
Iterated Beam Search for Wildland Fire
Suppression

Gustavo Delazeri(B) and Marcus Ritt

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
{gustavo.delazeri,marcus.ritt}@inf.ufrgs.br

Abstract. Wildfires cause significant damage costs globally, and it is
likely that they are becoming more damaging due to climate change.
Here we study methods for fire suppression, after a breakout of fire. In our
model, we have a grid graph G = (V, A) that represents the discretization
of a terrain into cells and an ignition node s ∈ V from which the fire
spreads to other nodes. The spread of the fire is defined by the arc
weights, which can be used to model important factors such as wind
direction and vegetation type. At various points in time, one or more
fire suppression resources become available to be applied to nodes in the
graph that are not yet burned. Applying a resource to a node v ∈ V adds
a delay to the outgoing edges of v, which causes a local slowdown in fire
propagation. The goal is to find an allocation of resources to the nodes of
the graph such that the total burned area at a target time is minimized.
In this work, we propose a heuristic algorithm based on beam search
to tackle this problem. Our computational experiments show that our
approach is able to consistently find the optimal solution to almost all
instances used in literature, but in considerably less time than previous
approaches.

Keywords: wildfire suppression · heuristic search · beam search

1 Introduction

Wildfires are estimated to have caused global damage costs of about USD 69

billion in 2018–2023 [8,12]. Their frequency and damage are likely to increase
with climate change, with longer wildfire seasons, larger affected areas, and new
locations of occurrence. They are at the same time harder to handle, since they
coincide more frequently with dry air [6,14]. Although deaths from wildfires are
rare in comparison to other natural disasters, they destroy ecosystems, threaten
homes, livelihoods, technical infrastructure such as railways and the electricity
grid, and lead to a reversal of carbon capture [6,13]. An increased frequency
of wildfires demands a comprehensive and urgent response, and governments
around the world already are investing in wildfire research with the goal of
understanding its causes and how damages can be mitigated [3].

According to [10], the operations research community has been studying wild-
fire management since the early 1960s, and [7] is one of the first works dealing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 273–286, 2024.
https://doi.org/10.1007/978-3-031-56852-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_18&domain=pdf
http://orcid.org/0000-0001-9439-3113
http://orcid.org/0000-0001-7894-1634
https://doi.org/10.1007/978-3-031-56852-7_18

274 G. Delazeri and M. Ritt

with the application of operations research techniques to forest fire problems.
Since then, we can find in the literature a variety of mathematical models that
aim to capture decisions related to the process of preventing and suppressing
a wildfire, such as the coordination of fire crews, the deployment of aerial fire-
fighting assets and the routing of vehicles to transport firefighters and other
equipment. To give some examples, in 1995 [5] proposed the firefighter problem,
which is defined on a graph where fire spreads from an ignition node to adjacent
nodes in sequential time steps. At each time instant, a certain number of fire sup-
pression resources is available and can be deployed to unburned nodes. Applying
a resource to a node prevents the fire from spreading through its outgoing edges
to adjacent nodes, and the goal is to stop the fire in the minimum amount of time
steps. [2] proposed a more realistic mixed-integer linear programming model that
integrates fire spread behavior and the placement of suppression resources. The
landscape is represented by a graph and the model comprises control variables,
to decide which nodes will receive fire suppression resources, and response vari-
ables, which define fire spread paths, fire arrival times, and fire intensity for all
the nodes. The goal is to minimize the total value of the burned area together
with operational costs.

In this work, we consider a problem first defined in [1] and [11]. Similarly to
[2], we are given a graph representing a landscape, an ignition node and some fire
suppression resources spread over time. The goal is to allocate the fire resources
to the nodes in order to minimize the burned area at some target time instant.
In this context, our main contribution is a heuristic algorithm based on iterated
beam search that achieves better results than previous approaches in a fraction
of the time.

To close this section, we give an overview of what follows. In Sect. 2, we
formally define the problem. Section 3 goes over the algorithmic approaches to
this problem that can be found in the literature. Section 4 provides a series of
definitions that will be used to explain our algorithm, which is presented in
Sect. 5. In Sect. 6, we conduct some computational experiments to study the
performance of our algorithm. Section 7 concludes the work and proposes new
research directions.

