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Abstract. Medical imaging diagnosis increasingly relies on Machine
Learning (ML) models. This is a task that is often hampered by severely
imbalanced datasets, where positive cases can be quite rare. Their use
is further compromised by their limited interpretability, which is becom-
ing increasingly important. While post-hoc interpretability techniques
such as SHAP and LIME have been used with some success on so-
called black box models, the use of inherently understandable models
makes such endeavours more fruitful. This paper addresses these issues
by demonstrating how a relatively new synthetic data generation tech-
nique, STEM, can be used to produce data to train models produced by
Grammatical Evolution (GE) that are inherently understandable. STEM
is a recently introduced combination of the Synthetic Minority Over-
sampling Technique (SMOTE), Edited Nearest Neighbour (ENN), and
Mixup; it has previously been successfully used to tackle both between-
class and within-class imbalance issues. We test our technique on the
Digital Database for Screening Mammography (DDSM) and the Wiscon-
sin Breast Cancer (WBC) datasets and compare Area Under the Curve
(AUC) results with an ensemble of the top three performing classifiers
from a set of eight standard ML classifiers with varying degrees of inter-
pretability. We demonstrate that the GE-derived models present the best
AUC while still maintaining interpretable solutions.

Keywords: Augmentation · Breast Cancer · Ensemble · Grammatical
Evolution · STEM

1 Introduction

In medical imaging diagnoses, where decisions can have significant implications
for individual’s health, it is essential to gain a thorough understanding of the
factors influencing these decisions. While Machine Learning (ML) models have
proven effective in diagnosing a variety of medical conditions in medical imag-
ing [29], their limited interpretability poses a challenge to their broader adop-
tion. Moreover, the recently introduced European Union (EU) Communication
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on Fostering a European approach to AI [1] specifically targets explainability as
a key concern for the deployment of ML and Artificial Intelligence (AI) models.

Another prevalent challenge in the medical imaging domain is the issue of
class imbalance within the dataset. Methods such as Synthetic Minority Over-
sampling Technique (SMOTE), Edited Nearest Neighbour (ENN), and Mixup
combined together as STEM [16], which leverages the full distribution of minor-
ity classes, can effectively address both inter-class and intra-class imbalances.
In [16], STEM was applied in-conjunction with an ensemble of ML classifiers,
producing promising outcomes. However, understanding the reasoning behind
ML model predictions remains a complex task. Furthermore, as the volume of
instances and the specificity of problems grow, the complexity of the derived
solutions also increases.

Building trust in ML classifiers and understanding the behaviour of the solu-
tions is pivotal to their broader acceptance. Employing inherently explainable
models is a useful strategy when generating Explainable AI models. Grammat-
ical Evolution (GE) [26], an Evolutionary Computation (EC) technique, has
been used to leverage grammars to define and constrain the syntax of potential
solutions, producing inherently explainable models [22].

To address these challenges, we developed a classification system based on
GE. Our study includes a comprehensive comparison with an ensemble of other
ML classifiers. Notably, GE models show enhanced interpretability compared
to other traditional ML models. GE provide solutions in the form of symbolic
expressions, offering a more intuitive understanding of the decision-making pro-
cess. This emphasis on interpretability is crucial, especially in healthcare, where
understanding the rationale behind decisions is of paramount importance.

Our research hypothesises that the use of the STEM augmentation technique
combined with an approach rooted in GE produces more interpretable solutions
as compared to the other ensemble ML classifiers.

The contributions of this paper are as follows. Firstly, we develop a method
that combines a GE classifier with STEM, outperforming an ensemble of ML
classifiers, as indicated by the superior AUC. Secondly, our approach distin-
guishes itself by offering more interpretable solutions compared to the ensemble
method. Finally, the paper presents rigorous statistical analyses to comprehen-
sively evaluate the performance of implemented data augmentation techniques
on each data setup.

The rest of the paper is structured as follows: Sect. 2 reviews the existing
literature. Section 3 outlines the proposed methodology, and Sect. 4 addresses
experimental details performed in this work. Results and discussion are described
in Sect. 5, and Sect. 6 presents the conclusion and future guidelines.

