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Abstract. Imbalanced datasets pose a significant and longstanding
challenge to machine learning algorithms, particularly in binary clas-
sification tasks. Over the past few years, various solutions have emerged,
with a substantial focus on the automated generation of synthetic obser-
vations for the minority class, a technique known as oversampling.
Among the various oversampling approaches, the Synthetic Minority
Oversampling Technique (SMOTE) has recently garnered considerable
attention as a highly promising method. SMOTE achieves this by gener-
ating new observations through the creation of points along the line seg-
ment connecting two existing minority class observations. Nevertheless,
the performance of SMOTE frequently hinges upon the specific selec-
tion of these observation pairs for resampling. This research introduces
the Genetic Methods for OverSampling (GM40S), a novel oversampling
technique that addresses this challenge. In GM40S, individuals are repre-
sented as pairs of objects. The first object assumes the form of a GP-like
function, operating on vectors, while the second object adopts a GA-like
genome structure containing pairs of minority class observations. By co-
evolving these two elements, GM40S conducts a simultaneous search for
the most suitable resampling pair and the most effective oversampling
function. Experimental results, obtained on ten imbalanced binary clas-
sification problems, demonstrate that GM40OS consistently outperforms
or yields results that are at least comparable to those achieved through
linear regression and linear regression when combined with SMOTE.

Keywords: Oversampling - Imbalanced Data - Binary Classification -
Genetic Programming - Genetic Algorithms

1 Introduction

In real-world classification tasks, it is common to encounter datasets where
the proportion of labels is not homogeneous among the different classes. This
problem is commonly referred to as imbalance. Classification models tend to
exhibit higher accuracy when handling observations from the class that is more
prevalent, often termed as the majority class, as opposed to the less frequently
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occurring class, referred to as the minority class. A common strategy is to add
new observations, typically created artificially, to the minority class, to improve
the balancing of the dataset. The approach is called oversampling [1,2]. One of
the most used oversampling approaches is the Synthetic Minority Oversampling
Technique (SMOTE) [3]. This oversampling algorithm works by selecting a ran-
dom pair of neighboring observations, drawing a straight line segment between
the two, and randomly sampling a new observation along that segment. One
of its notable drawbacks lies in the sensitivity of its performance to the choice
of the set of data points used for resampling. The quality and relevance of the
selected points play a crucial role in determining the effectiveness of SMOTE
in generating synthetic samples that accurately represent the minority class. In
this paper, we introduce the Genetic Methods for OverSampling (GM40S), a
novel oversampling method that joins the representation power of two evolution-
ary algorithms, Genetic Algorithms (GAs) [4] and Genetic Programming (GP)
[5], to overcome some of the disadvantages of SMOTE. In GM40S, individuals
are represented as pairs of objects. The first one is a function, represented as a
standard GP individual. The other one is a string, as a traditional GA individ-
ual. The GA part controls which existing observations from the minority class
will belong to the resampling set. The GP part evolves an oversampling function
that will combine points that belong to the resampling set, and create the new
synthetic points needed to balance the dataset. The fitness of a GM40S individ-
ual is given by the performance of a model trained by a previously chosen target
machine learning algorithm on the newly balanced training set. The objective
of the evolutionary process is to look for the best resampling set and the most
effective oversampling function at the same time.

The paper is organized as follows: in Sect.2 we revise previous and related
work. In Sect.3 we present GM40S. Section4 delves into the employed experi-
mental framework, including the set of parameters, the datasets chosen as test
cases, the models utilized as baseline for comparison with GM40OS and the
used metrics. Section 5 presents and discusses the obtained experimental results.
Finally, Sect. 6 concludes the work and suggests ideas for future research.

