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Abstract. The majority of standard approaches to financial portfolio
optimization (PO) are based on the mean-variance (MV) framework.
Given a risk aversion coefficient, the MV procedure yields a single port-
folio that represents the optimal trade-off between risk and return. How-
ever, the resulting optimal portfolio is known to be highly sensitive to the
input parameters, i.e., the estimates of the return covariance matrix and
the mean return vector. It has been shown that a more robust and flexible
alternative lies in determining the entire region of near-optimal portfo-
lios. In this paper, we present a novel approach for finding a diverse set
of such portfolios based on quality-diversity (QD) optimization. More
specifically, we employ the CVT-MAP-Elites algorithm, which is scal-
able to high-dimensional settings with potentially hundreds of behavioral
descriptors and/or assets. The results highlight the promising features
of QD as a novel tool in PO.

Keywords: quality-diversity · illumination algorithm · MAP-Elites ·
portfolio optimization · near-optimal portfolios

1 Introduction

1.1 Portfolio Optimization and Near-Optimal Portfolios

Portfolio optimization (PO) entails finding the optimal allocation of limited cap-
ital across a range of available financial assets within a specified timeframe. The
optimality is typically defined with respect to a risk-adjusted return metric,
such as the Sharpe ratio [1], or other metrics that account for the investor’s
specific risk preferences like the CARA utility function [2]. Classical approaches
to PO are deeply rooted in the mean-variance (MV) framework, also referred to
as modern portfolio theory (MPT) [3]. MV optimization provides a systematic
methodology for constructing optimal portfolios that leverage the principle of
diversification. By distributing investments among assets with dissimilar risk-
return profiles (e.g., assets with mutually uncorrelated or negatively correlated
returns), individual risks offset each other, thereby reducing the total portfolio
risk. Given a risk aversion coefficient, the MV optimization process diversifies
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assets to produce a single optimal portfolio representing the best risk-return
trade-off. The set of optimal portfolios for different risk preferences constitutes
a Pareto front called the efficient frontier.

However, the MV framework is predicated upon a number of simplified and
unrealistic assumptions, including the normality of returns and the stationar-
ity of the return covariance matrix. It also tends to produce portfolios highly
concentrated in only a few assets, jeopardizing diversification. Furthermore, MV
optimizers are particularly sensitive to estimation errors, with small changes
in input parameters, especially expected return estimates, noticeably affecting
the resulting optimal portfolio weights [4]. Such notorious issues have spurred
researchers to propose novel PO approaches focusing on improving robustness.
Various attempts have been made in this direction, including methods based
on shrinking the covariance matrix [5] or expected returns [6], introducing con-
straints to the original MV framework [7], resampling the efficient frontier [8],
or directly applying techniques from the area of robust optimization [9].

Another alternative, the focus of our work, involves identifying portfolios that
are not strictly optimal but rather near-optimal (with respect to MV optimal-
ity). In the first phase (the optimization process), an entire subspace of mutually
diverse1 near-optimal portfolios is determined without focusing on any specific
portfolio. This offers enhanced robustness to estimation errors [10], as it sidesteps
the complex issues stemming from the interplay between the objective and the
inputs, which are inherent to the MV optimization. In the second phase (the a
posteriori analysis), the investor selects the final portfolio from the subspace of
near-optimal portfolios. This decision-making scheme allows investors to incor-
porate their expert opinions, subjective views, or any other soft factors that
may be challenging to integrate directly into an optimization problem formu-
lation. Simultaneously, it permits the ad-hoc consideration of market frictions
(e.g., transaction costs) and other regulatory, liquidity, and risk concerns, which
are crucial in real-life PO but were not necessarily applied as constraints during
the first phase. For instance, when rebalancing portfolio weights, investors may
prefer a near-optimal portfolio similar to the current one over the MV optimal
portfolio due to the former’s lower turnover, and hence also lower transaction
costs. Therefore the consideration of near-optimal portfolios presents a fruitful
opportunity for improving the process of PO.

