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Abstract. Can we use computational modeling to infer whether fish can
remember or anticipate each other’s movements? What minimum of tem-
poral input and internal complexity is sufficient to model a specific fish, or
to produce generally “fish-like” behavior? Agent-based modeling to emu-
late biological behavior has been used to great effect, both in real-world and
simulated experiments. We present feedforward neural network architec-
tures for simulating fish social interactions, evolved using evolution strate-
gies in two different experiments. Evolution of the temporal input of the
partner fish’s positionwhen testingmodels on labeled data uncovers antici-
pation ormemory capacities used by a focal fish.When testing via a general
discriminator for fish-like trajectories, the right neural network architec-
ture and temporal input are shown to be a necessary, but insufficient con-
dition for highly lifelike simulations. Lifelike simulations for some datasets
are possible as simple functions of the input, showing variability in the com-
plexity of individual fish’s social behaviors.

Keywords: Evolution Strategy · Fish · Social Interactions ·
Agent-Based Modeling · Artificial Agents

1 Introduction

Can a small freshwater fish anticipate a partner’s movements in social interac-
tion? Does it need to, in order to behave “like a fish”? Finding the answers is
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not as easy as it sounds. It has been shown through tailored biological experi-
ments that Poecilia reticulata (guppies) are capable of leading and following each
other, socially learning food locations, anti-predator behavior and other useful
skills [7], choosing interaction and mating partners based on past observations of
conspecifics [3], and learning another’s movement patterns in order to precede it
to a goal destination [2]. However, inferring from such behaviors that the fish are
socially anticipating requires making many assumptions about their motivations
and information processing. Pezzulo [17] and others define anticipation as using
“predictive capabilities to optimize behavior and learning to the best of [one’s]
knowledge”. In this study we show how computational modeling and evolution
strategies can be leveraged to find out how guppies use temporal information
about a partner to inform their actions a posteriori from recordings of freely
moving fish pairs, without experimental manipulation or additional assump-
tions. Evolving model architectures by using certain fitness functions enables
us to draw conclusions similar to those of evolutionary biologists based on real
animals’ anatomies. To our knowledge, a similar approach has only been tried
by Olivares et al. [16] in recent years.

We take inspiration from the long tradition of using simple circuits and rules
to model animal behavior in response to certain stimuli, both in real-life and
simulated experiments. Grey Walter’s work on the Machina speculatrix and the
Machina docilis [24] showed that very simple electronic circuits can be sufficient
to produce some behaviors reminiscent of innate animal behaviors and even clas-
sical conditioning. Note that the “learning circuits” were the result of an analysis
of the operations “involved in establishing a connection between different stimuli
to achieve a conditioned response”. This means that they tell us something about
the behaviors that can be achieved with simple circuitry, but not much about
the way animal bodies and brains achieve similar behavior. Another example
are Braitenberg vehicles. Initially conceived as a thought experiment, they are
minimal robots whose wheel actuators are directly coupled to simple sensors. By
varying the sensor-actuator connections, they can be made to show behaviors
associated with living organisms, such as an enduring attraction or aversion to
a light source, obstacle avoidance and chemotaxis [5,22].

This naturally leads to the question of how architecturally complex agents
even need to be in order to show successful behaviors in their environment,
including the social environment. Simulations of simple recurrent neural net-
works with two or three hidden nodes which control Braitenberg-like agents
emitting acoustic signals have shown that social interaction itself can increase a
network’s complexity (as measured by the entropy between the internal nodes)
and lead to interesting (though not necessarily lifelike) behavior patterns when
two such agents interact [9,18,19].

To our knowledge, most of the work done in this area uses present-time
sensory input and, if at all, introduces a temporal aspect through the use of
recurrencies in the artificial neural network architecture. In Couzin et al.’s [11]
zone model of fish social behavior, individual fish react almost instantaneously
to others’ movements. However, possible memory or prediction capabilities of
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individual fish are not examined. On the other hand, Murakami, Niizato and
Gunji [15] as well as Strömbom and Antia [23] model swarm dynamics using
anticipation.

