness landscape
analysis using the developed hierarchical metric could provide deeper insights
into the nature of evolutionary machine learning pipeline optimization. Addi-
tionally, the creation of an interactive tool for visualizing TPOT’s search pro-
cess would significantly enhance the usability and interpretability of the findings.
Such a tool could allow users to dynamically explore the evolutionary trajecto-
ries of machine learning pipelines, offering a more intuitive understanding of the
search process and its outcomes.
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a Python framework for evolutionary algorithms. In: Proceedings of the 14th
Annual Conference Companion on Genetic and Evolutionary Computation, pp.
85–92 (2012)

3. Garciarena, U., Santana, R., Mendiburu, A.: Analysis of the complexity of the
automatic pipeline generation problem. In: 2018 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8. IEEE (2018)

4. Gijsbers, P., et al.: AMLB: an AutoML benchmark. arXiv preprint
arXiv:2207.12560 (2022)

5. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Sta-
tistical Learning. Data Mining, Inference, and Prediction, vol. 2. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-84858-7

6. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning. Methods,
Systems, Challenges. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05318-5

7. Kenny, A., Ray, T., Limmer, S., Singh, H.K., Rodemann, T., Olhofer, M.: Hybridiz-
ing TPOT with Bayesian optimization. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 502–510 (2023)

8. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

9. Müller, A.C., Guido, S.: Introduction to Machine Learning with Python: A Guide
for Data Scientists. O’Reilly Media, Inc. (2016)

10. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based
pipeline optimization tool for automating data science. In: 2016 Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 485–492 (2016)

11. Pimenta, C.G., de Sá, A.G.C., Ochoa, G., Pappa, G.L.: Fitness landscape analysis
of automated machine learning search spaces. In: Paquete, L., Zarges, C. (eds.)
EvoCOP 2020. LNCS, vol. 12102, pp. 114–130. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43680-3 8

12. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd. (2008)

13. Pushak, Y., Hoos, H.: AutoML loss landscapes. ACM Trans. Evol. Learn. 2(3),
1–30 (2022)

14. Selkow, S.M.: The tree-to-tree editing problem. Inf. Process. Lett. 6(6), 184–186
(1977)

15. Teixeira, M.C., Pappa, G.L.: Understanding AutoML search spaces with local
optima networks. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 449–457 (2022)

16. Teixeira, M.C., Pappa, G.L.: On the effect of solution representation and neigh-
borhood definition in AutoML fitness landscapes. In: Pérez Cáceres, L., Stützle, T.
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Abstract. Quality Indicators (QIs) have been used in numerous Evolu-
tionary Multi-objective Optimization Algorithms (EMOAs) as selection
mechanisms within the evolutionary process. Because each QI prefers
specific point-distribution properties, an Indicator-based EMOA (IB-
EMOA) that uses a single QI has an intrinsically limited scope of prob-
lems it can solve accurately. To overcome the issues that IB-EMOAs
have, we present the first results of a new general multi-indicator-based
multi-objective evolutionary algorithm, denoted as DeepEMO. It uses
a Convolutional Neural Network (CNN) as a hyper-heuristic to choose,
depending on the Pareto-front geometry, the appropriate indicator-based
selection mechanism at each generation of the evolutionary process. We
employ state-of-the-art benchmark problems with different Pareto front
geometries to test our approach. Our experimental results show that
DeepEMO obtains competitive performance across multiple QIs. This is
because the CNN is employed to classify the geometry of the point cloud
that approximates the Pareto front. Hence, DeepEMO compensates for
the weaknesses of a single QI with the strengths of others, showing that
its performance is invariant to the Pareto front geometry.

Keywords: Quality Indicators · Multi-Objective Optimization ·
Convolutional Neural Networks · Hyper-heuristics · Higher Education ·
Educational Innovation

1 Introduction

In many scientific, industrial, and engineering fields, some problems involve
simultaneously optimizing m conflicting objective functions. These problems are
known as Multi-objective Optimization Problems (MOPs) [8]. Unlike single-
objective optimization problems, the solution to a MOP is a set denoted as the
Pareto set of optimal solutions, and its corresponding image in objective space
is the so-called Pareto front that shows the trade-off between the conflicting
objectives. (In multi-objective optimization, it is expected to use the Pareto
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dominance relation to induce a strict partial order and, thus, define an optimal-
ity criterion.) It is worth noting that the Pareto front is a manifold of dimension
at most m − 1.

In the specialized literature, different techniques exist to solve MOPs, rang-
ing from mathematical programming to bio-inspired metaheuristics [8]. Despite
mathematical programming methods ensuring optimal solutions, they require
the objectives to be differentiable once (or even twice), which is only possi-
ble if the objectives have an analytical definition. Another critical issue is that
these techniques often generate a single solution per execution. In consequence,
bio-inspired metaheuristics, such as Evolutionary Multi-objective Optimization
Algorithms (EMOAs) [12,24,28,32,34], have emerged as promising methods
to tackle MOPs. EMOAs are stochastic, population-based, and derivative-free
methods that approximate the MOP’s solution. Although they cannot ensure
the optimality of solutions, EMOAs have been successfully applied to different
complex real-world problems where mathematical programming techniques have
difficulties.

In this regard, the output of an EMOA stands for a finite set of approximately
optimal solutions whose image composes a Pareto front approximation. Such
an approximation is a finite representation of the manifold associated with the
Pareto front, i.e., an N -point cloud. Ideally, the Pareto front approximation
should be as close to the true Pareto front as possible. Hence, these points
should also cover the whole Pareto front, showing a good distribution regardless
of the Pareto front shape [21]. Nevertheless, in recent years, Ishibuchi et al.
emphasized that the performance of some EMOAs depends on the Pareto front
shape [15]. Consequently, different approaches have been proposed to tackle this
critical issue [12,24,28,32,34].

On the one hand, an effective approach to designing EMOAs with perfor-
mance invariant to the Pareto front geometry is the use of multiple indicator-
based selection mechanisms, giving rise to the Multi-Indicator-based EMOAs
(MIB-EMOAs) [12,32]. Quality indicators (QIs) are the core of every MIB-
EMOA [21]. A unary QI is a set function that evaluates a Pareto front approxima-
tion’s quality (convergence, spread, or distribution) based on specific preferences.
In other words, a QI assigns a real number to a Pareto front approximation.
Hence, it is possible to search for the Pareto front approximation that optimizes a
QI. That is, we can define an Indicator-based Subset Selection Problem (IBSSP)
that, in terms of EMOAs, involves the selection of the fittest solutions according
to the QI value. Thus, those objective vectors that approximate the solution of
an IBSSP exhibit the preferences of the baseline QI; i.e., they approach the opti-
mal μ-distribution of the QI. Considering the previous concepts, an MIB-EMOA
exploits the strengths of a set of QIs to compensate for the weaknesses of a partic-
ular one. For instance, Wang et al. proposed the Two Arch2 algorithm that uses
two archives, each based on a specific QI, to improve the convergence and diver-
sity properties of a Pareto front approximation [32]. Notwithstanding, another
design strategy is conceptualized by the Island-based Multi-Indicator Algorithm
(IMIA), where the cooperation between multiple Indicator-based EMOAs (IB-



132 E. Bernal-Zubieta et al.

EMOAs) is exploited [12]. In this strategy, each island of IMIA evolves a micro-
population using an IB-EMOA with a different QI. After some generations, some
individuals migrate between islands, aiming to improve the diversity of the other
islands.

On the other hand, data processing by learning models is at the heart of
today’s artificial intelligence revolution. Point clouds, like those produced by the
EMOA approximation sets, are an essential data type that these models can pro-
cess. Some applications of point clouds worth mentioning include robotics, indoor
navigation, and self-driving vehicles. Plus, their analysis, namely point cloud
classification and segmentation, has become relevant in recent years. Though
traditional Deep Neural Networks (DNNs) require input data with a regular
structure, point clouds have an irregular structure. Thus, it is clear that permu-
tation invariance within the DNN is crucial due to point clouds’ lack of topo-
logical information. Consequently, designing a DNN that can extract topological
features from them is relevant. One can corroborate this claim from several
point cloud classifiers proposed to tackle these issues. For instance, PointNet [6]
uses the max-pooling symmetric function to deal with the unordered input set
of points. Later, PointNet++ [26] builds upon PointNet’s design and adds a
local feature extractor by grouping points into neighborhoods similar to CNNs.
Finally, Dynamic Graph CNN (DGCNN) [33] further exploits the CNNs imple-
mentation in point clouds by analyzing dynamically computed graphs in each
network layer.

Despite EMOAs generating a point cloud in the objective space at each iter-
ation, learning mechanisms do not exploit this information. In addition, we find
no research done into using the type of geometry associated with the Pareto front
approximation as a mechanism that selects from a pool the best-fitted indicator-
based mechanism. So, exploiting geometric information from the point cloud can
eliminate the need for sophisticated methods by leveraging the geometric biases
inherent to QIs. In this regard, CNNs have yet to be used to classify Pareto
front geometries and guide the selection process of an MIB-EMOA. Hence, our
proposal is a pioneer work in this area. Geometric classification as a guide for
MIB-EMOAs allows for exploiting the properties of individual indicator-based
selection mechanisms as a hyper-heuristic. The main contributions of our work
are the following.

– We propose the first CNN-based MIB-EMOA, called DeepEMO, that uses
DGCNN to classify the geometry associated with the current Pareto front
approximation at each generation. Then, DeepEMO chooses the best-fitted
one from a pool of indicator-based selection mechanisms to guide the selection
process. This is based on predefined rules that consider the effectiveness of
indicator-based selection mechanisms on different geometries. For this proof-
of-concept, we employed the Hypervolume Indicator (HV) [2], the discrete R2
indicator [4], and the Riesz s-energy (Es) [3].

– We constructed a particular dataset to train DGCNN based on the Pareto
fronts from several state-of-the-art benchmark problems. We also selected
problems with different Pareto front geometries.
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– We present a comprehensive study of the performance of DeepEMO, consid-
ering two- and three-objective problems with different Pareto front shapes.
Moreover, we validate the performance of DeepEMO by comparing it to IB-
EMOAs that use the baseline QIs, i.e., HV, R2, and Es. Based on different
QIs, we realize that DeepEMO is a promising direction to combine EMOAs
and Deep Learning.

The remainder of this paper is structured as follows. Section 2 provides the
concepts that make this paper self-contained. Section 3 details DeepEMO, and
Sect. 4 presents and analyzes the experimental results. Finally, Sect. 5 outlines
the conclusions and possible improvements for future work.

2 Background

This section introduces some mathematical concepts that sustain our proposed
approach. Thus, we start defining a MOP, then the notion of QI, HV, R2, and
Es, the generic IB-EMOA, and DGCNN.

2.1 Multi-objective Optimization Problem (MOP)

Throughout this paper, we focus on tackling, without loss of generality, uncon-
strained MOPs for minimization, which are defined as follows:

min
�x∈Ω

{f(x) := (f1(�x), f2(�x), . . . , fm(�x))ᵀ} (1)

where x = (x1, . . . , xn)ᵀ is an n-dimensional decision vector and Ω ⊆ R
n is the

decision space. f : Ω �→ R
m is the objective vector of m ≥ 2 conflicting objective

functions fi : Ω �→ R, ∀ i = 1, 2, . . . ,m.
The most common definition of optimality in multi-objective optimization

is based on the Pareto dominance relation that induces a strict partial order
among the decision vectors. Then, given two solutions �x, �y ∈ Ω, �x is said to
Pareto dominate �y (denoted as �x ≺ �y) if fi(�x) ≤ fi(�y), ∀ i = 1, 2, . . . ,m, and
there exists at least an index j ∈ {1, 2, . . . ,m} such that fj(�x) < fj(�y). One can
claim that �x∗ ∈ Ω is a Pareto optimal solution if there is no other �x ∈ Ω such
that �x ≺ �x∗. Due to the conflict among the objectives, there is not a single Pareto
optimal solution but a set of Pareto optimal solutions denoted as the Pareto set,
whose image is the so-called Pareto front. Since the Pareto set cardinality could
be infinite, some algorithms that tackle MOPs produce a finite approximation set
A = {�a1,�a2, . . . ,�aN}, where �ai ∈ Ω. Ideally, �ai 
≺ �aj and �aj 
≺ �ai for every i 
= j,
i.e., A has mutually non-dominated solutions. The Pareto front approximation
is the image f(A).

2.2 Quality Indicator (QI)

A QI (I) is a set function that assigns a real value to a given number k of Pareto
front approximations [21]. That is, a k-ary indicator is defined as I : Ψk �→ R,
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where Ψ is the set of all possible finite Pareto front approximations. When k = 1,
the QI is known as a unary indicator. Currently, many QIs measure the three
main properties of a Pareto front approximation, i.e., convergence, uniformity,
and spread [21]. In the following lines, we briefly describe three well-known
indicators considered in this work.

The Hypervolume Indicator (HV) is the most popular QI due to its math-
ematical properties [2]. HV measures the region weakly dominated by A and
bounded by an anti-optimal reference point �r. It simultaneously measures con-
vergence and spread and is the only Pareto-compliant QI. Therefore, given an
approximation set A and a reference point �r ∈ R

m dominated by all points in
A, HV is defined as:

HV(A, �r) = L
( ⋃

�a∈A

{
�b | �a ≺ �b ≺ �r

})
, (2)

where L is the Lebesgue measure in R
m. It is worth mentioning that we abuse

notation since �r is in the objective space. However, the Pareto dominance relation
(defined above) induces a strict partial order in Ω by checking the objective
vectors of the solutions. Thus, we can compare f(�a), f(�b), and �r.

Another well-known QI is the discrete R2 indicator [4]. R2 is a convergence-
uniformity indicator that uses a set of weight vectors (W ) in R

m to measure
the average minimum utility value generated by a Pareto front approximation.
Unlike HV, whose computational cost is high, the cost of R2 is O(m|A||W |),
but it is weakly Pareto-compliant. So, for a given set of m-dimensional weight
vectors W and a utility function u�w : Rm �→ R, the R2 indicator is defined as
follows:

R2(A,W ) =
1

|W |
∑
�w∈W

min
�a∈A

u�w(f(�a)). (3)

Lastly and more recently, the Riesz s-energy (Es) has been employed in
evolutionary multi-objective optimization to generate well-diversified solution
sets [11]. Es is a pair-potential energy function taken from physics that mea-
sures the interaction between pairs of particles in an N -point set. Despite Es

being used mainly for subset selection in EMO, it can also be used as a diver-
sity indicator. Hence, given a Pareto front approximation A and s > 0, Es is
determined by:

Es(A) =
N∑

i=1

N∑
j=1
j �=i

1
‖f(�ai) − f(�aj)‖s . (4)

2.3 Indicator-Based EMOA (IB-EMOA)

This section introduces a generic steady-state IB-EMOA, which is based on the
framework of S-Metric Selection EMOA (SMS-EMOA), that employs HV [2].
Regardless of the QI, the backbone of this generic IB-EMOA is the contribution
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(C) of a single solution (�x ∈ A) to the overall indicator value. This contribution
value is calculated as:

CI(�x,A) = |I(A) − I(A \ {�x})|. (5)

Considering the contribution value, it is possible to define a heuristic method
to approximate the solution of an indicator-based subset selection problem. In
other words, given a Pareto front approximation of size μ + λ, we aim to find
A′ such that |A′| = μ and I(A′) is maximum. (Without loss of generality, we
assume that maximizing I implies better quality.)

Algorithm 1 outlines the generic steady-state IB-EMOA whose main loop
comprises lines 3 to 14. First, a new solution �y is generated via variation operators
and joined with the current population Pt to define a temporary population Q
of size N + 1. Then, in line 6, Q is sorted using the non-dominated sorting
algorithm [9] to define a set of layers {L1,L2, . . . ,Lp}. It is worth noting that
layer Lp contains a subset of solutions of Q, which are the worst regarding the
Pareto dominance relation. If the cardinality of Lp is greater than 1, then we
calculate which is the worst-contributing �xworst solution to I according to (5).
Otherwise, �xworst is the sole solution in Lp. In line 12, �xworst is deleted from Q
to determine the population for the next iteration t + 1. The algorithm outputs
the last population as the approximation set.

Algorithm 1. Generic Steady-State IB-EMOA
Input: Indicator I
Output: Approximation set A
1: Randomly initialize population P0
2: Set t ← 0
3: while Stopping criterion is not fulfilled do
4: �y ← Variation(Pt)
5: Q ← Pt ∪ {�y}
6: {L1, L2, . . . , Lp} ← NonDominatedSorting(Q)
7: if |Lp| > 1 then
8: �xworst ← argmin

�x∈Lp

CI(�x, Lp)

9: else
10: �xworst ← the sole individual in Lp

11: end if
12: Pt+1 ← Q \ {�xworst}
13: t ← t + 1
14: end while
15: return A ← Pt

Algorithm 1 follows the framework of the SMS-EMOA, which is a steady-
state IB-EMOA. To reproduce the SMS-EMOA behavior with Algorithm1, we
have to set I = HV. So, HV is to be maximized; the worst-contributing solu-
tion to HV is the one with the minimum contribution value. Depending on the
definition of �r, the preferences of SMS-EMOA may change. For instance, if �r is
approximately equal to the nadir point, SMS-EMOA generates uniform Pareto
front approximations in linear triangular Pareto fronts, or it can produce solu-
tions in the boundary and around the Pareto front’s knee when the geometry
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is concave triangular. Since SMS-EMOA has to perform multiple calculations
of HV (which increases super-polynomially with the number of objectives), it
is computationally expensive. Other less computationally expensive but weaker
QIs have been used to avoid this issue. For instance, Brockhoff et al. proposed
R2-EMOA that uses the I = R2 indicator [5]. Unlike SMS-EMOA, R2-EMOA
generates uniform Pareto front approximations in both linear triangular and con-
cave triangular Pareto fronts. However, it has issues when tackling disconnected
or degenerate Pareto fronts. Finally, in case that I = Es, we can generate an
IB-EMOA that will show the preferences of Es, and we denote it as Es-EMOA.

Fig. 1. Dynamic Graph Convolutional Neural Network (DGCNN) architecture.

2.4 Dynamic Graph Convolutional Neural Network (DGCNN)

DGCNN [33] is a point cloud classifier inspired by similar works like Point-
Net [6]. Its main feature is its ability to capture local geometric structures
while maintaining permutation invariance. This is achieved through an operation
called edge convolution (EdgeConv). Given a point cloud, EdgeConv constructs
a directed graph using the k-Nearest Neighbors (k-NN) algorithm, similar to
graph CNNs. According to the authors, DGCNN outperforms other point cloud
classifiers because the EdgeConv process is recomputed after each layer of the
CNN. Hence, the graph is dynamically updated and not fixed like in traditional
graph CNNs. [33]

Due to the DNN architecture employed, the hidden layers work in the feature
space created by the previous layer. DGCNN features four hidden layers and the
input and output layers, as shown in Fig. 1. The first three hidden layers are
made up of 64 neurons, while the last hidden layer is made up of 128 neurons.
The input layer of DGCNN consists of a set of N three-dimensional real-valued
points. Hence, we could feed DGCNN with f(A), where A is the approximation
set generated by an EMOA for a three-objective MOP. At each layer of DGCNN,
EdgeConv constructs a directed graph, extracting local geometric information
by connecting neighboring points. The graph’s edges are then used to compute
edge features via a nonlinear function hΘ with parameters Θ. The edge features
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are then fed into a max-pooling operation with a ReLU activation function
that captures global shape structure and local neighborhood information. The
features outputted by the last EdgeConv layer are then globally aggregated by
another max-pooling operator, forming a 1D global descriptor used to generate
the c classification label in the output layer.

3 Proposed Approach

Our proposal, called DeepEMO, is a steady-state MIB-EMOA that employs
a heuristic selection mechanism (based on the classification label produced by
DGCNN) to execute the best-fitted indicator-based selection mechanism accord-
ing to specific rules. The following sections introduce DeepEMO’s general frame-
work and how we incorporate DGCNN into an EMOA.

Algorithm 2. DeepEMO General Framework
Input: Certainty threshold β
Output: Approximation set A
1: Randomly initialize population P0
2: Set t ← 0
3: while Stopping criterion is not fulfilled do
4: �y ← Variation(Pt)
5: Q ← Pt ∪ {q}
6: Normalize Q
7: {L1, L2, . . . , Lp} ← NondominatedSorting(Q)
8: if |Lp| > 1 then
9: geometry, certainty ← DGCNN(f(Q))
10: if geometry is convex and certainty ≥ β then
11: �xworst ← argmin

�x∈Lp

CHV(Lp, �zref)

12: else if geometry is concave and certainty ≥ β then
13: �xworst ← argmin

�x∈Lp

CR2(Lp, W )

14: else
15: �xworst ← argmax

�x∈Lp

CEs (Lp)

16: end if
17: else
18: �xworst ← the sole individual in Lp

19: end if
20: Pt+1 ← Q \ {�xworst}
21: t ← t + 1
22: end while
23: return A = Pt

3.1 General Framework

The general framework of DeepEMO is presented in Algorithm 2. It follows a sim-
ilar structure to Algorithm 1. Lines 8 to 17 encompass the core idea of DeepEMO.
Our proposed EMOA employs a hyper-heuristic that uses a set of predefined
rules to select the best-fitted indicator-based density estimator. The selection
rules are based on previous studies on the convergence and diversity properties
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of indicator-based density estimators [23]. We used HV, R2, and Es for this
proof-of-concept to define individual density estimators. According to the liter-
ature, we know that an HV-based density estimator has a good performance on
MOPs whose Pareto front geometry is convex. This is because HV rewards solu-
tions around the Pareto front’s knee and on the boundaries. R2 is suitable for
triangular concave Pareto front shapes because of the utilization of the simplex-
like weight vectors. Es is an appropriate strategy for other Pareto front geome-
tries [11]. Hence, in line 9 of Algorithm2, we feed a previously trained DGCNN
(described in the next section) with the approximation set Q image. DGCNN
returns the classification label and a certainty value. We use the degree of
certainty in tandem with the geometric classification because the model might
not be entirely sure of the Pareto front geometry. In such a case, applying a
more general QI (e.g., the Riesz s-energy) would be preferable to other more
specialized indicators. If the geometry is convex and certainty is greater than
or equal to a user-supplied threshold (β), then the HV-based density estimator
is performed in line 11. In case the geometry is concave and certainty≥ β,
the R2-based density estimator is executed in line 13. Otherwise, the Es-based
density estimator is performed by default in line 15. It is worth noting that we
set β = 10% based on previous experiments. A limitation of DeepEMO is that it
can only tackle two- and three-objective MOPs. This problem stems from using
DGCNN, which can only classify two- and three-dimensional point clouds. This
is unsurprising since point clouds usually represent real-world objects; therefore,
DGCNN cannot classify point clouds of dimension four or more.

3.2 Using DGCNN in DeepEMO

To use DGCNN in DeepEMO, training the model with data related to
Pareto front approximations is mandatory. Hence, we constructed a special
dataset (using the format required by DGCNN) that contains m-dimensional
points from normalized Pareto front approximations of size 50, varying the
related geometries. We obtained the data from thirteen EMOAs, available
in PlatEMO [29], with distinct preferences: NSGA-II [9], MOEA/D [36],
MOEA/DD [18], MOMBI-II [13], AdaW [22], BiGE [20], SPEA2+SDE [19],
RPEA [25], RVEA-iGNG [24], SRA [17], SPEA-R [16], t-DEA [35], and
Two Arch2 [32]. Aiming to maximize the range of geometries, we selected prob-
lems from the following test suites: Deb-Thiele-Laumanns-Zitzler (DTLZ) [10],
Irregular MOPs (IMOPs) [30], Viennet test suite (VIE) [31], and the Walking-
Fish-Group (WFG) [14]. Specifically, we chose the problems DTLZ1, DTLZ2,
DTLZ5, DTlZ7, WFG1, WFG2, and WFG3 with two and three objectives,
and IMOP1-IMOP8 and VIE1-VIE3 using the given fixed number of objectives.
By default, DGCNN can only process three-dimensional point clouds; thus, we
added a fictional variable with a zero value to two-objective Pareto front approx-
imations to make them compatible with DGCNN. Finally, the dataset size was
then augmented by rotating the Pareto fronts 360◦ in 10◦ intervals over the
45◦ azimuth. After data curation, we obtained a dataset of 75,600 Pareto front
approximations. Then, we use a simple validation with 80% of the instances for
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the training set and the rest for the test set. The model we use in DeepEMO in
line 9 of Algorithm 2 is produced using the training set.

4 Experimental Results

We compared DeepEMO with three IB-EMOAs resulting from setting I = HV,
R2, or Es in Algorithm 1. We denote these IB-EMOAs as SMS-EMOA, R2-
EMOA, and Es-EMOA. To determine if the DGCNN-based heuristic selection
is better than a simple random selection, we conducted a comparative analy-
sis of DeepEMO with a random version, which we denote as Rand-DeepEMO.
Since the five algorithms are genetic steady-state EMOAs, we used the simu-
lated binary crossover (SBX) and polynomial-based mutation (PBM). We set
the crossover and mutation probabilities equal to 0.9 and 1/n, where n is the
number of decision variables, respectively. Both crossover and mutation distri-
bution indexes are equal to 20. For a fair comparison, we employed a population
size of 55 solutions and a stopping criterion of 50,000 function evaluations for
all the algorithms. The population size equals the number of weight vectors R2-
EMOA uses, employing the Simplex-Lattice-Design (SLD) method. To calculate
R2, we implemented the Achievement Scalarizing Function (ASF). Plus, for Es-
EMOA, we set the parameter s to m − 1, and for DGCNN, we established a
g = 5 parameter to construct the local graph via k-NN. For each algorithm in
each instance, we performed 20 independent executions.

4.1 Test Problems

To test DeepEMO and the selected EMOAs, we used DTLZ1, DTLZ2, and
DTLZ7 with three objective and their inverted variants, denoted as DTLZ1−1,
DTLZ2−1, and DTLZ7−1 [15]. We used the inverted DTLZ problems because
they were not employed when training the DGCNN model. We set n = m+k−1
as the number of decision variables for these problems, where k = 5, 10, or 20 for
DTLZ1, DTLZ2, and DTLZ7, and their corresponding inverted versions, respec-
tively. The IMOP problems were also used in our comparative study because they
test the ability of an EMOA to maintain diversified solutions. We employed ten
decision variables for these problems, as suggested by the authors [30]. Finally, we
also considered VIE1-VIE3 problems, with two-dimensional decision spaces. We
must emphasize that all the selected problems have different Pareto front shapes.
It is worth mentioning that DGCNN was trained using Pareto front approxima-
tions of the selected MOPs to classify the geometry of the point clouds. However,
throughout the evolutionary process, DeepEMO feeds DGCNN with points not
even close to the Pareto front. Hence, the training process of DGCNN does not
provide DeepEMO and advantage over other EMOAs in terms of convergence
behavior.

4.2 Performance Assessment

To measure the performance of the selected EMOAs, we used multiple QIs,
i.e., HV, R2, Es, Inverted Generational Distance (IGD) [7], IGD+, Averaged
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Hausdorff Distance (Δp) [27], additive ε indicator (ε+) [21], and the Solow-
Polasky Diversity indicator (SPD) [1]. Table 1 specifies the reference point we
used for HV. A set of 55 weight vectors produced by SLD was employed to
define the same number of utility values based on the vector angle distance
scaling function to calculate R2. Moreover, we considered s = m − 1 for Es and
θ = 10 for SPD. Due to IGD, IGD+, Δp, and ε+ requiring a reference point set,
we obtained the image of 500 Pareto optimal solutions for each problem from
PlatEMO. Plus, we conducted a Wilcoxon rank-sum test with a significance level
α = 0.05 to get statistical confidence.

Table 2 shows the numerical comparison based on HV. Due to space limita-
tions, Tables 2 to 9 from the Supplementary Material (freely available at https://
github.com/eBernalZ/DeepEMO) show the numerical results of R2, Es, IGD,
IGD+, Δp, ε+, and SPD.

Table 1. Reference points employed for calculating HV per each MOP.

MOP Reference point MOP Reference point

DTLZ1 (1, 1, 1) DTLZ1−1 (0.1, 0.1, 0.1)

DTLZ2 (1.2, 1.2, 1.2) DTLZ2−1 (0.1, 0.1, 0.1)

DTLZ7 (1, 1, 21) DTLZ7−1 (0.1, 0.1, 0.1)

IMOP1 IMOP2 IMOP3 (2, 2) IMOP4 IMOP6 IMOP7 (2, 2, 2)

IMOP5 (1.5, 1.5, 2) IMOP8 (2, 2, 4)

VIE1 (5, 6, 5) VIE2 (6, 6, 6)

VIE3 (19, 19, 19)

4.3 Discussion

An a posteriori EMOA should have a robust performance when tackling real-
world problems. By robust performance, we mean that its performance should be
good for different quality measures. This is why multiple QIs are used to evaluate
the performance of DeepEMO. Moreover, the core idea of DeepEMO is to com-
pensate for the weaknesses of a given QI with the strengths of others by using
the DGCNN-based heuristic selector. Figure 2 depicts the number of times that
each algorithm obtained either the first or second place in the comparison for
all the selected QIs. This figure reveals that SMS-EMOA and Es-EMOA often
obtain the first position in the comparisons, followed by DeepEMO. Regarding
the right-hand side of the figure, we can see that DeepEMO consistently obtains
the second place for all QIs. From these observations, we can argue the following.
First, the outstanding performance of SMS-EMOA comes with a high computa-
tional cost (as expected) and difficulty in setting the reference point to obtain
uniform Pareto front approximations. Regarding Es-EMOA, it produces Pareto

https://github.com/eBernalZ/DeepEMO
https://github.com/eBernalZ/DeepEMO
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front approximations with good diversity, but since Es is a diversity indica-
tor, Es-EMOA would lose convergence pressure in MOPs with more than three
objectives.

Fig. 2. Heatmap from the number of times an IB-EMOA was ranked first or second
according to the HV, Es, R2, SPD, IGD, IGD+, Δp, and ε+ indicators.

DeepEMO can be employed to compensate for the difficulties of always using
a single QI in an IB-EMOA. By analyzing Table 2 related to the HV comparison,
we can see that DeepEMO presents good convergence results. This is because
DeepEMO crushes solutions towards the Pareto front by taking advantage of
its baseline indicator-based mechanisms depending on the geometry classifica-
tion of the current Pareto front approximation. Hence, in most cases, DeepEMO
is less computationally expensive than SMS-EMOA because the probability of
constantly applying the HV-based selection is close to zero. In this regard, due
to the switching between selection mechanisms, DeepEMO generates more selec-
tion pressure, which makes it possible to scale its performance to MOPs with
three or more objectives (once DGCNN scales too). By consistently obtaining
the second place in the comparison as shown in Fig. 2, DeepEMO reveals that its
Pareto front approximations are not biased to fulfill the preferences of a single
QI (as in the case of SMS-EMOA or Es-EMOA). This behavior is because Deep-
EMO generates Pareto front approximations with good diversity as illustrated in
Fig. 3 for the three-objective DTLZ1−1. DeepEMO inherits this diversity prop-
erty due to utilizing Es, HV, and R2. Finally, by comparing DeepEMO and
Rand-DeedEMO, we can conclude that using the rule-based heuristic selection
in DeepEMO produces better results than randomly selecting indicator-based
mechanisms.
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Table 2. Mean and standard deviation (in parentheses) of HV results. A symbol # is
placed when the outperforming EMOA performed significantly better than the other
EMOAs based on a one-tailed Wilcoxon test using a significance level of α = 0.05. The
two best values are shown in grayscale, where the darkest tone corresponds to the best.

MOP Dim. SMS-EMOA R2-EMOA Es-EMOA Rand-DeepEMO DeepEMO

DTLZ1 3
9.717413e−011

(6.986066e−05)
9.715930e−012#
(8.853934e−05)

9.715261e−014#
(1.570679e−04)

9.713076e−015#
(2.113887e−04)

9.715414e−013#
(1.349688e−04)

DTLZ1−1 3
1.634825e+074#
(1.660599e+05)

1.398368e+075#
(1.232136e+06)

1.897918e+072

(3.385136e+05)
1.786897e+073#
(5.839311e+05)

1.909096e+071

(2.877119e+05)

DTLZ2 3
7.408208e+001

(9.329663e−05)
7.394442e+004#
(3.066330e−04)

7.395424e+002#
(2.093433e−03)

7.395173e+003#
(2.893253e−03)

7.394185e+005#
(5.033179e−04)

DTLZ2−1 3
5.750160e+011

(1.960825e−02)
4.866969e+015#
(9.853446e−01)

5.725490e+013#
(8.940140e−02)

5.483055e+014#
(7.272273e−01)

5.738631e+012#
(7.059462e−02)

DTLZ7 3
1.624788e+011

(1.716603e−01)
1.574660e+015#
(1.278959e−01)

1.619470e+013#
(1.926495e−01)

1.611579e+014#
(1.483026e−01)

1.619684e+012#
(1.378072e−01)

DTLZ7−1 3
2.698252e+012

(1.027667 e−01)
2.679963e+015#
(1.101505e−01)

2.698817e+011

(3.117033e−03)
2.692513e+014#
(4.969799e−02)

2.695391e+013#
(6.691855e−02)

IMOP1 2
3.984844e+001

(8.313591e−06)
2.017798e+005#
(2.297379e−02)

3.983902e+003#
(7.384897e−05)

3.747995e+004#
(2.823840e−01)

3.984837e+002

(2.613447e−05)

IMOP2 2
3.065830e+001

(3.212894e−03)
2.000071e+004#
(4.775736e−05)

3.064269e+002#
(3.320674e−03)

2.094344e+003#
(2.732107e−01)

1.999785e+005#
(1.329149e−03)

IMOP3 2
3.639962e+001

(2.229995e−02)
2.379765e+005#
(2.478631e−02)

3.634140e+002

(2.272153e−02)
2.636026e+004#
(8.415924e−02)

3.633433e+003

(1.747447e−02)

IMOP4 3
6.329276e+001

(3.019870e−02)
2.040948e+005#
(1.462829e−02)

6.327558e+002

(2.733316e−02)
2.364078e+004#
(5.546803e−02)

6.324291e+003

(3.217523e−02)

IMOP5 3
6.860433e+001

(2.711298e−03)
6.192728e+005#
(1.151343e+00)

6.811442e+003#
(9.720637e−03)

6.681764e+004#
(2.125056e−02)

6.813510e+002#
(1.347183e−02)

IMOP6 3
6.796313e+003

(3.095751e−01)
3.906444e+005#
(4.870139e−01)

6.835016e+002#
(6.571779e−03)

3.981992e+004#
(6.573286e−01)

6.838866e+001

(3.501328e−03)

IMOP7 3
4.688555e+002#
(1.373135e+00)

4.001614e+005#
(1.939027e−03)

7.356681e+001

(4.169080e−03)
4.193473e+003#
(7.405203e−01)

4.187927e+004#
(7.393973e−01)

IMOP8 3
1.467495e+013

(1.703501e+00)
7.379639e+005#
(1.644353e+00)

1.490112e+011

(3.675314e−02)
1.211802e+014

(4.037208e+00)
1.485823e+012

(1.074160e−01)

VIE1 3
6.141673e+011

(9.511744e−03)
5.842468e+014#
(9.156291e−01)

6.072238e+012#
(7.808997e−02)

6.015306e+013#
(6.614788e−01)

6.141673e+011

(9.511744e−03)

VIE2 3
1.309430e+031

(3.082634e−03)
1.304450e+035#
(4.795875e+00)

1.309306e+032#
(2.438912e−02)

1.307448e+034#
(1.934688e+00)

1.309305e+033#
(2.176253e−02)

VIE3 3
1.420648e+031

(1.081860e−02)
1.192055e+035#
(1.719101e+02)

1.413235e+033#
(2.216500e+00)

1.410666e+034#
(3.997438e+00)

1.413311e+032#
(1.811991e+00)
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Fig. 3. Graphical performance comparison between (a) DeepEMO, (b) Rand-
DeepEMO, (c) SMS-EMOA, (d) Es-EMOA, and (e) R2-EMOA in DTLZ1−1.

5 Conclusions

This paper proposed DeepEMO, the first Multi-Indicator-based EMOA that
uses a CNN to detect the Pareto front geometry and choose the most appro-
priate indicator-based selection mechanism. Our proposal was compared with
SMS-EMOA, R2-EMOA, Es-EMOA, and a random version of DeepEMO. Our
experimental results show that DeepEMO consistently obtains evenly distributed
approximation sets, regardless of the Pareto front shape, with good conver-
gence regarding multiple state-of-the-art QIs. These results prove that Deep-
EMO can compensate for the weaknesses of a single indicator-based selection
method with the strengths of others. In other words, DeepEMO can tackle dif-
ferent MOPs without sacrificing convergence and diversity performance across
different QIs. A current drawback of DeepEMO is that its CNN can only classify
three-dimensional point clouds, making it unable to scale in objective space nat-
urally. For future work, we plan to refine the rule-based hyper-heuristic method
of DeepEMO to improve its performance in more MOPs. Furthermore, because
of our current limitation to two- and three-objective MOPs, we are interested
in expanding the capabilities of DeepEMO to four or more dimensional MOPs,
i.e., the so-called Many-objective Optimization Problems (MaOPs). We believe
this will allow DeepEMO to outperform the Es-EMOA, as the Riesz s-energy
function loses selection pressure when tackling MaOPs.
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Abstract. Adversarial attacks pose significant challenges to the robust-
ness of machine learning models. This paper explores the one-pixel
attacks in image classification, a black-box adversarial attack that intro-
duces changes to the pixels of the input images to make the classifier
predict erroneously. We use a pragmatic approach by employing differ-
ent evolutionary algorithms - Differential Evolution, Genetic Algorithms,
and Covariance Matrix Adaptation Evolution Strategy - to find and
optimise these one-pixel attacks. We focus on understanding how these
algorithms generate effective one-pixel attacks. The experimentation was
carried out on the CIFAR-10 dataset, a widespread benchmark in image
classification. The experimental results cover an analysis of the follow-
ing aspects: fitness optimisation, number of evaluations to generate an
adversarial attack, success rate, number of adversarial attacks found per
image, solution space coverage and level of distortion done to the origi-
nal image to generate the attack. Overall, the experimentation provided
insights into the nuances of the one-pixel attack and compared three
standard evolutionary algorithms, showcasing each algorithm’s potential
and evolutionary computation’s ability to find solutions in this strict case
of the adversarial attack.

Keywords: Adversarial Attacks · Genetic Algorithms · Covariance
Matrix Adaptation Evolution Strategy · Differential Evolution

1 Introduction

The susceptibility of Deep Neural Networks, including Convolutional Neural
Networks (CNNs), to adversarial attacks has received significant attention in
recent years, leading researchers to investigate several approaches for evaluating
and improving their robustness [15]. One particular type of attack is the one-pixel
attack [14], a simple yet highly effective technique that manipulates a minimal
set of pixels to mislead the neural network’s predictions. The attack aims to
manipulate a single pixel in the input image, imperceptible to the human eye, in
order to mislead the neural network’s classification output. The one-pixel attack
presents a significant challenge to the resilience of CNNs since it highlights the
models’ susceptibility to minor alterations in the input of the network. The
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success of such attacks raises concerns about the generalisation and reliability of
deep learning models in real-world scenarios, driving researchers to explore and
develop countermeasures to enhance the security of these models.

In the work of Su et al. [14], Differential Evolution (DE) was used to perform
the one-pixel attack as the optimisation and search algorithm. Unlike traditional
gradient-based approaches, evolutionary algorithms like DE excel in the context
of the one-pixel attack due to their ability to navigate large and non-linear
search spaces effectively. In the context of one-pixel attack perturbations, where
the goal is to subtly modify the input image to deceive neural networks, the
inherent exploration-exploitation balance of evolutionary algorithms becomes
advantageous. E.g. the DE’s population-based strategy enables it to explore
diverse regions of the solution space simultaneously, facilitating the discovery of
imperceptible yet effective perturbations. This characteristic, coupled with the
algorithm’s ability to escape local optima, makes DE well-suited for the intricate
optimisation demands posed by the one-pixel attack, outperforming gradient-
based methods in scenarios where the objective function is non-differentiable or
that exhibits challenging characteristics for optimisation [2].

Despite DE being a state of the art approach to the problem in terms
of efficiency in finding a one-pixel attack, other standard evolutionary algo-
rithms have properties worth analysing in how they behave in such a problem.
In this paper, we compare three single objective simple off-the-shelf optimisa-
tion algorithms employed to generate one-pixel untargeted attacks: DE, Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES), and Genetic Algorithms
(GA). These optimisation algorithms represent diverse strategies in solving opti-
misation problems, and understanding their relative performance can provide
valuable insights into their suitability as an adversarial attack. DE, CMA-ES,
and GAs each bring unique strengths and weaknesses to the table, and a com-
prehensive comparison can help identify which algorithm is more suitable for
navigating the search space of the one-pixel attack. Secondly, this study con-
tributes to the broader field of optimisation under specific conditions, providing
a deeper understanding of optimisation techniques’ applicability and limitations
to this problem.

The contributions are as follows: (i) experimentation with three different
evolutionary algorithms; (ii) extensive testing with networks from the state of
the art of adversarial learning, normal and distilled networks (neural networks
with defensive mechanisms) (iii) comparative analysis between the different algo-
rithms discussing the overall performance of the different approaches according
to different adversarial learning and optimisation criteria. The remainder of this
paper is divided as follows. In Sect. 2, we cover approaches to the one-pixel adver-
sarial attack. In Sect. 3, we describe the optimisation problem. We present our
experimental setup in Sect. 4. The analysis of the results is presented in Sect. 5,
and our final conclusions and future work are in Sect. 6.
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2 Related Work

An adversarial attack typically consists in the introduction of subtle changes
to original inputs, generating an adversarial example that leads a given model
to misclassify the altered version. The adversarial attack can be untargeted or
targeted. In an untargeted attack, the primary objective is to induce a misclas-
sification, regardless of the specific output class. A targeted attack requires the
misclassification to be directed toward a predefined label.

Methods of adversarial examples generation have been widely researched and
are typically separated into two scenarios: white-box and black-box attacks. In
the white-box scenario, the method has full access to the parameters of the
target model and relies on gradient information to generate a perturbation to
the original input. Notable state of the art white-box attacks include the Fast
Gradient Sign Method [7], GreedyFool [6], and the Carlini and Wagner L2 attack
[4]. In contrast, in the black-box attack, the method has limited information on
the target model. The method of attack can only query the model and obtain
its output, but it has no access to the parameters.

Recent research has shown the efficacy of evolutionary algorithms in navi-
gating black-box scenarios, in both targeted and untargeted attacks. GAs have
played a pivotal role in generating adversarial examples. Chen et al. [5] imple-
mented a GA to optimise the perturbation to be added to the original image
to generate high-quality adversarial examples with a fitness function based on
attack success, perturbation size and a novel perturbation metric described in
the paper. Alzantot et al. [1] generated visually imperceptible adversarial exam-
ples for targeted attacks, with a GA and a fitness function that aims to increase
the confidence in the target class and decrease the confidence in the other classes.
Bradley and Blossom [3] also used a GA to generate adversarial examples, focus-
ing on the visual similarity, integration with neural networks, and the optimisa-
tion of algorithm parameters, and elaborated a survey for humans to confirm the
similarity between the original and perturbed images. Wu et al. [17] explored
GAs with multiple fitness functions, changing them in different evolutionary
stages to avoid falling into local optima. DE is also an evolutionary algorithm
capable of generating adversarial examples. Su et al. [14] proposed a method for
generating adversarial examples by perturbing one pixel of the original image,
with a search for the pixel being done by a DE. Jere et al. [10] found perturba-
tions in the shape of starches to generate adversarial examples and showed the
superiority of DE in relation to CMA-ES. Lin et al. [12] approximated gradients
with DE and used it to construct adversarial samples. Additionally, new evolu-
tionary algorithms have been implemented, such as Query-Efficient Evolutionary
Attack - QuEry Attack [11], EVOBA [9], and Art-Attack [16].

Unlike the previous approaches, this paper aims to compare the performance
of DE, CMA-ES, and GA in the context of generating adversarial examples for
an untargeted black-box scenario. Inspired by Su et al. [14], the perturbation
is executed by modifying only one pixel in contrast with most state of the art
approaches described that generate perturbations that can affect multiple pixels.
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3 One-Pixel Attack

The one-pixel attack can be formulated as an optimisation problem with a
defined objective function. Consider that an original image is denoted as I with
dimensions W × H × C, where W is the width, H is the height, and C is the
number of channels. The perturbation P of dimensions C × W × H represents
changes to each pixel in the image. The perturbed image I ′ is obtained by adding
the perturbation to the original image:

I ′ = I + P (1)

Let f be the targeted model, i.e. the classifier being attacked, and I an
original image correctly classified by f . The neural network outputs a confidence
vector, which is a probability distribution over the possible classes c. Therefore,
true label y is given by:

y = argmax
c

f(I)c (2)

A misclassification of the perturbed image happens if:

argmax
c

f(I)c �= argmax
c

f(I + P )c (3)

The objective function is typically a measure of the misclassification error
of a neural network f on the perturbed image I ′. Considering f(I + P )y the
confidence of the network in assigning I + P the true label, the optimisation
problem can be written as:

min
P

f(I + P )y (4)

subject to constraints on the perturbation vector to ensure its imperceptibility,
such as bounding each element of P between the domain of available pixel val-
ues. This formulation captures the essence of the one-pixel attack, where the
objective is to find one minimal perturbation that misleads the neural network
while remaining visually imperceptible.

3.1 Evolutionary One-Pixel Attack

Due to the optimisation characteristics of the problem, in this paper, we assess
the contribution of different evolutionary approaches for the one-pixel attack:
DE, GA and CMA-ES. The evolutionary algorithm’s goal is to find a one-pixel
attack for an image. Based on Su et al. [14] the representation is an array con-
taining the coordinates of the pixel and the RGB values: [x, y, r, g, b]. Let Iind,
representing an individual, be a new image equal to I, but with RGB values r,
g, b in the pixel at x, y instead of the original value in I. With n representing
the channels in the image and (x, y) the coordinates of the modified pixel, the
perturbation caused by an individual is given by:
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Pind =
n∑

i=1

|Ii(x, y) − Iindi
(x, y)| (5)

The individual’s success in triggering an attack happens when the target
model does not classify the image as belonging to the true label. A boolean
value to represent success is given by:

s(ind) = argmax
c

f(I)c �= argmax
c

f(Iind)c (6)

The fitness function evaluates the solution that satisfies the above condi-
tions. The new pixel must be a minimal perturbation and simultaneously be
a misclassification by the target model. In addition, we want to minimise the
perturbation and the model’s confidence in the true label y, while also boosting
successful individuals. Therefore, we maximise our fitness function F given by:

F (ind) =
1

Pind + 1
+ s(ind) +

1
f(Iind)y + 1

(7)

The fitness function is composed of three components. As the perturbation
is a non-negative value, (ind) is a boolean and f(Iind)y represents a probability,
the ranges of the three components are (0, 1], [0, 1], [0.5, 1]. Next, we go into
the details of the instantiation of the different evolutionary algorithms.

Genetic Algorithms. We used a standard GA for this problem, where the
individuals are integer coordinates values in the interval [0, 31] and integer RGB
values in [0, 255]. After evaluation, we use one-point crossover and Gaussian
mutation as variation operators to generate the offspring. The parent selection
is done by a tournament and we have elitism. We acknowledge that other evo-
lutionary methods could be more appropriate, such as arithmetic crossover, but
chose to implement an off-the-shelf GA.

Differential Evolution. DE is also an evolutionary algorithm used for complex
optimisation problems [13]. It is similar to the GA in its concept of generating
offspring from the parents at each generation with variation operators. But differ
in the variation operators and in the selection of individuals to make the next
population.

The DE is based on the one presented by Su et al. [14]. We initialise our
population of individuals with the same bounds as in the GA, but the x,y coor-
dinates are initialised using a uniform distribution U(0, 31) and the RGB values
by a normal gaussian distribution N(μ = 128, σ = 127). Then, at every gen-
eration, a mutant population of the same size is created. For the generation of
each mutant, different individuals from the population are selected - xr1, xr1

and xr3, different from each other. The generation is done by the DE formula,
with F being a scale:
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xmutant = xr1 + F · (xr2 − xr3), r1 �= r2 �= r3 (8)

Then, each mutant competes with its corresponding original individual,
where the candidate solution with the best fitness survives for the next gen-
eration.

Covariance Matrix Adaptation Evolution Strategy. CMA-ES is an evo-
lutionary strategy often used for optimisation tasks, particularly in continuous
domains [8]. Similarly to GA and DE, it starts with a population of candidate
solutions (individuals) and evolves over generations. It evaluates the individu-
als with a fitness function. At each generation, a new population is generated
from a multivariate normal distribution, with a mean (centroid), a deviation (σ),
and a covariance matrix. The centroid and covariance matrix are updated after
each iteration. In the update, the μ best individuals (parents) have a higher
contribution.

Since CMA-ES works better with continuous domains, we had to make adap-
tations of the individuals considering that for GA and DE we used integers in
intervals [0, 31] for x,y and [0, 255] for RGB values. Therefore, we mapped the
integer values to float numbers in the interval [0, 1] for each gene and kept a
separate phenotype associated with the individual. The phenotype is equal to
the previously described individuals. Another adaptation was done for the ini-
tialisation of the first population. For each dimension i, we divided the interval
[0, 1] with steps of 1

upperbound[i]+1 size. Then, the individuals were randomly gen-
erated by choosing values from the list of each dimension. The first centroid was
set as the mean of the first population.

4 Experimental Setup

Our goal is to generate adversarial attacks by modifying only one pixel of the
original images. A successful attack consists of introducing the change to one
pixel that leads the model under attack to make a wrong prediction of the original
label corresponding to the original image. The evolutionary algorithms are set
to maximise and optimise the fitness function in search of the best candidate
solution - a pixel with coordinates and RGB values [x,y, red, green, blue] - that
can turn an image correctly classified by a target model into an adversarial image
for said model. The fitness function also takes into account the magnitude of the
perturbation - the difference between the original and the candidate solution. We
perform the attack in a set of images. The algorithm under evaluation optimises
the pixel for each individual image.

The evolutionary attacks were performed on CIFAR-10 images. The CIFAR-
10 dataset is composed of 32 × 32 RGB images of 10 different classes - airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck. The test set contains
10,000 images, with each class equally represented. There are 16,979,328,000 pos-
sible combinations for one-pixel modifications with no guaranteed solution, i.e.
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Table 1. Evolutionary algorithms parameter values.

Parameter DE GA CMA-ES

population size 400 400 400 (λ)
generations 100 100 100
mutation scale (F) 0.5 – –
elite size – 1 –
mutation per gene rate – 0.25 –
gaussian mutation standard deviation – 3 –
crossover rate – 0.9 –
tournament size – 2 –
σ – – 0.05
μ – – λ

2

no one-pixel solution exists that can turn the original image into an adversarial
one.

The target models defined are the regular and the distilled networks presented
in the work of Carlini and Wagner, extensively utilised for adversarial learning
benchmark [4]. The regular model is traditionally trained and the distilled model
is trained with model distillation defence mechanism [4]. The implementation of
the models was taken from the Carlini and Wagner Github1, as well as the
CIFAR-10 images. We obtained an accuracy of 79% and 76% on the test set,
respectively. The models were trained using images with the shape 32 × 32× 3,
and the pixel values are in between the interval [−0.5, 0.5]. It was necessary to
convert the images to the RGB bounds of our individuals [0, 255]. For width and
height, the bounds are [0, 31]. However, to obtain the original performance of
the models during evolution, whenever a classification is needed the RGB values
are converted back to their original bounds.

As attacking the entire CIFAR-10 test set is computationally expensive, for
each target model we randomly selected 500 correctly classified images from
the test set, as was previously done in Su et al. [14]. We also guaranteed that
the 10 classes were equally represented in the selected subset, i.e. the subset is
composed of 50 samples from each class.

The parameter values for DE were taken from the setup of Su et al. [14]. To
compare the algorithms, the same budget of evaluations was given to GA and
CMA-ES. Table 1 outlines the parameter configurations employed for each algo-
rithm. Specifically, the μ parameter aligns with the value employed by Hansen
[8], while the remaining parameters have been set through empirical consider-
ations. In addition to the evolutionary algorithms, we also use a random one
for benchmarking. It generates 40,000 solutions that are then evaluated by the
fitness function.

1 https://github.com/carlini/nn_robust_attacks.

https://github.com/carlini/nn_robust_attacks
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Fig. 1. Mean best and average fitness for the four algorithms. The results presented are
the averages of 10 runs. The images with no adversarial examples were note considered
for the statistics presented in these graphics.

Our implementations of the evolutionary algorithms and the setup for the
attacks are available in the paper repository2. We performed 10 independent
runs so that each algorithm attacks an image 10 times with different random
generation initialisations. The experiments were done using a PC with a AMD
Ryzen 5 5600X 6-Core Processor and Nvidia RTX 3080ti GPU.

5 Experimental Results

In this section, we compare the performance of each evolutionary algorithm. We
also added a random search algorithm to serve as a baseline for the problem.
It uses the same number of evaluations keeping the best solution encountered
during that search. The analysis performed comprises different aspects: (i) Fit-
ness optimisation: an analysis of how the fitness function is optimised along the
generations; (ii) Number of Evaluations: Represents the number of candidate
solutions created before discovering an adversarial attack; (iii) Success Rate:
Denotes the percentage of the 500-image set that were successfully attacked; (iv)
Number of Adversarial attacks found per Image: Indicates the number
of adversarial examples generated for each image; (v) Covered Pixels: Repre-
sents the number of distinct pixels covered by the algorithm in the search space;
(vi) Distortion: Measures the dissimilarity between an adversarial image and
its original counterpart where, since we are changing one pixel only, it can be
computed as dist = (|IR − PR| + |IG − PG| + |IB − PB |).

We conducted tests to ascertain statistical differences between the metric
values (except fitness) obtained by the four algorithms across a sample size of 10
runs. For each metric, we evaluated the values by pairs of algorithms. Lilliefors
test was used to assess the normality of the distributions. For the cases where
the normality assumption holds, we performed paired dependent t-tests, and
Wilcoxon tests were employed as an alternative. The significance level was set
as α = 0.01. The values for each run and other extensive results are presented
in the supplementary work.
2 https://github.com/luanaclare/evo_one_pixel_attack.

https://github.com/luanaclare/evo_one_pixel_attack
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The fitness progression over generations is presented in Fig. 1 for both the
target models, regular and distilled. On average, the CMA-ES algorithm presents
itself as the fastest to optimise the problem and converge, reaching its optimal
solutions early in the generational process and showing minimal improvement
in the second half. In comparison to the other algorithms, its population is less
diverse at the fitness level, as shown by the average fitness. On the other side,
DE is the slowest to optimise the problem and the average fitness does not reach
a plateau. The GA is competitive with the others in terms of the best fitness,
but the average fitness is lower. Nevertheless, despite the speed, all algorithms
demonstrate the capability to achieve competitive fitness values. As anticipated,
the distilled model proves to be more challenging to attack, evident in its lower
average fitness values, due to its defensive training.

Table 2. Mean number of evaluations required to find an adversarial example for each
of the four algorithms, excluding the images with no success. The results presented are
the averages of 10 runs.

(a) Model regular. All means
are statistically different.
Algorithm Mean STD

DE 662.73 136.15
GA 374.02 99.70
CMA-ES 190.60 33.36
Random 2086.81 218.30

(b) Model distilled. Means are
statistically different, with the
exception of the pair: GA and
CMA-ES.
Algorithm Mean STD

DE 444.72 130.14
GA 248.76 82.18
CMA-ES 188.52 27.79
Random 2193.39 375.35

Table 3. Mean number of evaluations required to find an adversarial example for each
of the four algorithms, counting images with no success as 40,000 evaluations. The
results presented are the averages of 10 runs.

(a) Model regular. All means
are statistically different.
Algorithm Mean STD

DE 23643.28 386.61
GA 25853.92 258.88
CMA-ES 26321.44 219.53
Random 24630.73 167.75

(b) Model distilled. Means are
statistically different, with the
exception of the pairs: GA and
CMA-ES, DE and Random.
Algorithm Mean STD

DE 28623.76 168.01
GA 31055.84 214.35
CMA-ES 30859.28 170.35
Random 28598.44 100.86

In our setup, each algorithm attacking an image has a budget of 40,000
evaluations. This metric aims to compare how fast the algorithm can find an
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Table 4. Mean success rate in 500 images for the four algorithms. The results presented
are the averages of 10 runs.

(a) Model regular. All means
are statistically different.
Algorithm Mean STD

DE 42.58% 0.0094
GA 35.70% 0.0070
CMA-ES 34.36% 0.0054
Random 40.54% 0.0054

(b) Model distilled. Means are
statistically different, with the
exception of the pair: GA and
CMA-ES.
Algorithm Mean STD

DE 28.76% 0.039
GA 22.50% 0.0052
CMA-ES 22.96% 0.0043
Random 30.16% 0.0036

adversarial example. An adversarial example occurs when the new pixel - coded
into the individual - can turn the original image into an adversarial, regardless of
the fitness. The first individual capable of successfully causing an attack can be
a poor adversarial, with a high perturbation size for example, but it is successful
nonetheless. As we have 500 images, we summarise the number of evaluations of
a run as the mean number of evaluations between the images. The algorithms
were not capable of generating adversarial examples for all images, so we make
a distinction between two types of number of evaluations: skipping images with
no adversarial examples and counting images with no adversarial examples as
40,000 evaluations. The mean between runs and the standard deviation (std) are
presented in Table 2 for the former version, and in Table 3 for the latter.

In the case of excluding images for which no adversarial examples were found,
for model regular, The CMA-ES algorithm requires fewer evaluations to find an
adversarial example than its evolutionary counterparts. Since it optimises the
fitness faster, as shown in Figs. 1a, this behaviour was anticipated. Despite taking
more evaluations than CMA-ES, the other evolutionary algorithms are faster at
finding adversarial examples than the random baseline. When it comes to the
target model distilled, GA is, statistically, equally fast. Again, all evolutionary
algorithms are better than the baseline.

The scenario changes when counting images with no success as 40,000 evalu-
ations. Now, CMA-ES is the algorithm which takes the most evaluations to find
an adversarial example for target model regular, and DE is the only algorithm
to outperform random. For model distilled, DE and Random perform equally.

As previously mentioned, the algorithms were not able to find adversarial
examples for all the selected 500 images through the one-pixel attack. With
success rate, we compute the percentage that were successfully attacked in a
run. In Table 4 we show the mean success rate between runs for each model.
Again, as expected, the distilled model is more robust to adversarial attacks. In
this metric, the baseline random algorithm is competitive in comparison to the
evolutionary algorithms and the best for model distilled.
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In the quantity of adversarial per image metric we measure the amount of
adversarial examples that an algorithm can find. In a run of an algorithm, we
compute how many adversarial examples were found for each image and compute
the mean. The means between runs are presented in Table 5 for each target
model. Although random is competitive in success rate, it is not when it comes
to the quantity of adversarial examples. This indicates that it can find solutions,
but the evolutionary algorithms are better at exploring and exploiting them.
Comparing the evolutionary algorithms, it is possible to see that despite GA’s
weakness in attacking the selected set of images, when it is successful it finds
more adversarial examples than the other algorithms.

Table 5. Mean quantity of adversarial examples per image for the four algorithms.
The results presented are the averages of 10 runs.

