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Abstract. Software modularisation is a pivotal facet within software
engineering, seeking to optimise the arrangement of software compo-
nents based on their interrelationships. Despite extensive investigations
in this domain, particularly concerning evolutionary computation, the
research emphasis has transitioned towards solution design and conver-
gence analysis rather than pioneering methodologies. The primary objec-
tive is to attain efficient solutions within a pragmatic timeframe. Recent
research posits that initial positions in the search space wield minimal
influence, given the prevalent trend of methods converging upon akin
local optima. This paper delves into this phenomenon comprehensively,
employing graph partitioning techniques on dependency graphs to gener-
ate initial clustering arrangement seeds. Our empirical discoveries chal-
lenge conventional insight, underscoring the pivotal role of seed selection
in software modularisation to enhance overall outcomes.

Keywords: Software Engineering · Heuristic Search · Software
Modularisation · Graph Partitioning

1 Introduction

1.1 General Background

As software systems grow, maintenance becomes challenging for incoming engi-
neers unfamiliar with the original code, often leading to the need for signifi-
cant overhauls or discontinuation of extensive legacy systems. To ensure sustain-
able management, creating modular subsystems is crucial. Instead of portraying
them as clusters in the source code, a more practical approach is representing
dependencies in graph form. Mancoridis et al. define the software modularisation
problem as arising from the exponential complexity of interconnected software
module relationships within evolving systems. This is often approached as a
heuristic-search-based clustering problem to identify optimal representations by
clustering subsystems based on the strength of their relationships [26].

The escalating complexity, often addressed through evolutionary compu-
tation, is evident in various software implementations, including both single-
objective [3,16] and multi-objective [18,27] approaches. Pioneering methodolo-
gies aim to enhance the structure of software systems. Optimisation of sub-
systems extends to diverse attributes, such as classes, methods, and variables.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 240–258, 2024.
https://doi.org/10.1007/978-3-031-56852-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_16&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_16


Graph Partitioning in Software Modularisation 241

Methodological advancements now consider type-based dependence analysis [22],
multi-pattern clustering [8], and effort estimation [32]. These efforts explore pre-
processing and post-processing improvements alongside optimisation strategies.

The modularisation of software, mainly through heuristic search and evo-
lutionary computation methodologies, extensively incorporates graph theory
and data clustering. Academic works commonly use graph representations of
software systems, employing data clustering for nodes and implementing algo-
rithms to assess cluster quality [2,19,37]. Despite graph creation not inher-
ently enhancing software engineers’ understanding of architecture structure,
language-independent graphs can focus on specific relationships or entire systems
[10,30,35]. Clustering arrangements can be portrayed through various methods,
such as a one-dimensional vector, a two-dimensional cluster-based structure, or
a one-dimensional constrained representation known as a restricted growth func-
tion, which, despite its constraints, exhibits distinctive properties [7]. Clustering
arrangement measurement typically addresses cohesion and coupling, striving
for optimal cohesion within clusters and minimal coupling between clusters, fos-
tering the creation of clearly defined groups [2].

1.2 Motivation

A recent study conducted by our research group explores varied representa-
tions for clustering arrangements and different starting points, providing insights
into the search space of software systems [25]. The study highlights the list-of-
lists representation as the most robust, emphasising its significance in problem-
solving. Notably, the paper suggests that the starting point choice is inconse-
quential, as various representations converge towards similar outcomes regarding
final fitness, especially one and two-dimensional list-based ones.

This paper is motivated by exploring converging results based on starting
points. Our primary objective is to determine whether alternative starting posi-
tions can replicate or potentially improve previous findings. If diverse starting
positions tend to converge toward a similar region in the search space, we aim to
uncover the reasons behind this convergence. Is there a basin of attraction lead-
ing to a potential global optimum solution, or do these methods unintentionally
get stuck in closely adjacent local optima?

In recent years, a discernible research gap has emerged in clustering arrange-
ment representation and software graph representation. Additionally, up to the
present time, there is a notable absence of publications in the field of soft-
ware modularisation specifically dedicated to addressing the concept of starting
points. While we recognise that meta-heuristics, such as Iterated Local Search
[21], can generate seeded starting points based on previous experimental itera-
tions, our reference pertains to the primary initial search, distinct from subse-
quent iterations.

Building upon this motivation, we aim to explore innovative approaches for
generating starting points that surpass the performance of previous experiments.
If our findings suggest the existence of a basin of attraction, our goal is to devise
more efficient methods to reach this point faster than conventional approaches.
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However, even if the evidence points in a different direction, our overarching
objective is to develop a more efficient method for navigating and exploring the
search space.

This paper focuses on enhancing software system clustering by integrating
graph partitioning techniques with seeded search methods applied to graph-
based representations. Situated within Search-Based Software Engineering, our
research particularly centres on software modularisation. To achieve our goal,
we begin with a domain background, introduce innovative concepts, outline our
experimental procedure, and present our results.