Given our interest in memory and anticipation of a social partner’s actions,
we are looking for a way in which temporal dynamics (such as delayed or antic-
ipatory reactions to a partner’s actions) may be detectable from an outside
perspective in pre-recorded behavior data, without needing to experimentally
manipulate the behavior. In addition, we want to find out what role such dynam-
ics play in producing lifelike simulations of fish movements.

Based on the work reviewed so far, we decided to simulate fish interactions
using minimal (at least at first) feedforward artificial neural networks and treat-
ing memory and prediction capacities as external “modules” rather than as prop-
erties of the neural architecture or internal model (as do, for example, Blum,
Winfield and Hafner [4]. This is in line with Reynolds’ [20] approach of giving
his artificial agents “approximately the same information that is available to a
real animal as the end result of its perceptual and cognitive processes” (more
details in the Methods section). This comes with the drawback of not being able
to simulate two partners freely interacting: In order to have “predictions” of a
partner, the focal agent model must interact with a pre-recorded one. However,
this allowed us to directly compare the individual performance of models with
the exact same partner and based on the exact memory/prediction timesteps
they are receiving as input, while keeping their neural architecture simple.

The presence or absence of the temporal input modules were determined by
an optimization process. In this process, the complexity of the neural network
architecture (as measured by the number of hidden layers and their respective
nodes) would be adapted in order to better approximate the “decision making
function” mapping input states to motor actions. As target functions to optimize,
we used two different measures in two separate experiments: In experiment 1, we
used the framewise deviation of a model’s predictions from the original fish track
it was trained on. In experiment 2, we used the “fish-likeness” of a model’s simu-
lation, as rated by a long short-term memory (LSTM) discriminator trained for
this purpose. Both were traded off against the number of trainable parameters
in the models in order to encourage simplicity. By thus tweaking our modeling
choices and examining the best fitting models, we hoped to answer the follow-
ing questions: Experiment 1: Can we show in how far a given fish predicts or
remembers another’s movements and changes its behavior accordingly? Experi-
ment 2: What minimum of temporal input and internal complexity (taking into
account Occam’s razor [6]) is sufficient to model a specific fish, or to produce
generally “fish-like” behavior? In keeping with the origin of the biological agents
we were modeling, we chose to use a custom Evolution Strategy [1] in order to
optimize our model architectures while keeping them simple.

2 Methods

Please find a diagram of our workflow in Fig. 1c.
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2.1 Ground Truth Data

Our efforts in both experiments were aimed at successfully modeling existing
data from five live pairs of Trinidad guppies, filmed and tracked while moving
freely in an experimental tank. Their movements were filmed in a white square
tank of 88 cm width and 7.5 cm water depth (see Fig. 1a) and tracked at 30
frames per second (fps) using the BioTracker movement tracking software [14].
In every evolution run, one of the two fish per pair (the “focal fish”) was used as
ground truth data to be modeled, while the other live fish’s trajectory functioned
as the “social partner”.

2.2 Neural Network Models

We configured all models as multi-layer perceptrons using Keras [10]. Indepen-
dently of the number of layers and the number of nodes in each layer, all hidden
layers were densely connected and used leaky ReLU with an alpha of 0.01 as an
activation function. The case of 0 hidden layers implemented a linear mapping
of input to output (please see supplementary material for an illustration), with
one output being clipped to minimum 0 (ReLU). All models were trained using
the Keras adaptive moment estimation (“Adam”) optimizer with a clipping norm
of 2.0, a maximum of 100 epochs but early stopping in the case of stagnant vali-
dation loss (with a patience parameter of 5). The two output nodes represented
1) the length/magnitude of the predicted movement, and 2) a change in heading
direction in 2-argument arctangent (atan2), respectively. The movement length
node was a ReLU to prevent “negative” (backwards) movements. The direc-
tion change output node was not regularized. We used polar coordinates as this
was computationally easier when using a field of view. Please see Fig. 1b for an
example. If used for simulation, the predictions of the network were transformed
into x and y displacement coordinates in the global cartesian coordinates. This
was done by a custom function which also clipped the maximum length of the
movement to 4cm to regularize the simulations and prevent “jumps” across the
tank.