2 Literature Review

In the realm of medical applications, particularly in the context of breast can-
cer diagnosis, the issue of imbalanced datasets is a critical concern. Imbal-
ances, where one class significantly outweighs the other, can introduce biases
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and compromise the reliability of ML models. Implementing effective strategies
for class balancing, such as oversampling, undersampling, and their combina-
tion, results in a more balanced and representative training dataset [9]. Previous
studies [14,17] have recognized the impact of class imbalance in medical datasets
for ML tasks.

Moreover, ML algorithms have demonstrated notable efficiency in the classifi-
cation of medical data. A compelling study showcases the effectiveness of ensem-
bles, where Bayesian networks and Radial Basis Function (RBF) classifiers with
majority voting resulted in an accuracy of 97% [20] when applied to the Wis-
consin Breast Cancer (WBC) dataset. Furthermore, an approach that combined
linear and non-linear classifiers using Micro Ribonucleic Acid (miRNA) profiling
achieved an impressive accuracy of 98.5% [28].

While these findings are promising, ML algorithms may struggle to contex-
tualize information and are susceptible to unexpected or undetected biases orig-
inating from input data. Additionally, they often lack transparent justifications
for their predictions or decisions [25]. In response to this, employing GE can
yield interpretable solutions. As a variant of Genetic Programming, GE evolves
human-readable solutions, offering explanations for the rationale behind its clas-
sification decisions, which is a significant advantage over current paradigms in
unsupervised and semi-supervised learning [10].

Previous studies have already demonstrated the effectiveness of GE across
a range of ML tasks. It has proven valuable for feature generation and feature
selection [11], as well as for hyperparameter optimization [24]. The GenClass
system [3], built upon GE, demonstrates promising outcomes and outperforms
RBF networks in certain classification problems. They utilized thirty benchmark
datasets from the UCI and KEEL repositories, including Haberman, which con-
sists of breast cancer instances. While it has excelled in these areas, there are
still avenues for further exploration.

In this paper, we aim to investigate the efficiency of utilizing GE as a medical
imaging classifier combined with STEM to handle imbalance distributions of
data samples, particularly in breast cancer diagnosis. Leveraging the interpretive
and adaptable features of GE, our objective is to achieve accurate and reliable
outcomes that can be easily explained.

3 Methodology

For analysis, we utilize two primary breast cancer datasets. One consists of
images, the Digital Database for Screening Mammography (DDSM) [18], while
the other consists of tabular data, the WBC [31] dataset. DDSM is a compre-
hensive collection of mammograms, encompassing both normal and abnormal
images. For this study, we focused on DDSM ′s Cancer 02 volume and three
volumes of normal samples (Volume 01-03). By selecting one volume of cancer
images compared to three volumes of normal images, we maintain a realistic class
imbalance ratio. These images come from the Craniocaudal (CC) and Mediolat-
eral Oblique (MLO) views of both the left and right breasts. We work with
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152 cancerous images and 876 healthy ones from volumes 1-3. Each image was
divided into four segments: the entire breast (I), the top segment (It), the middle
segment (Im), and the bottom segment (Ib).

Fig. 1. Outline of the proposed approach for breast cancer classification using GE and
other classifiers.

The WBC dataset consists of 30 features derived from Fine Needle Aspi-
ration (FNA) samples of breast masses, categorising patients into benign (non-
cancerous) and malignant (cancerous) cases. It comprises 212 malignant samples
and 357 benign samples.

To create a dataset containing breast cancer images from the DDSM image
for evaluating the proposed methodology, we first need to extract features that
will be used for training. This involves isolating the breast region, eliminating
irrelevant background data, segmenting the breast region, and extracting perti-
nent features to generate a comprehensive training dataset of breast segments.
Initially, a median filter is applied to reduce noise within the images. Sub-
sequently, non-essential background data, often containing machine-generated
labels such as ‘CC’ or ‘MLO’, is removed. For this step, we employed a precise
Otsu thresholding technique. Following this, the segmenting process proposed
in [27] effectively partitioned images into three overlapping segments.