2 Related Work

2.1 Bunch and Munch

Exploring software modularisation can be achieved using tools such as Bunch [23]
and Munch [4] [5]. Bunch, developed by Mancoridis et al., combines a Steepest
Ascent Hill Climbing (SAHC) and Genetic Algorithms for improved clustering
arrangements [23,24]. On the other hand, Arzoky et al., Munch employs Random
Mutation Hill Climbing (RMHC) for enhanced performance and ease of imple-
mentation [4]. Both strategies use different fitness functions - Bunch utilises the
MQ fitness function, while Munch employs EVM and EVMD [4,24,34]. Despite
employing different measurement strategies, MQ, EVM and EVMD yield simi-
lar clustering results [17]. However, the exhaustive nature of Bunch may hinder
performance when runtime is a critical consideration.

2.2 Starting Points and Search Space

In the context of a heuristic-search-based clustering problem, the quest for opti-
mal solutions necessitates delving into the search space, which comprises all
conceivable arrangements of a clustering configuration. This exploration entails
generating an initial clustering arrangement known as the starting point. Sub-
sequently, through mutation (searching), this arrangement is modified and com-
pared to the graph representation of the software. The goal is to enhance the
clustering of nodes that demonstrate robust relationships. Before embarking on
a search, a crucial decision lies in determining the optimal starting point for
seeking an improved clustering arrangement.

Several starting points are available when searching for local optima, which,
in our context, represents the nearest approximation to the optimal clustering
arrangement that maximises the cohesion of each cluster within the search space.
We provide three illustrative examples: we can cluster all nodes individually for
maximum coupling (Fig. 1), together for maximum cohesion (Fig. 2), or randomly
(Fig. 3).
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Fig. 1. Independent Fig. 2. All In One Fig. 3. Random

3 Research Questions

We aim to address research inquiries regarding our endeavour to discover
improved starting points for software modularisation. We aim to uncover more
effective strategies for achieving optimal outcomes. In this paper, we outline the
following research questions that we intend to investigate:

1. What is the performance difference between graph-partitioned clustering
arrangements and randomly generated ones when applied to large and small
software systems?
(a) When using hill climbing with various initial clustering arrangements on

the same software system, do the solutions converge to similar outcomes
or do disparities persist?

(b) How do the runtimes of searches using graph partition and randomly
generated clustering arrangements vary, and are there trade-offs between
runtime and solution quality?

2. Is there a significant disparity between the Weighted Kappa1 values of the
final clustering arrangements and a gold standard2, and what is the nature
of this comparison?

Initially, we aim to evaluate whether the graph-based initial clustering
arrangements result in enhanced outcomes compared to randomly generated con-
figurations through Munch. We aim to contrast the clustering patterns derived
from graph partitioning with those generated randomly across software systems
of varying sizes. Alongside assessing our fitness function, we analyse the docu-
mented improvements at the final iteration. This entails identifying the conver-
gence point and scrutinising the runtime of the search, which encompasses both
the initialisation of the starting configuration and the subsequent search process.
By possessing information about the ultimate fitness value and the corresponding
1 Weighted Kappa is employed to assess the similarity of clustering arrangements and

is applied in Sects. 5.3, 6, and 7.
2 A gold standard represents the theoretical best solution for a given problem, a rarity

in real-world datasets where it is seldom known.
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iteration when it is achieved, we aim to discern the genuine impact of the initial
clustering configurations on the search dynamics. We aim to determine whether
specific clustering arrangements contribute to a faster convergence, enabling us
to refine our search methodology for reaching the convergence point earlier and
mitigating the risk of potential time loss.

In addition to assessing the effectiveness of our initial clustering configu-
rations based on fitness, convergence, and runtime, we also evaluate the final
clustering arrangements against gold standards using Weighted Kappa (WK)
[1]. WK serves as a measure of agreement between two clustering arrangements,
explicitly focusing on modularisation. As the WK values increase, the level of
agreement between the two solutions also rises. A WK value 1 signifies identical
clustering arrangements, while 0 indicates empirical dissimilarity. A WK value
of 0.5 or higher indicates a robust structural similarity between the two cluster-
ing configurations. We opt for WK over other methods, such as Adjusted Rand
[29], due to its ease of implementation, longstanding presence in the field, and
well-established interpretability/quality scale. The authors also note that WK
and Adjusted Rand are identical.

4 Methods

Our focus now shifts towards the methodologies aligned with our exploration
of optimal starting points for software modularisation. We present our selected
search method and detail our implementation of graph partitioning designed to
yield appropriate starting points.

4.1 Munch

As previously indicated, software modularisation is characterised as a heuristic-
search-based clustering problem. Therefore, our initial consideration lies in devis-
ing a strategy for heuristic search before delving into the discussion of our
implementation of graph partitioning for generating starting points. We adopt
a reverse-engineered adaptation of Arzoky et al.’s Munch to address this [5].
This adaptation has been enhanced to afford us the flexibility to determine the
commencement of our exploration and the nature of our search strategy. We will
now delve into an exploration of the various components that constitute Munch.