2.3 Input Information

We implemented the inputs to the network as higher-level “spatial awareness”
modules: a wall detection module and a partner detection module. We decided
to “outsource” the fish’s awareness of walls and partners in this way and give
the model precise information in the same spatial format as the required output
instead of, say, using simulated raycasting to detect walls and partners and
letting the model combine the ray information into a spatial representation to
act upon. This meant that a model only had to make the movement prediction,
saving it some computation and eliminating one potential source of error. Input
information was precise within a field of view of 172◦ on each side (which is
realistic for this species of fish). For information on wall vision, please see the
supplementary material. Figure 1b illustrates our input modules.
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Partner Detection Module (Partner). The partner detection module com-
puted the position of the partner fish from the simulated fish’s point of view and
passed the polar coordinates as input to the neural network. It implemented
the capability to “remember” or “predict” the partner fish’s position at other
points in time. Given an integer −a, the module would compute the position
of the partner fish a timesteps in the past relative to the current position of
the focal fish, essentially allowing the model to remember past positions of the
fish from its current perspective. Given an integer a, the module would compute
the position of the partner fish a timesteps in the future (this information was
available as our tracks were pre-recorded), allowing the model to predict the
partner’s position from the perspective of the present. One model could use this
module with more than one timestep at once depending on its hyperparameters,
adding 2 input nodes (for the two coordinates) to the model per timestep used.
The timesteps used by a given model were encoded as a list of integers in the
hyperparameter “genome” which was subject to our evolutionary strategy.

2.4 Evolution Strategy for Neural Network Architecture Search

Evolution strategies are a class of optimization methods first developed in the
1960s by Rechenberg and others [1]. Like other evolutionary computation meth-
ods, they use ways of “reproducing” and “selecting” artificial entities based on
certain traits across multiple loops or “generations”, inspired by natural evolu-
tion. Unlike other methods, they usually evolve the entities’ mutation rates along
with the other traits. The model hyperparameters subject to our evolution strat-
egy were the following:

– The entirety of hidden layers and the number of nodes in each layer
– The partner perception timesteps used by the agent
– The presence or absence of wall input
– The magnitude of the noise added to all model inputs (more precisely, the

factor by which the standard deviation of the entire input for a given feature
was multiplied to form the standard deviation of a Gaussian with mean 0 to
draw noise samples from)

– The noise level added to model outputs when simulating (more precisely,
the factor by which the standard deviation of the original framewise fish
movements was multiplied to form the standard deviation of a Gaussian with
mean 0 to draw noise samples from)

These hyperparameters indirectly encoded the model architecture, and each
model was trained using gradient descent with randomly initialized weights
before testing it for selection. The outcomes we aimed to minimize simulta-
neously were a) the testing loss as measured in two different ways and b) the
number of trainable parameters in the model (its complexity).

Reproduction. As is recommended for a combinatorial task [1], we used a
(μ + λ) evolution strategy, in which μ parents are used to create λ offspring in
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Fig. 1. a) Test tank for filming fish movements. b) Focal fish (red) and example input
from partner fish (blue) d1, d2 and β1, β2: Partner distances and angles for two example
timesteps. e1 and γ1: Wall distance and angle (only one wall shown). c) Workflow for
both experiments. d) Example feedforward neural network (FNN) with several partner
input timesteps, wall vision and hidden layers [2, 4]. e) Performance of lifelikeness dis-
criminator: Relative frequency histogram of the ratings of the discriminator on unused
real, scrambled and switched data. (Color figure online)
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each generation, and the parents and offspring are then pooled and tested for
selection. We did not use recombination to produce the offspring, but rather
each selected parent was copied into the next generation (not the trained model
but the hyperparameter “genome”), in addition to two mutated versions. Thus,
μ = 8 and λ = 16. All copies and mutant versions of the selected parents
were then built as feedforward neural networks (FNNs) and trained via gradient
descent using pre-labeled data. Afterwards, they were tested for selection as
described below. In the first generation, μ = 8 default models were initiated
according to the settings in Table 1, and two mutant versions created for each to
form the initial population. The mutation itself was governed by two “strategy
parameters” (mutation rate and strength) which were part of the model genome,
and evolved along with it.

