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Abstract. Determining appropriate weights and biases for feed-forward
neural networks is a critical task. Despite the prevalence of gradient-
based methods for training, these approaches suffer from sensitivity to
initial values and susceptibility to local optima. To address these chal-
lenges, we introduce a novel two-level clustering-based differential evolu-
tion approach, C2L-DE, to identify the initial seed for a gradient-based
algorithm. In the initial phase, clustering is employed to detect some
regions in the search space. Population updates are then executed based
on the information available within each region. A new central point is
proposed in the subsequent phase, leveraging cluster centres for incorpo-
ration into the population. Our C2L-DE algorithm is compared against
several recent DE-based neural network training algorithms, and is shown
to yield favourable performance.

Keywords: Differential evolution · clustering · neural network
training · regularisation

1 Introduction

Feed-forward neural networks (FFNNs) are a widely adopted artificial neural
network (ANN) architecture employed in diverse classification and regression
problems [11,27]. Comprising basic components known as neurons and connec-
tions linking them, FFNNs allow the flow of information from the input layer
through hidden layers, ultimately reaching the output layer. Each connection
is characterised by a weight that signifies its strength. The training process
in FFNNs aims to determine optimal weights that minimise the error between
actual and predicted outputs. Although gradient-based approaches such as the
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back-propagation (BP) algorithm are prevalent, they tend towards local optima
and thus provide sub-optimal results [30].

Population-centric metaheuristic (PCM) algorithms, such as differential evo-
lution (DE) [40] and particle swarm optimisation (PSO) [38], provide a useful
alternative to address the challenges encountered by traditional algorithms. Evo-
lutionary algorithms (EAs) are group of PCMs that has been widely applied in
the training of FFNNs. [37] compares (BP) with a genetic algorithm (GA) for
FFNN training, concluding that the latter excels in terms of effectiveness. [13]
uses a modified GA for rapidly training FFNNs, demonstrating superior effi-
ciency compared to conventional GA-based training algorithms. [7] proposes a
hybrid approach combining GA and BP for determining the weights in FFNNs,
outperforming both GA and BP individually.

Swarm intelligence algorithms form another group of PCMs. [34] combines
PSO with the Levenberg-Marquardt (LM) algorithm to achieve faster conver-
gence. [39] introduces an opposition PSO-based training method and evaluates
it on various clinical datasets. [31] proposes a comprehensive learning strategy
integrated with PSO and LM as a local search algorithm for neural network
training. Various other PCM algorithms have been applied for FFNN training,
including the imperialist competitive algorithm (ICA) [8,22], the firefly algo-
rithm (FA) [17], the grey wolf optimiser (GWO) [2,19], and Lévy flight distri-
bution [3,35], among others.

Differential evolution is a well-established PCM renowned for its outstand-
ing performance in addressing complex optimisation problems [5,10,20,21]. It
comprises three primary operators: mutation, crossover, and selection. Mutation
facilitates the exchange of information among different individuals, crossover
integrates a mutant vector with a target vector, and selection chooses superior
individuals from old and new individuals into a new population.

DE has also been widely employed for FFNN training. [12] introduces a
DE-based training algorithm, showcasing its ability to outperform gradient-
based methods. [28] incorporates opposition-based learning into DE, demon-
strating good performance across various classification problems. [32] employs
an improved DE algorithm that incorporates opposition-based learning and a
region-based strategy, while [36] proposes a centroid-based differential evolution
algorithm with composite trial vector generation strategies and control param-
eters to optimise the weights and biases in FFNNs. In [24], a clustering-based
DE approach for neural network training is employed.

In a recent enhancement to DE, [29] introduces a methodology involving
centre-based sampling at the population level of DE, with the centre of the
entire population incorporated as a new individual. Integrating the centre point
is shown to effectively guide the population towards improved individuals. On
the other hand, [4] indicates that cluster centres in a population are viable can-
didates in the search space to move towards. Building upon these two concepts,
in this paper, we propose a novel two-level clustering-based differential evolution
algorithm, C2L-DE, for training FFNNs. At the first level, the clustering algo-
rithm works like a multi-parent crossover to update the population. In contrast,
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at the second level, the central point of population clustering is injected as a
new individual into the population.

The main characteristics of C2L-DE are:

– a clustering strategy is employed at the first level to update the population;
– clustering is used to introduce a new individual into the population at the

second level;
– a regularisation term is incorporated into the objective function to enhance

generalisation;
– the weights and biases determined by C2L-DE are fed into the Levenberg-

Marquardt algorithm as the initial seed.