Feature extraction is the next critical phase. In our study, we extracted a set
of Haralick’s Texture Features [15] from both whole and segmented images. The
selection of these features is based on the hypothesis that there are discernible
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textural differences between normal and abnormal images. Specifically, we com-
pute thirteen distinct Haralick features from the Gray-Level Co-Occurrence
(GLCM) matrix, employing four orientations corresponding to two diagonal
(grey-level numeric values of the images) and two adjacent neighbours. This
process results in generating a total of 52 features per segment or image.

High class imbalance present in the utilized datasets poses a significant
challenge in developing robust and accurate predictive models. Therefore,
explicit data augmentation has been implemented in the training set to effec-
tively address this class imbalance challenge. Using nine distinct augmentation
approaches outlined in Sect. 4.3, synthetic samples are generated to enrich the
dataset with more discriminative information, ultimately improving the learning
capabilities of the model.

In the last step, the GE classifier and an ensemble of other ML classifiers are
trained separately to make predictions on the test set. Augmented training data
is used, while the original imbalanced test set is used for testing. For ensembling,
eight ML classifiers are used as mentioned in Sect. 4.5. The top three classifiers,
based on AUC, are selected and combined through majority voting to create the
final predictions. The complete pipeline of the proposed approach is shown in
Fig. 1.

4 Experimental Details

The DDSM and WBC datasets are used to evaluate the proposed technique.
The study employs five different data setups to train the classifiers. For the
WBC dataset, a single setup is utilized, consisting of 30 breast mass features
per sample acquired through FNA.

In contrast, the DDSM dataset includes images from two views, CC and
MLO. To conduct experiments, the dataset is categorized into four distinct con-
figurations based on these views. In the initial setup, denoted as “SCC”, data is
exclusively extracted from segments of the CC view. Conversely, the second cate-
gory, “SMLO”, comprises segmented images exclusively from the MLO view. The
third configuration, “SCC+MLO”, combines segments from both views. Lastly,
the fourth setup, “FCC+MLO”, considers the full image (non-segmented) features
from both the CC and MLO views for comprehensive analysis. The number of
features for each segment or image is 52, used in all these setups

We divided the datasets into training and testing sets at an 80:20 ratio,
respectively. Notably, all DDSM configurations exhibit significant class imbal-
ances, with class ratios ranging from 6:94 SCC , SMLO and SCC+MLO setups.
For FCC+MLO the ratio between the positive versus negative class is 15:85. Like-
wise, the WBC dataset has a class distribution of 37% positive and 63% negative
classes as illustrated in Fig. 2.
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Fig. 2. Concentric ring chart for setup description. Rings are setups, and the coloured
areas indicate training positive percent. Legend includes the training positive and neg-
ative total samples.

4.1 System Settings

All the ML experiments were conducted using the PyCaret library [2]. The
GRAPE [8] framework was used to perform GE experiments. For statistical
analysis, we employed the AutoRank Python library [19] to evaluate the perfor-
mance of the implemented augmentation approaches. Our code, along with our
dataset configurations, is available in our GitHub repository1.

4.2 Performance Metric

To evaluate the performance of the designed approach, AUC has been selected as
the assessment metric which uses Trapezoidal rule for its computation. AUC has
become a widely accepted performance measure in classification problems due
to its reliability, particularly in the context of imbalanced datasets [13,21].AUC
serves as a comprehensive metric, encompassing both sensitivity (Eq. 1) and
specificity (Eq. 2), considering various threshold values. TPos denotes true posi-
tives, TNeg true negatives, FPos false positives, and FNeg denotes false negatives.

Sensitivity =
TPos

TPos + FNeg
(1)

Specificity =
TNeg

TNeg + FPos
(2)

4.3 Class Balancing

The methods utilized for generating synthetic data with the aim of equalizing the
class distribution ratio include the Synthetic Minority Oversampling Technique
1 https://github.com/yumnah3/Interpretable-Breast-Cancer-Diagnosis.git.

https://github.com/yumnah3/Interpretable-Breast-Cancer-Diagnosis.git
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(SMOTE) [7], Borderline SMOTE (BSMOTE) [14], SMOTENC (S-NC) [7],
Support Vector Machine SMOTE (SVM-S) [23], Mixup [32], and ADASYN
(ADA) [17]. Additionally, three hybrid methods, SMOTE Edited Nearest Neigh-
bour (S-ENN) [30] SMOTE-Tomek (S-Tomek) [5] and combination of SMOTE,
ENN, and Mixup (STEM) are also implemented to compare against each other.