Mutation. Mutation was carried out as follows. In addition to the model hyper-
parameters (or “object parameters” in ES speak), we evolved two “endogenous
strategy parameters” of each model: its mutation strength s and its mutation
rate p. The mutation strength was a factor applied to mutation steps in real-
valued model parameters, and the mutation rate used as p for sampling from a
Bernoulli distribution to determine whether a binary mutation would take place
or not. For creating each mutant version of a parent, we randomly increased or
decreased s by 1 (and then clipped it at a minimum of 1), randomly increased
or decreased p by 0.1 (clipped to stay between 0.1 and 1), flipped wall input
on/off with probability p, added a new partner perception timestep randomly
chosen from −150,150 with probability p, randomly subtracted or added s to
a randomly chosen existing partner time step, removed one randomly chosen
partner timestep with probability p, randomly increased or decreased the input
noise factor by s/20, randomly increased or decreased the motor noise factor by
s/20, added a hidden layer with s+1 nodes with probability p, added a node to
a randomly chosen hidden layer with probability p, and removed one randomly
chosen hidden layer with probability p (provided there was one). In order to
avoid duplicate partner timesteps, the set of partner timesteps was used after
mutation.

Table 1. Hyperparameters of default model.

Hyperparameter Value

Partner timesteps [0]
Wall vision False
Input noise factor 0.0
Motor noise factor 0.0
Hidden layers [0]
Mutation rate 0.3
Mutation strength 1
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Selection. We performed two neuroevolution experiments, using two different
forms of testing loss according to the different study aims. In both methods,
the testing loss was traded off against the number of model parameters to select
models for reproduction. All our datasets were used in both experiments. In
experiment 1, we used the loss from testing each model on prelabeled, unseen
data from the same dataset. This served to gauge in how far the models were
able to approximate the framewise movement “decisions” of the original fish, as
the model received input based on the original fish’s real positions. The model
architectures evolved by this method served to illuminate the individual behavior
of the respective fish, and its unique dynamics with the partner fish. For each
dataset, we did one evolution run using the first fish as the focal fish, and another
using the second fish. In experiment 2, we used the negative ratings of the
discriminator model described in Sect. 2.8 as the testing loss. Only the first
fish of each dataset was used here. Each model was still built and trained on
prelabeled data in the same way as in experiment 1, but then made to freely
simulate 400 frames of fish track given the original partner input, to be rated by
the discriminator. This served to select for models what were able to produce
the most fish-like trajectories and interactions with the partner fish, thus giving
us more general insights about the behavior of these guppies.

In both experiments, at each generation of an evolution run we computed
the Pareto optimal model genomes according to both minimal testing loss and
minimal number of trainable parameters in the model. A (strongly) Pareto opti-
mal data point in a two-dimensional feature space is one where, if there exists
another data point with a better value on one feature, that data point must rate
worse on the other feature [13]. This allowed us, in the first round, to select mod-
els according to both our desired outcomes (low testing loss and low complexity)
without having to weigh them against each other. However, as the number of
Pareto optimal models (also called the Pareto front) is not necessarily = μ, we
used the average of the min-max scaled test loss and complexity for each model
as a secondary criterion for ranking the models, and then used the μ best models
for reproduction, making this an elitist selection technique. The procedure was
repeated for 70 generations per run.

2.5 Data Labels

We trained all models in both experiments using labels based on the ground truth
data. The labels represent the direction change of the original fish in radians and
its movement length in cm at each frame, with the mean squared error of both
output nodes as the loss function for each one. As the two outputs were roughly
on the same scale (movement length in cm and direction change in radians were
both expected to be in [0, 1]), we weighted the output nodes equally for the final
model loss. Training loss was defined as the deviation of the predicted move
from the ground truth of the recorded focal fish. While this is obviously not
biologically realistic as no animal has a deterministic trajectory to follow, our
whole study rests on the assumption that a fish’s framewise movements can be
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at least partly predicted based on its perception of the partner’s position and
the tank walls.

2.6 Simulation

Each trained model could be used to simulate a fish trajectory given the partner
and wall input suitable to its input configuration. Together with the partner
trajectory, this could then be passed to a pre-trained discriminator model to
be rated for “lifelikeness”. The framewise outputs of the simulator model would
be transformed into movement coordinates. A movement was only performed
if the resulting fish position was inside the tank walls of the dataset currently
used; if not, the simulated focal agent simply remained in the same place but
the simulation continued, feeding it new input for new potential movements.