2 Problem Description

Fire propagation is modeled by a directed graph G = (V,A) with travel times ta

on arcs a ∈ A, which model the time required for fire to propagate from a node
to a neighboring node. A directed graph permits to model different fire travel
times in opposite directions, which can occur due to factors like wind and terrain
slope. Given an ignition node s ∈ V, the travel times define a shortest-path tree
rooted at s in which each node v ∈ V has an associated fire arrival time av and
a predecessor pv. Now assume we have k fire suppression resources which can
be allocated to nodes v ∈ V, and each resource adds a delay Δ to the outgoing
arcs of v. Each resource i ∈ [k] is available at time ri, and can only be allocated

Iterated Beam Search for Wildland Fire Suppression 275

to a node v if av ≥ ri, i.e. if v is not burned yet1. We also assume that each
node can receive at most one resource. Finally, we have a time horizon H and
are interested in nodes that do not burn until H.

The allocation of resources to nodes can be represented by an injective func-
tion Λ : [k] → V. By definition, such an allocation changes the travel times t,
but it can also change the topology and the arrival times of the shortest-path
tree. As a result, given an allocation of resources Λ, we denote the resulting
fire propagation times by tΛ, the fire arrival times by aΛ, and the predecessor
relation by pΛ. The problem, then, is to find a feasible allocation of resources Λ

that minimizes the number of burned nodes at time instant H, i.e.

b =
∑

v∈V

[aΛ
v ≤ H].

3 Related Work

The problem we are interested in was first proposed as a mixed-integer linear
programming (MIP) model by [1]. In [11], the authors propose a set of represen-
tative instances for this model and an iterated local search to solve them. The
authors compare the performance of the local search with the performance of
a commercial solver on the mathematical formulation of [1]. In computational
experiments, they show that the heuristic achieves good results in a reasonable
amount of time for all instances, while the solver needs more time to produce
results and, for some large instances, fails to produce a feasible solution within
the time limit of 2 h.

[4] extend the work of [1] and [11] by proposing a better MIP formulation of
the problem, an exact algorithm using logic-based Benders decomposition, and a
simple greedy heuristic used to warm-start the exact algorithm. In computational
experiments, they show that the exact algorithm and a commercial solver using
the new MIP model can solve all the instances proposed by [11] in a few seconds.
In light of that, they propose new instances consisting of 20 × 20 grids and a
larger optimization horizon. In another round of computational experiments,
they compare the performance of the solver, the iterated local search of [11] and
the proposed exact algorithm considering a time limit of 2 h. The solver was not
able to prove the optimality of any instance, failed to produce a feasible solution
in some cases and had the overall worst performance regarding solution quality.
The iterated local search was able to find the optimal solution of some instances,
but in most of the time it stayed behind the exact algorithm, which was able to
find and prove the optimality of all instances.

4 Preliminaries

Consider a grid graph G = (V,A). The immediate neighborhood of a node v ∈ V,
denoted as N(v), encompasses nodes reachable through outgoing arcs of v. Sim-
1 We use [n] to denote a set containing the first n natural numbers, i.e. [n] = {1, . . . , n}.

276 G. Delazeri and M. Ritt

ilarly, the extended neighborhood N
∗(v) includes nodes reachable via outgo-

ing arcs as well as diagonal connections from v. Time instants where resources
become available are represented by a sequence of times T = (t1, t2, . . .), in
ascending order. We denote by α(t) = mini>0|ti>tti the first time instant after
t when new resources become available, with α(t) = H if no further resources
become available after t. Finally, for each time instant t ∈ [0,H], Rt ⊆ [k] is a
set containing the resources that become available at time t.

When an allocation of resources Λ assigns a resource to a node v ∈ V, we
say that v is protected. We denote by PΛ ⊆ V the set of nodes protected by Λ.
If |PΛ| = k we say that Λ is a complete allocation. Conversely, if |PΛ| < k we
say that Λ is partial. The special allocation that does not protect any node is
denoted by Λ0, i.e. PΛ0 = ∅. Finally, given an allocation Λ and a time instant
t ∈ [0,H], we define BΛ

t = {v ∈ V | aΛ
v < t} as the set of nodes that are burned

at t. Note that our goal is to find an allocation Λ such that |BΛ
H| is minimized.

