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Abstract. The multi-objective pathfinding problem is a complex and
NP-hard problem with numerous industrial applications. However, the
number of non-dominated solutions can often exceed human comprehen-
sion capacity. This paper introduces a novel methodology that leverages
the concept of a Pareto graph to address this challenge. Unlike previ-
ous approaches, our method constructs a graph that relates paths where
there is potential for change between them and applies a graph com-
munity algorithm to identify solution subsets based on specific aspects
defined by a decision-maker. We describe the construction of a Route
Change Graph (RCG) to represent possible route changes. A matrix is
constructed to save the number of possible change opportunities between
two routes, which is then used to construct the RCG. We propose using
a threshold value for edge weights in the graph construction, balancing
between minimising the number of edges and maintaining connectivity.
Following the construction of the RCG, we apply a community detection
algorithm to identify closely related solutions, using Leiden algorithm
due to its efficiency and refinement phase. We propose calculating var-
ious metrics on these communities, including Density, Average Cluster
Coefficient, Group Betweenness Centrality, and Graph Degree Central-
ity, to provide insights into the network structure and interconnectivity.
This methodology offers a more manageable set of solutions for decision-
makers, enhancing their ability to make informed decisions in complex
multi-objective pathfinding problems.
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1 Introduction

Finding a path from one point to another while optimising multiple objectives
is known as the multi-objective pathfinding problem and is considered NP-hard
[20]. In several industries this technique can be applied, e.g., route planning,
aviation, networking or medical applications [20]. For instance, there are multiple
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objectives to consider, when planning a logistic trip for a truck, e.g., curvature of
the road, ascent and length of a route. All these objectives should be considered
simultaneously. In medical applications, inserting a needle to perform a minimal
invasive tumour therapy can include objectives such as distance to the vessel
system or damaged tissue. Often, these objectives are in conflict. Applying multi-
objective optimisation techniques to such problems, can give a decision-maker
(DM) a better insight into the problem. The result of such an optimisation is a
set of non-dominated solutions, where no solution is better than the other.

However, the cardinality of the obtained set of non-dominated solutions can
exceed the number of solutions, a DM can comprehend [20]. According to Miller,
humans can comprehend 7±2 information chunks, although more recent research
indicates that this number is lower (approx. 3 to 4 chunks) [11,16]. Various
reduction techniques have been proposed that identify important and interesting
solutions.

In this paper, we propose a new methodology that utilises the concept of a
Pareto graph [13]. In contrast to the original approach, we construct a graph
that sets paths into relation when there is the possibility to change between
them. Furthermore, we apply various graph community algorithms to identify
subsets of solution that comply with various aspects which can be given by a
DM. In contrast to other approaches, our proposed methodology does not reduce
the whole set of non-dominated solutions, but finds subsets from which DMs can
choose.

The paper is structured as follows. In Sect. 2, we describe the necessary back-
ground, while Sect. 3 is dedicated to the related work. Section 4 presents our
proposed methodology, divided into graph construction and community detec-
tion and analysis. In Sect. 5, we evaluate the results and give a conclusion and
outlook in Sect. 6.

2 Background

In this section, we present the relevant background, i.e., the multi-objective
pathfinding problem, various aspects of graph theory, including community
detection.

2.1 Graph Theory

Graphs are used to represent the relations between entities. A graph G con-
sists of a set of vertices that are the representations of such entities and a set
of edges that denote the relations. An edge usually consists of an unordered
or ordered set of two vertices. Formally, a directed graph G is a pair G =
(V,E), where V denotes the set of vertices and E is the set of edges, where
E ⊆ {

(n,n ′) | (n,n ′) ∈ V 2,n �= n ′,n,n ′ ∈ V
}
. Note that E consists of two-

element ordered subsets of V 2, which renders a graph directed. In undirected
graphs, by contrast, E consists of two-element unordered subsets of V 2 [23].
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Connected Components. For a graph G = (V,E), a connected component c
of G is a subgraph c = (V ′,E ′), where V ′ ⊆ V and E ′ ⊆ E . For any two vertices
u, v ∈ V ′, there exists a sequence of vertices (v1, v2, ..., vn) and a sequence of
edges (e1, e2, ..., e(n−1)) such that: v1 = u and vn = v (i.e., the first vertex
is u, and the last vertex is v). For each i, 1 ≤ i ≤ n − 1, ei is an edge in E’
that connects vi to v(i+1). Furthermore, we define C as the set of all connected
components. Therefore C = {ci}, with i = 1, · · · , kcomp, where kcomp is the
number of connected components [23].