The remainder of the paper is organised as follows: Section 2 gives an overview
of some essential concepts. Section 3 presents our proposed approach, detailing
the fundamental components of C2L-DE and explaining its overall structure.
In Sect. 4, the performance of C2L-DE is assessed across various benchmark
problems, while Sect. 5 concludes the paper.

2 Background

2.1 Differential Evolution

Differential evolution (DE) [40] is a straightforward yet highly effective PCM
algorithm widely recognised for excellent performance in addressing complex
optimisation problems [10,41]. DE begins with NP individuals randomly gen-
erated from a uniform distribution. To update the population, three primary
operators are employed: mutation, crossover, and selection.

The mutation operator produces a mutant vector, vi = (vi,1, vi,2, ..., vi,D),
defined as

vi = xr1 + F (xr2 − xr3), (1)

where xr1, xr2, and xr3 are three distinct randomly chosen individuals from the
current population, and F represents a scale factor.

Crossover is responsible for incorporating the mutant vector into the target
vector. For binomial crossover, this is performed as

ui,j =

{
vi,j if rand(0, 1) ≤ CR or j == jrand

xi,j otherwise
, (2)

where CR denotes the crossover rate, jrand is a random number ranging from 1
to NP , and i = 1, ..., NP , j = 1, ...,D.

Selection identifies the superior individual from the trial and target vectors,
ensuring the progression of more promising solutions in the population.

The iterative process enhances the algorithm’s ability to effectively explore
and exploit the search space.
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2.2 Pattern Clustering

The fundamental aim of clustering is to arrange a collection of patterns so that
the members within each group share more similarities than those in different
groups. Mathematically, clustering involves defining a set P consisting of N
d-dimensional patterns, denoted as P = {p1, p2, · · · , pN}. The k-means algo-
rithm [16] is the most widely adopted clustering algorithm and proceeds in the
following steps:

1. Randomly initialise the cluster centres;
2. In the allocation step, assign each pattern to its nearest cluster centre (e.g.,

using Euclidean distance);
3. In the update step, recalculate the position of each cluster centre as the

centroid of its assigned patterns;
4. Repeat steps 2 and 3 until convergence or a predefined stopping criterion is

met.

2.3 Feed-Forward Neural Networks

FFNNs, a widely employed class of ANNs, are trained in a supervised manner to
handle pattern recognition problems [1,33]. The typical architecture of an FFNN
consists of three types of layers: an input layer, one or more hidden layers, and
an output layer. Each node in these layers incorporates an activation function
that defines how the weighted sum of inputs transforms into the output. The
connections between layers are assigned weights, indicating the strength between
the respective nodes. Weights are critical for FFNN performance, making deter-
mining suitable weight values one of the most vital and challenging aspects of
FFNNs. Among various approaches, gradient descent-based methods form the
most widely adopted technique for this training process.

3 Proposed C2L-DE Algorithm

Our proposed C2L-DE algorithm leverages clustering at two distinct levels. At
the first level, specific individuals are substituted with cluster centres, while at
the second level, the central point of a cluster centre is introduced as a new indi-
vidual into the population. Additionally, our proposed algorithm incorporates a
regularisation-based objective function to enhance the generalisation capabilities
of the algorithm.

3.1 First-Level Clustering

At the first level, C2L-DE employs a clustering algorithm to construct areas in
search space using the k-means algorithm. Determining the number of clusters is
accomplished by selecting a random number within the range of 2 to

√
NP . The

resulting cluster centres are analogous to a multi-parent crossover, representing
the cumulative solutions within a cluster.
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C2L-DE’s population update strategy involves adopting a generic population-
based algorithm (GPBA) [6]. This approach aligns with a GPBA methodology
and encompasses the folloingw steps:

– Diversity selection: individuals are randomly chosen from the current pop-
ulation, mirroring the initialisation of points in the k-means algorithm;

– Clustered generation: k-means is applied to generate m individuals (set
A). Each cluster centre determined through this process corresponds to a new
individual;

– Individual substitution: from the current population, m individuals (set
B) are (randomly) selected for substitution;

– Elite update: the best m individuals from the combined set A ∪ B are
selected as B̄, and the new population is formed as (P − B) ∪ B̄.