Notably, STEM generates a balanced number of samples for each class. Com-
pared to other methods, it demonstrates the ability to increase the number of
data samples more extensively, resulting in improved model performance.

4.4 Grammatical Evolution

GE’s grammars are typically defined in Backus-Naur Form (BNF), a notation
represented by the tuple N , T , P , S, where N is the set of non − terminals,
transitional structures usually with semantic meaning, T is the set of terminals,
items in the phenotype, P is a set of production rules, and S is a start non −
terminal. The following simple grammar was created to evolve solutions for the
first four data setups with 52 numerical features, whereas, for the last setup, 30
numerical features were used:

〈expression〉 ::= 〈operator〉(〈expression〉,〈expression〉 | 〈operand〉
〈operator〉 ::= add | sub | mul | pdiv

〈operand〉 ::= 〈x〉 | 〈digit〉〈digit〉.〈digit〉〈digit〉
〈x〉 ::= x[0] . . . x[51]

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This grammar permits the use of basic arithmetic operations (addition, sub-
traction, multiplication, and division –protected in case the divisor is equal to 0)
and the inclusion of real numbers constants. These constants are helpful because
GE can explore beyond the parameter space given to minimize the error between
expected and predicted outputs, something that does not happen with other ML
classifiers. The non − terminal X encompasses the fifty-two numerical features
for the first four setups of the DDSM dataset and the thirty numerical features
for the WBC dataset.

The output domain of the evaluations is o ∈ [−∞,∞]. Subsequently, a sig-
moid function is applied to constrain the values to σ(o) ∈ [0, 1]. For binary
classification, the typical interpretation of the sigmoid function is the probabil-
ity of belonging to class 1, and therefore we use σ(o) to calculate AUC. Table 1
presents the experimental parameters used in this work:
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Table 1. List of parameters used to run GE

Parameter type Parameter value

Number of runs 30

Number of generations 100

Population size 200

Mutation probability 0.01

Crossover probability 0.8

Elitism size 1

Codon size 255

Initialisation Sensible

Maximum initial depth 10

Maximum depth 35

Wrapping 0

4.5 Other Classifiers

We also used the augmented training data to train a diverse ensemble of eight
ML classifiers. This ensemble includes Random Forest (RF), Linear Discrimi-
nant Analysis (LDA), Quadratic Discriminant Analysis, LightGBM, XGBoost,
AdaBoost, KNN, and Extra Trees models. Initially, a comprehensive model is
trained using all eight classifiers. Subsequently, based on the AUC metric, the
three best-performing models are selected. These selected models are then com-
bined through a majority voting approach. The final predictions are made on
the test dataset, which consists of imbalanced and unseen samples.

5 Results and Discussion

To evaluate the performance of the proposed method, five distinct data setups are
employed. Four configurations are derived from the DDSM dataset, considering
variations in views, segments, and full images. The fifth setup is from the WBC
dataset. To enhance the robustness of the training setups, nine augmentation
approaches are applied and compared. The assessment is conducted using an
ensemble of other ML classifiers, alongside GE.

The performance of the classifiers is compared based on AUC for each
dataset. The ensemble classifiers are denoted by their respective initials: Ld

for Linear Discriminant Analysis, Q for Quadratic Discriminant Analysis, E for
ExtraTree, R for Random Forest, Li for Lightgbm, K for KNN, A for Adaboost,
and X for Xgboost. It is important to note that the AUC values of the other
ensemble classifiers are presented for a single run, and they are then compared
against the median AUC derived from 30 runs conducted with GE.

Table 2 provides an overview of the results. In the first setup, SCC , an AUC
of 0.91 was achieved, outperforming the ensemble of LdQE, which obtained an
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AUC of 0.90. Similarly, in the second setup, SMLO, an AUC of 0.90 was attained,
while the ensemble of LdQE achieved a slightly lower AUC of 0.84.

For the third setup SCC+MLO, an AUC of 0.92 was observed using the GE
classifier, outperforming other classifiers that yielded the highest AUC of 0.87
using LdQE. When the classifiers were trained on full image features in setup
FCC+MLO, the highest AUC values were 0.94 and 0.85, obtained by the GE
classifier and the ensemble of LdQE, respectively.