Communities. Communities in graphs refer to subsets of nodes within a larger
network that exhibit higher intra-connectivity compared to interconnectivity.
The detection and analysis of communities play a crucial role in understand-
ing the structure and function of complex systems, including social networks,
biological networks, and information networks. Various algorithms and methods
have been developed to uncover communities in graphs, with the common objec-
tive of identifying densely connected subgraphs. A fundamental concept used in
community detection is modularity, which measures the quality of a partition of
nodes into communities. The modularity of a graph partition is defined as:

Q =
1

2|E |
∑

i,j

(
Aij − deg(i)degdeg(j)

2|E |
)

δ(Ci,Cj) (1)

where Aij represents elements of the adjacency matrix, deg(i) and deg(j) are
the degrees of node i and j, m is the total number of edges, Ci and Cj are the
communities of nodes i and j, and δ(Ci,Cj) is the Kronecker delta function that
equals 1 if Ci = Cj and 0 otherwise.

The modularity optimization problem aims to find the partition that max-
imizes Q, indicating strong community structure. Beyond modularity, other
methods like spectral clustering, hierarchical clustering, and random-walk-based
approaches have been developed to uncover communities. The study of commu-
nities in graphs has provided valuable insights into the organization of networks
and has practical applications in recommendation systems, information diffusion
modelling, and network analysis [12].

2.2 Multi-objective Pathfinding

The multi-objective route planning problem, hereafter called the pathfinding
problem, can be defined as a network flow problem [14,15]. The goal is to find a
set of optimal paths (routes) P∗ = {p1, · · · , pL} in a graph

G =
(
V ,E , φ, �f, ιV (P), ιE(P), ns, ne

)
(2)

where V is the set of vertices or nodes, E represents the set of edges and φ
represents a function mapping every edge to an ordered pair of nodes n and
n′; hence φ : E → {(n, n′) | (n, n′) ∈ V 2}. A path pi is the sequence of nodes
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from a starting node nS ∈ V to a predefined end node nEnd ∈ V , i.e., pi =
(ni, ni+1 · · · , nk), where nS = ni and nEnd = nk and ni ∈ V for i = 1, 2, · · · , k
and ∃φ(ei,i+1) = (ni, ni+1) ∈ E for i = 1, 2, · · · , k − 1. Such a path p is called
a path of length k − 1 from n1 to nk. A path pi is here represented as a list
of nodes in a graph. Another representation is a list of edges to traverse; hence
pi = (e1, · · · , ek−1) where nS = φ(e1)(1) and nEnd = φ(ek)(2) and ei ∈ E
for i = 1, 2, · · · , k. Following the definition of a multi-objective optimisation
problem, the decision variable x is a path p in search space Ω [20].

3 Related Work

In this section, we present the related work about decision support systems
(DSSs) that is used to decrease the number of solutions a DM has to choose from.
Furthermore, we give a short overview on methodologies related to the concept
of a Pareto graph, in which non-dominated solutions are put into relation using
a graph structure.

3.1 Pareto Set Reduction as a DSS

In real-world applications, the Pareto set can be vast, making it challenging
for decision-makers to analyse and select a preferred solution. To address this
challenge, Pareto set reduction techniques have been developed as a decision
support tool, aiming to reduce the size of the Pareto set while preserving its
essential characteristics [9].

