
Stephen Smith
João Correia
Christian Cintrano (Eds.)

LN
CS

 1
46

34

27th European Conference, EvoApplications 2024
Held as Part of EvoStar 2024
Aberystwyth, UK, April 3–5, 2024
Proceedings, Part I

Applications of
Evolutionary Computation

Lecture Notes in Computer Science 14634
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Stephen Smith · João Correia · Christian Cintrano
Editors

Applications of
Evolutionary Computation
27th European Conference, EvoApplications 2024
Held as Part of EvoStar 2024
Aberystwyth, UK, April 3–5, 2024
Proceedings, Part I

Editors
Stephen Smith
University of York
York, UK

Christian Cintrano
University of Málaga
Málaga, Spain

João Correia
University of Coimbra
Coimbra, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-56851-0 ISBN 978-3-031-56852-7 (eBook)
https://doi.org/10.1007/978-3-031-56852-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-6885-2643
https://orcid.org/0000-0003-2346-2198
https://orcid.org/0000-0002-3613-5420
https://doi.org/10.1007/978-3-031-56852-7

Preface

This volume contains the proceedings of EvoApplications 2024, the International Con-
ference on the Applications of Evolutionary Computation. The conference was part
of Evo*, the leading event on bio-inspired computation in Europe, and was held in
Aberystwyth, UK, as a hybrid event, between Wednesday, April 3, and Friday, April 5,
2023.

EvoApplications, formerly known as EvoWorkshops, aims to bring together high-
quality research focusing on applied domains of bio-inspired computing. At the same
time, under the Evo* umbrella, EuroGP focused on the technique of genetic program-
ming, EvoCOP targeted evolutionary computation in combinatorial optimization, and
EvoMUSART was dedicated to evolved and bio-inspired music, sound, art, and design.
The proceedings for these co-located events are available in the LNCS series.

EvoApplications 2024 received 77 high-quality submissions distributed among the
main session on Applications of Evolutionary Computation and 10 additional special
sessions chaired by leading experts on the different areas: Analysis of Evolutionary
ComputationMethods: Theory, Empirics, and Real-World Applications (Thomas Bartz-
Beielstein, Carola Doerr, and Christine Zarges); Applications of Bio-inspired Tech-
niques on Social Networks (Giovanni Iacca and Doina Bucur); Computational Intel-
ligence for Sustainability (Valentino Santucci, Fabio Caraffini, and Jamal Toutouh);
Evolutionary Computation in Edge, Fog, and Cloud Computing (Diego Oliva, Seyed
Jalaleddin Mousavirad, and Mahshid Helali Moghadam); Evolutionary Computation in
Image Analysis, Signal Processing, and Pattern Recognition (Pablo Mesejo and Harith
Al-Sahaf); Machine Learning and AI in Digital Healthcare and Personalized Medicine
(Stephen Smith andMarta Vallejo); ProblemLandscapeAnalysis for Efficient Optimisa-
tion (BogdanFilipič and PavelKrömer); Resilient Bio-inspiredAlgorithms (CarlosCotta
and Gustavo Olague); Soft Computing Applied to Games (Alberto P. Tonda, AntonioM.
Mora, and Pablo García-Sánchez); and Surrogate-Assisted Evolutionary Optimisation
(Tinkle Chugh, Alma Rahat, and George De Ath). We selected 24 of these papers for
full oral presentation, while 9 works were presented in short oral presentations and as
posters. Moreover, these proceedings also include contributions from the Evolutionary
Machine Learning (EML) joint track, a combined effort of the International Conference
on the Applications of Evolutionary Computation (EvoAPPS) and European Confer-
ence on Genetic Programming (EuroGP), organized by Penousal Machado and Mengjie
Zhang. EML received 28 high-quality submissions. After careful review, eleven were
selected for oral presentations and six for short oral presentations and posters. Since
EML is a joint track, the “Evolutionary Machine Learning” part of these proceedings
contains 16 of these papers. The remaining one is published in the EuroGP proceedings.
All accepted contributions, regardless of the presentation format, appear as full papers
in this volume.

An event of this kindwould not be possiblewithout the contribution of a large number
of people:

vi Preface

– We express our gratitude to the authors for submitting their works and to the members
of the Program Committee for devoting selfless effort to the review process.

– We would also like to thank Nuno Lourenço (University of Coimbra, Portugal) for
his dedicated work as Submission System Coordinator.

– We thank Evo* Graphic Identity Team, Sérgio Rebelo, Jéssica Parente, and João
Correia (University of Coimbra, Portugal), for their dedication and excellence in
graphic design.

– We are grateful to Zakaria Abdelmoiz (University of Málaga, Spain) and João Cor-
reia (University of Coimbra, Portugal) for their impressive work managing and
maintaining the Evo* website and handling the publicity, respectively.

– We credit the invited keynote speakers, Jon Timmis (Aberystwyth University, UK)
and Sabine Hauert (University of Bristol, UK), for their fascinating and inspiring
presentations.

– Wewould like to express our gratitude to the Steering Committee of EvoApplications
for helping organize the conference.

– Special thanks to Christine Zarges (Aberystwyth University, UK) as local orga-
nizer and to Aberystwyth University, UK, for organizing and providing an enriching
conference venue.

– We are grateful to the support provided by SPECIES, the Society for the Promotion
of Evolutionary Computation in Europe and its Surroundings, for the coordination
and financial administration.

Finally, we express our continued appreciation to Anna I. Esparcia-Alcázar, from
SPECIES, Europe, whose considerable efforts in managing and coordinating Evo*
helped build a unique, vibrant, and friendly atmosphere.

April 2024 Stephen Smith
João Correia

Christian Cintrano

Organization

EvoApplications Conference Chair

Stephen Smith University of York, UK

EvoApplications Conference Co-chair

João Correia University of Coimbra, Portugal

EvoApplications Publication Chair

Christian Cintrano University of Málaga, Spain

Analysis of Evolutionary Computation Methods: Theory, Empirics,
and Real-World Applications Chairs

Thomas Bartz-Beielstein TH Köln, Germany
Carola Doerr CNRS and Sorbonne Université, France
Christine Zarges Aberystwyth University, UK

Applications of Bio-inspired Techniques on Social Networks Chairs

Giovanni Iacca Università di Trento, Italy
Doina Bucur University of Twente, The Netherlands

Computational Intelligence for Sustainability Chairs

Valentino Santucci Università per Stranieri di Perugia, Italy
Fabio Caraffini Swansea University, UK
Jamal Toutouh University of Málaga, Spain

viii Organization

Evolutionary Computation in Edge, Fog, and Cloud Computing
Chairs

Diego Oliva Universidad de Guadalajara, México
Seyed Jalaleddin Mousavirad Hakim Sabzevari University, Iran
Mahshid Helali Moghadam RISE Research Institutes of Sweden, Sweden

Evolutionary Computation in Image Analysis, Signal Processing,
and Pattern Recognition Chairs

Pablo Mesejo Universidad de Granada, Spain
Harith Al-Sahaf Victoria University of Wellington, New Zealand

Machine Learning and AI in Digital Healthcare and Personalized
Medicine Chairs

Stephen Smith University of York, UK
Marta Vallejo Heriot-Watt University, UK

Problem Landscape Analysis for Efficient Optimisation Chairs

Bogdan Filipič INRAE, Jožef Stefan Institute, Slovenia
Pavel Krömer Technical University of Ostrava, Czech Republic

Resilient Bio-inspired Algorithms Chairs

Carlos Cotta University of Málaga, Spain
Gustavo Olaguer CICESE, Mexico

Soft Computing Applied to Games Chairs

Alberto P. Tonda INRAE, France
Antonio M. Mora Universidad de Granada, Spain
Pablo García-Sánchez Universidad de Granada, Spain

Organization ix

Surrogate-Assisted Evolutionary Optimisation Chairs

Tinkle Chugh University of Exeter, UK
Alma Rahat Swansea University, UK
George De Ath University of Exeter, UK

Evolutionary Machine Learning Chairs

Penousal Machado University of Coimbra, Portugal
Mengjie Zhang Victoria University of Wellington, New Zealand

EvoApplications Steering Committee

Stefano Cagnoni University of Parma, Italy
Pedro A. Castillo University of Granada, Spain
Anna I. Esparcia-Alcázar Universitat Politècnica de València, Spain
Mario Giacobini University of Torino, Italy
Paul Kaufmann University of Mainz, Germany
Antonio Mora University of Granada, Spain
Günther Raidl Vienna University of Technology, Austria
Franz Rothlauf Johannes Gutenberg University Mainz, Germany
Kevin Sim Edinburgh Napier University, UK
Giovanni Squillero Politecnico di Torino, Italy
Cecilia di Chio

(Honorary Member)
King’s College London, UK

Program Committee

Jacopo Aleotti University of Parma, Italy
Mohamad Alissa Edinburgh Napier University, UK
Anca Andreica Babes-Bolyai University, Romania
Claus Aranha University of Tsukuba, Japan
Aladdin Ayesh De Montfort University, UK
Kehinde Babaagba Edinburgh Napier University, UK
Jaume Bacardit Newcastle University, UK
Marco Baioletti Università degli Studi di Perugia, Italy
Illya Bakurov Universidade NOVA de Lisboa, Portugal
Wolfgang Banzhaf Michigan State University, USA
Tiago Baptista University of Coimbra, Portugal
Thomas Bartz-Beielstein TH Köln, Germany

x Organization

Giulio Biondi University of Florence, Italy
Philip Bontrager New York University, USA
János Botzheim Eötvös Loránd University, Hungary
Jörg Bremer University of Oldenburg, Germany
Will Browne Queensland University of Technology, Australia
Doina Bucur University of Twente, The Netherlands
Maxim Buzdalov ITMO University, Russia
Stefano Cagnoni University of Parma, Italy
Fabio Caraffini De Montfort University, UK
Oscar Castillo Tijuana Institute of Technology, Mexico
Pedro Castillo University of Granada, Spain
Josu Ceberio University of the Basque Country, Spain
Ying-Ping Chen National Yang Ming Chiao Tung University,

Taiwan
Francisco Chicano University of Málaga, Spain
Anders Christensen University of Southern Denmark, Denmark
Tinkle Chugh University of Exeter, UK
Christian Cintrano University of Málaga, Spain
Anthony Clark Pomona College, USA
José Manuel Colmenar Universidad Rey Juan Carlos, Spain
Feijoo Colomine Universidad Nacional Experimental del Táchira,

Venezuela
Stefano Coniglio University of Southampton, UK
Antonio Cordoba University of Seville, Spain
Oscar Cordon University of Granada, Spain
João Correia University of Coimbra, Portugal
Carlos Cotta Universidad de Málaga, Spain
Fabio D’Andreagiovanni CNRS, Sorbonne University – UTC, France
Gregoire Danoy University of Luxembourg, Luxembourg
George De Ath University of Exeter, UK
Amir Dehsarvi University of York, UK
Antonio Della Cioppa University of Salerno, Italy
Bilel Derbel CRIStAL (Univ. Lille), France
Travis Desell Rochester Institute of Technology, USA
Laura Dipietro HI
Federico Divina Pablo de Olavide University, Spain
Carola Doerr Sorbonne University, CNRS, France
Bernabe Dorronsoro University of Cadiz, Spain
Tome Eftimov Jožef Stefan Institute, Slovenia
Abdelrahman Elsaid Rocheser Institute of Technology, USA
Ahmed Elsaid University of Puerto Rico at Mayagüez, Puerto

Rico

Organization xi

Edoardo Fadda Politecnico di Torino, Italy
Andres Faina IT University of Copenhagen, Denmark
Thomas Farrenkopf Technische Hochschule Mittelhessen, Germany
Francisco Fernandez De Vega Universidad de Extremadura, Spain
Antonio J. Fernández Leiva Universidad de Málaga, Spain
Bogdan Filipič Jožef Stefan Institute, Slovenia
Francesco Fontanella Università di Cassino e del Lazio meridionale,

Italy
James Foster University of Idaho, USA
Alex Freitas University of Kent, UK
Marcus Gallagher University of Queensland, Australia
Pablo García Sánchez Universidad de Granada, Spain
Mario Giacobini University of Torino, Italy
Tobias Glasmachers Institut für Neuroinformatik, Switzerland
Kyrre Glette University of Oslo, Norway
Guillermo Gomez-Trenado Universidad de Granada, Spain
Antonio Gonzalez-Pardo Universidad Rey Juan Carlos, Spain
Michael Guckert THM, Germany
Heiko Hamann University of Lübeck, Germany
Mahshid Helali Moghadam RISE SICS, Sweden
Daniel Hernandez Tecnológico Nacional de México/Instituto

Tecnológico de Tijuana, Mexico
Ignacio Hidalgo Universidad Complutense de Madrid, Spain
Rolf Hoffmann TU Darmstadt, Germany
Giovanni Iacca University of Trento, Italy
Anja Jankovic Sorbonne University, France
Juan Luis Jiménez Laredo LITIS – Université Le Havre Normandie, France
Yaochu Jin Universität Bielefeld, Germany
Karlo Knezevic University of Zagreb, Croatia
Anna Kononova Leiden University, The Netherlands
Ana Kostovska Jožef Stefan Institute, Slovenia
Pavel Krömer Technical University of Ostrava, Czech Republic
Gurhan Kucuk Yeditepe University, Turkey
Waclaw Kus Silesian University of Technology, Poland
Yuri Lavinas University of Tsukuba, Japan
Joel Lehman University of Central Florida, USA
Kenji Leibnitz National Institute of Information and

Communications Technology, Japan
Fernando Lobo University of Algarve, Portugal
Michael Lones Heriot-Watt University, UK
Nuno Lourenço University of Coimbra, Portugal
Francisco Luna Universidad de Málaga, Spain

xii Organization

Gabriel Luque University of Málaga, Spain
Evelyne Lutton INRAE, France
João Macedo University of Coimbra, Portugal
Penousal Machado University of Coimbra, Portugal
Katherine Malan University of South Africa, South Africa
Luca Mariot Radboud University, The Netherlands
Jesús Mayor Universidad Politécnica de Madrid, Spain
David Megias Universitat Oberta de Catalunya, Spain
Paolo Mengoni Hong Kong Baptist University, China
Pablo Mesejo University of Granada, Spain
Krzysztof Michalak Wroclaw University of Economics, Poland
Mohamed Wiem Mkaouer Rochester Institute of Technology, USA
Mahshid Helali Moghadam RISE Research Institutes of Sweden, Sweden
Salem Mohammed Mustapha Stambouli University, Algeria
Antonio Mora University of Granada, Spain
Seyed Jalaleddin Mousavirad Hakim Sabzevari University, Iran
Mario Andres Muñoz Acosta University of Melbourne, Australia
Ferrante Neri University of Nottingham, UK
Geoff Nitschke University of Cape Town, South Africa
Jorge Novo Buján Universidade da Coruña, Spain
Gustavo Olague CICESE, Mexico
Diego Oliva Universidad de Guadalajara, Mexico
Carlotta Orsenigo University of Milan, Italy
Marcos Ortega Hortas University of A Coruña, Spain
Anna Paszynska Jagiellonian University, Poland
David Pelta University of Granada, Spain
Diego Perez Liebana Queen Mary University of London, UK
Yoann Pigné LITIS – Université Le Havre Normandie, France
Clara Pizzuti National Research Council of Italy (CNR),

Institute for High Performance Computing and
Networking (ICAR), Italy

Arkadiusz Poteralski Silesian University of Technology, Poland
Petr Pošík Czech Technical University in Prague, Czechia
Raneem Qaddoura Al Hussein Technical University, Jordan
Alma Rahat Swansea University, UK
José Carlos Ribeiro Polytechnic Institute of Leiria, Portugal
Guenter Rudolph TU Dortmund University, Germany
Jose Santos University of A Coruña, Spain
Valentino Santucci University for Foreigners of Perugia, Italy
Lennart Schäpermeier TU Dresden, Germany
Enrico Schumann University of Basel, Switzerland
Sevil Sen University of York, UK

Organization xiii

Roman Senkerik Tomas Bata University in Zlin, Czechia
Chien-Chung Shen University of Delaware, USA
Sara Silva Universidade de Lisboa, Portugal
Kevin Sim Edinburgh Napier University, UK
Anabela Simões Coimbra Institute of Engineering, Portugal
Stephen Smith University of York, UK
Maciej Smołka AGH University of Science and Technology,

Poland
Yanan Sun Sichuan University, China
Shamik Sural Indian Institute of Technology Kharagpur, India
Ernesto Tarantino ICAR-CNR, Italy
Andrea Tettamanzi Université Côte d’Azur, France
Renato Tinós USP, Brazil
Marco Tomassini University of Lausanne, Switzerland
Alberto Tonda INRAE, France
Jamal Toutouh University of Málaga, Spain
Heike Trautmann University of Münster, Germany
Marta Vallejo Heriot-Watt University, UK
Koen van der Blom Leiden Institute of Advanced Computer Science,

The Netherlands
Frank Veenstra IT-University of Copenhagen, Denmark
Sebastián Ventura University of Cordoba, Spain
Diederick Vermetten Leiden Institute for Advanced Computer Science,

The Netherlands
Marco Villani University of Modena and Reggio Emilia, Italy
Rafael Villanueva Instituto Universitario de Matematica

Multidisciplinar, Spain
Markus Wagner University of Adelaide, Australia
Hao Wang Leiden University, The Netherlands
Jaroslaw Was AGH University of Science and Technology,

Poland
Thomas Weise University of Science and Technology of China,

China
Simon Wells Edinburgh Napier University, UK
Dennis Wilson ISAE-Supaero, France
Anil Yaman Korea Advanced Institute of Science and

Technology, South Korea
Furong Ye Leiden Institute of Advanced Computer Science,

The Netherlands
Ales Zamuda University of Maribor, Slovenia
Christine Zarges Aberystwyth University, UK
Mengjie Zhang Victoria University of Wellington, New Zealand

Contents – Part I

Applications of Evolutionary Computation

Finding Near-Optimal Portfolios with Quality-Diversity . 3
Bruno Gašperov, Marko Ðurasević, and Domagoj Jakobovic

Improving Image Filter Efficiency: A Multi-objective Genetic Algorithm
Approach to Optimize Computing Efficiency . 19

Julien Biau, Sylvain Cussat-Blanc, and Hervé Luga

Low-Memory Matrix Adaptation Evolution Strategies Exploiting Gradient
Information and Lévy Flight . 35

Riccardo Lunelli and Giovanni Iacca

Memory Based Evolutionary Algorithm for Dynamic Aircraft Conflict
Resolution . 51

Sarah Degaugue, Nicolas Durand, and Jean-Baptiste Gotteland

GM4OS: An Evolutionary Oversampling Approach for Imbalanced
Binary Classification Tasks . 68

Davide Farinati and Leonardo Vanneschi

Evolving Staff Training Schedules Using an Extensible Fitness Function
and a Domain Specific Language . 83

Neil Urquhart and Kelly Hunter

On the Utility of Probing Trajectories for Algorithm-Selection 98
Quentin Renau and Emma Hart

Nature-Inspired Portfolio Diversification Using Ant Brood Clustering 115
Ashish Lakhmani, Ruppa K. Thulasiram, and Parimala Thulasiraman

Cellular Genetic Algorithms for Identifying Variables in Hybrid Gene
Regulatory Networks . 131

Romain Michelucci, Vincent Callegari, Jean-Paul Comet,
and Denis Pallez

Evolving Artificial Neural Networks for Simulating Fish Social Interactions . . . 146
Lea Musiolek, David Bierbach, Nils Weimar, Myriam Hamon,
Jens Krause, and Verena V. Hafner

xvi Contents – Part I

Heuristics for Evolutionary Optimization for the Centered Bin Packing
Problem . 162

Luke de Jeu and Anil Yaman

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 178
Kirsty Montague, Emma Hart, and Ben Paechter

Evolutionary Algorithms for Optimizing Emergency Exit Placement
in Indoor Environments . 194

Carlos Cotta and José E. Gallardo

Finding Sets of Solutions for Temporal Uncertain Problems 209
Jens Weise and Sanaz Mostaghim

Interpretable Solutions for Breast Cancer Diagnosis with Grammatical
Evolution and Data Augmentation . 224

Yumnah Hasan, Allan de Lima, Fatemeh Amerehi,
Darian Reyes Fernández de Bulnes, Patrick Healy, and Conor Ryan

Applying Graph Partitioning-Based Seeding Strategies to Software
Modularisation . 240

Ashley Mann, Stephen Swift, and Mahir Arzoky

A Novel Two-Level Clustering-Based Differential Evolution Algorithm
for Training Neural Networks . 259

Seyed Jalaleddin Mousavirad, Diego Oliva, Gerald Schaefer,
Mahshid Helali Moghadam, and Mohammed El-Abd

Iterated Beam Search for Wildland Fire Suppression . 273
Gustavo Delazeri and Marcus Ritt

A New Angle: On Evolving Rotation Symmetric Boolean Functions 287
Claude Carlet, Marko Durasevic, Bruno Gasperov,
Domagoj Jakobovic, Luca Mariot, and Stjepan Picek

Analysis of Evolutionary Computation Methods: Theory, Empirics,
and Real-World Applications

On the Potential of Multi-objective Automated Algorithm Configuration
on Multi-modal Multi-objective Optimisation Problems . 305

Oliver Ludger Preuß, Jeroen Rook, and Heike Trautmann

A Simple Statistical Test Against Origin-Biased Metaheuristics 322
Aidan Walden and Maxim Buzdalov

Contents – Part I xvii

Computational Intelligence for Sustainability

Optimizing Urban Infrastructure for E-Scooter Mobility . 341
Diego Daniel Pedroza-Perez, Jamal Toutouh, and Gabriel Luque

Evolutionary Computation in Edge, Fog, and Cloud Computing

Simple Efficient Evolutionary Ensemble Learning on Network Intrusion
Detection Benchmarks . 361

Zhilei Zhou, Nur Zincir-Heywood, and Malcolm I. Heywood

Evolutionary Computation Meets Stream Processing . 377
Vincenzo Gulisano and Eric Medvet

Evolutionary Computation in Image Analysis, Signal Processing and
Pattern Recognition

Integrating Data Augmentation in Evolutionary Algorithms for Feature
Selection: A Preliminary Study . 397

Tiziana D’Alessandro, Claudio De Stefano, Francesco Fontanella,
and Emanuele Nardone

Evolving Feature Extraction Models for Melanoma Detection:
A Co-operative Co-evolution Approach . 413

Taran Cyriac John, Qurrat Ul Ain, Harith Al-Sahaf, and Mengjie Zhang

3D Motion Analysis in MRI Using a Multi-objective Evolutionary
k-means Clustering . 430

Conor Spann, Evelyne Lutton, François Boué, and Franck Vidal

Author Index . 447

Contents – Part II

Evolutionary Machine Learning

Hindsight Experience Replay with Evolutionary Decision Trees
for Curriculum Goal Generation . 3

Erdi Sayar, Vladislav Vintaykin, Giovanni Iacca, and Alois Knoll

Cultivating Diversity: A Comparison of Diversity Objectives
in Neuroevolution . 19

Didrik Spanne Reilstad and Kai Olav Ellefsen

Evolving Reservoirs for Meta Reinforcement Learning . 36
Corentin Léger, Gautier Hamon, Eleni Nisioti, Xavier Hinaut,
and Clément Moulin-Frier

Hybrid Surrogate Assisted Evolutionary Multiobjective Reinforcement
Learning for Continuous Robot Control . 61

Atanu Mazumdar and Ville Kyrki

Towards Physical Plausibility in Neuroevolution Systems 76
Gabriel Cortês, Nuno Lourenço, and Penousal Machado

Leveraging More of Biology in Evolutionary Reinforcement Learning 91
Bruno Gašperov, Marko Ðurasević, and Domagoj Jakobovic

A Hierarchical Dissimilarity Metric for Automated Machine Learning
Pipelines, and Visualizing Search Behaviour . 115

Angus Kenny, Tapabrata Ray, Steffen Limmer, Hemant Kumar Singh,
Tobias Rodemann, and Markus Olhofer

DeepEMO: A Multi-indicator Convolutional Neural Network-Based
Evolutionary Multi-objective Algorithm . 130

Emilio Bernal-Zubieta, Jesús Guillermo Falcón-Cardona,
and Jorge M. Cruz-Duarte

A Comparative Analysis of Evolutionary Adversarial One-Pixel Attacks 147
Luana Clare, Alexandra Marques, and João Correia

xx Contents – Part II

Robust Neural Architecture Search Using Differential Evolution
for Medical Images . 163

Muhammad Junaid Ali, Laurent Moalic, Mokhtar Essaid,
and Lhassane Idoumghar

Progressive Self-supervised Multi-objective NAS for Image Classification 180
Cosijopii Garcia-Garcia, Alicia Morales-Reyes, and Hugo Jair Escalante

Genetic Programming with Aggregate Channel Features for Flower
Localization Using Limited Training Data . 196

Qinyu Wang, Ying Bi, Bing Xue, and Mengjie Zhang

Evolutionary Multi-objective Optimization of Large Language Model
Prompts for Balancing Sentiments . 212

Jill Baumann and Oliver Kramer

Evolutionary Feature-Binning with Adaptive Burden Thresholding
for Biomedical Risk Stratification . 225

Harsh Bandhey, Sphia Sadek, Malek Kamoun, and Ryan Urbanowicz

An Evolutionary Deep Learning Approach for Efficient Quantum
Algorithms Transpilation . 240

Zakaria Abdelmoiz Dahi, Francisco Chicano, and Gabriel Luque

Measuring Similarities in Model Structure of Metaheuristic Rule Set
Learners . 256

David Pätzel, Richard Nordsieck, and Jörg Hähner

Machine Learning and AI in Digital Healthcare and Personalized
Medicine

Incremental Growth on Compositional Pattern Producing Networks Based
Optimization of Biohybrid Actuators . 275

Michail-Antisthenis Tsompanas

Problem Landscape Analysis for Efficient Optimization

Hilbert Curves for Efficient Exploratory Landscape Analysis
Neighbourhood Sampling . 293

Johannes J. Pienaar, Anna S. Boman, and Katherine M. Malan

Contents – Part II xxi

Predicting Algorithm Performance in Constrained Multiobjective
Optimization: A Tough Nut to Crack . 310

Andrejaana Andova, Jordan N. Cork, Aljoša Vodopija, Tea Tušar,
and Bogdan Filipič

On the Latent Structure of the bbob-biobj Test Suite . 326
Pavel Krömer, Vojtěch Uher, Tea Tušar, and Bogdan Filipič

Soft Computing Applied to Games

Strategies for Evolving Diverse and Effective Behaviours in Pursuit
Domains . 345

Tyler Cowan and Brian J. Ross

Using Evolution and Deep Learning to Generate Diverse Intelligent Agents 361
Marshall Joseph and Brian J. Ross

Vision Transformers for Computer Go . 376
Amani Sagri, Tristan Cazenave, Jérôme Arjonilla, and Abdallah Saffidine

Surrogate-Assisted Evolutionary Optimisation

Integrating Bayesian and Evolutionary Approaches for Multi-objective
Optimisation . 391

Tinkle Chugh and Alex Evans

Author Index . 407

Applications of Evolutionary
Computation

Finding Near-Optimal Portfolios
with Quality-Diversity

Bruno Gašperov(B), Marko Ðurasević, and Domagoj Jakobovic

Faculty of Electrical Engineering and Computing, University of Zagreb,
Zagreb, Croatia

{bruno.gasperov,marko.durasevic,domagoj.jakobovic}@fer.hr

Abstract. The majority of standard approaches to financial portfolio
optimization (PO) are based on the mean-variance (MV) framework.
Given a risk aversion coefficient, the MV procedure yields a single port-
folio that represents the optimal trade-off between risk and return. How-
ever, the resulting optimal portfolio is known to be highly sensitive to the
input parameters, i.e., the estimates of the return covariance matrix and
the mean return vector. It has been shown that a more robust and flexible
alternative lies in determining the entire region of near-optimal portfo-
lios. In this paper, we present a novel approach for finding a diverse set
of such portfolios based on quality-diversity (QD) optimization. More
specifically, we employ the CVT-MAP-Elites algorithm, which is scal-
able to high-dimensional settings with potentially hundreds of behavioral
descriptors and/or assets. The results highlight the promising features
of QD as a novel tool in PO.

Keywords: quality-diversity · illumination algorithm · MAP-Elites ·
portfolio optimization · near-optimal portfolios

1 Introduction

1.1 Portfolio Optimization and Near-Optimal Portfolios

Portfolio optimization (PO) entails finding the optimal allocation of limited cap-
ital across a range of available financial assets within a specified timeframe. The
optimality is typically defined with respect to a risk-adjusted return metric,
such as the Sharpe ratio [1], or other metrics that account for the investor’s
specific risk preferences like the CARA utility function [2]. Classical approaches
to PO are deeply rooted in the mean-variance (MV) framework, also referred to
as modern portfolio theory (MPT) [3]. MV optimization provides a systematic
methodology for constructing optimal portfolios that leverage the principle of
diversification. By distributing investments among assets with dissimilar risk-
return profiles (e.g., assets with mutually uncorrelated or negatively correlated
returns), individual risks offset each other, thereby reducing the total portfolio
risk. Given a risk aversion coefficient, the MV optimization process diversifies
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 3–18, 2024.
https://doi.org/10.1007/978-3-031-56852-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_1

4 B. Gašperov et al.

assets to produce a single optimal portfolio representing the best risk-return
trade-off. The set of optimal portfolios for different risk preferences constitutes
a Pareto front called the efficient frontier.

However, the MV framework is predicated upon a number of simplified and
unrealistic assumptions, including the normality of returns and the stationar-
ity of the return covariance matrix. It also tends to produce portfolios highly
concentrated in only a few assets, jeopardizing diversification. Furthermore, MV
optimizers are particularly sensitive to estimation errors, with small changes
in input parameters, especially expected return estimates, noticeably affecting
the resulting optimal portfolio weights [4]. Such notorious issues have spurred
researchers to propose novel PO approaches focusing on improving robustness.
Various attempts have been made in this direction, including methods based
on shrinking the covariance matrix [5] or expected returns [6], introducing con-
straints to the original MV framework [7], resampling the efficient frontier [8],
or directly applying techniques from the area of robust optimization [9].

Another alternative, the focus of our work, involves identifying portfolios that
are not strictly optimal but rather near-optimal (with respect to MV optimal-
ity). In the first phase (the optimization process), an entire subspace of mutually
diverse1 near-optimal portfolios is determined without focusing on any specific
portfolio. This offers enhanced robustness to estimation errors [10], as it sidesteps
the complex issues stemming from the interplay between the objective and the
inputs, which are inherent to the MV optimization. In the second phase (the a
posteriori analysis), the investor selects the final portfolio from the subspace of
near-optimal portfolios. This decision-making scheme allows investors to incor-
porate their expert opinions, subjective views, or any other soft factors that
may be challenging to integrate directly into an optimization problem formu-
lation. Simultaneously, it permits the ad-hoc consideration of market frictions
(e.g., transaction costs) and other regulatory, liquidity, and risk concerns, which
are crucial in real-life PO but were not necessarily applied as constraints during
the first phase. For instance, when rebalancing portfolio weights, investors may
prefer a near-optimal portfolio similar to the current one over the MV optimal
portfolio due to the former’s lower turnover, and hence also lower transaction
costs. Therefore the consideration of near-optimal portfolios presents a fruitful
opportunity for improving the process of PO.

1.2 Prior Research

Near-Optimal Portfolios. The problem of identifying and analyzing near-
optimal portfolios has been scrutinized in several studies. Van der Schans and
de Graaf [11] pioneered a novel methodology for constructing such portfolios,
outlined as follows. Let F : W → Z be the mapping from the set of admissible
portfolio weights W to the risk-return space Z. First, an optimal portfolio w0
(satisfying F(w0) ∈ E where E ⊂ Z is the efficient frontier) is selected as a

1 In terms of their distance in the space of admissible portfolio weights or, more
generally, some behavior space.

Finding Near-Optimal Portfolios with Quality-Diversity 5

reference portfolio in accordance with the investor’s risk preferences. A small
region R ⊂ Z around F(w0) is then defined and the portfolio w1, s.t. F(w1) ∈
R, located furthest away2 from w0, is found. Subsequently, the portfolio w2,
again s.t. F(w2) ∈ R, positioned furthest away from the convex hull H spanned
by previously found portfolios {w0, w1} is itself added to H. Generally, in step i:

wi = arg max
F(w)∈R

d (w, H) , (1)

with d (w, H) = minw′∈H ‖w − w′‖. This process iterates until S ⊂ Z, the con-
vex hull in the risk-return space corresponding to the portfolios in H, covers R to
the required level of precision ε. Finally, a set of K diverse near-optimal portfolios
{w0, w1, . . . , wK−1} is obtained. Since a convex combination of near-optimal
portfolios is also near-optimal [10], any portfolio in H acts as a viable option for
the investor. The authors finally show that this region of near-optimal portfolios
is more robust to input estimate uncertainties than a single optimal portfolio.
However, this approach exhibits several limitations. Firstly, it involves solving a
difficult non-convex optimization problem of finding the portfolio furthest from
the convex hull, leading the authors to use a somewhat ad hoc combination of
a support vector machine [12] and a basin-hopping algorithm [13]. Secondly, it
becomes unfeasible in high-dimensionality settings, i.e., when faced with a large
number of assets (N), which is typically the case in modern PO3. Thirdly, it
is restricted to finding near-optimal portfolios directly in the space of portfolio
weights and is not easily applicable to other possible behavior (feature) spaces,
which may comprise variables such as fundamentals, technicals, and risk factors.
Put differently, it does not tackle the generalized variant where in step i:

wi = arg max
F(w)∈R

d (φ(w), H) (2)

where H = {φ(w0), . . . , φ(wi−1)} for some function φ. To ameliorate some of
these problems, Cajas [15] proposed the near-optimal centering (NOC) method,
based on finding the analytic centers of near-optimal regions. The method can
be used in conjunction with any convex risk measure and has been empirically
demonstrated to lead to improved diversification and robustness when compared
to traditional PO methods. Van Eeghen [14] expands on [11] by using polytope
theory to inspect the structure and robustness of near-optimal regions. Moreover,
the author proposes a new implementation of the method from [11] that reduces
computation time while maintaining accuracy.

The topic of near-optimal portfolios has been investigated or touched upon in
several other works as well. Chopra [16] uses a grid search to discover a subset of
near-optimal portfolios and analyzes their composition. Benita et al. [17] empha-
size that near-optimal portfolios might provide a higher degree of robustness to
various scenarios due to significant differences in their makeups and provide an
2 In the sense of the Euclidean distance between the portfolio weight vectors ||w1 −

w0||.
3 Van Eeghen [14] reports computation times of around 2 hours and more per run

already for N > 20.

6 B. Gašperov et al.

illustrative example. Lastly, Fagerström and Oddshammar demonstrate that the
Conditional Value-at-Risk (CVaR) optimization model tends to produce portfo-
lios that are near-optimal under the MV framework [18], i.e., located very close
to the efficient frontier.

Evolutionary Computation and Quality-Diversity Optimization. Evo-
lutionary computation (EC) methods have a rich history of successful appli-
cations in PO [19], partly owing to their ability to handle non-convex search
spaces that arise when real-world constraints (e.g., buy-in thresholds, turnover
constraints, other regulatory and risk constraints) are imposed into the problem
setting [20,21]. However, there is a significant lack of research regarding the appli-
cations of exploration algorithms, such as quality-diversity (QD) [22] and novelty
search (NS) [23] in PO and quantitative finance generally, despite their signifi-
cant potential and their successes in other domains [24,25]. The links between
portfolio diversification and the divergent search paradigm, while arguably nat-
ural, remain understudied. Several somewhat related works nevertheless exist.
Zhang et al. [26] address the specific problem of finding formulaic alpha fac-
tors that can predict and explain asset returns, making them suitable for use
with multi-factor asset pricing models. To efficiently explore the space of for-
mulaic alphas, with a focus on less frequently visited regions, they propose a
search that combines QD and principal component analysis (PCA). This PCA-
enhanced search is then used as an integral part of their AutoAlpha hierarchical
evolutionary algorithm. Another approach is put forth by Yuksel [27], in which
meta-learning QD optimization is employed to tackle the problem of large-scale
sparse index tracking. It is concluded that the proposed method can be utilized
in other scenarios where diversity among co-optimized solutions is needed, as
well as in the presence of noisy reinforcement learning rewards.

1.3 Objectives and Contributions

In this paper, we tackle the problem of identifying a diverse set of near-optimal
portfolios (i.e., portfolios with risk-return profiles located close to that of the ref-
erence optimal portfolio), as part of the broader PO problem. Specifically, we aim
to answer the following research question (Q): How to obtain a wide range of port-
folios that are all near-optimal but mutually diverse in the portfolio weight space
or the otherwise defined behavior space (BS)? While previous research has found
that, in some tasks, elite solutions are concentrated within a small part of the geno-
typic space (“the elite hypervolume") [28], our task runs in the opposite direction,
as it involves finding genotypically different solutions (portfolios) that are all elite.
We set out to test the following hypothesis (H): The combination of convergent
and divergent search provided through QD algorithms can be leveraged to obtain
a set of diverse near-optimal portfolios. The hypothesis stems from the observa-
tion that QD algorithms provide a natural choice for the underlying problem due
to their ability to yield a range of diverse yet high-performing solutions. While
some related approaches exist [26,27], to the best of our knowledge, this paper is

Finding Near-Optimal Portfolios with Quality-Diversity 7

the first to approach MV-based PO via QD optimization. To ensure the scalabil-
ity to high-dimensional behavioral and/or asset spaces, which are ubiquitous in
modern finance, the approach is powered by the CVT-MAP-Elites algorithm, as
vanilla MAP-Elites faces the curse of dimensionality. We first use a toy example
with only three assets to show that the approach is competitive against a simi-
lar approach based on the construction of convex hulls [11], and later extend our
investigation to a higher-dimensional setting. As will be shown, the experimental
results collectively clearly point to the promising capabilities of QD as a novel tool
in the arsenal of modern PO practitioners.

2 Methodology

2.1 Problem Formulation

Let W be the set of all admissible portfolio weights:

W =
{

(w1, . . . , wi, . . . , wN) | wi ≥ 0 ∀i,

N∑
i=1

wi = 1
}

, (3)

where N ≥ 2 is the total number of assets and wi denotes the portfolio weight in
the i-th asset. For simplicity, short selling is not permitted, but it can be easily
integrated into the framework if needed, by relaxing the wi ≥ 0 constraint. Also,
let b : W → B be a behavior function, mapping W to a BS denoted by B. Assume
that B is split into M niches (regions), i.e., B = N1 ∪ N2 ∪ . . .∪ NM . Finally, let
f : W → R be a fitness function. Each candidate portfolio w is then associated
with its behavioral descriptor (BD) bw ∈ B and fitness value f(w) ∈ R. The
goal is to find:

∀Ni w∗ = arg max
w, bw∈Ni

f(w). (4)

2.2 Behavior Function and Space

We explore two different behavior functions and BS designs. In both cases, cen-
troidal Voronoi tessellation (CVT) is used to partition the BS into niches.

Portfolio Weights. In the simplest variant, the behavior function b1 is set as
an identity function, i.e., ∀w, b1(w) = w, with B1 = W. Portfolio weight vectors
w simultaneously serve as both genotypes and phenotypes. Similar can be seen
in some of the approaches used to tackle the Rastrigin function benchmark [29]
through QD algorithms [30,31].

Asset’s Fundamentals. In another variant, we separate the two spaces (geno-
typic and phenotypic) and set b2(w) = pw, where pw ∈ B2 is a vector that
describes the fundamental properties of the assets that dominate w weight-wise.
More specifically:

B2 =
{

(s1, . . . , si, . . . , sL, c) | si ≥ 0 ∀i, c > 0,

L∑
i=1

si = 1
}

, (5)

8 B. Gašperov et al.

where si denotes the sector exposure of a portfolio to sector i, and L is the
number of sectors. Sector exposure is defined as the sum of portfolio weights
assigned to assets belonging to the respective sector, i.e., si =

∑
j∈Si

wj , with
Si denoting the set of indices of assets belonging to sector i. The variable c
denotes normalized market capitalization. Note that, unlike in the previous case,
it is not possible to uniformly sample from the BS directly. Also, any other
asset characteristics or factors of importance to the investor (e.g., ESG4 factors,
geographical diversification, etc.) might be used instead.

2.3 Fitness Functions

Fitness1 - The fitness (quality) function can be given by the negative distance
between the risk profile of the candidate portfolio w and that of the reference
optimal portfolio w0 (obtained via MV optimization):

f1(w) = −||F(w0) − F(w)|| = −||(μ0, σ0) − (μ, σ)||, (6)
where (μ, σ) ∈ Z is a vector consisting of the expected return and the volatility
of the portfolio w (and equivalently for w0). This fitness function will be used
to take the convex hull approximation method to the near-optimal region.
Fitness2 - Alternatively, a modification of Fitness1 is proposed:

f2(w) =
{

−||(μ0, σ0) − (μ, σ)||, if (μ, σ) not in R
||w − w0||, otherwise

(7)

where R is the region of near-optimality around (μ0, σ0), R ⊂ Z, defined as:

R = {(μ, σ) | μ ≥ (1 − c)μ0, σ ≤ (1 + c)σ0} (8)

for some constant c ∈ (0, 1). Fitness2 promotes solutions in each niche whose
risk profiles are as close as possible to the risk profile of w0 until close proximity
is reached. Once inside the near-optimality region R, solutions that are furthest
weight-wise from w0 are preferred to ensure more genotypic diversity through
an additional mechanism. Ideally, the distance from the convex hull of the entire
archive of near-optimal solutions (instead of only from w0) should be used as the
measure. However, for computational efficiency, we employ this simple heuristic
which will be shown to demonstrate strong performance in lower-dimensional
settings.

2.4 Recombination Operator

Given the conditions in Eq. 3, a suitable constraint-preserving reproduction oper-
ator is required. To this end, a recombination operator (with mutation) that
also includes clipping and normalization is used. It is described in great detail
in Algorithm 1. Additional constraints, such as cardinality restrictions or buy-in
thresholds, can be incorporated as needed.
4 Environment, social and governance.

Finding Near-Optimal Portfolios with Quality-Diversity 9

Algorithm 1: Recombination operator
Inputs: Parent portfolios w1, w2, mutation rate m
Result: Child portfolio w3

1 λ ← UniformRandom[0, 1] ; // Randomly generated weight parameter
2 δ ← UniformRandom[−m, m, len(w1)] ; // Mutation vector
3 w3 ← λw1 + (1 − λ)w2 + δ ; // Child portfolio
4 w3 ← Clip(w3, 0, 1) ; // Clipping to ensure non-negative weights
5 w3 ← w3∑len(w3)

i=1 w3,i
; // Normalization of the child portfolio

6 return w3

2.5 Algorithm

Due to the continual increase in the number of investable securities in financial
markets, modern PO typically operates in high-dimensional settings, potentially
encompassing hundreds or even thousands of financial assets. The ensuing high-
dimensionality can be tackled with the CVT-MAP-Elites algorithm, where the
number of niches is constant and independent of the dimensionality of the BS
[32]. It is a variant of the vanilla MAP-Elites algorithm, which is itself based on
maintaining an archive of elite solutions, one for each niche in the BS. The under-
lying idea is to find a plethora of behaviorally diverse yet high-performing solu-
tions. Unless noted otherwise, unstructured archive A is assumed. For smaller
BS dimensionalities (typically 2D to 6D [32]), the basic MAP-Elites algorithm
[33] can be used instead. We use CVT-MAP-Elites in all of the performed exper-
iments. The used hyperparameter values are provided separately for each of the
experiments.

3 Experimental Results

3.1 Toy Example

We begin by considering the toy example first introduced in [16] and later revis-
ited in [10], in which only three (N = 3) asset classes - stocks, bonds, and trea-
sury bills are considered5. The mean return, standard deviation, and correlation
estimates for the three asset classes (given in Table 1) are used to construct
the expected return vector μ̂ and the return covariance matrix Ŝ estimates.
The resulting MV efficient frontier is shown in Fig. 1, accompanied by addi-
tional elements, including the near-optimality region R. To ensure consistency
with [10], the same reference portfolio w0 is adopted as well as the identical
value of c = 0.1. After running the QD algorithm R = 100 times6 for each
5 More precisely, the assets include the S&P 500 market index, Lehman Brothers Long

Term Government Bond Index, and one-month Treasury bills. The original data is
presented monthly and spans the period from 1980 to 1990, but the estimates are
transformed into annual values in our work.

6 At the start of each QD run, niches are recalculated, discarding the old CVT results.

10 B. Gašperov et al.

fitness function, while using B1 and with M = 200, the convex hulls depicting
regions of near-optimality in the portfolio weights space are obtained. Each run
takes less than 100 s even without any parallelization. The maximum number of
evaluations is set to Nmax = 250 000 and the number of CVT samples equals
NCV T = 10 000. Random initialization is done until Pinit = 10% of niches
are filled with solutions. Figure 2 presents the results for four different methods
(M1 - Chopra [16], M2 - van der Schans and de Graaf [10,11], M3 - QD with
Fitness1, and M4 - QD with Fitness2), with more details given in Table 2.
Larger hull surfaces (volumes or hypervolumes in higher-dimensional spaces) are
desirable, as they indicate greater compositional diversity within the set of found
near-optimal portfolios, allowing investors more freedom to accommodate their
specific preferences. The best results overall are obtained by M4, the modi-
fied version of M3, as it benefits from the additional diversification mechanism.
The dominance of M2 over M3 with respect to the convex hull surface is not
a matter of concern but rather an anticipated outcome. Namely, M2 selects
portfolios (exclusively from R) by directly maximizing distances from the con-
vex hull of previously found solutions, whereas M3 seeks solutions within each
niche whose risk profiles are strictly closest to F(w0). As a result, M3 pushes
strongly towards F(w0) (lying on the efficient frontier) regardless of whether
exploring inside or outside of R and hence shrinks S, the corresponding region
in the risk-return space. We therefore suspect M3 to yield portfolios with better
risk-reward profiles (measured by the Sharpe ratio) than M2 and also a lower S
surface, all of which is indeed confirmed by the results laid out in Table 1. It is
also noteworthy that M4 achieves an even higher value of the Sharpe ratio than
M3, despite its emphasis on genotypic diversity. The likely reason is that, given
that ω0 is not the maximum Sharpe portfolio, it is possible for the neighboring
risk profiles in R to dominate over it.

Table 1. The estimates from historical data (annual)

Mean (%) Std (%) Corr.
stocks

Corr.
bonds

Corr.
T-Bills

Optimal weights (%)
(moderate risk aversion)

Stocks 15.876 16.603 1.000 – – 58.1
Bonds 12.324 13.801 0.341 1.000 – 22.8
T-Bills 8.748 0.759 −0.081 0.050 1.000 19.1

3.2 Higher-Dimensional Setting

In this section, encouraged by the positive results from the toy example, we apply
the proposed method to a higher-dimensional setting comprised of a large num-
ber of assets. Under such conditions, QD is expected to offer heuristic solutions
in a reasonable time. More specifically, we consider the universe of N = 105
different equity assets covering L = 11 different sectors. The Sharpe optimal
portfolio is used as the reference portfolio. Moreover, the Ledoit-Wolf shrinkage

Finding Near-Optimal Portfolios with Quality-Diversity 11

Fig. 1. The MV efficient frontier with the chosen optimal portfolio and its region of
near-optimality.

Table 2. Performance evaluation of the four tested methods

Method Convex hull H
surface

Risk-return subspace
S surface (×103)

Sharpe ratio of
portfolios

% of niches
with opt. port

M1a 0.0948 0.1973 1.1368 ± 0.0959 –
M2b 0.1724 0.3712 1.1762 ± 0.1299 –
M3 0.1529 ± 0.0015 0.3652 ± 0.0076 1.2696 ± 0.0009 48.980 ± 0.003
M4 0.1746± 0.0002 0.3882 ± 0.0008 1.2824± 0.0009 49.070±0.003

aResults from [16] (deterministic).
bResults from [10] (deterministic).

[5] is used7 for estimating the covariance matrix Ŝ, while CAPM returns [34]
are utilized to derive the mean return estimate μ̂. The look-back window used
for parameter estimation encompasses the period from January 2nd, 2020, to
September 1st, 2023, corresponding to exactly T = 924 trading days. We again
set c = 0.01, leading to a very strict criterion of near-optimality (i.e., a small sur-
face of R), and also select M = 5000. Due to a plethora of assets, investors might
prefer to first perform asset allocation at the sector/industry or some other macro
level8 before selecting individual constituent securities. Consequently, we use the
BS design B2. As the fitness function, f1 is selected. The algorithm ultimately
returns an archive of solutions A comprised of both near-optimal portfolios and
non-near-optimal portfolios (for niches in which no near-optimal portfolios have
been found).

7 With constant variance set as the shrinkage target.
8 Similar approaches are employed in top-down investment strategies such as Tactical

Asset Allocation (TAA) [35].

12 B. Gašperov et al.

Fig. 2. Convex hulls in the genotypic/phenotypic space for different methods for a
single QD run. The constraint

∑
xi = 1 introduces coplanarity in the otherwise three-

dimensional space.

Considering both the absence of suitable benchmarks and the computational
challenges in calculating convex hull volumes in spaces with higher dimension-
alities9, we draw inspiration from previous research on benchmarking QD algo-
rithms [37] and use it as a starting point in creating appropriate performance
metrics. All of the used metrics are described in Table 3. Remark that metrics
C′, QDScore2 and AP2 only consider niches in which near-optimal portfolios
have been found, unlike QDScore1 and AP1, which (also) require information
on other niches. Following the notation from Table 3, the number of niches with
and without near-optimal portfolios is C′M and |A| − C′M , respectively.

Experimental Results. Figure 3 presents the main experimental results. The
upper subplots show the first three metrics (C′, QDScore1, QDScoreMOD) plot-
ted against the number of QD evaluations, as well as the archive profiles (AP1
and AP2). The mean values as averaged over R = 20 runs are shown, together
with empirical percentiles (the 5-th and the 95-th pth). As before, niches are
recalculated from scratch at the beginning of each QD run. To ensure the
high quality of tessellation, the maximum number of QD evaluations is set
to Nmax = 2.2 × 106, Pinit = 10%, and the number of CVT samples equals
NCV T = 50 000. In terms of the modified coverage, it is evident that the percent-
age of niches with near-optimal solutions sharply rises, reaching 60% already at
a bit over 500 000 evaluations, and finally getting to approximately 75%. Such
high percentages clearly indicate that, despite the use of a stringent criterion
for near-optimality, the method succeeds in finding a wide range of near-optimal
9 With the QuickHull algorithm [36], the execution time grows by n� d

2 �, where n is
the input size and d the dimensionality.

Finding Near-Optimal Portfolios with Quality-Diversity 13

Table 3. List of metrics

Metric Description Expression
Modified coverage
(C′)

The proportion of niches
with near-optimal
portfolios

No. of niches with n.o. portfolios
No. of niches

QD-score
(QDScore1)

The cumulative normalized
fitness of all portfolios in A

∑|A|
i=1

fi−minj(fj)
maxj(fj)−minj(fj)

Modified QD-score
(QDScoreMOD)

The cumulative normalized
fitness of all found
near-optimal portfolios

∑C′M
i=1

fi−minj(fj)
maxj(fj)−minj(fj)

Modified archive
profile 1 (AP1)

The proportion of found
non-near-optimal
portfolios exceeding some
threshold value

∑|A|−C′M
i=1 1 (fi ≥ fthreshold)

Modified archive
profile 2 (AP2)

The proportion of found
near-optimal portfolios
exceeding some threshold
value

∑C′M
i=1 1 (fi ≥ fthreshold)

portfolios encompassing various industry compositions and market capitalization
values. This is a fortunate conclusion, especially for investors who prefer human-
in-the-loop approaches, enabling them to incorporate their own preferences that
might be hard to formalize, into the decision-making process. As for the QD-score
metrics, we observe that QDScore1 steadily increases over time, indicating an
improvement in diversity/performance among the found near-optimal solutions
(portfolios). Likewise, the QDScore1 curve shows that the majority of niches
are populated relatively quickly (in under 500 000 evaluations). Also note that
QDScore1 expectedly converges faster than QDScoreMOD, as filling niches with
near-optimal solutions takes more time compared to arbitrary solutions. Mod-
ified archive profiles, calculated after performing the maximum number of QD
evaluations, are provided at the bottom of Fig. 3. While AP1 and AP2 have
similar shapes (under different threshold scales), a small right tail can be seen
with AP2, showing a number of "super" near-optimal portfolios with risk pro-
files extremely similar to that of the reference portfolio. The significant composi-
tional diversity of the obtained portfolios is depicted in Fig. 5, which displays the
Sharpe optimal portfolio alongside two mutually diverse near-optimal portfolios
generated by the method in the feature (behavior) space. Despite the multitude
of potential solutions, in order to finalize the investment decision-making process,
it is necessary to select a single portfolio from the set of obtained near-optimal
portfolios. To this end, Algorithm 2 delineates the entire end-to-end investment
decision-making process, incorporating the proposed QD method.

14 B. Gašperov et al.

Fig. 3. The mean modified coverage C′ (the upper left subplot), QDScore1, and
QDScore2 (the upper right subplot) plotted against the number of evaluations, along-
side empirical percentiles. The modified archive profiles are displayed at the bottom,
with the set including non-near-optimal portfolios on the left and the set including
near-optimal portfolios on the right.

Robustness. Generally, the evaluation of QD solutions is exacerbated by the
presence of stochasticity in the underlying environment [29]. In our case, the
evaluation is fully deterministic once the estimates (μ̂, Ŝ) are fixed. However,
there is stochasticity involved due to the very fact that “true" parameter val-
ues (μ, S) are hidden, whereas the estimates (which can be derived in multiple
ways) represent random variables. With this in mind, we investigate the robust-
ness of the generated portfolios to a certain type of change in the estimates (μ̂,
Ŝ). More specifically, we study whether previously found near-optimal portfo-
lios generally remain near-optimal when re-estimating under different estimation
window10 sizes T . The results are shown in Fig. 4. As expected, the mean modi-
fied coverage C ′ remains robust to changes in the estimation window size T when
larger threshold constants c are employed. On the other hand, the sensitivity of
C ′ to changes in T , in particular to its reduction, is much more emphasized
for c values in the range [0.5%, 2.5%], i.e., for stricter near-optimality crite-
ria. For example, with c = 0.5% and T = 824, on average only 136.15 niches

10 The choice of the estimation window size is a non-trivial issue that has been studied
before [38–40], with larger sizes leading to reduced estimation errors at the price of
assuming unrealistically long stationarity periods.

Finding Near-Optimal Portfolios with Quality-Diversity 15

Fig. 4. The mean modified coverage C′ for different threshold constants c and estima-
tion window sizes T . Observe the relatively high sensitivity of C′ to the shortening of
T , especially for stricter near-optimality criteria (i.e., for smaller c values).

Technology
Healthcare

Utilities

Real Estate

Consumer Cyclical

Basic Materials
Energy

Financial Services

Industrials

Communication

Consumer Defensive

Normalized Market Cap

0 0.05 0.1 0.15 0.2 0.25

Portfolio
Near optimal portfolio 1
Near optimal portfolio 2
Sharpe optimal portfolio

Fig. 5. Two of the obtained near-optimal portfolios juxtaposed against the Sharpe
optimal portfolio in the BS. The first (second) near-optimal portfolio is highly concen-
trated in industrials (financial services) stocks and low (high) market cap stocks, while
the Sharpe optimal portfolio remains more balanced.

(or 2.7%) contain near-optimal solutions. We leave for further research the study
of whether solutions that remain near-optimal under a wider range of estimates
present a superior investment choice.

16 B. Gašperov et al.

Algorithm 2: Portfolio selection process
Inputs: Investor’s risk aversion γ and preferred BD b, historical data D
Result: Final portfolio w

1 Ŝ, μ̂ ← EstimateParameters(D)
2 w0 ← CalculateEfficientFrontierPortfolio(γ, Ŝ, μ̂) ; // MV step - calculating

the required portfolio on the efficient frontier
3 A ← RunQD ; // Run QD to obtain the archive of portfolios
4 nb ← DetermineNicheIndex(b) ; // Determine the niche index for the

preferred BD
5 if NearOptimalPortfolioExistsIn(nb) then
6 w ← ElitePortfolioFrom(nb)
7 else
8 n′

b ← ClosestNicheWithNearOptimalPortfolio(nb) ; // Among all niches
with a near-optimal portfolio, select the one closest to nb

9 w ← ElitePortfolioFrom(n′
b)

10 end
11 return w

4 Conclusion and Further Work

This paper is concerned with the problem of finding mutually diverse portfolios
located in the region of near-optimality of some reference optimal portfolio. We
introduce a novel method for discovering a wide spectrum of mutually diverse
(in a predefined BS) near-optimal portfolios based on QD optimization. The
main findings, pointing to high coverage and QD-scores, underscore the capacity
of QD to serve as a novel instrument in the field of PO. In addition to QD,
the knobelty algorithm [41] might be used to balance compositional diversity
(novelty) with proximity to the selected optimal portfolio. Similar approaches
might also be employed for a somewhat different problem; to approximate the
entire efficient frontier of optimal solutions, covering a wide range of different
risk preferences and hence catering to a versatile set of investors. These include
QD with a fitness function that penalizes distances from the efficient frontier in
each niche, as well as vanilla NS formulations in which the risk-reward space is
used as the phenotypic space. Other objectives besides MV may be explored in
the future as well, together with different BS designs (e.g. factor-based, distance
from the equally weighted or currently selected portfolio) and definitions of near-
optimality (e.g. those employing soft constraints). Links with sparse PO should
also be investigated. Lastly, we anticipate further work to leverage the power of
QD in visualizing and illuminating the portfolio search space. More broadly, we
hope to see future approaches harnessing the potential of open-endedness-based
approaches, including QD and NS, in computational finance.

Finding Near-Optimal Portfolios with Quality-Diversity 17

References

1. Sharpe, W.F.: The sharpe ratio. Streetwise-the Best J. Portfolio Manag. 3, 169–185
(1998)

2. Babcock, B.A., Choi, E.K., Feinerman, E.: Risk and probability premiums for cara
utility functions. J. Agricult. Resource Econ. 22, 17–24 (1993)

3. Markowitz, H.M., Todd, G.P.: Mean-variance analysis in portfolio choice and cap-
ital markets, vol. 66. John Wiley & Sons (2000)

4. Best, M.J., Grauer, R.R.: On the sensitivity of mean-variance-efficient portfolios to
changes in asset means: some analytical and computational results. Rev. Financial
Stud. 4(2), 315–342 (1991)

5. Ledoit, O., Wolf, M.: Honey, i shrunk the sample covariance matrix. UPF economics
and business working paper, vol. (691) (2003)

6. Black, F., Litterman, R.: Asset allocation: combining investor views with market
equilibrium. Goldman Sachs Fixed Income Res. 115(1), 7–18 (1990)

7. DeMiguel, V., Garlappi, L., Nogales, F.J., Uppal, R.: A generalized approach to
portfolio optimization: improving performance by constraining portfolio norms.
Manag. Sci. 55(5), 798–812 (2009)

8. Michaud, R.O., Michaud, R.O.: Efficient asset management: a practical guide to
stock portfolio optimization and asset allocation. Oxford University Press (2008)

9. Yin, C., Perchet, R., Soupé, F.: A practical guide to robust portfolio optimization.
Quantitative Finance 21(6), 911–928 (2021)

10. de Graaf, T.: Robust Mean-Variance Optimization. PhD thesis, Master Thesis,
Leiden University & Ortec Finance (2016)

11. van der Schans, M., de Graaf, T.: Robust optimization by constructing near-
optimal portfolios. Available at SSRN 3057258 (2017)

12. Wang, L.: Support vector machines: theory and applications, vol. 177. Springer
Science & Business Media (2005). https://doi.org/10.1007/b95439

13. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest
energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys.
Chem. A 101(28), 5111–5116 (1997)

14. van Eeghen, W.J.B., van Gaans, O.W., van der Schans, M.: Analysis of near-
optimal portfolio regions and polytope theory (2018)

15. Cajas, D.: Robust portfolio selection with near optimal centering. Available at
SSRN 3572435(2019)

16. Vijay Kumar Chopra: Improving optimization. J. Invest. 2(3), 51–59 (1993)
17. Benita, G., Baudot-Trajtenberg, N., Friedman, A.: The challenges of managing

large fx reserves: the case of israel. BIS Paper, (104m) (2019)
18. Fagerström, S., Oddshammar, G.: Portfolio optimization-the mean-variance and

cvar approach (2010)
19. Brabazon, A., O’Neill, M., Dempsey, I.: An introduction to evolutionary compu-

tation in finance. IEEE Comput. Intell. Mag. 3(4), 42–55 (2008)
20. Branke, J., Scheckenbach, B., Stein, M., Deb, K., Schmeck, H.: Portfolio optimiza-

tion with an envelope-based multi-objective evolutionary algorithm. Eur. J. Oper.
Res. 199(3), 684–693 (2009)

21. Qi, R., Yen, G.G.: Hybrid bi-objective portfolio optimization with pre-selection
strategy. Inform. Sci. 417, 401–419 (2017)

22. Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity
optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasska-
zova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and

https://doi.org/10.1007/b95439

18 B. Gašperov et al.

No-Free Lunch Theorems. SOIA, vol. 170, pp. 109–135. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-66515-9_4

23. Lehman, J., Stanley, K.O.: Novelty search and the problem with objectives. Genetic
programming theory and practice IX, pp. 37–56 (2011)

24. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems
with novelty search. Swarm Intell. 7, 115–144 (2013)

25. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-
tionary computation. Front. Robot. AI 3, 40 (2016)

26. Zhang, T., Li, Y., Jin, Y., Li, J.: Autoalpha: an efficient hierarchical evolution-
ary algorithm for mining alpha factors in quantitative investment. arXiv preprint
arXiv:2002.08245 (2020)

27. Yuksel, K.A.: Generative meta-learning robust quality-diversity portfolio. In: Pro-
ceedings of the Companion Conference on Genetic and Evolutionary Computation,
pp. 787–790 (2023)

28. Vassiliades, V., Mouret, J.-P.: Discovering the elite hypervolume by leveraging
interspecies correlation. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 149–156 (2018)

29. Digalakis, J.G., Margaritis, K.G.: On benchmarking functions for genetic algo-
rithms. Inter. J. Comput. Math. 77(4), 481–506 (2001)

30. Bossens, D.M., Tarapore, D.: Quality-diversity meta-evolution: customising
behaviour spaces to a meta-objective. arXiv preprint arXiv:2109.03918 (2021)

31. Sfikas, K., Liapis, A., Yannakakis, G.N.: Monte carlo elites: Quality-diversity selec-
tion as a multi-armed bandit problem. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 180–188 (2021)

32. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.-B.: Using centroidal voronoi tes-
sellations to scale up the multidimensional archive of phenotypic elites algorithm.
IEEE Trans. Evol. Comput. 22(4), 623–630 (2017)

33. Mouret, J.-B., Clune, J.: Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909 (2015)

34. Fama, E.F., French, K.R.: The capital asset pricing model: theory and evidence.
J. Econ. Perspect. 18(3), 25–46 (2004)

35. Faber, M.: A quantitative approach to tactical asset allocation. J. Wealth Manag.
Spring (2007)

36. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: Qhull: Quickhull algorithm for com-
puting the convex hull. Astrophysics Source Code Library, pp. ascl-1304 (2013)

37. Flageat, M., Lim, B., Grillotti, L., Allard, M., Smith, S.C., Cully, A.: Benchmarking
quality-diversity algorithms on neuroevolution for reinforcement learning. arXiv
preprint arXiv:2211.02193 (2022)

38. Gašperov, B., Šarić, F., Begušić, S., Kostanjčar, Z.: Adaptive rolling window selec-
tion for minimum variance portfolio estimation based on reinforcement learning.
In: 2020 43rd International Convention on Information, Communication and Elec-
tronic Technology (MIPRO), pp. 1098–1102. IEEE (2020)

39. Wang, P.-T., Hsieh, C.-H.: On data-driven log-optimal portfolio: a sliding window
approach. IFAC-PapersOnLine 55(30), 474–479 (2022)

40. Chuanzhen, W.: Window effect with markov-switching garch model in cryptocur-
rency market. Chaos, Solitons Fractals 146, 110902 (2021)

41. Kelly, J., Hemberg, E., O’Reilly, U.-M.: Improving genetic programming with novel
exploration - exploitation control. In: Sekanina, L., Hu, T., Lourenço, N., Richter,
H., García-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 64–80. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-16670-0_5

https://doi.org/10.1007/978-3-030-66515-9_4
http://arxiv.org/abs/2002.08245
http://arxiv.org/abs/2109.03918
http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/2211.02193
https://doi.org/10.1007/978-3-030-16670-0_5

Improving Image Filter Efficiency:
A Multi-objective Genetic Algorithm Approach

to Optimize Computing Efficiency

Julien Biau1 , Sylvain Cussat-Blanc2(B) , and Hervé Luga2

1 INIA SAS, Toulouse, France
julien.biau@gmail.com

2 University of Toulouse, Toulouse, France
sylvain.cussat-blanc@ut-capitole.fr, herve.luga@irit.fr

Abstract. For real-time applications in embedded systems, an efficient image
filter is not defined solely by its accuracy but by the delicate balance it strikes
between precision and computational cost. While one approach to manage an
algorithm’s computing demands involves evaluating its complexity, an alterna-
tive strategy employs a multi-objective algorithm to optimize both precision and
computational cost.

In this paper, we introduce a multi-objective adaptation of Cartesian Genetic
Programming aimed at enhancing image filter performance. We refine the exist-
ing Cartesian Genetic Programming framework for image processing by inte-
grating the elite Non-dominated Sorting Genetic Algorithm into the evolutionary
process, thus enabling the generation of a set of Pareto front solutions that cater
to multiple objectives.

To assess the effectiveness of our framework, we conduct a study using a
Urban Traffic dataset and compare our results with those obtained using the stan-
dard framework employing a mono-objective evolutionary strategy. Our findings
reveal two key advantages of this adaptation. Firstly, it generates individuals with
nearly identical precision in one objective while achieving a substantial enhance-
ment in the other objective. Secondly, the use of the Pareto front during the evo-
lution process expands the research space, yielding individuals with improved
fitness.

Keywords: Genetic Programming · Cartesian Genetic Programming ·
Multi-Objective · Genetic Improvement · Image processing · Real Time
Applications · Embedded Systems

1 Introduction

When employing image filters on embedded systems with limited computing power,
the challenge extends beyond precision; one must also consider the constraints of com-
putational capacity. In the realm of real-time applications on embedded systems, an
efficient image filter is one that strikes an optimal balance between fitness and compu-
tational time.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 19–34, 2024.
https://doi.org/10.1007/978-3-031-56852-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_2&domain=pdf
http://orcid.org/0000-0001-6563-3472
http://orcid.org/0000-0003-1360-1932
http://orcid.org/0000-0001-8675-197X
https://doi.org/10.1007/978-3-031-56852-7_2

20 J. Biau et al.

While assessing an algorithm’s complexity is a common practice, involving mea-
surements of time and estimations of worst-case scenarios, controlling the equilibrium
between precision and computation time remains a nuanced challenge. An alternative
approach involves the use of multi-objective algorithms to concurrently optimize preci-
sion and computation.

In this work, we introduce a multi-objective evolutionary strategy within the frame-
work of Cartesian Genetic Programming for Image Processing for Genetic Improve-
ment (CGP-IP-GI). Our approach accounts for both filter precision and execution time,
yielding a range of high-performing solutions. The choice of solution depends on the
desired fitness level or the available computing power. Additionally, our multi-objective
adaptation results in solutions with improved fitness when compared to previous mono-
objective studies.

This paper is organized as follows: Sect. 2 presents the state-of-the-art in multi-
objective genetic algorithms, while Sect. 3 outlines the adaptation of CGP-IP-GI, incor-
porating the elite non-dominated sorting genetic algorithm to achieve multi-objective
optimization. Section 4 details the experiments underpinning this research, and Sect. 5
offers a comprehensive presentation of the results. Finally, in Sect. 6, we present our
preliminary conclusions.

2 Related Works

This section discusses prior research in the realm of multiple objective problems, with
a specific focus on the field of genetic algorithms. It also introduces Cartesian Genetic
Programming for Image Processing (CGP-IP) and its recent advancement for genetic
enhancement (CGP-IP-GI).

2.1 Multi-objective Evolution Algorithms

In contrast to a single-objective problem, which seeks to find an optimal solution, a
multi-objective problem entails the simultaneous optimization of multiple objective
functions. Enhancing one aspect in a multi-objective problem may have detrimental
effects on the outcomes of other objectives. As a result, multi-objective genetic algo-
rithms aim to generate a collection of efficient solutions that belong to the Pareto-
optimal front.

Mathematically, the concept of Pareto optimality can be formally defined as follows
(Eq. 1). Assuming, without loss of generality, a maximization problem, and given two
decision vectors a and b belonging to the decision space X, vector a is said to dominate
vector b if and only if:

{∀i ∈ [1,2, ...,n] : fi(a)>= fi(b)
∃ j ∈ [1,2, ...,n] : f j(a)> f j(b)

(1)

All decision vectors which are not dominated by any other decision vector of a given
set are called nondominated regarding this set. If it is clear from the context which set
is meant, we simply leave it out. The decision vectors that are nondominated within the

A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency 21

entire search space are denoted as Pareto optimal and constitute the Pareto-optimal set
or Pareto-optimal front.

Non-dominated Sorting Genetic Algorithm
The Non-dominated Sorting Genetic Algorithm (NSGA), originally developed by Sri-
vas and Deb [28], follows a methodology that starts by randomly sorting the obtained
solutions based on their dominance. Within each subpopulation, the algorithm computes
the proximity between solutions, and selection is carried out using the roulette method.
This method gives a higher probability to solutions from the first non-dominated sub-
population. New solutions are generated through a combination of crossover and muta-
tion applied to the selected solutions, and the algorithm continues its search for solu-
tions until a predefined stop criterion is met. NSGA ranks solutions based on their
dominance and assigns precision values.

NSGA has also been employed in a study focused on optimizing Stirling thermal
engines, with the goal of achieving maximum power, thermal efficiency, and minimum
pressure drop [1].

Fig. 1. The crowding distance is computed, with points identified by filled circles representing
solutions belonging to the same nondominated front. (Source [6])

Elitist Non-dominated Sorting Genetic Algorithm
The elite non-dominated sorting genetic algorithm (NSGA-II), introduced by Deb and
Goel [7,8], bears resemblance to NSGA. However, NSGA-II employs the crowding
distance to select the most isolated results (as depicted in Figs. 1 and 2), eliminating the
need to calculate the precision parameter (σshare). Consequently, the algorithm ensures
that the optimal Pareto solution discovered up to the current step is retained. The solu-
tion selection mechanism is employed to control population size, although this approach
may diminish proximity to the optimal solution. As long as the number of solutions with
the first non-dominated solutions does not exceed the number of primary populations,
all solutions in this set are selected.

2.2 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a form of Genetic Programming (GP)
in which programs are represented as directed, often acyclic graphs indexed by

22 J. Biau et al.

Fig. 2. Basics of NSGA-II procedure. (Source [14])

Cartesian coordinates (Fig. 3). CGP was invented by Miller and Thomson [20], [22]
for use in evolving digital circuits, although it has been applied in a number of domains
[23]. CGP is used in [16] to evolve neural networks, in [5,10] for object detection in
image processing, and in [15] for image noise reduction. Its benefits include node neu-
trality, being the encoded parts of the genome that don’t contribute to the interpreted
program, node reuse, and a fixed representation that reduces program bloat [21]. A
recent review of CGP is given in [24].

Fig. 3. A genotype in the form of a CGP (Cartesian Genetic Programming) and its associated
schematic phenotype are presented for a group of four mathematical equations. The genes high-
lighted in the genotype dictate the function of individual nodes. The addresses for each program
input and node in both the genotype and phenotype are displayed below. Inactive regions of
both the genotype and phenotype are depicted as grey dashes, specifically in the case of node 6.
(Source [25]). (Color figure online)

In CGP, functional nodes, defined as a set of evolved genes, connect to program
inputs and to other functional nodes via their Cartesian coordinates. The outputs of the
program are taken from any internal node or program input based on evolved output
coordinates. The CGP nodes are organized in a rectangular grid with R rows and C
columns. Nodes have the flexibility to establish connections with any node from pre-
ceding columns, and this connectivity is governed by a parameter L, representing the
number of columns to which a node can connect. In this investigation, consistent with
previous studies such as [24], the value of R is set to 1, indicating that all nodes reside
in a single row.

A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency 23

The CGP genotype consists of a list of node genes; each node in the genome encodes
the node function, the coordinates of the function inputs (here referred to as Connection
0 and Connection 1), and optionally, the parameters for the node function. Finally, the
end of the genome encodes the nodes that give the final program output. By tracing
back from these output nodes, a single function can be derived for each program output
by offering a concise and legible program representation.

The genes in CGP are optimized through using the 1+λ algorithm. A population of
λ individuals are randomly generated and evaluated on a test problem. The evaluation
is performed by decoding the program graph from the individual genotype and apply-
ing the program to a specific problem such as image masking, as in this study. The
best individual based on this evaluation is retained for the next generation. A mutation
operator is applied to this individual to create λ new individuals; in CGP, the mutation
operator randomly samples a subset of new genes from a uniform distribution. This new
population is evaluated, and the best individual is retained for the next generation; this
iterative process continues until a configured stopping criterion.

2.3 Cartesian Genetic Programming for Image Processing

An important choice to make when using CGP is the set of possible node functions. In
the original circuit design, the node functions are logic gates such as AND and NOR.
Applications of CGP in game playing and data analysis use a standard set of mathemat-
ical functions such as x+ y, x ∗ y, and cos(x) for a node with inputs x and y. Function
sets must be defined such that outputs of any node will be valid for another node; in
mathematical functions, this is often guaranteed by limiting the domain and range of
the functions between –1 and 1.

CGP-IP is an adaption of CGP that uses image processing functions and applies
programs directly to images [10]. The inputs and outputs of the evolved functions
are images that allows for consistency between node functions; each node function is
defined to input an image of a fixed size and output an image of the same size. CGP-IP
has previously used a set of 60 functions [10] from OpenCV, a standard open-source
image processing library.

In a previous work [10], CGP-IP has used an island population distribution algo-
rithm. In this method, multiple populations compete inside “islands" that are indepen-
dent 1+ λ evolutionary algorithms. A migration interval parameter dictates the fre-
quency of expert sharing between islands, allowing for the synchronization of the best
individual across islands. Island models have been shown to be good alternatives to the
genetic algorithm, as they help preserve genetic diversity [30]. Their use in CGP-IP has
demonstrated an improvement compared to the 1+λ algorithm.

CGP-IP individuals are evaluated by applying the evolved filter to a set of images,
comparing them to target images, and computing a difference metric between the output
image from the evolved filter and the target such as the mean error or Matthews Corre-
lation Coefficient (MCC) [19]. In this paper, we use MCC, which measures the quality
of binary classification and has been showed particularly adapted to classification tasks
using CGP [9]. Calculations are based on the confusion matrix, which is the count of the
true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).

24 J. Biau et al.

mcc=
TPxTN−FP∗FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(2)

A MCC with a score of 1 corresponds to a perfect classification, 0 to a random
classifier, and –1 to a fully inverted classification. Therefore, our fitness function for
evolution is defined as follows:

f itness= 1−mcc (3)

The closer our fitness value is to 0, the more accurate our phenotype is.

2.4 Genetic Improvement

Genetic Improvement (GI) is a relatively recent field of software engineering research
that uses search to improve existing software [26]. Using handwritten code as a starting
point, GI searches the space of program variants created by applying mutation opera-
tors. The richness of this space depends on the power and expressivity of the mutation
operators, which can modify existing code by changing functions or parameters, add
new code, and, in some cases, remove parts of a program. Over the past decade, the
GI field has greatly expanded, and current research on GI has demonstrated its many
potential applications. GI has been used to fix software bugs [2,18], drastically speed
up software systems [18,29], port a software system between different platforms [17],
transplant code features between multiple versions of a system [27], grow new func-
tionalities [12], and more recently to improve memory [31] and energy usage [4].

The majority of GI work uses GP to improve the programs under optimization
[2,17,18,27,29]. In most methods, applying GI on a existing program is achieved by
encoding the program within a GP tree and then computing the corresponding genome.
GP mutation operators are applied to the encoded program to generate adjacent pro-
grams. To this end, both the program encoding and the operators must be defined to suit
the initial program that is to be enhanced with additional functions to improve the func-
tional graph. The fitness used during the evolutionary optimization of the program can
be based on various metrics such as program length, efficiency, or relevance to given
test cases [2,17,29].

2.5 Genetic Improvement in Cartesian Genetic Programming for Image
Processing

In this section, we describe the node insertion and deletion operators designed for GI
with CGP-IP [3]. In general, CGP can create a graph through the random mutation of
node gene parameters such as connections or functions. However, this can be destructive
when improving a given genome, because the modifications to active nodes can remove
parts of the function graph. Previous research has proposed self-modifying genomes
[11] which use functions which can add or remove nodes upon function execution.
CGP-IP-GI propose node insertion and deletion operators during the mutation process
instead of during the execution of the program. These operators are designed to maintain
the active subgraph of a program, that is, they are not destructive.

A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency 25

The mutation operator comprises three possible operators: node insertion, node
deletion, and standard parameter modification using a uniform distribution. The node
operators have configurable mutation rates: rins and rdel . If one of these structural oper-
ators is chosen, it will be the only mutation performed; otherwise, standard mutation
occurs. In this study, we use rins = 0.1 and rdel = 0.1 for all experiments.

3 Multi-objective Implementation in Cartesian Genetic
Programming for Image Processing

To accomplish multi-objective optimization, we will employ the NSGA-II algorithm.
In order to do so, it is imperative to adapt CGP-IP-GI by making adjustments to its
evolutionary algorithm and integrating a Pareto front as the evaluation function.

3.1 Evolutionary Algorithm

In the typical scenario, CGP-IP-GI employs an evolutionary algorithm with a µ+ λ
strategy, where µ = 1 parent generates λ children. However, to ensure that the Pareto
front is adequately representative, it becomes essential to consider µ> 1. Accordingly,
the evolution phase is adjusted to enable the generation of λ children from µ parents.

3.2 Adapting NSGA-II for CGP-IP-GI

In order to maintain multiple candidates following each selection phase, it becomes
necessary to replace the evaluation function that previously considered only one objec-
tive with the NSGA-II algorithm, which takes into account two objectives and enables
the selection and retention of a set of solutions.

The NSGA-II algorithm can be divided into two phases: the first phase involves the
elimination of dominated solutions, while the second phase focuses on preserving the
most isolated solutions by sorting them.

Selection of Non-dominated Solutions
Solutions not belonging to the Pareto front or dominated solutions are deleted. Only
non-dominated solutions are retained (Algorithm 1). A solution x ∈ E dominates if x’
∈ E if:

∀i, fi(x) ≤ fi(x′) and ∃i, fi(x)< fi(x′) (4)

with fi(x) the function of objective i

Sorting by Isolation Distance
If the number of non-dominated solutions is greater than the number of parents µ, it is
necessary to sort and retain only µ solutions. The extreme points must be kept in each
generation and, therefore, be assigned an infinite crowding distance. For each solution
between the extreme points, the crowding distance between the previous solution and
the next solution is calculated. Solutions are sorted by crowding distance and the µ
solutions with the greatest distance are kept (Algorithm 2).

26 J. Biau et al.

Algorithm 1: Removal of dominated solutions
Data: solutions is an array containing all solutions
Result: frontpareto contains the solutions on the Pareto front
solutions.sort([fitness,duration]);
for i ← 0 to solutions.length−1 do

front = True;
for j ← i+1 to solutions.length do

if solutions[i].duration≥solutions[j].duration then
front = False;

end
end
if front then

frontpareto.push(solutions[i])
end

end
frontpareto.push(solutions[solutions.length-1]);

Algorithm 2: Sorting solutions by crowding distance and selecting µ solutions
Data: solutions is an array containing all solutions
Result: parents contains µ solutions to use as parents
for i ← 1 to solutions.length−1 do

solutions[i].crowding = abs(solutions[i-1].fitness - solutions[i+1].fitness) +
abs(solutions[i-1].duration - solutions[i+1].duration)

end
parents.push(solutions[0]);
parents.push(solutions[-1]);
solutions.sort(crowding);
for i ← 0 to µ−2 do

parents.push(solutions[i]);
end

3.3 Synchronization of Islands

CGP-IP-GI uses a distribution of individuals who evolve on different islands. The
islands are synchronized at a fixed interval. Synchronization involves taking the best
of individuals from all the islands and implanting them as a parent individual on all the
islands. The synchronization process is adapted to use the NSGA-II algorithm. During
synchronization, all the individuals of each island are grouped together, and only the
individuals belonging to the Pareto front are kept. If the number of individuals retained
on the Pareto font is greater than µ (number of parents), a sorting by isolation distance
is applied to keep only the most isolated individuals. The remaining µ individuals are
implanted in the place of the previous parents on each island.

A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency 27

3.4 Objectives Functions

In the study presented in this paper, we will be optimizing two objectives simultane-
ously. The first objective pertains to result precision, and the objective function for
precision is defined as: 1−MCC. Details on how to calculate this objective function
can be found in Sect. 2.3 above. A lower value of the objective function implies better
precision, and thus, the goal is to minimize it.

The second objective focuses on the execution time of the computation. To measure
computation time, we employ the Python function process_time1. This function cor-
responds to the time required for executing the precision objective function. A smaller
result of this objective function indicates a shorter computation time, and the objective
here is also to minimize it.

4 Experiments

To assess this multi-objective adaptation in the context of Genetic Improvement (GI),
we will apply the same experimental conditions as those outlined in a prior publication
on image filter optimization using CGP-IP-GI [3]. This approach enables us to evaluate
and, subsequently, compare the outcomes of the multi-objective adaptation with the
results obtained in the single-objective version.

4.1 Urban Traffic Dataset

Fig. 4. Example from the urban traffic image dataset

In this study, we employed CGP-IP for the purpose of object identification within a
cityscape. The dataset is sourced from urban traffic livestream cameras2, and we gener-
ated output masks using Mask-RCNN [13]. These masks are used to isolate and retain
only the relevant objects within the scene. The primary objective of this dataset is to
create a filter capable of extracting and tracking specific objects in the video stream.
To achieve this, the filter must discern the moving objects from one frame to the next

1 https://docs.python.org/3/library/time.html.
2 https://camstreamer.com/live/streams/14-traffic.

https://docs.python.org/3/library/time.html
https://camstreamer.com/live/streams/14-traffic

28 J. Biau et al.

in a sequence of five-minute videos. The videos are captured in 16-bit RGB color with
a resolution of 1024×576 pixels. Prior to input, we convert the images into grayscale
(as depicted in Fig. 4.A). The target classification (as shown in Fig. 4.B) is aimed at
identifying significant objects such as pedestrians and vehicles.

The expert filter used in this dataset was designed by engineers. It functions by
subtracting the previous image from the current image and applying erode and dilate
function to remove the noise. For this dataset, evolution was run for 5000 generations
over forty independent trials.

4.2 CGP-IP Parameters

In this work, we have used the following parameters for CGP-IP:

– R: number of rows in CGP is 1
– C: number of columns in CGP is set to 50 but can change with the node addition and

deletion operators
– rmut : mutation rate for each gene is 0.25
– rins: node insertion mutation operator rate is 0.1
– rdel : node deletion mutation operator rate is 0.1
– number of islands: number of parallel 1+λ evolutions is 4
– µ: number of parents on each island is 4
– λ: population size on each island is 8
– Synchronisation interval between islands: number of generations before islands that
synchronize with the chromosome with the best fitness is 20

– number of generations is 5000

Each node within the graph is encoded with eight parameters. The first parameter
signifies an index within the list of image processing functions. The second parame-
ter, “Connection 0”, represents a connection with a preceding node, where the output
of the preceding node serves as the input for the function. The third parameter, “Con-
nection 1”, is also a connection with a previous node, using its output as input for the
function (although not all functions make use of “Connection 1”). The fourth, fifth, and
sixth parameters, labeled “Parameters 0”, “Parameters 1”, and “Parameters 2”, are real
numbers corresponding to the first, second, and third parameters of the function. These
parameters are not necessarily used because not all functions require three parameters.
For instance, Gabor Filter parameters are only utilized in conjunction with Gabor filter
functions. Throughout the evolution process, mutations can occur on the function index,
connections, or parameters.

4.3 Image Processing Functions

The function set employed in this study is primarily derived from the CGP-IP func-
tion set [10]. However, it’s important to note that new functions have been introduced
into the OpenCV library since the publication of the previous work. In addition to the
pre-existing list of image processing functions [10] integrated into CGP-IP, we have
incorporated two additional OpenCV functions: “watershed” and “distance transform”.

A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency 29

Table 1. Significant values of the Pareto front at generation 5000 over 40 runs

Fitness 1.0 0.70 0.59 0.55 0.52 0.50 0.49 0.49 0.39 0.38 0.36 0.35

Duration 0.09 0.12 0.18 0.33 0.66 1.05 1.79 2.58 2.63 3.13 7.65 11.7

5 Results

In this section, we present the results obtained from our dataset over the course of
5000 generations and across 40 independent runs. The application of a multi-objective
algorithm enabled us to procure a diverse range of efficient solutions catering to both
objectives.

Fig. 5. All individuals over 40 runs for generation 1 (A), 100 (B) and 1000 (C). The line corre-
sponds to Pareto front.

Figure 5 depicts the Pareto front at generation 1 in blue, generation 100 in green,
and generation 1000 in red over the 40 runs. During this evolutionary progression, we
observe a significant enhancement in precision from generation 1 to 1000, coinciding
with a stabilization in execution time. Beyond generation 1000 and up to 5000, only
four solutions exhibit noticeable precision improvements.

Figure 6.A showcases the evolution of the mean and standard deviation of the best
precision achieved in each of the 40 runs throughout 5000 generations. This graph high-
lights a pronounced surge in precision up to generation 500, followed by a gradual
but continuous improvement, with the standard deviation progressively increasing from
generation 3500 and doubling by generation 5000.

Figure 6.B illustrates the evolution of the mean and standard deviation of the short-
est execution duration in each of the 40 runs over 5000 generations. Here, we observe
an increase in both mean and standard deviation up to generation 250, after which they
remain at consistent levels until generation 5000.

A close examination of Figs. 6.A and 6.B uncovers the intertwined nature of preci-
sion and execution time, which stabilizes after generation 300.

Figure 7 showcases the solutions comprising the Pareto front at generation 5000,
encompassing a wide array of solutions to accommodate diverse objectives. Table 1
provides a summary of representative values from this Pareto front.

Figure 8.A presents the evolution of the mean and standard deviation of the number
of active nodes for the best precision achieved in each of the 40 runs throughout 5000

30 J. Biau et al.

Fig. 6. Average and standard deviation of the best precision and shortest duration over 40 runs

Fig. 7. Pareto front at generation 5000 over 40 runs

generations. Notably, there is a consistent rise in both the mean and standard deviation
of active nodes during the entire 5000-generation span.

Figure 8.B mirrors this trend, capturing the evolution of the mean and standard devi-
ation of the number of active nodes for the shortest execution duration in each of the 40
runs over 5000 generations. We observe an increase in both mean and standard devia-
tion up to generation 200, followed by a stable trajectory up to generation 5000. The
comparative analysis of Figs. 6 and 8 underscores the connection between improved
objectives and an increased number of active nodes.

The Pareto front established after 5000 generations provides a broad spectrum of
solutions, with precision ranging from 0.36 to 1.0 and execution times spanning from
90 milliseconds to 11.7 s (see Table 1). This diversity enables the selection of solutions
based on the interplay of these two objectives. For instance, even when the highest
precision achieved is 0.35, there exists a solution offering slightly less precision (0.39,
i.e., a 10% reduction) but with a significantly shorter execution time (2.63 s instead of
11.7 s, representing a computational cost reduction of 78%).

5.1 Comparing Multi-objective to Mono-objective Results

The CGP-IP-GI framework has previously been examined in a single-objective setup
using the same dataset and CGP-IP parameters [3], and Fig. 9 is extracted from this
prior publication.

In Fig. 9.A, we observe the evolution of both the mean and standard deviation of
precision over 40 runs spanning 5000 generations. When compared to Fig. 6.A, both
graphs exhibit a consistent and swift enhancement up to generation 500, followed by a

A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency 31

Fig. 8. Average and standard deviation of the number of actives nodes of the best precision and
the shortest duration over 40 runs

Fig. 9. Average and standard deviation of the precision and the number of actives nodes over 40
runs from [3]

more gradual improvement. Notably, the standard deviations in both figures are quite
similar. The multi-objective adaptation yields a slightly improved precision (2%) at the
5000th generation.

Moving to Fig. 9.B, it illustrates the progression of the mean and standard deviation
of the number of active nodes over 40 runs during 5000 generations. In comparison
with Fig. 8.A, both graphs display a parallel evolution characterized by a continuous
increase in the number of active nodes and a comparable standard deviation. At the
5000th generation in Fig. 9.A, the mean value stands at 0.53, with a minimum of 0.44,
a maximum of 0.59, and a standard deviation of 0.03 (as outlined in Table 2). While
the mean precision in Figs. 9.A and 6.A displays a slight difference at the 5000th gen-
eration, comparing their best fitness demonstrates that the multi-objective adaptation
enables the attainment of individuals with superior fitness. Significantly, the T-test p-
value between Figs. 6.A and 9.A falls below 1e−5.

The results from this experiment, conducted over 40 runs and spanning 5000 gen-
erations, reveal a consistent improvement in accuracy, as well as an ongoing increase
in the number of active nodes. Moreover, when compared to the outcomes of previous
studies [3], our findings demonstrate that the use of a multi-objective algorithm does
not compromise precision over the course of 5000 generations. On the contrary, main-
taining a Pareto front during the evolution process, as opposed to a single individual,
results in an expanded search space and leads to more optimal solutions.

32 J. Biau et al.

Table 2. Comparing of multi-objective and mono-objective [3] results

Evolutionary algorithm Mean Fitness Min Fitness Standard deviation

Mono-objective 0.53 0.44 0.03

Multi-objective 0.5 0.35 0.02

6 Conclusion

In this study, our primary objective was to investigate the feasibility of effectively man-
aging the computational demands inherent in the genetic evolution of image filters.
We pursued a multi-objective approach by enhancing the adaptability of CGP-IP-GI to
accommodate multiple objectives.

The results obtained from our experiments involving this multi-objective adaptation
have provided valuable insights. They offer a range of solutions that belong to a Pareto
front, where a slight reduction in precision leads to a substantial reduction in compu-
tation time. Maintaining a Pareto front throughout the evolution process, rather than
relying on a single individual, significantly expands the search space, thus facilitating
the discovery of efficient solutions.

This study, in conjunction with comparisons to prior publications, reinforces the
notion that it is indeed possible to reduce the computational time required for image
filters while preserving precision. This outcome holds significant promise for the uti-
lization of GP-based algorithms in embedded applications, freeing up computational
resources for other essential tasks. Additionally, our findings underscore the efficiency
of adapting the NSGA-II algorithm within genetic algorithms for genetic improvement.

In practical terms, the evolution of the CGP-IP-GI framework now enables the
execution of multi-objective genetic improvement, offering a wide array of effective
solutions for various objectives. The selection of the most suitable solution remains a
human-driven process, aligning with the specific constraints and requirements of the
application. For systems with limited computing power, the dynamic adaptation to the
available computational resources from this pool of solutions holds substantial poten-
tial.

One noteworthy avenue that merits exploration is the use of multi-objective algo-
rithms to expand the search space of single-objective algorithms. While our study
primarily aimed to reduce computational time as the second objective, an intriguing
prospect exists in controlling the number of active nodes. This approach could involve
either minimizing or maximizing them. The selection of the most suitable secondary
objective to maximize the search space warrants further investigation.

Furthermore, our findings open the door to the exploration of divergent search
approaches, offering the possibility of combining directed search, computational cost
optimization, and divergent search. This avenue holds promise for future research to
unlock new levels of efficiency and effectiveness in the field of genetic improvement.

A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency 33

References

1. Ahmadi, M.H., Hosseinzade, H., Sayyaadi, H., Mohammadi, A.H., Kimiaghalam, F.:
Application of the multi-objective optimization method for designing a powered stirling
heat engine: Design with maximized power, thermal efficiency and minimized pressure
loss. Renewable Energy 60, 313–322 (2013) . https://doi.org/10.1016/j.renene.2013.05.
005,https://www.sciencedirect.com/science/article/pii/S0960148113002504

2. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug fixing. In:
2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computa-
tional Intelligence), pp. 162–168 (2008). https://doi.org/10.1109/CEC.2008.4630793

3. Biau, J., Wilson, D., Cussat-Blanc, S., Luga, H.: Improving image filters with cartesian
genetic programming. In: Proceedings of the 13th International Joint Conference on Compu-
tational Intelligence (IJCCI 2021), ECTA, vol. 1, pp. 17–27. INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010640000003063

4. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic improve-
ment. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2015, pp. 1327–1334. Association for Computing Machinery, New York
(2015). https://doi.org/10.1145/2739480.2754752,https://doi.org/10.1145/2739480.2754752

5. Cortacero, K., et al.: Evolutionary design of explainable algorithms for biomedical image
segmentation. Nat. Commun. (2023)

6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

7. Deb, K., Goel, T.: Controlled elitist non-dominated sorting genetic algorithms for better con-
vergence. In: Eckart, Z., Lothar, T., Kalyanmoy, D., Artemio, C.C., David, C. (eds.) Evolu-
tionary Multi-Criterion Optimization, pp. 67–81. Springer, Berlin (2001). https://doi.org/10.
1007/3-540-44719-9_5

8. Deb, K., Goel, T.: A hybrid multi-objective evolutionary approach to engineering shape
design. In: Eckart, Z., Lothar, T., Kalyanmoy, D., Artemio, C.C., David, C. (eds.) Evolu-
tionary Multi-Criterion Optimization, pp. 385–399. Springer, Berlin (2001). https://doi.org/
10.1007/3-540-44719-9_27

9. Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: Mt-cgp: Mixed type cartesian genetic
programming. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2012, pp. 751–758. Association for ComputingMachinery, NewYork
(2012). https://doi.org/10.1145/2330163.2330268,https://doi.org/10.1145/2330163.2330268

10. Harding, S., Leitner, J., Schmidhuber, J.: Cartesian Genetic Programming for Image Pro-
cessing, pp. 31–44. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6846-
2_3

11. Harding, S.L., Miller, J.F., Banzhaf, W.: Self-Modifying Cartesian Genetic Programming,
pp. 101–124. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-17310-3_4

12. Harman, M., Jia, Y., Langdon, W.B.: Babel pidgin: Sbse can grow and graft entirely new
functionality into a real world system. In: Le Goues, C., Yoo, S. (eds.) Search-Based Soft-
ware Engineering, pp. 247–252. Springer International Publishing, Cham (2014). https://doi.
org/10.1007/978-3-319-09940-8_20

13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn (2018)
14. Jafarian, F., Amirabadi, H., Sadri, J.: Application of multi-objective optimization algorithm

and artificial neural networks at machining process (March 2013)
15. Kalkreuth, R., Rudolph, G., Krone, J.: More efficient evolution of small genetic programs in

Cartesian Genetic Programming by using genotypie age. In: 2016 IEEE Congress on Evolu-
tionary Computation (CEC), pp. 5052–5059. IEEE (Jul 2016). https://doi.org/10.1109/CEC.
2016.7748330,https://ieeexplore.ieee.org/document/7748330/

https://doi.org/10.1016/j.renene.2013.05.005,
https://doi.org/10.1016/j.renene.2013.05.005,
https://www.sciencedirect.com/science/article/pii/S0960148113002504
https://doi.org/10.1109/CEC.2008.4630793
https://doi.org/10.5220/0010640000003063
https://doi.org/10.1145/2739480.2754752
https://doi.org/10.1145/2739480.2754752
https://doi.org/10.1007/3-540-44719-9_5
https://doi.org/10.1007/3-540-44719-9_5
https://doi.org/10.1007/3-540-44719-9_27
https://doi.org/10.1007/3-540-44719-9_27
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1145/2330163.2330268
https://doi.org/10.1007/978-1-4614-6846-2_3
https://doi.org/10.1007/978-1-4614-6846-2_3
https://doi.org/10.1007/978-3-642-17310-3_4
https://doi.org/10.1007/978-3-319-09940-8_20
https://doi.org/10.1007/978-3-319-09940-8_20
https://doi.org/10.1109/CEC.2016.7748330
https://doi.org/10.1109/CEC.2016.7748330
https://ieeexplore.ieee.org/document/7748330/

34 J. Biau et al.

16. Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of cartesian genetic programs for devel-
opment of learning neural architecture. Evol. Comput. 19(3), 469–523 (2011) https://doi.org/
10.1162/EVCO_00043

17. Langdon, W.B., Harman, M.: Evolving a cuda kernel from an nvidia template. In: IEEE
Congress on Evolutionary Computation, pp. 1–8 (2010). https://doi.org/10.1109/CEC.2010.
5585922

18. Langdon, W.B., Harman, M.: Optimizing existing software with genetic programming. IEEE
Trans. Evol. Comput. 19(1), 118–135 (2015). https://doi.org/10.1109/TEVC.2013.2281544

19. Matthews, B.: Comparison of the predicted and observed secondary structure of t4
phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 405(2), 442–
451 (1975). https://doi.org/10.1016/0005-2795(75)90109-9,https://www.sciencedirect.com/
science/article/pii/0005279575901099

20. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a
cartesian genetic programming approach. In: Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation, GECCO 1999, vol. 2, pp. 1135–1142. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (1999)

21. Miller, J.F.: What bloat? cartesian genetic programming on boolean problems. In: 2001
Genetic and Evolutionary Computation Conference Late Breaking Papers, pp. 295–302
(2001). https://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf

22. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Genetic Programming.
pp. 121–132. Springer, Berlin Heidelberg (2000). doi: https://doi.org/10.1007/978-3-642-
17310-3_2

23. Miller, J.F.: Cartesian genetic programming. Springer (2011)
24. Miller, J.F.: Cartesian genetic programming: its status and future. Genetic Program. Evolv-

able Mach. 1–40 (2019)
25. Miragaia, R., Fernández, F., Reis, G., Inácio, T.: Evolving a multi-classifier system for multi-

pitch estimation of piano music and beyond: an application of cartesian genetic program-
ming. Appl. Sci. 11(7), 2902 (2021)

26. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward, J.R.:
Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol. Comput.
22(3), 415–432 (2018). https://doi.org/10.1109/TEVC.2017.2693219

27. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement and code
transplants to specialise a c++ program to a problem class. In: Nicolau, M., et al. (eds.)
Genetic Programming, pp. 137–149. Springer, Berlin Heidelberg, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44303-3_12

28. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic
algorithms. Evol. Comput. 2(3), 221–248 (1994). https://doi.org/10.1162/evco.1994.2.3.221

29. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Trans.
Evol. Comput. 15(4), 515–538 (2011). https://doi.org/10.1109/TEVC.2010.2083669

30. Whitley, D., Rana, S., Heckendorn, R.: The island model genetic algorithm: On separability,
population size and convergence. J. Comput. Inform. Technol. 7 (1998)

31. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation. In:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO 2015, pp. 1375–1382. Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2739480.2754648

https://doi.org/10.1162/EVCO_00043
https://doi.org/10.1162/EVCO_00043
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1016/0005-2795(75)90109-9,
https://www.sciencedirect.com/science/article/pii/0005279575901099
https://www.sciencedirect.com/science/article/pii/0005279575901099
https://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1007/978-3-662-44303-3_12
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1109/TEVC.2010.2083669
https://doi.org/10.1145/2739480.2754648

Low-Memory Matrix Adaptation
Evolution Strategies Exploiting Gradient

Information and Lévy Flight

Riccardo Lunelli and Giovanni Iacca(B)

Department of Information Engineering and Computer Science, University of Trento,
Trento, Italy

riccardo.lunelli-1@studenti.unitn.it, giovanni.iacca@unitn.it

Abstract. The Low-Memory Matrix Adaptation Evolution Strategy is
a recent variant of CMA-ES that is specifically meant for large-scale
numerical optimization. In this paper, we investigate if and how gradi-
ent information can be included in this algorithm, in order to enhance its
performance. Furthermore, we consider the incorporation of Lévy flight
to alleviate stability issues due to possibly unreliably gradient estimation
as well as promote better exploration. In total, we propose four new vari-
ants of LMMA-ES, making use of real and estimated gradient, with and
without Lévy flight. We test the proposed variants on two neural network
training tasks, one for image classification through the newly introduced
Forward-Forward paradigm, and one for a Reinforcement Learning prob-
lem, as well as five benchmark functions for numerical optimization.