When comparing the AUC using the WBC dataset, both GE and the ensem-
ble of AKLr achieved an AUC of 0.99.

Table 2. A comparison of the AUC for GE and the ensemble approaches using the
nine different augmentation techniques for each data setup.

Setups Classifiers ADA BSMOTE S-ENN SMOTE S-NC S-Tomek SVM-S Mixup STEM

SCC GE 0.91 0.90 0.89 0.91 0.90 0.90 0.90 0.91 0.90

Others 0.76 0.73 0.93 0.77 0.82 0.77 0.73 0.90 0.90

LdQE LdQE LdQE LdQE LdQE LdQE LdQE LdQE LdQE

SMLO GE 0.90 0.90 0.90 0.90 0.87 0.90 0.89 0.90 0.89

Others 0.80 0.80 0.80 0.82 0.78 0.82 0.81 0.81 0.84

ELiR ELiR LdQE ELiR ELiX ELiX ELiR LdQE LdQE

SCC+MLO GE 0.91 0.91 0.92 0.91 0.92 0.91 0.91 0.90 0.91

Others 0.75 0.68 0.77 0.75 0.70 0.76 0.62 0.76 0.87

ELiR ELiR ELiR ELiR ELiX ELiR ELiR ELiR LdQE

FCC+MLO GE 0.93 0.91 0.90 0.92 0.93 0.94 0.93 0.93 0.93

Others 0.78 0.84 0.72 0.81 0.82 0.82 0.82 0.81 0.85

EQR ELiR ERX EQR ELiQ ELiR EQR LiQLd LdQE

WBC GE 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99

Others 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.99

LdQE LdQE EKLi LdQE LdQE LdQE LdQE LdELi AKLr

The augmentation approaches are compared using the boxplot presented
in Fig. 3. The plot indicates the AUC obtained from all nine augmentation
approaches for each setup across all 30 runs. The horizontal line in red indi-
cates the median value of the respective group.

GE provides valuable insights into the most informative features used in
the solutions, as demonstrated in Table 3, which present the most frequently
used features for each setup. The features extracted and presented in these
tables are sorted by their impact on the solutions. Common features consistently
found in Table 3 for the DDSM dataset include “Inverse Difference Moment
(IDM)”(feature 17), “Contrast” (feature 5), and “Difference Entropy” (feature
41). Both contrast and IDM represent the difference in grey levels between pixels,
while entropy indicates the level of randomness in the grey levels.

For the WBC dataset, as shown in Table 3, the top three features that con-
sistently appear in the solutions are 21, 20, and 27, corresponding to “Concave
Point Worst”, “Fractal Dimension”, and “Radius Worst” respectively. The con-
cave point worst feature indicates the severity of the concave portion of the shape,
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Fig. 3. Boxplot analysis comparing opponent approaches and their AUC distributions
across multiple runs

with “worst” denoting the highest mean value. The “fractal dimension” is a cru-
cial characteristic that provides information related to the geometric shape of
the fractals. The third feature, radius worst, represents the largest mean value
for the distances from the centre to points on the perimeter.

While other ML models may share the feature of interpretability, they often
present challenges that GE does not encounter. Decision trees and RF, though
interpretable, lose clarity with complex structures and aggregation [4]. LDA
relies on the Gaussian distribution of the data and assumes that the covariance
of two classes is the same [12], limiting its applicability. In contrast, GE does not
depend on these factors and maintains transparency throughout its evolution,
even when addressing complex and non-linear problems.
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Table 3. This analysis unveils prevalent features used by GE in all five setups. For
SCC and SMLO, percentages are computed from 8684 and 7945 occurrences. Likewise,
contributions to SCC+MLO and FCC+MLO are based on 8138 and 8522 occurrences,
respectively. The features of WBC are also examined, with percentages drawn from
9076 appearances.