5 Proposed Algorithm

Beam search is a graph search algorithm that visits nodes in a breadth-first
manner until a target node is reached. Starting from the root node, beam search
keeps a list of β nodes and, at each level of the search tree, nodes in the list are
expanded η times. In the literature, β is known as the beam width and η as the
ramification factor. A heuristic function is then used to rank the βη expansions,
and the best β nodes are selected to continue to the next iteration. Beam search
has been extensively used to tackle optimization problems [9]. In the context of
our problem, each interior node of the search tree represents a partial allocation
of resources, and leaf nodes are complete allocations. The root node is Λ0, and
for each t ∈ T , we expand the current set of allocations by applying the resources
in Rt. The best leaf node is returned by the algorithm.

5.1 Beam Search

Algorithm 1 gives a high level view of our approach. In line 1, we create a set
A containing only Λ0, which will represent the current state of the search tree.
For each time instant t ∈ T , we use the function Step to expand each node in
A, and we store all the expansions of the current level in the set E. In line 4,
we use a heuristic function to select the β best allocations to continue to the
next iteration, and in line 6 we return the best leaf node in the search tree. We
explain how to expand a given allocation in Sect. 5.2. We will next define the
heuristic function used to prune the search tree.

We propose two heuristic functions to evaluate a partial allocation of
resources Λ. The first one, which we call h1, is equal to the number of burned
nodes at time instant H.

h1(Λ) =
∑

v∈V

[aΛ
v ≤ H]

Iterated Beam Search for Wildland Fire Suppression 277

Algorithm 1: BeamSearch
Data: Fire perimeter size z.
Result: An allocation of resources Λ.

1 A ← {Λ0}

2 for t ∈ T do
3 E ←

⋃

Λ∈A
Step(Λ, t, z)

4 A ← prune(E, t)

5 end
6 return arg min

Λ∈A
|BΛ

H|

Heuristic h1 can be quite uninformative in the first few time instants, especially
when the delay Δ is low and the optimization horizon H is large. In such situ-
ations, it is likely that the first few resources available cannot save any nodes,
hence a comparison between two allocations is uninformative. In light of that,
we propose a second heuristic, called h2, which aims to measure how much delay
an allocation Λ introduces in the network.

h2(Λ) =
∑

v∈V

max{H − aΛ
v , 0}

As we will see in the experimental section, we can obtain better results by
starting with h2 as the guiding heuristic and then switching to h1 at some point
in time. We call the time instant at which we start using h1 transition instant,
and we denote it by t̂. It is better to define the transition instant relative to the
velocity with which the fire propagates. To this end, we define the free burning
time of an instance as the time instant at which the last node is burned assuming
that no node is protected by a resource, i.e. the free burning time equals max

v∈V
aΛ0

v .

We can now specify the transition instant as a percentage of the free burning
time, and we denote this percentage by p̂. To give an example, if the free burning
time of an instance is 10 and p̂ = 0.5, we have that the transition instant t̂ is
equal to 5.

In summary, if t < t̂ we prune the search tree by selecting the β best partial
allocations in E using h2. If t ≥ t̂, we use h1. In Sect. 6.3, we study how the
transition instant affects the performance of our algorithm.

5.2 Expanding an Allocation of Resources

We now consider the problem of generating the expansions of a given allocation
in the search tree, as is done in line 3 of Algorithm 1. As a first step, we will
develop a procedure to create a single expansion (Algorithm 2) and later we will
embed it into Algorithm 3, which implements the function Step, called in line 3
of Algorithm 1.

278 G. Delazeri and M. Ritt

Algorithm 2: Expand
Data: A partial allocation of resources Λ, a time instant t, the fire

perimeter size z.
Result: An expansion of Λ using the resources in Rt.