(a) Model regular. All means
are statistically different.
Algorithm Mean STD

DE 885.61 13.04
GA 4944.83 104.59
CMA-ES 977.17 20.80
Random 508.23 1.96

(b) Model distilled. All means are
statistically different.
Algorithm Mean STD

DE 818.10 23.55
GA 1621.12 56.17
CMA-ES 515.10 20.4110
Random 277.05 0.99

Figure 2 shows the number of new adversarial samples per generation. Images
with no adversarial examples were removed to highlight the algorithms’ per-
formance in terms of quantity when they are successful in attacking an image.
Overall, GA discovers more adversarial examples than its counterparts, and con-
tinues to find new ones throughout the entire evolution despite a decline in the
second half. In contrast, CMA-ES finds most of its adversarial examples early
on, subsequently stabilising as it ceases to discover additional ones.

Fig. 2. Mean quantity of new adversarial examples per generation per run for the
three algorithms. The results presented are the averages of 10 runs. The images with
no adversarial examples were not considered from the statistics presented.
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Although the evolutionary algorithms are guided by the same fitness function,
they differ in the way they operate in the search space. The covered pixels metric
aims to quantify how many unique individuals, i.e. pixels, were evaluated for an
image. We calculated the mean number of covered pixels in the 500 attacks. The
mean values between runs are presented in Table 6 for each target model.

We compiled a set of adversarial examples from successful attacks by every
algorithm for the model regular (Fig. 3) and distilled (Fig. 4). The figures contain
the original image with the information about the true label and confidence, the
adversarial image, the confidence on the new class and its distortion. As stated,

Table 6. Mean quantity of covered pixels images for the four algorithms. The results
presented are the averages of 10 runs.

(a) Model regular. All means
are statistically different.
Algorithm Mean STD

DE 25947.46 10994.72
GA 29399.90 3446.14
CMA-ES 8204.64 147.31
Random 40000 0

(b) Model distilled. All means are
statistically different.
Algorithm Mean STD

DE 30437.02 10865.40
GA 29559.90 3867.28
CMA-ES 8605.44 164.92
Random 40000 0

Table 7. Mean distortion of images for the four algorithms. The results presented are
the averages of 10 runs. The target model is the regular model. Means (means) are
statistically different, with the exception of the pair: CMA-ES and GA. Means (min)
are statistically different, with the exception of the pair: CMA-ES and Random.

Algorithm Mean (mean) STD Mean (min) STD

DE 494.28 3.50 242.54 7.19
GA 470.59 4.72 192.99 3.51
CMA-ES 468.73 4.48 213.24 5.53
Random 383.44 2.46 218.28 3.69

Table 8. Mean distortion of images for the four algorithms. The results presented are
the averages of 10 runs. The target model is the distilled model. Means (means) are
statistically different, with the exception of the pair: CMA-ES and DE. Means (min)
are statistically different, with the exception of the pairs: CMA-ES and DE, CMA-ES
and Random.

Algorithm Mean (mean) STD Mean (min) STD

DE 323.38 6.74 236.26 6.49
GA 269.33 4.17 184.81 2.28
CMA-ES 319.76 6.02 231.049 7.30
Random 393.19 1.90 240.65 3.60
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the distortion is the difference between the original image and the perturbed
image. We can observe in both figures that in most of the cases the pixel attacks
are not perceptible to the human eye (e.g. last line of Fig. 3). Overall, for the
regular and distilled models, we can observe that in the GA and CMA-ES in
most of the cases, the value of distortion is lower than the other approaches as
Tables 7 and 8 also suggest. The pixels on the distilled model are a bit more
noticeable than the regular and the values for distortion are in general higher.
Although the distilled model is more resilient to an attack, it seems that in the
event of a successful attack, the pixel takes an atypical colour.

Fig. 3. Adversarial examples generated by the four algorithms for model regular.
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Fig. 4. Adversarial examples generated by the four algorithms for model distilled.

6 Conclusion

This paper explored evolutionary adversarial attacks with a particular focus on
the one-pixel attack in image classification. By employing Differential Evolution,
Genetic Algorithms, and Covariance Matrix Adaptation Evolution Strategy, we
have explored these attacks, analysing the efficacy of each evolutionary algo-
rithm. Through experimentation on the CIFAR-10 dataset, a widely recognized
benchmark in image classification, our comparative analysis has shown the effec-
tiveness of the chosen evolutionary algorithms in generating one-pixel attacks.

The experimentation consisted of testing the algorithms in their ability to
generate adversarial examples by changing one pixel in each image. We attacked
500 correctly classified test images - 50 from each class. We selected two target
models, regular and distilled from Carlini and Wagner [4]. The regular model
was traditionally trained whereas the distilled one was trained with defensive
strategies. Aside from the evolutionary algorithms, random search was used to
serve as a baseline of comparison. The algorithms had a budget of 40,000 eval-
uations for each image and target model pair. The experimental results were
judged in fitness optimisation, number of evaluations to generate an adversarial
attack, success rate, number of adversarial per image, solution space coverage
and level of distortion to the original image.

Based on the results, not all images were successfully attacked by the strict
one-pixel attack, with DE (42%) being the algorithm with the most successful
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attacks to the 500 images. The fitness progress shows that the CMA-ES is the
fastest to converge, followed by GA and DE. According to the number of adver-
sarial encountered, we concluded that the GA was the approach that encountered
more adversarial attacks. In terms of coverage, GA also comes ahead for model
regular, and in close second to DE for model distilled. In terms of minimal dis-
tortion to the original image, GA has lower results than the other algorithms,
in comparison to CMA-ES and DE which have similar results to the random
search baseline. The competitive performance by random in some metrics might
me explained by the lack of tuning for the algorithms.

For future work, we plan to extend the analysis to attacks with multiple
pixels, to develop an attack capable of creating a perturbation that can affect
multiple images at once, and to perform a hyper-parameter search to optimise
the algorithms.

Acknowledgements. This work has been partially supported by Project “NEXUS
Pacto de Inovação - Transição Verde e Digital para Transportes, Logística e Mobil-
idade”. ref. No. 7113, supported by the Recovery and Resilience Plan (PRR)
and by the European Funds Next Generation EU, following Notice No. 02/C05-
i01/2022.PC645112083-00000059 (project 53), Component 5 - Capitalization and Busi-
ness Innovation - Mobilizing Agendas for Business Innovation; by Project No. 7059 -
Neuraspace - AI fights Space Debris, reference C644877546-00000020, supported by the
RRP - Recovery and Resilience Plan and the European Next Generation EU Funds, fol-
lowing Notice No. 02/C05-i01/2022, Component 5 - Capitalization and Business Inno-
vation - Mobilizing Agendas for Business Innovation and; by the FCT - Foundation for
Science and Technology, I.P./MCTES through national funds (PIDDAC), within the
scope of CISUC R&D Unit - UIDB/00326/2020 or project code UIDP/00326/2020.

References

1. Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh, C.J., Srivastava,
M.B.: GenAttack: practical black-box attacks with gradient-free optimization. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2019, pp. 1111–1119. Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3321707.3321749

2. Banzhaf, W., Machado, P., Zhang, M.: Handbook of Evolutionary Machine
Learning. Genetic and Evolutionary Computation. Springer, Cham (2023).
https://doi.org/10.1007/978-981-99-3814-8, https://books.google.pt/books?
id=fGLuzwEACAAJ

3. Bradley, J.R., Blossom, A.P.: The generation of visually credible adversarial exam-
ples with genetic algorithms. ACM Trans. Evol. Learn. Optim. 3(1), 1–44 (2023).
https://doi.org/10.1145/3582276

4. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
CoRR abs/1608.04644 (2016). http://arxiv.org/abs/1608.04644

5. Chen, J., Su, M., Shen, S., Xiong, H., Zheng, H.: POBA-GA: perturba-
tion optimized black-box adversarial attacks via genetic algorithm. Comput.
Secur. 85, 89–106 (2019). https://doi.org/10.1016/j.cose.2019.04.014, https://
www.sciencedirect.com/science/article/pii/S0167404818314378

https://doi.org/10.1145/3321707.3321749
https://doi.org/10.1007/978-981-99-3814-8
https://books.google.pt/books?id=fGLuzwEACAAJ
https://books.google.pt/books?id=fGLuzwEACAAJ
https://doi.org/10.1145/3582276
http://arxiv.org/abs/1608.04644
https://doi.org/10.1016/j.cose.2019.04.014
https://www.sciencedirect.com/science/article/pii/S0167404818314378
https://www.sciencedirect.com/science/article/pii/S0167404818314378


162 L. Clare et al.

6. Dong, X., et al.: GreedyFool: distortion-aware sparse adversarial attack (2020).
https://doi.org/10.48550/ARXIV.2010.13773, https://arxiv.org/abs/2010.13773

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). https://doi.org/10.48550/ARXIV.1412.6572, https://arxiv.org/
abs/1412.6572

8. Hansen, N.: The CMA evolution strategy: a tutorial. CoRR abs/1604.00772 (2016).
http://arxiv.org/abs/1604.00772

9. Ilie, A., Popescu, M., Stefanescu, A.: EvoBA: an evolution strategy as a strong
baseline for black-box adversarial attacks. In: Mantoro, T., Lee, M., Ayu, M.A.,
Wong, K.W., Hidayanto, A.N. (eds.) Neural Information Processing, pp. 188–200.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92238-2_16

10. Jere, M., Rossi, L., Hitaj, B., Ciocarlie, G., Boracchi, G., Koushanfar, F.: Scratch
that! An evolution-based adversarial attack against neural networks. arXiv preprint
arXiv:1912.02316 (2019)

11. Lapid, R., Haramaty, Z., Sipper, M.: An evolutionary, gradient-free, query-efficient,
black-box algorithm for generating adversarial instances in deep convolutional neu-
ral networks. Algorithms 15(11), 407 (2022). https://doi.org/10.3390/a15110407,
https://www.mdpi.com/1999-4893/15/11/407

12. Lin, J., Xu, L., Liu, Y., Zhang, X.: Black-box adversarial sample generation
based on differential evolution. J. Syst. Softw. 170, 110767 (2020). https://doi.
org/10.1016/j.jss.2020.110767, https://www.sciencedirect.com/science/article/
pii/S0164121220301850

13. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

14. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural net-
works. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019). https://doi.org/10.
1109/TEVC.2019.2890858

15. Szegedy, C., et al.: Intriguing properties of neural networks (2013). https://doi.
org/10.48550/ARXIV.1312.6199, https://arxiv.org/abs/1312.6199

16. Williams, P., Li, K.: Art-attack: black-box adversarial attack via evolutionary art
(2022)

17. Wu, C., Luo, W., Zhou, N., Xu, P., Zhu, T.: Genetic algorithm with multiple
fitness functions for generating adversarial examples. In: 2021 IEEE Congress on
Evolutionary Computation (CEC), pp. 1792–1799 (2021). https://doi.org/10.1109/
CEC45853.2021.9504790

https://doi.org/10.48550/ARXIV.2010.13773
https://arxiv.org/abs/2010.13773
https://doi.org/10.48550/ARXIV.1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1604.00772
https://doi.org/10.1007/978-3-030-92238-2_16
http://arxiv.org/abs/1912.02316
https://doi.org/10.3390/a15110407
https://www.mdpi.com/1999-4893/15/11/407
https://doi.org/10.1016/j.jss.2020.110767
https://doi.org/10.1016/j.jss.2020.110767
https://www.sciencedirect.com/science/article/pii/S0164121220301850
https://www.sciencedirect.com/science/article/pii/S0164121220301850
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.48550/ARXIV.1312.6199
https://doi.org/10.48550/ARXIV.1312.6199
https://arxiv.org/abs/1312.6199
https://doi.org/10.1109/CEC45853.2021.9504790
https://doi.org/10.1109/CEC45853.2021.9504790


Robust Neural Architecture Search Using
Differential Evolution for Medical Images

Muhammad Junaid Ali(B), Laurent Moalic, Mokhtar Essaid,
and Lhassane Idoumghar

Université de Haute-Alsace, IRIMAS UR 7499, 68093 Mulhouse, France
{muhammad-junaid.ali,laurent.moalic,mokhtar.essaid,

lhassane.idoumghar}@uha.fr

Abstract. Recent studies have demonstrated that Convolutional Neu-
ral Network (CNN) architectures are sensitive to adversarial attacks
with imperceptible permutations. Adversarial attacks on medical images
may cause manipulated decisions and decrease the performance of the
diagnosis system. The robustness of medical systems is crucial, as it
assures an improved healthcare system and assists medical professionals
in making decisions. Various studies have been proposed to secure med-
ical systems against adversarial attacks, but they have used handcrafted
architectures. This study proposes an evolutionary Neural Architecture
Search (NAS) approach for searching robust architectures for medical
image classification. The Differential Evolution (DE) algorithm is used
as a search algorithm. Furthermore, we utilize an attention-based search
space consisting of five different attention layers and sixteen convolution
and pooling operations. Experiments on multiple MedMNIST datasets
show that the proposed approach has achieved better results than deep
learning architectures and a robust NAS approach.

Keywords: Differential Evolution · Evolutionary AutoML ·
evolutionary NAS · Neural Architecture Search

1 Introduction

Deep Neural Networks (DNNs) have been widely used to solve medical imaging
tasks, such as classification, localization, registration, and segmentation [4,26].
The robustness of these systems is crucial to secure them from vulnerability
issues [2]. The latter can be caused by adversarial attacks, which are deliberate
attempts to deceive or manipulate a machine-learning model by adding pertur-
bations to the input data [9]. The real-life threats of these attacks are considered
essential; for instance, in medical systems, they can exhibit misleading diagnostic
outcomes.

Different types of adversarial attacks include black-box, white-box, and tar-
geted attacks. In a black-box attack, the attacker cannot access the model
parameters as it generates adversarial images without knowledge of the model.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 163–179, 2024.
https://doi.org/10.1007/978-3-031-56855-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56855-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-56855-8_10


164 M. J. Ali et al.

However, in white-box attacks, the attacker can access the model parameters.
Furthermore, targeted attacks aim to cause the model to predict incorrect class
labels [5]. Some of the famous adversarial attack techniques are the Fast Gradi-
ent Sign Method (FGSM) [6], Projected Gradient Descent (PGD) [7] and their
different variants. PGD is a powerful adversarial attack that uses randomized
initialization and multi-step attacks to perturb input data iteratively along the
gradient’s direction, aiming to find effective adversarial examples. Following the
same context, FGSM is a one-step adversarial attack that perturbs the input
data by adding little noise in the direction.

For effective defense mechanisms against adversarial attacks, numerous
approaches have been proposed in the literature, such as adversarial training
[11,13], Denoising Convolutional Neural Networks (DCNN)’s [12], model ensem-
ble techniques [10]. These approaches aim to enhance the robustness of deep
learning models against adversarial perturbations. While adversarial robustness
methods enhance a model’s robustness against adversarial attacks, they may
reduce performance on clean(original and unaltered) data samples due to over-
fitting towards adversarial examples.

Moreover, these techniques use hand-crafted architectures. Recent studies
have shown that the choice of deep learning architecture directly impacts the per-
formance of adversarial training [15]. Manual designing of deep learning architec-
tures is a complex and time-consuming task. Neural Architecture Search (NAS)
overcomes this problem by automatically searching for an efficient architecture
for a specific task. Evolutionary NAS approaches are effective in the automated
search of robust architectures for image classification [3]. These approaches effi-
ciently search for robust and lightweight architectures. In these studies, each
sampled architecture is trained with adversarial training and evaluated on accu-
racy scores obtained after applying different adversarial attacks on the validation
set [3,20,24,25].

Studies have shown that DNNs trained on medical images can be more vul-
nerable to adversarial attacks than natural images. One of the main reasons is
due to the complex biological textures in medical images, which may lead to
more vulnerable regions, and deep neural networks designed for large-scale nat-
ural images can be overparametrized for medical image tasks, which leads to
high vulnerability to adversarial attacks [1,19]. Therefore, there is a need for a
separate adversarial NAS approach for medical images that focus only on medi-
cal images. A specific DNN learned on medical image data may be more robust
against perturbations than existing deep learning architectures.

Motivated by the above studies, we have proposed an evolutionary approach
for searching robust architectures against adversarial attacks on medical images.
This study is about the architectural perspective of adversarial robustness for
medical images. Besides, it shows how evolutionary approaches can be helpful to
search for an architectural topology that is both lightweight and robust against
adversarial attacks. We used Differential Evolution (DE) as a search algorithm
for our proposed approach. The motivation behind adopting DE as a search algo-
rithm is its simplicity and effectiveness in population explorations. It has been



Robust NAS for Medical 165

widely adopted by different studies and achieved state-of-the-art performance
on various tasks [32–36]. In summary, the main contributions of this paper are
as follows:

– We have proposed an approach for automatically searching robust architec-
tures against adversarial attacks for medical images using an evolutionary
algorithm.

– A fitness function is designed to aggregate the accuracy scores from multiple
adversarial attacks.

– We designed an attention-based search space consisting of multiple convolu-
tion and pooling layers and different attention layers.

The rest of the article is structured as follows. Section 2 discusses the related
work. We present the proposed methodology in Sect. 3. Section 4 discusses the
results and experimental settings. Finally, we conclude this study in Sect. 5.

2 Related Work

Numerous studies have been proposed to defend deep learning models against
adversarial attacks on medical images, specifically for medical image classifica-
tion tasks [37–41]. These studies have compared the performance of different
Convolutional Neural Network (CNN) architectures under adversarial attacks.
A study by Hirano et al. proposed to evaluate the vulnerability of seven CNN
models on medical image classification task. They have performed experiments
on three medical image datasets (skin cancer, pneumonia classification, and dia-
betic retinopathy) against Universal Adversarial Attack (UAP) [40].

Moreover, Ma et al. compared the responses of natural and medical images
on adversarial perturbations, finding that medical images are more vulnerable
due to their complex biological structures and unique properties [19]. Similarly,
Xu et al. conducted experiments on three models in multi-label, multi-class, and
binary classification tasks, finding that models are unreliable when subjected to
adversarial examples [41]. They also developed two types of defense techniques
for dealing with adversarial instances. Denoising operations are also found to
be quite effective against adversarial attacks. Xue et al. proposed enhancing
the denoising ability of CNN classifiers for medical image classification using an
auto-encoder to make the model robust against adversarial attacks [12].

Furthermore, various countermeasures have also been proposed to enhance
the resilience of deep learning architectures against adversarial attacks. The most
effective and popular defense technique is adversarial training. It improves the
model’s robustness by adding adversarial examples during the training [6,7]. In
adversarial training, adversarial examples are fed to the network during training
to increase its robustness against these attacks. Multiple studies have been pro-
posed to improve the adversarial training process for increasing the robustness
accuracy [16–18]. Adaptive adversarial training is also proposed, which uses a
loss-defined margin to overcome performance degradation caused by high noise
levels [11]. During adversarial training, the most widely used method is to replace
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the input data or combine it with adversarial examples generated by PGD to
make the architecture more resilient to other attacks [7]. It was noticed that
Defensive distillation is only effective when dealing with some gradient-based
attack methods such as FGSM and PGD [31].

Similarly, obfuscated gradient only resists specific gradient-based attacks,
as it does not enhance the robustness of architecture [28]. Adversarial train-
ing is the most effective approach for defense against adversarial attacks [42].
However, the performance of adversarial training is also dependent on the net-
work architecture [27]. As manually designing a neural network architecture is
difficult, NAS overcomes the issue by automatically searching an architecture
topology. Therefore, adopting NAS for building robust architectures would be
helpful. Accordingly, a variety of robust NAS approaches have been proposed to
automatically search for adversarial robust architectures for image classification
[14,24,25]. These approaches achieve robustness from an architectural design
perspective.

Studies have shown that medical images exhibit certain characteristics dif-
ferent from natural images and are more sensitive against adversarial attacks
[8]; therefore, there is a need for an adversarial NAS approach specifically
designed for medical images. To the best of our knowledge, there are no pre-
vious studies for searching robust architectures against adversarial attacks in
medical images. This study aims to automatically search for a robust, resilient
architecture against multiple adversarial attacks by leveraging an evolutionary
search approach and adversarial training.

3 Proposed Methodology

This section presents the overall methodology of the proposed approach to
search for robust architectures against adversarial attacks on medical images.
The overview of the proposed framework is shown in Fig. 1. The proposed NAS-
based framework consists of three main steps: (i) population initialization, (ii)
crossover and mutation operations, and (iii) fitness evaluation.

The individual network is represented using a vector consisting of continuous
and discrete values of fixed length as a genotype. The proposed approach directly
applies the reproduction operators on the genotype while decoding the genotype
only for evaluation purposes. The cost of each architecture is computed using
the proposed fitness function, and the search algorithm maximizes the fitness to
search for new architecture with better robustness. Instead of simple training,
the individual neural networks are trained with adversarial training.

3.1 Search Space Design

In this study, we have used cell-based search space for our NAS approach, in
which the neural network architecture is constructed using a set of repeating
modules or “cells” [21,23]. Each cell consists of several layers and their connec-
tions. This search space is frequently adopted by different studies thanks to its
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Fig. 1. System diagram of the proposed methodology

simplicity and flexible nature, which makes it easy to modify. This search space
is frequently adopted by different studies thanks to its simplicity and flexibility,
making it easy to modify. This search space categorizes the cells into two differ-
ent types: normal and reduction cells. The normal cells process the input and
keep the same resolution of the feature map.

In contrast, the reduction cell reduces the feature map’s resolution using
down-sampling operations such as pooling and stride-2 convolution. The network

Fig. 2. Operations and attention layers used in the search space to design CNN archi-
tectures
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Fig. 3. An example of proposed search space utilized in this approach. Left: The full
structure of the architecture consists of normal and reduction cells. Right: Example of
cell build using proposed encoding scheme

is formed by stacking these cells one after another. Each cell consists of sev-
eral predefined operations. Figure 3 shows a visual example of cell-based search
space. This study uses 16 different operations and 5 different attention layers, as
shown in Fig. 2. We have used these attention layers from the Attention-DARTS
[29] study. This latter proposed to search attention layers along convolution
and pooling operations. The objective is to use each attention layer after the
candidate operation to focus more on salient regions. Various efficient and
lightweight CNN components from different architectures, such as MobileNet,
OctoveNet, and InceptionNets, are selected in our search space. These operations
consist of dilated convolution, mobile convolution block, octave convolutions,
separable convolutions, and inverted residual blocks with different kernel sizes.
Moreover, five different kinds of attention layers were used. They are applied
after each operation. Studies have shown that attention-based models are more
robust against adversarial attacks [30]. These layers include Squeeze and Excita-
tion (SE), Gather-Excite (GE) Attention, Bottleneck Attention Module (BAM),
Convolution Bottleneck Attention Module (CBAM), and Double Attention (DA)
blocks.

3.2 Encoding Scheme

In the search space, each candidate operation is represented by a real value
between 0 and 1, while a value between 1 and 5 represents the associated atten-
tion layer, mapping to different attention types. Figure 4 shows an encoding
scheme’s visual representation. Each value of the encoding vector corresponds
to a tuple consisting of a real value representing some network operation and
an attention layer represented by an integer value. Similarly, each value of the
decoding vector represents a tuple consisting of an operation and an attention
layer defined in the search space (convolution or pooling layers), as illustrated
above.
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Fig. 4. Genotype and phenotype representation of individuals consisting of 8 genes

The mapping of an encoding vector Ē to a decoding vector D̄ in this approach
is given as:

Ē = [(e1, a1), (e2, a2), (e3, a3), (e4, a4), . . . , (en, an)] (1)

where the operation gene ei and attention gene ai are defined as:

ei = Pri where 0 ≤ Pri ≤ 1 (2)
ai = Rri where 1 ≤ Rri ≤ 5 (3)

Pr: Random probability value for each candidate convolution or pooling opera-
tion
Rr: Random value for each attention operation
Ar: Total number of available attention operations
ON : Total number of available convolution or pooling operations

The decoding vector is given as:

D̄ = [d1, d2, d3, d4, . . . , dn] (4)

Each gene of a decoded individual represents:

di = (Operations[�ON × ei�],Attentions[ai])

3.3 Fitness Function

This study proposes a fitness function to evaluate an individual’s robustness
against multiple adversarial attacks. The fitness function consists of the harmonic
mean of the accuracy scores of three different adversarial attacks (FGSM, Basic
Iterative Method (BIM), and PGD) as a measure to evaluate the performance of
an individual. The model’s predictions are computed using perturbed validation
data to compute these accuracy scores. The intuition behind using harmonic
mean is to keep the fitness function having non-zero values. The fitness function
is given as:

FitnessFunction =
3

1
AFGSM

+ 1
APGD

+ 1
ABIM

(5)
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where AFGSM , APGD, and ABM are the accuracy scores on the searched model
after applying FGSM, PGD, and BIM attacks on the validation set. The pseudo-
code of performance evaluation of an individual neural network is given in Algo-
rithm 1

3.4 Adversarial Training

Adversarial training feeds adversarial samples during training to increase the
model’s robustness against perturbations. In this study, PGD-based adversarial
training is used. In the case of multi-class classification, a multi-class input X
and output Y are considered. The output Y is one-hot encoded, representing a
corresponding label for each class in X. The goal is to train a classifier fθ with
some parameters θ that accurately predicts the class label from unseen data. For
adversarial training in the case of multi-class, the adversarial perturbations are
applied to each class separately. The original classification loss is given by:

L(θ) =
1
S

S∑

i=1

loss(fθ(Xi), Yi) (6)

Where S represents the number of samples in the dataset, Xi indicates the i-th
input with Yi as the corresponding label with loss as the multi-class classification
loss function. The adversarial perturbations generated using the PGD for each
class c are achieved by the given function:

δc = PGD(fθ,Xi, Yi, ε, α, J) (7)

where Xi is the input with Yi as the label, ε is the size of perturbation, α the
step size and J as the number of iterations. The adversarial training loss for
each class c is given by:

Lc
adv(θ) =

1
Sc

Sc∑

i=1

loss(fθ(Xi + δc), Yi) (8)

where Sc is the number of samples in class c. The overall adversarial training
objective is given as follows:

min
θ

(
L(θ) + λ

C∑

c=1

Lc
adv(θ)

)
(9)

Where C is the total number of classes, and λ is a hyper-parameter that balances
the importance of the original loss and the adversarial training loss for each class.

3.5 Differential Evolution

This study uses DE as a search strategy in the proposed NAS approach. It
finds optimal solutions by iteratively mutating and combining candidate solu-
tions, evaluating their fitness, and replacing less fit solutions. Compared with
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traditional evolutionary algorithms, DE uses the scaled difference of vectors to
produce new candidate solutions in the population [43]. Moreover, DE comprises
few parameters and is easy to implement. DE consists of four main stages: ini-
tialization, mutation, crossover, and selection. At first, individuals are randomly
generated to create the initial population. Then, a mutation operation is per-
formed to generate donor vectors. Most commonly, the DE/best/1 mutation
scheme is used. −→

V g
i =

−→
X best

g + Fx(
−→
X g

r1 − −→
X g

r2) (10)

In this equation,
−→
V g

i denotes the i-th vector from generation g.
−→
Xbest

g is the best

vector from generation g, and
−→
X g

r1 and
−→
X g

r2 represent two random vectors from
the population g such that

−→
X g

r1 �= −→
X g

r2. F is a scaling factor, F ∈ (0, 1). After
the mutation, the crossover operator is performed as follows:

−→
Ug

ij =

{−→
V g

ij if randi ≤ CR or j = j,−→
xg

ij otherwise.
(11)

Where X
′(t)
ij defines the j-th dimension of the i-th individual in the g-th gener-

ation. In the binomial crossover, a random number randi is generated for each
individual dimension and compared with the crossover rate CR and j accord-
ing to the equation to decide whether the crossover operation will occur or not.

Finally, the generated vector
−→
Ug

ij is compared with the trial vector
−→
Ug′

ij and the
best one is selected for the next generation according to the fitness values. This
process is repeated until the stopping criteria or the maximum number of gen-
erations is reached.
Algorithm 1: Performance Evaluation
Input: An individual I, Training epochs E, Datasettrain, Datasetvalid
Output: Fitness value fi of an Individual I

(1) Decode the individual with the decoding strategy to obtain the model M ;
(2) for i = 1 to E do
(3) Train model M on Datasettrain using adversarial training; // ;

(4) fi ← Test model M on Datasetvalid after adversarial attacks (FGSM, PGD,
BIM);

(5) Return fitness value fi;

4 Experimental Settings and Results

We have performed comprehensive experiments to evaluate the performance of
the proposed approach. This section briefly describes the experimental settings
used to perform different experiments and the experimental results.
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4.1 Datasets Used for Experimentation

The study utilized MedMNIST benchmark datasets, consisting of 2D and 3D
images of various organs and modalities [22]. Two datasets, OrganCMNIST
and PathMNIST, were used for experiments. The PathMNIST dataset con-
sists of nine different classes containing colorectal cancer histology slides. The
OrganCMNIST dataset consists of eleven different classes of abdominal Com-
puted Tomography (CT) scans in the coronal axes. These datasets are described
in the Table 1.

Table 1. Datasets description

Dataset Name Task(Classes) Data Modality # Samples # Training/Validation/Test

PathMNIST Multi-Class (9) Colon Pathology 107,180 89,996/10,004/7,180

OrganCMNIST Multi-Class (11) Abdominal CT 23,660 13,000/2,392/8,268

4.2 Experimental Settings

The architecture search was conducted on a small network of 8 cells, divided
into train, validation, and test sets. The individual was trained on the training
set, evaluated on the validation set, and the final architecture was evaluated on
the test set. As the parameters of DE play an important role in the quality of
the searched solution, we have performed experiments with different CR and F
rates, population sizes, and mutation strategies. The best-reported parameters
of DE are given in Table 3. Moreover, the best-performing parameter settings of
deep learning algorithms and adversarial attack settings are also given in Table 2.
For a fair comparison, all the hyperparameters are kept the same. We performed
adversarial training using 7-step PGD with a step size of 0.01 and ε as 8/255 for
50 epochs.

For training, we used the Stochastic Gradient Descent (SGD) optimizer with
a MultiStepLR scheduler and a learning rate of 0.1, a momentum rate of 0.9,
and a weight decay of 0.0002. Similarly, the number of epochs for the proposed
approach and AdvRush is set to 50 for the final searched architecture. During the
search phase of the proposed approach, the number of epochs is 10 to estimate
the performance of an individual. The PyTorch library is used for implementing
deep learning architectures, and TorchAttacks is used to implement adversarial
attacks. All the experiments are performed on NVIDIA A100 Graphical Pro-
cessing Unit (GPU) on a GPU cluster.

4.3 Experimental Results and Discussion

Medical images exhibit diverse representations and certain textures and can be
easily attacked by adversarial perturbations. Studies have shown that hand-
crafted architectures are more robust towards adversarial attacks than existing
architectures. We have compared our proposed approach with deep learning
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Table 2. Parameters settings of different
adversarial attacks

Attacks ε α Iteration

FGSM 8/255 10/255 –

PGD 8/255 2/255 7

BIM 8/255 2/255 10

FFGSM 8/255 2/255 –

One Attack – – –

EOTPGD 8/255 2/255 –

PGDRS 8/255 2/255 10

Table 3. Parameter settings of differential
evolution algorithm

Parameters Value

Number of
Iterations

20

Population Size 15

Crossover
Probability (CR)

0.7 (PathMNIST)
0.5
(OrganCMNIST)

Differential Rate
(F)

0.5 (PathMNIST)
0.6
(OrganCMNIST)

Chromosome
Length

48

Crossover Operator Simple Crossover

Mutation Operator DE/rand/2/bin
(PathMNIST)
DE/best/1/bin
(OrganCMNIST)

architectures (VGG16, ResNet-18, ResNet-50) and adversarial NAS approaches
for a baseline comparison given in Table 4. In our study, the architecture searched
by the NAS is more robust towards multiple attacks due to the search space
consisting of multiple attention blocks with different convolution layers and skip
connections.

Recent studies have shown that attention layers and skip connections improve
the performance and robustness of natural images for classification tasks [30,45].
These architectures are robust against adversarial attacks and lightweight as we
have predefined the number of layers; the NAS algorithm is restricted to search-
ing for robust architecture by trying combinations within the limit. This shows
that the learning algorithm and the choice of operations play an essential role in
performance enhancement against adversarial attacks. Multiple adversarial NAS
approaches exist, but they have not provided their implementation. AdvRush is
a famous gradient-based NAS approach that has achieved state-of-the-art results
in improving the performance and robustness of the image classification task.
Their proposed approach consists of a SuperNet-based NAS approach with a
regularization technique that favors a candidate architecture with a smooth loss
landscape [15]. Results have shown that AdvRush, a differentiable NAS approach
proposed to discover adversarial robust architectures for image classification, has
performed better than deep learning architectures. However, the proposed NAS
approach has better performance than AdvRush. One potential reason is the
search space used; secondly, each architecture is evaluated instead of the weight-
sharing approach used by AdvRush.
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Table 4. Performance comparison of obtained accuracy scores against different adver-
sarial attacks of the proposed approach with deep learning architectures. These archi-
tectures are adversarially trained on the PGD perturbed examples.

PathMNIST OrganCMNIST

Hand Crafted Robust NAS Proposed Hand Crafted Robust NAS Proposed

Results ResNet18 ResNet50 VGG16 AdvRush [15] Proposed (Best Score) Proposed (Mean) ResNet18 ResNet50 VGG16 AdvRush [15] Proposed (Best Score) Proposed (Mean)

Clean Accuracy 27.14 28.6 29.72 28.76 35.4 30.21 11.67 15.29 22.00 28.74 37.34 28.33

PGD 15.73 14.13 16.14 26.88 28.34 22.81 13.23 19.16 6.80 26.56 34.05 25.36

FGSM 14.03 13.58 15.97 28.4 30.39 22.39 14.78 19.197 6.19 28.11 36.31 22.98

BIM 4.92 7.14 15.6 26.74 28.18 21.04 13.22 19.27 6.79 26.67 34.02 24.65

One Pixel 13.87 13.19 13.48 11.49 14.07 15.43 0.34 1.20 1.81 1.71 2.58 3.26

EOTPGD 15.95 21.936 15.77 26.7 28.04 17.82 13.22 18.71 6.18 26.64 34.13 21.60

PGDRS 5.19 7.35 19.3 28.82 30.85 22.07 13.19 18.87 6.78 26.56 34.21 23.04

PGD-10 15.7 14.17 16.2 28.37 28.885 28.34 13.18 19.85 6.79 26.51 34.05 25.25

PGD-20 15.68 14.56 16.17 28.49 28.59 22.17 13.14 19.76 6.56 26.64 33.96 22.84

PGD-50 15.71 14.25 16.15 28.35 28.46 22.03 13.12 19.47 6.43 26.68 34.12 22.86

PGD-100 15.41 14.24 16.11 28.33 28.39 21.10 13.05 19.21 6.17 26.56 34.31 22.88

The limitation of weight-sharing NAS approaches is that they fail to explore
diverse architectural components due to constraints on shared weights across
diverse architectural components. Therefore, the proposed approach allows
greater architectural diversity, allowing exploration of a wide range of model con-
figurations. In the case of standard image classification problems, simple archi-
tecture components in weight-sharing based adversarial NAS approach works
quite well but perform poorly in case of medical image classification. Medical
images exhibit different characteristics apart from standard images.

Table 5. Results comparison of clean accuracy and accuracy after different attacks
with and without attention layers in the search space of proposed NAS approach

OrganCMNIST PathMNIST

Without Attention Layers With Attention Layers Without Attention Layers With Attention Layers

Clean Accuracy 22.19 37.34 19.83 35.4

PGD 22.51 34.05 20.04 28.34

FGSM 25.64 36.31 19.81 30.39

BIM 22.47 34.02 17.35 28.18

One Pixel 2.3 3.26 13.10 14.7

EOTPGD 22.52 34.13 19.72 28.04

PGDRS 26.73 37.53 19.94 30.85

For performance comparison, the accuracy scores after different adversar-
ial attacks (PGD, FGSM, BIM, FFGSM, PGDRS, EOTPGD, and OnePixel
attacks) are computed on the test set. Moreover, to examine if increasing the
number of iterations has an impact on the adversarial accuracy, the architectures
are evaluated under PGD attack with different numbers of iterations: PGD10,
PGD20, PGD50, and PGD100. BIM and FFGSM are extensions of FGSM attacks,
in which BIM performs attacks on multiple iterations. FFGSM extends FGSM
by applying the gradient sign method on low-dimensional feature representa-
tion. PGDRS and EOTPGD represent other extensions of PGD: PGDRS starts
with random initial perturbations to avoid getting stuck at the local minimum;
EOTPGD considers the performance of attacks when various transformations
are applied to the input.
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Moreover, One-pixel attack is also considered, which focuses on changing
the values of one or a few pixels to induce misclassification. The motivation
behind using multiple attacks is to evaluate the effectiveness and robustness
of the proposed method against multiple attacks. We reported the best and
average results of five runs obtained by our method and compared them with
hand-crafted architectures. Similarly, the deep learning architectures are also
adversarially trained and evaluated under these attacks.

Furthermore, we have also performed ablation studies to investigate the per-
formance impact of different components (search space). Table 5 describes the
results when using attention layers alongside convolution and pooling operations
and without attention layers. It is observed that the attention layers exhibit bet-
ter robustness against different adversarial attacks and better accuracy on clean
examples. As attention layers capture relationships between image regions and
focus more on salient regions, it also helps to make models robust against adver-
sarial perturbations.

Fig. 5. The visualization of Normal cell (a) and reduction cell (b) found by the proposed
approach for OrganCMNIST dataset

Table 6 demonstrates the number of parameters and model size of the best-
performing architecture and the searching time of the proposed NAS approach on
PathMNIST and OrganCMNIST. The significant search time is due to adversar-
ial training, in which the model is trained on clean and adversarially perturbed
samples. Secondly, the model is tested on perturbed samples with three different
types of attacks for fitness evaluation. Compared with deep learning architec-
tures (ResNet, VGG16), the number of parameters and size in MegaBytes (MB)
of best-performing architectures are relatively less in numbers. Furthermore, the
normal and reduction cells of the best-found architecture on the OrganCMNIST
dataset are shown in Figs. 5a and 5b, respectively. Both cells contain a variety
of different operations, pooling layers, and different kinds of attention layers.

To compare multiple classifiers and NAS approaches over two MedMNIST
datasets, we used the Friedman test to first reject the null hypothesis as given
in [44]. Then, a post-hoc analysis using the Wilcoxon signed-rank test is per-
formed with Holm’s alpha correction with α = 0.05 as the initial value. Then,
the average ranks of the classifiers are visualized with a Critical Difference (CD)
diagram [44] as shown in Fig. 6. Figure 6 shows the average rank comparison of
the proposed approach with deep learning architectures and NAS approaches.
The proposed approach has the highest performance over the two datasets from
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Fig. 6. Critical difference diagram showing the pairwise statistical comparison of deep
learning approaches and AdvRush approach with proposed approach on accuracy after
different adversarial attacks.

Table 6. Searching cost (in hours) of the proposed approach on different datasets with
model size in MBs and the number of parameters of best-searched architecture

Dataset Searching Cost Model Size in MBs #Parameters

PathMNIST 41 h 2.28 597652

OrganCMNIST 33 h 2.6 703365

the MedMNIST benchmark. The thick line between the average ranks of deep
learning architectures indicates no significant difference among these approaches
as these architectures share the same architectural components. However, there
is no statistical significance between AdvRush and the proposed approach, and
AdvRush ranked second.

5 Conclusion

This study proposes an evolutionary NAS approach to search robust architec-
tures for medical image classification. A search space is designed consisting
of multiple attention layers and a variety of convolution and pooling opera-
tions. Experimental results show that the proposed approach has achieved bet-
ter results than deep learning architectures and existing NAS approaches. This
shows that techniques proposed for image classification would not work in the
case of medical images, and a separate approach is very helpful in this case.
In the near future, we aim to enhance the proposed approach by incorporating
performance estimation strategies, such as surrogate models, to reduce search
time.
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Abstract. We introduce a novel progressive self-supervised framework
for neural architecture search. Our aim is to search for competitive, yet
significantly less complex, generic CNN architectures that can be used
for multiple tasks (i.e., as a pretrained model). This is achieved through
cartesian genetic programming (CGP) for neural architecture search
(NAS). Our approach integrates self-supervised learning with a progres-
sive architecture search process. This synergy unfolds within the continu-
ous domain which is tackled via multi-objective evolutionary algorithms
(MOEAs). To empirically validate our proposal, we adopted a rigorous
evaluation using the non-dominated sorting genetic algorithm II (NSGA-
II) for the CIFAR-100, CIFAR-10, SVHN and CINIC-10 datasets. The
experimental results showcase the competitiveness of our approach in
relation to state-of-the-art proposals concerning both classification per-
formance and model complexity. Additionally, the effectiveness of this
method in achieving strong generalization can be inferred.

Keywords: Evolutionary neural architecture search · AutoML ·
Evolutionary self-supervised learning

1 Introduction

Deep neural networks (DNNs), especially convolutional neural networks (CNNs),
have recently gained considerable popularity for tackling diverse challenges [8,
13,20,36]. CNN models are highly efficient and have undergone thorough explo-
ration across a wide spectrum of image processing and computer vision tasks.
This effectiveness is attributed to factors such as the availability of abundant
data, high-performance computing resources, and advancements in machine
learning research [21]. On the other hand, neural architecture search (NAS)
is a growing field of the automatic design and configuration of CNN models [3]
and other types of neural networks, e.g., RNN [21]. NAS methodologies delve
into the realm of CNN topologies with the aim of uncovering architectures that
meet specific criteria, such as achieving optimal performance or possessing a
lightweight parameter structure.
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Self-supervised learning focuses on architectures able to learn generic (high-
level) representations from data by using synthetic labels that can be gener-
ated without the need of human supervision [9]. An architecture, e.g., a CNN,
is trained by minimizing the loss on pretext tasks (e.g., learning to rotate an
image). Then, the learned architecture can be used as a starting point (pre-
trained model) for approaching other supervised tasks for which labels are avail-
able (the downstream task). The advantages of these models are that very often
the self-supervised learned model is able to perform decently across several tasks,
making this setting attractive to NAS, as the expensive search for a model can
payoff if it is useful for more than a single downstream task.

In this paper, we introduce a multi-objective NAS method based on self-
supervised learning and progressive neural architecture search to design generic
CNN architectures for image classification. Our proposed method extends
a recently proposed NAS solution designed for supervised learning, CGP-
NASV2 [6], by adding a progressive searching mechanism to specialize those
high-level blocks used in CGP-NASV2. Moreover, unlike most work on evolu-
tionary NAS, the proposed model targets a self-supervised learning objective
(based on RotNet [4]). This objective allows our model to discover generic archi-
tectures without the need of labeled data that can be used with other datasets
and tasks.

These architectures are linked to a multi-objective searching algorithm that
offers a variety of solutions where the complexity or the classification error play
a critical role.

The proposed method is evaluated in the context of image classification with
CNNs. Experimental results on the CIFAR-100, CIFAR-10, SVHN and CINIC-
10 datasets, for transfer learning with the newly found architectures, show that
the proposed approach is competitive against several state-of-the-art references.
The evolved CNNs architectures have a lower number of parameters as well as
lower complexity measured in Multiply-Adds (MAdds) operations in comparison
to the state-of-the-art while maintaining a low classification error.

2 Related Work

In this section we review related work to our proposed method, highlighting
those where the main role is the evolutionary multi-objective approach and the
use of self-supervised learning.

Garcia-Garcia et al. [7] proposed a multi-objective evolutionary NAS method
able of finding competitive architectures with low complexity. The search process
is performed in the real domain by using two different ways of codifying solutions,
allowing it to search for solutions at different levels. As with most work on NAS,
this model targets supervised learning; that is, the classification performance
of the model is evaluated by using labeled images. We consider this model a
starting point for our proposal, as it has shown very competitive results in the
design of CNNs for image classification on the CIFAR-100, CIFAR-10, and SVHN
datasets.
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Nguyen et al. [23] proposed a new method based on sequential model-based
optimization (SMBO-TPE) using contrastive self-supervised learning, where the
contrastive loss function determines how well the neural architecture has gen-
eralized the introduced information. Several types of perturbations are applied
to the images, creating pairs of examples (positives and negatives), focusing on
mapping these examples when they are similar, and thus being able to discrim-
inate between them. This is a costly process; therefore, an SMBO surrogate is
used to reduce the time to evaluate the objective function in the CIFAR-10 and
Imagenet datasets, which showed promising results against the state of the art.

Heuillet et al. [11] introduced a novel approach that leverages differentiable
NAS to enhance the architecture of Siamese networks. The authors improve the
performance of Siamese network frameworks like SimSiam, SimCLR, or MoCo by
discovering an encoder-predictor pair using a meta-learner inspired by DARTS,
a popular differentiable NAS method. This approach is named “NASiam” (Neu-
ral Architecture Search for Siamese Networks), Similar to the previous work, its
main approach is based on contrastive self-supervised learning, using the con-
trastive loss function to guide the search. CIFAR-10, CIFAR-100 and Imagenet
datasets were used to validate the proposed model, while achieving a better
performance against the other differentiable neural architecture search methods.

Wei et al. [33] proposed a new method for predicting NAS performance met-
rics. They employ self-supervised learning, specifically contrastive learning algo-
rithms, and introduce a novel architecture encoding scheme. This scheme yields
the graph edit distance (GED) metric, which quantifies architectural quality.
Consequently, self-supervised learning aids in developing this prediction method,
tailored for an evolutionary approach known as the Neural Predictor Guided
Evolutionary Neural Architecture Search (NPENAS) algorithm.

In this paper, we propose a multi-objective method that is able to learn
generic architectures of competitive performance and moderate complexity. To
the best of our knowledge, our proposed model is the first to use evolutionary
computation for NAS by using self-supervised learning (that is, our model could
find an architecture even if no labeled images are provided). We also emphasize
that the critical role of self-supervised learning is when we carry out performance
estimation, that is, when architecture is evaluated. Also, we propose a novel
progressive search that works in the mating stage of the evolutionary search.

3 Multi-objective Neural Architecture Search

The automated discovery and configuration of CNN architectures has been pri-
marily approached as a single-objective optimization problem aimed at model
accuracy. Although effective architectures can be obtained by optimizing model
performance, this approach has a series of limitations, the most important of
which is perhaps the propensity for solutions to overfit and not having control
over their complexity. However, the complexity of the model plays a critical role
in the automation of CNN architectures because, in certain environments, it is
necessary to have less complex architectures but at the same time with good
precision; therefore, this leads to a multi-objective problem.
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We propose to automatically design generic CNN architectures that max-
imize the model’s accuracy and minimize its complexity. To obtain accurate
models based on architectures of moderated complexity we use CGP-NASV2 [7]
for the search of models using self-supervised learning. The main idea is to con-
sider scenarios where there is not enough information to train the model and
obtain significant performance, but it is necessary to design a customized CNN
architecture. Therefore, we rely on self-supervised learning to find a competi-
tive model even when only limited data is available. Our solution is based on
a CGP representation that allows us to search in the real domain while using
off-the-shell multi-optimization techniques.

The problem can be formulated as a multi-objective optimization one as
follows:

Minimize F(x) = (f1(x;w∗(x)), f2(x))T (1)
subject to: w∗(x) ∈ argmin L(w;x) (2)

Where f1 is an objective associated with the classification error of the CNN
architecture defined by parameters w∗. Since we adopt a self-supervised learn-
ing schema, f1 can be estimated without labeled images, see Sect. 3.2. f2 is an
objective associated with the model complexity measured in MAdds, in agree-
ment with previous studies [7,16], as they express the total number of operations
performed by each architecture. MAdds are a guideline for certain implementa-
tion scenarios, such as mobile settings, where the complexity must be less than
or equal to 600 MAdds [16,17]. In order to obtain an estimate of the classifica-
tion error, it is necessary to optimize the weights w of the CNN architecture;
thus, an x (solution) depends on this optimization, where normally some training
algorithm such as stochastic gradient descent (SDG) is used.

3.1 CGP-NASV2 Solution Representation

Cartesian Genetic Programming (CGP) is a variant of Genetic Programming
(GP) based on acyclic graphs to represent solutions that enable forward connec-
tions. This representation provides several advantages compared to traditional
GP, which employs a tree-based representation. CGP was originally designed for
evolving digital circuits. Its name “cartesian” comes from its unique representa-
tion of solutions using a two-dimensional grid [7,22].

CGP-NASV2 [7] makes use of CGP and implements block-chained encoding
at the top level; it defines a template with some layers as shown in Fig. 1. This
representation connects blocks linearly, including those with specific tasks; in
CGP-NASV2, the spatial reduction is performed by the pooling layers [19]. At
the top-level in the block-chained (see Fig. 1), CGP-NASV2 places a CGP within
a “Normal” block while the reduction blocks implement a max pooling layer. In
all pooling blocks, the pooling size is fixed as a 2 × 2 kernel and a stride of 2.
Fig. 2 shows an example, after the last block a global average pooling and a fully
connected layer are added. Similar guidelines were found in the state of the art
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Fig. 1. The solutions representation is structured around chained blocks. Convolution
operations are performed in normal block, while pooling occurs in reduction blocks. As
the number of blocks increases, the number of channels also grows gradually [7].

review [19,24]. In CGP-NASV2, each “Normal” block from the block-chained
representation holds a CGP and it is represented as an integer vector.

In Fig. 2, a CGP-NASV2 solution example is shown. The number of chan-
nels and kernel size are defined as parameters associated to each block-chained.
The idea is to associate these parameters as weights to each CGP node. Green
positions at the integer vector encoding in Fig. 2 represent the assigned hyper-
parameters within their corresponding CGP block.

Fig. 2. CGP-NASV2 block-chained representation with the hyperparameters directly
encoded.

3.2 Self-supervised Approach for Multi-objective NAS

As explained in Sect. 3.1, CGP-NASV2 uses high-level blocks for solutions rep-
resentation; in every block, a part of the CNN architecture is searched. In the
example of Fig. 2, an architecture of three blocks is represented, from this con-
figuration, the idea is to focalize the search progressively by searching the first
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block and leaving blocks two and three with a very simple representation; in
this case, we use a simple convolution block. After N generations, the searching
process continues in the next block leaving the partial representation obtained in
the previous block fixed, see Fig. 3. In this preliminary approach, 30 generations
were used, where every 10 generations the focalized search moves to the next
block to perform the search.

The evaluation is based on a self-supervised approach from the RotNet [4]
model using the CIFAR-100 dataset. For this, we created a new dataset from
the CIFAR-100 images, but replacing the original classes by rotation levels, thus
having four different classes (0◦, 90◦, 180◦, 270◦) instead of the 100 original
classes. Using this data, we proceed to classify the rotations; in this way, we
learn a model that solves a related task without the need for large amounts of
labeled data. Once a competitive architecture is found, it is trained with labeled
data for image classification. One should note that even when an architecture
has been learned for a dataset, it can also be applied to other downstream tasks.

The progressive searching in synergy with self-supervised learning allows each
block to specialize in learning different features. These sub-architectures are
specialized during the evolutionary search; when passing to the next block, the
new sub-architectures must adapt to the previous ones, thus maintaining the
power of generalization already found. This would occur while targeting the
minimization of both, the overall architecture complexity and the classification
error. Final solution is a set from which users can select one according to their
needs.

To obtain the fitness of each solution, all blocks are assembled together, and
the solution is trained with the data from the modified CIFAR-100 dataset, thus
obtaining the classification error. To measure the complexity of the model, the
sum of all the operations of addition and multiplication in the architecture is
performed, thus obtaining the MAdds.

In evolutionary computation, the search is mainly performed by variation
operations such as crossover and mutation. To focalize the search, at every gen-
eration we performed crossover and mutation only in the currently evolving
block, see Fig. 4.

4 Experimental Framework

The proposed experimental framework first assesses the performance of the best
evolved architectures in terms of accuracy. After that, a multiple-criteria decision
analysis is applied to those models that achieved a good trade-off performance
in terms of both accuracy and complexity in MAdds. The experimental settings
are defined next, together with the benchmark datasets.

– CGP rows and columns : 10 × 4
– Mutation probability : Pm = 0.3
– Crossover probability : Pc = 0.9
– Population : 16
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Fig. 3. Proposed progressive search scheme

Fig. 4. Example of how the mating stage is carried out, the block where the current
search is carried out, changes after each stage defined by a number N of generations

– Generations : 30
– CNN train Epochs: 36

The search was performed on the modified CIFAR-100 dataset. For self-
supervised learning, at this stage, only the training partition of the modified
CIFAR-100 was used: 80% partition for training and 20% for validation of the
evaluated architectures during evolutionary search. After, the evolved archi-
tectures were transferred to the CIFAR-100, CIFAR-10, SVHN and CINIC-10
datasets. This means that a single round of NAS was performed for obtaining
a model that was evaluated in four datasets, and the search process did not use
any manually labeled image.

We followed the training mechanisms for the evolved CNN architecture
according to CGP-NASV2 [7]: Stochastic Gradient Descent (SGD) as the opti-
mizer together with the cosine annealing learning rate schedule. Our initial
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learning rate was configured at 0.025, while the momentum was set to 0.9, and
the weight decay to 0.0005. The batch size was established at 128, and we con-
ducted a total of 36 training epochs during the evolutionary search.

For both training and testing data, we implemented the following preprocess-
ing steps: a 4-pixel mean subtraction padding on each side and random cropping
with a 32 × 32 patch or its horizontally flipped counterpart.

To enhance the training process, we incorporated an auxiliary head classi-
fier [7,18], which is concatenated after the second reduction block. The loss from
this auxiliary head classifier was scaled by a constant factor of 0.4 and added
to the loss of the original architecture. This step is applied when we retrain
the architectures with a complete dataset. In the final stages, the selected solu-
tions are trained for 600 epochs with the application of the cutout preprocessing
technique and a batch size set to 96.

All experiments were conducted on a supercomputing node equipped with
2 Intel Xeon E5-2650 v4 @ 2.20 GHz processors, 6 Nvidia GTX 1080 Ti GPU
cards, and 128 GB of RAM. The system operated on the CentOS 7 OS.

5 Experimental Results

Our empirical assessment makes a general performance comparison versus the
state of the art approaches. After, the generalization achieved by the self-
supervised approach is analyzed using the Grad-CAM [26] method.

5.1 Comparison with the State-of-the-Art

Tables 1, 2, 3 and 4 compare the results between the state-of-the-art and the pro-
posed approach on the CIFAR-100, CIFAR-10, SVHN and CINIC-10 datasets.
As explained in Sect. 4, the search was carried out on the modified CIFAR-100
dateset. Therefore, the total time was 5.79 GPU days for the search in the mod-
ified CIFAR-100 dataset. And emphasize that the search was not carried out on
any of the aforementioned datasets; they were only transferred.

Ten individual experiments were run on the modified CIFAR-100 dataset; the
best solution, average, and standard deviation are reported, and two types of
solutions are shown: the first named “Best Solution” refers to the best evolved
solution found per 10 executions; the solution named “Knee Solution”, is the
solution determined by the Knee and Boundary Selection Method [5] stating
that the solution is the closest to the intersection of the two objectives, i.e., the
solution closest to the ideal point, is chosen.

These datasets were selected because they are the most commonly used in the
NAS area, starting with CIFAR-100 (see Table 1). Our proposal is fully compe-
tent with state-of-the-art solutions, both human-designed and single-objective.
In the multi-objective proposals, the finding of solutions with a good trade-off
between the number of parameters and low classification error is highlighted.
The proposed approach shows a very similar performance to CGP-NASV2 [7],
with the advantage of time reduction in terms of GPU-days. When comparing
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Table 1. Comparison on CIFAR-100 dataset: Classification error rate, the number
of parameters and MAdds are expressed in millions (1 × 106), GPU-days and GPU
Hardware. * Transferred architectures

Model Error rate % Params MAdds GPU-Days GPU hardware

Human Design

DenseNet (k = 12) [12] 24.42 1.0 – –

ResNet (depth = 101) [10] 25.16 1.7 – –

ResNet (depth = 1202) [10] 27.82 10.2 – –

VGG [27] 28.05 20.04 – –

Single Objective Approaches

CGP-CNN(ConvSet) [28] 26.7 2.04 – 13 Nvidia 1080Ti

CGP-CNN(ResSet) [28] 25.1 3.43 – 10.9 Nvidia 1080Ti

Large-Scale Evolution [25] 23.0 40.4 – 2750 –

AE-CNN [29] 20.85 5.4 – 36 Nvidia 1080 Ti

Genetic-CNN [34] 29.03 – – 17 –

(Torabi et al., 2022) [31] 26.03 2.56 – – NVIDIA Tesla V100-SXM2

Multi-Objective Approaches

NSGANetV1 [16] 25.17 0.2 1290 27 Nvidia 2080 Ti

MOGIG-Net [35] 24.71 0.7 – 14 –

EEEA-Net [30] 15.02 3.6 – 0.52 Nvidia RTX 2080 Ti

LF-MOGP [15] 26.37 4.12 – 13 NVIDIA GeForce 3090

CGP-NAS [6] 24.23 (26.41 ± 1.41) 5.43 1581 2.1 Nvidia Titan X

CGP-NASV2 - Best solution [7] 21.18 (22.55 ± 1.24) 4.02 (4 43± 1.57) 457.55 (559.60 ± 476.08) 6.25 Nvidia 1080Ti

CGP-NASV2 - Knee solution [7] 26.35 (29.19 ± 2.20) 0.69 (0.46 ± 0.14) 54.09 (46.96 ± 16.50) 6.25 Nvidia 1080Ti

Ours∗ - Best solution 22.76 (25.63 ± 2.44) 2.89 (2.67 ± 1.34) 629.11 (545.30 ± 264.25) 5.79 Nvidia 1080Ti

Ours∗ - Knee solutions 26.57 (30.45 ± 2.67) 0.53 (0.43 ± 0.22) 66.39 (51.89± 28.89) 5.79 Nvidia 1080Ti

with other multi-objective methods, in terms of classification error, the EEEA-
NET [30] method shows better performance. In terms of the number of param-
eters and MAdds, our proposal outperforms the majority of the other meth-
ods presented. Our proposal aims to find solutions with a favorable trade-off
between classification error and MAdds. In comparison with other proposals that
use CGP as a method for architecture representation, such as CGP-CNN [28],
Torabi [31], and LF-MOGP [15], our proposal shows superior performance.

In Table 2, we can observe an extensive comparison with different methods
on the CIFAR-10 dataset. When performing the comparison with traditional
methods designed by humans, our method shows higher performance than the
single-objective proposals, both in parameters and classification error. Similar
results to those obtained on the CIFAR-100 dataset were achieved with respect
to other multi-objective proposals. We should emphasize that our proposal did
not perform the search directly in the dataset but rather carried out the transfer
of the found architectures using self-supervised learning.