Pareto set reduction methods, utilized to provide decision-makers with a
more manageable set of solutions, are divided into clustering-based and repre-
sentative selection approaches. Clustering-based methods amalgamate similar
solutions within the Pareto set into clusters, selecting a representative solution
from each cluster, and have been further explored through various subsequent
works focusing on the clustering of non-dominated solutions and the application
of graph-based representations in Multi-Objective Optimization (MOO) [2,20].
For instance, a graph-theoretical clustering approach has been proposed to iden-
tify a reduced set encapsulating extreme solutions of Pareto optimal solutions for
MOO problems [8]. Another technique employs clustering in both the objective
and decision spaces to find intersection sets, aiding a DM in electing the opti-
mal solution [20]. Conversely, representative selection strategies try to directly
select a subset of solutions embodying the diversity and distribution of the entire
Pareto set [8]. Through these methodologies, both approaches facilitate simpli-
fied analysis and decision-making by rendering a condensed yet diverse set of
solutions for evaluation.

3.2 Pareto Graphs

In multi-objective optimization (MOO), obtaining a well-distributed set of non-
dominated solutions is a crucial goal. Paquete and Stützle extended the concept
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of Pareto graphs [5] (also known as efficient graphs) to represent relationships
among solutions in the objective space. Each node in the Pareto graph cor-
responds to a solution, and each directed edge represents whether one solu-
tion can be reached from another within a certain distance. They conducted an
experimental analysis on the properties of the Pareto graph induced by the set
of efficient solutions for multi-objective combinatorial optimization problems,
observing that the Pareto graph contains clusters of non-dominated solutions
which are tightly connected subsets of solutions [13]. Furthermore, Liefooghe et
al. proposed to use a graph in which edges represent the potential ability of a
search algorithm to jump from one solution to another [10].

4 Finding Related Paths

In this section, we describe how pairs of paths can be identified that share
common sub paths and how a respective graph from this information can be
constructed. Furthermore, we propose to use community detection algorithms
to find interesting subsets of paths. These communities can help a DM to make
a more informed decision.

4.1 Constructing the Route-Change-Graph

To represent possible changes of routes, we can construct a Route-Change-Graph
(RCG), that is a graph G = (V,E) where each v ∈ V represents a single path
from the designated start to the goal node and each e ∈ E represents a change
opportunity between two routes (two nodes).

Such a graph is constructed by analysing a set of possible routes and identify-
ing their pairwise common contiguous nodes (excluding start and end). For each
pair of routes (ri, rj), where a route r = (ns, · · · , ne), we construct the intersec-
tion of their subsets of contiguous nodes, excluding ns and ne. Let ri and rj be the
ordered sets of their respective points. Therefore, Iij = ri\{ns, ne}∩rj \{ns, ne}
is the intersection of the two sets without the start and end nodes. We create a
such an intersection for each route pair. Each set Iij contains nodes and, there-
fore, subroutes, that are present and shared in two routes. However, instead of
obtaining the cardinality of the intersection set Iij , i.e. |Iij |, we save the number
of common contiguous subroutes |Sij | (between ri and rj , in a matrix M , where
each column and each row represents a route. Therefore, the n × n matrix M is
symmetric.

To obtain |Sij |, we consider two ordered sets ri and rj , where each ri consists
of a sequence (n1, · · · , nk) with k being variable. The task is to find the number of
common contiguous subsequences between ri and rj . A contiguous subsequence
of ri is any sequence (nia , · · · , nib) where 1 ≤ a < b ≤ k, and the indices a and
b form a contiguous range.

Let’s denote by S(ri) the set of all contiguous subsequences of ri, i.e.,
S(ri) = {s|s is a contiguous subsequence of ri}. We are interested in finding the
cardinality of the intersection of S(ri) and S(rj), denoted |Sij | = |S(ri)∩S(rj)|.
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In Algorithm 1, we show pseudocode to compute the common contiguous sub-
sequences.

Algorithm 1. Common Contiguous Subsequences of Ordered Sets r1 and r2
1: function CommonContiguousSubsequences(r1, r2)
2: S(r1) ← GetContiguousSubsequences(r1)
3: S(r2) ← GetContiguousSubsequences(r2)
4: common_count ← 0
5: for each s1 in S(r1) do
6: for each s2 in S(r2) do
7: if s1 = s2 then
8: common_count ← common_count + 1
9: end if

10: end for
11: end for
12: return common_count
13: end function

14: function GetContiguousSubsequences(r)
15: subsequences ← ∅
16: for i = 1 to length(r) do
17: for j = i + 1 to length(r) + 1 do
18: subsequences ← subsequences ∪ {(ri, ..., rj−1)}
19: end for
20: end for
21: return subsequences
22: end function

Each element in M contains then the number of possible change opportunities
between two routes. In the following, we only consider one half of the matrix,
as it is symmetric. The intersection of a route to itself is the route itself and is
not considered in the following analysis (the respective matrix cells are set to 0).
The matrix M looks as follows.