Foremost, Munch uses Module Dependency Graphs (MDG) as our graph-
based representation of software systems. As defined by Mancoridis et al., MDGs
illustrate subsystem connections to gauge relationships between components. In
the context of our current research, we designate the nodes of MDG as soft-
ware classes, and the edges represent interconnected relationships. MDGs prove
versatile, capable of describing software structure over time or facilitating the
segmentation of extensive software systems for enhanced comprehension. Let
MDG M be an n by n symmetric binary matrix, where a 1 at row x and column
y (Mxy) indicates a relationship between software components x and y, and 0
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indicates that there is no relationship. To avoid confusion throughout this paper,
MDG and graph are considered synonymous.

Mxy =

{
1 if a relationship exists between x and y

0 otherwise,

For Munch, we adopt a list-of-list-based cluster representation based on its
ease of implementation. A list-of-list clustering arrangement (C) is defined as
a list ([C1, ..., Ck]), with each subset list/cluster (Ci) containing 1, 2, ..., n ele-
ments. These subsets must be non-empty (Ci �= ∅), and they should not share
any common items (Ci ∩ Cj = ∅) for different subsets. Effective optimisation
problem-solving requires consideration of the search space, exploration strategy,
and fitness function. Equation 1 illustrates all possible ways to partition Ck clus-
ters containing n elements. Note that 1 ≤ k ≤ n. We justify opting for lists over
sets in the implementation, emphasising the advantages of simpler implementa-
tion and reduced computational complexity, particularly in scenarios involving
non-indexed sets. Since each cluster and cluster element requires indexing, the
search space aligns with Eq. 1, deviating from the set nature characterised by
Bell(n).

n∑
k=1

(
n!

k! · (n − k)!
· k!

)
(1)

Before delving into the search strategy of Munch, it is essential to define the
fitness function. The primary goal of a search strategy is to uncover a clustering
arrangement that most effectively aligns with the ideal modular structure of the
software system. The assessment entails analysing the subsets [C1, ..., Ck], where
the elements (Ci), representing 1, 2, ..., n, illustrate their relationships within the
MDG. To avoid confusion, we will refer to the subsets as clusters.

For our replication of Munch, it is unsurprising we introduce EVM as our
selected fitness function. We opt for EVM over Bunch’s MQ due to its demon-
strated robustness against noise and suitability for real-world software systems,
as substantiated by research [17]. When provided with an arrangement C and
an MDG, EVM evaluates and scores each cluster by considering the number of
intra-relationships in the MDG. To prevent any potential confusion, we estab-
lish the definition of EVM as the aggregate of individual cluster scores, denoted
as SubEVM (refer to Eqs. 2 and 3). EVM aims to maximise the score of rela-
tionships within a specified clustering arrangement. However, a potential draw-
back exists, as EVM may mistakenly assign high scores to clustering arrange-
ments with high cohesion. Even minor adjustments to a solution can significantly
enhance its fitness.

EVM(C,MDG) =
k∑

i=1

SubEVM(Ci,MDG) (2)

SubEVM(Ci,MDG) =
|Ci|−1∑
a=1

|Ci|∑
b=a+1

(2M(Cia, Cib) − 1) (3)
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To enhance the efficiency of Munch, we incorporate Arzoky et al.’s EVMD.
This method generates a score aligning with EVM by integrating past EVM
outcomes and determining the new result based on the classes designated for
exchange. It demonstrates computational efficiency by computing the new fit-
ness before implementing any modifications. Throughout this paper, we choose
to utilise EVM as a collective term, encompassing both EVM and EVMD, to
prevent potential confusion in future discussions about EVM.

Concerning the mentioned modifications, the inclusion of EVMD enables the
execution of “Try/Do Moves.” This variant of Small-Change, involving the ran-
dom mutation of clustering arrangements, reduces computational overhead by
initially testing the result of a small change (Try Move) before actual imple-
mentation (Do Move). To effectively utilise EVMD, the small-change process is
limited to two elements simultaneously.

Finally, our focus shifts to the heuristic search. As mentioned earlier, Arzoky
et al.’s Munch primarily employ RMHC as its heuristic search method. Despite
implementing the ability to alter the heuristic search in our Munch, we opt to
persist with RMHC. This choice is motivated by its reliability, ease of imple-
mentation, and superior performance compared to stochastic heuristics, such
as SAHC. Below, we present Algorithm 1, elucidating how Munch searches for
enhanced clustering arrangements. For practical reasons, we choose to employ
EVM in the pseudocode example, even though we leverage Arzoky et al.’s EVMD
fitness function to enhance performance:

Algorithm 1. Munch
1: function Munch(Iterations, MDG)
2: Let C be a clustering arrangement � Random or Seed Starting Point
3: Let F = EVM(C, MDG) � Current Fitness
4: for i = 1 to Iterations do
5: Let C ′ = C � Copy of C
6: Choose two random clusters X and Y (X �= Y ) from C ′ � Move Operator
7: Move a random variable from cluster X to Y in C ′ � Move Operator
8: Let F ′ = EVM(C ′, MDG) � New Fitness
9: if F ′ ≥ F then � Compare Fitness