Finally, we assessed the proposed approach on the SVHN and CINIC-10
datasets; corresponding results are shown in Tables 3 and 4. When comparing
with methods designed by humans, we can find very close values; however, the
solutions found by the proposed method showed a significant reduction in terms
of parameters. In comparison to CGP-NASV2, it is observed that, on average,
the solutions are less complex and the number of parameters is reduced. On
the CINIC-10 dataset, we can see that it is more demanding. We now compare
with methods designed by humans; these have a similar performance to those
found by our method, highlighting our method in terms of low-complex solutions
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Table 2. Comparison on CIFAR-10 dataset. * Transferred architectures

Model Error rate % Params MAdds GPU-Days GPU hardware

Human Design

DenseNet (k = 12) [12] 5.24 1.0 – –

ResNet (depth = 101) [10] 6.43 1.7 – –

ResNet (depth = 1202) [10] 7.93 10.2 – –

VGG [27] 6.66 20.04 – –

Single Objective Approaches

CGP-CNN(ConvSet) [28] 5.92 1.50 – 8 Nvidia 1080Ti

CGP-CNN(ResSet) [28] 5.01 3.52 – 14.7 Nvidia 1080Ti

Large-Scale Evolution [25] 5.4 5.4 – 2750 –

AE-CNN [29] 4.3 2.0 – 27 Nvidia 1080 Ti

Genetic-CNN [34] 7.1 – – 17 –

(Torabi et al., 2022) [31] 5.69 1.96 – – NVIDIA Tesla k80

Multi-Objective Approaches

NSGANet [16] 3.85 3.3 1290 8 Nvidia 1080 Ti

NSGANetV1 [16] 4.67 0.2 – 27 Nvidia 2080 Ti

MOCNN [32] 4.49 – – 24 Nvidia 1080 Ti

MOGIG-Net [35] 4.67 0.2 – 14 –

EEEA-Net [30] 2.46 3.6 – 0.52 Nvidia RTX 2080 Ti

EvoApproxNAS [24] 6.80 1.11 458.2 8.8 NVIDIA Tesla V100-SXM2

LF-MOGP [15] 4.13 1.07 – 10 NVIDIA GeForce 3090

CGP-NAS [6] 4.86 (5.42 ± 0.46) 1.40 388.71 1.4 Nvidia Titan X

CGP-NASV2-Best solution [7] 3.70 (4.07± 0.17) 4.04 (5.82 ± 2.70) 636.32 (818.61 ± 372.62) 11.54 Nvidia 1080Ti

CGP-NASV2-Knee solution [7] 4.85 (5.59 ± 0.5) 0.78 (0.71 ± 0.31) 53.99 (79.44 ± 31.96) 11.54 Nvidia 1080Ti

Ours∗ - Best solution 4.53 (5.30 ± 0.9) 2.11 (2.65 ± 1.34) 684.52 (545.21 ± 264.25) 5.79 Nvidia 1080Ti

Ours∗ Knee solutions 5.38 (7.43 ± 1.42) 0.82 (0.41 ± 0.22) 87.30 (51.80± 28.88) 5.79 Nvidia 1080Ti

compared to other methods. We have demonstrated that using progressive search
in combination with self-supervised learning leads the search to more general
architectures. It is worth emphasizing that the search was not carried out on the
original dataset. It is a significant achievement to adapt the evolved architectures
using our method, which consists of doing the search in a self-supervised way,
and thanks to this, the task is simplified because in a conventional search, where
for the CIFAR-100 dataset all 100 labels are used, in our approach only 4 are
used, which refer to the rotation levels (0◦, 90◦, 180◦, 270◦) mentioned above.

5.2 Visual Analysis of the Evolved Architectures

In this section, we visually analyze the architecture found by our proposal using
Grad-CAM [26]. Figure 5 shows the architecture trained with the self-supervised
approach. Its different network layers are analyzed to see which zones of the
images are activated. The initial hypothesis is that when using the self-supervised
approach, the CNN architecture will focus on high-level target regions of the
images, such as circular or square shapes and more complex shapes like heads or
eyes. This architecture was chosen from those found in our proposal. The evolved
architecture was trained in two different ways, first in a self-supervised way with
the modified CIFAR-100 dataset explained in Sect. 3.2, and in a supervised way
on the CINIC-10 dataset.

Two random images from the CINIC-10 dataset were used, which are shown
in Fig. 6 and Fig. 7. The first row represents the activation maps using the self-
supervised training, and the second row represents the supervised training. Each
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Table 3. Comparison on the SVHN dataset. * Transferred architectures

Model Error rate % Params MAdds GPU-Days GPU hardware

Human Design

FractalNet [14] 2.01 38.6 – –

Wide ResNet [37] 1.64 2.7 – –

ResNet (depth = 101) [10] 2.01 1.7 – –

DenseNet (k = 24) [12] 1.72 15.3 – –

Single Objective Approaches

(Bakhshi et al., 2020) [1] 4.43 19 – 6

Multi-Objective Approaches

EvoApproxNAS [24] 3.09 0.90 247.3 8.8 NVIDIA Tesla V100-SXM2

CGP-NASV2 - Best solution [7] 2.70 (2.87± 0.15) 2.21 (4.26 ± 1.88) 399.52 (697.71 ± 210.51) 16.25 Nvidia 1080Ti

CGP-NASV2 - Knee solution [7] 2.88 (3.05 ± 0.18) 0.49 (0.51 ± 0.16) 55.93 (49.31 ± 11.26) 16.25 Nvidia 1080Ti

Ours∗ - Best Solution 2.95 (3.32± 0.43) 2.87 (2.65 ± 1.34) 629.02 (545.21 ± 264.25) 5.79 Nvidia 1080Ti

Ours∗ - Knee Solution 2.82 (3.64± 0.49) 0.51 (0.41 ± 0.22) 66.29 (51.80 ± 28.88) 5.79 Nvidia 1080Ti

Table 4. Comparison on the CINIC-10 dataset. * Transferred architectures

Model Error rate % Params MAdds GPU-Days GPU hardware

Human Design

VGG-16 [2] 12.23 14.7 – –

ResNet-18 [2] 9.73 11.2 – –

MobileNet [2] 18.00 3.2 – –

DenseNet-121 [2] 8.74 7.0 – –

GoogLeNet [2] 8.83 6.2 – –

Multi-Objective Approaches

Ours∗ - Best solution 12.16 (13.74 ± 1.4) 3.07 (2.65 ± 1.34) 584.71 (545.21 ± 264.25) 5.79 Nvidia 1080Ti

Ours∗ - Knee solutions 14.33 (17.00 ± 1.92) 0.51 (0.41 ± 0.22) 66.29 (51.80± 28.88) 5.79 Nvidia 1080Ti

image represents an activation map at different depths of the architecture; these
are indicated with the layer where the maps were extracted.

We can observe that at first, the architecture found by the self-supervised
approach highlights more general details of the input image as well as focuses on
sharper edges in it. On the other hand, when the architecture is transferred and
trained in a self-supervised way, in the activation maps from the early layers,
it focuses on zones of the class to be classified (see Fig. 6). As an illustration,
Fig. 7 shows that the bird’s head area has a greater impact on the choice made
in the end. In contrast, in the self-supervised approach, it seems that the shape
and sharp edges of the bird’s wings are more important.
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Fig. 5. The evolved architecture for comparison between both approaches using Grad-
CAM
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Fig. 6. Activation maps extracted using Grad-CAM. Top: architecture learned with
self-supervised learning. Bottom: architecture learned with supervised learning.

Fig. 7. Activation maps extracted using Grad-CAM

6 Conclusions

From the results obtained, we can conclude that the architectures found by
our method concentrate on operations that can generalize more easily; this is
confirmed by the analysis performed with Grad-CAM. Furthermore, from the
results obtained, we can say that our proposal has promising results in addition
to a considerable reduction in GPU days.

The use of self-supervised learning, in particular the use of RotNet, which
focuses on estimating the geometric transformation, allows the network to focus
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on object shapes, edges, and textures within images. Consequently, the net-
work learns to capture important features from the image. With this idea, the
generalization obtained from this method allows for the transfer of the found
architectures to datasets with similar data.

In summary, the proposed approach leads a new way to perform the search of
neural architectures while relying on the use of self-supervised learning in order
to generate models suitable to user-defined characteristics in environments where
limited data is present. Moreover, the progressive searching approach opens new
research niches after the competitive results achieved in this preliminary study.
Finally, our work not only expands the scope of effective neural architecture
search but also remarks on the potential of self-supervised learning as a valuable
tool for architecture exploration and adaptation.
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Abstract. Flower localization is a crucial image pre-processing step
for subsequent classification/recognition that confronts challenges with
diverse flower species, varying imaging conditions, and limited data.
Existing flower localization methods face limitations, including reliance
on color information, low model interpretability, and a large demand
for training data. This paper proposes a new genetic programming (GP)
approach called ACFGP with a novel representation to automated flower
localization with limited training data. The novel GP representation
enables ACFGP to evolve effective programs for generating aggregate
channel features and achieving flower localization in diverse scenarios.
Comparative evaluations against the baseline benchmark algorithm and
YOLOv8 demonstrate ACFGP’s superior performance. Further analy-
sis highlights the effectiveness of the aggregate channel features gener-
ated by ACFGP programs, demonstrating the superiority of ACFGP in
addressing challenging flower localization tasks.

Keywords: Genetic programming · Aggregate channel features ·
Flower localization

1 Introduction

Flower localization is a computer vision task focused on precisely determining
the location of flowers within images. As a common image pre-processing oper-
ation, flower localization contributes to the further identification and classifica-
tion of flower species, supporting botanical research and biodiversity monitoring
[12]. The main challenges of flower localization stem from the diversity of flower
classes, variations within specific flowers, various imaging conditions, and limited
data on some rare flower species.

To address the challenges above, manual segmentation methods, such as
GrabCut [17], are typically used to localize the flower and remove the background
as image pre-processing in the early stage, which requires labor-intensive efforts.
For automatic flower localization, traditional methods typically utilize flower
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color and shape information to design threshold-based methods [5,11,18]. How-
ever, these methods require domain knowledge about flowers for manual selec-
tion of feature descriptors and algorithm design. Furthermore, the performance
of common threshold-based techniques based on manually crafted image pro-
cessing programs might deteriorate when confronted with complex background
scenes and diverse imaging conditions in flower images. The aggregate channel
features (ACF) detector, which extends channels beyond typical color represen-
tations to non-color features, has proven effective in enhancing robustness for
localizing objects. It has been successfully applied in various object detection
tasks, such as localizing pedestrians [3], faces [22], and urine sediments [19].
However, its application in flower localization remains unexplored.

Convolutional neural network (CNN) methods such as Faster R-CNN [16] and
YOLO [6] have been widely applied in object detection, including localizing and
classifying flowers [15,20]. However, these methods need pre-trained models and
still demand a relatively large amount of training data for fine-tuning due to high
model complexity. Their large network structures require Graphics processing
units (GPUs) for training, resulting in high computational costs. Additionally,
the black-box nature of these models reduces the interpretability in explaining
object localization processes.

Genetic Programming (GP) is an evolutionary algorithm inspired by natu-
ral selection, designed to automatically evolve programs/solutions through the
iterative application of evaluation, selection, and genetic operations including
mutation and crossover [8]. The tree-based variable-length representation in
GP enables the generation of programs with flexible structures and good inter-
pretability. GP has been successfully applied in image classification with limited
data [1].

However, existing GP-based methods that involve region detection [2,21]
lack flexibility as the positions of the detected regions are randomly selected
and remain fixed across all images. Therefore, the region detection mechanism
employed in these methods lacks the capability to effectively capture flowers
with varying positions within an image.

1.1 Goals

The goal of this paper is to develop a GP approach, named aggregate channel
feature based GP (ACFGP), that can automatically generate effective aggregate
channel features to localize the flower within an image with limited training
data. This paper focuses on the single-object localization task, where the evolved
program is expected to produce a bounding box that accurately locates the flower
in each image. The specific objectives of this work are summarised as follows:

– Develop a new function set and a new terminal set that include image pro-
cessing operators to extract and aggregate channel features to enhance the
flower, and dynamically compute bounding boxes based on the specific char-
acteristics of each image;

– Design a new GP representation to evolve effective solutions/programs for
various flower localization tasks with limited training data;
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– Analyze and compare the performance of ACFGP with the baseline bench-
mark and the YOLOv8 method; and

– Further analyze the trees evolved by ACFGP along with the visualized results
to investigate the effectiveness of aggregate channel features.

2 Backgrounds and Related Work

2.1 Existing Methods for Flower Localization

In the early days, manual segmentation algorithms such as GrabCut [17] are used
to segment flowers and remove background [14]. GrabCut is a semi-automatic
image segmentation algorithm developed based on the color distribution and
graph-cut approach, which requires manually framing the bounding box of the
flower as a rough segmentation. An automated flower segmentation algorithm
[11] is proposed as a pre-processing for automated flower classification [12]. This
method consists of two models, one color model for foreground/background seg-
mentation and a generic shape model for petal structure. However, the perfor-
mance of color-based segmentation might be affected by diverse illumination
situations. Threshold-based algorithms are commonly used to localize flowers as
pre-processing in traditional flower classification methods [5,18]. A flower is seg-
mented by the threshold calculated based on the intensity values transformed
from color information, whose performance might be affected under complex
background and lighting conditions.

Flower localization is commonly regarded as part of the flower detection task
within CNN methods, often coupled with classification. In [15], an improved
Region Proposal Network (RPN) is utilized to generate region proposals for flow-
ers, and a modified Faster R-CNN model is employed for bounding box regres-
sion. In [20], flower localization and classification are simultaneously addressed
using the YOLOv4 model [6]. Despite the model’s simplification via a channel
pruning algorithm, the pruned version still contains over two million parameters,
resulting in low interpretability. In addition, both methods in [15,20] require pre-
trained models, and thousands of flower images are required for fine-tuning.

2.2 Aggregate Channel Features (ACF) for Object Localization

A channel typically refers to a component of an image that represents specific
color information, such as red, green, and blue. In this paper, we borrow the con-
cept from [3], where channels are defined as a feature map of the original image,
whose pixels are computed from corresponding patches of original pixels. Based
on this definition, additional non-color channels are introduced that include a
series of feature maps generated through image filters and descriptors. The addi-
tional channels enable comprehensive image analysis beyond color information,
thus enhancing the capability to comprehend and interpret complex visual data.

ACF methods have been applied to diverse object localization methods. In
[3], integral/aggregate channel features are introduced via linear and non-linear
transformations. The experimental evaluation demonstrates that ACF enables
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accurate spatial localization during detection if designed properly. In [22], chan-
nel features including color channels, (i.e., Gray-scale, RGB, HSV, and LUV),
gradient magnitude, and gradient histograms are used for face detection. Simi-
larly, in [19], ten channel features, i.e., three color channels in LUV space, normal-
ized gradient magnitude, and histogram of oriented gradients (six orientations)
are used to localize urine sediments within images. However, these methods rely
on a sliding window for localization, which increases the computational cost and
limits the ability to localize objects with varying sizes.

In summary, traditional automated flower localization methods primarily rely
on thresholding based on color information, making them less effective under
complex backgrounds and diverse imaging conditions. CNN-based methods often
need fine-tuning with pre-trained models for flower localization, still demanding
thousands of images for fine-tuning, and lacking interpretability due to high
model complexity. Existing GP-based methods have limitations in flower local-
ization due to randomly selected regions that remain static across all images.
Existing ACF methods that rely on sliding windows for localization restrict the
adaptability to objects of varying sizes. Therefore, this paper aims to develop a
GP approach with ACF to flower localization with limited training data.

3 Proposed Approach

3.1 The New GP Representation

The proposed ACFGP approach has a new GP representation that is based on
strongly typed GP (STGP) [10]. In ACFGP, the input for the GP program/tree
is an RGB image, and the output is one bounding box identifying the salient
flower within the image. ACFGP comprises five layers from input to output,
each with a distinct role in the process:

– Input layer: Represents the input RGB image;
– Channel extension layer: Involves color channel selection and channel fea-

ture extraction. This layer begins by choosing one from seven color channels
(including RGB, LUV, and grayscale) and then applies an image processing
filter to the chosen channel, resulting in an extended channel feature.

– Channel aggregation layer: Aggregate the extended channel features from
different tree branches to create a saliency mask, highlighting the regions of
interest.

– Object localization layer: Detects the salient flower and identifies its bounding
box based on the saliency mask.

– Output layer: Represents the bounding box of the flower.

Figure 1 shows how the proposed ACFGP approach constructs a tree using
various functions and terminals.
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3.2 Terminal Set

Terminals serve as the leaf nodes in a GP tree. There are two types of terminals in
ACFGP, i.e., Img and Idx, as detailed in Table 1. Img denotes the RGB image
containing salient flowers. It’s a three-dimensional array with red, green, and
blue pixel values. Idx denotes the index used to select a color channel from the
RGB image. Idx is an integer ranging from 0 to 6, where each index corresponds
to one of the seven color channels, i.e., blue, red, green, L, U, V, and grayscale
channels.

Fig. 1. The program structure and an example program/tree of ACFGP.

Table 1. Terminal Set

Terminal Type Value range Description

Img array [0,255] The 3-channel RGB image

Idx integer [0,6] The index to generate a color channel from an RGB image.
Including RGB, LUV, and gray-scale channels

3.3 Function Set

The function set of ACFGP is presented in Table 2 and consists of three cat-
egories: channel extension functions, channel aggregation functions, and object
localization functions.

Channel extension functions are the image processing filters and descriptors,
i.e., Gau 1, Gau 2, Median, Min max, LoG 1, LoG 2, Sobel, HOG, and Saliency.
Gau 1, Gau 2, and Median are used for image smoothing and noise reduc-
tion. Gau 1 and Gau 2 execute Gaussian filtering with different σ, addressing
small/larger scale smoothing. Min max, LoG 1,LoG 2, and Sobel functions are
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different types of edge detectors. LoG 1 and LoG 2 focus on small/larger scale
of edge enhancement. HOG is a feature descriptor that extracts the distribution
and orientation of gradients in an image, capturing important structural infor-
mation from images, and allowing for robust and reliable pattern recognition.
The Saliency function is from OpenCV’s Saliency module, which detects visually
prominent areas in an image based on color, texture, and intensity.

Channel aggregation functions are used to aggregate channel features generated
by the channel extension functions into a saliency mask, which is used to localize
the salient flower. Since the channel features extracted by the channel extension
functions can be considered as a feature map, where pixel values represent feature
intensities at specific locations, channel aggregation functions perform addition
or subtraction operations on these intensities to enhance features in the region of
interest, generating a saliency mask. These functions include Sub2, Add2, Add3,
and Add4. Sub2 calculates the absolute difference between two channels, whereas
Add2, Add3, and Add4 functions perform addition operations on two, three,
and four channels, respectively. Sub2 and Add2 functions have the flexibility

Table 2. Function Set

Function Input Output Description

Channel extension functions

Gau 1 Img, Idx Channel Perform Gaussian filtering with stand deviation σ 1 on the
selected color channel

Gau 2 Img, Idx Channel Perform Gaussian filtering with stand deviation σ 2 on the
selected color channel

Median Img, Idx Channel Perform 5 × 5 median filtering on the selected color channel

Min max Img, Idx Channel Perform 3 × 3 min-max filtering on the selected color channel

LoG 1 Img, Idx Channel Perform Laplacian of Gaussian filtering with stand deviation
σ 1 on the selected color channel

LoG 2 Img, Idx Channel Perform Laplacian of Gaussian filtering with stand deviation
σ 2 on the selected color channel

Sobel Img, Idx Channel Perform 3 × 3 Sobel filtering on the selected color channel

HOG Img, Idx Channel Extract HOG feature vectors on the selected color channel
and transfer them into an image-based representation

Saliency Img Channel Perform static saliency detection and generate a Saliency map

Channel aggregation functions

Sub2 2 Channels Channel/Mask Perform the absolute difference operation between 2 channels

Add2 2 Channels Channel/Mask Perform the addition operation on 2 channels

Add3 3 Channels Mask Perform the addition operation on 3 channels

Add4 4 Channels Mask Perform the addition operation on 4 channels

Object localization functions

GBBox Mask BBox Calculate the bounding box based on the mask with a 5× 5
Gaussian filtering

oBBox Mask BBox Calculate the bounding box based on the mask with an
opening operation

cBBox Mask BBox Calculate the bounding box based on the mask with a closing
operation
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to produce either an intermediate channel feature for further aggregation or a
saliency mask for object localization.

Object localization functions detect the salient flower in an image using the
saliency mask and determine the flower’s bounding box. The three functions,
GBBox, oBBox, and cBBox, employ OpenCV operations including threshold,
morphologyEx, findContours, and boundingRect, to execute the object localiza-
tion process, as shown in Fig. 2.

Fig. 2. The pipeline of the GBBox, oBBox, and cBBox functions.

The object localization process starts with the thresholding operation, which
converts the saliency mask into a binary mask using a dynamic threshold method
[13]. The main differences between GBBox, oBBox, and cBBox functions arise
from their approaches to enhancing the binary mask based on different scene
characteristics.

1) The opening operation in theoBBox function serves to eliminate noise,
smooth object boundaries, and separate closely spaced objects.

2) The closing operation in the cBBox function aims to fill gaps or holes within
objects, connect fragmented structures, and create more compact and com-
plete object representations.

3) The GBBox function applies to the case where binary mask quality is satisfied
and performs a 5× 5 Gaussian filtering operation to smooth the binary mask.

Following the enhancement of the binary mask, the findContours operation
identifies potential contours within this mask. The largest contour is considered
the salient flower. Finally, the boundingRect operation calculates the bounding
box of the largest contour as [x, y, w, h], where [x, y] represents the top-left point
of the bounding box, and w and h indicate the width and height of the bounding
box, respectively. The output of these object localization functions is represented
as [x, y, x + w, y + h], where [x + w, y + h] denotes the bottom-right point of the
bounding box. It’s worth noting that, unlike existing GP methods, the calculated
bounding boxes are different in each image, as they are based on the specific
content of the image.
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3.4 Fitness Function

The fitness function for ACFGP is the numerical sum of two metrics: detection
accuracy and intersection over union (IoU). The formulas for these two metrics
are given below.

Fitness = Detection accuracy + Average IoU (1)

Detection accuracy =
TP

TP + FP
(2)

Average IoU =
1
N

N∑

i

IoU (Predictioni,Groundtruthi) (3)

A bounding box is considered a true positive if it captures more than 50%
(including 50%) of the target in terms of IoU, while a bounding box with less
than 50% IoU is considered a false positive. However, detection accuracy alone
cannot differentiate between cases with 50% and 100% IoU. To provide a more
comprehensive evaluation for GP programs with the same detection accuracy,
the fitness function also incorporates the average of IoU, where N denotes the
number of training instances. As a result, the fitness function of ACFGP is a
value ranging between 0% and 200%.

3.5 Test Process

In the test process, the best GP tree/program obtained from the evolutionary
training process will be used to predict the images in the test set. According to
the best GP tree, a set of aggregate channel features will be extended and aggre-
gated to generate a saliency mask, and the bounding box of the salient flower
will be calculated in each test image. Similar to fitness evaluation, the detection
accuracy and average IoU will be calculated to evaluate the performance of the
ACFGP approach but the results are shown separately.

4 Experiment Design

4.1 Datasets

The proposed ACFGP approach is developed for flower localization, which could
be applied as image pre-processing for further fine-grained image classifica-
tion (FGIC). Therefore, the performance of ACFGP is examined on the FGIC
dataset: the Oxford 102 dataset. The Oxford 102 dataset contains 102 cate-
gories of flower images with 40–258 images per category. The images from the
Oxford 102 dataset vary in size, and to ensure uniformity, all images are resized
to 224 × 224 for input, which is also a commonly used size in training and
testing.

To assess ACFGP’s ability to flexibly extend and aggregate different channel
features based on the characteristics of different flower species, experiments are
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conducted on five flower sub-datasets. Each sub-dataset consists of five classes
randomly selected from the original Oxford 102 dataset, namely s1-s5 of flower5.
To explore ACFGP’s performance with limited training data, 10 images from
each class are randomly selected as the training set, resulting in a training set
of 10 × 5 images. The remaining images (ranging from 30 to 248 images per
class) form the test set for each sub-dataset. For instance, to build flower5-s1,
five flower species are randomly selected from the Oxford 102 dataset, with 10
images per class (50 images in total) used for training and the remaining images
(279 images in total) assigned as the test set. This process is repeated five times
to establish the five sub-datasets. Figure 3 presents example images of the sub-
datasets used in the experiments. The flowers in the images vary in color and
size, and exist in diverse backgrounds and lighting conditions. Additionally, the
positions of the flowers differ in each image.

Fig. 3. Example training images of s1-s5 in flower5.

4.2 Comparison Methods

To assess ACFGP’s performance, we compare it with Baseline and YOLOv8.
Baseline serves as a benchmark for evaluating aggregate channel features against
single-channel features in flower localization. YOLOv8 is chosen as a well-known
and latest CNN method in object detection.

Baseline: The Baseline benchmark algorithm employs an exhaustive search
across all single-channel features, representing possible programs generated by
ACFGP’s function set without channel aggregation functions. The search space
comprises 171 possible solutions, which include 168 single-channel features
extracted by 8 image filters and edge detectors (7 color channels × 8 chan-
nel extension functions × 3 object localization functions) and 3 feature maps
generated by the Saliency function (with 3 object localization functions). For
each sub-dataset, Baseline explores all possible solutions, and the program with
the highest fitness value on the training set is selected as the best individual.
Given its exhaustive nature, only a single-run experiment is conducted on each
sub-dataset.
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YOLOv8: The YOLOv8 method is a well-known and latest object detection
model designed for identifying and localizing objects in images. Due to limited
training data, the YOLOv8s (small) model from the YOLOv8 series [7] is used
as a comparison method in this paper, which contains 11.2 million parameters.

4.3 Parameter Settings

ACFGP: The population size is 100 and the maximal number of generations is
50. The crossover rate is 0.5, the mutation rate is 0.49, and the elitism rate is
0.01. The Ramped-half-and-half method is used in population initialization and
the mutation operation. The minimal and maximal tree depth are set to 2 and 6,
respectively. Tournament selection with the size 5 is employed for selection. The
ACFGP method is implemented using the DEAP package [4]. 30 independent
runs of experiments are conducted with different random seeds for ACFGP on
each sub-dataset.

YOLOv8: The YOLOv8s model pre-trained on the COCO dataset [9] is used
for fine-tuning for comparison in this paper. The image size input is set to
224×224, the training epoch is set to 100, the batch size is set to 16, the optimizer
is SGD, the learning rate is set to 0.01, and the remaining parameters follow the
default setting in [7]. Ten independent experimental runs are performed with
different random seeds for YOLOv8 on each sub-dataset. In the testing stage,
considering that the YOLOv8 method permits multiple bounding box outputs
within an image, the final output that localizes the flower is determined by
selecting the bounding box with the highest confidence among multiple positive
predictions.

5 Results and Discussions

This section compares the object localization performance, including the aver-
age IoU and the detection accuracy, of ACFGP, YOLOv8, and Baseline meth-
ods over the 30/10/1 runs on the s1-s5 of flower5. The evaluation focuses on
two metrics: average IoU, which assesses the quality of object localization, and
detection accuracy, which emphasizes the correctness of detections. The testing
results, including the maximal (Max) and mean with standard deviation (Mean
± Std) for each metric, are presented in Tables 3 and 4, with the best results
highlighted in bold. The Wilcoxon rank-sum test is used for the significance test
with the p-value = 0.05. The symbols “+” or “–” in the tables indicate that
ACFGP achieves significantly better or worse performance than the compared
method. The symbol “=” indicates similar performance between ACFGP and
the compared method. The final row in each table summarizes the significance
test results on each sub-dataset.

5.1 Average IoU Results

Compared with Baseline: Table 3 demonstrates ACFGP consistently outperform-
ing the Baseline across all comparisons, highlighting its superior ability to extend



206 Q. Wang et al.

and aggregate more effective channel features for precise flower localization.
This could be attributed to ACFGP’s aggregate channel features, which cap-
ture diverse and complementary information, enhancing the discrimination of
flower features.

Compared with YOLOv8: Table 3 illustrates that ACFGP significantly outper-
forms YOLOv8 on 3 out of 5 sub-datasets. While YOLOv8 achieves a higher
maximal average IoU on flower5-s5, ACFGP maintains competitive performance
overall on this sub-dataset. This suggests that ACFGP excels in localizing flowers
with limited training data in most comparisons. It’s worth noting that in 4 out of
5 comparisons, the standard deviation values of YOLOv8’s results are larger than
those of ACFGP, indicating that ACFGP achieves a more stable performance
than YOLOv8. Despite being pre-trained, YOLOv8 usually demands thousands
of flower images to fine-tune its model due to the high model complexity to
achieve stable and satisfactory performance. Given the limited training data in
this task, capturing discriminative features in flowers becomes challenging for
YOLOv8, so it is reasonable that YOLOv8 shows inferior flower localization
performance compared to ACFGP.

Table 3. Average IoU (%) of ACFGP, YOLOv8, and Baseline on flower5 sub-datasets

ACFGP YOLOv8 Baseline

Max Mean ± Std Max Mean ± Std Max/Mean

flower5 s1 79.12 77.53 ± 1.53 78.97 73.71 ± 3.33+ 75.65+

s2 81.66 77.20 ± 2.96 79.62 75.35 ± 3.02= 63.88+

s3 82.57 80.59 ± 0.85 77.30 73.01 ± 4.95+ 78.84+

s4 84.03 80.90 ± 1.96 82.22 79.23 ± 1.86+ 78.71+

s5 75.57 72.33 ± 1.79 77.30 73.95 ± 3.18= 72.21+

Overall 3+, 2= 5+

5.2 Detection Accuracy Results

Compared with Baseline: Table 4 reveals that ACFGP outperforms Baseline sig-
nificantly in all comparisons. This suggests that ACFGP’s aggregate channel
features excel in localizing more objects with IoU over 0.5 compared to the
single-channel feature in Baseline. Different channel features could highlight dif-
ferent aspects of the flower, such as the shape, texture, or color. Aggregating
these channel features improves robustness against variations in lighting condi-
tions and image noise. Consequently, ACFGP achieves better localization results
with IoU over 0.5.

Compared with YOLOv8: As shown in Table 4, although YOLOv8 achieves bet-
ter maximal detection accuracy on flower5-s1 and flower5-s5, ACFGP signifi-
cantly outperforms YOLOv8 on 4 out of 5 flower sub-datasets in significance
tests, and achieves competitive performance on flower5-s5. This indicates that
ACFGP outperforms YOLOv8 in localizing more flowers with IoU over 0.5 in
most comparisons, aligning with the performance observed in average IoU in
Table 3.
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Table 4. Detection accuracy (%) of ACFGP, YOLOv8, and Baseline on flower5 sub-
datasets

ACFGP YOLOv8 Baseline

Max Mean ± Std Max Mean ± Std Max/Mean

flower5 s1 89.42 87.06 ± 1.99 89.61 81.94 ± 4.21+ 84.67+

s2 91.74 88.20 ± 2.58 88.26 84.00 ± 4.08+ 74.35+

s3 92.50 90.97 ± 0.98 88.03 80.56 ± 4.76+ 89.79+

s4 94.50 91.88 ± 2.08 92.98 89.77 ± 1.85+ 90.64+

s5 87.06 82.77 ± 2.21 88.10 82.83 ± 3.37= 81.03+

Overall 4+, 1= 5+

6 Further Analysis

In this section, we analyze a GP tree/program evolved by ACFGP and compare
the object localization performance between ACFGP, Baseline, and YOLOv8 to
provide more insight into the effectiveness of the aggregate channel features.

Fig. 4. An example program evolved by ACFGP on flower5-s4 and the example images
to show the object localization process using the program.

6.1 Analysis of an Example GP Tree

Figure 4 presents an example GP tree evolved by ACFGP on flower5-s4, which
achieves 82.47% average IoU and 93.13% detection accuracy. The program
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extends and aggregates seven channel features derived from three color chan-
nels (U, V, and red channels), incorporating 5 Gaussian features, 1 Min max
feature, and 1 Saliency feature. The corresponding example images reveal that
the Gaussian features effectively suppress background noise, and the Min max
and Saliency features which contain edge information of the petal and visually
important areas highlight the flower. The generated saliency mask plays a crucial
role in reducing background noise and enhancing the flower, which results in a
precise bounding box output.

The example GP tree showcases the effectiveness of the ACFGP approach,
which autonomously selects informative color channels, extends them into effec-
tive channel features using diverse image filters and descriptors, and aggregates
these features to generate the saliency mask for precise object localization.

6.2 Visual Comparison Between ACFGP, Baseline, and YOLOv8

Figure 5 displays the results of ACFGP, Baseline, and YOLOv8 across the five
flower sub-datasets, alongside the saliency masks generated by ACFGP and
Baseline for flower localization. These results are based on the best-run results
of each method from the experiment.

Compared to the saliency mask created by the single-channel feature in
Baseline, the saliency mask produced by the aggregate channel features in
ACFGP exhibits greater robustness, leading to superior object localization per-
formance across the five flower sub-datasets. While Baseline might accurately
localize objects in certain instances using a single feature map (e.g., image a
in flower5-s3), it struggles with challenges like shadow interference and complex
backgrounds (as seen in images c and d in flower5-s3). In contrast, ACFGP’s
aggregated saliency mask integrates effective features from diverse perspectives,
successfully mitigating background noise and shadow interference. It dynami-
cally computes bounding boxes based on the image content, ensuring a robust
and consistent object localization performance.

Due to the black-box nature of YOLOv8, detailed insights into its object
localization process are unavailable, contributing to poor interpretability. When
comparing results between ACFGP and YOLOv8, ACFGP shows better preci-
sion. In some instances, YOLOv8 fails to enclose the flower within blue bounding
boxes (e.g., image b in flower5-s1, image c in flower5-s2, and image b in flower5-
s4). Additionally, YOLOv8’s results show notable background noise in several
cases (e.g., image e in flower5-s1; image d and e in flower5-s4; and image a, c,
and d in flower5-s5).

In summary, further analysis of the example GP tree/program evolved by
ACFGP shows its high interpretability. The program provides a clear explanation
of how the program extends and aggregates channel features to achieve precise
flower localization. In addition, the comparison between ACFGP, Baseline, and
YOLOv8 considering saliency masks and the corresponding results, highlights
the effectiveness and robustness of aggregate channel features for precise flower
localization.
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Fig. 5. The saliency masks and corresponding results of ACFGP, Baseline, and
YOLOv8 on five flower sub-datasets.
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7 Conclusions

The goal of this paper is to develop a GP-based approach to automatically
extend and aggregate channel features for flower object localization. The goal
has been successfully achieved by developing the ACFGP approach with a new
GP representation, a new function set, and a new terminal set. This enables the
simultaneous and automatic extension and aggregation of features, and dynam-
ically localizing the flower in each image. The results show that the ACFGP
outperforms the baseline benchmark and the YOLOv8 method. Further analysis
highlighted the interpretability of the programs evolved by ACFGP, showcas-
ing the effectiveness of the aggregate channel features for flower localization in
ACFGP.

In the future, we will explore large-scale flower classification using the local-
ization prediction results obtained through ACFGP.
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Abstract. The advent of large language models (LLMs) such as Chat-
GPT has attracted considerable attention in various domains due to
their remarkable performance and versatility. As the use of these mod-
els continues to grow, the importance of effective prompt engineering
has come to the fore. Prompt optimization emerges as a crucial chal-
lenge, as it has a direct impact on model performance and the extrac-
tion of relevant information. Recently, evolutionary algorithms (EAs)
have shown promise in addressing this issue, paving the way for novel
optimization strategies. In this work, we propose a evolutionary multi-
objective (EMO) approach specifically tailored for prompt optimization
called EMO-Prompts, using sentiment analysis as a case study. We use
sentiment analysis capabilities as our experimental targets. Our results
demonstrate that EMO-Prompts effectively generates prompts capable
of guiding the LLM to produce texts embodying two conflicting emotions
simultaneously.

1 Introduction

The rise of ChatGPT [10], Llama 2 [12] and other large language models (LLMs)
has revolutionized the field of natural language processing, enabling a wide range
of applications from text generation to sentiment analysis. However, the effec-
tiveness of these models is highly dependent on the quality of the input prompts.
Prompt optimization stands out as a critical area of research, aiming to refine
and tailor prompts to elicit the most accurate and relevant responses from the
model.

The organization of this paper is outlined as follows: Sect. 2 provides an
overview of related work, laying the groundwork for the subsequent sections. In
Sect. 3, we introduce our approach, EMO-Prompts with operators, and detail its
integration with the NSGA-II (Non-dominated Sorting Genetic Algorithm II) [2]
and the SMS-EMOA (S-metric selection evolutionary multi-objective algorithm)
[5]. Section 4 presents experiments conducted with a focus on text writing appli-
cations in the context of sentiment analysis, followed by a thorough discussion
of the results obtained. Finally, Sect. 5 concludes the paper, summarizing the
contributions of this work.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 212–224, 2024.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56855-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-56855-8_13


Evolutionary Multi-objective Optimization of Large Language Model 213

2 Related Work

Popular prompt engineering techniques, like Chain-of-Thought Prompting [13]
or ReAct [14], significantly enhance the reasoning capabilities of LLMs, but
often remain sub-optimal. Previous studies have explored various strategies for
prompt optimization, highlighting its significance in leveraging the full potential
of LLMs. The idea is to find an optimal prompt p∗ ∈ P in the space P of prompts
w.r.t. an objective function f(·). Examples for typical objective functions are the
performance in instruction-induction tasks [3,15], question-answering tasks [3],
summarization tasks [4], hate speech recognition [3], or code generation [1,9].

Evolutionary algorithms (EAs) have recently been applied to this domain,
showing potential in navigating the vast prompt space for optimal solutions. The
Automatic Prompt Engineer (APE) [15] uses LLMs to automatically generate
new prompts based on a set of input/output pairs, which is demonstrated to the
LLM and select the most promising. For optimization an iterative Monte Carlo
search method is applied. APE outperforms human-engineered prompts across
two datasets and shows that LLMs can be used as inference models. Meyerson
et al. [9] propose a variation operator that is similar to crossover and uses “few-
shot” prompting. Its variety is demonstrated through various tasks, like gen-
eration of mathematical expressions, English sentences and Python code. Evo-
Prompt [4] introduces an evolutionary prompt optimization framework combin-
ing LLMs with EAs for automated and efficient prompt optimization. It demon-
strates significant improvements over human-engineered prompts and existing
methods across various datasets and tasks. The approach showcases substan-
tial advancements, outperforming competitors by up to 25%. EvoPrompting [1]
uses the LLM as a mutation and crossover operator to generate convolutional
architectures. This method is tested e.g., on MNIST-1D. The results show that
EvoPrompting is able to create smaller and more accurate convolutional archi-
tectures than manually designed ones. Promptbreeder [3] is a self-referential self-
improvement algorithm utilizing an LLM to evolve and adapt prompts across
different domains. It not only refines task-prompts for improved performance
on benchmarks, but also concurrently optimizes the mutation-prompts used in
the evolution process, showcasing its effectiveness on complex challenges such
as hate speech classification. In contrast to optimizing discrete prompts, with
soft prompting [6–8] only the parameters are tuned. They show effectiveness,
but have disadvantages due to their insufficient interpretability and the need to
access the parameters of the LLM.

These approaches are designed to optimize prompts to align with a singular
objective in the LLM’s output, such as ensuring the response is in English.
In contrast, EMO-Prompts strives to concurrently fulfill dual objectives in the
LLM’s response. For instance, not only should the LLM’s output be truthful but
also informative.
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3 EMO-Prompts

Our approach, EMO-Prompts, introduces a evolutionary multi-objective frame-
work for prompt optimization. We employ evolutionary prompt operators to
search the space of prompts and NSGA-II [2] as well as SMS-EMOA [5] as selec-
tion operators.

An individual is a tuple (<prompt>, <text>,(f1, . . . , fn)) of prompt
<prompt>, a text <text> generated by a LLM based on the prompt and
n fitness values f1, . . . , fn according to defined objectives. A prompt is the geno-
type, the generated text the corresponding phenotype.

3.1 Large Language Model

Meta AI’s Llama 2 [12] is used as the LLM for our new framework EMO-Prompts.
It is open source, can be downloaded and hosted on own infrastructure. Its
variants have 7B, 13B or 70B parameters. Compared to Llama 1, Llama 2 was
trained with 40% more data and has a twice as big context length.

In consideration of computational intensity, we opted for Llama 2 with 7B
parameters. Ollama1 is used to run Llama 2 with 7B parameters locally and
to create customized models with the help of a Modelfile. The Modelfile allows
to configure various parameters like temperature and the size of the context
window. Apart from defining parameters, a Modelfile offers the option to spec-
ify a system prompt and a template, which makes the Modelfile analogous to a
blueprint for creating models with Ollama. With a template, “few-shot” prompt-
ing can be realized by showing the model a few examples of how the syntax
should be. A system prompt, embedded in the template, is used to help the
LLM to follow a certain behavior. A exemplary template that can be used to
realize “few-shot” prompting is shown in Listing 1.1.
1 TEMPLATE ”””
2 ### System :
3 {{ . System }}
4 {{− end }}
5

6 ### User :
7 Change the f o l l ow ing prompt : prov ide a 3 sentence s to ry
8

9 ### Response :
10 Craft a three−sentence s to ry
11

12 ### User :
13 Modify the f o l l ow ing prompt : wr i t e a 3 sentence s to ry
14

15 ### Response :
16 Create a three−sentence t a l e with a tw i s t ending .
17

18 ### User :
19 {{ . Prompt }}
20

21 ### Response :
22 ”””

Listing 1.1. Exemplary Template within a Modelfile

1 https://github.com/jmorganca/ollama.

https://github.com/jmorganca/ollama
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Langchain2 is a framework that offers diverse functionalities for developing
applications with LLMs. Using Langchain’s prompt templates, instructions on
how prompts should be generated can be constructed as shown exemplary in
Listing 1.2. The prompt template is formatted by inserting the fields in the curly
brackets, in this example {mutation prompt} and {prompt}, into the prompt
template.
1 ””” [ INST ] <<SYS>> Use the f o l l ow ing mutation prompt and the f o l l ow ing

prompt , to change the prompt and generate a be t t e r prompt . Use one
sentence maximum, which i s a i n s t r u c t i o n to generate text , and

keep the answer as conc i s e as p o s s i b l e . <</SYS>>
2 Mutation Prompt : {mutation prompt}
3 Prompt : {prompt}
4 New Prompt : [ / INST ] ”””

Listing 1.2. Prompt Template

3.2 Evolutionary Approach

EMO-Prompts employs the standard EA-loop for prompt optimization, as illus-
trated in Fig. 1.

CROSSOVER

MUTATION

FITNESS
SELECTION

INITIAL

POPULATION

"Change this prompt, but it should still be a 1-
sentence instruction to generate text: "

"Use the two following prompts to analyze the prompts
and generate a better prompt based on this analysis."

Sentiment Analysis

"Write a 3 sentence story."

μ best solutions

Fig. 1. Evolutionary generation of a new prompt

The initial population is realized by a set of individuals as described above.
Ten story generation prompts were manually formulated, prompting the LLM
to generate a story. Following this, the fitness of each individual’s story was
evaluated. To generate a new offspring, two solutions are randomly selected
from the population and recombined by our developed crossover operator. A
new designed mutation operator, which is also randomly selected from a set of
mutation operators is applied to this result. In our EMO-Prompts framework, the
LLM operates as a crossover and mutation operator as well as a text generator.
For every prompt in the population, the LLM produces the corresponding text,
subject to the evaluation through sentiment analysis. Afterwards the µ best
2 https://www.langchain.com.

https://www.langchain.com
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solutions according to NSGA-II or SMS-EMOA, see next paragraph, are selected
for the following generation. This evolutionary process is repeated for a number
of generations, or until a satisfactory result is achieved.

To guide the generation of new prompts and define the expected response, it
is essential to provide clear instructions that mitigate the risk of hallucinations of
the LLM. EMO-Prompts uses the two outlined options, Modelfile and prompt
template, to create a customized Llama 7B model for each of its key tasks,
including crossover, mutation and text generation.

As can be seen in Fig. 1, new crossover and mutation operator are developed,
which are text prompts instructing the LLM to perform crossover or mutation.
Either two prompts are taken and a new one is created (crossover) or an existing
prompt is changed to a new one (mutation).

Crossover Prompt:

1. “One prompt is: [...], another prompt is: [...]. Analyze the prompts and gen-
erate a better prompt based on this analysis, but it should still be a 1-sentence
instruction to generate text.”

Mutation Prompts:

1. “Change this prompt, but it should still be a 1-sentence instruction to generate
text: [...]”

2. “Modify this prompt to generate a 1-sentence instruction for text generation:
[...]”

3. “Generate a variation of the following prompt while keeping the semantic
meaning: [...]”

3.3 NSGA-II and S-Metric Selection

NSGA-II, a multi-objective optimization algorithm, uses non-dominated sorting
and crowding distance computation for diverse solution selection. It generates a
random population, evaluates them, and sorts them into non-dominated fronts.
Solutions within a front are not comparable with each other. The algorithm
calculates the crowding distance to maintain diversity, and iterates through
crossover and mutation to evolve the population, aiming for Pareto-optimal
solutions over several generations. The crowding distance is a measure used to
estimate the density of solutions surrounding a particular point in the objective
space, favoring less crowded areas to ensure diversity in the solution set.

The S-metric selection algorithm focuses on maximizing the dominated
hypervolume in multi-objective optimization, indicating solution quality in con-
vergence and diversity. It selects solutions based on their hypervolume. The
hypervolume quantifies the extent of the space encompassed by non-dominated
solutions. When the number of non-dominated solutions exceeds µ, this algo-
rithm selects a set of solutions that collectively optimize the overall hypervol-
ume. In contrast, when the count of non-dominated solutions is below µ, the
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algorithm systematically gives preference to these solutions. The selection pro-
cess starts by arranging the solutions in ascending order based on their ranking
across different fronts, which are essentially tiers of solution quality. Within each
front, solutions are further prioritized based on the number of other solutions
that dominate them, favoring those with the least domination first.

4 Experiments

4.1 Sentiment Analysis

The sentiment analysis task, facilitated by Hugging Face’s tools, serves as the
testbed for our approach. In the experiments, we use the ‘bhadresh-savani/-
distilbert-base-uncased-emotion’3 model, which serves as an expert text clas-
sification tool, specifically designed for the nuanced task of emotion recogni-
tion. It uses the DistilBERT [11] architecture, a streamlined variant of BERT
that ensures a balance between efficiency and performance; it is 40% smaller in
size, yet retains 97% of the original model’s language understanding capabilities,
thanks to the knowledge distillation process implemented during pre-training.
The model is adept at identifying a spectrum of emotions from textual data,
including ‘sadness’, ‘anger’, ‘love’, ‘surprise’, ‘joy’ and ‘fear’. Each emotion is
assigned a value between 0 and 1, with all values summing up to 1.

In terms of training, the model was fine-tuned using an emotion dataset and
the Hugging Face Trainer, adhering to specific training parameters such as a
learning rate of 2−5, a batch size of 64, and a duration of 8 training epochs. The
model is conveniently hosted on the Hugging Face model hub and is distributed
under the Apache-2.0 License.

4.2 Settings

Based on the emotions of the sentiment analysis, four conflicting emotion pairs
are constructed: ‘love vs. anger’, ‘joy vs. fear’, ‘joy vs. sadness’ and ‘surprise vs.
fear’. The goal is to investigate how prompts generated by EMO-Prompts can
cause the LLM to generate texts that contains both emotions of the conflicting
emotion pair, e.g., both ‘love’ and ‘anger’, which defines the sentence sentiment
task. The metric used for evaluation is the hypervolume, introduced in Sect. 3.3.
A (10+20) genetic algorithm is performed. The initial population is realized by
creating ten initial prompts for text generation. Based on NSGA-II and SMS-
EMOA the ten best individuals from the parent and child population are then
selected as the new parent population. This is performed for 30 generations and
each experiment is repeated ten times.

The genetic algorithm operators are performed by Llama 2. The temperature
hyperparameter of Llama 2 is set to 0.7, which was chosen on basis of a few
experiments and the size of the context window to 512 due to the token limit of
DistilBERT. The rest of the hyper-parameters are default.
3 https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion.

https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion
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4.3 Results

Table 1 shows the results of the four experiments w.r.t. overall best and worst
hypervolume during the optimization process. The mean and standard deviation
are reported across ten repetitions. The sentence sentiment task is a maximiza-
tion problem, i.e., the score of both emotions of an emotion pair should be
maximized. Since the emotions are not only semantically conflicting, but also
within the sentiment analysis, an ideal hypervolume of 0.44 can be achieved,
which corresponds to the area dominated by 10 points equally distributed on
the diagonal between (0,1) and (1,0). A higher hypervolume goes hand in hand
with an improvement in the quality of the solutions. Due to the way a LLM
works, it is not guaranteed that the LLM will provide exactly the same response
for the same prompt.

Table 1. Comparison between NSGA-II and SMS-EMOA on four problems measuring
hypervolume.

NSGA-II SMS-EMOA

Problem Best Worst Mean Std Dev Best Worst Mean Std Dev

Love vs. anger 0.32 0.05 0.20 0.08 0.26 0.01 0.16 0.09

Joy vs. fear 0.38 0.32 0.36 0.02 0.40 0.30 0.36 0.03

Joy vs. sadness 0.39 0.26 0.35 0.04 0.30 0.11 0.23 0.06

Surprise vs. fear 0.43 0.39 0.41 0.01 0.45 0.13 0.39 0.09

As illustrated in Table 1, the outcomes of the four experiments are largely sim-
ilar. Notably, the ‘love vs. anger’ experiment using SMS-EMOA shows lower val-
ues. In comparison, EMO-Prompts utilizing NSGA-II consistently yields higher
average fitness function values than SMS-EMOA. Specifically, EMO-Prompts
with NSGA-II outperforms in the ‘love vs. anger’ and ‘joy vs. sadness’ scenarios,
whereas SMS-EMOA excels in the ‘joy vs. fear’ and ‘surprise vs. fear’ settings.
Remarkably, in the ‘surprise vs. fear’ experiments, EMO-Prompts attains peak
fitness values of 0.45, surpassing the optimal benchmark of 0.44.

Next, the four experiments will be described more detailed.

Love vs. Anger. In the first experiment, we ask the LLM to generate text with
the emotions ‘love’ and ‘anger’.

Figure 2 presents a plot comparing the hypervolume progression across gen-
erations for the conflicting emotions ‘love’ and ‘anger’, using (a) NSGA-II and
(b) SMS-EMOA. In this plot, each dashed line signifies an individual repetition,
and the solid line depicts the average of all ten repetitions. The hypervolume
for EMO-Prompts using NSGA-II shows a consistent increase through gener-
ations. In contrast, EMO-Prompts with SMS-EMOA encounters a stagnation
in the local optimum, specifically from generations 9 to 17 and again from 21
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Fig. 2. ‘Love vs. anger’: Plots of hypervolume developments for (a) NSGA-II and (b)
SMS-EMOA over 30 generations

to 26. This divergence in the progression curves can be attributed to the dis-
tinct operational mechanisms of the two algorithms. While EMO-Prompts with
SMS-EMOA initially reaches higher fitness values more rapidly, EMO-Prompts
utilizing NSGA-II eventually surpasses it in performance.

Fig. 3. ‘Love vs. anger’: Plot of Pareto front (NSGA-II) with examples for prompts
(left) and generated text (right)

Figure 3 illustrates the Pareto front approximation for the conflicting emo-
tions of ‘love’ and ‘anger’, featuring examples of generated prompts on the
left and corresponding texts on the right. The plot showcases the Pareto front
approximation from the NSGA-II repetition achieving the best fitness value, indi-
cated by the maximum hypervolume. It includes eight different fronts, with the
first front’s non-dominated points approximating the Pareto front. In this exper-
iment, the first front is not as tightly clustered as an optimal solution might be,
suggesting a challenge for EMO-Prompts in generating prompts that effectively
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balance the emotions of ‘love’ and ‘anger’. The tendency for solutions to grav-
itate towards the extremes (0,1) and (1,0) indicates a relative ease in creating
prompts that evoke a single emotion. The overall population in this experiment
achieves a hypervolume of 0.32. An example of a generated prompt is “Uncover
the sinister secrets beneath their angelic facades with a single ominous sentence,
plunging readers into a dark world of deception and desperation.”, which yields
a text with sentiment values of (0.05, 0.82).

Joy vs. Fear. In the second experiment we ask the LLM to generate text with
the emotions ‘joy’ and ‘fear’. Figure 4 shows the hypervolume development for
(a) NSGA-II and (b) SMS-EMOA of the two conflicting emotions ‘joy’ and ‘fear’.
The fluctuations of the NSGA-II optimization after a sharp increase in fitness
in the first generations lie on average in a certain range between 0.30 and 0.33.
On average EMO-Prompts with NSGA-II achieves higher fitness values faster,
EMO-Prompts with SMS-EMOA outperforms them afterwards.

Fig. 4. ‘Joy vs. fear’: Plots of hypervolume developments for (a) NSGA-II and (b)
SMS-EMOA over 30 generations

Figure 5 displays the Pareto front approximation for the emotions of ‘joy’
and ‘fear’, accompanied by examples of generated prompts on the left and their
respective texts on the right. This plot focuses on the Pareto front approxima-
tion from the SMS-EMOA repetition that achieved the highest fitness value,
indicated by the maximum hypervolume. The population features three distinct
fronts, with the first front representing a significant portion of the population and
covering a hypervolume of 0.40. A notable concentration of points is observed
around the point (1,0), suggesting that the LLM tends to generate prompts that
predominantly evoke the emotion of ‘joy’. For instance, the prompt “A secret
force awakens during an unexpected tempest, exposing a surprising reality about
the unlikeliest of saviors.” results in a text with fitness values (0.98, 0.00), illus-
trating this tendency.
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Fig. 5. ‘Joy vs. fear’: Plot of Pareto front (SMS-EMOA) with examples for prompts
(left) and generated text (right)

Joy vs. Sadness. In the third experiment, we ask the LLM to generate text
with the emotions ‘joy’ and ‘sadness’. Figure 6 shows the hypervolume of (a)
NSGA-II and (b) SMS-EMOA for the conflicting emotions ‘joy’ and ‘sadness’.
The hypervolume with SMS-EMOA and with NSGA-II increases from gener-
ation to generation. Again, on average EMO-Prompts with NSGA-II achieves
higher fitness values faster, EMO-Prompts with SMS-EMOA outperforms them
afterwards.

Fig. 6. ‘Joy vs. sadness’: Plots of hypervolume developments for (a) NSGA-II and (b)
SMS-EMOA over 30 generations
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Fig. 7. ‘Joy vs. sadness’: Plot of Pareto front (NSGA-II) with examples for prompts
(left) and generated text (right)

Figure 7 depicts the Pareto front approximation for the emotional dichotomy
of ‘joy vs. sadness’, complete with examples of generated prompts on the left
and corresponding texts on the right. The final population includes eight distinct
fronts, with the non-dominated points of the first front closely approximating
the Pareto front. A significant portion of the population is encompassed within
the first front, covering a hypervolume of 0.39. Notably, there is a dense cluster
of points near the extreme point (1,0), indicating a tendency of the LLM to
produce texts rich in the emotion of ‘joy’, driven by the nature of the prompts
generated. For example, the prompt “Generate a single-sentence story uncover-
ing the hidden truths of cyclical reminiscence, where forgotten memories ebb and
flow like the tides, leading to a final decision that determines one’s eternal fate.”
results in a text with fitness values of (0.40, 0.57), exemplifying this pattern.

Fig. 8. ‘Surprise vs. fear’: Plots of hypervolume developments for (a) NSGA-II and (b)
SMS-EMOA over 30 generations
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Surprise vs. Fear. The last experiment balances the emotions ‘surprise vs. fear’.
Figure 8 presents a comparison of the hypervolume trends for ‘surprise vs.

fear’ using both (a) NSGA-II and (b) SMS-EMOA. In the NSGA-II case, after an
initial sharp increase in fitness values during the early generations, the hypervol-
ume fluctuates within a relatively stable range, typically between 0.35 and 0.38.
The curve representing the mean indicates that the maximum hypervolume with
NSGA-II is achieved around the midpoint of the generations. This difference in
the progression patterns between NSGA-II and SMS-EMOA reflects the distinct
operational approaches of these algorithms.

Unveil an enigmatic town's 
hidden truth through a lone 
wanderer's serendipitous 
encounter, stirring a 
maelstrom of emotions -
wonder, disbelief, and 
captivation at the 
unexpected revelation.

Uncover a hidden reality in a 
bizarre town, leaving you 
spellbound and disoriented.

Unveil a mysterious secret in 
this enigmatic hamlet, where 
reality bends and tests your 
cognition.

As the sun set over the peculiar town, 
a lone traveler stumbled upon an 
ancient tome hidden in the depths of 
a dusty bookshop. As they opened it, 
a faint glow emanated from within, 
beckoning them to explore its 
secrets. The pages revealed a world 
beyond their wildest dreams - a place 
where magic and wonder reigned, but 
also one of dark mysteries waiting to 
unravel.

In the heart of the village, beneath 
the clocktower's shadow, lies a 
hidden chamber adorned with 
symbols of ancient knowledge. The 
walls whisper secrets of the cosmos, 
and the air carries whispers of 
forgotten lore, beckoning the curious 
to unravel the enigmatic mysteries 
that lie within.

Fig. 9. ‘Surprise vs. fear’: Plot of Pareto front (SMS-EMOA) with examples for
prompts (left) and generated text (right)

Figure 9 illustrates the Pareto front approximation for the emotional contrast
of ‘surprise vs. fear’. The final population in this plot is divided into three distinct
fronts. The overall population achieves a hypervolume of 0.45, marking this as the
highest fitness value attained in our experiments and surpassing the ideal target
of 0.44. A notable concentration of points is observed around the point (0,1),
indicating a prevalence of prompts generated by the LLM that predominantly
evoke the emotion of ‘surprise’ over ‘fear’. For instance, the prompt “Unveil a
mysterious secret in this enigmatic hamlet, where reality bends and tests your
cognition.” results in a text with fitness values of (0.85, 0.14), exemplifying
this trend. Across all experiments, points approximating the sentiment value of
(0.5, 0.5) demonstrate the LLM’s capability to generate prompts that effectively
address both conflicting emotions.

5 Conclusion

In conclusion, our comprehensive experiments have effectively validated the effi-
ciency of the introduced evolutionary operators, in particular the integration of
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prompt mutation and crossover with NSGA-II and SMS-EMOA, in producing
texts with a balanced sentiment.

This research lays a strong foundation for future explorations in prompt opti-
mization and sentiment modulation within text generation. It paves the way for
further developments and enhancements in natural language processing. Mov-
ing forward, our aim is to broaden the scope of our methodology to include
the generation of more extensive texts and those tailored to specific domains.
Additionally, we plan to investigate the application of evolutionary prompt tech-
niques to a wider range of tasks involving large language models, with the goal
of further pushing the frontiers of text generation technology.
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Abstract. Multivariate associations including additivity, feature inter-
actions, heterogeneous effects, and rare feature states can present sig-
nificant obstacles in statistical and machine-learning analyses. These
relationships can limit the detection capabilities of many analytical
methodologies when predicting outcomes including risk stratification
in biomedical survival analyses. Feature Inclusion Bin Evolver for Risk
Stratification (FIBERS) was previously proposed using an evolutionary
algorithm to discover groups (i.e. bins) of features wherein the burden
of feature values automatically determined the risk strata of a given
instance in right-censored survival analysis. A key limitation of FIBERS
is that it assumes a fixed threshold for feature burden in stratifying high
vs. low risk, which restricts the flexibility of bin discovery. In the present
work, we extend FIBERS to include different strategies for adaptive
burden thresholding such that feature bins are discovered alongside the
threshold that best separates risk strata. Preliminary comparative perfor-
mance evaluation was conducted across simulated datasets with different
underlying ideal burden thresholds yielding performance improvements
over the original FIBERS algorithm. This algorithmic feasibility study
lays the groundwork for ongoing application to the real-world problem of
kidney graft failure risk stratification in dealing with the expected pop-
ulation heterogeneity including differences in race, ethnicity, and sex.

Keywords: evolutionary algorithm · feature engineering · binning ·
epistasis · dynamic · risk stratification

1 Introduction

In addition to traditional statistical analyses, a wide variety of machine learning
methodologies are being increasingly used in the domain of biomedical research
to help address the challenge of discovering associations and predictive modeling
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in the context of large-scale data and complex multivariate underlying patterns
of association [6,8].