M =

r1 r2 · · · rn−1 rn
r1 0 |S12| |S13| |S14| |S15|
r2 − 0 |S23| |S24| |S25|
...

... − 0 |S34| |S35|
rn−1

...
... − 0 |S45|

rn − · · · · · · − 0

With the obtained route change matrix M , we can now construct the RCG,
i.e. GRCG = (VRCG, ERCG). We assume a bidirectional possibility to change
between two routes. Each route r is represented by a node vri ∈ VRCG. Each
element in the matrix M represents an edge in ERCG between two routes (column
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Fig. 1. |E | and |C| in relation to τ for GRCG,τ

and row), and the value represents the edge’s weight. As the matrix has as many
rows and columns as there are routes, the resulting graph can be substantially
large. Therefore, we propose to use a threshold value τ for the edges’ weights
that are constructed in the graph. The threshold value τ is determined using
quantiles on the matrix’ values. An edge is constructed if the respective value
is over the specified threshold. However, constructing fewer edges can result in
a disconnected graph and, therefore, in having multiple connected components.
Nevertheless, our proposed RCG should have the least possible number of con-
nected components while also having the least possible number of edges, keeping
it less dense. The graph can be constructed for various thresholds, and the value
that maintains both properties low can then be identified. In Fig. 1, such an
analysis is shown. With an increasing threshold, the number of edges decrease
while there are more connected components. In the given example, we can decide
on a threshold quantile of 0.891, which results in one connected component and
363 edges in ERCG. However, for a different set of routes, it can happen that
the possibility of having only one connected component is not given. Then, a τ
should be chosen, that minimizes |C|.

4.2 Community Detection and Analysis

After constructing the RCG, which nodes represent paths, which edges represent
change possibilities and which edges’ weights represent how often a route can
be changed, we can apply community detection algorithms to identify closely
related solutions. Furthermore, we propose to use various metrics of these com-
munities to identify subsets of solutions that are presented to a DM. In addition,
we propose three strategies a DM can utilise to identify a feasible and fitting
community.
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Community Detection. We propose to use the Leiden algorithms, which is an
extension of the Louvain algorithm, to ensure well-connected communities [18].

The Leiden algorithm is a highly efficient algorithm for community detection
in networks. It is an improvement over the Louvain method, which is known for
its high performance but has certain limitations. The Leiden algorithm addresses
these limitations by incorporating a refinement phase to improve the quality of
partitions.

Mathematically, the Leiden algorithm optimizes the modularity function,
shown in Equation (1).

We furthermore propose to set the settings of the algorithm to find as many
different communities that can be comprehended by a DM, i.e., according to
[16], 3 to 4. Furthermore, we propose to choose the graph’s modularity as the
quality function of the Leiden algorithm [12]. We set the number of iterations to
2, since this is the default setting of the implementation we use to compute the
partition [19].

Community Analysis. After finding a good number of communities, we pro-
pose to compute various metrics on these. These metrics should reflect how
intra-connected the communities are, but also if they are interconnected to other
communities. We have decided to compute four metrics for each community:

1. Density [3]. The density of a graph structure, denoted as ρ(G), is a measure
that provides insight into how many edges are present in the graph relative to
the maximum possible number of edges. For an undirected simple graph with
|V | vertices, the maximum number of edges is |V |(|V |−1)

2 . Thus, the density
is defined as:

ρ(G) =
2|E |

|V |(|V | − 1)
(3)

where |E| represents the number of edges in the graph. For directed graphs,
the maximum number of edges is |V |(|V | − 1), and the density is calculated
as:

ρ(G) =
|E |

|V |(|V | − 1)
(4)

Consequently, a graph’s density ranges from 0 (for an empty graph) to 1 (for
a complete graph).