1.2 Prior Research

Near-Optimal Portfolios. The problem of identifying and analyzing near-
optimal portfolios has been scrutinized in several studies. Van der Schans and
de Graaf [11] pioneered a novel methodology for constructing such portfolios,
outlined as follows. Let F : W → Z be the mapping from the set of admissible
portfolio weights W to the risk-return space Z. First, an optimal portfolio w0
(satisfying F(w0) ∈ E where E ⊂ Z is the efficient frontier) is selected as a

1 In terms of their distance in the space of admissible portfolio weights or, more
generally, some behavior space.
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reference portfolio in accordance with the investor’s risk preferences. A small
region R ⊂ Z around F(w0) is then defined and the portfolio w1, s.t. F(w1) ∈
R, located furthest away2 from w0, is found. Subsequently, the portfolio w2,
again s.t. F(w2) ∈ R, positioned furthest away from the convex hull H spanned
by previously found portfolios {w0, w1} is itself added to H. Generally, in step i:

wi = arg max
F(w)∈R

d (w, H) , (1)

with d (w, H) = minw′∈H ‖w − w′‖. This process iterates until S ⊂ Z, the con-
vex hull in the risk-return space corresponding to the portfolios in H, covers R to
the required level of precision ε. Finally, a set of K diverse near-optimal portfolios
{w0, w1, . . . , wK−1} is obtained. Since a convex combination of near-optimal
portfolios is also near-optimal [10], any portfolio in H acts as a viable option for
the investor. The authors finally show that this region of near-optimal portfolios
is more robust to input estimate uncertainties than a single optimal portfolio.
However, this approach exhibits several limitations. Firstly, it involves solving a
difficult non-convex optimization problem of finding the portfolio furthest from
the convex hull, leading the authors to use a somewhat ad hoc combination of
a support vector machine [12] and a basin-hopping algorithm [13]. Secondly, it
becomes unfeasible in high-dimensionality settings, i.e., when faced with a large
number of assets (N), which is typically the case in modern PO3. Thirdly, it
is restricted to finding near-optimal portfolios directly in the space of portfolio
weights and is not easily applicable to other possible behavior (feature) spaces,
which may comprise variables such as fundamentals, technicals, and risk factors.
Put differently, it does not tackle the generalized variant where in step i:

wi = arg max
F(w)∈R

d (φ(w), H) (2)

where H = {φ(w0), . . . , φ(wi−1)} for some function φ. To ameliorate some of
these problems, Cajas [15] proposed the near-optimal centering (NOC) method,
based on finding the analytic centers of near-optimal regions. The method can
be used in conjunction with any convex risk measure and has been empirically
demonstrated to lead to improved diversification and robustness when compared
to traditional PO methods. Van Eeghen [14] expands on [11] by using polytope
theory to inspect the structure and robustness of near-optimal regions. Moreover,
the author proposes a new implementation of the method from [11] that reduces
computation time while maintaining accuracy.

The topic of near-optimal portfolios has been investigated or touched upon in
several other works as well. Chopra [16] uses a grid search to discover a subset of
near-optimal portfolios and analyzes their composition. Benita et al. [17] empha-
size that near-optimal portfolios might provide a higher degree of robustness to
various scenarios due to significant differences in their makeups and provide an
2 In the sense of the Euclidean distance between the portfolio weight vectors ||w1 −

w0||.
3 Van Eeghen [14] reports computation times of around 2 hours and more per run

already for N > 20.
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illustrative example. Lastly, Fagerström and Oddshammar demonstrate that the
Conditional Value-at-Risk (CVaR) optimization model tends to produce portfo-
lios that are near-optimal under the MV framework [18], i.e., located very close
to the efficient frontier.

Evolutionary Computation and Quality-Diversity Optimization. Evo-
lutionary computation (EC) methods have a rich history of successful appli-
cations in PO [19], partly owing to their ability to handle non-convex search
spaces that arise when real-world constraints (e.g., buy-in thresholds, turnover
constraints, other regulatory and risk constraints) are imposed into the problem
setting [20,21]. However, there is a significant lack of research regarding the appli-
cations of exploration algorithms, such as quality-diversity (QD) [22] and novelty
search (NS) [23] in PO and quantitative finance generally, despite their signifi-
cant potential and their successes in other domains [24,25]. The links between
portfolio diversification and the divergent search paradigm, while arguably nat-
ural, remain understudied. Several somewhat related works nevertheless exist.
Zhang et al. [26] address the specific problem of finding formulaic alpha fac-
tors that can predict and explain asset returns, making them suitable for use
with multi-factor asset pricing models. To efficiently explore the space of for-
mulaic alphas, with a focus on less frequently visited regions, they propose a
search that combines QD and principal component analysis (PCA). This PCA-
enhanced search is then used as an integral part of their AutoAlpha hierarchical
evolutionary algorithm. Another approach is put forth by Yuksel [27], in which
meta-learning QD optimization is employed to tackle the problem of large-scale
sparse index tracking. It is concluded that the proposed method can be utilized
in other scenarios where diversity among co-optimized solutions is needed, as
well as in the presence of noisy reinforcement learning rewards.