SCC SMLO SCC+MLO FCC+MLO WBC

Feature Usage Feature Usage Feature Usage Feature Usage Feature Usage

17 6.22% 5 4.93% 17 5.35% 41 3.78% 21 7.83%

41 4.87% 4 4.46% 5 4.36% 37 3.71% 20 7.64%

38 4.58% 41 3.95% 7 4.33% 4 3.63% 27 6.47%

5 4.19% 7 3.75% 41 4.02% 38 3.46% 24 5.56%

18 3.88% 17 3.65% 18 3.93% 11 3.38% 1 5.1%

7 3.50% 34 3.34% 38 3.55% 17 3.18% 13 4.87%

36 2.73% 45 3.15% 11 3.08% 5 3.11% 7 4.23%

5.1 Statistical Analysis

The statistical comparison of implemented data augmentation techniques
involved a non-parametric Bayesian signed-rank test [6] applied to each dataset.
In our analysis, conducted on nine augmentation techniques with 30 paired AUC
samples each, the test distinguished between methods being pair-wise larger,
smaller or inconclusive. The approaches listed in the rows are compared with
the methods presented in the corresponding column. The subsequent Bayesian
signed-rank test revealed significant distinctions among the techniques. In the
cases where STEM has outperformed the other approaches are underlined in the
Table 4.

In the SCC setup, as illustrated in Table 4(a), STEM, Mixup, SMOTE, ADA,
S-NC, SVM-S, S-Tomek and BSMOTE all exhibit larger medians than S-ENN.

The statistical comparison of medians depicted in Table 4(b) among various
augmentation populations reveals notable differences for SMLO setup. STEM, S-
NC, S-Tomek, ADA, and Mixup exhibit larger medians compared to BSMOTE,
SVM-S, SMOTE, and S-ENN.

Similarly, for setup SCC+MLO in the Table 4(c) STEM again showcases its
effectiveness by outperforming S-NC, BSMOTE, Mixup, SMOTE, and ADA
in medians. Additionally, S-ENN demonstrates superiority by exhibiting larger
medians than Mixup, SMOTE, and ADA. Additionally, S-Tomek outperforms
SMOTE in median values. SVM-S, in particular, stands out with a larger median
than ADA.
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Moreover, STEM stands out by consistently surpassing S-Tomek, Mixup,
BSMOTE, ADA, SVM-S, SMOTE, and S-ENN in median values presented in
Table 4(d) for FCC+MLO . Additionally, S-NC demonstrates superiority over
SMOTE and S-ENN, while S-Tomek outperforms S-ENN in median values.
Mixup, BSMOTE, ADA, SVM-S, and SMOTE all exhibit larger medians than
S-ENN.

Finally, in the WBC setup, as depicted in Table 4(e), STEM emerged as the
top-performing method, surpassing S-NC, BSMOTE, S-Tomek, Mixup, SVM-S,
SMOTE, and ADA. S-NC exhibited a higher median than SMOTE and ADA,
while Mixup outperformed SMOTE in median value. SVM-S demonstrated a
larger median than SMOTE and ADA.

The Bayesian analysis results are summarized in Fig. 4. It reveals that STEM,
a combination of S-ENN and Mixup, emerges as the top-ranking approach. This
result underscores the effectiveness of this combined strategy in enhancing per-
formance. Notably, S-ENN and Mixup individually secure the second and third
positions, further affirming the significance of this ensemble approach.

Fig. 4. The illustration of the overall results acquired from the Bayesian signed-rank
test is shown here. The cumulative score is the total number of times one approach
outperforms the other. STEM obtained a cumulative score of 23 where the maximum
possible is 40 (comparing one versus another 8 approaches in 5 setups), outperforming
the other approaches. Each color represents distinct test setups used for the evaluation.
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Table 4. The results of the Bayesian signed-ranked test are summarized here for the
nine augmentation approaches for each data setup. Arrows indicate the direction of
differences: ⇑ for larger, ⇓ for smaller, - for inconclusive, and N/A for not applicable
results. A family-wise significance level of α ≡ 0.05 is employed.