2. Average Cluster coefficient [17]. The average clustering coefficient, 〈C〉,
quantifies the degree of clustering in a network. It’s calculated as:

〈C〉 = 1
|V |

∑

vi∈G

C(vi) (5)

Where:
– |V | is the total number of nodes
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– vi represents each node in the graph G
– C(vi) is the clustering coefficient of node vi

For a given node vi, C(vi) is the node’s clustering coefficient, i.e., a proportion
of existing links between its neighbours over the total possible links.
Given a node v with kv neighbours, the cluster coefficient C(v) for that node
can be calculated using the following equation:

C(v) =
2Υv

kv(kv − 1)

where Υv represents the number of edges between the neighbours of v. This
equation calculates the ratio between the number of actual edges Υv and the
maximum possible number of edges between kv nodes. In other words, it is
the ratio of actual triangles that node involved in and the number of possible
triangles.
If a node has less than two neighbours, its clustering coefficient is 0. This
measure provides an overall sense of the network’s cliquishness.

3. Group Betweenness Centrality [6]. Everett and Borgatti proposed the
concept of Group Betweenness Centrality as a measure to identify the most
central group within a network. It extends the idea of individual node cen-
trality to encompass groups of nodes. The Group Betweenness Centrality of a
group of nodes is defined as the sum of the fraction of shortest paths between
all pairs of nodes in the network that pass through at least one node in the
group. This measure reflects the extent to which a group collectively acts as
a bridge or gatekeeper between other nodes in the network. Given a group of
nodes, V, the betweenness centrality of this group, denoted as bc(V), is given
by:

bc(V) =
∑

nfrom �=v �=nto

(
σ(nfrom, nto|V)
σ(nfrom, nto)

)
(6)

Where:
– σ(nfrom, nto) is the total number of shortest paths from node nfrom to

node nto
– σ(nfrom, nto|V) is the number of those paths that pass through some node

in group V

Notice that nfrom �= v �= nto means that we take all pairs of nodes except
those pairs where either node is in the group V. In contrast to the other three
metrics, we compute the Group Betweenness Centrality for a community in
the scope of the whole graph, while the other metrics are calculated using
solely the nodes and edges of the respective community.

4. Graph Degree Centrality [7]. The degree centrality of a graph is a mea-
sure of the overall connectivity of the graph. It is an average of the degree
centralities of all nodes in the graph.
It is defined as:
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dc(G) =
∑|V |

i=1 [dc(v∗) − dc (vi)]

|V |2 − 3|V | + 2
(7)

Where:
– dc(G) represents the degree centrality of the graph G
– dc(v∗) and dc(vi) denote the degree centralities of the node with the

highest degree (v∗) and each other node (vi) respectively
– |V | is the total number of nodes in the network

This formula calculates the sum of differences between the degree centrality
of the node with the highest degree and that of every other node. This sum
is then normalized by dividing it by |V |2 − 3|V | + 2, which is derived from
the maximum possible sum of differences.
In this case, a higher degree centrality indicates that one node (the one with
the highest degree) is significantly more connected than others, while a lower
degree centrality suggests a more evenly distributed network where no single
node dominates in terms of connections.

Community Selection. After computing the four different metrics for each
community, we can use one or more of these measurements to select a community
that is being presented to a DM. With our approach, we shift the DM’s task from
the objective space (and where possible interesting areas are) to a space where
they have to decide on specific properties of subsets of solutions. Especially for
problems similar to the multi-objective pathfinding problem, that can be highly
uncertain from a temporal perspective, it can be beneficial to choose a subset
of solutions rather than a single solution to have alternatives ready when the
solution is executed but not feasible any more. For instance, when traversing a
path, a DM may get the information that a chosen segment on a later stage of
the path is not traversable any more. With a pre-computed set of alternative
solutions, the DM can still choose from various non-dominated solutions. As
follows, we present three strategies to use the proposed community metrics. We
propose to apply non-dominated sorting of the set of communities using their
respective metric values, and then to use a combination of the four metrics.

Always alternatives. If a DM aims for solutions that have always alternatives
when being traversed, we propose to choose a community with a high density
and low graph degree centrality. An example of such a community is presented
in Community 1 in Fig. 2.