Keywords: Low-Memory Matrix Adaptation Evolution Strategy ·
Lévy Flight · Forward-Forward Algorithm · Reinforcement Learning ·
Gradient

1 Introduction

The Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [1] is a well-
known evolutionary algorithm that, to date, is considered among the state-of-
the-art evolutionary optimizers for real-valued, box-constrained optimization.
The main strength of this algorithm consists of the use of a Covariance Matrix,
calculated over a subset of the best individuals in each generation of the evo-
lutionary process, for building a multivariate Gaussian distribution model. This
model is employed, at each generation, to sample the directions for the mutation
step of the ES algorithm. Then, the covariance matrix is adapted at each gen-
eration in order to increase the probability of mutations along the most promis-
ing mutation directions. As such, CMA-ES performs an inherent dimensionality
reduction, aimed at identifying the principal directions of improvement over the
fitness landscape at hand. On top of this Covariance Matrix Adaptation (CMA)
mechanism, CMA-ES also uses the so-called Cumulative Step-size Adaptation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 35–50, 2024.
https://doi.org/10.1007/978-3-031-56852-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_3&domain=pdf
http://orcid.org/0000-0001-9723-1830
https://doi.org/10.1007/978-3-031-56852-7_3

36 R. Lunelli and G. Iacca

(CSA) [2], which is a method that complements the effect of CMA (that pro-
vides promising mutation directions) by adapting the step-size in a way that
keeps track of a history of previous step-sizes. Overall, the two mechanisms
together (CMA and CSA) allow the algorithm to conduct an efficient search
even in complex, multi-modal fitness landscapes.

Despite its well-established effectiveness in terms of optimization, which was
demonstrated not only in single-objective, box-constrained problems [3,4] but
also in the context of multi-objective [5] and constrained optimization [6–8],
CMA-ES has however one main drawback, which is its heavy computational
complexity. In fact, the original version of CMA-ES is much more computa-
tionally expensive than traditional Evolution Strategies, as it needs to store in
memory the whole covariance adaptation (of size n2, where n is the problem size)
and adapt it at each generation (which requires several steps whose computa-
tional complexity is O(n2) [9]). Therefore, since its introduction several research
works have investigated various ways to simplify CMA-ES by either revisiting
the CMA process [10,11], introducing active covariance updates [12], or even
removing the covariance matrix altogether [13]. Other methods constraint the
covariance matrix to be diagonal [9], hence trading off the possibility of capturing
pairwise variable dependencies (which is instead possible in a full matrix) with a
reduced (i.e., linear) time and space complexity. Surprisingly, the authors in [9]
show that even though this variant (called sep-CMA-ES) is designed to handle
essentially separable functions, where it significantly outperforms the original
CMA-ES, for some large-scale non-separable problems, such as the Rosenbrock
function, it converges faster, and to comparable results, than CMA-ES.

Among these modified variants of CMA-ES, the recently proposed Low-
Memory Matrix Adaptation Evolution Strategies (LMMA-ES) algorithm [14]
differs from the original CMA-ES algorithm in that it builds an approximation
of the covariance matrix based on an iteratively updated transformation matrix
that takes into account only m << n dimensions (where m is a hyperparameter
that can in principle be as small as 1). As such, LMMA-ES dramatically reduces
the memory complexity of the original CMA-ES, hence resulting particularly
suitable for solving large-scale optimization problems.

While ES-based algorithms are mostly meant for zeroth order (and, in the
specific case of LMMA-ES, large-scale) optimization, hence without making use
of gradient information, this kind of algorithm can be an effective tool also in
those contexts where instead gradients are available, such as in neural network
training. For instance, in the context of Reinforcement Learning (RL), it has
been shown that ES can provide better scalability to traditional RL techniques
such as Q-learning and policy gradients [15].

In this work, we therefore address the question as to whether gradient infor-
mation can be incorporated into the LMMA-ES algorithm. In particular, we
present two variants of LMMA-ES, one that incorporates real gradient infor-
mation and another that uses an estimation of the gradient. Moreover, for the
two proposed variants of LMMA-ES, we also consider the incorporation of the
Lévy flight mechanism (see [16]), which is an alternative to random walk that

LMMA-ES Exploiting Gradient Information and Lévy Flight 37

allows occasional large perturbations hence facilitating escaping from possible
local minima, as a way to better balance the algorithm explorability with the
typical exploitativity of gradient-based search.

We test the proposed approaches on three classes of problems. First, we con-
sider the case of training of a neural network for image classification, using the
recently proposed Forward-Forward (FF) algorithm [17]. Subsequently, we con-
sider a classic control task, namely Cart Pole, as an instance of an RL problem.
Finally, we complete our experimentation by testing the algorithms on five well-
known benchmark functions, to investigate the scalability of our approaches.

The rest of the paper is structured as follows. The next section presents the
methods. Then, Sect. 3 and Sect. 4 present, respectively, the experimental setup
and the numerical results. Finally, Sect. 5 concludes this work.

2 Methods

LMMA-ES (Vanilla). Our baseline is the vanilla version of the LMMA-ES
algorithm, as proposed in [14]. As discussed in the introduction, LMMA-ES is
essentially a variant of CMA-ES that reduces the complexity of the covariance
matrix adaptation. Similarly to CMA-ES, at each generation, the algorithm
generates each new offspring xi by applying a Gaussian mutation, as follows:

xi = y + σ · N (0,C) (1)

where y is a weighted mean (i.e., the centroid) of μ best individuals in the
previous generation, σ is the step-size and C is the covariance matrix. As in
CMA-ES, the step-size is adapted by means of the CMA mechanism [2], which
allows the algorithm to learn the best step-size σ increasing it when recent steps
are in the same direction and decreasing it when steps tend to have different
directions. As said earlier, the main difference between CMA-ES and LMMA-ES
is instead in the way C is built and updated, since LMMA-ES takes into account
only m << n dimensions to estimate C. The other aspects of the algorithm are
in principle the same as in CMA-ES. We refer the reader to [14] for further
details about the structure of the LMMA-ES algorithm.

LMMA-ES (Real Gradient). In the original paper proposing LMMA-ES
[14], the authors suggested as a possible improvement of the algorithm using
momentum information based on the gradient, to enhance results. Here, we
incorporate this information by calculating the gradient of the centroid vector
y, i.e., its delta at every update step of the original LMMA-ES algorithm. The
gradient is used to compute the momentum vector, using either the AMSGrad
[18] variant of the Adam algorithm, or the legacy momentum1, depending on the
problem at hand (see Sect. 3). Following this, the momentum vector is scaled by
a constant factor and added to a noise vector, and then normalized. Note that
1 https://boostedml.com/2020/07/gradient-descent-and-momentum-the-heavy-ball-

method.html.

https://boostedml.com/2020/07/gradient-descent-and-momentum-the-heavy-ball-method.html
https://boostedml.com/2020/07/gradient-descent-and-momentum-the-heavy-ball-method.html

38 R. Lunelli and G. Iacca

each element of the noise vector is drawn from a Gaussian distribution N (0, 1).
The procedure for creating each i-th individual is then modified as follows:

zi = momentum · scale + noisei (2)
zi = zi/std(zi) (3)

where the scale factor is used as a hyperparameter to regulate how much infor-
mation of the momentum we want to use in our algorithm. Normalization is
necessary to maintain the std. dev. of the resulting vector zi at 1. It should
be noted that zi does not have zero mean, as it is biased in the direction of the
momentum. In other words, using the momentum it could be possible to bias the
creation of new individuals towards a better point in space. Thus, the formula
for the creation of new individuals, shown in Eq. (1), in this case becomes:

xi = y + σ · N (momentum · scale,C) (4)

where:
N (momentum · scale,C) = zi × L (5)

and L is the Cholesky decomposition of the covariance matrix: C = L×LT . The
reason for using the Cholesky decomposition is that it provides a lower triangu-
lar matrix L which, when multiplied by a vector sampled from a multivariate
Gaussian distribution, results in a vector that follows the desired multivariate
Gaussian distribution with covariance matrix C.

LMMA-ES (Estimated Gradient). This variant generalizes the previous one
for problems where gradient information is not readily available. When direct
gradient calculation is unfeasible, strategies for gradient estimation can in fact
be used. Although an estimated gradient might lack the precision of a directly
calculated one, it could still improve upon the vanilla LMMA-ES. The chosen
strategy for gradient estimation leverages information provided by the individ-
uals, necessitating only the calculation of the fitness value of y. Therefore, only
the top μ individuals are considered for the gradient estimation. The first step
involves calculating the direction from y to the focal i-th individual:

diri = y − xi. (6)

Considering only the best μ individuals is beneficial as it provides more insights
into the optimal direction, especially in high-dimensional spaces. Next, the dif-
ference in fitness values between y and the i-th individual is calculated:

Δfi = f(y) − f(xi). (7)

The direction diri is then multiplied by this difference in fitness values. To
penalize distant individuals that could result in poor gradient estimation, the
result is divided by the squared norm of the direction:

gradi = (diri · Δfi)/||diri||2. (8)

LMMA-ES Exploiting Gradient Information and Lévy Flight 39

The final step is to calculate the mean of all the estimated gradients:

gradient = 1/μ ·
μ∑

i

gradi. (9)

This gradient vector is then used to calculate the momentum for Eq. (2) and
Eq. (4), according to the selected algorithm (AMSGrad or legacy momentum).

Lévy Flight. The variant based on the estimated gradient sometimes exhibits
stability issues due to a bias induced by an inaccurate estimation of the gradient.
To avoid these issues and promote exploration, we consider the incorporation of
the Lévy flight (see [16]). This mechanism allows random weights to be assigned
to the momentum vector, with the weights being drawn from a Lévy distribution.
In this way, the weights are mostly situated in the range [0, 1], but occasionally
they can attain very high values2. Conceptually, this permits the exploitation of
gradient information when this offers a reliable estimation. In this case, individu-
als with higher weights will be favored. Conversely, if the estimation is poor, the
algorithm will select individuals with lower weights for the gradient, effectively
reverting to the vanilla implementation.

The Lévy flight is applied (with β = 1) separately for each i-th individual,
prior to the addition of noise to the gradient, as follows:

momentumi = momentum · |levy_flight()| (10)

Subsequently, zi is calculated using the i-th momentum:

zi = momentumi + noisei (11)

Finally, zi is normalized as in Eq. (3) and is used as in Eq. (4) and Eq. (5) where
in this case momentum is replaced by momentumi.

3 Experimental Setup

As detailed in the following subsections, we evaluated our approaches on three
classes of problems, namely: (1) the FF algorithm [17] for image classification; (2)
a classic RL problem, i.e., Cart Pole; (3) five well-known benchmark functions for
numerical optimization. Note that, for the momentum calculation, in the case of
the FF algorithm we used AMSGrad [18]; otherwise, we used legacy momentum.

All the experiments have been carried out on an Apple M2 PRO machine,
comprising of 12 CPU cores and 19 GPU cores with 32GB of shared mem-
ory. Given that the FF algorithm requires numerous matrix operations, this
was implemented using PyTorch, which allows to naturally leverage the GPUs
efficiency for this kind of tasks. Our code is available at: https://github.com/
luna97/matrix-adaptation-exploiting-gradient-evolution-strategy.
2 Note that this method can be useful also with real gradients. In fact, in certain

circumstances, even real gradients may not help find better points in the space.

https://github.com/luna97/matrix-adaptation-exploiting-gradient-evolution-strategy
https://github.com/luna97/matrix-adaptation-exploiting-gradient-evolution-strategy

40 R. Lunelli and G. Iacca

3.1 Forward-Forward Algorithm

The FF algorithm [17], recently introduced as an alternative to the widely used
Back-Propagation, proposes a novel paradigm for neural network training. The
concept behind this approach is to simulate the learning process of the brain
more closely than what happens with the Back-Propagation, as the learning
procedure is composed of a Forward-Backward mechanism. In other words, the
information is passed only forward, so that the data are processed one layer
at a time, hence reducing the computational demands compared to traditional
methods based on Back-Propagation. In order to be applied, the FF algorithm
necessitates the creation of both positive and negative samples, with the labels
embedded within the data themselves using one-hot encoding. For instance, in
the case of the MNIST dataset, the original paper [17] suggests replacing the
first ten pixels of the image with the one-hot encoding label (for positive data)
or with a random one-hot encoding label (for negative data).

Starting from the implementation available in [19], we modified the loss and
the method for label information injection, as proposed in [17], replacing them
with the approaches suggested in the SymBa algorithm [20] to expedite conver-
gence. Accordingly, the loss function used in our experiments was:

LSymBa = log(1 + e−αΔ) (12)

where α = 4 (as in [20]) and Δ = Gpos − Gneg, with Gpos =
∑

j y2
pos,j and

Gneg =
∑

j y2
neg,j , where ypos and yneg are the activations of the neurons within

the positive and the negative samples respectively.
Furthermore, rather than substituting the first 10 pixel-values of the image

with the one-hot encoding representing the class of that image, this informa-
tion was concatenated. In [20], the authors proposed a similar approach where
an entire channel containing a unique mask with the same size as the image
representing the class was concatenated. However, this method would signifi-
cantly expand the search space. To be precise, the search space would increase
by 28×28 (784) variables in the case of MNIST3, and 32×32 (1024) variables for
CIFAR104, which are the two datasets used in our experiments. By utilizing the
one-hot encoding instead, the search space is augmented by only 10 variables.

From the optimization perspective, the various LMMA-ES variants were run
separately for one layer at a time. In each layer, an individual from the population
represented a possible set of weights from the current layer to the next one. The
loss function in Eq. (12) was used as the fitness function to be minimized, and
no bounds on the weights were employed.

In the case of MNIST, we used a fully connected network with three linear
layers. Specifically, the first layer consisted of 794 neurons, accounting for the
784 (28 × 28) pixel values of the image and 10 additional values for the one-hot
encoding of the corresponding class. The second and the third layer were respec-
tively composed of 512 and 316 neurons. For the case of CIFAR10, we utilized
3 http://yann.lecun.com/exdb/mnist/.
4 https://www.cs.toronto.edu/~kriz/cifar.html.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

LMMA-ES Exploiting Gradient Information and Lévy Flight 41

again a fully connected network, with four layers. The first layer contained 3082
neurons, with 3072 values derived from the image (3 channels with 1024 values
each) and 10 added values from the one-hot encoding. The next three layers
consisted of 1024, 500, and 500 neurons, respectively. For all the layers on both
datasets, the ReLU activation function was used.

3.2 Cart Pole

The Cart Pole task [21], often referred to as the “inverted pendulum” problem,
is a classic benchmark in the field of RL. The objective of the task is to balance
a pole, which is hinged to a cart, in an upright position by only moving the
cart horizontally on a track. The system is inherently unstable, and without
intervention, the pole will fall. The challenge is to determine the right actions
(moving the cart left or right) to keep the pole balanced for as long as possible.

To benchmark this problem, the Python environment provided by the Gym-
nasium library was used5. A simple multi-layer perceptron with two layers was
employed. Specifically, the first layer consisted of 64 neurons, each receiving 4
input values corresponding to the cart position, cart velocity, pole angle, and
pole angular velocity, respectively. The second layer had 2 neurons, representing
the actions of moving the cart to the left and to the right, respectively. The
ReLU activation function was used, and a softmax layer was added at the end
of the network to determine which action to take. In this problem, the entire
network was considered as an individual. The fitness function (to be maximized)
is the mean of the sum of the discounted rewards over 3 runs of the individual:

f(xi) =
1
3

3∑

j=1

Nj∑

t

discounted_rewardj(xi) (13)

where Nj is the number of total time steps for the j-th run. Note that Nj is not
fixed since a run can be shorter if the cart pole fails its task. Also in this case,
no bounds on the weights were employed.

3.3 Benchmark Functions

Finally, we considered five benchmark functions that are commonly used in
numerical optimization, namely the Sphere, Rastrigin, Rosenbrock, Ackley, and
Griewank functions, defined respectively from Eq. (14) to Eq. (18). These func-
tions have been chosen due to their different characteristics in terms of fitness
landscape. For all the functions, we considered both the case of 100 and 1000
variables, to verify the scalability of the proposed approaches. The following
bonds were employed: [−5.12, 5.12]n for the Sphere and the Rastrigin functions;
[−5, 10]n for the Rosenbrock function; [−32.768, 32.768]n for the Ackley function;
and [−600, 600]n for the Griewank function.

5 https://gymnasium.farama.org/environments/classic_control/cart_pole/.

https://gymnasium.farama.org/environments/classic_control/cart_pole/

42 R. Lunelli and G. Iacca

f(x) =
n∑

i=1

x2
i (14)

f(x) = 10d +
n∑

i=1

[x2
i − 10cos(2πxi)] (15)

f(x) =
n−1∑

i=1

[100(xi+1 − x2
i)

2 + (xi − 1)2] (16)

f(x) = −20 exp

⎛

⎝−0.2

√√√√ 1
n

n∑

i=1

x2
i

⎞

⎠ − exp

(
1
n

n∑

i=1

cos(cxi)

)
+ 20 + e (17)

f(x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos
(

xi√
i

)
+ 1. (18)

4 Experimental Results

All the LMMA-ES variants were run with the default parametrization regarding
the population size npop = 4 + �3 · lnn�, with n being the problem size. The
number of generations was set to 500 in the case of the FF algorithm, 30 for Cart
Pole, while for the benchmark functions, it was set to 400 and 1500, respectively
for the case of 100 and 1000 variables. All the other parameters were kept at
their default values as in [14]. In all the experiments, the y vector was initialized
to a random vector (with each variable sampled from N (0, 1)). We assess the
statistical significance of our results by applying, for each problem, the Wilcoxon
Rank-Sum test (α = 0.05) pairwise to each comparison between the vanilla
algorithm and each of the compared algorithms.

4.1 Forward-Forward Algorithm

MNIST Dataset. In the case of MNIST, the network was not trained using
batches, therefore we set the β1 hyperparameter for the AMSGrad algorithm to
0.6 (while keeping all the other hyperparameters at their default values defined
in PyTorch), because we expected the gradient not to be excessively noisy. The
scale factor was set to 1. In total, 10 independent runs (i.e., evolutionary pro-
cesses for training) were executed.

As depicted in Fig. 1, the most effective algorithms are, somehow expectably,
the ones exploiting the real gradient. In this case, there is no significant perfor-
mance difference observed when using Lévy flight. The variants using estimated
gradient demonstrate faster convergence than the vanilla algorithm, moreover,
the use of the Lévy flight enhances the convergence speed. This finding is of
significant interest because it suggests the application to other scenarios where
the gradient calculation is not possible but a gradient estimation is available.

LMMA-ES Exploiting Gradient Information and Lévy Flight 43

CIFAR10 Dataset. In the case of CIFAR10, the network was trained with
batches of size 4096. We decided to set the value of β1 to 0.9, in order to have
a more stable gradient. The scale factor was set to 1. Also in this case 10 inde-
pendent runs were executed.

As shown in Fig. 2, the results align closely with those obtained using the
MNIST dataset. The variants employing the real gradient clearly outperform
the others. Here, it becomes more evident that Lévy flight does not enhance the
algorithm using real gradient, but it does improve again the convergence in the
case of estimated gradients. This finding further substantiates that Lévy flight
can enhance the estimated gradient when its accuracy is lacking. An interesting
discrepancy with the MNIST dataset is that in this case the variant utilizing
only estimated gradient (without Lévy flight) and the vanilla algorithm seem to
have similar behavior. This might be due to the fact that the estimated gradient
is very small, rendering the contribution to the creation of zi nearly negligible.

Accuracy. Table 1 presents the overall test accuracy and F1 score on the two
datasets, where FF indicates the original algorithm [17], which was executed for
500 epochs, while the other entries are based on LMMA-ES.

Apart from the case of vanilla vs. estimated gradient (without Lévy) on
CIFAR10, where the two algorithms are equivalent, each difference is statistically
significant. Overall, the test results confirm that the variants utilizing the real
gradient consistently deliver the highest accuracy. It is also interesting to note
that these variants outperform the original FF algorithm.

Fig. 1. Results on the MNIST dataset for the vanilla LMMA-ES and the proposed
variants used for optimizing the weights between the input and the first hidden layer
(left) and between the first and the second hidden layer (right).

4.2 Cart Pole

Since there is no real gradient information available for this problem, we only
tested the variants that estimate the gradient, along with the vanilla algorithm.
Also in this case, 10 runs were run. The scale factor was set to 0.1. For the
momentum calculation, we used the legacy momentum algorithm, with β = 0.6.

Upon examining Fig. 3, it appears that the two variants with estimated gra-
dient show a very similar trend w.r.t. the one shown by the vanilla algorithm.

44 R. Lunelli and G. Iacca

Fig. 2. Results on the CIFAR10 dataset for the vanilla LMMA-ES and the proposed
variants used for optimizing the weights between the input and the first hidden layer
(left), between the first and the second hidden layer (center), and between the second
and the third hidden layer (right).

Table 1. Accuracy and F1 score (in parenthesis) on the test dataset for MNIST and
CIFAR10. Underlined values indicate the highest accuracy obtained on each dataset.

MNIST CIFAR10

Vanilla 88.15% ± 0.21
(0.8791 ± 0.0021)

31.75% ± 0.77
(0.2990 ± 0.0089)

Real Gradient 95.20% ± 0.21
(0.9515 ± 0.0022)

47.69% ± 0.34
(0.4757 ± 0.0037)

Real Gradient + Lévy 95.24% ± 0.25
(0.9518 ± 0.0025)

46.84% ± 0.22
(0.4669 ± 0.0026)

Estimated Gradient 89.01% ± 0.16
(0.8885 ± 0.0017)

32.27% ± 0.47
(0.3033 ± 0.0054)

Estimated Gradient + Lévy 86.61% ± 0.53
(0.8644 ± 0.0054)

33.52% ± 0.55
(0.3274 ± 0.0048)

Forward-Forward 93.96% ± 0.61
(0.9390 ± 0.0045)

45.61% ± 0.26
(0.4557 ± 0.0024)

In this case, the three algorithms are statistically equivalent in terms of perfor-
mance. However, given the relative simplicity of this task, further research into
more complex RL tasks is needed to better assess whether gradient estimation
can effectively aid convergence.

4.3 Benchmark Functions

It is essential to highlight that highly multimodal functions can have very high
gradients. This can cause offspring generation to lean heavily in one direction. A
larger gradient will have a more pronounced influence on offspring creation, and
if this influence becomes overwhelming, all the offspring might cluster too closely
together. The scale factor therefore plays a crucial role in this context, as it helps
modulate the gradient’s contribution. In other words, given the nature of these
benchmark problems, sometimes the gradient, and especially its estimation, may

LMMA-ES Exploiting Gradient Information and Lévy Flight 45

Fig. 3. Fitness trend (mean ± std. dev. across 10 runs) on the Cart Pole task.

be too high, causing numerical problems or simply impeding the algorithm to
converge. To solve this issue, relatively small scale factors were used in all of
our benchmark experiments, especially in the case of estimated gradients, as we
detail below for each function.

The experiments were conducted on each benchmark function with two dif-
ferent dimensionalities, namely n = 100 and n = 1000. As done on Cart Pole,
we used legacy momentum with β = 0.6. For each benchmark function, 10 runs
were conducted. The results, in terms of mean and std. dev. of the best function
values across the 10 runs found by each algorithm on each function, are reported
in Tables 2 and 3, respectively for the 100- and the 1000-dimensional cases.

Table 2. Mean ± std. dev. of the best function values found in 10 runs on the bench-
mark functions in 100 variables. Underlined values indicate the lowest mean value
achieved on each function.

Sphere Rastrigin Rosenbrock Ackley Griewank

Vanilla 0.000005 ± 0.000002 1118.8 ± 21.9 25.220 ± 2.78 0.2639 ± 0.503 0.00013 ± 0.0005
Real Gradient 0.000980 ± 0.000600 1098.0 ± 16.9 31.824 ± 2.62 0.0163 ± 0.007 0.00180 ± 0.0025
Real Gradient + Lévy 0.000650 ± 0.000600 1098.1 ± 17.9 31.664 ± 1.39 0.0076 ± 0.004 0.00050 ± 0.0001
Estimated Gradient 0.000950 ± 0.000600 1108.6 ± 12.8 32.475 ± 1.55 0.0135 ± 0.004 0.00210 ± 0.0012
Estimated Gradient + Lévy 0.001060 ± 0.000600 1111.8 ± 19.6 31.675 ± 1.66 0.0184 ± 0.005 0.00160 ± 0.0010

Table 3. Mean ± std. dev. of the best function values found in 10 runs on the bench-
mark functions in 1000 variables. Underlined values indicate the lowest mean value
achieved on each function.

Sphere Rastrigin Rosenbrock Ackley Griewank

Vanilla 0.0097 ± 0.0011 11831.7 ± 62.6 330.42 ± 16.11 1.7154 ± 0.092 0.0172 ± 0.0009
Real Gradient 0.0028 ± 0.0003 11613.2 ± 109.8 309.07 ± 8.58 1.5935 ± 0.091 0.0179 ± 0.0040
Real Gradient + Lévy 0.0001 ± 0.0001 11612.5 ± 92.4 272.38 ± 7.08 1.0397 ± 0.454 0.0068 ± 0.0021
Estimated Gradient 0.0088 ± 0.0007 11763.6 ± 59.5 325.89 ± 9.08 1.6172 ± 0.068 0.0183 ± 0.0015
Estimated Gradient + Lévy 0.0083 ± 0.0006 11822.1 ± 129.1 326.69 ± 8.78 1.5651 ± 0.111 0.0189 ± 0.0011

46 R. Lunelli and G. Iacca

Sphere Function. For the Sphere function, the scale factor was set at 0.01 for
all the proposed variants. When examining the results for the problem with 100
variables, it is evident that the vanilla algorithm outperforms our proposed vari-
ants. Although Fig. 4 (left) does not offer clear evidence to support this, Table 2
shows that the vanilla algorithm can find better solutions (this is statistically
confirmed). Conversely, when analyzing the problem with 1000 variables, the
advantages of our methods become more evident. In Fig. 4 (right) the improve-
ment (in terms of time to convergence) of the proposed LMMA-ES variants
becomes clearer, especially for the variant using the real gradient with Lévy
flight. This is also confirmed in Table 3. In this case, apart from the case of the
vanilla algorithm vs. estimated gradient, all the other pairwise differences are
statistically significant.

Rastrigin Function. For this problem, a smaller scale factor of 0.001 was cho-
sen for all the proposed variants. Echoing our earlier observations on the Sphere
function, also in this case the larger the problem dimension, the more pronounced
the improvement yielded by our proposed variants seems over the vanilla LMMA-
ES algorithm, especially when the actual gradient is involved. Figure 5 (left)
shows that, for the 100-dimensional case, the vanilla algorithm seems to reach
an optimal solution faster. Nonetheless, all variants ultimately succeed in finding
better solutions than the vanilla algorithm, as shown in Table 2 (the difference
is statistically significant for the comparison between the vanilla algorithm and
real gradient variants). Figure 5 (right) distinctly showcases the enhancement
compared to the vanilla LMMA-ES algorithm in the 1000-dimensional case (the
difference is statistically significant in all cases apart from vanilla vs. estimated
gradient with Lévy flight).

Rosenbrock Function. For this problem, we set the scale factor to 0.0001 for
all the proposed variants. Regarding the fitness trends, shown in Fig. 6, our find-
ings here are similar to what we observed on the previous benchmark functions.
The vanilla algorithm seems to find better solutions for n = 100, compared to
our proposed variants (all differences are statistically significant). When looking
at the 1000-dimensional case, the results match what was observed on the other
benchmark functions, where all of our methods were able to find better solu-
tions on average, especially when the real gradient is involved (the difference is
statistically significant for the comparisons between vanilla algorithm and real
gradient variants).

Ackley Function. For this problem, a scale factor of 0.1 was chosen for the
variants with real gradient, and 0.01 for those with estimated gradient. The
fitness trends shown in Fig. 7 indicate that the variant with real gradient and
Lévy flight outperforms, in terms of time to convergence, all the other algo-
rithms. However, in the 100-dimensional case all the algorithms are statistically
equivalent. Instead, in the 1000-dimensional case all differences are statistically
significant. Furthermore, in this case we can see that the worst curve is the one
relative to the vanilla algorithm. As for the other problems, we can conclude that

LMMA-ES Exploiting Gradient Information and Lévy Flight 47

for high-dimensional problems our proposed variants can expedite convergence
and find, in general, better solutions.

Griewank Function. For this problem, a scale factor of 1 was chosen for all
the proposed variants. In Fig. 8 (left), it is evident that in this case the vanilla
algorithm converges more rapidly. In the 100-dimensional case, all differences
are statistically significant. For the 1000-dimensional case, all variants appear
quite close in terms of fitness trend, although when looking at Table 3, it can
be seen that all of our proposed variants outperform the vanilla algorithm on
average. In this case, however, the difference is statistically significant only for the
comparisons between the vanilla algorithms and the variants with real gradient
and Lévy flight.

Fig. 4. Fitness trend (mean ± std. dev. of the best function values across 10 runs) on
the Sphere function: 100 (left) and 1000 variables (right).

Fig. 5. Fitness trend (mean ± std. dev. of the best function values across 10 runs) on
the Rastrigin function: 100 (left) and 1000 variables (right).

Fig. 6. Fitness trend (mean ± std. dev. of the best function values across 10 runs) on
the Rosenbrock function: 100 (left) and 1000 variables (right).

48 R. Lunelli and G. Iacca

Fig. 7. Fitness trend (mean ± std. dev. of the best function values across 10 runs) on
the Ackley function: 100 (left) and 1000 variables (right).

Fig. 8. Fitness trend (mean ± std. dev. of the best function values across 10 runs) on
the Griewank function: 100 (left) and 1000 variables (right).

5 Conclusion

In this paper, we proposed four new variants of the Low-Memory Matrix Adap-
tation Evolution Strategies (LMMA-ES) algorithm, which make use of gradient
information (either based on real or estimated gradient) and Lévy flight. The
proposed variants underwent extensive testing across a number of problems of
various kinds, to validate the efficacy of our proposals and their applicability.

In our experiments, we consistently verified that the incorporation of gradi-
ent information can be beneficial, particularly in higher-dimensional problems,
although this advantage heavily depends on the quality of the gradient estima-
tion. Furthermore, we have seen that the Lévy flight can be an effective way to
improve the convergence speed and reduce some stability issues that may derive
from the gradient estimation.

We believe that this study can be expanded in various directions. For
instance, better gradient estimators could be studied in order to further opti-
mize the algorithm’s performance. As evidenced by the results obtained by the
algorithms using real gradients, better estimations can indeed lead to faster con-
vergence and better results.

Another possible future research direction should focus on evaluating the
proposed variants on a broader set of problems. In this sense, RL emerges as a
promising domain for the application of the proposed approaches, and further
investigations in this field are needed.

Finally, investigating ways to improve or consolidate the proposed variants
could be beneficial, such as exploring strategies allowing online learning of the

LMMA-ES Exploiting Gradient Information and Lévy Flight 49

scale factor. At the moment, setting the scale factor, a pivotal hyperparame-
ter, requires a foundational understanding of the problem at hand to strike an
optimal balance.

References

1. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003)

2. Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size adaptation based on non-local
use of selection information. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.)
PPSN 1994. LNCS, vol. 866, pp. 189–198. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58484-6_263

3. Caraffini, F., Iacca, G., Neri, F., Picinali, L., Mininno, E.: A CMA-ES super-fit
scheme for the re-sampled inheritance search. In: IEEE Congress on Evolutionary
Computation, pp. 1123–1130. IEEE (2013)

4. Caraffini, F., Iacca, G., Yaman, A.: Improving (1+1) covariance matrix adapta-
tion evolution strategy: a simple yet efficient approach. In: International Global
Optimization Workshop (2019)

5. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evol. Comput. 15(1), 1–28 (2007)

6. Arnold, D.V., Hansen, N.: A (1+ 1)-CMA-ES for constrained optimisation. In:
Genetic and Evolutionary Computation Conference, pp. 297–304 (2012)

7. de Melo, V.V., Iacca, G.: A CMA-ES-based 2-stage memetic framework for solv-
ing constrained optimization problems. In: IEEE Symposium on Foundations of
Computational Intelligence, pp. 143–150. IEEE (2014)

8. de Melo, V.V., Iacca, G.: A modified covariance matrix adaptation evolution strat-
egy with adaptive penalty function and restart for constrained optimization. Expert
Syst. Appl. 41(16), 7077–7094 (2014)

9. Ros, R., Hansen, N.: A simple modification in CMA-ES achieving linear time and
space complexity. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 296–305. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4_30

10. Beyer, H.-G., Sendhoff, B.: Covariance matrix adaptation revisited – the CMSA
evolution strategy –. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni,
C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4_13

11. Beyer, H.-G., Sendhoff, B.: Simplify your covariance matrix adaptation evolution
strategy. IEEE Trans. Evol. Comput. 21(5), 746–759 (2017)

12. Jastrebski, G.A., Arnold, D.V.: Improving evolution strategies through active
covariance matrix adaptation. In: IEEE Congress on Evolutionary Computation,
pp. 2814–2821. IEEE (2006)

13. Arabas, J., Jagodziński, D.: Toward a matrix-free covariance matrix adaptation
evolution strategy. IEEE Trans. Evol. Comput. 24(1), 84–98 (2019)

14. Loshchilov, I., Glasmachers, T., Beyer, H.-G.: Large scale black-box optimization
by limited-memory matrix adaptation. IEEE Trans. Evol. Comput. 23(2), 353–358
(2019)

15. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as
a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864
(2017)

https://doi.org/10.1007/3-540-58484-6_263
https://doi.org/10.1007/3-540-58484-6_263
https://doi.org/10.1007/978-3-540-87700-4_30
https://doi.org/10.1007/978-3-540-87700-4_13
http://arxiv.org/abs/1703.03864

50 R. Lunelli and G. Iacca

16. Iacca, G., dos Santos Junior, V.C., de Melo, V.V.: An improved Jaya optimization
algorithm with Lévy flight. Expert Syst. Appl. 165, 113902 (2020)

17. Hinton, G.: The forward-forward algorithm: some preliminary investigations (2022)
18. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. arXiv

preprint arXiv:1904.09237 (2019)
19. Pezeshki, M., Rahman, H., Yun, J.: pytorch_forward_forward. https://github.

com/mohammadpz/pytorch_forward_forward
20. Lee, H.-C., Song, J.: SymBa: symmetric backpropagation-free contrastive learning

with forward-forward algorithm for optimizing convergence (2023)
21. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can

solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13(5),
834–846 (1983)

http://arxiv.org/abs/1904.09237
https://github.com/mohammadpz/pytorch_forward_forward
https://github.com/mohammadpz/pytorch_forward_forward

Memory Based Evolutionary Algorithm
for Dynamic Aircraft Conflict Resolution

Sarah Degaugue1,2(B), Nicolas Durand1, and Jean-Baptiste Gotteland1

1 Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse,
Toulouse, France

{sarah.degaugue,nicolas.durand,jean-baptiste.gotteland}@enac.fr
2 DGAC-DSNA-DTI, Toulouse, France

Abstract. In this article, we focus on a dynamic aircraft conflict res-
olution problem. The objective of an algorithm dedicated to dynamic
problems shifts from finding the global optimum to detecting changes
and monitoring the evolution of the optima over time. In the air traffic
control domain, there is added value in dealing quickly with the dynamic
nature of the environment and providing the controller with solutions
that are stable over time. In this article, we compare two approaches
of an evolutionary algorithm for the management of aircraft in a con-
trol sector at a given flight level: one is naive, i.e. the resolution of the
current situation is reset to zero at each time step, and the other is
memory-based, where the last population of the optimisation is stored
to initiate the resolution at the next time step. Both approaches are eval-
uated with basic and optimised operators and settings. The results are in
favour of the optimised version with explicit memory, where conflict-free
solutions are found quicker and the solutions are more stable over time.
Furthermore in the case of an external action, although the diversity
of the population could be lower with the memory-based approach, the
presence of memory does not appear to be a hindrance and, on average,
improves the solver’s responsiveness.

Keywords: Evolutionary Algorithm · Dynamic Optimisation
Problem · Aircraft Conflict Resolution

1 Introduction

Aircraft conflict resolution is operated by air traffic controllers based on a two-
dimensional representation of aircraft on a screen. The underlying problem has
been modelled in many different ways allowing various metaheuristics to give
efficient solutions, such as Evolutionary Algorithm (EA) [11], Ant Colony Opti-
misation [10], Particle Swarm Optimisation or Differential Evolution [28]. Math-
ematical models were also used to address this problem. In such models, the
hypotheses made on trajectory predictions were generally very restrictive in
order to allow mathematical resolution. For example, Pallottino’s approach [22]
used Mixed Integer Linear Programming and relied on constant speed trajec-
tories that are changed all at once. This is also the case in more recent papers
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 51–67, 2024.
https://doi.org/10.1007/978-3-031-56852-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_4

52 S. Degaugue et al.

from Vela, Escudero or Rey [4,24,29]. Constraint Programming methods [2] and
Maximum Clique Search in a graph [18] have also been explored in the last
decade, they can handle realistic models and perform well on small instances
on which the optimality can be proved. The most realistic models take into
account uncertainties and operational constraints and are thus good candidates
for metaheuristics, because the trajectories need to be simulated to evaluate a
set of manoeuvres. Furthermore population based metaheuristics have the great
advantage to return a population of solutions instead of a single option. This
gives an opportunity to imagine an intelligent support tool for air traffic con-
trollers who could pick manoeuvre options in a pool of good solutions. Most of
the research on aircraft conflict resolution studied the static problem without
taking into account its dynamic over time. Indeed, aircraft constantly move in a
control sector. The conflict resolution problem is thus not static but must take
into account its dynamic aspect. Some changes can be modelled as continuous
such as the aircraft positions or the trajectory prediction evolution over time.
Other changes are discrete, such as the entrance of an aircraft in the control
sector or the exit of an aircraft from the sector. An air traffic controller can
suddenly decide to manoeuvre an aircraft. Because of these changes over time,
conflict resolution is a dynamic problem. Besides eliminating all conflicts, the
aim of conflict resolution is also to minimise delays and the number of aircraft
manoeuvred. For this reason, conflict resolution is a dynamic optimisation prob-
lem (DOP).

A first approach [8] studied the operational benefits of using a memory-based
EA (with basic crossover and mutation operators) and its impact on an air traffic
control point of view. This article focuses on the behaviour of an EA in such
a dynamic environment and introduces an optimised algorithm modifying the
crossover and mutation operators. We compare the basic and optimised versions
with or without a memory process on different levels of traffic densities. We also
address in this article the robustness of an automatic solver with external actions
on aircraft.

In Sect. 2, we discuss the state of the art on the use of memory in EAs
for DOPs. Section 3 introduces the problem modelling. Section 4 details two
algorithmic adaptations of an EA for our problem. In Sect. 5, two versions of the
memory management are described. Section 6 applies the different algorithmic
versions on three levels of traffic densities and discusses the effect of external
actions on the dynamic simulations.

2 EA for Dynamic Optimisation Problems

DOPs are most commonly described in two different ways: either by a succes-
sion of static problems [5,21,30], or by a mathematical expression with time-
dependant parameters [6,31]. The simple search for an optimal solution is no
longer sufficient in a Evolutionary Dynamic Problem (EDP). Detecting changes
in the environment of the current problem and consequently in the objective
function are important points in the solution search.

Memory Based EA for Dynamic Aircraft Conflict Resolution 53

2.1 Naive Approach

The most naive approach to solve Dynamic Optimisation Problems (DOPs) is to
reset the evolutionary process when a change occurs. A similar approach restarts
the population based on the convergence of EAs [17]. Hu and Eberhart describe
in [16] Rerandommisation PSO (RPSO) where all or part of the swarm is ran-
domly moved around in the search space when a change occurs. The shortcoming
of these approaches is that the past evolutionary material is not always used,
although this could accelerate convergence.

2.2 Implicit Memory

In implicit memory approaches, a local memory is added to each chromosome
(e.g. adding characteristics specific to genes (redundant, recessive, etc.)). These
characteristics can be used, for example, to re-introduce past good solutions.
Diploid scheme [20] and triallelic scheme [13] have been introduced, respectively,
by Ng and Wong in 1995 and by Goldberg and Smith in 1987. The specific nature
of our problem, dealing with constantly moving aircraft, aircraft entrances and
exits, makes the use of an explicit memory more adapted for this problem.

2.3 Explicit Memory

Explicit memory approaches save information, either in the structure of individ-
uals or in a memory external to the population, to preserve old elements of the
population. Several uses of this memory are possible. Unlike implicit memory,
the use of explicit memory is more controlled because it keeps information on
when and which memory elements are reused. A first intuitive approach was
introduced by Louis and Xu in 1996 [19] and consists of reusing old popula-
tion elements when a change of environment occurs, while initialising certain
chromosomes. In the same vein, in [26] authors introduce a short-term memory
of ancestors present in previous generations, and in [27] authors add some of
their ancestors locally to chromosomes when they are assessed as good. How-
ever, the effectiveness of these approaches is highly problem-dependent. Limits
appear particularly for significant changes in the environment, as in the classic
task planning problem where adding or removing a task considerably modifies
the location of the optimum.

In [23], good population elements and their associated environment are stored
periodically, then re-inserted when the environment changes. Instead of storing
good whole individuals, and potentially their associated environment, it is also
possible to store an abstract form of these individuals by recording their posi-
tion in the search space. To do this, they first need to partition the search space
and then define a representation matrix for this space. Following this, a spa-
tial distribution of good individuals is obtained to guide the initialisation of a
future optimisation if a change occurs [25]. This approach seems to be more
useful for chaotic changes in the environment, whereas the crude safeguarding
of individuals appears to be more effective for regular or cyclical changes.

54 S. Degaugue et al.

3 Problem Modelling

This section introduces the environment and the decision variables of our
problem.

3.1 Environment

Let us consider a situation with n (∈ N) aircraft flying in an en-route sector.
The required separation between two aircraft is 5 nautical miles (NM) in the
horizontal plane or 1000 feet in the vertical plane. Two aircraft are in conflict
when there is a loss of separation in their predicted trajectories. Let us suppose
that all aircraft fly with constant speeds at the same flight level. Adding different
flight levels generally eases the problem because it gives more options to solve
conflicts. It also partitions the problem in different sub-problems that can often
be solved independently. For the sake of simplicity, we do not investigate this
aspect in this article. In order to comply with air traffic controllers behaviour,
our model takes into account uncertainties in the trajectory prediction. Many
realistic uncertainty models have been presented in previous work [1,3]. Here
we use a simplified version of uncertainty described in [12] that increases the
size of the horizontal separation standard linearly with time in the prediction.
With such an uncertainty model, when looking too far ahead, many conflicts are
predicted but may never occur. In order to limit this phenomenon, we limit the
uncertainty growth to a time window: if t is the current time, uncertainties will
grow according to our model in the time window [t, t + T] (T = 6min in the
experiments) and will then be capped at their value at time t+T for subsequent
predictions. This helps focusing on short term conflicts while keeping long term
detection.

3.2 Decision Variables

Our model considers heading change manoeuvres to solve conflicts. Here, a
manoeuvre is a α degree heading change, starting at time t0 and ending at
time t1. α is relative to the current heading. Once a manoeuvre is finished, the
aircraft heads toward its destination (see Fig. 1).

Fig. 1. Manoeuvre model for an aircraft flying from O to D.

Memory Based EA for Dynamic Aircraft Conflict Resolution 55

For each aircraft i, (t0i , t1i , αi) are bounded because of aerodynamic, sector
boundaries or time constraints. For instance, t0i can take values in [t0i , t0i]. αi

is discretised with a step of 5◦C in the range [−45◦, 45◦], which corresponds to
air traffic controllers practices.

Air traffic controllers only give one manoeuvre at a time to each aircraft. Once
the manoeuvre has started, only t1 can be modified (delayed or advanced to the
current time plus 60 s (S) at the earliest). In our model, a manoeuvred aircraft
can be manoeuvred again only once it is heading back to its destination (between
t1 and D on Fig. 1) but a second manoeuvre cannot be predicted before the
aircraft has finished its current one. This model complies to air traffic controllers
habits and favours a better balance of manoeuvres between aircraft.

4 Algorithm Versions

As first described by [15], the principle of an EA can be summarised as follows:
given an evaluation function (fitness) to maximise, we initially randomly create
a population of candidate solutions, and apply the fitness function as a measure
of quality. At each generation, a selection is performed on the population, fol-
lowed by crossovers and mutations between some individuals leading to a new
population composed of some good old elements and new ones. This process is
iterated until a good enough solution is found or a time limit is reached.

Two versions (basic BV, and optimised OV) of the algorithm are introduced
in this section. Basic BV uses the operators introduced in [8]. In the OV version,
we optimised the algorithm by defining new crossover and mutation operators,
favouring diversity and by applying a local optimisation at the end of the algo-
rithm in order to reduce as much as possible the current manoeuvres.

4.1 Population Element Structure

For a traffic situation including n aircraft, a population element e is a potential
solution of the problem composed of n genes where each gene i (ge

i) is the ith

aircraft manoeuvre (te0i , t
e
1i , α

e
i) with:

– te0i , the manoeuvre start time chosen for aircraft i;
– te1i , the manoeuvre ending time chosen for aircraft i;
– αe

i , the deviation angle chosen for aircraft i. If αe
i = 0, the aircraft i is not

manoeuvred.

4.2 Population Element Fitness

In this work, we have several metrics that can be sorted by priority:

1. Solve all the conflicts;
2. Minimise the number of manoeuvres;
3. Minimise the delay due to the manoeuvres;

56 S. Degaugue et al.

4. Start the manoeuvres as late as possible in order to avoid useless manoeu-
vres, given that detected conflicts can disappear over time with uncertainty
reduction.

As these different metrics are sorted, and given that the EA will provide us
with different solutions of the problem, we decided to stay in a mono-objective
definition of the problem, by defining a single fitness balancing the different
criteria.

Let us introduce for gene i of a population element e:

– de
i the delay of the aircraft i due to the manoeuvre;

– lei = t0i − te0i where t0i is the maximum time allowed to start a manoeuvre.
lei = 0 if the aircraft i is not manoeuvred;

– Se the set of remaining conflicts in the population element e;
– Se

i the set of remaining conflicts involving aircraft i in element e;
– dc the conflict duration for a conflict c ∈ Se.

We introduce a local fitness as presented by Durand et al. in [9]. Each gene
i of a population element e has a local fitness fe

i , which is useful to improve the
crossover and mutation steps. fe

i is expressed as follows:

fe
i =

⎧
⎨

⎩

1
1+

∑

c∈Se
i

dc
if Se �= ∅

1 + 1
1+2×de

i+lei
else

Let us define tsc the starting time of conflict c ∈ Se. If a conflict remains, it
should start as late as possible. The global fitness of a population element e is
defined as follows:

F e =

⎧
⎪⎨

⎪⎩

1
2 − 1

2 (1+min
c∈Se

tsc)
+ 1

2 (1+
∑

c∈Se
dc)

if Se �= ∅
1
n

n∑

i=0

fe
i else

4.3 EA Operators

Crossover: The crossover operator creates two new elements from two parent
elements. In the BV version, one is created by mixing the genes of the two parents
and the other by an arithmetic operation on the genes of the two parents. Let
us consider two population elements e1 and e2.

For the first child ea, we use the strategy described in [9] which consists in
using the partial separability of a population element’s fitness. For all i ∈ [|1, n|],
if fe1

i > fe2
i then gea

i = ge1
i else gea

i = ge2
i .

The second child eb is created by applying barycentres. For all i ∈ [|1, n|], let
us choose randomly λt0i

, λt1i
, λαi

∈ [−50, 100] and define:

teb
0i

= (λt0i
× te1

0i
+ (100 − λt0i

) × te2
0i
) ÷ 100

teb
1i

= (λt1i
× te1

1i
+ (100 − λt1i

) × te2
1i
) ÷ 100

αeb
i = (λαi

× αe1
i + (100 − λαi

) × αe2
i) ÷ 100

Memory Based EA for Dynamic Aircraft Conflict Resolution 57

The OV version emphasises the diversification role of the crossover operator
by randomly creating two new random population elements one time out of
three.

In both BV and OV versions, the population crossover rate pcross = 30% was
chosen following a former dedicated study [7].

Mutation: The mutation operator locally modifies one of the genes of a popu-
lation element. The gene is chosen according to the value of its local fitness in
order to focus on the worst values. A roulette wheel draw is performed on the
set M of genes that can still be modified. Let us consider a population element
e. If Se �= ∅, the probability for gene i ∈ M to be chosen is proportional to
1/min(1, fe

i). When no conflict remains the probability for gene i ∈ M to be
chosen is proportional to 1/(fe

i − 1).
Once a gene i has been selected, we randomly modify te0i , t

e
1i or αe

i if the
aircraft does not yet have a manoeuvre in progress, and te1i if the aircraft is
already manoeuvred and can still be adjusted.

In the BV algorithm, we randomly change one of the three parameters of
the manoeuvre of aircraft i. In the OV algorithm, if the current element e has
no conflict, we first try to remove the manoeuvre of aircraft i (set αe

i = 0). If it
creates a conflict we apply the former process.

In both BV and OV versions, the population mutation rate pmut = 40% was
chosen following a former dedicated study [7].

4.4 Sharing Process

Keeping a diverse population is essential in a dynamic environment, and also
very useful to avoid premature local convergence of the EA. We use a cluster
based sharing process as described in [11,32].

The sharing process requires to define a distance between population ele-
ments. Therefore we consider three different manoeuvre directions (turn right,
turn left or do not turn) in order to match the way air traffic controllers under-
stand different resolutions. We define the distance between two population ele-
ments as the number of aircraft that are not manoeuvred in the same direction.
Two population elements are zero-distant if all of their aircraft are manoeu-
vred in the same direction and thus belong to the same cluster. This defines
the notion of cluster, grouping all the individuals giving the same manoeuvre
directions to all their aircraft. There can be potentially up to 3n clusters. In the
experiments, considering the exponential growth of this number, and the con-
straints on manoeuvres in progress, we will rarely find the maximum number of
clusters in a population. The sharing process helps control the diversity of the
population. Let C be the set of all clusters and fc the fitness of the best individ-
ual in a cluster c ∈ C. Let cbest be the cluster in which the best individual in the
population is found and fbest its fitness. Our sharing process works in two steps.
First, we define a sharing rate sr ∈ [0; 1]. The best elements of all the clusters c
which respect Eq. 1 are automatically selected in the new population.

58 S. Degaugue et al.

fc ≥ sr × fbest (1) F e
s =

F e

card(c)
(2)

Adjusting sr is challenging. When sr is high, only the best clusters are pro-
tected in the selection process, whereas when sr is low, the algorithm is more
conservative.

The second step applies the selection process described in 4.5 to modified
fitness of the population elements. The modified fitness of an element of a cluster
c is given by Eq. 2: the fitness of a population element is divided by the cardinal
of its cluster.

4.5 Selection

The selection step is based on the stochastic remainder without replacement
method [14], taking into account the fitness Fs calculated during sharing.

4.6 Population Size and Ending Criterion

After a large number of experiments to check the quality of the convergence of
the EA (as explained in [7]), we selected the following parameters: the population
size is fixed to 200 and the algorithm is stopped after 200 generations, or when the
best fitness corresponds to a non-conflicting solution and has not been improved
during the last 20 generations. The EA can thus converge before reaching 200
generations.

4.7 Final Optimisation

Some useless non-zero manoeuvres can appear and survive with the previous
operators (especially the crossover and sharing operators which preserve a large
population diversity). To eliminate these non-zero manoeuvres in the last gener-
ation, a final local optimisation is performed in the OV version on all individuals.
|α| and then t1 are decreased as much as possible (without creating new con-
flicts).

5 Memory Management

The traffic continuously evolves over time. Aircraft enter, leave and fly through
the sector. The goal is to avoid conflicts while minimising aircraft deviations.
At each time step (every 30 s in the experiments), every manoeuvre started or
starting in less than 1min is updated or applied. Manoeuvres starting in more
than 1min are ignored because they can be recalculated later.

5.1 Naive Approach (NA)

In a classical EA initialisation, each population element is randomly created.
This strategy is used in the naive approach, NA in the following. The solver
only receives information about the current environment.

Memory Based EA for Dynamic Aircraft Conflict Resolution 59

5.2 Explicit Memory Approach (EMA)

The explicit memory approach stores all the population elements of the last
generation and reintroduces them to initialise the next resolution. Some previ-
ous solutions (respecting decision variable bounds at the previous step) may no
longer be correct. An aircraft may have been manoeuvred and cannot change
direction anymore, another may have finished a manoeuvre and is free to start
a new one. Furthermore, the number of decision variables may have changed if
some aircraft have left or entered the sector. In these cases, the genes repre-
senting the outgoing aircraft are deleted from the population elements and new
genes corresponding to incoming aircraft are randomly created.

5.3 Summary of the Tested Algorithms

In the experiments, we call BVNA and BVEMA the EA versions associated
with basic operators (crossover and mutation), and executed with either the NA
or EMA approaches. Similarly, we call OVNA and OVEMA the EA versions
associated with adapted operators, final optimisation and executed with either
NA or EMA. sr was experimentally adjusted at sr = 0.1, a low value favouring
a large diversity in the population.

6 Experimental Results

6.1 Exercises

Fig. 2. Geometry of conflict scenario generation.

60 S. Degaugue et al.

Creation: We create 3 scenario sizes, involving on average 35 aircraft (Base-
line), 50 aircraft (Baseline+50%) and 70 aircraft (Baseline+100%) for around
one hour of simulation. The Baseline scenario is already much denser than the
current traffic encountered by air traffic controllers in real life. They can gen-
erally handle up to 30 aircraft, but on several independent flight levels. Each
aircraft is assigned a random speed between 385 kts and 550 kts, a random
entry point O taken on a circle of 90 NM radius on the angle ain ∈ [210◦; 360◦]
(see Fig. 2), and an exit point D on the angle aout = ain − 180◦ ±Random(45◦).
We impose aout ∈ [30◦; 180◦] to avoid interactions between entering and exiting
aircraft. Air traffic control generally uses an analogue semi-circular rule for the
same purpose.

Fig. 3. Extracted situations from the Baseline (left) and the Baseline+100% (right)
scenarios.

Preliminary Analysis: Figure 3 shows two extracted situations simulated
without resolution of the Baseline, on the left, and the Baseline+100%, on the
right. The aircraft are represented by the white squares, their velocity vectors by
the white lines and their previous positions by comets. The grey lines show the
remaining trajectories and potential conflict zones are coloured in black. Cur-
rent conflicts are coloured in red. A higher traffic density increases the number
of potential conflicts.

6.2 First Results

In a first experiment, we evaluate the combinations of the EA versions with and
without memory (BVNA, BVEMA, OVNA, OVEMA) on the three exercises
previously described. Each combination is run twenty times on each exercise,
using different random seeds to ensure the statistical validity of the results. We
apply a Wilcoxon Rank Sum Test with continuity correction using R to compare
the results between two different versions. The returned statistical elements are
denoted by W and p.

Memory Based EA for Dynamic Aircraft Conflict Resolution 61

Algorithm Evaluation: The different simulations are compared using the fol-
lowing criteria:

– F : the fitness of the best element found at each resolution time step;
– |C|: the number of clusters at the end of each resolution;
– |C0|: the number of clusters without conflict at the end of each resolution;
– Gtot: the total number of generations for each resolution;
– Gc: the minimal number of generations before a non-conflicting solution is

found, at each resolution;
– |S|: the number of remaining conflicts at the end of the exercise.

Ideally, the higher F , |C| and |C0| are, and the lower Gtot, Gc and |S| remain,
the better the EA behaves.

Table 1. Algorithmic results

Version BVNA BVEMA OVNA OVEMA

Criteria Baseline
µ(F) 1.77 1.79 1.78 1.79
µ(|C|) 84.7 82.1 120 120
µ(|C0|) 59.9 54.2 64.0 59.8
µ(Gtot) 131 51.9 129 51.0
µ(Gc) 3.04 0.04 3.19 0.05
∑ |S| 0 0 0 0
Criteria Baseline+50%
µ(F) 1.76 1.72 1.77 1.76
µ(|C|) 80.8 79.2 112 112
µ(|C0|) 55.8 49.8 55.1 50.4
µ(Gtot) 135 66.7 136 61.1
µ(Gc) 4.86 0.71 4.22 0.68
∑ |S| 0 0 0 0
Criteria Baseline+100%
µ(F) 1.63 1.59 1.65 1.66
µ(|C|) 82.0 82.9 115 115
µ(|C0|) 51.0 45.1 53.1 50.4
µ(Gtot) 167 100 167 86.2
µ(Gc) 18.6 19.3 20.8 2.95
∑ |S| 0 4 0 0

Table 1 shows for the three traffic densities, and the four combinations of the
algorithm (BVNA, BVEMA, OVNA, OVEMA) the mean values on the 20 runs
of the mean values of criteria F , |C|, |C0|, Gtot and Gc on all the time steps of

62 S. Degaugue et al.

the simulation where a manoeuvre occurs. The sum of remaining conflicts over
the 20 runs of each exercise is shown in the last row

∑ |S|.
The criteria between BVNA and OVNA, and between BVEMA and OVEMA

improve in a majority of cases. For example in the Baseline+100% exercise, all
criteria improve between BVEMA and OVEMA (μ(F) : 1.59 → 1.66 (W > 107, p
< 10−3), μ(|C|) : 82.9 → 115 (W > 106, p < 10−15), μ(|C0|) : 45.1 → 50.4 (W >
107, p < 10−14), μ(Gtot) : 100 → 86.2 (W > 107, p < 10−14), μ(Gc) : 19.3 → 2.95
(W > 107, p < 10−13) and

∑ |S| : 4 → 0). The increase of the total number
of clusters is notable. The new crossover operator creating new individuals one
time out of three in the OV version could explain this phenomenon. The number
of remaining conflicts drops to zero in the OV version.

Averages of μ(F) are similar for OVNA and OVEMA but differences appear
when looking at the number of generation and cluster criteria. Using memory
does not seem to penalise the diversity of the whole population. The constant
reuse of former population elements does not impact the total number of clusters.
However, even if the number of clusters |C| are similar, the number of clusters
without conflict remains slightly higher without memory, showing that starting
with a random population remains better for the diversity of acceptable solu-
tions. Keeping a high diversity is important in the eventuality of external actions
on aircraft. The main advantage of using memory is shown with the optimised
version for which μ(Gtot) and μ(Gc) decrease a lot with the use of memory.
For example, on the Baseline+100% exercise, the mean number of generations
necessary to find a conflict-free solution is divided by almost ten, dropping from
20.8 to 2.95 (W > 107, p < 10−15). This last point could be very advantageous
if the EA was used to help an air traffic controller making decision in real time.

Aeronautical Performances: Table 2 evaluates the following criteria on the
same simulations. The lower the criteria are, the better the aeronautical perfor-
mances are.

– M : the number of manoeuvres divided by the number of aircraft at the end
of each simulation;

– D: the average percentage of additional flight time per aircraft;
– V : the percentage of aircraft with varying manoeuvres planned. A manoeuvre

is varying if it has at least been planned in the opposite direction (turn right
then left or turn left then right) between two successive resolutions.

In the most of the cases, especially when the traffic density increases, OVNA
and OVEMA have better results than BVNA and BVEMA. When memory is
used, the OV version tends to minimise the number of manoeuvres performed,
but the manoeuvre durations are higher. The balance between these two criteria
is modified with the use of memory. This can be adjusted in the fitness definition.

The major observation here is the improved stability of the manoeuvres
planned by the conflict solver when memory is used. Indeed, for the most dense
exercise, criterion V drops from 33% (without memory) to 9% (with memory) (W
= 0, p < 10−7), showing that with memory, only 9% of the aircraft are planned

Memory Based EA for Dynamic Aircraft Conflict Resolution 63

Table 2. Aeronautical results

Version BVNA BVEMA OVNA OVEMA

Criteria Baseline
M 0.28 0.28 0.30 0.28
D 1.06 1.18 1.18 1.11
V 14.1 9.11 12.5 7.14
Criteria Baseline+50%
M 0.28 0.32 0.27 0.27
D 1.23 2.10 1.30 1.55
V 17.7 7.82 14.1 6.54
Criteria Baseline+100%
M 0.64 0.62 0.59 0.54
D 3.08 3.91 2.84 3.55
V 42.1 20.8 33.3 9.04

an opposite direction between two time steps. This could be a real advantage if
our EA had to help an air traffic controller make decisions over time.

6.3 External Action Impacts

In this section, we focus on the effect of external actions on EA resolutions. At
some time steps (every 300 s if possible, or more if not), a random manoeuvre is
associated with an aircraft (in the aircraft manoeuvring bounds) and both the
state of the environment and the resolution at the next time step are saved. The
main simulation is run using the OVEMA version. When an external manoeuvre
is applied, we compare two resolutions, OVNA and OVEMA at this specific time
step.

We randomly apply a manoeuvre to one aircraft that can still be manoeu-
vred. If this manoeuvre does not cause a conflict within the next three minutes,
it is added to the current solution, otherwise the process is repeated until an
acceptable manoeuvre is found. This random action is initiated if the EA has
at least one conflict-free solution at the current time and if at least one aircraft
can be manoeuvred.

In Table 3, for each exercise, we evaluate the mean values of F , |C|, |C0|,
Gtot and Gc with the OVNA and OVEMA solvers. The percentage of times for
which one version is strictly better than the other is shown in the brackets next
to the mean value of the criteria.

The mean fitness is generally better with memory than without, and the
fitness is strictly better without memory only 11%, 17% and 27% of the time.
As previously, the major result concerns the number of generations necessary to
optimise a solution or to find a conflict-free solution. For the most dense scenario
(Baseline+100%), the total number of generations Gtot drops from 154 to 104

64 S. Degaugue et al.

Table 3. Effect of external actions

Baseline Baseline+50% Baseline+100%

Criteria OVNA OVEMA OVNA OVEMA OVNA OVEMA
µ(F) 1.76 (11%) 1.84 (80%) 1.77 (17%) 1.76 (36%) 1.57 (27%) 1.6 (54%)
µ(|C|) 93 (40%) 99 (53%) 102 (40%) 101 (40%) 111 (46%) 111 (43%)
µ(|C0|) 57 (48%) 61 (42%) 57 (53%) 54 (30%) 49 (57%) 48 (26%)
µ(Gtot) 92 (5%) 47 (54%) 108 (24%) 70 (56%) 154 (10%) 104 (64%)
µ(Gc) 6 (6%) 2.4 (21%) 7.6 (3%) 5.4 (33%) 39 (5%) 21 (61%)

(W > 105, p < 10−15) with memory and the number of necessary generations
to find a conflict-free solution drops from 39 to 21 (W > 105, p < 10−15) with
memory. Using a memory approach has not prevented the EA to adjust to an
unexpected event.

7 Conclusion

In this article, we introduce an optimised version of an EA combined with a
memory process and compare it with a basic version on a very dense dynamic
conflict resolution optimisation problem. We define a new crossover operator to
help the EA keep a diverse population even when a memory process is used.
We also define a new mutation operator to keep reduced manoeuvres allowing
aircraft to remain free for future manoeuvres. We add a final optimisation process
to help remove useless manoeuvres and reduce delays. We use a cluster based
sharing process with a low sharing rate to make sure that the population covers
the search space as much as possible through the simulations.

Using an explicit memory process drastically reduces the total number of
generations and the number of generations necessary to find a conflict-free solu-
tion. It also reduces the variation of manoeuvres planned over time. These two
results are essential if such an algorithm was used to help air traffic controllers
make real time decisions in a dynamic environment.

We show that the memory based approach can handle external actions and
still quickly find good solutions despite the fact that old options are kept in the
population. This is an important point if such an algorithm should interact with
an air traffic controller making decisions that are not present in the manoeuvres
covered by the population.

For future research, it could be wise, at every time step, to run in parallel the
EA with several random seeds and keep the best solution found. This could be
tested and compared with or without memory. We could also imagine a hybrid
version of the naive and explicit memory approaches, where only the best ele-
ment of each cluster at the last generation would be reintroduced in the next
population initialisation. The rest of the population could then be randomly
created which would favour some diversity in the population.

Memory Based EA for Dynamic Aircraft Conflict Resolution 65

This work will be tested with air traffic controllers to measure the capacity
for collaboration between humans and a population based automatic solver and
the quality of interactions with such a memory based algorithm.

References

1. Allignol, C., Barnier, N., Durand, N., Alliot, J.M.: A new framework for solving
en-routes conflicts. In: 10th USA/Europe Air Traffic Management Research and
Developpment Seminar (2013)

2. Allignol, C., Barnier, N., Durand, N., Gondran, A., Wang, R.: Large scale 3D
en-route conflict resolution. In: ATM Seminar, 12th USA/Europe Air Traffic Man-
agement R&D Seminar, Seattle (2017). https://enac.hal.science/hal-01592235

3. Allignol, C., Barnier, N., Durand, N., Gondran, A., Wang, R.: Large scale 3D
en-route conflict resolution. In: ATM Seminar, 12th USA/Europe Air Traffic Man-
agement R&D Seminar, Seattle (2017). https://hal-enac.archives-ouvertes.fr/hal-
01592235

4. Alonso-Ayuso, A., Escudero, L., Martin-Campo, F.: Collision avoidance in air traf-
fic management: a mixed-integer linear optimization approach. IEEE Trans. Intell.
Transp. Syst. 12(1), 47–57 (2011)

5. Aragon, V.S., Esquivel, S.C.: A evolutionary algorithm to track changes of optimum
value locations in dynamic environments. J. Comput. Sci. Technol. 4(3), 127–134
(2004)

6. Bosman, P.A. N..: Learning and anticipation in online dynamic optimization. In:
Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and
Uncertain Environments, pp. 129–152. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-49774-5_6

7. Degaugue, S., Gotteland, J., Durand, N.: Algorithme évolutionnaire pour la réso-
lution, en continu, de conflits aériens. In: ROADEF (2023)

8. Degaugue, S., Durand, N., Gotteland, J.B.: Impact of explicit memory on dynamic
conflict resolution. In: 10th International Conference on Research in Air Trans-
portation (ICRAT 2022), Tampa, p. 53. (2022). https://hal.science/hal-03878000

9. Durand, N., Alliot, J.M.: Genetic crossover operator for partially separable func-
tions. In: GP 1998, 3rd Annual Conference on Genetic Programming, Madison
(1998). https://enac.hal.science/hal-00937718

10. Durand, N., Alliot, J.M.: Ant colony optimization for air traffic conflict resolution.
In: ATM Seminar 2009, 8th USA/Europe Air Traffic Management Research and
Development Seminar, Napa (2009). https://enac.hal.science/hal-01293554

11. Durand, N., Alliot, J.M., Noailles, J.: Automatic aircraft conflict resolution using
genetic algorithms. In: Proceedings of the Symposium on Applied Computing,
Philadelphia. ACM (1996)

12. Durand, N., Gotteland, J.-B., Matton, N.: Visualizing complexities: the human
limits of air traffic control. Cognit. Technol. Work 20(2), 233–244 (2018). https://
doi.org/10.1007/s10111-018-0468-0

13. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic
algorithms with dominance and diploidy. In: ICGA (1987)

14. Goldberg, D.: Genetic algorithms in search. In: Optimization and Machine Learn-
ing. Addison Wesley, Reading (1989)

15. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press (1975)

https://enac.hal.science/hal-01592235
https://hal-enac.archives-ouvertes.fr/hal-01592235
https://hal-enac.archives-ouvertes.fr/hal-01592235
https://doi.org/10.1007/978-3-540-49774-5_6
https://doi.org/10.1007/978-3-540-49774-5_6
https://hal.science/hal-03878000
https://enac.hal.science/hal-00937718
https://enac.hal.science/hal-01293554
https://doi.org/10.1007/s10111-018-0468-0
https://doi.org/10.1007/s10111-018-0468-0

66 S. Degaugue et al.

16. Hu, X., Eberhart, R.: Adaptive particle swarm optimization: detection and
response to dynamic systems. In: Proceedings of the 2002 Congress on Evolution-
ary Computation. CEC 2002 (Cat. No.02TH8600), vol. 2, pp. 1666–1670 (2002).
https://doi.org/10.1109/CEC.2002.1004492

17. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary
function optimization. In: Rodriguez, G. (ed.) Intelligent Control and Adaptive
Systems, vol. 1196, pp. 289–296. International Society for Optics and Photonics,
SPIE (1990). https://doi.org/10.1117/12.969927

18. Lehouillier, T., Omer, J., Soumis, F., Desaulniers, G.: A flexible framework for
solving the air conflict detection and resolution problem using maximum cliques
in a graph (2015)

19. Louis, S., Xu, Z.: Genetic algorithms for open shop scheduling and re-scheduling.
In: ISCA 11th International Conference on Computers and their Applications, pp.
99–102 (1996)

20. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mecha-
nism for non-stationary function optimization (1995). https://cir.nii.ac.jp/crid/
1373949023319151361

21. Rohlfshagen, P., Yao, P.K.L.: Dynamic evolutionary optimisation: an analysis of
frequency and magnitude of change. In: Proceedings of the 2009 Genetic and Evo-
lutionary Computation Conference GECCO 2009, pp. 1713–1720 (2009)

22. Pallottino, L., Féron, E., Bicchi, A.: Conflict resolution problems for air traffic
management systems solved with mixed integer programming. IEEE Trans. Intell.
Transp. Syst. 3(1), 3–11 (2002)

23. Ramsey, C.L., Grefenstette, J.J.: Case-based initialization of genetic algorithms.
In: Proceedings of the 5th International Conference on Genetic Algorithms, pp.
84–91. Morgan Kaufmann Publishers Inc., San Francisco (1993)

24. Rey, D., Rapine, C., Fondacci, R., Faouzi, N.E.: Minimization of potential air
conflicts through speed regulation. Transp. Res. Record: J. Transp. Res. Board
2300, 59–67 (2012)

25. Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions.
In: Giacobini, M., et al. (eds.) Applications of Evolutionary Computing, pp. 596–
605. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78761-7_65

26. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environ-
ments. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), vol. 3, pp. 1843–1850 (1999). https://doi.org/10.1109/CEC.
1999.785498

27. Trojanowski, K., Michalewicz, Z., Xiao, J.: Adding memory to the evolutionary
planner/navigator. In: Proceedings of 1997 IEEE International Conference on Evo-
lutionary Computation (ICEC 1997), pp. 483–487 (1997). https://doi.org/10.1109/
ICEC.1997.592359

28. Vanaret, C., Gianazza, D., Durand, N., Gotteland, J.B.: Benchmarking conflict res-
olution algorithms. In: Proceedings of the 5th International Conference on Research
in Air Transportation, Berkeley (ICRAT 2012). (2012). https://hal.science/hal-
00863090

29. Vela, A., Solak, S., Singhose, W., Clarke, J.: A mixed integer program for flight-
level assignment and speed control for conflict resolution. In: Proceedings of the
Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control
Conference. IEEE (2009)

30. Weicker, K.: An analysis of dynamic severity and population size. In: Parallel
Problem Solving from Nature VI (2002)

https://doi.org/10.1109/CEC.2002.1004492
https://doi.org/10.1117/12.969927
https://cir.nii.ac.jp/crid/1373949023319151361
https://cir.nii.ac.jp/crid/1373949023319151361
https://doi.org/10.1007/978-3-540-78761-7_65
https://doi.org/10.1109/CEC.1999.785498
https://doi.org/10.1109/CEC.1999.785498
https://doi.org/10.1109/ICEC.1997.592359
https://doi.org/10.1109/ICEC.1997.592359
https://hal.science/hal-00863090
https://hal.science/hal-00863090

Memory Based EA for Dynamic Aircraft Conflict Resolution 67

31. Woldesenbet, Y.G., Yen, G.G.: Dynamic evolutionary algorithm with variable relo-
cation. IEEE Trans. Evol. Comput. 13(3), 500–513 (2009)

32. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster
analysis methods in multimodal function optimization. In: Albrecht, R.F., Reeves,
C.R., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 450–
457. Springer, Vienna (1993). https://doi.org/10.1007/978-3-7091-7533-0_65

https://doi.org/10.1007/978-3-7091-7533-0_65

GM4OS: An Evolutionary Oversampling
Approach for Imbalanced Binary

Classification Tasks

Davide Farinati(B) and Leonardo Vanneschi

NOVA Information Management School (NOVA IMS), Universidade Nova
de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal

dfarinati@novaims.unl.pt

Abstract. Imbalanced datasets pose a significant and longstanding
challenge to machine learning algorithms, particularly in binary clas-
sification tasks. Over the past few years, various solutions have emerged,
with a substantial focus on the automated generation of synthetic obser-
vations for the minority class, a technique known as oversampling.
Among the various oversampling approaches, the Synthetic Minority
Oversampling Technique (SMOTE) has recently garnered considerable
attention as a highly promising method. SMOTE achieves this by gener-
ating new observations through the creation of points along the line seg-
ment connecting two existing minority class observations. Nevertheless,
the performance of SMOTE frequently hinges upon the specific selec-
tion of these observation pairs for resampling. This research introduces
the Genetic Methods for OverSampling (GM4OS), a novel oversampling
technique that addresses this challenge. In GM4OS, individuals are repre-
sented as pairs of objects. The first object assumes the form of a GP-like
function, operating on vectors, while the second object adopts a GA-like
genome structure containing pairs of minority class observations. By co-
evolving these two elements, GM4OS conducts a simultaneous search for
the most suitable resampling pair and the most effective oversampling
function. Experimental results, obtained on ten imbalanced binary clas-
sification problems, demonstrate that GM4OS consistently outperforms
or yields results that are at least comparable to those achieved through
linear regression and linear regression when combined with SMOTE.

Keywords: Oversampling · Imbalanced Data · Binary Classification ·
Genetic Programming · Genetic Algorithms

1 Introduction

In real-world classification tasks, it is common to encounter datasets where
the proportion of labels is not homogeneous among the different classes. This
problem is commonly referred to as imbalance. Classification models tend to
exhibit higher accuracy when handling observations from the class that is more
prevalent, often termed as the majority class, as opposed to the less frequently

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 68–82, 2024.
https://doi.org/10.1007/978-3-031-56852-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_5&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_5

Evolutionary Oversampling for Imbalanced Problems (GM4OS) 69

occurring class, referred to as the minority class. A common strategy is to add
new observations, typically created artificially, to the minority class, to improve
the balancing of the dataset. The approach is called oversampling [1,2]. One of
the most used oversampling approaches is the Synthetic Minority Oversampling
Technique (SMOTE) [3]. This oversampling algorithm works by selecting a ran-
dom pair of neighboring observations, drawing a straight line segment between
the two, and randomly sampling a new observation along that segment. One
of its notable drawbacks lies in the sensitivity of its performance to the choice
of the set of data points used for resampling. The quality and relevance of the
selected points play a crucial role in determining the effectiveness of SMOTE
in generating synthetic samples that accurately represent the minority class. In
this paper, we introduce the Genetic Methods for OverSampling (GM4OS), a
novel oversampling method that joins the representation power of two evolution-
ary algorithms, Genetic Algorithms (GAs) [4] and Genetic Programming (GP)
[5], to overcome some of the disadvantages of SMOTE. In GM4OS, individuals
are represented as pairs of objects. The first one is a function, represented as a
standard GP individual. The other one is a string, as a traditional GA individ-
ual. The GA part controls which existing observations from the minority class
will belong to the resampling set. The GP part evolves an oversampling function
that will combine points that belong to the resampling set, and create the new
synthetic points needed to balance the dataset. The fitness of a GM4OS individ-
ual is given by the performance of a model trained by a previously chosen target
machine learning algorithm on the newly balanced training set. The objective
of the evolutionary process is to look for the best resampling set and the most
effective oversampling function at the same time.

The paper is organized as follows: in Sect. 2 we revise previous and related
work. In Sect. 3 we present GM4OS. Section 4 delves into the employed experi-
mental framework, including the set of parameters, the datasets chosen as test
cases, the models utilized as baseline for comparison with GM4OS and the
used metrics. Section 5 presents and discusses the obtained experimental results.
Finally, Sect. 6 concludes the work and suggests ideas for future research.

2 Literature Review

Imbalanced datasets represent a recurrent challenge in real-world classification
tasks. In the literature, both internal and external approaches have been used
in an attempt to obviate the impact of imbalanced data on the model’s per-
formance. External approaches (data level) rebalance the dataset by either
removing observations from the majority class (undersampling) or by adding
observations to the minority class (oversampling) [1,2]. In internal
approaches (algorithm level), the algorithm is adapted to handle automati-
cally imbalanced observations. This can be done by either assigning a differ-
ent weight to each class [6] or by using multiple classifiers simultaneously, also
referred to as ensemble learning [7]. A combination of both internal and external
approaches can be implemented as well. The Synthetic Minority Oversampling

70 D. Farinati and L. Vanneschi

Technique (SMOTE) is an external approach that was designed by Chawla et al.
in 2002 [3]. SMOTE generates new observations belonging to the minority class
as a combination of existing points of the same class. One of the drawbacks
of SMOTE is the over generalization of the minority class, leading to a possi-
ble overlap between classes [8]. Borderline observations are more important for
classification task, being the ones more prone to misclassification. For this rea-
son a variant of SMOTE, named borderline-SMOTE [9], uses as resampling set
only the borderline and nearby observations. Another known oversampling tech-
nique is the Adaptive Synthetic Sampling Approach (Adasyn) [10]. In Adasyn,
minority data samples are generated according to their distribution. To mitigate
the learning bias present in the initial dataset, this approach employs a strat-
egy where a greater number of synthetic observations is generated from those
minority observations that happen to be more challenging to learn. This is done
by assigning weights to the various minority class samples.

The GM4OS method presented in this study is an evolutionary algorithm
that joins the representation power of GP and GAs. For this reason, particularly
interesting for this literature review are some existing oversampling methodolo-
gies grounded in the use of evolutionary algorithms. GP has been previously
applied to imbalanced classification tasks. For instance, standard GP and some
of its variants have been successfully applied to several classification tasks in [11].
Also, recent research contributions by Pei et al. [12] as well as Kumar [13] have
introduced novel fitness functions tailored specifically for GP. These innova-
tive fitness functions have been designed to enhance GP’s performance when
addressing the intricacies of imbalanced classification scenarios. The GenSample
algorithm introduced by Karia et al. in 2019 [14], implements an oversampling
technique based on GAs. GenSample iteratively learns which minority samples
are best suited for resampling and the authors reported on promising results
compared to a set of state-of-the-art models.

The oversampling function evolved by the GP component of GM4OS com-
bines two vectors (existing observations) to create a single one (a new synthetic
observation). This process resembles the vectorial GP approach that was pre-
sented by Azzali et al. in [15,16]. For instance, similarly to the GP component
of a GM4OS individual, vectorial GP allows aggregate functions and vectorial
operations in the primitive GP set and vectorial variables as terminals.

3 Genetic Methods for Oversampling

As stated above, the Genetic Methods for OverSampling (GM4OS) is a novel
oversampling approach for binary classification problems, based on a combina-
tion of GP and GAs representations. GM4OS employs the conventional work-
flow of evolutionary algorithms. Its peculiarity resides in the representation of
the evolving solutions. In GM4OS, in fact, individuals are represented as pairs
of objects, one resembling a standard GP individual and the other one a string-
like GA individual. The GP part is a function, that can be represented for
instance as a tree, that is able to take as input two vectors (existing observa-
tions) and combine them to create a new observation (synthetic observation).

Evolutionary Oversampling for Imbalanced Problems (GM4OS) 71

The GA part is a string of length n = size majclass − size minclass, where
size majclass and size minclass are, respectively, the number of observations
belonging to the majority and minority class in the training set. Each allele of
the GA part of the individual contains a pair of observations of the training set
belonging to the minority class. Figure 1 provides a visual representation of an
arbitrary GM4OS individual.

Fig. 1. Visual representation of a GM4OS individual. The GP function reported on
the left side takes as input two vectors, x1 and x2 (existing observations) and combines
them to create a new observation, given by its output vector (synthetic observation).
The GA genome reported on the right side contains pairs of minority class observations.
By giving each one of these pairs as input to the GP part, n synthetic observations can
be created.

At the beginning of the evolution, the classification dataset is partitioned into
3 subsets: the training, validation and test sets. Then, by applying the function
represented in the GP part to each one of the n pairs of observations of the
GA part, n new synthetic observations are produced. The new observations are
labeled as minority class and added to the training set, making it balanced.

Example. The GP part of the individual in Fig. 1, shown in the left side of the
figure, represents the function:

P(x1,x2) = x1/(x1 · x2)

where x1 and x2 are two vectors of the same dimension as the feature space,
and the operators / and · represent the element-by-element vectorial division
and multiplication, respectively. Now, let us assume, for the sake of simplicity,
that n = 2 (i.e., the majority class has only two observations more than the
minority class). In such a case, the GA part would be represented as a vector
of two pairs of observations, chosen randomly from the minority class. In the

72 D. Farinati and L. Vanneschi

simplistic hypothesis that the feature space has a dimension equal to three, and
using arbitrary numbers as data, let us assume that the GA part is:

[([2, 1, 4], [1, 2, 0.5]), ([1, 3, 2], [2, 1, 0.5])]

where [2, 1, 4], [1, 2, 0.5], [1, 3, 2] and [2, 1, 0.5] are existing training observa-
tions, labeled as minority class. In such a simple example, GM4OS would create
the two following synthetic observations:

– P([2, 1, 4], [1, 2, 0.5]) = [2/(2 · 1), 1/(1 · 2), 4/(4 · 0.5)] = [1, 0.5, 2]
– P([1, 3, 2], [2, 1, 0.5]) = [1/(1 · 2), 3/(3 · 1), 2/(2 · 0.5)] = [0.5, 1, 2]

These two newly created observations would now be inserted in the training set
and labeled as minority class. In this way, the training set is now balanced.

At this point, a classification model is fitted on the newly balanced training
set, and it is then used to make predictions on the validation set. The loss between
expected and calculated outputs on the validation set is finally used as fitness for
the GM4OS individual. In this work, the classification model chosen is Logistic
Regression [17], given its simplicity and training efficiency. Figure 2 shows a
flowchart representing the fitness evaluation process of a GM4OS individual.

During the evolution, distinct genetic operators are applied independently
to each one of the two parts of a GM4OS individual: when crossover or muta-
tion need to be applied to a GM4OS individual (according to the probabilities
presented in Sect. 4), the same operator type (mutation or crossover) is applied
simultaneously to both its GP and GA parts. The genetic operators used in this
work for the GP and GA parts are also specified in Sect. 4. Traditionally, GA
individuals are represented as vectors of scalar values. However, the fact that in
GM4OS the GA part is a vector of pairs (the minority class observations that
will be used by the GP part) does not represent an issue: it is still possible to
use standard GA operators, treating each pair as a single and indivisible piece
of information. So, for instance, one-point crossover will exchange substrings of
pairs between parents, while one-point mutation will replace an existing pair
with a new pair of minority class observations, generated at random. Note that
when one-point crossover is applied the crossover point is restricted to fall in the
boundaries between observations within a pair.

4 Experimental Settings and Test Problems

Table 1 reports all the GM4OS parameters employed in this experimental study.
To assess the performance of GM4OS, we have employed two baseline meth-
ods for comparative evaluation. The first one is a simple Logistic Regression
(denoted as LR in the continuation) [17,18] fitted on the imbalanced training
dataset. The second one is still a Logistic Regression, but this time fitted on the
training dataset re-balanced using the traditional SMOTE algorithm (denoted
as SMOTE+LR in the continuation) [3,19]. Table 2 presents the binary classifi-
cation datasets used as test problems in our experimental study. The imbalance

Evolutionary Oversampling for Imbalanced Problems (GM4OS) 73

Fig. 2. Flowchart of the evaluation of a GM4OS individual. The initial dataset is split
into training, test and validation. Then a GM4OS individual is used to produce enough
new synthetic observations to balance the training set. A model, Logistic Regression
in our experiments, is fitted on the balanced training set. Then, the fitted model is
used to make predictions on the validation set. Finally, the loss between predictions
and true labels on the validation set is used as fitness for the GM4OS individual.

ratio is calculated as the ratio between the number of observations of the major-
ity class and the number of observations of the minority class. In this way, the
imbalance ratio is, by definition, a positive number and, given that we are using
imbalanced datasets, it is strictly larger than one in our test problems. All these
datasets belong to the Penn Machine Learning Benchmarks (PMLB) library [20].
In general, several different performance measures that can be used to evaluate
classification algorithms; among others, one may mention for instance precision,
recall, accuracy, and F1-score. The choice of which metric to prioritize depends
largely on the specific problem and its inherent characteristics. In our case, since
we are addressing imbalanced classification problems, the F1-score of the minor-
ity class emerges as a particularly pertinent fitness metric for GM4OS. In fact,
the F1-score provides a balanced measure of both precision and recall. So, it is
well-suited for situations where the imbalanced distribution of classes demands
a focus on the accurate identification of the minority class instances, striking a
balance between minimizing false positives and false negatives [21].

74 D. Farinati and L. Vanneschi

Table 1. GM4OS parameters.

Parameter Value

Population size 50

Generations 50

Mutation probability 0.2

Crossover probability 0.8

Elitism True

Elite size 1

Selection algorithm Tournament

Tournament size 2

GP initialization Ramped-half-half

GA initialization Random

GP constant set {−1, 2, 3, 4, 5}
GP constant probability 0.3

GP function set {add, sub, mul, div, mean}
GP crossover Subtree single point swap crossover

GP mutation Single node mutation

GA crossover One point crossover

GA mutation One point mutation

Maximum GP tree depth for initialization 8

Maximum GP tree depth for evolution 8

Table 2. Specifications of the datasets used for model comparison.

Dataset Number of observations Number of features Imbalance ratio

flare 1066 10 4.8

haberman 306 3 2.7

spect 267 22 3.8

spectf 349 44 2.7

ionosphere 351 34 1.8

hungarian 294 13 1.77

diabetes 768 8 1.8

hepatitis 155 19 3.84

appendicitis 106 7 4.04

analcatdata 264 4 21.8

Evolutionary Oversampling for Imbalanced Problems (GM4OS) 75

5 Experimental Results

All the results reported in this section are medians over 30 independent runs.
At each run, the datasets are split randomly with uniform distribution into
training, validation and test partitions, composed of 60%, 20% and 20% of the
data observations, respectively. The proportion between majority and minor-
ity class observations is kept constant across the different splits. The same
training/validation/test partition has been used for all the studied methods
at each particular run. For LR and SMOTE+LR, the training and validation
sets were joined and both were used as training set. The obtained experimental
results are reported in Fig. 3. More particularly, Plot 3a (3b, 3c, 3d, 3e, 3f, 3g,
3h, 3i and 3j, respectively) reports the results for the flare (haberman, spect,
spectf, ionosphere, hungarian, diabetes, hepatitis, appendicitis and analcatdata,
respectively) test case. Each one of these plots represents a comparison between
GM4OS, SMOTE+LR and LR. The comparison is done using box-plots of the
F1-score of the minority class on the 30 different test sets. Table 3 reports the p-
values of the Mann-Whitney U test for pairwise comparison of the methods, for
five different metrics. The p-values are in bold when they indicate a statistically
significant difference, using a significance level α = 0.05, with the Bonferroni
correction [22]. Also, the presence of the symbol g indicates that GM4OS out-
performs the baseline, while the symbol b indicates the opposite. The last two
rows of the table are a summary of the results for each measure(column). The
first number, always positive, it indicates how many times GM4OS significantly
outperforms LR+SMOTE or LR. While the second number, always negative, it
indicates how many times GM4OS is significantly outperformed by LR+SMOTE
or LR. For GM4OS, in both Fig. 3 and Table 3, the performance of the best
individual at the last generation is used. Observing the F1-score metric for the
minority class, we can notice that GM4OS is never significantly outperformed by
the baselines. This outcome is corroborated by the box-plots presented in Fig. 3
and the p-values of the third column of Table 3. It is also possible to see that in
four test cases out of ten GM4OS significantly outperforms LR, and in three test
cases out of ten GM4OS significantly outperforms SMOTE+LR. The F1-score
is the measure that we have used as fitness to guide the evolution of GM4OS.
However, it is also interesting to show how GM4OS performs in terms of other
metrics. Looking at the p-values of the accuracy, shown in Table 3, it is possi-
ble to observe that LR significantly outperforms GM4OS in four test cases out
of ten, while having comparable performance in the remaining six cases. This is
probably due to the fact that accuracy is a measure that can be misleading when
working with imbalanced datasets. A model that predicts the majority class for
every instance can be a very poor quality model, but still achieve a high accu-
racy when data is imbalanced. For the other studied metrics, it is difficult to
identify a specific pattern. Depending on the test case, GM4OS can significantly
outperform, be significantly outperformed or have comparable performance to
the baseline models, as shown by the p-values presented in Table 3. Finally, Fig. 4
presents the evolution of the test fitness of the best individual of GM4OS along
generations, compared to the one of the two baseline algorithms, namely LR and

76 D. Farinati and L. Vanneschi

Fig. 3. Box-plots of the F1-score of the minority class of GM4OS against the baselines
for all the datasets.

Evolutionary Oversampling for Imbalanced Problems (GM4OS) 77

Table 3. p-values of the Mann-Whitney U test [23] for different evaluation metrics of
GM4OS against the baselines. In bold when the p-value indicates a statistically sig-
nificant difference. Symbol g indicates that GM4OS outperforms the baseline, while
symbol b indicates the opposite. The last two rows are a summary of the results
for each measure(column). The first number, always positive, it indicates how many
times GM4OS significantly outperforms LR+SMOTE or LR. While the second num-
ber, always negative, it indicates how many times GM4OS is significantly outperformed
by LR+SMOTE or LR.

Problem Baseline F1-score
minority
class

recall
minority
class

precision
minority
class

recall
majority
class

precision
majority
class

accuracy

flare LR+
SMOTE

0.695 0.21 0.137 0.002b 0.663 0.041

LR 3.29e− 11g 4.65e− 6g 2.88e− 04b 1.55e− 8b 4.05e− 5g 5.99e− 7b

haberman LR+
SMOTE

0.888 0.243 0.025 0.005b 0.739 0.023

LR 8e− 9g 1.11e− 5g 0.001b 5.62e− 08b 8.14e− 4g 1.84e− 4b

spect LR+
SMOTE

1.61e− 8g 5.72e− 18b 4.77e− 7g 2.97e− 18g 4.89e− 12b 1.67e− 4g

LR 0.437 1.24e− 12b 1.46e− 4g 5.01e− 12g 8.89e− 8b 0.011b

spectf LR+
SMOTE

8.99e− 4g 9.88e− 9b 0.015g 1.9e− 9g 4.03b 0.222

LR 0.45 6.52e− 7b 0.015g 1.57e− 8g 2.93e− 05b 0.128

ionosphere LR+
SMOTE

0.662 0.002b 2.63e− 6g 3.4e− 7g 0.006b 0.599

LR 0.558 0.006b 1.79e− 4g 3.22e− 5g 0.1b 0.208

hungarian LR+
SMOTE

0.721 0.92 0.894 0.815 0.947 0.699

LR 0.693 0.811 0.524 0.55 0.781 0.234

diabetes LR+
SMOTE

0.673 0.191 0.008b 0.192 0.008b 0.15

LR 0.001g 2.63e− 7b 0.041 2.63e− 7b 0.041b 1.16e− 5b

hepatitis LR+
SMOTE

0.012g 1.47e− 5b 9.22e− 4b 1.1e− 6g 3.72e− 4b 0.016g

LR 0.898 0.001b 0.015b 1.5e− 4g 0.008b 0.092

appendicitis LR+
SMOTE

0.039 0.01b 0.344 0.036 0.022 0.634

LR 1.11e− 4g 0.2 0.838 0.112 0.313 0.586

analcatdata LR+
SMOTE

0.895 0.322 0.443 0.402 0.34 0.856

LR 0.315 0.787 0.676 0.779 0.767 0.99

summary LR+
SMOTE

+3, 0 +2, −5 +3, −2 +4, −2 0, −5 +2, 0

LR +4, 0 0, −5 +3, −3 +4, −3 +2, −5 0, −4

SMOTE+LR, which are presented as horizontal straight lines in the figure. More
specifically, Plot 4a (4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i and 4j, respectively) reports the
results for the flare (haberman, spect, spectf, ionosphere, hungarian, diabetes,
hepatitis, appendicitis and analcatdata, respectively) test case.
From these plots, it is possible to observe that GM4OS outperforms LR in the
entire evolution process in six out of ten total test cases. Similarly GM4OS

78 D. Farinati and L. Vanneschi

Fig. 4. Evolution of the test fitness of GM4OS, compared to the results returned by
LR and SMOTE+LR, over the studied datasets.

Evolutionary Oversampling for Imbalanced Problems (GM4OS) 79

outperforms SMOTE+LR over all the generations in four out of ten total test
cases. In the case of Plot 4j, reporting results on the analcatdata test problem,
all three models have the same performance, around 0.89, and GM4OS has it
starting from the beginning of the evolution (and this is why the figure looks
like a unique horizontal line). This result is coherent with the box-plot shown in
Fig. 3j, where the median of all the models is around 0.89 as well.

6 Conclusions and Future Work

This paper introduced the Genetic Methods for OverSampling (GM4OS), an
evolutionary oversampling approach for imbalanced binary classification prob-
lems. In real-world binary classification tasks, imbalancing between the classes
represents a recurrent issue. In those cases, in fact, classification models typ-
ically struggle to classify correctly the observations belonging to the minority
class. A popular approach to tackle this issue is to add synthetic observations
to the minority class, commonly referred to as oversampling. One of the most
known oversampling approaches is the Synthetic Minority Oversampling Tech-
nique (SMOTE) [3]. SMOTE creates new observations by selecting two existing
minority class observations, and sampling a new synthetic point from the straight
line segment that connects them. However, this approach relies heavily on the
set of points that are used for resampling. GM4OS integrates the representation
power of Genetic Algorithms (GAs) and Genetic Programming (GP), to look for
the most appropriate resampling set and resampling function at the same time.
GM4OS individuals, in fact, are represented as pairs of objects, one of which is a
GP-like function, while the other one is a GA-like string. The GP part strongly
resembles the recently introduced vectorial GP approach [15,16] and combines
two vectors (existing observations) to generate a new single vector (synthetic
observation), while the GA part controls which existing minority class observa-
tions will constitute the resampling set. GM4OS was experimentally compared
with a simple Logistic Regression (LR) [17] and SMOTE combined with LR, on
ten imbalanced binary classification test problems, taken from the Penn Machine
Learning Benchmarks library [20]. The experimental results show that, on all the
studied test problems, GM4OS is able to find models that have an F1-score on
the minority class that is better, or at least comparable, to the baseline models.

Despite the positive experimental outcomes achieved, a significant scope
remains open to future research. One such avenue involves the adaptation of
the GM4OS framework to address multi-class classification problems. Another
area of investigation pertains to the exploration of alternative fitness metrics
for GM4OS, distinct from the F1-score utilized in this study. Specifically, the
pursuit of metrics that have demonstrated efficacy for GP applied to imbal-
anced classification tasks, as evidenced for instance in [12,13], holds signifi-
cant promise. Multi-objective optimization, using several fitness functions at the
same time, also deserves investigation. An additional idea for future research
is inspired by the observation that the GP component within GM4OS is sus-
ceptible to the issue of bloat, a common occurrence in GP. While the present

80 D. Farinati and L. Vanneschi

work implemented a strategy to restrict tree depth to a maximum of 8, a myr-
iad of other strategies have been advanced to mitigate bloat. Notably, existing
references suggest that the introduction of a dynamic GP population size effec-
tively alleviates bloat, thereby reducing computational overhead while maintain-
ing excellent performance levels, as documented for instance in [24–26]. In light
of these findings, the incorporation of dynamic population sizing into GM4OS
presents itself as an intriguing avenue for future development. Furthermore, as a
forthcoming research endeavor, it is imperative to acknowledge that the present
study employed a Logistic Regression model to evaluate the oversampling func-
tion/resampling set pair, due to its computational efficiency [17]. Nevertheless,
the framework remains adaptable to experimentation with alternative models,
such as for instance Decision Tree classifiers [27] or many others. In this study, we
conducted a comparative analysis to assess the performance of GM4OS against
an alternative oversampling technique, namely SMOTE (Synthetic Minority
Over-sampling Technique). Our investigation aimed to elucidate the effective-
ness of these oversampling approaches in addressing the challenge of class imbal-
ance within classification tasks. Additionally, our future research endeavors will
encompass further comparisons with alternative oversampling methodologies,
including Adasyn [10] and borderline-SMOTE [9]. Lastly, an interesting prospect
for future research entails the extension of GM4OS to encompass synthetic data
generation. This extension can be realized through the modification of the resam-
pling set governed by the GA component of GM4OS, extending its influence to
the entire dataset.

Acknowledgments. This work was supported by national funds through FCT
(Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 -
Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.

References

1. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several
methods for balancing machine learning training data. SIGKDD Explor. 6, 20–29
(2004)

2. Chawla, N., Japkowicz, N., Ko�lcz, A.: Editorial: special issue on learning from
imbalanced data sets. SIGKDD Explor. 6 , 1–6 (2004). https://doi.org/10.1145/
1007730.1007733

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)

4. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)
5. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.

Lulu Enterprises, UK Ltd (2008)
6. Ali, A., Shamsuddin, S.M., Ralescu, A.: Classification with class imbalance prob-

lem: a review 7, 176–204 (2015)
7. Huang, J., Ling, C.: Using AUC and accuracy in evaluating learning algorithms.

IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005). https://doi.org/10.1109/
TKDE.2005.50

https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1109/TKDE.2005.50
https://doi.org/10.1109/TKDE.2005.50

Evolutionary Oversampling for Imbalanced Problems (GM4OS) 81

8. Gosain, A., Sardana, S.: Handling class imbalance problem using oversampling
techniques: a review. In: 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 79–85 (2017). https://doi.org/10.
1109/ICACCI.2017.8125820

9. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-smote: a new over-sampling method
in imbalanced data sets learning. In: Proceedings of the 2005 International Confer-
ence on Advances in Intelligent Computing - Volume Part I (ICIC 2005), Springer,
Heidelberg (2005), pp. 878–887. https://doi.org/10.1007/11538059 91

10. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach
for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328
(2008). https://api.semanticscholar.org/CorpusID:1438164

11. Frank, F., Bacao, F.: Advanced genetic programming vs. state-of-the-art automl in
imbalanced binary classification. Emerg. Sci. J. 7(4), 1349–1363 (2023). https://
doi.org/10.28991/ESJ-2023-07-04-021

12. Pei, W., Xue, B., Shang, L., Zhang, M.: New fitness functions in genetic pro-
gramming for classification with high-dimensional unbalanced data. In: 2019 IEEE
Congress on Evolutionary Computation (CEC), pp. 2779–2786 (2019). https://doi.
org/10.1109/CEC.2019.8789974

13. Kumar, A.: A new fitness function in genetic programming for classification of
imbalanced data. J. Exp. Theor. Artif. Intell. 1–13 (2022). https://doi.org/10.1080/
0952813X.2022.2120087

14. Karia, V., Zhang, W., Naeim, A., Ramezani, R., Gensample: a genetic algorithm
for oversampling in imbalanced datasets. arXiv preprint arXiv:1910.10806 (2019)

15. Azzali, I., Vanneschi, L., Silva, S., Bakurov, I., Giacobini, M.: A vectorial approach
to genetic programming. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., Garćıa-
Sánchez, P. (eds.) Genetic Programming: 22nd European Conference, EuroGP
2019, Held as Part of EvoStar 2019, Leipzig 24–26 April 2019, Proceedings, pp.
213–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16670-0 14

16. Azzali, I., Vanneschi, L., Bakurov, I., Silva, S., Ivaldi, M., Giacobini, M.: Towards
the use of vector based GP to predict physiological time series. Appl. Soft Comput.
89, 106097 (2020). https://doi.org/10.1016/j.asoc.2020.106097

17. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc.: Ser. B
(Methodol.) 20(2), 215–232 (1958)

18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

19. Lemâıtre, G., Nogueira, F., Aridas, C. K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(17), 1–5 (2017)

20. Romano, J.D., et al.: Pmlb v1.0: an open source dataset collection for benchmark-
ing machine learning methods. arXiv preprint arXiv:2012.00058v2 (2021)

21. Ferrer, L.: Analysis and comparison of classification metrics. arXiv preprint
arXiv:2209.05355 (2023)

22. Bonferroni, C.: Teoria statistica delle classi e calcolo delle probabilità, Pubbli-
cazioni del R. Istituto superiore di scienze economiche e commerciali di Firenze,
Seeber (1936)

23. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables
is stochastically larger than the other. Annal. Math. Statist. 18(1), 50–60 (1947).
https://doi.org/10.1214/aoms/1177730491

https://doi.org/10.1109/ICACCI.2017.8125820
https://doi.org/10.1109/ICACCI.2017.8125820
https://doi.org/10.1007/11538059_91
https://api.semanticscholar.org/CorpusID:1438164
https://doi.org/10.28991/ESJ-2023-07-04-021
https://doi.org/10.28991/ESJ-2023-07-04-021
https://doi.org/10.1109/CEC.2019.8789974
https://doi.org/10.1109/CEC.2019.8789974
https://doi.org/10.1080/0952813X.2022.2120087
https://doi.org/10.1080/0952813X.2022.2120087
http://arxiv.org/abs/1910.10806
https://doi.org/10.1007/978-3-030-16670-0_14
https://doi.org/10.1016/j.asoc.2020.106097
http://arxiv.org/abs/2012.00058v2
http://arxiv.org/abs/2209.05355
https://doi.org/10.1214/aoms/1177730491

82 D. Farinati and L. Vanneschi

24. Fernandez, F., Vanneschi, L., Tomassini, M.: The effect of plagues in genetic pro-
gramming: a study of variable-size populations. In: Ryan, C., Soule, T., Keijzer, M.,
Tsang, E., Poli, R., Costa, E. (eds.) Genetic Programming, pp. 317–326. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0 29

25. Rochat, D., Tomassini, M., Vanneschi, L.: Dynamic size populations in distributed
genetic programming. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J.,
Tomassini, M. (eds.) Genetic Programming: 8th European Conference, EuroGP
2005, pp. 50–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
31989-4 5

26. Farinati, D., Bakurov, I., Vanneschi, L.: A study of dynamic populations in geo-
metric semantic genetic programming. Inf. Sci. 648, 119513 (2023). https://doi.
org/10.1016/j.ins.2023.119513

27. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-
sion trees. Biometrics 40, 874 (1984). https://api.semanticscholar.org/CorpusID:
29458883

https://doi.org/10.1007/3-540-36599-0_29
https://doi.org/10.1007/978-3-540-31989-4_5
https://doi.org/10.1007/978-3-540-31989-4_5
https://doi.org/10.1016/j.ins.2023.119513
https://doi.org/10.1016/j.ins.2023.119513
https://api.semanticscholar.org/CorpusID:29458883
https://api.semanticscholar.org/CorpusID:29458883

Evolving Staff Training Schedules Using
an Extensible Fitness Function

and a Domain Specific Language

Neil Urquhart(B) and Kelly Hunter

School of Computing, Edinburgh Napier University, Edinburgh, UK
{n.urquhart,k.hunter}@napier.ac.uk

Abstract. When using a meta-heuristic based optimiser in some indus-
trial scenarios, there may be a need to amend the objective function
as time progresses to encompass constraints that did not exist during
the development phase of the software. We propose a means by which
a Domain Specific Language (DSL) can be used to allow constraints to
be expressed in language familiar to a domain expert, allowing addi-
tional constraints to be added to the objective function without the
need to recompile the solver. To illustrate the approach, we consider
the construction of staff training schedules within an organisation where
staff are already managed within highly constrained schedules. A set of
constraints are hard-coded into the objective function in a conventional
manner as part of a Java application. A custom built domain specific
language (named Basil) was developed by the authors which is used to
specify additional constraints affecting individual members of staff or
groups. We demonstrate the use of Basil and show how it allows the
specification of additional constraints that enable the software to meet
the requirements of the user without any technical knowledge.

1 Introduction and Motivation

Evolutionary Algorithms and related meta-heuristics have been developed to
solve a range of real-world problems. However, it is inevitable that an organi-
sation’s needs change over time: as a result, the constraints within the original
system may no longer meet their needs. While the users of a system may have
problem domain knowledge, they may not have any software engineering expe-
rience. Updating constraints within the system may pose difficulties, requiring a
software-engineering specialist to alter the system. This paper proposes a mech-
anism by which a user with knowledge of the problem domain can add additional
constraints to the objective function, in a manner that does not require specialist
software engineering skills, using a custom built domain-specific language (DSL)
designed and implemented by the authors.

We consider the specific case of an industrial partner within the public trans-
portation sector, who has limited software development expertise. The partner
has a requirement to provide staff training schedules within a heavily constrained
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 83–97, 2024.
https://doi.org/10.1007/978-3-031-56852-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_6&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_6

84 N. Urquhart and K. Hunter

environment. Staff must be to be allocated to training slots in a manner that
causes least disruption to the existing schedules. As with many problems that
involve the scheduling of people, many constraints exist based around the spe-
cific requirements of individuals that are not necessarily known in the original
design phase.

The contribution of this paper is to address the following research questions:

1. To what extent can constraints be expressed in a custom built DSL a manner
that is achievable by a domain expert?

2. What mechanisms could be used to evaluate constraints specified using a DSL
against candidate solutions at run time?

3. How does the evaluation time scale as more constraints are added at run-time?

The principle contribution of this paper is the development of the DSL and
the use of pattern matching to evaluate constraints.

This paper is organised as follows, Sect. 2 describes related work in the field
of optimisation. The problem domain is described in Sect. 3 and the evolutionary
algorithm used to produce solutions is described in Sect. 4. The development of
a domain specific language (DSL) specifically for this application is described in
Sect. 5 along with the mechanism by which Basil statements are compiled into
regular expressions which are then matched against the solution being evaluated.
Finally, conclusions and future work are described in Sect. 6.1.

2 Related Work

Evolutionary Algorithms and other meta-heuristics have been applied to prob-
lems related to a number of industrial sectors including timetabling [1,11], staff
scheduling, [2,3,10], vehicle routing and logistics [4,6] and job shop/factory
scheduling [5]. The domain of staff scheduling, and in particular nurse schedul-
ing has received a great deal of attention, for a recent survey of this domain the
reader is directed to [7]. Whilst some industrial scheduling problems map closely
to traditional benchmark problem types (e.g., the Travelling Salesman Problem,
Vehicle Routing Problem or Flow Shop Problems) many incorporate constraints
that are specific to the organisation who own the problem.

There exists the issue of how to specify these organisation specific constraints
in a manner that is suitable for organisations who do not have the capability
to modify the underlying software. One option is the use of a domain specific
language (DSL) to specify constraints. Regenell and Kuchcinski [8] describe the
use of an embedded DSL for combinatorial optimisation. The approach taken is
based on the Scala platform, the resultant DSL making use of the Scala syntax.
Whilst this approach has much to recommend it, not least the ability to integrate
the DSL compilation with that of the main Scala application. Constraints can
also be specified in a constraint modelling language such as MiniZinc [12].

The DSL-based approaches outlined above have the disadvantages that the
DSLs are difficult to use by domain experts who are not software engineers.
In this work, the DSL presented (Basil) is designed specifically around entities

Evolving Staff Training Schedules 85

within the problem domain in order to make it usable by problem domain experts
within an organisation that does not have software development expertise.

3 Problem Domain

3.1 Problem Definition

A major Scottish public transport provider employs over 2,000 drivers. It is
a requirement under current UK/EU legislation that professional drivers must
undertake mandatory Certificate of Professional Competence (CPC) training [9].
Within a five-year period each driver must undertake 35 h of training: failure to
complete the required amount of training results in the drivers’ license expiring,
losing their right to drive on a commercial basis.

An existing proprietary software package is used to schedule drivers to their
routine duties, but this system does not schedule the time required for CPC
training. The policy of the organisation is that each driver is allocated one CPC
training day per year - this ensures that they will have undertaken the required
35 h within the five-year period. Each driver has a specific license expiry date
based on when they completed their initial training which specifies the deadline
by which their CPC training must have been completed within the fifth year.

A total of 2014 drivers employed are split into groups, representing the area
of the organisation that they work for (see Table 1), each driver must have one
CPC training day per year. Each training day can accommodate 12 trainees,
training takes place for 40 weeks per year for 5 days per week, creating 2400
training places. Assuming that each member of staff attends on the day that
they are scheduled then there is a 16% spare capacity. In practice this capacity
is required to cover situations such as non-attendance due to illness or where the
staff member cannot be released for training due operational requirements.

Table 1. The employee group sizes with the problem being considered. The maximum
number of employees which may be allocated to training from each group on the same
day is shown.

Group Size 50 24 750 400 450 140 140 60

Max. Trainees per Day 1 1 5 3 3 1 1 1

There are a number of constraints that govern the CPC training schedule:

1. Any driver whose license expires in the current year must have their training
day, for that year, prior to their license expiring.

2. Each driver may only attend one CPC training day each year.
3. Each training day can only accommodate 12 trainees.
4. The number of trainees on each day from a specific group must not exceed

the limit set for that group (see Table 1).

86 N. Urquhart and K. Hunter

5. In their normal duties, each week drivers are allocated to duties that are
classified as either ‘early’ or ‘late’, if possible, CPC training days should be
scheduled for drivers when they are already allocated to early duties, this
makes it easier to release them for the training.

3.2 Problem Instances

The problem instances used in this paper are generated randomly, based on
statistics supplied by the partner. This avoids having to share commercially
sensitive data during the development stage.

Table 2. The parameters used when generating the test instances.

Parameter Value

Class Size 12

Early Shift Probability 0.5

Probability license expires 0.2

Training Weeks 40

Training Days Week 5

4 Solving Using an Evolutionary Algorithm

4.1 Algorithm Description

The algorithm used within this paper is named CPC-EA and is described in
Algorithm 1, the parameters used are given in Table 3. A steady state population
is employed: within the generational loop (Lines 4–3) one new child solution is
created by either recombination of two parents (Lines 6–8) or by cloning a single
parent (Line 10). The child then replaces the loser of a tournament (Line 15)
providing the child fitness is an improvement on the loser (Lines 16–8).

Most academic use of EAs described in studies execute the EA for a fixed
number of evaluations (referred to as an evaluation budget). In this application
our aim is to produce a usable schedule for the business, so there is no require-
ment to limit the evaluations to a specific time frame, but instead the algorithm
can execute until it cannot find any more improvements to the solution. A param-
eter MAX EVALS is used to specify the maximum number of evaluations that
will be carried out in order to prevent excessively long execution times.

Evolving Staff Training Schedules 87

Algorithm 1. CPC-EA
1: pop = initialise(POP SIZE)
2: bestSol = findBest(pop)
3: evalLeft = TIMEOUT
4: while evalsLeft > 0 do
5: if random() < XOV ERRATE then
6: p1 = tournament(pop, TOURSIZE)
7: p2 = tournament(pop, TOURSIZE)
8: child = recombine(p1, p2)
9: else if random() >= XOV ERRATE then

10: child = tournament(pop, TOURSIZE)

11: mutate(child)
12: evalute(child)
13: evals + +
14: evalsLeft−−
15: rip = tournamentLoose(pop, TOURSIZE)
16: if child.fitness < rip.fitness then
17: pop.remove(rip)
18: pop.add(child)
19: if child.fitness < bestSol.fitness then
20: bestSol = child
21: evalLefts = TIMEOUT

22: if evals > MAX EV ALS then
23: return

Table 3. Parameters used within CPC-EA in this paper.

Parameter Value

POP SIZE 100

TIME OUT 25,000

XOVER RATE 0.5

TOUR SIZE 2

MAX EVALS 250,000

Representation. Each solution comprises a list of training slots, the total
number of slots being calculated as Class Size × Training Days Week ×
Training Weeks (see Table 2), for the instances under consideration this equates
to 2400 training slots. Each slot may be empty or have a driver allocated to it.
All the drivers in the problem must be allocated to a slot for a valid solution to
exist (in our definition a valid solution is one in which all drivers are allocated
a training day regardless of any other constraints). Table 4 gives an example of
the representation used.

88 N. Urquhart and K. Hunter

Table 4. A truncated example of a solution, one entry exists for each driver which
has a training slot associated with it (labelled as <week>.<day>.<no>). As there are
more slots than drivers, a list of unused slots is also maintained.

Driver
Training

Slot

00001 2.1.1
00002 40.4.4 Unused Slots

00003 34.3.5 17.1.1
00004 21.2.1 40.4.12
00005 16.1.12 8.5.11
00006 14.5.5 16.2.8
00007 21.2.3 21.5.4
00008 22.3.4 24.5.12
00009 35.2.2 33.1.11
00010 35.4.7 35.3.1
00011 2.1.2 26.2.12
00012 9.3.12

... ...

Initialisation. When initialising the population, each solution has a random
unused training slot allocated to each driver. Algorithm 2 illustrates the means
by which each individual is initialised. The MAX TRIES variable was set to 150
in order to ensure that a reasonable proportion of training slots were potentially
tried for each driver. For drivers whose license is due to expire (Line 6), the
algorithm is biased towards finding a slot that allows training before their expiry
date (Line 7). For the remaining drivers (Line 11) the selection is biased towards
finding a training slot that coincides with an early shift pattern.

Operators. When a new child solution is created, initially no training slots
are allocated. Each driver d is then considered in turn, a parent is selected at
random, and an attempt is made to allocate the slot associated with d in that
parent. If the slot cannot be used (as it has already been allocated within the
child) then the slot associated with d on the other parent is tried. If a slot from
neither parent can be used, the d is allocated a slot chosen at random from the
list of unused slots.

Two mutation operators are used:

– Select two drivers d1 and d2 at random from within the chromosome, swap
the training slots allocated to d1 and d2.

– Select a driver d at random, move the training slot allocated to d to unused
list. Select a slot from the unused list at random and allocate that slot to d.

Evolving Staff Training Schedules 89

Algorithm 2. Initialise Individual
1: d = 0
2: while d < drivers.length do
3: tries = 0
4: while tries < MAX TRIES do
5: slot = getRandFreeSlot()
6: if driver.expiresCurrentY ear then
7: if slot.week < driver.expiry() then
8: driver.trainingSlot = s
9: freeSlots.remove(s)

10: tries = MAX TRIES
11: else
12: if driver.getShift(slot.week) == early) then
13: driver.trainingSlot = s
14: freeSlots.remove(s)
15: tries = MAX TRIES

Objective Function. A penalty-based fitness function is used. The penalty
weights used can be found in Table 5 (these values were determined by empiri-
cal investigation). The fitness function may be divided into two sub functions:
fitness-base and fitness-dsl (see Sect. 5).

Fitness-base is hard-coded at design time and incorporates those constraints
identified during the analysis and development stage undertaken with the part-
ner. The base fitness function examines the solution for violations of constraints
1–3 (see Table 5). Fitness-dsl is used to allow the end-user to specify additional
constraints using a custom DSL (see Sect. 5).

Table 5. The penalties used within the fitness function. Note that constraints 1–3 are
evaluated by the base fitness function and 4–6 are evaluated by the extended fitness
function using. Each Basil statement is compiled into a custom constraint.

Constraint Penalty

1 Final training day after license has expired 15

2 Unbalanced training group (see Table 1) 5

3 Training scheduled during late shift 5

4 Custom Constraint (low priority) 1

5 Custom Constraint (medium priority) 5

6 Custom Constraint (high priority) 10

90 N. Urquhart and K. Hunter

4.2 Initial Results

Table 6 shows the results obtained with CPC-EA on the five test instances.
In each case the CPC-EA was run 10 times and the best result shown (best
being defined as lowest fitness). Note that in these instances no extended fitness
function was specified.

A small number of training slots violated the late shift constraint (Table 5
Item 3). Examination of the solutions suggested that in most cases this occurred
as the driver affected had a license that expired early in the year and so the
training had to take place within the first few weeks, even if that meant violating
the late shift constraint. Figure 2 shows the total number of late shift violations
by week. Note that the violations all occur before week 12 and that 60% of the
violations occur in the first two weeks. It should also be noted that every one
of the drivers whose training week clashed with a late shift had a license due to
expire in the current year.

As we are carrying out EA runs that do not have a fixed number of evalua-
tions, we should examine the relationship between performance (fitness) and the
number of evaluations used. Figure 1 plots the fitness and total evaluations for
all 40 initial runs of CPC-EA. The results of the Pearson coefficient suggest that
there is a significant small relationship, examination of the plot shows that there
are a number of runs where a smaller number of evaluations has been accompa-
nied by a low fitness, thus justifying the practice of executing the algorithm 10
times and selecting the best result achieved.

Table 6. The initial results obtained when using fitness-base only on the test instances.
Results shown are based on the best of 10 runs - the average being shown in parenthesis.

Data Set Fitness Constraint Violations

Expired License Imbalanced Groups Late Shifts

801 60 (83.5) 0 0 6 (8.1)

480 50(71.5) 0 0 10(14.3)

665 40 (58.5) 0 0 8 (11.7)

135 30 (40.5) 0 0 6 (8.1)

5 Extending the Fitness Function

5.1 Introduction

When using an Evolutionary Algorithm within an industrial environment, a
hard-coded fitness function can present a major disadvantage. As business and
operational needs change, the constraints on the problem under consideration
may change, requiring the fitness function to be modified. Modifying the fitness
function is difficult and potentially expensive, to address this, as discussed in
Sect. 4.1 we divide the fitness function into two sub functions:

Evolving Staff Training Schedules 91

Fig. 1. A line fit plot for the fitness (x axis) versus evaluations y axis. The Pearson
correlation coefficient returns a result of r = −0.6058, p = 0.00003447, which suggests
a significant very small relationship between x and y.

Fig. 2. The total number of late shift constraint violations found within the 400 solu-
tions summarised in Table 6. In every case the driver with the constraint violation also
had a license due to expire in the current year.

– fitness-base: This function evaluates a set of constraints that are hard-coded
in Java, it is not intended to be modified by the end-user.

– fitness-dsl : This function evaluates a set of constraints specified using the DSL
by the end-user. The constraints are compiled and evaluated at run-time.

The fitness value assigned to a candidate solution is the sum of the penalty
values assigned by fitness-base and fitness-dsl. As the end users do not have
software engineering experience it is not desirable to use an existing scripting
language, we investigate the development of a domain specific language (DSL)
named Basil that allows constraints to be specified. The DSL is based around
entities within the problem domain that will be familiar to the end user, making
it easier for them to use, it is only intended for the specification of constraints for
this problem domain. Each constraint within Basil specifies whether a particular
characteristic should not appear in the solution, in this manner the constraints
specified using Basil are binary.

92 N. Urquhart and K. Hunter

5.2 The Basil Language Syntax, Compilation and Evaluation

The Basil language is a DSL used to specify constraints which the user wishes
to apply to the solution, as it is only used to specify constraints based around
entities in the problem domain, it is not Turing complete (it has no branch or
jump constructs).

A Basil script comprises a list of constraints and the priorities associated
with these constraints. A constraint specified in Basil takes the basic form:

<entity> <condition> <time> <priority>

Each constraint specifies that a particular entity (driver or group of drivers)
should be placed (or not placed) before, after or in a specific time (training
week). Optionally, a priority may be assigned to the constraint, each priority
level has a penalty value assigned to it (see Table 5 Items 4–6).

– entity The entities upon which constraints may be imposed are Drivers or
Groups. These are denoted by use of the keywords driver or group, followed
by the appropriate driver or group identifier.

– condition Each condition begins with the phrase must be (which can be
negated with the phrase must not be followed by one of the keywords before,
after or in

– time Times are specified using the keyword week followed by the week num-
ber.

– priority The optional priority may be set using the priority keyword followed
by high, medium or low. Where a priority is not specified, the constraint is
allocated a medium priority.

An example Basil script may be seen Algorithm 3.

Algorithm 3. An example of a Basil script. Line 1 is a comment, lines 2-5
describe constraints to be applied to the problem being solved.
1: #A set of test constraints
2: driver 123 must not be before week 23 with high priority
3: driver 226 must not be after week 23 with low priority
4: driver 1500 must not be in week 12 with medium priority
5: group depot1 must not be in week 35

5.3 Basil Execution

Basil is based around the concept of regular expression-based pattern matching,
each Basil constraint being compiled into a regular expression. In order to eval-
uate a solution against a regular expression each solution is converted into what
is termed an intermediate format (Fig. 3) describing the allocation of training
slots to drivers. Table 7 shows examples of Basil statements (constraints) and
their resulting Regex expressions.

Evolving Staff Training Schedules 93

Fig. 3. An extract from the intermediate format. This format presents the solution in
a manner that supports pattern matching via regular expressions. Each line describes
the assignment of one driver to a training slot.

Table 7. Statements written in Basil are parsed and compiled into regular expressions
which are then evaluated against a solution presented in the intermediate format (Fig. 3.
The appears flag specifies if the regex expression must appear in the solution or not.
The priority weight field specifies the penalty weight to be associated with a violation.

Basil Statement Regex Appears Flag Priority Weight

driver 123 must not be before week 23 with low priority :ID:123:GR:...:WK:23:DY:.:DT:.:XW:..:FY: false low

group DP1 must not be in week 35 :ID:...:GR:DP1:WK:35:DY:..:DT:.:XW:..:FY: false medium (default)

driver 456 must be before week 23 with high priority :ID:456:GR:...:WK:23:DY:..:DT:.:XW:..:FY: true high

driver 567 must be after week 33 with high priority :ID:567:GR:...:WK:33:DY:..:DT:.:XW:..:FY: true high

5.4 Results with Basil

Basil scripts containing 10, 25, 50 and 100 constraints were generated at ran-
dom. The generation of constraints at random simulates the arbitrary constraints
which might stem from individual staff requests and organisational constraints.
Some of these random constraints will conflict with each other or with base con-
straints (Table 5 Items 1–3). Our interest is not in avoiding this conflict but in
managing it.

The results obtained may be seen in Table 8. The reader should note that
the best solutions never break the license expiry constraint: this is very desirable
given the importance to the business of ensuring that drivers’ licenses are not
allowed to expire. If we explore the relationship between the fitness of the best
solution found (over 10 runs) and the number of custom constraints, we find that
there exists a significant large positive relationship (calculated using a Pearson
Correlation Coefficient where r = 0.5651 and p = 0009). This is as we might
expect, adding more constraints results in a reduction in solution quality.

As we are examining an industrial application, we should examine the effects
of adding the additional constraints and the overhead of evaluating them. We
are not concerned with the overall run-time required, the user can adjust the
TIME OUT property to find an appropriate balance between the time they are
willing to wait and the quality of the resulting solution. In this section we are
concerned with the general effect of adding numbers of additional constraints
into the fitness function via Basil and the increased time taken to evaluate these
constraints. Figure 4 shows the average time ev (milliseconds) to evaluate 2,000
individuals we are concerned with the trend in ev, as the number constraints is
increased. Figure 4 suggests that the increase in evaluation time is super linear.

94 N. Urquhart and K. Hunter

The initial system was implemented in Java and executed on a MacBook based
round the Apple M1 CPU.

Table 8. Results obtained using up to 100 randomly specified Basil constraints.

DataSet Custom Constraints Fitness Constraints Custom Constraints

Shift Violation (late shift) Expired License Unbalanced Groups Low Medium High

135 0 Best 55 8 0 0

Avg 88.5 14.1 0 0

5 Best 2934 13 0 109 4 0 234

Avg 2663.4 15.9 0.1 109.4 4.3 0 230.7

10 Best 943 11 0 0 878 0 0

Avg 962.3 10.9 0 0 880.8 0 0

25 Best 449 9 0 0 3 70 0

Avg 485.2 14.5 0 1 3.4 77.7 0

50 Best 3815 6 0 113 566 60 218

Avg 3844.7 10.7 0 126.2 575.7 61.9 225.9

100 Best 7311 19 0 145 445 775 204

Avg 7353.4 23.1 0.2 138.3 448.4 778.2 210.9

801 0 Best 105 17 0 0

Avg 127.5 20.7 0 0

5 Best 125 16 0 0 35 0 0

Avg 145.5 16.4 0 0 36.5 0 0

10 Best 976 16 0 0 610 50 1

Avg 973.5 18.6 0 0 611.2 53.2 1

25 Best 880 17 0 17 25 16 50

Avg 913.7 21.9 1.3 21.1 26.2 17.8 53.8

50 Best 5896 20 0 177 5 144 412

Avg 5914.7 22.8 0.4 179.4 6.2 145 414

100 Best 1918 19 0 22 448 28 105

Avg 1956.9 21.4 0.1 27.7 451.4 29.5 108.7

665 0 Best 65 10 0 0

Avg 84.5 13.6 0 0

5 Best 80 13 0 0 0 0 3

Avg 100.6 14.3 0 0 0.1 3.1 0

10 Best 131 12 0 0 1 12 0

Avg 156.3 15.7 0 0 1.8 12.1 0

25 Best 954 11 0 61 22 2 54

Avg 977 16 0 61.4 23.5 2 54.1

50 Best 239 11 0 0 39 19 2

Avg 261.6 13.4 0.1 0 44.6 20.1 2.8

100 Best 8234 13 0 0 506 23 752

Avg 8250.9 15.8 0 0 507.4 23.9 753.2

480 0 Best 75 11 0 0

Avg 98.5 15.3 0 0

5 Best 644 10 0 3 19 107 1

Avg 670.6 10 0 1.7 20.1 108.3 1

10 Best 535 11 0 0 455 1 1

Avg 564.8 14.7 0 0 0 1.1 1.2

25 Best 565 15 0 8 35 1 33

Avg 581.1 18.9 0 10.5 38.1 1 37.1

50 Best 1332 15 0 0 966 7 21

Avg 1355.3 19.8 0.5 0 966.8 7.6 21.5

100 Best 3807 15 0 38 10 392 147

Avg 3838.2 18.9 0 44.7 10.7 392.4 152.7

Evolving Staff Training Schedules 95

Fig. 4. Milliseconds per evaluation on the results obtained in Table 8 the box plots
show evaluation times for 0, 10, 25, 50 and 100 custom constraints respectively. Note
the lack of overlap between the box plots, also note that the trend in the evaluation
time versus quantities of custom constraint is super-linear.

6 Discussion and Future Work

6.1 Conclusions

The principle contribution presented in this paper is the development of the Basil
DSL and the mechanism by which constraints are evaluated at run time. The
basic problem is not novel, nor is the algorithm used to solve it. The contribution
of this paper lies the development and the use of the Basil DSL and the use
of the intermediate representation and pattern matching (see Sect. 5) to allow
evaluation of constraints at run-time.

In addressing the first research question stated in the introduction, the results
presented in Table 8 suggest that can be implemented within a DSL and eval-
uated at run time. Assessing whether the DSL is usable by a domain expert is
more difficult proposition, informal discussions suggest that domain experts can
utilise the BASIL language, future work will include a more formal evaluation
of BASIL with regards to usability through a user study.

The mechanism described in Sect. 5 highlights the use of the intermediate
representation and pattern matching as the means of addressing the second
research question. The use of regular expressions allows and existing well-proven
mechanism to be used, one which is implemented in most commonly used pro-
gramming environments. This avoids the use of more complex solutions such as
full compilation of the custom constraints into the main code base, a procedure
which also has potential security and integrity issues.

96 N. Urquhart and K. Hunter

If we consider the last question, Fig. 4 shows the increase in evaluation time
as the number of custom constraints increases. We note that further work may
be required on the execution mechanism for Basil as scripts of more than 100
constraints are not viable in terms of execution. This could be partially negated
by executing the software on more powerful hardware and examining the imple-
mentation of the regex pattern matcher.

6.2 Future Work

This paper has laid a solid foundation for future work on the problem of incor-
porating, custom constraints into a solver in a manner that is appropriate for
non-technical users. As well as more technical work in he implementation, future
work will also include the integration of Natural Language Processing into Basil
to allow constraints to be expressed in natural language. In a problem such
as this where there are many stakeholders (e.g., over 2,000 drivers) the ability
for them to articulate their constraints directly to the system would be a very
powerful feature.

Acknowledgements. The authors are indebted to management of the industrial part-
ner for their time in explaining the problem and the feedback given on the work under-
taken.

References

1. A tabu search algorithm with controlled randomization for constructing feasible
university course timetables. Comput. Oper. Res. 123, 105007 (2020). https://doi.
org/10.1016/j.cor.2020.105007

2. Abdelghany, M., Yahia, Z., Eltawil, A.B.: A new two-stage variable neighborhood
search algorithm for the nurse rostering problem. RAIRO - Oper. Res. 55(2), 673–
687 (2021). https://doi.org/10.1051/ro/2021027

3. Burke, E.K., Curtois, T., Qu, R., Vanden-Berghe, G.: A time predefined variable
depth search for nurse rostering. INFORMS J. Comput. 25(3), 411–419 (2013).
https://doi.org/10.1287/ijoc.1120.0510

4. Kent, E., Atkin, J.A.D., Qu, R.: Vehicle routing in a forestry commissioning oper-
ation using ant colony optimisation. In: Dediu, A.-H., Lozano, M., Mart́ın-Vide, C.
(eds.) TPNC 2014. LNCS, vol. 8890, pp. 95–106. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13749-0 9

5. Kittel, F., Enenkel, J., Guckert, M., Holznigenkemper, J., Urquhart, N.: Optimi-
sation algorithms for parallel machine scheduling problems with setup times. In:
Proceedings of the Genetic and Evolutionary Computation Conference Compan-
ion. GECCO ’21, New York, NY, USA, pp. 131–132. Association for Computing
Machinery (2021). https://doi.org/10.1145/3449726.3459487

6. Kondratenko, Y., Kondratenko, G., Sidenko, I., Taranov, M.: Fuzzy and evolution-
ary algorithms for transport logistics under uncertainty. In: Kahraman, C., Cevik
Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC,
vol. 1197, pp. 1456–1463. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-51156-2 169

https://doi.org/10.1016/j.cor.2020.105007
https://doi.org/10.1016/j.cor.2020.105007
https://doi.org/10.1051/ro/2021027
https://doi.org/10.1287/ijoc.1120.0510
https://doi.org/10.1007/978-3-319-13749-0_9
https://doi.org/10.1007/978-3-319-13749-0_9
https://doi.org/10.1145/3449726.3459487
https://doi.org/10.1007/978-3-030-51156-2_169
https://doi.org/10.1007/978-3-030-51156-2_169

Evolving Staff Training Schedules 97

7. Ngoo, C.M., Goh, S.L., Sze, S.N., Sabar, N.R., Abdullah, S., Kendall, G.: A survey
of the nurse rostering solution methodologies: the state-of-the-art and emerging
trends. IEEE Access 10, 56504–56524 (2022). https://doi.org/10.1109/access.2022.
3177280

8. Regnell, B., Kuchcinski, K.: A scala embedded DSL for combinatorial optimiza-
tion in software requirements engineering. In: First Workshop on Domain Specific
Languages in Combinatorial Optimization, pp. 19–34 (2013)

9. Service, G.D.: Driver CPC training for qualified drivers (2021). https://www.gov.
uk/driver-cpc-training

10. Si Ying, P., Mohd-Yusoh, Z.I.: Staff scheduling for a courier distribution centre
using evolutionary algorithm. Indonesian J. Electric. Eng. Comput. Sci. 27(2),
1043 (2022). https://doi.org/10.11591/ijeecs.v27.i2.pp1043-1050

11. Siddiqui, A.W., Arshad Raza, S.: A general ontological timetabling-model
driven metaheuristics approach based on elite solutions. Expert Syst. Appl.
170, 114268 (2021). https://doi.org/10.1016/j.eswa.2020.114268. https://www.
sciencedirect.com/science/article/pii/S0957417420309799

12. University, M.: Minizinc constraint modelling language (2020). https://www.
minizinc.org/

https://doi.org/10.1109/access.2022.3177280
https://doi.org/10.1109/access.2022.3177280
https://www.gov.uk/driver-cpc-training
https://www.gov.uk/driver-cpc-training
https://doi.org/10.11591/ijeecs.v27.i2.pp1043-1050
https://doi.org/10.1016/j.eswa.2020.114268
https://www.sciencedirect.com/science/article/pii/S0957417420309799
https://www.sciencedirect.com/science/article/pii/S0957417420309799
https://www.minizinc.org/
https://www.minizinc.org/

On the Utility of Probing Trajectories
for Algorithm-Selection

Quentin Renau(B) and Emma Hart

Edinburgh Napier University, Edinburgh, Scotland, UK
{q.renau,e.hart}@napier.ac.uk

Abstract. Machine-learning approaches to algorithm-selection typi-
cally take data describing an instance as input. Input data can take the
form of features derived from the instance description or fitness land-
scape, or can be a direct representation of the instance itself, i.e. an
image or textual description. Regardless of the choice of input, there is
an implicit assumption that instances that are similar will elicit simi-
lar performance from algorithm, and that a model is capable of learn-
ing this relationship. We argue that viewing algorithm-selection purely
from an instance perspective can be misleading as it fails to account
for how an algorithm ‘views’ similarity between instances. We propose
a novel ‘algorithm-centric’ method for describing instances that can be
used to train models for algorithm-selection: specifically, we use short
probing trajectories calculated by applying a solver to an instance for a
very short period of time. The approach is demonstrated to be promis-
ing, providing comparable or better results to computationally expensive
landscape-based feature-based approaches. Furthermore, projecting the
trajectories into a 2-dimensional space illustrates that functions that are
similar from an algorithm-perspective do not necessarily correspond to
the accepted categorisation of these functions from a human perspective.

Keywords: Algorithm Selection · Black-Box Optimisation ·
Algorithm Trajectory

1 Introduction

We are motivated by the future goal of designing optimisation systems that are
capable of learning from past experience. For example, algorithm-selection (AS)
methods such as machine-learning based classifiers [35] learn by being trained
on results obtained from solving a large set of instances, while transfer-learning
methods [3,39] reuse information extracted from one instance in solving a new
instance (e.g. warm-starting with a previous solution). In both of these scenarios,
there is an implicit assumption that if two instances are similar to each other,
then they might elicit similar performance from the same solver or that infor-
mation can be transferred from one instance to another, for example to seed or
warm-start an optimiser [20].

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-56852-7 7.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 98–114, 2024.
https://doi.org/10.1007/978-3-031-56852-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_7&domain=pdf
http://orcid.org/0000-0002-2487-981X
http://orcid.org/0000-0002-5405-4413
https://doi.org/10.1007/978-3-031-56852-7_7
https://doi.org/10.1007/978-3-031-56852-7_7

On the Utility of Probing Trajectories for Algorithm-Selection 99

Typical approaches to AS train a machine-learning (ML) model to predict
either algorithm-performance or best-solver based on a description of an instance
as input to the model in some form. There have been many advances made in
recent AS literature regarding the choice of model and in defining appropriate
model inputs [1,16]. In particular, a lot of attention has been directed towards
defining features to train a model. Human-designed features can be used, but
have the potential disadvantage of being domain-specific and often costly to
compute [21], while it has also been noted that instances that are close in human-
designed feature-spaces are not necessarily close in the performance space of
a given algorithm [33]. Defining features via Exploratory Landscape Analysis
(ELA) [22] has become a popular alternative, particularly in the continuous
optimisation domain, creating a feature-vector describing the fitness landscape
of an instance. However, there is significant overhead cost induced by the ELA
feature computation: furthermore, the sample points used to compute features
are usually discarded, hence wasting computational budget. More recent ‘feature-
free’ methods avoid calculating features altogether by directly using a description
of the instance as input, e.g. using text-based descriptions [2,35] or images [32].
However, we argue that all of the above approaches are potentially flawed in that
the model is trained on data that takes only an ‘instance perspective’ of the data
(through human-designed features, landscape features or a description of the
instance data directly): instances are described by features that are calculated
independently of the execution data obtained by any algorithm.

Some recent research [13,14,19] has begun to address this, training selection
models whose input data includes information derived from running a solver, in
addition to (or instead of) using purely instance-centric data. We continue to
push in this direction in proposing a novel method for training a selector that
uses only time-series information obtained from a probing-trajectory. A probing
trajectory is defined by either the best or current performance of a meta-heuristic
solver over its first n function evaluations on an instance, where n is deliberately
very short. We propose that an algorithm that produces similar trajectories on
two instances ‘sees’ some commonality between those instances (and vice versa).
Each trajectory (a time-series) can be used as input to an AS classification
method, either directly or using time-series features derived from the trajectory.
This use of probing-trajectories has the following benefits:

– It completely removes the need to either define or calculate features of any
type in order to create training data.

– The trajectory provides an ‘algorithm-perspective’ of an instance, in contrast
to feature-based approaches which only describe the instance (or its associ-
ated landscape) in isolation from any solver. We hypothesise that taking the
‘algorithm perspective’ might make it easier for an AS approach to learn as
the trajectory is a very close proxy to true algorithm behaviour.

– The probing-trajectory used to get a prediction from the model can be re-used
to warm-start a selected solver, hence saving budget.

We evaluate the approach using the BBOB functions [9] as a test-bed.
We show that trajectory-based algorithm-selection can outperform the classical

100 Q. Renau and E. Hart

landscape-aware approach in continuous optimisation. In this scenario we also
show that for sampling budgets where a landscape-aware approach cannot be
applied (i.e., when sampling budgets are too small), trajectory-based algorithm-
selection still performs well, making it a good low-budget alternative to ELA
features.

The outline of this paper is as follows. Section 2 gives an overview of the
background and related work. Section 3 describes the data used, the methods
for obtaining probing-trajectories, and describes the experiments conducted in
this paper. Section 4 describes the results obtained with the probing-trajectories
on an algorithm selection task. Section 5 provides insights into trajectory simi-
larities, while Sect. 6 exposes the pros and cons of using the probing-trajectories
Finally, Sect. 7 highlights concluding remarks and future work.

2 Background and Related Work

The majority of previous work in algorithm selection is performed using infor-
mation describing an instance, for example extracting features at the instance
level; extracting features depicting the landscape of the objective function at
hand; using feature-free Deep Learning techniques. The use of Instance features
is most common in combinatorial optimisation domains. They rely intrinsically
on the problem domain and are usually manually designed [12], differing from
one domain to the other, i.e., Travelling Salesperson Problem (TSP) features
and Knapsack features cannot be interchanged. However, the main drawback of
instance features is that they often do not correlate well with algorithm perfor-
mance data. For instance, Sim et al. [33] demonstrate in the TSP domain that
instances that are close in the feature-space can be very distant in the perfor-
mance space (i.e., the Euclidean distance between their feature-vectors is small
while the distance between the performance of two algorithms on the instances
is very large). Furthermore, they can also be computationally expensive [21].

On the other hand, the use of landscape-features is common in numerical
black-box optimisation, typically via Exploratory Landscape Analysis (ELA) [22]
which calculates landscape features. ELA has grown over the years with a gradual
introduction of new features [8,17,23]. Features are numerical values obtained by
sampling m points, x1, . . . , xm ∈ R

d in a d-dimensional search space, and com-
puting the associated objective function f(x1), . . . , f(xm). The features are then
approximated given the pairs (x1, f(x1)), . . . , (xn, f(xm)). ELA has been suc-
cessfully applied to both algorithm configuration [4] and algorithm selection [16]
on benchmark data as well as real-world optimisation problems [29]. A definition
of the most used features and their properties can be found in [27]. The main
drawback of ELA however is the overhead cost induced by the feature compu-
tation as the sample points that are usually used to compute features are then
discarded. Other work provides evidence in some domains that ELA features
need be used with care [27].

Feature free techniques avoid the problem of human-designed features by relying
on Deep Learning to extract patterns and be able to perform algorithm selection.

On the Utility of Probing Trajectories for Algorithm-Selection 101

Feature free approaches have been successfully applied both in combinatorial
optimisation [1] using the instance definition as input and in continuous optimi-
sation [32] using sample points in the search space. While the latter removes the
human bias from the design of features, the overhead cost of sampling the search
space on top of running the algorithm is still present. Moreover, Deep Learning
approaches reduce the understanding of the instance space and make it difficult
to truly understand algorithm behaviour.

All of the approaches just described take an instance-centric view: that is,
the input to a selector is independent of the execution of any algorithm. We
suggest this is problematic, given that previous work has suggested that there
is not necessarily a strong correlation between the distance of two instances in
a feature-space and the distance in the performance space according to a cho-
sen portfolio of solvers [33]. Some recent work has begun to address this, using
information derived from running a solver as input to a selector. For example,
recent work from Jankovic et al. [13,14] proposes extracting ELA features from
the search trajectory of an algorithm. In [13], they obtain a trajectory by using
half the available budget to run an algorithm (250 function evaluations, corre-
sponding to the ELA features recommended budget [18]) and combine this with
the state variables of the algorithm to predict the algorithm performance. Over-
all, their approach gave encouraging results but was outperformed by classical
ELA features computed on the full search space. In [14], they use trajectories of
30d points to compute ELA features to train a performance predictor in order
to choose which algorithm to warm-start. They successfully compute features
during the search of one algorithm to select the appropriate algorithm to switch
to finish the run. This 30d points budget is slightly lower than the recommended
ELA features budget of 50d points.

The work of [7] also obtain algorithm trajectories but then construct time-
series based on concatenation of statistics derived from the population and fitness
values (mean, standard deviation, minimum, maximum) at each generation to
use as input to a classifier that predicts which of the 24 BBOB function the
trajectory belongs to. The length of the trajectories obtained is 900 points on
functions of dimension d = 3. This budget is very large as it is 6 times more than
the recommended ELA features budget of 50d = 150. Their approach success-
fully outperforms ELA features extracted from algorithm trajectories but is not
compared to ELA features extracted from sample points in the full search space.
Another approach combines ELA features with time-series features extracted
from state variables of CMA-ES [19] to perform a per-run algorithm selection
with warm-starting. The results of this work shows performance on par with
ELA features on the per-run algorithm selection task. Although not specifically
concerned with algorithm-selection, the work of [26] is also worthy of mention in
taking an algorithm perspective by utilising information incorporated in CMA-
ES state variables to train a surrogate model to predict performance.

We build on the nascent line of work in also proposing a trajectory-based
approach to algorithm-selection. Specifically, we attempt to use short trajectories
that only consume a small fraction of the available computational budget, and

102 Q. Renau and E. Hart

that can be re-used to warm-start an algorithm predicted by a selector. Unlike
the work described in [13], we do not compute landscape features from search-
trajectories and make use of the probing trajectories both directly and indirectly.

3 Methods

3.1 Data

We consider the first 5 instances of the 24 noiseless Black-Box Optimisation
Benchmark (BBOB) functions from the COCO platform [10] as a test-bed. In
BBOB, instances are transformations of the original function such as rotations,
translations or scaling.

For each instance, we collect data from running three algorithms: CMA-
ES [11], Particle Swarm Optimisation (PSO) [15], and Differential Evolution
(DE) [36]. Each algorithm is run 5 times per instance. Thus, we have 24×5×5 =
600 trajectories. Our data is obtained directly from [37] which records search-
trajectories per run. Note that some automated algorithm configuration was
performed by the authors before they collected this data and that population
sizes are different for each algorithm, see [38] for further details.

We use data obtained from [30] on the BBOB suite to calculate ELA features.
For each feature, 100 independent values are available per function instance. The
sampling strategy used to sample points is the Soboĺ low-discrepancy sequence.
However, we use only a fraction of the available data, i.e., 10-dimensional func-
tions, a feature computation budget of 30d and the general recommendation for
feature computation 50d [18]. We tried to compute ELA features at budgets
lower than 30d but as the budget decreases, Nearest Better Clustering features
start to output Not a Number values and some Dispersion features are not com-
puted. We select 10 cheap features based on their expressiveness and invariance
to transformations. The 10 features selected are the same as in [28].

3.2 Algorithm Selection Inputs

Using the data collected in Sect. 3.1, we create three types of inputs for the
algorithm selection procedure: raw-trajectories, features extracted from the time-
series formed by the raw-trajectories and ELA features.

Raw Probing-Trajectories. A probing-trajectory consists of a time-series of values
o obtained from the first n iterations of an algorithm, where o is either the current
best fitness (coined ‘current’ in the rest of the paper) or the best-so-far fitness
values (coined ‘best’ in the rest of the paper). Points are added to the trajectory
in the order in which they are sampled1.

We evaluate three approaches to using raw probing-trajectories as input to
an algorithm-selector: (1) using two different types of probing-trajectory (best-
so-far, current); (2) using concatenated probing-trajectories from multiple algo-
rithms as input, i.e., concatenate trajectories from two or more algorithms; (3)
1 We evaluate the effect of this choice later in Sect. 4.3.

On the Utility of Probing Trajectories for Algorithm-Selection 103

input trajectories of different lengths. Hence, the input of the algorithm selection
procedure is a time-series with its length depending on the number of concate-
nated algorithms and its number of generations, representing one run on one
function instance.

We test the impact of the length of the trajectories on the ability to select
the best algorithm using two settings for the number of generations g ∈ {2, 7}.
The former enables us to evaluate really short trajectories obtained using only 2
generations, while the latter results in trajectories using a similar computational
budget to that used to obtain ELA features (only one setting described below
requires more evaluations than ELA features). The function evaluations budget
depends on the population size of the algorithm according to the dataset used,
i.e., 10 for CMA-ES, 30 for DE, and 40 for PSO. For a single trajectory input this
results in a budget of 20, 60, 80 for CMA-ES, DE, PSO respectively at generations
= 2, and 70, 210, 280 at generations = 7. Note that all these budgets are less than
the minimum budget of 300 at which it is feasible to compute ELA features. For
concatenated trajectories, the maximum budget is 560 when three trajectories
are joined (7 × (10 + 30 + 40)), therefore comparable to the higher 50d budget
used to compute ELA features.

Time-Series Features. We extract time-series features from the probing-
trajectories described above as in [24], including tuning the process by using
a feature selection technique. The time-series features are extracted on the
probing-trajectories using the tsfresh Python package (version 0.20.1), while the
feature selection is performed using the Boruta Python package (version 0.3).

Time-series features are extracted on the same settings as probing-
trajectories, i.e., on the ‘current’ or ‘best’ trajectories for a single or concatenated
trajectory given 2 or 7 generations. The input of the algorithm selection proce-
dure is thus a vector of features where the dimension depends on the number of
features extracted or selected, representing one run on one function instance.

ELA Features. As mentioned above (in Sect. 3.1), 100 10−dimensional feature
vectors are available for each BBOB instance. These features are computed with
30d = 300 and 50d = 500 sample points. In order to have a fair comparison
between ELA and probing-trajectories, we randomly sample 5 feature vectors
out of 100 to match the number of available trajectories by instances, i.e, 5 runs
by instances.

The input of the algorithm selection procedure is a 10−dimensional vector
of features, representing one function instance.

3.3 Algorithm Selection Methods

The algorithm selection is treated as a classification task, i.e, given an input
representing an instance, the output is the algorithm to use on that particular
instance. To train the classification models, both the trajectories and feature-
vectors are labelled with the best performing algorithm, defined as the one having
the best median target value after 100,000 function evaluations. Note that no

104 Q. Renau and E. Hart

single algorithm outperforms the others on all 24 functions: CMA-ES is the best
performing algorithm for 11 functions, DE for 7, and PSO for 6.

In Sect. 3.2, we described two types of input (trajectories and feature vectors),
hence two types of classifiers are used depending on the data type.

Classification with Features. Features inputs can be derived from calculat-
ing either ELA features or time-series features extracted from the probing-
trajectories. As used in [5,29], we train a default Random Forests [6] from the
scikit-learn package [25] (version 1.1.3). Separate models are trained using dif-
ferent input type, i.e., models using ELA features and time-series features are
different.

Classification with Raw Trajectories. The raw probing trajectories form a time-
series. For this type of input, a specialised time-series classifier is used, specifi-
cally the default Rotation Forests [31] from the sktime package (version 0.16.1).
This choice of classifier is motivated by its closeness to the classifier used for fea-
tures while accounting for the data being time-series. We train classifiers using
single or concatenated trajectories to predict which algorithm of the portfolio
to use, e.g., a classifier trained with ‘CMA-ES’ trajectories can predict which of
the three algorithms from the portfolio to use.

Validation Procedure. Both type of inputs have the same validation proce-
dure. As performed in [19], we perform a leave-one-instance-out (LOIO) cross-
validation and we compute the overall accuracy. Classifiers are trained using
data from all runs of the 24 functions on all except one instance. The data of
the left out instance is used as the validation set, i.e, all the runs from the 24
functions on the ID of the left out instance. Overall, 480 inputs are used to train
the model while the remaining 120 inputs are used for validation.

4 Results

In this section, we first present the results obtained with single trajectories
(Sect. 4.1), followed by results obtained from using input to a classifier that
is formed by concatenating trajectories from multiple algorithms (Sect. 4.2). In
each case, we compare the classification results using three types of input: the
raw-trajectory; a feature-vector derived from the time-series; an ELA feature-
vector. We discuss the results in Sect. 4.3.

4.1 ELA Features vs Single Trajectories

In this section, we compare algorithm-selection performed using ELA features
as input to trajectory-based inputs obtained from running a single algorithm.
For the latter, we experiment with using inputs from (1) the raw trajectory data

On the Utility of Probing Trajectories for Algorithm-Selection 105

and (2) time-series features derived from the trajectory. We train three separate
classifiers, using trajectories from each of the algorithms in turn2.

Algorithm trajectories are computed for 2 and 7 generations. As explained
previously, the minimum budget is 20 function evaluations for CMA-ES (2 *
population size 10) and the largest is 280 function evaluations for PSO (7 *
population size 40). As mentioned in Sect. 3.1, ELA features are extracted using
30d = 300 and 50d = 500 points to provide fair comparisons.

We observe that models trained with best-so-far trajectories outperforms
models trained with current trajectories with 2 generations and vice versa with 7
generations. Due to space limitations, we will only present best-so-far trajectories
for 2 generations and current trajectories for 7 generations. The other plots can
be found in the supplementary materials.

Figure 1 compares the classification accuracy of the classifiers trained using
probing-trajectories, time series features extracted from three trajectories and
time series feature selection.

Classifiers trained using only 2 generations (using a maximum budget of 80
evaluations) exhibit a poor accuracy (Fig. 1a). Classifiers trained on ELA fea-
tures perform better but recall that these require a minimum budget of 300
evaluations, almost 4 times the budget for the trajectories. Even with this addi-
tional budget, the median accuracy reached is relatively poor: 90% and 90.8%
for 300 and 500 function evaluations respectively. This is not unexpected and
consistent with previous literature, given that is known that ELA features are
not all invariant to function transformations [27,34]. One of the trajectory-based
classifier models exceeds the performance of the ELA trained classifier at a bud-
get of 300 samples and matches the ELA trained classifier with 500 samples,
demonstrating 90.8% median accuracy: PSO with raw probing-trajectories. In
this context, the use of a PSO probing-trajectory is clearly an asset as it requires
less than a sixth of ELA features budget to achieve the same level of performance.

When the number of generations increases to 7 (Fig. 1b), all but one of
the classifiers trained on input obtained from a trajectory outperform both the
ELA trained classifiers (budget 300, 500). A considerable increase in performance
accuracy is obtained in most cases. Once again, the PSO trajectories reach the
best performances with a peak for raw probing-trajectories at a median accuracy
of 100%. In this case, almost perfect classification is achieved with substantially
less function evaluations than needed to compute ELA features.

PSO trajectories may be more informative than other algorithms trajectories
because PSO has the largest population size and evaluates more points. As a
comparison, CMA-ES has the smallest population size and is in most cases the
algorithm providing the worse accuracies. Hence, the information contained in
the trajectories may be a matter of the number of generations and the number
of points evaluated.

2 A classifier trained only on e.g. CMA-ES trajectories can predict any of the three
solvers, etc.

106 Q. Renau and E. Hart

Fig. 1. Accuracy of classification on the LOIO cross-validation for best-so-far and
current probing-trajectories, time series features and time series feature selection for 2
and 7 generations. Median ELA feature accuracy is represented by lines for 300 and
500 function evaluations.

4.2 ELA Features vs Multiple Trajectories

In this section, we compare algorithm-selection performed with ELA and time
series features with classifiers using a concatenation of trajectories as input (i.e.,
the trajectories obtained from more than one algorithm are joined and used as
input to the classifier to predict the best algorithm). By concatenating trajec-
tories, we train four models named: C − P (for the concatenation of CMA-ES
and PSO trajectories), C −D (for CMA-ES and DE), D−P (for DE and PSO)
and, ALL (for the concatenation of the three algorithms). These models are also
trained for 2 or 7 generations.

As in Sect. 4.1, we observe that models trained with best-so-far trajectories
outperforms models trained with current trajectories with 2 generations and vice
versa with 7 generations. Due to space limitations, we will only present best-so-
far trajectories for 2 generations and current trajectories for 7 generations. The
other plots can be found in the supplementary materials.

Figure 2 compares the classification accuracy of the concatenation of trajecto-
ries on the LOIO cross-validation. As observed previously in Sect. 4.1, classifiers
trained using the raw trajectories outperform those trained using the time-series
features and ELA feature selection.

At 2 generations (Fig. 2a), classifiers trained on raw trajectories outperform
those trained on ELA features except in a single case (C − D). The classifiers
trained with time-series features are all outperformed by classifiers trained on
ELA features when using this low budget of 2 generations.

When the number of generations increases to 7 (Fig. 2b), the picture changes
dramatically. Classification accuracies increase and all trajectory-based classi-
fiers outperform classifiers using ELA features. Recall that the maximum budget
for the trajectory based input here is 560 (ALL) and the minimum 280 (C −P)
compared to the ELA budgets of (300, 500). While accuracies of time series-based
classifiers are comparable, the median accuracy of raw trajectories increases to
100% (with one run around 90% for all classifiers).

On the Utility of Probing Trajectories for Algorithm-Selection 107

Fig. 2. Accuracy of classification on the LOIO cross-validation for best-so-far and
current probing-trajectories, time series features and time series feature selection for 2
and 7 generations. Median ELA feature accuracy is represented by lines for 300 and
500 function evaluations.

4.3 Additional Insights into Trajectory Performance

Randomness in the ‘Current’ Trajectory. As noted in Sect. 3.2, the ‘current’ tra-
jectory is obtained by adding each point sampled by an algorithm to a trajectory
in the order in which they are evaluated. However, it should be clear that for
a generational algorithm, the order that solutions are evaluated in is irrelevant.
Therefore to satisfy ourselves that the particular ordering used had no influence
of the results, we perform an additional experiment in which the points within
each trajectory are randomly shuffled within a generation to obtain a new tra-
jectory. We consider trajectories of 7 generations for the three algorithms in the
portfolio. This process is repeated 5 times.

We repeat previous experiments using the raw trajectory, and time-series
features as input to a classifier. We performed a Kolmogorov-Smirnov statistical
test between the initial run and the 5 shuffled trajectories. The p-values for the
five tests performed are between 0.84 and 1. These values do not enable the null
hypothesis to be rejected at a confidence level of 0.05, thus we conclude that the
order the points are evaluated in the ‘current’ trajectories does not impact the
classification accuracy.

Order in the ALL Trajectory. In the same manner, the concatenated ALL trajec-
tories used in the experiments used a fixed ordering to obtain the concatenation,
i.e., CMA-ES, PSO, and DE (C − P − D). Therefore, we also investigate the
impact of the order used to construct the ALL trajectory to determine if it has
an impact on the classification accuracy. We evaluate the classification accuracy
of the six possible combinations for the ALL trajectory. We use the raw trajec-
tory, compute time series features and perform feature selection on the LOIO
cross-validation using the ‘current’ trajectory on 7 generations as before. We
performed a Kolmogorov-Smirnov statistical test between the combination used
in previous sections (C−P −D) and all other combinations. The p-values for the

108 Q. Renau and E. Hart

five tests performed are between 0.87 and 1. These values do not enable the null
hypothesis to be rejected at a confidence level of 0.05, thus we can conclude that
the order used to create the ALL trajectory does not impact the classification
accuracy.

Best-so-far vs Current Trajectories. We mention in Sect. 4.1 and Sect. 4.2, that
the ‘current’ trajectory outperforms the ‘best’ for larger number of generation
and vice versa. In Fig. 3, we display accuracy of classification of the ALL trajec-
tories for different generations from 2 to 7.

We observe that the crossing point between the ‘best’ and ‘current’ trajec-
tories happens with 4 generations. With fewer generations, the ‘best’ trajectory
outperform the ‘current’ until they reach similar accuracies with 4 generations.
Interestingly, we observe that only 3 generations are necessary for the ALLbest

to reach a median accuracy of 99.8% (with one run at 89.2%) which is 9% better
than ELA features for half their computation budget.

An explanation of the difference in performance of the two trajectories resides
in the fact that the ‘best’ trajectories can be seen as elitist (i.e., keeping only the
best value) and ‘current’ trajectories can be seen as non elitist (i.e., accepting
lower fitness values). It has been seen that elitist algorithms are outperforming
non elitist ones for small budgets and vice versa when the budget increases
(an example of this behavior can be found in [29]). Hence the ‘best’ trajectory
may contain more useful information when the budget is low whereas more
generations may be needed for the ‘current’ trajectory to reach the same level
of information.

Fig. 3. Boxplot of accuracy of classification of the ‘best’ and ‘current’ trajectory-based
classifiers on ALL trajectories from 2 to 7 generations on LOIO cross-validations.

On the Utility of Probing Trajectories for Algorithm-Selection 109

5 Insights into Trajectory Similarity

To understand whether similarity between trajectories correlates with similar-
ity in terms of solver performance, we project the time-series obtained into 2
dimensions using UMAP from the umap-learn Python library (version 0.5.3)
with default parameters in an unsupervised setting.

Fig. 4. UMAP 2d projection of the ALLcurrent time series of runs on function instances
for 7 generations for each algorithm and BBOB functions (560 function evaluations).

Figure 4 presents projections for the ALLcurrent time series using a budget
of 560 function evaluations to create the trajectories, i.e. 7 generations. Each
point represents a trajectory for one run on an instance. Colour labels in Fig. 4a
represent the best algorithm for the function the trajectory was obtained from,
i.e., the label used during classification for a given trajectory as in Sect. 3.3.

For a given algorithm, multiple clusters can be seen throughout the space.
This may imply that for a given algorithm, distinct types of trajectories lead to
the same choice of algorithm. However, we also observe some clusters of points
where several algorithms are grouped in the same cluster. This may affect the
accuracy of classification: in particular the figure suggests it may induce errors
between CMA-ES and DE, and between PSO and DE.

The number of clusters is lower than the number of BBOB functions, imply-
ing that from the algorithm perspective, different functions may be similar. In
order to verify the similarity of functions from the algorithm perspective, we
coloured the instance runs by function. The result is shown in Fig. 4b. From the
algorithm perspective, there are clear groups of functions won by the same algo-
rithm. Trajectories from only one function (F3) are found in different groups.
F3 belongs to two groups that are close in the space and hence may actually be
one larger group.

From a trajectory perspective, ten functions have their own group (F1, F2,
F4, F6, F10, F11, F12, F13, F16, and F21) while the others are distributed

110 Q. Renau and E. Hart

in groups of at least two functions. The largest groups are composed of three
functions that are similar from a trajectory point of view. For two of these
groups, all functions are won by the same algorithm: DE for F3, F18, and F22
and CMA-ES for F5, F8, and F9. Interestingly, these functions belong to different
categories (BBOB functions are divided into five categories representing function
properties) in the BBOB test-bed [10]: three different categories for F3, F18, and
F22 and two for 5, F8, and F9. Recall that these categories are human-designed:
however, the results imply that the properties of the functions that are observable
by a human do not completely reflect the algorithm perspective. This reinforces
the point made in Sect. 1 that determining instance similarity from an algorithm
perspective might prove useful in future attempts to build optimisation systems
that are capable of learning across instance sets.

6 Pros and Cons of Trajectories

The results in the previous sections show that trajectory-based algorithm selec-
tion is a good low-budget counterpart to classical approaches that tend to use
ELA features. At very low budget (2 generations, 80 evaluations), a classifier
trained on raw PSO trajectories performs on par with a classifier based on ELA
features obtained using 500 samples. Three classifiers trained with concatenated
trajectories (C−P,D−P,ALL) obtained from 2 generations with total budgets
of 100, 140, 160 respectively also outperform the ELA classifiers. Using a larger
number of generations (7), 8 out of 9 classifiers trained on single raw trajectories
or information derived from the trajectory outperforms the ELA based classifier
using 500 samples. Using concatenated trajectories from 7 generations, all classi-
fiers outperform the ELA classifiers, with the classifiers trained on concatenated
raw, ‘current’ trajectories obtaining 100% median accuracy (with a maximum
budget of 560 evaluations).

Given that computation of ELA features usually requires approximately 30d
samples and that the computation is known to fail for some features at budgets
less than this, using trajectories to train selectors is a promising way forward,
providing reasonable results even at very low budget. In addition, the trajectory
obtained to provide input to the selector can also be re-used in some cases: for
example, if a classifier trained on ‘CMA-ES’ trajectories predicts CMA-ES for
an instance, then the run can simply be continued from where it was stopped.
Furthermore, if using the ALL trajectory which contains partial runs of all
algorithms in the portfolio, then the budget is ‘virtually’ reduced by a third as
any selected algorithm can simply continue its run from the already computed
trajectory.

Comparing the results of the ALL classifiers that use three concatenated
trajectories with results from trajectories formed from pairs of classifiers raises
the question of how the method might scale with the number of algorithms
in the portfolio. For example, for a portfolio of N solvers, it is possible that
only a subset of trajectories is sufficient to train a classifier. This necessitates
consideration of how to select the most appropriate combination of trajectories,

On the Utility of Probing Trajectories for Algorithm-Selection 111

i.e., M < N . As the fixed evaluation budget b must be divided between N
trajectories (such that each trajectory is allocated o = b/N function evaluations),
then the influence of settings of o and N for a fixed value b should also be
studied further. Finally, further investigation of how the approach scales as the
N increases is also required.

7 Conclusion

The paper address the issue of algorithm-selection in a continuous optimisation,
specifically in a setting whether there is a fixed budget of evaluations that must
be shared between any computation required to derive input to an algorithm-
selector and in running the selected algorithm. The goal is to find a form of
input to a classifier that requires minimal computational budget, delivers high
accuracy, and views similarity from an algorithm perspective. We hypothesised
that short probing-trajectories obtained by running an algorithm for a small
number of generations could be used to train a classifier, with the added benefit
that the run used to obtain the trajectory could simply be continued for the
chosen algorithm.

We demonstrated that a time-series classifier trained on raw trajectories and
classifiers trained on features extracted from the trajectories can outperform
classifiers trained on ELA features at considerably lower budget, in the best case
using six times fewer sample points. Moreover, unlike using ELA features where
sample points used for feature computation are often discarded, points from
trajectories can be re-used if the algorithm that a trajectory belongs to is selected
or points can be re-used for warm-starting another optimisation algorithm.

Obvious next steps include testing the approach on a more complicated task
with larger algorithm portfolios as well as on different data-sets. A more thorough
evaluation of state-of-the-art time-series classifiers (and tuning of their hyper-
parameters) is also likely to improve results. Another key question lies in the
scaling of the ALL concatenation of trajectories approach: does the number of
trajectories needed depend linearly on the size of the portfolio or can judicious
selection of specific trajectories suffice? Another interesting direction for future
work is to use evaluate the use of the approach in combinatorial optimisation
domains where there is much less work in defining appropriate ELA features and
where calculation of domain-specific features is often expensive (particularly in
TSP). Furthermore, in some combinatorial domains, hand-designed features have
also been criticised for not correlating well with performance [33]. A trajectory-
based approach could therefore be a promising avenue for research.

Acknowledgements. The authors are funded by the EPSRC ‘Keep-Learning’
project: EP/V026534/1 and EP/V027182/1

112 Q. Renau and E. Hart

References

1. Alissa, M., Sim, K., Hart, E.: Automated algorithm selection: from feature-based
to feature-free approaches. J. Heuristics 29(1), 1–38 (2023). https://doi.org/10.
1007/s10732-022-09505-4

2. Alissa, M., Sim, K., Hart, E.: Algorithm selection using deep learning without
feature extraction. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 198–206 (2019)

3. Ardeh, M., Mei, Y., Zhang, M.: Genetic programming hyper-heuristics with prob-
abilistic prototype tree knowledge transfer for uncertain capacitated arc routing
problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8
(2020). https://doi.org/10.1109/CEC48606.2020.9185714

4. Belkhir, N.: Per Instance Algorithm Configuration for Continuous Black Box
Optimization. phdthesis, Université Paris-Saclay (2017). https://hal.inria.fr/tel-
01669527/document

5. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm con-
figuration of CMA-ES with limited budget. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2017, pp. 681–688. ACM (2017).
https://doi.org/10.1145/3071178.3071343

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

7. Cenikj, G., Petelin, G., Doerr, C., Korosec, P., Eftimov, T.: Dynamorep: trajectory-
based population dynamics for classification of black-box optimization prob-
lems. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2023, Lisbon, Portugal, July 15–19, 2023, pp. 813–821. ACM (2023).
https://doi.org/10.1145/3583131.3590401

8. Derbel, B., Liefooghe, A., Vérel, S., Aguirre, H., Tanaka, K.: New features for
continuous exploratory landscape analysis based on the SOO tree. In: Proceedings
of Foundations of Genetic Algorithms (FOGA) 2019, pp. 72–86. ACM (2019).
https://doi.org/10.1145/3299904.3340308

9. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2010: presentation of the noiseless functions (2010). http://coco.
gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf

10. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tusar, T., Brockhoff, D.: COCO:
a platform for comparing continuous optimizers in a black-box setting. Opt. Meth.
Software 36(1), 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evo-
lution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

12. Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., Kerschke, P.: A study on
the effects of normalized TSP features for automated algorithm selection. Theor.
Comput. Sci. 940(Part), 123–145 (2023). https://doi.org/10.1016/j.tcs.2022.10.
019

13. Jankovic, A., Eftimov, T., Doerr, C.: Towards feature-based performance regression
using trajectory data. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplica-
tions 2021. LNCS, vol. 12694, pp. 601–617. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-72699-7 38

14. Jankovic, A., Vermetten, D., Kostovska, A., de Nobel, J., Eftimov, T., Doerr, C.:
Trajectory-based algorithm selection with warm-starting. In: IEEE Congress on
Evolutionary Computation, CEC 2022, Padua, Italy, July 18–23, 2022, pp. 1–8.
IEEE (2022). https://doi.org/10.1109/CEC55065.2022.9870222

https://doi.org/10.1007/s10732-022-09505-4
https://doi.org/10.1007/s10732-022-09505-4
https://doi.org/10.1109/CEC48606.2020.9185714
https://hal.inria.fr/tel-01669527/document
https://hal.inria.fr/tel-01669527/document
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3583131.3590401
https://doi.org/10.1145/3299904.3340308
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1016/j.tcs.2022.10.019
https://doi.org/10.1016/j.tcs.2022.10.019
https://doi.org/10.1007/978-3-030-72699-7_38
https://doi.org/10.1007/978-3-030-72699-7_38
https://doi.org/10.1109/CEC55065.2022.9870222

On the Utility of Probing Trajectories for Algorithm-Selection 113

15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995).
https://doi.org/10.1109/ICNN.1995.488968

16. Kerschke, P., Hoos, H., Neumann, F., Trautmann, H.: Automated algorithm selec-
tion: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

17. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel struc-
tures by means of exploratory landscape analysis. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2015, pp. 265–272. ACM
(2015). https://doi.org/10.1145/2739480.2754642,http://dl.acm.org/citation.cfm?
doid=2739480.2754642

18. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Low-budget exploratory
landscape analysis on multiple peaks models. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2016, pp. 229–236. ACM (2016).
https://doi.org/10.1145/2908812.2908845

19. Kostovska, A., et al.: Per-run algorithm selection with warm-starting using
trajectory-based features. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke,
P., Ochoa, G., Tusar, T. (eds.) PPSN 2022, Part I. LNCS, vol. 13398, pp. 46–60.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2 4

20. Kostovska, A., et al.: Per-run algorithm selection with warm-starting using
trajectory-based features. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke,
P., Ochoa, G., Tusar, T. (eds.) PPSN 2022, pp. 46–60. Springer, Cham (2022)

21. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the
art in inexact TSP solving using per-instance algorithm selection. In: Rudolph, G.,
et al. (eds.) PPSN 2022. LNCS, vol. 8994, pp. 202–217. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19084-6 18

22. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2011, pp. 829–836. ACM (2011). https://doi.
org/10.1145/2001576.2001690

23. Muñoz, M., Kirley, M., Halgamuge, S.: Exploratory landscape analysis of contin-
uous space optimization problems using information content. IEEE Trans. Evol.
Comput. 19(1), 74–87 (2015). https://doi.org/10.1109/TEVC.2014.2302006

24. de Nobel, J., Wang, H., Bäck, T.: Explorative data analysis of time series based
algorithm features of CMA-ES variants. In: GECCO 2021: Genetic and Evolution-
ary Computation Conference, Lille, France, July 10–14, 2021, pp. 510–518. ACM
(2021). https://doi.org/10.1145/3449639.3459399

25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

26. Pitra, Z., Repický, J., Holena, M.: Landscape analysis of Gaussian process surro-
gates for the covariance matrix adaptation evolution strategy. In: Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 691–
699 (2019). https://doi.org/10.1145/3321707.3321861

27. Renau, Q.: Landscape-Aware Selection of Metaheuristics for the Optimization of
Radar Networks. Ph.D. thesis, Polytechnic Institute of Paris, Palaiseau, France
(2022). https://tel.archives-ouvertes.fr/tel-03593606

28. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Towards explainable exploratory land-
scape analysis: extreme feature selection for classifying BBOB functions. In:
Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694,
pp. 17–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7 2

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1145/2739480.2754642,
http://dl.acm.org/citation.cfm?doid=2739480.2754642
http://dl.acm.org/citation.cfm?doid=2739480.2754642
https://doi.org/10.1145/2908812.2908845
https://doi.org/10.1007/978-3-031-14714-2_4
https://doi.org/10.1007/978-3-319-19084-6_18
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1145/3449639.3459399
https://doi.org/10.1145/3321707.3321861
https://tel.archives-ouvertes.fr/tel-03593606
https://doi.org/10.1007/978-3-030-72699-7_2

114 Q. Renau and E. Hart

29. Renau, Q., Dréo, J., Peres, A., Semet, Y., Doerr, C., Doerr, B.: Automated algo-
rithm selection for radar network configuration. In: Fieldsend, J.E., Wagner, M.
(eds.) Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2022, pp. 1263–1271. ACM (2022). https://doi.org/10.1145/3512290.
3528825

30. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Exploratory Landscape Analysis Fea-
ture Values for the 24 Noiseless BBOB Functions (2021). https://doi.org/10.5281/
zenodo.4449934

31. Rodŕıguez, J., Kuncheva, L., Alonso, C.: Rotation forest: a new classifier ensem-
ble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006).
https://doi.org/10.1109/TPAMI.2006.211

32. Seiler, M.V., Prager, R.P., Kerschke, P., Trautmann, H.: A collection of deep
learning-based feature-free approaches for characterizing single-objective contin-
uous fitness landscapes. In: GECCO 2022: Genetic and Evolutionary Computa-
tion Conference, Boston, Massachusetts, USA, July 9–13, 2022, pp. 657–665. ACM
(2022). https://doi.org/10.1145/3512290.3528834

33. Sim, K., Hart, E.: Evolutionary approaches to improving the layouts of instance-
spaces. In: Rudolph, G., et al. (eds.) PPSN 2022, Part I. LNCS, vol. 13398, pp.
207–219. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2 15

34. Skvorc, U., Eftimov, T., Korosec, P.: A comprehensive analysis of the invariance
of exploratory landscape analysis features to function transformations. In: IEEE
Congress on Evolutionary Computation, CEC 2022, Padua, Italy, July 18–23, 2022,
pp. 1–8. IEEE (2022). https://doi.org/10.1109/CEC55065.2022.9870313

35. Song, Y., Bliek, L., Zhang, Y.: Revisit the algorithm selection problem for tsp with
spatial information enhanced graph neural networks (2023)

36. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

37. Vermetten, D., Hao, W., Sim, K., Hart, E.: To Switch or not to Switch: Predict-
ing the Benefit of Switching between Algorithms based on Trajectory Features -
Dataset (2022). https://doi.org/10.5281/zenodo.7249389

38. Vermetten, D., Wang, H., Sim, K., Hart, E.: To switch or not to switch: predicting
the benefit of switching between algorithms based on trajectory features. In: Cor-
reia, J., Smith, S., Qaddoura, R. (eds.) Applications of Evolutionary Computation.
LNCS, vol. 13989, pp. 335–350. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-30229-9 22

39. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1),
43–76 (2021). https://doi.org/10.1109/JPROC.2020.3004555

https://doi.org/10.1145/3512290.3528825
https://doi.org/10.1145/3512290.3528825
https://doi.org/10.5281/zenodo.4449934
https://doi.org/10.5281/zenodo.4449934
https://doi.org/10.1109/TPAMI.2006.211
https://doi.org/10.1145/3512290.3528834
https://doi.org/10.1007/978-3-031-14714-2_15
https://doi.org/10.1109/CEC55065.2022.9870313
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.5281/zenodo.7249389
https://doi.org/10.1007/978-3-031-30229-9_22
https://doi.org/10.1007/978-3-031-30229-9_22
https://doi.org/10.1109/JPROC.2020.3004555

Nature-Inspired Portfolio Diversification
Using Ant Brood Clustering

Ashish Lakhmani(B) , Ruppa K. Thulasiram , and Parimala Thulasiraman

Department of Computer Science, University of Manitoba, Winnipeg, Canada
lakhmana@myumanitoba.ca,

{tulsi.thulasiram,parimala.thulasiraman}@umanitoba.ca

Abstract. Portfolio diversification is a crucial strategy for mitigating
risk and enhancing long-term returns. This paper introduces a unique
approach to large-scale diversification using Ant Brood Sorting clus-
tering, a nature-inspired algorithm, in conjunction with co-integration
measure of time series. Traditional diversification strategies often strug-
gle during uncertain market times. In contrast, the proposed method
leverages Ant Brood Sorting to group similar stocks based on the co-
integration of their closing prices. This approach allows for the creation
of diversified portfolios from a wide range of stocks. The study presents
promising results, with clusters of stocks showing both high correlation
and cosine similarity, validating the effectiveness of the approach. Sil-
houette score, a measure of cluster quality, and inter-cluster analysis
demonstrate support in validating the results of the study by displaying
similarities between the stocks being clustered and distinctiveness with
stocks in other clusters. The research contributes to the application of
nature-inspired algorithms in large-scale portfolio diversification, offering
potential benefits for investors seeking resilient and balanced portfolios.

Keywords: Ant Brood Sorting · Portfolio Diversification ·
Cointegration · Clustering

1 Introduction

Portfolio Diversification (PD) involves spreading investments across a variety
and different types of assets to reduce the overall risk of the portfolio and enhance
the potential for long-term returns. The idea behind PD is to avoid putting all
the eggs into one basket, i.e. to avoid putting the bulk of the total portfolio
budget in similar types of assets so that the risk exposure to any one kind of
asset is limited. Different asset types perform differently under diverse market
conditions. By diversifying the investments, investors mitigate the impact of
individual assets or similar kinds of assets on the whole portfolio and safeguard
the capital. While PD may not accurately predict the highest return on assets,
it spreads the risk effectively. Diversification not only helps in mitigating risk
but also provides the opportunity to reap benefits in different segments of assets,
achieving a balanced and resilient portfolio that stands the test of time.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 115–130, 2024.
https://doi.org/10.1007/978-3-031-56852-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_8&domain=pdf
http://orcid.org/0009-0008-6391-5837
http://orcid.org/0000-0002-6519-3929
http://orcid.org/0000-0002-6445-3629
https://doi.org/10.1007/978-3-031-56852-7_8

116 A. Lakhmani et al.

The process of building a portfolio involves the selection of assets and find-
ing suitable weights to allocate to each asset. PD entails the selection of assets
in order to spread the unsystematic risk of the portfolio across all the assets
in the portfolio, whereas Portfolio Optimization entails deciding the appropri-
ate weights of each asset in the portfolio to maximize the overall return of the
portfolio while minimizing overall risk. With an increase in the number of assets
under a portfolio, it becomes challenging when there is a vast number of assets
to choose from [11]. In recent years, nature-inspired algorithms have been con-
sidered on a large scale in computational finance literature [4]. The benefits of
using nature-inspired algorithms come from their ability to quickly explore the
possible solutions to a problem and efficiently exploit the solutions to improve
upon them.

The conventional way to attain diversification in a portfolio is to select stocks
from different asset classes, different industry sectors, or different geographical
regions [21]. Some of the common diversification strategies are based on concepts
such as the law of large numbers, correlation, capital asset pricing model, and risk
parity. These diversification strategies, however, have failed to work when diver-
sification was needed the most for risk aversion [12]. In this study, we present
a PD strategy to group similar types of stocks by applying a nature-inspired
heuristics called Ant Brood Sorting clustering technique on the statistical prop-
erty of stocks’ closing prices.

The remainder of this paper is structured as follows: Sect. 2 presents the
related works of using nature-inspired computing in financial time series and
discusses the motivation behind this study. Section 3 presents the definitions of
the methods used in this study. Section 4 presents the experiment setup in detail
along with the implementation of the experiment. Section 5 shows the results
obtained and Sect. 6 concludes this study.

2 Related Work and Motivation

The legacy portfolio creation used classical time series models in creating optimal
portfolios. Many professionals still use these time series models in the stock
selection process before forming a portfolio [19] despite the fact that time series
models have been shown to be inferior to computational algorithmic models [8].
Stock selection has long been recognized as a difficult and crucial task. Choosing
stocks for successful portfolio development is heavily reliant on trustworthy stock
ranking. Recent breakthroughs in machine learning and data mining have created
substantial opportunity to handle these difficulties more effectively [10]. Huang
[10] used Support Vector Regression (SVR) and Genetic Algorithms (GAs) to
create a stock selection model. Their model used SVR to forecast each stock’s
future return, while GA optimized model parameters and input data.

Nature-Inspired Portfolio Diversification Using Ant Brood Clustering 117

Portfolio selection using nature-inspired algorithms has shown advantage over
traditional methods because of superior searching ability through the heuristics
[1]. Oduntan et al. [21] used Ant Brood Sorting clustering method to gain intel-
ligence from time series data and use that intelligence to form clusters of similar
stocks to create diversified portfolios. Liu et al. [16] used a variation of Ant Brood
Clustering (ABC) to cluster financial time series data and received a high-quality
clustering result as depicted by the intra-cluster distance. ABC Sorting has also
been found to have promising results when hybridized with other algorithms
[20].

Meta-heuristic algorithms have been proven to find the best answers for a
wide range of complex and unique portfolio models [11]. Durán et al. [5] explored
using memetic algorithm for multiobjective investment portfolio optimization
with cardinality restrictions in the context of the Markowitz model. Hasan et al.
[9] used whale optimization algorithm, a nature-inspired approach that mimics
the haunting process of the sea whale, for portfolio optimization on the data-set
of DAX-100, the German stock exchange index consisting of 100 stocks. Oduntan
et al. [20] tested using and brood sorting clustering algorithm based on grouping
of broods amongst ants, to gather financial intelligence from time-series of 30
stocks for portfolio diversification. Meng et al. [15] used grey wolf optimizer, a
meta-heuristic optimizing algorithm inspired by the hunting behavior of grey
wolves, for stock selection out of 200 stocks. Mazumdar et al. [18] used swarm
intelligence for portfolio optimization and construction from a pool of 100 stocks.
Shahid et al. [25] presented a novel portfolio selection strategy using gradient-
Based Optimizer on a data-set of 30 stocks and compared its performance with
a particle swarm optimization approach. There are about 65,000 stocks listed in
stock exchanges worldwide. To achieve an effective diversification, it is essential
to consider a vast number of stocks. A broad selection of stocks across different
sectors, industries, and market segments can help mitigate the impact of poor-
performing stocks on the overall portfolio.

To best of our knowledge, there hasn’t been any prior research that uti-
lizes a nature-inspired algorithm for selecting stocks across a wide spectrum of
stocks for portfolio diversification. Moreover, Ant Brood Clustering, one of the
interesting nature-inspired algorithms, has not been used in prior studies for
portfolio diversification with a large number of stocks, the focus of this study.
Therefore, our study represents a distinctive contribution to the application of
a nature-inspired algorithm for a large scale portfolio diversification.

3 Ant Brood Clustering

Deneubour et al. [6] proposed a computing model inspired by behavior of ant
colonies that clean their nest by collecting and organizing corpses into piles.
The core idea is that ants wander in the nest to pick corpses from isolated
areas and drop corpses where more related and similar items are, as shown in
Figs. 1 and 2, thus growing the clusters in the colony. The likelihood of ants
picking and dropping corpses are calculated mathematically. One uniqueness of

118 A. Lakhmani et al.

this clustering algorithm is that we do not predefine the number of clusters to be
formed. The algorithm is agnostic of number of clusters, it creates the clusters
as it deems necessary as per the underlying mathematical formulas.

3.1 Measuring Object Similarity for Clustering

Lumer and Faieta [17] proposed a variation of the work by Deneubour et al. [6]
by introducing a way to measure similarity between objects in the swarm when
clustering. Given a 2-d grid (m x m) of spacial terrain where elements/objects
are laid out randomly, ants, also referred as agents, perform a random walk on
the grid. When an unladen ant gets to a point in the grid which has an element
present in that grid, the probability of an ant to pick that element is given by:

Pp =
(

k1
k1 + f

)2

(1)

whereas when a laden ant reaches to an empty point in the grid, the probability
of that ant to drop the element is given by:

Pd =
(

f

k2 + f

)2

(2)

where k1 and k2 are constants. f is the similarity density measure and is calcu-
lated as:

f(oi) =
1
s2

∑
oiεNeigh(s∗s)(r)

[
1 − d(oi, oj)

α

]
if f > 0 (3)

Otherwisef(oi) = 0

where d(oi, oj) is a measure of the similarity distance between the object oi

and another object oj within its neighborhood, s ∗ s is the number of grids in
the neighborhood of object oi, and α is a parameter used to define the scale
for dissimilarity, i.e. how close two items should be to be considered close. The
similarity measure that we use in this study is the level of co-integration between
the stocks and is described in detail in the following subsection.

Clustering algorithms are techniques used to group similar items together.
We apply ant brood sorting clustering to identify group of similarly behaving
assets for portfolio diversification, which will help in constructing diversified
portfolios.

3.2 Co-integration

Co-integration refers to a long-term statistical relationship between two or more
time series that move together in a stable way, though the time series indi-
vidually may have short-term fluctuations or trends. Co-integration shows the
equilibrium connection between different individual time series and helps explain

Nature-Inspired Portfolio Diversification Using Ant Brood Clustering 119

Fig. 1. Ant Brood Clustering Process (Adopted from [6])

Fig. 2. Clusters of similar kind of items formed (Adopted from [6])

their behavior over time. The concept of co-integration was introduced by Engle
and Granger [7] and is commonly known as Engle-Granger co-integration theory.
This concept is heavily used in the finance industry, predominantly in a trading
strategy called pair-trading [13,24,26], and [14].

Engle-Granger cointegration test performs the following two-step process
that determines if there is co-integration between two time series [3]:

Step-1 Augmented Dickey-Fuller(ADF) Test: Conduct unit root test of
both time series to determine if both time series have the same order of integra-
tion. The ADF test is applied using the model:

ΔYt = α + βt + ω.Yt−1 +
k∑

i=1

δiΔYt−1 + εt (4)

The null hypothesis of the ADF test is that ω = 0, which implies the presence
of a unit root (non-stationarity), and evidence that ω < 0 implies stationarity.
Perform the ADF test for each time series and record the ADF test statistics
using Eq. (5) and check if the null hypothesis can be rejected.

DFτ =
ω̂

SE(ω̂)
(5)

120 A. Lakhmani et al.

Step-2 Estimate the Co-integration Relationship Between Both Time
Series: Use the standard Ordinary Least Square (OLS) regression and test
for the stationarity in the residuals obtained by Eq. (6). OLS regression is a
widely used statistical method for finding the best-fitting straight line as close
as possible to the data-points in a linear regression model. It finds the estimated
values of α and β by minimizing the error term εt. If the statistics value are
lower than a critical value (usually 0.01 or 0.05) in the stationarity test (Eq. 7),
we say that two time series are co-integrated.

Yt = α + βXt + εt → εt = Yt − α − βXt (6)

Check : εt ∼ I(0) (7)

For this study, we use an open-source python library [23] that runs the co-
integration between two time series and provides t-statistic of unit-root test on
residuals and P-value as results. We use the P-value, the measure of probability
of cointegration between two time series as the similarity measure d(oi, oj) in
Eq. (3).

4 Dataset, Algorithm and Experiments

This study focuses on employing a nature-inspired algorithm to choose stocks
from a broad range of options for the purpose of portfolio diversification.

4.1 Dataset

We use the individual stocks from the S&P 500 index for this study. The S&P
500 index is widely regarded as a benchmark for the overall performance of the
United States of America (U.S) stock market. It consists of 500 large, established
companies from various sectors, representing a good portion of the total market
capitalization in the United States. It comprises companies from different sec-
tors, including technology, finance, healthcare, consumer goods, etc., therefore,
allowing us to examine the clustering on a broad scale of stocks. We use yfinance
python library to download the daily adjusted closing prices of individual stocks
of S&P 500 index for the past 8 years, from July 2015 to June 2023. We compute
the P-value of all the pairs of stocks from these 500 stocks and save them in the
cache memory to use in our experiment.

4.2 Implementation

We first implement the Ant Brood Sorting coupled with the co-integration test’s
P-value to test if this experiment can create cluster stocks of similar types of
stocks. Algorithm 1 illustrates the steps that we did in this experiment to cluster
similar types of stocks. We begin with initializing a 2-D grid (m x m) and place
stocks and ants randomly on the grid. The value of m can be user-defined, we

Nature-Inspired Portfolio Diversification Using Ant Brood Clustering 121

use Boryczka’s [2] recommendation of m =
√

10 ∗ n, where n is the number of
stocks to be clustered.

Next, until the iteration termination condition is met, we keep looping
through all the ants in each iteration. We check for each Ant if it’s unladen
and if there’s a stock present at Ant’s current location. If both conditions are
true, we calculate the probability of Ant picking up that stock by comparing the
similarity of the stock at Ant’s location with stocks in its neighborhood. Simi-
larly, if Ant is laden and its current location is free of any stock, we calculate
the probability of Ant’s dropping the laden stock by comparing the similarity
of the stock with stocks in the neighborhood. If the probability is greater than
a pre-determined user value, the ants pick or drop the stock at their position,
respectively.

After picking/dropping the stock, the ants randomly move to a new spot
in the grid within a predefined neighborhood. If the ant is laden, the priority
is given to an empty site, and if the ant is unladen, we give priority to a site
occupied by a stock. If no desirable sites are available, ant moves to any random
site in the neighborhood.

To handle a situation of overlapping of a site that already has a stock with
a laden ant moving to this site, we keep the stock laden by the ant hidden so
that no other ant can pick this already laden stock and we also restrict the laden
ant from dropping the stock at that site so that the site doesn’t have two or
more stocks at a single site. The neighborhood that the ants explore for their
next step is bigger than the neighborhood used for calculating the probability
of pick-up/drop-off actions. This improves the ants’ ability to navigate through
the spatial terrain for better and more efficient exploration of sites to pick/drop
stocks. Ants move along the grid and perform pick-up and drop-off of stocks
during each iteration based on the availability of stocks, empty sites, probabil-
ity, and similarity/dissimilarity of stock within the neighborhood. The iteration
terminates if, for a user-defined number of consecutive times, there is no pick or
drop performed by the ants and all the ants are unladen. This termination con-
dition makes sure that the iterations terminate when global optima is obtained.
At the end of the iterations, we observe the resulting clusters and check for the
validity of clusters if they have similar kinds of stocks.

4.3 Parameter Tuning

k1 and k2 are the threshold constants for picking and dropping, respectively,
in Ant Brood Clustering. The value of these constants will have to be set in a
way that when f (similarity measure) is << k1 then probability of picking up an
item is close to 1, whereas when f << k2 then probability of dropping an item is
close to 0. Rp and Rd are comparator probability of pick and drop actions of the
ants. These values are user-defined between 0 and 1 and are used to accelerate
or brake the pick/drop speed of ants in the grid. We set these parameters in
a way that the picking and dropping are set in a controlled yet loose fashion.
We didn’t intend to keep the movement too tight or too loose as it may cause
a bottleneck or wandering explosion. The main objective of this algorithm is to

122 A. Lakhmani et al.

see if it can cluster similar kinds of stocks, so we need a good flow of picking and
dropping for forming clusters. For the process termination, we check for 1000
iterations for no pick or drop performed by the ants.

Algorithm 1. Ant Brood Clustering
INITIALIZE: Stocks and Ants randomly on the 2-d grid.
while Iterations termination condition is False do

for each ant i do
if Ant is unladen and the site at current location of ant has a stock then

Compute f(Oi) in the neighborhood using equation (3).
Compute probability of picking up the item (Pp) using equation (1).
Predetermine a pick-up probability comparator Rp between 0 and 1.
if Rp < Pp then

Ant picks up the stock.
end if

else if ant is laden and the site at current location of ant is empty then
Compute f(Oi) in the neighborhood using equation (3).
Compute probability of dropping the item (Pd) using equation (2).
Predetermine a pick-up probability comparator Rd between 0 and 1.
if Rd < Pd then

Drop the item at ants current site.
end if

end if
Move the ant to next random site in the exploration neighborhood as per (4.2)

end for
Check for iteration termination condition mentioned in 4.2.

end while
Plot the clusters formed by final locations of stocks.

5 Results and Discussions

After parameter tuning and the successful termination of iterations, we capture
the results of three random scenarios as shown in Fig. 3. The left sub-figures
show the initial distribution of stocks and ants on the grid and the right sub-
figures show the final results of the experiment. The blue scatters in the grid are
stocks and the reds are ants. In Fig. 3, we provide results with 3 different random
scenarios and it can be observed from the sub-figures that our experiments are
successfully clustering a large number of stocks.

5.1 Heatmap and Cosine Similarity Results

The next step is to analyze the clusters to validate the clustering results. We use
the correlation of each pair of stocks within individual clusters for validation.
Figure 4 shows the heatmap of clusters from the results. It can be observed that
at least 85% of the pairs of stocks within each cluster have a positive correlation.

Nature-Inspired Portfolio Diversification Using Ant Brood Clustering 123

Fig. 3. Initial grid of ants and stocks (left) vs Final Clsuters obtained (right) in 3
random scenarios. Blue scatters represent stocks and red scatters represent ants. (Color
figure online)

This explains that more than 85% of the stocks within each cluster have a similar
magnitude. Since the clusters are made of time series, we use another validation
measure known as cosine similarity. Cosine similarity is a measure of cosine of
the angle between two vectors and is a measure of similarity in the directions of
vectors [27]. Unlike Euclidian distance, cosine similarity is not highly sensitive
to slight deformations such as seasonality in time series. The range of cosine
similarity values typically falls between −1 and 1, where −1 suggests that the

124 A. Lakhmani et al.

two vectors are diametrically opposed whereas 1 indicates that the two vectors
being compared are identical in direction.

The average cosine similarity of stock pairs within each cluster is more than
0.9. For the three scenarios in Figure 3(a)-(c) the actual values are: 0.9221, 0.9319
and 0.9319 respectively. This validates our experimental results that not only the
magnitude but also the directions of stocks within each cluster are similar.

5.2 Silhouette Score

To conduct a comprehensive validation of the end results, we also computed
the Silhouette score of clusters formed as an alternative method to validate our
results from multiple vantage points. Silhouette score [22] is a measure of the
quality of clusters that is based on the tightness and separation of clusters. Sil-
houette score is calculated for each data point (stock in our case) by calculating
the similarity of the data point with other data points in the same cluster and
the dissimilarity with data points in other clusters. One importance of using
silhouette scores for cluster validation is that they rely solely on the actual
arrangement of items in clusters and are not influenced by the clustering algo-
rithm used. Equation (8) presents the calculation for the Silhouette score s(i)
for a stock i where a(i) is the mean distance between i and all other stocks in
the same cluster and b(i) is the mean distance of i from all stocks in the nearest
neighbor cluster. We used Euclidean distance between stocks’ closing prices to
calculate the distance metric. The score ranges from −1 to +1, where a score
near to +1 signifies a strong match of an item with its own cluster and a poor
match to the neighbor cluster whereas a score near −1 means that the item is
a better match for the neighbor cluster. We calculated the silhouette score for
each individual cluster by taking the average silhouette score of all the stocks
in that cluster. Table 1 shows the silhouette score obtained for the clusters of
all 3 random scenarios presented in this study. The average silhouette scores for
all 3 scenarios obtained are 0.43, 0.30, and 0.36. In general, a silhouette score
of 0.30 and above is considered relatively moderate-high and indicates that the
stocks within the clusters are relatively similar and there is a decent separation
between clusters. This shows a positive validation for clusters formed, in that
the clustering is effective and that the clusters are distinct.

s(i) =
b(i) − a(i)

max(a(i), b(i))
(8)

Nature-Inspired Portfolio Diversification Using Ant Brood Clustering 125

Fig. 4. Heatmap of Clusters

126 A. Lakhmani et al.

5.3 Inter-cluster Analysis

Table 2 presents an inter-cluster analysis of the results obtained in three (3)
random scenarios. For all three (3) scenarios, we calculated the mean annualized
returns of stocks within each cluster and the percentage of stock returns falling
with one standard deviation of that mean. The analysis shows that the mean
returns of different clusters in each scenario are significantly different from each
other. For example, returns for clusters in scenario 1 range from 12% to 30%,
from 10% to 30% in scenario 2, and from 9% to 23% in scenario 3. This validates
that the clusters formed are different from each other in terms of annualized
returns. It can also be observed that about 70%, on average, of the stocks’
returns in each cluster fall within one standard deviation of the mean return of
that cluster. In a normal distribution, about 68% of the data falls within one
standard deviation of the mean, our result of 70% indicates that the standard
deviation for stock returns in the clusters obtained are closely packed around the
mean and show relatively little dispersion, thus asserting that the stocks within
a cluster are close to each other.

5.4 Additional Discussion

To the best of our knowledge, the existing number of studies on the application of
Ant brood sorting clustering for portfolio diversification for a direct comparison
of results is limited, with no common metrics to compare this study. Oduntan
et al. [21] clustered 30 stocks by running the experiment for 100,000 iterations.
In their experiment, it was found that ants exhibited a tendency to allocate a
significant portion of their time to random walks rather than effectively moving
objects [16]. The number of actual iterations taken by our experiment prior to
termination in all three (3) scenarios is less than 800, which explains that our
experiment was efficient in clustering a large number of stocks.

Drawing a direct comparison of this heuristics-based study with deterministic
clustering approaches such as K-Means, DBSCAN, etc., is not a sound approach
due to their inherent differences. The data used by deterministic approaches
generally contain multiple observations along with multiple features for each
particular object, whereas we used just the time series of daily closing prices of
stocks for this experiment so using the same data for deterministic methods will
not be effective in generating and comparing results with deterministic meth-
ods. Deterministic methods aim to find accurate solutions, whereas Heuristics
are typically used for complex problems where finding an optimal solution is
computationally expensive or infeasible.

Nature-Inspired Portfolio Diversification Using Ant Brood Clustering 127

Table 1. Silhouette score for all 3 scenarios

Scenario 1 Scenario 2 Scenario 3

Cluster ID (a) (b) Score (a) (b) Score (a) (b) Score

1 8470.66 5708.33 −0.33 1999.85 3376.69 0.41 2435.90 4079.50 0.40

2 3472.41 5708.33 0.39 9809.93 6521.73 −0.34 2300.42 3992.17 0.42

3 1908.44 5140.44 0.63 2399.20 3516.97 0.32 2127.45 3943.08 0.46

4 11195.34 7274.37 −0.35 1084.84 3074.51 0.65 2336.09 4082.30 0.43

5 2119.12 5164.97 0.59 1843.80 3348.83 0.45 2394.16 4092.61 0.42

6 1932.78 5103.87 0.62 2326.67 3472.49 0.33 1704.42 3814.09 0.55

7 2480.60 5374.99 0.54 2210.69 3449.42 0.36 5858.34 5329.69 −0.09

8 3184.92 5615.96 0.43 1593.67 3193.63 0.50 1681.57 3808.00 0.56

9 1872.99 5067.09 0.63 4726.10 3904.11 −0.17 2220.68 4020.99 0.45

10 1562.36 4960.98 0.69 2409.21 3511.90 0.31 5073.02 5329.69 0.05

11 3297.26 5597.41 0.41 2399.16 3510.56 0.32 2311.66 4022.25 0.43

12 1586.83 4955.55 0.68 3146.70 3904.11 0.19 3838.80 4700.80 0.18

13 2496.12 5374.92 0.54 1874.68 3293.18 0.43 974.01 3666.49 0.73

14 2374.82 5256.36 0.55 2292.58 3461.15 0.34 1438.64 3689.59 0.61

15 2807.78 5588.30 0.50 1727.58 3270.06 0.47 7620.32 6239.00 −0.18

Avg. Score 0.43 0.30 0.36

Table 2. Inter-cluster analysis

Scenario 1 Scenario 2 Scenario 3

Cluster ID Returns % within 1 std Returns % within 1 std Returns % within 1 std

1 21.48 71.43 18.67 60.00 16.86 76.92

2 30.30 57.14 18.27 72.73 23.38 57.14

3 17.38 76.47 18.18 70.59 15.49 73.33

4 18.57 70.83 19.31 76.92 19.13 67.35

5 15.37 69.23 14.31 68.57 15.54 72.41

6 17.40 73.91 10.51 69.44 21.45 77.59

7 17.93 66.67 19.14 76.47 13.81 66.67

8 22.30 76.32 15.01 83.33 11.11 64.00

9 18.13 72.92 17.89 72.22 21.82 76.32

10 12.08 70.37 27.75 74.29 8.89 69.23

11 12.88 71.43 15.48 67.74 19.23 65.85

12 16.36 72.73 14.39 71.11 13.99 75.00

13 27.31 73.68 30.87 81.25 12.60 63.33

14 13.22 64.71 12.53 80.00 21.08 69.23

15 15.75 79.59 18.90 68.57 9.42 66.67

128 A. Lakhmani et al.

6 Conclusion

This study offers a unique contribution to the field of nature-inspired computa-
tion for large-scale portfolio diversification using Ant Brood Sorting clustering in
conjunction with the co-integration of time series. The results demonstrate the
algorithm’s ability to effectively cluster stocks based on their similarity and the
feasibility of using this method to create diversified portfolios from a large pool
of stocks. This study represents a unique and valuable contribution to the field
of portfolio diversification, offering a scalable approach to enhance risk manage-
ment and potentially improve portfolio performance.

The correlation analysis demonstrates that over 85% of stock pairs within
individual clusters exhibit positive correlations and an average cosine similarity
of more than 0.9 further reinforces the consistency of stock behavior within
clusters, thus validating the quality of the clusters formed and indicating that
stocks within each cluster exhibited both similar magnitudes and directions. The
Silhouette score analysis adds an additional layer of validation, affirming that
the clusters are tightly packed and well-separated, with average scores exceeding
0.30. The inter-cluster analysis supports the validation of distinctiveness between
each cluster by showcasing significant differences in mean annualized returns
between clusters and more than 70% of stocks’ returns in each cluster falling
within one standard deviation of the cluster mean. This further confirms that
the stocks within each cluster share similar financial performance characteristics
and that the clusters are distinct from each other.

This approach holds promise for investors seeking to bring more robust and
resilient diversification within their portfolios in diverse market conditions. For
future studies, we intend to use the stocks from clusters formed in this study to
create diversified portfolios and optimize the weights of the stocks using another
nature-inspired algorithm called Particle Swarm Optimization. Further research
in this study may also explore incorporating the seasonality factor of time series
to update the clusters accordingly.

Acknowledgement. The first author acknowledges financial support from Professor
Thulasiram and Graduate Enhancement of Tri-agency Stipends (GETS), University of
Manitoba. The last two authors acknowledge the Discovery Grants from the Natural
Sciences and Engineering Research Council (NSERC) Canada.

