
Improving Image Filter Efficiency:
A Multi-objective Genetic Algorithm Approach

to Optimize Computing Efficiency

Julien Biau1 , Sylvain Cussat-Blanc2(B) , and Hervé Luga2

1 INIA SAS, Toulouse, France
julien.biau@gmail.com

2 University of Toulouse, Toulouse, France
sylvain.cussat-blanc@ut-capitole.fr, herve.luga@irit.fr

Abstract. For real-time applications in embedded systems, an efficient image
filter is not defined solely by its accuracy but by the delicate balance it strikes
between precision and computational cost. While one approach to manage an
algorithm’s computing demands involves evaluating its complexity, an alterna-
tive strategy employs a multi-objective algorithm to optimize both precision and
computational cost.

In this paper, we introduce a multi-objective adaptation of Cartesian Genetic
Programming aimed at enhancing image filter performance. We refine the exist-
ing Cartesian Genetic Programming framework for image processing by inte-
grating the elite Non-dominated Sorting Genetic Algorithm into the evolutionary
process, thus enabling the generation of a set of Pareto front solutions that cater
to multiple objectives.

To assess the effectiveness of our framework, we conduct a study using a
Urban Traffic dataset and compare our results with those obtained using the stan-
dard framework employing a mono-objective evolutionary strategy. Our findings
reveal two key advantages of this adaptation. Firstly, it generates individuals with
nearly identical precision in one objective while achieving a substantial enhance-
ment in the other objective. Secondly, the use of the Pareto front during the evo-
lution process expands the research space, yielding individuals with improved
fitness.

Keywords: Genetic Programming · Cartesian Genetic Programming ·
Multi-Objective · Genetic Improvement · Image processing · Real Time
Applications · Embedded Systems

1 Introduction

When employing image filters on embedded systems with limited computing power,
the challenge extends beyond precision; one must also consider the constraints of com-
putational capacity. In the realm of real-time applications on embedded systems, an
efficient image filter is one that strikes an optimal balance between fitness and compu-
tational time.
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While assessing an algorithm’s complexity is a common practice, involving mea-
surements of time and estimations of worst-case scenarios, controlling the equilibrium
between precision and computation time remains a nuanced challenge. An alternative
approach involves the use of multi-objective algorithms to concurrently optimize preci-
sion and computation.

In this work, we introduce a multi-objective evolutionary strategy within the frame-
work of Cartesian Genetic Programming for Image Processing for Genetic Improve-
ment (CGP-IP-GI). Our approach accounts for both filter precision and execution time,
yielding a range of high-performing solutions. The choice of solution depends on the
desired fitness level or the available computing power. Additionally, our multi-objective
adaptation results in solutions with improved fitness when compared to previous mono-
objective studies.

This paper is organized as follows: Sect. 2 presents the state-of-the-art in multi-
objective genetic algorithms, while Sect. 3 outlines the adaptation of CGP-IP-GI, incor-
porating the elite non-dominated sorting genetic algorithm to achieve multi-objective
optimization. Section 4 details the experiments underpinning this research, and Sect. 5
offers a comprehensive presentation of the results. Finally, in Sect. 6, we present our
preliminary conclusions.

2 Related Works

This section discusses prior research in the realm of multiple objective problems, with
a specific focus on the field of genetic algorithms. It also introduces Cartesian Genetic
Programming for Image Processing (CGP-IP) and its recent advancement for genetic
enhancement (CGP-IP-GI).

2.1 Multi-objective Evolution Algorithms

In contrast to a single-objective problem, which seeks to find an optimal solution, a
multi-objective problem entails the simultaneous optimization of multiple objective
functions. Enhancing one aspect in a multi-objective problem may have detrimental
effects on the outcomes of other objectives. As a result, multi-objective genetic algo-
rithms aim to generate a collection of efficient solutions that belong to the Pareto-
optimal front.