1 F ← FΛ
t (z)

2 N ← F ∩ ⋃

v∈PΛ

N
∗(v)

3 for i ∈ Rt do
4 if N �= ∅ and p < rand(0, 1) then
5 v ← Randomly pick an element of N

6 else
7 v ← Randomly pick an element of F

8 end
9 Λi ← v

10 F ← F \ {v}

11 N ← (N ∪ N
∗(v)) ∩ F

12 end
13 return Λ

Given an allocation of resources Λ and a time instant t ∈ T , we have a set
of candidate nodes C = V \ (BΛ

t ∪ PΛ) which can receive a resource and |Rt|

resources available. Our goal is to select a subset of C of size |Rt| to apply the
resources in Rt. Algorithm 2 is based on two key observations about which nodes
tend to receive a resource first in high quality solutions:

1. Nodes that are close to burned nodes;
2. Nodes that are neighbors of protected nodes.

Motivated by the first observation, we define the notion of fire perimeter, i.e. a
set of nodes that are close to the current set of burned nodes. Since the arcs
of an instance represent fire velocity instead of physical distance, our notion of
closeness must be based on fire arrival time. With that in mind, we define the
fire perimeter at a time instant t as

FΛ
t (z) = {v ∈ C | t ≤ aΛ

v ≤ f(t, z)}

for some non-negative integer z, where f : T × N0 → [0,H] is2

f(t, z) =
(
α�(z+1)/2�(t) + α�(z+2)/2�(t)

)
/2.

where α(t) is the earliest time after t in which new resources get available, as
defined at the end of Sect. 4.

Intuitively, the fire perimeter at time instant t is the set of unprotected
nodes whose fire arrival time is between t and some other time instant t′, where
2 We write αn(t) for the composition of α with itself n times, e.g. α2(t) = α(α(t)).

Iterated Beam Search for Wildland Fire Suppression 279

t′ = f(t, z) for some non-negative integer z. Increasing z will increase t′, which
in turn may increase the size of FΛ

t (z). As a result, z controls the size of the fire
perimeter. We clarify this notion with an example. Suppose we have resources
at time instants 10, 20, and 30, and the optimization horizon H is equal to 60.
Assume that the current time instant is 10 and no resources were deployed yet,
i.e. the current allocation is Λ0. In this scenario, FΛ0

10 (0), FΛ0

10 (1), FΛ0

10 (2), FΛ0

10 (3)
contain the nodes that will burn between time instant 10 and f(10, 0) = 20,
f(10, 1) = 25, f(10, 2) = 30, and f(10, 3) = 45, respectively. Figure 1 illustrates
the example.

Fig. 1. A simple illustration of our definition of fire perimeter. In the example, we have
resources at time instants 10, 20, and 30, and the optimization horizon H is equal to 60.
We are at time instant 10 and no resources were deployed yet, i.e. the current allocation
is Λ0. The set B

Λ0
10 is represented by the black colored nodes, F

Λ0
10 (0) by purple nodes,

F
Λ0
10 (1) by red nodes, F

Λ0
10 (2) by orange nodes, and FΛ

10(3) by yellow nodes. Note that
F

Λ0
10 (0) ⊂ F

Λ0
10 (1) ⊂ F

Λ0
10 (2) ⊂ F

Λ0
10 (3). (Color figure online)

In summary, Algorithm 2 considers only nodes in FΛ
t (z) instead of exploring

all nodes in C (line 1). Similarly, and motivated by the second observation, we
define a set N with all the nodes in FΛ

t (z) that have a neighbor in PΛ (line 2).
Using the sets FΛ

t (z) and N, Algorithm 2 proceeds as follows: for each resource
i ∈ Rt, with probability p we select a node from N to be protected, and with
probability 1 − p we select any node from F (lines 3 to 11).

280 G. Delazeri and M. Ritt

Algorithm 3: Step
Data: A partial allocation of resources Λ, a time instant t, the fire

perimeter size z.
Result: A set with at most η expansions of Λ using the resources in Rt.