References

1. Arslan, H., Uğurlu, O., Eliiyi, D.T.: An overview of new generation bio-inspired
algorithms for portfolio optimization, pp. 207–224. Springer Nature Singapore,
Singapore (2022). https://doi.org/10.1007/978-981-16-8997-0 12

2. Boryczka, U.: Ant clustering algorithm. Intelligent Information Systems 1998 (01
2008)

3. Bui, Q., Ślepaczuk, R.: Applying hurst exponent in pair trading strategies on nas-
daq 100 index. Phys. A: Stat. Mech. Appl. 592, 126784 (2022). https://doi.org/
10.1016/j.physa.2021.126784

https://doi.org/10.1007/978-981-16-8997-0_12
https://doi.org/10.1016/j.physa.2021.126784
https://doi.org/10.1016/j.physa.2021.126784

Nature-Inspired Portfolio Diversification Using Ant Brood Clustering 129

4. Chen, Y., Zhao, X., Yuan, J.: Swarm intelligence algorithms for portfolio optimiza-
tion problems: Overview and recent advances. Mobile Information Systems 2022
(07 2022). https://doi.org/10.1155/2022/4241049

5. Colomine Durán, F., Cotta, C., Fernández-Leiva, A.J.: Epoch-based application
of problem-aware operators in a multiobjective memetic algorithm for portfolio
optimization. In: Correia, J., Smith, S., Qaddoura, R. (eds.) Applications of Evo-
lutionary Computation, pp. 210–222. Springer Nature Switzerland, Cham (2023)

6. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien,
L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: From
Animals to Animats: Proceedings of the First International Conference on Simu-
lation of Adaptive Behavior, pp. 356–365 (1991)

7. Engle, R.F., Granger, C.W.J.: Co-integration and error correction: representation,
estimation, and testing. Econometrica 55(2), 251–276 (1987). http://www.jstor.
org/stable/1913236

8. Freitas, F.D., De Souza, A.F., de Almeida, A.R.: Prediction-based portfolio
optimization model using neural networks. Neurocomputing 72(10), 2155–2170
(2009). https://doi.org/10.1016/j.neucom.2008.08.019 lattice Computing and Nat-
ural Computing (JCIS 2007) / Neural Networks in Intelligent Systems Designn
(ISDA 2007)

9. Hasan, F., Ahmad, F., Shahid, M., Khan, A., Ahmad, G.: Solving portfolio selec-
tion problem using whale optimization algorithm. In: 2022 3rd International Con-
ference on Computation, Automation and Knowledge Management (ICCAKM),
pp. 1–5 (2022). https://doi.org/10.1109/ICCAKM54721.2022.9990079

10. Huang, C.F.: A hybrid stock selection model using genetic algorithms and support
vector regression. Appl. Soft Comput. 12(2), 807–818 (2012). https://doi.org/10.
1016/j.asoc.2011.10.009

11. Kalayci, C.B., Ertenlice, O., Akbay, M.A.: A comprehensive review of deterministic
models and applications for mean-variance portfolio optimization. Expert Syst.
Appl. 125, 345–368 (2019). https://doi.org/10.1016/j.eswa.2019.02.011

12. Koumou, G.B.: Diversification and portfolio theory: a review. Fin. Markets. Port-
folio Mgmt. 34(3), 267–312 (2020)

13. Krauss, C.: Statistical arbitrage pairs trading strategies: review and outlook. J.
Econ. Surv. 31(2), 513–545 (2017). https://doi.org/10.1111/joes.12153

14. Liang, S., Lu, S., Lin, J., Wang, Z.: Hardware accelerator for engle-granger coin-
tegration in pairs trading. In: 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5 (2020). https://doi.org/10.1109/ISCAS45731.2020.
9180586

15. Liu, M., Luo, K., Zhang, J., Chen, S.: A stock selection algorithm hybridizing
grey wolf optimizer and support vector regression. Expert Syst. Appl. 179, 115078
(2021). https://doi.org/10.1016/j.eswa.2021.115078

16. Liu, Y.Y., Thulasiraman, P., Thulasiram, R.K.: Parallelizing active memory ants
with mapreduce for clustering financial time series data. In: 2016 IEEE Interna-
tional Conferences on Big Data and Cloud Computing (BDCloud), Social Com-
puting and Networking (SocialCom), Sustainable Computing and Communications
(SustainCom) (BDCloud-SocialCom-SustainCom), pp. 137–144 (2016). https://
doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.31

17. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants.
In: Proceedings of the third international conference on Simulation of adaptive
behavior: from animals to animats 3: from animals to animats 3, pp. 501–508
(1994)

https://doi.org/10.1155/2022/4241049
http://www.jstor.org/stable/1913236
http://www.jstor.org/stable/1913236
https://doi.org/10.1016/j.neucom.2008.08.019
https://doi.org/10.1109/ICCAKM54721.2022.9990079
https://doi.org/10.1016/j.asoc.2011.10.009
https://doi.org/10.1016/j.asoc.2011.10.009
https://doi.org/10.1016/j.eswa.2019.02.011
https://doi.org/10.1111/joes.12153
https://doi.org/10.1109/ISCAS45731.2020.9180586
https://doi.org/10.1109/ISCAS45731.2020.9180586
https://doi.org/10.1016/j.eswa.2021.115078
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.31
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.31

130 A. Lakhmani et al.

18. Mazumdar, K., Zhang, D., Guo, Y.: Portfolio selection and unsystematic risk opti-
misation using swarm intelligence. J. Bank. Financial Technol. 4 (01 2020). https://
doi.org/10.1007/s42786-019-00013-x

19. Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to time series anal-
ysis and forecasting. John Wiley & Sons (2015)

20. Oduntan, O.I., Thulasiraman, P.: Hybrid metaheuristic algorithm for clustering.
In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–9
(2018). https://doi.org/10.1109/SSCI.2018.8628863

21. Oduntan, O.I., Thulasiraman, P., Thulasiram, R.: Portfolio diversification using
ant brood sorting clustering, pp. 256–261 (2014). https://doi.org/10.1109/NaBIC.
2014.6921888

22. Rousseeuw, P.: Rousseeuw, p.j.: Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (11 1987).
https://doi.org/10.1016/0377-0427(87)90125-7

23. Seabold, S., Perktold, J.: statsmodels: Econometric and statistical modeling with
python. In: 9th Python in Science Conference (2010)

24. Sen, J.: Designing efficient pair-trading strategies using cointegration for the indian
stock market. In: 2022 2nd Asian Conference on Innovation in Technology (ASIAN-
CON), pp. 1–9 (2022). https://doi.org/10.1109/ASIANCON55314.2022.9909455

25. Shahid, M., Ashraf, Z., Shamim, M., Ansari, M.S.: A novel portfolio selection
strategy using gradient-based optimizer. In: Saraswat, M., Roy, S., Chowdhury, C.,
Gandomi, A.H. (eds.) Proceedings of International Conference on Data Science and
Applications: ICDSA 2021, Volume 2, pp. 287–297. Springer Singapore, Singapore
(2022). https://doi.org/10.1007/978-981-16-5348-3 23

26. Tingjin Yan, M.C.C., Wong, H.Y.: Pairs trading under delayed cointegration.
Quant. Finance 22(9), 1627–1648 (2022). https://doi.org/10.1080/14697688.2022.
2064760

27. Xia, P., Zhang, L., Li, F.: Learning similarity with cosine similarity ensemble.
Inform. Sci. 307, 39–52 (2015). https://doi.org/10.1016/j.ins.2015.02.024

https://doi.org/10.1007/s42786-019-00013-x
https://doi.org/10.1007/s42786-019-00013-x
https://doi.org/10.1109/SSCI.2018.8628863
https://doi.org/10.1109/NaBIC.2014.6921888
https://doi.org/10.1109/NaBIC.2014.6921888
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/ASIANCON55314.2022.9909455
https://doi.org/10.1007/978-981-16-5348-3_23
https://doi.org/10.1080/14697688.2022.2064760
https://doi.org/10.1080/14697688.2022.2064760
https://doi.org/10.1016/j.ins.2015.02.024

Cellular Genetic Algorithms
for Identifying Variables in Hybrid Gene

Regulatory Networks

Romain Michelucci(B) , Vincent Callegari, Jean-Paul Comet ,
and Denis Pallez

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{romain.michelucci,vincent.callegari,jean-paul.comet,

denis.pallez}@univ-cotedazur.fr

Abstract. The hybrid modelling framework of gene regulatory networks
(hGRNs) is a functional framework for studying biological systems, tak-
ing into account both the structural relationship between genes and the
continuous time evolution of gene concentrations. The goal is to identify
the variables of such a model, controlling the aggregated experimental
observations. A recent study considered this task as a free optimisation
problem and concluded that metaheuristics are well suited. The main
drawback of this previous approach is that panmictic heuristics converge
towards one basin of attraction in the search space, while biologists are
interested in finding multiple satisfactory solutions. This paper inves-
tigates the problem of multimodality and assesses the effectiveness of
cellular genetic algorithms (cGAs) in dealing with the increasing dimen-
sionality and complexity of hGRN models. A comparison with the second
variant of covariance matrix self-adaptation strategy with repelling sub-
populations (RS-CMSA-ESII), the winner of the CEC’2020 competition
for multimodal optimisation (MMO), is made. Results show evidence
that cGAs better maintain a diverse set of solutions while giving better
quality solutions, making them better suited for this MMO task.

Keywords: cellular genetic algorithm ⋅ epistatic and multimodal
optimisation problem ⋅ RS-CMSA-ESII ⋅ hybrid GRN ⋅
chronotherapy ⋅ real-world application

1 Introduction

Studying the dynamics of gene regulatory networks (GRNs) aims to understand
the various cellular processes and pathways that empower a living organism to
carry out essential functions, such as metabolic processes and the ability to adapt
to environmental disturbances. Modelling such GRNs allows novel and better cog-
nisance of disease initiation and progression, opening new perspectives in phar-
macological fields such as chronotherapy, which can be viewed as the practice of
administering medication at specific times during the day, taking into account
the body’s natural rhythms and the varying effects of the treatment. By logically
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 131–145, 2024.
https://doi.org/10.1007/978-3-031-56852-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_9&domain=pdf
http://orcid.org/0000-0001-6107-4394
http://orcid.org/0000-0002-6681-3501
http://orcid.org/0000-0001-5358-8037
https://doi.org/10.1007/978-3-031-56852-7_9

132 R. Michelucci et al.

following the activation or inhibition of genes and proteins under different con-
ditions, biologist modellers can create models of these complex systems based on
actual knowledge. That led to numerous modelling GRN frameworks such as dif-
ferential, stochastic or discrete ones [22], each of them presenting its advantages
and drawbacks. Whereas it is not too difficult to enumerate the different genes
playing a role in a particular context as well as the known regulations between
them, the common impediment remains the identification of the variables that
govern the GRN dynamics.

In the present work, we consider hybrid frameworks [7] called hGRNs. They
add to the discrete ones the time spent in each discrete state, allowing experimen-
tal observations to be represented as irregularly spaced time series of observable
events. It has been shown that the hybrid model can exhibit these events in
the same order and at the right time only if the dynamic variables that con-
trol the model behaviour satisfy a set of constraints. The design of these min-
imal constraints on the hGRN variables has been automated. An attempt has
been made to use a continuous Constraint Satisfaction Problem (CSP) solver to
extract solutions but faced difficulties when the number of variables increased [8].
Recently, [17] showed that the CSP, exhaustively characterising the set of solu-
tions, can be expressed as a free optimisation problem (FOP) by indirectly han-
dling constraints thanks to metaheuristics. The CSP was transformed into a
non-separable, non-trivial, continuous, and single objective problem in which the
search space increases exponentially with the number of genes in the hGRN. One
limitation of this approach is that such algorithms are panmictic and can only
identify one basin in the search space. From a modelling perspective, exhibit-
ing a diverse sampling of biologically satisfactory solutions allows biologists to
reason not only on one possible identification but also on a set of sensible ones.
Therefore, this work focuses both on validating the previous approach on hGRNs
involving more genes and complex dynamics and on the multimodal aspect of the
identification problem. RS-CMSA-ESII is a new niching method for MMO that
emerged as the most successful available method when robustness and efficiency
are considered at the same time and does not make any assumptions such as
distribution, shape, and size of the basins [2]. This CEC’2020 top niching-based
algorithm is the logical choice to be tested as a baseline to gain more insights
on its ability to find a set of solutions without having any assumptions on the
modes. In the meantime, cGAs are well-known heuristics to tackle epistatic and
multimodal tasks [4,5] since the diversity maintenance is guaranteed thanks to
the structure and ratio of the population, unlike RS-CMSA-ESII which employs
mechanisms with different sub-populations running in parallel. So, this research
aims to address the problem of the hGRN variables identification to obtain a
diverse set of quality solutions for increasingly complex models while seeking to
identify the most suitable method for achieving these goals.

To meet these objectives and based on the research hypotheses set out above,
the article is organised as follows: Sect. 2 describes the hGRN continuous optimi-
sation problem by detailing: (i) the definition of the hybrid model along with its
dynamics, (ii) the experimental observations that serve as input, and (iii) how
this problem has been treated as an FOP. Section 3 encompasses an overview

cGAs for Identifying Variables in hGRNs 133

of RS-CMSA-ESII and cGAs from a multimodal perspective. Section 4 proposes
experiments comparing CMA-ES, GA, multiple cGAs with varying ratios and
structures, and RS-CMSA-ESII on three different hGRNs of increasing com-
plexity. Experimental results and statistical tests are presented and discussed.
Finally, conclusions are drawn in Sect. 5.

2 hGRN Variables Optimisation

2.1 Hybrid Gene Regulatory Networks

Hybrid modelling of gene regulatory networks (GRNs) aims to describe the
effect of regulations between genes in a biological system by taking into account
the continuous time component. Traditionally, a GRN is a directed graph in
which vertices express abstractions of one or multiple biological genes (v1, v2),
and edges that act as either activation (→) or inhibition (⊣) represent regula-
tions (Fig. 1a). This static representation seems of limited interest since it does
not integrate any dynamics. However, from Fig. 1a, the corresponding discrete
dynamics (Fig. 1b) can be built. First, grey boxes are obtained from the previ-
ous GRN by enumerating all possible states S: each grey square box identifies a
discrete state η ∈ S defined by the level of the GRN genes. If we suppose that
the maximum level of each gene vi is 1, then the top right box is the state where
each gene is expressed at its maximum level and is denoted by η = (ηv1

, ..., ηvn
).

In Fig. 1, this state is η = (ηv1
, ηv2

) = (1, 1). From this first step, transitions
between discrete states can be drawn (black arrows) and symbolise the discrete
evolution of the concentration of the gene products. Although the obtained dis-
crete state graph of Fig. 1b is deeply interesting for logical reasoning about regu-
latory changes, it disregards temporal information, which is nevertheless crucial,
for example, for optimising medical treatments by taking account of biological
rhythms.

Fig. 1. Example of a GRN depicted as a directed graph (a), its discrete state graph
(b), and a possible dynamic of its hybrid state graph (c) (taken from [17]).

134 R. Michelucci et al.

The hybrid modelling framework adds the notion of temporal continuous
evolution to the previous dynamics by adding linear continuous trajectories (red
straight lines) to the discrete transitions of a GRN (pictured with dotted red
lines in Fig. 1c). On a trajectory, a point is called a hybrid state and given by its
position π within a discrete state η. As an example, the initial hybrid state hi

in Fig. 1c has the coordinates ((ηv1
, ηv2

)
t
, (πv1

, πv2
)
t
) = ((0, 0)t

, (0.25, 0.25)t
).

To determine a complete trajectory through a set of discrete states, hGRN mod-
els require an initial hybrid state hi and a vector of the evolution of concentra-
tions in each discrete state, called celerity vector. This vector gives the direction
and celerity of each gene v ∈ V in a discrete state η ∈ S, e.g. the celerity of v1
in η = (0, 0) is denoted Cv1,(0,0). In the general case, the celerity of v in η is a
floated value defined as Cv,η.

The aim is to identify celerity vectors to generate valid hGRN models of the
biological system under study. Such a determination could help biologists make
new interpretations about the possible dynamics of the system.

2.2 Biological Knowledge

The identification process requires some input data, which allows the modeller
to validate or not a possible valuation of continuous variables. While much
work [10,18,20,21] is based on gene expression data, our approach takes into
consideration already-formalised information analysed by biologists derived from
both biological data and expertise.

The formalism abstracts the knowledge extracted from biological experiments
under the form of constraints on the global trajectory: it must (i) start from
an initial hybrid state hi = (ηi, πi), (ii) verify a triplet of properties in each
successive discrete state (Δt, b, e) where Δt expresses the time spent; b delineates
the observed behaviours during the continuous trajectory; e specifies the next
discrete state transition, and (iii) reach the final hybrid state hf = (ηf , πf). Let
us detail the biological knowledge (BK) used for the example of Fig. 1c:

{hi}
⎛
⎜⎜
⎝

5.0
noslide (v2)

v1+

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

7.0
slide

+
(v1)

v2+

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

8.0
noslide (v2)

v1−

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

4.0
slide

−
(v1)

v2−

⎞
⎟⎟
⎠
{hf}

hi = ((0, 0)t
, (πv1

, πv2
)
t
) represents both the initial and final state (hi = hf).

Starting from hi, the time spent by the trajectory inside the discrete state
η = (0, 0) is approximately 5 h (Δt = 5.0). Within this state, the celerity should
move towards the next discrete state of v1 (v1+) so as to increase the concentra-
tion level of gene v1 until it reaches the right border without touching either the
top or the bottom border (noslide(v2)) and then jump into the neighbour state
η = (1, 0). In this new discrete state, the trajectory evolves for 7 h (Δt = 7.0)
in the direction of ηv2

= 1 (v2+) but, this time, the trajectory reaches the
right border, which corresponds to the maximum admissible concentration of v1
(slide

+
(v1)). This process continues until the trajectory reaches hf . Any valua-

tion of dynamic variables, i.e. celerity vectors, leading to a trajectory satisfying
this BK is considered admissible.

cGAs for Identifying Variables in hGRNs 135

2.3 Single Objective and Multimodal Optimisation Problem

Searching for celerity values that satisfy BK initially led to characterising the
problem as a CSP and solving it by constraint-based programming [8]. On the
one hand, this constraint-based programming method was able to exhaustively
find the over-approximated sets of solutions, but as the number of dimensions
increased, such a method was unable to extract even one particular solution.

A recent attempt [17] has recently formulated the problem as being single-
objective by proposing an adequate fitness function consisting of three criteria
and testing this approach on the hGRN model of Fig. 1c (only two genes). In
this preliminary study, the decision vector to be optimised consisted of finding
the initial hybrid state hi and all celerity values of all discrete states:

hi, {Cv,η∣v ∈ V, η ∈ S} (1)

Thus, for example, finding an admissible valuation of Fig. 1c satisfying BK was
equivalent to finding the optimal parameter set of:

x = (hi;Cv1,(0,0);Cv2,(0,0);Cv1,(1,0);Cv2,(1,0);Cv1,(1,1);Cv2,(1,1);Cv1,(0,1);Cv2,(0,1)).

In this previous work, the fitness function is defined as the sum of three distances,
each corresponding to one of the criteria associated with BK:

f(x) = ∑
η
dΔt(tr, BK) + db(tr, BK) + de(tr, BK) (2)

where dΔt(tr, BK) is the distance between the expected time given by BK (Δt)
and the time spent in the current state by the considered trajectory; db(tr, BK)
represents the distance between the trajectory behaviour inside the discrete state
and the property of BK; and de(tr, BK) compares the expected next discrete
state according to BK with the discrete state into which the considered trajectory
enters. The function domain is (∏v∈V [0, bv]) × [0, 1]n× R

∣C∣ where n is the
number of genes and ∣C∣ is the total number of celerities to identify, i.e. the
length of the decision vector. The codomain is R

+.
Minimising these three criteria led to the identification of admissible celerity

values. However, the optimisation problem becomes increasingly complex when
considering hGRN models with many genes. It implies more celerity values to
identify and more complex interactions, leading to harder implicit constraints.
The continuous CSP solver was unable to extract even one particular solution
when considering a model with five genes, leading to 240 variables in the decision
vector. Furthermore, the task is multimodal: it is interesting to find diverse solu-
tions to provide biologists with evidence for different interpretations of hGRN
dynamics. The approach proposed by [17] did not address this issue. The pecu-
liarities of this optimisation problem are: (i) there is an infinite number of solu-
tions that satisfy the BK constraints, and (ii) the optima solutions lie on a neutral
landscape, i.e. a plateau. Indeed, solutions form a measure zero set due to the
equality constraints on the time criterion in the fitness function. Therefore, the
optimisation procedure requires the ability to sample, in a continuous landscape,

136 R. Michelucci et al.

global and local optima plateaus of measure zero. These considerations specific
to this optimisation problem cannot be addressed only by panmictic schemes.
Therefore, the limits of the mentioned approach are tested by introducing exper-
iments with well-known multimodal heuristic algorithms on higher dimensional
hGRNs.

3 RS-CMSA-ESII and cGAs for MMO

RS-CMSA-ES [1] was designated the most successful niching method for the
CEC’2013 MMO test suite. In this initial version, several parallel subpopulations,
each following the evolution scheme of CMSA-ES [9], aim at finding distinct global
minima. CMSA-ES is an adapted version of CMA-ES [14], diminishing the com-
plexity of the adaptation process and implying fewer hyperparameters tuning. RS-
CMSA-ES gathers several techniques and encompasses them as a new algorithm
for MMO without making any assumption about the fitness landscape: taboo
points (points from which the offspring of a subpopulation must maintain a suffi-
cient distance, i.e. the centre of the fitter subpopulations and the previously iden-
tified basins), the normalised Mahalanobis distance, and the Ursem’s hill-valley
function [23]. The new variant RS-CMSA-ESII [2] introduces an update of the
adaptation schemes for the normalised taboo distances, new termination criteria
for subpopulation evolution, and an improvement of the time complexity thanks to
(i) a new initialisation strategy of subpopulations, and (ii) a more accurate metric
for the determination of critical taboo regions thanks to the properties of Maha-
lanobis distance. The RS-CMSA-ESII superiority over successful niching methods
in static MMOs made it an ideal candidate for this study.

cGAs are well-known methods for addressing multimodal and epistatic prob-
lems [4,5]. They are a subclass of GAs in which the population is structured in
a specified topology, allowing individuals to interact only with their neighbours.
The topological structure defines a connected graph where a vertex represents
an individual, and an edge represents the possibility of interaction between two
individuals: each individual, in this graph, can only mate with its neighbours.
Therefore, in a cGA, the choice of the population topology and the neighbour-
hood are two parameters that guide the search and control the solutions’ diffu-
sion speed along the graph. The radius introduced in [5] directs the dispersion
strength based on the chosen neighbourhood: the higher the radius, the more
spread out a neighbourhood’s pattern is, and so the easier a good solution will
reach other individuals of the population because there will be less intermedi-
ate individuals to the most distant individual. Furthermore, [19] introduced the
ratio measure controlling the balance between exploration and exploitation. It is
defined as a trade-off between the radii of the neighbourhood and the population
structure: reducing the ratio leads to the promotion of exploration. Overlapping
neighbourhoods also help to explore the search space because the slow diffusion of
solutions through the population allows exploration by preserving diversity [3,4].
On the one hand, this leads cGAs to find several optima compared to GAs and
to be well suited for complex problems. On the other hand, this is often at the
expense of slower convergence towards global optima.

cGAs for Identifying Variables in hGRNs 137

Fig. 2. Interaction graphs of the 2G (a), 3G (b), and 5G (c) hGRN.

Table 1. Description of hGRN models.

Name Nb. genes Decision vector len. BK

example cycle (2G) 2 8 Given in Sect. 2.2
circadian cycle (3G) 3 20 [7]
cell cycle (5G) 5 240 [6]

In the following section, tests have been set up to compare the RS-CMSA-
ESII performance along with cGAs to demonstrate which method is best suited
to our multimodal task. Different structure and ratio values for cGA are exper-
imented with to evaluate their performance. We compared all the results with
standard panmictic metaheuristics on three hGRN models of increasing com-
plexity to assess the suitability of their diversity mechanism for such MMO
problems.

4 Experimental Study

The three hybrid models of GRN are depicted in Figure 2 and described
in Table 1 in terms of (i) the number of genes, (ii) the length of the decision
vector to optimise, and (iii) constraints from BK utilised for evaluating candi-
date solutions.

4.1 Optimisation Methods and Parameters Search

The comparison is carried out between (μ+λ) GA, CMA-ES, six synchronous
cGAs with different ratios and neighbourhood structures, and RS-CMSA-ESII.

The two continuous metaheuristic implementations come from PyMoo [11],
and each of the hyperparameters chosen is identical to those detailed in [17].
Their population size is also 500. Since we were interested in observing the influ-
ence of the cGAs parameters to find those most suitable for solving the different
hGRN problems, multiple sets of parameters were tested (listed in Table 2). The
names of the neighbourhoods follow the classical notation: the label Ln (linear)
for the neighbourhoods composed by the n nearest neighbours in a given axial

138 R. Michelucci et al.

Table 2. Description of tested cGAs parameters.

Name Population Neighbourhood Ratio

cGAL5 5× 10 L5 0.279
cGAL9 10× 10 L9 0.367
cGAL29 15× 15 L29 0.719
cGAL41 21× 21 L41 0.851
cGAL13 7× 7× 7 L13 0.607
cGAC9 7× 7× 7 C9 0.408

direction (north, south, west and east) while the label Cn (compact) designates
the neighbourhoods containing the n − 1 nearer individuals to the considered
one (in horizontal, vertical, and diagonal directions). The population size and
the neighbourhood structure vary so that we can test (i) low ratio cGAs with a
small population size and, conversely, (ii) high ratio cGAs with a larger popu-
lation, both in a toroidal 2G square grid, and (iii) 3G neighbourhood structure.
To ensure fair results, their implementation is also based on the standard GA
implementation provided in PyMoo. RS-CMSA-ESII implementation is taken
from [2] with the control parameters set to their default values.

Each experiment is run 50 times to obtain statistically significant results.
The termination criteria chosen is the number of function evaluations (NFE):
100, 000 for 2G and 3G and 200, 000 for 5G. These values were chosen based on
the relative complexity and the decision vector length.

4.2 Results

For each algorithm, problem dimension and at each generation, we compute the
best candidate solution so far, repeat executions 50 times, and compute the
Mean Best Fitness (MBF). The monotonic evolution of all algorithms is shown
in the left column of Fig. 3. It can be observed that (i), as expected, panmictic
metaheuristics perform worse than cGAs in all cases since they reach a plateau
faster and attain a higher fitness score after convergence; (ii) cGAL13, cGAL29,
and cGAL41 stand out among the algorithms tested since, on the one hand,
they have a slower convergence, and on the other hand, even when the maximum
budget is attained, their curves show that the search process could have pursued
its convergence; and (iii) RS-CMSA-ESII performs worse than CMA-ES.

In addition, Cumulative Distribution Function (CDF) curves are constructed
on the right side of Fig. 3 for each hGRN considered. Each CDF curve describes
the probability of finding a solution at, or below, a given fitness score. For
instance, in 3G, there is almost an 80% probability that a user will obtain a
solution with a fitness score less than or equal to 10−4 with cGAL9 given 100,000
NFE. From these plots, (i) cGAs don’t often find the overall best solution (the
one with the lowest fitness score) but results are rarely unsatisfactory (>1), (ii) in

cGAs for Identifying Variables in hGRNs 139

all cases, CMA-ES can deliver top results (satisfactory and precise solutions) as it
is of poor performance (not solving the problem), (iii) RS-CMSA-ESII similarly
to CMA-ES has mixed performance and does not find any single satisfactory
valuation in 5G.

In MMO, the chi-square-like performance statistic and maximum peak ratio
are common measures to identify a maximum number of optima (local and
global). However, both of these measures assume the number and locations of
the global optima are known a priori. This assumption does not hold in our case,
so the scoring function used is introduced in [16] and defined as:

sc(P, θl, θu) = ∑
Bj∈Bink(clustσ(P),θl,θu)

wj∣Bj∣ (3)

This alternative performance measure suggests the selection of a threshold
interval [θl, θu] covering all fitness score values considered interesting by an
expert. θl is the ideal point while θu is an upper bound below which fitness
values are judged satisfactory. In our case, θl = 0 and θu = 10−2. 10−2 is a pre-
cision error coherent with biological expertise. For instance, a trajectory which
would slide in a state during a fraction of seconds (<θu) before going to the

Fig. 3. Monotonic evolution of MBF values (left) and CDF curves of overall best results
(right) for the three hGRNs.

140 R. Michelucci et al.

next discrete state is a satisfying trajectory despite BK stating noslide(v). The
score measurement uses density-based clustering with parameter σ to remove
redundancy between candidate solutions clustered closely around the same local
optimum. In this study, DBSCAN [13] is parametrised with σ = 10−1 which is the
maximum Euclidean distance between two samples for one to be considered as
in the neighbourhood of the other. Equidistant binning is then used to adapt the
distribution weights: more emphasis is put on higher quality optima than lower
ones. The number of bins is kept at 16. This score assesses the combined quality
of the found candidate solutions while it is not prone to be misled by redundancy.
Table 3 shows numerical values for the mean scores where bold results highlight
the best performance for each model dimension. The comparison indicates that
small ratio cGAs (cGAL9 and cGAL5) are to be preferred for 2G, whereas cGAs
with a higher ratio perform better in the 3 and 5G cases, as shown by cGAL41
and cGAL29. It should also be noted that, in 5G, the extrema ratio values
(cGAL5 and cGAL41) are penalised for being too exploratory or exploitative.
cGAC9 has interesting results in all three cases but never stands out.

Table 4 summarises statistics of the last population clustered: it contains only
the fitness values of the best candidate solutions (<θu) gathered around each
distinct optima found by clustering. The best results (column by column) are
shown in bold. The average of the mean and standard deviation of the clustered
results is reported, as well as the overall minimum fitness scores (the reader can
refer to the leftmost point of each corresponding CDF curve). When considering
one particular run, it may appear that an algorithm did not find any solution
below θu. In such cases, the maximum value θu is considered: this results in a
normalised average with the ideal value being θl, and θu the nadir one. It can
be observed that cGAL9 finds, on average, higher quality optima than other
algorithms in 2 and 5G. In 3G, cGAL29 identifies satisfying solutions with a
lower fitness score on average.

Table 3. Overview of the average performance measurement over 50 runs.

Algorithms 2G 3G 5G

GA 12.13 148.09 8.29
CMA-ES 3e-3 0.275 29.32
cGAL9 19.99 63.47 21.11
cGAL5 16.82 30.07 2.04
cGAL13 7.33 290.59 0.03
cGAC9 13.78 162.28 34.11
cGAL29 13.90 182.18 49.81
cGAL41 1.56 311.07 0.0
RSCMSAII 1e-2 0.275 0.0

cGAs for Identifying Variables in hGRNs 141

Table 4. Summary of clustered results.

Algorithms 2G 3G 5G
mean ± std min mean ± std min mean ± std min

GA 1e-3 ± 2e-4 4e-8 4e-4 ± 2e-6 5e-8 99e-4 ± 94e-4 6e-3
CMA-ES 98e-4 ± 96e-4 2e−11 7e-3 ± 2e-13 1e-13 9e-3 ± 9e-3 1e−5

cGAL9 8e−4±8e−4 3e-7 1e-4 ± 7e-6 8e−14 85e−4±7e−3 2e-4
cGAL5 1e-3 ± 9e-4 3e-7 9e-4 ± 2e-4 1e-9 95e-4 ± 94e-4 3e-3
cGAL13 6e-3 ± 2e-3 4e-4 3e-4 ± 4e-4 5e-6 1e-2 ± 98e-4 7e-3
cGAC9 1e-3 ± 1e-3 3e-6 1e-4 ± 8e-6 4e-9 9e-3 ± 8e-3 3e-4
cGAL29 3e-3 ± 2e-3 3e-5 9e−7±1e−5 1e-9 79e-4 ± 7e-3 2e-4
cGAL41 8e-3 ± 3e-3 2e-3 2e-3 ± 16e-4 5e-5 1e-2 ± 0 1e-2
RSCMSAII 8e-3 ± 1e-20 8e-8 7e-3 ± 2e-13 1e-13 1e-2 ± 0 1e-2

4.3 Statistical Analysis

A statistical validation campaign was conducted to evaluate the observed differ-
ences in the reported performance values of all algorithm pairs for each different
hGRN. We consider two null hypotheses H

1
0 which states that the observed per-

formance scores are equal, and H
2
0 which states that the average fitness scores

obtained by clustering are similar. These null hypotheses are duplicated for each
of the hGRN dimensions considered. To test them, we first employed the Fried-
man rank-sum test to assess whether at least two methods exhibit significant
differences. The p-values for the null hypotheses show, at a α = 5% confidence
level, that the differences are significant. The choice between parametric and non-
parametric tests is made according to the independence of the samples (seeds
are different), whether or not the data samples are normally distributed, and the
homoscedasticity of the variances [12]. As neither normality nor homoscedasticity
conditions required for the parametric tests application hold, the non-parametric
Wilcoxon signed-rank test was performed. In a complementary way, to reduce
the issue of Type I errors in multiple comparisons, the Bonferroni correction
method was applied. [15] gives the score +1 (resp. -1) for the superior (resp. infe-
rior) algorithm whenever the considered null hypothesis could be significantly
rejected. A score of 0 is assigned when neither algorithm is significantly better
than the other. Since we have three different case studies (2G, 3G, 5G), for each
pair of algorithms and each null hypothesis, we sum the three obtained scores
to estimate which one is globally better considering the three hGRNs. Table 5
(resp. Table 6) show these sums according to the pairwise Wilcoxon tests (resp.
Bonferroni correction): a positive number for algorithm in line l shows that it
was significantly better than the algorithm in column c (considering the three
hGRNs). For example, according to the Bonferroni correction applied on H

1
0 , we

can state that cGAL29 is significantly better than RS-CMSA-ESII for the three
study cases but compared to cGAL41, we can only say that it is globally better:

142 R. Michelucci et al.

Table 5. Pairwise Wilcoxon statistical tests of H1
0 (left) and H

2
0 (right).

CMA-ES cGAL9 cGAL5 cGAL13 cGAC9 cGAL29 cGAL41 RSCMSAII

GA +2 +2 0 −2 0 +1 0 +1 −2 −1 −2 −1 0 +2 +2 +2

CMA-ES −2 −2 −2 −2 −1 −1 −2 −2 −2 −2 −1 −1 0 +1

cGAL9 +3 +2 +1 +3 0 +1 0 0 +1 +3 +3 +3

cGAL5 0 0 −1 0 −1 −1 0 +2 +2 +2

cGAL13 −1 −3 −1 −3 0 +2 +2 +2

cGAC9 −1 −1 +1 +3 +3 +3

cGAL29 +1 +3 +3 +3

cGAL41 +2 +1

Table 6. Bonferroni post-hoc analysis of H1
0 (left) and H

2
0 (right) with bolded differ-

ences compared to Table 5.

CMA-ES cGAL9 cGAL5 cGAL13 cGAC9 cGAL29 cGAL41 RSCMSAII

GA +2 +2 0 0 +1 0 0 +1 0 0 −1 0 0 +2 +2 +1
CMA-ES −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 0 0
cGAL9 +1 +1 0 +2 0 0 0 +1 0 +2 +2 +2
cGAL5 0 +1 −1 −1 −1 0 0 +2 +2 +1
cGAL13 0 −2 −1 −3 0 +2 +2 0
cGAC9 0 0 0 +2 +2 +2
cGAL29 +1 +3 +3 +3

cGAL41 +2 0

cGAL29 may have scored +2 and cGAL41 +1 or cGAL29 may have scored +1
and cGAL41 0.

If we analyse the conclusions supported by the tests, based on the acceptance
or rejection of the above hypotheses, we arrive at the following findings: on the
different tasks, cGAL9 and cGAL29 are more competitive in finding more optima
than other algorithms with better fitness values on average. RS-CMSA-ESII lags
as the panmictic algorithms maintain greater diversity in their population across
different hGRN landscapes.

4.4 Visualisation

Figure 4 shows the diversity of solutions of cGAL9 tested on hGRNs with 2,
3 and 5 genes. Please note that three different graph types are modelled to
emphasize the same phenomenon: the evolution of gene products concentration.
In 2G (Fig. 4a) and 3G (Fig. 4b), the discrete states can be represented as squares
and cubes. However, in 5G (Fig. 4c), the choice has been made to represent the
evolution of concentration (in y-axis) as a function of the time spent (in x-axis)

cGAs for Identifying Variables in hGRNs 143

for the different genes. This visually confirms that the application of evolutionary
computation allows us to exhibit very different solutions, each consistent with
BK.

Fig. 4. Admissible trajectories obtained with cGAL9 on the 2G (a), 3G (b), and 5G
(c) hGRN.

5 Conclusion

hGRN variable identification is framed as an ideal tool to help biologists develop
hypotheses and facilitate the design of their experiments. This study proposes
an improvement to [17] since (i) it shows that evolutionary computation can
outperform constraint-based approach by dealing with higher dimensional mod-
els, the 5G cell cycle in this study, and (ii) it is now able to find a diverse
set of optima solutions instead of a unique one. CGAs have shown superiority
over the best available niching-based algorithm (RS-CMSA-ESII) by maintaining
diversity within the population structure. Surprisingly, RS-CMSA-ESII does not
ensure diversity in the results: only one solution is found. In our case, optima are
located on a neutral landscape: there is an infinite number of solutions forming
a null set. Therefore, for sampling a continuous landscape with global and local
optima plateaus of measure zero, the mechanisms employed by RS-CMSA-ESII
are not suitable. Because the Ursem’s hill-valley test fails, it ensures that only
one subpopulation at a time evolves, leading to a single solution. That entails
the degenerate use of the metaheuristic, explaining the disappointing results of
RS-CMSA-ESII. In the case of cGAs, maintaining diversity through population
structure helps to preserve diversity in the parameter space and thus enables
us to obtain a diversity in the phenotype space. Future works will consider the
development of specific diversity mechanisms to better leverage the multimodal-
ity issue on a neutral landscape: the design of an appropriate self-adaptive cGA
to obtain quality results while maximising the number of optima. At the same
time, introducing larger biological systems will lead to applying large-scale opti-
misation.

144 R. Michelucci et al.

Acknowledgments. This work has been supported by the French government,
through the France 2030 investment plan managed by the Agence Nationale de la
Recherche, as part of the “UCA DS4H" project, reference ANR-17-EURE-0004.

References

1. Ahrari, A., Deb, K., Preuss, M.: Multimodal optimization by covariance matrix
self-adaptation evolution strategy with repelling subpopulations. Evol. Comput.
(2017). https://doi.org/10.1162/evco_a_00182

2. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., Coello, C.A.C.: Static and dynamic
multimodal optimization by improved covariance matrix self-adaptation evolu-
tion strategy with repelling subpopulations. IEEE Trans. Evol. Comput. (2021).
https://doi.org/10.1109/TEVC.2021.3117116

3. Alba, E., Dorronsoro, B.: Solving the vehicle routing problem by using cellu-
lar genetic algorithms. In: European Conference on Evolutionary Computation
in Combinatorial Optimization (2004). https://doi.org/10.1007/978-3-540-24652-
7_2

4. Alba, E., Dorronsoro, B.: Introduction to cellular genetic algorithms. In: Cellular
Genetic Algorithms (2008). https://doi.org/10.1007/978-0-387-77610-1_1

5. Alba, E., Troya, J.M.: Cellular evolutionary algorithms: evaluating the influence
of ratio. In: International Conference on PPSN (2000). https://doi.org/10.1007/3-
540-45356-3_3

6. Behaegel, J., Comet, J.P., Bernot, G., Cornillon, E., Delaunay, F.: A hybrid
model of cell cycle in mammals. In: 6th International Conference on Com-
putational Systems-Biology and Bioinformatics (2015). https://doi.org/10.1142/
S0219720016400011

7. Behaegel, J., Comet, J.P., Folschette, F.: Constraint identification using modified
Hoare logic on hybrid models of gene networks. In: Proceedings of the 24th Int.
Symposium TIME (2017). https://doi.org/10.4230/LIPIcs.TIME.2017.5

8. Behaegel, J., Comet, J.P., Pelleau, M.: Identification of dynamic parameters for
gene networks. In: Proceedings of the 30th IEEE International Conference ICTAI
(2018). https://doi.org/10.1109/ICTAI.2018.00028

9. Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited - the cmsa evo-
lution strategy. In: International Conference on PPSN (2008). https://doi.org/10.
1007/978-3-540-87700-4_13

10. Biswas, S., Acharyya, S.: Neural model of gene regulatory network: a survey on sup-
portive meta-heuristics. Theory Biosci. (2016). https://doi.org/10.1007/s12064-
016-0224-z

11. Blank, J., Deb, K.: pymoo: Multi-objective optimization in python. IEEE Access
(2020)

12. Eftimov, T., Korošec, P.: Statistical analyses for meta-heuristic stochastic opti-
mization algorithms: GECCO Tutorial (2020). https://doi.org/10.1145/3377929.
3389881

13. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD (1996)

14. Hansen, N., Auger, A.: Cma-es: evolution strategies and covariance matrix adap-
tation. In: Proceedings of the 13th Annual Conference Companion on Genetic And
Evolutionary Computation (2011). https://doi.org/10.1145/2001858.2002123

https://doi.org/10.1162/evco_a_00182
https://doi.org/10.1109/TEVC.2021.3117116
https://doi.org/10.1007/978-3-540-24652-7_2
https://doi.org/10.1007/978-3-540-24652-7_2
https://doi.org/10.1007/978-0-387-77610-1_1
https://doi.org/10.1007/3-540-45356-3_3
https://doi.org/10.1007/3-540-45356-3_3
https://doi.org/10.1142/S0219720016400011
https://doi.org/10.1142/S0219720016400011
https://doi.org/10.4230/LIPIcs.TIME.2017.5
https://doi.org/10.1109/ICTAI.2018.00028
https://doi.org/10.1007/978-3-540-87700-4_13
https://doi.org/10.1007/978-3-540-87700-4_13
https://doi.org/10.1007/s12064-016-0224-z
https://doi.org/10.1007/s12064-016-0224-z
https://doi.org/10.1145/3377929.3389881
https://doi.org/10.1145/3377929.3389881
https://doi.org/10.1145/2001858.2002123

cGAs for Identifying Variables in hGRNs 145

15. Kronfeld, M., Dräger, A., Aschoff, M., Zell, A.: On the benefits of multimodal
optimization for metabolic network modeling. In: German Conference On Bioin-
formatics (2009)

16. Kronfeld, M., Zell, A.: Towards scalability in niching methods. In: IEEE CEC
(2010). https://doi.org/10.1109/CEC.2010.5585916

17. Michelucci, R., Comet, J.P., Pallez, D.: Evolutionary continuous optimization of
hybrid gene regulatory networks. In: EA 2022. https://doi.org/10.1007/978-3-031-
42616-2_12

18. Mitra, S., Biswas, S., Acharyya, S.: Application of meta-heuristics on reconstruct-
ing gene regulatory network: a bayesian model approach. IETE J. Res. (2021).
https://doi.org/10.1080/03772063.2021.1946433

19. Sarma, J., De Jong, K.A., et al.: An analysis of local selection algorithms in a
spatially structured evolutionary algorithm. In: ICGA, pp. 181–187. Citeseer (1997)

20. da Silva, J.E.H., Betnardino, H.S., Helio J.C., B., Vieira, A.B., Luciana C.D., C.,
de Oliveira, I.L.: Inferring gene regulatory network models from time-series data
using metaheuristics. In: IEEE CEC (2020). https://doi.org/10.1109/CEC48606.
2020.9185572

21. Sun, J., Garibaldi, J., Hodgman, C.: Parameter estimation using meta-heuristics
in systems biology: a comprehensive review. IEEE/ACM Trans. Comput. Biology
Bioinform. (2012). https://doi.org/10.1109/TCBB.2011.63

22. Tenazinha, N., Vinga, S.: A survey on methods for modeling and analyzing inte-
grated biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (2011).
https://doi.org/10.1109/TCBB.2010.117

23. Ursem, R.K.: Multinational evolutionary algorithms. In: Proceedings of CEC
(1999). https://doi.org/10.1109/CEC.1999.785470

https://doi.org/10.1109/CEC.2010.5585916
https://doi.org/10.1007/978-3-031-42616-2_12
https://doi.org/10.1007/978-3-031-42616-2_12
https://doi.org/10.1080/03772063.2021.1946433
https://doi.org/10.1109/CEC48606.2020.9185572
https://doi.org/10.1109/CEC48606.2020.9185572
https://doi.org/10.1109/TCBB.2011.63
https://doi.org/10.1109/TCBB.2010.117
https://doi.org/10.1109/CEC.1999.785470

Evolving Artificial Neural Networks
for Simulating Fish Social Interactions

Lea Musiolek1,5(B) , David Bierbach2,5 , Nils Weimar3, Myriam Hamon4,
Jens Krause2,5 , and Verena V. Hafner1,5

1 Adaptive Systems Group, Humboldt-Universität zu Berlin, Berlin, Germany
lea.musiolek@hu-berlin.de

2 Department of the Biology and Ecology of Fish, Humboldt-Universität zu Berlin,
Berlin, Germany

3 Zoology Department, Universität Bonn, Bonn, Germany
4 Bernstein Center for Computational Neuroscience, Berlin, Germany

5 Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587 Berlin,
Germany

https://www.scienceofintelligence.de

Abstract. Can we use computational modeling to infer whether fish can
remember or anticipate each other’s movements? What minimum of tem-
poral input and internal complexity is sufficient to model a specific fish, or
to produce generally “fish-like” behavior? Agent-based modeling to emu-
late biological behavior has been used to great effect, both in real-world and
simulated experiments. We present feedforward neural network architec-
tures for simulating fish social interactions, evolved using evolution strate-
gies in two different experiments. Evolution of the temporal input of the
partner fish’s positionwhen testingmodels on labeled data uncovers antici-
pation ormemory capacities used by a focal fish.When testing via a general
discriminator for fish-like trajectories, the right neural network architec-
ture and temporal input are shown to be a necessary, but insufficient con-
dition for highly lifelike simulations. Lifelike simulations for some datasets
are possible as simple functions of the input, showing variability in the com-
plexity of individual fish’s social behaviors.

Keywords: Evolution Strategy · Fish · Social Interactions ·
Agent-Based Modeling · Artificial Agents

1 Introduction

Can a small freshwater fish anticipate a partner’s movements in social interac-
tion? Does it need to, in order to behave “like a fish”? Finding the answers is

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2002/1 “Science of Intelligence” - project
number 390523135.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-56852-7_10.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 146–161, 2024.
https://doi.org/10.1007/978-3-031-56852-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_10&domain=pdf
http://orcid.org/0000-0002-3729-2807
http://orcid.org/0000-0001-7049-2299
http://orcid.org/0000-0002-1289-2857
http://orcid.org/0000-0002-9125-8466
https://doi.org/10.1007/978-3-031-56852-7_10
https://doi.org/10.1007/978-3-031-56852-7_10

Simulating Fish Social Interactions 147

not as easy as it sounds. It has been shown through tailored biological experi-
ments that Poecilia reticulata (guppies) are capable of leading and following each
other, socially learning food locations, anti-predator behavior and other useful
skills [7], choosing interaction and mating partners based on past observations of
conspecifics [3], and learning another’s movement patterns in order to precede it
to a goal destination [2]. However, inferring from such behaviors that the fish are
socially anticipating requires making many assumptions about their motivations
and information processing. Pezzulo [17] and others define anticipation as using
“predictive capabilities to optimize behavior and learning to the best of [one’s]
knowledge”. In this study we show how computational modeling and evolution
strategies can be leveraged to find out how guppies use temporal information
about a partner to inform their actions a posteriori from recordings of freely
moving fish pairs, without experimental manipulation or additional assump-
tions. Evolving model architectures by using certain fitness functions enables
us to draw conclusions similar to those of evolutionary biologists based on real
animals’ anatomies. To our knowledge, a similar approach has only been tried
by Olivares et al. [16] in recent years.

We take inspiration from the long tradition of using simple circuits and rules
to model animal behavior in response to certain stimuli, both in real-life and
simulated experiments. Grey Walter’s work on the Machina speculatrix and the
Machina docilis [24] showed that very simple electronic circuits can be sufficient
to produce some behaviors reminiscent of innate animal behaviors and even clas-
sical conditioning. Note that the “learning circuits” were the result of an analysis
of the operations “involved in establishing a connection between different stimuli
to achieve a conditioned response”. This means that they tell us something about
the behaviors that can be achieved with simple circuitry, but not much about
the way animal bodies and brains achieve similar behavior. Another example
are Braitenberg vehicles. Initially conceived as a thought experiment, they are
minimal robots whose wheel actuators are directly coupled to simple sensors. By
varying the sensor-actuator connections, they can be made to show behaviors
associated with living organisms, such as an enduring attraction or aversion to
a light source, obstacle avoidance and chemotaxis [5,22].

This naturally leads to the question of how architecturally complex agents
even need to be in order to show successful behaviors in their environment,
including the social environment. Simulations of simple recurrent neural net-
works with two or three hidden nodes which control Braitenberg-like agents
emitting acoustic signals have shown that social interaction itself can increase a
network’s complexity (as measured by the entropy between the internal nodes)
and lead to interesting (though not necessarily lifelike) behavior patterns when
two such agents interact [9,18,19].

To our knowledge, most of the work done in this area uses present-time
sensory input and, if at all, introduces a temporal aspect through the use of
recurrencies in the artificial neural network architecture. In Couzin et al.’s [11]
zone model of fish social behavior, individual fish react almost instantaneously
to others’ movements. However, possible memory or prediction capabilities of

148 L. Musiolek et al.

individual fish are not examined. On the other hand, Murakami, Niizato and
Gunji [15] as well as Strömbom and Antia [23] model swarm dynamics using
anticipation.

Given our interest in memory and anticipation of a social partner’s actions,
we are looking for a way in which temporal dynamics (such as delayed or antic-
ipatory reactions to a partner’s actions) may be detectable from an outside
perspective in pre-recorded behavior data, without needing to experimentally
manipulate the behavior. In addition, we want to find out what role such dynam-
ics play in producing lifelike simulations of fish movements.

Based on the work reviewed so far, we decided to simulate fish interactions
using minimal (at least at first) feedforward artificial neural networks and treat-
ing memory and prediction capacities as external “modules” rather than as prop-
erties of the neural architecture or internal model (as do, for example, Blum,
Winfield and Hafner [4]. This is in line with Reynolds’ [20] approach of giving
his artificial agents “approximately the same information that is available to a
real animal as the end result of its perceptual and cognitive processes” (more
details in the Methods section). This comes with the drawback of not being able
to simulate two partners freely interacting: In order to have “predictions” of a
partner, the focal agent model must interact with a pre-recorded one. However,
this allowed us to directly compare the individual performance of models with
the exact same partner and based on the exact memory/prediction timesteps
they are receiving as input, while keeping their neural architecture simple.

The presence or absence of the temporal input modules were determined by
an optimization process. In this process, the complexity of the neural network
architecture (as measured by the number of hidden layers and their respective
nodes) would be adapted in order to better approximate the “decision making
function” mapping input states to motor actions. As target functions to optimize,
we used two different measures in two separate experiments: In experiment 1, we
used the framewise deviation of a model’s predictions from the original fish track
it was trained on. In experiment 2, we used the “fish-likeness” of a model’s simu-
lation, as rated by a long short-term memory (LSTM) discriminator trained for
this purpose. Both were traded off against the number of trainable parameters
in the models in order to encourage simplicity. By thus tweaking our modeling
choices and examining the best fitting models, we hoped to answer the follow-
ing questions: Experiment 1: Can we show in how far a given fish predicts or
remembers another’s movements and changes its behavior accordingly? Experi-
ment 2: What minimum of temporal input and internal complexity (taking into
account Occam’s razor [6]) is sufficient to model a specific fish, or to produce
generally “fish-like” behavior? In keeping with the origin of the biological agents
we were modeling, we chose to use a custom Evolution Strategy [1] in order to
optimize our model architectures while keeping them simple.

2 Methods

Please find a diagram of our workflow in Fig. 1c.

Simulating Fish Social Interactions 149

2.1 Ground Truth Data

Our efforts in both experiments were aimed at successfully modeling existing
data from five live pairs of Trinidad guppies, filmed and tracked while moving
freely in an experimental tank. Their movements were filmed in a white square
tank of 88 cm width and 7.5 cm water depth (see Fig. 1a) and tracked at 30
frames per second (fps) using the BioTracker movement tracking software [14].
In every evolution run, one of the two fish per pair (the “focal fish”) was used as
ground truth data to be modeled, while the other live fish’s trajectory functioned
as the “social partner”.

2.2 Neural Network Models

We configured all models as multi-layer perceptrons using Keras [10]. Indepen-
dently of the number of layers and the number of nodes in each layer, all hidden
layers were densely connected and used leaky ReLU with an alpha of 0.01 as an
activation function. The case of 0 hidden layers implemented a linear mapping
of input to output (please see supplementary material for an illustration), with
one output being clipped to minimum 0 (ReLU). All models were trained using
the Keras adaptive moment estimation (“Adam”) optimizer with a clipping norm
of 2.0, a maximum of 100 epochs but early stopping in the case of stagnant vali-
dation loss (with a patience parameter of 5). The two output nodes represented
1) the length/magnitude of the predicted movement, and 2) a change in heading
direction in 2-argument arctangent (atan2), respectively. The movement length
node was a ReLU to prevent “negative” (backwards) movements. The direc-
tion change output node was not regularized. We used polar coordinates as this
was computationally easier when using a field of view. Please see Fig. 1b for an
example. If used for simulation, the predictions of the network were transformed
into x and y displacement coordinates in the global cartesian coordinates. This
was done by a custom function which also clipped the maximum length of the
movement to 4cm to regularize the simulations and prevent “jumps” across the
tank.

2.3 Input Information

We implemented the inputs to the network as higher-level “spatial awareness”
modules: a wall detection module and a partner detection module. We decided
to “outsource” the fish’s awareness of walls and partners in this way and give
the model precise information in the same spatial format as the required output
instead of, say, using simulated raycasting to detect walls and partners and
letting the model combine the ray information into a spatial representation to
act upon. This meant that a model only had to make the movement prediction,
saving it some computation and eliminating one potential source of error. Input
information was precise within a field of view of 172◦ on each side (which is
realistic for this species of fish). For information on wall vision, please see the
supplementary material. Figure 1b illustrates our input modules.

150 L. Musiolek et al.

Partner Detection Module (Partner). The partner detection module com-
puted the position of the partner fish from the simulated fish’s point of view and
passed the polar coordinates as input to the neural network. It implemented
the capability to “remember” or “predict” the partner fish’s position at other
points in time. Given an integer −a, the module would compute the position
of the partner fish a timesteps in the past relative to the current position of
the focal fish, essentially allowing the model to remember past positions of the
fish from its current perspective. Given an integer a, the module would compute
the position of the partner fish a timesteps in the future (this information was
available as our tracks were pre-recorded), allowing the model to predict the
partner’s position from the perspective of the present. One model could use this
module with more than one timestep at once depending on its hyperparameters,
adding 2 input nodes (for the two coordinates) to the model per timestep used.
The timesteps used by a given model were encoded as a list of integers in the
hyperparameter “genome” which was subject to our evolutionary strategy.

2.4 Evolution Strategy for Neural Network Architecture Search

Evolution strategies are a class of optimization methods first developed in the
1960s by Rechenberg and others [1]. Like other evolutionary computation meth-
ods, they use ways of “reproducing” and “selecting” artificial entities based on
certain traits across multiple loops or “generations”, inspired by natural evolu-
tion. Unlike other methods, they usually evolve the entities’ mutation rates along
with the other traits. The model hyperparameters subject to our evolution strat-
egy were the following:

– The entirety of hidden layers and the number of nodes in each layer
– The partner perception timesteps used by the agent
– The presence or absence of wall input
– The magnitude of the noise added to all model inputs (more precisely, the

factor by which the standard deviation of the entire input for a given feature
was multiplied to form the standard deviation of a Gaussian with mean 0 to
draw noise samples from)

– The noise level added to model outputs when simulating (more precisely,
the factor by which the standard deviation of the original framewise fish
movements was multiplied to form the standard deviation of a Gaussian with
mean 0 to draw noise samples from)

These hyperparameters indirectly encoded the model architecture, and each
model was trained using gradient descent with randomly initialized weights
before testing it for selection. The outcomes we aimed to minimize simulta-
neously were a) the testing loss as measured in two different ways and b) the
number of trainable parameters in the model (its complexity).

Reproduction. As is recommended for a combinatorial task [1], we used a
(μ + λ) evolution strategy, in which μ parents are used to create λ offspring in

Simulating Fish Social Interactions 151

Fig. 1. a) Test tank for filming fish movements. b) Focal fish (red) and example input
from partner fish (blue) d1, d2 and β1, β2: Partner distances and angles for two example
timesteps. e1 and γ1: Wall distance and angle (only one wall shown). c) Workflow for
both experiments. d) Example feedforward neural network (FNN) with several partner
input timesteps, wall vision and hidden layers [2, 4]. e) Performance of lifelikeness dis-
criminator: Relative frequency histogram of the ratings of the discriminator on unused
real, scrambled and switched data. (Color figure online)

152 L. Musiolek et al.

each generation, and the parents and offspring are then pooled and tested for
selection. We did not use recombination to produce the offspring, but rather
each selected parent was copied into the next generation (not the trained model
but the hyperparameter “genome”), in addition to two mutated versions. Thus,
μ = 8 and λ = 16. All copies and mutant versions of the selected parents
were then built as feedforward neural networks (FNNs) and trained via gradient
descent using pre-labeled data. Afterwards, they were tested for selection as
described below. In the first generation, μ = 8 default models were initiated
according to the settings in Table 1, and two mutant versions created for each to
form the initial population. The mutation itself was governed by two “strategy
parameters” (mutation rate and strength) which were part of the model genome,
and evolved along with it.

Mutation. Mutation was carried out as follows. In addition to the model hyper-
parameters (or “object parameters” in ES speak), we evolved two “endogenous
strategy parameters” of each model: its mutation strength s and its mutation
rate p. The mutation strength was a factor applied to mutation steps in real-
valued model parameters, and the mutation rate used as p for sampling from a
Bernoulli distribution to determine whether a binary mutation would take place
or not. For creating each mutant version of a parent, we randomly increased or
decreased s by 1 (and then clipped it at a minimum of 1), randomly increased
or decreased p by 0.1 (clipped to stay between 0.1 and 1), flipped wall input
on/off with probability p, added a new partner perception timestep randomly
chosen from −150,150 with probability p, randomly subtracted or added s to
a randomly chosen existing partner time step, removed one randomly chosen
partner timestep with probability p, randomly increased or decreased the input
noise factor by s/20, randomly increased or decreased the motor noise factor by
s/20, added a hidden layer with s+1 nodes with probability p, added a node to
a randomly chosen hidden layer with probability p, and removed one randomly
chosen hidden layer with probability p (provided there was one). In order to
avoid duplicate partner timesteps, the set of partner timesteps was used after
mutation.

Table 1. Hyperparameters of default model.

Hyperparameter Value

Partner timesteps [0]
Wall vision False
Input noise factor 0.0
Motor noise factor 0.0
Hidden layers [0]
Mutation rate 0.3
Mutation strength 1

Simulating Fish Social Interactions 153

Selection. We performed two neuroevolution experiments, using two different
forms of testing loss according to the different study aims. In both methods,
the testing loss was traded off against the number of model parameters to select
models for reproduction. All our datasets were used in both experiments. In
experiment 1, we used the loss from testing each model on prelabeled, unseen
data from the same dataset. This served to gauge in how far the models were
able to approximate the framewise movement “decisions” of the original fish, as
the model received input based on the original fish’s real positions. The model
architectures evolved by this method served to illuminate the individual behavior
of the respective fish, and its unique dynamics with the partner fish. For each
dataset, we did one evolution run using the first fish as the focal fish, and another
using the second fish. In experiment 2, we used the negative ratings of the
discriminator model described in Sect. 2.8 as the testing loss. Only the first
fish of each dataset was used here. Each model was still built and trained on
prelabeled data in the same way as in experiment 1, but then made to freely
simulate 400 frames of fish track given the original partner input, to be rated by
the discriminator. This served to select for models what were able to produce
the most fish-like trajectories and interactions with the partner fish, thus giving
us more general insights about the behavior of these guppies.

In both experiments, at each generation of an evolution run we computed
the Pareto optimal model genomes according to both minimal testing loss and
minimal number of trainable parameters in the model. A (strongly) Pareto opti-
mal data point in a two-dimensional feature space is one where, if there exists
another data point with a better value on one feature, that data point must rate
worse on the other feature [13]. This allowed us, in the first round, to select mod-
els according to both our desired outcomes (low testing loss and low complexity)
without having to weigh them against each other. However, as the number of
Pareto optimal models (also called the Pareto front) is not necessarily = μ, we
used the average of the min-max scaled test loss and complexity for each model
as a secondary criterion for ranking the models, and then used the μ best models
for reproduction, making this an elitist selection technique. The procedure was
repeated for 70 generations per run.

2.5 Data Labels

We trained all models in both experiments using labels based on the ground truth
data. The labels represent the direction change of the original fish in radians and
its movement length in cm at each frame, with the mean squared error of both
output nodes as the loss function for each one. As the two outputs were roughly
on the same scale (movement length in cm and direction change in radians were
both expected to be in [0, 1]), we weighted the output nodes equally for the final
model loss. Training loss was defined as the deviation of the predicted move
from the ground truth of the recorded focal fish. While this is obviously not
biologically realistic as no animal has a deterministic trajectory to follow, our
whole study rests on the assumption that a fish’s framewise movements can be

154 L. Musiolek et al.

at least partly predicted based on its perception of the partner’s position and
the tank walls.

2.6 Simulation

Each trained model could be used to simulate a fish trajectory given the partner
and wall input suitable to its input configuration. Together with the partner
trajectory, this could then be passed to a pre-trained discriminator model to
be rated for “lifelikeness”. The framewise outputs of the simulator model would
be transformed into movement coordinates. A movement was only performed
if the resulting fish position was inside the tank walls of the dataset currently
used; if not, the simulated focal agent simply remained in the same place but
the simulation continued, feeding it new input for new potential movements.

2.7 Analysis of Evolution Results

As it was difficult in our application to verify the correct running of the Evolu-
tion Strategy objectively, we relied on the testing loss development across gen-
erations. Runs in which testing loss did not sink towards the final generations,
did not reach levels below 0.5 or oscillated greatly throughout were regarded as
“not converged”. However, by analyzing the best and worst performing models
across all generations, we can still glean some cautious insights into the solu-
tions found by these runs. Comparing the best models for the two fish in each
dataset allowed us to draw inferences about the dynamic between the two fish.
What all the evolution runs seemed to have in common was a marked bimodal
distribution of testing loss across generations and model hyperparameters (see
plots in the supplementary material). Given this pattern in the testing loss, we
decided to compare the ensembles of the 30 best performing and the 30 worst
performing models for each fish with two-sample t tests to gain information
on the hyperparameter choices for modeling that fish. Comparing the partner
timestep histograms between the best and worst models for each fish provides
information on the partner timestep input likely used by that fish. While exper-
iment 2 was more exploratory, we formulated specific predictions for experiment
1: If both fish in a pair mostly ignored each other, we would expect the timestep
histograms to be inconclusive for both fish respectively, as the evolution strat-
egy would not find an adequate model of either fish’s movements based on the
other one. If one fish in a pair mostly remembered or anticipated the other’s
movements but was itself largely ignored, then the timestep histograms for the
first fish should show a predominance of the best models within a certain time
range. The other, “careless” fish in this scenario should either have inconclusive
timestep histograms, or a predominance of timesteps exactly the opposite of
the first fish. If both fish coordinated their movements closely, with one mostly
reacting and the other mostly anticipating, we would also expect a “mirrored”
pattern in their timesteps. Such a mirrored pattern would therefore be difficult
to interpret causally, while the other patterns would present a clear picture.

Simulating Fish Social Interactions 155

2.8 Simulation Discriminator

In order to be able to automatically evaluate the lifelikeness of a simulated fish
pair trajectory, we built a discriminator LSTM model trained to distinguish
real pre-recorded fish pairs from a) datasets with scrambled frames (i.e. com-
pletely un-fish-like trajectories) and b) real focal and partner fish trajectories
switched between different datasets (i.e. fish-like but not interacting). It was
loosely inspired by the discriminator part of Gupta et al.’s [12] Social GAN for
producing socially acceptable walking trajectories. The discriminator contained
one densely connected layer of 64 LSTM cells and one output node regularized
with a sigmoid function. We trained using binary cross entropy loss and the
“Adam” optimizer. The discriminator was trained on 35 datasets of recorded fish
pairs not used in the later study. When testing on unused cuts of the training
data sets, the discriminator did a good job separating the real fish pair data from
scrambled and switched tracks (see Fig. 1e). For additional information, please
see the supplementary material.

CodeAvailability. All our code is available at gitlab.com/leamusi/
fish_simulation (main project code) and gitlab.com/leamusi/fish_movements
(additional tools for processing fish movements).

3 Results

3.1 Experiment 1: Selection Through Testing on Prelabeled Data

For each dataset of two fish interacting, we did one evolution run using the first
fish as the focal fish, and another using the second fish. Please find detailed
results and plots in the supplementary material. For all runs, the majority (at
least 60%, usually more) of the best performing models had no wall vision.
Results on motor noise are not reported when testing on labeled data, as they
only come to bear when testing in simulation. For dataset N07P3, convergence
was unclear while evolving models for either fish. Partner timesteps 50 frames in
the future were advantageous for modeling the first fish, while input 50 frames
from the past helped the best models of the second fish. For N12P4, the evolution
processes for both fish achieved solutions with comparatively low testing loss.
The best models of the first fish were dominated by inputs 50–100 frames or 1.6–
3.3 s in the past, while the temporal inputs for the second fish were inconclusive.
For dataset N13P3, it appears that only the evolution process for modeling
the first fish converged on good solutions. The timestep results for both fish
were inconclusive. In dataset N13P4, only the evolution strategy for the first fish
achieved solutions with low loss. The first fish’s temporal input was dominated by
information 0 to 100 frames in the future, while the second fish’s was dominated
by past input (100 to 0 frames back). For dataset N16P4, convergence of the
evolution process was unclear for the first fish, but achieved good solutions for
the second one. The results regarding temporal input were inconclusive for both
fish.

https://gitlab.com/leamusi/fish_simulation
https://gitlab.com/leamusi/fish_simulation
https://gitlab.com/leamusi/fish_movements

156 L. Musiolek et al.

T tests on the other hyperparameters between the best and worst performing
models were generally nonsignificant except for input noise factor (which was
always lower in the best models) and the number of hidden nodes (which was
significantly higher in the best models for several fish).

3.2 Experiment 2: Selection Via Discriminator Ratings

Fixed Strategy Parameters. The performance of the evolution strategy using
discriminator ratings fell short of our expectations as we had reached ratings of
up to 0.9 in a pilot study with 40 generations and fixed strategy parameters: the
mutation strength was set at 1 and the mutation rate at 0.3. We therefore report
a selection of these results here (Fig. 2a–d), including the resulting simulations
(see Fig. 2g–h). For dataset N07P3, there was no significant difference on any
hyperparameter except input noise factor (δ = −0.09, t(58) = 2.4, p < 0.05),
while both the best and the worst models had an average of 31 hidden nodes and
20 partner timesteps. Timestep distributions of the best and worst models were
identical. For dataset N12P4, there was no significant difference on any variable,
no clear picture in the timestep distribution, and some of the best rated models
had 0 hidden nodes and a minimum of 7 partner timesteps. The best models
for the other datasets only achieved top ratings of 0.4. For the results obtained
using evolving strategy parameters, please see the supplementary material.

4 Discussion

4.1 Experiment 1

The bimodal distribution of the testing loss seems to indicate that for each
dataset, there are two attractors for a model’s testing loss to gravitate towards,
with the lower one being a natural baseline loss. This baseline may be due to the
fact that a) there may be systematic input factors or modeling choices which our
study does not account for or b) no focal fish’s behavior is entirely deterministic,
and therefore no model can be expected to recreate it perfectly. The absence of
wall vision in most best performing models may be easily explained by the fact
that partner fish (like focal fish) usually stayed close to the walls, meaning that
information about the walls was contained in partner input, and wall vision
input would thus have been redundant. The partner timestep results for both
fish in dataset N07P3 clearly mirror each other. This makes it difficult to state
whether one fish was anticipating the other, the second fish was following the
first reactively, or both. However, it is clear that the two fish’s movements have
a strong temporal connection. The results for N12P4 suggest that the first fish
appears to have used its memory to follow its partner, while the partner itself
was not minding the first fish at all. In N13P4, the temporal results again mirror
each other, making causal inference difficult but showing a clear temporal link

Simulating Fish Social Interactions 157

Fig. 2. a)–d): Results of neuroevolution using selection via discriminator with fixed
strategy parameters. Left column: Change of testing loss (blue) and model complex-
ity (trainable parameters, red) across evolution generations. Right column: Histograms
of partner input timesteps for the 30 best (blue) and the 30 worst (orange) models.
a)–b) Dataset N07P3. c)–d) N12P4. e)–h): Simulations by different models: original
focal fish in green, partner in blue, simulation in red. e) Simulation by one of the
best 30 models for the first fish of dataset N07P3 evolved using prelabeled data. f)
Simulation by the best model for the dataset N12P4 evolved using the discriminator,
with evolving strategy parameters. Discriminator rating 0.5. g) Simulation by the best
model for dataset N07P3 evolved using the discriminator, with fixed strategy param-
eters. Discriminator rating 0.91. h) Simulation by the best model for dataset N12P4
evolved using the discriminator, with fixed strategy parameters. Discriminator rating
0.92. (Color figure online)

158 L. Musiolek et al.

in the pair’s behavior. From the lack of convergence and inconclusive histograms
for the two fish pairs in datasets N13P3 and N16P4, it appears that the two
partners did not mind each other much in either case, which is reflected in a
visualization of the raw data (see supplementary material, Fig. 1).

The results also indicate that models seem to benefit from a low input noise
factor when tested on labeled data, although the average input noise factor in
the best models was still nonzero for all datasets. This suggests a sweet spot for
input noise, at which the noise increases model robustness but does not distort
predictions too much. Apart from this, the results on the general hyperparam-
eters suggest an advantage of having more hidden nodes for modeling some
datasets. Taken together, these results show how evolving the architecture and
input configuration of an FNN can be used to infer the interaction dynamics of
fish pairs. It must be remarked that even the best models evolved with this selec-
tion method did not produce very realistic-looking simulations (see Fig. 2e). This
is likely due to the fact that training and testing were done on input computed
frame-wise from the perspective of the pre-recorded focal fish. When simulat-
ing freely, the agent may move into positions relative to the partner fish that
would be unusual for the real focal fish, meaning that the model did not have
“experience” with such input, and was not selected or trained for it.

4.2 Experiment 2

Using the simulation discriminator for selection in the evolution strategy means
that the results cannot tell us much about the individual datasets being modeled.
The discriminator rates the partner trajectory together with the simulated focal
fish on how much they resemble a real fish pair, but we cannot say for certain
what this rating captures, or what influence the specific partner trajectory has.
Therefore, the best performing genomes can teach us something about creating
lifelike fish simulations in general, but not about imitating a specific focal fish. We
therefore interpret the results jointly, without focusing on each specific dataset.

With Fixed Strategy Parameters. The similarity of the best and worst model
architectures is an astonishing result. It indicates that the only thing which
made a difference here was the random weight initiation when compiling the
models, which led some to learn very high quality simulation skills, while others
possibly got caught in a local minimum. This leads us to the conclusion that a
suitable model architecture is a necessary but not a sufficient condition for good
model performance, and that the contribution of the model training should not
be underestimated. While in experiment 1 specific timesteps and low input noise
were advantageous for modeling specific fish, it appears that something else is
necessary (but not sufficient) when trying to fool a discriminator: the number
and variety of partner timesteps. Given this, hidden nodes may not even be
necessary, and a very simple function of the partner input may produce highly
lifelike simulations.

Simulating Fish Social Interactions 159

5 Summary

We show that by evolving model architectures and input configurations in exper-
iment 1, we can capture how some guppies’ movements can be predicted through
their memory and others’ through their anticipation of a partner’s movements,
with the input-output relationship flexibly determined by an FNN as a function
approximator. In general, more hidden nodes in an FNN did not necessarily seem
to bring an advantage in all pair interactions: the behavior rules leading from
partner perception to the fish’s own behavior can be very simple, confirming the
findings of previous models of fish behavior. For future studies, being able to
infer the temporal dynamics between two fish without experimental manipula-
tion means that we have a new, more efficient way of gauging aspects of a fish’s
social personality (does it tend to react or anticipate?). When attempting to
build socially competent fish robots, we can then adapt their behavior to what
we already know about the specific social partner. Just as in experiment 1, the
results of experiment 2 show that very simple fish behavior models can produce
lifelike simulations. We also learn from this experiment that the architecture itself
does not determine model performance: rather, the right architecture seems to
be necessary but training is key.

6 Limitations and Outlook

One obvious limitation of our study is the fact that our models do no guarantee
causality: finding out that a given FNN approximates the function connecting
hypothetical visual input received by a fish to its movements does not mean that
the real fish was actually using such inputs and performing such computations.
In the case of partner input from the future, for example, it is theoretically
possible that rather than the focal fish predicting the partner’s future position,
the partner is systematically positioning itself a certain way in relation to where
it saw the focal fish looking seconds ago. However, the benefits of such behavior
would be unclear. Another limitation of our approach should be addressed, as
it arises naturally from the work we reviewed above: Our models are clearly
not embodied (not even within the simulation), and we do not account for the
physical dynamics of fish movements at all. This means that our study is only a
first step towards building accurate models of fish movement, which also happens
to answer some more questions about the original data. In future, our models
could undergo further evolution when combined with a model of fish’s bodies
and movement dynamics. An example for this could be the models of burst-coast
swimming dynamics presented by Calovi et al. [8] and Sbraraglia et al. [21]. It
is to be expected that such a joint evolution of social and physical movement
dynamics may produce different solutions than this study, and produce new
insights.

160 L. Musiolek et al.

References

1. Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

2. Bierbach, D., Gómez-Nava, L., Francisco, F.A., Lukas, J., Musiolek, L., Hafner,
V.V., Landgraf, T., Romanczuk, P., Krause, J.: Live fish learn to anticipate the
movement of a fish-like robot. Bioinspiration Biomimetics 17(6), 065007 (2022).
https://doi.org/10.1088/1748-3190/ac8e3e

3. Bierbach, D., Sassmannshausen, V., Streit, B., Arias-Rodriguez, L., Plath, M.:
Females prefer males with superior fighting abilities but avoid sexually harassing
winners when eavesdropping on male fights. Behav. Ecol. Sociobiol. 67(4), 675–683
(2013). https://doi.org/10.1007/s00265-013-1487-8

4. Blum, C., Winfield, A.F.T., Hafner, V.V.: Simulation-Based Internal Models for
Safer Robots. Frontiers in Robotics and AI 4 (2018). https://doi.org/10.3389/frobt.
2017.00074

5. Braitenberg, V.: Vehikel: Experimente mit künstlichen Wesen. LIT Verlag Münster
(2004)

6. Britannica, E.: Occam’s razor | Origin, Examples, & Facts | Britannica, August
2023. https://www.britannica.com/topic/Occams-razor

7. Brown, C., Laland, K.N.: Social learning in fishes: a review. Fish Fish. 4(3), 280–
288 (2003). https://doi.org/10.1046/j.1467-2979.2003.00122.x

8. Calovi, D.S., Litchinko, A., Lecheval, V., Lopez, U., Escudero, A.P., Chaté, H., Sire,
C., Theraulaz, G.: Disentangling and modeling interactions in fish with burst-and-
coast swimming reveal distinct alignment and attraction behaviors. PLoS Comput.
Biol. 14(1), e1005933 (2018). https://doi.org/10.1371/journal.pcbi.1005933

9. Candadai, M., Setzler, M., Izquierdo, E.J., Froese, T.: Embodied dyadic interaction
increases complexity of neural dynamics: a minimal agent-based simulation model.
Front. Psychol. 10, 540 (2019). https://doi.org/10.3389/fpsyg.2019.00540

10. Chollet, F.: Keras (2015). https://keras.io/
11. Couzin, I.D., Krause, J., James, R., Ruxton, G., Franks, N.R.: Collective memory

and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002). https://
doi.org/10.1006/jtbi.2002.3065

12. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: Socially
Acceptable Trajectories with Generative Adversarial Networks, March 2018.
https://doi.org/10.48550/arXiv.1803.10892

13. Mock, W.B.T.: Pareto optimality. In: Chatterjee, D.K. (ed.) Encyclopedia of
Global Justice, pp. 808–809. Springer, Netherlands, Dordrecht (2011). https://
doi.org/10.1007/978-1-4020-9160-5_341

14. Mönck, H.J., et al.: BioTracker: an open-source computer vision framework for
visual animal tracking, March 2018. https://doi.org/10.48550/arXiv.1803.07985

15. Murakami, H., Niizato, T., Gunji, Y.P.: Emergence of a coherent and cohesive
swarm based on mutual anticipation. Sci. Rep. 7(1), 46447 (2017). https://doi.
org/10.1038/srep46447

16. Olivares, E., Izquierdo, E.J., Beer, R.D.: A Neuromechanical Model of Multiple
Network Rhythmic Pattern Generators for Forward Locomotion in C. elegans.
Frontiers in Computational Neuroscience 15 (2021)

17. Pezzulo, G., Butz, M.V., Castelfranchi, C.: The anticipatory approach: definitions
and taxonomies. In: Pezzulo, G., Butz, M.V., Castelfranchi, C., Falcone, R. (eds.)
The Challenge of Anticipation. LNCS (LNAI), vol. 5225, pp. 23–43. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-87702-8_2

https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1088/1748-3190/ac8e3e
https://doi.org/10.1007/s00265-013-1487-8
https://doi.org/10.3389/frobt.2017.00074
https://doi.org/10.3389/frobt.2017.00074
https://www.britannica.com/topic/Occams-razor
https://doi.org/10.1046/j.1467-2979.2003.00122.x
https://doi.org/10.1371/journal.pcbi.1005933
https://doi.org/10.3389/fpsyg.2019.00540
https://keras.io/
https://doi.org/10.1006/jtbi.2002.3065
https://doi.org/10.1006/jtbi.2002.3065
https://doi.org/10.48550/arXiv.1803.10892
https://doi.org/10.1007/978-1-4020-9160-5_341
https://doi.org/10.1007/978-1-4020-9160-5_341
https://doi.org/10.48550/arXiv.1803.07985
https://doi.org/10.1038/srep46447
https://doi.org/10.1038/srep46447
https://doi.org/10.1007/978-3-540-87702-8_2

Simulating Fish Social Interactions 161

18. Reséndiz-Benhumea, G.M., Sangati, E., Froese, T.: Levels of coupling in dyadic
interaction: an analysis of neural and behavioral complexity. In: 2020 IEEE Sym-
posium Series on Computational Intelligence (SSCI), pp. 2250–2256, December
2020. https://doi.org/10.1109/SSCI47803.2020.9308429

19. Reséndiz-Benhumea, G.M., Sangati, E., Sangati, F., Keshmiri, S., Froese, T.:
Shrunken social brains? a minimal model of the role of social interaction in neural
complexity. Frontiers in Neurorobotics 15 (2021)

20. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM
SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.
37406

21. Sbragaglia, V., Klamser, P.P., Romanczuk, P., Arlinghaus, R.: Evolutionary Impact
of Size-Selective Harvesting on Shoaling Behavior: Individual-Level Mechanisms
and Possible Consequences for Natural and Fishing Mortality. Am. Nat. 199(4),
480–495 (2022). https://doi.org/10.1086/718591

22. Shaikh, D., Rañó, I.: Braitenberg Vehicles as Computational Tools for Research in
Neuroscience. Frontiers in Bioengineering and Biotechnology 8 (2020)

23. Strömbom, D., Antia, A.: Anticipation induces polarized collective motion in
attraction based models. Northeast J. Complex Syst. 3(1), March 2021. https://
doi.org/10.22191/nejcs/vol3/iss1/2

24. Walter, W.G.: A machine that learns. Sci. Am. 185(2), 60–64 (1951)

https://doi.org/10.1109/SSCI47803.2020.9308429
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1086/718591
https://doi.org/10.22191/nejcs/vol3/iss1/2
https://doi.org/10.22191/nejcs/vol3/iss1/2

Heuristics for Evolutionary Optimization
for the Centered Bin Packing Problem

Luke de Jeu and Anil Yaman(B)

Vrije Universiteit Amsterdam, De Boelelaan 1111,
1081 HV Amsterdam, The Netherlands

a.yaman@vu.nl

Abstract. The Bin Packing Problem (BPP) is an optimization problem
where a number of objects are placed within a finite space. This prob-
lem has a wide range of applications, from improving the efficiency of
transportation to reducing waste in manufacturing. In this paper, we are
considering a variant of the BPP where irregular shaped polygons are
required to be placed as close to the center as possible. This variant is
motivated by its application in 3D printing, where central placement of
the objects improves the printing reliability. To find (near) optimum solu-
tions to this problem, we employ Evolutionary Algorithms, and propose
several heuristics. We show how these heuristics interact with each other,
and their most effective configurations in providing the best solutions.

Keywords: Bin Packing Problem · Heuristics · Evolutionary
Algorithms

1 Introduction

The Bin Packing Problem (BPP) is an optimization problem in which a num-
ber of objects are placed within a space to maximize a certain objective func-
tion. The BPP has a wide range of applications in many fields. Some examples
include: reducing material cost in both additive and subtractive manufacturing
(for arranging object placement in 3D printing or cutting sheet material) [17,18],
reducing costs in transportation (for arranging packages in shipping containers)
[14], and warehouse optimization (for optimal placement and storage of goods)
[21].

The dimensionality of the BBP problem, in terms of space and objects, can
differ depending on the nature of the application domain. In this paper, we
consider the field of Fused Filament Fabrication (FFF) 3D printing for additive
manufacturing where three-dimensional irregular shaped objects are placed on
a printing build plate. The objective in this case is to place the objects as close
to the center of the placement area as possible. Due to mechanical limitations of
non-industrial and non-professional FFF 3D printers, the heated build plate is

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-56852-7 11.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 162–177, 2024.
https://doi.org/10.1007/978-3-031-56852-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_11&domain=pdf
http://orcid.org/0000-0003-1379-3778
https://doi.org/10.1007/978-3-031-56852-7_11
https://doi.org/10.1007/978-3-031-56852-7_11

Evolutionary Optimization for the Centered Bin Packing Problem 163

sensitive to convection and thermal expansion. This causes heat dissipation and
warping of the printing build plate. This effect is observed at the edge of the build
plate the most. This is shown to be one of the major causes of printing failure
[23,27]. As the popularity of FFF 3D printing has been increasing in recent
years, there is a need for more convenient and effective methods for more reliable
printing [20]. In this paper, we focus on a possible solution to this problem, where
a variant of the BPP aims to place the objects as close to the center as possible.
Other possible applications of this problem could also be found in areas such as
electronic manufacturing, design of circular circuit boards and urban planning.

Our use case is concerned with the placement of irregular polygons at the
center of a printing build plate. Therefore, we formalize this problem as the
2D Irregular Centered BPP (2DICBBP). An example illustration of results from
two commonly used software, in comparison with the results of our approach, are
shown in Fig. 1. A clear distinction between these results is that, the algorithm in
Fig. 1a can handle only convex shapes, whereas, the algorithm in Fig. 1b can also
handle concave shapes. In Fig. 1c, we show the results of our proposed approach
that can yield placement that appears visually denser than the others.

Fig. 1. Visual comparison of the auto-arrange functionality between two currently
available slicer software, and a solution found by the methods proposed in this research.
Each example is over the same concave shapes.

The BBP is difficult to solve computationally. Finding an optimal arrange-
ment is NP-hard [10]. Since computing the optimal solution is challenging,
heuristic search algorithms, such as Evolutionary Algorithms (EA) [4], become
feasible alternatives for reducing computational time and finding approximate
solutions [26].

Many 2DBPP solving methods only focus on packing rectangles of vary-
ing dimensions [15]. However, some solving methods are designed for irregular
shapes, including concave, convex and non-symmetric polygons of varying num-
ber of vertices [24]. The most common application for the 2DBPP is found in
industrial environments such as production (which requires the efficient cutting
of materials), warehouse management, and transport [8,22]. Due to the nature

164 L. de Jeu and A. Yaman

of these applications, the vast majority of the 2DBPP solving methods attempt
to leave as much unused space as possible on one of the sides of the “bin”, while
packing as densely as possible from the opposite side. For these reasons, the
heuristics such as the “bottom-left” heuristic where the placement of objects
starts from the bottom-left and proceeds to top-right, have been used widely
[5,6,16].

Guo et al. (2022) presents an extensive review of the decades of research and
literature on the 2D Irregular Bin Packing Problem (2DIBPP) [13]. The wide
range of environments, methods, and parameters across the literature demon-
strate the variability within the 2DIBPP, as well as the wide range of applica-
tions. The designed application of the BPP variation is in essence a 3D packing
problem simplified to a 2D environment. Because of this, it shares similarities
with both 2D and 3D related work. The applications of the 2DIBPP generally lay
in removing/cutting material (such as CNC machining or cutting wood, paper,
sheet metal, etc.), with the intended purpose being to minimize waste material
[19]. The applications of the 3DBPP and 3DIBPP tend to arrange objects (such
as filling containers), with the intended purpose being to maximize the transport
efficiency [11,12]. While the methods in this paper present a solution in a 2D
environment, the underlying purpose is similar to that of a 3D BPP, which is
to place items. Additionally, the goal is to place finite number objects within a
space, as close to the center as possible. However, we are only concerned with a
single bin, thus, placement of the objects in multiple bins is beyond the scope of
this paper.

Currently, slicer software for 3D printers attempts to tackle this problem
through auto-arrange features. However, this process is not optimized. UltiMaker
Cura and PrusaSlicer (Fig. 1) are considered to be two of the most popular slicer
software. Cura has millions of users, according to UltiMaker [3]. Both of these
slicers use the same fundamental process for this auto-arrange feature, libnest2d
[1,2]. While relatively simple and low computational cost, this implementation
is non-optimal and inherently flawed when applied to irregular polygons. For
instance, this method is unable to utilize the space within a concave shape, and
will always use a convex bounding box of each shape [19]. During the course
of this research, a new version of PrusaSlicer was released which tackles this
exact problem (version 2.6.1). Through the use of numerous optimizers, the
newly improved auto-arrange feature is much more effective and can utilize con-
cave shapes, but still shows room for improvement. The recency of this feature
demonstrates how improvements on the BPP around a center point are currently
in development, in demand, and being utilized.

The 2DBBP with the object of center placement remains largely unexplored.
One of the variations of the BPP that shares similar characteristics is referred to
as the Circle Packing Problem (CPP). The CPP packs circles within a bin, and
in some cases, this bin is also circular. In these cases, the objective is to minimize
the size of the circular bin, similar to our objective. Evolutionary methods such
as genetic algorithms and differential evolution have shown to be effective for this
problem [9]. Additionally, the load-balanced BPP attempts to pack items in such

Evolutionary Optimization for the Centered Bin Packing Problem 165

a way that the center of mass of all the items in the bin is as close to the center
of the bin as possible, for which a hill-climbing search method is used [25]. This
is one of the few BPP variations for which the item’s relation to the center of the
bin plays a role in the objective. Thus, extending this literature, in this work,
we investigate several heuristics combined with the Evolutionary Algorithms to
find effective solutions for the 2-Dimensional Bin Packing Problem for irregular
shapes that are required to be placed as close to the center as possible. We
focus on four-sided irregular polygons to strike a balance between complexity
and feasibility.

2 Method

The problem we tackle in this paper is a version of the BPP where we aim
to place polygons within a 2D space such that their distances to the center is
minimized. This 2D space will be referred to as the bin. In addition, the polygons
should not overlap. Thus, we can state this problem formally as:

Let n be the number of polygons. Each polygon is represented as Pi for i
in [1, n]. Each polygon Pi has vertices represented as Vij for j in [1, k], where k
is the number of vertices in polygon Pi. Let (xij , yij) represent the coordinates
of the j-th vertex of i-th polygon. Let (Xc, Yc) represent the coordinates of the
center of the bin. The objective function can be formulated as:

Minimize D = max(
√

(xij − Xc)2 + (yij − Yc)2) for all i in [1, n] and all j in
[1, k].

Subject to:

– The polygons do not overlap.
– The polygons are within the bin.

To find a (near-)optimum solution to this problem, we use EAs in combina-
tion with a set of heuristics we proposed. In the context of the EAs, we refer to
a candidate solution as PolyGroup, which encodes an arrangement of the poly-
gons. We can generate new PolyGroups from existing ones using evolutionary
operators that are informed by our proposed heuristics.

To calculate the fitness of a PolyGroup, an important evaluation metric is
the distance from the center to the furthest coordinate of the polygons within
the PolyGroup. This distance can also be described as the radius of the circle
that circumscribes the PolyGroup (see Fig. 3 for an example illustration, where
circumscribed circles of PolyGroups are shown in red). As a fitness value, it
is more meaningful to have an indication of the density of the polygons, as
opposed to an absolute value such as this distance/radius. This can help with
comparison of performance of two different evolutionary processes that involve
different shape initializations. Therefore, to reduce differences in fitness across
the use of different polygons, and to gain more insight on the packing density
instead of absolute distance, another method is used. The fitness is calculated

166 L. de Jeu and A. Yaman

as the ratio between the surface area of the polygons, and the surface area of
the circumscribed circle.

fitness =
surface area of polygons

surface area of circumscribed circle
(1)

Within a run, the surface area of the polygons will remain constant. The
surface area of the circumscribed circle should decrease, resulting in a higher fit-
ness value. Compared to using the absolute value of the distance to the furthest
away coordinate, this ratio method performs the crucial part of improving when a
desired change is made (a change which brings the furthest coordinate(s) closer),
while additionally providing insight into the density and allowing for more accu-
rate comparisons between runs with different shapes. For comparing the results
of different heuristics, while testing over the same shapes, simply using an abso-
lute value would still show the same performance difference. However, this fitness
method has as added value that it could somewhat be compared with tests using
completely different scales or sizes.

The genotype representation of a PolyGroup encodes the four coordinates of
each polygon on 2-dimensions. We also add a rotation parameter to specify the
rotation angle of polygons. We fix the number of polygons to 5 and thus the
representation of a PolyGroup consists of 45 real-valued numbers.

2.1 Baseline EA

Baseline EA provides a bare minimum algorithm for building our heuristics. This
also provides a point of comparison for the success of the proposed heuristics.
The algorithm consists of the following steps that are standard in EAs:

Initialization. An initial population of PolyGroups is generated by loading
in a pre-generated random set of polygons for each PolyGroup. Not only does this
random polygon selection contain the data of the polygon shapes, but also the
positional and orientation data which is used as the initial placement, in order
to make the experiment repeatable. For a different run, a different randomly
generated set of shapes (and starting positions) is initialized, in order to examine
the EA behavior over altered starting conditions.

Evolutionary Operators. The Baseline EA involves only the mutation
operator to keep it as simple as possible. Other operators, such as recombination,
are implemented and discussed in the Heuristics section. Through the mutation
operator, a new PolyGroup is generated by duplicating a random PolyGroup
from the initialization, or from the survivors of the previous generation. This
newly created PolyGroup will then attempt to undergo mutations in the form
of changing the position and orientation of the polygons within this duplicate.
These changes in position and orientation are made randomly within pre-defined
bounds. Only the mutations which do not cause any overlap between the poly-
gons are accepted. A limited number of mutation attempts are made per polygon
(i.e., 10 attempts), in order to prevent exceedingly long runtimes when one or
more polygons have a small chance of mutating to an unoccupied space, as a
result of being surrounded by other polygons. In the instance that none of the

Evolutionary Optimization for the Centered Bin Packing Problem 167

mutations are accepted, the duplicate PolyGroup will have identical polygon
placement and orientation as the PolyGroup it was originally duplicated from.

Selection. We use a (μ+λ) selection strategy where λ number of offspring are
generated from μ number of parents, the new generation is formed by selecting
top μ individuals (ranked based on fitness) from the concatenated set of these
two populations [7].

2.2 Heuristics

We propose four heuristics. Each of them is expected to have a positive effect on
the overall performance. However, the exact effect of the heuristics may change
when applied in combination with one or multiple other heuristics.

Recombination. The Recombination heuristic creates a new PolyGroup
from two randomly selected parents. The resulting child PolyGroup is a mix
between its two parents. Each polygon in the child receives a center coordinate
and a rotation value in between the center and rotational values of the corre-
sponding polygon of the parents. The shape of the corresponding polygon is
then built at the assigned center point with the assigned rotation. This allows
the Recombination heuristic to place the child polygon at a location and orien-
tation depending on the location and orientation of the corresponding polygon
of the parents, while preserving the shapes encoded into the genotypes.

Formally, the Recombination heuristic can be stated as follows: let G be a
PolyGroup, containing an arranged set of polygons. Let n be the number of
polygons in the PolyGroup. Each polygon Pi for i ∈ [1, n] consists of a set of
four tuples and a rotation value. Each tuple contains the x- and y-coordinate of
a vertex of the polygon. These four vertices can be used to calculate a center
coordinate, which combined with the rotation value forms (xi, yi, ti). A new
PolyGroup G′, consisting of polygons P ′

i each with a center coordinate and a
rotation in degrees (x′

i, y
′
i, t

′
i), is generated from two parents G(1) and G(2) as

follows:
x′
i = x

(2)
i + (x(1)

i − x
(2)
i)/2 + r(x(1)

i − x
(2)
i)/2,

y′
i = y

(2)
i + (y(1)

i − y
(2)
i)/2 + r(y(1)

i − y
(2)
i)/2

where r is a random value sampled from a triangular distribution between −1
and 1. For t′i in P ′

i , a similar calculation is used, using the same value for r,
but utilizing additional steps to ensure the polygon rotates the direction that
is shortest (clockwise or counter-clockwise), depending on the shortest rotation
between t

(1)
i and t

(2)
i . After the generation of the center coordinate and the

rotation value for each P ′
i in G′, the shape of the corresponding Pi of either parent

G(1) or G(2) is imposed on the center coordinate, to regenerate the coordinates
of the four vertices of P ′

i .
As the creation of polygons P ′

i does not check if the newly created polygons
are overlapping with any other polygons in G′, additional steps are required to
correct any overlapping polygons, and to ensure none of the polygons in G′ are
overlapping. These additional steps are similar to the random mutation operator,

168 L. de Jeu and A. Yaman

except for a distinct difference. The random mutation would only attempt a
number of times to move and rotate a polygon randomly within the pre-defined
range, the additional steps to separate any overlapping polygons will continue
until no polygons are overlapping, and can move polygons beyond the pre-defined
range. Instead of reverting the polygon back to its original position after a failed
mutation attempts, such as done by the random mutation, these additional steps
continue to move the polygon from its new still overlapping position, after every
failed mutation. Through this method, an overlapping polygon will randomly
“wander” its vicinity until it no longer overlaps with any other polygons.

Mutation Direction. The mutation operator implemented in Baseline EA
moves and rotates each polygon randomly within given parameters. However,
this mutation method can be altered to improve the fitness. The Mutation Direc-
tion heuristic performs a local search on a polygon based on its local fitness, and
accepts solutions only if the local fitness is improved. The local fitness is the
fitness of an individual polygon, which is defined as the maximum distance from
a vertex of the polygon to the center of the bin. Identical to the mutation opera-
tor, the Mutation Direction heuristic has a fixed number of attempts. However,
with the Mutation Direction heuristic, only the mutations which improve the
local fitness of the polygon are accepted.

The local fitness of a polygon is calculated as: each polygon P has vertices
Vi = (xk, yk) for k in [1,m] where m is the number of vertices of each polygon.
Let (Xc, Yc) represent the coordinates of the center of the bin. For all i in [i, n]

fitnesslocal = max(
√

(xk − Xc)
2 + (yk − Yc)

2), for all k ∈ [1,m].

Mutation Order. For most operations, the order of the polygons and Poly-
Groups is changed to prevent any unintentional biasing. However, the Mutation
Order heuristic offers a different approach. The heuristic sorts polygons by their
local fitness (the distance from the center to the furthest coordinate) in ascend-
ing order before mutation. This is thought to enhance performance as central
polygons can move inward first, freeing up space for outer polygons. For instance,
if polygon A is blocked by polygon B from moving closer to the center, polygon
A cannot move inward. But if polygon B had moved inward first, polygon A
could have followed suit. This heuristic aims to improve such situations where a
movable polygon blocks another polygon’s mutation. By mutating polygons in
ascending local fitness order, polygons closer to the center mutate first, poten-
tially creating space for outer polygons to move inward.

Variable Step Size. The translation and rotation amount for each mutation
is random, within bounds. This random mutation strength is then multiplied by
the step size. The step size can be adjusted to strengthen or weaken the max-
imum amount by which a polygon can be mutated. For the Baseline EA, this
step size remains constant throughout all generations. The Variable Step Size
heuristic introduced a step size which changes depending on the current gener-
ation number. The variable step size is determined according to the following

Evolutionary Optimization for the Centered Bin Packing Problem 169

formula:
variable step size =

absolute initial step size√
current generation number + 1

(2)

The result of this variable step size formula is that the step size will decrease
over the course of the generations. The step size will be the largest for the first
generation, and will be most drastically reduced over the first few generations,
after which the reduction in step size will become less drastic.

3 Experimental Setup

Each of the mentioned heuristics can be active or inactive, regardless of the
activation state of the other heuristics. Therefore, to examine the effect of each
heuristic on the fitness of the EA, as well as examining the effect in combination
with other heuristics, a binary decision table can be constructed with 16 configu-
rations for the four heuristics. This can be seen in Table 1. We run 30 independent
evolutionary processes for each configuration for 500 generations with a popula-
tion size of 50. Using our implementation, a single evolutionary process, of 500
generations, over one configuration, resulted in a runtime between 30 and 120 s
depending on the number of heuristics used. Our implementation is on Python
3.10, and ran on an AMD Ryzen 5 3600X processor, without parallelization. The
algorithm could further be optimized to increase the speed. In comparison, other
available software packages (demonstrated in Fig. 1a and 1b) were implemented
using C++ and can provide results in seconds. However, they do not employ an
evolutionary optimization approach to provide better placement.

During the initialization process of each run, all configurations are initialized
with the same set of randomly generated shapes and starting positions. There-
fore, all configurations within a run share the exact same starting parameters.
For each different run, a different set of random shapes and starting positions
is used. All starting conditions are equal within a run, but are different across
runs.

The final fitness value of the 30 runs of a configuration, can be compared to
the 30 final fitness values of another configuration using the Wilcoxon signed-
rank test. This test can be used to compare each configuration with every other
configuration, and examine its statistical significance.

4 Results

4.1 Configuration Performance Results

After running each configuration, fitness progression plots have been created for
each individual configuration. The fitness plot of each individual configuration,
along with their average final fitness (AFF - average of final fitness value at
the end of the evolutionary processes), and the standard deviation range of the
30 runs, can be found in Supplementary Material. Additionally, the complete

170 L. de Jeu and A. Yaman

Table 1. The Configurations Setup table shows the properties of each configuration.
The name of each configuration is shortened to config and a number. When a heuristic
is stated as True, it is applied to that configuration. When a heuristic is set to False,
it is not.

Configurations Setup

Configura-
tions

Recombi-
nation

Mutation
Direction

Mutation
Order

Variable
Step Size

config 1 False False False False

config 2 False False False True

config 3 False False True False

config 4 False False True True

config 5 False True False False

config 6 False True False True

config 7 False True True False

config 8 False True True True

config 9 True False False False

config 10 True False False True

config 11 True False True False

config 12 True False True True

config 13 True True False False

config 14 True True False True

config 15 True True True False

config 16 True True True True

evolutionary process of a single run over all configurations can be seen in this
video: https://rb.gy/7i9diu.

The numerical results can be found in Table 2, sorted by (AFF) in descending
order. The results show emerging groups of four configurations, which each have
similar average final fitness values, and share heuristic properties. Configurations
10, 12, 2, and 4 form Group A, and have the highest AFF. All four configurations
of Group A have Mutation Direction set to False, and Variable Step Size set to
True. Configurations 14, 16, 15 and 13 form Group B. All configurations in Group
B have Recombination and Mutation Direction set to True. Configurations 5, 6,
7 and 8 form Group C. All configurations in Group C have Recombination set
to False and Mutation Direction set to True. Finally, configurations 11, 1, 9 and
3 form Group D. All configurations in Group D have Mutation Direction and
Variable Step Size set to False.

Figure 2 shows the average fitness trends during the evolutionary pro-
cesses. It is clear that each configuration within a group shows similar behav-
ior/progression as the other configurations in its group. Additionally, each group
shows different behavior/progression compared to the other groups. Group A
and D show similar behavior, as they both show relatively slow progression over

https://drive.google.com/file/d/14Gr01ZVGyLyoxbzBh3SmiHrZOpbroBCJ/view?usp=sharing

Evolutionary Optimization for the Centered Bin Packing Problem 171

Table 2. The numerical results of the runs from Fig. 2, sorted by AFF in descending
order. The column labeled as “Statistical Test” shows the statistical significance of
the results relative to the first row (“=” and “+” representing statistical similarity or
difference respectively) based on the Wilcoxon signed-rank test, and a p-value of 0,05.
The groups are defined based on the ranking on the AFF of the configurations.