2 Literature Review

Imbalanced datasets represent a recurrent challenge in real-world classification
tasks. In the literature, both internal and external approaches have been used
in an attempt to obviate the impact of imbalanced data on the model’s per-
formance. External approaches (data level) rebalance the dataset by either
removing observations from the majority class (undersampling) or by adding
observations to the minority class (oversampling) [1,2]. In internal
approaches (algorithm level), the algorithm is adapted to handle automati-
cally imbalanced observations. This can be done by either assigning a differ-
ent weight to each class [6] or by using multiple classifiers simultaneously, also
referred to as ensemble learning [7]. A combination of both internal and external
approaches can be implemented as well. The Synthetic Minority Oversampling
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Technique (SMOTE) is an external approach that was designed by Chawla et al.
in 2002 [3]. SMOTE generates new observations belonging to the minority class
as a combination of existing points of the same class. One of the drawbacks
of SMOTE is the over generalization of the minority class, leading to a possi-
ble overlap between classes [8]. Borderline observations are more important for
classification task, being the ones more prone to misclassification. For this rea-
son a variant of SMOTE, named borderline-SMOTE [9], uses as resampling set
only the borderline and nearby observations. Another known oversampling tech-
nique is the Adaptive Synthetic Sampling Approach (Adasyn) [10]. In Adasyn,
minority data samples are generated according to their distribution. To mitigate
the learning bias present in the initial dataset, this approach employs a strat-
egy where a greater number of synthetic observations is generated from those
minority observations that happen to be more challenging to learn. This is done
by assigning weights to the various minority class samples.

The GM40S method presented in this study is an evolutionary algorithm
that joins the representation power of GP and GAs. For this reason, particularly
interesting for this literature review are some existing oversampling methodolo-
gies grounded in the use of evolutionary algorithms. GP has been previously
applied to imbalanced classification tasks. For instance, standard GP and some
of its variants have been successfully applied to several classification tasks in [11].
Also, recent research contributions by Pei et al. [12] as well as Kumar [13] have
introduced novel fitness functions tailored specifically for GP. These innova-
tive fitness functions have been designed to enhance GP’s performance when
addressing the intricacies of imbalanced classification scenarios. The GenSample
algorithm introduced by Karia et al. in 2019 [14], implements an oversampling
technique based on GAs. GenSample iteratively learns which minority samples
are best suited for resampling and the authors reported on promising results
compared to a set of state-of-the-art models.

The oversampling function evolved by the GP component of GM40S com-
bines two vectors (existing observations) to create a single one (a new synthetic
observation). This process resembles the vectorial GP approach that was pre-
sented by Azzali et al. in [15,16]. For instance, similarly to the GP component
of a GM40S individual, vectorial GP allows aggregate functions and vectorial
operations in the primitive GP set and vectorial variables as terminals.

3 Genetic Methods for Oversampling

As stated above, the Genetic Methods for OverSampling (GM40S) is a novel
oversampling approach for binary classification problems, based on a combina-
tion of GP and GAs representations. GM40S employs the conventional work-
flow of evolutionary algorithms. Its peculiarity resides in the representation of
the evolving solutions. In GM40S, in fact, individuals are represented as pairs
of objects, one resembling a standard GP individual and the other one a string-
like GA individual. The GP part is a function, that can be represented for
instance as a tree, that is able to take as input two vectors (existing observa-
tions) and combine them to create a new observation (synthetic observation).
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The GA part is a string of length n = size_majclass — size_minclass, where
size_majclass and size_minclass are, respectively, the number of observations
belonging to the majority and minority class in the training set. Each allele of
the GA part of the individual contains a pair of observations of the training set
belonging to the minority class. Figure 1 provides a visual representation of an
arbitrary GM40S individual.

GP GA

Functions

[(x1,1:x2,1):
(1,2, X%2,2),
-

*

(xl,nrxz,n)]

Terminals -

Fig. 1. Visual representation of a GM40S individual. The GP function reported on
the left side takes as input two vectors, x1 and x2 (existing observations) and combines
them to create a new observation, given by its output vector (synthetic observation).
The GA genome reported on the right side contains pairs of minority class observations.
By giving each one of these pairs as input to the GP part, n synthetic observations can
be created.

At the beginning of the evolution, the classification dataset is partitioned into
3 subsets: the training, validation and test sets. Then, by applying the function
represented in the GP part to each one of the n pairs of observations of the
GA part, n new synthetic observations are produced. The new observations are
labeled as minority class and added to the training set, making it balanced.