Mathematically, the concept of Pareto optimality can be formally defined as follows
(Eq. 1). Assuming, without loss of generality, a maximization problem, and given two
decision vectors a and b belonging to the decision space X, vector a is said to dominate
vector b if and only if:

{∀i ∈ [1,2, ...,n] : fi(a)>= fi(b)
∃ j ∈ [1,2, ...,n] : f j(a)> f j(b)

(1)

All decision vectors which are not dominated by any other decision vector of a given
set are called nondominated regarding this set. If it is clear from the context which set
is meant, we simply leave it out. The decision vectors that are nondominated within the
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entire search space are denoted as Pareto optimal and constitute the Pareto-optimal set
or Pareto-optimal front.

Non-dominated Sorting Genetic Algorithm
The Non-dominated Sorting Genetic Algorithm (NSGA), originally developed by Sri-
vas and Deb [28], follows a methodology that starts by randomly sorting the obtained
solutions based on their dominance. Within each subpopulation, the algorithm computes
the proximity between solutions, and selection is carried out using the roulette method.
This method gives a higher probability to solutions from the first non-dominated sub-
population. New solutions are generated through a combination of crossover and muta-
tion applied to the selected solutions, and the algorithm continues its search for solu-
tions until a predefined stop criterion is met. NSGA ranks solutions based on their
dominance and assigns precision values.

NSGA has also been employed in a study focused on optimizing Stirling thermal
engines, with the goal of achieving maximum power, thermal efficiency, and minimum
pressure drop [1].

Fig. 1. The crowding distance is computed, with points identified by filled circles representing
solutions belonging to the same nondominated front. (Source [6])

Elitist Non-dominated Sorting Genetic Algorithm
The elite non-dominated sorting genetic algorithm (NSGA-II), introduced by Deb and
Goel [7,8], bears resemblance to NSGA. However, NSGA-II employs the crowding
distance to select the most isolated results (as depicted in Figs. 1 and 2), eliminating the
need to calculate the precision parameter (σshare). Consequently, the algorithm ensures
that the optimal Pareto solution discovered up to the current step is retained. The solu-
tion selection mechanism is employed to control population size, although this approach
may diminish proximity to the optimal solution. As long as the number of solutions with
the first non-dominated solutions does not exceed the number of primary populations,
all solutions in this set are selected.

2.2 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a form of Genetic Programming (GP)
in which programs are represented as directed, often acyclic graphs indexed by
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Fig. 2. Basics of NSGA-II procedure. (Source [14])

Cartesian coordinates (Fig. 3). CGP was invented by Miller and Thomson [20], [22]
for use in evolving digital circuits, although it has been applied in a number of domains
[23]. CGP is used in [16] to evolve neural networks, in [5,10] for object detection in
image processing, and in [15] for image noise reduction. Its benefits include node neu-
trality, being the encoded parts of the genome that don’t contribute to the interpreted
program, node reuse, and a fixed representation that reduces program bloat [21]. A
recent review of CGP is given in [24].

Fig. 3. A genotype in the form of a CGP (Cartesian Genetic Programming) and its associated
schematic phenotype are presented for a group of four mathematical equations. The genes high-
lighted in the genotype dictate the function of individual nodes. The addresses for each program
input and node in both the genotype and phenotype are displayed below. Inactive regions of
both the genotype and phenotype are depicted as grey dashes, specifically in the case of node 6.
(Source [25]). (Color figure online)

In CGP, functional nodes, defined as a set of evolved genes, connect to program
inputs and to other functional nodes via their Cartesian coordinates. The outputs of the
program are taken from any internal node or program input based on evolved output
coordinates. The CGP nodes are organized in a rectangular grid with R rows and C
columns. Nodes have the flexibility to establish connections with any node from pre-
ceding columns, and this connectivity is governed by a parameter L, representing the
number of columns to which a node can connect. In this investigation, consistent with
previous studies such as [24], the value of R is set to 1, indicating that all nodes reside
in a single row.
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The CGP genotype consists of a list of node genes; each node in the genome encodes
the node function, the coordinates of the function inputs (here referred to as Connection
0 and Connection 1), and optionally, the parameters for the node function. Finally, the
end of the genome encodes the nodes that give the final program output. By tracing
back from these output nodes, a single function can be derived for each program output
by offering a concise and legible program representation.