10: Let C = C ′, F = F ′ � Continue using best Solution
11: end if
12: end for
13: return C � Output is C
14: end function

4.2 Graph Partitioning

So far, we have established the importance of graphs and clustering arrange-
ments regarding software modularisation. Now, we focus on using the structure
graphs to discover new clustering arrangement starting points. Specifically, our



Graph Partitioning in Software Modularisation 247

focus shifts to the Fiedler Vector [12]. This vector is linked to the second small-
est eigenvalue, the Fiedler Eigenvalue, of a Laplacian Matrix [13]. Denoted as
Ln×n, a Laplacian Matrix is defined as L = D − A where D represents the
degree matrix of A which represents the connections between nodes [9]. In this
context, A ≡ MDG. The Fiedler Vector is distinctive in its capability to enable a
nearly perfect binary split of any given matrix. With this characteristic in mind,
we have developed a tool that generates starting points through the recursive
decomposition of graphs until no more Fiedler Vectors can be produced.

We generate a tree structure to facilitate the recursive decomposition of input
graphs. The root of the tree is our input software graph and clustering arrange-
ment. The clustering arrangement must begin with all nodes placed in a single
cluster. This initial cluster will be subsequently split alongside the graph, ulti-
mately leading to our final clustering arrangement, representing a fully decom-
posed software graph.

Leveraging our understanding of the Fiedler Vector, we identify the Fiedler
eigenvalue of its attributed graph at each tree node, deduce its associated eigen-
vectors, and establish a well-balanced, binary-split graph partition. Simultane-
ously, we split the associated cluster with each partition, ensuring a one-to-one
relationship between the subgraph’s nodes and the associated cluster concerning
the root MDG. This approach allows us to maintain traceability as we proceed
with the decomposition. The new branches that emerge from the root node are
reintroduced into a recursive function that continues to iterate until it identifies
all possible partitions.

4.3 Starting Points

After generating a tree, we have two starting point approaches. Algorithm 2
illustrates the initial method for creating a “Leaf” arrangement. We gathered
all leaf nodes from the tree, identified by their lack of children. Subsequently,
we arrange these leaf nodes in ascending order based on SubEVM (see Eq. 3)
and then incorporate nodes with unique clusters into our clustering arrangement.
We organise all leaf nodes in ascending order to prevent branches from becoming
disconnected at different depths, possibly leading to duplicate values. In an ideal
scenario, all leaf nodes, regardless of depth, should be unique, and therefore, we
incorporate this logic for peace of mind.

Algorithm 3 exemplifies our alternative approach to constructing a clustering
arrangement. In this method, we recursively traverse the tree, evaluating the
cohesion of each node in comparison to its children. This ensures the creation of
a clustering arrangement containing all unique values, emphasising the highest
possible cohesion within the context of the MDG for a given tree. We refer to
this starting point as our “Max” arrangement.

Apart from Leaf and Max, our modified version of Munch can generate clus-
tering arrangements randomly distributed uniformly, denoted as “Random.” Due
to publication constraints, we abstain from delving into the intricacies of this
method. In summary, a “uniformly distributed random” arrangement is defined
by a clustering setup generated through the utilisation of Bell Numbers, Stirling
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Algorithm 2. BuildLeaf
1: function BuildLeaf(root)
2: Let leafNodes be a stack of all leaves of root
3: Sort leafNodes in descending order of SubEVM � see Eq. 2
4: Let C be empty clustering arrangement
5: while leafNodes is not empty do
6: Let node be popped leafNodes � Pop top node from stack
7: if node is not in C then
8: Let C = [C [node]] � Add unique cluster (node) to arrangement (C )
9: end if

10: end while
11: return C � Output is C
12: end function

Algorithm 3. BuildMax
1: function BuildMax(root) � Start Recursion
2: Let C = empty clustering arrangement
3: Let C = populateArrangement(root, C )
4: return C � Output is C
5: end function
6: function populateArrangement(node, C ) � Recursive Function
7: if node has children then
8: Let Fp be SubEVM of parent node � See Eq. 2
9: Let Fc be sum SubEVM of children � See Eq. 2

10: if Fp > Fc then � If the SubEVM of parent node is greater
11: Let C = [C [node]] � Add node to arrangement C
12: else � Continue Recursion
13: Let populateArrangement(left child of node, C )
14: Let populateArrangement(right child of node, C )
15: end if
16: else
17: Let C = [C [node]] � Add leaf node to arrangement C
18: end if
19: return C � Output is C
20: end function

Numbers of the Second Kind [20,33,36], and their interconnected relationships
[11].