Configurations Results by AFF

HeuristicsConfigura-
tions Recom-

bination
Muta-
tion
Direc-
tion

Muta-
tion
Order

Variable
Step
Size

AFF Std
Range

Statis-
tical
Test

Group

config 10 True False False True 0,633 0,108

config 12 True False True True 0,624 0,084 =

config 2 False False False True 0,611 0,1 =

config 4 False False True True 0,609 0,077 +

A

config 14 True True False True 0,562 0,121 +

config 16 True True True True 0,546 0,117 +

config 15 True True True False 0,529 0,144 +

config 13 True True False False 0,518 0,122 +

B

config 5 False True False False 0,483 0,123 +

config 6 False True False True 0,481 0,135 +

config 7 False True True False 0,48 0,117 +

config 8 False True True True 0,476 0,128 +

C

config 11 True False True False 0,453 0,089 +

config 1 False False False False 0,441 0,076 +

config 9 True False False False 0,439 0,074 +

config 3 False False True False 0,427 0,065 +

D

the evaluations, but continue to increase throughout all 500 generations. The
main performance difference between Group A and D is that Group A has a
much stronger fitness increase in the first few generations. The only difference
in heuristics between these two groups, is that Group A has Variable Step Size
set to True, while Group D has Variable Step Size set to False. Both overlap in
sharing Mutation Direction to be set as False. Group B and C also show compa-
rable differences in their behavior. Both show a very strong increase in fitness in
the first few generations. The configurations in these groups increase their per-
formance to such an extent that their fitness temporarily surpasses the fitness of
the configurations in Group A (which will in later generations overtake Group
B and C in fitness). The only difference in heuristics between Group B and C is
that Group B has Recombination set to True, while Group C has Recombination
set to False. Both overlap in sharing Mutation Direction as True.

To have a visual understanding of the difference in performance between each
group, the polygon positioning of the first and last generation can be observed
for a configuration of each group in Fig. 3. The example configurations are config

172 L. de Jeu and A. Yaman

Fig. 2. The average fitness of each configuration, using 30 runs per configuration.
Each run lasted 500 generations (25000 evaluations in total for population size of 50).
Using evaluations on the x-axis allows for more accurate plot comparison when other
parent/children sizes are used.

12 for Group A, config 16 for Group B, config 6 for Group C and config 1 for
Group D. These configurations are the second best in each group, to represent the
average performance of the group. The visualizations of the polygon positioning
of all configurations, in addition to the group examples of two other runs, can
be found in Supplementary Material.

The Std range of each configuration, as seen in Table 2, gives an indication as
to the consistency between runs. This shows how sensitive the configurations are
to changes in the shapes/initial positions, and how much a configuration relies on
randomness and its vulnerability towards local maxima. The Std range between
the configurations within each group tends to be similar. The average Std range
for groups A, B, C and D are 0.092, 0.126, 0.126 and 0.076 respectively.

4.2 Individual Heuristic Effects

While the results in Fig. 2 and Table 2 show which combinations of heuristics
result in the highest fitness value, the effect of the individual heuristics must also
be examined. For example, when examining the effect of Recombination, one of
the pairs to examine is the pair of config 1 and config 9. As seen in Table 1, these
configurations share the same heuristics, but config 9 is with the Recombination
heuristics whilst config 1 is without. Pairs such as these can be examined to gain
better insight into what the effect is of each individual heuristic on different

Evolutionary Optimization for the Centered Bin Packing Problem 173

Fig. 3. The polygon positioning of the first and last generation of one configuration
per group. Each of the visualizations is over the same run (run 1), therefore having the
same shapes and starting position.

heuristic configurations. These pairs, and the effect of each individual heuristic,
can be seen in Table 3.

Table 3a examines the effect of the Recombination heuristic. For each use
of the Recombination heuristic, it shows a positive or insignificant effect. This
indicates that the Recombination heuristic as implemented in this research did
not have a measurable negative effect, and only had a positive or insignificant
effect. Only one of the configuration pairs between 1–4 has a significant positive
effect, while all configuration pairs between 5–8 have a significant positive effect.
This would seem to indicate that the effect of the Recombination heuristic is
influenced by the presence of the Mutation Direction heuristic. Table 3b examines
the effect of the Mutation Direction heuristic. The effect of this heuristic is
significant for each configuration pair, indicating it has a strong effect on the
performance, regardless of the other heuristics. However, whether the Mutation
Direction heuristic has a significant positive or negative effect seems to be reliant
on the presence of other heuristics. For configuration pairs 1, 3, 5 and 7, the
heuristic has a significant positive effect, while for pairs 2, 4, 6, and 8, the
heuristic has a significant negative effect. This clearly shows that the Mutation
Direction heuristic as implemented in this research is heavily reliant on the
Variable Step Size heuristic. When the Variable Step Size heuristic is False, then
the presence of the Mutation Direction heuristic shows a significant positive effect
on the final fitness. However, when the Variable Step Size heuristic is True, then
the presence of the Mutation Direction heuristic shows a significant negative
effect on the final fitness. Table 3c examines the effect of the Mutation Order
heuristic. The Mutation Order Heuristic has no significant effect for configuration
pairs 1–4, while showing more significant effect in configurations 5–8. The only
two configuration pairs with a significant positive effect, pair 5 and 7, seem to
indicate that the Mutation Order heuristic only has a somewhat significant effect
when there is Recombination and no Variable Step Size present.

Finally, Table 3d examines the effect of the Variable Step Size heuristic. The
results clearly demonstrate that the Variable Step Size heuristic only has a pos-
itive effect on the final fitness when the Mutation Direction heuristic is False. If

174 L. de Jeu and A. Yaman

Table 3. Each sub-table shows the numbers of configuration pairs which are identical,
besides being with or without a single focused heuristic. The presence of this focused
heuristic either has a positive (P), negative (N), or statistically insignificant (I) effect on
the AFF. The non-focused heuristics are kept constant between the two configurations
of each pair. The heuristics are shortened to a letter for compactness. Recombination
(R), Mutation Direction (D), Mutation Order (O), Variable Step Size (V). The use of
these heuristics is denoted as either True (T) or False (F).

Pair
nr.

Without With D O V Effect
on
AFF

1 config 1 config 9 F F F I

2 config 2 config 10 F F T I

3 config 3 config 11 F T F P

4 config 4 config 12 F T T I

5 config 5 config 13 T F F P

6 config 6 config 14 T F T P

7 config 7 config 15 T T F P

8 config 8 config 16 T T T P

(a) Focused heuristic: Recombination

Pair
nr.

Without With R O V Effect
on
AFF

1 config 1 config 5 F F F P

2 config 2 config 6 F F T N

3 config 3 config 7 F T F P

4 config 4 config 8 F T T N

5 config 9 config 13 T F F P

6 config 10 config 14 T F T N

7 config 11 config 15 T T F P

8 config 12 config 16 T T T N

(b) Focused heuristic: Mutation Direction

Pair
nr.

Without With R D V Effect
on
AFF

1 config 1 config 3 F F F I

2 config 2 config 4 F F T I

3 config 5 config 7 F T F I

4 config 6 config 8 F T T I

5 config 9 config 11 T F F P

6 config 10 config 12 T F T I

7 config 13 config 15 T T F P

8 config 14 config 16 T T T N

(c) Focused heuristic: Mutation Order

Pair
nr.

Without With R D O Effect
on
AFF

1 config 1 config 2 F F F P

2 config 3 config 4 F F T P

3 config 5 config 6 F T F I

4 config 7 config 8 F T T I

5 config 9 config 10 T F F P

6 config 11 config 12 T F T P

7 config 13 config 14 T T F I

8 config 15 config 16 T T T I

(d) Focused heuristic: Variable Step Size

the Mutation Direction heuristic is True, then the Variable Step Size heuristic
has no significant effect.

5 Discussion

In conclusion, the 2DICBPP, as implemented in this paper, demonstrates con-
sistent positive and negative changes when certain heuristic combinations are
applied. However, these effects are not always the same, and can vary greatly
depending on the presence of other heuristics. Each heuristic impacts the perfor-
mance and behavior of the EA differently. Additionally, the effect of the heuristics
themselves are impacted by the behavior of the EA.

Evolutionary Optimization for the Centered Bin Packing Problem 175

The Recombination heuristic has only shown positive or insignificant effects.
Its positive effects are most notable when the EA without the Recombination
heuristic is prone to getting stuck at a local optimum. This indicates that the
main positive effect of the Recombination heuristic comes from introducing ran-
domness and new variations. The effect of the Mutation Direction and Variable
Step Size heuristics showed high dependence on the presence of one another. The
presence of the Mutation Direction will make the effect of the Variable Step Size
insignificant, which otherwise would be positive. The presence of the Variable
Step Size will make the Mutation Direction have a negative effect, which would
otherwise have a positive effect. The Mutation Order heuristic generally had a
very insignificant and mild effect, but seems more influential in EAs with more
variety among the population.

These findings demonstrate how the effect of individual heuristics on the per-
formance of the EA can be highly dependent on the presence of other heuristics,
within the confines of the 2DICBPP.

6 Conclusion

The objective of this paper is to formalize a variant of a 2-dimensional bin
packing problem that can be applied to 3D printing for object placement to
improve efficiency and reliability. We propose several heuristics within the EAs
to improve the placement of polygon shaped objects as close to the center as
possible, in order to reduce the effect of mechanical limitations.

We demonstrate the effects of the proposed heuristics, when they are applied
individually or in combination. Each heuristic contains some variables or design
decisions, which may or may not form an accurate representation of similar
heuristics. Additional research that can examine varieties of other types of heuris-
tics may lead to new insights or allow for heuristic combinations that can have a
positive impact. Although our visual inspection of the results of the existing soft-
ware packages indicated that they could be improved, quantitative assessment
of their performance and comparing to our results can provide further insights.

The main comparison between the configurations was using the fitness val-
ues after 500 generations. While it is likely that many applications which require
some solution for the 2DICBPP have the time to run an extensive EA with hun-
dreds of generations, some applications may be more time sensitive and require
a much shorter run. Researching the result of the heuristics on multiple gener-
ation intervals may give additional insights into effective heuristics for different
use cases.

Finally, an optimization problem such as the 2DICBPP may benefit from
stepping away from traditional EA implementations and applying more versatile
methods. For example, the Mutation Direction heuristic may be used mutualis-
tically with the Variable Step Size heuristic, or a type of shuffling/randomization
heuristic, when being alternated at crucial moments. EAs which apply different
heuristics throughout the same run, depending on generation intervals or if cer-
tain triggers are met, may result in more efficient solving methods, but will need
further research.

176 L. de Jeu and A. Yaman

References

1. GitHub - tamasmeszaros/libnest2d: 2D irregular bin packaging and nesting
library written in modern C++ – github.com. https://github.com/tamasmeszaros/
libnest2d. Accessed 13 Oct 2023

2. GitHub - Ultimaker/pynest2d: Python bindings for libnest2d – github.com.
https://github.com/Ultimaker/pynest2d. Accessed 12 Nov 2023

3. UltiMaker Cura – ultimaker.com. https://ultimaker.com/software/ultimaker-
cura/. Accessed 30 Oct 2023

4. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evol. Comput.1(1), 1–23 (1993). https://doi.org/10.1162/evco.1993.
1.1.1. https://doi.org/10.1162/evco.1993.1.1.1

5. Berkey, J.O., Wang, P.Y.: Two-dimensional finite bin-packing algorithms. J. Oper-
ational Res. Soc. 38(5), 423–429 (1987). https://doi.org/10.1057/jors.1987.70

6. Burke, E., Hellier, R., Kendall, G., Whitwell, G.: A new bottom-left-fill heuristic
algorithm for the two-dimensional irregular packing problem. Oper. Res. 54(3),
587–601 (2006). https://doi.org/10.1287/opre.1060.0293

7. Costa, L., Oliveira, P.: An evolution strategy for multiobjective optimization. In:
Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No.02TH8600). IEEE (2002). https://doi.org/10.1109/cec.2002.1006216

8. Côté, J.F., Haouari, M., Iori, M.: Combinatorial benders decomposition for the two-
dimensional bin packing problem. INFORMS J. Comput.33(3), 963–978 (2021).
https://doi.org/10.1287/ijoc.2020.1014

9. Flores, J.J., Mart́ınez, J., Calderón, F.: Evolutionary computation solutions to the
circle packing problem. Soft. Comput. 20, 1521–1535 (2016)

10. Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing problems:
a survey. Analysis and Design of Algorithms in Combinatorial Optimization, pp.
147–172 (1981). https://doi.org/10.1007/978-3-7091-2748-3 8

11. Gonçalves, J.F., Resende, M.G.: A biased random key genetic algorithm for 2d and
3d bin packing problems. Int. J. Prod. Econ. 145(2), 500–510 (2013). https://doi.
org/10.1016/j.ijpe.2013.04.019

12. Griffiths, V., Scanlan, J.P., Eres, M.H., Martinez-Sykora, A., Chinchapatnam, P.:
Cost-driven build orientation and bin packing of parts in selective laser melting
(SLM). Eur. J. Oper. Res. 273(1), 334–352 (2019). https://doi.org/10.1016/j.ejor.
2018.07.053

13. Guo, B., Zhang, Y., Hu, J., Li, J., Wu, F., Peng, Q., Zhang, Q.: Two-dimensional
irregular packing problems: a review. Front. Mech. Eng. 8, August 2022. https://
doi.org/10.3389/fmech.2022.966691

14. Kang, K., Moon, I., Wang, H.: A hybrid genetic algorithm with a new packing strat-
egy for the three-dimensional bin packing problem. Appl. Math. Comput.219(3),
1287–1299 (2012). https://doi.org/10.1016/j.amc.2012.07.036

15. Kao, C.Y., Horng, J.T.: On solving rectangle bin packing problems using genetic
algorithms. In: Proceedings of IEEE International Conference on Systems, Man
and Cybernetics (1994). https://doi.org/10.1109/icsmc.1994.400073

16. Laabadi, S., Naimi, M., Amri, H.E., Achchab, B.: A binary crow search algorithm
for solving two-dimensional bin packing problem with fixed orientation. Procedia
Comput. Sci. 167, 809–818 (2020). https://doi.org/10.1016/j.procs.2020.03.420

17. Lamas-Fernandez, C., Bennell, J.A., Martinez-Sykora, A.: Voxel-based solution
approaches to the three-dimensional irregular packing problem. Oper. Res. 71(4),
1298–1317 (2023). https://doi.org/10.1287/opre.2022.2260

https://github.com/tamasmeszaros/libnest2d
https://github.com/tamasmeszaros/libnest2d
https://github.com/Ultimaker/pynest2d
https://ultimaker.com/software/ultimaker-cura/
https://ultimaker.com/software/ultimaker-cura/
https://doi.org/10.1162/evco.1993.1.1.1
https://doi.org/10.1162/evco.1993.1.1.1
https://doi.org/10.1162/evco.1993.1.1.1
https://doi.org/10.1057/jors.1987.70
https://doi.org/10.1287/opre.1060.0293
https://doi.org/10.1109/cec.2002.1006216
https://doi.org/10.1287/ijoc.2020.1014
https://doi.org/10.1007/978-3-7091-2748-3_8
https://doi.org/10.1016/j.ijpe.2013.04.019
https://doi.org/10.1016/j.ijpe.2013.04.019
https://doi.org/10.1016/j.ejor.2018.07.053
https://doi.org/10.1016/j.ejor.2018.07.053
https://doi.org/10.3389/fmech.2022.966691
https://doi.org/10.3389/fmech.2022.966691
https://doi.org/10.1016/j.amc.2012.07.036
https://doi.org/10.1109/icsmc.1994.400073
https://doi.org/10.1016/j.procs.2020.03.420
https://doi.org/10.1287/opre.2022.2260

Evolutionary Optimization for the Centered Bin Packing Problem 177

18. Lodi, A., Martello, S., Vigo, D.: Approximation algorithms for the oriented two-
dimensional bin packing problem. Eur. J. Oper. Res. 112(1), 158–166 (1999).
https://doi.org/10.1016/s0377-2217(97)00388-3 ¡error l=”308” c=”Invalid ¡error
l=”306” c=”Invalid ¡error l=”307” c=”Invalid
command: paragraph not started.” /¿ command: paragraph not started.” /¿
command: paragraph not started.” /¿ ¡error l=”308” c=”Invalid ¡error l=”306”
c=”Invalid
command: paragraph not started.” /¿ command: paragraph not started.” /¿

19. Lopez, E., Ochoa, G., Terashima-Maŕın, H., Burke, E.: An effective heuristic for
the two-dimensional irregular bin packing problem. Ann. Oper. Res. 206, 241–264
(2013). https://doi.org/10.1007/s10479-013-1341-4

20. Mpofu, T.P., Mawere, C., Mukosera, M.: The impact and application of 3d printing
technology. Int. J. Sci. Res., June 2014

21. Munien, C., Ezugwu, A.E.: Metaheuristic algorithms for one-dimensional bin-
packing problems: a survey of recent advances and applications. J. Intell. Syst.
30(1), 636–663 (2021). https://doi.org/10.1515/jisys-2020-0117

22. Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting prob-
lem. In: Evolutionary Computation in Combinatorial Optimization, pp. 165–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24652-7 17

23. Tamir, T.S., Xiong, G., Fang, Q., Dong, X., Shen, Z., Wang, F.Y.: A feedback-
based print quality improving strategy for FDM 3d printing: an optimal design
approach. The International J. Adv. Manuf. Technol. 120(3-4), 2777–2791 (2022).
https://doi.org/10.1007/s00170-021-08332-4

24. Terashima-Maŕın, H., Ross, P., Faŕıas-Zárate, C., López-Camacho, E., Valenzuela-
Rendón, M.: Generalized hyper-heuristics for solving 2d regular and irregular pack-
ing problems. Ann. Oper. Res. 179, 369–392 (2010)

25. Trivella, A., Pisinger, D.: The load-balanced multi-dimensional bin-packing prob-
lem. Comput. Oper. Res. 74, 152–164 (2016). https://doi.org/10.1016/j.cor.2016.
04.020

26. Volna, E.: Genetic algorithms for two dimensional bin packing problem. In: AIP
Conference Proceedings, vol. 1648, p. 550002 (2015). https://pubs.aip.org/aip/
acp/article/1648/1/550002/802815/Genetic-algorithms-for-two-dimensional-bin-
packing

27. Zhang, J., Wang, X.Z., Yu, W.W., Deng, Y.H.: Numerical investigation of the
influence of process conditions on the temperature variation in fused deposition
modeling. Mater. Des. 130, 59–68 (2017). https://doi.org/10.1016/j.matdes.2017.
05.040

https://doi.org/10.1016/s0377-2217(97)00388-3
https://doi.org/10.1007/s10479-013-1341-4
https://doi.org/10.1515/jisys-2020-0117
https://doi.org/10.1007/978-3-540-24652-7_17
https://doi.org/10.1007/s00170-021-08332-4
https://doi.org/10.1016/j.cor.2016.04.020
https://doi.org/10.1016/j.cor.2016.04.020
https://pubs.aip.org/aip/acp/article/1648/1/550002/802815/Genetic-algorithms-for-two-dimensional-bin-packing
https://pubs.aip.org/aip/acp/article/1648/1/550002/802815/Genetic-algorithms-for-two-dimensional-bin-packing
https://pubs.aip.org/aip/acp/article/1648/1/550002/802815/Genetic-algorithms-for-two-dimensional-bin-packing
https://doi.org/10.1016/j.matdes.2017.05.040
https://doi.org/10.1016/j.matdes.2017.05.040

A Hierarchical Approach to Evolving
Behaviour-Trees for Swarm Control

Kirsty Montague(B), Emma Hart , and Ben Paechter

Edinburgh Napier University, Edinburgh, Scotland
{k.montague,e.hart,b.paechter}@napier.ac.uk

Abstract. Behaviour trees (BTs) are commonly used as controllers in
robotic swarms due their modular composition and to the fact that they
can be easily interpreted by humans. From an algorithmic perspective,
an additional advantage is that extra modules can easily be introduced
and incorporated into new trees. Genetic Programming (GP) has already
been shown to be capable of evolving BTs to achieve a variety of sub-
tasks (primitives) of a higher-level goal. In this work we show that a hier-
archical controller can be evolved that first uses GP to evolve a repertoire
of primitives expressed as BTs, and then to evolve a high-level BT con-
troller that leverages the evolved repertoire for a foraging task. We show
that the hierarchical approach that uses BTs at two levels outperforms
a baseline in which the BTs are evolved using only low-level nodes. In
addition, we propose a method to improve the quality of the primitive
repertoire, which in turn results in improved high-level BTs.

Keywords: Swarm-robotics · Quality-Diversity ·
Genetic-Programming

1 Introduction

Collective intelligence arises in a swarm via the interaction of multiple agents
that act individually according to their current perception of the environment.
Many approaches to designing a control mechanism that results in a desired
behaviour at the swarm level exist in the literature. A common means of con-
trol is to use a hierarchical controller in which a set of low-level control modules
referred to as primitives are combined into a complex controller, referred to as an
arbitrator [6,11,14,21]. The low-level modules (primitives) can either be hand-
designed [11] or auto-designed, e.g. using evolution to evolve a neural-network
controller [6,14] or a behaviour-tree (BT) [24]. Quality-diversity approaches such
as MAP-Elites and Novelty search are increasingly being used to generate reper-
toires of primitives: Montague et. al. [24] use genetic programming combined
with MAP-Elites to generate BT primitives for a foraging task, while in [8,15]
a repertoire of neural controllers is generated using novelty-search and neuro-
evolution. Arbitrators can also take many different forms: the AutoMoDe family
of controllers mainly uses probabilistic finite-state machines (PFSMs) [15], while
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 178–193, 2024.
https://doi.org/10.1007/978-3-031-56852-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_12&domain=pdf
http://orcid.org/0000-0002-5405-4413
http://orcid.org/0000-0002-4841-0805
https://doi.org/10.1007/978-3-031-56852-7_12

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 179

BTs are used in [17–19,21]. Neural networks can also be evolved as arbitrators,
e.g. [13].

It is clear from the above that in developing a hierarchical controller, there
are many choices in terms of the representation of both primitives and arbitra-
tors. We suggest that BTs are an obvious choice for describing both primitives
and arbitrators. A BT is itself a hierarchical model which consists of actions,
conditions, and operators connected by directed edges [4]. They are modular in
the sense that the set of actions available to the tree can be easily modified, any
part of the tree can be extracted and reused, and the modules themselves can be
generated by multiple means. In addition, although neural controllers are more
common, they are not well-suited to crossing the reality-gap (i.e. obtaining con-
sistent performance between a simulated experiment and a physical experiment)
due to the fine-tuned precision obtained in simulation. Conversely, Francesca et.
al. [11] propose that increasing bias by constraining the evolutionary search to
pre-defined behaviour modules reduces variance and therefore sensitivity to the
reality gap. Furthermore, a neural network can also be difficult to analyse or
modify whereas BTs are human-readable and therefore go some way towards
being explainable [16].

In this paper, we build on an existing line of work in hierarchical controller
development by using evolutionary methods to develop a hierarchical control sys-
tem for a swarm which has an interpretable controller. Specifically, we use two
evolutionary methods to learn a hierarchical controller whose primitives and
arbitrator are both represented as BTs: to the best of our knowledge, there is no
existing hierarchical controller of this form. We leverage a set of primitives which
are evolved to fulfil several manually defined objectives for this purpose, using
(1) a multi-task version of GP (MTGP) and (2) MAP-Elites, both described
by [24]. We first extend the work of [24] in improving the quality of the prim-
itive set learned by MTGP by introducing the notion of compatible objectives
(see Sect. 3.2). We then use GP to evolve a BT arbitrator for a foraging task,
comparing the use of the different primitives’ repertoires evolved in the previous
step as input. We find that the arbitrator using primitives as nodes significantly
outperforms a learned controller that uses low-level behaviours directly. Sec-
ondly, our results demonstrate that using a repertoire that contains multiple,
diverse versions of each primitive leads to higher performing arbitrators than
using a repertoire containing only a single high-performing primitive for each of
the desired sub-behaviours.

2 Background

Hierarchical forms of control in which a desired task is decomposed into a set of
simpler sub-tasks are common in many areas of robotics. Typically, an arbitrator
is designed that selects primitives that execute individual behaviours, where
the arbitrator can be informed by inputs from the environment or the robot’s
perceptions.

180 K. Montague et al.

A long line of work in developing hierarchical controllers was spawned with
AutoMoDe [11] and its sequence of successors [3,10,19–22]. This family of meth-
ods almost all generate probabilistic finite-state machine (PFSM) arbitrators,
optimised using iterated F-race [23], with some exceptions e.g. IcePop [20] which
uses Simulated Annealing as the optimiser.

In another example Cully et. al. [6] evolve a large set of walking gaits using
a quality-diversity algorithm (MAP-Elites) for a legged robot, and an arbitrator
(using Bayesian optimisation) selects the most appropriate primitive given the
state of the robot and environment. Duarte et. al. [7] propose EvoRBC which
also uses a QD algorithm (Novelty-Search) to first evolve a repertoire of low-
level locomotion patterns (represented as vectors of parameters supplied to the
robot’s actuation system), and then to evolve a neural-network which acts as
an arbitrator. EvoRBC-II extended the EvoRBC approach to include the use
of closed-loop primitives. In the previously mentioned work, the goal of each
primitive is hand-designed: that is, the decomposition of the desired high-level
behaviour into primitives is performed by a human with knowledge of the desired
task, e.g. for a foraging task, specifying primitives such as ‘go-to-food’ or ’go-
to-nest’. In [15], a new approach is proposed which is mission agnostic, i.e. does
not rely on the definition of task specific primitives. Their framework ‘Nata’
automatically generates probabilistic finite-state machines (arbitrators) in which
states are selected from a repertoire of neural networks, and transition conditions
are selected from a set of rules based on the sensory capabilities of the robotic
platform considered [15]. A QD method is again used to generate a repertoire,
after which Iterated F-Race [23] is used to assemble them into PFSMs.

Many of the methods just mentioned use neural network controllers either
to create the repertoire of primitives or as the arbitrator. However, some con-
cerns have been raised that such finely tuned precision is not suited to crossing
the reality gap [11] while an additional concern is that a neural-network is a
black-box, i.e. it is difficult to analyse or modify. PFSMs go someway towards
addressing this criticism but require a compromise between reactivity and mod-
ularity: they cannot easily be broken down into their constituent parts because
of dependencies between components and they do not scale well as the num-
ber of states grows [5]. On the other hand, Behaviour Trees (BTs) have an
inherent capacity to reproduce the same functionality as PFSMs [4], but they
maintain independence between components which removes these trade-offs and
constraints. As noted by [16], they are also human-readable and therefore can
be useful in explaining behaviours. Montague et. al. [24] proposed a method of
evolving BT primitives using GP, exploring a multi-task GP method as well as
MAP-Elites, but did not extend this to evolving an arbitrator. MAPLE [18] and
Cedrata [19], both from the AutoMoDe family, use iterated F-Race to evolve
BT arbitrators but not primitives. In Kuckling et. al. [21], two new variants of
Cedrata are proposed, Cedrata-GP and Cedrata-GE which are based on genetic
programming and grammatical evolution, respectively. The performance of the
evolved BTs is compared against the performance of solutions created by a
human designer, showing that Cedrata finds solutions that are also reliably found

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 181

by human designers. However, the automatic design methods fail to discover the
same communication strategies as the human designers.

In this paper we propose an approach in which for the first time both the
primitives and arbitrator are represented as BTs, leading to increased trans-
parency in interpreting them. We first extend the work described in [24] that
uses GP and QD methods to evolve a repertoire of primitives to improve the
quality of the repertoire. Then we evolve a BT arbitrator that leverages this
repertoire using GP, evaluating it on a foraging task that is common in swarm
robotics.

3 Methodology

The goal of this work is to evolve a hierarchical controller for a foraging task
which is composed of BTs at both the primitive and arbitrator level, evolved
by GP in both cases. We build directly on previous work by Montague et. al.
[24] which demonstrated that GP could be used to generate BT primitives for a
foraging task but stopped short of generating the high-level arbitrator. We make
the following contributions:

– Evolve an extended set of primitives to enlarge the repertoire available to
the arbitrator using (1) MAP-Elites in conjunction with GP (a Quality
Diversity algorithm denoted QD) and (2) a multi-task GP method (denoted
MTGP1) that simultaneously evolves for multiple task fitnesses using an
implicit diversity mechanism. Specifically, we extend the set of primitives from
increase-neighbourhood-density, go-to-nest and go-to-food to include reduce-
neighbourhood-density, go-away-from-nest and go-away-from-food.

– Propose an approach to improve the quality of the repertoires generated by
the multi-task method MTGP that only considers compatible objectives in its
task set, i.e. does not include for example go-to-food and go-away-from-food
which cannot be satisfied by the same controller.

– Use GP to evolve a high-level BT controller for a foraging task leveraging the
primitive repertoires as input, comparing repertoires created by the different
methods outlined above.

3.1 Setup

We consider a foraging task in which the objective is for each robot in the swarm
to visit the food region and then the nest region as many times as possible over
the course of each simulated trial. A more detailed description can be found in
Sect. 4.2.

As per [24], a swarm is composed of nine footbot robots (Fig. 1, [1]) deployed
in the arena shown in Fig. 2. Controllers are evaluated using the ARGoS simula-
tor [25]. We use the same set up as described in [24], where the robots navigate
1 Note that the authors in [24] referred to this method as e.g. GPO1,O2,O3 however we

believe it is more correctly described as a multi-task algorithm, e.g. [26].

182 K. Montague et al.

by estimating the distance and direction of points of interest using information
from their neighbours, while a blackboard provides an interface between the BT
controllers and the footbots’ sensor data. The reader is referred to the publica-
tion of [24] for full details.

In each set of experiments (to evolve primitives or arbitrators) each controller
is evaluated over ten trials with randomised starting positions divided between
two predefined arena configurations. The only difference in the way that arbitra-
tors are evaluated compared with the primitives is that the length of each trial
is increased from 20 s to 100 s.

Fig. 1. A screenshot of a footbot robot
in the arena taken in ARGoS.

Fig. 2. The arena layout, with nine
robots initialised in random starting
positions.

In all of our experiments we evolve BT controllers with GP implemented using
DEAP [9]. For the quality-diversity approach we combine GP with MAP-Elites
using QDpy2. We use the same evolutionary parameters and BT implementation
as described in [24], except that we add a new condition - ifGotFood - which
indicates whether the robot has visited the food region since its last visit to the
nest region. In doing so, we introduce a new internal state. Tables 1 and 2 list
the nodes for evolving primitives for ease of reference. The reader is referred to
[24] for detailed descriptions of the algorithms and GP implementation.

Each algorithm is run with ten different random seeds for each objective
(or combination of objectives) for 1000 generations. The GP population size
and the MAP-Elites batch size are both set to 25, while MTGP is assigned a
population of 75 to reflect that it generates controllers for three objectives at
once (therefore does not have to be run 3 times as with the other methods).
All parameter settings are taken from [24]. Performance for each primitive is
defined according to the median over 10 runs of the metrics described in [24] for
the three primitive behaviours defined in [24] and for the three new primitive
behaviours as defined in Sect. 3.2 which we introduce in this paper. The fitness
of a BT arbitrator is defined in Sect. 4.2.
2 https://pypi.org/project/qdpy/.

https://pypi.org/project/qdpy/

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 183

3.2 Evolving New Primitives

As noted above, we first use Map-Elites (denoted QD from herein) and MTGP to
evolve three new primitives which provide the opposite behaviour to the original
primitives, increase density, go to nest and go to food. The motivation behind
this is to increase the number of options available to the arbitrator which in
turn might find better behaviours. We opted for ‘obvious’ objectives at this
stage, but there is clearly room for considering either further hand-crafted ones
or auto-generating them in future work. These primitives are described in detail
below:

– Decrease neighbourhood density maximises the difference between the
density of neighbouring robots at the beginning and end of each trial, which
we calculate by subtracting the final density from the initial density.

– Move away from the nest region maximises the difference in distance
estimated by each robot at the start and end of each trial based on the short-
est route by hops via neighbouring robots. The difference is calculated by
subtracting the final distance from the initial distance.

– Move away from the food region maximises the difference in the robots’
absolute distance to the food region at the beginning and end of each trial,
calculated by subtracting the initial distance from the final distance.

These primitives are evolved using the same nodes as in [24], as shown in
Tables 1 and 2.

Table 1. Condition Nodes

If on food Returns success if the robot is within the food region

If food to left Returns success if the shortest route to the food region is to the robot’s
left

If food to right Returns success if the the shortest route to the food region is to the
robot’s right

If in nest Returns success if the robot is within the nest region

If nest to left Returns success if the shortest route to the nest region is to the robot’s
left

If nest to right Returns success if the shortest route to the nest region is to the robot’s
right

If robot to left Returns success if the nearest robot is to this robot’s left

If robot to right Returns success if the nearest robot is to this robot’s right

The choice of primitives to be evolved can cause issues for MTGP: at each
iteration, this algorithm randomly selects one of the objective functions and
assigns a fitness based on the chosen function. This encourages generalisation and

184 K. Montague et al.

Table 2. Action Nodes

Stop No movement for one tick

Forwards Move forwards for one tick

Forwards left Right wheel forwards for one tick, rotating the robot anti-clockwise

Forwards right Left wheel forwards for one tick, rotating the robot clockwise

Reverse Move backwards for one tick

Reverse left Right wheel in reverse for one tick, rotating the robot clockwise

Reverse right Left wheel in reverse for one tick, rotating the robot anti-clockwise

was shown by [24] to improve performance for some objectives compared to a GP
algorithm that evolved for each objective individually. However, it should be clear
that some objectives are incompatible as previously mentioned. We therefore
evaluate two versions of MTGP: one in which only compatible objectives are
used, and another which includes objectives which are mutually exclusive. Hence,
the following algorithms for evolving primitives are compared:

– GP: A baseline GP algorithm that evolves controllers for one objective at a
time and is repeated for each primitive.

– MTGP: An algorithm that evolves controllers for multiple objectives at once,
selecting one objective at random as the fitness function for each tournament
used to select parents. We compare its performance using both incompatible
(dubbed MTI) and compatible (dubbed MTC) combinations of objectives.

– QD: A MAP-Elites algorithm that evolves a collection of solutions for one
objective at a time whose behaviours are diverse with respect to a set of user-
defined characteristics. The characteristics which distinguish them are taken
from [24] and are: difference in the ratios of forwards and backwards move-
ment; ratios of clockwise and anti-clockwise rotations; the ratio of condition
nodes and action nodes which are executed during simulation.

We define (increase density, go to nest and go away from food) as one set of
compatible objectives, and (reduce density, go away from nest and go to food) as
another3. We also define two sets of incompatible objectives: (increase density,
go to nest and go to food) and (reduce density, go away from nest and go away
from food).

3.3 Evolving an Arbitrator

To evolve a high-level foraging behaviour that leverages a repertoire of primitives
evolved above, we use the single objective GP algorithm denoted GP above.

3 Obviously objectives such as increase density and decrease density are mutually
exclusive and therefore are never considered together.

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 185

This is exactly the same algorithm proposed by [24] except that the low-level
action nodes are replaced by the primitives in the chosen repertoire and the
set of condition nodes is restricted. We use the same evolutionary parameters
as used to evolve the primitive repertoire, maintaining the population size of
25 individuals and running the algorithm for 1000 generations. Foraging also
requires longer simulations so we increase the length of each trial in the arena
from 20 s for primitives to 100 s for the arbitrator.

The objective function for the arbitrator rewards robots for each visit to
the nest region which follows a visit to the food region. Upon visiting the food
region, a robot is considered to be carrying food. If it then enters the nest region
it reverts back to its default state and its score is incremented by one.

The fitness score S is defined as the number of times any robot carrying food
arrives in the nest f divided by the number of robots in the arena r (which is
nine in these experiments), i.e. S = f/r

We compare the following repertoires as input to this method:

– R1: the highest performing behaviour for each primitive found by QD.
– R2: the highest performing behaviour for each primitive returned by MTGP

using compatible behaviours4.
– R3: a repertoire containing multiple diverse BTs for each primitive. This is

obtained by dividing the whole container returned by MAP-Elites into two
equally sized bins along each axis, selecting the best controller from each
of the eight resulting bins. This results in 8 behaviours for each of the 6
objectives, i.e. a total of 48 action nodes in the repertoire.

– R4: a repertoire containing eight diverse BTs for each primitive obtained by
casting all individuals found by MTGP to the same MAP-Elites grid and
dividing the axes in the same way, retrieving the best BT from each of the
resulting eight bins.

– R5: a baseline experiment which uses the low-level action nodes used to evolve
the primitives.

Note that using the repertoires of evolved primitives makes several of the
condition nodes used by [24] obsolete. For example, condition nodes concerned
only with navigation such as ‘ifRobotToLeft/Right’ are irrelevant at the arbi-
trator’s level of abstraction and are therefore removed from the condition lists.
This leaves just three condition nodes: (1) Is this robot in the food region; (2)
Is this robot in the nest region; (3) Is this robot carrying food. The mutation
operators insert condition or action nodes with equal probability.

4 Results

We first evaluate the proposed approaches for improving the primitive reper-
toires, i.e. by adding additional objectives, and using two versions of MTGP
with compatible or incompatible subsets of objectives.
4 Experiments in Sect. 4.1 showed that the performance of MTGP using compatible

objectives was often better than using incompatible objectives.

186 K. Montague et al.

4.1 Extending and Improving the Primitive Repertoire

Figure 3 shows boxplots of fitness over 10 repetitions of the performance of each
algorithm listed in Sect. 3.2 for each of the six primitive behaviours evolved.
To compare pairs of algorithms, a Shapiro-Wilk test was performed to check
for normality, after which either a Student t-test if the data was judged to be
normal or a Mann-Whitney test otherwise. The results of these tests are shown
in Table 3: a confidence level of 0.05 is used to test for significance.

Table 3. Statistical testing results showing pairwise comparisons for different com-
binations of objectives. Statistically significant results within a confidence interval of
0.05 are shown in bold. The type of test applied is shown in italics: italicised = Mann-
Whitney, non-italics=T-test

G
P

vs
M
T
I

G
P

vs
M
T
C

G
P

vs
Q
D

M
T
I

vs
M
T
C

M
T
I

vs
Q
D

M
T
C

vs
Q
D

Increase density 0.7913 0.0580 0.5575 0.0640 0.3847 0.0760
Go to nest 0.4727 0.0452 0.5708 0.2204 0.0757 0.0257
Go to food 0.3217 0.3240 0.0270 0.0526 0.0168 0.2199
Reduce density 0.8067 0.3838 0.0352 0.4535 0.0037 0.0018
Go away from nest 0.0172 0.0211 0.0017 0.6980 0.9482 0.6372
Go away from food 0.0009 0.0259 0.2002 <0.0001 <0.0001 0.1414

Table 4. Median values for each algorithm with the highest median in bold

GP MTI MTC QD

Increase density 0.585309 0.582788 0.594218 0.585442

Go to nest 0.826672 0.839357 0.855242 0.826128

Go to food 0.847747 0.842908 0.850078 0.856015

Reduce density 0.535612 0.533996 0.533903 0.537092

Go away from nest 0.792973 0.811753 0.803499 0.813578

Go away from food 0.624641 0.609507 0.638132 0.629626

Figure 3 shows that the highest median performance is obtained by MTC for
three objectives (increase density, go to nest, go away from food) and by QD for
the remaining three (reduce density, go away from nest, go to food). However, as
shown in Table 3, the result is not always significant5. For four objectives, the
5 Further work should increase the number of runs from the 10 performed to ascertain

whether we should be confident in this result.

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 187

Fig. 3. Box-plots of the best fitness obtained for all three algorithms including two
variations of the multi-task algorithm (MTI/MTC). Where its three objectives are
compatible the performance is shown in blue; subsets of incompatible objectives are
shown in red. (Color figure online)

188 K. Montague et al.

median performance obtained from the compatible version of MTGP is higher
than that of the incompatible version, although again the difference is not signif-
icant except in the case of go away from food. Surprisingly, for the go away from
nest and reduce density objectives, the incompatible version of MTGP produces
a higher median than its compatible counterpart although its variance is much
higher. For go away from food and go away from nest, the incompatible version
of MTGP performs significantly worse than the baseline.

Based on the results just described, we decide to discard the repertoires
obtained with the incompatible version of MTGP and proceed to evolve a high-
level arbitrator using only repertoires obtained from MTC and QD. These results
are described in the next section.

4.2 Foraging Experiments

We compare BT arbitrators evolved using GP from the four different reper-
toires obtained by the methods described in Sect. 4.2. Recall that the goal is to
determine: (1) if the hierarchical approach outperforms a baseline that evolves a
single BT using the low-level nodes in Table 2; (2) which repertoire of primitives
results in the best performing arbitrator.

Figure 4 shows boxplots of results over 10 repeated experiments. Statistical
test results are presented in Table 5. It is immediately clear from Fig. 4 that all
experiments using repertoires of evolved primitives outperform the baseline6 (the
first four entries in Table 5). This confirms that a hierarchical approach which
leverages a repertoire of pre-evolved primitives is preferable to directly evolving
an arbitrator using low-level actions. The best median fitness is obtained using
a repertoire containing 8 diverse behaviours per objective (QD8). MT8 provides
similar performance, suggesting that having a diverse repository of primitives
including multiple behaviours that optimise the same primitive is preferable to
simply using the single best primitive available for an objective in the repertoire.
Recall that QD produces the highest median fitness for a behaviour for 3 prim-
itives, and MTC for the remaining three primitives. Hence it is unsurprising
that QD8 and MT8 have similar performance, as they are both able to exploit
good repertoires. In the same vein, QD1 and MT1 have similar performance in
terms of the quality of the primitives in the repertoire, leading to similar quality
arbitrators.

6 All experiments were run for the same amount of computational time taking into
account the time taken to evolve the primitives: thus the baseline experiments are
run for more generations than the arbitrator.

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 189

Fig. 4. A baseline algorithm which evolves a foraging behaviour from primitive actions
nodes (go forwards, etc.) compared with ones that use the best of each of the sub-
behaviours from the QD and MTGP repertoires instead, and ones which use eight
versions of each sub-behaviour from each of those repertoires.

Table 5. Statistical testing results showing pairwise comparisons for foraging. Statis-
tically significant results within a confidence interval of 0.05 are shown in bold.

Comparison p-value Type of test

Baseline vs QD repertoires of one 0.0049 T-test

Baseline vs MT repertoires of one 0.0032 T-test

Baseline vs QD repertoires of eight 0.0001 T-test

Baseline vs MT repertoires of eight <0.0001 T-test

QD repertoires of one vs MT repertoires of one 0.9302 T-test

QD repertoires of eight vs MT repertoires of eight 0.9822 T-test

QD repertoires of one vs QD repertoires of eight 0.0665 T-test

MT repertoires of one vs MT repertoires of eight 0.0316 T-test

QD repertoires of one vs MT repertoires of eight 0.0312 T-test

MT repertoires of one vs QD repertoires of eight 0.0701 T-test

4.3 Readability

One of the main advantages of using BTs as opposed to NNs is that they are
amenable to being understood by humans. Figure 5b shows an example of one of
the high fitness BTs evolved, first in the full form return by the GP algorithm
and then with its redundant nodes pruned by hand. The latter can be interpreted
as follows: ‘If you have food go away from food, and then if you are not in the
nest, or you did not have food, check again if you have food. If you do then go
to food, otherwise reduce density ’.

190 K. Montague et al.

Fig. 5. Generated with repertoires of eight BTs per sub-behaviour from the QD reper-
toire.

A cursory examination will reveal that the use of go to food seems nonsensical.
However, there is no requirement for the arbitrator to use the sub-behaviours
for the purpose imagined by the designer or rewarded by the fitness function:
for example we could speculate that go to food in Fig. 5b is being used simply to
propel the robot forwards or backwards, since this is often what ‘going to food’
amounts to. This in itself is a useful behaviour.

5 Conclusions and Further Work

This paper builds on a line of work that uses a hierarchical method of developing
a control system for a swarm of robots. At the primitive level, a set of controllers
are created that optimise sub-tasks of the desired goal. A higher-level controller

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 191

known as an arbitrator then combines the previously generated primitives into a
controller that executes the defined goal. Although the use of hierarchical meth-
ods is well-known (particularly regarding the AutoMoDe [12] series of control
software), previous methods have tended to use neural-networks or PFSMs as
arbitrators, with a small number of recent papers proposing BTs [21]. In this
paper, we propose a method that uses BTs at both levels of the hierarchy, i.e.
to evolve the primitives and then the arbitrator. As noted by [16], BTs offer
considerably more explanatory power than neural-networks.

Building on previous work by Montague et. al. [24] that proposed using BTs
to evolve primitives, we extend this work in several ways. First, we extended the
set of sub-tasks described in [24] to provide new primitives that could be useful
in a foraging task. Secondly we proposed an amendment to the multi-task GP
approach proposed in [24] that only considers compatible behaviours when gen-
erating multiple primitives simultaneously. Finally, we evolved an arbitrator as a
BT using GP that exploits the new evolved repertoires, showing that repertoires
that contain multiple BTs per primitive that achieve the same objective in dif-
ferent ways produce the highest performing controllers. We provide an example
of a BT to illustrate that it can be easily read and analysed to understand the
evolved behaviour.

There is much potential for future work. Rather than evolving primitives
then an arbitrator sequentially, a meta-evolutionary algorithm could be used
to search for the set of primitives that produce the best arbitrator, following a
similar process to [2]. While BTs are inherently readable, it would be interesting
to investigate the trade-off between readability and performance: replacing the
BT arbitrator with a neural-network or PFSM and repeating the experiment
would illustrate any such trade-off. The function of each of the primitives at the
lower level of the hierarchy is human-designed, as are the action and condition
nodes used by the GP algorithm to evolve primitives. A first step in removing the
need for human expertise has recently been described by Hasslemann et. al. [15]
which tries to automatically define primitives. This type of approach could also
be integrated with our proposed methodology. Finally, we proposed a first näıve
approach to selecting primitives for a repertoire from the much larger container
of solutions generated by both the QD and MTGP algorithms. An approach that
tried to maximise diversity might yield better results, or could itself be subject
to a search process, given that large containers are generated. Finally, repeating
the experiments in other collective tasks would provide further insights into the
generality of the approach.

References

1. Bonani, M., et al.: The marxbot, a miniature mobile robot opening new perspec-
tives for the collective-robotic research. In: 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 4187–4193 (2010). https://doi.org/10.
1109/IROS.2010.5649153

2. Bossens, D.M., Mouret, J.B., Tarapore, D.: Learning behaviour-performance maps
with meta-evolution. In: Proceedings of the 2020 Genetic and Evolutionary Compu-

https://doi.org/10.1109/IROS.2010.5649153
https://doi.org/10.1109/IROS.2010.5649153

192 K. Montague et al.

tation Conference, pp. 49–57. GECCO ’20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3377930.3390181

3. Cambier, N., Ferrante, E.: AutoMoDe-pomodoro: an evolutionary class of modular
designs, pp. 100–103 (2022). https://doi.org/10.1145/3520304.3529031

4. Colledanchise, M., Ögren, P.: How behavior trees modularize hybrid control sys-
tems and generalize sequential behavior compositions, the subsumption architec-
ture, and decision trees. IEEE Trans. Rob. 33(2), 372–389 (2017). https://doi.org/
10.1109/TRO.2016.2633567

5. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: an introduction.
CoRR abs/1709.00084 (2017). http://arxiv.org/abs/1709.00084

6. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-
mals. Nature 521(7553), 503–507 (2015)

7. Duarte, M., Gomes, J., Oliveira, S., Christensen, A.: EvoRBC: evolutionary
repertoire-based control for robots with arbitrary locomotion complexity (2016).
https://doi.org/10.1145/2908812.2908855

8. Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: Evolution of repertoire-
based control for robots with complex locomotor systems. IEEE Trans. Evol. Com-
put. 22(2), 314–328 (2018). https://doi.org/10.1109/TEVC.2017.2722101

9. Fortin, F.A., De Rainville, F.M., Gardner, M., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. Mach. Learn. Open Source
Softw. 13, 2171–2175 (2012)

10. Francesca, G., et al.: AutoMoDe-chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9 (2015)

11. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8, 1–24 (2014). https://doi.org/10.1007/s11721-014-0092-4

12. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: Automode:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8, 89–112 (2014). https://doi.org/10.1007/s11721-014-0092-4

13. Gomes, J., Christensen, A.L.: Task-agnostic evolution of diverse repertoires of
swarm behaviours. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Reina, A., Trianni, V. (eds.) Swarm Intelligence, pp. 225–238. Springer Interna-
tional Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7 18

14. Gomes, J., Oliveira, S.M., Christensen, A.L.: An approach to evolve and exploit
repertoires of general robot behaviours. Swarm Evol. Comput. 43, 265–283 (2018)

15. Hasselmann, K., Ligot, A., Birattari, M.: Automatic modular design of robot
swarms based on repertoires of behaviors generated via novelty search. Swarm
Evol. Comput. 83, 101395 (2023). https://doi.org/10.1016/j.swevo.2023.101395

16. Hogg, E., Hauert, S., Harvey, D., Richards, A.: Evolving behaviour trees for super-
visory control of robot swarms. Artif. Life Robot. 25, 569–577 (2020)

17. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) Swarm
Intelligence, pp. 30–43. Springer International Publishing, Cham (2018). https://
doi.org/10.1007/978-3-030-00533-7 3

18. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 30–43. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 3

https://doi.org/10.1145/3377930.3390181
https://doi.org/10.1145/3520304.3529031
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1109/TRO.2016.2633567
http://arxiv.org/abs/1709.00084
https://doi.org/10.1145/2908812.2908855
https://doi.org/10.1109/TEVC.2017.2722101
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1007/978-3-030-00533-7_18
https://doi.org/10.1016/j.swevo.2023.101395
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1007/978-3-030-00533-7_3

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control 193

19. Kuckling, J., van Pelt, V., Birattari, M.: Automatic modular design of behav-
ior trees for robot swarms with communication capabilites. In: Castillo, P.A.,
Jiménez Laredo, J.L. (eds.) Applications of Evolutionary Computation, pp. 130–
145. Springer International Publishing, Cham (2021). https://doi.org/10.1007/
978-3-030-72699-7 9

20. Kuckling, J., Ubeda Arriaza, K., Birattari, M.: AutoMoDe-icepop: automatic mod-
ular design of control software for robot swarms using simulated annealing. In:
Bogaerts, B., et al. (eds.) Artificial Intelligence and Machine Learning, pp. 3–17.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-65154-1 1

21. Kuckling, J., Van Pelt, V., Birattari, M.: AutoMoDe-cedrata: automatic design of
behavior trees for controlling a swarm of robots with communication capabilities.
SN Comput. Sci. 3(2), 136 (2022). https://doi.org/10.1007/s42979-021-00988-9

22. Ligot, A., Hasselmann, K., Birattari, M.: AutoMoDe-arlequin: neural networks as
behavioral modules for the automatic design of probabilistic finite-state machines.
In: Dorigo, M., et al. (eds.) Swarm Intelligence, pp. 271–281. Springer International
Publishing, Cham (2020)

23. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle,
T.: The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002, https://
www.sciencedirect.com/science/article/pii/S2214716015300270

24. Montague, K., Hart, E., Nitschke, G., Paechter, B.: A quality-diversity approach
to evolving a repertoire of diverse behaviour-trees in robot swarms. In: Correia,
J., Smith, S., Qaddoura, R. (eds.) Applications of Evolutionary Computation, pp.
145–160. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-
3-031-30229-9 10

25. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6, 271–295 (2012). https://doi.org/10.1007/s11721-
012-0072-5

26. Wei, T., Wang, S., Zhong, J., Liu, D., Zhang, J.: A review on evolutionary multi-
task optimization: trends and challenges. IEEE Trans. Evol. Comput. (2021)

https://doi.org/10.1007/978-3-030-72699-7_9
https://doi.org/10.1007/978-3-030-72699-7_9
https://doi.org/10.1007/978-3-030-65154-1_1
https://doi.org/10.1007/978-3-030-65154-1_1
https://doi.org/10.1007/s42979-021-00988-9
https://doi.org/10.1016/j.orp.2016.09.002
https://www.sciencedirect.com/science/article/pii/S2214716015300270
https://www.sciencedirect.com/science/article/pii/S2214716015300270
https://doi.org/10.1007/978-3-031-30229-9_10
https://doi.org/10.1007/978-3-031-30229-9_10
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5

Evolutionary Algorithms for Optimizing
Emergency Exit Placement in Indoor

Environments

Carlos Cotta1,2(B) and José E. Gallardo1,2

1 Departamento Lenguajes y Ciencias de la Computación, ETSI Informática,
Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain

{ccottap,pepeg}@lcc.uma.es
2 ITIS Software, Universidad de Málaga, Málaga, Spain

Abstract. The problem of finding the optimal placement of emergency
exits in an indoor environment to facilitate the rapid and orderly evacu-
ation of crowds is addressed in this work. A cellular-automaton model is
used to simulate the behavior of pedestrians in such scenarios, taking into
account factors such as the environment, the pedestrians themselves, and
the interactions among them. A metric is proposed to determine how suc-
cessful or satisfactory an evacuation was. Subsequently, two metaheuris-
tic algorithms, namely an iterated greedy heuristic and an evolutionary
algorithm (EA) are proposed to solve the optimization problem. A com-
parative analysis shows that the proposed EA is able to find effective
solutions for different scenarios, and that an island-based version of it
outperforms the other two algorithms in terms of solution quality.

Keywords: Pedestrian Evacuation · Cellular Automata · Greedy
Heuristics · Evolutionary Algorithms

1 Introduction

In the event of an emergency, the rapid and orderly evacuation of crowds from
enclosed spaces is essential to minimize casualties and ensure public safety. Need-
less to say, it can also become a critical challenge requiring meticulous planning
at different levels, in order to avoid panic, bottlenecks, and potential harm to
people in a potentially chaotic scenario [9]. There are different factors that need
being taken into account depending on the specificities of each situation (e.g.,
what the particulars of the environment are, what the typical size and composi-
tion of the crowd is, and so on), and the level at which the planning is done (e.g.,
architectural decisions, signaling, etc.). In this work we are specifically concerned
about the placement of emergency exits in the most convenient way to facilitate
the efficient evacuation of the crowd.

This work is supported by Spanish Ministry of Science and Innovation under project
Bio4Res (PID2021-125184NB-I00 - http://bio4res.lcc.uma.es) and by Universidad de
Málaga, Campus de Excelencia Internacional Andalucía Tech.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 194–208, 2024.
https://doi.org/10.1007/978-3-031-56852-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_13&domain=pdf
http://orcid.org/0000-0001-8478-7549
http://orcid.org/0000-0002-0646-2535
http://bio4res.lcc.uma.es
https://doi.org/10.1007/978-3-031-56852-7_13

Evolutionary Placement of Emergency Exits in Indoor Environments 195

In order to approach any evacuation optimization problem –such as the one
considered here– and attain safe and efficient evacuation plans, understanding
and predicting the behavior of pedestrians is of paramount importance. How-
ever, pedestrian evacuation is a complex and dynamic process, influenced by
many factors, such as the environment, the pedestrians themselves, and the
interactions among them. Therefore, modeling pedestrian evacuation is a chal-
lenging task that requires a balance between simplicity and realism. There are
different tools that can be used for this purpose, depending on the scope of the
simulation. Thus, whereas macroscopic approaches will often consider the crowd
as a continuous medium whose flow is to be modeled, e.g., see [2,8], microscopic
models will focus on the pedestrians –the individual components of the crowd–
and model the crowd behavior as an emergent property of the collective behav-
ior of those individual agents. The latter models can be further divided into two
major categories, namely models based on social forces (in which pedestrians are
particles in a continuous space, subject to different forces resulting from their
interaction with the environment and other particles, e.g., [3,12]), and cellular-
automaton (CA) models (in which the environment is modeled as a discrete grid,
and pedestrians transition between these following some predefined rules, e.g.,
[16,18]). We refer to [4,13] for a more in-depth survey of all these approaches.

We have precisely considered the CA approach in this work, and devised a
model for modeling the behavior of a crowd evacuating an indoor environment
(see Sect. 3). Using this tool, we aim to find which would be the most appropriate
location for emergency exits. This also entails defining appropriate metrics to
assess to which extent an evacuation was successful/satisfactory or not. We do
this in Sect. 2. Subsequently, we consider different algorithmic approaches to
tackle this problem. To be precise, we devise an iterated greedy heuristic and
an evolutionary algorithm (EA) for this purpose (see Sect. 4). We conduct an
extensive experimentation to analyze the performance of these algorithms (as
well as an island-based version of the EA) in Sect. 5. Our main aim in this work is
to determine the effectiveness of these approaches for this particular optimization
setting, as a stepping stone for devising more powerful approaches and tackling
more complex evacuation scenarios. We close this work with a critical outlook
of the results and an overview of the following steps in this research.

2 Problem Statement

In order to model the evacuation problem, we need to start by formalizing the
indoor space from which the evacuation is attempted. To this end, let A be this
space, which we will assume to be a rectangular area of width w and height h.
This rectangular area represents the floor plan of an enclosed space and there-
fore all its boundaries are assumed to be blocked (i.e., to be non-traversable),
except in specific locations which will be denoted as accesses. More precisely, we
can define an access α as a pair (pα, wα), where pα denotes a point along the
perimeter (i.e., a value between 0 and 2(w + h), where 0 corresponds to a cer-
tain predefined reference point (e.g., the bottom-left corner of A) of the area at

196 C. Cotta and J. E. Gallardo

which the access is anchored, and wα denotes the width of the access along the
perimeter, that is, the access extends from pα to pα +wα

1. Now, within A there
may be a number of obstacles. Each obstacle o ⊆ A denotes a non-traversable
region (representing real-world objects such as walls or furniture). Therefore, the
whole environment can be represented as a tuple (w, h,A,O), where:

– w and h are the width and height of A respectively.
– A = {α1, . . . , αk} is a collection of accesses.
– O = {o1, . . . , om} is a collection of obstacles.

This environment is crowded with n pedestrians (they represent the users of
said environment, i.e., residents, workers, customers, etc. depending on what
it is being modeled) distributed along traversable areas of A. At time t = 0,
an emergency is declared and the evacuation of the place begins. Let M be a
model that can be used to predict the behavior of pedestrians in this context,
and how the evacuation process would then be conducted (cf. Sect. 3). Let ρi(t)
represent the position coordinates of the i-th pedestrian at time t, and let T be
the maximum time up to which the model is simulated. Then, we can split the
collection of pedestrians into two sets:

– evacuees ξ+ = { i | 1 � i � n,∃ti � T : ∃α ∈ A : ρi(ti) ∈ α}, i.e., all
pedestrians i who manage to reach an access before T .

– non-evacuees ξ− = {1, . . . , n}\ξ+, i.e., the pedestrians who could not reach an
access before T . Given a non-evacuee i, we can define di = minα∈A‖α−ρi(T)‖,
i.e., their distance to the nearest exit at the end of the simulation.

In order to quantify the extent to which the evacuation is successful, different
metrics could be used. We consider the following hierarchy of objectives:

1. The first goal is to minimize the number of non-evacuees |ξ−|. This has the
highest priority.

The next levels of the hierarchy depend on whether the first goal could be accom-
plished or not. In the first case (ξ− = ∅), we consider:

2a. Minimize the time at which the last pedestrian left the area, i.e., minimize
t∗ = max1�i�n ti.

3a. Minimize the average time at which pedestrians left the area, i.e., minimize
t̄ = 1

n

∑
1�i�n ti.

If the evacuation was however not complete, then:

2b. Minimize the minimum distance between a non-evacuee and an access, i.e.,
minimize d∗ = mini∈ξ− di.

3b. Minimize the average distance between non-evacuees and accesses, i.e., min-
imize d̄ = 1

n

∑
i∈ξ− di.

1 Note that since the perimeter is closed, the sum is to be understood as cycling back
to 0 when reaching 2(w + h).

Evolutionary Placement of Emergency Exits in Indoor Environments 197

This hierarchy of goals can be combined into a single numerical value by using
appropriate weights that ensure that any comparison respects said hierarchy.
To be precise, let σ(A, S) be a tuple containing the evacuation status of each
pedestrian and the corresponding value of di or ti at the end of the simulation,
given that S = [ρ1(0), . . . , ρn(0)] are the initial positions in A of the pedestrians
at time t = 0. Then, we define:

f(σ(A, S)) = |ξ−|+ [ξ− = ∅]
(

1
T max1�i�n ti + 1

nT 2

∑
1�i�n ti

)
+

+ [ξ− �= ∅]
(

1
D mini∈ξ− di + 1

nD2

∑
i∈ξ− di

) (1)

where [·] are Iverson brackets, and D =
√

w2 + h2 is the diagonal of the area.
Now, we can formally define the Optimal Evacuation Problem (OEP) as:

Instance: a tuple (A,S, k, ω), where
• A = (w, h,A,O) is the environment.
• S = {S1, . . . , Sl} is a collection of initial configurations of n pedestrians,

i.e., for all 1 � i � l, |Si| = n.
• k ∈ N is a non-zero value that indicates the number of emergency exits

whose location is sought.
• ω > 0 is the width of emergency exits.

Solution: a collection E = {e1, . . . , ek} ⊂ [0, 2(w+h)], where each ei represents
the location of an emergency exit and such that

ψ(E) =
1
l

∑

1�i�l

f(σ(A′, Si)) (2)

is minimal, where A′ is obtained from A by adding {(e1, ω), . . . , (ek, ω)} to
the existing accesses.

Having defined the problem, let us turn our attention to how pedestrian
behavior is modeled in next section.

3 A CA for Modeling Pedestrian Evacuation

Cellular automata are simple and powerful tools to simulate complex systems,
as they can capture the emergence of global patterns from local interactions. In
this section, we describe the details of our CA model for pedestrian evacuation.

3.1 State of the CA

The state of the CA is the state of each cell in the environment (represented by
a regular lattice of square cells). Each cell can be in one of three states:

– empty: The cell is empty and can be occupied by a pedestrian.
– occupied: The cell is occupied by a pedestrian.

198 C. Cotta and J. E. Gallardo

– obstacle: The cell is occupied by an obstacle and cannot be occupied by a
pedestrian.

Some cells in the environment are marked as exit cells. These are the cells that
the pedestrians want to reach to leave the environment. We assume that pedes-
trians are rational and will try to find the shortest path to the nearest exit.
However, the presence of obstacles and other pedestrians can affect their move-
ment and make them choose alternative paths. To capture this behavior, we
define two concepts for each cell: the static field and the crowd repulsion. The
former is a measure of how close a cell is to an exit. The latter is a measure of
how crowded the neighborhood of a cell is, taking into account obstacles and
other pedestrians. We use these two concepts to calculate the desirability of a
cell, which is the probability that a pedestrian will move to that cell.

The static field of a cell is computed using Dijkstra’s algorithm, which is
a well-known algorithm for finding the shortest path between two nodes in a
weighted graph [6]. We consider the environment as a graph, where nodes are
cells and edges are connections between neighboring cells. The weight of an edge
is the geometric distance between the cell centers, if the target cell is not an
obstacle and infinity otherwise. Formally, we define the graph as G = (V,E),
where V is the set of cells in the environment and E is the set of edges between
neighboring cells. The weight function is w : E → R

+, such that w(vi, vj) is the
geometric distance between cells vi and vj , as defined before. Let SPi,j be the
length of the shortest path from cell (i, j) to its nearest exit as computed by
Dijkstra’s algorithm. The static field of a cell (i, j) is then defined as:

SFi,j = 1 − SPi,j

SPmax
(3)

where SPmax is the larger shortest path from any cell in the environment to its
nearest exit. This definition makes the static field be in [0,1] and only depend on
the relative distance of a cell to its nearest exit. The higher the static field, the
closer the cell is to an exit. Notice that, as this field is static, it does not change
over time and is only computed once before the simulation.

The crowd repulsion of a cell is computed using the number of reachable cells
in its neighborhood. A cell is reachable if it is currently empty and not blocked
by an obstacle. For each occupied cell (i, j), let Ni,j be the set of reachable cells
in its neighborhood. The repulsion of a cell (i, j) is defined as the inverse of one
plus the number of reachable cells in this neighborhood:

Ri,j = (1 + |Ni,j |)−1 (4)

where | · | denotes the cardinality of a set. This definition makes the repulsion be
in (0,1] and depend on how crowded the neighborhood of a cell is. The higher
the repulsion, the more crowded the neighborhood is.

The desirability of a cell is computed using a combination of the static field
and the crowd repulsion. We introduce two parameters to weight the importance
of these two factors: the field attraction bias φ and the crowd repulsion bias ζ.

Evolutionary Placement of Emergency Exits in Indoor Environments 199

The field attraction bias reflects how strongly the pedestrians are attracted to
the exit cells, while the crowd repulsion reflects how strongly the pedestrians are
repelled by the crowded cells. We firstly define the attraction of a cell (i, j) as:

Ai,j = exp(φ · SFi,j − ζ · Ri,j) (5)

In this way, the attraction of a cell is a positive number that increases with the
static field and decreases with the crowd repulsion. The higher the attraction,
the more desirable the cell is. However, we can make the pedestrian behavior
more realistic and adaptive by reducing the reliance on the global knowledge
of the environment and by making use of the information available in the local
neighborhood. As the attraction of a cell is not enough to capture this behavior,
we need to consider instead the desirability of a cell, which is defined as the
gradient of its attraction. The desirability of a cell reflects how the attraction
changes locally by comparing the attraction of the cell with the minimum attrac-
tion in its reachable neighborhood. Let Amini,j

denote the minimum attraction
in neighborhood of cell (i, j), which is defined as:

Amini,j = min
(k,l)∈Ni,j

Ak,l (6)

Then, the desirability of cell (i, j) is defined as:

Di,j = ε + Ai,j − Amini,j (7)

where ε is a small number which is added to avoid the desirability being zero
(ε = 10−5 in our implementation). In this way, the desirability of a cell is a
positive number that increases with the gradient of the attraction. The higher the
desirability, the more likely a pedestrian will move to that cell. The desirability
of a cell is the main input of the local rule that updates the state of each cell
on each time step. The local rule is based on a probabilistic transition function
that determines the probability of a pedestrian moving from one cell to another.

3.2 Update Procedure

The update procedure is the procedure that is used to update the state of the
CA on each time step. The procedure is as follows:

1. We start by marking as empty in the next state the cells that are currently
occupied by pedestrians, as they may change depending on their movement.

2. We then mark the cells that are occupied by obstacles in the current state
as obstacle in the next state. These cells will not change, as they cannot be
occupied by pedestrians.

3. We also mark the exit cells that are occupied by pedestrians in the current
state as empty in the next state. This models the evacuation of the pedestrians
through the exits. We assume that once a pedestrian reaches an exit, they
leave the environment and do not come back.

200 C. Cotta and J. E. Gallardo

4. For any other cell that is occupied by a pedestrian in the current state, we
compute the desirabilities of reachable neighboring cells. We use the desirabil-
ity as the probability of a pedestrian moving to that cell and randomly select
one neighboring cell according to these probabilities. If the selected cell is not
occupied by another pedestrian in the next state, we mark it as occupied by
the pedestrian in the next state. This means that the pedestrian moves to
that cell. Otherwise, we mark the current cell as occupied by the pedestrian
in the next state, i.e., the pedestrian stays in the same cell. This way, we
avoid collisions between pedestrians and ensure that each cell can have at
most one pedestrian. To ensure fairness among pedestrians, we shuffle the
order in which we process occupied cells on each time step.

We consider that each cell in the environment is a square and we denote by cl
its side length. We denote the time elapsed for each time step as Δt. The speed
of a pedestrian that moves to a neighboring cell on each time step is then cl/Δt.
We call this the reference speed of a pedestrian, and denote it by v. However,
not all pedestrians may move at the same speed (for instance, some pedestrians
may move slower than the reference speed, due to physical or psychological
factors). To model this, we introduce for each pedestrian a parameter called
velocity percent (vp), which is a percentage of the reference speed. For example,
if vp = 0.5 for a pedestrian, their speed would be 0.5v. We model this by letting
vp be the probability of a pedestrian moving to a neighboring cell on each time
step so that, on average, their speed would be vp · v.

3.3 Transition Function

The transition function is the function that determines the probability of a pedes-
trian moving from one cell to another. The function is based on the desirability
of the neighboring cells. The function is defined as follows:

T (ci, cj) =

{
Pi,j · vp, if cj is empty or an exit in the current state
0, otherwise

(8)

where ci and cj are two neighboring cells, Pi,j is the probability of agent in cell
ci to move to cell cj based on its desirability:

Pi,j =
Dcj∑

c∈Nci
Dc

(9)

and vp is the velocity percent of the pedestrian in cell ci. The transition function
returns the probability of the pedestrian in cell ci moving to cell cj on the next
time step. The function is zero if cell cj is blocked or already occupied by another
pedestrian in the current state, or if the pedestrian in cell ci does not move in
this time step, which happens with probability 1 − vp. The transition function
is applied to each occupied cell in the current state, after shuffling the order of
the cells. The result of the function and the procedure to avoid collisions (step

Evolutionary Placement of Emergency Exits in Indoor Environments 201

Algorithm 1: Greedy constructive heuristic
Data: an instance OEP(A, S, k, ω)
E ← ∅;
η ← �2(w + h)/ω�;
for i ← 1 to k do

p ← rand(0, 2(w + h));
best ← ∞;
for j ← 1 to η do

cur ← ψ(E ∪ {p});
if cur < best then best ←cur ; e ← p;
p ← p + ω;
if p > 2(w + h) then p ← p − 2(w + h)

end
E ← E ∪ {e};

end
return E

4. in Sect. 3.2) is used to update the state of the CA on the next time step.
The update procedure is repeated until all the pedestrians have evacuated or a
maximum number of time steps (corresponding to time T) is reached.

4 Algorithms for Emergency Exit Optimization

As indicated in Sect. 2, a solution to problem instance OEP(A,S, k, ω) is a set
E = {e1, . . . , ek} ⊂ [0, 2(w +h)]. The mapping between solutions and their asso-
ciated objective functions values is not just non-linear, but also not available in
closed form, and only computable via a stochastic simulation. Thus, it is com-
plex to design low-level heuristics to construct such solutions. We can however
engineer a constructive approach on top of the simulations, based on greedy
principles. The core of this approach is shown in Algorithm 1.

This procedure starts by picking a random initial point p along the perimeter.
Then all points p, p+ω, p+2ω, . . . , p+ηω are potential candidates to place an exit,
where the addition is assumed to wrap around the length of the perimeter, and η
is picked so as to ensure that we cover the whole perimeter. For each candidate,
we simulate the system with an emergency exit in the corresponding location (in
addition to any other exits that might have been considered in previous steps),
and keep the one that returns the best value of the objective function. This is
repeated as many times as needed (i.e., k times) to construct the solution. Notice
that this procedure involves computing the value of the objective function η · k
times. Also, this is a randomized procedure and therefore can be iterated as
many times to desired to obtain different greedy solutions. We will denote this
latter iterated procedure as greedy.

As an alternative to this greedy heuristic, we consider an EA approach. This is
a real-coded EA in which individuals are vectors of k values in the range [0, 2(w+
h)]. We can initially generate such vectors by sampling uniformly at random the

202 C. Cotta and J. E. Gallardo

Algorithm 2: Set-based recombination
Data: two sets E = {e1, . . . , ek} and E′ = {e′

1, . . . , e
′
k}

C ← E ∪ E′; S ← ∅;
for i ← 1 to k do

e ← pick (C); // makes random selection
S ← S ∪ {e}; C ← C \ {e};

end
return S

search space. Notice that we do not introduce any constraint regarding the non-
overlap of exits. Having two overlapping exits is equivalent within the simulation
to having a single exit of width 2ω−overlap. We pose that this is less convenient
than having two exits back to back without overlapping, or those two exits
strategically placed somewhere else. For this reason, we expect evolution will
get rid of those suboptimal solutions without the need of introducing an explicit
constraint. As to mutation, we have opted for a Gaussian perturbation of a single
exit, whose amplitude is a certain percentage γ of its current value, i.e.,

e′ ← e · (1 + γN (0, 1)) (10)

where N (0, 1) is a normally distributed random value of mean 0 and variance 1.
As usual, the value of the variable will wrap around [0, 2(w+h)]. As for recombi-
nation, we have opted for a discrete set-based approach, since standard operators
for continuous variables require a meaningful matching between homologous vari-
ables in the parental solutions which is not possible (or at least non-trivial) in
this problem. Our recombination algorithm is depicted in Algorithm 2. It creates
a set of candidate locations from the union of the individuals being recombined,
and makes a sequence of random picks without replacement from this candi-
date set. The resulting operator is therefore transmitting and assorting, but not
necessarily respectful [15]. Besides these operators, our EA uses binary tour-
nament solution, and elitist generational replacement. We have also considered
an island version of this EA [1], which divides the population into a number
of separate demes (arranged following a certain topology – a bidirectional ring
in our case) which evolve in partial isolation, and periodically migrate the best
solution to neighboring demes, who accept these in substitution of their current
worst solutions. We will denote our EA and our island-based EA as EA and iEA
respectively. All algorithms are available in our GitHub repository2.

5 Experimental Results

The different algorithms described in the previous section have been put to test
on a collection of problem instances with different features. These instances and
the remaining experimental parameters are described in Sect. 5.1. Subsequently,
the numerical results will be reported and analyzed in Sect. 5.2.
2 https://github.com/Bio4Res/pedestrian-evacuation-optimization.

https://github.com/Bio4Res/pedestrian-evacuation-optimization

Evolutionary Placement of Emergency Exits in Indoor Environments 203

5.1 Experimental Setup

To evaluate the performance of different algorithms, we have generated several
environments that simulate evacuation scenarios. Our instance generator dis-
cretizes the evacuation area in the same fashion our CA does (see Sect. 3), and
places obstacles randomly in the domain, avoiding overlaps and ensuring a mini-
mum distance between them. The obstacles are rectangular and their dimensions
are randomly generated as follows: the width of the obstacle can be either one or
two cells, if the obstacle is vertical, or between one and 25 cells, if the obstacle
is horizontal. The height of the obstacle is inversely proportional to the width,
and it can be between one and half of the rows of the domain. The orientation of
the obstacle is also randomly chosen, with a 50% probability of being vertical or
horizontal. The position of the obstacle is randomly selected, with the condition
that the obstacle does not exceed the boundaries of the domain, and that there
is a minimum distance of two cells between the obstacle and any other obstacle,
so that the agents can always move around them. The purpose of the obstacles
is to create a realistic, diverse, and challenging environment for the agents, by
obstructing their movement and forcing them to find alternative paths.

We have generated three sets of instances, each containing five environments
with different characteristics depending on the number |O| of obstacles:
– low-density : |O| ∈ {20, . . . , 30}. A low density of obstacles implies that the

agents have more space to move and less chances of colliding with them.
– mid-density : |O| ∈ {50, . . . , 75}. A medium density of obstacles means that

the agents have less space to move and more chances of colliding with them,
but still have some room for maneuvering and finding alternative paths.

– high-density : |O| ∈ {100, . . . , 150}. A high density of obstacles results in the
agents having very little space to move and very high chances of colliding
with them, facing a lot of congestion and bottlenecks in their movement.

In all cases, the width and height are picked from [40, 50] and [20, 30], the side of
the square cells is 0.5m and no exits are initially placed. Hence, evacuation will
only proceed through the emergency exits placed by the optimization algorithms.
We consider three setting in this regard, namely k ∈ {3, 4, 5} exits. The width
of the emergency exits is set to ω = 2m. All the instances are publicly available
in our data repository [5]. For each instance, we have randomly generated 1000
initial pedestrian configurations. 20 are used as training set for the optimization
algorithms, and the remaining ones are used as test set. In every case we have
considered 100 pedestrians. Each of them has a reference velocity v = 1.3m/s,
a velocity percent vp ∈ [0.5, 1], field attraction bias φ ∈ [1.5, 2], and crowd
repulsion bias ζ ∈ [0.25, 0.5]. The simulation is run up to T = 60 s.

Regarding the algorithms, in all cases we consider maxevals = 20000. The
EA has a population size μ = 100, recombination probability pX = 0.9, mutation
probability equivalent to a mutation rate 1/ per variable, where is the num-
ber of variables, and gaussian mutation amplitude γ = 0.05. As to the iEA, it
considers 4 islands of size μ = 25, and migration frequency of 10 generations. No
fine tuning of these parameters has been attempted. For each algorithm, floor
plan and number of exits sought, we perform 20 runs.

204 C. Cotta and J. E. Gallardo

Fig. 1. (a) Rank distribution of the different algorithms on the training set. (b) Rank
distribution of the best solution of each algorithm on the test set.

Fig. 2. Evolution of fitness in three of the instances. (a) low-density (b mid-density (c)
high-density

5.2 Results

Table 1 shows the summary of results over the 20 runs of the algorithms. As
it can be seen there is a general superiority of iEA over all types of instances
and number of exits, and even more clearly for k � 4 exits. This superiority is
not just clear on a head-to-head basis with respect to EA and greedy on specific
instances, but it is also globally significant. To show this, we rank each algorithm
on each problem instance, and determine the distribution of ranks – see Fig. 1a.
These ranks show statistically significant differences according to Quade test
[14] (Quade F = 37.351, p-value = 1.803e−12). Subsequently, we conduct Holm
test with Bonferroni correction [7,10] using iEA as control algorithm. The test
is passed against both EA and greedy with p-value = 7.433e−4. These results
indicate that the evolutionary search, and in particular the island-based EA,
is capable of effectively navigating the search space and finding solutions that
perform satisfactorily on the training set. Fig. 2 shows an example of the evolu-
tion of fitness as a function of the number of solution evaluations for the three
algorithms. As it can be seen, greedy often starts with good quality solutions,
typically better than those of EA and iEA for a similar computational effort.

Evolutionary Placement of Emergency Exits in Indoor Environments 205

Table 1. Results of the algorithms (out of 20 runs) on the training set. Each column
depicts the best (x∗), median (x̃), mean (x̄) and standard error of the mean (σx̄). For
each instance, the algorithm with the best mean is marked with a star (�), and the
remaining algorithms are marked with a symbol that denotes whether the differences
are statistically significant at α = 0.01 (), α = 0.05 (•), and α = 0.1 (◦) according to
a Wilcoxon rank sum test [17].

instance greedy EA iEA
x∗ x̃ x̄ ± σx̄ x∗ x̃ x̄ ± σx̄ x∗ x̃ x̄ ± σx̄

low-density-1-3 8.109 8.410 8.493 ± 0.045 7.111 7.111 7.171 ± 0.023 � 7.111 7.111 7.184 ± 0.058
low-density-2-3 7.511 8.436 8.662 ± 0.216 6.417 6.467 6.520 ± 0.020 � 6.417 6.488 6.534 ± 0.024
low-density-3-3 9.462 9.584 9.606 ± 0.020 9.462 9.660 9.687 ± 0.035 • 9.409 9.660 9.598 ± 0.030 �

low-density-4-3 11.309 11.309 11.759 ± 0.115 9.259 9.556 9.657 ± 0.069 9.259 9.309 9.438 ± 0.072 �

low-density-5-3 8.510 8.862 8.867 ± 0.035 4.066 4.318 4.411 ± 0.052 ◦ 4.066 4.315 4.279 ± 0.030 �

mid-density-1-3 13.104 13.482 13.435 ± 0.039 10.709 10.709 10.894 ± 0.118 � 10.709 11.509 11.613 ± 0.210 •
mid-density-2-3 15.306 15.432 15.477 ± 0.046 14.507 14.507 14.507 ± 0.000 � 14.507 14.507 14.507 ± 0.000
mid-density-3-3 24.656 25.007 24.919 ± 0.055 15.555 15.555 15.688 ± 0.061 � 15.555 15.658 15.696 ± 0.057
mid-density-4-3 14.758 15.006 15.016 ± 0.019 11.704 12.058 12.198 ± 0.100 11.704 11.757 12.089 ± 0.128 �

mid-density-5-3 13.656 14.383 14.195 ± 0.107 12.557 12.557 12.557 ± 0.000 � 12.557 12.557 12.642 ± 0.075
high-density-1-3 16.909 17.804 17.736 ± 0.083 15.005 15.005 15.206 ± 0.126 � 15.005 15.005 15.436 ± 0.144
high-density-2-3 17.556 17.607 17.813 ± 0.110 17.556 17.556 18.034 ± 0.477 17.556 17.556 17.556 ± 0.000 �

high-density-3-3 25.757 25.982 26.055 ± 0.072 18.757 19.307 19.341 ± 0.097 18.757 19.005 19.218 ± 0.111 �

high-density-4-3 17.205 17.831 17.629 ± 0.084 15.105 15.356 15.959 ± 0.216 � 15.105 15.306 16.069 ± 0.236
high-density-5-3 13.406 13.508 13.613 ± 0.056 13.006 13.006 13.325 ± 0.095 13.006 13.006 13.129 ± 0.038 �

low-density-1-4 1.316 1.510 1.492 ± 0.025 � 1.333 1.668 1.700 ± 0.060 • 1.263 1.738 1.611 ± 0.051
low-density-2-4 3.015 3.369 3.359 ± 0.040 2.472 2.690 2.802 ± 0.084 • 2.378 2.577 2.588 ± 0.031 �

low-density-3-4 2.216 2.888 2.793 ± 0.076 1.827 2.110 2.152 ± 0.039 1.808 1.967 2.078 ± 0.131 �

low-density-4-4 2.774 3.246 3.171 ± 0.041 2.006 2.145 2.144 ± 0.024 1.869 2.122 2.123 ± 0.034 �

low-density-5-4 1.100 1.170 1.166 ± 0.009 1.100 1.189 1.205 ± 0.023 1.053 1.089 1.106 ± 0.013 �

mid-density-1-4 3.515 3.963 3.926 ± 0.041 2.867 3.342 3.367 ± 0.048 2.961 3.190 3.213 ± 0.045 �

mid-density-2-4 5.261 5.984 5.808 ± 0.078 ◦ 5.261 5.637 5.769 ± 0.118 5.261 5.470 5.618 ± 0.106 �

mid-density-3-4 6.161 6.513 6.523 ± 0.046 5.610 6.111 6.100 ± 0.041 5.610 5.860 5.870 ± 0.044 �

mid-density-4-4 5.011 5.188 5.221 ± 0.046 2.929 3.120 3.156 ± 0.026 2.666 3.062 3.005 ± 0.041 �

mid-density-5-4 5.114 5.345 5.351 ± 0.030 • 4.967 5.188 5.266 ± 0.044 4.915 5.263 5.247 ± 0.036 �

high-density-1-4 4.611 5.090 5.151 ± 0.082 4.110 4.487 4.564 ± 0.055 4.110 4.440 4.484 ± 0.068 �

high-density-2-4 7.507 7.663 7.742 ± 0.057 7.112 7.509 7.492 ± 0.047 � 7.112 7.360 8.889 ± 0.523
high-density-3-4 7.009 7.259 7.229 ± 0.041 6.859 7.209 7.189 ± 0.038 6.712 6.985 6.980 ± 0.031 �

high-density-4-4 5.206 5.487 5.614 ± 0.073 4.711 4.944 5.098 ± 0.090 � 4.519 4.786 5.424 ± 0.193
high-density-5-4 5.513 5.863 5.898 ± 0.032 5.014 5.816 5.787 ± 0.070 • 4.662 5.640 5.523 ± 0.083 �

low-density-1-5 0.985 1.053 1.055 ± 0.010 0.968 1.025 1.035 ± 0.012 • 0.948 0.979 1.005 ± 0.012 �

low-density-2-5 1.241 1.455 1.423 ± 0.017 � 1.295 1.561 1.608 ± 0.050 1.151 1.611 1.513 ± 0.052
low-density-3-5 1.417 1.691 1.707 ± 0.035 1.419 1.608 1.609 ± 0.020 • 1.352 1.531 1.520 ± 0.024 �

low-density-4-5 1.130 1.263 1.253 ± 0.019 • 1.192 1.250 1.254 ± 0.012 1.062 1.168 1.198 ± 0.028 �

low-density-5-5 0.942 0.964 0.965 ± 0.002 0.924 0.945 0.950 ± 0.005 ◦ 0.908 0.935 0.941 ± 0.006 �

mid-density-1-5 1.552 1.812 1.787 ± 0.025 1.265 1.534 1.536 ± 0.029 ◦ 1.323 1.416 1.489 ± 0.040 �

mid-density-2-5 3.520 3.971 3.980 ± 0.047 • 3.318 3.820 4.067 ± 0.120 3.272 3.744 3.838 ± 0.081 �

mid-density-3-5 3.515 4.309 4.255 ± 0.057 • 3.515 4.036 4.016 ± 0.058 3.513 3.912 3.990 ± 0.078 �

mid-density-4-5 2.064 2.380 2.355 ± 0.050 1.298 1.505 1.522 ± 0.035 ◦ 1.201 1.366 1.433 ± 0.035 �

mid-density-5-5 2.215 2.393 2.517 ± 0.063 1.467 1.771 1.774 ± 0.032 1.460 1.666 1.657 ± 0.022 �

high-density-1-5 2.112 2.411 2.419 ± 0.051 • 2.012 2.385 2.504 ± 0.084 • 1.760 2.090 2.201 ± 0.078 �

high-density-2-5 4.967 5.410 5.479 ± 0.062 4.811 5.511 5.507 ± 0.093 4.465 5.514 5.384 ± 0.101 �

high-density-3-5 4.911 5.237 5.246 ± 0.039 4.513 4.914 4.895 ± 0.045 4.113 4.611 4.655 ± 0.068 �

high-density-4-5 3.218 3.573 3.599 ± 0.044 2.010 2.511 2.468 ± 0.069 1.905 2.126 2.234 ± 0.072 �

high-density-5-5 2.060 2.410 2.363 ± 0.047 1.520 1.864 1.881 ± 0.042 1.512 1.812 1.829 ± 0.034 �

206 C. Cotta and J. E. Gallardo

Table 2. Test results of the best solution found by each algorithm during training.
The meaning of symbols is the same as in Table 1.

instance greedy EA iEA
x∗ x̃ x̄ ± σx̄ x∗ x̃ x̄ ± σx̄ x∗ x̃ x̄ ± σx̄

low-density-1-3 2.000 9.001 8.816 ± 0.093 0.972 8.001 7.866 ± 0.087 � 0.972 8.001 7.866 ± 0.087
low-density-2-3 2.015 8.011 8.278 ± 0.084 1.010 7.521 7.680 ± 0.083 � 1.010 7.521 7.680 ± 0.083
low-density-3-3 3.013 11.001 10.839 ± 0.098 3.013 11.001 10.839 ± 0.098 2.009 11.001 10.673 ± 0.097 �

low-density-4-3 4.067 12.026 12.687 ± 0.110 2.000 10.010 10.399 ± 0.099 � 2.000 10.010 10.399 ± 0.099
low-density-5-3 1.005 9.011 8.962 ± 0.091 0.918 6.001 5.958 ± 0.074 � 0.918 6.001 5.958 ± 0.074
mid-density-1-3 5.011 15.001 14.707 ± 0.112 3.010 11.010 11.340 ± 0.103 � 3.010 11.010 11.34 ± 0.103
mid-density-2-3 6.010 16.001 15.970 ± 0.110 5.010 15.011 15.391 ± 0.112 � 5.010 15.011 15.391 ± 0.112
mid-density-3-3 13.010 25.002 25.242 ± 0.137 8.001 17.009 17.296 ± 0.119 � 8.001 17.009 17.296 ± 0.119
mid-density-4-3 4.028 16.001 15.648 ± 0.117 4.019 13.001 12.831 ± 0.107 � 4.019 13.001 12.831 ± 0.107
mid-density-5-3 4.011 15.001 15.022 ± 0.112 3.000 13.001 12.954 ± 0.101 � 3.000 13.001 12.954 ± 0.101
high-density-1-3 7.010 17.001 16.852 ± 0.117 6.011 15.010 15.336 ± 0.108 � 6.011 15.010 15.336 ± 0.108
high-density-2-3 7.011 18.001 18.038 ± 0.118 � 7.011 18.001 18.038 ± 0.118 7.011 18.001 18.038 ± 0.118
high-density-3-3 16.001 27.002 27.097 ± 0.137 8.009 20.018 20.685 ± 0.127 � 8.009 20.018 20.685 ± 0.127
high-density-4-3 7.010 18.510 18.585 ± 0.120 7.013 17.010 17.227 ± 0.115 � 7.013 17.010 17.227 ± 0.115
high-density-5-3 5.011 14.011 14.365 ± 0.107 5.011 14.011 14.35 ± 0.109 � 5.011 14.011 14.350 ± 0.109
low-density-1-4 0.819 2.000 1.915 ± 0.035 � 0.863 2.010 2.098 ± 0.039 0.809 2.010 2.056 ± 0.037
low-density-2-4 0.896 4.010 3.982 ± 0.059 0.852 3.011 3.039 ± 0.050 � 0.874 3.011 3.144 ± 0.054
low-density-3-4 0.853 3.009 2.973 ± 0.049 0.863 2.029 2.669 ± 0.049 � 0.875 3.001 2.885 ± 0.049
low-density-4-4 0.917 4.001 3.875 ± 0.060 0.809 2.042 2.714 ± 0.049 � 0.906 3.010 3.164 ± 0.053
low-density-5-4 0.754 1.062 1.664 ± 0.030 0.754 1.021 1.422 ± 0.025 0.787 1.024 1.417 ± 0.024 �

mid-density-1-4 0.917 4.020 4.429 ± 0.063 ◦ 0.885 4.020 4.446 ± 0.064 ◦ 0.917 4.014 4.300 ± 0.064 �

mid-density-2-4 0.983 6.010 6.329 ± 0.077 � 0.983 6.010 6.329 ± 0.077 0.983 6.010 6.329 ± 0.077
mid-density-3-4 2.000 7.013 7.408 ± 0.082 1.009 6.009 6.216 ± 0.075 � 1.009 6.009 6.216 ± 0.075
mid-density-4-4 0.994 6.010 6.166 ± 0.074 0.907 4.010 4.201 ± 0.062 0.939 4.010 4.177 ± 0.062 �

mid-density-5-4 1.010 7.000 6.691 ± 0.078 0.994 7.001 6.904 ± 0.081 0.885 6.001 5.617 ± 0.070 �

high-density-1-4 0.929 5.014 5.449 ± 0.070 0.907 5.010 4.978 ± 0.068 � 0.907 5.010 4.978 ± 0.068
high-density-2-4 1.029 8.010 8.432 ± 0.088 0.972 8.010 8.251 ± 0.089 � 0.972 8.010 8.251 ± 0.089
high-density-3-4 0.962 8.009 8.281 ± 0.088 0.972 7.020 7.627 ± 0.083 � 1.090 8.001 8.035 ± 0.087
high-density-4-4 1.000 6.014 6.496 ± 0.078 0.961 6.009 6.021 ± 0.077 � 1.005 6.010 6.063 ± 0.074
high-density-5-4 1.037 7.011 7.151 ± 0.079 0.972 6.011 6.102 ± 0.073 1.000 6.001 5.851 ± 0.071 �

low-density-1-5 0.775 1.022 1.482 ± 0.026 0.754 1.010 1.242 ± 0.019 0.743 1.003 1.174 ± 0.017 �

low-density-2-5 0.743 1.041 1.570 ± 0.027 � 0.732 1.042 1.638 ± 0.030 0.786 1.042 1.630 ± 0.030
low-density-3-5 0.852 2.012 2.217 ± 0.043 0.863 2.009 2.087 ± 0.039 • 0.819 2.001 1.988 ± 0.038 �

low-density-4-5 0.797 1.027 1.486 ± 0.026 0.775 1.021 1.475 ± 0.026 � 0.743 1.027 1.540 ± 0.028
low-density-5-5 0.742 1.011 1.23 0± 0.019 0.655 0.970 1.046 ± 0.012 � 0.689 0.971 1.06 0± 0.013
mid-density-1-5 0.808 2.010 2.119 ± 0.039 0.831 2.000 1.922 ± 0.036 0.809 2.000 1.906 ± 0.036 �

mid-density-2-5 0.984 5.000 4.713 ± 0.069 0.896 4.010 4.231 ± 0.064 � 0.917 4.017 4.452 ± 0.066 •
mid-density-3-5 1.000 5.009 5.243 ± 0.069 1.000 5.009 5.243 ± 0.069 0.972 5.000 4.785 ± 0.067 �

mid-density-4-5 0.820 2.029 2.577 ± 0.046 0.797 1.044 1.703 ± 0.032 � 0.765 1.069 1.844 ± 0.035
mid-density-5-5 0.884 3.011 3.119 ± 0.052 0.830 2.011 2.182 ± 0.041 0.830 2.011 2.142 ± 0.039 �

high-density-1-5 0.863 2.022 2.514 ± 0.045 0.842 2.028 2.577 ± 0.045 0.863 2.014 2.218 ± 0.042 �

high-density-2-5 1.010 7.000 6.700 ± 0.081 0.928 6.000 5.803 ± 0.074 � 0.950 6.001 5.943 ± 0.074
high-density-3-5 0.994 6.009 6.148 ± 0.075 0.950 6.000 5.755 ± 0.073 0.929 5.009 5.201 ± 0.070 �

high-density-4-5 0.885 3.036 3.581 ± 0.059 0.896 3.000 2.802 ± 0.048 � 0.852 3.000 2.819 ± 0.049
high-density-5-5 0.830 2.021 2.436 ± 0.044 0.830 2.024 2.511 ± 0.045 ◦ 0.831 2.021 2.379 ± 0.042 �

However, in the long run the evolutionary approaches are capable of outper-
forming the greedy heuristic.

Evolutionary Placement of Emergency Exits in Indoor Environments 207

Subsequently, we move to the test phase. To this end, we select the solution
that has the best fitness on each instance for each algorithm, and evaluate it
on all the test cases. Table 2 shows the resulting results. Note that iEA remains
superior in general, and both EAs outperform greedy. However, the differences
are less marked. This is better seen in Fig. 1b, where the rank distribution of the
different algorithms according to the performance of their solution on the test set
is shown. Again, these ranks show statistically significant differences according
to Quade test (Quade F = 50.376, p-value = 2.618e−15), and iEA remains the
algorithm with the best mean rank, so it is chosen as control algorithm for Holm
test. Now, the test is passed against greedy (p-value ≈ 0), but not against EA
(p-value = 3.428e−1). We believe this may be an indication that the training
set is not large enough and therefore iEA may be overfitting its solutions.

6 Conclusions

Optimizing the placement of emergency exits in indoor environments is not just a
problem of importance for public safety, but also poses a challenging optimization
task. We have conducted a comparative analysis of two different optimization
approaches, namely an iterated greedy heuristic and an evolutionary algorithm
(in two variants, both panmictic and island-based). This analysis indicates the
superiority of the evolutionary approaches, both on the training and test phases,
underpinning the need for powerful global optimization techniques in this con-
text. It also hints at the need of using larger training sets, which of course will
have a toll on computational cost. This makes a strong case for directing effort
into solutions of computational nature (such as parallel computing) and solutions
of algorithmic nature (e.g., lightweight simulations or surrogate models [11]).

In addition to the research directions sketched above, it is clear that the
evacuation scenario can be enriched with additional layers of complexity. While
we have here assumed situations of orderly evacuation as an initial base case, we
can go on to consider situations in which the cause of the emergency does pose a
visible threat (e.g., a rampant fire, or ongoing explosions) that might disrupt the
evacuation process or the flow of people. Such scenarios may be in need of more
sophisticated approaches, and this work has paved the way for hybrid approaches
that combine greedy components within an evolutionary search engine. Work is
in progress in this area.

Acknowledgments. The authors thank the Supercomputing and Bioinnovation Cen-
ter (SCBI) of the University of Malaga for their provision of computational resources
(the Picasso supercomputer http://www.scbi.uma.es).

References

1. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)

2. Bellomo, N., Bellouquid, A., Knopoff, D.: From the microscale to collective crowd
dynamics. Multiscale Model. Simul. 11(3), 943–963 (2013)

http://www.scbi.uma.es

208 C. Cotta and J. E. Gallardo

3. Cao, R.F., et al.: Development of an agent-based indoor evacuation model for local
fire risks analysis. J. Safety Sci. Resilience 4(1), 75–92 (2023)

4. Chen, J., Shi, T., Li, N.: Pedestrian evacuation simulation in indoor emergency
situations: approaches, models and tools. Saf. Sci. 142, 105378 (2021)

5. Cotta, C., Gallardo, J.E.: Instance dataset for the pedestrian evacuation problem
(2023). https://osf.io/cnh7u/

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

7. Dunn, O.J.: Multiple comparisons among means. J. Am. Stat. Assoc. 56(293),
52–64 (1961)

8. Golas, A., Narain, R., Lin, M.C.: Continuum modeling of crowd turbulence. Phys.
Rev. E 90(4), 042816 (2014)

9. Haghani, M.: Optimising crowd evacuations: mathematical, architectural and
behavioural approaches. Saf. Sci. 128, 104745 (2020)

10. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6(2), 66–70 (1979)

11. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

12. Li, Z., Xu, C., Bian, Z.: A force-driven model for passenger evacuation in bus fires.
Phys. A 589, 126591 (2022)

13. Martinez-Gil, F., Lozano, M., García-Fernández, I., Fernández, F.: Modeling, eval-
uation, and scale on artificial pedestrians: a literature review. ACM Comput. Surv.
50(5), 72:1–72:35 (2017)

14. Quade, D.: Using weighted rankings in the analysis of complete blocks with additive
block effects. J. Am. Stat. Assoc. 74(367), 680–683 (1979)

15. Radcliffe, N.J.: The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4),
339–384 (1994)

16. Shi, M., Lee, E.W.M., Ma, Y.: A dynamic impatience-determined cellular automata
model for evacuation dynamics. Simul. Model. Pract. Theory 94, 367–378 (2019)

17. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80 (1945)

18. Zheng, Y., Li, X.G., Jia, B., Jiang, R.: Simulation of pedestrians’ evacuation
dynamics with underground flood spreading based on cellular automaton. Simul.
Model. Pract. Theory 94, 149–161 (2019)

https://osf.io/cnh7u/

Finding Sets of Solutions for Temporal
Uncertain Problems

Jens Weise(B) and Sanaz Mostaghim

Faculty of Computer Science, Otto von Guericke University, Magdeburg, Germany
{jens.weise,sanaz.mostaghim}@ovgu.de

https://ci.ovgu.de

Abstract. The multi-objective pathfinding problem is a complex and
NP-hard problem with numerous industrial applications. However, the
number of non-dominated solutions can often exceed human comprehen-
sion capacity. This paper introduces a novel methodology that leverages
the concept of a Pareto graph to address this challenge. Unlike previ-
ous approaches, our method constructs a graph that relates paths where
there is potential for change between them and applies a graph com-
munity algorithm to identify solution subsets based on specific aspects
defined by a decision-maker. We describe the construction of a Route
Change Graph (RCG) to represent possible route changes. A matrix is
constructed to save the number of possible change opportunities between
two routes, which is then used to construct the RCG. We propose using
a threshold value for edge weights in the graph construction, balancing
between minimising the number of edges and maintaining connectivity.
Following the construction of the RCG, we apply a community detection
algorithm to identify closely related solutions, using Leiden algorithm
due to its efficiency and refinement phase. We propose calculating var-
ious metrics on these communities, including Density, Average Cluster
Coefficient, Group Betweenness Centrality, and Graph Degree Central-
ity, to provide insights into the network structure and interconnectivity.
This methodology offers a more manageable set of solutions for decision-
makers, enhancing their ability to make informed decisions in complex
multi-objective pathfinding problems.

Keywords: pathfinding · decision-support · Pareto graph

1 Introduction

Finding a path from one point to another while optimising multiple objectives
is known as the multi-objective pathfinding problem and is considered NP-hard
[20]. In several industries this technique can be applied, e.g., route planning,
aviation, networking or medical applications [20]. For instance, there are multiple

This work is funded by the German Federal Ministry of Education and Research
through the 6G-ANNA project (grant no. 16KISK092).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 209–223, 2024.
https://doi.org/10.1007/978-3-031-56852-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_14&domain=pdf
http://orcid.org/0000-0002-8828-8752
http://orcid.org/0000-0002-9917-5227
https://doi.org/10.1007/978-3-031-56852-7_14

210 J. Weise and S. Mostaghim

objectives to consider, when planning a logistic trip for a truck, e.g., curvature of
the road, ascent and length of a route. All these objectives should be considered
simultaneously. In medical applications, inserting a needle to perform a minimal
invasive tumour therapy can include objectives such as distance to the vessel
system or damaged tissue. Often, these objectives are in conflict. Applying multi-
objective optimisation techniques to such problems, can give a decision-maker
(DM) a better insight into the problem. The result of such an optimisation is a
set of non-dominated solutions, where no solution is better than the other.