One specific area of biomedical research motivating the present study is
the assessment of kidney graft failure (GF) risk in prospective pairs of donors
and recipients. The process of donor/recipient matching, integral to the success
of kidney transplantation, has traditionally relied on survival analyses as its
primary methodology [5,11]. A pivotal facet of this matching process revolves
around the human leukocyte antigen (HLA) loci, which exhibit significant vari-
ability within the human population [9]. Conventionally, HLA matching has
concentrated on antigen-level (Ag) mismatches (MMs) focusing on the presence
or absence of at least one informative MM to classify high or low GF risk and
potentially overlooking vital underlying variations that could be indicative of
graft failure risk [3]. Emerging research has advocated for the examination of
higher resolution amino acid (AA) level MMs, which have been shown to con-
fer substantial incremental risk of kidney graft failure independently of Ag-level
MMs [4]. This paradigm shift introduces additional complexities, including (1)
a larger feature space, (2) potentially increased heterogeneity of informative AA
positions that influence GF risk in different patient subgroups, (3) the presence
of infrequent ‘rare’ MMs in the dataset, and (4) uncertainty regarding the burden
(i.e. number) of MMs driving underlying risk, i.e. is a specific MM sufficient to
predict GF risk, or, given a set of identified informative MMs, is there a burden
of MMs (e.g. 2 or more) over which GF risk increases. HLA allele frequencies are
also known to vary between ethnicities [7], further supporting the importance of
discovering optimal MM burden thresholds in classifying GF risk.

Evolutionary algorithms, employed as machine learning approaches, have a
number of fundamental advantages founded in their flexibility, limited assump-
tions, and ability to generate interpretable solutions. The “Relevant Association
Rare-variant-bin Evolver” (RARE) algorithm, a genetic-algorithm-based app-
roach for feature learning [2], was previously proposed as a pioneering technique
for feature construction in data with rare feature variation. RARE avoided a
priori assumptions about feature grouping, utilizing evolutionary mechanisms to
discover interpretable features sets (i.e bins) that captured rare variant burden
to predict a target binary disease outcome.

Recently, the “Feature Inclusion Bin Evolver for Risk Stratification”
(FIBERS) algorithm, was proposed as an adaptation of the RARE methodology
to address the specific intricacies of ‘time-to-event’ right-censored survival data
for kidney GF analysis [1]. FIBERS adopts a similar genetic algorithm framework
but includes a bin fitness based on survival curve differences between high/low
risk groups as well as an ‘OR’ interpretation of bins such that a single MM in any
feature of the bin would lead to the instance (i.e. a donor/recipient pair) being
categorized as high risk. This means that FIBERS assumes a burden threshold
of zero MMs in categorizing instances into either high or low risk groups for
subsequent survival curve comparisons, in line with conventional HLA matching
assessments. FIBERS was demonstrated to be successful in identifying AA-MM
bins that confer kidney graft failure risk beyond the predictive capability of
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Ag-level MMs even after adjusting for all covariates. Subsequently, FIBERS was
also extended as a scikit-learn compatible software package to promote ease
of use and compatibility within a scikit-learn based machine learning analysis
pipeline [10].

Despite this success, the likelihood of MM frequency differences and risk-
factor heterogeneity in sub-populations, suggests that reliance on a MM burden
threshold of 0 limits the efficacy of FIBERS in identifying optimal criteria for
stratifying GF risk groups. Therefore, the present study conducts a proof-of-
principle methodological expansion of FIBERS to incorporate an adaptive bur-
den threshold that seeks to select the optimal MM burden threshold (separating
high vs. low risk groups) for a given problem/dataset. Our goal is to demon-
strate that an adaptive burden threshold allows FIBERS to simultaneously dis-
cover bins of informative features as well as the corresponding optimal burden
threshold in controlled simulations of AA-MM survival data. This algorithmic
work is broadly aimed at downstream real-world applications involving survival
analyses prediction in data with features that represent matching between pairs
of subjects, e.g. organ/tissue compatibility and transplantation research.

In the subsequent sections of this paper, we (1) describe the FIBERS
algorithm and proposed adaptive burden threshold implementations to better
address diversity in data and bin populations, (2) describe our methodologies
for simulating survival data with which to objectively evaluate FIBERS, (3)
describe the simulation study datasets and the criteria employed for evaluation,
(4) detail our findings, and (5) offer discussion and conclusions while outlining
next steps in future work.

2 Methods

2.1 Scikit-FIBERS

The scikit-FIBERS algorithm, detailed in [10], is comprised of three phases as
outlined in Fig. 1; (1) bin initialization, (2) bin optimization, via cycles of an evo-
lutionary algorithm, and (3) final bin population evaluation. Bin initialization,
randomly generates an initial population of bins where a bin simply specifies a
subset of features from the dataset. These features represent HLA AA positions,
with a value corresponding to the MM count at that position (0,1,2). Initialized
bins are restricted with run parameters to include a defined minimum number of
features, and a limit on the number of times a specific feature can occur across
the initial population to encourage diversity.

Next the bin population is evolved over a defined number of genera-
tions/cycles. Each cycle begins with bin evaluation where each bin assigns
instances of the training data to either a high or low risk group by summing
any MMs in the data among the features specified within the bin and compar-
ing that sum to a burden threshold (e.g. 0, 1, 2, etc). Scikit-FIBERS previously
relied on a fixed burden threshold of zero, meaning that if an instance had no
MMs in the features of a bin, it would be placed in the low risk group, otherwise
it would be placed in the high risk group. Next, the Logrank test is employed
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Fig. 1. Overview of the original scikit-FIBERS algorithm.

to assess the divergence between the Kaplan-Meyer survival curves of instances
in the high vs. low risk groups. The Logrank score serves as the fitness measure
for that bin. If the imbalance between instances in the high vs. low risk groups
is too large, the bin is automatically assigned a very low fitness due to potential
limitations of the Logrank test. [1].

The next step is bin discovery (i.e. parent selection, crossover, and muta-
tion). Parent bins are selected from the elite bins in the population (i.e. bins
with the highest bin fitness), and uniform crossover and mutation mechanisms
are applied to generate enough offspring bins (combined with elite bins) to reach
the maximum bin population size. Uniform crossover is used over other crossover
strategies since FIBERS bins can have variable length and we make the assump-
tion that feature linkage is not important in this context. At this point, bins from
the previous generation that have a lower fitness (non-elite set) are removed, with
the new generation comprised of elite bins from the previous generation as well
as new offspring bins. These steps repeat for a defined number of iterations, with
scikit-FIBERS conducting an evaluation of all bins in the final population.

2.2 Algorithmic Expansions for Adaptive Burden Thresholding

In the present study, we have extended scikit-FIBERS to include an adaptive
burden threshold, such that the algorithm seeks to automatically discover not
only the best features to specify in bins, but what burden threshold to use
for separating instances into high/low risk groups. To achieve this, algorithmic
modifications were made to both bin evaluation and bin discovery.

Regarding bin evaluation, we implemented two experimental methods for
adaptive burden thresholding, i.e. a best-score threshold, and an evolving thresh-
old. These methods are illustrated in Fig. 2. The best-score threshold method
checks all defined burden threshold values (e.g. 0, 1, 2, 3) and deterministically
selects the one that maximizes survival curve separation between the two risk
groups (i.e. fitness). The second strategy evolves the burden threshold for each
bin in a manner similar to bin itself (i.e. applying crossover and mutation).
Furthermore, users can specify the probability with which the algorithm will
utilize the evolving threshold during generations vs. the best-score threshold
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method, such that a mix of the two strategies can be employed during scikit-
FIBERS training. In this study we compare original scikit-FIBERS (with no
adaptive burden threshold) to this new implementation where the probability
of using the evolving threshold is either zero, i.e. best-score threshold is always
employed, 0.5, i.e. an evolving threshold is emplyed half the time, or one, i.e.
evolving threshold is always employed.

Fig. 2. Illustration of the two experimental adaptive burden thresholding methods
implemented and evaluated in this analysis.

Regarding bin discovery, the original scikit-FIBERS imposed a bin length
difference restriction, ensuring that each offspring specified no more than twice
the number of features as the other. This was done to discourage the genera-
tion of bins with a large number of specified features, for simpler, more inter-
pretable bins. When triggered, this mechanism would randomly exchange fea-
tures between the offspring until the one was no longer twice the size of the
other. For the new adaptive threshold FIBERS implementation we removed
this mechanism, since bins with a larger number of specified features would
be needed in order to optimally solve problems demanding a larger risk group
threshold. Furthermore, the original scikit-FIBERS employed a cleanup process
after mutation, removing any specified features that were duplicated in offspring
bins, and replacing them with random new features from the dataset. The new
method simply removes duplicates without replacement. Lastly, during muta-
tion, the original scikit-FIBERS has distinct addition and deletion mechanisms
with deletion driven by a fixed mutation probability, and addition probabil-
ity being dynamically adjusted based on the offspring’s bin size compared to
the total feature list. The new method simply iterates over all features in the
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feature list, and for each, decides whether to add or remove it with a fixed prob-
ability (mutation probability). All other aspects of the extended scikit-FIBERS
algorithm are consistent with the original scikit-FIBERS [10] and FIBERS [2]
algorithms.

In this work, our primary focus is evaluating the top-performing bin (i.e., the
bin with the highest fitness) as a standalone candidate solution. However, we also
examine the top 10 performing bin sets to present a diverse range of potential
solutions. The original and adaptive threshold implementations of scikit-FIBERS
used in this paper are available at the following links, respectively:

1. https://github.com/UrbsLab/scikit-FIBERS/releases/tag/0.9.3.1
2. https://github.com/UrbsLab/scikit-FIBERS/tree/evostar_24

Scikit-FIBERS Hyperparameters. Experiment independent hyperparame-
ter settings used in this study are detailed in Table 1. In addition to typical
evolutionary algorithm parameters such as training iterations and population
size, scikit-FIBERS includes the two bin-initialization parameters (a minimum
specified features per bin and a maximum number of bins specifying a given fea-
ture) and the “risk strata minimum” hyperparameter (to ensure the validity of
log-rank test by preventing class imbalance) [10]. Scikit-FIBERS with adaptive
thresholding also adds additional parameters to control the dynamic threshold-
ing operations. These include (1) set threshold, defining the default threshold for
bins during bin initialization, (2) evolving probability, the probability that the
adaptive burden threshold, is evolved in a generation rather than deterministi-
cally selected, (3) minimum threshold, the minimum threshold value allowed for
bins, (4) maximum threshold, the maximum threshold value allowed for bins, and
(5) adaptive thresholding, a boolean flag activating the use of adaptive thresholds
vs. a default threshold of 0.

Table 1. Scikit-FIBERS Hyperparameter Settings

Hyperparameter Setting

Max Training Iterations 1000
Max Bin Population Size 50
Crossover Probability 0.5
Mutation Probability 0.4
Elitism Proportion 0.8
Min Initial Features Per Bin 2
Max Initial Number Bins With Given Feature 4
Risk Strata Minimum 0.2

https://github.com/UrbsLab/scikit-FIBERS/releases/tag/0.9.3.1
https://github.com/UrbsLab/scikit-FIBERS/tree/evostar_24
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2.3 Synthetic Data Simulation

To analyze the capabilities of scikit-FIBERS, we previously designed a method-
ology for creating synthetic survival data with right-censoring, where a subset
of features influences a predefined risk group and time-to-event outcomes [10].
This synthetic data generation draws inspiration from real-world HLA AA-MM
data related to kidney transplantation, which was employed in evaluating the
original FIBERS algorithm. The underlying assumption in this real HLA data
is that the absence of MMs at informative AA positions is predictive of lower
GF risk. However in the present simulations we examine scenarios where the
count/frequency of MMs across AA positions can variably predict risk (e.g. >
2 MM within a set of AA positions best stratifies risk). Furthermore, real Ag
or AA HLA data typically includes position frequency at each position (e.g. 0,
1, or 2). For the sake of simplicity, we simulate AA-MM data here, such that
feature positions can have either ‘0’ (no MMs) or ‘1’ (MMs > 0), since we only
care about the presence or absence of any MMs within a given feature. Figure 3
summarizes this new bin thresholding concept.

Fig. 3. To illustrate the thresholding concept, we have a small survival dataset where
feature values are binary (0 for no MM and 1 for the presence of an MM). The ‘Time’
variable denotes the time until an event, which could either be the time of death (when
‘censor’ equals 1) or the time an instance was observed until (when ‘censor’ equals 0),
under the assumption that death occurred at some point after observation. A basic
scikit-FIBERS bin can be represented as follows: “IF the sum of MMs in F1, F2, and
F5 exceeds the Detected Bin Threshold, THEN categorize the instance as part of the
‘high-risk’ group.”

To test the ability of the adaptive burden threshold to correctly identify
the optimal MM burden threshold, we updated this simulation strategy to gen-
erate datasets that have different underlying ‘ground truth thresholds’. The
‘ground truth threshold’, is a dataset-wide threshold for the number of MMs
that is required to achieve the best separation between high and low-risk sur-
vival curves. We take this ground truth threshold as a parameter and generate
the datasets in such a way that this would be the burden threshold that would
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best separate bins into high-risk or low-risk. Ideally, this would be the threshold
that is later identified as the optimal bin threshold by this new scikit-FIBERS
implementation.

In addition to the ground truth threshold that differentiates low from high-
risk instance groups, this simulator also allows users to manipulate various
dataset parameters: (1) Total number of instances in the data, (2) propor-
tion of low-risk group instances (fixed at 0.5 in this study to maintain risk
group balance), (3) total number of features in the data, (4) number of infor-
mative/predictive features in the data (where all other features are noise/non-
informative), (5) MM frequency range, which is randomly selected for each fea-
ture, (6) Gaussian distribution parameters for simulating time-to-event, includ-
ing mean and standard deviation of high and low risk groups, respectively (which
can be used to tune the signal to noise ratio of the dataset, but fixed in this
study), (7), right-censoring frequency, indicating the proportion of instances
where the death event was not observed and (8) noise frequency, indicating
the proportion of instances where the time-to-event and censoring label of an
instance from one risk group is swapped with the other risk group to introduce
noise.

As depicted in Fig. 4, the process of generating right-censored survival data
begins by categorizing instances into low (0) or high (1) risk groups based on the
true risk group (TRG) column, considering the total number of instances and
proportion of low-risk-group instances. Next, we randomly assign MM values to
predictive features (P_n), ensuring that low-risk instances have a MM sum of
no more than the ‘ground truth threshold’ across all predictive features, and
high-risk instances have a larger or equal MM sum, while maintaining the ran-
domly selected MM frequency for each feature. Non-predictive features (R_n)
receive random values of 0 or 1 for all instances. Subsequently, similar to [10],
for each instance, we generate a time-to-event “duration” by drawing from either
the high or low-risk Gaussian distribution, with the mean and standard devia-
tion set by the user. Censoring values are then assigned to the dataset, where
1 signifies that the event (e.g., death) was observed, and 0 indicates that the
event occurred after the recorded duration. To simulate censoring, we calculate
censoring probabilities for each instance, reflecting the ratio of the instance’s sur-
vival time to the maximum survival time assigned across instances. We shuffle
instances randomly and assign censoring based on these probabilities, stopping
when the desired censoring frequency in the data is achieved. Notably, this sim-
ulation strategy does not require any specific subset of predictive features to
stratify risk, focusing instead on scikit-FIBERS’ ability to correctly identify an
effective subset of predictive features over non-predictive ones to maximize the
separation of risk strata survival curves.

Lastly, noise is generated in these datasets using a user-defined percentage
of low-risk instances (noise frequency) and swapping both the time duration
and censoring values with corresponding high-risk instances, leading to some
low-risk instances having more MMs than the ground truth threshold summed
across predictive features, and vice versa for some high-risk instances.
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Fig. 4. Example simulation of synthetic right-censored survival data of MM features
with a ground truth threshold of >= 1.

2.4 Simulation Experiments

In the majority of our experiments, we employ the scikit-FIBERS framework
with hyperparameter values as outlined in Table 1, directing our attention
towards assessing the performance across top bins instead of just the best bin
unless explicitly stated otherwise. Prior research has already substantiated the
effectiveness of the original FIBERS algorithm through cross-validation analyses
conducted with real-world data [1], as well as an extensive examination involving
synthetic positive and negative controls under various noise scenarios [10]. This
current study is primarily centered on the systematic evaluation of the new adap-
tive burden thresholding methodology and with the simplifications added to bin
initialization, crossover and mutation. To that end this proof-of-principle study
does not require utilizing training and testing partitions, but rather assesses the
ability of the algorithm to train on the simulated data and identify the ground
truth threshold associated with bins including predictive features, but exclud-
ing non-predictive features. In these simulated scenarios, overfitting can easily
be identified by the inclusion of non-predictive features, without requiring data
partitioning.

Similar to previous work [10], we use an MM frequency range of 0.4–0.5 and
a censoring frequency of 0.5, which are employed in all subsequent simulated
datasets. We set the Gaussian distribution parameters (Mean, Std.) for select-
ing time-to-event as (1, 0.2) for high-risk instances and (1.5, 0.2) for low-risk
instances, ensuring a distinct separation in the distribution of time-to-events
between risk groups. Except for experiments explicitly focused on total feature
count, all simulated datasets included 10 predictive and 40 non-predictive fea-
tures, and a consistent dataset size of 10,000 instances. In contrast, the original
FIBERS algorithm was applied to a significantly larger real-world data, with
over 100,000 instances and 192 AA-MM features, as detailed in [1]. Smaller sim-
ulated datasets were applied in this study for computational efficiency, in this
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proof-of-principle analysis, but also to demonstrate that FIBERS can be effective
even when having a much smaller number of training instances.

We evaluate experiments with three metrics to facilitate a quantitative and
qualitative interpretation of the experimental outcomes: (1) Accuracy, in the
context of knowing the simulated data ground truth, accuracy measures the
correctness of predictions as compared to the True Risk Group (2) Log Rank
Score, evaluates the separation of survival curves between different bin-defined
risk groups. (3) Bin Composition, referring to the number of predictive vs. non-
predictive features ending up in bins as well as the assigned burden threshold.

We investigate the performance of original FIBERS on comparison to
FIBERS with adaptive thresholding across simulated datasets featuring different
ground truth thresholds (0, 1, 2, 3), employing different thresholding methods
(best score and evolving thresholding) and crossover and mutation techniques
(regular and simplified). For evolving thresholding we examine probabilities of
(0, 0.5, 1.0). Additionally, we examine the impact of total feature count on algo-
rithm performance, including simulations with increasing total feature counts up
to 800 while holding the number of predictive features constant at 10. Lastly we
examine the resilience of the expanded scikit-FIBERS to increasing noise levels,
conducting an analysis with parameters outlined in Table 1 and varying noise
generation from 0 to 0.5. Code to generate all simulated datasets and repeat
all experiments is included in the github repository for the adaptive threshold
implementation scikit-FIBERS specified in Sect. 2.2.

3 Results and Discussion

Figure 5 presents FIBERS accuracy of bin classification (based on the simulated
true risk group) with and without adaptive thresholding strategies, as well as
with original vs. simplified crossover and mutation strategies. Individual box
plots represent the top 10 FIBERS bins (based on Log Rank Score). We observe
higher accuracy in predicting the ground truth simulated risk group when
employing the adaptive burden threshold in comparison to the original scikit-
FIBERS approach for both original and simplified crossover/mutation. Further-
more, the simplified crossover/mutation method consistently yields higher accu-
racies when coupled with adaptive burden thresholding, in simulated datasets
with a ground truth threshold > 0.

As expected, Fig. 5 also indicates that FIBERS with any adaptive burden
thresholding consistently outperforms the original FIBERS approach (no adap-
tive thresholding) in datasets with a ground truth threshold > 0 based on this
accuracy metric. This trend is further corroborated by log-rank scores, as evi-
denced in Table 2 and the box plots of log-rank scores (Supplementary S1). We
also observe that in datasets with a larger ground truth threshold (i.e. 2 or 3),
applying the adaptive threshold with an evolutionary probability of 0.5 (i.e. a
mix of evolution and deterministically picking the best scoring threshold) can
yield some better performing bins than the deterministic approach alone. This
suggests that the performance of adaptive threshold can benefit from a hyper-
parameter sweep of this evolution probability, when applied to new datasets.
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Fig. 5. Box plot of accuracies of the Top 10 FIBERS bins with datasets of different
simulated thresholds (0 to 3) using the new scikit-FIBERS adaptive threshold methods
and crossover-mutation methods (original - left, simplified - right).

Lastly, we observe a gradual but consistent decrease in true risk accuracy for
both original and simplified crossover/mutation, reflecting the increasing dif-
ficulty of the underlying binning task, which may be alleviated by increased
training iterations and/or maximum bin population size. This will be examine
further in future work.

In Table 2, we present the top 10 bins from one experiment conducted within
Fig. 5 (i.e. simplified crossover and mutation, a ground truth threshold of 1, and
evolving probability of 0), comparing FIBERS with and without adaptive thresh-
olding. We observe higher log rank scores as well as higher accuracies for FIBERS
when including the adaptive thresholding, largely consistent across analyses of
simulated datasets with a ground truth threshold > 0. Importantly we note that
all top 10 bins discovered with FIBERS including adaptive thresholding, were
assigned the correct ground truth threshold of 1.

Of note, we observe that bin log-rank score ranking is not perfectly correlated
with true risk group accuracy ranking, despite the top performing bins in Table 2
having both the highest log-rank score and accuracy. From this, we recognize that
FIBERS log-rank score ranking in real-world data may not always optimally
translate into ideal risk group assignment accuracy.

Table 2 also illustrates that FIBERS with adaptive thresholding tended to
result in bins with a larger number of specified features. In the given example,
all top 10 FIBERS bins correctly only include predictive features and exclude all
non-predictive features. Out of all 50 bins discovered by FIBERS in these analy-
ses, non-predictive features did occasionally get included in some lower ranking
bins (often alongside a high number of predictive instances), as well as utilizing
the incorrect threshold (for the given simulation). For example, see Bin 30 in
Supplementary S3: [P10, P2, P8, P4, P3, P7, P6, R73, P5, R65] with 10 total features
including 8 predictive features, an accuracy of 0.864, and a burden threshold of
3 (different from the simulated ground truth threshold of 1). Complete tables
detailing all 50 bins for the experiments run in Table 2 can be found in Supple-
mentary S2 and S3.
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Table 2. Detailed examination of the top 10 FIBERS bins without adaptive threshold-
ing (left), and with adaptive thresholding using simplified crossover and mutation and
a threshold evolution probability of 0 (right). The simulated dataset analyzed included
a ground truth threshold of 1. Both bin sets include the log rank score, bin feature
composition, assigned bin threshold, and accuracy.

# Score Bins Threshold Accuracy
1 2066.66 [P4, P5, P6, P1] 0 0.8694
2 2050.29 [P5, P2, P1, P4] 0 0.8692
3 2046.24 [P5, P1, P4] 0 0.8490
4 2040.88 [P9, P2, P1, P5] 0 0.8683
5 2039.54 [P5, P9, P1, P8] 0 0.8658
6 2019.14 [P5, P1, P3, P4] 0 0.8685
7 2007.44 [P5, P1, P4, P10] 0 0.8662
8 2006.21 [P9, P1, P6, P5] 0 0.8672
9 2001.99 [P4, P1, P9] 0 0.8478
10 2001.47 [P9, P1, P5, P10] 0 0.8670

# Score Bins Threshold Accuracy
1 4652.76 [P7, P4, P1, P9, P5, P6] 1 0.9430
2 4616.55 [P9, P6, P10, P2, P8, P4] 1 0.9425
3 4569.51 [P7, P5, P4, P1, P2, P6] 1 0.9410
4 4553.11 [P5, P3, P9, P6, P1, P4] 1 0.9413
5 4545.23 [P8, P9, P1, P10, P2, P5] 1 0.9403
6 4542.60 [P2, P8, P7, P10, P6, P9] 1 0.9411
7 4522.94 [P3, P1, P9, P1, P4, P2] 1 0.9406
8 4460.73 [P4, P7, P1, P5, P8, P3] 1 0.9398
9 3705.30 [P2, P7, P1, P9, P8] 1 0.8699
1 3699.89 [P2, P4, P8, P6, P9] 1 0.8732

Experiments summarized in Fig. 6 examine the impact of an increasing total
number of features on FIBERS performance (with and without deterministic
adaptive thresholding and original vs. simple crossover and mutation) in sim-
ulated data with a ground truth threshold of 2. Here we observe a dramatic
improvement in performance when using adaptive thresholding, between 300
and 600 total features, where original FIBERS does no better than random
chance. At 700 and 800 total features, both implementations failed to perform,
however we expect that a larger number of training iterations, and/or a larger
population size would help FIBERS scale up to larger feature spaces. This will
be one target of future work.

Fig. 6. Performance of FIBERS with varying Total Number of Features: This plot
shows a boxplot of accuracies of the top 10 FIBERS bins with increasing total number
of features and a fixed ground truth threshold of 2 with 10 predictive features for
original (left) and simplified (right) crossover and mutation.

Experiments summarized in Fig. 7 examine the impact of varying noise levels
from 0 to 0.5 (i.e. no noise to all noise). For this we again ran FIBERS with
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and without deterministic adaptive thresholding but limited to simple crossover
and mutation in simulated data with a ground truth threshold of 2. Here we
observed that FIBERS with adaptive thresholding performs significantly better
than original FIBERS (that assumes a fixed bin threshold of 0) in simulated
datasets with a noise frequency of 0 to 0.4, and an underlying ground truth
threshold greater than 0. This supports the assertion that FIBERS is capable
to identify informative feature bins in the presence of significantly noisy signal,
as well as further verifying the expected result that FIBERS adaptive binning
yields better performance than original FIBERS when the underlying ground
truth threshold is greater than 0 (assumed by original FIBERS). Future work
applying FIBER with adaptive thresholding to real-world data would thus be
expected to converge on top bins that assign a burden threshold that reflects
the underlying (unknown) ground truth threshold. This will allow us to discover
informative AA-MMs that predict GF risk, without assuming any particular
burden threshold.

Fig. 7. Increasing noise frequency in the top 10 FIBERS bins with ground truth thresh-
old of 2 using simplified crossover and mutation: Accuracy in predicting true risk group
(left) and log-rank scores (right).

Overall, these results support the proof-of-principle efficacy of adaptive
thresholding within FIBERS. Future work will more broadly examine scalability,
sensitivity, and response to right-censoring in more diverse simulated scenarios.
We also aim to further extend the scikit-FIBERS algorithm, to be able to iden-
tify more than two risk groups (e.g. high, medium, and low risk), introduce
multi-objective pareto-front fitness evaluation based on both log-rank score and
bin size, integrate covariate adjustment into bin evolution/discovery to focus
FIBERS on risk factors that remain relevant after this adjustment, and leverage
ensemble machine learning modeling for risk group assignment. Beyond simula-
tions, we also plan to apply scikit-FIBERS to evaluate kidney GF risk in AA-MM
data.
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4 Conclusion

In conclusion, this manuscript presents an extension to the scikit-FIBERS frame-
work, introducing adaptive burden thresholding to enhance the flexible identi-
fication of feature bins for risk stratification in right-censored survival analyses
including donor/recipient matching for tissue/organ transplantation. The incor-
poration of adaptive thresholds addresses a key limitation of the original FIBERS
algorithm, allowing for the simultaneous evolution of feature bins and threshold
values. Simulation experiments demonstrated improved performance in terms of
accuracy and log-rank scores, especially in scenarios with an increased number of
features. The findings suggest that scikit-FIBERS with adaptive burden thresh-
olding holds promise for optimizing risk stratification in complex biomedical sur-
vival analyses, such as the HLA AA-MM in kidney graft failure. The algorithm’s
robustness to noise and scalability further underscore its potential for real-world
applications. This work lays the foundation for the ongoing development and
deployment of scikit-FIBERS in biomedical research, offering a data-driven and
flexible approach to uncovering multifaceted risk factors in complex clinical sce-
narios. Future work will involve exploring additional simulated scenarios (e.g.
with larger feature and instance spaces), and applying scikit-FIBERS to real-
world biomedical data to further validate its efficacy in identifying AA-MM bins
that predict GF risk, without assuming/relying on a fixed MM burden threshold.
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Abstract. Gate-based quantum computation describes algorithms as
quantum circuits. These can be seen as a set of quantum gates acting on
a set of qubits. To be executable, the circuit requires complex transfor-
mations to comply with the physical constraints of the machines. This
process is known as transpilation, where qubits’ layout initialisation is
one of its first and most challenging steps, usually done by considering the
device error properties. As the size of the quantum algorithm increases,
the transpilation becomes increasingly complex and time-consuming.
This constitutes a bottleneck towards agile, fast, and error-robust quan-
tum computation. This work proposes an evolutionary deep neural net-
work that learns the qubits’ layout initialisation of the most advanced
and complex IBM heuristic used in today’s quantum machines. The aim
is to progressively replace weakly scalable transpilation heuristics with
machine learning models. Previous work using machine learning mod-
els for qubits’ layout initialisation suffers from some shortcomings in the
proposal’s correctness and generalisation as well as benchmarks diversity,
utility, and availability. The present work solves those flaws by (I) devis-
ing a complete Machine Learning pipeline including the ETL component
and the evolutionary deep neural model using the linkage learning algo-
rithm P3, (II) a modelling applicable to any quantum algorithm with a
special interest to both optimisation and machine learning ones, (III)
diverse and fresh benchmarks using calibration data of four real IBM
quantum computers collected over 10 months (Dec. 2022 and Oct. 2023)
and training dataset built using four types of quantum optimisation and
machine learning algorithms, as well as random ones. The proposal has
been proven to be more efficient and simple than state-of-the-art deep
neural models in the literature.
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1 Introduction

Gate-based quantum computers express computation as quantum circuits, seen
as a series of quantum gates acting on a set of quantum bits (or qubits). Cur-
rent devices are in their Noisy Intermediate Scale Era (NISQ), having a noisy
nature and a limited number of qubits (10 to 100 s), not enough to implement
efficient quantum error correction [3]. To be executable on quantum machines,
such types of quantum algorithms undergo a series of complex transformations,
usually known as transpilation, to comply with the hardware constraints of the
quantum machine. The transpilation process has a major influence on the effi-
ciency and reliability of quantum computation, especially considering the NISQ
nature of today’s quantum computers. Qubits’ layout initialisation is one of the
first, most critical and challenging steps in the transpilation proven to be NP-
complete [16]. Due to the complexity of such a task, a good amount of research
work can be found in the literature focused on the qubits’ initialisation1, cover-
ing several quantum technologies with different approaches. This work focuses on
superconducting quantum computers, in particular, IBM quantum computers,
considering that they are one of the most investigated and actively deployed in
the industry. Most literature (around 68 works in total) and today’s transpilers
rely on exact [16] or heuristic-based approaches [17]. For small-sized circuits,
the transpilation remains decently fast. However, the time increases drastically
when the complexity of the algorithms increases (e.g. the authors found that
transpiling GHZ circuits on 5627-qubits machines takes around 8.89 h). Clearly,
time is a key factor in quantum computation considering that today’s quantum
hardware is timely limited and affected by noise. Also, tedious and long tran-
spilation might make quantum advantage vanish when an equivalent classical
algorithms runs in the same time.

As an alternative to exact and heuristic-based transpilation approaches for
qubit initialisation, efforts are made to devise machine-learning-based qubits’
initialisers instead. Indeed, heuristics need to run the same costly computa-
tion each time a quantum circuit (algorithm) is given (whether used or not
before), while Machine Learning (ML) ones would be trained only once prof-
iting from past data. To the best of the authors’ knowledge, only three works
have explored such an alternative [1,10,11]. Although promising, these former
works have shortfalls on several levels, such as incorrect modelling of the qubits’
initialisation as a machine learning task which threatens the proposal’s relia-
bility. Also, they focus only on the deep learning model, although the entire
Extract-Transform-Load (ETL) is quite critical whether for the experiments’
reproducibility or their use in on-production transpilers. Moreover, the used
benchmarks are not always accessible, they are outdated and limited in terms of
complexity, diversity, and utility of the used quantum algorithms and machines.
This does not properly reflects the advances in quantum hardware (e.g., noise
resilience, error probabilities, etc.) neither the generalisation of the approach
to useful quantum algorithms. The present work copes with those shortfalls by

1 For the sake of brevity, we omit the word “layout” in “qubits’ layout initialization”.
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(I) devising a correct and generalisable ML task modelling of the qubits’ ini-
tialisation problem; (II) devising an entire pipeline including both the ETL
components and a deep learning model that is evolved using a linkage learning
algorithm known as the Parameter-less Population Pyramid (P3) [7]; and (III)
using a diverse benchmark built using continuously-up-to-date noise-calibration
data of four real IBM quantum machines over 10months (Dec. 2022 to Oct. 2023)
and a wide range of quantum algorithms including QAOA, quantum classifier,
QGANs, and random circuits.

In the rest of the paper we introduce the fundamentals of quantum compu-
tation and transpilation in Sect. 2, and we present the neural architecture search
in Sect. 3. Section 4 presents the proposed approach, while Sect. 5 experimentally
investigates the proposal. Finally, Sect. 6 concludes the paper.

2 Preliminary Concepts

Two quantum computation paradigms exist: adiabatic and gate-based. The first
is based on the adiabatic theorem and is dedicated to solving optimisation prob-
lems, while the second is a more universal one and has a large range of applica-
tions attracting both the interest of Industry and Academia.

We focus in this paper on the gate-based paradigm, which describes compu-
tations as quantum circuits (see Fig. 1(a)) composed of a series of quantum gates
acting on quantum bits (qubits). A qubit state |ψ〉 is, in general, a superposition
of two base states |0〉 and |1〉, where |ψ〉 = α |0〉 + β |1〉 and α, β ∈ C. They
also verify the normalisation condition |α|2 + |β|2 = 1. The quantum state of a
multiple-qubits system can be represented by the tensor product of the qubits’
quantum state |ψ〉 =

⊗n
i=1 |ψi〉, where |ψ〉 ∈ C

2n . Mathematically, each quan-
tum gate is represented by a unitary transformation U : C

2n → C
2n , which

verifies U†U = UU† = I, where U† is the Hermitian adjoint of U and I is the
identity matrix. Several quantum gates exist [13] such as the Hadamard H gate,
Pauli gates σx, σy, σz, etc.

Fig. 1. (a) Quantum circuit, (b) QPU topology and (c) qubits’ initialisation

To be executable on gate-based quantum computers, quantum algorithms
undergo a transpilation process. Transpilation consists in a series of complex
and chained tasks to translate the original quantum circuit into another one that
fulfills the machines’ constraints (e.g., available gates) [17]. Each manufacturer
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has its own transpilation process with different phases. Indeed, from one work
to another (e.g. compilation, synthesis, etc.), and eventually from one manufac-
turer to another (e.g. IBM: passes, Google: Transformers, etc.), the transpilation
process can be named or executed differently. The quality of the transpilation
process has a huge impact on the error-robustness, correctness and feasibility of
the computation, especially considering the NISQ era of quantum devices. The
circuit’s depth is a reliable metric of such quality, where for a gate g with a
predecessor P (g), the depth(g) is defined by Equation (1). The depth of the
circuit is the maximum value of depth(g) over all gates g. In that sense, a spe-
cial interest is given here to the IBM transpilation process, since it is the most
representative and white-boxed one. More particularly, the focus of this work is
on the qubits’ initialisation problem within IBM quantum machines [5].

depth(g) =Δ
{

0 P (g) = ∅
1 + max

p∈P (g)
depth(p) P (g) �= ∅ (1)

The qubits’ initialisation problem is one of the first and most critical tran-
spilation steps. It is proven to be NP-complete [16] and omnipresent in most
of today’s quantum machines (e.g., IBM, Google, etc.), and spans over several
technologies such as superconducting and Ion-trapped qubits [2,21]. Having a
quantum circuit C acting on a set of N logical qubits Q = {q1, . . . , qN}, the
qubits’ initialisation problem consists in mapping the set of logical qubits Q to
a set of M physical qubits P = {p1, . . . , pM} on the Quantum Processing Unit
(QPU), where M ≥ N (see Fig. 1(c)). A solution X to this problem would be
one of the possible MPN permutations without repetition (partial or complete
depending on whether M = N or not) formed by the arrangement of N physi-
cal qubits from {p1, . . . , pM}. In this work, it is admitted that no matter what
the arrangement is, the logical qubits (q1, . . . , qN ) would be assigned to physical
qubits according to a natural order. Meaning, a permutation (p1, p5, p2, p4, p3)
would represent a solution where q1 is assigned to p1, q2 to p5, q3 to p2, q4 to
p4, and q5 to p3. The quality of a solution has a direct effect on the remaining
phases of the transpilation (e.g. qubit routing, optimisation via transitivity and
cancellation rules, etc.), the feasibility of computation and its noise-robustness.

3 Deep Learning and Neural Architecture Search

The goal of supervised learning is to build a function f : X → Y fitting a set
of samples (x, y) ∈ X × Y . There are many techniques for supervised learn-
ing. We focus here on deep learning models and, in particular, deep neural net-
works (DNNs). A deep neural network is composed of several layers of neurons
(Fig. 2(b)). Neurons in the input layer represent the input vector x, while the
neurons in layer j receive as input the output of layer j − 1. This input is
weighted and summed before computing an activation function a. The output
of the neuron is given by the expression a(

∑n(j−1)
i=1 w

(j)
i x

(j−1)
i + b), where x

(j−1)
i

is the output of the i-th neuron in layer j − 1 and n(j−1) is the number of neu-
rons at layer j − 1 (see Fig. 2(a)). The goal of the learning process is to find an
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optimal or sufficiently close to optimal set of connection weights w
(j)
i . Several

factors influence the efficiency of neural networks. For instance, the architecture,
the training algorithm, and the choice of features used in training. Training is
performed using gradient-decent techniques to minimise a loss function [18].

Fig. 2. (a) DNN principle and (b) neural architecture search

Evolutionary computation has been used to enhance the efficiency of machine
learning (ML) techniques principally in pre-processing (e.g., feature selection
and re-sampling), learning (e.g., parameter setting, membership functions, and
neural network topology), and post-processing (e.g., rule optimisation, decision
tree/support vectors pruning, etc.). Several well-known EAs exist, although the
interest in this paper focuses on linkage learning EAs. They represent solutions
as d-dimensional vectors and try to learn the relations among the d decision
variables to be more efficient during the search. This class of algorithms have
been profoundly studied and led to promising advances. One can cite as exam-
ples, the LTGA (Linkage Tree Genetic Algorithm) [19], LT-GOMEA (Linkage
Tree Gene-pool Optimal Mixing Evolutionary Algorithm) [20], the DSMGA-II
(Dependency Structure Matrix Genetic Algorithm II) [9], the 3LOa (Linkage
Learning based on Local Optimisation algorithm) [15] and the P3 [7], which
we use in this work. We use in this work linkage learning algorithms in Neural
Architecture Search (NAS) where the DNN topology is evolved using P3, while
the learning process is left to gradient descent approaches [18] (see Fig. 2(b)).
Although applying EAs for NAS has been quite investigated, to the best of the
authors’ knowledge, linkage learning algorithms have never been applied to NAS.

3.1 Deep Learning for Qubits’ Initialisation

To the best of the authors’ knowledge, there are 68 works that tackle the qubits’
initialisation problem whether as a standalone problem [5] or jointly with other
transpilation problems [17]. Most of those works approach the problem using
exact algorithms with high computational cost as the problem’s size increases,
or heuristic ones that are meant to be less computational greedy. Unlike previous
literature, works in [1,10,11] started exploring the use of deep learning to solve
the qubits’ initialisation problem. Although, it is worth noting that the works in
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[10,11] present the same proposal. The authors in [1] propose a DNN model to
tackle the qubits’ initialisation as a classification problem. The aim is to learn the
initialisation produced by a noise-aware heuristic used in today’s IBM quantum
machines [12]. That work suffers from some shortfalls. First, the modelling of the
qubits’ initialisation as a machine learning problem is not completely reliable or
generalisable. Actually, it only considers very limited calibration parameters such
as T1, T2, CNOT error and execution time as well as readout error, while
when having a quantum machine with k qubits and n qubits’ connectivities,
8k+2·5+2n important calibration parameters exist. Also, the circuits modelling
does not capture the sequencing of gates execution. Indeed, using the devised
modelling, several circuits might be modeled using the same representation, while
requiring different intialisation. This turns out to be quite challenging in ML.
The benchmark they use is composed of purely random circuits with no known
utility and uses only one 5-qubit machine topology called IBM Q Burlington
whose calibration data dates back to 2021. This prevents assessing the proposal
on quantum algorithms of known use (e.g., optimisation, machine learning, etc.).
Another problem is that the machine used has been retired by IBM, so the
practical interest of the paper is limited.

The authors in [10,11] combine reinforcement learning with a graph neural
network to solve the qubits’ initialisation problem. Likewise in [1], the authors
used an ML task modelling that is not completely reliable or generalisable.
Indeed, calibration data such as the reset gates length are discarded, as well
as an important parameter such as the readout length. The circuits modelling
is restricted to only four gates, which are not universal. This restricts the general-
isation of the approach to other quantum circuits. Most importantly, the circuits
feature modelling does not capture the sequencing of the gates which is crucial.
Moreover, the authors use only two quantum machines of 7 and 27 qubits (IBM
Nairobi and Algiers) and study only 6 quantum circuits. The dataset they use
is not made available, which prevents any replication of the results. Last, but not
least, all the work done in [1,10,11] focuses only on devising the DNN model and
discards other important components in any ML pipeline, especially the ETL
part. This prevents the proposal from being constantly up-to-date with the quan-
tum hardware evolution (e.g., noise sensitivity) and therefore any integration in
on-production quantum transpilers.

This work attempts to correct all the shortfalls identified in [1,10,11], but
it still goes in the same sense as the work done in [1] by learning the qubits’
initialisation produced by the IBM heuristic called Noise Adaptive [12].

4 The Proposed Approach

The proposal aims at coping with the shortfalls identified in the previous work:
(I) the machine learning task modelling, (II) the proposal’s completeness
and efficiency, as well as (III) the benchmark diversity/utility and availabil-
ity. Figure 3 sketches the two main modules of our proposal and their execution
flow. The next subsections explain these modules in detail. Also, the full source
code of the proposal is made publicly available in [4].
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Fig. 3. The modules and components of the proposed approach

4.1 The Extract-Tranform-Load Module

We will start describing the ETL module and its components in this section.

The Extraction Component: This component is a scrapper responsible for
the extraction of daily fresh calibration data of all the available IBM quantum
machines. It automatically detects which machine(s) is(are) available as well as
the quantum transpiler version locally installed. Therefore, it changes automat-
ically the scrapping mechanism as well as handling the servers’ failures accord-
ing to transpiler’s versioning. The extraction is performed every 30min. The
calibration data being extracted represent the physical properties (e.g., error,
execution time, etc.) of both the qubits and the implementable quantum gates
on it. As to the qubits, there are 8 calibration parameters extracted for each
qubit: the decoherence times (in μs) T1 and T2, the frequency and anhar-
monicity (in GHz), the readout error probability and length (in ns), the
error probability of measuring the state |1〉 when preparing it in |0〉 and vice
versa. As to the quantum gates, two pieces of data are extracted; the gate error
probability and the gate length (in ns) for all possible single (I, RZ , S†, σx,
reset) and all two-qubits gates (i.e., CNOT). In total, having a quantum machine
with k qubits and n qubits’ connectivities, 8k qubit parameters and 2 · 5 + 2n
gate parameters will be extracted for each of the 4 IBM quantum machines
found available: ibmq_lima, ibmq_belem, ibmq_quito and ibmq_manila. So,
far, data of 11months have been gathered from the 12th December 2022 to the
2nd October 2023. The scrapper is continuously being executed (24H a day and
7 d a week) to gather new data. The raw calibration data are made available for
open public use at [4]. To the authors’ knowledge, this is the first time in the
literature that such scrapper has been devised and made available together with
real world data of this amount and diversity.

The Transformation Component: To correct the modelling previously pre-
sented in [1], we propose a modelling based on three components (see Fig. 4):
(I) the quantum machine calibration, (II) the quantum machine topology and
(III) the quantum circuit.

The first one corresponds to the calibration of the quantum machine. Unlike
the previous works [1,10,11], which considers only some calibration data while
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Fig. 4. Representation of ML features generated by transformation component

neglecting others, the presented modelling includes the totality of the data
extracted by the extraction component previously introduced. The IBM heuristic
Noise Adaptive considers most of those calibration data to calculate the initial
qubits’ placement (see Fig. 4(a)). This approach allows our proposal to identify
uniquely each machine, therefore avoiding that several samples represent mul-
tiple machines. The second part of the modelling is dedicated to representing
the topology of the qubits’ connectivity of the quantum machine. This turns
out to be quite important in order to devise a proposal able to learn the Noise
Adaptive qubits’ intialisation for any quantum machine topology, instead of
focusing on one concrete quantum machine (requiring a separate learning pro-
cess for each machine). The features that represent the topology are a flattened
vector of the adjacency matrix of the underlying graph representing the quantum
device qubits’ connectivity (see Fig. 4(b)).

The third part of the modelling concerns the quantum algorithm itself.
Indeed, previous work considers a set of features that does not represent cir-
cuits in a unique way: it might map several quantum algorithms to the same
representation. In fact, those representation-equivalent algorithms could need a
different qubits’ initialisation. In the present modelling, the circuit is decom-
posed into layers, where each layer regroups the gates that can be executed in
parallel (see Fig. 4(c)). Therefore a circuit with d gates, would be translated into
features by representing each gate in each layer sequentially using a sequence of
three digits {xi, yi, zi}, i = 1, . . . , d, where the first digit xi identifies the type of
gate and the two remaining digits yi and zi are dedicated to represent the ID of
the qubits taking part in the gate execution. In single-qubit gates, the two digits
yi and zi will represent the (same) ID of the qubit the gate affects (see Fig. 4).

Unlike the previous literature, which studied either random circuits with
no known utility [1], or a set of limited quantum algorithms like in [10,11], in
this work the training data is generated by considering four types of algorithms
dedicated to optimisation, machine learning and random ones. This way we max-
imise the generalisation of the devised approach. In particular, we consider the
Quantum Approximate Optimisation Algorithm (QAOA) [6], the Quantum Vari-
ational Classifier (QVC) and the Quantum Adversarial Neural Network (QGAN)
[8]. The QAOA has been used by setting the depth to 1, while the QVC was
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used with a fully-entangled mapping and classification with depth 1. The QGAN
has been built by considering a fully-entangled discriminator and generator with
depth 1. Both the QVC and QGAN features’ mapping parts have been gener-
ated using the Rz, Ry and CRz quantum gates. The mathematical details of the
QAOA, QVC and QGAN go beyond the scope of this work. For further details,
please refer to the original works [6,8].

In QAOA, a random instance of the Quadratic Unconstrained Binary Optimi-
sation Problem (QUBO) is solved each time, while the random quantum circuits
are generated by considering a universal set of quantum gates: CNOT, H, S and
T. The encoding handled by our approach has been thought to go beyond the
previous set of gates and can cover a large plethora of quantum gates, such as
H, S, T, RZ , σx, U1, U and CNOT. In all the quantum circuits, a maximum depth
of 200 gates is considered. For those quantum algorithms that do not consume
all the gates’ depth, a padding of zeros is added in their features’ vector. So
far, the generated dataset contains over 31,109 training samples. The code of
the transformation component automatically generates a fresh training dataset
(when needed) if new quantum machines/calibration data are available or there
is a need for other datasets built using different quantum algorithms.

Moving now to the targets of the training dataset, they have been generated
by executing the generated circuits (QAOA, QVC, QGAN or random) using the
IBM transpiler by setting it to the third level of optimisation (most sophisticated
and costly one) and imposing the Noise Adaptive heuristic for qubits’ initiali-
sation. The transpiler is executed over 30 executions and the qubits initialisation
that produces the circuit with the smallest circuit depth (see Equation (1)) is
the one considered as a target for the generated features. Having a quantum
machine of n qubits, targets will be organised as tuples of shape {x1, x2, . . . xn},
where the rank i of the value in the tuple represents the logical qubit that will be
placed in the xith physical qubit. For instance, the configuration {5, 4, 1} indi-
cates that the 1st logical qubit will be placed on the 5th physical one, the 2nd

on the 4th, and the 3rd on the 1st.

The Loading Component: The loading component is responsible for the
persistence of the training dataset as well as the raw data. This information is
stored in “.csv” files considering that the proposal in its current form is meant
for direct integration in the IBM transpiler or other CLI standalone use. Indeed,
ML libraries such as Scikit-learn, Tensorflow, Pytorch, and Keras, have some
readiness to use .csv files via Pandas more than other types of files. However,
if any API-based use is planned for the proposal, the switch to “.json” files is
thought to be quite straightforward and easy to accomplish.

4.2 The Evolutionary Deep Neural Network Module

This section presents the evolutionary deep learning module that will be trained
on the data generated by the ETL module (see Sect. 4.1), and learns the qubits’
initialisation generated by the IBM transpiling heuristic Noise Adaptive.
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The Pre-processing Component: Before feeding the training samples gen-
erated by the ETL module to the deep neural network, the training dataset is
normalised and reduced. Concretely, as for normalisation the Z-score normalisa-
tion is applied to convert the dataset samples in such a way that the mean is 0
and the deviation is equal to 1 using the x−μ

σ , where μ is the mean of the data
and σ is the standard deviation. As a feature reduction, the Principal Compo-
nent Analysis technique is used with the goal of finding the linear transformation
that keeps the variance at maximum using the minimum number of features [14].

The Deep Neural Network Component: The qubits’ initialisation is mod-
eled as a multi-class classification problem. Given a quantum algorithm that
acts on q qubits and a quantum machine with n qubits, the idea is to determine
which of the 1, . . . , n physical qubits (classes) is used for each logical qubit. The
original architecture used in this work is the one presented in [1]. The choice
was made for this model because it is the one providing the best results so far
on this problem (see Fig. 5).

Fig. 5. The used state-of-the-art deep neural network

We can see the DNN model as the union of several sub-DNN models that
are trained separately to decide the physical qubit in which a logical qubit is
mapped. All neurons in the DNN model are densely connected. Every neural
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layer uses the ReLU activation function a(x) = max (0,x) except the dropout and
the output layer that uses a softmax function. The output generated by the
ETL module is converted into an array of probabilities, where each n variables
constitutes the probability of a given logical qubit to be assigned to each physical
qubit of the machine.

The Evolutionary Neural Architecture Search Component: The origi-
nal model presented in [1] is composed of several neural layers of sizes 264, 1024,
256, and 128 (see Fig. 5). The idea in our proposal is to decide the model’s archi-
tecture as well as some other hyper-parameters using an evolutionary algorithm
to reduce to loss function. As loss function, we use the average of the categorical
cross-entropy of each sub-DNN model presented in the previous section. The
variables to be optimised are the size of each neural layer of the DNN model
as well as the number of training epochs and the batch size. In total, 6 opti-
misation variables xj=1,...,6 ∈ N are considered (the dropout layer is neglected).
Each variable might evolve from the original value used in [1], and 1

4 of that
value, except for the batch size that is allowed to take values up to 1

8 of the
original value. Such a choice of lower bounds is thought to explore if the P3 can
reduce the complexity of the model while enhancing (or at least maintaining) its
efficiency.

The solution encoding considered in this proposal is binary, where each inte-
ger decision variable yj=1,...,6 ∈ N is encoded using m bits. Let x be the bitstring
representing variable y, the expresion for y is:

y = l + (1 − 2m−1 + u − l)xm−1 +
m−2∑

i=0

2ixi, (2)

which ensures that l ≤ yj=1,...,6 ≤ u. In the previous expression, l and u rep-
resents the minimum and maximum value a decision variable can take. In this
work, l is u/4 or u/8, depending on the decision variable. Having k logical qubits
required by the quantum algorithm, and n physical ones on the QPU, and d
training samples, the objective function to minimize is defined by

f(W ) = −1
k

k∑

l=1

1
d

d∑

i=1

n∑

j=1

t(i,l,j)log(p(i,l,j)), (3)

where t(i,l,j) is 1 if sample i assigns logical qubit l to physical qubit j and
0 otherwise, and p(i,l,j) is the prediction returned by the softmax activation
function for sample i on the physical qubit j assigned to logical qubit l.

We use the original version of the P3 algorithm to solve this problem. Algo-
rithm 1 sketches the general framework of the P3, while further technical details
can be found in the original work [7].

5 Experimental Study

This section presents the experimental design, results, and their discussion in
the next three subsections.
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Algorithm 1. The P3 pseudo-code
1: Create random solution
2: Apply hill climber
3: if solution /∈ hashset then
4: Add solution to P0

5: Add solution to hashset
6: end if
7: while ∃Pi ∈ pyramid not processed do
8: Mix solution with Pi

9: if solution’s fitness has improved then
10: if solution /∈ hashset then
11: Add solution to Pi+1

12: Add solution to hashset
13: end if
14: end if
15: end while

5.1 Experiments’ Design and Benchmarks

The implementation has been done using both python version 3.10.2 and C++
with a GCC version 11.4.0. We use a machine running Ubuntu 22.04.3 LTS 64
bits (7 CPUs and 16 GB of RAM) and Linux Enterprise Server 15 SP4 15.4 OS.
The ETL module has been built using IBM quantum kit (Qiskit) version 0.44.2,
while the evolutionary deep-learning module has been built using the libraries
sckit-learn version 1.3.2, Tensorflow version 2.14.0 and Keras version 2.14.0. The
source code of P3 is the one made publicly available by the authors2, slightly
modified to execute within our framework, including the cluster execution. All
the code generated, the datasets and the results are published in a replication
package in Zenodo [4]. All the experiments have been run in a cluster with the
configuration given in Table 1.

Table 1. Hardware components of the cluster used.

Nodes CPU/GPU RAM InfiniBand Localscratch

126 × SD530 56 × Intel Xeon Gold 6230R @ 2.10 GHz 200 GB HDR100 950GB
24 × Bull R282-Z90 128 × AMD EPYC 7H12 @ 2.6 GHz 2 TB HDR200 3.5TB
168 × IBM dx360 M4 16 × Intel E5-2670 @ 2.6 GHz 32 GB

FDR40
400GB

4 × DGX-A100 8 × A100 Tensor Core 1 TB 14TB

The comparison basis in this work is composed of the state-of-the-art DNN
model devised in [1] (SOTA-DNN) and the newly proposed evolutionary DNN using
the P3 algorithm (P3-DNN). The original DNN model has been executed using
the same parameters as the ones given in [1]. This includes the same neural

2 https://github.com/brianwgoldman/FastEfficientP3.

https://github.com/brianwgoldman/FastEfficientP3
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layers’ dimension (i.e., 264, 1024, 256, and 128), the same batch size of 128
and 150 training epochs, and Adam as a learning algorithm with learning rate
of 0.0005. Regarding P3, the only parameter it has is the stopping condition,
which has been set to 1000 fitness evaluations. Each experiment, whether using
the SOTA-DNN or P3-DNN, has been performed over 32 independent executions.
Metrics such as the Best, Worst, Median and Median Absolute Deviation (MAD)
of the results across all the executions have been recorded.

5.2 Results and Discussion

Table 2 presents the average categorical cross-entropy loss obtained by SOTA-DNN
and P3-DNN over all the circuits. The best results are highlighted in bold on the
basis of the Median metric. The proposed P3-DNN achieves better results than
SOTA-DNN in all the considered metrics.

Table 2. Average categorical cross-entropy loss of SOTA-DNN and P3-DNN over all the
quantum circuits.

Model Best Worst Median MAD

SOTA-DNN 3.1856 9.9488 5.2786 0.9618
P3-DNN 2.6378 5.4681 3.2379 0.3076

Interestingly, P3-DNN outperforms SOTA-DNN using a deep neural network that
is simpler and easier to train than the original one. While SOTA-DNN is composed
of 264, 1024, 256, and 128 neurons in each layer and uses a batch size equal to
128 samples trained over 150 epochs, P3-DNN is composed of 118, 736, 177 and
122 neurons only in each layer and uses batches of size 67 samples trained over
55 epochs. Concretely the SOTA-DNN has 1757929 parameters to train (6864 +
271360 + (5 . 262400) + (5 . 32896) + (5 . 645)), while the P3-DNN has only
854552 parameters to train (3068 + 87584 + (5 . 130449) + (5 . 21716) + (5 .
615)). This indicates that the proposed P3-DNN has reduced the complexity of
the model to almost half of the original SOTA-DNN complexity (48.611%).

Figure 6 illustrates a zoom-in on the fitness value evolution of the P3 in one of
the best executions, during the first fitness evaluations. It can be seen that the P3
has considerably reduced the loss during the first iterations without consuming
yet the 1000 fitness evaluations budget. This might suggest that racing methods
combined with P3 could be interesting to investigate to make the P3 even more
efficient.

Although finding the adequate DNN architecture using the P3 might take
longer than executing directly the original DNN architecture given in [1], the
extra time is compensated by the fact that the obtained DNN architecture is
much simpler. This means that the optimized DNN architecture will be more
efficient and faster to optimise/execute than the original DNN model. In the
long run, this advantage will be cumulative and will be specially important
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Fig. 6. A zoom-in on a sample of P3 fitness value evolution

given the NISQ nature of the current quantum machines, where the calibration
data is continuously changing due to noise and errors. A comparison between the
execution time of P3-DNN and SOTA-DNN will not be fair in this work considering
that P3-DNN executes the DNN part on python, while P3 is executed in C++ using
a continuous communication between both parts.

6 Conclusion and Perspective

This work proposes an evolutionary deep neural network approach to solve the
qubits’ initialisation problem in IBM/NISQ/gate-based quantum machines. The
proposal copes with the shortfalls of previous work, mainly on three aspects:
(I) the correctness and completeness of the proposal, (II) a problem modelling
that is correct and generalisable, and (III) diversity, usefulness and availability
of the benchmarks. The experiments have been made using real calibration data
of four IBM quantum machines, circuits for quantum optimisation and machine
learning, and we compared our proposal with the state-of-the-art DNN model.
The results showed that the proposed approach achieve better results using a
simpler DNN model.

As a next step, it is planned to investigate the use of other linkage learning
techniques such as LT-GOMEA, tackle the problem as a regression task, explore
other ML techniques, include other quantum machines of different size, and build
training datasets based on different metrics in addition to the circuits’ depth.
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Abstract. We present a way to measure similarity between sets of rules
for regression tasks. This was identified to be an important but missing
tool to investigate Metaheuristic Rule Set Learners (MRSLs), a class
of algorithms that utilize metaheuristics such as Genetic Algorithms to
solve learning tasks: The commonly-used predictive performance-based
metrics such as mean absolute error do not capture most users’ actual
preferences when they choose these kinds of models since they typically
aim for model interpretability (i. e. low number of rules, meaningful rule
placement etc.) and not low error alone. Our similarity measure is based
on a form of metaheuristic-agnostic edit distance. It is meant to be used—
in conjunction with a certain class of benchmark problems—for analysing
and improving an as-of-yet underresearched part of MRSL algorithms:
The metaheuristic that optimizes the model’s structure (i. e. the set of
rule conditions). We discuss the measure’s most important properties
and demonstrate its applicability by performing experiments on the best-
known MRSL, XCSF, comparing it with two non-metaheuristic Rule Set
Learners, Decision Trees and Random Forests.