The genes in CGP are optimized through using the 1+λ algorithm. A population of
λ individuals are randomly generated and evaluated on a test problem. The evaluation
is performed by decoding the program graph from the individual genotype and apply-
ing the program to a specific problem such as image masking, as in this study. The
best individual based on this evaluation is retained for the next generation. A mutation
operator is applied to this individual to create λ new individuals; in CGP, the mutation
operator randomly samples a subset of new genes from a uniform distribution. This new
population is evaluated, and the best individual is retained for the next generation; this
iterative process continues until a configured stopping criterion.

2.3 Cartesian Genetic Programming for Image Processing

An important choice to make when using CGP is the set of possible node functions. In
the original circuit design, the node functions are logic gates such as AND and NOR.
Applications of CGP in game playing and data analysis use a standard set of mathemat-
ical functions such as x+ y, x ∗ y, and cos(x) for a node with inputs x and y. Function
sets must be defined such that outputs of any node will be valid for another node; in
mathematical functions, this is often guaranteed by limiting the domain and range of
the functions between –1 and 1.

CGP-IP is an adaption of CGP that uses image processing functions and applies
programs directly to images [10]. The inputs and outputs of the evolved functions
are images that allows for consistency between node functions; each node function is
defined to input an image of a fixed size and output an image of the same size. CGP-IP
has previously used a set of 60 functions [10] from OpenCV, a standard open-source
image processing library.

In a previous work [10], CGP-IP has used an island population distribution algo-
rithm. In this method, multiple populations compete inside “islands" that are indepen-
dent 1+ λ evolutionary algorithms. A migration interval parameter dictates the fre-
quency of expert sharing between islands, allowing for the synchronization of the best
individual across islands. Island models have been shown to be good alternatives to the
genetic algorithm, as they help preserve genetic diversity [30]. Their use in CGP-IP has
demonstrated an improvement compared to the 1+λ algorithm.

CGP-IP individuals are evaluated by applying the evolved filter to a set of images,
comparing them to target images, and computing a difference metric between the output
image from the evolved filter and the target such as the mean error or Matthews Corre-
lation Coefficient (MCC) [19]. In this paper, we use MCC, which measures the quality
of binary classification and has been showed particularly adapted to classification tasks
using CGP [9]. Calculations are based on the confusion matrix, which is the count of the
true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).
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mcc=
TPxTN−FP∗FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(2)

A MCC with a score of 1 corresponds to a perfect classification, 0 to a random
classifier, and –1 to a fully inverted classification. Therefore, our fitness function for
evolution is defined as follows:

f itness= 1−mcc (3)

The closer our fitness value is to 0, the more accurate our phenotype is.

2.4 Genetic Improvement

Genetic Improvement (GI) is a relatively recent field of software engineering research
that uses search to improve existing software [26]. Using handwritten code as a starting
point, GI searches the space of program variants created by applying mutation opera-
tors. The richness of this space depends on the power and expressivity of the mutation
operators, which can modify existing code by changing functions or parameters, add
new code, and, in some cases, remove parts of a program. Over the past decade, the
GI field has greatly expanded, and current research on GI has demonstrated its many
potential applications. GI has been used to fix software bugs [2,18], drastically speed
up software systems [18,29], port a software system between different platforms [17],
transplant code features between multiple versions of a system [27], grow new func-
tionalities [12], and more recently to improve memory [31] and energy usage [4].

The majority of GI work uses GP to improve the programs under optimization
[2,17,18,27,29]. In most methods, applying GI on a existing program is achieved by
encoding the program within a GP tree and then computing the corresponding genome.
GP mutation operators are applied to the encoded program to generate adjacent pro-
grams. To this end, both the program encoding and the operators must be defined to suit
the initial program that is to be enhanced with additional functions to improve the func-
tional graph. The fitness used during the evolutionary optimization of the program can
be based on various metrics such as program length, efficiency, or relevance to given
test cases [2,17,29].