Example. The GP part of the individual in Fig. 1, shown in the left side of the
figure, represents the function:

P(X17X2) = Xl/(Xl . X2)

where x; and xg are two vectors of the same dimension as the feature space,
and the operators / and - represent the element-by-element vectorial division
and multiplication, respectively. Now, let us assume, for the sake of simplicity,
that n = 2 (i.e., the majority class has only two observations more than the
minority class). In such a case, the GA part would be represented as a vector
of two pairs of observations, chosen randomly from the minority class. In the
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simplistic hypothesis that the feature space has a dimension equal to three, and
using arbitrary numbers as data, let us assume that the GA part is:

[([2, 1, 4],[1, 2, 0.5]), ([1, 3, 2],[2, 1, 0.5])]

where [2, 1, 4],[1, 2, 0.5],[1, 3, 2] and [2, 1, 0.5] are existing training observa-
tions, labeled as minority class. In such a simple example, GM40S would create
the two following synthetic observations:

—P([2, 1, 4),[1, 2, 0.5]) = [2/(2-1), 1/(1-2), 4/(4-0.5)] = [1, 0.5, 2]
~P([1, 3, 2,2, 1, 0.5)) = [1/(1-2), 3/(3-1), 2/(2-0.5)] = [0.5, 1, 2]

These two newly created observations would now be inserted in the training set
and labeled as minority class. In this way, the training set is now balanced.

At this point, a classification model is fitted on the newly balanced training
set, and it is then used to make predictions on the validation set. The loss between
expected and calculated outputs on the validation set is finally used as fitness for
the GM40S individual. In this work, the classification model chosen is Logistic
Regression [17], given its simplicity and training efficiency. Figure2 shows a
flowchart representing the fitness evaluation process of a GM40S individual.

During the evolution, distinct genetic operators are applied independently
to each one of the two parts of a GM40S individual: when crossover or muta-
tion need to be applied to a GM40S individual (according to the probabilities
presented in Sect.4), the same operator type (mutation or crossover) is applied
simultaneously to both its GP and GA parts. The genetic operators used in this
work for the GP and GA parts are also specified in Sect.4. Traditionally, GA
individuals are represented as vectors of scalar values. However, the fact that in
GMA4O0S the GA part is a vector of pairs (the minority class observations that
will be used by the GP part) does not represent an issue: it is still possible to
use standard GA operators, treating each pair as a single and indivisible piece
of information. So, for instance, one-point crossover will exchange substrings of
pairs between parents, while one-point mutation will replace an existing pair
with a new pair of minority class observations, generated at random. Note that
when one-point crossover is applied the crossover point is restricted to fall in the
boundaries between observations within a pair.

4 Experimental Settings and Test Problems

Table 1 reports all the GM40S parameters employed in this experimental study.
To assess the performance of GM40S, we have employed two baseline meth-
ods for comparative evaluation. The first one is a simple Logistic Regression
(denoted as LR in the continuation) [17,18] fitted on the imbalanced training
dataset. The second one is still a Logistic Regression, but this time fitted on the
training dataset re-balanced using the traditional SMOTE algorithm (denoted
as SMOTE+LR in the continuation) [3,19]. Table 2 presents the binary classifi-
cation datasets used as test problems in our experimental study. The imbalance
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Fig. 2. Flowchart of the evaluation of a GM40S individual. The initial dataset is split
into training, test and validation. Then a GM40S individual is used to produce enough
new synthetic observations to balance the training set. A model, Logistic Regression
in our experiments, is fitted on the balanced training set. Then, the fitted model is
used to make predictions on the validation set. Finally, the loss between predictions
and true labels on the validation set is used as fitness for the GM40S individual.

ratio is calculated as the ratio between the number of observations of the major-
ity class and the number of observations of the minority class. In this way, the
imbalance ratio is, by definition, a positive number and, given that we are using
imbalanced datasets, it is strictly larger than one in our test problems. All these
datasets belong to the Penn Machine Learning Benchmarks (PMLB) library [20].
In general, several different performance measures that can be used to evaluate
classification algorithms; among others, one may mention for instance precision,
recall, accuracy, and F1-score. The choice of which metric to prioritize depends
largely on the specific problem and its inherent characteristics. In our case, since
we are addressing imbalanced classification problems, the F1-score of the minor-
ity class emerges as a particularly pertinent fitness metric for GM40S. In fact,
the Fl-score provides a balanced measure of both precision and recall. So, it is
well-suited for situations where the imbalanced distribution of classes demands
a focus on the accurate identification of the minority class instances, striking a
balance between minimizing false positives and false negatives [21].
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Table 1. GM40S parameters.