1.3 Objectives and Contributions

In this paper, we tackle the problem of identifying a diverse set of near-optimal
portfolios (i.e., portfolios with risk-return profiles located close to that of the ref-
erence optimal portfolio), as part of the broader PO problem. Specifically, we aim
to answer the following research question (Q): How to obtain a wide range of port-
folios that are all near-optimal but mutually diverse in the portfolio weight space
or the otherwise defined behavior space (BS)? While previous research has found
that, in some tasks, elite solutions are concentrated within a small part of the geno-
typic space (“the elite hypervolume") [28], our task runs in the opposite direction,
as it involves finding genotypically different solutions (portfolios) that are all elite.
We set out to test the following hypothesis (H): The combination of convergent
and divergent search provided through QD algorithms can be leveraged to obtain
a set of diverse near-optimal portfolios. The hypothesis stems from the observa-
tion that QD algorithms provide a natural choice for the underlying problem due
to their ability to yield a range of diverse yet high-performing solutions. While
some related approaches exist [26,27], to the best of our knowledge, this paper is
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the first to approach MV-based PO via QD optimization. To ensure the scalabil-
ity to high-dimensional behavioral and/or asset spaces, which are ubiquitous in
modern finance, the approach is powered by the CVT-MAP-Elites algorithm, as
vanilla MAP-Elites faces the curse of dimensionality. We first use a toy example
with only three assets to show that the approach is competitive against a simi-
lar approach based on the construction of convex hulls [11], and later extend our
investigation to a higher-dimensional setting. As will be shown, the experimental
results collectively clearly point to the promising capabilities of QD as a novel tool
in the arsenal of modern PO practitioners.

2 Methodology

2.1 Problem Formulation

Let W be the set of all admissible portfolio weights:

W =
{

(w1, . . . , wi, . . . , wN ) | wi ≥ 0 ∀i,

N∑
i=1

wi = 1
}

, (3)

where N ≥ 2 is the total number of assets and wi denotes the portfolio weight in
the i-th asset. For simplicity, short selling is not permitted, but it can be easily
integrated into the framework if needed, by relaxing the wi ≥ 0 constraint. Also,
let b : W → B be a behavior function, mapping W to a BS denoted by B. Assume
that B is split into M niches (regions), i.e., B = N1 ∪ N2 ∪ . . .∪ NM . Finally, let
f : W → R be a fitness function. Each candidate portfolio w is then associated
with its behavioral descriptor (BD) bw ∈ B and fitness value f(w) ∈ R. The
goal is to find:

∀Ni w∗ = arg max
w, bw∈Ni

f(w). (4)

2.2 Behavior Function and Space

We explore two different behavior functions and BS designs. In both cases, cen-
troidal Voronoi tessellation (CVT) is used to partition the BS into niches.

Portfolio Weights. In the simplest variant, the behavior function b1 is set as
an identity function, i.e., ∀w, b1(w) = w, with B1 = W. Portfolio weight vectors
w simultaneously serve as both genotypes and phenotypes. Similar can be seen
in some of the approaches used to tackle the Rastrigin function benchmark [29]
through QD algorithms [30,31].

Asset’s Fundamentals. In another variant, we separate the two spaces (geno-
typic and phenotypic) and set b2(w) = pw, where pw ∈ B2 is a vector that
describes the fundamental properties of the assets that dominate w weight-wise.
More specifically:

B2 =
{

(s1, . . . , si, . . . , sL, c) | si ≥ 0 ∀i, c > 0,

L∑
i=1

si = 1
}

, (5)
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where si denotes the sector exposure of a portfolio to sector i, and L is the
number of sectors. Sector exposure is defined as the sum of portfolio weights
assigned to assets belonging to the respective sector, i.e., si =

∑
j∈Si

wj , with
Si denoting the set of indices of assets belonging to sector i. The variable c
denotes normalized market capitalization. Note that, unlike in the previous case,
it is not possible to uniformly sample from the BS directly. Also, any other
asset characteristics or factors of importance to the investor (e.g., ESG4 factors,
geographical diversification, etc.) might be used instead.