5 Experimental Setup

Before presenting the Munch results of our graph partitioning tool, we need to
establish an empirical framework.
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5.1 Graph Collection and Pre-processing

First, we must collect software systems. Throughout our research, we developed
a specialised tool that extracts open-source software systems using GitHub’s
RESTful API [14]. GitHub is our platform of choice for several compelling rea-
sons. With a substantial user base exceeding 94 million developers, a continu-
ously growing number of 52 million open-source repositories, and a cumulative
total of 413 million contributions [15], we have access to a wide and diverse range
of graphs.

Collecting and forming these graphs is often neglected in academic literature,
creating a challenge in determining the authenticity of these systems - whether
they are genuinely open-source, artificially generated, or specific to certain indus-
tries. Generating MDGs requires understanding the relationships between each
class within a given software system. This can be achieved using software metric
tools such as SciTools Understand [31], which provide pairwise relationships to
build a symmetric graph. After our extractor downloads the desired software
system, we manually process each system using SciTools Understand. Future
efforts will explore using GitHub’s TreeSitter parsing system [6] to automati-
cally generate MDGs.

In this experiment series, we collect 50 “Small” open-source MDGs with class
counts from 100 to 300, chosen based on relevance and high popularity (“stars”)
using the GitHub API. Due to storage constraints and the laborious manual
MDG creation, we aim to develop an automated MDG generator, contemplating
additional storage allocation pending study outcomes. Additionally, we have five
“Big” MDGs (class counts: 1000 to 1500) sourced from prior research and indus-
try collaboration, allowing exploration of size and characteristic-based result
variations. Refer to Appendix A for a detailed breakdown. The terms “Small 50”
and “Big 5” distinguish the two MDG groups in this paper.

5.2 Experiment Setup

Our experiments are described as follows. First, we collect Munch results for each
MDG using all starting point combinations and iterations, as outlined below.
Secondly, we collect Gold Standard results involving high-iteration/high-fitness
outcomes to compare with our initial experiments. Finally, we analyse the results
and present our findings concerning our outlined Research Questions.

1. For each experiment, for every graph (Small 50 and Big 5):
(a) Select one of three starting points (Leaf, Max, Random)
(b) Select one of three iterations (10k, 100k, 1m)
(c) Run Munch
(d) Document final iteration statistics and associated clustering arrangement
(e) Repeat Steps a-c 250 times

2. Repeat Step 1 until all starting points and iterations are explored.

For our gold standards, we generate a Random starting point for each graph
and run Munch for 100 million iterations, collecting the same information as
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in our initial experiments. We repeat the process 250 times to ensure that we
compare our initial experiment clustering arrangements to an absolute-best gold
standard. Although conducting more iterations would have been preferable, it
was impractical due to the extended runtime, taking several days per graph. To
streamline experimental runs with our chosen iteration increments, we imple-
mented parallel thread management, allowing multiple instances of Munch to
run concurrently while optimising CPU and memory usage.

5.3 Data Collection and Analysis

We gather data on the fitness scores of the ultimate clustering configurations,
pinpoint the convergence point (the last iteration demonstrating improved fit-
ness), and gauge the runtime. Furthermore, we document the final clustering con-
figurations into text files. Employing these files, we have crafted a bespoke tool
to methodically evaluate the WK between the ultimate configurations derived
from our initial points in contrast to our gold standards.

We have compiled a dataset of 275,000 files, combining the initial experi-
ment results and gold standards. To enhance the manageability of these results
for analysis, we employ MS Access, MS Excel, and Python for data processing.
Due to the extensive volume of results and constraints in page space, our prin-
cipal methodology involves computing averages across all data. Additionally, we
streamline our findings by identifying and formatting the optimal results, pro-
viding a count of these instances per starting point type, thereby highlighting
the suitability of each.

6 Results

Initially, we present RMHC results for each starting point category across
selected iterations. Our research evaluates the performance of diverse starting
points in searches across graphs of varying sizes, considering fitness, convergence,
and runtime. The goal is to identify similarities or disparities in these aspects
based on our predefined research questions. When implemented on large and
small software systems, the performance differences among Leaf, Max, and Ran-
dom are apparent in Tables 13 and 24. Max consistently demonstrates superior
fitness across iterations, as evidenced by the average final fitness values obtained
from our three starting points over the specified iterations.

Table 35 details the average final convergence statistics across iterations, indi-
cating the iteration where improvement was observed. A strong resemblance
between the average fitness and convergence strongly implies a correlation,
potentially indicating a basin of attraction where all solutions converge. Com-
pared to Random in Tables 1 and 2, Leaf and Max achieve final fitness levels
more rapidly across all iterations, notably enhancing results. For smaller graphs,
3 Values formatted bold in Table 1 signify the highest average final fitness.
4 Values formatted bold in Table 2 signify the highest average final fitness.
5 Values formatted bold in Table 3 signify the shortest average convergence point.
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Table 1. Average Final Fitness using Starting Point by Iterations