Parameter Value

Population size 50

Generations 50

Mutation probability 0.2

Crossover probability 0.8

Elitism True

Elite size 1

Selection algorithm Tournament

Tournament size 2

GP initialization Ramped-half-half

GA initialization Random

GP constant set {-1,2, 3,4, 5}

GP constant probability 0.3

GP function set {add, sub, mul, div, mean}
GP crossover Subtree single point swap crossover
GP mutation Single node mutation

GA crossover One point crossover

GA mutation One point mutation
Maximum GP tree depth for initialization | 8

Maximum GP tree depth for evolution 8

Table 2. Specifications of the datasets used for model comparison.

Dataset Number of observations | Number of features | Imbalance ratio
flare 1066 10 4.8
haberman | 306 3 2.7
spect 267 22 3.8
spectf 349 44 2.7
ionosphere | 351 34 1.8
hungarian | 294 13 1.77
diabetes 768 8 1.8
hepatitis 155 19 3.84
appendicitis | 106 7 4.04
analcatdata | 264 4 21.8
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5 Experimental Results

All the results reported in this section are medians over 30 independent runs.
At each run, the datasets are split randomly with uniform distribution into
training, validation and test partitions, composed of 60%, 20% and 20% of the
data observations, respectively. The proportion between majority and minor-
ity class observations is kept constant across the different splits. The same
training/validation/test partition has been used for all the studied methods
at each particular run. For LR and SMOTE+LR, the training and validation
sets were joined and both were used as training set. The obtained experimental
results are reported in Fig.3. More particularly, Plot 3a (3b, 3c, 3d, 3e, 3f, 3g,
3h, 3i and 3j, respectively) reports the results for the flare (haberman, spect,
spectf, ionosphere, hungarian, diabetes, hepatitis, appendicitis and analcatdata,
respectively) test case. Each one of these plots represents a comparison between
GM40S, SMOTE+LR and LR. The comparison is done using box-plots of the
F1-score of the minority class on the 30 different test sets. Table 3 reports the p-
values of the Mann-Whitney U test for pairwise comparison of the methods, for
five different metrics. The p-values are in bold when they indicate a statistically
significant difference, using a significance level a = 0.05, with the Bonferroni
correction [22]. Also, the presence of the symbol 9 indicates that GM40S out-
performs the baseline, while the symbol ® indicates the opposite. The last two
rows of the table are a summary of the results for each measure(column). The
first number, always positive, it indicates how many times GM40S significantly
outperforms LR+SMOTE or LR. While the second number, always negative, it
indicates how many times GM4OS is significantly outperformed by LR+SMOTE
or LR. For GM40S, in both Fig.3 and Table 3, the performance of the best
individual at the last generation is used. Observing the F1-score metric for the
minority class, we can notice that GM40S is never significantly outperformed by
the baselines. This outcome is corroborated by the box-plots presented in Fig. 3
and the p-values of the third column of Table 3. It is also possible to see that in
four test cases out of ten GM4OS significantly outperforms LR, and in three test
cases out of ten GM4OS significantly outperforms SMOTE+LR. The Fl-score
is the measure that we have used as fitness to guide the evolution of GM40S.
However, it is also interesting to show how GM40S performs in terms of other
metrics. Looking at the p-values of the accuracy, shown in Table 3, it is possi-
ble to observe that LR significantly outperforms GM40S in four test cases out
of ten, while having comparable performance in the remaining six cases. This is
probably due to the fact that accuracy is a measure that can be misleading when
working with imbalanced datasets. A model that predicts the majority class for
every instance can be a very poor quality model, but still achieve a high accu-
racy when data is imbalanced. For the other studied metrics, it is difficult to
identify a specific pattern. Depending on the test case, GM40S can significantly
outperform, be significantly outperformed or have comparable performance to
the baseline models, as shown by the p-values presented in Table 3. Finally, Fig. 4
presents the evolution of the test fitness of the best individual of GM40S along
generations, compared to the one of the two baseline algorithms, namely LR and
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Table 3. p-values of the Mann-Whitney U test [23] for different evaluation metrics of
GM40S against the baselines. In bold when the p-value indicates a statistically sig-
nificant difference. Symbol ¢ indicates that GM40S outperforms the baseline, while
symbol ° indicates the opposite. The last two rows are a summary of the results
for each measure(column). The first number, always positive, it indicates how many
times GMA4O0S significantly outperforms LR+SMOTE or LR. While the second num-
ber, always negative, it indicates how many times GM4OS is significantly outperformed
by LR+SMOTE or LR.