Main route, but possible dead ends in alternatives. A star shape community rep-
resents a set of alternatives with one main route and adjacent solutions. Choosing
such a set may result from a high priority on a specific route. However, depend-
ing on the number of rays of the star, i.e., the alternatives, a different route
might be available with the sacrifice of having no more alternatives afterwards.
Nevertheless, a return to the main route can be possible. An example of such a
community is presented in Community 2 in Fig. 2.
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Community 0 Community 1

Community 2

Fig. 2. The three obtained communities. Force-directed layout for visualisation.

Few central solutions, few alternatives. A community can exist with multiple
central solutions, where each solution has a substantially high number of alter-
natives, and that community has also a few additional solutions with a lower
number of available alternatives. An example of such a community is presented
in Community 0 in Fig. 2.

5 Evaluation and Discussion

In this section, we apply the proposed methodology to an instance of the
pathfinding problem that has been proposed in [20] and which has been pub-
lished in [22].

The instance of the problem represented the task of finding the set of Pareto
optimal routes within the European road network from Warsaw to Madrid. The
final network consisted of 1.14 × 108 nodes and 1.46 × 108 edges and a variation
of the NSGA-II algorithm [4,20] was applied to optimise (minimization) four
objectives, i.e., length of the route, time to traverse it, positive ascent and the
curvature. For a detailed description, the interested reader is referred to [20]. The
authors have obtained 69 different and non-dominated routes that are shown in
Fig. 3. Although the routes are very similar from a visual perspective, there are
small differences in various locations.

We can now construct all intersection sets Si, using our proposed method-
ology, and build the matrix M from it. The result is a 69 × 69 matrix, which
elements represent possible changes between routes and the value related to
the number of possible changes. From this adjacency matrix, we construct the
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Fig. 3. All obtained Pareto-optimal routes for four objectives [20]

respective RCG, shown in Fig. 4. The graphical representation was created using
a force directed layout [1].

As described in Sect. 4.1, we use the 0.891-quantile as a threshold so that our
graph has exactly one connected component. In Fig. 4, we have also coloured
the communities, that have been found when applying the Leiden algorithm. In
Fig. 2, we show each community separately, also arranged using a force-directed
layout. From a visual approach, the structural differences of the communities
are already visible.

To compare the communities, we can now compute the proposed metrics,
i.e., density, average cluster coefficient, group betweenness centrality and graph
degree centrality. In Fig. 5, we show these metrics for each community. It should
be noted, that, in terms of these metrics, all communities are non-dominated.
We propose to only use non-dominated communities. From a visual perspective,
community 2 is structurally different compared to the other two. It has a rather
high graph degree centrality and group betweenness centrality, but also a low
density and an average cluster coefficient of 0, as the community does not contain
any triangles.

We assume that a DM should decide on one specific community. However,
also the linking between communities can be of interest. The DM can utilise the
Group Betweenness Centrality to estimate how well a change between commu-



Finding Sets of Solutions for Temporal Uncertain Problems 221

Route Change Graph

Fig. 4. The obtained RCG from the real-world example. Layout obtained by applying
a force directed algorithm
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nities can be done. In other words, a community with a high group betweenness
centrality enables to easily change to other communities.

To provide an easier access to our proposed methodologies, we have published
the code that we used. In addition, we provide an easy-to-use UI that uses the
artificial and real-world data [21].

6 Conclusion and Outlook

In this paper, we have proposed a novel DSS that can identify a comprehensible
number of subsets of solutions for decision-makers to choose from. The approach
is especially suitable for problems where there are possibilities to switch between
solutions, as they are temporal uncertain and alternatives are available. With our
approach, an Route-Change-Graph (RCG) is generated using a problem specific
threshold to keep the number of edges low, then communities are identified and
finally, the communities are analysed using various graph metrics to help a DM
choose the most fitting subset of solutions. In addition, we have evaluated the
methodology on a real-world problem. However, an empirical analysis with actual
DMs is missing and should be carried out in the future.

Furthermore, in the future, we want to test the approach on different prob-
lems than route planning on maps, e.g., network routing or also medical applica-
tions. Moreover, other graph related metrics than the four that we have utilised,
should be evaluated in the future. We see our proposed methodology as a starting
point to more problem-centric DSS instead of general applicable approaches.
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