2.3 Fitness Functions

Fitness1 - The fitness (quality) function can be given by the negative distance
between the risk profile of the candidate portfolio w and that of the reference
optimal portfolio w0 (obtained via MV optimization):

f1(w) = −||F(w0) − F(w)|| = −||(μ0, σ0) − (μ, σ)||, (6)
where (μ, σ) ∈ Z is a vector consisting of the expected return and the volatility
of the portfolio w (and equivalently for w0). This fitness function will be used
to take the convex hull approximation method to the near-optimal region.
Fitness2 - Alternatively, a modification of Fitness1 is proposed:

f2(w) =
{

−||(μ0, σ0) − (μ, σ)||, if (μ, σ) not in R
||w − w0||, otherwise

(7)

where R is the region of near-optimality around (μ0, σ0), R ⊂ Z, defined as:

R = {(μ, σ) | μ ≥ (1 − c)μ0, σ ≤ (1 + c)σ0} (8)

for some constant c ∈ (0, 1). Fitness2 promotes solutions in each niche whose
risk profiles are as close as possible to the risk profile of w0 until close proximity
is reached. Once inside the near-optimality region R, solutions that are furthest
weight-wise from w0 are preferred to ensure more genotypic diversity through
an additional mechanism. Ideally, the distance from the convex hull of the entire
archive of near-optimal solutions (instead of only from w0) should be used as the
measure. However, for computational efficiency, we employ this simple heuristic
which will be shown to demonstrate strong performance in lower-dimensional
settings.

2.4 Recombination Operator

Given the conditions in Eq. 3, a suitable constraint-preserving reproduction oper-
ator is required. To this end, a recombination operator (with mutation) that
also includes clipping and normalization is used. It is described in great detail
in Algorithm 1. Additional constraints, such as cardinality restrictions or buy-in
thresholds, can be incorporated as needed.
4 Environment, social and governance.
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Algorithm 1: Recombination operator
Inputs: Parent portfolios w1, w2, mutation rate m
Result: Child portfolio w3

1 λ ← UniformRandom[0, 1] ; // Randomly generated weight parameter
2 δ ← UniformRandom[−m, m, len(w1)] ; // Mutation vector
3 w3 ← λw1 + (1 − λ)w2 + δ ; // Child portfolio
4 w3 ← Clip(w3, 0, 1) ; // Clipping to ensure non-negative weights
5 w3 ← w3∑len(w3)

i=1 w3,i
; // Normalization of the child portfolio

6 return w3

2.5 Algorithm

Due to the continual increase in the number of investable securities in financial
markets, modern PO typically operates in high-dimensional settings, potentially
encompassing hundreds or even thousands of financial assets. The ensuing high-
dimensionality can be tackled with the CVT-MAP-Elites algorithm, where the
number of niches is constant and independent of the dimensionality of the BS
[32]. It is a variant of the vanilla MAP-Elites algorithm, which is itself based on
maintaining an archive of elite solutions, one for each niche in the BS. The under-
lying idea is to find a plethora of behaviorally diverse yet high-performing solu-
tions. Unless noted otherwise, unstructured archive A is assumed. For smaller
BS dimensionalities (typically 2D to 6D [32]), the basic MAP-Elites algorithm
[33] can be used instead. We use CVT-MAP-Elites in all of the performed exper-
iments. The used hyperparameter values are provided separately for each of the
experiments.

3 Experimental Results

3.1 Toy Example

We begin by considering the toy example first introduced in [16] and later revis-
ited in [10], in which only three (N = 3) asset classes - stocks, bonds, and trea-
sury bills are considered5. The mean return, standard deviation, and correlation
estimates for the three asset classes (given in Table 1) are used to construct
the expected return vector μ̂ and the return covariance matrix Ŝ estimates.
The resulting MV efficient frontier is shown in Fig. 1, accompanied by addi-
tional elements, including the near-optimality region R. To ensure consistency
with [10], the same reference portfolio w0 is adopted as well as the identical
value of c = 0.1. After running the QD algorithm R = 100 times6 for each
5 More precisely, the assets include the S&P 500 market index, Lehman Brothers Long

Term Government Bond Index, and one-month Treasury bills. The original data is
presented monthly and spans the period from 1980 to 1990, but the estimates are
transformed into annual values in our work.