1 E ← ∅
2 repeat c|FΛ

t (z)| times
3 Λ′

← Expand(Λ, t, z)
4 E ← E ∪ {Λ′}
5 end
6 E ← sort(E, t)
7 return First η expansions in E

We now embed Algorithm 2 into Algorithm 3, which gives us a procedure
to create a set of candidate expansions of a partial allocation Λ. In lines 2 to
5 we create a number of expansions proportional to the size of FΛ

t (z), for some
constant c ∈ Z+. In line 6 we sort all the expansions in E using some heuristic
function. Similarly to Algorithm 1, if t < t̂, we use h2, otherwise we use h1.
Finally, in line 7 we return the first η allocations in E. Note that in line 4 we do
not check whether Λ′ already is in E, hence it could be the case that |E| < η.

5.3 Dynamical Update of the Fire Perimeter Size

In Sect. 5.2, we defined the notion of fire perimeter, which depends on an integer
constant z. Setting z to a value that is too high may increase running times,
since the number of iterations performed by Algorithm 3 is directly proportional
to the size of the fire perimeter. On the other hand, setting z to a value that
is too low may impede the algorithm to find optimal solutions. To account for
that, we propose to start with z = 0 and iteratively increase its value once a call
to Algorithm 1 is not able to improve the current best solution. We observed in
preliminary experiments that increasing z indefinitely does not improve perfor-
mance and slows downs the algorithm in some cases, so we propose to define a
maximum value for z and, once this value is reached, we cycle back to z = 0.
Line 8 of Algorithm 4 illustrates that. Note that, for a given choice of zmax, the
maximum value of z is zmax − 1.

6 Experimental Evaluation

In this section we present some computational experiments. All the experiments
were done on a platform with a 3.5GHz AMD Ryzen 9 3900X 12-Core proces-
sor, 32 GB of main memory, and Ubuntu Linux 20.04 LTS. Our algorithm was
implemented in C++ and compiled with GCC 9.4 with maximum optimization.
Our implementation and detailed computational data is available at https://
github.com/gutodelazeri/Iterated-Beam-Search.

https://github.com/gutodelazeri/Iterated-Beam-Search
https://github.com/gutodelazeri/Iterated-Beam-Search

Iterated Beam Search for Wildland Fire Suppression 281

Algorithm 4: Main Algorithm
Result: An allocation of resources Λ∗.

1 Λ∗
← Λ0

2 z ← 0

3 while Termination criteria not met do
4 Λ ← BeamSearch(z)
5 if |BΛ

H| < |BΛ∗
H | then

6 Λ∗
← Λ

7 else
8 z ← (z + 1) mod zmax

9 end
10 end
11 return Λ∗

Table 1. Instances used in the experiments.

Group Resources per time instant H Δ

10 20 30 40 50 60
LA 3 3 3 3 0 0 70 50
LB 3 3 3 3 3 3 70 30

6.1 Test Instances

In this work we consider the set of instances proposed by [4]. This set consists
of 16 instances, where each instance is a 20 × 20 grid graph. In all instances,
the ignition node is at a central location in the graph and the optimization
horizon is 70. The 16 instances are divided into two groups of 8 instances each,
based on the magnitude of the delay caused by a resource and the quantity of
resources released at each time instant. The optimal solution of all 16 instances
is known, so in the sections below we report algorithm performance in terms of
the absolute deviation from the optimal objective value3. Table 1 summarizes
the instance set.

In this set of instances, edge weights attempt to model the fire propagation
influenced by wind direction. In practice, the weight of each edge is sampled
from a uniform distribution, and the range of values in this distribution depends
on the direction to which the edge points. For further information, readers can
refer to Table 5 in [4].

3 In [4], the optimality of instance LB7 could not be proved. By executing their method
with a time limit of 3 h we were able to find the optimal solution.

282 G. Delazeri and M. Ritt

Table 2. Description of parameter values.