2.5 Genetic Improvement in Cartesian Genetic Programming for Image
Processing

In this section, we describe the node insertion and deletion operators designed for GI
with CGP-IP [3]. In general, CGP can create a graph through the random mutation of
node gene parameters such as connections or functions. However, this can be destructive
when improving a given genome, because the modifications to active nodes can remove
parts of the function graph. Previous research has proposed self-modifying genomes
[11] which use functions which can add or remove nodes upon function execution.
CGP-IP-GI propose node insertion and deletion operators during the mutation process
instead of during the execution of the program. These operators are designed to maintain
the active subgraph of a program, that is, they are not destructive.
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The mutation operator comprises three possible operators: node insertion, node
deletion, and standard parameter modification using a uniform distribution. The node
operators have configurable mutation rates: rins and rdel . If one of these structural oper-
ators is chosen, it will be the only mutation performed; otherwise, standard mutation
occurs. In this study, we use rins = 0.1 and rdel = 0.1 for all experiments.

3 Multi-objective Implementation in Cartesian Genetic
Programming for Image Processing

To accomplish multi-objective optimization, we will employ the NSGA-II algorithm.
In order to do so, it is imperative to adapt CGP-IP-GI by making adjustments to its
evolutionary algorithm and integrating a Pareto front as the evaluation function.

3.1 Evolutionary Algorithm

In the typical scenario, CGP-IP-GI employs an evolutionary algorithm with a µ+ λ
strategy, where µ = 1 parent generates λ children. However, to ensure that the Pareto
front is adequately representative, it becomes essential to consider µ> 1. Accordingly,
the evolution phase is adjusted to enable the generation of λ children from µ parents.

3.2 Adapting NSGA-II for CGP-IP-GI

In order to maintain multiple candidates following each selection phase, it becomes
necessary to replace the evaluation function that previously considered only one objec-
tive with the NSGA-II algorithm, which takes into account two objectives and enables
the selection and retention of a set of solutions.

The NSGA-II algorithm can be divided into two phases: the first phase involves the
elimination of dominated solutions, while the second phase focuses on preserving the
most isolated solutions by sorting them.

Selection of Non-dominated Solutions
Solutions not belonging to the Pareto front or dominated solutions are deleted. Only
non-dominated solutions are retained (Algorithm 1). A solution x ∈ E dominates if x’
∈ E if:

∀i, fi(x) ≤ fi(x′) and ∃i, fi(x)< fi(x′) (4)

with fi(x) the function of objective i

Sorting by Isolation Distance
If the number of non-dominated solutions is greater than the number of parents µ, it is
necessary to sort and retain only µ solutions. The extreme points must be kept in each
generation and, therefore, be assigned an infinite crowding distance. For each solution
between the extreme points, the crowding distance between the previous solution and
the next solution is calculated. Solutions are sorted by crowding distance and the µ
solutions with the greatest distance are kept (Algorithm 2).
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Algorithm 1: Removal of dominated solutions
Data: solutions is an array containing all solutions
Result: frontpareto contains the solutions on the Pareto front
solutions.sort([fitness,duration]);
for i ← 0 to solutions.length−1 do

front = True;
for j ← i+1 to solutions.length do

if solutions[i].duration≥solutions[j].duration then
front = False;

end
end
if front then

frontpareto.push(solutions[i])
end

end
frontpareto.push(solutions[solutions.length-1]);

Algorithm 2: Sorting solutions by crowding distance and selecting µ solutions
Data: solutions is an array containing all solutions
Result: parents contains µ solutions to use as parents
for i ← 1 to solutions.length−1 do

solutions[i].crowding = abs(solutions[i-1].fitness - solutions[i+1].fitness) +
abs(solutions[i-1].duration - solutions[i+1].duration)

end
parents.push(solutions[0]);
parents.push(solutions[-1]);
solutions.sort(crowding);
for i ← 0 to µ−2 do

parents.push(solutions[i]);
end

3.3 Synchronization of Islands

CGP-IP-GI uses a distribution of individuals who evolve on different islands. The
islands are synchronized at a fixed interval. Synchronization involves taking the best
of individuals from all the islands and implanting them as a parent individual on all the
islands. The synchronization process is adapted to use the NSGA-II algorithm. During
synchronization, all the individuals of each island are grouped together, and only the
individuals belonging to the Pareto front are kept. If the number of individuals retained
on the Pareto font is greater than µ (number of parents), a sorting by isolation distance
is applied to keep only the most isolated individuals. The remaining µ individuals are
implanted in the place of the previous parents on each island.
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3.4 Objectives Functions