This population update procedure integrates elements from clustering algorithms
and population-based strategies, ensuring an effective and dynamic approach in
C2L-DE.

It is important to note that C2L-DE does not employ the clustering algorithm
in each iteration. Instead, following [5,32], clustering is applied periodically based
on a clustering period.

3.2 Second-Level Clustering

DE-centre-p [29] is a centre-based DE algorithm where an individual, determined
by the central point defined as the centre of the N best individuals, is introduced
as a new member of the population. The population is then divided into two
parts, one a set of individuals that undergo positional updates through standard
mutation and crossover operations, and one that is an individual exclusively
devoted to preserving the centre of the N best individuals. On the other hand, [4]
suggests that cluster centres within a population represent promising candidates
in search space, in particular for directional movement. Consequently, at the
second level of our proposed clustering scheme, we introduce a novel approach
for incorporating a new individual into the population based on cluster centres.

Following the initial clustering phase, the N most promising areas are iden-
tified using a one-step k-means algorithm. The value of N is not fixed and is
randomly chosen between 2 and

√
NP . Cluster centres serve as representatives

for each cluster. Subsequently, the central point of these cluster centres is selected
as a new individual, obtained as

−−−−→xcentre =
−→xc1 + ...−→xci + ... + −−→xcN

N
, (3)

where xci is the i-th cluster centre. While DE-centre-p injects this individual
into the population with a fixed location, in C2L-DE we dynamically select this
location based on the objective function. In other words, this new individual
replaces the worst individual and endeavours to substitute the least favourable
solution with the central point derived from several promising candidates within
the population. Figure 1 illustrates the process creating a new individual based
on the central point of cluster centres.
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Fig. 1. Clustering at the second level. Circle-shaped points show individuals in the
population, while star-shapesd points indicate cluster centres.

3.3 Encoding Strategy

Our approach uses a real-valued encoding scheme to represent individuals. Each
solution is described by a vector comprising connection weights and bias values.
The encoding length directly correlates with the problem’s complexity, reflecting
the total number of connection weights and biases that require optimisation.

3.4 Objective Function

We use an objective function for FFNN training that incorporates a regularisa-
tion term and is calculated as

f =
100
P

P∑
p=1

ξ(xp) +
λ

2m

∑
||W ||2, (4)

with

ξ(−→p ) =

{
1 if −→op �= −→

dp

0 otherwise
, (5)

where dp and op are the actual and predicted outputs, respectively, and m is
the total number of samples. The regularisation parameter, λ, serves as a hyper-
parameter, penalising large values of weights and biases. If λ is excessively large,
numerous weights will approach zero, simplifying the FFNN and making it prone
to underfitting. Conversely, if λ is too small, the regularisation term’s influence
diminishes. An optimal choice of λ is crucial as it helps control the weights,
preventing overfitting while maintaining the model’s performance.

3.5 Levenberg-Marquardt Algorithm

We use the weights obtained by C2L-DE as an initial seed to the Levenberg-
Marquardt (LM) algorithm [15,18]. LM aims to optimise the objective function
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by adjusting the network weights using an update rule defined as

wt+1 = wt − (JT
t Jt + μI)−1Jk

t Et, (6)

with

Et =
N∑
i=1

(di − yi)2, (7)

where J is the Jacobian matrix of the error vector Et, JT is its transpose, I is
the identity matrix with dimensions matching the Hessian JpJ , N is the number
of training samples, and μ is a damping factor adjusted during the optimisation
process. JkE indicates the gradient of the error function E.

It is worth noting that the LM algorithm converges faster compared to other
algorithms, such as BP or back-propagation with momentum [9,14].

3.6 C2L-DE Algorithm

Algorithm 1 presents our proposed C2L-DE algorithm in pseudo-code form. C2L-
DE first creates an initial population and evaluates the objective function of
each individual. The algorithm then iteratively performs mutation, crossover,
and selection operations. Periodically, it undergoes the two levels of clustering.
At the first level, based on the clustering period (CP ), a combination of k-means
clustering and random selection is employed to update the population, while at
the second level, k-means is employed to identify cluster centres and create a new
individual as the average of these centres. This new individual then replaces the
worst individual in the population. The algorithm iterates until the maximum
number of function evaluations is reached. It is worth noting that we utilise a
one-step k-means algorithm due to its O(1) complexity, ensuring no change in
the overall complexity.