Parameter Value Description
β 50 Beam width
η 70 Ramification factor
c 30 See Algorithm 3
p 0.5 See Algorithm 2
zmax 3 See Algorithm 4

Table 3. Performance of beam search using different transition instants, as a function
of a percentage p̂ of the free burning time. We denote by δ the absolute difference
between the obtained solution and the optimal solution, and columns δ and σδ show
the average and the standard deviation of δ across the 320 executions (16 instances and
20 replications). Similarly, we denote by ttb the time in seconds required to find the
best (not necessarily optimal) solution. Columns ttb and σttb give the average and the
standard deviation of ttb. Lastly, column “Opt.” has the percentage all 320 executions
in which the optimal solution was found.

p̂ t̂ δ σδ ttb σttb Opt. (%)
0.1 6.9 1.41 3.59 61.18 105.06 75
0.2 13.8 0.15 0.35 52.23 110.73 85
0.3 20.7 0.12 0.33 26.68 46.40 88
0.4 27.6 0.12 0.33 26.62 46.24 88
0.5 34.5 0.18 0.45 43.38 82.68 85

6.2 Parameter Values

In all the experiments below, our algorithm uses the same set of parameter val-
ues, which are specified in Table 2. As stated in Sects. 5.1 and 5.2, the guiding
heuristic used depends on the transition instant. In the next section, we con-
duct an experiment to find the best transition instant for the instances we are
considering.

6.3 Transition Instant

In this section, we analyse how the transition instant affects the performance
of our algorithm. Recall that in Sect. 5.1 we defined the transition instant as
a percentage p̂ of the free burning time of an instance. In this experiment, for
each value of p̂ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} we run the beam search algorithm 20
times with different seed values on each of the 16 instances. The termination
criterion was a maximum running time of 600 s. For the set of instances we are
considering, the free burning time is always equal to 69, so for any value of p̂

the transition instant is the same for all 16 instances. For each run, we collected

Iterated Beam Search for Wildland Fire Suppression 283

the best objective value obtained and the time to find the best solution. Table 3
summarizes the results.

For the instances we are considering, a transition instant of 6.9 means that
only the heuristic h1 is used. As the first row shows, this is the worst version
of our algorithm. When the transition instant is 13.8, we use h2 when t = 10

and h1 otherwise. As the second row shows, this version obtains better results
when compared to using h1 only. When the transition instant is between 20 and
30, as is the case of rows three and four, heuristic h2 is used when t = 10 and
when t = 20. The table shows that this is the best version of our algorithm. This
version was able to find the optimal solution in 88% of the 320 executions, and
obtained an average absolute gap of δ = 0.12.

6.4 Comparison with the Literature

In this section we compare the best version of our algorithm found in the last
experiment (BS) against the logic-based Benders decomposition of [4] (LBBD)
and the iterated local search of [11] (ILS). We use the implementation of LBBD
and ILS provided by [4] and run them in the same computational environment
as BS. Following the protocol of Sect. 6.3, all three algorithms were executed 20
times on each of the 16 instances. The termination criterion for LBBD and BS
was a maximum running time of 600 s. The termination criterion of ILS was a
maximum number of iterations in stagnation, as specified in [11]. Table 4 shows
the results.

As we can see, BS solves to optimality 14 out of the 16 instances in all 20
replications, while LBBD does so for 9 instances and ILS for only one instance.
We can also see that BS obtains the smallest average absolute gap δ. In [4],
LBBD was compared to ILS given a time limit 7200 s. Here we can see that,
even with a fraction of the time limit, LBBD still beats ILS by a significant
margin. Regarding the average time to find the best solution, we can see that
BS obtains the smallest one in all instances. Considering that BS finds an optimal
solution in most of the executions, this shows the efficiency of our algorithm.

To close this section, we analyse the performance profile of the three algo-
rithms over the 320 executions. Figure 2 shows the percentage of the 320 execu-
tions that found an optimal solution within a particular interval of time. As we
can see, within just 100 s our algorithm finds an optimal solution in about 80%
of all executions, while LBBD does so for around 40% and ILS for around 20%.
Within 300 s, the curves of BS and ILS stagnate. This is not true for LBBD,
since it explores the search space systematically. Finally, within 600 s LBBD
finds an optimal solution in about 70% of all executions and ILS in about 20%.
As we saw in the last section, BS is able to find an optimal solution in 88% of
all executions.