2.7 Analysis of Evolution Results

As it was difficult in our application to verify the correct running of the Evolu-
tion Strategy objectively, we relied on the testing loss development across gen-
erations. Runs in which testing loss did not sink towards the final generations,
did not reach levels below 0.5 or oscillated greatly throughout were regarded as
“not converged”. However, by analyzing the best and worst performing models
across all generations, we can still glean some cautious insights into the solu-
tions found by these runs. Comparing the best models for the two fish in each
dataset allowed us to draw inferences about the dynamic between the two fish.
What all the evolution runs seemed to have in common was a marked bimodal
distribution of testing loss across generations and model hyperparameters (see
plots in the supplementary material). Given this pattern in the testing loss, we
decided to compare the ensembles of the 30 best performing and the 30 worst
performing models for each fish with two-sample t tests to gain information
on the hyperparameter choices for modeling that fish. Comparing the partner
timestep histograms between the best and worst models for each fish provides
information on the partner timestep input likely used by that fish. While exper-
iment 2 was more exploratory, we formulated specific predictions for experiment
1: If both fish in a pair mostly ignored each other, we would expect the timestep
histograms to be inconclusive for both fish respectively, as the evolution strat-
egy would not find an adequate model of either fish’s movements based on the
other one. If one fish in a pair mostly remembered or anticipated the other’s
movements but was itself largely ignored, then the timestep histograms for the
first fish should show a predominance of the best models within a certain time
range. The other, “careless” fish in this scenario should either have inconclusive
timestep histograms, or a predominance of timesteps exactly the opposite of
the first fish. If both fish coordinated their movements closely, with one mostly
reacting and the other mostly anticipating, we would also expect a “mirrored”
pattern in their timesteps. Such a mirrored pattern would therefore be difficult
to interpret causally, while the other patterns would present a clear picture.
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2.8 Simulation Discriminator

In order to be able to automatically evaluate the lifelikeness of a simulated fish
pair trajectory, we built a discriminator LSTM model trained to distinguish
real pre-recorded fish pairs from a) datasets with scrambled frames (i.e. com-
pletely un-fish-like trajectories) and b) real focal and partner fish trajectories
switched between different datasets (i.e. fish-like but not interacting). It was
loosely inspired by the discriminator part of Gupta et al.’s [12] Social GAN for
producing socially acceptable walking trajectories. The discriminator contained
one densely connected layer of 64 LSTM cells and one output node regularized
with a sigmoid function. We trained using binary cross entropy loss and the
“Adam” optimizer. The discriminator was trained on 35 datasets of recorded fish
pairs not used in the later study. When testing on unused cuts of the training
data sets, the discriminator did a good job separating the real fish pair data from
scrambled and switched tracks (see Fig. 1e). For additional information, please
see the supplementary material.

CodeAvailability. All our code is available at gitlab.com/leamusi/
fish_simulation (main project code) and gitlab.com/leamusi/fish_movements
(additional tools for processing fish movements).

3 Results

3.1 Experiment 1: Selection Through Testing on Prelabeled Data

For each dataset of two fish interacting, we did one evolution run using the first
fish as the focal fish, and another using the second fish. Please find detailed
results and plots in the supplementary material. For all runs, the majority (at
least 60%, usually more) of the best performing models had no wall vision.
Results on motor noise are not reported when testing on labeled data, as they
only come to bear when testing in simulation. For dataset N07P3, convergence
was unclear while evolving models for either fish. Partner timesteps 50 frames in
the future were advantageous for modeling the first fish, while input 50 frames
from the past helped the best models of the second fish. For N12P4, the evolution
processes for both fish achieved solutions with comparatively low testing loss.
The best models of the first fish were dominated by inputs 50–100 frames or 1.6–
3.3 s in the past, while the temporal inputs for the second fish were inconclusive.
For dataset N13P3, it appears that only the evolution process for modeling
the first fish converged on good solutions. The timestep results for both fish
were inconclusive. In dataset N13P4, only the evolution strategy for the first fish
achieved solutions with low loss. The first fish’s temporal input was dominated by
information 0 to 100 frames in the future, while the second fish’s was dominated
by past input (100 to 0 frames back). For dataset N16P4, convergence of the
evolution process was unclear for the first fish, but achieved good solutions for
the second one. The results regarding temporal input were inconclusive for both
fish.