In the study presented in this paper, we will be optimizing two objectives simultane-
ously. The first objective pertains to result precision, and the objective function for
precision is defined as: 1−MCC. Details on how to calculate this objective function
can be found in Sect. 2.3 above. A lower value of the objective function implies better
precision, and thus, the goal is to minimize it.

The second objective focuses on the execution time of the computation. To measure
computation time, we employ the Python function process_time1. This function cor-
responds to the time required for executing the precision objective function. A smaller
result of this objective function indicates a shorter computation time, and the objective
here is also to minimize it.

4 Experiments

To assess this multi-objective adaptation in the context of Genetic Improvement (GI),
we will apply the same experimental conditions as those outlined in a prior publication
on image filter optimization using CGP-IP-GI [3]. This approach enables us to evaluate
and, subsequently, compare the outcomes of the multi-objective adaptation with the
results obtained in the single-objective version.

4.1 Urban Traffic Dataset

Fig. 4. Example from the urban traffic image dataset

In this study, we employed CGP-IP for the purpose of object identification within a
cityscape. The dataset is sourced from urban traffic livestream cameras2, and we gener-
ated output masks using Mask-RCNN [13]. These masks are used to isolate and retain
only the relevant objects within the scene. The primary objective of this dataset is to
create a filter capable of extracting and tracking specific objects in the video stream.
To achieve this, the filter must discern the moving objects from one frame to the next

1 https://docs.python.org/3/library/time.html.
2 https://camstreamer.com/live/streams/14-traffic.

https://docs.python.org/3/library/time.html
https://camstreamer.com/live/streams/14-traffic
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in a sequence of five-minute videos. The videos are captured in 16-bit RGB color with
a resolution of 1024×576 pixels. Prior to input, we convert the images into grayscale
(as depicted in Fig. 4.A). The target classification (as shown in Fig. 4.B) is aimed at
identifying significant objects such as pedestrians and vehicles.

The expert filter used in this dataset was designed by engineers. It functions by
subtracting the previous image from the current image and applying erode and dilate
function to remove the noise. For this dataset, evolution was run for 5000 generations
over forty independent trials.

4.2 CGP-IP Parameters

In this work, we have used the following parameters for CGP-IP:

– R: number of rows in CGP is 1
– C: number of columns in CGP is set to 50 but can change with the node addition and

deletion operators
– rmut : mutation rate for each gene is 0.25
– rins: node insertion mutation operator rate is 0.1
– rdel : node deletion mutation operator rate is 0.1
– number of islands: number of parallel 1+λ evolutions is 4
– µ: number of parents on each island is 4
– λ: population size on each island is 8
– Synchronisation interval between islands: number of generations before islands that
synchronize with the chromosome with the best fitness is 20

– number of generations is 5000

Each node within the graph is encoded with eight parameters. The first parameter
signifies an index within the list of image processing functions. The second parame-
ter, “Connection 0”, represents a connection with a preceding node, where the output
of the preceding node serves as the input for the function. The third parameter, “Con-
nection 1”, is also a connection with a previous node, using its output as input for the
function (although not all functions make use of “Connection 1”). The fourth, fifth, and
sixth parameters, labeled “Parameters 0”, “Parameters 1”, and “Parameters 2”, are real
numbers corresponding to the first, second, and third parameters of the function. These
parameters are not necessarily used because not all functions require three parameters.
For instance, Gabor Filter parameters are only utilized in conjunction with Gabor filter
functions. Throughout the evolution process, mutations can occur on the function index,
connections, or parameters.