Problem Baseline Fl-score recall precision recall precision accuracy
minority minority minority majority majority
class class class class class

flare LR+ 0.695 0.21 0.137 0.002° 0.663 0.041

SMOTE

LR 3.29¢ — 118 | 4.65¢ — 68 | 2.88e — 04° 1.55e¢ — 8 | 4.05e — 5% | 5.99e — 7°
haberman | LR+ 0.888 0.243 0.025 0.005° 0.739 0.023

SMOTE

LR 8e — 98 1.11e — 5% |0.001° 5.62¢ — 08P | 8.14e — 48 |1.84e — 4"
spect LR+ 1.61e — 8% |5.72¢ — 18P |4.77e — 7% |2.97e — 188 | 4.89¢ — 127 | 1.67e — 48

SMOTE

LR 0.437 1.24e — 12P | 1.46e — 4% |5.01e — 128 | 8.89¢ — 8 | 0.011°
spectf LR+ 8.99¢ — 485 |9.88¢ — 9° | 0.0158 1.9¢ — 98 | 4.03° 0.222

SMOTE

LR 0.45 6.52e —7° | 0.0158 1.57e — 8% |2.93e — 05P | 0.128
ionosphere | LR+ 0.662 0.002° 2.63¢ — 68 |3.4e— 7% | 0.006° 0.599

SMOTE

LR 0.558 0.006° 1.79e — 48 |3.22e — 58 |0.1° 0.208
hungarian | LR+ 0.721 0.92 0.894 0.815 0.947 0.699

SMOTE

LR 0.693 0.811 0.524 0.55 0.781 0.234
diabetes LR+ 0.673 0.191 0.008° 0.192 0.008" 0.15

SMOTE

LR 0.0018 2.63e —7° |0.041 2.63e —7° | 0.041° 1.16e — 5°
hepatitis LR+ 0.0128 1.47¢ — 5° 9.22¢ —4° |1.1e— 6% |3.72e —4® |0.0168

SMOTE

LR 0.898 0.001° 0.015° 1.5e —48% | 0.008" 0.092
appendicitis | LR+ 0.039 0.01° 0.344 0.036 0.022 0.634

SMOTE

LR 1.1le — 48 |0.2 0.838 0.112 0.313 0.586
analcatdata | LR+ 0.895 0.322 0.443 0.402 0.34 0.856

SMOTE

LR 0.315 0.787 0.676 0.779 0.767 0.99
summary | LR+ +3,0 +2, -5 +3, -2 +4, -2 0, -5 +2,0

SMOTE

LR +4,0 0, -5 +3, -3 +4, =3 +2, -5 0, —4

SMOTE-+LR, which are presented as horizontal straight lines in the figure. More
specifically, Plot 4a (4b, 4c, 4d, 4de, 4f, 4g, 4h, 4i and 4j, respectively) reports the
results for the flare (haberman, spect, spectf, ionosphere, hungarian, diabetes,
hepatitis, appendicitis and analcatdata, respectively) test case.