Upon completion, the best individual,
−→
x∗, is identified. If the maximum num-

ber of function evaluations is surpassed, the algorithm proceeds to the secondary
phase. It initialises ω as the best individual and resets the iteration count. It then
iteratively computes the Jacobian, the approximated Hessian, and the error,
updating the weights using the Levenberg-Marquardt algorithm. This process
continues until a specified maximum number of iterations is reached.

4 Experimental Results

To evaluate the effectiveness of the proposed C2L-DE algorithm, we conduct a set
of experiments on diverse datasets from the UCI machine learning repository1,
namely:

– Iris: a well-known classification dataset with 150 samples, 4 features, and 3
classes;

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Algorithm 1: C2L-DE algorithm

1 Initialisation:;
2 Initialise Npop, NFEmax, itermax, Jr, CP , λ;
3 NFE = 0, iter = 1;

4 while NFE ≤ NFEmax do
5 Generate initial population Pop using uniformly distributed random

numbers;
6 Calculate objective function of each individual in Pop using Eq. (4);
7 NFE = Npop;
8 foreach individual do
9 Perform mutation operation;

10 Perform crossover operator;
11 Calculate objective function using Eq. (4);
12 Perform selection operation;

13 end
14 NFE = NFE + Npop;

// First-level Clustering

15 if rem(iter, CP ) == 0 then
16 Randomly generate k as a random number between 2 and

√
NP ;

17 Conduct a single step of k-means clustering and designate the cluster
centres as set A;

18 Randomly pick k individuals from the current population and designate
them as set B;

19 From the union of sets A and B, select the best k individuals and
denote them as B̄;

20 Choose the new population as (Pop − B) ∪ B̄;

21 end
// Second-level Clustering

22 Randomly generate k as a random number between 2 and
√

NP ;
23 Conduct a single step of k-means clustering;
24 Select N cluster centre solutions as −→xc1,

−→xc2,...,
−−→xcN ;

25 xnew =
−−→xc1+

−−→xc2+...+−−→xcN
N

;
26 xworst ← xnew ;

27 end

28
−→
x∗ ← the best individual in pop

29 iter = iter + 1;
30 if NFE > NFEmax then

31 Initialise ω as
−→
x∗ (i.e. the best individual in the current population);

32 Set the current iteration iter to 0;
33 while iter < itermax do
34 Compute the Jacobian J , the approximated Hessian JTJ , and the error

Et;
35 Update weights using Eq. (7);
36 Recalculate Et;
37 if iter < itermax then
38 Increment iter by 1;
39 end

40 end

41 end
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– Breast Cancer : comprising 699 samples, 9 features, and 2 classes;
– Liver : a binary clinical dataset from BUPA Medical Research Ltd., with 345

instances and 7 features;
– Pima: a challenging clinical classification dataset featuring 768 samples, 2

classes, and 8 features;
– Seed : an agricultural dataset with seven geometrical features of wheat kernels,

containing 210 samples divided into 3 categories.
– Vertebral : A clinical dataset incorporating biomechanical features, catego-

rized into 3 classes with 310 samples.

Here we do not focus on determining the optimal FFNN architecture, but
adopt the approach from [23,25], setting the number of neurons in the single
hidden layer to 2 × N + 1, where N is the number of inputs. For evaluation, we
employ 10-fold cross-validation.

C2L-DE is benchmarked against a number of state-of-the-art and recently
proposed DE-based trainers, including standard DE, QODE, RDE-OP, Reg-
IDE, and Cen-CODE. The number of function evaluations for all PCMs is fixed
at 25,000 [26]. The population size for all PCMs is set to 50. For C2L-DE, the
crossover probability, scaling factor, and jumping rate are set to 0.9, 0.5, and
0.3, respectively, and the clustering period and regularisation parameter are also
chosen as 10 and 0.1, respectively. For the remaining algorithms, we use the
default parameters as per the cited publications.

The obtained results on the Iris dataset, presented in Table 1, reveal valuable
insights into the performance of different DE algorithms. Our proposed C2L-
DE algorithm stands out prominently, achieving the joint highest mean fitness
value of 99.33 (along with Reg-IDE), showcasing the effectiveness of C2L-DE in
converging towards optimal solutions. In addition, the low standard deviation
of 2.10 indicates the robustness of C2L-DE across multiple runs. In contrast,
standard DE and other comparative algorithms such as QODE and Cen-CODE
exhibit lower mean fitness values and higher standard deviations.