4.3 Image Processing Functions

The function set employed in this study is primarily derived from the CGP-IP func-
tion set [10]. However, it’s important to note that new functions have been introduced
into the OpenCV library since the publication of the previous work. In addition to the
pre-existing list of image processing functions [10] integrated into CGP-IP, we have
incorporated two additional OpenCV functions: “watershed” and “distance transform”.
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Table 1. Significant values of the Pareto front at generation 5000 over 40 runs

Fitness 1.0 0.70 0.59 0.55 0.52 0.50 0.49 0.49 0.39 0.38 0.36 0.35

Duration 0.09 0.12 0.18 0.33 0.66 1.05 1.79 2.58 2.63 3.13 7.65 11.7

5 Results

In this section, we present the results obtained from our dataset over the course of
5000 generations and across 40 independent runs. The application of a multi-objective
algorithm enabled us to procure a diverse range of efficient solutions catering to both
objectives.

Fig. 5. All individuals over 40 runs for generation 1 (A), 100 (B) and 1000 (C). The line corre-
sponds to Pareto front.

Figure 5 depicts the Pareto front at generation 1 in blue, generation 100 in green,
and generation 1000 in red over the 40 runs. During this evolutionary progression, we
observe a significant enhancement in precision from generation 1 to 1000, coinciding
with a stabilization in execution time. Beyond generation 1000 and up to 5000, only
four solutions exhibit noticeable precision improvements.

Figure 6.A showcases the evolution of the mean and standard deviation of the best
precision achieved in each of the 40 runs throughout 5000 generations. This graph high-
lights a pronounced surge in precision up to generation 500, followed by a gradual
but continuous improvement, with the standard deviation progressively increasing from
generation 3500 and doubling by generation 5000.

Figure 6.B illustrates the evolution of the mean and standard deviation of the short-
est execution duration in each of the 40 runs over 5000 generations. Here, we observe
an increase in both mean and standard deviation up to generation 250, after which they
remain at consistent levels until generation 5000.

A close examination of Figs. 6.A and 6.B uncovers the intertwined nature of preci-
sion and execution time, which stabilizes after generation 300.

Figure 7 showcases the solutions comprising the Pareto front at generation 5000,
encompassing a wide array of solutions to accommodate diverse objectives. Table 1
provides a summary of representative values from this Pareto front.

Figure 8.A presents the evolution of the mean and standard deviation of the number
of active nodes for the best precision achieved in each of the 40 runs throughout 5000



30 J. Biau et al.

Fig. 6. Average and standard deviation of the best precision and shortest duration over 40 runs

Fig. 7. Pareto front at generation 5000 over 40 runs

generations. Notably, there is a consistent rise in both the mean and standard deviation
of active nodes during the entire 5000-generation span.

Figure 8.B mirrors this trend, capturing the evolution of the mean and standard devi-
ation of the number of active nodes for the shortest execution duration in each of the 40
runs over 5000 generations. We observe an increase in both mean and standard devia-
tion up to generation 200, followed by a stable trajectory up to generation 5000. The
comparative analysis of Figs. 6 and 8 underscores the connection between improved
objectives and an increased number of active nodes.

The Pareto front established after 5000 generations provides a broad spectrum of
solutions, with precision ranging from 0.36 to 1.0 and execution times spanning from
90 milliseconds to 11.7 s (see Table 1). This diversity enables the selection of solutions
based on the interplay of these two objectives. For instance, even when the highest
precision achieved is 0.35, there exists a solution offering slightly less precision (0.39,
i.e., a 10% reduction) but with a significantly shorter execution time (2.63 s instead of
11.7 s, representing a computational cost reduction of 78%).

5.1 Comparing Multi-objective to Mono-objective Results

The CGP-IP-GI framework has previously been examined in a single-objective setup
using the same dataset and CGP-IP parameters [3], and Fig. 9 is extracted from this
prior publication.