Size 10k 100k 1m

Leaf Max Random Leaf Max Random Leaf Max Random

102 60.664 60.972 60.516 72.660 73.032 72.544 73.248 73.236 72.984

105 56.060 56.016 56.052 68.024 67.696 67.844 69.356 69.192 69.344

112 88.616 90.116 87.532 99.512 100.000 99.920 101.040 101.268 101.108

119 66.968 68.096 66.204 80.100 80.224 80.168 80.960 81.048 80.900

123 99.516 102.200 98.068 115.932 115.688 114.896 117.808 117.908 117.660

127 82.340 89.820 79.452 105.680 106.072 105.272 107.216 107.556 107.040

129 81.796 86.764 80.500 98.544 99.196 98.848 99.800 99.856 100.072

130 37.612 37.828 35.592 53.016 53.064 53.204 53.832 53.660 53.968

135 97.748 105.836 96.864 120.684 120.796 120.636 122.200 122.052 122.228

135 101.480 114.520 100.760 133.832 134.052 133.908 135.168 134.920 135.000

141 74.428 77.876 71.392 88.224 88.552 88.832 89.832 89.952 89.928

145 51.880 51.856 47.848 65.812 65.624 65.672 66.468 66.380 66.372

151 105.948 115.840 102.016 137.616 137.008 137.224 139.276 139.132 139.324

158 84.080 90.924 76.424 112.664 112.532 112.828 115.260 115.292 115.368

161 85.580 90.444 82.204 115.968 114.972 115.748 118.912 118.848 119.232

163 83.980 92.048 73.400 110.248 110.640 109.728 112.864 112.780 112.192

164 79.768 80.568 75.164 105.464 105.940 105.408 107.884 107.928 108.020

169 42.464 45.196 35.432 73.156 73.528 73.212 75.316 75.424 75.372

172 86.924 94.396 82.732 123.580 122.596 124.684 128.760 128.228 129.076

172 100.636 116.444 91.548 137.196 137.936 137.168 141.620 141.372 140.928

172 15.804 16.088 11.796 41.640 41.488 41.372 44.280 44.388 44.464

175 80.768 84.536 71.776 125.328 125.196 125.108 133.864 133.884 133.948

175 108.704 125.236 101.228 164.620 166.920 164.512 171.248 171.840 171.032

176 82.360 96.328 72.364 112.776 112.844 113.164 115.760 115.764 115.688

179 101.700 123.148 93.196 148.364 148.160 148.752 151.900 151.336 151.940

198 98.008 114.484 84.572 139.196 140.164 139.192 144.092 144.276 144.552

199 90.328 99.060 83.392 153.600 150.504 153.812 166.760 167.100 166.664

200 91.704 104.004 70.864 128.124 128.336 127.912 131.672 131.268 131.832

206 113.880 137.076 103.772 182.220 184.900 181.952 191.008 191.616 190.964

208 62.528 69.752 52.000 127.376 127.772 127.512 130.656 130.760 130.724

209 82.896 90.680 59.672 131.196 131.596 129.776 137.768 138.024 137.244

210 65.216 77.376 48.576 102.340 103.320 101.980 106.336 106.576 106.404

210 76.324 88.716 54.560 116.984 117.444 116.688 118.224 118.272 118.060

211 66.624 73.748 44.256 113.068 113.320 113.408 120.872 120.880 122.092

214 118.440 132.280 100.060 187.688 188.472 187.412 198.188 198.980 198.084

216 43.364 52.080 47.336 120.720 121.368 120.732 126.764 126.764 126.780

224 110.880 140.856 89.708 184.596 187.608 184.308 197.920 198.212 198.144

233 92.680 120.196 75.740 173.608 175.156 172.776 184.992 184.808 184.600

234 89.564 100.176 57.732 143.928 144.152 142.660 150.776 150.756 150.652

234 111.308 127.900 84.244 184.216 186.116 183.916 196.420 196.260 195.996

235 93.872 108.148 65.808 158.052 160.152 158.588 172.260 173.060 172.596

240 82.872 95.224 54.924 148.992 151.108 147.784 159.104 159.128 159.236

240 126.100 143.636 98.224 214.848 213.208 213.488 234.844 235.044 234.472

242 108.404 139.252 76.388 177.708 179.356 177.092 186.904 187.304 187.280

246 72.876 80.716 41.404 139.548 139.996 139.340 148.820 148.524 148.876

252 99.484 110.880 61.124 159.868 161.400 159.000 174.656 175.284 174.616

252 134.832 171.012 108.420 243.296 254.296 242.448 279.192 281.980 278.472

258 123.152 157.012 94.904 208.428 208.740 206.764 227.840 225.928 227.144

264 114.188 168.672 72.400 227.132 229.244 226.552 239.488 238.788 239.720

294 131.708 182.384 75.388 251.476 255.352 249.916 276.912 276.692 276.972

Count 2 48 0 8 34 8 10 20 20
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Table 2. Average Final Fitness using Starting Point by Iterations