However, the cardinality of the obtained set of non-dominated solutions can
exceed the number of solutions, a DM can comprehend [20]. According to Miller,
humans can comprehend 7±2 information chunks, although more recent research
indicates that this number is lower (approx. 3 to 4 chunks) [11,16]. Various
reduction techniques have been proposed that identify important and interesting
solutions.

In this paper, we propose a new methodology that utilises the concept of a
Pareto graph [13]. In contrast to the original approach, we construct a graph
that sets paths into relation when there is the possibility to change between
them. Furthermore, we apply various graph community algorithms to identify
subsets of solution that comply with various aspects which can be given by a
DM. In contrast to other approaches, our proposed methodology does not reduce
the whole set of non-dominated solutions, but finds subsets from which DMs can
choose.

The paper is structured as follows. In Sect. 2, we describe the necessary back-
ground, while Sect. 3 is dedicated to the related work. Section 4 presents our
proposed methodology, divided into graph construction and community detec-
tion and analysis. In Sect. 5, we evaluate the results and give a conclusion and
outlook in Sect. 6.

2 Background

In this section, we present the relevant background, i.e., the multi-objective
pathfinding problem, various aspects of graph theory, including community
detection.

2.1 Graph Theory

Graphs are used to represent the relations between entities. A graph G con-
sists of a set of vertices that are the representations of such entities and a set
of edges that denote the relations. An edge usually consists of an unordered
or ordered set of two vertices. Formally, a directed graph G is a pair G =
(V,E), where V denotes the set of vertices and E is the set of edges, where
E ⊆ {

(n,n ′) | (n,n ′) ∈ V 2,n �= n ′,n,n ′ ∈ V
}
. Note that E consists of two-

element ordered subsets of V 2, which renders a graph directed. In undirected
graphs, by contrast, E consists of two-element unordered subsets of V 2 [23].

Finding Sets of Solutions for Temporal Uncertain Problems 211

Connected Components. For a graph G = (V,E), a connected component c
of G is a subgraph c = (V ′,E ′), where V ′ ⊆ V and E ′ ⊆ E . For any two vertices
u, v ∈ V ′, there exists a sequence of vertices (v1, v2, ..., vn) and a sequence of
edges (e1, e2, ..., e(n−1)) such that: v1 = u and vn = v (i.e., the first vertex
is u, and the last vertex is v). For each i, 1 ≤ i ≤ n − 1, ei is an edge in E’
that connects vi to v(i+1). Furthermore, we define C as the set of all connected
components. Therefore C = {ci}, with i = 1, · · · , kcomp, where kcomp is the
number of connected components [23].

Communities. Communities in graphs refer to subsets of nodes within a larger
network that exhibit higher intra-connectivity compared to interconnectivity.
The detection and analysis of communities play a crucial role in understand-
ing the structure and function of complex systems, including social networks,
biological networks, and information networks. Various algorithms and methods
have been developed to uncover communities in graphs, with the common objec-
tive of identifying densely connected subgraphs. A fundamental concept used in
community detection is modularity, which measures the quality of a partition of
nodes into communities. The modularity of a graph partition is defined as:

Q =
1

2|E |
∑

i,j

(
Aij − deg(i)degdeg(j)

2|E |
)

δ(Ci,Cj) (1)

where Aij represents elements of the adjacency matrix, deg(i) and deg(j) are
the degrees of node i and j, m is the total number of edges, Ci and Cj are the
communities of nodes i and j, and δ(Ci,Cj) is the Kronecker delta function that
equals 1 if Ci = Cj and 0 otherwise.

The modularity optimization problem aims to find the partition that max-
imizes Q, indicating strong community structure. Beyond modularity, other
methods like spectral clustering, hierarchical clustering, and random-walk-based
approaches have been developed to uncover communities. The study of commu-
nities in graphs has provided valuable insights into the organization of networks
and has practical applications in recommendation systems, information diffusion
modelling, and network analysis [12].

2.2 Multi-objective Pathfinding

The multi-objective route planning problem, hereafter called the pathfinding
problem, can be defined as a network flow problem [14,15]. The goal is to find a
set of optimal paths (routes) P∗ = {p1, · · · , pL} in a graph

G =
(
V ,E , φ, �f, ιV (P), ιE(P), ns, ne

)
(2)

where V is the set of vertices or nodes, E represents the set of edges and φ
represents a function mapping every edge to an ordered pair of nodes n and
n′; hence φ : E → {(n, n′) | (n, n′) ∈ V 2}. A path pi is the sequence of nodes

212 J. Weise and S. Mostaghim

from a starting node nS ∈ V to a predefined end node nEnd ∈ V , i.e., pi =
(ni, ni+1 · · · , nk), where nS = ni and nEnd = nk and ni ∈ V for i = 1, 2, · · · , k
and ∃φ(ei,i+1) = (ni, ni+1) ∈ E for i = 1, 2, · · · , k − 1. Such a path p is called
a path of length k − 1 from n1 to nk. A path pi is here represented as a list
of nodes in a graph. Another representation is a list of edges to traverse; hence
pi = (e1, · · · , ek−1) where nS = φ(e1)(1) and nEnd = φ(ek)(2) and ei ∈ E
for i = 1, 2, · · · , k. Following the definition of a multi-objective optimisation
problem, the decision variable x is a path p in search space Ω [20].

3 Related Work

In this section, we present the related work about decision support systems
(DSSs) that is used to decrease the number of solutions a DM has to choose from.
Furthermore, we give a short overview on methodologies related to the concept
of a Pareto graph, in which non-dominated solutions are put into relation using
a graph structure.

3.1 Pareto Set Reduction as a DSS

In real-world applications, the Pareto set can be vast, making it challenging
for decision-makers to analyse and select a preferred solution. To address this
challenge, Pareto set reduction techniques have been developed as a decision
support tool, aiming to reduce the size of the Pareto set while preserving its
essential characteristics [9].

Pareto set reduction methods, utilized to provide decision-makers with a
more manageable set of solutions, are divided into clustering-based and repre-
sentative selection approaches. Clustering-based methods amalgamate similar
solutions within the Pareto set into clusters, selecting a representative solution
from each cluster, and have been further explored through various subsequent
works focusing on the clustering of non-dominated solutions and the application
of graph-based representations in Multi-Objective Optimization (MOO) [2,20].
For instance, a graph-theoretical clustering approach has been proposed to iden-
tify a reduced set encapsulating extreme solutions of Pareto optimal solutions for
MOO problems [8]. Another technique employs clustering in both the objective
and decision spaces to find intersection sets, aiding a DM in electing the opti-
mal solution [20]. Conversely, representative selection strategies try to directly
select a subset of solutions embodying the diversity and distribution of the entire
Pareto set [8]. Through these methodologies, both approaches facilitate simpli-
fied analysis and decision-making by rendering a condensed yet diverse set of
solutions for evaluation.

3.2 Pareto Graphs

In multi-objective optimization (MOO), obtaining a well-distributed set of non-
dominated solutions is a crucial goal. Paquete and Stützle extended the concept

Finding Sets of Solutions for Temporal Uncertain Problems 213

of Pareto graphs [5] (also known as efficient graphs) to represent relationships
among solutions in the objective space. Each node in the Pareto graph cor-
responds to a solution, and each directed edge represents whether one solu-
tion can be reached from another within a certain distance. They conducted an
experimental analysis on the properties of the Pareto graph induced by the set
of efficient solutions for multi-objective combinatorial optimization problems,
observing that the Pareto graph contains clusters of non-dominated solutions
which are tightly connected subsets of solutions [13]. Furthermore, Liefooghe et
al. proposed to use a graph in which edges represent the potential ability of a
search algorithm to jump from one solution to another [10].

4 Finding Related Paths

In this section, we describe how pairs of paths can be identified that share
common sub paths and how a respective graph from this information can be
constructed. Furthermore, we propose to use community detection algorithms
to find interesting subsets of paths. These communities can help a DM to make
a more informed decision.

4.1 Constructing the Route-Change-Graph

To represent possible changes of routes, we can construct a Route-Change-Graph
(RCG), that is a graph G = (V,E) where each v ∈ V represents a single path
from the designated start to the goal node and each e ∈ E represents a change
opportunity between two routes (two nodes).

Such a graph is constructed by analysing a set of possible routes and identify-
ing their pairwise common contiguous nodes (excluding start and end). For each
pair of routes (ri, rj), where a route r = (ns, · · · , ne), we construct the intersec-
tion of their subsets of contiguous nodes, excluding ns and ne. Let ri and rj be the
ordered sets of their respective points. Therefore, Iij = ri\{ns, ne}∩rj \{ns, ne}
is the intersection of the two sets without the start and end nodes. We create a
such an intersection for each route pair. Each set Iij contains nodes and, there-
fore, subroutes, that are present and shared in two routes. However, instead of
obtaining the cardinality of the intersection set Iij , i.e. |Iij |, we save the number
of common contiguous subroutes |Sij | (between ri and rj , in a matrix M , where
each column and each row represents a route. Therefore, the n × n matrix M is
symmetric.

To obtain |Sij |, we consider two ordered sets ri and rj , where each ri consists
of a sequence (n1, · · · , nk) with k being variable. The task is to find the number of
common contiguous subsequences between ri and rj . A contiguous subsequence
of ri is any sequence (nia , · · · , nib) where 1 ≤ a < b ≤ k, and the indices a and
b form a contiguous range.

Let’s denote by S(ri) the set of all contiguous subsequences of ri, i.e.,
S(ri) = {s|s is a contiguous subsequence of ri}. We are interested in finding the
cardinality of the intersection of S(ri) and S(rj), denoted |Sij | = |S(ri)∩S(rj)|.

214 J. Weise and S. Mostaghim

In Algorithm 1, we show pseudocode to compute the common contiguous sub-
sequences.

Algorithm 1. Common Contiguous Subsequences of Ordered Sets r1 and r2
1: function CommonContiguousSubsequences(r1, r2)
2: S(r1) ← GetContiguousSubsequences(r1)
3: S(r2) ← GetContiguousSubsequences(r2)
4: common_count ← 0
5: for each s1 in S(r1) do
6: for each s2 in S(r2) do
7: if s1 = s2 then
8: common_count ← common_count + 1
9: end if

10: end for
11: end for
12: return common_count
13: end function

14: function GetContiguousSubsequences(r)
15: subsequences ← ∅
16: for i = 1 to length(r) do
17: for j = i + 1 to length(r) + 1 do
18: subsequences ← subsequences ∪ {(ri, ..., rj−1)}
19: end for
20: end for
21: return subsequences
22: end function

Each element in M contains then the number of possible change opportunities
between two routes. In the following, we only consider one half of the matrix,
as it is symmetric. The intersection of a route to itself is the route itself and is
not considered in the following analysis (the respective matrix cells are set to 0).
The matrix M looks as follows.

M =

r1 r2 · · · rn−1 rn
r1 0 |S12| |S13| |S14| |S15|
r2 − 0 |S23| |S24| |S25|
...

... − 0 |S34| |S35|
rn−1

...
... − 0 |S45|

rn − · · · · · · − 0

With the obtained route change matrix M , we can now construct the RCG,
i.e. GRCG = (VRCG, ERCG). We assume a bidirectional possibility to change
between two routes. Each route r is represented by a node vri ∈ VRCG. Each
element in the matrix M represents an edge in ERCG between two routes (column

Finding Sets of Solutions for Temporal Uncertain Problems 215

0.5 0.6 0.7 0.8 0.9

0

200

400

600

800

1000

1200

0

10

20

30

40

50
Edges
Components

Edges and Components against Threshold
#

 E
dg

es

#
 C

om
po

ne
nt

s

Fig. 1. |E | and |C| in relation to τ for GRCG,τ

and row), and the value represents the edge’s weight. As the matrix has as many
rows and columns as there are routes, the resulting graph can be substantially
large. Therefore, we propose to use a threshold value τ for the edges’ weights
that are constructed in the graph. The threshold value τ is determined using
quantiles on the matrix’ values. An edge is constructed if the respective value
is over the specified threshold. However, constructing fewer edges can result in
a disconnected graph and, therefore, in having multiple connected components.
Nevertheless, our proposed RCG should have the least possible number of con-
nected components while also having the least possible number of edges, keeping
it less dense. The graph can be constructed for various thresholds, and the value
that maintains both properties low can then be identified. In Fig. 1, such an
analysis is shown. With an increasing threshold, the number of edges decrease
while there are more connected components. In the given example, we can decide
on a threshold quantile of 0.891, which results in one connected component and
363 edges in ERCG. However, for a different set of routes, it can happen that
the possibility of having only one connected component is not given. Then, a τ
should be chosen, that minimizes |C|.

4.2 Community Detection and Analysis

After constructing the RCG, which nodes represent paths, which edges represent
change possibilities and which edges’ weights represent how often a route can
be changed, we can apply community detection algorithms to identify closely
related solutions. Furthermore, we propose to use various metrics of these com-
munities to identify subsets of solutions that are presented to a DM. In addition,
we propose three strategies a DM can utilise to identify a feasible and fitting
community.

216 J. Weise and S. Mostaghim

Community Detection. We propose to use the Leiden algorithms, which is an
extension of the Louvain algorithm, to ensure well-connected communities [18].

The Leiden algorithm is a highly efficient algorithm for community detection
in networks. It is an improvement over the Louvain method, which is known for
its high performance but has certain limitations. The Leiden algorithm addresses
these limitations by incorporating a refinement phase to improve the quality of
partitions.

Mathematically, the Leiden algorithm optimizes the modularity function,
shown in Equation (1).

We furthermore propose to set the settings of the algorithm to find as many
different communities that can be comprehended by a DM, i.e., according to
[16], 3 to 4. Furthermore, we propose to choose the graph’s modularity as the
quality function of the Leiden algorithm [12]. We set the number of iterations to
2, since this is the default setting of the implementation we use to compute the
partition [19].

Community Analysis. After finding a good number of communities, we pro-
pose to compute various metrics on these. These metrics should reflect how
intra-connected the communities are, but also if they are interconnected to other
communities. We have decided to compute four metrics for each community:

1. Density [3]. The density of a graph structure, denoted as ρ(G), is a measure
that provides insight into how many edges are present in the graph relative to
the maximum possible number of edges. For an undirected simple graph with
|V | vertices, the maximum number of edges is |V |(|V |−1)

2 . Thus, the density
is defined as:

ρ(G) =
2|E |

|V |(|V | − 1)
(3)

where |E| represents the number of edges in the graph. For directed graphs,
the maximum number of edges is |V |(|V | − 1), and the density is calculated
as:

ρ(G) =
|E |

|V |(|V | − 1)
(4)

Consequently, a graph’s density ranges from 0 (for an empty graph) to 1 (for
a complete graph).

2. Average Cluster coefficient [17]. The average clustering coefficient, 〈C〉,
quantifies the degree of clustering in a network. It’s calculated as:

〈C〉 = 1
|V |

∑

vi∈G

C(vi) (5)

Where:
– |V | is the total number of nodes

Finding Sets of Solutions for Temporal Uncertain Problems 217

– vi represents each node in the graph G
– C(vi) is the clustering coefficient of node vi

For a given node vi, C(vi) is the node’s clustering coefficient, i.e., a proportion
of existing links between its neighbours over the total possible links.
Given a node v with kv neighbours, the cluster coefficient C(v) for that node
can be calculated using the following equation:

C(v) =
2Υv

kv(kv − 1)

where Υv represents the number of edges between the neighbours of v. This
equation calculates the ratio between the number of actual edges Υv and the
maximum possible number of edges between kv nodes. In other words, it is
the ratio of actual triangles that node involved in and the number of possible
triangles.
If a node has less than two neighbours, its clustering coefficient is 0. This
measure provides an overall sense of the network’s cliquishness.

3. Group Betweenness Centrality [6]. Everett and Borgatti proposed the
concept of Group Betweenness Centrality as a measure to identify the most
central group within a network. It extends the idea of individual node cen-
trality to encompass groups of nodes. The Group Betweenness Centrality of a
group of nodes is defined as the sum of the fraction of shortest paths between
all pairs of nodes in the network that pass through at least one node in the
group. This measure reflects the extent to which a group collectively acts as
a bridge or gatekeeper between other nodes in the network. Given a group of
nodes, V, the betweenness centrality of this group, denoted as bc(V), is given
by:

bc(V) =
∑

nfrom �=v �=nto

(
σ(nfrom, nto|V)
σ(nfrom, nto)

)
(6)

Where:
– σ(nfrom, nto) is the total number of shortest paths from node nfrom to

node nto
– σ(nfrom, nto|V) is the number of those paths that pass through some node

in group V

Notice that nfrom �= v �= nto means that we take all pairs of nodes except
those pairs where either node is in the group V. In contrast to the other three
metrics, we compute the Group Betweenness Centrality for a community in
the scope of the whole graph, while the other metrics are calculated using
solely the nodes and edges of the respective community.

4. Graph Degree Centrality [7]. The degree centrality of a graph is a mea-
sure of the overall connectivity of the graph. It is an average of the degree
centralities of all nodes in the graph.
It is defined as:

218 J. Weise and S. Mostaghim

dc(G) =
∑|V |

i=1 [dc(v∗) − dc (vi)]

|V |2 − 3|V | + 2
(7)

Where:
– dc(G) represents the degree centrality of the graph G
– dc(v∗) and dc(vi) denote the degree centralities of the node with the

highest degree (v∗) and each other node (vi) respectively
– |V | is the total number of nodes in the network

This formula calculates the sum of differences between the degree centrality
of the node with the highest degree and that of every other node. This sum
is then normalized by dividing it by |V |2 − 3|V | + 2, which is derived from
the maximum possible sum of differences.
In this case, a higher degree centrality indicates that one node (the one with
the highest degree) is significantly more connected than others, while a lower
degree centrality suggests a more evenly distributed network where no single
node dominates in terms of connections.

Community Selection. After computing the four different metrics for each
community, we can use one or more of these measurements to select a community
that is being presented to a DM. With our approach, we shift the DM’s task from
the objective space (and where possible interesting areas are) to a space where
they have to decide on specific properties of subsets of solutions. Especially for
problems similar to the multi-objective pathfinding problem, that can be highly
uncertain from a temporal perspective, it can be beneficial to choose a subset
of solutions rather than a single solution to have alternatives ready when the
solution is executed but not feasible any more. For instance, when traversing a
path, a DM may get the information that a chosen segment on a later stage of
the path is not traversable any more. With a pre-computed set of alternative
solutions, the DM can still choose from various non-dominated solutions. As
follows, we present three strategies to use the proposed community metrics. We
propose to apply non-dominated sorting of the set of communities using their
respective metric values, and then to use a combination of the four metrics.

Always alternatives. If a DM aims for solutions that have always alternatives
when being traversed, we propose to choose a community with a high density
and low graph degree centrality. An example of such a community is presented
in Community 1 in Fig. 2.

Main route, but possible dead ends in alternatives. A star shape community rep-
resents a set of alternatives with one main route and adjacent solutions. Choosing
such a set may result from a high priority on a specific route. However, depend-
ing on the number of rays of the star, i.e., the alternatives, a different route
might be available with the sacrifice of having no more alternatives afterwards.
Nevertheless, a return to the main route can be possible. An example of such a
community is presented in Community 2 in Fig. 2.

Finding Sets of Solutions for Temporal Uncertain Problems 219

Community 0 Community 1

Community 2

Fig. 2. The three obtained communities. Force-directed layout for visualisation.

Few central solutions, few alternatives. A community can exist with multiple
central solutions, where each solution has a substantially high number of alter-
natives, and that community has also a few additional solutions with a lower
number of available alternatives. An example of such a community is presented
in Community 0 in Fig. 2.

5 Evaluation and Discussion

In this section, we apply the proposed methodology to an instance of the
pathfinding problem that has been proposed in [20] and which has been pub-
lished in [22].

The instance of the problem represented the task of finding the set of Pareto
optimal routes within the European road network from Warsaw to Madrid. The
final network consisted of 1.14 × 108 nodes and 1.46 × 108 edges and a variation
of the NSGA-II algorithm [4,20] was applied to optimise (minimization) four
objectives, i.e., length of the route, time to traverse it, positive ascent and the
curvature. For a detailed description, the interested reader is referred to [20]. The
authors have obtained 69 different and non-dominated routes that are shown in
Fig. 3. Although the routes are very similar from a visual perspective, there are
small differences in various locations.

We can now construct all intersection sets Si, using our proposed method-
ology, and build the matrix M from it. The result is a 69 × 69 matrix, which
elements represent possible changes between routes and the value related to
the number of possible changes. From this adjacency matrix, we construct the

220 J. Weise and S. Mostaghim

Fig. 3. All obtained Pareto-optimal routes for four objectives [20]

respective RCG, shown in Fig. 4. The graphical representation was created using
a force directed layout [1].

As described in Sect. 4.1, we use the 0.891-quantile as a threshold so that our
graph has exactly one connected component. In Fig. 4, we have also coloured
the communities, that have been found when applying the Leiden algorithm. In
Fig. 2, we show each community separately, also arranged using a force-directed
layout. From a visual approach, the structural differences of the communities
are already visible.

To compare the communities, we can now compute the proposed metrics,
i.e., density, average cluster coefficient, group betweenness centrality and graph
degree centrality. In Fig. 5, we show these metrics for each community. It should
be noted, that, in terms of these metrics, all communities are non-dominated.
We propose to only use non-dominated communities. From a visual perspective,
community 2 is structurally different compared to the other two. It has a rather
high graph degree centrality and group betweenness centrality, but also a low
density and an average cluster coefficient of 0, as the community does not contain
any triangles.

We assume that a DM should decide on one specific community. However,
also the linking between communities can be of interest. The DM can utilise the
Group Betweenness Centrality to estimate how well a change between commu-

Finding Sets of Solutions for Temporal Uncertain Problems 221

Route Change Graph

Fig. 4. The obtained RCG from the real-world example. Layout obtained by applying
a force directed algorithm

0 1 2

0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

Density
Avg. Cluster Coefficient
Group Betweeness Centrality
Graph Degree Centrality

Community Characteristics

Community

V
al

ue

G
ra

ph
 D

eg
re

e
C
en

tr
al

ity

Fig. 5. Various characteristics of each community. The right y-axis shows Graph Degree
Centrality, the left axis shows the other metrics.

222 J. Weise and S. Mostaghim

nities can be done. In other words, a community with a high group betweenness
centrality enables to easily change to other communities.

To provide an easier access to our proposed methodologies, we have published
the code that we used. In addition, we provide an easy-to-use UI that uses the
artificial and real-world data [21].

6 Conclusion and Outlook

In this paper, we have proposed a novel DSS that can identify a comprehensible
number of subsets of solutions for decision-makers to choose from. The approach
is especially suitable for problems where there are possibilities to switch between
solutions, as they are temporal uncertain and alternatives are available. With our
approach, an Route-Change-Graph (RCG) is generated using a problem specific
threshold to keep the number of edges low, then communities are identified and
finally, the communities are analysed using various graph metrics to help a DM
choose the most fitting subset of solutions. In addition, we have evaluated the
methodology on a real-world problem. However, an empirical analysis with actual
DMs is missing and should be carried out in the future.

Furthermore, in the future, we want to test the approach on different prob-
lems than route planning on maps, e.g., network routing or also medical applica-
tions. Moreover, other graph related metrics than the four that we have utilised,
should be evaluated in the future. We see our proposed methodology as a starting
point to more problem-centric DSS instead of general applicable approaches.

References

1. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. In: Proceedings of the International AAAI Con-
ference on Web and Social Media, vol. 3, issue 1, pp. 361–362 (2009)

2. Bejarano, L.A., Espitia, H.E., Montenegro, C.E.: Clustering analysis for the pareto
optimal front in multi-objective optimization. Computation 10(3), 37 (2022). Pub-
lisher: Multidisciplinary Digital Publishing Institute

3. Bollobás, B.: Graph Theory, vol. 63. Springer, New York, New York, NY (1979),
series Title: Graduate Texts in Mathematics. https://doi.org/10.1007/978-1-4612-
9967-7

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

5. Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria
combinatorial optimization. Eur. J. Oper. Res. 97(1), 159–166 (1997)

6. Everett, M.G., Borgatti, S.P.: The centrality of groups and classes. J. Math. Sociol.
23(3), 181–201 (1999)

7. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.
1(3), 215–239 (1978)

8. Kahagalage, S., Turan, H.H., Jalalvand, F., El Sawah, S.: A novel graph-theoretical
clustering approach to find a reduced set with extreme solutions of Pareto optimal
solutions for multi-objective optimization problems. J. Global Optim. 86(2), 467–
494 (2023)

https://doi.org/10.1007/978-1-4612-9967-7
https://doi.org/10.1007/978-1-4612-9967-7

Finding Sets of Solutions for Temporal Uncertain Problems 223

9. Korhonen, P., Wallenius, J.: A pareto race. Naval Res. Logist. (NRL) 35(6), 615–
623 (1988)

10. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On
pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço,
N., Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem Solving from
Nature - PPSN XV. LNCS, pp. 232–244. Springer International Publishing, Cham
(2018)

11. Miller, G.A.: The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)

12. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004), publisher: American Physical Society

13. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective
combinatorial optimization: an experimental analysis. In: Barichard, V., Ehrgott,
M., Gandibleux, X., T’Kindt, V. (eds.) Multiobjective Programming and Goal
Programming. LNEMS, pp. 69–77. Springer, Berlin, Heidelberg (2009)

14. Pulido, F.J.J., Mandow, L., Pérez-De-La-Cruz, J.L.L.: Dimensionality reduction
in multi objective shortest path search. Comput. Oper. Res. 64, 60–70 (2015)

15. Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest
path problems. Comput. Oper. Res. 36(4), 1299–1331 (2009)

16. Rouder, J.N., Morey, R.D., Cowan, N., Zwilling, C.E., Morey, C.C., Pratte, M.S.:
An assessment of fixed-capacity models of visual working memory. Proc. Natl.
Acad. Sci. 105(16), 5975–5979 (2008)

17. Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity. J.
Graph Algorithms Appl. 9(2), 265–275 (2005)

18. Traag, V.A., Waltman, L., van Eck, N.J.: From Louvain to Leiden: guaranteeing
well-connected communities. Sci. Rep. 9(1), 5233 (2019). Publisher: Nature Pub-
lishing Group

19. Traag, V., et al.: vtraag/leidenalg: 0.10.0 (2023)
20. Weise, J.: Evolutionary many-objective optimisation for pathfinding problems.

Doctoral Thesis, Otto von Guericke University Magdeburg, Magdeburg (2023).
Accepted: 2023–03-14T10:25:49Z. ISBN: 9781839107955

21. Weise, J.: Pareto graph analysis (2023). https://doi.org/10.5281/zenodo.10044244
22. Weise, J., Mostaghim, S.: Dataset (Pareto fronts and sets) for the Multi-objective

pathfinding problem (2023). https://doi.org/10.5281/ZENODO.10008219
23. Wilson, R.J.: Introduction to Graph Theory. Longman (2010)

https://doi.org/10.5281/zenodo.10044244
https://doi.org/10.5281/ZENODO.10008219

Interpretable Solutions for Breast Cancer
Diagnosis with Grammatical Evolution

and Data Augmentation

Yumnah Hasan(B) , Allan de Lima , Fatemeh Amerehi ,
Darian Reyes Fernández de Bulnes , Patrick Healy , and Conor Ryan

University of Limerick, Limerick, Ireland
{Yumnah.Hasan,Allan.Delima,Fatemeh.Amerehi,Darian.Reyesfernandezdebulnes,

Patrick.Healy,Conor.Ryan}@ul.ie

Abstract. Medical imaging diagnosis increasingly relies on Machine
Learning (ML) models. This is a task that is often hampered by severely
imbalanced datasets, where positive cases can be quite rare. Their use
is further compromised by their limited interpretability, which is becom-
ing increasingly important. While post-hoc interpretability techniques
such as SHAP and LIME have been used with some success on so-
called black box models, the use of inherently understandable models
makes such endeavours more fruitful. This paper addresses these issues
by demonstrating how a relatively new synthetic data generation tech-
nique, STEM, can be used to produce data to train models produced by
Grammatical Evolution (GE) that are inherently understandable. STEM
is a recently introduced combination of the Synthetic Minority Over-
sampling Technique (SMOTE), Edited Nearest Neighbour (ENN), and
Mixup; it has previously been successfully used to tackle both between-
class and within-class imbalance issues. We test our technique on the
Digital Database for Screening Mammography (DDSM) and the Wiscon-
sin Breast Cancer (WBC) datasets and compare Area Under the Curve
(AUC) results with an ensemble of the top three performing classifiers
from a set of eight standard ML classifiers with varying degrees of inter-
pretability. We demonstrate that the GE-derived models present the best
AUC while still maintaining interpretable solutions.

Keywords: Augmentation · Breast Cancer · Ensemble · Grammatical
Evolution · STEM

1 Introduction

In medical imaging diagnoses, where decisions can have significant implications
for individual’s health, it is essential to gain a thorough understanding of the
factors influencing these decisions. While Machine Learning (ML) models have
proven effective in diagnosing a variety of medical conditions in medical imag-
ing [29], their limited interpretability poses a challenge to their broader adop-
tion. Moreover, the recently introduced European Union (EU) Communication
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 224–239, 2024.
https://doi.org/10.1007/978-3-031-56852-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_15&domain=pdf
http://orcid.org/0000-0001-9310-8886
http://orcid.org/0000-0002-1040-1321
http://orcid.org/0000-0002-6255-4573
http://orcid.org/0000-0002-7413-5122
http://orcid.org/0000-0002-3824-7442
http://orcid.org/0000-0002-7002-5815
https://doi.org/10.1007/978-3-031-56852-7_15

Interpretable Solutions for Breast Cancer Diagnosis 225

on Fostering a European approach to AI [1] specifically targets explainability as
a key concern for the deployment of ML and Artificial Intelligence (AI) models.

Another prevalent challenge in the medical imaging domain is the issue of
class imbalance within the dataset. Methods such as Synthetic Minority Over-
sampling Technique (SMOTE), Edited Nearest Neighbour (ENN), and Mixup
combined together as STEM [16], which leverages the full distribution of minor-
ity classes, can effectively address both inter-class and intra-class imbalances.
In [16], STEM was applied in-conjunction with an ensemble of ML classifiers,
producing promising outcomes. However, understanding the reasoning behind
ML model predictions remains a complex task. Furthermore, as the volume of
instances and the specificity of problems grow, the complexity of the derived
solutions also increases.

Building trust in ML classifiers and understanding the behaviour of the solu-
tions is pivotal to their broader acceptance. Employing inherently explainable
models is a useful strategy when generating Explainable AI models. Grammat-
ical Evolution (GE) [26], an Evolutionary Computation (EC) technique, has
been used to leverage grammars to define and constrain the syntax of potential
solutions, producing inherently explainable models [22].

To address these challenges, we developed a classification system based on
GE. Our study includes a comprehensive comparison with an ensemble of other
ML classifiers. Notably, GE models show enhanced interpretability compared
to other traditional ML models. GE provide solutions in the form of symbolic
expressions, offering a more intuitive understanding of the decision-making pro-
cess. This emphasis on interpretability is crucial, especially in healthcare, where
understanding the rationale behind decisions is of paramount importance.

Our research hypothesises that the use of the STEM augmentation technique
combined with an approach rooted in GE produces more interpretable solutions
as compared to the other ensemble ML classifiers.

The contributions of this paper are as follows. Firstly, we develop a method
that combines a GE classifier with STEM, outperforming an ensemble of ML
classifiers, as indicated by the superior AUC. Secondly, our approach distin-
guishes itself by offering more interpretable solutions compared to the ensemble
method. Finally, the paper presents rigorous statistical analyses to comprehen-
sively evaluate the performance of implemented data augmentation techniques
on each data setup.

The rest of the paper is structured as follows: Sect. 2 reviews the existing
literature. Section 3 outlines the proposed methodology, and Sect. 4 addresses
experimental details performed in this work. Results and discussion are described
in Sect. 5, and Sect. 6 presents the conclusion and future guidelines.

2 Literature Review

In the realm of medical applications, particularly in the context of breast can-
cer diagnosis, the issue of imbalanced datasets is a critical concern. Imbal-
ances, where one class significantly outweighs the other, can introduce biases

226 Y. Hasan et al.

and compromise the reliability of ML models. Implementing effective strategies
for class balancing, such as oversampling, undersampling, and their combina-
tion, results in a more balanced and representative training dataset [9]. Previous
studies [14,17] have recognized the impact of class imbalance in medical datasets
for ML tasks.

Moreover, ML algorithms have demonstrated notable efficiency in the classifi-
cation of medical data. A compelling study showcases the effectiveness of ensem-
bles, where Bayesian networks and Radial Basis Function (RBF) classifiers with
majority voting resulted in an accuracy of 97% [20] when applied to the Wis-
consin Breast Cancer (WBC) dataset. Furthermore, an approach that combined
linear and non-linear classifiers using Micro Ribonucleic Acid (miRNA) profiling
achieved an impressive accuracy of 98.5% [28].

While these findings are promising, ML algorithms may struggle to contex-
tualize information and are susceptible to unexpected or undetected biases orig-
inating from input data. Additionally, they often lack transparent justifications
for their predictions or decisions [25]. In response to this, employing GE can
yield interpretable solutions. As a variant of Genetic Programming, GE evolves
human-readable solutions, offering explanations for the rationale behind its clas-
sification decisions, which is a significant advantage over current paradigms in
unsupervised and semi-supervised learning [10].

Previous studies have already demonstrated the effectiveness of GE across
a range of ML tasks. It has proven valuable for feature generation and feature
selection [11], as well as for hyperparameter optimization [24]. The GenClass
system [3], built upon GE, demonstrates promising outcomes and outperforms
RBF networks in certain classification problems. They utilized thirty benchmark
datasets from the UCI and KEEL repositories, including Haberman, which con-
sists of breast cancer instances. While it has excelled in these areas, there are
still avenues for further exploration.

In this paper, we aim to investigate the efficiency of utilizing GE as a medical
imaging classifier combined with STEM to handle imbalance distributions of
data samples, particularly in breast cancer diagnosis. Leveraging the interpretive
and adaptable features of GE, our objective is to achieve accurate and reliable
outcomes that can be easily explained.

3 Methodology

For analysis, we utilize two primary breast cancer datasets. One consists of
images, the Digital Database for Screening Mammography (DDSM) [18], while
the other consists of tabular data, the WBC [31] dataset. DDSM is a compre-
hensive collection of mammograms, encompassing both normal and abnormal
images. For this study, we focused on DDSM ′s Cancer 02 volume and three
volumes of normal samples (Volume 01-03). By selecting one volume of cancer
images compared to three volumes of normal images, we maintain a realistic class
imbalance ratio. These images come from the Craniocaudal (CC) and Mediolat-
eral Oblique (MLO) views of both the left and right breasts. We work with

Interpretable Solutions for Breast Cancer Diagnosis 227

152 cancerous images and 876 healthy ones from volumes 1-3. Each image was
divided into four segments: the entire breast (I), the top segment (It), the middle
segment (Im), and the bottom segment (Ib).

Fig. 1. Outline of the proposed approach for breast cancer classification using GE and
other classifiers.

The WBC dataset consists of 30 features derived from Fine Needle Aspi-
ration (FNA) samples of breast masses, categorising patients into benign (non-
cancerous) and malignant (cancerous) cases. It comprises 212 malignant samples
and 357 benign samples.

To create a dataset containing breast cancer images from the DDSM image
for evaluating the proposed methodology, we first need to extract features that
will be used for training. This involves isolating the breast region, eliminating
irrelevant background data, segmenting the breast region, and extracting perti-
nent features to generate a comprehensive training dataset of breast segments.
Initially, a median filter is applied to reduce noise within the images. Sub-
sequently, non-essential background data, often containing machine-generated
labels such as ‘CC’ or ‘MLO’, is removed. For this step, we employed a precise
Otsu thresholding technique. Following this, the segmenting process proposed
in [27] effectively partitioned images into three overlapping segments.

Feature extraction is the next critical phase. In our study, we extracted a set
of Haralick’s Texture Features [15] from both whole and segmented images. The
selection of these features is based on the hypothesis that there are discernible

228 Y. Hasan et al.

textural differences between normal and abnormal images. Specifically, we com-
pute thirteen distinct Haralick features from the Gray-Level Co-Occurrence
(GLCM) matrix, employing four orientations corresponding to two diagonal
(grey-level numeric values of the images) and two adjacent neighbours. This
process results in generating a total of 52 features per segment or image.

High class imbalance present in the utilized datasets poses a significant
challenge in developing robust and accurate predictive models. Therefore,
explicit data augmentation has been implemented in the training set to effec-
tively address this class imbalance challenge. Using nine distinct augmentation
approaches outlined in Sect. 4.3, synthetic samples are generated to enrich the
dataset with more discriminative information, ultimately improving the learning
capabilities of the model.

In the last step, the GE classifier and an ensemble of other ML classifiers are
trained separately to make predictions on the test set. Augmented training data
is used, while the original imbalanced test set is used for testing. For ensembling,
eight ML classifiers are used as mentioned in Sect. 4.5. The top three classifiers,
based on AUC, are selected and combined through majority voting to create the
final predictions. The complete pipeline of the proposed approach is shown in
Fig. 1.

4 Experimental Details

The DDSM and WBC datasets are used to evaluate the proposed technique.
The study employs five different data setups to train the classifiers. For the
WBC dataset, a single setup is utilized, consisting of 30 breast mass features
per sample acquired through FNA.

In contrast, the DDSM dataset includes images from two views, CC and
MLO. To conduct experiments, the dataset is categorized into four distinct con-
figurations based on these views. In the initial setup, denoted as “SCC”, data is
exclusively extracted from segments of the CC view. Conversely, the second cate-
gory, “SMLO”, comprises segmented images exclusively from the MLO view. The
third configuration, “SCC+MLO”, combines segments from both views. Lastly,
the fourth setup, “FCC+MLO”, considers the full image (non-segmented) features
from both the CC and MLO views for comprehensive analysis. The number of
features for each segment or image is 52, used in all these setups

We divided the datasets into training and testing sets at an 80:20 ratio,
respectively. Notably, all DDSM configurations exhibit significant class imbal-
ances, with class ratios ranging from 6:94 SCC , SMLO and SCC+MLO setups.
For FCC+MLO the ratio between the positive versus negative class is 15:85. Like-
wise, the WBC dataset has a class distribution of 37% positive and 63% negative
classes as illustrated in Fig. 2.

Interpretable Solutions for Breast Cancer Diagnosis 229

Fig. 2. Concentric ring chart for setup description. Rings are setups, and the coloured
areas indicate training positive percent. Legend includes the training positive and neg-
ative total samples.

4.1 System Settings

All the ML experiments were conducted using the PyCaret library [2]. The
GRAPE [8] framework was used to perform GE experiments. For statistical
analysis, we employed the AutoRank Python library [19] to evaluate the perfor-
mance of the implemented augmentation approaches. Our code, along with our
dataset configurations, is available in our GitHub repository1.

4.2 Performance Metric

To evaluate the performance of the designed approach, AUC has been selected as
the assessment metric which uses Trapezoidal rule for its computation. AUC has
become a widely accepted performance measure in classification problems due
to its reliability, particularly in the context of imbalanced datasets [13,21].AUC
serves as a comprehensive metric, encompassing both sensitivity (Eq. 1) and
specificity (Eq. 2), considering various threshold values. TPos denotes true posi-
tives, TNeg true negatives, FPos false positives, and FNeg denotes false negatives.

Sensitivity =
TPos

TPos + FNeg
(1)

Specificity =
TNeg

TNeg + FPos
(2)

4.3 Class Balancing

The methods utilized for generating synthetic data with the aim of equalizing the
class distribution ratio include the Synthetic Minority Oversampling Technique
1 https://github.com/yumnah3/Interpretable-Breast-Cancer-Diagnosis.git.

https://github.com/yumnah3/Interpretable-Breast-Cancer-Diagnosis.git

230 Y. Hasan et al.

(SMOTE) [7], Borderline SMOTE (BSMOTE) [14], SMOTENC (S-NC) [7],
Support Vector Machine SMOTE (SVM-S) [23], Mixup [32], and ADASYN
(ADA) [17]. Additionally, three hybrid methods, SMOTE Edited Nearest Neigh-
bour (S-ENN) [30] SMOTE-Tomek (S-Tomek) [5] and combination of SMOTE,
ENN, and Mixup (STEM) are also implemented to compare against each other.

Notably, STEM generates a balanced number of samples for each class. Com-
pared to other methods, it demonstrates the ability to increase the number of
data samples more extensively, resulting in improved model performance.

4.4 Grammatical Evolution

GE’s grammars are typically defined in Backus-Naur Form (BNF), a notation
represented by the tuple N , T , P , S, where N is the set of non − terminals,
transitional structures usually with semantic meaning, T is the set of terminals,
items in the phenotype, P is a set of production rules, and S is a start non −
terminal. The following simple grammar was created to evolve solutions for the
first four data setups with 52 numerical features, whereas, for the last setup, 30
numerical features were used:

〈expression〉 ::= 〈operator〉(〈expression〉,〈expression〉 | 〈operand〉
〈operator〉 ::= add | sub | mul | pdiv

〈operand〉 ::= 〈x〉 | 〈digit〉〈digit〉.〈digit〉〈digit〉
〈x〉 ::= x[0] . . . x[51]

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This grammar permits the use of basic arithmetic operations (addition, sub-
traction, multiplication, and division –protected in case the divisor is equal to 0)
and the inclusion of real numbers constants. These constants are helpful because
GE can explore beyond the parameter space given to minimize the error between
expected and predicted outputs, something that does not happen with other ML
classifiers. The non − terminal X encompasses the fifty-two numerical features
for the first four setups of the DDSM dataset and the thirty numerical features
for the WBC dataset.

The output domain of the evaluations is o ∈ [−∞,∞]. Subsequently, a sig-
moid function is applied to constrain the values to σ(o) ∈ [0, 1]. For binary
classification, the typical interpretation of the sigmoid function is the probabil-
ity of belonging to class 1, and therefore we use σ(o) to calculate AUC. Table 1
presents the experimental parameters used in this work:

Interpretable Solutions for Breast Cancer Diagnosis 231

Table 1. List of parameters used to run GE

Parameter type Parameter value

Number of runs 30

Number of generations 100

Population size 200

Mutation probability 0.01

Crossover probability 0.8

Elitism size 1

Codon size 255

Initialisation Sensible

Maximum initial depth 10

Maximum depth 35

Wrapping 0

4.5 Other Classifiers

We also used the augmented training data to train a diverse ensemble of eight
ML classifiers. This ensemble includes Random Forest (RF), Linear Discrimi-
nant Analysis (LDA), Quadratic Discriminant Analysis, LightGBM, XGBoost,
AdaBoost, KNN, and Extra Trees models. Initially, a comprehensive model is
trained using all eight classifiers. Subsequently, based on the AUC metric, the
three best-performing models are selected. These selected models are then com-
bined through a majority voting approach. The final predictions are made on
the test dataset, which consists of imbalanced and unseen samples.

5 Results and Discussion

To evaluate the performance of the proposed method, five distinct data setups are
employed. Four configurations are derived from the DDSM dataset, considering
variations in views, segments, and full images. The fifth setup is from the WBC
dataset. To enhance the robustness of the training setups, nine augmentation
approaches are applied and compared. The assessment is conducted using an
ensemble of other ML classifiers, alongside GE.

The performance of the classifiers is compared based on AUC for each
dataset. The ensemble classifiers are denoted by their respective initials: Ld

for Linear Discriminant Analysis, Q for Quadratic Discriminant Analysis, E for
ExtraTree, R for Random Forest, Li for Lightgbm, K for KNN, A for Adaboost,
and X for Xgboost. It is important to note that the AUC values of the other
ensemble classifiers are presented for a single run, and they are then compared
against the median AUC derived from 30 runs conducted with GE.

Table 2 provides an overview of the results. In the first setup, SCC , an AUC
of 0.91 was achieved, outperforming the ensemble of LdQE, which obtained an

232 Y. Hasan et al.

AUC of 0.90. Similarly, in the second setup, SMLO, an AUC of 0.90 was attained,
while the ensemble of LdQE achieved a slightly lower AUC of 0.84.

For the third setup SCC+MLO, an AUC of 0.92 was observed using the GE
classifier, outperforming other classifiers that yielded the highest AUC of 0.87
using LdQE. When the classifiers were trained on full image features in setup
FCC+MLO, the highest AUC values were 0.94 and 0.85, obtained by the GE
classifier and the ensemble of LdQE, respectively.

When comparing the AUC using the WBC dataset, both GE and the ensem-
ble of AKLr achieved an AUC of 0.99.

Table 2. A comparison of the AUC for GE and the ensemble approaches using the
nine different augmentation techniques for each data setup.

Setups Classifiers ADA BSMOTE S-ENN SMOTE S-NC S-Tomek SVM-S Mixup STEM

SCC GE 0.91 0.90 0.89 0.91 0.90 0.90 0.90 0.91 0.90

Others 0.76 0.73 0.93 0.77 0.82 0.77 0.73 0.90 0.90

LdQE LdQE LdQE LdQE LdQE LdQE LdQE LdQE LdQE

SMLO GE 0.90 0.90 0.90 0.90 0.87 0.90 0.89 0.90 0.89

Others 0.80 0.80 0.80 0.82 0.78 0.82 0.81 0.81 0.84

ELiR ELiR LdQE ELiR ELiX ELiX ELiR LdQE LdQE

SCC+MLO GE 0.91 0.91 0.92 0.91 0.92 0.91 0.91 0.90 0.91

Others 0.75 0.68 0.77 0.75 0.70 0.76 0.62 0.76 0.87

ELiR ELiR ELiR ELiR ELiX ELiR ELiR ELiR LdQE

FCC+MLO GE 0.93 0.91 0.90 0.92 0.93 0.94 0.93 0.93 0.93

Others 0.78 0.84 0.72 0.81 0.82 0.82 0.82 0.81 0.85

EQR ELiR ERX EQR ELiQ ELiR EQR LiQLd LdQE

WBC GE 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99

Others 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.99

LdQE LdQE EKLi LdQE LdQE LdQE LdQE LdELi AKLr

The augmentation approaches are compared using the boxplot presented
in Fig. 3. The plot indicates the AUC obtained from all nine augmentation
approaches for each setup across all 30 runs. The horizontal line in red indi-
cates the median value of the respective group.

GE provides valuable insights into the most informative features used in
the solutions, as demonstrated in Table 3, which present the most frequently
used features for each setup. The features extracted and presented in these
tables are sorted by their impact on the solutions. Common features consistently
found in Table 3 for the DDSM dataset include “Inverse Difference Moment
(IDM)”(feature 17), “Contrast” (feature 5), and “Difference Entropy” (feature
41). Both contrast and IDM represent the difference in grey levels between pixels,
while entropy indicates the level of randomness in the grey levels.

For the WBC dataset, as shown in Table 3, the top three features that con-
sistently appear in the solutions are 21, 20, and 27, corresponding to “Concave
Point Worst”, “Fractal Dimension”, and “Radius Worst” respectively. The con-
cave point worst feature indicates the severity of the concave portion of the shape,

Interpretable Solutions for Breast Cancer Diagnosis 233

Fig. 3. Boxplot analysis comparing opponent approaches and their AUC distributions
across multiple runs

with “worst” denoting the highest mean value. The “fractal dimension” is a cru-
cial characteristic that provides information related to the geometric shape of
the fractals. The third feature, radius worst, represents the largest mean value
for the distances from the centre to points on the perimeter.

While other ML models may share the feature of interpretability, they often
present challenges that GE does not encounter. Decision trees and RF, though
interpretable, lose clarity with complex structures and aggregation [4]. LDA
relies on the Gaussian distribution of the data and assumes that the covariance
of two classes is the same [12], limiting its applicability. In contrast, GE does not
depend on these factors and maintains transparency throughout its evolution,
even when addressing complex and non-linear problems.

234 Y. Hasan et al.

Table 3. This analysis unveils prevalent features used by GE in all five setups. For
SCC and SMLO, percentages are computed from 8684 and 7945 occurrences. Likewise,
contributions to SCC+MLO and FCC+MLO are based on 8138 and 8522 occurrences,
respectively. The features of WBC are also examined, with percentages drawn from
9076 appearances.

SCC SMLO SCC+MLO FCC+MLO WBC

Feature Usage Feature Usage Feature Usage Feature Usage Feature Usage

17 6.22% 5 4.93% 17 5.35% 41 3.78% 21 7.83%

41 4.87% 4 4.46% 5 4.36% 37 3.71% 20 7.64%

38 4.58% 41 3.95% 7 4.33% 4 3.63% 27 6.47%

5 4.19% 7 3.75% 41 4.02% 38 3.46% 24 5.56%

18 3.88% 17 3.65% 18 3.93% 11 3.38% 1 5.1%

7 3.50% 34 3.34% 38 3.55% 17 3.18% 13 4.87%

36 2.73% 45 3.15% 11 3.08% 5 3.11% 7 4.23%

5.1 Statistical Analysis

The statistical comparison of implemented data augmentation techniques
involved a non-parametric Bayesian signed-rank test [6] applied to each dataset.
In our analysis, conducted on nine augmentation techniques with 30 paired AUC
samples each, the test distinguished between methods being pair-wise larger,
smaller or inconclusive. The approaches listed in the rows are compared with
the methods presented in the corresponding column. The subsequent Bayesian
signed-rank test revealed significant distinctions among the techniques. In the
cases where STEM has outperformed the other approaches are underlined in the
Table 4.

In the SCC setup, as illustrated in Table 4(a), STEM, Mixup, SMOTE, ADA,
S-NC, SVM-S, S-Tomek and BSMOTE all exhibit larger medians than S-ENN.

The statistical comparison of medians depicted in Table 4(b) among various
augmentation populations reveals notable differences for SMLO setup. STEM, S-
NC, S-Tomek, ADA, and Mixup exhibit larger medians compared to BSMOTE,
SVM-S, SMOTE, and S-ENN.

Similarly, for setup SCC+MLO in the Table 4(c) STEM again showcases its
effectiveness by outperforming S-NC, BSMOTE, Mixup, SMOTE, and ADA
in medians. Additionally, S-ENN demonstrates superiority by exhibiting larger
medians than Mixup, SMOTE, and ADA. Additionally, S-Tomek outperforms
SMOTE in median values. SVM-S, in particular, stands out with a larger median
than ADA.

Interpretable Solutions for Breast Cancer Diagnosis 235

Moreover, STEM stands out by consistently surpassing S-Tomek, Mixup,
BSMOTE, ADA, SVM-S, SMOTE, and S-ENN in median values presented in
Table 4(d) for FCC+MLO . Additionally, S-NC demonstrates superiority over
SMOTE and S-ENN, while S-Tomek outperforms S-ENN in median values.
Mixup, BSMOTE, ADA, SVM-S, and SMOTE all exhibit larger medians than
S-ENN.

Finally, in the WBC setup, as depicted in Table 4(e), STEM emerged as the
top-performing method, surpassing S-NC, BSMOTE, S-Tomek, Mixup, SVM-S,
SMOTE, and ADA. S-NC exhibited a higher median than SMOTE and ADA,
while Mixup outperformed SMOTE in median value. SVM-S demonstrated a
larger median than SMOTE and ADA.

The Bayesian analysis results are summarized in Fig. 4. It reveals that STEM,
a combination of S-ENN and Mixup, emerges as the top-ranking approach. This
result underscores the effectiveness of this combined strategy in enhancing per-
formance. Notably, S-ENN and Mixup individually secure the second and third
positions, further affirming the significance of this ensemble approach.

Fig. 4. The illustration of the overall results acquired from the Bayesian signed-rank
test is shown here. The cumulative score is the total number of times one approach
outperforms the other. STEM obtained a cumulative score of 23 where the maximum
possible is 40 (comparing one versus another 8 approaches in 5 setups), outperforming
the other approaches. Each color represents distinct test setups used for the evaluation.

236 Y. Hasan et al.

Table 4. The results of the Bayesian signed-ranked test are summarized here for the
nine augmentation approaches for each data setup. Arrows indicate the direction of
differences: ⇑ for larger, ⇓ for smaller, - for inconclusive, and N/A for not applicable
results. A family-wise significance level of α ≡ 0.05 is employed.

(a) SCC

STEM Mixup SMOTE ADA S-NC SVM-S S-Tomek BSMOTE S-ENN

STEM N/A – – – – – – – ⇑
Mixup – N/A – – – – – – ⇑
SMOTE – – N/A – - – – – ⇑
ADA – – – N/A – – – – ⇑
S-NC – - - - N/A - - - ⇑
SVM-S – – – – – N/A - – ⇑
S-Tomek – – - - – – N/A – ⇑
BSMOTE – – – – – – N/A ⇑
S-ENN ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ N/A

(b) SMLO

STEM Mixup S-NC S-Tomek ADA BSMOTE SVM-S SMOTE S-ENN

STEM N/A – – – – ⇑ ⇑ ⇑ ⇑
Mixup – N/A – – – ⇑ ⇑ ⇑ ⇑
S-NC – – N/A – – ⇑ ⇑ ⇑ ⇑
S-Tomek – – - N/A – ⇑ ⇑ ⇑ ⇑
ADA – – – – N/A ⇑ ⇑ ⇑ ⇑
BSMOTE ⇓ ⇓ ⇓ ⇓ ⇓ N/A – – –

SVM-S ⇓ ⇓ ⇓ ⇓ ⇓ – N/A – –

SMOTE ⇓ ⇓ ⇓ ⇓ ⇓ – – N/A –

S-ENN ⇓ ⇓ ⇓ ⇓ ⇓ – – – N/A

(c) SCC+MLO

STEM S-ENN S-Tomek SVM-S S-NC BSMOTE Mixup SMOTE ADA

STEM N/A – – – – ⇑ ⇑ ⇑ ⇑
S-ENN – N/A – – – – ⇑ ⇑ ⇑
S-Tomek – – N/A - - – – – –

SVM-S – – – N/A - - - - ⇑
S-NC – – – – N/A – – – –

BSMOTE ⇓ - – – – N/A – – –

Mixup ⇓ ⇓ – – – – N/A – –

SMOTE ⇓ ⇓ — – – – – N/A –

ADA ⇓ ⇓ – ⇓ – – – – N/A

(d) FCC+MLO

STEM S-NC Mixup S-Tomek BSMOTE ADA SVM-S SMOTE S-ENN

STEM N/A – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
S-NC – N/A – – – – – – ⇑
Mixup ⇓ – N/A – – – – – ⇑
S-Tomek ⇓ - - N/A - - - - ⇑
BSMOTE ⇓ – – – N/A – – – ⇑
ADA ⇓ – – – – N/A – – ⇑
SVM-S ⇓ – – – – – N/A – ⇑
SMOTE ⇓ – – – – – – N/A ⇑
S-ENN ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ N/A

(continued)

Interpretable Solutions for Breast Cancer Diagnosis 237

Table 4. (continued)

(e) WBC

STEM S-ENN S-NC SVM-S Mixup ADA BSMOTE S-Tomek SMOTE

STEM N/A – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
S-ENN – N/A ⇑ ⇑ ⇑ ⇑ – ⇑ ⇑
S-NC ⇓ ⇓ N/A - – – – – –

SVM-S ⇓ ⇓ – N/A – ⇓ – – ⇓
Mixup ⇓ ⇓ – – N/A – – – ⇑
ADA ⇓ ⇓ – ⇓ – N/A – – –

BSMOTE ⇓ – – – – – N/A – –

S-Tomek ⇓ ⇓ – – – – – N/A –

SMOTE ⇓ ⇓ – ⇓ ⇓ – – – N/A

6 Conclusion and Future Work

In this study, we addressed class imbalance and interpretability challenges in
medical imaging diagnosis by using GE to produce classifier trained on data
augmented by the recently-introduced STEM technique. Our approach not only
delivers interpretable solutions but also outperforms an ensemble of other ML
classifiers in terms of performance. The analysis conducted on the DDSM and
WBC datasets emphasizes the effectiveness of GE, as evidenced by improve-
ments in AUC and its ability to identify critical data features. Notably, our
inclusion of Bayesian signed-rank test results confirms that STEM emerges as the
best-performing approach for augmentation. The improved AUC and enhanced
interpretability of our approach can help build trust and facilitate informed
decisions. Thus, our study validates the proposed hypothesis, demonstrating the
efficacy of the combined GE and STEM approach.

For future research, we suggest improving performance by incorporating addi-
tional image attributes, such as wavelet transformations and local binary pat-
terns, to enhance the feature set and dataset diversity. Furthermore, exploring
the mixture of different datasets to assess the robustness of our approach across
various image data sources would be interesting.

Acknowledgements. The Science Foundation Ireland (SFI) Centre for Research
Training in Artificial Intelligence (CRT-AI), Grant No. 18/CRT/6223 and the Irish
Software Engineering Research Centre (Lero), Grant No. 16/IA/4605, both provided
funding for this study.

References

1. Communication on Fostering a European approach to Artificial Intelligence —
Shaping Europe’s digital future (Apr 2021)

2. Ali, M.: Pycaret: an open source, low-code machine learning library in python
version 2.3 (2020)

238 Y. Hasan et al.

3. Anastasopoulos, N., Tsoulos, I.G., Tzallas, A.: Genclass: a parallel tool for data
classification based on grammatical evolution. SoftwareX 16, 100830 (2021)

4. Arrieta, A.B., et al.: Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Inform. Fusion 58, 82–115
(2020)

5. Batista, G.E., Bazzan, A.L., Monard, M.C., et al.: Balancing training data for
automated annotation of keywords: a case study. Wob 3, 10–8 (2003)

6. Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., Ruggeri, F.: A bayesian
wilcoxon signed-rank test based on the dirichlet process. In: International Con-
ference on Machine Learning, pp. 1026–1034. PMLR (2014)

7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artifi. Intell. Res. 16, 321–357 (2002)

8. de Lima, A., Carvalho, S., Dias, D.M., Naredo, E., Sullivan, J.P., Ryan, C.:
GRAPE: grammatical Algorithms in Python for Evolution. Signals 3(3), 642–663
(2022). https://doi.org/10.3390/signals3030039

9. Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F.: Analysing the
classification of imbalanced data-sets with multiple classes: binarization techniques
and ad-hoc approaches. Knowl.-Based Syst. 42, 97–110 (2013)

10. Fitzgerald, J.M., Azad, R.M.A., Ryan, C.: GEML: Evolutionary unsupervised and
semi-supervised learning of multi-class classification with Grammatical Evolution.
In: 2015 7th International Joint Conference on Computational Intelligence (IJCCI),
vol. 1, pp. 83–94 (Nov 2015)

11. Gavrilis, D., Tsoulos, I.G., Dermatas, E.: Selecting and constructing features using
grammatical evolution. Pattern Recogn. Lett. 29(9), 1358–1365 (2008). https://
doi.org/10.1016/j.patrec.2008.02.007

12. Ghojogh, B., Crowley, M.: Linear and quadratic discriminant analysis: Tutorial.
arXiv preprint arXiv:1906.02590 (2019)

13. Halimu, C., Kasem, A., Newaz, S.S.: Empirical comparison of area under roc curve
(auc) and mathew correlation coefficient (mcc) for evaluating machine learning
algorithms on imbalanced datasets for binary classification. In: Proceedings of the
3rd International Conference on Machine Learning and Soft Computing, pp. 1–6
(2019)

14. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang,
G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538059 91

15. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image clas-
sification. IEEE Trans. Syst. Man Cybernet. 610–621 (1973)

16. Hasan, Y., Amerehi, F., Healy, P., Ryan, C.: Stem rebalance a novel approach for
tackling imbalanced datasets using smote, edited nearest neighbour, and mixup
(2023). https://arxiv.org/abs/2311.07504

17. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach
for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328.
IEEE (2008)

18. Heath, M., et al.: Current status of the digital database for screening mammogra-
phy. In: Digital Mammography: Nijmegen, pp. 457–460. Springer (1998). https://
doi.org/10.1007/978-94-011-5318-8 75

19. Herbold, S.: Autorank: a Python package for automated ranking of classifiers. J.
Open Source Softw. 5(48), 2173 (2020). https://doi.org/10.21105/joss.02173

https://doi.org/10.3390/signals3030039
https://doi.org/10.1016/j.patrec.2008.02.007
https://doi.org/10.1016/j.patrec.2008.02.007
http://arxiv.org/abs/1906.02590
https://doi.org/10.1007/11538059_91
https://arxiv.org/abs/2311.07504
https://doi.org/10.1007/978-94-011-5318-8_75
https://doi.org/10.1007/978-94-011-5318-8_75
https://doi.org/10.21105/joss.02173

Interpretable Solutions for Breast Cancer Diagnosis 239

20. Jabbar, M.A.: Breast cancer data classification using ensemble machine learning.
Eng. Appli. Sci. Res. 48(1), 65–72 (2021)

21. Liang, X., Jiang, A., Li, T., Xue, Y., Wang, G.: Lr-smote-an improved unbalanced
data set oversampling based on k-means and svm. Knowl.-Based Syst. 196, 105845
(2020)

22. Murphy, A., Murphy, G., Amaral, J., MotaDias, D., Naredo, E., Ryan, C.: Towards
incorporating human knowledge in fuzzy pattern tree evolution. In: Hu, T.,
Lourenço, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 66–81.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72812-0 5

23. Nguyen, H.M., Cooper, E.W., Kamei, K.: Borderline oversampling for imbalanced
data classification. Inter. J. Knowl. Eng. Soft Data Paradigms 3(1), 4–21 (2011).
https://doi.org/10.1504/IJKESDP.2011.039875

24. Noorian, F., de Silva, A.M., Leong, P.H.W.: gramEvol: grammatical evolution in
R. J. Stat. Softw. 71, 1–26 (2016). https://doi.org/10.18637/jss.v071.i01

25. Rashed, B.M., Popescu, N.: Machine learning techniques for medical image pro-
cessing. In: 2021 International Conference on E-Health and Bioengineering (EHB),
pp. 1–4 (Nov 2021). https://doi.org/10.1109/EHB52898.2021.9657673

26. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: Evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055930

27. Ryan, C., Krawiec, K., O’Reilly, U.-M., Fitzgerald, J., Medernach, D.: Building a
stage 1 computer aided detector for breast cancer using genetic programming. In:
Nicolau, M., et al. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 162–173. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44303-3 14

28. Sharma, S.K., Vijayakumar, K., Kadam, V.J., Williamson, S.: Breast cancer predic-
tion from microRNA profiling using random subspace ensemble of LDA classifiers
via Bayesian optimization. Multimedia Tools Appli. 81(29), 41785–41805 (2022).
https://doi.org/10.1007/s11042-021-11653-x

29. Varoquaux, G., Cheplygina, V.: Machine learning for medical imaging: method-
ological failures and recommendations for the future. npj Digital Med. 5(1), 1–8
(2022). https://doi.org/10.1038/s41746-022-00592-y

30. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. Syst. Man Cybernet., 408–421 (1972)

31. Wolberg, W.H., Street, W.N., Mangasarian, O.L.: Breast cancer wisconsin (diag-
nostic) data set [uci machine learning repository] (1992)

32. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: Beyond Empirical
Risk Minimization (Apr 2018). https://doi.org/10.48550/arXiv.1710.09412

https://doi.org/10.1007/978-3-030-72812-0_5
https://doi.org/10.1504/IJKESDP.2011.039875
https://doi.org/10.18637/jss.v071.i01
https://doi.org/10.1109/EHB52898.2021.9657673
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/978-3-662-44303-3_14
https://doi.org/10.1007/s11042-021-11653-x
https://doi.org/10.1038/s41746-022-00592-y
https://doi.org/10.48550/arXiv.1710.09412

Applying Graph Partitioning-Based
Seeding Strategies to Software

Modularisation

Ashley Mann(B), Stephen Swift, and Mahir Arzoky

Brunel University London, UB8 3PH Uxbridge, UK
{Ashley.Mann,Stephen.Swift,Mahir.Arzoky}@brunel.ac.uk

Abstract. Software modularisation is a pivotal facet within software
engineering, seeking to optimise the arrangement of software compo-
nents based on their interrelationships. Despite extensive investigations
in this domain, particularly concerning evolutionary computation, the
research emphasis has transitioned towards solution design and conver-
gence analysis rather than pioneering methodologies. The primary objec-
tive is to attain efficient solutions within a pragmatic timeframe. Recent
research posits that initial positions in the search space wield minimal
influence, given the prevalent trend of methods converging upon akin
local optima. This paper delves into this phenomenon comprehensively,
employing graph partitioning techniques on dependency graphs to gener-
ate initial clustering arrangement seeds. Our empirical discoveries chal-
lenge conventional insight, underscoring the pivotal role of seed selection
in software modularisation to enhance overall outcomes.

Keywords: Software Engineering · Heuristic Search · Software
Modularisation · Graph Partitioning

1 Introduction

1.1 General Background

As software systems grow, maintenance becomes challenging for incoming engi-
neers unfamiliar with the original code, often leading to the need for signifi-
cant overhauls or discontinuation of extensive legacy systems. To ensure sustain-
able management, creating modular subsystems is crucial. Instead of portraying
them as clusters in the source code, a more practical approach is representing
dependencies in graph form. Mancoridis et al. define the software modularisation
problem as arising from the exponential complexity of interconnected software
module relationships within evolving systems. This is often approached as a
heuristic-search-based clustering problem to identify optimal representations by
clustering subsystems based on the strength of their relationships [26].

The escalating complexity, often addressed through evolutionary compu-
tation, is evident in various software implementations, including both single-
objective [3,16] and multi-objective [18,27] approaches. Pioneering methodolo-
gies aim to enhance the structure of software systems. Optimisation of sub-
systems extends to diverse attributes, such as classes, methods, and variables.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 240–258, 2024.
https://doi.org/10.1007/978-3-031-56852-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_16&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_16

Graph Partitioning in Software Modularisation 241

Methodological advancements now consider type-based dependence analysis [22],
multi-pattern clustering [8], and effort estimation [32]. These efforts explore pre-
processing and post-processing improvements alongside optimisation strategies.

The modularisation of software, mainly through heuristic search and evo-
lutionary computation methodologies, extensively incorporates graph theory
and data clustering. Academic works commonly use graph representations of
software systems, employing data clustering for nodes and implementing algo-
rithms to assess cluster quality [2,19,37]. Despite graph creation not inher-
ently enhancing software engineers’ understanding of architecture structure,
language-independent graphs can focus on specific relationships or entire systems
[10,30,35]. Clustering arrangements can be portrayed through various methods,
such as a one-dimensional vector, a two-dimensional cluster-based structure, or
a one-dimensional constrained representation known as a restricted growth func-
tion, which, despite its constraints, exhibits distinctive properties [7]. Clustering
arrangement measurement typically addresses cohesion and coupling, striving
for optimal cohesion within clusters and minimal coupling between clusters, fos-
tering the creation of clearly defined groups [2].

1.2 Motivation

A recent study conducted by our research group explores varied representa-
tions for clustering arrangements and different starting points, providing insights
into the search space of software systems [25]. The study highlights the list-of-
lists representation as the most robust, emphasising its significance in problem-
solving. Notably, the paper suggests that the starting point choice is inconse-
quential, as various representations converge towards similar outcomes regarding
final fitness, especially one and two-dimensional list-based ones.

This paper is motivated by exploring converging results based on starting
points. Our primary objective is to determine whether alternative starting posi-
tions can replicate or potentially improve previous findings. If diverse starting
positions tend to converge toward a similar region in the search space, we aim to
uncover the reasons behind this convergence. Is there a basin of attraction lead-
ing to a potential global optimum solution, or do these methods unintentionally
get stuck in closely adjacent local optima?

In recent years, a discernible research gap has emerged in clustering arrange-
ment representation and software graph representation. Additionally, up to the
present time, there is a notable absence of publications in the field of soft-
ware modularisation specifically dedicated to addressing the concept of starting
points. While we recognise that meta-heuristics, such as Iterated Local Search
[21], can generate seeded starting points based on previous experimental itera-
tions, our reference pertains to the primary initial search, distinct from subse-
quent iterations.

Building upon this motivation, we aim to explore innovative approaches for
generating starting points that surpass the performance of previous experiments.
If our findings suggest the existence of a basin of attraction, our goal is to devise
more efficient methods to reach this point faster than conventional approaches.

242 A. Mann et al.

However, even if the evidence points in a different direction, our overarching
objective is to develop a more efficient method for navigating and exploring the
search space.

This paper focuses on enhancing software system clustering by integrating
graph partitioning techniques with seeded search methods applied to graph-
based representations. Situated within Search-Based Software Engineering, our
research particularly centres on software modularisation. To achieve our goal,
we begin with a domain background, introduce innovative concepts, outline our
experimental procedure, and present our results.

2 Related Work

2.1 Bunch and Munch

Exploring software modularisation can be achieved using tools such as Bunch [23]
and Munch [4] [5]. Bunch, developed by Mancoridis et al., combines a Steepest
Ascent Hill Climbing (SAHC) and Genetic Algorithms for improved clustering
arrangements [23,24]. On the other hand, Arzoky et al., Munch employs Random
Mutation Hill Climbing (RMHC) for enhanced performance and ease of imple-
mentation [4]. Both strategies use different fitness functions - Bunch utilises the
MQ fitness function, while Munch employs EVM and EVMD [4,24,34]. Despite
employing different measurement strategies, MQ, EVM and EVMD yield simi-
lar clustering results [17]. However, the exhaustive nature of Bunch may hinder
performance when runtime is a critical consideration.

2.2 Starting Points and Search Space

In the context of a heuristic-search-based clustering problem, the quest for opti-
mal solutions necessitates delving into the search space, which comprises all
conceivable arrangements of a clustering configuration. This exploration entails
generating an initial clustering arrangement known as the starting point. Sub-
sequently, through mutation (searching), this arrangement is modified and com-
pared to the graph representation of the software. The goal is to enhance the
clustering of nodes that demonstrate robust relationships. Before embarking on
a search, a crucial decision lies in determining the optimal starting point for
seeking an improved clustering arrangement.

Several starting points are available when searching for local optima, which,
in our context, represents the nearest approximation to the optimal clustering
arrangement that maximises the cohesion of each cluster within the search space.
We provide three illustrative examples: we can cluster all nodes individually for
maximum coupling (Fig. 1), together for maximum cohesion (Fig. 2), or randomly
(Fig. 3).

Graph Partitioning in Software Modularisation 243

Fig. 1. Independent Fig. 2. All In One Fig. 3. Random

3 Research Questions

We aim to address research inquiries regarding our endeavour to discover
improved starting points for software modularisation. We aim to uncover more
effective strategies for achieving optimal outcomes. In this paper, we outline the
following research questions that we intend to investigate:

1. What is the performance difference between graph-partitioned clustering
arrangements and randomly generated ones when applied to large and small
software systems?
(a) When using hill climbing with various initial clustering arrangements on

the same software system, do the solutions converge to similar outcomes
or do disparities persist?

(b) How do the runtimes of searches using graph partition and randomly
generated clustering arrangements vary, and are there trade-offs between
runtime and solution quality?

2. Is there a significant disparity between the Weighted Kappa1 values of the
final clustering arrangements and a gold standard2, and what is the nature
of this comparison?

Initially, we aim to evaluate whether the graph-based initial clustering
arrangements result in enhanced outcomes compared to randomly generated con-
figurations through Munch. We aim to contrast the clustering patterns derived
from graph partitioning with those generated randomly across software systems
of varying sizes. Alongside assessing our fitness function, we analyse the docu-
mented improvements at the final iteration. This entails identifying the conver-
gence point and scrutinising the runtime of the search, which encompasses both
the initialisation of the starting configuration and the subsequent search process.
By possessing information about the ultimate fitness value and the corresponding
1 Weighted Kappa is employed to assess the similarity of clustering arrangements and

is applied in Sects. 5.3, 6, and 7.
2 A gold standard represents the theoretical best solution for a given problem, a rarity

in real-world datasets where it is seldom known.

244 A. Mann et al.

iteration when it is achieved, we aim to discern the genuine impact of the initial
clustering configurations on the search dynamics. We aim to determine whether
specific clustering arrangements contribute to a faster convergence, enabling us
to refine our search methodology for reaching the convergence point earlier and
mitigating the risk of potential time loss.

In addition to assessing the effectiveness of our initial clustering configu-
rations based on fitness, convergence, and runtime, we also evaluate the final
clustering arrangements against gold standards using Weighted Kappa (WK)
[1]. WK serves as a measure of agreement between two clustering arrangements,
explicitly focusing on modularisation. As the WK values increase, the level of
agreement between the two solutions also rises. A WK value 1 signifies identical
clustering arrangements, while 0 indicates empirical dissimilarity. A WK value
of 0.5 or higher indicates a robust structural similarity between the two cluster-
ing configurations. We opt for WK over other methods, such as Adjusted Rand
[29], due to its ease of implementation, longstanding presence in the field, and
well-established interpretability/quality scale. The authors also note that WK
and Adjusted Rand are identical.

4 Methods

Our focus now shifts towards the methodologies aligned with our exploration
of optimal starting points for software modularisation. We present our selected
search method and detail our implementation of graph partitioning designed to
yield appropriate starting points.

4.1 Munch

As previously indicated, software modularisation is characterised as a heuristic-
search-based clustering problem. Therefore, our initial consideration lies in devis-
ing a strategy for heuristic search before delving into the discussion of our
implementation of graph partitioning for generating starting points. We adopt
a reverse-engineered adaptation of Arzoky et al.’s Munch to address this [5].
This adaptation has been enhanced to afford us the flexibility to determine the
commencement of our exploration and the nature of our search strategy. We will
now delve into an exploration of the various components that constitute Munch.

Foremost, Munch uses Module Dependency Graphs (MDG) as our graph-
based representation of software systems. As defined by Mancoridis et al., MDGs
illustrate subsystem connections to gauge relationships between components. In
the context of our current research, we designate the nodes of MDG as soft-
ware classes, and the edges represent interconnected relationships. MDGs prove
versatile, capable of describing software structure over time or facilitating the
segmentation of extensive software systems for enhanced comprehension. Let
MDG M be an n by n symmetric binary matrix, where a 1 at row x and column
y (Mxy) indicates a relationship between software components x and y, and 0

Graph Partitioning in Software Modularisation 245

indicates that there is no relationship. To avoid confusion throughout this paper,
MDG and graph are considered synonymous.

Mxy =

{
1 if a relationship exists between x and y

0 otherwise,

For Munch, we adopt a list-of-list-based cluster representation based on its
ease of implementation. A list-of-list clustering arrangement (C) is defined as
a list ([C1, ..., Ck]), with each subset list/cluster (Ci) containing 1, 2, ..., n ele-
ments. These subsets must be non-empty (Ci �= ∅), and they should not share
any common items (Ci ∩ Cj = ∅) for different subsets. Effective optimisation
problem-solving requires consideration of the search space, exploration strategy,
and fitness function. Equation 1 illustrates all possible ways to partition Ck clus-
ters containing n elements. Note that 1 ≤ k ≤ n. We justify opting for lists over
sets in the implementation, emphasising the advantages of simpler implementa-
tion and reduced computational complexity, particularly in scenarios involving
non-indexed sets. Since each cluster and cluster element requires indexing, the
search space aligns with Eq. 1, deviating from the set nature characterised by
Bell(n).

n∑
k=1

(
n!

k! · (n − k)!
· k!

)
(1)

Before delving into the search strategy of Munch, it is essential to define the
fitness function. The primary goal of a search strategy is to uncover a clustering
arrangement that most effectively aligns with the ideal modular structure of the
software system. The assessment entails analysing the subsets [C1, ..., Ck], where
the elements (Ci), representing 1, 2, ..., n, illustrate their relationships within the
MDG. To avoid confusion, we will refer to the subsets as clusters.

For our replication of Munch, it is unsurprising we introduce EVM as our
selected fitness function. We opt for EVM over Bunch’s MQ due to its demon-
strated robustness against noise and suitability for real-world software systems,
as substantiated by research [17]. When provided with an arrangement C and
an MDG, EVM evaluates and scores each cluster by considering the number of
intra-relationships in the MDG. To prevent any potential confusion, we estab-
lish the definition of EVM as the aggregate of individual cluster scores, denoted
as SubEVM (refer to Eqs. 2 and 3). EVM aims to maximise the score of rela-
tionships within a specified clustering arrangement. However, a potential draw-
back exists, as EVM may mistakenly assign high scores to clustering arrange-
ments with high cohesion. Even minor adjustments to a solution can significantly
enhance its fitness.

EVM(C,MDG) =
k∑

i=1

SubEVM(Ci,MDG) (2)

SubEVM(Ci,MDG) =
|Ci|−1∑
a=1

|Ci|∑
b=a+1

(2M(Cia, Cib) − 1) (3)

246 A. Mann et al.

To enhance the efficiency of Munch, we incorporate Arzoky et al.’s EVMD.
This method generates a score aligning with EVM by integrating past EVM
outcomes and determining the new result based on the classes designated for
exchange. It demonstrates computational efficiency by computing the new fit-
ness before implementing any modifications. Throughout this paper, we choose
to utilise EVM as a collective term, encompassing both EVM and EVMD, to
prevent potential confusion in future discussions about EVM.

Concerning the mentioned modifications, the inclusion of EVMD enables the
execution of “Try/Do Moves.” This variant of Small-Change, involving the ran-
dom mutation of clustering arrangements, reduces computational overhead by
initially testing the result of a small change (Try Move) before actual imple-
mentation (Do Move). To effectively utilise EVMD, the small-change process is
limited to two elements simultaneously.

Finally, our focus shifts to the heuristic search. As mentioned earlier, Arzoky
et al.’s Munch primarily employ RMHC as its heuristic search method. Despite
implementing the ability to alter the heuristic search in our Munch, we opt to
persist with RMHC. This choice is motivated by its reliability, ease of imple-
mentation, and superior performance compared to stochastic heuristics, such
as SAHC. Below, we present Algorithm 1, elucidating how Munch searches for
enhanced clustering arrangements. For practical reasons, we choose to employ
EVM in the pseudocode example, even though we leverage Arzoky et al.’s EVMD
fitness function to enhance performance:

Algorithm 1. Munch
1: function Munch(Iterations, MDG)
2: Let C be a clustering arrangement � Random or Seed Starting Point
3: Let F = EVM(C, MDG) � Current Fitness
4: for i = 1 to Iterations do
5: Let C ′ = C � Copy of C
6: Choose two random clusters X and Y (X �= Y) from C ′ � Move Operator
7: Move a random variable from cluster X to Y in C ′ � Move Operator
8: Let F ′ = EVM(C ′, MDG) � New Fitness
9: if F ′ ≥ F then � Compare Fitness

10: Let C = C ′, F = F ′ � Continue using best Solution
11: end if
12: end for
13: return C � Output is C
14: end function

4.2 Graph Partitioning

So far, we have established the importance of graphs and clustering arrange-
ments regarding software modularisation. Now, we focus on using the structure
graphs to discover new clustering arrangement starting points. Specifically, our

Graph Partitioning in Software Modularisation 247

focus shifts to the Fiedler Vector [12]. This vector is linked to the second small-
est eigenvalue, the Fiedler Eigenvalue, of a Laplacian Matrix [13]. Denoted as
Ln×n, a Laplacian Matrix is defined as L = D − A where D represents the
degree matrix of A which represents the connections between nodes [9]. In this
context, A ≡ MDG. The Fiedler Vector is distinctive in its capability to enable a
nearly perfect binary split of any given matrix. With this characteristic in mind,
we have developed a tool that generates starting points through the recursive
decomposition of graphs until no more Fiedler Vectors can be produced.

We generate a tree structure to facilitate the recursive decomposition of input
graphs. The root of the tree is our input software graph and clustering arrange-
ment. The clustering arrangement must begin with all nodes placed in a single
cluster. This initial cluster will be subsequently split alongside the graph, ulti-
mately leading to our final clustering arrangement, representing a fully decom-
posed software graph.

Leveraging our understanding of the Fiedler Vector, we identify the Fiedler
eigenvalue of its attributed graph at each tree node, deduce its associated eigen-
vectors, and establish a well-balanced, binary-split graph partition. Simultane-
ously, we split the associated cluster with each partition, ensuring a one-to-one
relationship between the subgraph’s nodes and the associated cluster concerning
the root MDG. This approach allows us to maintain traceability as we proceed
with the decomposition. The new branches that emerge from the root node are
reintroduced into a recursive function that continues to iterate until it identifies
all possible partitions.

4.3 Starting Points

After generating a tree, we have two starting point approaches. Algorithm 2
illustrates the initial method for creating a “Leaf” arrangement. We gathered
all leaf nodes from the tree, identified by their lack of children. Subsequently,
we arrange these leaf nodes in ascending order based on SubEVM (see Eq. 3)
and then incorporate nodes with unique clusters into our clustering arrangement.
We organise all leaf nodes in ascending order to prevent branches from becoming
disconnected at different depths, possibly leading to duplicate values. In an ideal
scenario, all leaf nodes, regardless of depth, should be unique, and therefore, we
incorporate this logic for peace of mind.

Algorithm 3 exemplifies our alternative approach to constructing a clustering
arrangement. In this method, we recursively traverse the tree, evaluating the
cohesion of each node in comparison to its children. This ensures the creation of
a clustering arrangement containing all unique values, emphasising the highest
possible cohesion within the context of the MDG for a given tree. We refer to
this starting point as our “Max” arrangement.

Apart from Leaf and Max, our modified version of Munch can generate clus-
tering arrangements randomly distributed uniformly, denoted as “Random.” Due
to publication constraints, we abstain from delving into the intricacies of this
method. In summary, a “uniformly distributed random” arrangement is defined
by a clustering setup generated through the utilisation of Bell Numbers, Stirling

248 A. Mann et al.

Algorithm 2. BuildLeaf
1: function BuildLeaf(root)
2: Let leafNodes be a stack of all leaves of root
3: Sort leafNodes in descending order of SubEVM � see Eq. 2
4: Let C be empty clustering arrangement
5: while leafNodes is not empty do
6: Let node be popped leafNodes � Pop top node from stack
7: if node is not in C then
8: Let C = [C [node]] � Add unique cluster (node) to arrangement (C)
9: end if

10: end while
11: return C � Output is C
12: end function

Algorithm 3. BuildMax
1: function BuildMax(root) � Start Recursion
2: Let C = empty clustering arrangement
3: Let C = populateArrangement(root, C)
4: return C � Output is C
5: end function
6: function populateArrangement(node, C) � Recursive Function
7: if node has children then
8: Let Fp be SubEVM of parent node � See Eq. 2
9: Let Fc be sum SubEVM of children � See Eq. 2

10: if Fp > Fc then � If the SubEVM of parent node is greater
11: Let C = [C [node]] � Add node to arrangement C
12: else � Continue Recursion
13: Let populateArrangement(left child of node, C)
14: Let populateArrangement(right child of node, C)
15: end if
16: else
17: Let C = [C [node]] � Add leaf node to arrangement C
18: end if
19: return C � Output is C
20: end function

Numbers of the Second Kind [20,33,36], and their interconnected relationships
[11].

5 Experimental Setup

Before presenting the Munch results of our graph partitioning tool, we need to
establish an empirical framework.

Graph Partitioning in Software Modularisation 249

5.1 Graph Collection and Pre-processing

First, we must collect software systems. Throughout our research, we developed
a specialised tool that extracts open-source software systems using GitHub’s
RESTful API [14]. GitHub is our platform of choice for several compelling rea-
sons. With a substantial user base exceeding 94 million developers, a continu-
ously growing number of 52 million open-source repositories, and a cumulative
total of 413 million contributions [15], we have access to a wide and diverse range
of graphs.

Collecting and forming these graphs is often neglected in academic literature,
creating a challenge in determining the authenticity of these systems - whether
they are genuinely open-source, artificially generated, or specific to certain indus-
tries. Generating MDGs requires understanding the relationships between each
class within a given software system. This can be achieved using software metric
tools such as SciTools Understand [31], which provide pairwise relationships to
build a symmetric graph. After our extractor downloads the desired software
system, we manually process each system using SciTools Understand. Future
efforts will explore using GitHub’s TreeSitter parsing system [6] to automati-
cally generate MDGs.

In this experiment series, we collect 50 “Small” open-source MDGs with class
counts from 100 to 300, chosen based on relevance and high popularity (“stars”)
using the GitHub API. Due to storage constraints and the laborious manual
MDG creation, we aim to develop an automated MDG generator, contemplating
additional storage allocation pending study outcomes. Additionally, we have five
“Big” MDGs (class counts: 1000 to 1500) sourced from prior research and indus-
try collaboration, allowing exploration of size and characteristic-based result
variations. Refer to Appendix A for a detailed breakdown. The terms “Small 50”
and “Big 5” distinguish the two MDG groups in this paper.

5.2 Experiment Setup

Our experiments are described as follows. First, we collect Munch results for each
MDG using all starting point combinations and iterations, as outlined below.
Secondly, we collect Gold Standard results involving high-iteration/high-fitness
outcomes to compare with our initial experiments. Finally, we analyse the results
and present our findings concerning our outlined Research Questions.

1. For each experiment, for every graph (Small 50 and Big 5):
(a) Select one of three starting points (Leaf, Max, Random)
(b) Select one of three iterations (10k, 100k, 1m)
(c) Run Munch
(d) Document final iteration statistics and associated clustering arrangement
(e) Repeat Steps a-c 250 times

2. Repeat Step 1 until all starting points and iterations are explored.

For our gold standards, we generate a Random starting point for each graph
and run Munch for 100 million iterations, collecting the same information as

250 A. Mann et al.

in our initial experiments. We repeat the process 250 times to ensure that we
compare our initial experiment clustering arrangements to an absolute-best gold
standard. Although conducting more iterations would have been preferable, it
was impractical due to the extended runtime, taking several days per graph. To
streamline experimental runs with our chosen iteration increments, we imple-
mented parallel thread management, allowing multiple instances of Munch to
run concurrently while optimising CPU and memory usage.

5.3 Data Collection and Analysis

We gather data on the fitness scores of the ultimate clustering configurations,
pinpoint the convergence point (the last iteration demonstrating improved fit-
ness), and gauge the runtime. Furthermore, we document the final clustering con-
figurations into text files. Employing these files, we have crafted a bespoke tool
to methodically evaluate the WK between the ultimate configurations derived
from our initial points in contrast to our gold standards.

We have compiled a dataset of 275,000 files, combining the initial experi-
ment results and gold standards. To enhance the manageability of these results
for analysis, we employ MS Access, MS Excel, and Python for data processing.
Due to the extensive volume of results and constraints in page space, our prin-
cipal methodology involves computing averages across all data. Additionally, we
streamline our findings by identifying and formatting the optimal results, pro-
viding a count of these instances per starting point type, thereby highlighting
the suitability of each.

6 Results

Initially, we present RMHC results for each starting point category across
selected iterations. Our research evaluates the performance of diverse starting
points in searches across graphs of varying sizes, considering fitness, convergence,
and runtime. The goal is to identify similarities or disparities in these aspects
based on our predefined research questions. When implemented on large and
small software systems, the performance differences among Leaf, Max, and Ran-
dom are apparent in Tables 13 and 24. Max consistently demonstrates superior
fitness across iterations, as evidenced by the average final fitness values obtained
from our three starting points over the specified iterations.

Table 35 details the average final convergence statistics across iterations, indi-
cating the iteration where improvement was observed. A strong resemblance
between the average fitness and convergence strongly implies a correlation,
potentially indicating a basin of attraction where all solutions converge. Com-
pared to Random in Tables 1 and 2, Leaf and Max achieve final fitness levels
more rapidly across all iterations, notably enhancing results. For smaller graphs,
3 Values formatted bold in Table 1 signify the highest average final fitness.
4 Values formatted bold in Table 2 signify the highest average final fitness.
5 Values formatted bold in Table 3 signify the shortest average convergence point.

Graph Partitioning in Software Modularisation 251

Table 1. Average Final Fitness using Starting Point by Iterations

Size 10k 100k 1m

Leaf Max Random Leaf Max Random Leaf Max Random

102 60.664 60.972 60.516 72.660 73.032 72.544 73.248 73.236 72.984

105 56.060 56.016 56.052 68.024 67.696 67.844 69.356 69.192 69.344

112 88.616 90.116 87.532 99.512 100.000 99.920 101.040 101.268 101.108

119 66.968 68.096 66.204 80.100 80.224 80.168 80.960 81.048 80.900

123 99.516 102.200 98.068 115.932 115.688 114.896 117.808 117.908 117.660

127 82.340 89.820 79.452 105.680 106.072 105.272 107.216 107.556 107.040

129 81.796 86.764 80.500 98.544 99.196 98.848 99.800 99.856 100.072

130 37.612 37.828 35.592 53.016 53.064 53.204 53.832 53.660 53.968

135 97.748 105.836 96.864 120.684 120.796 120.636 122.200 122.052 122.228

135 101.480 114.520 100.760 133.832 134.052 133.908 135.168 134.920 135.000

141 74.428 77.876 71.392 88.224 88.552 88.832 89.832 89.952 89.928

145 51.880 51.856 47.848 65.812 65.624 65.672 66.468 66.380 66.372

151 105.948 115.840 102.016 137.616 137.008 137.224 139.276 139.132 139.324

158 84.080 90.924 76.424 112.664 112.532 112.828 115.260 115.292 115.368

161 85.580 90.444 82.204 115.968 114.972 115.748 118.912 118.848 119.232

163 83.980 92.048 73.400 110.248 110.640 109.728 112.864 112.780 112.192

164 79.768 80.568 75.164 105.464 105.940 105.408 107.884 107.928 108.020

169 42.464 45.196 35.432 73.156 73.528 73.212 75.316 75.424 75.372

172 86.924 94.396 82.732 123.580 122.596 124.684 128.760 128.228 129.076

172 100.636 116.444 91.548 137.196 137.936 137.168 141.620 141.372 140.928

172 15.804 16.088 11.796 41.640 41.488 41.372 44.280 44.388 44.464

175 80.768 84.536 71.776 125.328 125.196 125.108 133.864 133.884 133.948

175 108.704 125.236 101.228 164.620 166.920 164.512 171.248 171.840 171.032

176 82.360 96.328 72.364 112.776 112.844 113.164 115.760 115.764 115.688

179 101.700 123.148 93.196 148.364 148.160 148.752 151.900 151.336 151.940

198 98.008 114.484 84.572 139.196 140.164 139.192 144.092 144.276 144.552

199 90.328 99.060 83.392 153.600 150.504 153.812 166.760 167.100 166.664

200 91.704 104.004 70.864 128.124 128.336 127.912 131.672 131.268 131.832

206 113.880 137.076 103.772 182.220 184.900 181.952 191.008 191.616 190.964

208 62.528 69.752 52.000 127.376 127.772 127.512 130.656 130.760 130.724

209 82.896 90.680 59.672 131.196 131.596 129.776 137.768 138.024 137.244

210 65.216 77.376 48.576 102.340 103.320 101.980 106.336 106.576 106.404

210 76.324 88.716 54.560 116.984 117.444 116.688 118.224 118.272 118.060

211 66.624 73.748 44.256 113.068 113.320 113.408 120.872 120.880 122.092

214 118.440 132.280 100.060 187.688 188.472 187.412 198.188 198.980 198.084

216 43.364 52.080 47.336 120.720 121.368 120.732 126.764 126.764 126.780

224 110.880 140.856 89.708 184.596 187.608 184.308 197.920 198.212 198.144

233 92.680 120.196 75.740 173.608 175.156 172.776 184.992 184.808 184.600

234 89.564 100.176 57.732 143.928 144.152 142.660 150.776 150.756 150.652

234 111.308 127.900 84.244 184.216 186.116 183.916 196.420 196.260 195.996

235 93.872 108.148 65.808 158.052 160.152 158.588 172.260 173.060 172.596

240 82.872 95.224 54.924 148.992 151.108 147.784 159.104 159.128 159.236

240 126.100 143.636 98.224 214.848 213.208 213.488 234.844 235.044 234.472

242 108.404 139.252 76.388 177.708 179.356 177.092 186.904 187.304 187.280

246 72.876 80.716 41.404 139.548 139.996 139.340 148.820 148.524 148.876

252 99.484 110.880 61.124 159.868 161.400 159.000 174.656 175.284 174.616

252 134.832 171.012 108.420 243.296 254.296 242.448 279.192 281.980 278.472

258 123.152 157.012 94.904 208.428 208.740 206.764 227.840 225.928 227.144

264 114.188 168.672 72.400 227.132 229.244 226.552 239.488 238.788 239.720

294 131.708 182.384 75.388 251.476 255.352 249.916 276.912 276.692 276.972

Count 2 48 0 8 34 8 10 20 20

252 A. Mann et al.

Table 2. Average Final Fitness using Starting Point by Iterations

Size 10k 100k 1m
Leaf Max Random Leaf Max Random Leaf Max Random

1037 170.924 329.764 –1360.344 345.940 471.344 123.476 731.892 755.984 737.256
1164 163.252 276.048 –1853.428 286.364 376.868 –188.728 588.528 606.000 589.680
1311 87.880 225.908 –2152.008 284.280 400.460 –297.580 681.848 719.780 675.820
1440 124.664 283.652 –2553.976 351.456 479.476 –520.688 741.544 789.288 708.468
1441 54.932 146.112 –2648.656 230.028 304.932 –718.304 543.324 571.064 493.336
Count 0 5 0 0 5 0 0 5 0

Table 3. Convergence Statistics

Iterations Starting Point Small 50 Big 5 Count
Min Max Avg Min Max Avg

10k Leaf 8970.444 9889.524 9560.283 9670.992 9887.296 9816.322 0
Max 8892.732 9873.904 9430.464 9634.588 9876.404 9799.476 6
Random 9129.948 9917.304 9710.809 9971.996 9977.348 9974.834 0

100k Leaf 53996.848 96390.908 80512.020 98831.280 99120.060 98980.680 1
Max 54158.648 95036.248 79139.873 98552.824 99091.176 98786.134 5
Random 54598.832 96333.324 80817.637 99769.868 99858.020 99828.650 0

1m Leaf 84590.520 691299.112 375566.554 989895.556 993509.896 991965.960 1
Max 77164.980 706030.088 368672.253 987032.192 991801.380 989805.248 5
Random 85098.216 692030.048 377192.918 990564.152 994979.076 993397.874 0

convergence is reached well before the considered iterations. Although final iter-
ations align for smaller graphs, more iterations could enhance the likelihood of
reaching local optima in larger datasets.

In contrast to average final fitness and convergence, Table 46 highlights cumu-
lative average runtimes presented for each start and subsequent search at various
iterations, measured in milliseconds. Notably, these reported runtimes represent
summed average runtimes, excluding additional computational overhead related
to data I/O. While Random clustering allows faster processing, the overall statis-
tical significance of runtimes is debatable. This prompts consideration of poten-
tial trade-offs between runtime efficiency and solution quality.

Table 57 displays WK results, juxtaposing clustering configurations resulting
from our initial starting points against gold standards. In multiple statistics and
iterations, Leaf and Max consistently surpass Random. The notable closeness
between Max results and their corresponding gold standards in smaller graphs
contrasts the generally low agreement observed for larger graphs.

6 Values formatted bold in Table 4 signify the shortest runtime in milliseconds.
7 Values formatted bold in Table 5 signify the highest Weighted Kappa agreement.

Graph Partitioning in Software Modularisation 253

Table 4. Average sum of runtime in milliseconds

Iterations Small 50 Big 5
Leaf Max Random Leaf Max Random

10k 298.797 332.881 185.662 24.231 24.180 199.044
100k 792.818 833.359 408.770 119.465 120.744 259.044
1m 5389.751 5607.426 2574.516 996.988 1012.166 673.654
Count 0 0 3 1 1 1

Table 5. WK against Gold Standard Statistics

Iterations Starting Point Small 50 Big 5 Count
Min Max Avg StDev Min Max Avg StDev

10k Leaf 0.215 0.565 0.386 0.092 0.002 0.002 0.002 0.000 2
Max 0.241 0.609 0.440 0.094 0.040 0.156 0.093 0.043 6
Random 0.198 0.580 0.358 0.102 0.010 0.027 0.015 0.007 0

100k Leaf 0.398 0.847 0.637 0.097 0.012 0.021 0.016 0.005 3
Max 0.376 0.835 0.643 0.099 0.059 0.176 0.117 0.044 4
Random 0.402 0.843 0.635 0.097 0.058 0.107 0.077 0.022 1

1m Leaf 0.490 0.897 0.715 0.084 0.128 0.317 0.198 0.079 0
Max 0.480 0.904 0.715 0.086 0.211 0.359 0.264 0.060 4
Random 0.497 0.897 0.715 0.083 0.197 0.386 0.267 0.084 4

7 Summary of Main Findings

In summary, we aimed to show that graph-partitioning can generate starting
points capable of improving the results of software modularisation. We encapsu-
late the findings to address the research inquiries in the following manner:

– Max starting point:
• Attains the highest average fitness over 10k, 100k, and 1m iterations, with

a pronounced emphasis on lower iteration counts.
• Attains the highest count of average convergence across all iterations while

sustaining the optimal average final fitness.
• Attains the maximum average agreement (WK) with gold standards

across 10k and 100k for both Small 50 and Big 5 graphs, highlighting
noteworthy performance, especially in lower iterations.

– Leaf starting point:
• Demonstrate fitness levels equal to or surpassing Random across all iter-

ations, especially in the early stages
• Surpasses Random with higher average fitness levels on large datasets at

10k and 100k iterations
• Consistently exhibits faster convergence compared to Random.

– Random starting point:

254 A. Mann et al.

• Shows a quicker average total runtime in milliseconds compared to Leaf
and Max.

• Better suited for smaller datasets; however, an improvement over Max
and Leaf necessitates higher iterations.

• Demonstrates greater resemblance to the gold standard than Max in
larger systems at 1m iterations.

Distinct fitness variations emerge among Leaf, Max, and Random, with Max
consistently outperforming over 10k, 100k, and 1m iterations, notably in Small
50 vs. Big 5 comparisons. Random outperforms Max and Leaf at 1 million iter-
ations for large datasets. However, Max proves to be more suitable for average
fitness and faster convergence across iterations and graph sizes. Since there are
currently no guidelines for determining the number of iterations based on the
size or properties of an MDG, the most prudent approach would be to ini-
tiate seeding with Max before executing Munch. WK comparisons show Max
starting points yield higher average agreements, with potential improvements
around 70% and significant opportunities at 90% agreement in 1m iterations.
Thorough exploration is vital for understanding software system graph intri-
cacies. Our commitment to accelerating software modularisation drives deeper
exploration, with partition-based clustering performing significantly, especially
at smaller iterations, making it compelling for future software optimisation.

8 Generalisability

This publication focuses on utilising graph partitioning for software modular-
isation. However, the application of graph partitioning for optimising initial
positions can extend to other graph-based optimisation problems, contingent
on the chosen fitness function. Although we prioritise EVM for its simplicity,
other alternatives like MQ are viable. Our aim is to inspire exploration of graph
partitioning for seeded optimisation.

9 Future Work

We plan to integrate our graph-based initial clustering with metaheuristics,
specifically incorporating seeded starting points into the history of Iterated Local
Search, as part of our ongoing investigation [28]. This initiative seeks to evalu-
ate the potential improvement in the exploration of the search space and over-
all efficiency. Furthermore, our goals include delving deeper into software sys-
tems’ search space, exploring graph structure, convergence prediction, and other
avenues for enhancing software modularisation.

Graph Partitioning in Software Modularisation 255

10 Appendix A

This Appendix showcases details about the software system MDG used in our
experiments. Below, we showcase the following statistics for each software sys-
tem:

1. ID
– Each software system is assigned a unique identifier. We choose not to

use the actual names of our software systems because our collection is
sourced randomly from GitHub. These software system names can exhibit
variation, and we intend to maintain professionalism and steer clear of
potentially inappropriate names and software tools.

2. Nodes
– Also known as vertices, these signify the number of software components

(classes) within our Module Dependency Graphs (MDGs).
3. Edges

– Denotes the number of relationships between software components.
4. Clustering Coefficient:

– The extent to which nodes tend to cluster. A high score indicates a strong
cohesion, while a low score indicates a higher coupling level. We present
this statistic as these software systems exhibit remarkably low coefficients,
indicating a high coupling level and a deficiency in the initial modular
structure. There is potential here to investigate the nature of software
structure over time, especially concerning the analysis of open-source soft-
ware systems (Tables 6 and 7).