https://gitlab.com/leamusi/fish_simulation
https://gitlab.com/leamusi/fish_simulation
https://gitlab.com/leamusi/fish_movements
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T tests on the other hyperparameters between the best and worst performing
models were generally nonsignificant except for input noise factor (which was
always lower in the best models) and the number of hidden nodes (which was
significantly higher in the best models for several fish).

3.2 Experiment 2: Selection Via Discriminator Ratings

Fixed Strategy Parameters. The performance of the evolution strategy using
discriminator ratings fell short of our expectations as we had reached ratings of
up to 0.9 in a pilot study with 40 generations and fixed strategy parameters: the
mutation strength was set at 1 and the mutation rate at 0.3. We therefore report
a selection of these results here (Fig. 2a–d), including the resulting simulations
(see Fig. 2g–h). For dataset N07P3, there was no significant difference on any
hyperparameter except input noise factor (δ = −0.09, t(58) = 2.4, p < 0.05),
while both the best and the worst models had an average of 31 hidden nodes and
20 partner timesteps. Timestep distributions of the best and worst models were
identical. For dataset N12P4, there was no significant difference on any variable,
no clear picture in the timestep distribution, and some of the best rated models
had 0 hidden nodes and a minimum of 7 partner timesteps. The best models
for the other datasets only achieved top ratings of 0.4. For the results obtained
using evolving strategy parameters, please see the supplementary material.

4 Discussion

4.1 Experiment 1

The bimodal distribution of the testing loss seems to indicate that for each
dataset, there are two attractors for a model’s testing loss to gravitate towards,
with the lower one being a natural baseline loss. This baseline may be due to the
fact that a) there may be systematic input factors or modeling choices which our
study does not account for or b) no focal fish’s behavior is entirely deterministic,
and therefore no model can be expected to recreate it perfectly. The absence of
wall vision in most best performing models may be easily explained by the fact
that partner fish (like focal fish) usually stayed close to the walls, meaning that
information about the walls was contained in partner input, and wall vision
input would thus have been redundant. The partner timestep results for both
fish in dataset N07P3 clearly mirror each other. This makes it difficult to state
whether one fish was anticipating the other, the second fish was following the
first reactively, or both. However, it is clear that the two fish’s movements have
a strong temporal connection. The results for N12P4 suggest that the first fish
appears to have used its memory to follow its partner, while the partner itself
was not minding the first fish at all. In N13P4, the temporal results again mirror
each other, making causal inference difficult but showing a clear temporal link
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Fig. 2. a)–d): Results of neuroevolution using selection via discriminator with fixed
strategy parameters. Left column: Change of testing loss (blue) and model complex-
ity (trainable parameters, red) across evolution generations. Right column: Histograms
of partner input timesteps for the 30 best (blue) and the 30 worst (orange) models.
a)–b) Dataset N07P3. c)–d) N12P4. e)–h): Simulations by different models: original
focal fish in green, partner in blue, simulation in red. e) Simulation by one of the
best 30 models for the first fish of dataset N07P3 evolved using prelabeled data. f)
Simulation by the best model for the dataset N12P4 evolved using the discriminator,
with evolving strategy parameters. Discriminator rating 0.5. g) Simulation by the best
model for dataset N07P3 evolved using the discriminator, with fixed strategy param-
eters. Discriminator rating 0.91. h) Simulation by the best model for dataset N12P4
evolved using the discriminator, with fixed strategy parameters. Discriminator rating
0.92. (Color figure online)
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in the pair’s behavior. From the lack of convergence and inconclusive histograms
for the two fish pairs in datasets N13P3 and N16P4, it appears that the two
partners did not mind each other much in either case, which is reflected in a
visualization of the raw data (see supplementary material, Fig. 1).