Keywords: Benchmarking · Metaheuristic Rule Learning · Model
Similarity · Learning Classifier Systems · Rule Learning

1 Introduction

This paper presents a novel tool for evaluating Metaheuristic Rule Set Learners
(MRSL) for regression tasks. MRSLs are a subclass of Rule Set Learners (RSLs)
which are machine learning (ML) algorithms that learn sets of rules. While non-
metaheuristic RSLs like the well-known C4.5 algorithm [34] typically use local
heuristics to generate sets of rules, MRSLs use metaheuristics such as Genetic
Algorithms (GAs) to perform some form of global search for well-performing
rule sets. Examples for MRSL systems are Learning Classifier Systems such
as XCS [41], Fuzzy Rule-based Systems [7] or Ant-Miner [26]. While there are
MRSL approaches for unsupervised learning (e. g. [38]), reinforcement learning
(e. g. [5]) and classification (e. g. [3,26]) as well, the present paper focusses on
regression tasks. MRSL systems solving regression tasks include [2,17,42].
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In the regression tasks that we are concerned with, the goal is to find an in
some sense optimal model ̂f : X → Y that maps inputs x ∈ X = R

DX to outputs
y ∈ Y = R. At that, the only guidance given in order to find that optimal model
is a training set consisting of N inputs (xn)Nn=1 � X and outputs (yn)Nn=1 � Y.
A common way to measure and improve model optimality is to compute predic-
tive error measures such as the mean absolute error (MAE) or the mean squared
error. While MRSLs are commonly evaluated using these kinds of metrics as
well, Pätzel et al. [27] as well as Kovacs and Kerber [20,21] argue that during
their development, MRSLs should actually be handled differently due to the
fact that these algorithms not only optimize some parametric model’s fixed set
of parameters (like, for example, fitting neural network connection weights) but
actually optimize the number, the conditions and the model parameters of a set
of rules. This means that MRSLs actually perform both parameter optimization
and model structure optimization (which in the neural network example trans-
lates to fitting connection weights and optimizing the network’s architecture).
This dual nature of MRSL algorithms entails that predictive error measures alone
can typically not capture a user’s actual preferences: They chose MRSL algo-
rithms over other high-predictive-performance options such as Neural Networks
for their increased interpretability and therefore also require the created model
to have a low number of rules, meaningfully placed rules, little rule overlap and
similar properties. That being said, the optimization target of supervised MRSL
algorithms is far from clear and that may be one of the reasons why most MRSL
research has focussed on improving these systems’ predictive performance alone.

Pätzel et al. [27] present a concept to resolve that mismatch between MRSL
research targets and MRSL user preferences. That concept is based on generating
certain data-generating processes that serve as a new form of benchmark learning
tasks for MRSL algorithms (this is summarized in Sect. 3). The advantage of
these processes over other approaches is that they are of the same form as the
models built by MRSL algorithms: Each process is a set of rules. The goal is to
enable the following workflow for investigating MRSL algorithms:

1. Generate a random data-generating process (or, rather, many of them).
2. Generate training data using that process.
3. Apply an MRSL algorithm to the generated training data.
4. Compare the model (a set of rules) created by the MRSL algorithm with the

set of rules of the original data-generating process.

At that, the very last step is what Pätzel et al.’s proposal is all about: The data-
generating process being a set of rules allows to not only consider predictive
performance but also whether the MRSL algorithm was able to reconstruct the
original data-generating process. This enables directly measuring the progress
made by the MRSL algorithm’s metaheuristic since the model structures of the
learnt model and of the data-generating process can be compared.

While Pätzel et al. [27] explained the overall concept of these principled
benchmarks such as how data-generating processes can be generated, their paper
fell short of proposing an actual way to compare model structures consisting of
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sets of rules. This is where the present paper comes in: We identify and dis-
cuss the desired properties of dissimilarity measures that could be used for this
task and then present a novel dissimilarity measure between sets of rules that
fulfills them. In combination with above-mentioned benchmark tasks, the mea-
sure allows improving characteristics of MRSL algorithms other than predic-
tive performance. Specifically, in the context of XAI, this allows to play to the
strengths of MRSL (inherent explainability) and quantify the tradeoff between
raw predictive performance and comprehensible model structures. We demon-
strate our measure’s applicability by applying it to the analysis of differences
between several parametrizations of one of the best-known MRSLs, XCSF, and
two non-metaheuristic RSLs, namely DTs and Random Forests (RFs).

2 Metaheuristic Rule Set Learners

In this section, we try to give a, due to space restrictions very rough, idea of
the models built and assumptions made by Metaheuristic Rule Set Learners
(MRSLs; for more details see [27]). This is necessary in order to be able to
describe in Sect. 3 how the benchmark learning tasks look like and in Sect. 4 the
dissimilarity measure between model structures.

As was already said above, this paper focusses on regression tasks (i. e. learn-
ing a mapping X → Y with X = R

DX and Y = R, DX ∈ N). Common and well-
established MRSLs (e. g. XCSF [42]) as well as more recently developed systems
(e. g. SupRB [17]) solve regression tasks by building discriminative models of the
following form [27]:

̂fM(θ, x) =
K

∑

k=1

m(ψk;x) γk
̂fk(θk;x) (1)

At that,

– m(ψk; ·) : X → {0, 1} is the condition or matching function of rule k
(parametrized by ψk) which states for any x ∈ X whether rule k applies
or not and correspondingly whether it will influence the overall prediction for
that input (if m(ψk;x) = 1, we say m(ψk; ·) matches data point x),

– γk is the mixing weight of rule k which allows to weigh rules against each
other in areas of overlap,

– ̂f(θk; ·) : X → Y is the local model of rule k (parametrized by θk and fitted on
the subset of the training data that m(ψk; ·) matches) which gives the rule’s
output for any input x ∈ X ,

– the model’s parameters form θ =
(

(γk)
K
k=1 , (θk)

K
k=1

)

,

– the model’s model structure is M =
(

K, (ψk)
K
k=1

)

.

Given a certain fixed model structure, a model’s parameters’ optimization
is often straightforward: Each local model k’s parameters θk only have to be
optimized on a subset of the training data (i. e. the data points where the local
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model’s condition is fulfilled) and local model families are typically simple such
as linear regression models or just constants [27]. While optimal mixing weights
γk are often computationally expensive to obtain, there exist well-performing
heuristics which are often-used in MRSL algorithms [9].

Other than model parameter optimization, optimization of the model struc-
ture is a difficult task and, correspondingly, most of the compute of (M)RSLs
goes into doing so. While non-evolutionary RSLs such as Decision Trees (DTs)
choose the model structure based on (often, local) heuristics, MRSLs use meta-
heuristics and often some form of global search (e. g. Genetic Algorithms [41]); a
recent overview of techniques used was given by Heider et al. [14]. How exactly
model structure optimization is done strongly depends on the condition family
used. For real-valued tasks such as the regression tasks considered in the present
paper, a common choice are interval-based conditions where

m(ψk, x) = m((lk, uk), x) =

{

1, x ∈ [lk, uk)
0, otherwise.

(2)

Since intervals are easily comprehensible greater-/less-than statements, interval-
based conditions often yield models with higher interpretability than more
sophisticated condition families (e. g. ellipsoid-based matching [37]) and are thus
often preferred [15]. At the same time, they are reasonably expressive and share
a lot of similarity with other axis-parallel ways to subdivide the input space
(e. g. the axis-parallel cuts made by DT algorithms); the latter being especially
important if comparisons with such algorithms are being conducted—which we
do in this paper. Overall, this led us to use interval-based conditions for the
purposes of this paper as well and as a result, the (m(ψk, ·))Kk=1 correspond to
(and are sometimes called) a set of (DX -dimensional) intervals.

3 Generating Benchmark Tasks

As was already said in the introduction, Pätzel et al.’s framework [27] is based
on generating a set of benchmark learning tasks that have the same form as the
common MRSL models introduced in Sect. 2 (cf. Eq. (1)). This means that each
benchmark learning task is a data-generating process which corresponds to, for
each input x ∈ DX , a random variable of the following form:

Y =
K

∑

k=1

m(ψk;x) γk (fk(θk;x) + εk) (3)

where the {εk}K
k=1 are normally distributed random variables corresponding to

the respective local model’s noise. These processes can be generated randomly
by drawing all of the required parameters from suitable random distributions.

Compared to the original work [27,33], we introduced a minimum coverage
parameter that allows us to ensure that the generated rules properly cover the
input space. Since the exact way how the learning tasks are generated is not
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relevant for the discussion of our dissimilarity measure, we refer to our code [31]
for details on this. We further changed the local model family to constant models
since they are less expensive to compute and the algorithms we use for our
demonstration in Sect. 5 use constant local models as well.

4 Measuring Dissimilarity of Sets of Rules

This section describes our proposal for measuring dissimilarity between the
model structures of models generated by MRSL algorithms. There are many
existing ways (e. g. the Hausdorff distance [10] or intersection over union) to
measure the dissimilarity between sets and most can be adapted to work on
the sets corresponding to MRSL model structures (i. e. sets of rule conditions).
However, due to the nature of MRSL model structures, the dissimilarity measure
should fulfill certain properties which we found difficult or impossible to fulfill
using the available dissimilarity measures. We start this section with a discussion
of said properties and then introduce our dissimilarity measure.

4.1 Desired Properties

A dissimilarity measure d(·, ·) for MRSL model structures should have the fol-
lowing properties:

Property 1 (Symmetry). Since we may not only want to examine dissimilarities
to the data-generating process model but also between two models generated by
two different (or even the same) algorithm, we want the dissimilarity measure to
be symmetric in order to avoid having to choose which of the two models should
be used as a reference. Symmetry can be expressed formally as

d(M1,M2) = d(M2,M1) (4)

Property 2 (Same training match sets1 should yield minimal dissimilarity).
While the training data and with it, the input space X , is typically scaled (e. g.
min-max normalized) before it is fed into an ML algorithm, we still would like
the dissimilarity measure to be agnostic of input-space-based distances between
interval bounds. The reason for this is that we do not want to punish cases where
a metaheuristic has bad luck : Any predictive-performance-based part of a fitness
function of a metaheuristic in an MRSL algorithms can only ever distinguish
model structures if there is a change in at least one rule’s training match set
(See footnote 1). If we did not require this property, then a model structure
M1 may be considered less or more similar to a reference model structure M0

than another model structure M2 despite M1 and M2 resulting in the exact
same overall model with respect to the training data (i. e. despite differing ψk,
all match sets are equal due to where in input space the training data points

1 A rule k’s training match set is the set of training data points that m(ψk; ·) is fulfilled
for, i. e. {x ∈ X | m(ψk;x) = 1}.
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lie). Since most metaheuristics are non-deterministic, we conjecture that this
occurring is not merely pathological. In short: If this property is fulfilled then
two model structures that induce the same training data set for each local model
have zero dissimilarity—even if the model structure parameters are actually dif-
ferent. Formally,2

(mk(ψ1k;X))K1
k=1 = (mk(ψ2k;X))K2

k=1 ⇔ d(M1,M2) = 0 (5)

Property 3 (Different training match sets should yield non-minimal dissimilar-
ity). This is somewhat of an inverse of Property 2. Whenever two model struc-
tures differ enough that the training data of at least one of the local models
changes, the two model structures should not be considered maximally similar:

(mk(ψ1k;X))K1
k=1 �= (mk(ψ2k;X))K2

k=1 ⇔ d(M1,M2) > 0 (6)

Property 4 (Sensible behaviour even if conditions do not overlap). Even if two
conditions (or sets of conditions) do not overlap, they can still be more or less
similar to each other from both a metaheuristics point of view and also from a
human user’s perspective. For example, a single condition (corresponding to a
set of rules of size one) should be seen as more similar to a set of conditions that
lies closer to it than to a set that lies further away—even if it does not overlap
with either of both sets. We therefore want the dissimilarity measure to be able
to sensibly differentiate between pairs of conditions even if these conditions do
not overlap. Since the concept of sensibility is rather vague, we deliberately do
not try to formalize this property.

4.2 Dissimilarity Measure

Before we define our dissimilarity measure formally, we try to provide some
intuition about it. The dissimilarity measure is ultimately meant to allow inves-
tigating the progress and behaviour of metaheuristics which optimize the model
structures of MRSL models. As previously mentioned we consider MRSLs with
interval-based conditions and hard binary matching (i. e. either a training data
point is matched or it is not). For these MRSLs, a finite data supervised learn-
ing setting effectively induces a form of quantization of the training data signal
when the model structure is changed: The model’s output for the training data
will only be different if at least one of the conditions is changed enough that at
least one of the local models is fitted on a different subset of the training data.
This gave us the idea of developing a measure similar to edit distances which are
often used in discrete spaces (e. g. in graphs [12]): We compute an upper bound
on the maximum number of training data prediction-changing edits required to
transform rules into each other. This can be seen as an edit operator-agnostic

2 We slightly abuse notation here and overload the matching function m to be able to
pass the training data input N × DX matrix X consisting of N vectors xn ∈ X to a
single condition m(ψ; ·) to get an N -vector, i. e. m(ψ;X) = (m(ψ;xn))

N
n=1 ∈ {0, 1}N .
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(and thus metaheuristic operator-agnostic) edit distance; we count an edit only
if it would change behaviour on the training data.

This can be defined formally using two measures at two levels: δX(·, ·) mea-
sures the dissimilarity between two particular rule conditions whereas dX(·, ·)
combines these condition-wise dissimilarities into a dissimilarity measure over
sets of conditions (i. e. over model structures). We start by explaining δX(·, ·)
which is parametrized with a given training set’s input data points X. As was
already explained above, we use interval-based conditions and a condition’s
m(ψ; ·) parameter vector ψ therefore induces a (DX -dimensional) interval [l, u].
In order to measure the dissimilarity between two such intervals, we count the
number of edits required to transform each of the bounds into the correspond-
ing bound of the other interval. At that, a single edit corresponds to moving
one bound so that one more (or one less) training data point is included in the
interval. We consider each dimension independently of the others (which is why
this is an upper bound on the worst-case edit distance) because computing opti-
mal sequences of edits is computationally infeasible. We can compute the edit
count by considering each training data point independently and counting which
interval bounds could traverse it. This traversal count can be formalized as (a
visualization of this for two two-dimensional intervals is given in Fig. 1):

δX(ψ1, ψ2) = δX([l1, u1], [l2, u2]) (7)

=
DX
∑

d=1

|{x ∈ X | x ∈ H(ψ1, ψ2), Lmin(d) ≤ xd ≤ Lmax(d)}| 1
DX (8)

+ |{x ∈ X | x ∈ H(ψ1, ψ2), Umin(d) ≤ xd ≤ Umax(d)}| 1
DX

where H(ψ1, ψ2) = Hull([l1, u1], [l2, u2]) is the convex hull (this arises naturally,
see Fig. 1) of the two intervals and

Lmin(d) = min(l1d, l2d), Lmax(d) = max(l1d, l2d), (9)
Umin(d) = min(u1d, u2d), Umax(d) = max(u1d, u2d). (10)

Equation (8) is a sum that iterates over all input space dimensions and for each
of them computes and sums the cardinality of two sets. The first set contains all
data points x ∈ X that lie in the interval’s convex hull and between the lower
of the two lower bounds of the two intervals in that dimension and the upper
of the two lower bounds of the two intervals in that dimension. The second set
analogously treats the intervals’ upper bounds. The traversal count counts each
x ∈ X multiple times since it computes each dimension independently of the
others which yields the aforementioned maximum number of traversals per data
point. We further take the DX th root of the set cardinalities in order to treat
each dimension independently and compute a per-dimension instead of a per-
volume value; without the DX th root, conditions that match more training data
points (i. e. larger intervals) would have a generally higher dissimilarity score
just due to their higher volume.

This dissimilarity measure fulfills at the conditon-level (i. e. for model struc-
tures of size K = 1) the properties that we introduced above: Symmetry
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(Property 1) is rather straightforward to show, Properties 2 and 3 follow directly
from how the measure considers training data points being matched and we
argue that Property 4 is fulfilled as well since the measure will continue to count
training data points between conditions even if they do not overlap.

Fig. 1. Condition-wise dissimilarity measurement for two two-dimensional interval-
based conditions. Top left: Data points as crosses, intervals as solid line rectangles (we
call the square interval on the left ψ1 and the non-square one on the right ψ2). Top
right: One data point x and the edit movements of the bounds that are relevant for
possible traversals of x marked. If ψ2’s y-axis upper bound is transformed into ψ1’s y-
axis upper bound first, then x is traversed when ψ2’s x-axis lower bound is transformed
into ψ1’s x-axis lower bound. If ψ2’s x-axis lower bound is transformed into ψ1’s x-axis
lower bound first, then x is traversed when ψ2’s y-axis upper bound is transformed
into ψ1’s y-axis upper bound. This yields two possible traversals for x. Bottom right:
All edit movements of this two-dimensional example. Bottom left: Data point crosses
replaced by their respective number of traversals; as can be seen, only data points in
the convex hull (dotted line) of the two intervals can ever be traversed and data points
within the intersection of the intervals are never traversed.

In order to compute the dissimilarity between two model structures M1 and
M2 (i. e. two sets of conditions), we compute the (mean) sum of minimum
distances, which is a known set-wise dissimilarity measure (cf. e. g. [10]):

dX(M1,M2) =
1
2

⎛

⎝

∑

ψ1∈M1

min
ψ2∈M2

δX(ψ1, ψ2) +
∑

ψ2∈M2

min
ψ1∈M1

δX(ψ1, ψ2)

⎞

⎠ (11)

Note that only taking one of the sums (instead of their mean) would not yield
a symmetric measure since minimizing dissimilarity may yield different results
depending on which set of conditions is minimized over. Further, there are other
options for combining the condition-wise dissimilarities into a set-wise dissimi-
larity; an overview of several is given by Eiter and Mannila [10].
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The properties given in Sect. 4.1 are fulfilled for dX(·, ·) as well, they carry
over naturally from δX(·, ·). As an aside, be aware that proving whether or not
d is a metric (it is not yet clear whether it fulfills the triangle equality—we
conjecture that it does not) is out of the scope of this paper.

Finally, it should be noted that computing dX(M1,M2) can be computa-
tionally expensive, especially if both M1 and M2 contain many rules. This is
due to having to compute δX(ψ1, ψ2) for all possible pairings of ψ1 ∈ M1 and
ψ2 ∈ M2 in order to compute the two summands in Eq. (11). At that, evaluating
δX(ψ1, ψ2) can in itself be expensive for higher dimensions and more training
data points.3 In many cases, this is not that much of a problem, though, since
the dissimilarity measure is meant mainly for post-hoc analysis and not for being
evaluated during the investigated algorithm’s runtimes.

5 Demonstration

To show the applicability of our dissimilarity measure, we apply it to the com-
parison of three different parametrizations each of DTs, RFs and XCSF.

5.1 Data-Generating Processes

We first generated a set of data-generating processes. Since the processes them-
selves are not relevant for the following demonstration of the dissimilarity mea-
sure, we will not go into detail here and refer the reader to our code [31]. We gen-
erated a range of learning tasks for dimensionalities DX ∈ {3, 5, 8}, rule counts
K ∈ {2, 4, 8, 10, 14, 18} and two minimum coverage rates κmin ∈ {0.75, 0.9}.
Sampling for these parameters produced a total of 132 learning tasks with an
average of 3.77 tasks per configuration (and correspondingly 7.54 tasks if pooling
over minimum coverage rates). From each learning task we generated training
and test data sets by uniformly sampling inputs from the respective input space
and based on those then sampling the random variable corresponding to out-
puts (see Eq. (3)). The number of training and test data points depended on the
learning task’s dimensionality: We generated 200 · 10DX /5 training data points
and ten times as many test data points for each task, this yielded 796, 2000 and
7962 training data points for the three dimensionalities considered.

5.2 Evaluation of Repeated Runs

Next, we performed a set of experiments for which we used the DT and RF
implementations provided by the Scikit-learn Python library [28] and the XCSF
implementation provided by Preen’s XCSF Python library [30]. We use three
3 For N = 768 training data points, our own (not at all optimized) code took around

0.0005 s per computation of δX (mean over all computations of dX with N = 768
performed for Fig. 2) and correspondingly around 0.2 s for computing dX for two
model structures of size 20. For N = 2000, we measured 0.002 s per δX computation
(and correspondingly 0.8 s for size 20 model structures).
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different parametrizations for each of the algorithm families by allowing a certain
range for the maximum number of rules in the final model: up to 50, up to 100
and up to 200 rules (and 20 times as many for RFs). Further, all three algorithms
are set to use constant models (for DTs and RFs this is already the default) and
XCSF is set to use interval-based conditions.

Fig. 2. Empirical cumulative distribution of d(·, M0) when pooling all the runs of
each algorithm (i. e. pool over repetitions and minimum coverage rate values) for each
combination of dimensionality DX (columns) and number of rules K (rows). Number
ranges in the legend show the respective variant’s range of allowed rule set sizes (in
case of RF, a fixed number of used DTs and a range of allowed sizes for each).

We performed hyperparameter optimization on each of the 132 generated
training data sets for each of the 9 algorithms used; we used the Optuna frame-
work [1] to do so. Due to this paper’s space constraints, we have to refer the
reader to our code [32] for the parameter ranges and configurations used.

For each of the nine algorithm variants listed above, we then performed
ten repetitions (ten consecutive random seeds) on each of the learning tasks
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Fig. 3. Empirical cumulative distribution of test MAE. See Fig. 2 for details.

yielding an overall number 132× 9× 10 = 11880 trials. Each final model is then
evaluated for its predictive performance (MAE) using the holdout test set which
was generated for the respective learning task. Further, we extract from each
final model the set of rules M in interval representation and compute d(M,M0),
its dissimilarity (see Eq. (11)) to the respective learning task’s data-generating
process’s model structure M0. It should be noted at this point that a DT creates
a set of non-overlapping rules that fully cover the input space, XCSF’s rules are
allowed to overlap, and an RF algorithm generates a fixed number d of DTs
which means that there are at any one point in input space d rules.

Figure 2 shows the empirical cumulative distributions of d(·,M0) when pool-
ing all the runs of each algorithm (i. e. pool over repetitions and minimum cover-
age rate values) for each combination of dimensionality DX (columns) and num-
ber of rules K (rows). In this figure, each graph in each diagram corresponds
to one of the nine algorithm variants. This figure first of all shows that XCSF
with a population size of 200 performs worse in terms of d(·,M0) than most of
the other algorithms in most cases. In fact it only outperforms RFs containing
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at least 20 DT for DX = 8 and K ≥ 4. Suprisingly, the three XCSF variants
are spaced roughly proportional to the their maximum population sizes; upon
closer investigation, this effect can be explained by the fact that the variants
with maximum population sizes 50 and 100 exhaust that maximum fully in all
cases and the variant with maximum population size 200 is only able to slightly
reduce the number of rules in some cases using the subsumption mechanism. The
DTs better performance is mainly due to creating models with an overall much
smaller number of rules (mean±std, rounded to one decimal, 10.3±4.9, 13.4±7.4
and 16.3±9.8 rules for the three DT variants) which means that there are much
fewer summands in Eq. (11). The RFs, on the other hand, perform worse than
the XCSF variants on a subset of the learning tasks because they have a larger
number of rules than XCSF (yielding more summands in Eq. (11)).

When comparing Fig. 2 which shows d(·,M0) with Fig. 3 which shows MAE
we can see that evaluating for MAE only separates the tree-based algorithms
from the XCSF variants while d(·,M0) provides more nuance. It is interesting
to note here that the RFs seem to perform better relative to the other algorithms
with respect to test MAE but not with respect to d(·,M0). One possible expla-
nation is the performance-interpretability tradeoff: RFs use more rules than DTs
and XCSF (worse interpretability) but at the same time the increase in param-
eters results in them being able to model the data better.

6 Related Work

This section discusses some more related work that has not yet been mentioned
in the preceding text.

In some sense the present work can be seen as being in the same spirit as
the work that Kovacs and Kerber did in the early 2000 s where they questioned
the common practice that performance of Learning Classifier Systems (LCSs,
which are a prominent member of the MRSL family), most notably XCS, was
measured using accuracy (or, more generally, error) alone [20,21]. They argued
that this does not fully capture the actual target one has in mind when thinking
about the performance of these systems.

To circumvent the weaknesses of only measuring predictive performance and
more directly assess progress of the metaheuristic, Kovacs defined several alter-
native measures [19,20] based on comparing the sets of rules to some form of
known optimal solution. However, Kovacs’s work was restricted to binary clas-
sification tasks with binary vector inputs and transfer to regression tasks does
not seem possible. That aside, the used notion of optimal rule sets was informed
by already observed behaviour of the systems to be investigated [20] whereas
we try hard to stay algorithm-agnostic with our approach. Another weakness of
Kovacs’s measures of closeness to the data-generating process is that they only
check how many of the rules in the optimal rule set the final rule set contains.
However, extracting optimal rules from a rule set that contains them is not solved
yet in general (there are merely some heuristics available, each with strengths
and weaknesses, that try to do that [25]). Other authors agree with us on that,
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e. g. Drugowitsch [9] writes in 2008 “[studies by Kovacs et al.] aimed at defining
the optimal set for limited classifier representations [but there] was still no gen-
eral definition available” and then continues to derive a probabilistic framework
for defining rule set fitness from first principles. However, that framework is, as
of now, computationally infeasible even for low input space dimensionalities.

Tan et al. look at different rule compaction approaches and in order to under-
stand their difference, they compute similarity scores of the rule sets that these
different approaches generate [39]. Their score is computed as the ratio of rules
preserved and is thus not symmetric (Property 1).

Heider et al. [16] investigate novelty search for discovering rules in an MRSL
algorithm called SupRB. In order to measure a candidate rule’s novelty (i. e. a
form of dissimilarity), they use the Hamming distance to compare its match set
to the matching vectors of its nearest neighbours. However, this measure assigns
to two rules that do not overlap a dissimilarity value that does not change with
spatial distance but only with the rules’ volumes (Property 4).

Setnes et al. [36] consider compacting models generated by fuzzy rule-based
systems. They define similarity between two rules using the fuzzy set-equivalent
to the rules’ match sets and therefore there is, again, no differentiation between
rule positions as soon as rules do not overlap anymore (Property 4).

Kharbat et al. [18] perform for binary classification with binary vector inputs
a form of rule set compaction based on clustering rules. They define rule similar-
ity using the Jaccard binary similarity coefficient which also shares the problem
of not differentiating between non-overlappying rules (Property 4).

[11] propose a dissimilarity measure between data sets which is based on
training DTs on the data sets and then computing a dissimilarity between the
resulting models. In order to compare two DTs, they compute a third DT (they
call this the greatest common refinement) which contains all the feature splits
from the two base DTs and allows to compare the DTs’ predictions region-by-
region. However, comparing predictions is not the target of our work.

Serpen and Sabhnani [35] compare two rule sets like the ones we consider
by computing their respective volumes as well as the volume of their overlap.
However, volume alone is too weak a signal to investigate MRSL metaheuristics;
in particular, this does not fulfill Property 4.

Earlier RSL literature explored heuristical detection of changes in data dis-
tributions. Some of these approaches (e. g. [22–24,29,40]) fit models to the data
repeatedly and then compare these models in order to detect changes in the
data distributions. However, since these approaches naturally assume the rate
of change is small, their dissimilarity measures are not suitable for models that
may be fundamentally different (e. g. Property 4). Aside from that, they handle
only classification tasks most of the time.

Edit distance (sometimes also called mutation distance) has been studied
for improving Genetic Programming algorithms; for example, Gustafson and
Vanneschi [13] give an overview of approaches and propose a crossover-based edit
distance measure. However, distances between trees are fundamentally different
from distances between sets of intervals that are allowed to overlap.
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Finally, while there have been proposed for metaheuristics many similarity
measures (cf. [4,6]) as well as diversity measures (e. g. [8]) that often also mea-
sure similarity, to our knowledge, none of the currently available ones consider
phenotypes that correspond to sets of intervals and even less so intervals that
correspond to the conditions of rules.

7 Future Work

The main segment of future work will be to use our proposed dissimilarity met-
ric to benchmark different variants of existing MRSL algorithms, analyse their
models and based on the findings develop for these systems new and better-
performing metaheuristic operators (or combinations thereof). Aside from that,
we conjecture that the measure is suited for a hyperparameter tuning regime:
Given an unknown learning task, one could capture one’s knowledge of and
beliefs about it (e. g. input space dimensionality, suspected number of rules that
can approximate the task well, distribution over condition volumes etc.) as a
set of helper tasks—a set of rule-set-based data-generating processes [27] with
matching properties. One could then minimize on the helper tasks an MRSL
algorithm’s hyperparameters with respect to the dissimilarity measure in order
to obtain a hyperparametrization for the unknown learning task.

Apart from measuring dissimilarity to a known data-generating process, the
measure may prove useful to be included within population-based MRSLs as a
measure of similarity between solutions (e. g. to build mechanisms that encourage
population diversity, increase exploration and reduce preliminary convergence).

We chose the sum of minimum distances in Eq. (11) for now for its simplicity
and the ease with which one can reason about it but intend to implement and
test Eiter and Mannila’s alternative, the link distance [10], as well.

As noted above, computing the dissimilarity measure can be expensive; how-
ever, large parts of that computation can be parallelized which should yield
significant speedups on now-typical hardware.

8 Conclusion

We proposed a way to measure dissimilarity between rule sets created by regres-
sion Metaheuristic Rule Set Learners (MRSLs). Dissimilarity between two rules
is defined as a lower bound on the maximum number of prediction-changing edits
required to transform one rule into the other; this is extended to sets of rules
using a well-known set distance measure. The measure tries to capture better the
preferences of a user using MRSL algorithms in scenarios where interpretability
is aimed at (i. e. a few well-placed rules are preferred over the highest possible
performance). Our dissimilarity measure provides an additional target for MRSL
development that allows to measure metaheuristic progress more directly than
would be possible using predictive error-based measures such as mean absolute
error. We expect that the presented tooling helps in overcoming the percieved
decline in research activity on MRLSs by allowing to better analyse the meta-
heuristic’s effects on model structure.
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Abstract. One of the training methods of Artificial Neural Networks
is Neuroevolution (NE) or the application of Evolutionary Optimization
on the architecture and weights of networks to fit the target behaviour.
In order to provide competitive results, three key concepts of the NE
methods require more attention, i.e., the crossover operator, the nich-
ing capacity and the incremental growth of the solutions’ complexity.
Here we study an appropriate implementation of the incremental growth
for an application of NE on Compositional Pattern Producing Networks
(CPPNs) that encode the morphologies of biohybrid actuators. The tar-
get for these actuators is to enable the efficient angular movement of a
drug-delivering catheter in order to reach difficult areas in the human
body. As a result, the methods presented here can be a part of a mod-
ular software pipeline that will enable the automatic design of Biohy-
brid Machines (BHMs) for a variety of applications. The proposed ini-
tialization with minimal complexity of these networks resulted in faster
computation for the predefined computational budget in terms of num-
ber of generations, notwithstanding that the emerged champions have
achieved similar fitness values with the ones that emerged from the base-
line method. Here, fitness was defined as the maximum deflection of the
biohybrid actuator from its initial position after 10 s of simulated time on
an open-source physics simulator. Since, the implementation of niching
was already employed in the existing baseline version of the methodology,
future work will focus on the application of crossover operators.

Keywords: Biohybrid machines · Compositional Pattern Producing
Networks · optimization · evolutionary algorithms · machine learning

1 Introduction

Machine learning and, particularly, Artificial Neural Networks (ANNs) have
become an increasingly prominent method for building accurate and efficient
models with minimal required effort and background knowledge of the under
study system. The widespread acceptance of ANNs is attributed to well estab-
lished computational methods of training these networks, i.e., backpropagation,
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alongside other factors, such as big data availability. Another noteworthy and
interesting training method of ANNs is Neuroevolution (NE), which proved to
produce equally robust models [4].

NE is referring to the methodology of applying principles of Evolutionary
Algorithms (EAs) to the process of training and optimizing ANNs [14]. The
inspiration behind this technique was drawn from natural evolution, in order to
realize a bio-inspired method of optimization. Populations of possible solutions
or network instances (i.e. network architectures and connection weights) are
produced as the result of simulated evolution and tested against a predefined
fitness function. The fittest solutions are selected to mutate and reproduce, in
order to provide more possible solutions that are then injected in the following
generations, and so forth, until the computational budget is spent or a target
efficiency is reached.

The implementation of NE can be employed in the evolution of different
kinds of networks, like Compositional Pattern Producing Networks (CPPNs)
[13]. Since CPPNs are formalized in a similar way as ANNs, there is no need for
extensive changes in well-established methodologies applied on the latter, while
favourable results are expected. The main difference between the two types of
networks is the activation functions of their nodes; whereas, CPPNs are not
restricted in any way around this area, ANNs are mainly employing monotonic
functions. As a result, CPPNs are better suited for applications that require the
production of complex patterns and structures [3].

Here, the use of CPPNs is studied as a tool for the primary discovery of mor-
phologies of biohybrid machines (BHMs), in a similar way as previous works that
delivered promising results [1,2,7]. By adopting the open source code developed
previously [7], we aim to empower the integration of advanced algorithms dur-
ing the initial stages of the BHM development, helping identify crude designs
of efficient morphologies. The primary objective of our project is to establish
a BHM design process and employ this framework to pioneer the development
of a ground-breaking medical device, namely a biohybrid catheter capable of
delivering pharmaceuticals to challenging to reach areas of the human physiol-
ogy. In specific, the main goal of the developed software module is to produce
BHM actuators that will facilitate robust angular movement of a catheter in the
labyrinth-like environment of the circulatory system of humans.

Some NE algorithms, i.e., NeuroEvolution of Augmenting Topologies
(NEAT) [15], have been proved to be more efficient than others, because of three
critical factors described in the following. These methodologies (i) employ means
that enable crossover during evolution without complicated topology analysis,
(ii) include niching capacity that is able to protect innovative individuals from
premature exclusion and (iii) encourage the incremental growth of complexity in
solutions, on account of the initial populations being structures of minimal com-
plexity. Reviewing the algorithmic approach implemented in [7], we could locate
a variant method for niching, but there were no provisions for the other two
characteristic factors. While the crossover factor was not included intentionally
for simplicity reasons based on the authors’ reasoning, we could not pinpoint
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the motivation behind initialization of population with networks that were not
of minimal complexity.

As a result, this work takes into consideration the initialization of the pop-
ulations with minimal structure networks and compares the outputs with the
method followed by the original work [7]. To test the appropriateness of starting
at minimal dimensions and, as a result, allowing incremental growth of com-
plexity, the open source code was altered towards including that characteristic.
Moreover, a comparative analysis of the champions discovered was performed,
in order to justify previous findings [15], i.e., that this characteristic enables
higher effectiveness. The results show that starting at minimal dimension pro-
vides solution candidates with similar effectiveness in terms of fitness, however
a significant acceleration of the computation for the same target of total genera-
tions is achieved. This can be attributed to the lower complexity of the networks
being managed throughout the computational process.

The rest of the manuscript is organized as in the following. Section 2 provides
some background on NE and the aspects that render it a suitable surrogate of
other training methods, along with basic characteristics of CPPNs. Section 3
describes the methodology used in this study, i.e., details of the simulators,
algorithms and the proposed initialization method. Then, Sect. 4 presents the
results of the tests for both initialization methods and Sect. 5 concludes this
study.

2 Background

Some typical paradigms of NE methods [5,9] assumed a fixed structure for the
networks that were studied and their dimensionality was manually set before
evolution began. One hidden layer was included with neurons fully connected
with the input and output neurons, while the evolution was assessing the weights
of the connections. Because of the fixed topology of networks, crossover and
mutation operators were trivially applied to the weights of the connections and
optimization enabled the training of networks towards a desired behaviour.

Nevertheless, the weights of network connections are not a sole indicator of
how neural networks function. The structure that defines the number of nodes
and how they are connected, plays a significant role as well. Thus, enhanced NE
methods were proposed under the term Topology and Weight Evolving Artificial
Neural Networks (TWEANNs) employing evolution of both topologies and con-
nection weights [8,11]. These techniques take advantage of increasing structural
complexity through mutations. Although the addition of randomly formed nodes
may cause a decrease in fitness initially, the modulation of connection weights
during subsequent evolution steps can result in an ultimately higher fitness.

An innovative NE method, named NEAT [15] has motivated a large range of
variants relevant till this day [10] and managed to outperform previous meth-
ods, as it was more thoroughly designed, in order to exploit the fact that smaller
dimensionality networks can be optimized faster. It proved to be a superior
methodology, because, according to the authors [15], (i) it would include a
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crossover operator, while previous versions did not, (ii) it would safeguard the
innovation in network architecture with initial low fitness against premature
exclusion of these promising architectures and (iii) it would allow for incremen-
tal growth on the complexity of networks by initializing populations at minimal
complexities. The authors tested what each of these three aspects contributed
to the overall efficiency and concluded that all aspects and their combinations
were significant for providing even better efficiency.

In a similar setting, the conclusions in [16] argue that the robustness in
evolutionary methods is achieved by an initial population of minimal and non-
complicated genomes. As generations lapse these genomes undergo the intro-
duction of additional genes that serve as enablers to the expansion of the search
space. Therefore, novel dimensions are introduced and evolutionary exploration
is initially exploring a relatively small and manageable space, before moving to
additional dimensions that are included only if necessary, i.e., after the search
to the given search space dimensionality stagnates. This incremental process is
called complexification and is a technique used to partially tackle the curse of
dimensionality. Moreover, complexification is not limited to enhance the results
of NE methods, but, also, the efficiency of more typical evolutionary algorithms.
In our previous works on optimization of individuals with variable genome
lengths [17,18], the ability to optimize and complexify the genome were both
included in the methodology to produce fitter solutions, while the initial popu-
lations were of minimal genome lengths.

CPPNs are similar to ANNs, with the main difference being the relaxation of
rules on the activation functions of nodes of the former type of networks. Namely,
CPPNs are better suited for generating complex patterns and structures [3], since
the graph that represents them define associations between a variety of functions
(or activation functions) that are depicted as nodes (as depicted in an example
of CPPN in Fig. 1). Connections are characterised by weights that determine
the impact of each node output to the input of the next layer node. In cases
where multiple connections terminate to the same node, all weighted outputs of
the previous nodes are aggregated and used as inputs to the current node. An
additional difference, that is also essential for CPPNs’ functionality is that the
topology of the graph is not restricted in any way, thus, enabling higher levels
of representation liberty that achieves more complex patterns.

Another, more semantic difference between these networks is that while
ANNs emulate the functionality of human brain in learning, CPPNs simulate a
completely different biological process, namely, the developmental process [13].
Consequently, another attractive feature of CPPNs in applications of producing
patterns is that when they are queried on an absolute coordinate frame (i.e.
x, y in a two-dimensional space), there is no need for the specific definition of
local interactions within the representation. When using each specific point in
a Cartesian coordinate system as an input of CPPN, the outputs will formulate
a pattern without the phenotype (i.e. the CPPN) requiring local interactions
or temporal sequencing. The network will use the coordinates of all points in a
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Fig. 1. An example of a CPPN with two inputs and one output. Each node represents
a specific function, while connections are weighted and represent the sum of weighted
intakes of each function.

space as inputs and the output provided will precisely specify the entities and
characteristics of the specific location in space that was used as input every time.

3 Methods

To evaluate some primary morphologies of BHM catheter actuators with no
detailed investigation of all the possible components of the underlying mecha-
nisms and no biotechnology laboratory overheads, the in silico investigation is
preferred. Thus, a simulator that would be capable of mimicking behaviours of
truly heterogeneous materials is required. Thus, Voxelyze [6] was employed as
the test-bed of morphologies composed of different materials with diverse physi-
cal properties, such as Poisson’s ratio, stiffness, density and friction coefficients.
Moreover, Voxelyze has the capacity to simulate external forces along with vol-
umetric actuation of entities; a characteristic that enables the representation of
novel architectures like the ones found in BHMs, namely accommodating con-
tracting muscle cells. In Voxelyze each elementary volume, designated as a voxel,
can encode a different material and the distance between neighboring voxels is
modeled as Euler-Bernoulli beams. Moreover, additional environmental settings
can be defined to illustrate specific scenarios, such as gravitational acceleration,
collision rules and friction between the range of different voxels and a static
floor. Here, to follow the scenarios investigated in previous studies [7], two types
of voxels were outlined with the parameters depicted in Table 1. Specifically,
one type is an active voxel that can contract and provide the energy required
for movement; whereas, the other type is a passive voxel with similar physical
properties, but, no motion capacity included.

Voxelyze acts as a test-bed for the fitness function, namely, morphologies
of 8 × 7 × 7 voxels in a Cartesian grid are evaluated based on their simulated
behaviours. The morphologies of a maximum of 392 voxels are constructed in
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Table 1. Parameters of active and passive voxel.

Parameters Active voxel Passive voxel

Elastic modulus (MPa) 5 5
Density (kg/m3) 1,000,000 1,000,000
Poisson’s ratio 0.35 0.35
Coefficient of Thermal Expansion (1/◦C) 0.01 0
Coefficient of static friction 1 1
Coefficient of dynamic friction 0.5 0.5

Fig. 2. Boundaries in Voxelyze representing a fixed end and a free end of a catheter
actuator.

the virtual environment of Voxelyze, the simulation starts and after 1 s of ini-
tial simulation time, the morphology will be settled from possible gravitational
motion into the starting point for the evaluation. Following this, a further 10 s
are simulated, in order to record the final displacement of the whole morphol-
ogy and calculate the deflection achieved by the simulated actuator. Note here,
that in order to better represent the scenario of a catheter actuator, one end of
the morphology is fixed (the Y Z plane for x = 0, depicted as the green plane
in Fig. 2), whereas the other end is free to perform translational and rotational
motion based on the global behavior derived from all the individual active vox-
els’ activity (the Y Z plane for x = 8, depicted as the purple plane in Fig. 2).
The fitness for each candidate morphology is provided by the total deflection
at t = 10s of simulated time, i.e., the distance of the projection on any Y Z
plane of one of the top and outer voxels that are adjacent to the free end of the
morphology.

The indirect encoding concept that exploits CPPNs is utilized to symbolize
candidate morphologies in the evolutionary optimization process. To decode the
individuals, the Cartesian coordinates (x, y and z) are used as inputs for the
network (in addition with the distance from the center of the available space
d and a bias b) and the output represents the voxel type for the respective
combination of coordinates (as illustrated in Fig. 3). After querying the network
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Fig. 3. Decoding of the CPPN into a morphology by using coordinates in a three-
dimensional space as inputs and material types as outputs. The functionality of the
CPPN is illustrated in Fig. 1

with all the possible combinations on the aforementioned 8×7×7 grid, the types
of all the 392 voxels are provided, thus, the morphology is decoded into the 3D
space and can be inserted to Voxelyze to calculate its fitness. Note here, that
the CPPN output can denote active or passive voxels, but, also empty space in
order to permit more elaborate morphologies.

The nodes in the hidden layers of the CPPNs can represent any of the prede-
fined mathematical functions (i.e., sine, absolute value, negative absolute value,
square, negative square, square root and negative square root). The weight of
the connection between two nodes represent the multiplication factor of the out-
going result. When several connections terminate to the same node, then, the
addition of the weighted in-going results is used as input to the node’s activation
function.

For the evolutionary algorithm, the genotype of the individuals is in a form
of a CPPN, whereas the phenotype is in a form of a 3D morphology of the
BHM actuator, which is derived by querying the CPPN genotype. Following
the concept of the open source code [7] and for a clearer implementation, no
crossover operator was implemented, however, the Age-Fitness Pareto Opti-
mization (AFPO) algorithm [12] was utilized. Particularly, a population of 50
randomly generated CPPNs was produced through an intricate initialization
process. Afterwards, these 50 individuals were decoded into BHM morphologies
and evaluated through Voxelyze. Then, 50 additional individuals were created
through mutation operations over the initial population. These 50 additional
individuals with the inclusion of one more randomly generated individual were
evaluated and from the total of 101 available individuals the 50 fittest were
selected to comprise the next generation. This would complete one evolution
cycle and the new generation would go again through the mutation operator
and so forth, until 2000 generations were evaluated.

The mutation process for each individual involves the application of one type
out of six possible alternations in the CPPN genotype with a 0.167 probability.
The possible alternations are the addition of a node or connection, the modifi-
cation of a node or connection and the removal of a node or connection. As a
result, both the weights of the CPPN and its architecture can be modified to
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permit training and complexification (or even simplification) of the network. It
is noteworthy, that if the decoding of the CPPN genotype produces a morphol-
ogy phenotype that is already evaluated, the mutation is considered neutral and
the process is repeated until a non-neutral mutation is found, for a maximum of
1500 attempts.

The utilization of AFPO [12] provides a basic niching capacity. On the con-
dition that this multi-objective optimization is pursuing the dominance over
fitness and age for individuals to survive for consequent generations, premature
convergence is avoided. In specific, the individuals are selected based on their
higher fitness value and lower genotypic age, in a multi-objective Pareto front
optimization. As a result, individuals that have emerged latter in evolution can
coexist in the same population with older and fitter individuals, because they
are not dominated on the age dimension of the Pareto front.

The final aspect that needs to be clarified is the initialization process, as
it was determined one of the three key factors for NE effectiveness. The orig-
inal initialization process, used in [7] and denoted here as the baseline, begins
with building the minimal possible network, namely connecting input and out-
put nodes with edges of weight zero. Then, the mutation operator is executed
multiple times, i.e., 10 times for random node addition, 10 times for random con-
nection addition, 5 times for random connection removal, 100 times for random
node modification and 100 times for random connection weight modification.
After that, the network is pruned to remove any erroneous nodes and connec-
tions. The notable operations here are the 10 node additions, the 10 connection
additions and the pruning of the network, which can result to a network with a
maximum of 10 hidden layer nodes. However, there is no guarantee that this is
the minimal or, even, close to the minimal possible structure.

To study the potential of incremental growth in the NE of CPPNs, we
altered the aforementioned initialization process to build a population with lower
amount of hidden layer nodes. Specifically, we kept the same methodology as
described previously, however, we altered the amount of random node additions
during initialization from 10 to 2. This small number was enough to allow the
production of an initial population with acceptable diversity and a range of hid-
den layer nodes from zero to 2. This is obviously an initial population of simpler
network structures that will more probably permit complexification alongside
optimization.

4 Results

In the following, the comparison of the outputs for 10 runs with the same random
generator seeds are presented for both initialization processes. Execution times
of the two variants are presented in Fig. 4. It is apparent that the original ini-
tialization stems a significantly slower evaluation of the 2000 generations, when
compared with the minimal structure initialization proposed here (Wilcoxon
rank-sum test, p < 0.001). In specific, execution times of the original initializa-
tion have a mean of 19.71 h (samples = 10, minmax = (18.69, 20.88), variance
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Fig. 4. Execution times for the two variants of the population initialization.

= 0.35, skewness = 0.35, kurtosis= 0.0998), while for the proposed minimal ini-
tialization a mean of 13.37 h (samples = 10, minmax = (12.44, 14.93), variance
= 0.72, skewness = 1.19, kurtosis = −0.0620) was observed. So, the minimal
initialization economizes 6 h of computational time per run of 2000 generations.

This acceleration can be attributed to the bottleneck in the whole process
of finding non-neutral mutated networks. As mentioned previously, after each
mutation operation the phenotype (3D morphology) produced from the geno-
type (CPPN) was compared with the phenotype of the pre-mutated genotype.
If the new CPPN would produce the same morphology, a new mutation would
be attempted, unless 1500 unsuccessful attempts are executed. We realised that
this technique introduces significant overheads to the whole evolutionary com-
putation process. Moreover, it is evident that this procedure requires more com-
putational resources when assessing networks with higher numbers of nodes in
the hidden layer. On the contrary, when assessing less complex networks the
discovery of non-neutral mutations would happen faster, as realised from the
execution times in Fig. 4.

In order to compare the complexity of the networks within the initial popu-
lation for both variants of the initialization process, Fig. 5 illustrates the number
of nodes in the hidden layer. These data are collected for all 50 initial individuals
for each of the 10 runs of both variants (i.e. 500 individuals). As expected the
original source code initialization produces more complex networks, with a mean
of 7.734 nodes (variance = 2.436), whereas, the proposed minimal initialization
produces simplified networks with a mean of 1.9 nodes (variance = 0.110) in the
hidden layer.

Moreover, Fig. 6 depicts the distribution of the nodes in the networks within
the population after 2000 generations of evolutionary optimization. Note that
the data collected include all 50 final individuals for each of the 10 runs of both
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Fig. 5. Distributions of nodes of networks in the initial populations.

variants (i.e. 500 individuals). While the final populations of the baseline method
have higher mean (=8.49) and variance (=10.35) in terms of network nodes, the
proposed methodology illustrates sufficient diversity in the final populations as
well (mean= 3.45, variance= 6.80). Nonetheless, by comparing the means of the
initial and final populations, it can be seen that the complexification of the net-
works is more prominent in the minimal initialization process. Figure 7 outlines
the distribution of the complexity (or number of nodes) of the fittest individuals
at the end of the 2000 generations. It can be concluded here that champions are
found in the higher network complexity available in the populations for both vari-
ations. Moreover, the minimal initialization methodology manages to discover
champions encoded by networks with up to c. 10 hidden layer nodes, despite the
starting point of only 2 nodes.

To investigate the impact of incremental growth that clearly manifested in
the aforementioned, Table 2 describes the fitness of the champions (i.e., fittest
individuals) after 2000 generations for both variants. Each line illustrates the
fitness for both runs with the same random generator seed. The original ini-
tialization method is producing fitter champions in half of the runs (samples
= 10, minmax = (0.253, 0.433), mean = 0.346, variance = 0.00345, skewness
= −0.115, kurtosis = −0.8651). On the other hand, the minimum complexity
initialization is not falling far behind and, despite the minimal networks present
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Fig. 6. Distributions of nodes of networks in the final populations.

Fig. 7. Distributions of nodes of networks of the champions in the final populations.

in the first populations, it manages to produce comparable champions (samples
= 10, minmax = (0.176, 0.469), mean = 0.333, variance = 0.00679, skewness
= −0.275, kurtosis = −0.2162). Moreover, comparing the distributions of the
fitness of both sets of champions, we can not reject the null hypothesis that the
two sets of fitnesses are drawn from the same distribution (Wilcoxon rank-sum
test, p = 0.879). Thus, no advantage is apparent for starting from a minimal or
complex population, other than the acceleration in computations.

To demonstrate the incremental growth of network complexities throughout
evolution, the range of the amount of nodes for whole populations, the median
and the champions are provided for both variations in runs with seeds 52 and
58 (the fittest champions of both variations) in Figs. 8 and 9 respectively. For
illustration reasons, the morphology of the highest performing champion of all
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Table 2. Fitness of the champions after 2000 generations for both initialization pro-
cedures (higher is better and indicated by bold fonts).

Random seed Original init. Minimum init.

50 0.382 0.352
51 0.253 0.255
52 0.328 0.469
53 0.266 0.417
54 0.325 0.176
55 0.419 0.293
56 0.341 0.375
57 0.375 0.344
58 0.433 0.303
59 0.337 0.349

Fig. 8. Evolution of CPPN node numbers for runs with seed 52 for (a) the original
initialization process and (b) the proposed minimal initialization.

the runs (found in the minimal initialization variant with seed 52) is illustrated in
Fig. 10 (a) at its initial position and in Fig. 10 (b) at its final position (after 10 s
of simulation time). Moreover, the CPPN that was evolved from the algorithm
to encode this morphology is depicted in Fig. 11, where the input and output
nodes, activation functions and connection weights are defined.

5 Discussion

The implementation of CPPNs, as an indirect representation of individuals, in
evolutionary optimization has proved to be quite efficient. However, the initial-
ization of a previously published work did not follow the incremental growth con-
cept that is of paramount importance to the efficiency of NE methods. To prove
the effects of starting at minimal complexity and, thus, allowing incremental
growth through evolution (or complexification) along optimization, we altered
the initialization methodology to apply this concept. The software framework
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Fig. 9. Evolution of CPPN node numbers for runs with seed 58 for (a) the original
initialization process and (b) the proposed minimal initialization.

Fig. 10. The highest performing champion of this study simulated in the Voxelyze
environment at its (a) initial and (b) final position.

was an application of NE optimization on the first module of a design pipeline
for a BHM catheter actuator.

The results show that there is no significant advantage in the fitness of the
emerging champions for the populations that started from higher complexity for
the baseline implementation. On the contrary, the methodology that employed
minimal initialization performed at the same degree of efficiency, maintained
high diversity in the final populations and required less computational resources
to reach the same degree of efficiency. As a result, aspects of future work will be
the comparison of the two methods with the same computational budget, but
in terms of wall-time and not amount of generations. Moreover, the effect of the
crossover will be studied as it has been proved [15] that enhances the capabilities
of NE in well-established benchmarks.



288 M.-A. Tsompanas

0.42

-0.1

-0.1
x

-0.32
-0.11

-0.1

y

-1

z

-0.1

0.1

-0.01

0.032

0.1

-0.1

d 1

0.1

1

Empty
space

Active or
passive

0.82

-0.1

square

abs

1
square

1

0.1

-0.1

1square

0.1

0.96
neg

square

1

0.1

neg
abs 1

neg
abs

1

sin
1

1

-0.032

neg
abs

-0.1

neg
abs

Inputs Outputs

Fig. 11. The CPPN structure that decodes into the morphology of the highest per-
forming champion of this study illustrated in Fig. 10
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Abstract. Landscape analysis aims to characterise optimisation prob-
lems based on their objective (or fitness) function landscape properties.
The problem search space is typically sampled, and various landscape
features are estimated based on the samples. One particularly salient
set of features is information content, which requires the samples to be
sequences of neighbouring solutions, such that the local relationships
between consecutive sample points are preserved. Generating such spa-
tially correlated samples that also provide good search space coverage is
challenging. It is therefore common to first obtain an unordered sample
with good search space coverage, and then apply an ordering algorithm
such as the nearest neighbour to minimise the distance between consec-
utive points in the sample. However, the nearest neighbour algorithm
becomes computationally prohibitive in higher dimensions, thus there
is a need for more efficient alternatives. In this study, Hilbert space-
filling curves are proposed as a method to efficiently obtain high-quality
ordered samples. Hilbert curves are a special case of fractal curves, and
guarantee uniform coverage of a bounded search space while providing a
spatially correlated sample. We study the effectiveness of Hilbert curves
as samplers, and discover that they are capable of extracting salient fea-
tures at a fraction of the computational cost compared to Latin hyper-
cube sampling with post-factum ordering. Further, we investigate the use
of Hilbert curves as an ordering strategy, and find that they order the
sample significantly faster than the nearest neighbour ordering, without
sacrificing the saliency of the extracted features.

Keywords: Fitness landscape analysis · sampling · Hilbert curve

1 Introduction

Search landscape analysis has established itself as a useful approach for under-
standing complex optimisation problems and analysing evolutionary algorithm
behaviour [18]. Many landscape analysis techniques have been developed over
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the years, with the most widely used techniques including fitness distance cor-
relation [11], local optima networks [26], and exploratory landscape analysis
(ELA) [24]. When landscape analysis produces numeric outputs, the resulting
feature vectors can be used as abstract representations of problem instances,
where instances with similar feature vectors are assumed to fall into similar
problem classes. If these feature vectors effectively capture the important char-
acteristics of problems, they can be used as the feature component for automated
algorithm design (AAD) – specifically, automated algorithm configuration and
selection. A number of recent studies have achieved different aspects of AAD
using landscape analysis in specific contexts [2,13,14,16,17,32].

Landscape analysis approaches differ in terms of what they measure or pre-
dict (e.g. ruggedness, modality, presence of funnels, and so on), and also on what
they produce (e.g. numerical results or a visualisation of a phenomenon) [21].
They can also be distinguished based on the scale of the analysis [27] – a global
approach attempts to characterise the features of the search space as a whole,
while a local approach will consider the features of the landscape in the neigh-
bourhood of solutions. Fitness distance correlation [11] and local optima net-
works [26] are both examples of global approaches, whereas the average length
of an adaptive walk [37] is an example of a local landscape feature.

Many landscape analysis techniques that measure local features are based on
samples that are spatially correlated, i.e. sequences of neighbouring solutions, as
opposed to a sample of independent solutions from the whole search space. Tech-
niques that require such sequences of sampled solutions include correlation length
for measuring ruggedness [38], entropic profiles of ruggedness and smoothness
with respect to neutrality [35,36] – adapted as a single measure of ruggedness
for continuous spaces [19], approximations of gradient [20], information content
features [25], and measures of neutrality [34].

In the context of numerical optimisation, a wide range of landscape analysis
approaches have been implemented in the R package flacco [12], which has
also been re-implemented in Python (pflacco1). Over 300 landscape metrics
are included in flacco, organised into 17 sets, which include the original ELA
metrics [24] covering six of the feature sets, and the set of information content
features [25] consisting of five metrics. In a study of the subset of the “cheap”
feature sets in flacco, Renau et al. [29] found that the two most salient (in terms
of distinguishing between problems) and robust feature metrics were from the
information content and ELA meta-model feature sets. Unlike the other feature
sets in flacco, the information content metrics require spatially correlated sam-
ples. The saliency of the information content feature metrics and the additional
requirement of neighbourhood ordering is the motivation for this study.

To date, the two main strategies proposed for generating spatially correlated
samples in continuous search spaces are random walks [22] and post-factum
ordering of global samples [25]. Desirable properties of a sampling strategy for
estimating local features are that the solutions provide good coverage of the
search space [15], successive points are positioned close to each other (compared

1 https://pypi.org/project/pflacco/.

https://pypi.org/project/pflacco/
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to other solutions in the sample) to capture landscape changes in the neighbour-
hood, and that the process has low computational expense. The most commonly
used approaches to neighbourhood sampling for numerical optimisation are uni-
form random sampling or Latin hypercube sampling (LHS) [28], followed by
either random or nearest-neighbour ordering. These are the approaches imple-
mented in flacco and pflacco.

In this paper, we investigate the use of Hilbert curves [10] as a new sam-
pling strategy. Hilbert curves are fractal space-filling curves with two desirable
properties: (1) they guarantee uniform search space coverage, and (2) neighbour-
ing points on the curve are located close to one another. We show that Hilbert
curves are comparable to ordered LHS in terms of the saliency of the extracted
features, but are significantly cheaper to compute. Additionally, we show that a
Hilbert curve can be used to spatially order an LHS sample, resulting in signif-
icant computational gains compared to the commonly used nearest neighbour
ordering method.

2 Hilbert Curves

A space-filling curve is a surjective continuous function from the unit interval
[0, 1] to a unit hypercube [0, 1]d. Surjectivity implies that every point in the
hypercube maps to at least one point in the interval, and continuity ensures
that no areas in [0, 1]d are missed [5]. Space-filling curves are a special case of
fractal curves, and are guaranteed to fill a continuous space in the limit.

Our interest in space-filling curves derives from two useful properties that
they offer, namely (1) uniform coverage of a bounded d-dimensional space, and
(2) the ability to provide a unique mapping between points in the d-dimensional
space and points on the 1-dimensional curve [31]. Specifically, this study consid-
ers the Hilbert space-filling curve, first proposed by D. Hilbert in 1891 [10]. The
Hilbert curve is defined recursively, and can be constructed through a limit pro-
cess of iteration. Each successive iteration creates an approximation of the true
Hilbert curve that passes through more points in the d-dimensional unit hyper-
cube. For practical purposes, the number of iterations is chosen to be finite, and
is further referred to as the order of the Hilbert curve.

Consider the construction of a Hilbert curve in 2D. For the first iteration, a
line on the closed interval [0, 1] and a square [0, 1]2 are taken. Four equidistant
points are selected on the line, where the starting point is at 0 and the end
point is at 1. The square is subdivided into four equal parts. Intervals of the line
connecting each pair of points are then mapped onto the square such that the
intervals adjacent on the line share a common edge on the square. This results
in a simple U-shape, illustrated in Fig. 1(a). At each subsequent iteration, the
curve from the previous iteration is divided into four equal parts. Each part is
then shrunk by a factor of 1/2, rotated, and repositioned such that the four
curves connect at their endpoints in a U-shaped or reverse U-shaped pattern.
Figure 1 shows 2D Hilbert curves of order 1 to 3.

The Hilbert curve is bijective, i.e. the mapping between points on the curve
and a d-dimensional space is reversible. Bijectivity of space-filling curves has been
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Fig. 1. Visualisation of a 2D Hilbert curve of order p = {1, 2, 3}.

useful in organising multi-dimensional data storage and retrieval systems, since
it allows a linear index to the data to be constructed and searched [1,30]. Ideally,
closely related data in the d-dimensional space would also be close together on
the 1-dimensional curve. Faloutsos and Roseman [6] investigated the clustering
properties of Hilbert curves compared to other space-filling curves, and found
Hilbert curves to be superior when measuring the average distance (along the
curve) to the nearest neighbours of a given point. This finding suggests that
Hilbert curves may serve as a viable alternative to nearest neighbour sorting of
a sample.