Table 6. “Big 5” Software MDG Statistics

Identification Nodes Edges Avg Degree Clustering Coefficient

1 1037 5470 5.274 0.000
2 1164 2072 1.780 0.000
3 1311 5630 4.294 0.000
4 1440 4889 3.395 0.000
5 1441 3058 2.122 0.000

256 A. Mann et al.

Table 7. “Small 50” Open-Source Software MDG Statistics

Identification Nodes Edges Avg Degree Clustering Coefficient

01 102 312 0.061 0.007

02 105 257 0.047 0.002

03 112 436 0.070 0.007

04 119 343 0.049 0.002

05 123 440 0.059 0.004

06 127 409 0.051 0.004

07 129 357 0.043 0.002

08 130 225 0.027 0.001

09 135 387 0.043 0.002

10 135 510 0.056 0.004

11 141 333 0.034 0.001

12 145 274 0.026 0.001

13 151 595 0.053 0.002

14 158 422 0.034 0.001

15 161 413 0.032 0.001

16 163 414 0.031 0.001

17 164 686 0.051 0.002

18 169 387 0.027 0.001

19 172 609 0.041 0.002

20 172 591 0.040 0.002

21 172 357 0.024 0.000

22 175 737 0.048 0.004

23 175 749 0.049 0.003

24 176 371 0.024 0.000

25 179 467 0.029 0.001

26 198 552 0.028 0.001

27 199 1002 0.051 0.003

28 200 450 0.023 0.000

29 206 964 0.046 0.003

30 208 643 0.030 0.001

31 209 732 0.034 0.001

32 210 518 0.024 0.000

33 210 323 0.015 0.000

34 211 599 0.027 0.001

35 214 834 0.037 0.002

36 216 740 0.032 0.001

37 224 937 0.038 0.002

38 233 818 0.030 0.001

39 234 521 0.019 0.000

40 234 930 0.034 0.002

41 235 823 0.030 0.001

42 240 898 0.031 0.001

43 240 1115 0.039 0.002

44 242 836 0.029 0.001

45 246 672 0.022 0.001

46 252 1033 0.033 0.001

47 252 1591 0.050 0.004

48 258 1477 0.045 0.002

49 264 730 0.021 0.001

50 294 1275 0.030 0.001

Graph Partitioning in Software Modularisation 257

References

1. Altman, D.: Skewed distributions. Practical statistics for medical research, pp.
60–63. Chapman & Hall, London (1997)

2. Arasteh, B.: Clustered design-model generation from a program source code using
chaos-based metaheuristic algorithms. Neural Comput. Appl. 35(4), 3283–3305
(2023)

3. Arasteh, B., Seyyedabbasi, A., Rasheed, J.M., Abu-Mahfouz, A.: Program source-
code re-modularization using a discretized and modified sand cat swarm optimiza-
tion algorithm. Symmetry 15(2), 401 (2023)

4. Arzoky, M., Swift, S., Tucker, A., Cain, J.: Munch: an efficient modularisation
strategy to assess the degree of refactoring on sequential source code checkings. In:
2011 IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops, pp. 422–429. IEEE (2011)

5. Arzoky, M., Swift, S., Tucker, A., Cain, J.: A seeded search for the modularisation
of sequential software versions. J. Object Technol. 11(2), 1–6 (2012)

6. Brunsfeld, M.: Tree-sitter. https://github.com/tree-sitter/tree-sitter (Accessed 1
Jan 2023)

7. Campbell, L.R., et al.: Restricted growth function patterns and statistics. Adv.
Appl. Math. 100, 1–42 (2018)

8. Chen, Y.T., Huang, C.Y., Yang, T.H.: Using multi-pattern clustering methods to
improve software maintenance quality. IET Softw. 17(1), 1–22 (2023)

9. Chung, F.R.: Spectral graph theory, vol. 92. American Mathematical Soc. (1997)
10. Corradini, A., König, B., Nolte, D.: Specifying graph languages with type graphs.

J. Logical Algebraic Methods Programm/ 104, 176–200 (2019). https://doi.
org/10.1016/j.jlamp.2019.01.005, https://www.sciencedirect.com/science/article/
pii/S235222081730233X

11. Devroye, L.: Sample-based non-uniform random variate generation. In: Proceedings
of the 18th Conference on Winter Simulation, pp. 260–265 (1986)

12. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslov. Math. J. 25(4), 619–633 (1975)

13. Fiedler, M.: Laplacian of graphs and algebraic connectivity. Banach Center Publ.
1(25), 57–70 (1989)

14. GitHub: Github advanced search (2023). https://github.com/search/advanced,
(Accessed 1 Jan 23)

15. GitHub: Octoverse 2022: 10 years of tracking open source (2023). https://github.
blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/, (Accessed 1
Jan 23)

16. Gupta, N., Kumar, S., Gupta, V., Vijh, S.: Novel automatic approach using mod-
ified differential evaluation to software module clustering problem. SN Comput.
Sci. 4(6), 816 (2023)

17. Harman, M., Swift, S., Mahdavi, K., Beyer, H.: An empirical study of the robust-
ness of two module clustering fitness functions, In: genetic and Evolutionary Com-
putation Conference; Conference date: 25–06-2005 Through 29–06-2005, pp. 1029–
1036. Assoc Computing Machinery (2005),

18. Kang, Y., Xie, W., Wang, X., Wang, H., Wang, X., Li, J.: Mopisde: a collaborative
multi-objective information-sharing de algorithm for software clustering. Expert
Syst. Appli., 120207 (2023)

19. Khan, M.Z., et al.: A novel approach to automate complex software modularization
using a fact extraction system. J. Mathem. 2022 (2022)

https://github.com/tree-sitter/tree-sitter
https://doi.org/10.1016/j.jlamp.2019.01.005
https://doi.org/10.1016/j.jlamp.2019.01.005
https://www.sciencedirect.com/science/article/pii/S235222081730233X
https://www.sciencedirect.com/science/article/pii/S235222081730233X
https://github.com/search/advanced
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/

258 A. Mann et al.

20. Harper, L.H.: Stirling behaviour is asymptotically normal. Annals Math. Stat. 3(2),
410–414 (1967)

21. Kramer, O.: Iterated local search. In: A Brief Introduction to Continuous Evolu-
tionary Optimization. SAST, pp. 45–54. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-03422-5_5

22. Lu, K.: Practical program modularization with type-based dependence analysis.
In: 2023 IEEE Symposium on Security and Privacy (SP), pp. 1256–1270. IEEE
(2023)

23. Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R.: Bunch: a clustering tool for
the recovery and maintenance of software system structures. In: Proceedings IEEE
International Conference on Software Maintenance-1999 (ICSM 1999). Software
Maintenance for Business Change’(Cat. No. 99CB36360), pp. 50–59. IEEE (1999)

24. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using auto-
matic clustering to produce high-level system organizations of source code. In:
Proceedings. 6th International Workshop on Program Comprehension, IWPC 1998
(Cat. No. 98TB100242), pp. 45–52. IEEE (1998)

25. Maramazi, F., Odebode, A., Mann, A., Swift, S., Arzoky, M.: Intelligent systems
and applications.In: Proceedings of the 2024 Intelligent Systems Conference (Intel-
lisys) vol. 1. LNNS, vol. 822, pp. 470. Springer (2024)

26. Mitchell, B.S., Mancoridis, S.: Clustering module dependency graphs of software
systems using the bunch tool. Nat. Sci. Found., Alexandria, VA, USA, Tech. Rep
(1998)

27. Prajapati, A., Parashar, A., Rathee, A.: Multi-dimensional information-driven
many-objective software remodularization approach. Front. Comp. Sci. 17(3),
173209 (2023)

28. Ramalhinho-Lourenço, H., Martin, O.C., Stützle, T.: Iterated local search (2000)
29. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.

Stat. Assoc. 66(336), 846–850 (1971)
30. Savić, M., Rakić, G., Budimac, Z., Ivanović, M.: A language-independent approach

to the extraction of dependencies between source code entities. Inf. Softw. Technol.
56(10), 1268–1288 (2014)

31. SciTools: Understand: The software developer’s multi-tool (2023). https://scitools.
com/, (Accessed 10 Nov 2023)

32. Tan, A.J.J., Chong, C.Y., Aleti, A.: Closing the loop for software remodularisation-
rearrange: an effort estimation approach for software clustering-based remodulari-
sation. arXiv preprint arXiv:2303.06283 (2023)

33. Temme, N.M.: Asymptotic estimates of stirling numbers. Stud. Appl. Math. 89(3),
233–243 (1993)

34. Tucker, A., Swift, S., Liu, X.: Variable grouping in multivariate time series via
correlation. IEEE Trans. Syst. Man Cybernet. Part B (Cybernet). 31(2), 235–245
(2001)

35. Weiss, K., Banse, C.: A language-independent analysis platform for source code.
arXiv preprint arXiv:2203.08424 (2022)

36. Weisstein, E.W.: Stirling number of the second kind (2002). https://mathworld.
wolfram.com/

37. Yang, K., Wang, J., Fang, Z., Wu, P., Song, Z.: Enhancing software modularization
via semantic outliers filtration and label propagation. Inf. Softw. Technol. 145,
106818 (2022)

https://doi.org/10.1007/978-3-319-03422-5_5
https://doi.org/10.1007/978-3-319-03422-5_5
https://scitools.com/
https://scitools.com/
http://arxiv.org/abs/2303.06283
http://arxiv.org/abs/2203.08424
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/

A Novel Two-Level Clustering-Based
Differential Evolution Algorithm
for Training Neural Networks

Seyed Jalaleddin Mousavirad1(B), Diego Oliva2, Gerald Schaefer3,
Mahshid Helali Moghadam4, and Mohammed El-Abd5

1 Mid Sweden University, Sundsvall, Sweden
jalalmousavirad@gmail.com

2 Depto. de Ingenieŕıa Electro -Fotónica, Universidad de Guadalajara, CUCEI,
Guadalajara, Mexico

3 Department of Computer Science, Loughborough University, Loughborough, UK
4 Mälardalens University, Väster̊as, Sweden

5 College of Engineering and Applied Sciences, American University of Kuwait,
Salmiya, Kuwait

Abstract. Determining appropriate weights and biases for feed-forward
neural networks is a critical task. Despite the prevalence of gradient-
based methods for training, these approaches suffer from sensitivity to
initial values and susceptibility to local optima. To address these chal-
lenges, we introduce a novel two-level clustering-based differential evolu-
tion approach, C2L-DE, to identify the initial seed for a gradient-based
algorithm. In the initial phase, clustering is employed to detect some
regions in the search space. Population updates are then executed based
on the information available within each region. A new central point is
proposed in the subsequent phase, leveraging cluster centres for incorpo-
ration into the population. Our C2L-DE algorithm is compared against
several recent DE-based neural network training algorithms, and is shown
to yield favourable performance.

Keywords: Differential evolution · clustering · neural network
training · regularisation

1 Introduction

Feed-forward neural networks (FFNNs) are a widely adopted artificial neural
network (ANN) architecture employed in diverse classification and regression
problems [11,27]. Comprising basic components known as neurons and connec-
tions linking them, FFNNs allow the flow of information from the input layer
through hidden layers, ultimately reaching the output layer. Each connection
is characterised by a weight that signifies its strength. The training process
in FFNNs aims to determine optimal weights that minimise the error between
actual and predicted outputs. Although gradient-based approaches such as the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 259–272, 2024.
https://doi.org/10.1007/978-3-031-56852-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_17&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_17

260 S. J. Mousavirad et al.

back-propagation (BP) algorithm are prevalent, they tend towards local optima
and thus provide sub-optimal results [30].

Population-centric metaheuristic (PCM) algorithms, such as differential evo-
lution (DE) [40] and particle swarm optimisation (PSO) [38], provide a useful
alternative to address the challenges encountered by traditional algorithms. Evo-
lutionary algorithms (EAs) are group of PCMs that has been widely applied in
the training of FFNNs. [37] compares (BP) with a genetic algorithm (GA) for
FFNN training, concluding that the latter excels in terms of effectiveness. [13]
uses a modified GA for rapidly training FFNNs, demonstrating superior effi-
ciency compared to conventional GA-based training algorithms. [7] proposes a
hybrid approach combining GA and BP for determining the weights in FFNNs,
outperforming both GA and BP individually.

Swarm intelligence algorithms form another group of PCMs. [34] combines
PSO with the Levenberg-Marquardt (LM) algorithm to achieve faster conver-
gence. [39] introduces an opposition PSO-based training method and evaluates
it on various clinical datasets. [31] proposes a comprehensive learning strategy
integrated with PSO and LM as a local search algorithm for neural network
training. Various other PCM algorithms have been applied for FFNN training,
including the imperialist competitive algorithm (ICA) [8,22], the firefly algo-
rithm (FA) [17], the grey wolf optimiser (GWO) [2,19], and Lévy flight distri-
bution [3,35], among others.

Differential evolution is a well-established PCM renowned for its outstand-
ing performance in addressing complex optimisation problems [5,10,20,21]. It
comprises three primary operators: mutation, crossover, and selection. Mutation
facilitates the exchange of information among different individuals, crossover
integrates a mutant vector with a target vector, and selection chooses superior
individuals from old and new individuals into a new population.

DE has also been widely employed for FFNN training. [12] introduces a
DE-based training algorithm, showcasing its ability to outperform gradient-
based methods. [28] incorporates opposition-based learning into DE, demon-
strating good performance across various classification problems. [32] employs
an improved DE algorithm that incorporates opposition-based learning and a
region-based strategy, while [36] proposes a centroid-based differential evolution
algorithm with composite trial vector generation strategies and control param-
eters to optimise the weights and biases in FFNNs. In [24], a clustering-based
DE approach for neural network training is employed.

In a recent enhancement to DE, [29] introduces a methodology involving
centre-based sampling at the population level of DE, with the centre of the
entire population incorporated as a new individual. Integrating the centre point
is shown to effectively guide the population towards improved individuals. On
the other hand, [4] indicates that cluster centres in a population are viable can-
didates in the search space to move towards. Building upon these two concepts,
in this paper, we propose a novel two-level clustering-based differential evolution
algorithm, C2L-DE, for training FFNNs. At the first level, the clustering algo-
rithm works like a multi-parent crossover to update the population. In contrast,

A Two-Level Clustering-Based Differential Evolution Algorithm 261

at the second level, the central point of population clustering is injected as a
new individual into the population.

The main characteristics of C2L-DE are:

– a clustering strategy is employed at the first level to update the population;
– clustering is used to introduce a new individual into the population at the

second level;
– a regularisation term is incorporated into the objective function to enhance

generalisation;
– the weights and biases determined by C2L-DE are fed into the Levenberg-

Marquardt algorithm as the initial seed.

The remainder of the paper is organised as follows: Section 2 gives an overview
of some essential concepts. Section 3 presents our proposed approach, detailing
the fundamental components of C2L-DE and explaining its overall structure.
In Sect. 4, the performance of C2L-DE is assessed across various benchmark
problems, while Sect. 5 concludes the paper.

2 Background

2.1 Differential Evolution

Differential evolution (DE) [40] is a straightforward yet highly effective PCM
algorithm widely recognised for excellent performance in addressing complex
optimisation problems [10,41]. DE begins with NP individuals randomly gen-
erated from a uniform distribution. To update the population, three primary
operators are employed: mutation, crossover, and selection.

The mutation operator produces a mutant vector, vi = (vi,1, vi,2, ..., vi,D),
defined as

vi = xr1 + F (xr2 − xr3), (1)

where xr1, xr2, and xr3 are three distinct randomly chosen individuals from the
current population, and F represents a scale factor.

Crossover is responsible for incorporating the mutant vector into the target
vector. For binomial crossover, this is performed as

ui,j =

{
vi,j if rand(0, 1) ≤ CR or j == jrand

xi,j otherwise
, (2)

where CR denotes the crossover rate, jrand is a random number ranging from 1
to NP , and i = 1, ..., NP , j = 1, ...,D.

Selection identifies the superior individual from the trial and target vectors,
ensuring the progression of more promising solutions in the population.

The iterative process enhances the algorithm’s ability to effectively explore
and exploit the search space.

262 S. J. Mousavirad et al.

2.2 Pattern Clustering

The fundamental aim of clustering is to arrange a collection of patterns so that
the members within each group share more similarities than those in different
groups. Mathematically, clustering involves defining a set P consisting of N
d-dimensional patterns, denoted as P = {p1, p2, · · · , pN}. The k-means algo-
rithm [16] is the most widely adopted clustering algorithm and proceeds in the
following steps:

1. Randomly initialise the cluster centres;
2. In the allocation step, assign each pattern to its nearest cluster centre (e.g.,

using Euclidean distance);
3. In the update step, recalculate the position of each cluster centre as the

centroid of its assigned patterns;
4. Repeat steps 2 and 3 until convergence or a predefined stopping criterion is

met.

2.3 Feed-Forward Neural Networks

FFNNs, a widely employed class of ANNs, are trained in a supervised manner to
handle pattern recognition problems [1,33]. The typical architecture of an FFNN
consists of three types of layers: an input layer, one or more hidden layers, and
an output layer. Each node in these layers incorporates an activation function
that defines how the weighted sum of inputs transforms into the output. The
connections between layers are assigned weights, indicating the strength between
the respective nodes. Weights are critical for FFNN performance, making deter-
mining suitable weight values one of the most vital and challenging aspects of
FFNNs. Among various approaches, gradient descent-based methods form the
most widely adopted technique for this training process.

3 Proposed C2L-DE Algorithm

Our proposed C2L-DE algorithm leverages clustering at two distinct levels. At
the first level, specific individuals are substituted with cluster centres, while at
the second level, the central point of a cluster centre is introduced as a new indi-
vidual into the population. Additionally, our proposed algorithm incorporates a
regularisation-based objective function to enhance the generalisation capabilities
of the algorithm.

3.1 First-Level Clustering

At the first level, C2L-DE employs a clustering algorithm to construct areas in
search space using the k-means algorithm. Determining the number of clusters is
accomplished by selecting a random number within the range of 2 to

√
NP . The

resulting cluster centres are analogous to a multi-parent crossover, representing
the cumulative solutions within a cluster.

A Two-Level Clustering-Based Differential Evolution Algorithm 263

C2L-DE’s population update strategy involves adopting a generic population-
based algorithm (GPBA) [6]. This approach aligns with a GPBA methodology
and encompasses the folloingw steps:

– Diversity selection: individuals are randomly chosen from the current pop-
ulation, mirroring the initialisation of points in the k-means algorithm;

– Clustered generation: k-means is applied to generate m individuals (set
A). Each cluster centre determined through this process corresponds to a new
individual;

– Individual substitution: from the current population, m individuals (set
B) are (randomly) selected for substitution;

– Elite update: the best m individuals from the combined set A ∪ B are
selected as B̄, and the new population is formed as (P − B) ∪ B̄.

This population update procedure integrates elements from clustering algorithms
and population-based strategies, ensuring an effective and dynamic approach in
C2L-DE.

It is important to note that C2L-DE does not employ the clustering algorithm
in each iteration. Instead, following [5,32], clustering is applied periodically based
on a clustering period.

3.2 Second-Level Clustering

DE-centre-p [29] is a centre-based DE algorithm where an individual, determined
by the central point defined as the centre of the N best individuals, is introduced
as a new member of the population. The population is then divided into two
parts, one a set of individuals that undergo positional updates through standard
mutation and crossover operations, and one that is an individual exclusively
devoted to preserving the centre of the N best individuals. On the other hand, [4]
suggests that cluster centres within a population represent promising candidates
in search space, in particular for directional movement. Consequently, at the
second level of our proposed clustering scheme, we introduce a novel approach
for incorporating a new individual into the population based on cluster centres.

Following the initial clustering phase, the N most promising areas are iden-
tified using a one-step k-means algorithm. The value of N is not fixed and is
randomly chosen between 2 and

√
NP . Cluster centres serve as representatives

for each cluster. Subsequently, the central point of these cluster centres is selected
as a new individual, obtained as

−−−−→xcentre =
−→xc1 + ...−→xci + ... + −−→xcN

N
, (3)

where xci is the i-th cluster centre. While DE-centre-p injects this individual
into the population with a fixed location, in C2L-DE we dynamically select this
location based on the objective function. In other words, this new individual
replaces the worst individual and endeavours to substitute the least favourable
solution with the central point derived from several promising candidates within
the population. Figure 1 illustrates the process creating a new individual based
on the central point of cluster centres.

264 S. J. Mousavirad et al.

Search Space

O
bj

ec
tiv

e
fu

nc
tio

n

New Individual

Cluster centres
Integration

Fig. 1. Clustering at the second level. Circle-shaped points show individuals in the
population, while star-shapesd points indicate cluster centres.

3.3 Encoding Strategy

Our approach uses a real-valued encoding scheme to represent individuals. Each
solution is described by a vector comprising connection weights and bias values.
The encoding length directly correlates with the problem’s complexity, reflecting
the total number of connection weights and biases that require optimisation.

3.4 Objective Function

We use an objective function for FFNN training that incorporates a regularisa-
tion term and is calculated as

f =
100
P

P∑
p=1

ξ(xp) +
λ

2m

∑
||W ||2, (4)

with

ξ(−→p) =

{
1 if −→op �= −→

dp

0 otherwise
, (5)

where dp and op are the actual and predicted outputs, respectively, and m is
the total number of samples. The regularisation parameter, λ, serves as a hyper-
parameter, penalising large values of weights and biases. If λ is excessively large,
numerous weights will approach zero, simplifying the FFNN and making it prone
to underfitting. Conversely, if λ is too small, the regularisation term’s influence
diminishes. An optimal choice of λ is crucial as it helps control the weights,
preventing overfitting while maintaining the model’s performance.

3.5 Levenberg-Marquardt Algorithm

We use the weights obtained by C2L-DE as an initial seed to the Levenberg-
Marquardt (LM) algorithm [15,18]. LM aims to optimise the objective function

A Two-Level Clustering-Based Differential Evolution Algorithm 265

by adjusting the network weights using an update rule defined as

wt+1 = wt − (JT
t Jt + μI)−1Jk

t Et, (6)

with

Et =
N∑
i=1

(di − yi)2, (7)

where J is the Jacobian matrix of the error vector Et, JT is its transpose, I is
the identity matrix with dimensions matching the Hessian JpJ , N is the number
of training samples, and μ is a damping factor adjusted during the optimisation
process. JkE indicates the gradient of the error function E.

It is worth noting that the LM algorithm converges faster compared to other
algorithms, such as BP or back-propagation with momentum [9,14].

3.6 C2L-DE Algorithm

Algorithm 1 presents our proposed C2L-DE algorithm in pseudo-code form. C2L-
DE first creates an initial population and evaluates the objective function of
each individual. The algorithm then iteratively performs mutation, crossover,
and selection operations. Periodically, it undergoes the two levels of clustering.
At the first level, based on the clustering period (CP), a combination of k-means
clustering and random selection is employed to update the population, while at
the second level, k-means is employed to identify cluster centres and create a new
individual as the average of these centres. This new individual then replaces the
worst individual in the population. The algorithm iterates until the maximum
number of function evaluations is reached. It is worth noting that we utilise a
one-step k-means algorithm due to its O(1) complexity, ensuring no change in
the overall complexity.

Upon completion, the best individual,
−→
x∗, is identified. If the maximum num-

ber of function evaluations is surpassed, the algorithm proceeds to the secondary
phase. It initialises ω as the best individual and resets the iteration count. It then
iteratively computes the Jacobian, the approximated Hessian, and the error,
updating the weights using the Levenberg-Marquardt algorithm. This process
continues until a specified maximum number of iterations is reached.

4 Experimental Results

To evaluate the effectiveness of the proposed C2L-DE algorithm, we conduct a set
of experiments on diverse datasets from the UCI machine learning repository1,
namely:

– Iris: a well-known classification dataset with 150 samples, 4 features, and 3
classes;

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php

266 S. J. Mousavirad et al.

Algorithm 1: C2L-DE algorithm

1 Initialisation:;
2 Initialise Npop, NFEmax, itermax, Jr, CP , λ;
3 NFE = 0, iter = 1;

4 while NFE ≤ NFEmax do
5 Generate initial population Pop using uniformly distributed random

numbers;
6 Calculate objective function of each individual in Pop using Eq. (4);
7 NFE = Npop;
8 foreach individual do
9 Perform mutation operation;

10 Perform crossover operator;
11 Calculate objective function using Eq. (4);
12 Perform selection operation;

13 end
14 NFE = NFE + Npop;

// First-level Clustering

15 if rem(iter, CP) == 0 then
16 Randomly generate k as a random number between 2 and

√
NP ;

17 Conduct a single step of k-means clustering and designate the cluster
centres as set A;

18 Randomly pick k individuals from the current population and designate
them as set B;

19 From the union of sets A and B, select the best k individuals and
denote them as B̄;

20 Choose the new population as (Pop − B) ∪ B̄;

21 end
// Second-level Clustering

22 Randomly generate k as a random number between 2 and
√

NP ;
23 Conduct a single step of k-means clustering;
24 Select N cluster centre solutions as −→xc1,

−→xc2,...,
−−→xcN ;

25 xnew =
−−→xc1+

−−→xc2+...+−−→xcN
N

;
26 xworst ← xnew ;

27 end

28
−→
x∗ ← the best individual in pop

29 iter = iter + 1;
30 if NFE > NFEmax then

31 Initialise ω as
−→
x∗ (i.e. the best individual in the current population);

32 Set the current iteration iter to 0;
33 while iter < itermax do
34 Compute the Jacobian J , the approximated Hessian JTJ , and the error

Et;
35 Update weights using Eq. (7);
36 Recalculate Et;
37 if iter < itermax then
38 Increment iter by 1;
39 end

40 end

41 end

A Two-Level Clustering-Based Differential Evolution Algorithm 267

– Breast Cancer : comprising 699 samples, 9 features, and 2 classes;
– Liver : a binary clinical dataset from BUPA Medical Research Ltd., with 345

instances and 7 features;
– Pima: a challenging clinical classification dataset featuring 768 samples, 2

classes, and 8 features;
– Seed : an agricultural dataset with seven geometrical features of wheat kernels,

containing 210 samples divided into 3 categories.
– Vertebral : A clinical dataset incorporating biomechanical features, catego-

rized into 3 classes with 310 samples.

Here we do not focus on determining the optimal FFNN architecture, but
adopt the approach from [23,25], setting the number of neurons in the single
hidden layer to 2 × N + 1, where N is the number of inputs. For evaluation, we
employ 10-fold cross-validation.

C2L-DE is benchmarked against a number of state-of-the-art and recently
proposed DE-based trainers, including standard DE, QODE, RDE-OP, Reg-
IDE, and Cen-CODE. The number of function evaluations for all PCMs is fixed
at 25,000 [26]. The population size for all PCMs is set to 50. For C2L-DE, the
crossover probability, scaling factor, and jumping rate are set to 0.9, 0.5, and
0.3, respectively, and the clustering period and regularisation parameter are also
chosen as 10 and 0.1, respectively. For the remaining algorithms, we use the
default parameters as per the cited publications.

The obtained results on the Iris dataset, presented in Table 1, reveal valuable
insights into the performance of different DE algorithms. Our proposed C2L-
DE algorithm stands out prominently, achieving the joint highest mean fitness
value of 99.33 (along with Reg-IDE), showcasing the effectiveness of C2L-DE in
converging towards optimal solutions. In addition, the low standard deviation
of 2.10 indicates the robustness of C2L-DE across multiple runs. In contrast,
standard DE and other comparative algorithms such as QODE and Cen-CODE
exhibit lower mean fitness values and higher standard deviations.

Table 1. Experimental results on Iris dataset.

mean std.dev rank

DE 92.00 5.26 6

QODE 95.33 6.32 5

RDE-OP 96.67 6.48 4

Reg-IDE 99.33 2.11 1.5

Cen-CODE 98.00 3.22 3

C2L-DE 99.33 2.10 1.5

The results on the Breast Cancer dataset are given in Table 2. From there, we
can see that all algorithms except DE provide a similar mean accuracy. C2L-DE

268 S. J. Mousavirad et al.

Table 2. Experimental results on Breast Cancer dataset.

mean std.dev rank

DE 97.36 2.06 6

QODE 98.10 0.99 5

RDE-OP 98.82 1.67 1

Reg-IDE 98.39 2.24 3

Cen-CODE 98.38 1.61 4

C2L-DE 98.53 1.64 2

is second ranked with a mean fitness value of 98.53, demonstrating its competi-
tive performance.

Table 3 shows the results on the Liver dataset. C2L-DE is top ranked with
a mean fitness value of 77.64, highlighting its superior performance. QODE and
Reg-IDE also exhibit competitive mean fitness values of 76.82 and 76.26, respec-
tively, resulting in the second and third ranks.

Table 3. Experimental results on Liver dataset.

mean std.dev rank

DE 67.81 8.21 6

QODE 76.82 9.46 2

RDE-OP 75.63 6.45 4

Reg-IDE 76.26 4.03 3

Cen-CODE 75.10 6.66 5

C2L-DE 77.64 5.83 1

Table 4 presents the results on Pima dataset. C2L-DE is again top ranked
here, with a mean fitness of 81.50. Reg-IDE is second ranked with a mean fitness
value of 80.60, followed by RDE-OP (80.21) and QODE (79.55).

The results on the Seed dataset, given in Table 5, also show our C2L-DE
algorithms as the top-performing approach, achieving a mean accuracy of 93.80.
Cen-CODE follows with a mean accuracy of 82.38, while algorithms like DE,
QODE, and RDE-OP perform less effectively.

The experimental results on the Vertebral dataset, reported in Table 6, reveal
QODE as the top-performing algorithm. However, QODE generally does not
achieve satisfactory results on the other datasets. C2L-DE follows closely with
a mean accuracy of 87.74, while DE and Cen-CODE exhibit lower performance.

The obtained results across multiple datasets clearly demonstrate the supe-
rior performance of our proposed C2L-DE algorithm compared to the other
methods, while also proving it to be a robust method.

A Two-Level Clustering-Based Differential Evolution Algorithm 269

Table 4. Experimental results on Pima dataset.

mean std.dev rank

DE 76.94 4.97 6

QODE 79.55 4.94 4

RDE-OP 80.21 5.73 3

Reg-IDE 80.60 4.15 2

Cen-CODE 77.99 4.12 5

C2L-DE 81.50 5.34 1

Table 5. Experimental results on Seed dataset.

mean std.dev rank

DE 70.00 11.01 4

QODE 67.62 3.01 5

RDE-OP 67.62 4.92 5

Reg-IDE 80.60 4.15 3

Cen-CODE 82.38 8.1 2

C2L-DE 93.80 5.96 1

Table 6. Experimental results on Vertebral dataset.

mean std.dev rank

DE 85.16 5.31 5.5

QODE 88.39 8.76 1

RDE-OP 86.77 4.42 3.5

Reg-IDE 86.77 5.37 3.5

Cen-CODE 85.16 6.48 5.5

C2L-DE 87.74 6.23 2

5 Conclusions

In this paper, we have presented the C2L-DE algorithm as a novel effective
solution for the complex task of determining optimal weights and biases in
feed-forward neural networks. Traditional gradient-based methods, while widely
employed, encounter challenges such as sensitivity to the initial values and sus-
ceptibility to local optima. Our two-level clustering-based differential evolution
approach addresses these issues by introducing a dynamic and informed popu-
lation update strategy. In the initial phase, clustering identifies diverse regions
within the search space, guiding population updates based on localised informa-
tion. Subsequently, a central point derived from cluster centres, is introduced

270 S. J. Mousavirad et al.

as a new individual into the population. A comparative analysis against several
recent DE training algorithms confirms the promising performance of C2L-DE.

In future work, we intend to extend the application of our algorithm to other
ANN-related tasks, such as neural architecture search. Additionally, C2L-DE
holds potential for hyperparameter optimisation, showcasing its versatility and
adaptability in various aspects of neural network optimisation.

References

1. Abrishami, N., Sepaskhah, A.R., Shahrokhnia, M.H.: Estimating wheat and maize
daily evapotranspiration using artificial neural network. Theor. Appl. Climatol.
135(3), 945–958 (2018). https://doi.org/10.1007/s00704-018-2418-4

2. Amirsadri, S., Mousavirad, S.J., Ebrahimpour-Komleh, H.: A levy flight-based
grey wolf optimizer combined with back-propagation algorithm for neural net-
work training. Neural Comput. Appl. 30(12), 3707–3720 (2017). https://doi.org/
10.1007/s00521-017-2952-5

3. Bojnordi, E., Mousavirad, S.J., Pedram, M., et al.: Improving the generalisation
ability of neural networks using a Lévy flight distribution algorithm for classifi-
cation problems. New Gener. Comput. 41(2), 225–242 (2023). https://doi.org/10.
1007/s00354-023-00214-5

4. Bojnordi,E., Mousavirad,S.J., Schaefer, G., Korovin, I.: MCS-HMS: a multi-cluster
selection strategy for the human mental search algorithm. In: IEEE Symposium
Series on Computational Intelligence, pp. 1–6, 2021

5. Cai, Z., Gong, W., Ling, C.X., Zhang, H.: A clustering-based differential evolution
for global optimization. Appl. Soft Comput. 11(1), 1363–1379 (2011)

6. Deb, K.: A population-based algorithm-generator for real-parameter optimization.
Soft. Comput. 9(4), 236–253 (2005)

7. Ding, S., Chunyang, S., Junzhao, Yu.: An optimizing BP neural network algorithm
based on genetic algorithm. Artif. Intell. Rev. 36(2), 153–162 (2011)

8. Duan, H., Huang, L.: Imperialist competitive algorithm optimized artificial neural
networks for UCAV global path planning. Neurocomputing 125, 166–171 (2014)

9. El-Bakry, M.Y., El-Dahshan, E.-S.A., El-Hamied, E.F.A.: Charged particle pseudo-
rapidity distributions for Pb-Pb and Au-Au collisions using neural network model.
Ukrainian J. Phys. 58(8), 709–709 (2013)

10. Fister, I., Fister, D., Deb, S., Mlakar, U., Brest, J.: Post hoc analysis of sport
performance with differential evolution. Neural Comput. Appl. 32, 1–10 (2018)

11. Hosaka, T.: Bankruptcy prediction using imaged financial ratios and convolutional
neural networks. Expert Syst. Appl. 117, 287–299 (2019)

12. Ilonen, J., Kamarainen, J.-K., Lampinen, J.: Differential evolution training algo-
rithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)

13. Kim, D., Kim, H., Chung, D.: A modified genetic algorithm for fast training neural
networks. In: International Symposium on Neural Networks, pp. 660–665 (2005)

14. Lera, G., Pinzolas, M.: Neighborhood based Levenberg-Marquardt algorithm for
neural network training. IEEE Trans. Neural Networks 13(5), 1200–1203 (2002)

15. Levenberg, K.: A method for the solution of certain non-linear problems in least
squares. Q. Appl. Math. 2(2), 164–168 (1944)

16. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297 (1967)

https://doi.org/10.1007/s00704-018-2418-4
https://doi.org/10.1007/s00521-017-2952-5
https://doi.org/10.1007/s00521-017-2952-5
https://doi.org/10.1007/s00354-023-00214-5
https://doi.org/10.1007/s00354-023-00214-5

A Two-Level Clustering-Based Differential Evolution Algorithm 271

17. Mandal, S., Saha, G., Pal, R.K.: Neural network training using firefly algorithm.
Glob. J. Adv. Eng. Sci. 1(1), 7–11 (2015)

18. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parame-
ters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

19. Mirjalili, S.: How effective is the Grey Wolf optimizer in training multi-layer per-
ceptrons. Appl. Intell. 43(1), 150–161 (2015). https://doi.org/10.1007/s10489-014-
0645-7

20. Moravvej, S.V., Mousavirad, S.J., Oliva, D., Schaefer, G., Sobhaninia, Z.: An
improved DE algorithm to optimise the learning process of a BERT-based pla-
giarism detection model. In: IEEE Congress on Evolutionary Computation, pp.
1–7 (2022)

21. Mousavirad, S.J., Bidgoli, A.A., Rahnamayan, S.: Tackling deceptive optimization
problems using opposition-based DE with center-based Latin hypercube initial-
ization. In: 14th International Conference on Computer Science and Education
(2019)

22. Mousavirad, S.J., Bidgoli, A.A., Ebrahimpour-Komleh, H., G.S.: A memetic impe-
rialist competitive algorithm with chaotic maps for multi-layer neural network
training. Int. J. Bio-Inspired Comput. 14(4), 227–236 (2019)

23. Mousavirad, S.J., Bidgoli, A.A., Ebrahimpour-Komleh, H., Schaefer, G., Korovin,
I.: An effective hybrid approach for optimising the learning process of multi-layer
neural networks. In: International Symposium on Neural Networks, pp. 309–317
(2019)

24. Mousavirad, S.J., Gandomi, A.H., Homayoun, H.: A clustering-based differential
evolution boosted by a regularisation-based objective function and a local refine-
ment for neural network training. In: IEEE Congress on Evolutionary Computa-
tion, pp. 1–8 (2022)

25. Mousavirad, S.J., Jalali, S.M.J., Sajad, A., Abbas, K., Schaefer, G., Nahavandi, S.:
Neural network training using a biogeography-based learning strategy. In: Interna-
tional Conference on Neural Information Processing (2020)

26. Mousavirad, S.J., Oliva, D., Hinojosa, S., Schaefer, G.: Differential evolution-
based neural network training incorporating a centroid-based strategy and dynamic
opposition-based learning. In: IEEE Congress on Evolutionary Computation, pp.
1233–1240 (2021)

27. Mousavirad, S.J., Rahmani, R., Dolatabadi, N.: A transfer learning based artificial
neural network in geometrical design of textured surfaces for tribological applica-
tions. Surf. Topogr. Metrol. Prop. 11(2), 025001 (2023)

28. Mousavirad, S.J., Rahnamayan, S.: Evolving feedforward neural networks using a
quasi-opposition-based differential evolution for data classification. In: IEEE Sym-
posium Series on Computational Intelligence (2020)

29. Mousavirad, S.J., Rahnamayan, S.: A novel center-based differential evolution algo-
rithm. In: Congress on Evolutionary Computation (2020)

30. Mousavirad, S.J., Schaefer, G., Jalali, S.M.J., Korovin, I.: A benchmark of recent
population-based metaheuristic algorithms for multi-layer neural network training.
In: Genetic and Evolutionary Computation Conference Companion, pp. 1402–1408
(2020)

31. Mousavirad, S.J., Schaefer, G., Korovin, I.: An effective approach for neural net-
work training based on comprehensive learning. In: International Conference on
Pattern Recognition (2020)

32. Mousavirad, S.J., Schaefer, G., Korovin, I., Oliva, D.: RDE-OP: a region-based dif-
ferential evolution algorithm incorporation opposition-based learning for optimis-
ing the learning process of multi-layer neural networks. In: Castillo, P.A., Jiménez

https://doi.org/10.1007/s10489-014-0645-7
https://doi.org/10.1007/s10489-014-0645-7

272 S. J. Mousavirad et al.

Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 407–420. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72699-7 26

33. Munkhdalai, L., Lee, J.Y., Ryu, K.H.: A hybrid credit scoring model using neu-
ral networks and logistic regression. In: Pan, J.-S., Li, J., Tsai, P.-W., Jain, L.C.
(eds.) Advances in Intelligent Information Hiding and Multimedia Signal Process-
ing. SIST, vol. 156, pp. 251–258. Springer, Singapore (2020). https://doi.org/10.
1007/978-981-13-9714-1 27

34. Nawi, N.M., khan, A., Rehman, M.Z., Aziz, M.A., Herawan, T., Abawajy, J.H.: An
accelerated particle swarm optimization based Levenberg Marquardt back propa-
gation algorithm. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.)
ICONIP 2014. LNCS, vol. 8835, pp. 245–253. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-12640-1 30

35. Pedram, M., Mousavirad, S.J., Schaefer, G.: Training neural networks with Lévy
flight distribution algorithm. In: 7th International Conference on Harmony Search,
Soft Computing and Applications, pp. 93–103 (2022)

36. Rahmani, S., Mousavirad, S.J., El-Abd, M., Schaefer, G., Oliva, D.: Centroid-based
differential evolution with composite trial vector generation strategies for neural
network training. In: Correia, J., Smith, S., Qaddoura, R. (eds.) International
Conference on the Applications of Evolutionary Computation, vol. 13989, pp. 608–
622. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30229-9 39

37. Sexton, R.S., Gupta, J.N.D.: Comparative evaluation of genetic algorithm and
backpropagation for training neural networks. Inform. Sci. 129(1–4), 45–59 (2000)

38. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International
Conference on Evolutionary Computation, pp. 69–73 (1998)

39. Si, T., Dutta, R.: Partial opposition-based particle swarm optimizer in artificial
neural network training for medical data classification. Int. J. Inform. Technol.
Decis. Making 18(5), 1717–1750 (2019)

40. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

41. Wang, X., et al.: Massive expansion and differential evolution of small heat shock
proteins with wheat (triticum aestivum l.) polyploidization. Sci. Rep. 7(1), 1–12
(2017)

https://doi.org/10.1007/978-3-030-72699-7_26
https://doi.org/10.1007/978-981-13-9714-1_27
https://doi.org/10.1007/978-981-13-9714-1_27
https://doi.org/10.1007/978-3-319-12640-1_30
https://doi.org/10.1007/978-3-319-12640-1_30
https://doi.org/10.1007/978-3-031-30229-9_39

Iterated Beam Search for Wildland Fire
Suppression

Gustavo Delazeri(B) and Marcus Ritt

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
{gustavo.delazeri,marcus.ritt}@inf.ufrgs.br

Abstract. Wildfires cause significant damage costs globally, and it is
likely that they are becoming more damaging due to climate change.
Here we study methods for fire suppression, after a breakout of fire. In our
model, we have a grid graph G = (V, A) that represents the discretization
of a terrain into cells and an ignition node s ∈ V from which the fire
spreads to other nodes. The spread of the fire is defined by the arc
weights, which can be used to model important factors such as wind
direction and vegetation type. At various points in time, one or more
fire suppression resources become available to be applied to nodes in the
graph that are not yet burned. Applying a resource to a node v ∈ V adds
a delay to the outgoing edges of v, which causes a local slowdown in fire
propagation. The goal is to find an allocation of resources to the nodes of
the graph such that the total burned area at a target time is minimized.
In this work, we propose a heuristic algorithm based on beam search
to tackle this problem. Our computational experiments show that our
approach is able to consistently find the optimal solution to almost all
instances used in literature, but in considerably less time than previous
approaches.

Keywords: wildfire suppression · heuristic search · beam search

1 Introduction

Wildfires are estimated to have caused global damage costs of about USD 69

billion in 2018–2023 [8,12]. Their frequency and damage are likely to increase
with climate change, with longer wildfire seasons, larger affected areas, and new
locations of occurrence. They are at the same time harder to handle, since they
coincide more frequently with dry air [6,14]. Although deaths from wildfires are
rare in comparison to other natural disasters, they destroy ecosystems, threaten
homes, livelihoods, technical infrastructure such as railways and the electricity
grid, and lead to a reversal of carbon capture [6,13]. An increased frequency
of wildfires demands a comprehensive and urgent response, and governments
around the world already are investing in wildfire research with the goal of
understanding its causes and how damages can be mitigated [3].

According to [10], the operations research community has been studying wild-
fire management since the early 1960s, and [7] is one of the first works dealing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 273–286, 2024.
https://doi.org/10.1007/978-3-031-56852-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_18&domain=pdf
http://orcid.org/0000-0001-9439-3113
http://orcid.org/0000-0001-7894-1634
https://doi.org/10.1007/978-3-031-56852-7_18

274 G. Delazeri and M. Ritt

with the application of operations research techniques to forest fire problems.
Since then, we can find in the literature a variety of mathematical models that
aim to capture decisions related to the process of preventing and suppressing
a wildfire, such as the coordination of fire crews, the deployment of aerial fire-
fighting assets and the routing of vehicles to transport firefighters and other
equipment. To give some examples, in 1995 [5] proposed the firefighter problem,
which is defined on a graph where fire spreads from an ignition node to adjacent
nodes in sequential time steps. At each time instant, a certain number of fire sup-
pression resources is available and can be deployed to unburned nodes. Applying
a resource to a node prevents the fire from spreading through its outgoing edges
to adjacent nodes, and the goal is to stop the fire in the minimum amount of time
steps. [2] proposed a more realistic mixed-integer linear programming model that
integrates fire spread behavior and the placement of suppression resources. The
landscape is represented by a graph and the model comprises control variables,
to decide which nodes will receive fire suppression resources, and response vari-
ables, which define fire spread paths, fire arrival times, and fire intensity for all
the nodes. The goal is to minimize the total value of the burned area together
with operational costs.

In this work, we consider a problem first defined in [1] and [11]. Similarly to
[2], we are given a graph representing a landscape, an ignition node and some fire
suppression resources spread over time. The goal is to allocate the fire resources
to the nodes in order to minimize the burned area at some target time instant.
In this context, our main contribution is a heuristic algorithm based on iterated
beam search that achieves better results than previous approaches in a fraction
of the time.

To close this section, we give an overview of what follows. In Sect. 2, we
formally define the problem. Section 3 goes over the algorithmic approaches to
this problem that can be found in the literature. Section 4 provides a series of
definitions that will be used to explain our algorithm, which is presented in
Sect. 5. In Sect. 6, we conduct some computational experiments to study the
performance of our algorithm. Section 7 concludes the work and proposes new
research directions.

2 Problem Description

Fire propagation is modeled by a directed graph G = (V,A) with travel times ta

on arcs a ∈ A, which model the time required for fire to propagate from a node
to a neighboring node. A directed graph permits to model different fire travel
times in opposite directions, which can occur due to factors like wind and terrain
slope. Given an ignition node s ∈ V, the travel times define a shortest-path tree
rooted at s in which each node v ∈ V has an associated fire arrival time av and
a predecessor pv. Now assume we have k fire suppression resources which can
be allocated to nodes v ∈ V, and each resource adds a delay Δ to the outgoing
arcs of v. Each resource i ∈ [k] is available at time ri, and can only be allocated

Iterated Beam Search for Wildland Fire Suppression 275

to a node v if av ≥ ri, i.e. if v is not burned yet1. We also assume that each
node can receive at most one resource. Finally, we have a time horizon H and
are interested in nodes that do not burn until H.

The allocation of resources to nodes can be represented by an injective func-
tion Λ : [k] → V. By definition, such an allocation changes the travel times t,
but it can also change the topology and the arrival times of the shortest-path
tree. As a result, given an allocation of resources Λ, we denote the resulting
fire propagation times by tΛ, the fire arrival times by aΛ, and the predecessor
relation by pΛ. The problem, then, is to find a feasible allocation of resources Λ

that minimizes the number of burned nodes at time instant H, i.e.

b =
∑

v∈V

[aΛ
v ≤ H].

3 Related Work

The problem we are interested in was first proposed as a mixed-integer linear
programming (MIP) model by [1]. In [11], the authors propose a set of represen-
tative instances for this model and an iterated local search to solve them. The
authors compare the performance of the local search with the performance of
a commercial solver on the mathematical formulation of [1]. In computational
experiments, they show that the heuristic achieves good results in a reasonable
amount of time for all instances, while the solver needs more time to produce
results and, for some large instances, fails to produce a feasible solution within
the time limit of 2 h.

[4] extend the work of [1] and [11] by proposing a better MIP formulation of
the problem, an exact algorithm using logic-based Benders decomposition, and a
simple greedy heuristic used to warm-start the exact algorithm. In computational
experiments, they show that the exact algorithm and a commercial solver using
the new MIP model can solve all the instances proposed by [11] in a few seconds.
In light of that, they propose new instances consisting of 20 × 20 grids and a
larger optimization horizon. In another round of computational experiments,
they compare the performance of the solver, the iterated local search of [11] and
the proposed exact algorithm considering a time limit of 2 h. The solver was not
able to prove the optimality of any instance, failed to produce a feasible solution
in some cases and had the overall worst performance regarding solution quality.
The iterated local search was able to find the optimal solution of some instances,
but in most of the time it stayed behind the exact algorithm, which was able to
find and prove the optimality of all instances.

4 Preliminaries

Consider a grid graph G = (V,A). The immediate neighborhood of a node v ∈ V,
denoted as N(v), encompasses nodes reachable through outgoing arcs of v. Sim-
1 We use [n] to denote a set containing the first n natural numbers, i.e. [n] = {1, . . . , n}.

276 G. Delazeri and M. Ritt

ilarly, the extended neighborhood N
∗(v) includes nodes reachable via outgo-

ing arcs as well as diagonal connections from v. Time instants where resources
become available are represented by a sequence of times T = (t1, t2, . . .), in
ascending order. We denote by α(t) = mini>0|ti>tti the first time instant after
t when new resources become available, with α(t) = H if no further resources
become available after t. Finally, for each time instant t ∈ [0,H], Rt ⊆ [k] is a
set containing the resources that become available at time t.

When an allocation of resources Λ assigns a resource to a node v ∈ V, we
say that v is protected. We denote by PΛ ⊆ V the set of nodes protected by Λ.
If |PΛ| = k we say that Λ is a complete allocation. Conversely, if |PΛ| < k we
say that Λ is partial. The special allocation that does not protect any node is
denoted by Λ0, i.e. PΛ0 = ∅. Finally, given an allocation Λ and a time instant
t ∈ [0,H], we define BΛ

t = {v ∈ V | aΛ
v < t} as the set of nodes that are burned

at t. Note that our goal is to find an allocation Λ such that |BΛ
H| is minimized.

5 Proposed Algorithm

Beam search is a graph search algorithm that visits nodes in a breadth-first
manner until a target node is reached. Starting from the root node, beam search
keeps a list of β nodes and, at each level of the search tree, nodes in the list are
expanded η times. In the literature, β is known as the beam width and η as the
ramification factor. A heuristic function is then used to rank the βη expansions,
and the best β nodes are selected to continue to the next iteration. Beam search
has been extensively used to tackle optimization problems [9]. In the context of
our problem, each interior node of the search tree represents a partial allocation
of resources, and leaf nodes are complete allocations. The root node is Λ0, and
for each t ∈ T , we expand the current set of allocations by applying the resources
in Rt. The best leaf node is returned by the algorithm.

5.1 Beam Search

Algorithm 1 gives a high level view of our approach. In line 1, we create a set
A containing only Λ0, which will represent the current state of the search tree.
For each time instant t ∈ T , we use the function Step to expand each node in
A, and we store all the expansions of the current level in the set E. In line 4,
we use a heuristic function to select the β best allocations to continue to the
next iteration, and in line 6 we return the best leaf node in the search tree. We
explain how to expand a given allocation in Sect. 5.2. We will next define the
heuristic function used to prune the search tree.

We propose two heuristic functions to evaluate a partial allocation of
resources Λ. The first one, which we call h1, is equal to the number of burned
nodes at time instant H.

h1(Λ) =
∑

v∈V

[aΛ
v ≤ H]

Iterated Beam Search for Wildland Fire Suppression 277

Algorithm 1: BeamSearch
Data: Fire perimeter size z.
Result: An allocation of resources Λ.

1 A ← {Λ0}

2 for t ∈ T do
3 E ←

⋃

Λ∈A
Step(Λ, t, z)

4 A ← prune(E, t)

5 end
6 return arg min

Λ∈A
|BΛ

H|

Heuristic h1 can be quite uninformative in the first few time instants, especially
when the delay Δ is low and the optimization horizon H is large. In such situ-
ations, it is likely that the first few resources available cannot save any nodes,
hence a comparison between two allocations is uninformative. In light of that,
we propose a second heuristic, called h2, which aims to measure how much delay
an allocation Λ introduces in the network.

h2(Λ) =
∑

v∈V

max{H − aΛ
v , 0}

As we will see in the experimental section, we can obtain better results by
starting with h2 as the guiding heuristic and then switching to h1 at some point
in time. We call the time instant at which we start using h1 transition instant,
and we denote it by t̂. It is better to define the transition instant relative to the
velocity with which the fire propagates. To this end, we define the free burning
time of an instance as the time instant at which the last node is burned assuming
that no node is protected by a resource, i.e. the free burning time equals max

v∈V
aΛ0

v .

We can now specify the transition instant as a percentage of the free burning
time, and we denote this percentage by p̂. To give an example, if the free burning
time of an instance is 10 and p̂ = 0.5, we have that the transition instant t̂ is
equal to 5.

In summary, if t < t̂ we prune the search tree by selecting the β best partial
allocations in E using h2. If t ≥ t̂, we use h1. In Sect. 6.3, we study how the
transition instant affects the performance of our algorithm.

5.2 Expanding an Allocation of Resources

We now consider the problem of generating the expansions of a given allocation
in the search tree, as is done in line 3 of Algorithm 1. As a first step, we will
develop a procedure to create a single expansion (Algorithm 2) and later we will
embed it into Algorithm 3, which implements the function Step, called in line 3
of Algorithm 1.

278 G. Delazeri and M. Ritt

Algorithm 2: Expand
Data: A partial allocation of resources Λ, a time instant t, the fire

perimeter size z.
Result: An expansion of Λ using the resources in Rt.

1 F ← FΛ
t (z)

2 N ← F ∩ ⋃

v∈PΛ

N
∗(v)

3 for i ∈ Rt do
4 if N �= ∅ and p < rand(0, 1) then
5 v ← Randomly pick an element of N

6 else
7 v ← Randomly pick an element of F

8 end
9 Λi ← v

10 F ← F \ {v}

11 N ← (N ∪ N
∗(v)) ∩ F

12 end
13 return Λ

Given an allocation of resources Λ and a time instant t ∈ T , we have a set
of candidate nodes C = V \ (BΛ

t ∪ PΛ) which can receive a resource and |Rt|

resources available. Our goal is to select a subset of C of size |Rt| to apply the
resources in Rt. Algorithm 2 is based on two key observations about which nodes
tend to receive a resource first in high quality solutions:

1. Nodes that are close to burned nodes;
2. Nodes that are neighbors of protected nodes.

Motivated by the first observation, we define the notion of fire perimeter, i.e. a
set of nodes that are close to the current set of burned nodes. Since the arcs
of an instance represent fire velocity instead of physical distance, our notion of
closeness must be based on fire arrival time. With that in mind, we define the
fire perimeter at a time instant t as

FΛ
t (z) = {v ∈ C | t ≤ aΛ

v ≤ f(t, z)}

for some non-negative integer z, where f : T × N0 → [0,H] is2

f(t, z) =
(
α�(z+1)/2�(t) + α�(z+2)/2�(t)

)
/2.

where α(t) is the earliest time after t in which new resources get available, as
defined at the end of Sect. 4.

Intuitively, the fire perimeter at time instant t is the set of unprotected
nodes whose fire arrival time is between t and some other time instant t′, where
2 We write αn(t) for the composition of α with itself n times, e.g. α2(t) = α(α(t)).

Iterated Beam Search for Wildland Fire Suppression 279

t′ = f(t, z) for some non-negative integer z. Increasing z will increase t′, which
in turn may increase the size of FΛ

t (z). As a result, z controls the size of the fire
perimeter. We clarify this notion with an example. Suppose we have resources
at time instants 10, 20, and 30, and the optimization horizon H is equal to 60.
Assume that the current time instant is 10 and no resources were deployed yet,
i.e. the current allocation is Λ0. In this scenario, FΛ0

10 (0), FΛ0

10 (1), FΛ0

10 (2), FΛ0

10 (3)
contain the nodes that will burn between time instant 10 and f(10, 0) = 20,
f(10, 1) = 25, f(10, 2) = 30, and f(10, 3) = 45, respectively. Figure 1 illustrates
the example.

Fig. 1. A simple illustration of our definition of fire perimeter. In the example, we have
resources at time instants 10, 20, and 30, and the optimization horizon H is equal to 60.
We are at time instant 10 and no resources were deployed yet, i.e. the current allocation
is Λ0. The set B

Λ0
10 is represented by the black colored nodes, F

Λ0
10 (0) by purple nodes,

F
Λ0
10 (1) by red nodes, F

Λ0
10 (2) by orange nodes, and FΛ

10(3) by yellow nodes. Note that
F

Λ0
10 (0) ⊂ F

Λ0
10 (1) ⊂ F

Λ0
10 (2) ⊂ F

Λ0
10 (3). (Color figure online)

In summary, Algorithm 2 considers only nodes in FΛ
t (z) instead of exploring

all nodes in C (line 1). Similarly, and motivated by the second observation, we
define a set N with all the nodes in FΛ

t (z) that have a neighbor in PΛ (line 2).
Using the sets FΛ

t (z) and N, Algorithm 2 proceeds as follows: for each resource
i ∈ Rt, with probability p we select a node from N to be protected, and with
probability 1 − p we select any node from F (lines 3 to 11).

280 G. Delazeri and M. Ritt

Algorithm 3: Step
Data: A partial allocation of resources Λ, a time instant t, the fire

perimeter size z.
Result: A set with at most η expansions of Λ using the resources in Rt.

1 E ← ∅
2 repeat c|FΛ

t (z)| times
3 Λ′

← Expand(Λ, t, z)
4 E ← E ∪ {Λ′}
5 end
6 E ← sort(E, t)
7 return First η expansions in E

We now embed Algorithm 2 into Algorithm 3, which gives us a procedure
to create a set of candidate expansions of a partial allocation Λ. In lines 2 to
5 we create a number of expansions proportional to the size of FΛ

t (z), for some
constant c ∈ Z+. In line 6 we sort all the expansions in E using some heuristic
function. Similarly to Algorithm 1, if t < t̂, we use h2, otherwise we use h1.
Finally, in line 7 we return the first η allocations in E. Note that in line 4 we do
not check whether Λ′ already is in E, hence it could be the case that |E| < η.

5.3 Dynamical Update of the Fire Perimeter Size

In Sect. 5.2, we defined the notion of fire perimeter, which depends on an integer
constant z. Setting z to a value that is too high may increase running times,
since the number of iterations performed by Algorithm 3 is directly proportional
to the size of the fire perimeter. On the other hand, setting z to a value that
is too low may impede the algorithm to find optimal solutions. To account for
that, we propose to start with z = 0 and iteratively increase its value once a call
to Algorithm 1 is not able to improve the current best solution. We observed in
preliminary experiments that increasing z indefinitely does not improve perfor-
mance and slows downs the algorithm in some cases, so we propose to define a
maximum value for z and, once this value is reached, we cycle back to z = 0.
Line 8 of Algorithm 4 illustrates that. Note that, for a given choice of zmax, the
maximum value of z is zmax − 1.

6 Experimental Evaluation

In this section we present some computational experiments. All the experiments
were done on a platform with a 3.5GHz AMD Ryzen 9 3900X 12-Core proces-
sor, 32 GB of main memory, and Ubuntu Linux 20.04 LTS. Our algorithm was
implemented in C++ and compiled with GCC 9.4 with maximum optimization.
Our implementation and detailed computational data is available at https://
github.com/gutodelazeri/Iterated-Beam-Search.

https://github.com/gutodelazeri/Iterated-Beam-Search
https://github.com/gutodelazeri/Iterated-Beam-Search

Iterated Beam Search for Wildland Fire Suppression 281

Algorithm 4: Main Algorithm
Result: An allocation of resources Λ∗.

1 Λ∗
← Λ0

2 z ← 0

3 while Termination criteria not met do
4 Λ ← BeamSearch(z)
5 if |BΛ

H| < |BΛ∗
H | then

6 Λ∗
← Λ

7 else
8 z ← (z + 1) mod zmax

9 end
10 end
11 return Λ∗

Table 1. Instances used in the experiments.

Group Resources per time instant H Δ

10 20 30 40 50 60
LA 3 3 3 3 0 0 70 50
LB 3 3 3 3 3 3 70 30

6.1 Test Instances

In this work we consider the set of instances proposed by [4]. This set consists
of 16 instances, where each instance is a 20 × 20 grid graph. In all instances,
the ignition node is at a central location in the graph and the optimization
horizon is 70. The 16 instances are divided into two groups of 8 instances each,
based on the magnitude of the delay caused by a resource and the quantity of
resources released at each time instant. The optimal solution of all 16 instances
is known, so in the sections below we report algorithm performance in terms of
the absolute deviation from the optimal objective value3. Table 1 summarizes
the instance set.

In this set of instances, edge weights attempt to model the fire propagation
influenced by wind direction. In practice, the weight of each edge is sampled
from a uniform distribution, and the range of values in this distribution depends
on the direction to which the edge points. For further information, readers can
refer to Table 5 in [4].

3 In [4], the optimality of instance LB7 could not be proved. By executing their method
with a time limit of 3 h we were able to find the optimal solution.

282 G. Delazeri and M. Ritt

Table 2. Description of parameter values.

Parameter Value Description
β 50 Beam width
η 70 Ramification factor
c 30 See Algorithm 3
p 0.5 See Algorithm 2
zmax 3 See Algorithm 4

Table 3. Performance of beam search using different transition instants, as a function
of a percentage p̂ of the free burning time. We denote by δ the absolute difference
between the obtained solution and the optimal solution, and columns δ and σδ show
the average and the standard deviation of δ across the 320 executions (16 instances and
20 replications). Similarly, we denote by ttb the time in seconds required to find the
best (not necessarily optimal) solution. Columns ttb and σttb give the average and the
standard deviation of ttb. Lastly, column “Opt.” has the percentage all 320 executions
in which the optimal solution was found.

p̂ t̂ δ σδ ttb σttb Opt. (%)
0.1 6.9 1.41 3.59 61.18 105.06 75
0.2 13.8 0.15 0.35 52.23 110.73 85
0.3 20.7 0.12 0.33 26.68 46.40 88
0.4 27.6 0.12 0.33 26.62 46.24 88
0.5 34.5 0.18 0.45 43.38 82.68 85

6.2 Parameter Values

In all the experiments below, our algorithm uses the same set of parameter val-
ues, which are specified in Table 2. As stated in Sects. 5.1 and 5.2, the guiding
heuristic used depends on the transition instant. In the next section, we con-
duct an experiment to find the best transition instant for the instances we are
considering.

6.3 Transition Instant

In this section, we analyse how the transition instant affects the performance
of our algorithm. Recall that in Sect. 5.1 we defined the transition instant as
a percentage p̂ of the free burning time of an instance. In this experiment, for
each value of p̂ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} we run the beam search algorithm 20
times with different seed values on each of the 16 instances. The termination
criterion was a maximum running time of 600 s. For the set of instances we are
considering, the free burning time is always equal to 69, so for any value of p̂

the transition instant is the same for all 16 instances. For each run, we collected

Iterated Beam Search for Wildland Fire Suppression 283

the best objective value obtained and the time to find the best solution. Table 3
summarizes the results.

For the instances we are considering, a transition instant of 6.9 means that
only the heuristic h1 is used. As the first row shows, this is the worst version
of our algorithm. When the transition instant is 13.8, we use h2 when t = 10

and h1 otherwise. As the second row shows, this version obtains better results
when compared to using h1 only. When the transition instant is between 20 and
30, as is the case of rows three and four, heuristic h2 is used when t = 10 and
when t = 20. The table shows that this is the best version of our algorithm. This
version was able to find the optimal solution in 88% of the 320 executions, and
obtained an average absolute gap of δ = 0.12.

6.4 Comparison with the Literature

In this section we compare the best version of our algorithm found in the last
experiment (BS) against the logic-based Benders decomposition of [4] (LBBD)
and the iterated local search of [11] (ILS). We use the implementation of LBBD
and ILS provided by [4] and run them in the same computational environment
as BS. Following the protocol of Sect. 6.3, all three algorithms were executed 20
times on each of the 16 instances. The termination criterion for LBBD and BS
was a maximum running time of 600 s. The termination criterion of ILS was a
maximum number of iterations in stagnation, as specified in [11]. Table 4 shows
the results.

As we can see, BS solves to optimality 14 out of the 16 instances in all 20
replications, while LBBD does so for 9 instances and ILS for only one instance.
We can also see that BS obtains the smallest average absolute gap δ. In [4],
LBBD was compared to ILS given a time limit 7200 s. Here we can see that,
even with a fraction of the time limit, LBBD still beats ILS by a significant
margin. Regarding the average time to find the best solution, we can see that
BS obtains the smallest one in all instances. Considering that BS finds an optimal
solution in most of the executions, this shows the efficiency of our algorithm.

To close this section, we analyse the performance profile of the three algo-
rithms over the 320 executions. Figure 2 shows the percentage of the 320 execu-
tions that found an optimal solution within a particular interval of time. As we
can see, within just 100 s our algorithm finds an optimal solution in about 80%
of all executions, while LBBD does so for around 40% and ILS for around 20%.
Within 300 s, the curves of BS and ILS stagnate. This is not true for LBBD,
since it explores the search space systematically. Finally, within 600 s LBBD
finds an optimal solution in about 70% of all executions and ILS in about 20%.
As we saw in the last section, BS is able to find an optimal solution in 88% of
all executions.

284 G. Delazeri and M. Ritt

Table 4. Comparison between BS, ILS, and LBBD. We denote by δ the absolute
difference between the obtained solution and the optimal solution, and the first six
columns show the average and the standard deviation of δ over the 320 executions.
Similarly, we denote by ttb the time in seconds required to find the best (not necessarily
optimal) solution, and the last three columns show the average ttb of each algorithm.
The values in these columns are expressed in terms of the average ttb of BS. For
example, by looking at the first row we can see that ILS takes, on average, 50 s more
than BS to arrive at the best solution.

δ σδ ttb

BS ILS LBBD BS ILS LBBD BS ILS LBBD
LA0 0 1.45 0.00 0 2.28 0.00 0 50.59 37.39
LA1 0 5.65 0.00 0 4.85 0.00 0 61.25 5.72
LA2 0 3.05 0.00 0 3.17 0.00 0 0.52 13.57
LA3 0 10.65 0.00 0 6.27 0.00 0 53.38 52.64
LA4 0 0.00 0.00 0 0.00 0.00 0 49.03 66.41
LA5 0 1.85 0.00 0 1.46 0.00 0 83.55 64.96
LA6 0 8.05 0.00 0 6.68 0.00 0 91.25 100.63
LA7 0 6.40 0.00 0 5.08 0.00 0 42.70 154.64
LB0 1 5.75 0.55 0 5.34 1.10 0 126.58 174.00
LB1 0 12.00 0.00 0 4.67 0.00 0 45.62 104.94
LB2 1 5.00 1.10 0 4.77 0.79 0 97.23 164.39
LB3 0 10.30 3.50 0 4.05 2.42 0 115.61 206.35
LB4 0 9.65 7.05 0 6.13 4.97 0 118.18 262.09
LB5 0 14.40 3.85 0 3.39 3.10 0 82.33 266.53
LB6 0 15.00 8.60 0 5.34 3.90 0 106.62 340.72
LB7 0 9.20 6.35 0 5.52 3.25 0 71.82 242.15
Avg 0.12 7.40 1.94 0 4.31 1.22 0 74.77 141.07

Iterated Beam Search for Wildland Fire Suppression 285

Fig. 2. Performance profile for the three algorithms, considering all 320 executions (16
instances and 20 replications). The x-axis shows time in seconds and the y-axis shows
the percentage of the 320 runs in which the algorithm found the optimal solution within
that time.

7 Conclusions and Future Work

In this work we proposed a heuristic algorithm for a problem related to wildfire
suppression. The goal was to allocate fire suppression resources to regions of a
landscape represented by a graph in order to minimize the total burned area. Our
algorithm is a beam search guided by two heuristic functions to evaluate partial
solutions and some heuristic rules on how to better expand the search tree at each
level. In computational experiments, we showed that we can obtain better results
by starting with one of the heuristic functions and then switching to the other at
some point in time. Using these findings, we compared our approach to previous
works in the literature. Our results indicate that the beam search algorithm can
consistently find the optimal solution of most instances in considerably less time
than alternative algorithms.

As future work, we would like to test our algorithm in more challenging
instances, both in terms of grid size and the degree of irregularity of the land-
scapes. It would also be interesting to extend our approach to take into account
different objective functions, like operational costs and the cost of the burned
area.

Acknowledgments. M. R. acknowledges support from CNPq (grant 437859/2018-
5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES),
Finance Code 001, and CYTED (Grant P318RT0165).

286 G. Delazeri and M. Ritt

References

1. Alvelos, F.: Mixed integer programming models for fire fighting. In: Gervasi, O.,
et al. (eds.) Computational Science and Its Applications - ICCSA 2018. Lecture
Notes in Computer Science(), vol. 10961, pp. 637–652. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95165-2_45

2. Belval, E.J., Wei, Y., Bevers, M.: A mixed integer program to model spatial wildfire
behavior and suppression placement decisions. Can. J. For. Res. 45(4), 384–393
(2015)

3. Dimitropoulos, S.: Fighting fire with science. Nature 576(7786), 328–328 (2019).
https://doi.org/10.1038/d41586-019-03747-2

4. Harris, M.G., Forbes, M.A., Taimre, T.: Logic-based benders decomposition for
wildfire suppression (2023)

5. Hartnell, B.L.: Firefighter! an application of domination. In: Proceedings of 25th
Manitoba Conference on Combinatorial Mathematics and Computing (1995)

6. IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution
of Working Group II to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge, UK and New
York, NY, USA (2022). https://doi.org/10.1017/9781009325844

7. Jewell, W.S.: Forest fire problems—a progress report. Oper. Res. 11(5), 678–692
(1963)

8. Joint Economic Committee, U.S. Senate: Climate-exacerbated wildfires cost the
U.S. between $394 to $893 billion each year in economic costs and damages
(2023). https://web.archive.org/web/20231114011935/https://www.jec.senate.
gov/public/index.cfm/democrats/reports?id=E31AF93E-34C7-4C35-A416-
533FF796369B. Accessed 13 Nov 2023

9. Lowerre, B.: The harpy speech recognition system. Ph.D. thesis, CMU (1976)
10. Martell, D.L.: A review of operational research studies in forest fire management.

Can. J. For. Res. 12(2), 119–140 (1982)
11. Mendes, A.B., e Alvelos, F.P.: Iterated local search for the placement of wildland

fire suppression resources. Eur. J. Oper. Res. 304(3), 887–900 (2023)
12. Munich Re: Wildfires and bushfires - Climate change increasing wildfire

risk (2023). https://www.munichre.com/en/risks/natural-disasters/wildfires.html.
Accessed 19 Jan 2024

13. Reuters: Death toll from Hawaii wildfires drops to 97 (2023). https://www.
reuters.com/world/us/death-toll-hawaii-wildfires-drops-97-missing-is-now-31-
hawaii-governor-2023-09-15. Accessed 19 Jan 2024

14. United Nations: As wildfires increase, integrated strategies for forests, climate and
sustainability are ever more urgent (2023). https://www.un.org/en/un-chronicle/
wildfires-increase-integrated-strategies-forests-climate-and-sustainability-are-
ever-0. Accessed 19 Jan 2024

https://doi.org/10.1007/978-3-319-95165-2_45
https://doi.org/10.1038/d41586-019-03747-2
https://doi.org/10.1017/9781009325844
https://web.archive.org/web/20231114011935/https://www.jec.senate.gov/public/index.cfm/democrats/reports?id=E31AF93E-34C7-4C35-A416-533FF796369B
https://web.archive.org/web/20231114011935/https://www.jec.senate.gov/public/index.cfm/democrats/reports?id=E31AF93E-34C7-4C35-A416-533FF796369B
https://web.archive.org/web/20231114011935/https://www.jec.senate.gov/public/index.cfm/democrats/reports?id=E31AF93E-34C7-4C35-A416-533FF796369B
https://www.munichre.com/en/risks/natural-disasters/wildfires.html
https://www.reuters.com/world/us/death-toll-hawaii-wildfires-drops-97-missing-is-now-31-hawaii-governor-2023-09-15
https://www.reuters.com/world/us/death-toll-hawaii-wildfires-drops-97-missing-is-now-31-hawaii-governor-2023-09-15
https://www.reuters.com/world/us/death-toll-hawaii-wildfires-drops-97-missing-is-now-31-hawaii-governor-2023-09-15
https://www.un.org/en/un-chronicle/wildfires-increase-integrated-strategies-forests-climate-and-sustainability-are-ever-0
https://www.un.org/en/un-chronicle/wildfires-increase-integrated-strategies-forests-climate-and-sustainability-are-ever-0
https://www.un.org/en/un-chronicle/wildfires-increase-integrated-strategies-forests-climate-and-sustainability-are-ever-0

A New Angle: On Evolving Rotation
Symmetric Boolean Functions

Claude Carlet1,2, Marko Durasevic3, Bruno Gasperov3,
Domagoj Jakobovic3(B), Luca Mariot4, and Stjepan Picek5

1 Department of Mathematics, Université Paris 8, 2 Rue de la Liberté,
93526 Saint-DenisCedex, France

2 University of Bergen, Bergen, Norway
3 University of Zagreb Faculty of Electrical Engineering and Computing,

Zagreb, Croatia
{marko.durasevic,bruno.gasperov,domagoj.jakobovic}@fer.hr

4 Semantics, Cybersecurity & Services Group, University of Twente Drienerlolaan 5,
7522 NB Enschede, The Netherlands

l.mariot@utwente.nl
5 Digital Security Group, Radboud University, PO Box 9010,

Nijmegen, The Netherlands
stjepan.picek@ru.nl

Abstract. Rotation symmetric Boolean functions represent an interest-
ing class of Boolean functions as they are relatively rare compared to gen-
eral Boolean functions. At the same time, the functions in this class can
have excellent cryptographic properties, making them interesting for var-
ious practical applications. The usage of metaheuristics to construct rota-
tion symmetric Boolean functions is a direction that has been explored for
almost twenty years. Despite that, there are very few results considering
evolutionary computation methods. This paper uses several evolutionary
algorithms to evolve rotation symmetric Boolean functions with different
properties. Despite using generic metaheuristics, we obtain results that
are competitive with prior work relying on customized heuristics. Surpris-
ingly, we find that bitstring and floating point encodings work better than
the tree encoding. Moreover, evolving highly nonlinear general Boolean
functions is easier than rotation symmetric ones.

Keywords: rotation symmetry · Boolean functions · metaheuristics ·
nonlinearity

1 Introduction

Boolean functions are mathematical objects with various applications, includ-
ing cryptography [17], combinatorics [27], coding theory [14,20], sequences [20],
telecommunications [22], and computational complexity theory [1]. Naturally, for
Boolean functions to be useful across various applications, they must fulfill vari-
ous properties, such as being balanced and exhibiting high nonlinearity. Finding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 287–302, 2024.
https://doi.org/10.1007/978-3-031-56852-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_19&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_19

288 C. Carlet et al.

Boolean functions with specific properties can be rather difficult, which is why
the research community has been actively investigating the design of Boolean
functions for nearly 50 years. In that respect, approaches to constructing Boolean
functions can be divided into algebraic construction and various search tech-
niques.1. Within search techniques, the most common division is into random
search and metaheuristics. Unfortunately, sometimes even those approaches are
not sufficient due to the vast number of Boolean functions of n inputs, which
is equal to 22

n

(see Table 1). Clearly, for n = 6, an exhaustive search already
becomes impossible.2 In such cases, it might be beneficial to focus on special
classes of Boolean functions that are smaller and, thus, more amenable to search
and enumeration but still large enough to contain many interesting functions.
One such class is rotation symmetric Boolean functions - those functions that
are invariant under cyclic shifts of the input coordinates. These functions have
played a pivotal role in surpassing the quadratic bound, as discussed later.

The initial motivation for studying rotation symmetric Boolean functions can
be traced back to the reason above: this class is significantly smaller than the
class of general Boolean functions while still containing a large number of inter-
esting functions. Moreover, such functions have a nice structure and allow for a
compact representation [18]. We provide comparisons of class sizes for general
Boolean functions, bent functions, and rotation symmetric functions in Table 1.
Finally, Boolean functions in the class of rotation symmetric Boolean functions
can have very good cryptographic properties. For instance, Kavut et al. found
Boolean functions in 9 variables with nonlinearity 241 [12]. This achievement
resolved an almost three-decade-old open problem and was accomplished using
heuristics.

Table 1. The number of Boolean functions. Note that there is no known bound on the
number of bent rotation symmetric (RS) functions.

n

criterion 4 5 6 7 8 9 10 11 12 13 14 15 16

general 216 232 264 2128 2256 2512 21024 22048 24096 28192 216384 232768 265536

bent 896 − 5425430528 − 2106.3 − 2638 − 22510 − 29908 − 239203

RS 26 28 214 220 236 260 2108 2188 2352 2632 21182 22192 24116

Unfortunately, despite belonging to a much smaller class, the space of rota-
tion symmetric Boolean functions still becomes too large for exhaustive search
already for n = 9. This motivates the need to investigate diverse metaheuristic
techniques and the construction of rotation symmetric Boolean functions.

1 Some works also combine theory and search techniques, e.g., [12,25].
2 One could still assume the hybrid mode where one 1) considers the equivalences that

preserve the parameters of interest, 2) classify the functions under these equivalences,
and 3) study each representative.

Evolving Rotation Symmetric Boolean Functions 289

Multiple works leverage evolutionary algorithms to construct Boolean func-
tions with specific properties, commonly focusing on properties like balancedness
and nonlinearity, which we also consider in this work. However, most of these
studies do not consider rotation symmetric Boolean functions but remain con-
fined to the general classes of balanced, highly nonlinear functions or bent func-
tions. The literature on rotation symmetric Boolean functions and metaheuris-
tics is much more sparse. Despite this scarcity of research, significant findings
were made already more than 15 years ago [12]. Even more time ago, Patterson
and Wiedemann also dealt with rotation symmetric functions (whose name was
introduced later) [?]. On the other hand, the first work considering evolutionary
algorithms in this context appeared only in 2022 [30].

This paper investigates how various evolutionary algorithms can construct
rotation symmetric Boolean functions, including both bent and balanced func-
tions. We consider three solution encodings: bitstring, tree, and floating point,
and two fitness functions. To the best of our knowledge, we are the first to
investigate tree and floating-point encodings for this problem. The tree encod-
ing represents an especially intriguing option, as state-of-the-art results indicate
its superior performance over bitstring (see, e.g., [5]). As far as we know, no prior
work has applied evolutionary algorithms to construct bent rotation symmetric
Boolean functions. Our main findings are:

– We found rotation symmetric Boolean functions for every tested dimension.
At the same time, genetic programming (GP) that evolves general (i.e., not
confined to the rotation symmetric class of functions) Boolean functions finds
functions with the same or higher nonlinearity. Therefore, we cannot conclude
that finding a rotation symmetric Boolean function is simpler due to the
smaller search space.

– While tree encoding is considered the best approach for general Boolean func-
tions, we observe that both bitstring and floating point encoding perform bet-
ter for rotation symmetric functions. This is because the latter two encodings
significantly reduce the search space due to efficient encoding, which is not
the case for GP (tree encoding).

– While the best results in related works are reported with customized heuris-
tics, we reached the same (or even better) values with general metaheuristics.
As such, we question whether developing custom heuristics is as beneficial as
developing more powerful fitness functions.

2 Background

Let us denote positive integers with n and m: n,m ∈ N
+. We denote the Galois

(finite) field with two elements as F2 and the Galois field with 2n elements by
F2n . An (n,m)-function represents a mapping F from F

n
2 to F

m
2 .

When m = 1, the function f is called a Boolean function (in n
inputs/variables). We endow the vector space F

n
2 with the structure of that field,

since for every n, there exists a field F2n of order 2n that is an n-dimensional
vector space. The usual inner product of a and b equals a · b =

⊕n
i=1 aibi in F

n
2 .

290 C. Carlet et al.

2.1 Boolean Function Representations

The simplest way to uniquely represent a Boolean function f on F
n
2 is by its

truth table (TT). The truth table of a Boolean function f is the list of pairs
of function inputs (in F

n
2) and function values, with the size of the value vector

being 2n. The value vector is the binary vector composed of all f(x), x ∈ F
n
2 , with

a certain order selected on Fn
2 . Usually, as seen in, e.g., [3], one uses a vector

(f(0), . . . , f(1)) that contains the function values of f , ordered lexicographically.
While the truth table representation is simple and “human-readable”, little can
be deduced from it except the Hamming weight.

The Walsh-Hadamard transform Wf is a unique representation of a Boolean
function f that measures the correlation between f(x) and the linear functions
a · x, see, e.g., [3]:3

Wf (a) =
∑

x∈F
n
2

(−1)f(x)+a·x. (1)

The Walsh-Hadamard transform is very useful as many Boolean function
properties can be evaluated through it. Since the complexity of calculating the
Walsh-Hadamard transform with a naive approach equals 22n, it is common
to employ a more efficient method called the fast Walsh-Hadamard transform,
where the complexity is reduced to n2n.

2.2 Boolean Function Properties and Bounds

Balancedness. A Boolean function f is called balanced if it takes the value one
exactly the same number of times (2n−1) as the value zero when the input ranges
over F

n
2 .

Nonlinearity. The minimum Hamming distance between a Boolean function f
and all affine functions, i.e., the functions with the algebraic degree4 at most
1 (in the same number of variables as f), is called the nonlinearity of f . The
nonlinearity nlf of a Boolean function f can be easily calculated from the Walsh-
Hadamard coefficients, see, e.g., [3]:

nlf = 2n−1 − 1
2

max
a∈F

n
2

|Wf (a)|. (2)

The Parseval relation
∑

a∈F
n
2

Wf (a)2 = 22n implies that the nonlinearity of any

n-variable Boolean function is bounded above by the so-called covering radius
bound:

nlf ≤ 2n−1 − 2
n
2 −1. (3)

3 Note that the sum is calculated in Z.
4 The algebraic degree degf of a Boolean function f is defined as the number of vari-

ables in the largest product term of the function’s algebraic normal form having a
non-zero coefficient, see, e.g., [16]. The algebraic normal form is a unique represen-
tation where an n variable Boolean function can be considered to be a multivariate
polynomial over F2.

Evolving Rotation Symmetric Boolean Functions 291

Eq. (3) cannot be tight when n is odd. For n odd, a slightly better bound
is 2�2n−2 − 2

n
2 −2� [8]. We will consider Boolean functions that approach the

covering radius bound as highly nonlinear. We show the values for the covering
radius bound for each n in Table 2.

Bent Boolean Functions. The functions whose nonlinearity equals the maximal
value 2n−1 − 2n/2−1 are referred to as bent, and they exist only for n even, see,
e.g., [3]. Bent Boolean functions are a very active research topic with applications
in, e.g., coding theory [14] and telecommunications [20]. They are also commonly
discussed in cryptography but are not used since they are not balanced (despite
being maximally nonlinear). Bent Boolean functions are rare, and we know the
exact numbers of bent Boolean functions for n ≤ 8 only. The numbers of Boolean
functions (or upper bound values) are given in Table 1.

2.3 Rotation Symmetric Boolean Functions

A Boolean function over Fn
2 is called rotation symmetric (RS) if invariant under

any cyclic shift of input coordinates. Stated differently, it is invariant under a
primitive cyclic shift, for instance:

(x0, x1, . . . , xn−1) → (xn−1, x0, x1, . . . , xn−2).

Since the above expression holds, the number of rotation symmetric Boolean
functions will be less than the number of Boolean functions, as the output value
remains the same for certain input values. Let us provide a small example of
a rotation symmetric Boolean function when n = 3. We obtain the following
partitions:

{(0, 0, 0)} (4)
{(0, 0, 1), (0, 1, 0) , (1, 0, 0)}

{(0, 1, 1,), (1, 1, 0) , (1, 0, 1)}
{(1, 1, 1)}

Stănică and Maitra use the Burnside lemma to show that the number of
rotation symmetric Boolean functions equals 2gn , where gn equals [29]:

gn =
1
n

∑

t|n
φ(t)2

n
t , (5)

where φ is the Euler phi function.
Bent rotation symmetric functions are maximally nonlinear and invariant

under any cyclic shift of input coordinates. Rotation symmetric bent functions
are much rarer than general bent functions [18]. The motivation for consider-
ing bent rotation symmetric Boolean functions stems from the fact that such
functions can have a simple structure (leading to new bent functions, e.g., Niho
bent functions) and representation. Moreover, it is possible to compute them
efficiently. However, there are some drawbacks, the most notable being that no

292 C. Carlet et al.

new bent function has ever been found among rotation symmetric functions, as
all those found belong to the well-known general classes of bent functions [18].
We provide results on the upper bounds of nonlinearity and the best-known non-
linearities in Table 2. More information about Boolean functions can be found
in, e.g., [3,16].

Table 2. Nonlinearities of Boolean functions. Note that the bound equals the cover-
ing radius bound when n is even. Moreover, the best-known nonlinearities when the
function is imbalanced and n is even are obtained for bent functions. The best-known
results are taken from [3].

n

condition 4 5 6 7 8 9 10 11 12 13 14 15 16

2�2n−2 − 2
n
2 −2� 6 12 28 58 120 244 496 1000 2016 4050 8128 16292 32640

balanced

best-known nlf 4 12 26 56 116 240 492 992 2010 4036 8120 16272 NA

imbalanced

best-known nlf 6 12 28 56 120 242 496 996 2016 4040 8128 16276 32640

3 Related Work

The research community has been active in evolving Boolean functions with
specific cryptographic properties for almost 30 years [19]. While many settings
have been tried, the most used solution encodings are the bitstring encoding
and the tree encoding [5]. As far as we know, Fuller et al. were the first to
consider evolving bent Boolean functions [6]. The authors started with a low-
order Boolean function of input size n and then generated bent functions of
higher algebraic order by iteratively adding ANF terms and checking whether
the resulting function is bent. Yang et al. used evolutionary algorithms to evolve
bent Boolean functions [31]. They used the trace representation of Boolean func-
tions. Radek and Vaclav used Cartesian Genetic Programming to evolve bent
Boolean functions up to 16 inputs [9]. To achieve this goal, the authors used var-
ious parallelization techniques. Picek and Jakobovic used GP to evolve algebraic
constructions, which were then used to construct bent Boolean functions [23].
The authors showcased that the approach is highly efficient and provided results
for up to 24 inputs, marking the first time that EC successfully constructed such
large bent Boolean functions. Husa and Dobai employed linear GP to evolve
bent Boolean functions, reporting superior results compared to related works,
as they managed to evolve bent Boolean functions up to 24 inputs [10].

Stănică et al. used simulated annealing to evolve rotation symmetric Boolean
functions [28]. By reducing the search space in this manner, the authors could
construct 9-variable plateaued functions with nonlinearity 240 (among other
properties). Kavut et al. utilized a steepest descent-like iterative algorithm to

Evolving Rotation Symmetric Boolean Functions 293

discover highly nonlinear Boolean functions [12]. The authors found imbalanced
Boolean functions in 9 variables with a nonlinearity of 241. This represented
a significant breakthrough, as the question of whether such functions existed
had remained unanswered for nearly three decades. Moreover, the authors found
Boolean functions in 10 variables with nonlinearity 492. Kavut and Yucel used a
steepest-descent-like iterative algorithm to construct imbalanced Boolean func-
tions in 9 variables with nonlinearity 242 [13] where the authors considered the
generalized rotation symmetric Boolean functions. Liu and Youssef used simu-
lated annealing to construct balanced rotation symmetric Boolean functions with
nonlinearity equal to 488 [15]. Wang et al. employed genetic algorithms (GAs)
to construct rotation symmetric Boolean functions [30]. The authors reported
constructing balanced, highly nonlinear rotation symmetric functions.

4 Experimental Settings

4.1 Representations

Bitstring Encoding. The most widely used method for encoding a Boolean
function is the bitstring representation [5]. The bitstring represents the truth
table of the function with which the algorithm works directly. For a general
Boolean function with n inputs, the truth table is encoded as a bit string with a
length of 2n. In the case of rotation symmetric Boolean functions, the number of
truth table entries that need to be encoded is considerably smaller. For instance,
for a 3-variable function, instead of 23 = 8 bits, we only need to encode 4 bits,
which is equal to the number of partitions in the example in the previous section
(see Eq. (4)). The number of distinct bits that need to be encoded, corresponding
to the genotype length, is shown in Table 3 for a given number of variables.

Table 3. The number of the encoding bits (genotype size) for rotation symmetric
Boolean functions

variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

gn 2 3 4 6 8 14 20 36 60 108 188 352 632 1182 2192 4116

In each evaluation, the bitstring genotype is first decoded into the full
Boolean truth table, and the desired property is calculated. Although the bit-
string representation usually performs worse than other encodings [5], especially
for a larger number of variables, this might not be the case here due to the
largely reduced genotype size.

The corresponding variation operators we use are the simple bit mutation,
which inverts a randomly selected bit, and the shuffle mutation, which shuffles
the bits within a randomly selected substring. For the crossover operators, we
use the one-point crossover, which combines a new solution from the first part
of one parent and the second part of the other parent with a randomly selected

294 C. Carlet et al.

breakpoint. The second operator is the uniform crossover that randomly selects
one bit from both parents at each position in the child bitstring that is copied.
Each time the evolutionary algorithm invokes a crossover or mutation operation,
one of the previously described operators is randomly selected.

Floating Point Encoding. The second approach we use for representing a
Boolean function is the floating point genotype, defined as a vector of continu-
ous variables. With this representation, one needs to define the translation of a
vector of floating point numbers into the corresponding genotype, which is then
translated into a full truth table (binary values). The idea behind this translation
is that each continuous variable (a real number) of the floating point genotype
represents a subsequence of bits in the genotype. All the real values in the float-
ing point vector are constrained to the interval [0, 1]. If the genotype size is gn,
the number of bits represented by a single continuous variable of the floating
point vector can vary and is defined as:

decode =
gn

dimension
, (6)

where the parameter dimension denotes the floating point vector size (number
of real values). This parameter can be modified as long as the genotype size is
divisible by this value. The first step of the translation is to convert each floating
point number to an integer value. Since each real value must represent decode
bits, the size of the interval decoding to the same integer value is given as:

interval =
1

decode
. (7)

To obtain a distinct integer value for a given real number, every element di
of the floating point vector is divided by the calculated interval size, generating
a sequence of integer values:

int valuei =
⌊

di
interval

⌋

. (8)

The final translation step consists of decoding the integer values to a binary
string that can be used for evaluation. As an example, consider a genotype of
8 bits. Suppose we want to represent it with 4 real values; in this case, each
real value encodes 2 bits from the truth table. A string of two bits may have
4 distinct combinations. Therefore, a single real value must be decoded into
an integer value from 0 to 3. Since each real value is constrained to [0, 1], the
corresponding integer value is obtained by dividing the real value by 2−2 = 0.25
and truncating it to the nearest smaller integer. Finally, the integer values are
translated into the sequence of bits they encode.

Evolving Rotation Symmetric Boolean Functions 295

Tree Encoding. In the third approach, we use tree-based GP to evolve a func-
tion in the symbolic form using a tree representation. The terminal set includes a
given number of Boolean variables, x0, x1, . . . , xn−1. The function set consists of
several Boolean primitives that can be used to represent any Boolean function.
In our experiments, we use the following function set: OR, XOR, AND, AND2,
XNOR, IF, and function NOT that takes a single argument. The function AND2
behaves the same as the function AND but with the second input inverted. The
function IF takes three arguments and returns the second one if the first one
evaluates to true and the third one otherwise. The output of the root node is
the output value of the Boolean function. The corresponding truth table of the
function f : F

n
2 → F2 is determined by evaluating the tree over all possible

2n assignments of the input variables at the leaf nodes. The genetic operators
used in our experiments with tree-based GP are simple tree crossover, uniform
crossover, size fair, one-point, and context preserving crossover [26] (selected at
random), and subtree mutation.

Since GP, in this manner, evolves any Boolean function, and not solely rota-
tion symmetric ones, we do not use the GP-derived truth table directly. Instead,
it is treated as the bitstring genotype, the same as in the previous two repre-
sentations, and decoded into a rotation symmetric function. This allows GP to
use fewer variables than n since the genotype size is considerably smaller than
the resulting truth table; for instance, for n = 8, the genotype size gn = 36
(instead of 256), and GP will need to use only 6 variables to produce a bitstring
of at least the required size. Unfortunately, since the genotype size (see Table 3)
is not a power of 2, a part of the GP-produced bitstring (e.g., of size 64 with
six variables) will not be used in any way. More importantly, there is no direct
translation between the truth table of the GP-produced Boolean function, with
fewer variables, and the actual rotation symmetric function being decoded and
optimized, which may prove detrimental to the GP.

4.2 Fitness Functions

In our experiments, we optimize two different types of Boolean functions: 1) max-
imally nonlinear (bent) functions and 2) balanced, highly nonlinear functions.
The first fitness function maximizes the nonlinearity value, nlf , but is designed
to consider the whole Walsh-Hadamard spectrum and not only its extreme value
(see Eq. (2)). More specifically, we count the number of occurrences of the max-
imal absolute value in the spectrum, denoted as #max values. Since higher
nonlinearity corresponds to a lower maximal absolute value, we aim for as few
occurrences of the maximal value as possible to make it easier for the algorithm
to reach the next nonlinearity value. With this in mind, the fitness function is
defined as:

fitness1 : nlf +
2n − #max values

2n
. (9)

The second term never reaches the value of 1 since, in that case, we effectively
reach the next nonlinearity level.

296 C. Carlet et al.

With the second criterion, we aim to find balanced, highly nonlinear func-
tions. We use a two-stage objective function in which a bonus equal to the previ-
ous fitness value is awarded only to a balanced function; otherwise, the objective
value is only the balancedness penalty. The balancedness penalty BAL is the
difference up to the balancedness (i.e., the number of bits to be changed to make
the function balanced). This difference is included in the objective function with
a negative sign to act as a penalty in maximization scenarios. The delta function
δBAL,0 assumes the value one when BAL = 0 and is zero otherwise.

fitness2 : −BAL + δBAL,0 · (nlf +
2n − #max values

2n
). (10)

5 Experimental Results

Regarding bitstring (denoted as TT) and tree encoding (denoted as GP), we
employ the same evolutionary algorithm: a steady-state selection with a 3-
tournament elimination operator. In each iteration of the algorithm, three indi-
viduals are chosen at random from the population for the tournament, and the
worst one in terms of fitness value is eliminated. The two remaining individuals
in the tournament are used with the crossover operator to generate a new child
individual, which then undergoes mutation with individual mutation probability
pmut = 0.5. Finally, the mutated child takes the place of the eliminated individ-
ual in the population. The population size in all experiments was 500, and the
termination criteria were set to 106 evaluations. Each experiment was repeated
for 30 runs. We consider Boolean function sizes from 8 to 16 inputs, as with
less, finding rotation symmetric functions is easy and well within reach of an
exhaustive search (see Table 3). The floating point representation can be used
with any continuous optimization algorithm, which increases its versatility. In
our experiments, we used the following optimization algorithms: Artificial Bee
Colony (ABC) [11], Clonal Selection Algorithm (CLONALG) [2], CMA-ES [7],
Differential Evolution (DE) [21], Optimization Immune Algorithm (OPTIA) [4],
and a GA-based algorithm with steady-state selection (GA-SST), as described
above. The implementation of all the algorithms and their default parameter
settings are available in the ECF software framework.5

5.1 General Vs. Rotation Symmetric Functions

To facilitate easier comparison with related work, we also provide results for
general balanced, highly nonlinear functions and general bent functions, along
with the corresponding rotation symmetric ones (Tables 4 and 5). The results
for general Boolean functions were reproduced with GP since, in that scenario,
existing research points to GP as the most efficient approach [5,24]. Observe that
in the case of balanced functions, the results are better for general functions than
for rotation symmetric ones. Our results (the general ones) are also competitive

5 Evolutionary Computation Framework, http://solve.fer.hr/ECF/.

http://solve.fer.hr/ECF/

Evolving Rotation Symmetric Boolean Functions 297

with the best-known nonlinearities up to n = 12 and for n = 14 (see Table 2).
The nonlinearities when using rotation symmetric functions are the same as the
best-known ones only for n = 8, 9.

The results are slightly different for imbalanced functions (as we do not man-
age to obtain bent functions in all the cases). For small sizes (up to n = 12), the
results for general functions are better than for rotation symmetric functions,
but for n = 14, 16, the opposite is true. We suspect this happens due to the
large search space size for such n values, where GP is known to face issues for
such large Boolean functions [5]. The general results are competitive with the
best-known nonlinearities up to n = 12, while the rotation symmetric ones are
competitive for n = 8 only. We note that for general functions, we do not reach
bent ones for n = 14, 16; for rotation symmetric ones, bent functions are reached
only for n = 8.

Table 4. General (30 runs with GP) and rotation symmetric balanced Boolean func-
tions, the best-obtained nonlinearities.

Size

8 9 10 11 12 13 14 15 16

general 116 240 492 992 2000 4032 8120 16256 32608

rot sym 116 240 488 988 1992 4012 8058 16186 32456

Table 5. General (30 runs with GP) and rotation symmetric imbalanced Boolean
functions, the best-obtained nonlinearities.

Size

8 10 12 14 16

general 120 496 2016 7994 32332

rot sym 120 488 1992 8062 32468

5.2 Rotation Symmetric Balanced, Highly Nonlinear Boolean
Functions

We provide results for balanced rotation symmetric functions in Table 6 and
Fig. 1. Interestingly, the best results for most sizes are attained by the TT rep-
resentation, except n = 14 and n = 16, for which the FP-SST representation
provides the best results. When FP encoding is used, one can vary the number
of bits a single FP value will represent (decode, Eq. 6). In our preliminary exper-
iments, the best results were obtained with a relatively small decode (i.e., with
one FP value representing a small number of bits), consequently resulting in a

298 C. Carlet et al.

larger number of FP variables. This analysis is not included for brevity, but all
FP-based algorithms used the same optimized setting with decode = 3.

Table 6. Median of nonlinearity values obtained for balanced Boolean functions for
different numbers of variables. The N.F. entry denotes that the algorithm could not
obtain a balanced Boolean function.

Representation Size

8 9 10 11 12 13 14 15 16

TT 116.94 240.61 484.99 985 1988 4009 8049 16179 32435

GP 116.72 236.97 480.99 981 1976 3993 8032 16143 32394

FP-ABC 116.69 236.95 480.99 981 1977 3992 8033 16147 32406

FP-CLONALG 116.88 239.73 484.98 985 1988 4005 8036 16137 32385

FP-CMAES 116.81 236.95 480.99 977 1971 3983 8014 16113 N.F

FP-DE 116.80 236.93 480.98 977 1969 3969 7954 N.F N.F

FP-OPTIA 115.83 237.94 484.98 985 1981 3988 8019 16117 32362

FP-SST 116.88 240.59 484.98 985 1987 4005 8053 16169 32443

5.3 Rotation Symmetric Bent Boolean Functions

We provide results for bent (thus, imbalanced) rotation symmetric functions in
Table 7 and Fig. 2. TT provides superior results mainly because of the greatly
reduced search space size compared to general Boolean functions. FP-SST is
among the best, likely because our implementation includes a variety of floating-
point crossover and mutation operators. Notice that GP provides worse results
than TT because there is no semantic link between the GP genotype and the
resulting decoded rotation symmetric Boolean function. Among the FP-based
algorithms, CMAES and DE exhibit surprisingly unsatisfactory performance,
not even managing to find balanced functions for larger n values. We note that
the results for rotation symmetric functions are better than general Boolean
results for imbalanced nonlinear functions for sizes 14 and 16, possibly again
because of the reduced search size in the rotation symmetric encoding.

Finally, we compare our results with the two most relevant related works.
Kavut et al. considered rotation symmetric functions in sizes 9 to 11 [12]. For
n = 9, the best nonlinearity for a balanced function equals 240, the same as
we achieve. For n = 10, Kavut et al. reported nonlinearity equal to 488 and
492, but the functions are imbalanced in both cases. We reach balanced func-
tions with nonlinearity 488. For n = 11, Kavut et al. reported a nonlinearity
of 988 for the balanced function and 992 for the imbalanced function; we also
reach the nonlinearity of 988 for balanced functions. Later, Kavut et al. applied
affine transformation and changed imbalanced functions into balanced ones, but
the resulting functions are not rotation symmetric anymore, prohibiting direct
comparison. Moreover, to reach such results, they utilized custom heuristics.

Evolving Rotation Symmetric Boolean Functions 299

Fig. 1. Box plots for nonlinearity values obtained for balanced Boolean functions

Table 7. Median of nonlinearity values obtained for bent Boolean functions for a
different number of variables.

Representation Size

8 10 12 14 16

TT 120.00 488.71 1990.97 8056.99 32455.50

GP 120.00 484.88 1979.99 8038.00 32411.50

FP-ABC 119.53 484.41 1980.00 8037.00 32410.00

FP-CLONALG 120.00 487.89 1990.98 8045.00 32414.00

FP-CMAES 118.78 483.96 1976.00 8025.50 32382.50

FP-DE 120.00 482.98 1974.99 8007.50 32348.00

FP-OPTIA 119.53 486.93 1987.98 8036.50 32398.50

FP-SST 120.00 487.90 1990.96 8056.00 32458.50

300 C. Carlet et al.

Fig. 2. Box plots for nonlinearity values obtained for bent Boolean functions

Wang et al. used a custom version of the GA for their experiments and
considered only balanced rotation symmetric functions [30]. More precisely, they
used “vanilla” GA, followed by two custom algorithm modifications where good
results were reached only for those modified algorithms. For n = 8, they reached
nonlinearity 116, the same as we. For n = 10, they obtained a nonlinearity of
488, which is again the same as we achieve. Finally, for n = 12, they reported a
nonlinearity of 1996 but only provided an example with nonlinearity 1992, which
is the same as our best result.