6 At the start of each QD run, niches are recalculated, discarding the old CVT results.
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fitness function, while using B1 and with M = 200, the convex hulls depicting
regions of near-optimality in the portfolio weights space are obtained. Each run
takes less than 100 s even without any parallelization. The maximum number of
evaluations is set to Nmax = 250 000 and the number of CVT samples equals
NCV T = 10 000. Random initialization is done until Pinit = 10% of niches
are filled with solutions. Figure 2 presents the results for four different methods
(M1 - Chopra [16], M2 - van der Schans and de Graaf [10,11], M3 - QD with
Fitness1, and M4 - QD with Fitness2), with more details given in Table 2.
Larger hull surfaces (volumes or hypervolumes in higher-dimensional spaces) are
desirable, as they indicate greater compositional diversity within the set of found
near-optimal portfolios, allowing investors more freedom to accommodate their
specific preferences. The best results overall are obtained by M4, the modi-
fied version of M3, as it benefits from the additional diversification mechanism.
The dominance of M2 over M3 with respect to the convex hull surface is not
a matter of concern but rather an anticipated outcome. Namely, M2 selects
portfolios (exclusively from R) by directly maximizing distances from the con-
vex hull of previously found solutions, whereas M3 seeks solutions within each
niche whose risk profiles are strictly closest to F(w0). As a result, M3 pushes
strongly towards F(w0) (lying on the efficient frontier) regardless of whether
exploring inside or outside of R and hence shrinks S, the corresponding region
in the risk-return space. We therefore suspect M3 to yield portfolios with better
risk-reward profiles (measured by the Sharpe ratio) than M2 and also a lower S
surface, all of which is indeed confirmed by the results laid out in Table 1. It is
also noteworthy that M4 achieves an even higher value of the Sharpe ratio than
M3, despite its emphasis on genotypic diversity. The likely reason is that, given
that ω0 is not the maximum Sharpe portfolio, it is possible for the neighboring
risk profiles in R to dominate over it.

Table 1. The estimates from historical data (annual)

Mean (%) Std (%) Corr.
stocks

Corr.
bonds

Corr.
T-Bills

Optimal weights (%)
(moderate risk aversion)

Stocks 15.876 16.603 1.000 – – 58.1
Bonds 12.324 13.801 0.341 1.000 – 22.8
T-Bills 8.748 0.759 −0.081 0.050 1.000 19.1

3.2 Higher-Dimensional Setting

In this section, encouraged by the positive results from the toy example, we apply
the proposed method to a higher-dimensional setting comprised of a large num-
ber of assets. Under such conditions, QD is expected to offer heuristic solutions
in a reasonable time. More specifically, we consider the universe of N = 105
different equity assets covering L = 11 different sectors. The Sharpe optimal
portfolio is used as the reference portfolio. Moreover, the Ledoit-Wolf shrinkage
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Fig. 1. The MV efficient frontier with the chosen optimal portfolio and its region of
near-optimality.

Table 2. Performance evaluation of the four tested methods

Method Convex hull H
surface

Risk-return subspace
S surface (×103)

Sharpe ratio of
portfolios

% of niches
with opt. port

M1a 0.0948 0.1973 1.1368 ± 0.0959 –
M2b 0.1724 0.3712 1.1762 ± 0.1299 –
M3 0.1529 ± 0.0015 0.3652 ± 0.0076 1.2696 ± 0.0009 48.980 ± 0.003
M4 0.1746± 0.0002 0.3882 ± 0.0008 1.2824± 0.0009 49.070±0.003

aResults from [16] (deterministic).
bResults from [10] (deterministic).

[5] is used7 for estimating the covariance matrix Ŝ, while CAPM returns [34]
are utilized to derive the mean return estimate μ̂. The look-back window used
for parameter estimation encompasses the period from January 2nd, 2020, to
September 1st, 2023, corresponding to exactly T = 924 trading days. We again
set c = 0.01, leading to a very strict criterion of near-optimality (i.e., a small sur-
face of R), and also select M = 5000. Due to a plethora of assets, investors might
prefer to first perform asset allocation at the sector/industry or some other macro
level8 before selecting individual constituent securities. Consequently, we use the
BS design B2. As the fitness function, f1 is selected. The algorithm ultimately
returns an archive of solutions A comprised of both near-optimal portfolios and
non-near-optimal portfolios (for niches in which no near-optimal portfolios have
been found).