Table 1. Experimental results on Iris dataset.

mean std.dev rank

DE 92.00 5.26 6

QODE 95.33 6.32 5

RDE-OP 96.67 6.48 4

Reg-IDE 99.33 2.11 1.5

Cen-CODE 98.00 3.22 3

C2L-DE 99.33 2.10 1.5

The results on the Breast Cancer dataset are given in Table 2. From there, we
can see that all algorithms except DE provide a similar mean accuracy. C2L-DE
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Table 2. Experimental results on Breast Cancer dataset.

mean std.dev rank

DE 97.36 2.06 6

QODE 98.10 0.99 5

RDE-OP 98.82 1.67 1

Reg-IDE 98.39 2.24 3

Cen-CODE 98.38 1.61 4

C2L-DE 98.53 1.64 2

is second ranked with a mean fitness value of 98.53, demonstrating its competi-
tive performance.

Table 3 shows the results on the Liver dataset. C2L-DE is top ranked with
a mean fitness value of 77.64, highlighting its superior performance. QODE and
Reg-IDE also exhibit competitive mean fitness values of 76.82 and 76.26, respec-
tively, resulting in the second and third ranks.

Table 3. Experimental results on Liver dataset.

mean std.dev rank

DE 67.81 8.21 6

QODE 76.82 9.46 2

RDE-OP 75.63 6.45 4

Reg-IDE 76.26 4.03 3

Cen-CODE 75.10 6.66 5

C2L-DE 77.64 5.83 1

Table 4 presents the results on Pima dataset. C2L-DE is again top ranked
here, with a mean fitness of 81.50. Reg-IDE is second ranked with a mean fitness
value of 80.60, followed by RDE-OP (80.21) and QODE (79.55).

The results on the Seed dataset, given in Table 5, also show our C2L-DE
algorithms as the top-performing approach, achieving a mean accuracy of 93.80.
Cen-CODE follows with a mean accuracy of 82.38, while algorithms like DE,
QODE, and RDE-OP perform less effectively.

The experimental results on the Vertebral dataset, reported in Table 6, reveal
QODE as the top-performing algorithm. However, QODE generally does not
achieve satisfactory results on the other datasets. C2L-DE follows closely with
a mean accuracy of 87.74, while DE and Cen-CODE exhibit lower performance.

The obtained results across multiple datasets clearly demonstrate the supe-
rior performance of our proposed C2L-DE algorithm compared to the other
methods, while also proving it to be a robust method.
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Table 4. Experimental results on Pima dataset.

mean std.dev rank

DE 76.94 4.97 6

QODE 79.55 4.94 4

RDE-OP 80.21 5.73 3

Reg-IDE 80.60 4.15 2

Cen-CODE 77.99 4.12 5

C2L-DE 81.50 5.34 1

Table 5. Experimental results on Seed dataset.

mean std.dev rank

DE 70.00 11.01 4

QODE 67.62 3.01 5

RDE-OP 67.62 4.92 5

Reg-IDE 80.60 4.15 3

Cen-CODE 82.38 8.1 2

C2L-DE 93.80 5.96 1

Table 6. Experimental results on Vertebral dataset.

mean std.dev rank

DE 85.16 5.31 5.5

QODE 88.39 8.76 1

RDE-OP 86.77 4.42 3.5

Reg-IDE 86.77 5.37 3.5

Cen-CODE 85.16 6.48 5.5

C2L-DE 87.74 6.23 2

5 Conclusions

In this paper, we have presented the C2L-DE algorithm as a novel effective
solution for the complex task of determining optimal weights and biases in
feed-forward neural networks. Traditional gradient-based methods, while widely
employed, encounter challenges such as sensitivity to the initial values and sus-
ceptibility to local optima. Our two-level clustering-based differential evolution
approach addresses these issues by introducing a dynamic and informed popu-
lation update strategy. In the initial phase, clustering identifies diverse regions
within the search space, guiding population updates based on localised informa-
tion. Subsequently, a central point derived from cluster centres, is introduced
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as a new individual into the population. A comparative analysis against several
recent DE training algorithms confirms the promising performance of C2L-DE.

In future work, we intend to extend the application of our algorithm to other
ANN-related tasks, such as neural architecture search. Additionally, C2L-DE
holds potential for hyperparameter optimisation, showcasing its versatility and
adaptability in various aspects of neural network optimisation.
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