(a) SCC

STEM Mixup SMOTE ADA S-NC SVM-S S-Tomek BSMOTE S-ENN

STEM N/A – – – – – – – ⇑
Mixup – N/A – – – – – – ⇑
SMOTE – – N/A – - – – – ⇑
ADA – – – N/A – – – – ⇑
S-NC – - - - N/A - - - ⇑
SVM-S – – – – – N/A - – ⇑
S-Tomek – – - - – – N/A – ⇑
BSMOTE – – – – – – N/A ⇑
S-ENN ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ N/A

(b) SMLO

STEM Mixup S-NC S-Tomek ADA BSMOTE SVM-S SMOTE S-ENN

STEM N/A – – – – ⇑ ⇑ ⇑ ⇑
Mixup – N/A – – – ⇑ ⇑ ⇑ ⇑
S-NC – – N/A – – ⇑ ⇑ ⇑ ⇑
S-Tomek – – - N/A – ⇑ ⇑ ⇑ ⇑
ADA – – – – N/A ⇑ ⇑ ⇑ ⇑
BSMOTE ⇓ ⇓ ⇓ ⇓ ⇓ N/A – – –

SVM-S ⇓ ⇓ ⇓ ⇓ ⇓ – N/A – –

SMOTE ⇓ ⇓ ⇓ ⇓ ⇓ – – N/A –

S-ENN ⇓ ⇓ ⇓ ⇓ ⇓ – – – N/A

(c) SCC+MLO

STEM S-ENN S-Tomek SVM-S S-NC BSMOTE Mixup SMOTE ADA

STEM N/A – – – – ⇑ ⇑ ⇑ ⇑
S-ENN – N/A – – – – ⇑ ⇑ ⇑
S-Tomek – – N/A - - – – – –

SVM-S – – – N/A - - - - ⇑
S-NC – – – – N/A – – – –

BSMOTE ⇓ - – – – N/A – – –

Mixup ⇓ ⇓ – – – – N/A – –

SMOTE ⇓ ⇓ — – – – – N/A –

ADA ⇓ ⇓ – ⇓ – – – – N/A

(d) FCC+MLO

STEM S-NC Mixup S-Tomek BSMOTE ADA SVM-S SMOTE S-ENN

STEM N/A – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
S-NC – N/A – – – – – – ⇑
Mixup ⇓ – N/A – – – – – ⇑
S-Tomek ⇓ - - N/A - - - - ⇑
BSMOTE ⇓ – – – N/A – – – ⇑
ADA ⇓ – – – – N/A – – ⇑
SVM-S ⇓ – – – – – N/A – ⇑
SMOTE ⇓ – – – – – – N/A ⇑
S-ENN ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ N/A

(continued)
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Table 4. (continued)

(e) WBC

STEM S-ENN S-NC SVM-S Mixup ADA BSMOTE S-Tomek SMOTE

STEM N/A – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
S-ENN – N/A ⇑ ⇑ ⇑ ⇑ – ⇑ ⇑
S-NC ⇓ ⇓ N/A - – – – – –

SVM-S ⇓ ⇓ – N/A – ⇓ – – ⇓
Mixup ⇓ ⇓ – – N/A – – – ⇑
ADA ⇓ ⇓ – ⇓ – N/A – – –

BSMOTE ⇓ – – – – – N/A – –

S-Tomek ⇓ ⇓ – – – – – N/A –

SMOTE ⇓ ⇓ – ⇓ ⇓ – – – N/A

6 Conclusion and Future Work

In this study, we addressed class imbalance and interpretability challenges in
medical imaging diagnosis by using GE to produce classifier trained on data
augmented by the recently-introduced STEM technique. Our approach not only
delivers interpretable solutions but also outperforms an ensemble of other ML
classifiers in terms of performance. The analysis conducted on the DDSM and
WBC datasets emphasizes the effectiveness of GE, as evidenced by improve-
ments in AUC and its ability to identify critical data features. Notably, our
inclusion of Bayesian signed-rank test results confirms that STEM emerges as the
best-performing approach for augmentation. The improved AUC and enhanced
interpretability of our approach can help build trust and facilitate informed
decisions. Thus, our study validates the proposed hypothesis, demonstrating the
efficacy of the combined GE and STEM approach.

For future research, we suggest improving performance by incorporating addi-
tional image attributes, such as wavelet transformations and local binary pat-
terns, to enhance the feature set and dataset diversity. Furthermore, exploring
the mixture of different datasets to assess the robustness of our approach across
various image data sources would be interesting.
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