For the Hilbert curve implementation in this study, we use the hilbertcurve
Python package (https://pypi.org/project/hilbertcurve/), based on the algo-
rithm presented by Skilling [33]. All code used for the experiments conducted in
this study can be found at https://github.com/jpienaar-tuks/MIT807.

3 Hilbert Curves as Samplers

Given a Hilbert curve of a particular order, the vertices can be used as a basis
for a sample in the associated multidimensional space. Table 1 shows how the
number of vertices grows with the order of the curve and the dimension of the
search space. When sampling for ELA, it is common practice to use sample sizes
of 102 × d to 103 × d [25]. Table 1 highlights in bold the order and dimension
combinations where the number of vertices exceeds a common sample budget of
103 ×d. To remain within a sampling budget, we sub-sample randomly from the
set of vertices on a Hilbert curve with a minimum order of 3.

3.1 Stochastic Sampling Using Hilbert Curves

Since the generation of a Hilbert curve is deterministic, the following two strate-
gies were evaluated to introduce stochasticity:

– Selecting random points along the edges of the Hilbert curve, illustrated in
Fig. 2(a): Given any two sequential vertices, Pi and Pi+1, a new point is
selected Pj = rPi + (1 − r)Pi+1, where r ∼ U(0, 1).

https://pypi.org/project/hilbertcurve/
https://github.com/jpienaar-tuks/MIT807
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– Selecting points near vertices of the curve, illustrated in Fig. 2(b): For each
vertex Pi, generate a new point drawn from a normal distribution centred
on Pi with a standard deviation σ (constrained by the bounds of the search
space). The step size of the Hilbert curve before scaling is 1, so σ was empir-
ically chosen to be 0.3 to prevent excessive potential overlap with points
generated by neighbouring vertices.

Neighbouring vertices on a Hilbert curve are equidistant, so the sequence of
vertices has a constant step size. The two randomisation techniques introduce
variation into the step size. Figure 3 shows that the randomisation near vertices
strategy produces step sizes with a more normal distribution. For all further
experiments we have used the randomisation around vertices strategy.

3.2 Search Space Coverage

We now investigate the extent to which Hilbert curve sampling covers the
search space compared to competing strategies such as Latin hypercube sam-
pling (LHS). To investigate the search space coverage, the following three

Table 1. Exponential growth in Hilbert curve vertices with dimension and curve order.
Values that exceed a value of 103 × d are formatted in bold.

Dimension

2 3 5 10 20

Order 1 4 8 32 1024 1.05× 106

2 16 64 1 024 1.05× 106 1.10× 1012

3 64 512 32 768 1.07× 109 1.15× 1018

4 256 4 096 1.05× 106 1.10× 1012 1.21× 1024

5 1 024 32 768 3.36× 107 1.13× 1015 1.27× 1030

6 4 096 262 144 1.07× 109 1.15× 1018 1.33× 1036

Budget (103 × d) 2 000 3 000 5 000 10 000 20 000

Fig. 2. Illustration in 2D of adding stochasticity to a Hilbert curve
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Fig. 3. Effect of randomisation strategy on step size. Sample was generated from an
8th order Hilbert curve in 2D space resulting in a total of 65 535 points. The x-axis
represents the distance between two consecutive points.

strategies were used to draw samples from search space [−5, 5]d of sizes n ∈
{100d, 316d, 1000d} for dimensions d ∈ {5, 10, 20, 30}:

1. Hilbert curve: randomly select the required number of points from the curve
(without replacement).

2. LHS: generate the required sample using a Latin hypercube design [23].
3. Random walk: use a simple random walk [22] with maximum step size of 1

to generate the sample.

For each sample size and dimension combination, a random uniform sample was
drawn as a reference set. Thirty independent runs of each sampling strategy were
implemented, and for each run, the Hausdorff distance [9] to the reference set was
calculated. The Hausdorff distance as a measure of search space coverage was first
proposed and investigated by Lang and Engelbrecht [15], and their methodology
is followed in this study. Statistical significance tests were performed for each
sampling strategy as proposed by Derrac et al. [3] and described by Lang and
Engelbrecht [15].

Table 2 shows that the Hilbert curve and LHS have similar Hausdorff dis-
tances, implying a similar coverage of the search space, whereas the random
walk provides the worst coverage. Lower values were achieved in most cases by
the Hilbert curve sampler, confirmed by the statistical significance tests pre-
sented in Table 3. The null hypothesis is that there is no significant difference
between the Hausdorff distances for each of the sampling strategies. Results show
that the null hypothesis can be rejected, given the p-values and a significance
level of 0.05. We therefore conclude that the Hilbert curve sampler achieves a
more uniform search space coverage than LHS.
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Table 2. Average Hausdorff distances between samplers and a uniform random sample
for different sample sizes and dimensions d. Best and worst distances are highlighted
in cyan and red, respectively.

D Sample size Hilbert curve Latin hypercube Random walk

5 100 × d 500 2.0642 (±0.0300) 2.0866 (±0.0242) 3.9168 (±0.2967)

5 316 × d 1580 1.6065 (±0.0134) 1.6218 (±0.0121) 3.9127 (±0.2731)

5 1000 × d 5000 1.2754 (±0.0097) 1.2690 (±0.0044) 3.8658 (±0.2952)

10 100 × d 1000 4.9716 (±0.0295) 5.0651 (±0.0300) 7.6117 (±0.3323)

10 316 × d 3160 4.3345 (±0.0108) 4.4297 (±0.0143) 7.5796 (±0.3217)

10 1000 × d 10000 3.8045 (±0.0064) 3.8781 (±0.0055) 7.5310 (±0.3035)

20 100 × d 2000 9.6778 (±0.0265) 9.9578 (±0.0254) 12.5364 (±0.2787)

20 316 × d 6320 8.9312 (±0.0121) 9.2413 (±0.0087) 12.5213 (±0.2007)

20 1000 × d 20000 8.2919 (±0.0082) 8.5967 (±0.0051) 12.5013 (±0.2640)

30 100 × d 3000 13.5314 (±0.0263) 13.8606 (±0.0205) 16.3195 (±0.2825)

30 316 × d 9480 12.7478 (±0.0177) 13.1485 (±0.0065) 16.2629 (±0.2186)

30 1000 × d 30000 12.0615 (±0.0123) 12.4913 (±0.0057) 16.3055 (±0.2677)

Table 3. Ranks achieved by each of the sampling strategies with the p-value of the
significance tests. Best (lowest) values highlighted in bold.

Sampler Friedman Friedman-aligned Quade

Hilbert curve 1.09 289.23 1.04

Latin Hypercube 1.91 431.78 1.96

Random walk 3.00 900.50 3.00

p-value <1e-5 <1e-5 <1e-5

3.3 Computational Cost

We now compare the cost of the Hilbert curve as a sampler to alternative sam-
pling strategies. Generating the Hilbert curve is not computationally cheap, but
we expect that this upfront investment will be justified if the sample is subse-
quently used to calculate landscape metrics that require ordered samples.

To evaluate the computational cost, a performance counter2 was used to keep
track of the time to a) generate the sample and b) calculate information content
metrics for both the Hilbert curve and LHS. Using the pflacco library, the infor-
mation content (ic) metrics were calculated for each of the 24 BBOB functions
defined as part of the COCO platform [7]. This was done for each dimension
and sample size listed in Table 2. Note that for LHS to be used for information
content metrics, the sample needs to be ordered. We evaluated both the ran-
dom ordering and the nearest neighbour ordering strategies. Also note that the

2 Python’s time.perf counter.
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information content function provided by the pflacco library was modified
to accept none as an ordering argument to use the pre-ordered Hilbert curve
samples.

Figure 4(a) shows that the Hilbert curve sampler is slower than LHS to gener-
ate a sample of the same size. While the computational cost of the Hilbert curve
sampler seems to grow at least quadratically, it remains acceptable even for large
sample sizes (just over 1.2 s to generate a sample of 30 000 points). Figure 4(b)
shows that for the information content metrics, Hilbert curve sampling strategy
is substantially faster (especially at larger sample sizes) than LHS with nearest
neighbour ordering.

3.4 Predictive Performance of Hilbert Curve Samples

We have shown that Hilbert curve sampling provides an efficient method for
generating spatially correlated sequences of solutions from continuous search
spaces, and that these sequences provide good coverage of the search space. We
now investigate whether the landscape features extracted from these samples
provide good predictive performance for algorithm selection.

Following the approach by Muñoz et al. [25], we use the task of predicting
the class of each BBOB function as a proxy for algorithm selection: if the land-
scape features of function instances can be used to discriminate between prob-
lem classes, then they should also be effective predictor variables for algorithm
selection. Five target classes corresponding to the BBOB function groupings as
outlined in [8] were used, namely (1) separable functions: {f1 . . . f5}, (2) func-
tions with low or moderate conditioning: {f6 . . . f9}, (3) unimodal functions and
functions with high conditioning: {f10 . . . f14}, (4) multimodal functions with

Fig. 4. Comparison of time (in seconds) to generate samples and calculate informa-
tion content metrics for Hilbert curve sampling and LHS using nearest neighbour and
random ordering. Trendlines are polynomials of order 2.
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adequate global structure: {f15 . . . f19}, (5) functions with low or moderate con-
ditioning: {f20 . . . f24}.

The experimental setup is as follows: 24 BBOB functions in dimensions
d ∈ {2, 5, 10, 20} are used, with an evaluation budget of 1 000 × d. Each BBOB
function has 15 predefined instances, and three random instances per function
are held out as testing data3. For each combination of instance and dimension,
1 000d samples are drawn from [−5, 5]d, using three sampling strategies: Hilbert
curve (HC), Latin hypercube (LH) and random walk (RW). Four feature sets
from the pflacco package were selected that did not require further function
evaluations, namely: dispersion (disp), ELA y-distribution (ela distr), ELA
meta model (ela meta), and information content (ic).

Table 4 gives the testing accuracy of a decision tree, k-nearest neighbour,
and random forest classifier for the task of predicting the function class from the
landscape metrics. The scikit-learn version 1.1.3 default settings were used
in all instances. Results show that a random forest model was the most effective
at predicting the function class across all sampling strategies. Overall, the RW
strategy emerges as the least competitive performer, while the Hilbert curve and
Latin hypercube sampling strategies were comparable for all three classifiers.

Table 5 gives the performance for each of the three sampling strategies based
on the four feature sets separately. An observable trend is that both the ela meta
and ic features are very salient features and allow the classifiers to accurately
discriminate between the function classes, confirming results of Renau et al. [29].

4 Hilbert Curves as an Ordering Tool

In this section, we investigate the use of Hilbert curves as an ordering aid for
samples generated from other sampling methodologies. A Hilbert curve of order p
maps each point on a 1-dimensional curve [0, . . . , 2dp] to a point in [0, . . . , 2p−1]d

and vice versa, as illustrated earlier in Fig. 1. The mapping is bijective, and allows
for an efficient mapping from a point in the d-dimensional space to a point on
the 1-dimensional Hilbert curve.

This d-D to 1-D mapping can be exploited, given that a Latin hypercube
sample of n points divides each axis into n intervals. By selecting the appropriate
curve order p, i.e. p = �log2(n + 1)�, we can ensure that the resulting Hilbert
curve is of sufficient length to accurately map all LHS points to points on the
Hilbert curve. The ordering of the points on the Hilbert curve can then be used
to provide a spatially correlated ordering of the Latin hypercube sample.

3 This leave-one-instance out approach is used instead of the leave-one-problem out
approach due to the small number of classes.
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Table 4. Accuracy at predicting the function class using four feature sets based on
samples from the three different sampling strategies

Decision Tree k-Nearest Neighbour Random Forest

HC 93.50%(±5.62%) 70.15%(±7.41%) 97.38%(±1.64%)

LH 93.87%(±5.01%) 72.31%(±7.34%) 97.64%(±2.36%)

RW 88.78%(±7.06%) 63.97%(±6.87%) 93.60%(±3.93%)

Table 5. Testing accuracy for predicting the function class for different classifiers and
different sampling strategies: Hilbert curve (HC), Latin hypercube (LH), random walk
(RW), under different dimensions (D).

Decision tree k-Nearest Neighbour Random Forest

Features D HC LH RW HC LH RW HC LH RW

2 66.67% 52.78% 36.11% 70.83% 72.22% 34.72% 72.22% 69.44% 40.28%

5 61.11% 55.56% 37.50% 61.11% 56.94% 36.11% 54.17% 69.44% 25.00%

10 55.56% 55.56% 25.00% 52.78% 65.28% 20.83% 66.67% 63.89% 26.39%
disp

20 58.33% 65.28% 34.72% 65.28% 63.89% 31.94% 63.89% 66.67% 22.22%

2 58.33% 48.61% 34.72% 52.78% 55.56% 33.33% 51.39% 51.39% 31.94%

5 66.67% 66.67% 33.33% 58.33% 62.50% 30.56% 63.89% 68.06% 40.28%

10 73.61% 79.17% 40.28% 70.83% 68.06% 45.83% 77.78% 75.00% 36.11%
ela distr

20 79.17% 75.00% 41.67% 69.44% 63.89% 43.06% 76.39% 76.39% 43.06%

2 79.17% 79.17% 59.72% 62.50% 66.67% 48.61% 86.11% 81.94% 79.17%

5 83.33% 86.11% 83.33% 75.00% 79.17% 59.72% 87.50% 93.06% 84.72%

10 95.83% 90.28% 86.11% 76.39% 87.50% 52.78% 91.67% 94.44% 88.89%
ela meta

20 91.67% 88.89% 83.33% 81.94% 87.50% 50.00% 94.44% 91.67% 87.50%

2 90.28% 94.44% 81.94% 90.28% 88.89% 84.72% 90.28% 87.50% 87.50%

5 90.28% 90.28% 84.72% 84.72% 91.67% 86.11% 93.06% 93.06% 91.67%

10 87.50% 91.67% 91.67% 86.11% 93.06% 86.11% 91.67% 95.83% 94.44%
ic

20 88.89% 84.72% 94.44% 73.61% 91.67% 88.89% 86.11% 93.06% 94.44%

Given that the current best practice of using a greedy nearest neighbour
strategy to order LHS requires calculating at least half of the pairwise distance
matrix between all points in the sample, the Hilbert curve ordering strategy
has the potential to be significantly faster. Furthermore, the nearest neighbour
strategy tends to start with relatively short step sizes, which increase as the
number of unvisited points decrease. Hilbert curve ordering is likely to provide
more consistent step sizes.

4.1 Step Size Consistency

Figure 5 shows a visual comparison of the Hilbert curve and nearest neighbour
ordering strategies on a 2D Sphere function sample. The underlying sample X
for both strategies is identical, and was obtained using LHS. In the figures the
orderings produced by the Hilbert curve (HC) and the nearest neighbour (NN)



Hilbert Curves for Efficient Neighbourhood Sampling 303

approach are depicted as a red line. Colour scale is used to indicate the fitness
values of the sampled points. It is evident from Fig. 5 that the maximum step
size is smaller for HC than for NN. The step size distributions shown in Figs. 5(c)
and 5(d) confirm that the maximum step size of HC is lower, and show a greater
skew in the step size distribution for NN.

Fig. 5. Visualisation of sample ordering using Hilbert curve (left) and nearest neigh-
bour (right) ordering strategies.

4.2 Computational Cost

To evaluate the computational cost of the Hilbert curve ordering, we compare
it to the nearest neighbour and random (RND) ordering strategies applied
to a sample generated using LHS. The Latin hypercube samples of sizes
n ∈ {100d, 316d, 1000d} were drawn from search space [−5, 5]d for dimensions
d ∈ {5, 10, 20, 30}. For each configuration, 24 independent samples were drawn,
and timed with a performance counter (Python’s time.perf counter).
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Figure 6 shows the performance comparison between the various ordering
strategies. Hilbert curve sampling as discussed in Sect. 3 is included for com-
pleteness, as it does not require additional ordering. From Fig. 6, NN ordering
performs the worst, especially for large sample sizes. Furthermore, RND sort-
ing and Hilbert curve sampling are equally fast (red and blue curves overlap).
Hilbert curve ordering produces an intermediate result, slightly slower than ran-
dom ordering, but significantly faster than the NN ordering. Since the underlying
sample is generated by LHS, Hilbert curve ordering retains all the benefits of
LHS for ELA features insensitive to order (such as ela meta, or disp).

Fig. 6. Comparison of time (in seconds) to order the samples generated by the Latin
hypercube sampling strategy using Hilbert curve, nearest neighbour, and random order-
ing. Trendlines are polynomials of order 2.

4.3 Evaluation of Features Generated Using Hilbert Curve
Ordering

We now compare the information content features generated from a Latin hyper-
cube sample using the HC, NN, and RND ordering. Since the feature values are
evaluated rather than the computational cost, this experiment was restricted to
dimensions d ∈ {2, 5} and sample sizes n ∈ {100d, 1000d}. A single sample set
X was generated and evaluated on each of the BBOB functions to generate cor-
responding y = f(X) results. Information content metrics were then calculated
on these (X, y) pairs using each of the ordering strategies. This procedure was
repeated 30 times.

Figures 7 and 8 present initial partial information (M0) and maximum infor-
mation content (Hmax) landscape features based on the entropy of the sample.
We consider BBOB problems in 5D (problem indices listed on the x-axis), and
calculate feature values based on NN, RND, and HC ordering for n = 1000d.
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It is evident from Fig. 7 that the HC ordering produces values that lie between
RND and NN, but follow a pattern similar to that of NN. It is clear that MRND

0

converges to the same value regardless of the underlying function (confirming
the results of [25]). MNN

0 and MHC
0 , on the other hand, produce values that

allow for discrimination between functions. Since larger values for M0 indicate a
more rugged landscape (more changes in concavity over the length of the walk),
the HC ordering would on average indicate a more rugged landscape than the
NN ordering.

According to Fig. 8, HRND
max varies over a wider range than MRND

0 . However,
the HRND

max values still tend to cluster around the upper edge of the graph, closer
to the maximum value of 1. In comparison, HNN

max and HHC
max vary over a larger

part of the [0, 1] range. Larger values for Hmax indicate a larger variety of objects
in the landscape (pits, peaks, plateaus). Thus, HC ordering again indicates a
more rugged landscape than the NN ordering.

Fig. 7. M0 in 5D as calculated using nearest neighbour (NN), random (RND) and
Hilbert curve (HC) ordering methodologies (n = 1000d).

To evaluate the relative saliency of the features produced by the vari-
ous ordering strategies, permutation-based feature importance technique [4] is
employed. We train a random forest (RF) classifier using information content
features as input ({εs, εmax, ε0.5,Hmax and M0}, as defined in [25]), and the
function class as output (as defined in [25] and used in Sect. 3). Feature saliency
is gauged by randomly permuting each input feature in turn across the dataset,
and observing the corresponding reduction in RF accuracy. For this purpose, the
features are grouped by the ordering strategy, and a RF is trained on 2

3 of the
data, with the remaining 1

3 held out for testing.
After training, the base accuracy of the RF classifier is evaluated on the held

out data. The accuracy of the RF classifier is then re-evaluated as each feature
in the held-out dataset is randomly permuted in turn, and the difference to the
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Fig. 8. Hmax in 5D as calculated using nearest neighbour (NN), random (RND) and
Hilbert curve (HC) ordering methodologies (n = 1000d).

base accuracy is recorded. This procedure is repeated 10 times for each sampling
strategy. The results are shown in Table 6.

Table 6 shows that εs was the most salient feature across all sample orderings,
with the RF trained on the HC ordered features relying on εs more heavily than
the RF trained on the NN or RND ordered features. RND sample ordering made
the M0 feature near useless for the classifier, in line with the observations made
in Fig. 7. Conversely, RF trained on the NN ordering relied on M0 more than
RF trained on the HC ordered features. Overall, HC ordering yielded marginally
better RF performance compared to the NN and RND ordering approaches.

Table 6. Impact of permuting information content features on the accuracy of a ran-
dom forest (RF) classifier. Classification target was the function groupings.

Sampler LHS (HC) LHS (NN) LHS (RND)

RF base accuracy 98.44% (±0.39%) 98.25% (±0.37%) 97.44% (±0.54%)

εmax (ic.eps max) -8.17% (±2.22%) -8.46% (±1.98%) -14.36% (±2.76%)

ε0.5 (ic.eps ratio) -20.62% (±3.28%) -10.45% (±1.64%) -27.82% (±3.23%)

εs (ic.eps s) -52.40% (±2.47%) -47.34% (±1.69%) -39.27% (±2.56%)

Hmax (ic.h max) -8.56% (±0.87%) -6.14% (±0.65%) -15.08% (±1.76%)

M0 (ic.m0) -12.02% (±1.02%) -20.98% (±1.60%) -0.09% (±0.52%)
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5 Conclusion

This paper proposed the use of Hilbert space-filling curves in the context of opti-
misation problem landscape analysis for the purpose of (1) sampling the search
space in a spatially correlated manner that also guarantees uniform coverage,
and (2) spatially ordering samples generated using other sampling algorithms
such as the Latin hypercube. Experiments were conducted to evaluate the rel-
ative computational efficiency of the Hilbert curves, as well as the saliency of
the landscape features extracted using Hilbert curve sampling and Hilbert curve
ordering. In the context of sampling, Hilbert curves were significantly faster than
Latin hypercube sampling for the purpose of generating order-sensitive features
such as the information content metrics. Features extracted by the Hilbert curves
were informative, and allowed for successful discrimination between problem
classes. As an ordering tool, Hilbert curves performed significantly faster than
the commonly used nearest neighbour ordering, and also yielded salient land-
scape features. Thus, Hilbert curves present a viable computationally efficient
alternative to both Latin hypercube sampling, and nearest neighbour ordering
of a sample for the purpose of landscape analysis.
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Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.)
Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25147-5 7

13. Kostovska, A., Jankovic, A., Vermetten, D., Džeroski, S., Eftimov, T., Doerr, C.:
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LNCS, vol. 12270, pp. 139–153. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58115-2 10

29. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Expressiveness and robustness of land-
scape features. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO 2019, pp. 2048–2051. Association for Comput-
ing Machinery, New York (2019). https://doi.org/10.1145/3319619.3326913

30. Rivest, R.L.: Partial-match retrieval algorithms. SIAM J. Comput. 5(1), 19–50
(1976). https://doi.org/10.1137/0205003

31. Sagan, H.: Space-filling curves. Springer Science & Business Media (2012). https://
doi.org/10.1007/978-1-4612-0871-6

32. Sallam, K.M., Elsayed, S.M., Sarker, R.A., Essam, D.L.: Landscape-assisted
multi-operator differential evolution for solving constrained optimization prob-
lems. Expert Syst. Appl. 162, 113033 (2020). https://doi.org/10.1016/j.eswa.2019.
113033

33. Skilling, J.: Programming the Hilbert curve. In: Bayesian Inference and Maxi-
mum Entropy Methods in Science and Engineering. American Institute of Physics
Conference Series, vol. 707, pp. 381–387 (Apr 2004). https://doi.org/10.1063/1.
1751381

34. van Aardt, W.A., Bosman, A.S., Malan, K.M.: Characterising neutrality in neural
network error landscapes. In: 2017 IEEE Congress on Evolutionary Computation
(CEC), pp. 1374–1381 (2017). https://doi.org/10.1109/CEC.2017.7969464

35. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the
structure of landscapes. Evol. Comput. 8(1), 31–60 (2000). https://doi.org/10.
1162/106365600568095

36. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Smoothness, ruggedness and neutrality
of fitness landscapes: from theory to application. In: Advances in evolutionary
computing, pp. 3–44. Springer (2003). https://doi.org/10.1007/978-3-642-18965-
4 1

37. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjec-
tive combinatorial search space: MNK-landscapes with correlated objectives. Eur.
J. Oper. Res. 227(2), 331–342 (2013). https://doi.org/10.1016/j.ejor.2012.12.019

38. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biol. Cybern. 63(5), 325–336 (1990)

https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1007/978-3-642-27549-4_54
https://doi.org/10.1007/978-3-030-58115-2_10
https://doi.org/10.1007/978-3-030-58115-2_10
https://doi.org/10.1145/3319619.3326913
https://doi.org/10.1137/0205003
https://doi.org/10.1007/978-1-4612-0871-6
https://doi.org/10.1007/978-1-4612-0871-6
https://doi.org/10.1016/j.eswa.2019.113033
https://doi.org/10.1016/j.eswa.2019.113033
https://doi.org/10.1063/1.1751381
https://doi.org/10.1063/1.1751381
https://doi.org/10.1109/CEC.2017.7969464
https://doi.org/10.1162/106365600568095
https://doi.org/10.1162/106365600568095
https://doi.org/10.1007/978-3-642-18965-4_1
https://doi.org/10.1007/978-3-642-18965-4_1
https://doi.org/10.1016/j.ejor.2012.12.019


Predicting Algorithm Performance
in Constrained Multiobjective

Optimization: A Tough Nut to Crack

Andrejaana Andova1,2(B) , Jordan N. Cork1,2 , Aljoša Vodopija1,2 ,
Tea Tušar1,2 , and Bogdan Filipič1,2

1 Jožef Stefan Institute, Ljubljana, Slovenia
{andrejaana.andova,jordan.cork,aljosa.vodopija,tea.tusar,

bogdan.filipic}@ijs.si
2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

Abstract. Predicting algorithm performance is crucial for selecting the
best performing algorithm for a given optimization problem. While some
research on this topic has been done for single-objective optimization, it
is still largely unexplored for constrained multiobjective optimization. In
this work, we study two methodologies as candidates for predicting algo-
rithm performance on 2D constrained multiobjective optimization prob-
lems. The first one consists of using state-of-the-art exploratory land-
scape analysis (ELA) features, designed specifically for constrained mul-
tiobjective optimization, as input to classical machine learning methods,
and applying the resulting models to predict the performance classes.
As an alternative methodology, we analyze an end-to-end deep neu-
ral network trained to predict algorithm performance from a suitable
problem representation, without relying on ELA features. The experi-
mental results obtained on benchmark problems with three multiobjec-
tive optimizers show that neither of the two methodologies is capable
of substantially outperforming a dummy classifier. This suggests that,
with the current benchmark problems and ELA features, predicting algo-
rithm performance in constrained multiobjective optimization remains a
challenge.

Keywords: Constrained multiobjective optimization · Exploratory
landscape analysis · Algorithm performance prediction · Empirical
cumulative distribution function · Machine learning · Deep learning

1 Introduction

When attempting to solve an optimization problem, the choice of which opti-
mization algorithm to use is crucial for obtaining satisfying results in a limited
time. It is, therefore, necessary to develop a method that identifies which algo-
rithm performs best on a particular optimization problem. The task of selecting
a single algorithm that performs best for a given optimization problem is called
the algorithm selection task.
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Solving an algorithm selection task requires a collection of algorithms from
which to choose. It also requires a collection of diverse problems, which elicit
different performance out of the algorithms. Constrained multiobjective prob-
lems (CMOPs) are both lesser in quantity and diversity and greater in complex-
ity than unconstrained and/or single objective problems. Therefore, solving the
constrained multiobjective algorithm selection task is an ambitious goal. As a
first step towards solving it, we aim to develop a method for predicting algorithm
performance on a given CMOP.

In recent years, many researchers have tried to predict algorithm perfor-
mance [21,28]. They generally do so by extracting exploratory landscape analy-
sis (ELA) features from a population of solutions. These are then used as input
to a machine learning classifier, which identifies the optimization algorithm that
performs best on the given problem. Many ELA features have been proposed for
single-objective optimization, and the package flacco [11] contains a broad col-
lection of these. However, ELA features for more complex problems, like CMOPs,
are still under development, with only a few related works [2,15,30]. This adds
to the difficulty of predicting algorithm performance on these problems.

In a previous work [3], we tried to predict algorithm performance on CMOPs
by using the state-of-the-art collection of CMOP ELA features proposed in [2].
These features were used as inputs into classical machine learning regression
models. We attempted to predict algorithm performance on three benchmark
suites, for 2D, 3D, and 5D CMOPs. The target of our prediction task was the
area under an algorithm performance curve (explained in Sect. 2.3). However, the
obtained results were not encouraging and, therefore, we are trying to improve
upon them. In this work, we have increased the number of CMOPs used in the
learning process, changed the prediction target and utilized an end-to-end deep
neural network (DNN) methodology that does not use ELA features.

The paper is further organized as follows. In Sect. 2, we introduce the back-
ground of our study. In Sect. 3, we explain the applied methodology. In Sect. 4
we present the experimental setup and, in Sect. 5, the obtained results. Finally,
in Sect. 6, we provide a conclusion and outline ideas for future work.

2 Background

In this section, we introduce constrained multiobjective optimization, explain
ELA for this kind of optimization, present the recently proposed performance
indicator specifically developed for CMOPs, and outline deep neural networks.

2.1 Constrained Multiobjective Optimization

A CMOP is formulated as:

minimize fm(x), m = 1, . . . ,M,

subject to gj(x) ≤ 0, j = 1, . . . , J,

hk(x) = 0, k = 1, . . . ,K,

(1)



312 A. Andova et al.

where x = (x1, . . . , xD) is a D dimensional solution vector, fm(x) are the objec-
tive functions, and gj(x) and hk(x) are the inequality and equality constraint
functions, respectively. M is the number of objectives, and J and K are the
number of inequality and equality constraints, respectively.

A solution x is feasible, if it satisfies all constraints, gj(x) ≤ 0, for j = 1, . . . , J
and hk(x) = 0, for k = 1, . . . , K. A feasible solution x is said to dominate another
feasible solution y if fm(x) ≤ fm(y) for all 1 ≤ m ≤ M , and fm(x) < fm(y) for
at least one 1 ≤ m ≤ M . A feasible solution x∗ is a Pareto-optimal solution if
there exists no feasible solution x ∈ S that dominates x∗. All feasible solutions
constitute the feasible region F . All nondominated feasible solutions form the
Pareto set So, and the image of the Pareto set in the objective space is the
Pareto front, Po = {f(x) | x ∈ So}.

2.2 Exploratory Landscape Analysis for Constrained Multiobjective
Optimization

ELA is a methodology whereby features of an optimization problem are extracted
from a sample of solutions [19]. These features are generally expertly designed
statistical relations between solutions. While many ELA feature sets have been
designed for single-objective optimization problems, only a few exist for CMOPs.

For CMOPs, state-of-the-art features were collected by Alsouly et al. [2].
They proposed additional features on top of the fast-computing features for
CMOPs from the related work. The combined set of features is divided into three
groups that describe: the multiobjective landscape, the violation landscape, and
a combination of the two – the multiobjective violation landscape.

Features describing the objectives and their internal relations belong to the
multiobjective landscape group. Global features in this group include the propor-
tion of unconstrained Pareto optimal solutions, the hypervolume of the uncon-
strained Pareto front, and the correlation between the objective values, among
others. Statistics on the distance between random walk neighbors in the objective
space make up the random walk features.

Features describing the problem constraints belong to the violation landscape
group. Global features in this group are devoted to global constraint violation
statistics, while the random walk features consist of constraint violation statistics
between random walk neighbors.

Features describing the relations between the objective and the constraints
belong to the multiobjective violation landscape group. Global features include
the proportion of feasible solutions, the proportion of Pareto optimal solutions,
the hypervolume, statistics on the correlations between objectives and con-
straints, and others. Statistics on the dominance relations between random walk
neighbors make up the random walk features.

2.3 Empirical Cumulative Distribution Functions

In constrained multiobjective optimization, there is a drawback to using the
hypervolume of feasible solutions as the quality indicator, because it does not
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record algorithm performance until feasible solutions are reached. However,
recently, [29] introduced a new quality indicator for constrained multiobjective
optimization, ICMOP, to address the gap in this area. The new indicator gen-
eralizes the hypervolume-based quality indicator IHV+ from [10]. Notably, both
IHV+ and ICMOP assume that low quality indicator values indicate better sets
of solutions and vice versa. ICMOP can be defined as follows:

1. When all solutions in the set are infeasible, the ICMOP quality indicator takes
on the smallest constraint violation of all solutions in the set, plus a threshold
τ∗.

2. When the set contains at least one feasible solution, the quality indicator
equals the value of IHV+ bounded above by the threshold τ∗, i.e., it equals
min{IHV+, τ∗}.

The threshold value τ∗ ensures that an infeasible solution will always be deemed
worse than a feasible one.

Also, to be able to compare different CMOPs, one first needs to normalize
the IHV+ value and the constraint violation value, based on a sample of 100
solutions. The details of how this is done can be found in [29].

For algorithm performance measurement during the algorithm run, we track
the number of function evaluations (runtimes) needed to reach a particular qual-
ity indicator value (target). This is carried out for a set of targets and the
runtimes are visualized using the Empirical Cumulative Distribution Function
(ECDF) [10]. The ECDF shows the proportion of targets achieved by the algo-
rithm at a certain runtime and increases as the algorithm achieves further tar-
gets. The maximum value achievable by an algorithm is 1, meaning it reached
all targets. One way to express algorithm performance in a single number is by
computing the area under the curve of the ECDF – larger values correspond to
a better/faster algorithm performance.

2.4 Deep Neural Networks

Deep Neural Networks (DNNs) are one of the most widely used prediction models
at the moment. For more details on how they work, refer to [20]. Here, we briefly
introduce the three DNN architectures used in our work. They are as follows:

– A feedforward neural network (FNN) is a standard deep neural network, con-
sisting of layers whose neurons are fully connected to the neurons from the
neighboring layers.

– Convolutional neural networks are DNNs consisting of convolutional layers
followed by activation layers and, sometimes, pooling layers. They are most
often used in computer vision, as they are good at describing the local prop-
erties of the images, using filters that can be of different sizes.

– An autoencoder is a DNN architecture that consists of an encoder and a
decoder part. These parts are usually symmetrical, therefore, the input and
the output of an autoencoder neural network have the same shape. The goal
of this neural network architecture is to compress the data. Thus, the encoder
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compresses the data, and the decoder decompresses it. Essentially, the autoen-
coder can also be an FNN or a convolutional neural network as long as it
performs data compression.

3 Methodology

In this section, we present the methods applied in this study. First, we explain
how the ECDF of the ICMOP indicator was used to define three different classifi-
cation tasks. We then describe various methods for solving these tasks – machine
learning methods that predict algorithm performance based on ELA features and
the newly proposed end-to-end DNN, which circumvents the ELA features by
using the problem landscape samples directly.

3.1 Classification Tasks

The ECDF of the performance indicator, described in Sect. 2.3, shows the
number of targets achieved at each evaluation step. As explained in [29], to
compare targets between different CMOPs, we normalize the targets using a
sample of 100 solutions, and we set τ∗ = 1. Also, the authors state that
a good set of target precision values corresponds to τ ε = τ ref + ε, where
ε ∈ {10p|p ∈ {−5,−4.9, . . . , 0}} ∪ {1 + 10p|p ∈ {−5,−4.9, . . . , 0}}, and τ ref

is the hypervolume of the true Pareto front, or an approximation of it. We used
the same for our target precision values.

In a previous work [3], we were predicting algorithm performance using the
area under the curve of the ECDF. This turned out to be a very difficult regres-
sion task. Therefore, to alleviate it, this work makes two changes to the method-
ology: (1) instead of the area under the curve, we predict the number of eval-
uations needed to reach three chosen target proportions, and (2), we predict
ranges of values instead of exact numbers, transforming a regression task into a
classification one.

More specifically, the target proportions of interest are:

– The number of evaluations needed until a feasible solution is obtained, which
due to the choice of targets, corresponds to satisfying 50% of the targets.

– The number of evaluations needed to satisfy 70% of the targets.
– The number of evaluations needed to satisfy 90% of the targets.

Predicting the exact number of evaluations needed to satisfy a given per-
centage of targets, is difficult. Additional challenges arise from the fact that an
algorithm may never reach the most difficult targets on some of the problems,
which then requires special handling of such cases. Because of this, we group the
number of evaluations into classes and treat their prediction as a classification
task, which is expected to be easier to solve.

The number of evaluations of interest depends on the experimental setup. In
our case, we will be performing at most 24 000 evaluations and use algorithms
with a population size of 200. Therefore, we form the following classes:
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– Class 0: The goal is achieved between 1 and 200 evaluations (in the initial
generation),

– Class 1: The goal is achieved between 201 and 2 000 evaluations,
– Class 2: The goal is achieved between 2 001 and 8 000 evaluations,
– Class 3: The goal is achieved between 8 001 and 24 000 evaluations,
– Class 4: The goal is never achieved.

3.2 Classical Machine Learning

For the machine learning part, we use the ELA features outlined in Sect. 2.2 as
input to three classical machine learning algorithms – Decision Trees [16], Ran-
dom Forest Classification [5], and C-Support Vector Classification (SVC) [23].
We also include a dummy model in the comparison, which predicts the most fre-
quent class in the training data. We utilize the scikit-learn implementations
of these methods with default parameter settings [22].

3.3 DNN

Inspired by developments in computer vision, we decided to test whether
methodologies from that field could be used for algorithm performance predic-
tion on CMOPs. Some experiments have already been done in single-objective
optimization [24,26], but they did not show promising results compared to the
results obtained by the well-developed ELA features for single-objective opti-
mization.

For a proof of concept, we limit the dimensionality of the search and objective
spaces to 2D. In this way, no additional manipulation, such as dimensionality
reduction, is required. More specifically, in our approach, we treat the search
space as an image, discretized into 32 × 32 pixels. Each pixel contains the red,
green, and blue color components, representing the two objectives and the overall
constraint violation, respectively.

Data Generation. To generate images of the search spaces, we use the fol-
lowing sampling technique. First, we divide the 2D search space into “pixels”, by
splitting each dimension of the search space into 32 equally sized intervals. Then,
for each pixel, we randomly generate a solution within it, and use its objective
values and the overall constraint violation value to assign the color to the pixel.
A visual representation of a sample generated using this technique is shown in
Fig. 1.

DNN Architecture. The architecture of the DNN is composed of a convolu-
tional neural network autoencoder and an FNN. The encoder part of the autoen-
coder is used as input to the FNN, whose target is the prediction class defined
in Sect. 3.1. The DNN architecture is shown in Fig. 2.

Each flat rectangle in the figure represents one layer of the DNN architecture.
It contains information about the keras library [1] layer class that we used on
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Fig. 1. An example sample of size 32× 32 for the DNN.

the left side, and the shape of its input/output on the right side. For example,
the first layer in the DNN is an InputLayer, and it takes as input images of size
32 × 32 with 3 channels.

The top part of the figure presents the encoder, which consists of three pairs
of convolutional and max-pooling layers. The bottom part is divided into the
decoder (on the left) and the FNN (on the right). The decoder is symmetrical
to the encoder, whereas the FNN contains Dense and Dropout layers. The last
layer in the FNN has an output of 5 neurons, each one assigned to one of the
prediction classes presented in Sect. 3.1.

The idea behind this architecture is that, by providing the autoencoder with
the same image as input and output, we force it to encode the input image so that
the least amount of information is lost in the training process. The encoded part
can be seen as landscape features that the autoencoder automatically extracts
from the input data.

To cause the DNN to encode the properties that are useful for predicting
algorithm performance, we use the encoded part as input to an FNN. Both parts
of the DNN are trained simultaneously, with a combined loss function (mean
absolute error for the decoder, and categorical cross-entropy for the FNN).

Data Preprocessing. The objectives and overall constraint violation have dif-
ferent value ranges across different problems. For this reason, as a preprocessing
step, we normalize each of these functions. The min-max normalization proce-
dure applies the normalization over all samples of a given problem, using the
minimum and maximum value of the given objective. Furthermore, we normal-
ize the constraints by assigning a 0 value to the feasible solutions, and a 1 value
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Fig. 2. The applied DNN architecture consisting of the encoder, decoder and FNN.

Fig. 3. Four example CMOP inputs, as images, for use with the DNN. Red represents
the value of the first objective function, green the value of the second objective func-
tion, and blue the constraint violation. Prior to this encoding, the objective values are
normalized using the minimum and maximum objective values of the problem samples.
(Color figure online)



318 A. Andova et al.

to the infeasible solutions. Example visualizations of several input images from
different CMOPs are presented in Fig. 3.

Note that there are many ways to normalize the functions. For example, one
other possibility to normalize the overall constraint violation is to use its the min-
imum and maximum values. However, after some preliminary experimentation
with different normalization techniques, we found that the obtained algorithm
performance prediction results were comparable. Thus, in this paper, we only
present the results derived from the normalization techniques described in the
paragraph above.

In constrained multiobjective optimization, the order of the objectives should
not be important. Thus, we generate two images for each input sample – one
where the first objective is assigned the red color and the second objective green,
and another image where the ordering is reversed. The blue color always encodes
the constraint violation.

DNN Settings. We used the ReLu activation function for each hidden layer
in the DNN. We set the batch size to 1 000, the number of epochs to 100, and
we used the Adam optimizer [13] with a learning rate of 0.0001.

4 Experimental Setup

Our work is focused on bi-objective CMOPs with 2D search spaces. We used six
benchmark suites in the experiments: MW [17], C-DTLZ [12], CTP [7], DAS-
CMOP [9], and DC-DTLZ [14], as well as three individual benchmark problems:
BNH [4], TNK [27], and SRN [25]. The total number of CMOPs with two vari-
ables and two objectives from these suites is 36 (see Table 1 for a break-down
over problem suites).

Table 1. The number of bi-objective 2D CMOPs per suite used in this study.

MW C-DTLZ CTP DAS-CMOP DC-DTLZ BNH TNK SRN

8 5 8 6 6 1 1 1

For the purpose of predicting algorithm performance, three multiobjective
optimization algorithms were tested, each with a different constraint handling
technique. These algorithms were NSGA-III [12], MOEA/D-IEpsilon [8], and C-
TAEA [14]. To handle the variation of the results due to the stochastic nature
of the algorithms, 31 runs of each algorithm were conducted on each problem.
With this approach, algorithm performance can be estimated more accurately.
To extract the target classes, we used the mean of the ECDF values over all 31
algorithm runs. Additionally, we applied the same population size and number
of generations to all algorithms, allowing for a fair comparison of results. The
population size was set to 200, and the number of generations to 120. To generate
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reference vectors for NSGA-III and MOEA/D-IEpsilon, we used the Das-Denis
approach [6]. The number of reference vectors was 200 for each algorithm.

The ELA features were calculated stochastically, whereby a different sam-
ple of solutions was selected each time the feature calculation is begun. This
was dealt with by creating 100 samples using Latin hypercube sampling, which
resulted in 100 sets of features (i.e., learning instances) for each problem. Simi-
larly, we created 100 samples per problem for the DNN method using the sam-
pling described in Sect. 3.3.

For easier reproducibility of the stochastic learning models, we report that
the random number generator was seeded with the value of ten to obtain the
results in the following section. Moreover, experiments with alternative seeds
resulted in comparable results.

To evaluate the performance of each classifier, we used the leave-one-problem-
out evaluation methodology. In this approach, no information about the target
problem is available in the training data. Thus, all instances of a problem are
used as test data, and the instances from the rest of the problems as training
data. This process is repeated for each problem and the average mean absolute
error is used as an evaluation metric.

5 Results

The classification accuracy for the desired target percentages for all learning
methods is presented in Table 2. From the results we can see that none of the
learning models drastically outperforms the dummy classifier. The only exception
is the Random forest model. This performs better than the dummy classifier in
most cases, except for MOEA/D and C-TAEA when predicting the evaluation
class with at least 90% of the targets achieved.

To analyze more thoroughly the predictions by the Random forest model,
we provide its confusion matrices for all three classification tasks in Fig. 4. In
addition, Fig. 5 shows problem samples in the ELA feature space, reduced to 2D
using the t-distributed stochastic neighbor embedding (t-SNE) method [18].

In Table 2, we can see that the classification accuracy is the same across all
optimization algorithms when tackling the first classification task, that being
to achieve 50% of the targets, i.e., to reach the border between the infeasible
and feasible regions. An explanation for this can be derived from the confusion
matrices in Fig. 4. These show that most of the optimization algorithms find a
feasible solution in the initial population. They are, therefore, labeled with class
0. Otherwise, they achieve a feasible solution in at most 2 000 evaluations.

As shown in Fig. 5, with t-SNE dimension reduction, the instances from the
same CMOP form clusters. This means the ELA features from the same problem
do not provide the diversity required by the machine learning models. Conse-
quently, during prediction, the learning models usually have either a 100% or
0% accuracy for a given CMOP. This is manifested in the nearly fully rounded
results present in the confusion matrices in Fig. 4. A similar behavior can be
observed for the DNN method, although this method does not rely on ELA
features.
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Table 2. Classification accuracy of the learning models predicting the algorithm per-
formance classes.

Targets Classifier NSGA-III MOEA/D C-TAEA

50% Dummy 0.916 0.916 0.916
Decision tree 0.916 0.916 0.916
Random Forest 0.944 0.944 0.944
SVC 0.888 0.888 0.888
DNN 0.916 0.916 0.916

70% Dummy 0.416 0.416 0.583
Decision tree 0.446 0.376 0.658
Random Forest 0.576 0.549 0.674
SVC 0.406 0.406 0.588
DNN 0.381 0.304 0.583

90% Dummy 0.638 0.666 0.722
Decision tree 0.581 0.668 0.687
Random Forest 0.677 0.638 0.703
SVC 0.623 0.650 0.727
DNN 0.638 0.666 0.722

The DNN, proposed as a novelty in this work, unfortunately never outper-
forms the dummy classifier and sometimes performs even worse than it, although
the loss was observed to decrease during training. Worse performance is, for
example, seen when predicting the number of evaluations needed by the NSGA-
III and MOEA/D algorithms to achieve 70% of the targets. A reason for the poor
DNN performance could be that we used only 35 CMOPs for training. Although
we generated 100 samples for each problem, this may still not provide enough
diversity and the DNN is not able to learn the patterns of the search space.
Namely, it is known that DNN’s need huge amounts of data to learn adequately.
The classical machine learning models, on the other hand, are designed to be
able to handle small amounts of data, but, as stated before, their performance
was not found to be promising either.

A reason for poor performance of the classical machine learning models on
CMOPs could be that, just like the DNN, they also need more data (although
probably less so than the DNN). The small number of CMOPs used for training
is certainly a difficulty, but the similarity of some properties across different
CMOPs is also a potential reason for the low prediction performance and (likely)
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Fig. 4. Confusion matrices of the random forest models for the three desired target per-
centages. Each confusion matrix refers to the algorithm performance classes explained
in Sect. 3.1 in more detail.

overfitting of the data. For example, as shown in Fig. 3, DC1-DTLZ1 and DC1-
DTLZ3 have very similar landscapes, and, given that the order of objectives in
CMOPs is insignificant, the red and the green sectors may be swapped.

Another reason for the poor performance of feature-based performance pre-
diction might be the recency of research into ELA features for CMOPs. Possibly
not all informative characteristics of CMOPs are included in the feature set, as
of yet.
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Fig. 5. Visualizations of ELA features for the three desired target percentages, reduced
in dimensionality using the t-SNE method. The colors in the first row of the plots repre-
sent the problems included in the experiment. In the remaining rows, the colors identify
the classes representing the number of evaluations needed to achieve a percentage of
targets. (Color figure online)

6 Conclusion

In this work, we tried to improve upon our previous attempt at algorithm perfor-
mance prediction for three widely used multiobjective optimization algorithms,
NSGA-III, MOEA/D-IEpsilon, and C-TAEA, on 2D, 3D, and 5D CMOPs. Pre-
viously, we worked on predicting the area under the curve of the ECDF for the
ICMOP quality indicator proposed in [29]. We used classical machine learning
regression models, whose inputs were the ELA features proposed in [2]. Unfortu-
nately, the obtained results were not encouraging. Consequently, in this work, we
focused on 2D CMOPs. We used a total of nine benchmark suites and problems,
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which resulted in 36 CMOPs. This is significantly larger than in the previous
work where only 13 were used. Furthermore, we changed the prediction task – in
this work, we were predicting the number of evaluations needed to achieve 50%,
70%, and 90% of the ECDF targets. Moreover, because predicting the number
of evaluations is a hard task, we discretized the number of evaluations needed
into five classes.

The results from the previous work left questions as to whether the prediction
performance was poor because of the small number of CMOPs used for training,
or the underdevelopment of the CMOP ELA feature set. To eliminate the second
issue, we proposed an end-to-end DNN, that does not include ELA features to
predict algorithm performance. As far as we are aware, this is the first time an
end-to-end DNN has been used to predict algorithm performance on CMOPs.

Unfortunately, the newly proposed method did not outperform the dummy
prediction model. Nonetheless, the reason for this might be that using merely 36
CMOPs is not enough for training a DNN. Thus, this left us with the dilemma of
poor algorithm performance prediction – are more CMOPs required to predict
algorithm performance, or better ELA features? Moreover, the tested evolution-
ary algorithms performed comparably on the benchmark problems. This calls
for involving a larger set of algorithms that would potentially show different
performance.

In the future, we plan to extend our research on end-to-end DNNs for algo-
rithm performance prediction by applying publicly available pretrained DNNs.
The idea is to enhance the performance of the proposed architecture. This is a
standard practice in deep learning when dealing with small datasets and thus,
although none of the pretrained models was trained on problem landscapes, their
learned patterns might still help with our prediction task.

Another way forward is to utilize a larger CMOP benchmark suite. This
can be constructed by combining the objectives and constraints of constrained
single-objective problems from various benchmark suites. This way, we could
include a much larger number of CMOPs in the data, possibly helping both
the classical machine learning methods and the deep learning methods better
predict algorithm performance. A drawback to this approach is that running the
algorithms 31 times for each problem combination would be a time-consuming
task. It is possible, however, that already a small proportion of the problem
combinations would contribute diversity to the extended benchmark suite.

Ideally, in future work, both the ideas stated above would be combined.
Tests on an extended CMOP benchmark suite are sure to answer whether more
CMOPs are needed to better predict algorithm performance, while the inclu-
sion of knowledge from pretrained DNNs is likely to provide insights into the
possibility of improving the current ELA features for CMOPs.
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2 Jožef Stefan Institute, Ljubljana, Slovenia
{tea.tusar,bogdan.filipic}@ijs.si
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Abstract. Landscape analysis is a popular method for the characteri-
zation of black-box optimization problems. It consists of a sequence of
operations that, from a limited sample of solutions, approximate and
describe the hypersurfaces formed by characteristic problem properties.
The hypersurfaces, called problem landscapes, are described by sets of
carefully crafted features that ought to capture their characteristic prop-
erties. In this way, arbitrary optimization problems with potentially very
different technical parameters, such as search space dimensionality, are
projected into specific feature spaces where they can be further stud-
ied. The representation of a problem in a feature space can be used, for
example, to find similar problems and identify metaheuristic optimiza-
tion algorithms that have the best track record on the same type of tasks.
Because of that, the quality and properties of problem representation in
the feature spaces gain importance. In this work, we study the repre-
sentation properties of the popular bbob-biobj test suite in the space
of bi-objective features, analyze the structure naturally emerging in the
feature space, and analyze the high-level properties of the projection.
The obtained results clearly demonstrate the discrepancies between the
latent structure of the test suite and its expert perception.

Keywords: Multiobjective optimization · Problem landscape ·
Exploratory landscape analysis · Clustering · Data visualization

1 Introduction

Landscape analysis (LA) is a methodology designed to enable an insight into
and understanding of complex optimization problems. It aims at problem char-
acterization and the discovery of the relationship between problems and differ-
ent (metaheuristic) optimization algorithms. LA is a complex process that con-
sists of a series of steps including solution sampling, evaluation of characteristic
measures, computation of landscape features, and analysis of problem proper-
ties in the feature spaces. The problem characterization in the feature space
can be used for different purposes including algorithm performance prediction
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and behavior explanation [21], automated algorithm selection [13,20], parame-
ter tuning [16], problem classification, and others. Such insights are especially
useful when metaheuristic optimization algorithms are going to be applied to
(black-box) optimization problems with an unknown nature. Individual meta-
heuristic algorithms represent different search strategies and their use results
in the pursuit of distinct search trajectories through the solution spaces of the
solved problems. This leads to different performance of different algorithms on
different problems, i.e., inside differently structured search spaces [15]. Overall,
LA is an attempt at a computationally feasible characterization of optimization
problems through their mapping to well-structured features spaces that can be
more easily analyzed.

The feature spaces can be used by various downstream algorithms to charac-
terize the problems, find out their mutual relationships, similarities, dissimilari-
ties, and, for example, assign previously unknown problems to existing problem
categories. Such analyses can contribute to an efficient application of modern
nature-inspired metaheuristics to a growing number of real-world problems.

In this work, LA is used to analyze a test suite from a popular benchmark-
ing platform, COmparing Continuous Optimizers (COCO) [4]. Specifically, we
take a detailed look at a feature-based representation of COCO’s multiobjective
test suite, bbob-biobj. The suite is a set of 55 noiseless, scalable bi-objective
test problems (functions) that can be used to evaluate metaheuristic optimiza-
tion algorithms [2]. It was selected as it is an established set of well-understood,
carefully crafted, and expertly annotated benchmarking problems for multiob-
jective optimization. Each test problem is processed by the LA process and
projected to a feature space determined by a set of features designed specifically
for continuous multiobjective optimization problems [10]. Then, the structure of
the feature space is assessed by cluster analysis and its latent structure is stud-
ied. The discovered structure is then matched with three different expert-defined
classifications of the test problems. In this way, this work provides useful insight
into the differences between the latent and the expert-defined structure of the
test suite.

The rest of this paper is organized in the following way. Section 2 gives a
short definition of landscape analysis and provides an overview of landscape fea-
tures often used for the description of single- and multiobjective problems. The
computational experiments and obtained results are detailed in Sect. 3. Finally,
major conclusions are drawn and future work is outlined in Sect. 5.

2 Landscape Analysis

A problem landscape can be defined with the help of the d-dimensional search
(solution) space, X, a neighborhood operator, n(x), that defines for each solution,
x ∈ X, a set of neighboring solutions, and a characteristic function, C(x) : X → R,
that maps each solution to a certain quality observed in the context of the solved
problem [19]. The tuple, (X, n(x), C), defines a hypersurface associated with the
values of the characteristic function for the investigated problem and is in line



328 P. Krömer et al.

with a popular analogy with real-world landscapes referred to as a landscape [17].
The information represented by the landscape depends on which problem prop-
erty is expressed by the characteristic function. It can be, for example, the fitness
of the solution (fitness landscape), the level of constraint violation (violation
landscape) [12], and so on, leading to potentially several distinct hypersurfaces
associated with a single investigated problem. The goal of LA is the characteri-
zation of a problem on the basis of the information from (X, n(x), C). It enables
a comprehensive investigation of a problem’s search, objective, and other char-
acteristic spaces. This scrutiny relies on the extraction of characteristic features
derived from a specifically chosen set of sampling points distributed across the
search space.

The outcome of the analysis is affected by each of its stages. Solution sampling
is a process that selects a series of samples (sampling points, problem solutions)
from the problem’s search space. The particular sampling strategy it follows
decides which patterns of solutions take part in problem characterization and
which do not, how dense and how regular is the coverage of the search space, and
so on. Popular sampling strategies include pseudorandom (uniform), quasiran-
dom [18], and Latin Hypercube sampling-based sampling [14]. Next, the selection
of the characteristic (performance) measures evaluated for the sampled solutions
defines which solution properties are considered for the problem characterization
exercise and which are not. The most used characteristic measures include the
values of fitness function(s) [15] and the level of constraint violation [12]. Finally,
the choice of the landscape features defines how the hyperplanes associated with
the values of each metric for the sampled solutions are going to be approximated
(summarized) and, in the end, the problems represented in a feature space.

2.1 Landscape Features

The choice of features to approximate problem landscapes depends on a number
of factors [8]. Groups of features reflecting different problem landscape proper-
ties such as fitness-distance correlation, landscape ruggedness, and information
content have been introduced [7]. Later, Mersmann et al. [15] proposed a battery
of 6 groups of features that can describe single-objective black-box optimization
problems from different perspectives including global and local structure, modal-
ity, convexity, curvature, presence of plateaus, separability, and others. The 83
features defined in [15] are often referred to as classical exploratory landscape
analysis (ELA) features. Kerschke and Trautmann assembled a battery of 300
features for the characterization of continuous optimization problems with con-
straints [6]. The features were divided into 17 feature sets and included the
classical ELA features proposed by Mersmann et al. [15], cell mapping and gen-
eralized cell mapping features, barrier tree features, and many other types of
numerical characteristics of problem landscapes. The characterization of multi-
objective problems by landscape analysis motivated the development of special
features for the description of (continuous) multi-objective landscapes [10]. The
features were designed so that they inherently considered multiple fitness values
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(i.e., multiple fitness landscapes) and reflected, for example, the multimodality,
evolvability, and ruggedness of the landscapes.

3 Methodology

In this work, a popular suite of bi-objective benchmarking problems,
bbob-biobj, is modeled by landscape analysis, and the properties of its rep-
resentation in the feature space are analyzed. In particular, we adopt three
expert-defined classifications of the test problems and assess how they corre-
spond with the latent structure of the test suite in the feature space obtained
by cluster analysis.

3.1 Expert Classification

The bbob-biobj test suite [2] consists of 55 bi-objective benchmark problems
termed F1 to F55. They were constructed by combining all possible pairs of
10 single-objective problems from the bbob suite [5] and were divided into 15
groups reflecting the properties of their single-objective functions. We use the
15 groups, each containing either three or four problems, as the first expert
classification. Additionally, 2-D problem instances were manually inspected in [2]
and a number of their properties was collected into a table. We provide two other
expert classifications depending on these observations. One constructs 7 classes
based on the number of distinct Pareto set parts (1, 2, 3, 4, 5, 5–9 or 10+,
as in [2]), while the other splits the problems into 2 classes depending on the
convexity or non-convexity of the Pareto front. These three expert classifications
are shown in the first three images of Fig. 1.

3.2 Cluster Analysis

Cluster analysis is a family of methods for unsupervised data analysis that
enable the discovery of structure in data and the classification of objects into
meaningful groups (clusters). A (non-overlapping) clustering of a data set D =
{d1, d2, . . . , dn} into k clusters is a set of k disjoint partitions, S = {S1, S2, . . . ,
Sk}, subject to Si ⊂ D and Si �= ∅ for each Si ∈ S, Si∩Sj = ∅ for each Si, Sj ∈ S
and i �= j, and

⋃k
i=1{Si} = D. Because many different types of clusters may be

found in the data, cluster analysis includes various clustering algorithms that
can assign objects to clusters. Individual methods are often based on different
assumptions about the data and the nature of the clusters and, therefore, can
lead to different assignments of objects to clusters. To assess the validity of
clustering on a data set, so-called cluster validity metrics can be used.

In this work, we use cluster analysis to analyze the structure of the repre-
sentation of a bi-objective test suite in a feature space created by a particular
landscape analysis pipeline. We analyze the latent structure of the representa-
tion by grouping the feature vectors into different numbers of clusters by the
K-Means algorithm. It was selected as a popular first-choice clustering method
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Fig. 1. Classifications of 55 bbob-biobj problems as done by experts and K-Means.
The colors represent different classes: (a) 15 bbob-biobj groups, (b) 7 classes based
on the number of distinct Pareto set parts, (c) 2 classes based on the convexity of the
Pareto front, and (d) 2 classes found in this work by K-Means for Sobol sampling,
dimension d = 3 and sample set size n = 216. Additionally, gray rectangles on the top
and right of each image show the five groups of single-objective functions.

to investigate the feasibility of feature space analysis through clustering. Then,
each K-Means clustering is assessed by two cluster validity measures, the Silhou-
ette index and the Variance ratio, to obtain information about the real number
and quality of clusters emerging in the data. A brief description of the used
methods follows.