The results also indicate that models seem to benefit from a low input noise
factor when tested on labeled data, although the average input noise factor in
the best models was still nonzero for all datasets. This suggests a sweet spot for
input noise, at which the noise increases model robustness but does not distort
predictions too much. Apart from this, the results on the general hyperparam-
eters suggest an advantage of having more hidden nodes for modeling some
datasets. Taken together, these results show how evolving the architecture and
input configuration of an FNN can be used to infer the interaction dynamics of
fish pairs. It must be remarked that even the best models evolved with this selec-
tion method did not produce very realistic-looking simulations (see Fig. 2e). This
is likely due to the fact that training and testing were done on input computed
frame-wise from the perspective of the pre-recorded focal fish. When simulat-
ing freely, the agent may move into positions relative to the partner fish that
would be unusual for the real focal fish, meaning that the model did not have
“experience” with such input, and was not selected or trained for it.

4.2 Experiment 2

Using the simulation discriminator for selection in the evolution strategy means
that the results cannot tell us much about the individual datasets being modeled.
The discriminator rates the partner trajectory together with the simulated focal
fish on how much they resemble a real fish pair, but we cannot say for certain
what this rating captures, or what influence the specific partner trajectory has.
Therefore, the best performing genomes can teach us something about creating
lifelike fish simulations in general, but not about imitating a specific focal fish. We
therefore interpret the results jointly, without focusing on each specific dataset.

With Fixed Strategy Parameters. The similarity of the best and worst model
architectures is an astonishing result. It indicates that the only thing which
made a difference here was the random weight initiation when compiling the
models, which led some to learn very high quality simulation skills, while others
possibly got caught in a local minimum. This leads us to the conclusion that a
suitable model architecture is a necessary but not a sufficient condition for good
model performance, and that the contribution of the model training should not
be underestimated. While in experiment 1 specific timesteps and low input noise
were advantageous for modeling specific fish, it appears that something else is
necessary (but not sufficient) when trying to fool a discriminator: the number
and variety of partner timesteps. Given this, hidden nodes may not even be
necessary, and a very simple function of the partner input may produce highly
lifelike simulations.
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5 Summary

We show that by evolving model architectures and input configurations in exper-
iment 1, we can capture how some guppies’ movements can be predicted through
their memory and others’ through their anticipation of a partner’s movements,
with the input-output relationship flexibly determined by an FNN as a function
approximator. In general, more hidden nodes in an FNN did not necessarily seem
to bring an advantage in all pair interactions: the behavior rules leading from
partner perception to the fish’s own behavior can be very simple, confirming the
findings of previous models of fish behavior. For future studies, being able to
infer the temporal dynamics between two fish without experimental manipula-
tion means that we have a new, more efficient way of gauging aspects of a fish’s
social personality (does it tend to react or anticipate?). When attempting to
build socially competent fish robots, we can then adapt their behavior to what
we already know about the specific social partner. Just as in experiment 1, the
results of experiment 2 show that very simple fish behavior models can produce
lifelike simulations. We also learn from this experiment that the architecture itself
does not determine model performance: rather, the right architecture seems to
be necessary but training is key.

6 Limitations and Outlook

One obvious limitation of our study is the fact that our models do no guarantee
causality: finding out that a given FNN approximates the function connecting
hypothetical visual input received by a fish to its movements does not mean that
the real fish was actually using such inputs and performing such computations.
In the case of partner input from the future, for example, it is theoretically
possible that rather than the focal fish predicting the partner’s future position,
the partner is systematically positioning itself a certain way in relation to where
it saw the focal fish looking seconds ago. However, the benefits of such behavior
would be unclear. Another limitation of our approach should be addressed, as
it arises naturally from the work we reviewed above: Our models are clearly
not embodied (not even within the simulation), and we do not account for the
physical dynamics of fish movements at all. This means that our study is only a
first step towards building accurate models of fish movement, which also happens
to answer some more questions about the original data. In future, our models
could undergo further evolution when combined with a model of fish’s bodies
and movement dynamics. An example for this could be the models of burst-coast
swimming dynamics presented by Calovi et al. [8] and Sbraraglia et al. [21]. It
is to be expected that such a joint evolution of social and physical movement
dynamics may produce different solutions than this study, and produce new
insights.
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