Size 10k 100k 1m
Leaf Max Random Leaf Max Random Leaf Max Random

1037 170.924 329.764 –1360.344 345.940 471.344 123.476 731.892 755.984 737.256
1164 163.252 276.048 –1853.428 286.364 376.868 –188.728 588.528 606.000 589.680
1311 87.880 225.908 –2152.008 284.280 400.460 –297.580 681.848 719.780 675.820
1440 124.664 283.652 –2553.976 351.456 479.476 –520.688 741.544 789.288 708.468
1441 54.932 146.112 –2648.656 230.028 304.932 –718.304 543.324 571.064 493.336
Count 0 5 0 0 5 0 0 5 0

Table 3. Convergence Statistics

Iterations Starting Point Small 50 Big 5 Count
Min Max Avg Min Max Avg

10k Leaf 8970.444 9889.524 9560.283 9670.992 9887.296 9816.322 0
Max 8892.732 9873.904 9430.464 9634.588 9876.404 9799.476 6
Random 9129.948 9917.304 9710.809 9971.996 9977.348 9974.834 0

100k Leaf 53996.848 96390.908 80512.020 98831.280 99120.060 98980.680 1
Max 54158.648 95036.248 79139.873 98552.824 99091.176 98786.134 5
Random 54598.832 96333.324 80817.637 99769.868 99858.020 99828.650 0

1m Leaf 84590.520 691299.112 375566.554 989895.556 993509.896 991965.960 1
Max 77164.980 706030.088 368672.253 987032.192 991801.380 989805.248 5
Random 85098.216 692030.048 377192.918 990564.152 994979.076 993397.874 0

convergence is reached well before the considered iterations. Although final iter-
ations align for smaller graphs, more iterations could enhance the likelihood of
reaching local optima in larger datasets.

In contrast to average final fitness and convergence, Table 46 highlights cumu-
lative average runtimes presented for each start and subsequent search at various
iterations, measured in milliseconds. Notably, these reported runtimes represent
summed average runtimes, excluding additional computational overhead related
to data I/O. While Random clustering allows faster processing, the overall statis-
tical significance of runtimes is debatable. This prompts consideration of poten-
tial trade-offs between runtime efficiency and solution quality.

Table 57 displays WK results, juxtaposing clustering configurations resulting
from our initial starting points against gold standards. In multiple statistics and
iterations, Leaf and Max consistently surpass Random. The notable closeness
between Max results and their corresponding gold standards in smaller graphs
contrasts the generally low agreement observed for larger graphs.

6 Values formatted bold in Table 4 signify the shortest runtime in milliseconds.
7 Values formatted bold in Table 5 signify the highest Weighted Kappa agreement.
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Table 4. Average sum of runtime in milliseconds

Iterations Small 50 Big 5
Leaf Max Random Leaf Max Random

10k 298.797 332.881 185.662 24.231 24.180 199.044
100k 792.818 833.359 408.770 119.465 120.744 259.044
1m 5389.751 5607.426 2574.516 996.988 1012.166 673.654
Count 0 0 3 1 1 1

Table 5. WK against Gold Standard Statistics

Iterations Starting Point Small 50 Big 5 Count
Min Max Avg StDev Min Max Avg StDev

10k Leaf 0.215 0.565 0.386 0.092 0.002 0.002 0.002 0.000 2
Max 0.241 0.609 0.440 0.094 0.040 0.156 0.093 0.043 6
Random 0.198 0.580 0.358 0.102 0.010 0.027 0.015 0.007 0

100k Leaf 0.398 0.847 0.637 0.097 0.012 0.021 0.016 0.005 3
Max 0.376 0.835 0.643 0.099 0.059 0.176 0.117 0.044 4
Random 0.402 0.843 0.635 0.097 0.058 0.107 0.077 0.022 1

1m Leaf 0.490 0.897 0.715 0.084 0.128 0.317 0.198 0.079 0
Max 0.480 0.904 0.715 0.086 0.211 0.359 0.264 0.060 4
Random 0.497 0.897 0.715 0.083 0.197 0.386 0.267 0.084 4

7 Summary of Main Findings

In summary, we aimed to show that graph-partitioning can generate starting
points capable of improving the results of software modularisation. We encapsu-
late the findings to address the research inquiries in the following manner:

– Max starting point:
• Attains the highest average fitness over 10k, 100k, and 1m iterations, with

a pronounced emphasis on lower iteration counts.
• Attains the highest count of average convergence across all iterations while

sustaining the optimal average final fitness.
• Attains the maximum average agreement (WK) with gold standards

across 10k and 100k for both Small 50 and Big 5 graphs, highlighting
noteworthy performance, especially in lower iterations.

– Leaf starting point:
• Demonstrate fitness levels equal to or surpassing Random across all iter-

ations, especially in the early stages
• Surpasses Random with higher average fitness levels on large datasets at

10k and 100k iterations
• Consistently exhibits faster convergence compared to Random.

– Random starting point:



254 A. Mann et al.

• Shows a quicker average total runtime in milliseconds compared to Leaf
and Max.

• Better suited for smaller datasets; however, an improvement over Max
and Leaf necessitates higher iterations.