K-Means. K-Means is a widespread clustering algorithm that can split n data
points into k clusters (k ≤ n) represented by the centers of mass (centroids). The
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computation of K-Means clustering is NP-hard, but there is an efficient iterative
heuristic algorithm that can be used to approximate the clusters. Its steps can
be summarized as follows:

1. Initialize k centroids, µ1, µ2, . . . , µk, either randomly or using a specific ini-
tialization strategy.

2. Assign each data point, xi, to the cluster with the nearest center, si =
arg minj ‖di − µj‖2.

3. Update the centroids, µj = 1
|Sj |

∑

xi∈Sj

di.

4. Repeat steps 2 and 3 until the assignment of points to clusters stabilizes.

Silhouette Index. The Silhouette index (SIL) is a clustering validity measure
to assess the validity of an arbitrary clustering of a data set [1]. Essentially, it is
defined as the mean ratio of the difference between the average intra-cluster and
inter-cluster distances for all points in the data set. The silhouette value (width)
of a single point, xi, is defined as

SIL(di) =
b(di) − a(di)

max{a(di), b(di)} , (1)

where a(xi) is the average distance between di and the points in the same cluster,
Si, and b(di) is the average distance between di and the points in other clusters.
The overall Silhouette index for the clustering is the average of the silhouette
values for all points, SIL = 1

n

∑n
i=1 SIL(di), where n is the total number of data

points. The best possible value of the Silhouette index is 1 and the worst is −1.
Values close to 0 indicate overlapping clusters. Negative values generally suggest
that a sample has been assigned to the wrong cluster because there is another
cluster with more similar (less distant) points [1].

Variance Ratio. The Variance ratio (Calinski-Harabasz Index, CHI) evaluates
how similar a point, xi, is to other points in the same cluster (cohesion) and
how dissimilar it is from other clusters (separation). Cohesion is based on the
distances from the data points in a cluster to its centroid and separation is
estimated on the basis of the distance of the cluster centroids from the center of
mass of the entire data set:

CHI =

k∑

l=1

(|Sl| · ||µl − µ||2)
k − 1

· n − k
k∑

l=1

nl∑

i=1

||di − µl||2
, (2)

where Sl is the l-th cluster, µl is its centroid, and µ is the center of mass of the
entire data set. A clustering with a higher CHI consists of clusters that are more
dense and better separated than in a clustering with a lower CHI value.
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3.3 Experiment Design

In order to study the feature-based representation of bbob-biobj problems
under a wide variety of conditions, the landscape analysis was done for each
problem with three problem dimensions (d ∈ {3, 5, 10}), four different sam-
pling strategies (Uniform random, Sobol and Halton sequence-based, and opti-
mized Latin Hypercube Sampling (LHSO)-based), and six sample sizes (n ∈
{25, 28, 210, 212, 214, 216}). This led to 72 different experimental configurations
(combinations of problem dimension, sampling strategy, and sample size).
Although the test suite contains multiple instances of each problem, only the first
one (i.e., the one consisting of instance 02 of the first and instance 04 of the sec-
ond underlying function) was used. To obtain robust approximations of the prob-
lem landscapes, each sampling was randomized 31 times, and as a result, each
experimental configuration was represented by 31 bi-objective fitness landscapes.
The landscapes were described by the multiobjective features from [10]. The fea-
tures were engineered specifically for continuous multi-objective landscapes and
express their global properties, multimodality, evolvability, and ruggedness. In
the end, 31 different representations of each problem in each configuration were
obtained in the feature space.

In each representation, we analyzed the emerging structure by the K-Means
algorithm with a different number of clusters, k ∈ {2, 3, . . . , 15}, and assessed the
quality of the clustering by SIL and CHI cluster validity measures. In addition,
we compared the clusters emerging in the feature space with problem classes
defined by experts.

4 Results

The results of the computational experiments are presented and discussed in
this section. It first describes how the optimum number of clusters was selected
and then provides a comprehensive analysis and interpretation of the discovered
latent clusters.

4.1 Number of Clusters

The results of unsupervised clustering are visually summarized in Fig. 2. The
figure consists of 72 plots with average SIL (blue) or CHI (red) values for
K-Means clusters with k ∈ {2, 3, . . . , 15} for each problem configuration. The
mosaic clearly demonstrates that the highest average values of SIL and CHI,
indicating clusters of best quality, were obtained for the lowest value of k, k = 2,
no matter what problem dimension, sampling strategy, and sample size were
used in the LA.

A more detailed illustration of the values of SIL and CHI for a selected
sampling strategy and problem dimension is provided in Fig. 3. The plots also
illustrate the quality of the three expert-defined classes by boxplots drawn at
x = 2, x = 7, and x = 15 (their corresponding number of classes). Besides con-
firming that the problem representations in the feature space are better aligned
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Fig. 2. A summary of the trends of SIL (blue) and CHI (red) values for k ∈
{2, 3, . . . , 15} for all experimental configurations (higher is better). (Colour figure
online)

Fig. 3. The values of SIL (blue) and CHI (red) for K-Means clusters with k ∈
{2, 3, . . . , 15} and 2, 7, and 15 expert classes (boxplots at x = 2, x = 7, and x = 15) for
two sample sizes, n ∈ {5, 16}, Sobol sequence-based sampling and problem dimension
d = 3. The thin lines are the validity indices for clusters found in randomized sam-
ples. The solid thick line shows the mean values of SIL/CHI and the bands around it
represent the 95% confidence intervals around the mean. (Colour figure online)

with a smaller number of clusters (with the best cluster validity achieved for
k = 2), the plots also show that the expert-defined clusters are not mapped to
meaningful structures in the feature space. This is demonstrated by the signif-
icantly lower values of SIL and CHI for the expert-defined clusterings (see the
boxplots). Finally, we note that although the example shows the results for only
a few experimental configurations, the results for other combinations of problem
dimensions, sampling strategies, and sample sizes demonstrate the same trends.

4.2 Analysis of Latent Clusters

The rest of the experiments focused on a closer investigation of the latent clusters
with k = 2 (shown in Fig. 1d), the feature space representation of the expert-
defined clusters, and their comparison. The validity of the latent clusters, dis-
covered by the K-Means algorithm for k = 2, is compared for all experimental
configurations in Tables 1 and 2. The tables illustrate several trends. First, it
can be seen that although the validity of the clusters for k = 2 is the highest,
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they are not perfect. For example, the average SIL values around 0.2 in Table 1
suggest that there is an emerging structure, but it does not fully correspond
to two well-separated dense clusters, as would be indicated by SIL close to 1.0.
Next, the tables show the clear effects of different sample sizes and sampling
strategies on the quality of clusters in the feature space. Generally, they show
that when the sample size is equal to 210 or higher, the quality of the clusters is
better than when it is smaller, underlining the need for sufficiently large prob-
lem samples. The tables also illustrate that the used sampling strategies have an
effect on the structure of the feature space. Although the results clearly depend
on the experimental configuration, it can be seen that, in the majority of cases,
more advanced sampling strategies lead to better-structured feature spaces than
those obtained with Uniform random sampling. Finally, Table 2 highlights that
the structure of the feature-space representation of problems with higher dimen-
sions is affected by small sample sizes much more than the structure of problems
with a lower dimension.

Table 1. Average SIL values for the K-Means clusters with k = 2. The values fall
within the range [−1, 1], the higher the better.

Probl. Sampling Sample size (n)

dim. strategy 25 28 210 212 214 216

d = 3 Uniform 0.16858 0.17781 0.17848 0.17072 0.17029 0.19833

Sobol’ 0.17559 0.18223 0.18321 0.18500 0.17099 0.20663

LHSO 0.17640 0.19088 0.19165 0.18685 0.19287 0.19753

Halton 0.17659 0.17968 0.18101 0.19030 0.16831 0.17988

d = 5 Uniform 0.16745 0.20397 0.20444 0.20578 0.19567 0.19842

Sobol’ 0.17410 0.19161 0.21940 0.21072 0.22450 0.19939

LHSO 0.16821 0.19430 0.21233 0.20997 0.22515 0.20409

Halton 0.17013 0.19971 0.21988 0.21547 0.22791 0.20975

d = 10 Uniform 0.15181 0.16620 0.17792 0.17534 0.18179 0.17839

Sobol’ 0.14589 0.16351 0.16968 0.18216 0.18229 0.17991

LHSO 0.14689 0.16627 0.16854 0.17796 0.18022 0.18451

Halton 0.15763 0.16152 0.17479 0.17816 0.18483 0.19565

For a better understanding and comparison, the expert classification-based
and the latent clusters from the features space have been visualized by the t-
distributed stochastic neighbor embedding (t-SNE) algorithm [11] with default
parameters as used in the scikit-learn Python library. An example of the
visualization for a single experimental configuration for problems with dimension
d = 3, Uniform random sampling, and sample size n = 216 is shown in Fig. 4. The
figure clearly illustrates the properties of the clusters suggested by the cluster
validity measures discussed in the previous paragraphs. It can be seen that the
expert-defined clusters (Fig. 4a–Fig. 4c) are spread across the feature space and
do not match with its emerging structure well. On the other hand, the latent
clusters (Fig. 4d) are much more in line with the organization of the feature
space.
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Table 2. Average CHI values for the K-Means clusters with k = 2. CHI ≥ 0, the higher
the better.

Probl. Sampling Sample size (n)

dim. strategy 25 28 210 212 214 216

d = 3 Uniform 13.1341 13.7153 13.4966 13.1072 13.0389 12.0623

Sobol’ 14.0512 14.4354 14.2152 13.0454 12.6862 11.6280

LHSO 13.8949 14.2946 13.9047 13.2398 12.8289 11.9239

Halton 13.8517 13.2104 14.1193 13.5609 12.0527 12.7317

d = 5 Uniform 13.2541 14.3907 15.4810 14.5754 14.3795 13.6464

Sobol’ 12.9498 15.5466 14.9389 14.9061 14.4485 14.8642

LHSO 13.2910 15.1948 15.2130 15.0388 14.2593 14.0611

Halton 13.0484 15.8946 15.4437 15.3982 14.4851 14.5858

d = 10 Uniform 11.5130 12.6852 14.4477 14.2677 14.7421 14.4298

Sobol’ 10.9866 13.2073 13.6819 14.3397 14.9993 14.9720

LHSO 11.4390 13.4044 13.6519 14.5277 14.3506 13.7110

Halton 11.3276 12.9814 13.9742 14.3852 14.5919 13.8328

As the next step, we studied the stability of the latent clusters and the
effect of sampling randomization on the assignment of problems to the emerging
classes. We observed for each problem to which of the two K-Means clusters it
was assigned across the 31 randomized samplings. The results of this analysis for
selected problem configurations are visually illustrated in Fig. 5. The plots in the
figure illustrate for d = 3, sample size 216, and two different sampling strategies
the percentage of times each problem has been assigned to the first (orange) or
the second cluster (blue). Every problem is represented by a single chart. In the
top plots, the order of problems is F1 to F55, in the bottom plots, the problems
are sorted according to the stability of their assignment to clusters. The plots
clearly illustrate that most problems are in the majority of cases assigned to the
same cluster, i.e., their chance of being assigned to one cluster is much higher
than the chance of being assigned to the other one. Some problems are assigned
to the same cluster in 100% of cases, which suggests good stability of the latent
structures in the feature space and a robust representation of the problems by
the LA process. Nevertheless, it can be also seen that there are some problems
that oscillate between clusters. However, this is not surprising given the heavy
use of stochastic principles in the LA pipeline and the clustering process, as well.

4.3 Interpretation of Discovered Classes

Finally, we wish to see whether the results of K-Means clustering can be mean-
ingfully interpreted. To this end, we join the K-Means classifications into two
classes for all sampling methods, problem dimensions, and sample sizes used in
this study. Since each separate classification labels the two classes arbitrarily,
we match the class labels among all classifications by centering them around
problems that are very often classified together. For each of the problems, we
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Fig. 4. t-SNE visualization of feature vectors of 55 bbob-biobj test problems computed
for Uniform random sampling (non-rotated), dimension d = 3 and sample set size
n = 216. The colors match those from Fig. 1 and represent different classes assigned
by experts: (a) 15 bbob-biobj classes, (b) 7 classes based on the number of distinct
Pareto set parts, (c) the convexity of the Pareto front, or by K-Means clustering: (d)
2 latent classes.

are then able to express how often the problem was classified in the first class
with a number between 0 and 1.

We show these results in Fig. 6 with the frequency of classification into the
first class on the y-axis. Each problem is depicted using two plots of its 2-D
landscape. Both are based on a discretization of the search space with a grid
of points (a 501 × 501 grid was used for all plots in this paper). The top plot
(shown also on the left in Fig. 7) visualizes the correlation between objectives. For
each grid point, the correlation between objectives is computed as the Pearson
correlation coefficient of the objective values in 100 equidistant points on the
circle with radius 10−6 centered in that grid point. Blue hues denote positive
correlations between the objectives and red hues denote negative ones (note that
the objectives are anti-correlated on the Pareto set). The bottom plot (also on
the right in Fig. 7) depicts the dominance rank ratio for each grid point, which
assigns dark hues to points ‘close’ to the Pareto set (with only a few points that
dominate them) and lighter hues to those ‘far’ from it [2,3]. The Pareto set in
these plots is visualized in yellow.
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Fig. 5. Stacked bar charts of 55 test problems clustered by K-Means into two clusters.
The bars represent the normalized portion of each of the two classes into which a prob-
lem was assigned during 31 rotations. The figures show Uniform and Sobol samplings
for dimension d = 3, sample set size n = 216, and k = 2 clusters. Figures (a) and (b)
illustrate the original order of functions, and (c) and (d) the same problems sorted by
one class.

Figure 6 makes it possible to inspect whether there is some visual similar-
ity between problems often classified in the same class by K-Means. We can
certainly see this for problems often classified into the first class (top row of
problems in Fig. 6), as their landscapes look very much alike. This is not sur-
prising given that the first ten problems all contain the same single-objective
function f21 with multiple peaks as one of the objectives, while the next seven
problems all contain the Schaffer’s F7 function f17, which gives the landscapes
an appearance of ‘waves’. However, the rest of the classification is harder to
understand. The bottom problems in Fig. 6 correspond to those most often clas-
sified into the second class and while we can find small groups of similar ones, a
general trend cannot be found. This demonstrates that the interpretation of the
latent relationships between problem representations is not straightforward and
its understanding in terms of problem properties is a complex exercise requiring
detailed knowledge of the investigated problems.
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Fig. 6. Two-class classification of the 55 bbob-biobj problems by K-Means visualized
according to how often each of the problems was classified in the first cluster (y axis).
The problems are sorted by this value and stacked along the x axis to enhance read-
ability. For each problem we show two visualizations of its 2-D landscape: the Pearson
correlation coefficient on top and the dominance rank ratio on the bottom (see Fig. 7
and text for more information).

Fig. 7. Problem landscape visualizations for the bbob-biobj problem F10 of dimension
2, instance 1: (a) the Pearson correlation coefficient and (b) the dominance rank ratio.
(Color figure online)
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5 Conclusions

This work investigates a popular suite of bi-objective benchmark functions,
bbob-biobj, from the landscape analysis point of view. It studies the projec-
tions of the test problems to a feature space outlined by a set of features for
multi-objective optimization problems. The feature vectors, representing the test
problems in the feature space, are thoroughly analyzed by cluster analysis to find
out their mutual relationships and potential latent structures that can emerge in
this space. The analysis is conducted for a wide range of problem and landscape
analysis configurations to obtain robust information about the representation
of the test suite in this feature space. The results of the unsupervised analysis
suggest that the problems are organized into no more than two classes that are
not perfectly separated but still can very well represent some problems that are
in the majority of cases assigned to one of these groups. The properties of the
problems in the discovered groups of problems were also broadly studied.

The latent classes were further compared with the feature-space represen-
tation of three expert classifications of the problems in the test suite from the
literature. All expert classifications were based on different fundamental prop-
erties of the problems such as the nature of the underlying single-objective test
functions or the character of the Pareto-front of the bi-objective problem. The
experiments clearly demonstrated that the expert classification is not matched
with corresponding structures in the feature space and therefore should be used
with caution when dealing with, for example, applications such as landscape
analysis-based problem classification. The understanding of problem representa-
tion in feature space can be even more important for real-world problems, where
the apriori information is based on the knowledge of the underlying domain and
can be only loosely connected to the properties of the problem formulation.

Future work on this topic will include an extended analysis of the test suite
in spaces defined by other types of landscape features, a thorough evaluation of
the potential emerging structure by other types of unsupervised methods (e.g.,
distance-based clustering), and further investigation into the nature of the dis-
covered latent groups of problems. Additionally, the same clustering-based inves-
tigation will be conducted for other suites of multiobjective problems such as
those from the CEC 2020 Multimodal Multiobjective Optimization test suite [9].
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Abstract. Gamer engagement with computer opponents is an impor-
tant aspect of computer games. Players will be bored if computer oppo-
nents are predictable, and the game will be monotonous. Computer
opponents that are both challenging and exhibit interesting and novel
behaviours are ideal. This research explores different strategies that
encourage diverse emergent behaviours for evolved intelligent agents,
while maintaining good performance with the task at hand. We con-
sider the pursuit domain, which consists of a single predator agent and
twenty prey agents. The predator’s controller is evolved through genetic
programming, while the preys’ controllers are hand-crafted. The fitness
of a solution is calculated as the number of prey captured. Inspired
by Lehman and Stanley’s novelty search strategy, the fitness is com-
bined with a diversity score, determined by combining four rudimentary
behaviour measurements. We combine these basic scores using the many
objective optimization strategy known as “sum of ranks”, which is proven
to effectively balance a high number of conflicting objectives in optimiza-
tion problems. We also examine different population diversity strategies,
as well as different weighting schemes for combining fitness and diver-
sity scores. After producing sets of solutions for the above experiments,
we manually tabulate higher-level emergent behaviour observed in the
evolved predators. The use of K-nearest neighbours (K=32) with popu-
lation archive, combined with a fitness:diversity weighting of 50:50, gave
the best results, as it effectively balanced good fitness performance and
diverse emergent behaviour.

1 Introduction

An evolutionary algorithm (EA) is typically designed with specific goals to solve,
for example, minimizing a price or maximizing a score. The nature of EA search
is that multiple instances or runs of searches often converge to similar solutions.
If the fitness of such generic solutions is acceptable and of primary interest, this is
not a problem. In some applications, however, the goal is not simply to evolve a fit
solution. For example, consider the task of creating an intelligent agent opponent
(NPC, or non-playable character) for a video game. A computer opponent that
always behaves in a predictable manner is undesirable, since human players will
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 345–360, 2024.
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quickly learn to adapt to it, which makes the game monotonous, unchallenging,
and not fun to play. But as is the aforementioned nature of EA search, multiple
runs to evolve an intelligent agent controller often converge to a similar “generic”
agent, which becomes a boring NPC competitor for a human.

There exist many works that attempt to remedy this problem. Liberatore
et al. explore evolution occurring in real-time [15]. While their work showed
promise, compromises had to be made in order to ensure that the real-time evo-
lution did not negatively impact the player’s device too drastically. Dockhorn and
Kruse explore evolution occurring for multiple NPCs separately [7]. Their work
was successful at adding diversity, but required multiple agents, where each agent
would exhibit the issue of monotony on its own. Alhejali and Lucas explore the
use of evolution occurring throughout multiple environments [1]. Agents could
successfully adapt to the new environments, but would still act with monotony
among the same environments. Rohlfshagen and Lucas introduce a competition
to encourage improvements in general [21]. Competitions like this are great for
generating interest in regards to the presented issue, but participants are scored
on how effective their agents are, not how fun their agents are.

There is a practical need for computer automation of intelligent agent design,
for example, by using EAs to evolve agents. Hand-coding intelligent agents
comes with two significant caveats: (1) developers must spend time and resources
designing the behaviours of the NPCs; and (2) players will eventually learn and
grow tired of the same behaviours being exhibited by the NPCs. As noted by
Bullen and Katchabaw, it is important to produce enjoyable and satisfying expe-
riences for players [3]. Therefore, we should consider behavioural diversity.

1.1 Diversity Search

The search for diversity is a relatively young concept, which has been gaining
traction in recent years. Some early approaches to the concept are explored
by Lehman and Stanley [11–13], and Mouret and Doncieux [18], who have
shown diversity search techniques outperforming their fitness-focused counter-
parts. These techniques are demonstrated to solve problems like the deceptive
maze problem, which is inherently difficult for fitness-based optimization. Fit-
ness relies on static measurements, such as the distance between the agent and
the end-goal, and so thorough exploration is often lost to premature convergence.
The diversity-based evaluation strategies prove that one can solve this problem
by encouraging diverse behaviours among the population.

Diversity search has been applied to the pursuit domain problem. Pozzuoli
and Ross improve agent diversity using the MAP-Elites algorithm [20]. Using an
age-layered evolutionary algorithm, it is shown that diverse behaviours can be
encouraged during evolution. Joseph uses deep learning to evolve diverse high-
level emergent predator behaviours [9]. After training a CNN on trace images
of predator movements seen during simulations, the CNN is able to inform the
fitness evaluation of the degree that these trained behaviours are seen during
evolution, and thus allow exploration of new, unique behaviours.
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An important note to make when considering the search for diversity is the
shift of the overall objective. Fitness-based evaluation relies on a static objective,
while diversity-based evaluation is more open-ended [14]. This open-endedness
results in a large search space that might contain vast regions of undesirable
behaviours. Gomes et al. explain that this problem is “overcome by combining
exploratory pressure of novelty search with the exploitative value of fitness-based
evolution” [8]. Mouret successfully explores the use of multi-objectivization to do
so [19].

1.2 Contributions

This paper presents a number of contributions to the problem of evolving intel-
ligent agents that are both fit (effective) and diverse (interesting). We examine
the pursuit domain problem (aka predator vs prey), in which the predator con-
troller is evolved with genetic programming [10]. We are inspired by Lehman
and Stanley’s novelty search [12], in which both fitness (number of prey cap-
tured) and novelty (diverse behaviour) contribute to the optimization function.
Combining fitness and diversity in this manner is called quality-diversity search
[4]. We use the many-objective strategy of sum of ranks (or average rank) to
combine four rudimentary behaviour measurements together, in order to calcu-
late a diversity distance measurement [2,5]. We compare a number of distance
calculation strategies, as well as weighting schemes for combining fitness and
diversity scores. Finally, we manually observe the emergent behaviour of evolved
solutions, to determine whether the diversity measurement combined with fit-
ness indeed results in identifiable novel or “interesting” behaviour. Our primary
goal is to encourage behavioural diversity among solutions, while simultaneously
maintaining high fitness.

More details of this research are in [6].

1.3 Organization of Paper

Section 2 describes the design of the systems used: the simulation environment,
agent controllers, genetic programming language, multi-objective analysis, and
evaluation strategies. Section 3 describes the experiment design, outlines the
most important experiments conducted throughout this research, and discusses
their results. Section 4 summarizes the paper and suggests future research direc-
tions.

2 System Design

2.1 Simulation Environment

For efficiency reasons, many works in predator-prey problems limit agent move-
ments to the four discrete directions (up, down, left, right). However, this can
constrain variations in behaviour. Our simulation environment is continuous, in
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which floating point values are used for the coordinates, speeds and rotations.
This means the agents are free to move in any direction by any amount (unless
restricted by other means). This should allow agents to potentially exhibit a
broad range of behaviours.

Every simulation runs for 5000 time units (ticks). During a tick, each agent
takes its turn, starting with the predator. Once all the turns are completed, the
next simulation tick begins. The predator must catch as many prey as possible
before the simulation ends. If a predator and a prey are ever within the same
cell, the predator immediately catches the prey and is awarded a fitness point.

2.2 Agent Controllers

Each agent has a two-dimensional location vector (LOC ) representing their coor-
dinates within the environment, a two-dimensional rotation vector (ROT ) rep-
resenting the direction they are facing, and a speed value (SPEED) representing
the maximum distance they can move in a single turn. During the predator’s
turn, the predator will collect information on the environment and feed it into its
GP-evolved tree. The value returned after executing the tree will replace their
ROT for this turn. The predator then rotates to match the direction of ROT
and moves in that direction. The distance moved is equal to the magnitude of
ROT , clamped between 0.0 and SPEED .

The prey behave in a similar manner, replacing the GP-evolved tree with
their own semi-constant rotation speed value (ROTSPEED). During their turn,
the prey will rotate their ROT by ROTSPEED and move in that direction 0.7
units. Every five ticks, the prey will modify ROTSPEED by a small random
amount. The result is an agent that appears to move in a natural but random
motion which can be likened to the movement of a bee searching for a flower.

As shown in Fig. 1, the predator has a field of view of 90◦ with a distance
of 20.0 units, and a sensing radius of 5.0 units If a prey enters either of these
zones, the predator will become aware of its location for as long as the prey
remains within either of them. When a prey leaves the predator’s field of view,
the predator will remain aware of the prey’s location for another five ticks. When
a prey leaves the predator’s sensing radius without ever being in the field of view,
the predator will lose awareness of the prey immediately.

2.3 Genetic Programming

The Java-based ECJ v.27 [16] is used as the GP platform. The GP parameters
used are in Table 1, and most are common in the literature [10].

The GP language is strongly typed [17], and uses three types: conditions (C),
floats (F), and 2D vectors (V). The functions and terminals for these types are
in Tables 2, 3, and 4. This rich set of language primitives is provided to facilitate
the emergence of unexpected and complex behaviours. Most of the language is
self-explanatory from the table; see [anon.] for more details. While the language
is strongly-typed, functions exist to convert between types: a condition can be
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Fig. 1. Predator Agent Perception. A diagram displaying the sight and sensing areas
of a predator.

made from a float using ToCondition; and a vector can be made from two floats
using MakeVector. The Get and Set functions provide basic memory, which can
share values between ticks in the simulator.

2.4 Computing Diversity

The fitness of an individual represents its effectiveness as a predator, which is
measured by its prey capturing skill. The diversity of an individual is the unique-
ness (novelty) of its behaviour during the simulation. The final score used in GP
evolution is a (weighted) combination of the individual’s fitness and diversity
scores, with the goal to maximize both.

The main algorithm steps in computing diversity are as follows:

1. Calculate individual behaviour vectors: For every individual in the pop-
ulation, collect its four rudimentary behaviour scores and save them into a
raw behaviour vector.

2. Create a baseline behaviour vector for the population comparison
set: This baseline vector is an average of all behaviour vectors in the com-
parison set.

3. Create individual distance vectors: For every individual, compare each
raw behaviour vector value against the corresponding baseline vector value.
The differences are stored in the corresponding components in a new distance
vector for the individual.

4. Score the population using sum of ranks: Using sum of ranks, rank every
distance vector in the population. The fitness score will also be combined at
this stage.

Details of each step are discussed below.

2.5 Behaviour Vectors

Unlike the fitness score, diversity is open-ended, as it is measured relative to
the current population or subset thereof. One can think of diversity as being a
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Table 1. GP Parameters

PARAMETERS

GENERATIONS 100
POPULATION SIZE 1000
CROSSOVER RATE 0.90
MUTATION RATE 0.10
CROSSOVER MAX DEPTH 17
MUTATION MAX DEPTH 17
CROSSOVER TRIES 10
MUTATION TRIES 1
TOURNAMENT SIZE 3
ELITISM SIZE 3
GROW MIN DEPTH 5
GROW MAX DEPTH 5
GROW RATE 0.50
HALF MIN DEPTH 2
HALF MAX DEPTH 6
HALF GROW RATE 0.50
TERMINAL RATE 0.10
NON-TERMINAL RATE 0.90

“distance measure” in an abstract behaviour space. The actual characteristics
that might be used to define this space are numerous and varied, and may
greatly impact the effectiveness of using diversity during evolution. We chose
the following four rudimentary measurements for the behaviour space: (i) wall
impacts – the number of times a predator hits a wall; (ii) total time near prey –
total time in which prey is detected within the predator’s sensing area (Fig. 1);
(iii) cells visited – the number of unique arena cells visited by the predator;
(iv) average speed. These measures were chosen because they represent different
aspects of predator interaction with the environment, and do not overlap one
other in drastic ways. They are also efficient to compute. Each individual in the
population will have these measurements calculated during a simulation. The
resulting values comprise its 4-dimensional behaviour vector:

< bi1, b
i
2, b

i
3, b

i
4 >

Note that these metrics can use different scales of measurement. For example,
wall impacts can range from 0 to 5000, while average speed will be a float value
between 0.0 and 1.0. They will be normalized when they are converted to a score
usable by evolution (Sect. 2.6).

Diversity distance is a measure of how different (far away, distant) an individ-
ual resides from other population members in 4D-behaviour space. To determine
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Table 2. GP Language: Type C (conditional, boolean)

FUNCTION (C) DESCRIPTION

Branch (C1,C2,C3) Returns C2 if C1 is true
Returns C3 otherwise

Ephemeral Returns a random condition
Condition is initialized on node creation

EqualTo (F1,F2) Returns true if F1 and F2 are equal (± 0.1)
GreaterThan (F1,F2) Returns true of F1 is greater than F2

Get Returns the value stored by “Set”
HittingWall Returns true if against a wall
ProximityCheck Returns true if a prey is sensed
SeesPrey Returns true if a prey is seen
SeesWall Returns true if a wall is seen
Set (C1) Returns C1 and stores the value in memory

Value will be unchanged until set again
ToCondition (F1) Returns true if F1 is non-negative

the distance of an individual, one needs to compute its distance from a compari-
son set. In its simplest form, the comparison set can be the rest of the population.
However, it can also be a subset of the population, as well as an archive of indi-
viduals from earlier populations. Once the comparison set is defined, a baseline
behaviour vector is computed, which is a vector of average behaviour scores from
the comparison set.

We explore the following variations of comparison sets:

– All Neighbours (AN): Individuals are compared against the entire popu-
lation.

– All Neighbours with Archive (ANA): Individuals are compared against
the entire population and an archive of the previous four generations’ popu-
lations.

– K-Nearest Neighbours (KNN): Individuals are compared against the K-
nearest neighbours from the current population. We use K=32.

– K-Nearest Neighbours with Archive (KNNA): Individuals are com-
pared against the K-nearest neighbours (K=32) from the current population
and the previous four generations’ populations.

In each of the above strategies, the baseline vector is computed as the average
behaviour value found in the defined comparison set:

< b̄1, b̄2, b̄3, b̄4 >

After a baseline vector is determined for the comparison set, an individual
i’s distance vector is determined:

< |bi1 − b̄1|, |bi2 − b̄2|, |bi3 − b̄3|, |bi4 − b̄4| >
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Table 3. GP Language: Type F (float)

FUNCTION (F) DESCRIPTION

Add (F1,F2) Returns sum of F1 and F2

Average (F1,F2) Returns average of F1 and F2

Branch (C1,F1,F2) Returns F1 if C1 is true
Returns F2 otherwise

BreakVectorX (V1) Returns X value from vector V1

BreakVectorY (V1) Returns Y value from vector V1

Cosine (F1) Returns cosine of F1

CurrentTick (F) Returns the current tick of the simulation
Divide (F1,F2) Returns F1 divided by F2

Dividing by zero produces zero
Dot (V1,V2) Returns dot product of V1 and V2

Ephemeral Returns a random float [−1.0,+1.0]
Float is initialized on node creation

Get Returns the value stored by “Set”
Invert (F1) Returns F1 flipped
MaxXY (F::=F1F2) Returns the greater value among F1 and F2

MinXY (F1,F2) Returns the smaller value among F1 and F2

Multiply (F1,F2) Returns F1 multiplied by F2

Set (F1) Returns F1 and stores the value in memory.
Value will be unchanged until set again

Sine (F1) Returns sine of F1

StepsSinceLastCatch Returns length of time since last catch
Subtract (F1,F2) Returns F1 subtracted by F2

VectorLength (V1) Returns length of the vector V1

The greater the difference between an individual’s behaviour and the correspond-
ing baseline behaviour, the more diverse that individual will be with respect to
that behaviour.

2.6 Score the Population Using Sum of Ranks

The final step is to combine the population fitnesses and distance vectors into
single scores for each individual, which will be used during evolution. As seen
above, an individual’s diversity is based upon the distance vector computed from
the four raw behaviour measurements. High distance values are preferred.

We combine distance scores using the many-objective evaluation strategy
called sum of ranks (or average rank), which has a successful track record in
multi-objective optimization when four or more objectives are considered [2,5].
Sum of ranks allows us to combine multiple objective scores into one without
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Table 4. GP Language: Type V (vector)

FUNCTION (V) DESCRIPTION

Add (V1,V2) Returns sum of V1 and V2

Branch (C1,V1,V2) Returns V1 if C1 is true
Returns V2 otherwise

Ephemeral Returns a random vector ([−1,1],[−1,1])
Vector is initialized on node creation

Get Returns the value stored by “Set”
Inverse (V1) Returns the inverse (negated) V1

MakeVector (F1,F2) Returns vector (F1,F2)
Normalize (V1) Returns the unit vector of V1

PredLocation Returns predator’s location vector
PredRotation Returns predator’s rotation vector
ProximityCheck Returns location of a sensed prey

Returns predator’s location otherwise
ReplaceX (F1,V1) Returns V1 with X replaced by F1

ReplaceY (F1,V1) Returns V1 with Y replaced by F1

Rotate (F1,V1) Rotates V1 by F1 degrees
Set (V1) Returns V1 and stores it in memory
SightCheck Returns location of a seen prey

Returns predator’s location otherwise
Subtract (V1,V2) Returns V1 subtracted by V2

SwapXY (V1) Returns V1 with swapped X and Y values

consideration of different measurement scales used among the scores. We will
also use it to create a weighted sum of fitness and diversity during the final step
in the process.

Consider Table 5 There are six individuals in the population, and two
behaviour distance scores (A and B). The ranks column shows the integer rank
of each separate objective; lower integers are assigned to preferred (higher dis-
tance) scores. If one sums these ranks, the result is the value in the sum of ranks
column, where low values are preferred. In some applications, this score suffices
as a measure to be used for fitness-based selection during evolution.

However, the raw sum of ranks score can be biased if one objective has a
greater number of ranks than another. This is the case here, since A has five
ranks in total, while B has three. By dividing the rank scores by the maximum
rank for that respective objective, and summing these normalized values, the
normalized sum of ranks is determined. Note how the rank ordering (integers in
parentheses) of sum of ranks and normalized sum of ranks differ. Normalization
has created a finer resolution of scores, by removing the bias caused by the
disparity of total ranks between A and B.
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Table 5. Sum of Ranks Example

INDIV. Raw Fitness Ranks Sum of Norm. Sum
A B A B Ranks (Rank) of Ranks (Rank)

1 10 50 2 1 3 (1) 0.73 (1)
2 2 30 3 2 5 (3) 1.27 (4)
3 1 50 4 1 5 (3) 1.13 (2)
4 0 30 5 2 7 (5) 1.67 (6)
5 0 50 5 1 6 (4) 1.33 (5)
6 16 9 1 3 4 (2) 1.20 (3)
Max rank = 5 3

Once the normalized sum of ranks is determined for the diversity score, these
values are normalized between 0.0 and 1.0. Likewise, the normalized ranks for
fitness are calculated. The fitness and diversity scores are then combined for each
individual i:

Final_scorei = (w1Fitnessi) + (w2Diversityi)

where Fitnessi and Diversityi are normalized sum of ranks values, and w1 and
w2 are appropriate weights. Our weights range from 0.0 to 1.0.

3 Experiments

Experiments uses a weighting to combine fitness and diversity score. This weight-
ing is referred to in the format XF/YD, where X is the fitness weight and Y is
the diversity weight. Every experiment has 30 runs.

3.1 Setting a Baseline

Fig. 2. Baseline Experiment (100F/0D) Final Scores. Note that diversity of solutions
is measured, although it is not used during evolution.
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To begin, we obtained baseline results that ignore diversity influences, by running
GP using 100% fitness and 0% diversity (100F/0D). Figure 2 shows the fitness
score of the baseline along with the diversity scores reported by each of the four
diversity-based evaluation strategies. The baseline experiment demonstrates this
convergence, as the low diversity scores show that the 30 evolved agents exhibit
the same general raw behaviours.

3.2 Testing the Diversity Strategies

Four sets of experiments followed the baseline. Each set focused on a single
diversity-based evaluation strategy (AN, ANA, KNN, or KNNA), wherein each
experiment in the set used different weights. Specifically, each of the four sets
explored five weighting combinations: 100F/0D (baseline), 75F/25D, 50F/50D,
25F/75D, and 0F/100D.

Fig. 3. Final Scores of All Strategies. The summed fitness and diversity scores (total
score) achieved by each diversity strategy organized into the five weighting combina-
tions.

A plot of combined fitness/diversity score distributions are shown in Fig. 3.
Note that scores plotted for diversity-heavy weights (25F/75D, 0F/100D) are
clearly weaker than the others, showing that fitness is not contributing signifi-
cantly. Furthermore, the KNNA results (K-nearest neighbours with archive) are
often superior to other strategies. Page constraints mean we will focus on the
KNNA experiments henceforth. (See [anon.] for details on other experiments).
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Fig. 4. KNNA Final Scores. Final scores of the best individual from each experiment.
Scores are averaged over five test simulations during each of the 30 runs.

Figure 4 breaks down the KNNA experiment set to further analyse the five
weighting combinations. As expected, a weighting shift from fitness to diversity
causes the fitness score to decrease while the diversity score increases. Of note
is that the fitness decreases very little to achieve a significant diversity increase.
Specifically, KNNA 50F/50D traded 3% from the fitness score to gain 8% for the
diversity score. Note that fitness and diversity scores are not directly comparable
in terms of what they denote. As is shown below, the subjectivity of “interesting”
emergent behaviours means that a small increase in diversity score may have a
significant impact.

Table 6. Emergent Behaviour Descriptions

BEHAVIOUR DESCRIPTION

WANDERING Is moving without an obvious pattern
SCRAPING Scrapes along the walls of the arena when moving
BOUNCING Bounces off of walls upon impact
SCANNING Scans up and down each row or column sequentially
CIRCLING Moves in circular motions
SHAKING Does not maintain a smooth rotation; field of view shakes
SPLITTING Flips between two rotations every tick
CHASING Chases a prey
POUNCING Chases and immediately catches a prey
IDLING Does not move
STALKING Chases but intentionally avoids catching the prey
SLOWING Gradually slows speed
CAMPING Spends majority of time near one location
AVOIDING Moves around prey
FLICKERING Switches between moving and idling every other tick
HERDING Chases prey against a wall and holds it there
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An analysis of emergent behaviour of evolved predators is required in order
to confirm that behaviours are truly more diverse. To do this, the best individual
from every run of an experiment was observed in the simulation environment,
and the exhibited emergent behaviours were recorded and tallied. The qualitative
analysis process is subjective, since it must be done through human observation.

To mitigate biased decisions, simulations were watched in a random order,
with the diversity strategy unknown to the observer until after recording. Table 6
lists our characterizations of observed emergent behaviours, which were collected
during preliminary observations of evolved agents in the simulation.

Behaviours are labelled as either “primary” or “secondary”. Primary
behaviours are those that appear to be the most prominent during an entire
simulation, and are always a type of locomotion-based behaviour, for example,
wandering, scraping, and scanning. Secondary behaviours are observed to exist
alongside the primary behaviour. This could include a predator that scrapes the
walls but does so with shaky movement; scraping would be primary while shak-
ing would be secondary in this example. A predator can also exhibit multiple
locomotion-based behaviours, but only the most prominent will be marked as
primary.

Fig. 5. Observed emergent behaviours - KNNA 100F/0D versus KNNA 50F/50D. Side-
by-side comparison of the empirical analyses of the best solution from each of the 30
runs used in each experiment. Tallies indicate that the behaviour was observed at least
once during that simulation.

Figure 5 shows a summary of emergent behaviours observed for the 100F/0D
and KNNA 50F/50D runs. The baseline 100F/0D results are as expected: a
single behaviour was overused and exploited. Due to the prey getting stuck on
the walls for several turns at a time (caused by their random movement), the
predator learned to simply scrape the environment walls in hopes of catching the
unlucky prey. Some secondary behaviours arise on occasion, but they are infre-
quent and fleeting. On the other hand, almost every simulation from the KNNA
50F/50D experiment utilized scraping like the baseline, but a high diversity score
is achieved by incorporating more secondary behaviours. More importantly, some
new high-level emergent behaviours arose, for example:
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1. Sleeping To Scraping: The predator sits idly and ignores any prey crossing
its field of view. Once a prey crosses the predator’s sensing radius, it chases
the prey to a wall and begins scraping for the remainder of the simulation.

2. Strolling To Scraping: Similar to above, but the predator moves at an espe-
cially slow speed in a circular motion until hitting a wall. Then the predator
begins scraping behaviour.

3. Selective Bouncing: The predator scrapes along three walls as normal,
but bounces along the fourth. Sometimes during the bouncing, the predator
pounces on nearby prey before returning to the wall. This is especially inter-
esting since the pouncing behaviour requires the GP to evolve the correct
vector mathematics to locate and navigate to detected prey, but scraping has
no need for this technical ability.

4. Passive Wall Scraping: The predator scrapes the walls, but stops and waits
for stuck prey to move out of the way before continuing forward. This occurs
at seemingly random times, giving the impression that the predator is a “picky
eater” and is waiting for a different catch.

5. Scraping With Chasing: The predator scrapes the walls as normal, but if
a prey gets unstuck and leaves the wall moments before capture, the predator
chases and catches the prey. After that, the predator turns around and returns
to scraping.

In conclusion, we suspect that GP evolved solutions switch between different
behaviours throughout the simulation in order to balance the fitness score with
the diversity score. In most KNNA 50F/50D solutions, the predator efficiently
scrapes the walls to catch as many prey as possible, but in order to maintain
a high diversity score, alternate emergent behaviours appeared throughout the
simulation, and most significantly, were not detrimental to the predator’s hunting
abilities.

3.3 Discussion

The primary goal of this research was to find a strategy that promotes diverse
emergent behaviour, while minimally impacting the predator’s prey capturing
skill. The KNNA 50F/50D is the most successful candidate strategy in this
regard. To support this claim, we apply a Mann-Whitney U test (alpha =
0.05, 30 data points per experiment) to the experimental fitness and diver-
sity scores, comparing strategies with the 100F/0D vanilla GP. The intention
is to highlight strategies in which solutions exhibit both statistically signifi-
cant increases in diversity and negligible changes in fitness, when compared
to 100F/0D. The following five strategies were flagged: AN 75F/25D, ANA
75F/25D, KNN 75F/25D, KNNA 75F/25D, and KNNA 50F/50D. However, we
examined the emergent behaviours of the 75F/25D strategy solutions, and the
observed emergent behaviours were unremarkable and too subtle to notice. On
the other hand, the KNNA 50F/50D results clearly showed observable diverse
emergent behaviours. We therefore designate the KNNA 50F/50D strategy as
the most successful one.
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4 Conclusion

This research explored strategies designed to encourage diverse behaviours while
still maintaining an appreciable level of efficacy (fitness). The nature of fitness-
based evaluation tends to exploit particular behaviours in monotonous and unin-
teresting ways. With the addition of diversity-based evaluation, this is reme-
died. K-Nearest Neighbours with Archive (KNNA) with an even 50/50 weighting
between fitness and diversity scores achieved the best quantitative results. These
results were confirmed by examining the emergent behaviours of solutions.

The use of many-objective sum of ranks was successful in combining fitness
and the four raw behaviour measurements. Pareto multi-objective scoring, such
as in [19], degenerates when four or more objectives are considered. Sum of ranks
has proven success in other problem domains having 15 or more objectives [2,5].
Future work could consider more behaviours than the four we used, which would
likely result in even richer varieties of emergent behaviours.

Another contribution is our evaluation of emergent behaviours of solutions,
to confirm that high diversity scores equate to an increase in noticeable emergent
behaviours. Admittedly, this is a very time-consuming and subjective analysis,
and is prone to human bias. The emergent behaviours we identified, however, are
not so straight-forward to measure, because they are inherently “unexpected” and
hence difficult to program in advance for identification purposes. A user survey
to identify generic verses interesting agent behaviour would mitigate human bias.

There are other directions for future work. Other intelligent agent problems
such as herding and food gathering could be studied. A 3D environment with a
physics simulation could be considered, as the types of emergent behaviour would
be much more complex. The automatic identification of emergent behaviour of
agents, perhaps via machine learning as in [9], is worth considering.
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Abstract. Emergent behaviour arises from the interactions between
individual components of a system, rather than being explicitly pro-
grammed or designed. The evolution of interesting emergent behaviour
in intelligent agents is important when evolving non-playable characters
in video games. Here, we use genetic programming (GP) to evolve intel-
ligent agents in a predator-prey simulation. A main goal is to evolve
predator agents that exhibit interesting and diverse behaviours. First,
we train a convolutional neural network (CNN) to recognize “generic”
prey behaviour, as recorded by an image trace of a predator’s movement.
A training set for 6 generic behaviours was used to train the CNN. A
training accuracy of 98% was obtained, and a validation performance of
90%. Experiments were then performed that merge the CNN with GP
fitness. In one experiment, the CNN’s classification values are used as a
“diversity score” which, when weighted with the fitness score, allow both
agent quality and diversity to be considered. In another experiment, we
use the CNN classification score to encourage the evolution of one of the
known classes of behaviours. Results were that this trained behaviour
was indeed more frequently evolved, compared to GP runs using fitness
alone. One conclusion is that machine learning techniques are a power-
ful tool for the automated generation of diverse, high-quality intelligent
agents.

1 Introduction

In order for a player to be engaged in playing a video game, the game needs to
be both challenging and interesting. “Challenging” implies that the player must
develop skill to get a good score. On the other hand, “interesting” is not so easy
to define. A very challenging game that the player cannot hope to win against
will be decidedly uninteresting. However, one in which the computer opponent
exercises the player’s skill in unpredictable and innovative ways, would be an
interesting one for the player.

The topic of computer games is a popular application area for AI research
[22]. One much-studied topic is the automatic generation of computer opponents
(aka non-playable characters, or NPCs). In pursuit (predator-prey) games, of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14635, pp. 361–375, 2024.
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which Pac-Man is an example, an intelligent agent is given the task to capture
a set number of prey agents scattered across the environment [18]. Evolutionary
algorithms are commonly used to evolve the predator’s controller [14,15]. A
fitness score tallies the number of prey the predator caught during a run and
is used to determine who moves forward in the evolutionary process. A result,
however, is that evolved predators often exhibit generic, monotonous behaviour,
thanks to the effect of fitness pressure to obtain the best performing agent, which
is not necessarily an interesting one.

Diverse behaviour helps agents perform under situations of uncertainty and
creates more interesting computer opponents. Novelty search [11] rewards agents
for discovering new and unexpected behaviours, regardless of their performance.
Research in [5] combines fitness and novelty search to evolve predator agents,
and a weighting of 50% resulted in good quality predators with assorted emer-
gent behaviours that did not arise as frequently with fitness-only evolution. The
work in [17] uses the MAP-Elites [13] quality-diversity algorithm to evolve an
assortment of predator agents with varied emergent behaviours.

In the context of pursuit simulations, identifying and characterizing agent
behaviour can be a difficult task due to the complexity of agent interaction
with the environment. Predator agents often exhibit a wide range of behaviours
and hunting strategies, such as ambushing or pursuit, which make it difficult to
develop objective criteria for identifying and analyzing agent actions. Another
problem is that it can be subjective and context-dependent, which can make it
challenging to be consistent when labeling data. It can also be time consuming
to manually label thousands of agents [5].

The goal of this research is to use deep learning to model the emer-
gent behaviours of intelligent agents. By automating the recognition of agent
behaviour, we can quickly distinguish common behaviours from unusual ones.
This CNN will then be combined with genetic programming (GP) to assist in
the evolution of high-quality, interesting predator agents. Fitness will use the
number of prey captured, while the CNN will contribute a diversity score based
on its evaluation of the behaviours seen. With this fitness-diversity scoring sys-
tem, we have the ability to evolve agents that exhibit new emergent behaviours,
while still encouraging prey-capturing skills. We can also use the CNN to help
evolve specific known behaviours. More details of this research are in [6].

Section 2 presents the system design of the CNN and GP system. Section 3
discusses training and testing of the CNN model. Section 4 illustrates exper-
iments that use the CNN and GP system together, to evolve diverse agents.
Section 5 uses CNN and GP to evolve agents having a specific target behaviour.
Section 6 gives final conclusions and suggestions for future work.

2 System Design

2.1 Pursuit Domain Simulation

A predator-prey simulation environment was implemented in Java. GP-evolved
predators executed in the simulation are tasked to capture as many prey agents
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as possible within a fixed time limit. The number of prey captured will be the
predator’s fitness score. The system also records other details seen during a
simulation, for example, a trace of the predator’s movement. This recording
will be used later to encode image traces of a predator’s movements, which are
required for processing by the CNN system for classifying predator behaviours.

The simulation maintains the following state information during its execu-
tion: (i) agent location (x, y coordinates); (ii) orientation (angle); (iii) GP tree
and its evaluated (float) value, which updates the orientation value; and (iv)
speed. The environment is a continuous, floating-point 200-by-200 unit arena
in which the predator is free to move around. The advantage of a continuous
environment over a discrete, integer-based grid is that it enables subtle changes
in speed and direction, which will encourage interesting emergent behaviours.
The predator agent always starts in the center of the environment and faces a
random direction. At the start of the simulation, 25 prey agents are randomly
placed inside the environment. After all agents are initialized, they then move in
straight directions, with occasional random turns. When the predator is within
1 unit of a prey, the prey is considered captured.

Fig. 1. Predator Perception

Figure 1 shows the perception fields of a predator agent who has the ability
to seek and sense in every direction. A predator’s ability to sense depends on the
composition of its evolved controller (see Table 2). A full suite of sensors is not
always guaranteed, as predator agents can differ from one another depending on
their GP-evolved controller.

2.2 GP Architecture

Genetic programming (GP) is used to evolve predator agents [8,16]. We imple-
ment the GP system in ECJ 27 [12]. GP parameters used in experiments are in
Table 1, and most are standard in the literature [8,16].

The GP language is shown in Table 2. The purpose of a GP tree is to per-
form predator sensing and movement in the simulation. Every clock tick of the
simulator involves executing the GP tree, in order to determine speed and direc-
tion changes during that tick (see Sect. 2.1). SetSpeed saves the clamped floating
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Table 1. GP Parameters

Parameter Value

Generations 50
Number of Simulation Steps 5000
Population Size 500
Tournament Size 2
Maximum Tree Depth 15
Crossover Chance 90%
Mutation Chance 10%
Growth Algorithm Half Builder
Growth Chance 50%
Initial Depth 2 to 6

point value as the next speed to use; the last execution of this function will be
the one that is used. MovesRemaining, MovesTaken, Orientation, PreyCaptured,
and PreyRemaining are terminals that return the current respective values from
the environment. The functions prefixed with Seek, Sense, TouchingWall, and
GreaterThan are all conditionals that test the condition and react accordingly.
The remaining functions perform arithmetic, or return ephemeral constants or
pi.

2.3 CNN Architecture

The CNN will take a trace image of a predator’s movement during a simula-
tion, and attempt to classify it according to its trained model of behaviours.
The CNN uses a supervised approach for training, where each trace has been
manually labelled based on one of six emergent behaviours. The behaviours were
specifically chosen to be easy for manual identification.

The CNN architecture is shown in Table 3. The system is implemented using
Python 3.7 [20] and TensorFlow 2.12 [1]. The architecture chosen was based on
the work of [4], which performed a similar kind of image classification task to
ours, but for L-systems images. The model was also inspired by VGGNet [19] and
LeNet [10]. The CNN consists of 13 layers, each with different characteristics.
The rescaling layer is the first layer. It takes an image input of (200, 200, 1), and
normalizes all pixel values between 0 and 1. The following six layers consist of
convolutional layers and max pooling layers. In each of the convolutional layers,
a kernel size of (3, 3) is chosen alongside the ReLU activation function. The
max pooling layers use a pool size of (2, 2). By combining these two layers and
increasing the number of filters at each stage, various features can be extracted
from the images. Layers 8, 10, and 12 are dropout layers which help to prevent
overfitting by randomly dropping out some of the neurons. The first dropout
layer uses a rate of 0.25, whereas the final two dropout layers use a rate of
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Table 2. GP Language

GP Function Description

SetSpeed (A) Set predator speed to [0.5 <= A <= 5.0] and return A

MovesRemaining The number of moves remaining in the current run

MovesTaken The number of moves taken in the current run

Orientation The current orientation of the predator

PreyCaptured The number of prey captured in the current run

PreyRemaining The number of prey remaining in the current run

SeekPreyLeft (A, B) If prey in left vision radius return A, else return B

SeekPreyRight (A, B) If prey in right vision radius return A, else return B

SeekWall (A, B) If wall in vision radius return A, else return B

SensePreyNorth (A, B) If prey in north sensing radius return A, else return B

SensePreyEast (A, B) If prey in east sensing radius return A, else return B

SensePreyWest (A, B) If prey in west sensing radius return A, else return B

SensePreySouth (A, B) If prey in south sensing radius return A, else return B

TouchingWall (A, B) If prey touching wall return A, else return B

GreaterThan (A, B, C, D) If A < B return C, else return D

Add (A, B) Return A + B

Subtract (A, B) Return A − B

Multiply (A, B) Return A · B
Divide (A, B) If B �= 0 return A ÷ B, else return 0

Negative (A) Return −A

Sin (A) Return sin(A)

ASin (A) Return arcsin(A)

Ephemeral Random constant between [–1, 1]

Pi The number π

0.50. The dense layers are fully connected and use batch normalization which
allow for faster and more stable training of the network. The output layer uses
a softmax activation function to produce a probability distribution over the six
output classes.

2.4 Combined GP/CNN System

Figure 2 gives a high-level overview of the combined automatic agent generator
system and its 3 key components. The GP component consists of the simulation
itself as well as the GP controller used to control the predator agent in its
environment. Once the simulation has run for 50 generations, a trace file is
generated which depicts the best performing predator’s movements. This is then
converted to an image trace generator, for use by the CNN for classification.
The CNN’s classification score is then returned to the GP system, to be used
for fitness/diversity evaluation.
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Fig. 2. System Architecture (Blue: GP Simulation, Green: Trace Generator, Purple:
CNN Classifier) (Color figure online)
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Table 3. CNN Architecture

# Layer Output
Shape

Neurons Activation
Function

Note

1 Rescaling (200, 200) 1 Input
2 Conv2D (198, 198) 32 ReLU Kernel Size = (3, 3)
3 MaxPooling2D (99, 99) 32 Pool Size = (2, 2)
4 Conv2D (97, 97) 64 ReLU Kernel Size = (3, 3)
5 MaxPooling2D (48, 48) 64 Pool Size = (2, 2)
6 Conv2D (46, 46) 128 ReLU Kernel Size = (3, 3)
7 MaxPooling2D (23, 23) 128 Pool Size = (2, 2)
8 Dropout (23, 23) 128 Rate = 0.25
9 Dense (256) 256 ReLU Batch Normalization
10 Dropout (256) 256 Rate = 0.5
11 Dense (128) 128 ReLU Batch Normalization
12 Dropout (128) 128 Rate = 0.5
13 Dense (6) 6 Softmax Output

Table 4. CNN Training Parameters

Parameter Value

Validation Split 20%
Batch Size 32
Optimizer Adam
Metrics Accuracy, Loss
Loss Type Sparse Categorical Cross-entropy
Epochs 20

3 CNN for Emergent Behaviour Classification

3.1 CNN Training

After many trial runs of GP and the pursuit simulator, we recognized six com-
mon emergent behaviours (Fig. 3) that were suitable for classification by the
CNN. Classic pursuit is a commonly seen behaviour, which primarily involves a
predator sensing and chasing a prey. The other behaviours are self-expanatory
from their label descriptions.

To train the CNN, we required 2000 examples from each behaviour cate-
gory for training and validation. In order to efficiently generate effective training
sets for the categories, we took each trace instance of a behaviour, and per-
formed sequences of vertical and horizontal image mirror flips, in which combi-
nations of them are equivalent to 90-degree image rotations. Since CNN’s are
rotation-variant, each of the seven flipped/rotated image variants comprises a
unique training example of that behaviour class.
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Fig. 3. Categories of Emergent Behaviours

The training parameters in Table 4 were used, and are common in the lit-
erature [2,3]. The validation split withholds 20% of the training examples to
validate the model. The batch size chosen is 32. The adaptive moment estima-
tion optimization algorithm, Adam [7], is used.

Figure 4 shows the results from training and validation. After training for
20 epochs, a training accuracy of 98% is achieved, indicating a strong fit of
the model to the data set and negating any concerns of under-fitting, while a
validation accuracy of 90% is attained. The training loss converges at 0.065 and
the validation loss converges at 0.37.

To test the CNN model, 50 new trace images for each behaviour category
were given to the CNN. Table 5 shows the testing accuracy of the CNN on each
of the six categories. The behaviours are denoted as ALR (arched line ricochet),
SLR (straight line ricochet), CP (classic pursuit), SCP (small circle pursuit),
MCP (medium circle pursuit), and LCP (large circle pursuit). The first column
denotes the labelled test behaviour, while rows denote the CNN classification
for that labelled behaviour. The green diagonal shows the accuracy of correct
classifications for each behaviour. The richochet (ALR, SLR) behaviours were
the most challenging for the CNN, as there was often confusion between them,
likely due to their similar trace characteristics. Classic pursuit (CP) and medium
circle pursuit (MCP) were the easiest to identify.

Figure 5 visualizes the data in Table 5. For example, the third bar shows that
almost all classic pursuit (CP) traces are correctly identified.
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Fig. 4. CNN Training & Validation Results

4 Diverse Agent Generation

In this section, we combine GP and the trained CNN model in order to generate
intelligent predator agents that are both fit and diverse. The fitness used by GP
when generating training traces is kept, which is simply the normalized total of
number of prey captured:

Fitness = (# prey captured)/25 (1)

The CNN classification (prediction) score is used for diversity:

Diversity = (Prediction− 16.67)/(100− 16.67) (2)

where Prediction represents the CNN’s highest categorical prediction from the
six categories, ranging from 16.67 to 100. This encourages the predator to com-
bine as many of the behaviours as possible, ideally creating an even spread of
each behaviour, rather than using a uniform known one. The overall combined
fitness-diversity scores is an even balance of the above:

Combined Score = Fitness + Diversity (3)

Table 6 summarizes fitness performance over the 30 runs per weighting. In
the plots, lower fitness values are preferred. Note that fitness is weak when no
fitness measure is used (0F100N), and it improves as fitness weights increase.
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Table 5. Average Prediction per Category, CNN Testing. (50 examples per category)

Experiment
/ Class

ALR SLR CP SCP MCP LCP

ALR 35.1546 30.8238 0.007 0.0196 0.0026 5.3338
SLR 32.2062 68.9732 0.007 0.015 0.0032 0.1524
CP 0.5358 0.0184 97.3672 0.4834 0.0028 0.0244
SCP 2.529 0.0184 0.9232 83.0656 0.8588 0.0258
MCP 0.3156 0.0548 1.6754 16.4 98.9784 5.135
LCP 29.2582 0.1112 0.0138 0.0134 0.1516 89.327

Fig. 5. Average Prediction per Category Histogram: CNN Testing

The “sweet spot” weighting is 75F25N, which performs better than 100F0N. This
implies that the CNN is helping fitness quality by promoting genetic diversity
in the population.

The final 3 columns in Table 6 are obtained by taking the best agent from
each of the 30 runs per weighting, and re-executing it in the simulation 30 times,
resulting in 900 traces per weighting category. The resulting averages give more
insight into the fitness performance of best solutions, showing how many prey
are caught on average, as well as the number of simulations in which more/less
than 10 prey were caught.