7 With constant variance set as the shrinkage target.
8 Similar approaches are employed in top-down investment strategies such as Tactical

Asset Allocation (TAA) [35].
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Fig. 2. Convex hulls in the genotypic/phenotypic space for different methods for a
single QD run. The constraint

∑
xi = 1 introduces coplanarity in the otherwise three-

dimensional space.

Considering both the absence of suitable benchmarks and the computational
challenges in calculating convex hull volumes in spaces with higher dimension-
alities9, we draw inspiration from previous research on benchmarking QD algo-
rithms [37] and use it as a starting point in creating appropriate performance
metrics. All of the used metrics are described in Table 3. Remark that metrics
C′, QDScore2 and AP2 only consider niches in which near-optimal portfolios
have been found, unlike QDScore1 and AP1, which (also) require information
on other niches. Following the notation from Table 3, the number of niches with
and without near-optimal portfolios is C′M and |A| − C′M , respectively.

Experimental Results. Figure 3 presents the main experimental results. The
upper subplots show the first three metrics (C′, QDScore1, QDScoreMOD) plot-
ted against the number of QD evaluations, as well as the archive profiles (AP1
and AP2). The mean values as averaged over R = 20 runs are shown, together
with empirical percentiles (the 5-th and the 95-th pth). As before, niches are
recalculated from scratch at the beginning of each QD run. To ensure the
high quality of tessellation, the maximum number of QD evaluations is set
to Nmax = 2.2 × 106, Pinit = 10%, and the number of CVT samples equals
NCV T = 50 000. In terms of the modified coverage, it is evident that the percent-
age of niches with near-optimal solutions sharply rises, reaching 60% already at
a bit over 500 000 evaluations, and finally getting to approximately 75%. Such
high percentages clearly indicate that, despite the use of a stringent criterion
for near-optimality, the method succeeds in finding a wide range of near-optimal
9 With the QuickHull algorithm [36], the execution time grows by n� d

2 �, where n is
the input size and d the dimensionality.
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Table 3. List of metrics

Metric Description Expression
Modified coverage
(C′)

The proportion of niches
with near-optimal
portfolios

No. of niches with n.o. portfolios
No. of niches

QD-score
(QDScore1)

The cumulative normalized
fitness of all portfolios in A

∑|A|
i=1

fi−minj(fj)
maxj(fj)−minj(fj)

Modified QD-score
(QDScoreMOD)

The cumulative normalized
fitness of all found
near-optimal portfolios

∑C′M
i=1

fi−minj(fj)
maxj(fj)−minj(fj)

Modified archive
profile 1 (AP1)

The proportion of found
non-near-optimal
portfolios exceeding some
threshold value

∑|A|−C′M
i=1 1 (fi ≥ fthreshold )

Modified archive
profile 2 (AP2)

The proportion of found
near-optimal portfolios
exceeding some threshold
value

∑C′M
i=1 1 (fi ≥ fthreshold )

portfolios encompassing various industry compositions and market capitalization
values. This is a fortunate conclusion, especially for investors who prefer human-
in-the-loop approaches, enabling them to incorporate their own preferences that
might be hard to formalize, into the decision-making process. As for the QD-score
metrics, we observe that QDScore1 steadily increases over time, indicating an
improvement in diversity/performance among the found near-optimal solutions
(portfolios). Likewise, the QDScore1 curve shows that the majority of niches
are populated relatively quickly (in under 500 000 evaluations). Also note that
QDScore1 expectedly converges faster than QDScoreMOD, as filling niches with
near-optimal solutions takes more time compared to arbitrary solutions. Mod-
ified archive profiles, calculated after performing the maximum number of QD
evaluations, are provided at the bottom of Fig. 3. While AP1 and AP2 have
similar shapes (under different threshold scales), a small right tail can be seen
with AP2, showing a number of "super" near-optimal portfolios with risk pro-
files extremely similar to that of the reference portfolio. The significant composi-
tional diversity of the obtained portfolios is depicted in Fig. 5, which displays the
Sharpe optimal portfolio alongside two mutually diverse near-optimal portfolios
generated by the method in the feature (behavior) space. Despite the multitude
of potential solutions, in order to finalize the investment decision-making process,
it is necessary to select a single portfolio from the set of obtained near-optimal
portfolios. To this end, Algorithm 2 delineates the entire end-to-end investment
decision-making process, incorporating the proposed QD method.
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Fig. 3. The mean modified coverage C′ (the upper left subplot), QDScore1, and
QDScore2 (the upper right subplot) plotted against the number of evaluations, along-
side empirical percentiles. The modified archive profiles are displayed at the bottom,
with the set including non-near-optimal portfolios on the left and the set including
near-optimal portfolios on the right.