In Fig. 9.A, we observe the evolution of both the mean and standard deviation of
precision over 40 runs spanning 5000 generations. When compared to Fig. 6.A, both
graphs exhibit a consistent and swift enhancement up to generation 500, followed by a
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Fig. 8. Average and standard deviation of the number of actives nodes of the best precision and
the shortest duration over 40 runs

Fig. 9. Average and standard deviation of the precision and the number of actives nodes over 40
runs from [3]

more gradual improvement. Notably, the standard deviations in both figures are quite
similar. The multi-objective adaptation yields a slightly improved precision (2%) at the
5000th generation.

Moving to Fig. 9.B, it illustrates the progression of the mean and standard deviation
of the number of active nodes over 40 runs during 5000 generations. In comparison
with Fig. 8.A, both graphs display a parallel evolution characterized by a continuous
increase in the number of active nodes and a comparable standard deviation. At the
5000th generation in Fig. 9.A, the mean value stands at 0.53, with a minimum of 0.44,
a maximum of 0.59, and a standard deviation of 0.03 (as outlined in Table 2). While
the mean precision in Figs. 9.A and 6.A displays a slight difference at the 5000th gen-
eration, comparing their best fitness demonstrates that the multi-objective adaptation
enables the attainment of individuals with superior fitness. Significantly, the T-test p-
value between Figs. 6.A and 9.A falls below 1e−5.

The results from this experiment, conducted over 40 runs and spanning 5000 gen-
erations, reveal a consistent improvement in accuracy, as well as an ongoing increase
in the number of active nodes. Moreover, when compared to the outcomes of previous
studies [3], our findings demonstrate that the use of a multi-objective algorithm does
not compromise precision over the course of 5000 generations. On the contrary, main-
taining a Pareto front during the evolution process, as opposed to a single individual,
results in an expanded search space and leads to more optimal solutions.
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Table 2. Comparing of multi-objective and mono-objective [3] results

Evolutionary algorithm Mean Fitness Min Fitness Standard deviation

Mono-objective 0.53 0.44 0.03

Multi-objective 0.5 0.35 0.02

6 Conclusion

In this study, our primary objective was to investigate the feasibility of effectively man-
aging the computational demands inherent in the genetic evolution of image filters.
We pursued a multi-objective approach by enhancing the adaptability of CGP-IP-GI to
accommodate multiple objectives.

The results obtained from our experiments involving this multi-objective adaptation
have provided valuable insights. They offer a range of solutions that belong to a Pareto
front, where a slight reduction in precision leads to a substantial reduction in compu-
tation time. Maintaining a Pareto front throughout the evolution process, rather than
relying on a single individual, significantly expands the search space, thus facilitating
the discovery of efficient solutions.

This study, in conjunction with comparisons to prior publications, reinforces the
notion that it is indeed possible to reduce the computational time required for image
filters while preserving precision. This outcome holds significant promise for the uti-
lization of GP-based algorithms in embedded applications, freeing up computational
resources for other essential tasks. Additionally, our findings underscore the efficiency
of adapting the NSGA-II algorithm within genetic algorithms for genetic improvement.

In practical terms, the evolution of the CGP-IP-GI framework now enables the
execution of multi-objective genetic improvement, offering a wide array of effective
solutions for various objectives. The selection of the most suitable solution remains a
human-driven process, aligning with the specific constraints and requirements of the
application. For systems with limited computing power, the dynamic adaptation to the
available computational resources from this pool of solutions holds substantial poten-
tial.

One noteworthy avenue that merits exploration is the use of multi-objective algo-
rithms to expand the search space of single-objective algorithms. While our study
primarily aimed to reduce computational time as the second objective, an intriguing
prospect exists in controlling the number of active nodes. This approach could involve
either minimizing or maximizing them. The selection of the most suitable secondary
objective to maximize the search space warrants further investigation.

Furthermore, our findings open the door to the exploration of divergent search
approaches, offering the possibility of combining directed search, computational cost
optimization, and divergent search. This avenue holds promise for future research to
unlock new levels of efficiency and effectiveness in the field of genetic improvement.
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