Figure 6 summarizes the frequency in which different behaviours arise in the
900 traces. CP and SCP are the most common behaviours, while LCP and SLR
the least common. Notably, the 75F25N runs show the best spread of evolved
behaviours. We performed a statistical analysis, and found that changing weight-
ings had a statistically significant effect on the CP and SLR behaviours (p < 0.05;
see [6]).
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Table 6. Fitness Analysis

Avg. Mean
Fitness

Avg. Best
Fitness

Avg. Prey
Caught

# Fit
>10 Prey

# Unfit
<=10 Prey

0F100N 0.721976 0.361333 4.846667 123 777
25F75N 0.530902 0.117333 8.437778 333 567
50F50N 0.352421 0.022667 12.96889 679 221
75F25N 0.245768 0.005333 14.16111 713 187
100F0N 0.261294 0.010667 14.41 693 207

Fig. 6. Behaviour Analysis - Unique. Total of 900 traces per experiment.

Figure 7 shows examples of evolved behaviours. The most diverse trace is (b),
which has the lowest score, and hence is closest to 16.67%. Others have higher
scores, but do not show exclusive features of the labelled categories. Some, such
as (d) and (e), exhibit characteristics of known behaviours – medium circles and
straight-line richochet. Trace (a) shows a combination of straight line ricochet,
small circles, and classic pursuit.

5 Targeted Behaviour Generation

Here, we combine the GP and CNN, but this time use the CNN prediction score
to direct evolution towards one behaviour class – straight line ricochet (SLR).
This behaviour was the least common of the six when creating training data
(Sect. 3.1), and it was also uncommon when evolving diverse predators (Fig. 6).
Hence our combined score is:

Combined Score = Fitness + (SLR Score/100) (4)
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Fig. 7. Some Evolved Behaviours with Diversity Scores (low values preferred)

Table 7. Categorical Data - Targeted

ALR CP LCP MCP SCP SLR

25F75NUnique 40 468 13 35 193 151
75F25NUnique 55 248 9 50 283 255
25F75NTargeted 9 266 1 5 105 514
75F25NTargeted 44 366 14 30 109 337

We test both 25F75N and 75F25N. Each experiment is run 30 times, and the
best solution from each run is simulated an additional 30 times, resulting in 900
traces per weight combination.

Table 7 shows the resulting behaviour frequencies. The unique rows refer to
the results from Sect. 4. The most significant changes occur in the SCP and SLR
columns, which show a significant decrease in SCP behaviours by approximately
50% and an increase in SLR behaviours by over 100%. The previous highest
amount of SLR behaviours was in the 75F25N unique experiment which pro-
duced 255 SLR agents. In the 25F75N targeted experiment the number of SLR
agents increased to 514 which is over 50% of the traces.

Figure 8 summarizes Table 7, including the corresponding weight combina-
tions from the diversity experiment (from Fig. 6). The number of small circle
pursuit behaviours has decreased significantly in the ricochet experiments, and
the number of straight line ricochet behaviours has increased. In the 25F75N
experiment over half of the traces are straight line ricochet which could be a rea-
son why the fitness performance was better than in the 75F25N group. Since the
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Fig. 8. Behaviour Analysis - Targeted. Total of 900 traces per experiment.

Fig. 9. Examples of Generated Straight Line Richochet Behaviours

straight line ricochet behaviour typically encourages the agent to travel across a
large portion of the arena, it is possible that by targeting this behaviour specif-
ically, the number of prey caught will increase. We found that the increase in
SLR behaviours to be statistically significant (p < 0.05; see [6]).

Figure 9 shows some example SLR behaviours arising from evolved predators.

6 Conclusion

This research shows how deep learning can be used to model intelligent agent
behaviour. One challenge while training the CNN was that it is time-consuming
to collect and label thousands of trace images. Also, some categories are easy
to confuse, for example, small and medium circle classes. We did study this
subjective aspect of trace labelling, and found that the CNN’s identification
scores for ambiguous images somewhat matched our own: if we thought an image
was 30% straight line richochet and 70% classic pursuit, the CNN often generated
scores with similar values.

Our CNN design with softmax function must always generate a set of scores
that sum to 1.0. Our assumption in Sect. 4 is that a diverse image does not have a
strong score in any category. However, it is important to realize that any greyscale
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image given to this CNN will result in scores. For example, when a solid white
image is supplied to it, it believes at a high certainty that it is an example of a
classic pursuit. Therefore, one constraint on modelling with our CNN is that the
images given to the CNN must be from the domain of sensible predator traces.
Another approach is to either have a new category called “none of the others”,
or train another CNN to recognize sensible traces from nonsensical ones. [4]
tried both approaches when using a CNN for L-system tree image classification.
However, one pitfall with this approach is that the universe of nonsensical “not a
real trace” images is far larger than the ones representing sensible predator traces.
Thus CNN training becomes very difficult, because there is a non-exhaustive and
unlimited number of negative training examples.

There are interesting differences between our approach to measuring and
encouraging behaviour diversity with a CNN, and other research papers that
use novelty search [5] and quality-diversity strategies such as MAP-Elites [17].
These other approaches require specific behavioural features to be measured, for
example, counting the number of cells visited, the number of times an agent
turns direction, or the average speed of an agent. Our CNN approach does
not consider low-level measurements, but instead considers the entire high-level
emergent behaviour as denoted by a trace image. One benefit of using low-level
behaviour metrics is that there is no need for time-consuming CNN training.
On the other hand, assessing emergent behaviours in those strategies requires
significant human effort.

There are many directions for future work. Different CNN architectures can
be explored. Feed-forward neural networks could be used, which might be trained
on the text-based trace shown in Fig. 2. It would be interesting to use K-means
clustering to identify broad classes of behaviour trace categories, perhaps in the
behaviour space used by (for example) novelty search. Enhanced pursuit simu-
lations can be considered, which would yield new forms of emergent behaviours.
Applications such as food gathering [9], shepherding [21], and real video games
such as Pac-Man [18] may be considered. It is also worth considering whether a
CNN be trained to predict a predator’s fitness from its behaviour trace.
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and Abdallah Saffidine2
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Abstract. Motivated by transformers’ success in diverse fields like lan-
guage understanding and image analysis, our investigation explores their
potential in the game of Go. Specifically, we focus on analyzing Trans-
formers in Vision. Through a comprehensive examination of factors like
prediction accuracy, win rates, memory, speed, size, and learning rate, we
underscore the significant impact transformers can make in the game of
Go. Notably, our findings reveal that transformers outperform the previ-
ous state-of-the-art models, demonstrating superior performance metrics.
This comparative study was conducted against conventional Residual
Networks.

Keywords: Computer Go · Transformer · Games

1 Introduction

Due to a huge game tree complexity, the game of Go has been an important
source of work in the perfect information setting. In 2007, search algorithms
have been able to increase drastically the performance of computer Go programs
[11,12,16,20]. In 2016, a groundbreaking achievement occurred when AlphaGo
became the first program to defeat a skilled professional Go player [26]. Cur-
rently, the level of play of such algorithms is far superior to those of any human
player [26–28].

Over the years, various significant advances have been made to improve per-
formance in the game of Go [3,31–34]. Many of these innovations find their roots
in other domains, notably in computer vision, where the recognition and inter-
pretation of the Go board’s image serve as fundamental inputs. Algorithms such
as ResNet [3,18] and MobileNet [5,7,19] have demonstrated exceptional perfor-
mance by harnessing groundbreaking developments in computer vision. However,
it is worth noting that one remarkable advancement in the realm of computer
vision remains relatively untapped for Computer Go: transformers [30].

Transformers represent a groundbreaking leap in deep learning, reshap-
ing how various tasks in natural language processing (NLP), computer vision,
and beyond are approached. Initially developed for NLP tasks, transformers
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introduce a departure from conventional sequential methods by employing self-
attention mechanisms. These mechanisms simultaneously capture intricate inter-
dependencies among all elements in a sequence. This ability to understand
nuanced relationships over long distances, without relying on recurrent or con-
volutional structures, has propelled transformers to the forefront of AI research.
Notably, transformers have not only advanced language understanding, exem-
plified by models like BERT [13], but have also expanded their utility to image
analysis, as seen in Vision Transformers (ViTs) [15] and other transformer-based
models. EfficientFormer [21], a transformer-based model, achieves high perfor-
mance and matches MobileNet’s speed on mobile devices, proving that well-
designed transformers can deliver low latency in computer vision tasks.

In this paper, we propose to analyze the impact of using Transformer methods
in the game of Go. To do this, we use the EfficientFormer architecture. Our study
analyses were done in comparison with other state-of-the-art vision architectures
in Go such as Residual Networks on a wide range of criteria including prediction
accuracy, win rates, memory, speed, architecture size, and even learning rate.
We tune the learning rate and the size of the network for each network and we
find that EfficientFormer improves better than Residual Network with longer
training times. Both the policy accuracy, the Mean Squared Error (MSE), and
the Mean Absolute Error (MAE) are better with longer training time. Other
important properties of the tested networks are their latency and their memory
use. To take into account the latency in the performance of the networks, we
make them play using the same Monte Carlo Tree Search search time at every
move and record their winning rates. We observe that EfficientFormer of size ‘l9’
with a learning rate of 0.0005 with 1,000 epochs of 100,000 states and a batch of
32 is better than Residual Networks on CPU and on GPU with the same number
of epochs.

In Sect. 2, we present Computer Go, while Sect. 3 introduces the various
algorithms and network architectures employed in this paper. Our results are
detailed in Sect. 4, and the final section provides a comprehensive summary of
our work along with insights into future avenues.

2 Computer Go

The game of Go is a turn-taking strategic board game of perfect information,
played by two players. One player adds black stones to a vacant intersection of
the board and the opponent adds white stones. After being placed, a player’s
stones cannot move. A group of contiguous stones is removed if and only if the
opponent surrounds the group on all orthogonally adjacent points. The players
aim at capturing the most territory and the game ends when no player wishes
to move any further. There exist multiple rules for scoring. We have used the
Chinese rule in our experiments: the winner of the game is defined by the number
of stones that a player has on the board, plus the number of empty intersections
surrounded by that player’s stones and komi (bonus added to the second player
as compensation for playing second).
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Even though the rules are relatively simple, the game of Go is known as
an extremely complex one in comparison to other board games such as Chess.
On the standard board of size 19 × 19, the number of legal positions has been
estimated to be 2.1 × 10170. Algorithms based on Monte Carlo Tree Search
(MCTS) [1] have been achieving excellent performance in the game of Go for
many years. Combining deep reinforcement learning and MCTS as introduced
in the AlphaGo series programs [26–28] has been widely applied. The neural
network takes an image of the board as input and produces two outputs: a
probability distribution over moves (policy head) and a scalar of score prediction
(value head) (see Fig. 1).

Fig. 1. AlphaZero network architecture

3 Network Architectures

3.1 Residual Network

Residual Networks are the standard networks for games [3,28]. They are used in
combination with MCTS to evaluate the leaves of the search tree and to give a
prior on the possible moves. To speed up the computation of the evaluation and
of the prior the networks are usually run on a batch of states [6].

The employed residual layer in image classification integrates the input of the
layer with its output, incorporating two convolutional layers before the addition.
ReLU layers are applied following the first convolutional layer and after the addi-
tion. Figure 2 illustrates the structure of the residual layer. We will experiment
with this kind of residual layer for our Go networks.

3.2 Transformer

Transformers are advanced neural network architectures that leverage the con-
cept of self-attention to process and understand complex sequences of data, such
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Fig. 2. The residual block.

as language. Self-attention allows a transformer model to analyze different ele-
ments within a sequence and determine their relative importance in relation to
one another. By calculating attention scores based on the similarity of these ele-
ments, the model can dynamically weigh their significance and understand how
they interrelate. Transformers employ multiple self-attention mechanisms (mul-
tihead self-attention) operating in parallel, enabling them to capture intricate
patterns, dependencies, and contextual nuances across the entire input sequence.

Transformer was originally proposed as a sequence-to-sequence model [29] for
machine translation. Later works show that Transformer-based pre-trained mod-
els (PTMs) [23] can achieve state-of-the-art performances on various tasks. In
addition to language-related applications, Transformer has also been adopted in
computer vision [2,15,22], audio processing [10,14,17] and even other disciplines,
such as chemistry [25] and life sciences [24]. In natural Language Processing, the
mechanism of attention of the Transformers tried to capture the relationships
between different words of the text to be analyzed, in Computer Vision the
Vision Transformers try instead to capture the relationships between different
portions of an image.

3.3 Efficient Former

The EfficientFormer model is a big step forward in making transformer archi-
tectures work better for tasks that need real-time results, especially on devices
with not much computing power. Adding a dimension-consistent plan allows the
model to easily switch between different ways of organizing its parts, like in 4D
and 3D setups. This way of thinking helps the EfficientFormer model to make
the time it takes for predictions much shorter. By focusing on making predictions
happen fast, a set of EfficientFormer models emerges, each achieving a careful
equilibrium between performance and latency. This change in approach reaches
its peak with models like EfficientFormer-l1, which impressively demonstrates
outstanding top-1 accuracy on benchmarks like ImageNet-1K. At the same time,
it manages to keep inference latency remarkably low on mobile devices, aligning
closely with the efficiency of optimized versions of MobileNet.
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Fig. 3. Overview of EfficientFormer architecture [21].

In Fig. 3, we illustrate the network architecture of the EfficientFormer. The
network begins its operations with a convolution stem. This part usually carries
out a set of actions to pull out basic features from the input data. These actions
typically involve using convolutional layers, pooling layers, and normalization
layers. Following that, there is a set of MetaBlocks (MB). There are two types
of MetaBlocks: MB4D and MB3D. The layers that make up each block are illus-
trated in Fig. 3. In between these blocks, we have the embedding layers. These
layers break down the input into patches of a fixed size and assign each patch to
a high-dimensional vector representation. These patch representations are then
sent into the transformer blocks (within MB3D) for further processing.

EfficientFormer is available in various sizes, denoted as l1, l3, l7, and l9.
Each size is linked to a tuple of information where the first information is the
width and the second information is the depth. The width is a list designing
different dimensionalities (number of channels) of the feature vectors processed
by different layers and blocks within the neural network. The width represents
the number of blocks in different levels of the EfficientFormer architecture. The
sizes tested throughout the paper are the following:

– ‘l1’ : ([48, 96],[3, 4])
– ‘l3’ : ([64, 128],[4, 6])
– ‘l7’ : ([96, 192],[6, 8])
– ‘l9’; ([128,256],[8,10])

In order to clarify the notations used for transformers, we are going to explain
in detail the parameters of the first example ‘l1’. The entire structure comprises
7 MetaBlocks (MBs): 3 MBs4D and 4 MBs3D. The count of these blocks is
determined by examining the second list [3, 4]. Let’s denote the set of the 3
MBs4D as X and the set of the 4 MBs3D as Y. The number 48 from the first
list represents the number of channels in all layers of X. While 96 is the number
of channels in all layers of Y. Between the set X and the set Y, we have an
embedding layer. This embedding layer allows the transition of the number of
channels from 48 in X to 96 in Y.
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3.4 Adaptation for the Game of Go

In this paper, we took the same work on EfficientFormer model of Li et al. [21]
and adapt the transformer mechanism to the Go game prediction. This neces-
sitated modifying the final layers, which were originally designed for tasks like
classification or segmentation, and instead, replacing them with layers tailored
for policy and value (i.e., the probability of winning the game) prediction.

This modification transformed the tasks into a dual output setting, combin-
ing multiclass classification and regression functionalities. The value head uses
Global Average Pooling followed by two Dense layers [4,8]. The policy head uses
a 1× 1 convolution to a single plane that defines the convolutional policy [8].

Another significant adjustment involved the downsampling and embedding
layers commonly used in image classification tasks to detect features by reducing
the image size before feeding it into the transformer. However, in the context of
Go, the input board’s dimensions were fixed at 19 × 19, and it was imperative
to preserve this size throughout the training process to avoid losing critical
information. Therefore, to retain the richness of the board data, the height and
width of the board were maintained during training, ensuring that no valuable
details were lost in the process. This tailored architectural approach played a
pivotal role in optimizing the models for Go game prediction.

4 Experimental Results

4.1 Dataset

The data used for training comes from the Katago Go program self played
games [31]. KataGo is one of the strongest open-source Go bots available online.
There are 1,000,000 different games in total in the training set. Input data con-
sists of 31 planes with a size of 19× 19 each, encompassing information such
as the color to play, ladders, the current state on two planes, and two previous
states on four planes. The output targets are the policy (a vector of size 361
with 1.0 for the move played, 0.0 for the other moves), and the value (close to
1.0 if White wins, close to 0.0 if Black wins).

4.2 Experimental Information

To compare the different network architectures we trained them on multiple
epochs. One epoch uses 100, 000 states randomly selected from the Katago
dataset with two labels: a one-hot encoding of the Katago move and an evalua-
tion between 0 and 1 by Katago of the winrate for White. The training is done
with Adam and cosine annealing [9] without restarts. Cosine annealing leads to
better convergence by modifying the learning rate of Adam.

In the next tables, we denote Residual(X, Y), the Residual Network of X
blocks of Y planes and we denote Efficient(lX), the lX architecture of Effi-
cientFormer. Among the different metrics used, we compute the accuracy, mean
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squared error (MSE), mean absolute error (MAE), and when possible the win-
ning rate against an opponent. The winning rate is more informative than the
other because it combines the impact of improving policy and value network. It
also takes into account the latency of the networks. Accuracy measures the close-
ness of strategies between the policy network and Katago data. In the following
experiment, we present the result on the validation set.

4.3 Training and Playing

Our research paper focuses on the study of transformers and their impact on
several performance criteria, as well as speed and memory. In our experiments,
we first analyze the best hyperparameters obtained on performance for models
of varying sizes (l1/l3/l5/l9) and with varying lengths of training (100/500/1000
epochs). Our results on Efficient are compared against Residual Network, which
is the current state of the art in the field. After that, we delve into a compre-
hensive analysis with a specific focus on assessing memory consumption and
processing speed for each model.

In Table 1, we analyze the impact of the learning rate on the Accuracy, MSE,
and MAE for multiple Residual networks across 1000 epochs in comparison to
Efficient(l9). We will then use the best learning rate in Table 2 where we ana-
lyze the Accuracy, MSE, and MAE for both Residual and Transformer networks
across 500 epochs. We found that Efficient(l9) performs better than the other
Efficient Former and Residual networks. Additionally, Fig. 4 provides a visual
comparison of the training curves for Accuracy, MAE, and MSE between Effi-
cient (l9) and Residual (20,256) over 1000 epochs.

In Tables 3 and 4, an analysis of winning rates among multiple algorithms
compared to Efficient (l9) over 500 and 1000 epochs is presented. It is note-
worthy that Efficient (l9) exhibits superiority over the majority of algorithms,
demonstrating a remarkable performance trend. An exception is observed in the
case of the 500-epoch scenario 3, where Efficient (l7) achieves comparable perfor-
mance on CPU, and Residual (20,256) attains equivalent performance on GPU.
The longer training time and the better GPU are in favor of the transformer
network.

In Table 5, we conduct an analysis of latency and peak memory utilization
on GPU and CPU for the various network architectures under examination. The
experiments on GPU were carried on a RTX 2080 Ti with 11 Gb of Memory and
Epyc server for the CPU. On GPU, it is noteworthy that both Residual Networks
and Transformers exhibit similar latency characteristics, however, Transformers
incur a memory usage approximately three times greater than that of Resid-
ual Networks. On CPU (Table 5), for smaller network, we observe that Efficient
architecture achieve a lower evaluation rate per second than Residual. Neverthe-
less, this trend shifts as network sizes increase, with the Efficient architecture
ultimately surpassing Residual Networks in evaluation per second.
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Lastly, Table 6 charts the evolution of GPU latency concerning batch size
variation for the different network configurations. Large batch sizes are relevant
to self-play in Alpha Zero style [28,31]. Smaller batch sizes are relevant to normal
play with batch parallel MCTS [6]. This analysis sheds light on how network
performance scales with batch size changes. The Residual Networks use relatively
more playouts since they parallelize better with current GPU hardware and
software.

Table 1. Comparison of large network architectures for 1000 epochs of 100,000 states
per epoch.

Network Size Learning Rate Batch Accuracy MSE MAE

Residual 20,256 0.0002 64 52.13% 0.0496 0.1510

20,256 0.0001 64 53.30% 0.0458 0.1456

20,256 0.00005 64 53.82% 0.0465 0.1434

20,256 0.00002 64 53.28% 0.0471 0.1483

20,256 0.00001 64 51.23% 0.0516 0.1595

40,256 0.0002 64 45.68% 0.0717 0.1990

40,256 0.0001 64 51.88% 0.0513 0.1599

40,256 0.00005 64 52.64% 0.0475 0.1493

40,256 0.00002 64 52.90% 0.0486 0.1497

40,256 0.00001 64 51.10% 0.0551 0.1625

Efficient l9 0.0005 32 56.22% 0.0360 0.1240

Table 2. Comparison of networks for 500 epochs of 100,000 states per epoch and a
batch size of 64. The Accuracy, MSE and MAE were computed on a set of 50,000 states
sampled from 50,000 games that were never seen during training.

Network Size Learning Rate Accuracy MSE MAE

Residual 10,128 0.0002 49.12% 0.0534 0.1649

20,128 0.0002 50.29% 0.0516 0.1618

20,256 0.00005 52.50% 0.0476 0.1518

40,256 0.00005 51.27% 0.0499 0.1586

Efficient l1 0.002 49.35% 0.0553 0.1659

l3 0.002 51.28% 0.0484 0.1519

l7 0.002 53.01% 0.0440 0.1422

l9 0.001 54.29% 0.0405 0.1351
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Fig. 4. Efficient(l9) versus Residual(20,256) comparisons on Accuracy, MAE and MSE
over 1,000 epochs of 100,000 states. All values are computed with the test set that
contains games that were never seen in the training set.

Table 3. Comparison of networks for 500 epochs of 100,000 states per epoch and a
batch size of 64. The winrate WinCPU is the result of 800 randomized matches on
CPU against Efficient(l9) with 10 s of CPU per move for both sides. The GPU winrate
is calculated by using the same RTX 2080 Ti GPU time for both networks with a batch
of 64. The learning rate is fixed to 0.0005 for the Residual network and 0.001 for the
Efficient network.

Network Size vs Efficient(l9)

WinCPU WinGPU

Residual 10,128 33.5% 20.4%

20,128 31.6% 25.8%

20,256 30.6% 46.4%

40,256 8.9% 29.7%

Efficient l1 11.6% 8.1%

l3 31.0% 19.4%

l7 50.4% 38.3%

Table 4. Comparison of the winning rate for multiple networks trained during 1, 000
epochs of 100, 000 states per epoch. The winrate WinCPU is the result of 400 random-
ized matches on CPU with 10 s of CPU per move for both sides. The GPU winrate is
calculated by using the same A6000 GPU time for both networks with a batch of 32
for the inference.

Network Size vs Efficient(l9)

WinCPU WinGPU

Residual 20,256 30.5% 39.0%

40,256 15.0% 33.0%
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Table 5. Latency and number of evaluations per second on CPU/GPU for different
architectures and networks of different sizes and peak memory on GPU. The CPU
used is Epyc server. The GPU used is a RTX 2080 Ti GPU with 11 Go. The latency
and the peak memory on the GPU are measured using a batch of 64 states. They are
averaged over 100 calls to predict after a warmup of 100 previous calls. The latency is
the average time in seconds to make a forward pass.

Network Size CPU GPU

Latency Evals/s Latency Evals/s Peak Memory

Residual 10,128 0.043 23.07 0.0890 719 436,656,640

20,128 0.082 12.24 0.0943 679 350,025,728

20,256 0.304 3.29 0.1185 540 452,578,816

40,256 0.455 2.20 0.1580 405 529,187,072

Efficient l1 0.065 15.27 0.0958 668 1,101,474,048

l3 0.074 13.52 0.1106 579 1,148,030,976

l7 0.092 10.90 0.1307 490 1,159,418,368

l9 0.159 6.30 0.1700 376 1,179,129,088

Table 6. Evolution of the A6000 GPU latency with the size of the batch. The latency
and the peak memory are the median values of 7 runs. Each run is the average over
100 forwards after a warmup of 100 forwards.

Network Size Batch GPU Latency Evals/s on GPU Peak Memory

Residual 20,256 32 0.111 288 253,801,472

20,256 64 0.126 508 548,938,240

20,256 128 0.159 805 800,936,192

20,256 256 0.227 1,128 1,566,134,528

20,256 512 0.368 1,391 2,954,716,416

20,256 1,024 0.667 1,535 4,793,448,960

Efficient l9 32 0.128 250 589,454,592

l9 64 0.168 381 1,141,404,672

l9 128 0.224 571 2,297,159,168

l9 256 0.346 740 4,359,236,608

l9 512 0.583 878 8,672,660,992

l9 1,024 1.062 964 17,121,701,376
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5 Conclusion

This paper investigates the impact of the Vision Transformer architecture on the
game of Go. Building upon the proven success of the Transformer architecture
across diverse domains, our investigation seeks to explore its potential in the
context of Go. Our analysis traverses a multitude of critical dimensions, ranging
from prediction accuracy and win rates to memory utilization, processing speed,
and learning rates. Through this examination, we underscore the significant role
that Transformers can play in enhancing performance in the game of Go.

Significantly, our findings highlight the benefits of the EfficientFormer archi-
tecture, showcasing remarkable performance enhancements on both CPU and
GPU platforms. Notably surpassing the benchmarks set by the previous state-
of-the-art algorithms, this superiority becomes particularly pronounced in the
context of larger networks, underscoring the scalability and efficiency of the Effi-
cientFormer.

In addition, it is essential to emphasise that the impact and adaptability
of the EfficientFormer architecture goes beyond the boundaries of the game of
Go, extending its applicability to a wide range of games and domains. This
versatility positions the EfficientFormer as a promising candidate for pushing
the boundaries of artificial intelligence not only in strategic board games but
also in various other complex decision-making scenarios.
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Abstract. Both Multi-Objective Evolutionary Algorithms (MOEAs)
and Multi-Objective Bayesian Optimisation (MOBO) are designed to
address challenges posed by multi-objective optimisation problems.
MOBO offers the distinct advantage of managing computationally or
financially expensive evaluations by constructing Bayesian models based
on the dataset. MOBO employs an acquisition function to strike a bal-
ance between convergence and diversity, facilitating the selection of
an appropriate decision vector. MOEAs, similarly focused on achiev-
ing convergence and diversity, employ a selection criterion. This paper
contributes to the field of multi-objective optimisation by construct-
ing Bayesian models on the selection criterion of decomposition-based
MOEAs within the framework of MOBO. The modelling process incor-
porates both mono and multi-surrogate approaches. The findings under-
score the efficacy of MOEA selection criteria in the MOBO context, par-
ticularly when adopting the multi-surrogate approach. Evaluation results
on both real-world and benchmark problems demonstrate the superior-
ity of the multi-surrogate approach over its mono-surrogate counterpart
for a given selection criterion. This study emphasises the significance of
bridging the gap between these two optimisation fields and leveraging
their respective strengths.

Keywords: Bayesian optimisation · Gaussian processes · Pareto
optimality · Evolutionary computation · Many-objective optimisation

1 Introduction

Real-world optimisation problems may involve more than conflicting objectives
to be optimised. Such problems are known as multi-objective optimisation prob-
lems (MOPs) and are defined as:

minimise f = (f1(x), . . . , fm(x)) subject to x ∈ S,

where m ≥ 2 is also the number of objectives and S is the (nonempty) fea-
sible space and is a subset of the decision space R

n and consists of decision
vectors x = (x1, . . . , xn)T . There is no single solution to such problems due
to trade-offs between objectives but a set of so-called Pareto optimal solu-
tions. Multi-objective optimisation methods such as multi-objective evolutionary
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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algorithms (MOEAs) provide mechanisms to consider the potential trade-offs
between objectives and provide users with an approximated set of Pareto opti-
mal solutions.

In some real-world MOPs, the objective functions involve computationally
intensive assessments. Such problems typically involve black-box evaluators (or
simulators) lacking closed-form expressions for the objective functions. To mit-
igate the computational burden and find an approximate set of Pareto optimal
solutions with minimal function evaluations, Bayesian optimisation (BO) comes
into play. These approaches rely on a Bayesian model acting as a surrogate or
metamodel for the objective functions. They identify promising decision vec-
tors through the optimisation of an acquisition function. The Bayesian model
frequently takes the form of a Gaussian process because it offers a meaningful
quantification of uncertainty, which is subsequently utilised in optimising the
acquisition function. The acquisition function strikes a balance between explo-
ration and exploitation, guiding the search process. In multi-objective BO, sev-
eral works exist [6,10,23,26] on developing efficient acquisition functions.

Multi-objective Bayesian optimisation (BO) typically involves two distinct
approaches to constructing a Bayesian model. In the first approach, separate
models are created for each objective function (computational complexity is at
most O(mN3), where N is the size of the data set), and an acquisition func-
tion that utilises these models is then employed to identify promising decision
vectors. This approach is known as the multi-surrogate approach. An exam-
ple of a multi-objective BO employing the Expected Hypervolume Improve-
ment (EHVI) [11,12,28] belongs to the multi-surrogate approach. The sec-
ond approach develops a single Bayesian model (computational complexity of
O(N3)) after aggregating the objective functions using a scalarising function.
This approach is referred to as the mono-surrogate approach. A well-known
algorithm that falls into the mono-surrogate category is ParEGO [15,21], where
the weighted Tchebycheff [27] function was used as the scalarising function. The
second approach effectively reduces the number of objectives from m to one.
Additionally, a single-objective acquisition function can be used in the mono-
surrogate approach. The mono-surrogate approach assumes the distribution of
the scalarising function is Gaussian. In a recent work [3,4], the author showed
that the distribution of the weighted Tchebycheff in the multi-surrogate app-
roach is not Gaussian and empirically showed that the multi-surrogate is better
than the mono-surrogate approach.

Decomposition-based MOEAs such as MOEA/D [29] and RVEA [2] decom-
pose a multi-objective optimisation problem into a number of single objective
optimisation problems using a uniformly distributed set of weight vectors [5]. A
scalarising function such as weighted sum, weighted Tchebycheff, Penalty bound-
ary intersection [29] and angle penalised distance [2] is then used as the selec-
tion criterion to select a solution for each weight vector. The scalarising function
attempts to balance convergence and diversity when selecting a solution, which
is similar to the role of the acquisition function in multi-objective Bayesian opti-
misation. Inspired by the wide use of decomposition-based MOEAs, we utilise
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their potential in multi-objective BO by building Bayesian surrogate models
on the scalarising function. We embed these models in both mono- and multi-
surrogate approaches in the context of multi-objective BO. To summarise, the
contributions of the current work are as follows:

1. Leveraging the Capabilities of Decomposition-Based Multi-Objective Evolu-
tionary Algorithms (MOEAs) in Multi-Objective Bayesian Optimization.

2. Examination of Mono- and Multi-Surrogate Approaches through the Con-
struction of Bayesian Models on the Selection Criterion of Decomposition-
Based MOEAs.

3. Validation of the Efficacy of the Multi-Surrogate Approach through Empirical
Testing on Real-World and Benchmark Multi-objective Optimisation Prob-
lems.

The rest of the paper is structured as follows. Section 2 provides a com-
prehensive background on multi-objective Bayesian Optimization and offers an
overview of decomposition-based MOEAs. Section 3 provides the main method-
ology explaining how the selection criterion in decomposition-based MOEAs can
be effectively combined in multi-objective Bayesian optimisation. Section 4 pro-
vides the results from the implementation of the proposed methodology, and
Sect. 5 concludes the paper with the future research directions.

2 Background

2.1 Multi-objective Bayesian Optimisation

The steps of a multi-objective BO algorithm are outlined in Algorithm 1. It starts
with an initial data set, D = {(xi, f(xi))}N

i=1 of size N . This data set can be
obtained through random sampling or other techniques such as design of experi-
ment [18]. A scalarised function, G is then used to aggregate objective functions,
i.e. {g(xi) = G(f(xi),w, ζζζ)}N

i=1, where w is the weight vector and ζζζ is the vector
of parameters for a given scalarising function. The existing data is then used
to build one Gaussian process model on {(xi, gi(xi))}N

i=1(mono-surrogate app-
roach) or m surrogate models on {(xi, f1(xi))}N

i=1, . . . , {xi, fm(xi))}N
i=1 (multi-

surrogate approach).

Algorithm 1. Bayesian optimisation
Input: Data Set D = {(xi, fi(xi))}N

i=1

Output: Evaluated solutions

1: while Termination criterion is not met do
2: Train the GP models on the data set
3: Optimise the acquisition function i.e. x∗ ← argmaxx α(x)
4: Evaluate x∗ and add to the data set
5: end while
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Gaussian process (GP) models are non-parametric and are defined by a mul-
tivariate normal distribution with a mean and covariance function (or kernel).
The kernel captures the correlation between different data points. The parame-
ters of the kernel, such as length scale, amplitude and noise, can be estimated by
maximising the marginal likelihood function [22]. An acquisition function, α(x),
such as expected improvement (a widely used and efficient acquisition function)
is then optimised with the models and existing data set using an appropriate
optimiser. The EI is defined as:

αEI(x) =
∫ g′(x)

−∞
(g′(x) − g(x))dg,

where g′(x) is the lowest scalarised function value. In the mono-surrogate app-
roach, the EI has a closed-form expression as the posterior predictive distribution
on the scalarising function is Gaussian and is derived as:

αEI(x) =(g′(x) − μ(x))Φ
(g′(x) − μ(x)

σ(x)

)
+ σ(x)φ

(g′(x) − μ(x)
σ(x)

)
, (1)

where μ(x) and σ(x) are the posterior mean and standard deviation from GP,
Φ(·) and φ(·) are cumulative and probability distribution functions of standard
normal distribution, respectively. In the multi-surrogate approach, EI may not
have a closed-form expression and can be estimated by approximation such as
Monte Carlo. This work uses EI as the acquisition function in both mono3- and
multi-surrogate approaches.

2.2 Decomposition-Based MOEAs

Decomposition-based MOEAs [7,14,17,25,29] have gained widespread popular-
ity, particularly for their efficacy in addressing optimisation problems charac-
terised by a large number of objectives, often referred to as many objectives.
These algorithms can effectively explore the trade-offs and dependencies between
objectives by decomposing the problem into a number of subproblems. Two fun-
damental components that define the success of these MOEAs are decomposition
utilising weight vectors and the selection criteria.

The selection criterion in a decomposition-based MOEA plays a pivotal role
in determining the quality of solutions and the convergence behaviour of the algo-
rithm. As highlighted in the introduction, various scalarising functions, including
weighted sum, weighted Tchebycheff, and penalty boundary intersection, can be
employed to choose solutions for a given subproblem effectively. The selection cri-
terion becomes instrumental in navigating the algorithm toward Pareto optimal
solutions, embodying a critical aspect of the algorithm’s overall performance.

2.3 Scalarising Functions

Weighted sum (WS) [13,19] is considered one of the simplest and most straight-
forward scalarising functions, valued for its ease of implementation. It is defined
as:
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g(x) =
m∑

i=1

wifi(x), (2)

where wi is the ith component of the weight vector, w.

Weighted Tchebycheff (TCH) [1,27] is derived from the Lp metric with p = ∞.
In multi-objective BO, the function (with the augmentation term) was first used
in ParEGO [15](mono-surrogate approach). It is defined as:

g(x) = max
i=1,...,M

[wi|fi(x) − z∗
i |], (3)

where z∗
i is the ith component of the ideal objective vector, z∗. In this work,

we normalise the objective function values between [0,1] and therefore, the ideal
objective vector is a vector of zeros.

Penalty boundary intersection (PBI) [5,29] handles convergence and diversity
and was first applied in MOEA/D [29]. It is defined as

g(x) = d1 + βd2, (4)

where d1 =
∣∣∣f(x) · w

‖w‖
∣∣∣ and d2 =

∥∥∥f(x) − d1
w

‖w‖
∥∥∥, ‖ ·‖ represents the norm. The

performance of the scalarising function can be influenced by the parameter β.

Angle Penalised distance (APD) [2] uses the angle, θ, between the objective
vector and the weight vector and balances convergence and diversity. It is defined
as:

g(x) = (1 + P (θ)) · ||f(x)′||, where P (θ) = m

(
FE

maxFE

)δ
θ

γ
, (5)

where FE and maxFE are the number and maximum number of evaluations,
respectively. γ is the minimum of all angles between a weight vector and other
weight vectors, and δ is a user-defined parameter. f(x)′ is the translated objective
vector: f(x)′ = f(x) − z∗. As can be seen in the equation; the function depends
on two parameters, maxFE and δ. Contour plots of all four scalarising functions
for a weight vector = [0.5,0.5], β = 5, δ = 1, FE = 1 and maxFE = 10 are
shown in Fig. 1.

3 Multi-objective BO with MOEAs Selection Criterion

We first create a data set D with Latin hypercube sampling and generate a set
of uniformly distributed weight vectors [5]. We randomly select a weight vector,
w and estimate g(x) using scalarising function, G(f(x),w, ζζζ). For the mono-
surrogate approach, we build a single Gaussian process model on the scalarising
function and in the multi-surrogate approach, we build m independent models
for each objective function. Given the data set and model(s), we optimise the
EI to find the next decision vector. This process is continued until a termination
criterion is met. The mono and multi-surrogate approaches in multi-objective
Bayesian optimisation are outlined in Algorithm 2.
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Fig. 1. Contour plots of four scalarising functions, weighted sum (WS), weighted
Tchebycheff (TCH), penalty boundary intersection (PBI) and angle penalised distance
(APD)

3.1 Estimation of Acquisition Function

In the mono-surrogate approach, the EI has a closed-form expression (Eq. 1)
as the model is directly built on g(x). However, the EI may not have a closed-
form expression in the multi-surrogate approach except when using the weighted
sum in the multi-surrogate approach. In the multi-surrogate approach when
using the weighted sum, the distribution of the scalarising function after building
independent GP models on the objectives is also Gaussian:

g(x) =
m∑

i=1

wifi(x), where fi(x) ∼ N (μi(x), σi(x)2) OR

g(x) ∼ N
(

m∑
i=1

wiμi(x),
m∑

i=1

w2
i σi(x)2

)
.

The weighted Tchebycheff scalarising function can be approximated in the form
of a Gumbel distribution [3]. However, this does not provide a closed-form expres-
sion of EI. Therefore, we use the Monte-Carlo approximating the EI for other
scalarising functions in the multi-surrogate approach.
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Algorithm 2. Mono- and multi-surrogate approaches in multi-objective BO
Input: Data Set D = {(xi, fi(xi))}N

i=1; A set of uniformly distributed weight vec-
tors
Output: Evaluated solutions

1: while Termination criterion is not met do
2: Select a random weight vector w from the set of weight vector
3: Estimate g(x) = G(f(x),w, ζζζ)
4: Train GP model on g(x) or m models on f1(x), . . . , fm(x)
5: Optimise the acquisition function i.e. x∗ ← argmaxx α(x)
6: Evaluate x∗ and add to the data set
7: end while

3.2 Demonstration

We provide a demonstration of the differences between mono- and multi-
surrogate approaches on a bi-objective and one decision variable optimisation
problem. The data set, underlying objective space, the underlying scalarising
function space and the Pareto front of the problem are shown in Fig. 2 (row
1). The second and third rows show the mono-surrogate approach, involving
building of a GP model on scalarising functions and the landscape of EI as the
acquisition function.

Figure 3 displays the multi-surrogate approach, where independent GP mod-
els are built on the objectives (row 1). The second and third rows in Fig. 3
illustrate the Monte Carlo approximation of the scalarising functions and the EI
after building independent GP models on the objectives.

Two observations emerge from this demonstration: (1) Predictive models
on the scalarising functions in the multi-surrogate approach more accurately
replicate the underlying landscape of the scalarising function compared to the
mono-surrogate approach. (2) The landscape of the acquisition function and
the locations of maxima differ between both approaches for a given scalarising
function. Upon evaluating the maxima with the underlying objectives, the solu-
tion obtained after one iteration is shown in Fig. 4. Notably, solutions obtained
through both approaches with the same scalarising functions differ. The multi-
surrogate approach, particularly when using weighted sum, weighted Tcheby-
cheff, and angle-penalized distance, approximates proximity to the Pareto front
after a single iteration. It is important to note that these results reflect outcomes
after one iteration and further iterations will be necessary for both approaches
to converge towards the Pareto front.
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Fig. 2. Data set and underlying objective space, Pareto front and underlying scalarising
function landscape (row 1). GP model on scalarising functions (mono-surrogate) with
posterior means and standard deviations and landscape of EI. (rows 2 and 3).
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Fig. 3. Independent GP models on the objective functions (row 1). The rows 2–3 show
the approximation of scalarising functions (multi-surrogate) and EI with Monte-Carlo
approximations.
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Fig. 4. Results after one iteration on mono- and multi-surrogate approaches from
Figs. 2 and 3.

4 Results and Discussion

The performance of all four scalarising functions within both mono- and multi-
surrogate approaches are evaluated on benchmark and real-world optimisation
problems with 2–9 objectives and 2–7 decision variables. The details of numerical
settings with parameters are as follows:

– Problems:
• DTLZ [9]: (m, d) = (2, 5)
• Real-world problems [24]: (m, d) = (2 − 9, 2 − 7)
• Free radical polymerisation [20]: (m, d) = (3, 4).

Further details of real-world problems are provided in Table 1.
– Size of the initial data set: 10 × d
– Maximum number of function evaluations, maxFUN = 30 × d
– Kernel: Squared exponential with automatic relevant determination
– Number of independent runs: 11
– Parameters, ζζζ in scalarising functions: β = 5, δ = 1
– Number of weight vectors (with Simplex-Lattice design method [5]): 100(m =

2); 105(m = 3); 120(m = 4); 126(m = 5); 132(m = 6); 174(m = 9)
– Performance indicator: Hypervolume ratio (Hypervolume of solutions divided

by the hypervolume of Pareto front). The approximated Pareto fronts of real-
world problems are provided on the GitHub repository, https://github.com/
ryojitanabe/reproblems, and for FRP, one run of NSGA-II [8] was used to
approximate the Pareto front.

– Optimiser to maximise marginal likelihood in GP: BFGS with 10-restarts
– Optimiser to maximise the EI: Genetic algorithm

Figures 5 and 6 illustrate the hypervolume ratio with the number of expen-
sive function evaluations for different problems. As can be observed, the multi-
surrogate approach performed better than their mono-surrogate counterparts
across the majority of the problems. Figure 7 provides a visual representation of

https://github.com/ryojitanabe/reproblems
https://github.com/ryojitanabe/reproblems
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Fig. 5. Hypervolume ratio with the number of expensive function evaluations.
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Table 1. Real-world problems and their dimensionality in objective and decision
spaces. For more details, see [20,24]

Abbreviation Problem m d

RE24 Hatch cover design 2 2

RE31 Two bar truss design 3 3

RE32 Welded beam design 3 4

RE33 Disc brake design 3 4

RE34 Vehicle crashworthiness design 3 5

RE37 Rocket injector design 3 4

RE41 Car side impact design 4 7

RE42 Conceptual marine design 4 6

RE61 Water resource planning 6 3

RE91 Car cab design 9 7

FRP Free radical polymerisation 3 4

the proportion where an algorithm was either the best or statistically equivalent
to the best algorithm. A statistical analysis was conducted to rigorously compare
the performance of the four scalarising functions in each approach and collec-
tively. An approach was considered the best if it achieved the largest median
hypervolume value among all runs after the maximum number of function eval-
uations. To establish statistical significance, a one-sided, paired Wilcoxon signed-
rank test [16] was employed, with the Holm-Bonferroni correction to adjust for
multiple comparisons. This analysis aimed to robustly assess and compare the
performance of the different scalarising functions and approaches in solving the
given multi-objective optimisation problems.

In both the mono- and multi-surrogate approaches, the Tchebycheff scalar-
ising function demonstrated superior performance, emphasising its relevance,
particularly in the context of the ParEGO algorithm as a mono-surrogate
approach. However, upon considering all eight combinations (comprising four
scalarising functions and two approaches), Tchebycheff and APD in the multi-
surrogate approach consistently outperformed the others. Notably, the weighted
sum exhibited good performance by either being the best or statistically equiv-
alent to the best algorithm in certain problems within both mono-surrogate and
multi-surrogate approaches. To verify these findings, we checked the approxi-
mated Pareto fronts of real-world problems, which are available from the GitHub
repository. These Pareto fronts exhibit convex shapes, validating the efficacy of
the weighted sum approach. These intriguing results call for a more in-depth
investigation to understand the specific characteristics of problems (as evident
in [14] for the decomposition-based MOEAs) and their correlation with the per-
formance of scalarising functions in the context of multi-objective BO.
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Fig. 6. Hypervolume ratio with the number of expensive function evaluations.

5 Conclusions

This work employed the selection criteria of decomposition-based multi-objective
evolutionary algorithms within the context of multi-objective Bayesian opti-
misation. Four distinct selection criteria, functioning as scalarising functions,
were utilised in both mono- and multi-surrogate approaches: weighted sum,
weighted Tchebycheff, penalty boundary intersection, and angle-penalized dis-
tance. Notably, the multi-surrogate approach outperformed the mono-surrogate
approach overall. For certain selection criteria, weighted Tchebycheff, penalty
boundary intersection, and angle-penalized distance in the multi-surrogate app-
roach, closed-form expressions were not available. Consequently, the Monte Carlo
approximation was employed for estimating the acquisition function. Among the
scalarising functions, weighted Tchebycheff and angle-penalized distance demon-
strated superior performance.

It is noteworthy that two scalarising functions, penalty boundary intersec-
tion and angle-penalized distance, are reliant on specific parameters that can
influence their performance. Future research will include sensitivity analysis and
the automatic learning of these parameters when integrating them into multi-
objective Bayesian optimisation. The future work will also explore the perfor-
mance of various scalarising functions based on the shape and properties of the
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Fig. 7. Performance of different scalarising functions. The bar heights correspond to
the proportion of time a scalariser (mono, multi or both) was best or statistically
equivalent to the best.

multi-objective optimisation problem, including aspects such as convexity and
characteristics of Pareto fronts, such as disconnected and degenerated fronts.
Additionally, we acknowledge that the multi-surrogate approach is computation-
ally more expensive than the mono-surrogate approach, and while this computa-
tional time may be negligible for solving expensive multi-objective optimisation
problems, future work will address strategies to alleviate the computation cost
associated with the multi-surrogate approach.
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Uher, Vojtěch II-326
Urbanowicz, Ryan II-225
Urquhart, Neil I-83

V
Vanneschi, Leonardo I-68
Vidal, Franck I-430
Vintaykin, Vladislav II-3
Vodopija, Aljoša II-310

W
Walden, Aidan I-322
Wang, Qinyu II-196

Weimar, Nils I-146
Weise, Jens I-209

X
Xue, Bing II-196

Y
Yaman, Anil I-162

Z
Zhang, Mengjie I-413, II-196
Zhou, Zhilei I-361
Zincir-Heywood, Nur I-361


	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Evolutionary Machine Learning
	Hindsight Experience Replay with Evolutionary Decision Trees for Curriculum Goal Generation
	1 Introduction
	2 Background
	3 Proposed Method
	3.1 Optimizing DTs
	3.2 Generating Curriculum Goals

	4 Experimental Results
	4.1 Ablation Studies

	5 Conclusion
	References

	Cultivating Diversity: A Comparison of Diversity Objectives in Neuroevolution
	1 Introduction
	2 Related Work
	2.1 Diversity-Driven Neuroevolution
	2.2 Diversity Objectives in Neuroevolution
	2.3 Problem Characteristics of Interest

	3 Targeted Problems
	3.1 The Retina Problem
	3.2 The Tartarus Problem
	3.3 Deceptive Maze Navigation Problem
	3.4 Robot Locomotion Problem
	3.5 Characterizing the Targeted Problems

	4 Comparison of Diversity Objectives
	4.1 Neuroevolution Setup
	4.2 Introducing Representational Diversity for Neuroevolution
	4.3 Treatments, Parameter Settings, and Statistical Testing

	5 Results
	5.1 Summary of Experiments

	6 Conclusion
	References

	Evolving Reservoirs for Meta Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Reinforcement Learning as a Model of Development
	2.2 Meta Reinforcement Learning as a Model of the Interplay Between Evolution and Development
	2.3 Reservoir Computing as a Model of Neural Structure Generation
	2.4 Evolutionary Algorithms as a Model of Evolution

	3 Evolving Reservoirs for Meta Reinforcement Learning (ER-MRL)
	4 Results
	4.1 Evolved Reservoirs Improve Learning in Highly Partially Observable Environments
	4.2 Evolved Reservoirs Could Generate Oscillatory Dynamics that Facilitate the Learning of Locomotion Tasks
	4.3 Evolved Reservoirs Improve Generalization on New Tasks Unseen During Evolution Phase

	5 Discussion
	6  Appendix
	6.1  Methods
	6.2  Experiment Parameters
	6.3  Partially Observable Environments
	6.4  MuJoCo Forward Locomotion Environments
	6.5  MuJoCo Humanoid Environments
	6.6  Normalized Scores for Generalization
	6.7  Reservoir Hyperparameters Analysis

	7  Additional experiments
	References

	Hybrid Surrogate Assisted Evolutionary Multiobjective Reinforcement Learning for Continuous Robot Control
	1 Introduction
	2 Background
	2.1 Multiobjective Markov Decision Process
	2.2 Prediction Guided MORL
	2.3 Surrogate Assisted Multiobjective Evolutionary Optimization
	2.4 Probabilistic Selection in Decomposition-Based Multiobjective Evolutionary Algorithms

	3 Hybrid Surrogate Assisted Evolutionary Multiobjective Policy Gradient
	3.1 Dataset for Surrogates
	3.2 Surrogate Models
	3.3 Optimization Method

	4 Results
	4.1 Benchmark Experiments
	4.2 MORL for Autonomous Driving

	5 Conclusions
	References

	Towards Physical Plausibility in Neuroevolution Systems
	1 Introduction
	2 Background
	2.1 Artificial Neural Networks
	2.2 Neuroevolution

	3 Approach
	3.1 Power Measurement
	3.2 Model Partitioning
	3.3 Fitness Functions
	3.4 Module Reutilization

	4 Experimental Setup
	5 Results
	6 Conclusion
	6.1 Future Work

	References

	Leveraging More of Biology in Evolutionary Reinforcement Learning
	1 Introduction
	2 Evolutionary Reinforcement Learning
	2.1 Application Areas of Particular Importance

	3 Concepts, Principles, and Mechanisms
	3.1 Evolvability and Robustness
	3.2 Epistasis and Recombination
	3.3 Developmental Canalization
	3.4 Epigenetics
	3.5 Neutrality
	3.6 Niche Construction
	3.7 Hierarchy/Modularity
	3.8 Phylogenetic Analysis
	3.9 Plasticity
	3.10 Homeogenesis
	3.11 Resource Constraints
	3.12 Other Mechanisms, Principles, and Concepts

	4 Discussion
	5 Conclusion
	References

	A Hierarchical Dissimilarity Metric for Automated Machine Learning Pipelines, and Visualizing Search Behaviour
	1 Introduction
	2 Background
	2.1 TPOT Pipeline Representation
	2.2 Producing New Pipelines
	2.3 The Tree Edit Distance Algorithm

	3 A Metric for Pipeline Dissimilarity
	3.1 Pipeline Structures
	3.2 Quantifying Pipeline Dissimilarity

	4 Visual Representations of TPOT Search
	4.1 Experimental Design
	4.2 Results and Discussion

	5 Conclusion
	References

	DeepEMO: A Multi-indicator Convolutional Neural Network-Based Evolutionary Multi-objective Algorithm
	1 Introduction
	2 Background
	2.1 Multi-objective Optimization Problem (MOP)
	2.2 Quality Indicator (QI)
	2.3 Indicator-Based EMOA (IB-EMOA)
	2.4 Dynamic Graph Convolutional Neural Network (DGCNN)

	3 Proposed Approach
	3.1 General Framework
	3.2 Using DGCNN in DeepEMO

	4 Experimental Results
	4.1 Test Problems
	4.2 Performance Assessment
	4.3 Discussion

	5 Conclusions
	References

	A Comparative Analysis of Evolutionary Adversarial One-Pixel Attacks
	1 Introduction
	2 Related Work
	3 One-Pixel Attack
	3.1 Evolutionary One-Pixel Attack

	4 Experimental Setup
	5 Experimental Results
	6 Conclusion
	References

	Robust Neural Architecture Search Using Differential Evolution for Medical Images
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Search Space Design
	3.2 Encoding Scheme
	3.3 Fitness Function
	3.4 Adversarial Training
	3.5 Differential Evolution

	4 Experimental Settings and Results
	4.1 Datasets Used for Experimentation
	4.2 Experimental Settings
	4.3 Experimental Results and Discussion

	5 Conclusion
	References

	Progressive Self-supervised Multi-objective NAS for Image Classification
	1 Introduction
	2 Related Work
	3 Multi-objective Neural Architecture Search
	3.1 CGP-NASV2 Solution Representation
	3.2 Self-supervised Approach for Multi-objective NAS

	4 Experimental Framework
	5 Experimental Results
	5.1 Comparison with the State-of-the-Art
	5.2 Visual Analysis of the Evolved Architectures

	6 Conclusions
	References

	Genetic Programming with Aggregate Channel Features for Flower Localization Using Limited Training Data
	1 Introduction
	1.1 Goals

	2 Backgrounds and Related Work
	2.1 Existing Methods for Flower Localization
	2.2 Aggregate Channel Features (ACF) for Object Localization

	3 Proposed Approach
	3.1 The New GP Representation
	3.2 Terminal Set
	3.3 Function Set
	3.4 Fitness Function
	3.5 Test Process

	4 Experiment Design
	4.1 Datasets
	4.2 Comparison Methods
	4.3 Parameter Settings

	5 Results and Discussions
	5.1 Average IoU Results
	5.2 Detection Accuracy Results

	6 Further Analysis
	6.1 Analysis of an Example GP Tree
	6.2 Visual Comparison Between ACFGP, Baseline, and YOLOv8

	7 Conclusions
	References

	Evolutionary Multi-objective Optimization of Large Language Model Prompts for Balancing Sentiments
	1 Introduction
	2 Related Work
	3 EMO-Prompts
	3.1 Large Language Model
	3.2 Evolutionary Approach
	3.3 NSGA-II and S-Metric Selection

	4 Experiments
	4.1 Sentiment Analysis
	4.2 Settings
	4.3 Results

	5 Conclusion
	References

	Evolutionary Feature-Binning with Adaptive Burden Thresholding for Biomedical Risk Stratification
	1 Introduction
	2 Methods
	2.1 Scikit-FIBERS
	2.2 Algorithmic Expansions for Adaptive Burden Thresholding
	2.3 Synthetic Data Simulation
	2.4 Simulation Experiments

	3 Results and Discussion
	4 Conclusion
	References

	An Evolutionary Deep Learning Approach for Efficient Quantum Algorithms Transpilation
	1 Introduction
	2 Preliminary Concepts 
	3 Deep Learning and Neural Architecture Search 
	3.1 Deep Learning for Qubits' Initialisation

	4 The Proposed Approach 
	4.1 The Extract-Tranform-Load Module 
	4.2 The Evolutionary Deep Neural Network Module

	5 Experimental Study
	5.1 Experiments' Design and Benchmarks
	5.2 Results and Discussion

	6 Conclusion and Perspective 
	References

	Measuring Similarities in Model Structure of Metaheuristic Rule Set Learners
	1 Introduction
	2 Metaheuristic Rule Set Learners
	3 Generating Benchmark Tasks
	4 Measuring Dissimilarity of Sets of Rules
	4.1 Desired Properties
	4.2 Dissimilarity Measure

	5 Demonstration
	5.1 Data-Generating Processes
	5.2 Evaluation of Repeated Runs

	6 Related Work
	7 Future Work
	8 Conclusion
	References

	Machine Learning and AI in Digital Healthcare and Personalized Medicine
	Incremental Growth on Compositional Pattern Producing Networks Based Optimization of Biohybrid Actuators
	1 Introduction
	2 Background
	3 Methods
	4 Results
	5 Discussion
	References

	Problem Landscape Analysis for Efficient Optimization
	Hilbert Curves for Efficient Exploratory Landscape Analysis Neighbourhood Sampling
	1 Introduction
	2 Hilbert Curves
	3 Hilbert Curves as Samplers
	3.1 Stochastic Sampling Using Hilbert Curves
	3.2 Search Space Coverage
	3.3 Computational Cost
	3.4 Predictive Performance of Hilbert Curve Samples

	4 Hilbert Curves as an Ordering Tool
	4.1 Step Size Consistency
	4.2 Computational Cost
	4.3 Evaluation of Features Generated Using Hilbert Curve Ordering

	5 Conclusion
	References

	Predicting Algorithm Performance in Constrained Multiobjective Optimization: A Tough Nut to Crack
	1 Introduction
	2 Background
	2.1 Constrained Multiobjective Optimization
	2.2 Exploratory Landscape Analysis for Constrained Multiobjective Optimization
	2.3 Empirical Cumulative Distribution Functions
	2.4 Deep Neural Networks

	3 Methodology
	3.1 Classification Tasks
	3.2 Classical Machine Learning
	3.3 DNN

	4 Experimental Setup
	5 Results
	6 Conclusion
	References

	On the Latent Structure of the bbob-biobj Test Suite
	1 Introduction
	2 Landscape Analysis
	2.1 Landscape Features

	3 Methodology
	3.1 Expert Classification
	3.2 Cluster Analysis
	3.3 Experiment Design

	4 Results
	4.1 Number of Clusters
	4.2 Analysis of Latent Clusters
	4.3 Interpretation of Discovered Classes

	5 Conclusions
	References

	Soft Computing Applied to Games
	Strategies for Evolving Diverse and Effective Behaviours in Pursuit Domains
	1 Introduction
	1.1 Diversity Search
	1.2 Contributions
	1.3 Organization of Paper

	2 System Design
	2.1 Simulation Environment
	2.2 Agent Controllers
	2.3 Genetic Programming
	2.4 Computing Diversity
	2.5 Behaviour Vectors
	2.6 Score the Population Using Sum of Ranks

	3 Experiments
	3.1 Setting a Baseline
	3.2 Testing the Diversity Strategies
	3.3 Discussion

	4 Conclusion
	References

	Using Evolution and Deep Learning to Generate Diverse Intelligent Agents
	1 Introduction
	2 System Design
	2.1 Pursuit Domain Simulation
	2.2 GP Architecture
	2.3 CNN Architecture
	2.4 Combined GP/CNN System

	3 CNN for Emergent Behaviour Classification
	3.1 CNN Training

	4 Diverse Agent Generation
	5 Targeted Behaviour Generation
	6 Conclusion
	References

	Vision Transformers for Computer Go
	1 Introduction
	2 Computer Go
	3 Network Architectures
	3.1 Residual Network
	3.2 Transformer
	3.3 Efficient Former
	3.4 Adaptation for the Game of Go

	4 Experimental Results
	4.1 Dataset
	4.2 Experimental Information
	4.3 Training and Playing

	5 Conclusion
	References

	Surrogate-Assisted Evolutionary Optimisation
	Integrating Bayesian and Evolutionary Approaches for Multi-objective Optimisation
	1 Introduction
	2 Background
	2.1 Multi-objective Bayesian Optimisation
	2.2 Decomposition-Based MOEAs
	2.3 Scalarising Functions

	3 Multi-objective BO with MOEAs Selection Criterion
	3.1 Estimation of Acquisition Function
	3.2 Demonstration

	4 Results and Discussion
	5 Conclusions
	References

	Author Index