Robustness. Generally, the evaluation of QD solutions is exacerbated by the
presence of stochasticity in the underlying environment [29]. In our case, the
evaluation is fully deterministic once the estimates (μ̂, Ŝ) are fixed. However,
there is stochasticity involved due to the very fact that “true" parameter val-
ues (μ, S) are hidden, whereas the estimates (which can be derived in multiple
ways) represent random variables. With this in mind, we investigate the robust-
ness of the generated portfolios to a certain type of change in the estimates (μ̂,
Ŝ). More specifically, we study whether previously found near-optimal portfo-
lios generally remain near-optimal when re-estimating under different estimation
window10 sizes T . The results are shown in Fig. 4. As expected, the mean modi-
fied coverage C ′ remains robust to changes in the estimation window size T when
larger threshold constants c are employed. On the other hand, the sensitivity of
C ′ to changes in T , in particular to its reduction, is much more emphasized
for c values in the range [0.5%, 2.5%], i.e., for stricter near-optimality crite-
ria. For example, with c = 0.5% and T = 824, on average only 136.15 niches

10 The choice of the estimation window size is a non-trivial issue that has been studied
before [38–40], with larger sizes leading to reduced estimation errors at the price of
assuming unrealistically long stationarity periods.
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Fig. 4. The mean modified coverage C′ for different threshold constants c and estima-
tion window sizes T . Observe the relatively high sensitivity of C′ to the shortening of
T , especially for stricter near-optimality criteria (i.e., for smaller c values).
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Fig. 5. Two of the obtained near-optimal portfolios juxtaposed against the Sharpe
optimal portfolio in the BS. The first (second) near-optimal portfolio is highly concen-
trated in industrials (financial services) stocks and low (high) market cap stocks, while
the Sharpe optimal portfolio remains more balanced.

(or 2.7%) contain near-optimal solutions. We leave for further research the study
of whether solutions that remain near-optimal under a wider range of estimates
present a superior investment choice.
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Algorithm 2: Portfolio selection process
Inputs: Investor’s risk aversion γ and preferred BD b, historical data D
Result: Final portfolio w

1 Ŝ, μ̂ ← EstimateParameters(D)
2 w0 ← CalculateEfficientFrontierPortfolio(γ, Ŝ, μ̂) ; // MV step - calculating

the required portfolio on the efficient frontier
3 A ← RunQD ; // Run QD to obtain the archive of portfolios
4 nb ← DetermineNicheIndex(b) ; // Determine the niche index for the

preferred BD
5 if NearOptimalPortfolioExistsIn(nb) then
6 w ← ElitePortfolioFrom(nb)
7 else
8 n′

b ← ClosestNicheWithNearOptimalPortfolio(nb) ; // Among all niches
with a near-optimal portfolio, select the one closest to nb

9 w ← ElitePortfolioFrom(n′
b)

10 end
11 return w

4 Conclusion and Further Work

This paper is concerned with the problem of finding mutually diverse portfolios
located in the region of near-optimality of some reference optimal portfolio. We
introduce a novel method for discovering a wide spectrum of mutually diverse
(in a predefined BS) near-optimal portfolios based on QD optimization. The
main findings, pointing to high coverage and QD-scores, underscore the capacity
of QD to serve as a novel instrument in the field of PO. In addition to QD,
the knobelty algorithm [41] might be used to balance compositional diversity
(novelty) with proximity to the selected optimal portfolio. Similar approaches
might also be employed for a somewhat different problem; to approximate the
entire efficient frontier of optimal solutions, covering a wide range of different
risk preferences and hence catering to a versatile set of investors. These include
QD with a fitness function that penalizes distances from the efficient frontier in
each niche, as well as vanilla NS formulations in which the risk-reward space is
used as the phenotypic space. Other objectives besides MV may be explored in
the future as well, together with different BS designs (e.g. factor-based, distance
from the equally weighted or currently selected portfolio) and definitions of near-
optimality (e.g. those employing soft constraints). Links with sparse PO should
also be investigated. Lastly, we anticipate further work to leverage the power of
QD in visualizing and illuminating the portfolio search space. More broadly, we
hope to see future approaches harnessing the potential of open-endedness-based
approaches, including QD and NS, in computational finance.
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