284 G. Delazeri and M. Ritt

Table 4. Comparison between BS, ILS, and LBBD. We denote by δ the absolute
difference between the obtained solution and the optimal solution, and the first six
columns show the average and the standard deviation of δ over the 320 executions.
Similarly, we denote by ttb the time in seconds required to find the best (not necessarily
optimal) solution, and the last three columns show the average ttb of each algorithm.
The values in these columns are expressed in terms of the average ttb of BS. For
example, by looking at the first row we can see that ILS takes, on average, 50 s more
than BS to arrive at the best solution.

δ σδ ttb

BS ILS LBBD BS ILS LBBD BS ILS LBBD
LA0 0 1.45 0.00 0 2.28 0.00 0 50.59 37.39
LA1 0 5.65 0.00 0 4.85 0.00 0 61.25 5.72
LA2 0 3.05 0.00 0 3.17 0.00 0 0.52 13.57
LA3 0 10.65 0.00 0 6.27 0.00 0 53.38 52.64
LA4 0 0.00 0.00 0 0.00 0.00 0 49.03 66.41
LA5 0 1.85 0.00 0 1.46 0.00 0 83.55 64.96
LA6 0 8.05 0.00 0 6.68 0.00 0 91.25 100.63
LA7 0 6.40 0.00 0 5.08 0.00 0 42.70 154.64
LB0 1 5.75 0.55 0 5.34 1.10 0 126.58 174.00
LB1 0 12.00 0.00 0 4.67 0.00 0 45.62 104.94
LB2 1 5.00 1.10 0 4.77 0.79 0 97.23 164.39
LB3 0 10.30 3.50 0 4.05 2.42 0 115.61 206.35
LB4 0 9.65 7.05 0 6.13 4.97 0 118.18 262.09
LB5 0 14.40 3.85 0 3.39 3.10 0 82.33 266.53
LB6 0 15.00 8.60 0 5.34 3.90 0 106.62 340.72
LB7 0 9.20 6.35 0 5.52 3.25 0 71.82 242.15
Avg 0.12 7.40 1.94 0 4.31 1.22 0 74.77 141.07

Iterated Beam Search for Wildland Fire Suppression 285

Fig. 2. Performance profile for the three algorithms, considering all 320 executions (16
instances and 20 replications). The x-axis shows time in seconds and the y-axis shows
the percentage of the 320 runs in which the algorithm found the optimal solution within
that time.

7 Conclusions and Future Work

In this work we proposed a heuristic algorithm for a problem related to wildfire
suppression. The goal was to allocate fire suppression resources to regions of a
landscape represented by a graph in order to minimize the total burned area. Our
algorithm is a beam search guided by two heuristic functions to evaluate partial
solutions and some heuristic rules on how to better expand the search tree at each
level. In computational experiments, we showed that we can obtain better results
by starting with one of the heuristic functions and then switching to the other at
some point in time. Using these findings, we compared our approach to previous
works in the literature. Our results indicate that the beam search algorithm can
consistently find the optimal solution of most instances in considerably less time
than alternative algorithms.

As future work, we would like to test our algorithm in more challenging
instances, both in terms of grid size and the degree of irregularity of the land-
scapes. It would also be interesting to extend our approach to take into account
different objective functions, like operational costs and the cost of the burned
area.

Acknowledgments. M. R. acknowledges support from CNPq (grant 437859/2018-
5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES),
Finance Code 001, and CYTED (Grant P318RT0165).

286 G. Delazeri and M. Ritt

References

1. Alvelos, F.: Mixed integer programming models for fire fighting. In: Gervasi, O.,
et al. (eds.) Computational Science and Its Applications - ICCSA 2018. Lecture
Notes in Computer Science(), vol. 10961, pp. 637–652. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95165-2_45

2. Belval, E.J., Wei, Y., Bevers, M.: A mixed integer program to model spatial wildfire
behavior and suppression placement decisions. Can. J. For. Res. 45(4), 384–393
(2015)

3. Dimitropoulos, S.: Fighting fire with science. Nature 576(7786), 328–328 (2019).
https://doi.org/10.1038/d41586-019-03747-2