From these plots, it is possible to observe that GM40S outperforms LR in the
entire evolution process in six out of ten total test cases. Similarly GM40S
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outperforms SMOTE+LR over all the generations in four out of ten total test
cases. In the case of Plot 4j, reporting results on the analcatdata test problem,
all three models have the same performance, around 0.89, and GM40OS has it
starting from the beginning of the evolution (and this is why the figure looks
like a unique horizontal line). This result is coherent with the box-plot shown in
Fig. 3j, where the median of all the models is around 0.89 as well.

6 Conclusions and Future Work

This paper introduced the Genetic Methods for OverSampling (GM40S), an
evolutionary oversampling approach for imbalanced binary classification prob-
lems. In real-world binary classification tasks, imbalancing between the classes
represents a recurrent issue. In those cases, in fact, classification models typ-
ically struggle to classify correctly the observations belonging to the minority
class. A popular approach to tackle this issue is to add synthetic observations
to the minority class, commonly referred to as oversampling. One of the most
known oversampling approaches is the Synthetic Minority Oversampling Tech-
nique (SMOTE) [3]. SMOTE creates new observations by selecting two existing
minority class observations, and sampling a new synthetic point from the straight
line segment that connects them. However, this approach relies heavily on the
set of points that are used for resampling. GM40S integrates the representation
power of Genetic Algorithms (GAs) and Genetic Programming (GP), to look for
the most appropriate resampling set and resampling function at the same time.
GM40S individuals, in fact, are represented as pairs of objects, one of which is a
GP-like function, while the other one is a GA-like string. The GP part strongly
resembles the recently introduced vectorial GP approach [15,16] and combines
two vectors (existing observations) to generate a new single vector (synthetic
observation), while the GA part controls which existing minority class observa-
tions will constitute the resampling set. GM40S was experimentally compared
with a simple Logistic Regression (LR) [17] and SMOTE combined with LR, on
ten imbalanced binary classification test problems, taken from the Penn Machine
Learning Benchmarks library [20]. The experimental results show that, on all the
studied test problems, GM40S is able to find models that have an Fl-score on
the minority class that is better, or at least comparable, to the baseline models.

Despite the positive experimental outcomes achieved, a significant scope
remains open to future research. One such avenue involves the adaptation of
the GM40S framework to address multi-class classification problems. Another
area of investigation pertains to the exploration of alternative fitness metrics
for GM40S, distinct from the Fl-score utilized in this study. Specifically, the
pursuit of metrics that have demonstrated efficacy for GP applied to imbal-
anced classification tasks, as evidenced for instance in [12,13], holds signifi-
cant promise. Multi-objective optimization, using several fitness functions at the
same time, also deserves investigation. An additional idea for future research
is inspired by the observation that the GP component within GM40S is sus-
ceptible to the issue of bloat, a common occurrence in GP. While the present
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work implemented a strategy to restrict tree depth to a maximum of 8, a myr-
iad of other strategies have been advanced to mitigate bloat. Notably, existing
references suggest that the introduction of a dynamic GP population size effec-
tively alleviates bloat, thereby reducing computational overhead while maintain-
ing excellent performance levels, as documented for instance in [24-26]. In light
of these findings, the incorporation of dynamic population sizing into GM40S
presents itself as an intriguing avenue for future development. Furthermore, as a
forthcoming research endeavor, it is imperative to acknowledge that the present
study employed a Logistic Regression model to evaluate the oversampling func-
tion/resampling set pair, due to its computational efficiency [17]. Nevertheless,
the framework remains adaptable to experimentation with alternative models,
such as for instance Decision Tree classifiers [27] or many others. In this study, we
conducted a comparative analysis to assess the performance of GM40S against
an alternative oversampling technique, namely SMOTE (Synthetic Minority
Over-sampling Technique). Our investigation aimed to elucidate the effective-
ness of these oversampling approaches in addressing the challenge of class imbal-
ance within classification tasks. Additionally, our future research endeavors will
encompass further comparisons with alternative oversampling methodologies,
including Adasyn [10] and borderline-SMOTE [9]. Lastly, an interesting prospect
for future research entails the extension of GM40S to encompass synthetic data
generation. This extension can be realized through the modification of the resam-
pling set governed by the GA component of GM40S, extending its influence to
the entire dataset.
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