• Demonstrates greater resemblance to the gold standard than Max in
larger systems at 1m iterations.

Distinct fitness variations emerge among Leaf, Max, and Random, with Max
consistently outperforming over 10k, 100k, and 1m iterations, notably in Small
50 vs. Big 5 comparisons. Random outperforms Max and Leaf at 1 million iter-
ations for large datasets. However, Max proves to be more suitable for average
fitness and faster convergence across iterations and graph sizes. Since there are
currently no guidelines for determining the number of iterations based on the
size or properties of an MDG, the most prudent approach would be to ini-
tiate seeding with Max before executing Munch. WK comparisons show Max
starting points yield higher average agreements, with potential improvements
around 70% and significant opportunities at 90% agreement in 1m iterations.
Thorough exploration is vital for understanding software system graph intri-
cacies. Our commitment to accelerating software modularisation drives deeper
exploration, with partition-based clustering performing significantly, especially
at smaller iterations, making it compelling for future software optimisation.

8 Generalisability

This publication focuses on utilising graph partitioning for software modular-
isation. However, the application of graph partitioning for optimising initial
positions can extend to other graph-based optimisation problems, contingent
on the chosen fitness function. Although we prioritise EVM for its simplicity,
other alternatives like MQ are viable. Our aim is to inspire exploration of graph
partitioning for seeded optimisation.

9 Future Work

We plan to integrate our graph-based initial clustering with metaheuristics,
specifically incorporating seeded starting points into the history of Iterated Local
Search, as part of our ongoing investigation [28]. This initiative seeks to evalu-
ate the potential improvement in the exploration of the search space and over-
all efficiency. Furthermore, our goals include delving deeper into software sys-
tems’ search space, exploring graph structure, convergence prediction, and other
avenues for enhancing software modularisation.
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10 Appendix A

This Appendix showcases details about the software system MDG used in our
experiments. Below, we showcase the following statistics for each software sys-
tem:

1. ID
– Each software system is assigned a unique identifier. We choose not to

use the actual names of our software systems because our collection is
sourced randomly from GitHub. These software system names can exhibit
variation, and we intend to maintain professionalism and steer clear of
potentially inappropriate names and software tools.

2. Nodes
– Also known as vertices, these signify the number of software components

(classes) within our Module Dependency Graphs (MDGs).
3. Edges

– Denotes the number of relationships between software components.
4. Clustering Coefficient:

– The extent to which nodes tend to cluster. A high score indicates a strong
cohesion, while a low score indicates a higher coupling level. We present
this statistic as these software systems exhibit remarkably low coefficients,
indicating a high coupling level and a deficiency in the initial modular
structure. There is potential here to investigate the nature of software
structure over time, especially concerning the analysis of open-source soft-
ware systems (Tables 6 and 7).

Table 6. “Big 5” Software MDG Statistics

Identification Nodes Edges Avg Degree Clustering Coefficient

1 1037 5470 5.274 0.000
2 1164 2072 1.780 0.000
3 1311 5630 4.294 0.000
4 1440 4889 3.395 0.000
5 1441 3058 2.122 0.000
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Table 7. “Small 50” Open-Source Software MDG Statistics

Identification Nodes Edges Avg Degree Clustering Coefficient

01 102 312 0.061 0.007

02 105 257 0.047 0.002

03 112 436 0.070 0.007

04 119 343 0.049 0.002

05 123 440 0.059 0.004

06 127 409 0.051 0.004

07 129 357 0.043 0.002

08 130 225 0.027 0.001

09 135 387 0.043 0.002

10 135 510 0.056 0.004

11 141 333 0.034 0.001

12 145 274 0.026 0.001

13 151 595 0.053 0.002

14 158 422 0.034 0.001

15 161 413 0.032 0.001

16 163 414 0.031 0.001

17 164 686 0.051 0.002

18 169 387 0.027 0.001

19 172 609 0.041 0.002

20 172 591 0.040 0.002

21 172 357 0.024 0.000

22 175 737 0.048 0.004

23 175 749 0.049 0.003

24 176 371 0.024 0.000

25 179 467 0.029 0.001

26 198 552 0.028 0.001

27 199 1002 0.051 0.003

28 200 450 0.023 0.000

29 206 964 0.046 0.003

30 208 643 0.030 0.001

31 209 732 0.034 0.001

32 210 518 0.024 0.000

33 210 323 0.015 0.000

34 211 599 0.027 0.001

35 214 834 0.037 0.002

36 216 740 0.032 0.001

37 224 937 0.038 0.002

38 233 818 0.030 0.001

39 234 521 0.019 0.000

40 234 930 0.034 0.002

41 235 823 0.030 0.001

42 240 898 0.031 0.001

43 240 1115 0.039 0.002

44 242 836 0.029 0.001

45 246 672 0.022 0.001

46 252 1033 0.033 0.001

47 252 1591 0.050 0.004

48 258 1477 0.045 0.002

49 264 730 0.021 0.001

50 294 1275 0.030 0.001
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