4. Harris, M.G., Forbes, M.A., Taimre, T.: Logic-based benders decomposition for
wildfire suppression (2023)

5. Hartnell, B.L.: Firefighter! an application of domination. In: Proceedings of 25th
Manitoba Conference on Combinatorial Mathematics and Computing (1995)

6. IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution
of Working Group II to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge, UK and New
York, NY, USA (2022). https://doi.org/10.1017/9781009325844

7. Jewell, W.S.: Forest fire problems—a progress report. Oper. Res. 11(5), 678–692
(1963)

8. Joint Economic Committee, U.S. Senate: Climate-exacerbated wildfires cost the
U.S. between $394 to $893 billion each year in economic costs and damages
(2023). https://web.archive.org/web/20231114011935/https://www.jec.senate.
gov/public/index.cfm/democrats/reports?id=E31AF93E-34C7-4C35-A416-
533FF796369B. Accessed 13 Nov 2023

9. Lowerre, B.: The harpy speech recognition system. Ph.D. thesis, CMU (1976)
10. Martell, D.L.: A review of operational research studies in forest fire management.

Can. J. For. Res. 12(2), 119–140 (1982)
11. Mendes, A.B., e Alvelos, F.P.: Iterated local search for the placement of wildland

fire suppression resources. Eur. J. Oper. Res. 304(3), 887–900 (2023)
12. Munich Re: Wildfires and bushfires - Climate change increasing wildfire

risk (2023). https://www.munichre.com/en/risks/natural-disasters/wildfires.html.
Accessed 19 Jan 2024

13. Reuters: Death toll from Hawaii wildfires drops to 97 (2023). https://www.
reuters.com/world/us/death-toll-hawaii-wildfires-drops-97-missing-is-now-31-
hawaii-governor-2023-09-15. Accessed 19 Jan 2024

14. United Nations: As wildfires increase, integrated strategies for forests, climate and
sustainability are ever more urgent (2023). https://www.un.org/en/un-chronicle/
wildfires-increase-integrated-strategies-forests-climate-and-sustainability-are-
ever-0. Accessed 19 Jan 2024

https://doi.org/10.1007/978-3-319-95165-2_45
https://doi.org/10.1038/d41586-019-03747-2
https://doi.org/10.1017/9781009325844
https://web.archive.org/web/20231114011935/https://www.jec.senate.gov/public/index.cfm/democrats/reports?id=E31AF93E-34C7-4C35-A416-533FF796369B
https://web.archive.org/web/20231114011935/https://www.jec.senate.gov/public/index.cfm/democrats/reports?id=E31AF93E-34C7-4C35-A416-533FF796369B
https://web.archive.org/web/20231114011935/https://www.jec.senate.gov/public/index.cfm/democrats/reports?id=E31AF93E-34C7-4C35-A416-533FF796369B
https://www.munichre.com/en/risks/natural-disasters/wildfires.html
https://www.reuters.com/world/us/death-toll-hawaii-wildfires-drops-97-missing-is-now-31-hawaii-governor-2023-09-15
https://www.reuters.com/world/us/death-toll-hawaii-wildfires-drops-97-missing-is-now-31-hawaii-governor-2023-09-15
https://www.reuters.com/world/us/death-toll-hawaii-wildfires-drops-97-missing-is-now-31-hawaii-governor-2023-09-15
https://www.un.org/en/un-chronicle/wildfires-increase-integrated-strategies-forests-climate-and-sustainability-are-ever-0
https://www.un.org/en/un-chronicle/wildfires-increase-integrated-strategies-forests-climate-and-sustainability-are-ever-0
https://www.un.org/en/un-chronicle/wildfires-increase-integrated-strategies-forests-climate-and-sustainability-are-ever-0

	Iterated Beam Search for Wildland Fire Suppression
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Preliminaries
	5 Proposed Algorithm
	5.1 Beam Search
	5.2 Expanding an Allocation of Resources
	5.3 Dynamical Update of the Fire Perimeter Size

	6 Experimental Evaluation
	6.1 Test Instances
	6.2 Parameter Values
	6.3 Transition Instant
	6.4 Comparison with the Literature

	7 Conclusions and Future Work
	References