6 Conclusions and Future Work

This paper explores the difficulty of evolving rotation symmetric Boolean func-
tions. While this class of Boolean functions is much smaller than general Boolean
functions, we did not observe the problem to be simpler. Nevertheless, the
obtained results are good and rival the related works even though they use
customized heuristics while we use generic metaheuristics. We observe that tree
encoding is not the best for evolving rotation symmetric functions, but bitstring
and floating point work much better (differing from the situation when evolv-
ing general Boolean functions). The reason is that the reduction of the search
space for bitstring and floating points is significant, while for tree encoding, we
can reduce it only marginally. For future work, we consider two directions to
be especially interesting. First, considering (bent) rotation symmetric Boolean
functions, it would be interesting to see whether constructions of such functions
could be found following the approach from [23]. Next, while this work consid-
ers rotation symmetric Boolean functions, it would be interesting to consider
vectorial rotation symmetric functions (rotation symmetric S-boxes).

Evolving Rotation Symmetric Boolean Functions 301

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, USA (2009)

2. Brownlee, J., et al.: Clonal selection algorithms. Swinburne University of Technol-
ogy, Australia, Complex Intelligent Systems Laboratory (2007)

3. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, Cambridge (2021). https://doi.org/10.1017/9781108606806

4. Cutello, V., Nicosia, G., Pavone, M.: Real coded clonal selection algorithm for
unconstrained global optimization using a hybrid inversely proportional hypermu-
tation operator. In: Proceedings of the 2006 ACM symposium on Applied comput-
ing, pp. 950–954 (2006)

5. Djurasevic, M., Jakobovic, D., Mariot, L., Picek, S.: A survey of metaheuristic
algorithms for the design of cryptographic Boolean functions. Crypt. Commun.
15(6), 1171–1197 (2023). https://doi.org/10.1007/s12095-023-00662-2

6. Fuller, J., Dawson, E., Millan, W.: Evolutionary generation of bent functions for
cryptography. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2003, Canberra, Australia, 8–12 December 2003, pp. 1655–1661. IEEE (2003)

7. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003)

8. dong Hou, X.: On the norm and covering radius of the first-order reed-muller codes.
IEEE Trans. Inform. Theory 43(3), 1025–1027 (1997). https://doi.org/10.1109/18.
568715

9. Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.): PPSN 2014. LNCS,
vol. 8672. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2

10. Husa, J., Dobai, R.: Designing bent Boolean functions with parallelized linear
genetic programming. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, p. 1825–1832. GECCO 2017, Association for Com-
puting Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3067695.
3084220

11. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey:
artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57
(2014)

12. Kavut, S., Maitra, S., Yucel, M.D.: Search for Boolean functions with excellent
profiles in the rotation symmetric class. IEEE Trans. Inf. Theory 53(5), 1743–
1751 (2007). https://doi.org/10.1109/TIT.2007.894696

13. Kavut, S., Yücel, M.D.: 9-variable boolean functions with nonlinearity 242 in the
generalized rotation symmetric class. Inform. Comput. 208(4), 341–350 (2010).
https://doi.org/10.1016/j.ic.2009.12.002, https://www.sciencedirect.com/science/
article/pii/S0890540109002454

14. Kerdock, A.: A class of low-rate nonlinear binary codes. Inf. Control 20(2), 182–187
(1972)

15. Liu, W.M., Youssef, A.: On the existence of (10, 2, 7, 488) resilient functions.
IEEE Trans. Inf. Theory 55(1), 411–412 (2009). https://doi.org/10.1109/TIT.
2008.2008140

16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Else-
vier, Amsterdam, North Holland (1977). ISBN 978-0-444-85193-2

https://doi.org/10.1017/9781108606806
https://doi.org/10.1007/s12095-023-00662-2
https://doi.org/10.1109/18.568715
https://doi.org/10.1109/18.568715
https://doi.org/10.1007/978-3-319-10762-2
https://doi.org/10.1145/3067695.3084220
https://doi.org/10.1145/3067695.3084220
https://doi.org/10.1109/TIT.2007.894696
https://doi.org/10.1016/j.ic.2009.12.002
https://www.sciencedirect.com/science/article/pii/S0890540109002454
https://www.sciencedirect.com/science/article/pii/S0890540109002454
https://doi.org/10.1109/TIT.2008.2008140
https://doi.org/10.1109/TIT.2008.2008140

302 C. Carlet et al.

17. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers
for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 13

18. Mesnager, S.: Bent Functions. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32595-8

19. Han, Y., Okamoto, T., Qing, S. (eds.): ICICS 1997. LNCS, vol. 1334. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0028456

20. Olsen, J., Scholtz, R., Welch, L.: Bent-function sequences. IEEE Trans. Inf. Theory
28(6), 858–864 (1982)

21. Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A., et al.: Differential evo-
lution: a review of more than two decades of research. Eng. Appl. Artif. Intell. 90,
103479 (2020)

22. Paterson, K.: On codes with low peak-to-average power ratio for multicode CDMA.
Inf. Theory IEEE Trans. 50, 550–559 (2004)

23. Picek, S., Jakobovic, D.: Evolving algebraic constructions for designing bent
Boolean functions. In: Proceedings of the Genetic and Evolutionary Computation
Conference 2016, pp. 781–788. GECCO 2016, Association for Computing Machin-
ery, New York, NY, USA (2016). https://doi.org/10.1145/2908812.2908915

24. Picek, S., Jakobovic, D.: Evolutionary computation and machine learning in secu-
rity. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 1572–1601. GECCO 2022, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3520304.3534087

25. Picek, S., Marchiori, E., Batina, L., Jakobovic, D.: Combining evolutionary com-
putation and algebraic constructions to find cryptography-relevant Boolean func-
tions. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014.
LNCS, vol. 8672, pp. 822–831. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10762-2 81

26. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
lulu.com (2008)

27. Rothaus, O.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976)
28. Stănică, P., Maitra, S., Clark, J.A.: Results on rotation symmetric bent and corre-

lation immune Boolean functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 161–177. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25937-4 11

29. Stănică, P., Maitra, S.: Rotation symmetric Boolean functions-count and crypto-
graphic properties. Discrete Appl. Math. 156(10), 1567–1580 (2008). https://doi.
org/10.1016/j.dam.2007.04.029, https://www.sciencedirect.com/science/article/
pii/S0166218X07001734

30. Wang, Y., Gao, G., Yuan, Q.: Searching for cryptographically significant rotation
symmetric Boolean functions by designing heuristic algorithms. Secur. Commun.
Netw. 2022, 1–6 (2022). https://doi.org/10.1155/2022/8188533

31. Yang, M., Meng, Q., Zhang, H.: Evolutionary design of trace form bent functions.
Cryptology ePrint Archive, Paper 2005/322 (2005). https://eprint.iacr.org/2005/
322

https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-319-32595-8
https://doi.org/10.1007/978-3-319-32595-8
https://doi.org/10.1007/BFb0028456
https://doi.org/10.1145/2908812.2908915
https://doi.org/10.1145/3520304.3534087
https://doi.org/10.1007/978-3-319-10762-2_81
https://doi.org/10.1007/978-3-319-10762-2_81
https://doi.org/10.1007/978-3-540-25937-4_11
https://doi.org/10.1007/978-3-540-25937-4_11
https://doi.org/10.1016/j.dam.2007.04.029
https://doi.org/10.1016/j.dam.2007.04.029
https://www.sciencedirect.com/science/article/pii/S0166218X07001734
https://www.sciencedirect.com/science/article/pii/S0166218X07001734
https://doi.org/10.1155/2022/8188533
https://eprint.iacr.org/2005/322
https://eprint.iacr.org/2005/322

Analysis of Evolutionary Computation
Methods: Theory, Empirics,
and Real-World Applications

On the Potential of Multi-objective
Automated Algorithm Configuration

on Multi-modal Multi-objective
Optimisation Problems

Oliver Ludger Preuß1(B) , Jeroen Rook2 , and Heike Trautmann1,2

1 Machine Learning and Optimisation, Paderborn University, Paderborn, Germany
{oliver.preuss,heike.trautmann}@uni-paderborn.de

2 Data Management and Biometrics, University of Twente, Enschede,
The Netherlands

j.g.rook@utwente.nl

Abstract. The complexity of Multi-Objective (MO) continuous opti-
misation problems arises from a combination of different characteristics,
such as the level of multi-modality. Earlier studies revealed that there
is a conflict between solver convergence in objective space and solution
set diversity in the decision space, which is especially important in the
multi-modal setting. We build on top of this observation and investi-
gate this trade-off in a multi-objective manner by using multi-objective
automated algorithm configuration (MO-AAC) on evolutionary multi-
objective algorithms (EMOA). Our results show that MO-AAC is able
to find configurations that outperform the default configuration as well
as configurations found by single-objective AAC in regards to objective
space convergence and diversity in decision space, leading to new recom-
mendations for high-performing default settings.

Keywords: Automated Algorithm Configuration · Multi-Objective
Optimisation · Multimodality · Evolutionary Computation

1 Introduction

Multi-objective optimisation (MOO) aims at solving multi-objective optimisa-
tion problems (MOPs). The goal is to find a set of solutions that form an opti-
mal trade-off between multiple conflicting objectives, i.e. the Pareto set (PS)
in decision and the Pareto front (PF) in objective space, respectively. Popular
algorithms to solve MOPs, are evolutionary multi-objective optimisation algo-
rithms (EMOA) [7] which are inspired by concepts of variation and selection
from natural evolution. However, EMOAs usually only find an approximation of
the true PF [12], and their performance is sensitive to underlying parameter set-
tings. For respective optimal configuration, automated algorithm configuration
(AAC) [14,22] is promising and will be shown to be highly effective.

A challenge that often needs to be faced in MOO is multi-modality, i.e. the
presence of multiple local and global optima. The multi-global case, which we will
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 305–321, 2024.
https://doi.org/10.1007/978-3-031-56852-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_20&domain=pdf
http://orcid.org/0009-0008-9308-2418
http://orcid.org/0000-0002-3921-0107
http://orcid.org/0000-0002-9788-8282
https://doi.org/10.1007/978-3-031-56852-7_20

306 O. L. Preußet al.

focus on, is characterised by different solutions in decision space corresponding
to the same point in objective space [12] (Fig. 1).

Fig. 1. Multi-modal MOPs: multi-global case (left), multi-modal case (right). (Fig.
taken from [13])

Thereby, it is not sufficient to solely focus on convergence of EMOAs towards
the PF but also to find at best all solutions in the decision space that map
to the PF. This trade-off strongly depends on the configuration used for the
chosen EMOA. Rook et al. [22] showed that configurations favouring conver-
gence in objective space negatively affect diversity in decision space and vice
versa leading to a multi-objective algorithm configuration problem. We will thus
simultaneously optimise for both performance criteria, reflected by the Dom-
inated Hypervolume (HV, [30]) and the Solow-Polasky measure (SP, [26,27]),
using multi-objective automated algorithm configuration (MO-AAC, [21]).

Three different research questions (RQs) will be answered: 1) How competi-
tive are EMOAs configured for both convergence towards the PF and diversity
in decision space compared to EMOAs solely configured for a respective single
performance objective? 2) How configurable are EMOAs in terms of versatility
and competitiveness? And 3) How does the trade-off between both performance
criteria look like when configuring for both simultaneously?

We will specifically show that in sum, this study has led to the proposition
of new default configurations for all examined EMOAs, which have been found
to enhance their efficacy pertaining to both performance indices concurrently.
Thereby, the EMOA Omni-Optimizer [8] experimentally outperforms competing
EMOAs regarding versatility and competitiveness.

Section 2 provides details on MOO and respective performance measures,
followed by an overview of MO-AAC approaches in Sect. 3. We will then discuss
experimental results in Sect. 4 and conclude with Sect. 5 including an outlook on
future research perspectives.

2 Multi-objective (Evolutionary) Optimisation

The goal of (continuous) MOO is to simultaneously optimise multiple (conflict-
ing) objective functions fi : X → R, i ∈ [m] := {1, ...,m}, m ≥ 2; w.l.o.g.
minimisation of all objectives is assumed. Ranking of solutions in the multi-
objective setting poses a challenge since multiple objectives usually are conflict-
ing. Thus the notion of (Pareto-)dominance needs to be introduced. Given two

On the Potential of MO-AAC on MMMOO Problems 307

solutions x,y ∈ X , we say that x (Pareto-)dominates y, denoted as x ≺ y, iff
fi(x) ≤ fi(y) ∀i∈[m], and fj(x) < fj(y) ∃j∈[m]. As a consequence, the optimal
result of a MOP is commonly not a single solution but rather a set of solu-
tions where every solution is not dominated by any other solution. This set of
optimal trade-off solutions – also called Pareto set (PS) – can be described as
X ∗ = {x ∈ X | � x′ ∈ X : x′ ≺ x}. The projection of the PS in the objective
space is referred to as Pareto front (PF).

Traditional EMOAs, e.g. NSGA-II [9] and SMS-EMOA [3], approximate the
PF w.r.t. convergence and diversity of solutions in objective space [2]. Dominated
Hypervolume (HV) [30] is a widely used Pareto-compliant metric which measures
the area enclosed by a set of non-dominated solutions in objective space and an
anti-optimal reference point r (see Fig. 2b).

Multi-modal MOPs yield new challenges in terms of locally efficient sets,
ridges and basin structures [11]. Especially in the multi-global case, this can neg-
atively impact EMOAs’ performance as they tend to get stuck in global basins in
the decision space that only partially cover the PS, as was demonstrated in earlier
studies [22]. We use the Solow-Polasky measure (SP) [26] to measure the extent of
coverage of all global basins. SP was designed to measure the diversity of species
in biology. It was later adopted by [27] in the context of Evolutionary Diver-
sity Optimization. It measures the pairwise distances of points in the decision
space to assess its diversity. SP is defined as SP (P) =

∑
1≤i,j≤μ M−1

ij ∈ [1, μ],
where P = {P1, . . . , Pμ} is a population of μ individuals, and M−1 is the Moore-
Penrose generalised inverse matrix of M with Mi,j = exp(−d(Pi, Pj)) where d
is the (Euclidean) distance between two individuals. If the solution set is spread
out over the decision space, SP will be higher compared to the case when the
points are clustered and do not cover the whole space (Fig. 2a).

Fig. 2. Examples of how SP characterises diversity and HV convergence.

3 Multi-objective Automated Algorithm Configuration

Algorithm configuration (AC) in general aims to find the best configuration θ∗

from a parameter space Θ of an algorithm A on a given problem instance set Π,

308 O. L. Preußet al.

such that c(θ∗,Π) = optθ∈Θc(θ,Π). I.e., the configuration that yields the best
overall performance of a quality metric c. In the context of meta-heuristics AC is
often considered as an offline and generative hyper-heuristic [6]. Typically, c(θ,Π)
is obtained by aggregating the quality on all instances π ∈ Π for a fixed param-
eter configuration θ ∈ Θ, e.g. by taking the mean c(θ,Π) = 1

|Π|
∑

π∈Π c(θ, π).
The search for θ∗ is de facto an optimisation problem but has some unique
characteristics. Expensive function evaluations, mixed-type parameter/decision
spaces, and aggregated performance observations result into that off-the-shelf
evolutionary algorithms are inefficient in solving the AC problem. Methods like
irace [18], ParamILS [15], and SMAC [16] are problem specific frameworks that
perform single-objective (SO) automated algorithm configuration (AAC) [14].
An extensive overview of AAC algorithms can be found in [25].

Since in this study two EMOA performance objectives are of interest, we
extend the AC formulation to the multi-objective setting by using the notion of
Pareto dominance. The goal is now to find a set of configurations that are the
optimal trade-off configurations, i.e., the PF of multiple quality metrics simul-
taneously, i.e., ci : Θ → R, i ∈ [m],m ≥ 2. The final incumbent in the MO
case is thus a set of optimal trade-off configurations, i.e., the PF, which can be
described as Θ∗ = {θ ∈ Θ | � θ

′ ∈ Θ : θ
′ ≺ θ} and is analogous to PF defi-

nition for MOO. Also for the multi-objective AC (MO-AC) scenarios, tailored
MO-AAC approaches exist, such are MO-ParamILS [4] and MO-SMAC [21]1.
For this paper, we decided to use SMAC and MO-SMAC for the AAC and MO-
AAC scenarios, respectively. These configurators support mixed-type and nested
parameters spaces, which the others do not have. They also support logarith-
mically scaled parameters, which could taken into account when sampling new
configurations.

SMAC is a model-based configurator and is internally alternating between
two phases; the Bayesian Optimisation (BO) phase and the intensification phase.
In the BO phase, promising configurations are found using a surrogate model
trained on previous algorithm runs. The surrogate model is a random forest that
takes the configuration and instance features as input and uses the quality met-
ric as output label. Configurations are found by performing random and local
searches, which are then ranked based on how promising they are. Because the
predictions of the surrogate model also return the uncertainty in its prediction,
the Expected Improvement (EI) acquisition function is used to express how
promising a configuration is. The intensification phase validates the proposed
configurations to see if they are actually better than the believed-to-be-best
configuration, i.e., the incumbent. This is efficiently done by first running the
challenging configuration on only one instance and comparing its performance
against the performance of the incumbent on that instance. If the challenger is
worse, it is rejected, and the comparison stops. Otherwise, the challenger is run
on more instances, and the comparison is made again on their aggregated per-
formance. If the challenger is still better than the incumbent after the challenger

1 Source code: https://github.com/jeroenrook/SMAC3/tree/mosmac-anon.

https://github.com/jeroenrook/SMAC3/tree/mosmac-anon

On the Potential of MO-AAC on MMMOO Problems 309

ran on all the instances the incumbent ran on, the challenger is accepted as the
new incumbent.

MO-SMAC has the same working principle as SMAC. However, there are
several differences. First, the incumbent is now a set of non-dominated config-
urations. Secondly, the BO-phase has a surrogate model for each objective and
the predicted HV improvement (PHVI) acquisition function combines the predic-
tions of these models to score configurations on how much they will improve the
incumbent. Thirdly, comparisons are made based on Pareto dominance relations
during intensification. As long as the challenger is not dominated by the incum-
bent configuration closest to the challenger, the validation continues. Because
the number of problem instances the incumbent evaluates on increases during
a configuration run, the incumbent’s size is limited to 8 to ensure this progres-
sion. When a new configuration is added to the incumbent and the limited is
exceeded, the configuration with the lowest crowding distance [9] to the others
is removed.

4 Experiments

MO-AAC experiments were conducted to automatically configure EMOAs on
a complementary set of multi-modal MOPs for simultaneously showing conver-
gence in objective and diversity in decision space. Thereby, we will specifically
address the research questions posed in the introduction.

4.1 Experimental Setup

The experimental setup is aligned with the experiments of [22] to build on top
of their work and ensure comparability. Seven different EMOAs are considered,
the first four are MOEA/D [20], NSGA-II [9], Omni-Optimizer [8], and SMS-
EMOA [3]. These are classical EMOAs that intrinsically focus on convergence
towards the PF and thus may not be able to find diverse solutions in decision
space according to SP. An exception here might be Omni-Optimizer designed to
also favor a diverse decision space. The remaining three EMOAs utilize gradient
information of a MOP. HIGA-MO [28] focuses on the HV gradient while MOGSA
[11] and MOLE [23] use a gradient to utilize landscape characteristics to move
along local structures and preserve different solutions in the decision space.

The set of problem instances includes all problems of ZDT [30], DTLZ [10],
and MMF [29] except ZDT5 and MMF13, and instances f46, f47, and f50 from
bi-objective BBOB [5]. This results in a total of 33 instances. All instances are
bi-objective and have a 2-dimensional decision space. The EMOA population size
μ was fixed to 100, however, MOLE and MOGSA can return a larger solution
set than 100, as they do not have a population. In the rare case they return more
than 2 000 non-dominated points, 2 000 points were randomly sampled without
replacement to keep the SP computation – which relies on the matrix inversion
of dense matrices – possible.

310 O. L. Preußet al.

Table 1. EMOA configuration spaces.

Default Range

MOEA/D

T 20 [10, 40]

Tr 8 [4, 20]

aggregation wt {wt, awt, pbi}
archive 0 {0, 1}
decomp SLD {SLD, Uniform}
∇p 1 [0.1, 1]

neighbor λ { λ, x}
nr 1 [1, 10]

update norm {norm, best, restrict}
Variation level 1

method sbx {bin, diff, poly, sbx }
diffmut rand {rand, mean, wgi }
sbx η 20 [1, 100]

sbx pc 1 [1, 10]

Variation level 2

method poly {bin, diff, poly, sbx}
diffmut rand {rand, mean, wgi}
sbx η 20 [1, 100]

sbx pc 1 [1, 10]

Variation level 2

method off {bin, diff, poly, sbx, off}
diffmut rand {rand, mean, wgi}
sbx η 20 [1, 100]

sbx pc 1 [1, 10]

MOLE

descent parameters

armijo factor 1−4 [1−5, 0.1]

direction min 1−8 [0, 1]

histroy size 100 [1, 232 − 1]

max iter descent 1000 [1, 232 − 1]

scale factor 2 [1.1, 5]

step min 1−6 [1−8, 0.01]

step max 0.1 [1−4, 0.01]

explore parameters

angle max 45 [10, 90]

scale factor 2 [1.1, 5]

step min 1−4 [1−6, 100]

step max 0.1 [0.1, 100]

refine parameters

after nstarts 100 [1, 100]

hv target 2−5 [1−6, 0.1]

other parameters

epsilon gradient 1−8 [0, 1]

max local sets 1000 [0, 232 − 1]

Default Range

SMS-EMOA

mutator poly {gauss, poly, uni}
mutPoly eta 10 [0, 100]

mutPoly p 0.2 [0, 1]

mutGauss eta 1 [0, 1]

mutGauss sdev 0.05 [0, 1]

recombinator sbx {cross, int, sbx}
recSBX eta 5 [0, 10]

recSBX p 1 [0, 1]

NSGA-II

mutator poly {gauss, poly, uni}
mutPoly eta 10 [0, 100]

mutPoly p 0.2 [0, 1]

mutGauss eta 1 [0, 1]

mutGauss sdev 0.05 [0, 1]

recombinator sbx {cross, int, sbx}
recSBX eta 5 [0, 10]

recSBX p 1 [0, 1]

HIGA-MO

dominated steer NDS {M[1, 6], NDS}
sampling uni {uni, LHS, Grid}
step size 1−3 [1−9, 1]

Omni-Optimizer

delta 1−3 [0, 1]

eta cross 20 [5, 20]

eta mut 20 [5, 20]

init random {random, LHS}
mate norm {norm, restrict}
p cross 0.6 [0.6, 1]

p mut 0.1 [0, 1]

space niching 0.5 [0, 1]

MOGSA

exploration step 0.2 [0, 1]

ls method both {bi, mo-ls, both}
max no basins 50 [1, 2000]

max no basins ls 500 [1, 1000]

prec angle 1−4 [0, 0.01]

prec grad 1−6 [0, 0.01]

prec norm 1−6 [0, 0.01]

scale step 0.5 [0, 1]

For each problem instance, a reference set was empirically approximated by
combining all function evaluations while running all considered EMOAs 10 times
with an evaluation budget of 100 000. If the reference point for calculating the HV
of an instance was unknown, it was obtained by taking the maximum function
values of the obtained reference sets increased with a small constant to account
for solutions on the extremes [1]. To ensure comparability of HV values across

On the Potential of MO-AAC on MMMOO Problems 311

different instances and enable aggregation, the HV was normalised by dividing
by the HV of the reference set of the specific instance.

SO-SMAC configures for SP and HV separately, whereas MO-SMAC config-
ures for both simultaneously. Experiments of [22] with SO-SMAC were repro-
duced as MO-SMAC is built on top of a different SMAC version [17] as was
originally used by the authors. Considering the 7 different EMOAs, a total of
21 different configuration scenarios were performed. Each configuration scenario
had a termination criterion of 250 algorithm calls. All other (MO-)SMAC param-
eters were set to default. Each of the EMOAs had a function call limit of 20 000
within configuration. A preliminary study showed that most algorithms showed
sufficient convergence given this budget. Table 1 lists the EMOA configuration
spaces. We did not configure for population size to prevent the configurators from
finding configurations where the population size equals the number of function
evaluations, which yields a high diversity in decision space but does not actually
run the respective EMOA beyond the initialisation of the population.

For computational reasons we used 10-fold cross-validation (CV) instead of
leave-one-out CV as in [22]. In each fold, 10 separate configuration runs were
performed to account for the stochastic behaviour of (MO-)SMAC. Out of these
runs, the incumbent solution for SMAC was selected based on the one that
yielded the best average performance on the training instances. For MO-SMAC
all configurations from the sets of incumbents out of the 10 configuration runs
were combined, and only the overall non-dominated configurations were selected
as the final incumbent. Again, this was based on their aggregated mean perfor-
mance on the instances in the training partition of the fold. On top of the CV
folds, additional configuration scenarios were conducted where the configurators
ran on all instances. The resulting configurations were evaluated on the test
instances of the respective folds for the CV scenarios and on all the instances
for the other scenarios. Each evaluation of a configuration on an instance was
based on 25 independent runs that were each seeded differently. To run all the
experiments, approximately 5 000 CPU hours were needed on the HPC cluster
PALMA II of the University of Münster. An overview of the experimental setup
can be found in Fig. 32.

4.2 Results

RQs were addressed based on the test instances of the CV results, apart from 3b
which relies on configuring on all instances in total. Figure 4 provides an overview
of the specific aspects the RQs investigate. On the left side RQ 2b focuses on the
problem space whereas all other RQs focus on the performance measure space
depicted on the right side.

In addition – to enhance clarity – each experimental result is labelled to
describe the origin and abstraction level they originated from. The shape of
the label describes if the origin is based on the CV results () or on runs

2 Experimental code can be found at https://github.com/jeroenrook/MMMOO-
moconfig-exp.

https://github.com/jeroenrook/MMMOO-moconfig-exp
https://github.com/jeroenrook/MMMOO-moconfig-exp

312 O. L. Preußet al.

Fig. 3. Overview of the experimen-
tal setup: scenarios, folds, configuration
runs, and validation.

Fig. 4. Overview of RQs (orange, see
Sect. 4.2) and related spaces (left:
function-space, right: indicator-space).
(Color figure online)

with all instances (). The colour describes the abstraction level where green
() corresponds to decision-space (SP), blue () to objective-space (HV), and
yellow () to indicator-space. As an example, describes that the results from
the CV are used and that we look at their objective-space performance.

R1. How competitive are EMOAs configured for both convergence
towards the PF and diversity in decision space compared to EMOAs
configured for a respective single objective? Rook et al. [22] showed the
potential of AAC on multi-modal MOPs by configuring the EMOAs separately
for SP and HV. We deem it important that MO-AAC is able to find comparable
configurations to SO-AAC. This shows the competitiveness of MO-AAC with
SO-AAC even though MO-AAC has a more dispersed task. More specifically,
Fig. 5 compares the best-performing non-dominated MO configurations for SP
and HV over the 10 runs out of every fold with the respective SO configuration.
Interestingly, all solvers improve the SO-AAC solution for SP. Here, MOGSA
and MOLE have the highest increase, while HIGA-MO and NSGA-II have the
lowest increase. For HV, MOGSA and MOLE have the highest increase again,
while all other solvers show little to no substantial improvement.

R2. How Configurable are EMOAs? Specifically, we investigate versatility
and competitiveness. Versatility measures the adaption capability of an algorithm
to different requirements, e.g., the ability to compromise between HV and SP
gradually.

R2a. Which EMOA is Most Versatile? To answer this question, we now
consider the bi-objective space spanned by SP and HV based on the con-
figurations found with MO-SMAC. As HV in general measures quality and
spread of solutions in objective (here: performance) space, it is well-suited to
express the desired EMOA’s versatility, i.e. HV ∗ := HVHV,SP , where the non-
dominated configurations, on basis of the training instances, of the combined 10

On the Potential of MO-AAC on MMMOO Problems 313

Fig. 5. Relative improvement of the best MO configuration for SP (left) and HV (right)
compared to the SO configuration, respectively.

configurator runs are used as input. HV ∗ is calculated over the mean perfor-
mance over each fold’s test instances and validation seed (25), resulting in 250
scores per algorithm. Based on these HV ∗’s the algorithms were ranked.

The average over all these rankings is shown in a Critical Difference (CD)
diagram, displayed in Fig. 6, where a lower ranking indicates better versatility.
The figure displays the CD as a black line when EMOAs are statistically tied. It
is based on a Nemenyi test [19] with α = 0.1, resulting in a CD of 0.52. The plot
shows that Omni-Optimizer has the highest HV ∗ overall, followed by MOLE,
and are therefore considered the most versatile EMOAs. HIGA-MO, MOEA/D,
and MOGSA achieve average ranking and are statistically tied. The worst HV ∗

was achieved by SMS-EMOA and NSGA-II which are also tied with each other.

Fig. 6. Rankings based on HV ∗ of the configurations.

R2b. Which EMOA is Most Competitive? Based on the mean perfor-
mance over all non-dominated MO-AAC configurations of each EMOA, we now
rank them for SP and HV separately. The mean of SP and HV over the test
instances of all folds (250) is considered. By this an overall performance value
for all found non-dominated configurations is provided and EMOA rankings are
similarly calculated as in R2a with also a critical difference of 0.52.

For SP, Omni-Optimizer outperforms all other algorithms. MOLE, HIGA-
MO, and MOEA/D achieve average ranking. Also, HIGA-MO is statistically
tied with MOLE and MOEA/D. The worst performing algorithms for SP are
MOGSA, NSGA-II, and SMS-EMOA. The rankings for HV look vastly different
than the SP rankings. Here, NSGA-II and SMS-EMOA are the best performing
algorithms, while they are the worst performing regarding SP. Omni-Optimizer

314 O. L. Preußet al.

is now the third best algorithm, although it is tied with SMS-EMOA. MOEA/D
and MOLE follow in the third and fourth position and are statistically tied.
HIGA-MO and MOGSA are tied as well and have the worst performance regard-
ing HV. These rankings closely resemble the rankings of Rook et al. [22].

Fig. 7. Performance rankings for SP (left,) and HV (right).

The rankings for versatility (Fig. 6) and competitiveness (Fig. 7) with regard
to SP are qualitatively similar. Here the algorithms that are designed to keep
a diverse decision space (Omni-Optimizer and MOLE) achieve the best per-
formance. The HV rankings, conversely, are dissimilar to the versatility ranks.
Here, algorithms that intrinsically focus on convergence in the objective space
(NSGA-II and SMS-EMOA) achieve the highest performance. Omni-Optimizer
also achieves good performance with regards to HV competitiveness as it sta-
tistically ties with SMS-EMOA which ranks second. It is expected that there
will be trade-offs between algorithms with regard to SP and HV, which makes
Omni-Optimizer’s performance as the best algorithm with regard to SP while
achieving a good ranking for HV noteworthy.

R3. How does the trade-off between the convergence towards the PF
and diversity in decision space look like? In the following, we will explicitly
investigate the extent and characteristics of the trade-off between HV and SP of
the non-dominated solutions generated by MO-AAC.

R3a What is the Extent of the Trade-Off? Figure 8 visualises the rel-
ative loss in SP and HV of the two extreme solutions on the trade-off surface
of the non-dominated MO-AAC configurations. Those were identified based on
the results on the validation instances, i.e. the median of the 25 repetitions per
instance and applying the arithmetic mean afterwards. For those configurations
we calculate the (relative) loss as follows: Denoting the best MO-AAC configu-
rations regarding HV and SP as CHV and CSP , respectively, relative losses in
HV and SP result as HV (CHV)/HV (CSP) − 1 and SP (CSP)/SP (CHV) − 1,
deliberately using only a conceptual notation here leaving out the EMOAs in
between. More specifically, the relative loss is the percentage of how one indica-
tor worsens when using the best configuration for the other indicator compared
to its own best configuration.

The more extreme the trade-off behaviour, the more versatile an EMOA is in
general since there are specific configurations that perform especially well on SP
or HV. SP shows, in general, a higher loss than HV across all EMOAs reflecting
a higher parameter sensitivity in this regard. MOEA/D shows the highest loss in

On the Potential of MO-AAC on MMMOO Problems 315

Fig. 8. Relative loss for SP (left) and HV (right) on MO-AAC configurations.

both SP and HV, followed by MOGSA. Omni-Optimizer and NSGA-II have the
second highest loss of SP when considering the mean loss. This is also reflected
in Figs. 9 and 10.

R3b. How do the Actual Configurations Differ on this Trade-off? We now
focus on the actual parameter settings resulting from the MO-AAC experiments.
Relying on CV confirming generalisation capability of results, we consider MO-
AAC on all instances for further analysis, i.e. for each EMOA all incumbent
configurations of the 10 conducted configuration runs are chosen. Table 2 shows
that all EMOAs, except Omni-Optimizer, obtained solely unique configurations
reflecting both stochastic behaviour as well as exploration capability of MO-
AAC. However, only few non-dominated configurations are resulting after all.

Table 2. Number of MO-AAC configurations found.

Algorithm # configs unique configs non-dominated

MOLE 19 19 1

MOGSA 17 17 2

NSGA-II 27 27 4

HIGA-MO 17 17 3

MOEA/D 29 29 3

Omni-Optimizer 42 40 4

SMS-EMOA 23 23 3

Figure 9 shows the performance of all configurations referred to in Table 2,
complemented by the default EMOA configurations and the individual SO con-
figurations for SP and HV. Almost all of the non-dominated configurations domi-
nate the default configuration for every EMOA, confirming the potential of AAC
in general. When considering the SO configurations, 8 out of 14 are not domi-
nated by others when comparing to the configurations obtained with MO-AAC.
Thus, they would be part of the non-dominated front if found by MO-AAC. This
gives reason that MO-AAC is, in theory, also able to find these configurations.
This is actually the case for MOEA/D, where the SO configuration for SP is one
found by MO-AAC as well. An exception here is MOGSA, where the SO config-

316 O. L. Preußet al.

uration is the only non-dominated configuration overall and even dominates the
SO configuration for HV.

Fig. 9. MO-AAC, SO-AAC and default configurations for every EMOA separately,
trained and validated on all instances. The best trade-off solution reflects the carefully
picked best compromise between both objectives.

Aiming to provide recommendations for the overall best performing algorithm
when optimally configured, Fig. 10 combines all non-dominated (including best
hand-picked trade-off) MO-AAC configurations from the sub-figures of Fig. 9
relating to R1 in a visual way reflecting EMOA competitiveness. The optimally
configured Omni-Optimizer is the overall most performant EMOA followed by
NSGA-II with also a few configurations on the overall trade-off surface, however,
falling substantially behind in SP compared to a small loss in HV only. This is
unsurprising since Omni-Optimizer is an extension of NSGA-II to favor a diverse
decision space. SMS-EMOA and MOEA/D are second in line and comparable,
however, clearly dominated overall confirming results of R2b, while HIGA-MO
and MOGSA rank worst.

Fig. 10. Combined non-dominated MO-AAC configurations for all EMOAs, trained
and validated on all instances.

On the Potential of MO-AAC on MMMOO Problems 317

Figure 11 shows the actual parameter values of the two most competitive
algorithms Omni-Optimizer and NSGA-II. The new recommended default con-
figurations corresponds to the selected best trade-off solution.

Fig. 11. Summary of all non-dominated, default, SO, and proposed new default con-
figuration parameters for Omni-Optimizer and NSGA-II corresponding to Fig. 9. All
configurations were found by training and testing on all instances.

4.3 Summary and Discussion of Results

Altogether, the results give interesting insights into the trade-off between HV
and SP in the extremes using MO-AAC. MO-AAC is capable of finding con-
figurations that have competitive performance with SO-AAC (Fig. 5). This is
underlined by Fig. 9, where in most cases, the SO-AAC and MO-AAC configu-
rations form a non-dominated front when considered together. Thus, MO-AAC
is able to find trade-off configurations that lie in between the SO-AAC config-
urations but is also able to find configurations that overlap or even dominate
SO-AAC configurations.

The second insight is the dominant performance of Omni-Optimizer. It
achieved the best average ranking regarding HV ∗ of the non-dominated MO-
AAC configurations. A contributing factor here is the ability of Omni-Optimizer
to find multiple (non-dominated), and specifically high performing configurations
(Table 2). Second, Omni-Optimizer substantially outperforms the other EMOAs
regarding performance w.r.t. SP and achieves competitive performance w.r.t.
to HV. Here it is tied with SMS-EMOA and only NSGA-II achieves a better
ranking. This is unsurprising since Omni-Optimizer is an extension of NSGA-II,
focusing on preserving diversity in decision space. Both aspects are also reflected
in Figs. 9 and 10.

Moreover, experimental results allow us to recommend new default configu-
rations for each EMOA – under similar problem dimensionalities – dominating
the previous defaults for both HV and SP. Figure 11 displays the new default

318 O. L. Preußet al.

configurations for Omni-Optimizer and NSGA-II. All other configurations can
be found with the experimental code.

5 Conclusion and Future Work

In this context, various EMOAs were automatically configured to simultaneously
generate diverse solutions in the decision space and foster convergence towards
the Pareto front. These configurations were obtained using the model-based AAC
framework (MO-)SMAC which demonstrated its high performance and potential
for solving multi-objective configuration tasks. As test instances, a set of multi-
modal multi-objective optimisation instances from different benchmark function
collections were utilised. Omni-Optimizer is shown to outperform competing
EMOAs regarding the trade-off behaviour w.r.t. HV and SP when optimally
configured by MO-AAC, it shows high versatility and competitiveness. NSGA-II
shows comparable performance but smaller versatility in configuring for diversity
in decision space. Overall, we were able to recommend new default configurations
in similar scenario conditions for all considered EMOAs which resulted in higher
performance regarding both performance criteria simultaneously.

The experimental results are promising in that there is a lot to gain by fur-
ther pursuing this line of research, fostering algorithm design, understanding of
algorithm behaviour, and automated configuration. A straightforward extension
of this work will be investigating scalability and generalisability of results, both
in terms of enlarging the dimensionality of the decision space, and possibly also
objective space. Here, the normalisation of SP needs to be looked at as it becomes
difficult to compare different instances in higher and differing dimensionalities.
Parallel to this, the effect of the EMOA’s evaluation budgets can be investigated.
Also, other benchmark sets, such as recently provided in [24], can be included.
Experimental results can then be further detailed and more specifically analysed,
focusing on specific benchmark sets and problem characteristics.

Moreover, MO configuration studies internally solve specific MOO problems
themselves, and it is crucial to analyse the characteristics of the resulting opti-
misation landscapes in order to get a detailed understanding of problem hard-
ness and structural properties such as multi-modality. This will further help in
understanding the performance differences of different configurators applied to
the underlying scenario. Respective experiments will thus include a compari-
son with MO-ParamILS [4] and potentially specific racing approaches as well.
Robustness of resulting EMOA configurations is also an issue and could even be
integrated as a third performance criterion into the MO configuration scenario.
However, different notions of robustness exist which could be explored first in
this regard.

Additionally, automated configurators do have parameters themselves which
should be analysed further regarding parameter importance and sensitivity of
results regarding the chosen settings within SO- and MO-SMAC. However, one
has to be careful not to end up in a ’vicious circle’ of meta-configuring configu-
rators.

On the Potential of MO-AAC on MMMOO Problems 319

References

1. Afsar, B., Fieldsend, J.E., Guerreiro, A.P., Miettinen, K., Rojas Gonzalez, S., Sato,
H.: Many-Objective Quality Measures. In: Brockhoff, D., Emmerich, M., Naujoks,
B., Purshouse, R. (eds.) Many-Criteria Optimization and Decision Analysis. Nat-
ural Computing Series, pp. 113–148. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-25263-1 5

2. Audet, C., et al.: Performance indicators in multiobjective optimization. Eur. J.
Oper. Res. 292(2), 397–422 (2021). issn: 0377–2217. https://doi.org/10.1016/j.
ejor.2020.11.016

3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007).
issn: 03772217. https://doi.org/10.1016/j.ejor.2006.08.008

4. Blot, A., Hoos, H.H., Jourdan, L., Kessaci-Marmion, M.É., Trautmann, H.: MO-
ParamILS: a multi-objective automatic algorithm configuration framework. In:
Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp.
32–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3 3

5. Brockhoff, D., et al.: Using Well-Understood Single-Objective Functions in Mul-
tiobjective Black-Box Optimization Test Suites (2016). https://doi.org/10.48550/
ARXIV.1604.00359

6. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper.
Res. Soc. 64(12), 695–1724 (2013). issn: 0160–5682, 1476–9360. https://doi.org/
10.1057/jors.2013.71

7. Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary algorithms for
solving multi-objective problems. 2nd ed. Genetic and Evolutionary Computation
Series. Springer, New York (2007). isbn: 978-0-387-36797-2

8. Deb, K., Tiwari, S.: Omni-optimizer: a procedure for single and multi-objective
optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 47–61. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-31880-4 4

9. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Trans. Evol. Comput. 6(2), 182–197 (2002). issn: 1089778X. https://doi.org/10.
1109/4235.996017

10. Deb, K., et al.: Scalable test problems for evolutionary multiobjective optimiza-
tion. In: Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London
(2005). isbn: 978-1-85233-787-2. https://doi.org/10.1007/1-84628-137-7 6

11. Grimme, C., Kerschke, P., Trautmann, H.: Multimodality in multi-objective opti-
mization – more boon than bane? In: Deb, K., Goodman, E., Coello Coello, C.A.,
Klamroth, K., Miettinen, K., Mostaghim, S., Reed, P. (eds.) EMO 2019. LNCS,
vol. 11411, pp. 126–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-12598-1 11

12. Grimme, C., et al.: Peeking beyond peaks: challenges and research potentials of
continuous multimodal multi-objective optimization. In: Computers and Opera-
tions Research 136, 105489 (2021). issn: 03050548. https://doi.org/10.1016/j.cor.
2021.105489

13. Heins, J., et al.: BBE: basin-based evaluation of multimodal multiobjective opti-
mization problems. In: Parallel Problem Solving from Nature - PPSN XVII, vol.
13398. Cham: Springer (2022), pp. 192–206. isbn: 978-3-031-14714-2. https://doi.
org/10.1007/978-3-031-14714-2 14

https://doi.org/10.1007/978-3-031-25263-1_5
https://doi.org/10.1007/978-3-031-25263-1_5
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1007/978-3-319-50349-3_3
https://doi.org/10.48550/ARXIV.1604.00359
https://doi.org/10.48550/ARXIV.1604.00359
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1007/978-3-540-31880-4_4
https://doi.org/10.1007/978-3-540-31880-4_4
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-030-12598-1_11
https://doi.org/10.1007/978-3-030-12598-1_11
https://doi.org/10.1016/j.cor.2021.105489
https://doi.org/10.1016/j.cor.2021.105489
https://doi.org/10.1007/978-3-031-14714-2_14
https://doi.org/10.1007/978-3-031-14714-2_14

320 O. L. Preußet al.

14. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9 3

15. Hutter, F., et al.: ParamILS: an automatic algorithm configuration framework. J.
Artif. Intell. Res. 36, 267–306 (2009). issn: 1076–9757. https://doi.org/10.1613/
jair.2861

16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

17. Lindauer, M., et al.: SMAC3: a versatile bayesian optimization package for hyper-
parameter optimization. JMLR 23(54), 1–9 (2022). http://jmlr.org/papers/v23/
21-0888.html

18. López-Ibáñez, M., et al.: The irace package: iterated racing for automatic algorithm
configuration. Oper. Res. Perspectives 3, 43–58 (2016). issn: 22147160. https://doi.
org/10.1016/j.orp.2016.09.002

19. Nemenyi, P.B.: Distribution-free Multiple Comparisons. Ph.D. thesis. Princeton
University (1963)

20. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), pp. 712–731 (2007). issn: 1941–
0026, 1089–778X. https://doi.org/10.1109/TEVC.2007.892759

21. Rook, J., et al.: MO-SMAC: multi-objective sequential model-based algorithm con-
figuration. In: Manuscript Under Review, pp. 1–8 (2024)

22. Rook, J., et al.: On the potential of automated algorithm configuration on multi-
modal multi-objective optimization problems. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp. 356–359. ACM, Boston,
July 2022. isbn: 978-1-4503-9268-6. https://doi.org/10.1145/3520304.3528998

23. Schäpermeier, L., Grimme, C., Kerschke, P.: MOLE: digging tunnels through multi-
modal multi-objective landscapes. In: Proceedings of the Genetic and Evolutionary
Computation Conference. Boston Massachusetts: ACM, July 2022, pp. 592–600.
isbn: 978-1-4503-9237-2. https://doi.org/10.1145/3512290.3528793

24. Schäpermeier, L., et al.: Peak-a-boo! generating multi-objective multiple peaks
benchmark problems with precise pareto sets. In: Evolutionary Multi-Criterion
Optimization, vol. 13970, pp. 291–304. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-27250-9. isbn:978-3-031-27250-9 21

25. Schede, E., et al.: A survey of methods for automated algorithm configuration. J.
Artif. Intell. Res. 75, 425–487 (2022). issn: 1076–9757. https://doi.org/10.1613/
jair.1.13676

26. Solow, A.R., Polasky, S.: Measuring biological diversity. In: Environ. Ecol.
Stat. 1(2), 95–103 (1994). issn: 1352–8505, 1573–3009. https://doi.org/10.1007/
BF02426650

27. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimiza-
tion. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation. Dublin Ireland: ACM, July 2011, pp. 641–648. isbn: 978-1-4503-
0557-0. https://doi.org/10.1145/2001576.2001665

28. Wang, H., Deutz, A., Bäck, T., Emmerich, M.: Hypervolume indicator gradient
ascent multi-objective optimization. In: Trautmann, H., Rudolph, G., Klamroth,
K., Schütze, O., Wiecek, M., Jin, Y., Grimme, C. (eds.) EMO 2017. LNCS, vol.
10173, pp. 654–669. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
54157-0 44

https://doi.org/10.1007/978-3-642-21434-9_3
https://doi.org/10.1613/jair.2861
https://doi.org/10.1613/jair.2861
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1145/3520304.3528998
https://doi.org/10.1145/3512290.3528793
https://doi.org/10.1007/978-3-031-27250-9
https://doi.org/10.1007/978-3-031-27250-9
https://doi.org/10.1613/jair.1.13676
https://doi.org/10.1613/jair.1.13676
https://doi.org/10.1007/BF02426650
https://doi.org/10.1007/BF02426650
https://doi.org/10.1145/2001576.2001665
https://doi.org/10.1007/978-3-319-54157-0_44
https://doi.org/10.1007/978-3-319-54157-0_44

On the Potential of MO-AAC on MMMOO Problems 321

29. Yue, C., et al.: A novel scalable test problem suite for multimodal multiobjective
optimization. Swarm Evol. Comput. 48, 62–71 (2019). issn: 22106502. https://doi.
org/10.1016/j.swevo.2019.03.011

30. Zitzler, E., et al.: Performance assessment of multiobjective optimizers: an analysis
and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003). issn: 1089–778X.
https://doi.org/10.1109/TEVC.2003.810758

https://doi.org/10.1016/j.swevo.2019.03.011
https://doi.org/10.1016/j.swevo.2019.03.011
https://doi.org/10.1109/TEVC.2003.810758

A Simple Statistical Test Against
Origin-Biased Metaheuristics

Aidan Walden and Maxim Buzdalov(B)

Aberystwyth University, Aberystwyth, UK

mbuzdalov@gmail.com

Abstract. One of the strong points of evolutionary algorithms and
other similar metaheuristics is their robustness, which means that their
performance is consistent across large varieties of problem settings. In
particular, such algorithms avoid preferring one solution to another
unless the optimized function gives enough reasons for doing that. This
property is formally captured as invariance with regards to certain trans-
formations of the search space and the problem definition, such as trans-
lation or rotation.

The lack of some basic invariance properties in some recently pro-
posed “nature-inspired” algorithms, together with the deliberate misuse
of commonly used benchmark functions, can present them as excellent
optimizers, which they are not. One particular class of such algorithms,
origin-biased metaheuristics, are good at finding an optimum at the ori-
gin and are much worse for any other purpose.

This paper presents a statistical testing procedure which can help
to reveal such algorithms and to illustrate the negative aspects of their
behavior. A case study involving 15 different algorithms shows that this
test successfully detects most origin-biased algorithms.

Keywords: Biased algorithms · Statistical tests · Nature-inspired
algorithms

1 Introduction

An implicit assumption behind good designs of algorithms intended for black-box
search and optimization is that such algorithms shall perform equally well for
problems that are identical up to certain natural transformations. This assump-
tion is very useful for reasoning about these algorithms: once they are shown to
work well on one problem from the class of identical problems, all other problems
are covered as well. This also contributes to the robustness of the algorithms,
because the algorithm essentially no longer depends on problem features consid-
ered unimportant.

For pseudo-Boolean optimization problems, such natural transformations
include inverting bit values and exchanging bit indices in the problem defini-
tion. For instance, the problem of finding a bit string maximizing the number of
ones is very similar to maximizing the number of zeros, so it is fair to expect from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 322–337, 2024.
https://doi.org/10.1007/978-3-031-56852-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_21&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_21

A Simple Statistical Test Against Origin-Biased Metaheuristics 323

a good algorithm to have identical performance on these two problems. Formally,
this concept is captured in a definition of unbiased algorithms [13], and, concep-
tually, easily extends to arbitrary discrete search spaces [23]. As a side effect,
this enables better evaluation of the complexity of optimization problems [5].

In the case of continuous optimization, there are also some formal concepts
that are helpful in evaluating how robust or symmetric an algorithm is, typically
expressed in form of invariants. For instance, a problem of minimizing f(x) =
x1x2 with constraints −1 ≤ x1, x2 ≤ 1 is sufficiently similar to a problem of
minimizing f(y) = y1y2 − y1 − y2 + 1 with constraints 0 ≤ y1, y2 ≤ 2, because
the latter can be transformed into the former by a substitution x1 := y1 − 1 and
x2 := y2 − 1. One may expect that any algorithm that is claimed to be a black-
box optimizer should have identical performance on these two problems, which
is captured in a notion of translational invariance. Similarly, one can consider
multiplying variables and constraints by constants different from zero (scaling
invariance), including mirroring of the search space, and even rotations of the
search space: an algorithm which does not make any difference between such
problems can be called affine invariant.

Necessary Invariance and Benchmark Suites. While rotation invariance
can be difficult to achieve in high-performing algorithms, for which the complex-
ity of CMA-ES [9] can be a good example, translation and scaling invariance
properties are considered to be a necessary feature of any real-valued black-box
optimizer. To support this claim, we may cite the problem definition of the CEC-
2014 competition on single-objective real-parameter numeric optimization [14].
Here, all test functions, most of which have their optimum at the origin, such as
the “bent cigar” function f2(x) = x2

1+106
∑D

i=2 x2
i , are required to be shifted by

a vector o, which is provided for each function in a separate file and is unknown
to the optimizer, and they are also required to be scaled. Similar requirements
are present in all such competitions nowadays.

Problems from such competitions are typically used for benchmarking for
many subsequent years after the competition is over. Outside of the strict com-
petition framework, however, it is difficult to control whether these problems
are used correctly, and, in particular, whether the necessary transformations are
applied to the functions. This made it possible to propose algorithms that favor
optima at the origin and claim that they are superior by providing comparisons
on benchmarks such as CEC-2014 without applying the mandatory shift vec-
tors. In some of the cases, a series of algorithm designs and flaws in the use of
benchmarks by the same authors hints, in our opinion, at malicious intents.

Origin-Biased Algorithms. An example of such an algorithm is the sine-
cosine algorithm [17], which features the following update rule:

xij = xij + r1 sin(r2) · |r3yj − xij |,
where xi and y are individuals (so xij and yj are their j-th decision variables),
r1 is some positive constant depending on the current iteration, r2 is uniformly

324 A. Walden and M. Buzdalov

sampled from [0; 2π), and r3 is uniformly sampled from [0; 2). Due to the pres-
ence of r3, which is not identical to one, this update rule does not preserve
translational invariance, as |r3(yj +oj)−(xij +oj)| is not identical to |r3yj −xij |
for an arbitrary shift component oj . This algorithm has already been criticized
for this design pattern and its performance consequences [2]. In particular, the
change to xij will more likely be small when xij and yj are closer to the origin,
which nicely emulates adaptive step size when the optimum is at the origin too,
but does an improper job otherwise.

Translational invariance can easily be satisfied when a new individual is either
sampled uniformly from the constrained search space or created as a linear com-
bination of other individuals

xnew = α1x1 + α2x2 + . . . + αnxn ,

such that
∑

i αi sums up to exactly one, and is obviously violated when this sum
is not identical to one. However, algorithm descriptions can be vague, and the
degree to which finding an optimum at the origin is easier (or harder) than at a
significant distance from the origin, cannot be easily inferred from the provided
update equations. As a result, an experimental tool is needed to identifying
origin-biased algorithms and demonstrate the difference in convergence speeds.

Our Contribution. We propose a simply-defined benchmark problem with two
identical and symmetrically located global optima (and without any additional
local optima), one of which is at the origin. Using this problem, we investigate
the sequences of best known solutions over several iterations across a number
of independent runs, and analyse them with non-parametric statistical tests:
whenever a test detects a statistically significant difference in behavior around
these global optima, we may suspect that the algorithm in question is origin-
biased.

We also perform an experimental evaluation of the proposed technique using
15 algorithms, ranging from the classic ones to modern efficient optimizers, and
also including a variety of the so-called “nature-inspired” metaheuristics, many of
which are origin-biased. We show that this procedure is indeed able to distinguish
certain classes of algorithms and produce a clear evidence that they work worse
when the optimum is not at the origin.

Related Work. A number of recent works, such as [1,4,24], complain about
a flurry of “novel” metaheuristic algorithms that use questionable metaphors in
questionable way, often solely to make an impression of something new. Some
works [3] explicitly point out that many of these algorithms are copies of the
already existing algorithms, although our paper indicates that some of these
claims are not exactly true (and these algorithms are something even worse).

A research which uses statistical machinery to reveal potentially unwanted
dependencies of the performance of algorithms on the properties of the problem
being solved has been recently conducted in [28], where the authors investigate

A Simple Statistical Test Against Origin-Biased Metaheuristics 325

the concept of structural bias. This elaborate suite of experiments along with
statistical tests can determine different possible kinds of biases, such as, for
instance, the absence of rotational invariance in some classical variations of dif-
ferential evolution [25], as well as the degree of biasedness. However, they seem
to be focused more on fine effects found within the classic algorithms. What is
more, it is too easy to produce various falsely positive conclusions about the
presence of bias when constraint optimization is considered and constraints are
not modified in a correct way along with the rest of the problem definition, a
pitfall that can be found in subsequent work [27] of the same authors.

The effects of the use of linear recombination operators that violate transla-
tional invariance have been extensively studied in [26] with an obvious conclusion
that such operators do not contibute positively if the optimum is away from the
origin. Yet another recent work [12] also explores the bias towards origin as its
main topic, however, it mainly concentrates on the final optimization outcomes,
and does not attempt to measure the effect of the bias.

Structure of the Paper. In Sect. 2, we are going to describe the statistical pro-
cedure aimed at detecting origin-biased algorithms. The experimental evaluation
of this procedure is detailed in Sect. 3. Section 4 concludes the paper.

2 Proposed Testing Procedure

In this section we describe the testing procedure along with some rationale
behind it. The main idea of the procedure is to run an algorithm on a perfectly
symmetric optimization problem with two different local optima, so that a per-
fectly unbiased algorithm can take either direction from the start contribute.
We perform N runs of the algorithm on this problem for a limited number of
iterations T and record, for each iteration, the best individual and its fitness.
Ideally, for each fixed iteration, such record has equal chances of being closer to
either of the local optima, and the fitness measures should not be dependent on
which optimum is chosen. So if a difference in behavior is detected between the
runs that are closer to either of the optima, the algorithm is likely biased.

We chose a variation of the so-called Sphere function, which amounts to sum
of squares of variables. The number of decision variables D is set to 2, and the
function is as follows:

fT (x) = min{x2
1 + x2

2, (x1 − 10)2 + (x2 + 10)2}
subject to − 5 ≤ x1 ≤ 15

−15 ≤ x2 ≤ 5.

The values are chosen pretty much arbitrarily, such that the search space
is perfectly symmetrical. We also found it useful to avoid having the matching
variable values in the global optima, so that if an algorithm is biased with regards
to one particular variable, we do not miss it. The problem is illustrated in Fig. 1.

The next question is what exactly to measure. Our first idea was to simply
count how many runs of the algorithm ended up in either of the optima, O0 =

326 A. Walden and M. Buzdalov

Fig. 1. An illustration of the optimization problem fT (x) = min{x2
1 + x2

2, (x1 − 10)2 +
(x2 + 10)2}, a part of the testing procedure

(0, 0) or O1 = (10,−10), and if the algorithm converges to O0 significantly more
or less often than to O1, we declare it origin-biased. However, the preliminary
experiments showed that the algorithms available for evaluation are typically
not biased in this regard, and for those which are, a very large number of runs
is required to obtain any statistical significance.

The second idea was to measure the convergence speed among those runs
which tend to either O0 or O1, and to compare whether these speeds are statisti-
cally different. To achieve this, we record the best individuals for each iteration
in each run, which gives a set of values x

(1)
1 , . . . ,x

(1)
T ,x

(2)
1 , . . . ,x

(2)
T , . . . ,x

(N)
T .

Then, for each iteration number 1 ≤ t ≤ T , we collect those which are closer to
each of the optima as follows:

V0 = {x(i)
t | ||x(i)

t − O0|| < ||x(i)
t − O1||}

V1 = {x(i)
t | ||x(i)

t − O0|| ≥ ||x(i)
t − O1||}.

The sets F0 = {fT (x) | x ∈ V0} and F1 = {fT (x) | x ∈ V1} represent the
corresponding fitness values.

Our null hypothesis is that the algorithm in question is unbiased, which
means that F0 and F1 are sampled from the same distribution. Since fitness
values in such problems are far from being normally distributed, we use the
non-parametric Wilcoxon rank sum test, also known as the Mann-Whitney U
test [15,29]. This way, we obtain a sequence of p-values, one per each iteration.

Using this sequence, we can investigate whether the bias is present, for which
we may use the minimum p-value observed: the smaller the value, the more
prominent the bias. If there is a bias, we can also see in which iterations it is the
most prominent.

A Simple Statistical Test Against Origin-Biased Metaheuristics 327

Before comparing these values with any thresholds, we need to perform a
correction for multiple comparisons, as the adjacent p-values may be arbitrarily
correlated. We use the Bonferroni correction [6], as it is the most conservative
one. This correction can be interpreted as division of the threshold by the number
of comparisons, which is T in our case.

The next section applies this idea to a number of existing algorithms and
investigates the results.

3 Experiments

We implemented our experiments atop a Python framework that implements
many algorithms we suspect to be biased: EvoloPy [8]. The list of the authors
suggests that at least half of the algorithms with mostly the same authors have
an implementation which was approved by the actual authors. We feel that this
is important, so that we cannot be blamed for intentionally implementing the
algorithms in a wrong way and claiming that they are biased.

As an example of an algorithm which is known to be unbiased we also use the
reference Python implementation of CMA-ES [9], also maintained by the main
author of the algorithm and his collaborators. We implemented thin wrappers
around the corresponding frameworks, so that we can collect the intermediate
best values x

(i)
t mentioned above, and performed the analysis of the obtained

traces. We used the number of runs N = 103 and the number of iterations
T = 100. Also, we set identical population size P = 50 for all the algorithms.

Our experiments are available for reproduction on GitHub in the following
repository: https://github.com/AidanWalden1/origin-based-stat-test.

The total list of all algorithms we tested is as follows. Except for the parame-
ters mentioned above, all implementations are the defaults from their respective
libraries.

1. Genetic algorithm [11];
2. Differential evolution [25];
3. Particle swarm optimization [7];
4. Cuckoo search [33];
5. CMA-ES [9] with and without boundary checking;
6. Bat algorithm [32];
7. Firefly algorithm [30,31];
8. Salp swarm algorithm [18];
9. Moth flame optimizer [16];

10. Multiverse optimizer [20];
11. Grey wolf optimizer [21];
12. Sine-cosine algorithm [17];
13. Harris hawks optimizer [10];
14. Whale optimization algorithm [19];
15. The Jaya algorithm [22].

For each algorithm the corresponding figure on the following pages contains
two plots:

https://github.com/AidanWalden1/origin-based-stat-test

328 A. Walden and M. Buzdalov

– The plot of p-values against the iteration number, with two additional lines
corresponding to the significance levels p = 0.05 (uncorrected threshold) and
p = 0.0005 (corrected threshold).

– The quartiles of the fitness values. In red, we plot the fitness values of the
points that are closer to O0 = (0, 0), and in blue the ones that are closer to
O1 = (10,−10). If the algorithm is unbiased, these two should nearly coincide.

For the sake of brevity, we group similar algorithms and discuss them jointly
in the following subsections.

3.1 Algorithms that Pass the Test

The following algorithms passed the test and are mathematically confirmed to
have no origin bias: differential evolution, genetic algorithm, particle swarm opti-
mization, cuckoo search, bat algorithm and firefly algorithm.

Of these, differential evolution, genetic algorithm, particle swarm optimiza-
tion are the classical algorithms. For cuckoo search, it is known that is technically
a fast evolution strategy [34] with Lévy distribution chosen for the heavy-tailed
step size distribution. Similarly, bat algorithm and firefly algorithm are forms of
particle swarm optimization per [3].

Figures 2–7 show that none of these algorithms obtained sufficient statistical
significance for detecting a bias. The convergence plots, partitioned with regards
to the optimum being converged to, also look very similar with only negligible
differences. This confirms, to the degree possible using p-value-based statisti-
cal testing, that these algorithms are all unbiased with regards to translational
invariance.

3.2 CMA-ES

The CMA-ES algorithm [9] is widely recognized as an unbiased algorithm that
has very good performance in many applications, where maintaining rotational
invariance, along with translational and scaling invariance, is one of the crucial
enabling features to achieve this performance.

Our first move was to call CMA-ES in the same way as other algorithms by
also specifying the box constraints. The CMA-ES algorithm does not natively
include support for constrained optimization, and there are multiple ways to
introduce this feature to this algorithm. In Fig. 8 the default constraint handling
mechanism was enabled, which, surprisingly, resulted in occasionally significant
bias detected in the first 50 iterations, and a vastly significant bias in the last
50 iterations.

In an attempt to clarify the matter, we also ran CMA-ES without any
constraint-handling. The results are presented in Fig. 9. Here we see that the
first 50 iterations can indeed be treated as having no bias, but the last 50 itera-
tions again result in a high bias.

A Simple Statistical Test Against Origin-Biased Metaheuristics 329

Fig. 2. Differential evolution [25], min p-value: 0.0077, corrected: 0.77

Fig. 3. Genetic algorithm [11], min p-value: 0.012, corrected: 1

Fig. 4. Particle swarm optimization [7], min p-value: 0.034, corrected: 1

330 A. Walden and M. Buzdalov

Fig. 5. Cuckoo search [33], min p-value: 0.0022, corrected: 0.22

Fig. 6. Bat algorithm [32], min p-value: 0.1, corrected: 1

Fig. 7. Firefly algorithm [30,31], min p-value: 0.0056, corrected: 0.56

A Simple Statistical Test Against Origin-Biased Metaheuristics 331

Fig. 8. CMA-ES [9] with constraint handling. Minimum p-value in first 50 iterations:
6.85 · 10−7, corrected: 6.85 · 10−5. Minimum p-value in last 50 iterations: 4.67 · 10−42

Fig. 9. CMA-ES [9] without constraint handling. Minimum p-value in first 50 itera-
tions: 0.024, corrected: 1. Minimum p-value in last 50 iterations: 2.66 · 10−82

However, by closely looking at the convergence plots, and also by remember-
ing the IEEE 754 standard for floating-point arithmetics in computers, the effect
appearing in the last 50 iterations can be in fact explained. While converging
to O0 = (0, 0), the algorithm can operate with extremely small numbers in a
good precision, such as 5.301599682053987 · 10−52, whereas while converging to
O1 = (10,−10), this precision is not reachable, because in machine precision
10 + 5.301599682053987 · 10−52 results in 10. As a result, the algorithm has to
either stay at distances of order 10−17 from the optimum, or jump straight into
it. This is why the blue curves in Figs. 8–9 diverge around iteration 50.

The mild bias in the constrained version of CMA-ES can, on the other hand,
only be explained by some bias introduced by the constraint-handling code. This
resembles some of the effects reported in [27], and requires further investigation.

332 A. Walden and M. Buzdalov

3.3 Algorithms that Pass the Test but are Biased Differently

The salp swarm algorithm, the multiverse optimizer and the moth flame opti-
mizer demonstrated no bias in our test, as shown in Figs. 10–12.

However, the salp swarm algorithm and the multiverse optimizer both contain
an operator of the form:

xi = xj + α(l + β(u − l)),

where α is chosen such that |α| ∈ (c1, c2), where c1 is a positive constant, is
a function of the number of iterations and the sign is sampled uniformly from
{−1,+1}, and β is sampled uniformly from [0; 1].

Such an operator is clearly biased with regards to constraints: if the con-
strains are centered (l = −u), this operator is unbiased, otherwise it is not. We
performed an additional test following the same methodology as above, but on
a problem defined as follows:

– minimize f(x1, x2) = (x1 − 99)2 + (x2 − 99)2;
– first constraint set: −100 ≤ x1, x2 ≤ 100;
– second constraint set: 98 ≤ x1, x2 ≤ 298.

Two constraint sets are essentially mirrored with regards to the optimum,
and since the function itself is symmetric, the problems are isomorphic and
there should be no performance difference. Still, the minimum observed p-value
obtained for this problem is 1.01 · 10−162 for the multiverse optimizer and 1.9 ·
10−151 for the salp swarm algorithm. So, they are both clearly biased.

On the other hand, the moth flame optimizer uses the following update rule:

xij = yij + |xij − yij | · exp(t) · cos(2πt),

where xi and yi are individuals, and t is sampled uniformly from [a; 1] where a
linearly decreases from −1 to −2 over time. The expectation of exp(t) cos(2πt)
is not zero for most a, so there is clearly a directional bias. Our simple test
framework, however, is apparently insufficient to detect this bias experimentally.

3.4 Algorithms that Fail the Test

The grey wolf algorithm, the sine-cosine algorithm, the Harris hawks opti-
mization, the whale optimization algorithm and the Jaya algorithm clearly fail
the developed test, as illustrated in Figs. 13–17. In all these cases, we see bias
rising sharply from first iterations, and the convergence speeds are vastly differ-
ent for different optima O0 and O1. All these algorithms clearly converge to the
origin much faster than to the point distant from it, as illustrated by the red
convergence plots getting down way quicker than the blue ones. This is clearly
an indication that such algorithms do not fulfil their claims about performance
stated in their respective papers.

A Simple Statistical Test Against Origin-Biased Metaheuristics 333

Fig. 10. Salp swarm algorithm [18], min p-value: 0.0073, corrected: 0.73

Fig. 11. Multiverse optimizer [20], min p-value: 0.076, corrected: 1

Fig. 12. Moth flame optimizer [16], min p-value: 0.025, corrected: 1

334 A. Walden and M. Buzdalov

Fig. 13. Grey wolf optimizer [21] (Color figure online), min p-value: 1.21 · 10−149,
corrected: 1.21 · 10−147

Fig. 14. Sine-cosine algorithm [17], min p-value: 1.10 · 10−140, corrected: 1.10 · 10−138

Fig. 15. Harris hawks optimization [10], min p-value: 2.2 ·10−140, corrected: 2.2 ·10−138

A Simple Statistical Test Against Origin-Biased Metaheuristics 335

Fig. 16. Whale optimization algorithm [19], min p-value: 3.3 · 10−164, corrected: 3.3 ·
10−162

Fig. 17. Jaya [22], min p-value: 5.32 · 10−54, corrected: 5.32 · 10−52

4 Conclusion

We presented a simple and effective testing procedure based on statistical tests,
that can detect the presence of a bias towards an origin in an optimizer claiming
to be black-box. In our experimental study, it detected a significant proportion
of algorithms that can be confirmed by code inspection to be origin-biased.

The case of CMA-ES though indicated that, for algorithms that con-
verge really quickly, using the computer floating-point arithmetics following the
IEEE 754 standard can introduce the effect which can also be interpreted as a
bias, however, the actual optimizer cannot be blamed. Perhaps using different
kind of floating-point arithmetics consistently can alleviate this issue.

We hope that this paper can contribute to putting an end to the recent
domination of poorly-designed metaheuristics, which in turn would ensure a
brighter future to the domain of evolutionary computation.

336 A. Walden and M. Buzdalov

References

1. Aranha, C., et al.: Metaphor-based metaheuristics, a call for action: the elephant
in the room. Swarm Intell. 16, 1–6 (2022)

2. Askari, Q., Younas, I., Saeed, M.: Critical evaluation of sine cosine algorithm and a
few recommendations. In: Proceedings of Genetic and Evolutionary Computation
Conference Companion, pp. 319–320 (2020)

3. Camacho-Villalón, C.L., Dorigo, M., Stützle, T.: Exposing the grey wolf, moth-
flame, whale, firefly, bat, and antlion algorithms: six misleading optimization tech-
niques inspired by bestial metaphors. Int. Trans. Oper. Res. 30, 2945–2971 (2023)

4. Campelo, F., Aranha, C.: Ec bestiary: A bestiary of evolutionary, swarm and other
metaphor-based algorithms (2018). https://zenodo.org/records/1293352

5. Doerr, C.: Complexity theory for discrete black-box optimization heuristics. In:
Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Devel-
opments in Discrete Optimization, pp. 133–212. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 3

6. Dunn, O.J.: Multiple comparisons among means. J. Am. Stat. Assoc. 56(293),
52–64 (1961)

7. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995)

8. Faris, H., Aljarah, I., Mirjalili, S., Castillo, P.A., Merelo, J.J.G.: Evolopy: an open-
source nature-inspired optimization framework in python. In: Proceedings of Inter-
national Joint Conference on Computational Intelligence. vol. 1 (ECTA), pp. 171–
177 (2016)

9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9, 159–195 (2001)

10. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris
hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97,
849–872 (2019)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan (1975)

12. Kudela, J.: A critical problem in benchmarking and analysis of evolutionary com-
putation methods. Nature Mach. Intell. 4, 1238–1245 (2022)

13. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64,
623–642 (2012)

14. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation cri-
teria for the CEC 2014 special session and competition on single objective real-
parameter numerical optimization. Tech. Rep. 201311, Nanyang Technological Uni-
versity (2013)

15. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

16. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic
paradigm. Knowledge-based Systems 89, 229–249

17. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems.
Knowl.-Based Syst. 96, 120–133 (2016)

18. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.:
Salp swarm algorithm: a bio-inspired optimizer for engineering design problems.
Adv. Eng. Softw. 114, 163–191 (2017)

https://zenodo.org/records/1293352
https://doi.org/10.1007/978-3-030-29414-4_3

A Simple Statistical Test Against Origin-Biased Metaheuristics 337

19. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95,
51–67 (2016)

20. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired
algorithm for global optimization. Neural Comput. Appl. 27, 495–513 (2016)

21. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69,
46–61 (2014)

22. Rao, R.V., Saroj, A.: A self-adaptive multi-population based Jaya algorithm for
engineering optimization. Swarm Evol. Comput. 37, 1–26 (2017)

23. Rowe, J., Vose, M.: Unbiased black box search algorithms. In: Proceedings of
Genetic and Evolutionary Computation Conference, pp. 2035–2042 (2011)

24. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22,
3–18 (2015)

25. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

26. Tsai, H.C.: Potential bias when creating a differential-vector movement algorithm.
Appl. Soft Comput. 113, Part A, 107925 (2021)

27. Vermetten, D., Caraffini, F., van Stein, B., Kononova, A.V.: Using structural bias
to analyse the behaviour of modular CMA-ES. In: Proceedings of Genetic and
Evolutionary Computation Companion, pp. 1674–1682 (2022)

28. Vermetten, D., van Stein, B., Caraffini, F., Minku, L.L., Kononova, A.V.: BIAS: a
toolbox for benchmarking structural bias in the continuous domain. IEEE Trans.
Evol. Comput. 26(6), 1380–1393 (2022)

29. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

30. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algo-
rithms: Foundations and Applications, pp. 169–178. No. 5792 in Lecture Notes in
Computer Science (2009)

31. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation.
Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

32. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature inspired coop-
erative strategies for optimization, pp. 65–74. No. 284 in Studies in Computational
Intelligence (2010)

33. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World
Congress on Nature and Biologically Inspired Computing, pp. 210–214 (2009)

34. Yao, X., Liu, Y.: Fast evolution strategies. In: Proceedings of International Con-
ference on Evolutionary Programming, pp. 149–161. No. 1213 in Lecture Notes in
Computer Science (1997)

Computational Intelligence
for Sustainability

Optimizing Urban Infrastructure
for E-Scooter Mobility

Diego Daniel Pedroza-Perez(B) , Jamal Toutouh , and Gabriel Luque

ITIS Software, Universidad de Málaga, Málaga, Spain
{pedroza,jamal,gluque}@uma.es

Abstract. This paper addresses the optimization of urban infrastruc-
ture for e-scooter mobility through a multi-criteria approach. The pro-
posed problem considers redesigning road infrastructure to integrate e-
scooters into a city’s multimodal transportation system. The objectives
involve improving cycle lane coverage for e-scooters while minimizing
installation costs. A parallel multi-objective evolutionary algorithm is
introduced to solve this problem, applied to a real-world instance based
on Málaga city data. The results showcase the algorithm’s effectiveness in
exploring the Pareto front, offering diverse trade-off solutions. Key solu-
tions are analyzed, highlighting different zones with varying trade-offs
between travel time improvement and installation costs. Visualization
of proposed infrastructure changes illustrates significant reductions in
travel time and enhanced multimodality. Computational efficiency anal-
ysis indicates successful parallelization, achieving substantial speedup
and high efficiency with up to 32 processing elements.

Keywords: E-scooter mobility · Urban infrastructure · Parallel
multi-objective optimization

1 Introduction

In recent years, micromobility transport means, such as bikes, e-scooters, and
other electric micromobility devices, have been adopted to urban transportation
by citizens as a sustainable alternative to internal combustion engine vehicles.
For instance, 136 million shared micromobility trips were taken in 2019 in the
United States [31]. This widespread use of micromobility devices has presented
new challenges for urban and transportation planners, as they must now deal
with a large influx of vehicles with varying sizes, mobility patterns, security
requirements, and technologies on city streets [27].

This research is partially funded by the Universidad de Málaga (UMA); under grant
PID 2020-116727RB-I00 (HUmove) funded by MCIN/AEI/10.13039/501100011033;
under grant number PRE2021-100645 by MCIN/AEI/10.13039/501100011033 and by
the FSE+; and TAILOR ICT-48 Network (No 952215) funded by EU Horizon 2020
research and innovation programme.The authors thank the Supercomputing and Bioin-
formatics center at the UMA for their computer resources and assistance.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 341–357, 2024.
https://doi.org/10.1007/978-3-031-56852-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_22&domain=pdf
http://orcid.org/0009-0008-8513-1427
http://orcid.org/0000-0003-1152-0346
http://orcid.org/0000-0001-7909-1416
https://doi.org/10.1007/978-3-031-56852-7_22

342 D. D. Pedroza-Perez et al.

Due to the novelty of e-scooters in urban transportation, few attempts have
been made for appropriate specific micromobility network planning. Different
issues regarding e-scooters have been discussed in recent literature [11], such as
parking spot location [35] or injury analysis and prevention [11]. One advantage
of e-scooters is that they are compact and easy to carry, store, and park. This
feature makes it possible to integrate e-scooters as a viable option in multimodal
transportation solutions [16,32]; e.g., people can use an e-scooter for a part of
their trip, then switch to walking or public transport.

This paper aims to integrate e-scooters as part of a multimodal transporta-
tion solution in cities. One solution to effectively include e-scooter mobility in
cities is setting up specific road infrastructure, such as cycle lanes [2], to be
shared by both bikes and e-scooters. Studies show that adding cycle lanes to
roads with two or more lanes does not significantly impact traffic [15,24]. Sus-
tainable urban micromobility requires road redesign, including the installation
of cycle lanes in road segments. This poses logistical challenges similar to other
location-based public services in smart cities [6,9,21,30].

Existing literature falls short in investigating the redesign of road infrastruc-
ture to enhance e-scooter transportation, with limited emphasis on cyclists. One
study suggested employing geographic information system tools and the net-
work robustness index (NRI) to assess the travel-time impact for drivers caused
by implementing separated bike lanes in Toronto. The NRI computations were
utilized to pinpoint suitable locations for these lanes, factoring in driver travel-
time impacts [5]. Another study developed a comprehensive optimization frame-
work using real data from a bike-sharing system. This framework formalizes the
bike lane planning problem, incorporating cyclists’ utility functions. The pro-
posed integer optimization model maximizes utility by considering cyclists’ route
choices, accounting for bike trip coverage and lane continuity [19]. Notably, these
studies overlook the economic cost associated with installing new bike lanes, a
crucial consideration for the execution of such infrastructure projects.

This research proposes a novel problem named Multiobjective Urban Road
Infrastructure Redesign for E-Scooters Integration (URIReI), a multi-criteria
optimization problem that considers redesigning road infrastructure to integrate
e-scooter mobility considering two relevant objectives: the cycle lane infrastruc-
ture coverage and the installation cost. A parallel multi-objective evolutionary
algorithm is applied to address URIReI considering a real-world instance based
on data of Málaga (Spain). The main contributions of this article are: a) defining
and formulating URIReI, a new realistic multi-criteria optimization problem for
redesigning the road infrastructure for e-scooters on a city scale, considering the
cycle lanes network coverage and installation costs; b) proposing a parallel multi-
objective evolutionary algorithm (pMoEA) to tackle URIReI; and c) defining a
realistic instance using real-world data to address the optimization problem.

The rest of the article is organized as follows: Sect. 2 describes the URIReI
problem. Section 3 presents the pMoEA applied in the experimentation. Sec-
tions 4 and 5 report the experimental setup and results. Finally, Sect. 6 presents
the conclusions and formulates the main lines for future work.

Optimizing Urban Infrastructure for E-Scooter Mobility 343

2 The Multiobjective Urban Road Infrastructure
Redesign for E-Scooters Integration Problem

The problem considered in this paper aims to select the best location for new
cycle lanes in the current roads in a city to improve (multimodal) e-scooter
trips’ quality of service (QoS) by minimizing travel times and simultaneously
minimizing the costs of modifying the roads (i.e., installing cycle lanes).

The QoS of a given solution (tentative city roads design) is evaluated regard-
ing the reduction of travel times. This reduction is measured in terms of the pro-
portion of time required to carry out the trips compared to the current (actual)
design of the city in order to make it a minimization problem. Thus, the QoS
assigned to solutions that do not improve anything is 1, and the QoS of a solu-
tion that reduces travel times by 33% is 0.66. In this version of the problem, the
cost of installing cycle lanes depends on the length of the road and a constant
that represents the monetary costs per unit length.

The two objectives of this problem (i.e., improving QoS and reducing cycle
lane installation costs) are in conflict. While providing cycle lanes on every road
in a city would offer optimal quality of service, it would also come with a steep
economic cost and impede regular road traffic. To aid decision-makers in these
matters, the main objective of this research is to define and address the proposed
optimization problem to find new road designs that effectively balance the trade-
offs between these competing objectives.

2.1 Problem Description

In this section, we will present the mathematical formulation of the problem.
First, we will describe our system’s input elements, including the map and routes.
Then, we will move on to model our optimization problem.

To represent the map of a city, we use a directed graph, denoted as M =
(V,E). Here, E represents the edges (road segments of the city), while V rep-
resents the vertices (points of interest in the city, mainly road intersections).
We further divide the edges into two distinct sets: E1 ⊆ E and E2 ⊆ E, with
E1 ∩ E2 = ∅ and E1 ∪ E2 = E. The set E1 corresponds to road segments
suitable for new infrastructure installation, specifically cycle lanes. The set E2

denotes segments where installing such infrastructure is either unnecessary (due
to existing e-scooter infrastructure) or unfeasible due to specific characteristics.

We associate each edge with two functions, d and t. The function d : E → R

represents the length of the road segment, while the function t : E × {0, 1} → R

accounts for the reduction in travel time based on whether infrastructure is
added. The latter is defined in Eq. 1.

t(e,m) =

{
1 if m = 0
tcycle lane(e)
tcurrent(e)

otherwise
(1)

In this model, tcurrent represents the time it currently takes to travel the road
segment, while tcycle lane is the time required to cross it if a cycle lane is added.

344 D. D. Pedroza-Perez et al.

For edges in E2, where no infrastructure can be added, the function evaluates
to 1, indicating no improvement in travel time. Similarly, for edges in E1 where
infrastructure can be added but is not (m = 0), the function also evaluates to
1. However, if the infrastructure is added (m = 1) for edges in E1, the function
evaluates to a value less than 1, indicating a potential reduction in travel time.

We also have a set of routes of interest: R = {ri | ri = (voi
, vdi

), voi
∈ V, vdi

∈
V }, where each route is represented by its origin (voi

) and destination (vdi
).

In this optimization problem, given a city map M = (V,E1 ∪ E2) and a set
of routes R, we are looking for a binary vector �x = {x1, . . . , x|E1|}, where each
xi is set to 1 if it is proposed to install a cycle lane on ei ∈ E1, or 0 if the road
remains unchanged. This aims to minimize expressions 2 and 3.

f1(�x) =
1

|R| ·
∑
r∈R

1
|path(r, �x)| ·

⎛
⎜⎜⎝ ∑

e∈path(r,�x)
e∈E1

t(e, xe) +
∑

e∈path(r,�x)
e∈E2

t(e, 0)

⎞
⎟⎟⎠ (2)

f2(�x) =
∑
r∈R

⎛
⎜⎜⎝ ∑

e∈path(r,�x)
e∈E1

xe · d(e) · C

⎞
⎟⎟⎠ (3)

where path(r, �x) identifies the edges of the optimal path for route r using the
infrastructure proposed by �x. The constant C signifies the cost per unit length
required to install a cycle lane. Therefore, f1 measures the average reduction in
travel time for completing all routes using the proposed infrastructure (QoS),
while f2 represents the cost of implementing that infrastructure.

3 Parallel Multi-objective Evolutionary Algorithm

Addressing multi-criteria decision-making is key for improving sustainability in
cities. Non-dominated Sorting Genetic Algorithm, version II (NSGA-II) [8], has
been frequently used to solve the underlying multi-objective optimization prob-
lems, achieving highly competitive results [6,21,25,29,30,34]. Since the evalua-
tion of the individuals (tentative solutions) requires considerable computational
costs (about 3 min for each individual), we applied a parallel master-slave version.
This section summarizes NSGA-II, its operators and parallel implementation.

3.1 The NSGA-II Algorithm Applied to URIReI

NSGA-II employs a non-dominated elitist ordering strategy to enhance conver-
gence speed [8]. It implements a crowding technique to preserve solution diver-
sity and utilizes a fitness assignment method that considers dominance ranks
and crowding distance values. Algorithm 1 shows the pseudo-code of NSGA-II.
This paper used a NSGA-II that employs a file that saves all the non-dominated
solutions of all evaluations.

Optimizing Urban Infrastructure for E-Scooter Mobility 345

Algorithm 1. Pseudo-code of the NSGA-II algorithm
1: t ← 0

2: offspring ← ∅
3: ← initialize(P (0))

4: while not stopping criterion do
5: evaluate(P (t))

6: R ← P (t) ∪ offspring

7: fronts ← non-dominated sorting(R))
8: P (t+1) ← ∅; i ← 1

9: while |P (t + 1)| + |fronts(i)| ≤ N do

10: crowding distance(fronts(i))
11: P (t+1) ← P (t+1) ∪ fronts(i)

12: i ← i+1
13: end while

14: sorting by distance (fronts(i))

15: P (t+1) ← P (t+1) ∪ fronts(i)[1:(N - |P (t+1)|)]
16: selected ← selection(P (t+1))
17: offspring ← evolutionary operators(selected)

18: t ← t + 1
19: end while

20: return computed Pareto front

3.2 Evolutionary Operators

Solution Encoding. Solutions are encoded as a binary vector �x of the size of
the search space, i.e., �x = {x1, . . . , x|E1|}. Each position in the vector represents
a possible inclusion of a cycle lane in a specific road segment on the map. If
xi=1, a cycle lane is installed in the road segment represented by i. If xi=0, no
cycle lane is installed. Figure 1 illustrates an example of solution encoding of a
scenario with 7 road segments (locations candidates) in which the road segments
2, 4, 5 and 6 have installed a cycle lane.

Initialization. The population is randomly initialized. For each position (xi) in
the solution vector of an individual, the initialization vector randomly assigns
a binary value. The values 0 and 1 have the same probability of being selected.
This process is repeated for each individual in the initial population.

Fig. 1. Example of solution encoding of a scenario with 7 road segments.

Selection, Replacement, and Fitness Assignment. NSGA-II uses the (μ+λ) evo-
lution model. The selection process is based on dominance through binary tour-
nament selection. Those that are non-dominated are evaluated using crowding

346 D. D. Pedroza-Perez et al.

distance. Fitness assignment is performed by considering Pareto dominance rank,
valid results, and crowding distance value.

Recombination and Mutation Operators. Through the evolutionary process,
recombination and mutation operators are applied to create the offspring. A
two-point crossover is used as a recombination operator between two individu-
als. This crossover operator, applied with a crossover probability of pC , selects
two random positions from the solution vectors representing the parents. It then
exchanges the bits within those positions to create two new solutions. After
the crossover operation, a multi-bitflip mutation is applied to the newly created
solutions. This operator flips each bit’s value with a mutation probability of pM .

3.3 Parallel Master-Slave Implementation

By distributing tasks such as population splitting or fitness function evaluation
across multiple processing elements, parallel implementations of EAs (pEAs)
have shown the capability to achieve high-quality results within reasonable exe-
cution times [13]. The multiprocessor parallel NSGA-II proposed in this work
aligns with the master-slave model, as classified by Alba et al. [1].

Given that the evaluation of the fitness functions of this problem demands
a more significant computational time cost than the application of variation
operators, it has been identified as a prime candidate for parallelization. Conse-
quently, our master-slave pEA is structured hierarchically, with a master process
performing the evolutionary search and controlling a group of slave processes
that evaluate the fitness function.

4 Experimental Setup

This section describes the problem instance addressed in this study, the metrics
used to evaluate our approach, and the execution platform. We also report the
results of the experiments performed to select the parameters of our algorithm.

4.1 Problem Instance

Málaga, in Spain, was chosen as the case study for this research. Málaga has
e-scooter regulations regarding the speed and roads that can be used [23,26].
The urban infrastructure graph of the city was obtained using real-world open
data from Open Street Map [12]. The edges of this graph, which resemble the
roads and streets, have attributes that correspond to additional information,
such as the type, the length, or whether they have cycle lanes. In this work,
we are interested only in cycle lanes since previous studies [7,33] suggest this
structure is a safer option for e-scooter users.

The search space consisted of roads with two or more lanes, not motorways.
Figure 2 is a coloured-painted map of Málaga. It displays the potential cycle lanes
in green and in blue existing infrastructure. Furthermore, multimodal options
are considered: subway, e-scooters, walking or a combination.

Optimizing Urban Infrastructure for E-Scooter Mobility 347

The experiment was conducted using real-world open data to test our algo-
rithm. The graph was retrieved from Open Street Map and the official website
of Málaga subway1. Points of interest and other additional data were extracted
from Junta Andalusia website [17] and from the Málaga Open Data portal [20].

Fig. 2. A zoomed version of the map of Málaga without rural areas. The points in red
are the subway stations (Color figure online)

The origin points are the centre of mass of the 11 districts of Málaga. The
population density of each district’s census segment was clustered to obtain each
district’s centre of mass. Routes to educational institutions have been taken into
account, given that the primary users of this mode of transportation are typically
individuals aged 16 and over [28]. A total of 558 routes had to be evaluated.

Installing dedicated cycle lanes in the real world incurs various expenses [22].
We use 480,000 euros per kilometer as reported in one of Spain’s latest
projects [4].

4.2 Evaluated Metrics

In this subsection, we will describe the metrics employed to analyze the results
of our approaches from different perspectives.

Multiobjective Optimization Metrics. Relevant MO metrics are applied to
assess the search capabilities of the proposed approach. Regarding the quality
of the computed solutions (proximity to the Pareto front), generational distance
(gd) and inverted generational distance (igd) are computed [14]. The spread
metric is applied to evaluate the dispersion of non-dominated solutions found in
the search [18], and the number of non-dominated solutions (#nds) computed
is evaluated. Finally, the combined relative hypervolume (rhv) metric is applied
to analyze the coverage and dominance of the search space [36]. For those MO
metrics that requires the real Pareto front (which is unknown for the real problem
solved as case study), an approximation was computed by gathering all the non-
dominated solutions found in all the executions performed.

1 Málaga Subway website: www.metromalaga.es.

www.metromalaga.es

348 D. D. Pedroza-Perez et al.

Computational Efficiency. The assessment of parallel algorithm performance
commonly relies on speedup and efficiency. Speedup (sm) measures the degree
to which a parallel algorithm outpaces its corresponding sequential counterpart.
It is evaluated as the ratio of execution times between the sequential algorithm
(T1) and the parallel version executed on m processing elements (Tm). Efficiency
(em) is the normalized measure of speedup regarding the number of processing
elements used in executing a parallel algorithm, facilitates the comparison of
algorithms running on potentially dissimilar computing platforms.

Problem Related Metrics. To assess the effectiveness of the proposed solution,
we utilize two key metrics: the total travel time required to complete all routes
using the suggested infrastructure and the cost associated with implementing
said infrastructure. Our calculation of travel time involves the utilization of Eq. 2,
in which the optimal route (path(r, �x)) is determined by the Dijkstra algorithm.
It is important to note that this process can be quite time-consuming due to the
extensive search space and multitude of analyzed routes. We also summarize the
cost of the proposed infrastructure through Eq. 3.

4.3 Parameter Settings

A set of parametric setting experiments was performed to determine the
best parameter values for the proposed NSGA-II, which applies the operators
described in Sect. 3.2. The population size (#pop) and the maximum number
of generations (#gen) were calibrated in preliminary experiments. Due to the
computational time cost required to evaluate the fitness of the individuals and
limited access to computational resources, we have performed a limited num-
ber of fitness evaluations per independent run. Thus, after a preliminary anal-
ysis, the configuration with #pop=32 and #gen=50 provided a good explo-
ration pattern. Candidate values for pC and pM were pC ∈ {0.5, 0.7, 0.9} and
pM ∈ {0.30, 0.10, 0.05, 0.01, 0.001}. Each configuration was assessed on 15 inde-
pendent runs by using the rhv quality metric. Figure 3 summarizes the experi-
mental results by showing the boxplot with the distribution of rhv results com-
puted using each configuration. The most competitive competitive configuration
was pC=0.9 and pM=0.01. The mean computational time cost was 108.61 min.

Fig. 3. Parameter setting rhv results
(50 generations).

Fig. 4. Median of rhv for the 15 runs
(50 generations).

Optimizing Urban Infrastructure for E-Scooter Mobility 349

After analyzing the convergence of the chosen configuration in terms of rhv
(see to Fig. 4), we observed that the algorithm was unable to converge after
50 generations. In order to improve this aspect, we conducted twice as many fit-
ness evaluations, as the computational time cost was still acceptable (expected
to be twice as long). Thus, we repeated all parameterization experiments by
conducting 100 generations. Boxplot with the distribution of rhv in Fig. 5 sum-
marizes the experimental results. As expected, the results were significantly
improved by doubling the number of generations. The configuration with pC=0.9
and pM=0.01 was the most competitive, as was the case with #gen=50.

Fig. 5. Parameter setting rhv results (100 generations).

4.4 Execution Platform and Implementation Details

The parallel NSGA-II was implemented2 in Python version 3.10.12. Our exper-
iments were run using Slurm into the Picasso supercomputer of the University
of Málaga that has a computation cluster of 126 X SD530 nodes: 52 cores (Intel
Xeon Gold 6230R @ 2.10 GHz), 192 GB of RAM. InfiniBand HDR100 network.
950 GB of local scratch disks. Slurm is workload management software that
allows the distribution of jobs into several resources.

The software required for the computations has been developed using Python.
The code was implemented using specific software libraries such as Numpy, scikit-
learn, and Pandas. OSMnx [3] and NetworkX were used to compute the routes
and paths. Finally, DEAP [10] and multiprocessing library were employed to
implement the NSGA-II and to parallel the implementation.

5 Experimental Evaluation

This section reports the experimental evaluation of the proposed approach
addressing the problem over the presented instance on 30 independent runs.
This analysis considers the multiobjective optimization metrics, the quality and
the cost of the proposed solutions, and the computational efficiency.
2 Github of the project: https://github.com/pedrozad/e-scooter-way.

https://github.com/pedrozad/e-scooter-way

350 D. D. Pedroza-Perez et al.

5.1 Multi-objective Optimization Evaluation

Table 1 presents the main descriptive statistics of the results of the studied multi-
objective optimization metrics. Since the Kruskal-Wallis statistical test rejected
the null hypothesis that the results follow a normal distribution, median and
interquartile range (iqr) are reported as quality and dispersion estimators. ↑
indicates that higher values of the reported metric are better, ↓ stands for lower
values are better. Although we do not compare our approach with other meth-
ods, the authors consider it necessary to report the primary metrics used in
multiobjective optimization because it may be helpful for further comparisons
and reproducibility of the work.

Table 1. Results of MO metrics for the studied instance.

minumum median iqr maximum

rhv ↑ 0.582 0.738 0.145 0.901

gd (×10−3) ↓ 0.194 0.557 0.478 1.088

igd (×10−3) ↑ 0.414 0.835 0.599 1.627

spread ↑ 0.059 0.198 0.088 0.369

#nds ↑ 22 54 24 72

The computed relative hypervolume values range from 0.582 to 0.901, indi-
cating that the algorithm successfully explores a substantial portion of the Pareto
front. The median rhv of 0.738 suggests a consistent performance across indepen-
dent runs, with higher values signifying a better coverage of the approximated
problem Pareto front. The interquartile range (iqr) is 0.145, which underlines
the reduced variability in the attained hypervolume values.

The generational distance values are scaled by 10−3 for readability. The gd
results range from 0.194 to 1.088. Lower gd values are desirable as they indicate
solutions closer to the Pareto front. The median gd value (0.557) suggests a
good algorithm convergence toward the Pareto front. The inverted generational
distance is also scaled by 10−3. The igd results range from 0.414 to 1.627. Higher
igd values are favourable, indicating solutions closer to the Pareto front. The
median igd of 0.835 suggests effective convergence.

The spread metric assesses the distribution of non-dominated solutions along
the Pareto front. The spread metric ranges from 0.059 to 0.369. Higher spread
values are desirable as they indicate a more evenly distributed set of solutions.
The median spread of 0.198 suggests a reasonable dispersion of solutions, while
the iqr of 0.088 reflects variability in the spread across independent runs.

The number of non-dominated solutions ranges from 22 to 72 across runs. A
higher number of non-dominated solutions implies a more diverse set of trade-
off solutions. For initial populations of 32 individuals, the median #nds of 54
indicates a substantial number of high-quality solutions. The iqr of 24 highlights
variability in the algorithm’s ability to discover non-dominated solutions.

Optimizing Urban Infrastructure for E-Scooter Mobility 351

Summarizing, the proposed pNSGA-II performs commendably in address-
ing the multi-objective optimization problem for the studied instance. The con-
sistency in achieving high rhv and the presence of a considerable number of
non-dominated solutions underscore the algorithm’s effectiveness in exploring
the Pareto front. Variability in generational distance, inverted generational dis-
tance, and spread metrics across independent runs (i.e., iqr values) may indicate
sensitivity to specific problem characteristics.

5.2 Solution Analysis and Interpretation

In the previous section, we discussed the numerical performance of our algorith-
mic approach. Now, we will shift our focus to evaluate the quality of the solutions
in the problem domain. This section explores the trade-off between enhancing
travel time and minimizing the installation cost of cycle lanes.

Our analysis begins with the presentation of Table 2, which showcases the key
characteristics of essential solutions. The table highlights the extremes derived
from the Pareto front, such as a solution that minimizes Quality of Service (esT),
as well as a solution that minimizes cost (esC). Furthermore, it features the
closest solution to the ideal vector (csIV). The table also includes an alternative
scenario that covers the entire search space with cycle lanes (ALL) and the base
case of our study (BASE), which only uses the current existing infrastructure.

Table 2. Descriptive indicators for some key solutions. Cost in millions of euros

time (routes) time (improvement) cost

min mean std max hours % (millions of e)

csIV 46.45 1543.68 0.39 3532.08 31.34 11.58 263.82

esT 46.45 1539.21 0.39 3506.16 32.03 11.84 272.64

esC 53.33 1583.98 0.38 3532.08 25.09 9.27 256.35

ALL 46.45 1393.05 0.40 3439.45 54.69 20.21 562.24

BASE 73.88 1745.87 0.38 3562.66 – – 0.00

The table presents various solutions that offer a detailed analysis of the trade-
offs between travel time improvement and cycle lane installation costs. The ALL
scenario represents the upper limits in both travel time reduction (20.21%) and
associated costs (e562.24 millions), covering the entire search space with cycle
lanes. Although this scenario showcases the potential for substantial improve-
ments in travel time, it requires a considerably higher economic investment com-
pared to the base case (BASE), which serves as the reference.

Further analysis of the extremes reveals that the csIV solution, the closest
to the ideal vector, strikes a balance with a significant 11.58% improvement in
travel time while maintaining a relatively moderate cost increase. Conversely, the
extreme solution minimizing Quality of Service (esT) achieves the highest travel

352 D. D. Pedroza-Perez et al.

time reduction (11.84%) at a slightly increased cost, emphasizing the potential
benefits of prioritizing travel time over cost considerations. On the other hand,
the extreme solution minimizing cost (esC) is a cost-efficient option with a 9.27%
reduction in travel time. This solution reflects the scenario where minimizing
installation costs takes precedence, showcasing the inherent trade-offs between
economic efficiency and travel time optimization.

Although the cost of these solutions seems high (exceeding e250 millions)
for only an 11–12% improvement (31–32 h), it’s important to note that this cost-
benefit analysis assumes a one-time use of each route. These cycle lanes would
be utilized repeatedly over multiple years, amplifying the overall impact. Apart
from the quantitative metrics, the investment in cycle lanes also yields substan-
tial social benefits by facilitating mobility, enhancing the safety of alternative
transportation users, and contributing to improvements in public health and the
environment. The provision of such infrastructure also encourages the adoption
of sustainable transportation alternatives, potentially reducing reliance on more
pollutant modes of transport like cars.

Fig. 6. All non-dominated solutions
computed by each run.

Fig. 7. Non-dominated solutions com-
puted for all runs and evaluated zones.

After analyzing some key solutions, we show all the non-dominated solutions
computed in Fig. 6. The identified non-dominated solutions are marked by black
dots, serving as an approximate representation of the problem’s Pareto front.
We use a black triangle � to denote the extreme solutions minimizing Quality
of Service (esT) and minimizing cost (esC). The black star � represents the
closest solution to the ideal vector (csIV). It is worth noting that the objectives
in the figure are normalized using the improvements in travel time and cost of
the ALL and BASE solutions as reference points. This normalization provides
a more comprehensive understanding of the non-dominated solutions. In terms
of solution quality, numerous options provide considerable time improvements,
exceeding fifty percent of the gains of the ALL solution, without incurring sim-
ilarly high costs (less than fifty percent of the cost).

Figure 7 shows the non-dominated solutions computed in the whole experi-
mentation. Besides, it includes four shaded zones identified, representing different

Optimizing Urban Infrastructure for E-Scooter Mobility 353

trade-offs between travel time improvement and e-scooter lane installation costs.
Table 3 summarizes the main results in terms of travel time and deployment cost
for each zone. In Zone 1, the solutions offer significant enhancements in Quality
of Service with minimal infrastructure costs. Investing in electric scooter lane
infrastructure in this zone may be considered a cost-effective option for improv-
ing urban mobility system efficiency. In Zone 2, time improvements persist but
with a gradual cost increase. These solutions strike a balance between travel
time efficiency and economic efficiency. With 25 solutions in this zone, decision-
makers have a range of options for achieving a reasonable compromise between
travel time improvements and cost-effectiveness.

Zones 3 and 4 experience steeper cost increments in exchange for more sub-
stantial improvements in travel time efficiency. Although these solutions require
a more significant investment, they offer the most substantial reductions in travel
time. In environments where enhancing the transportation system’s efficiency is
a priority, and there is a broader budget, solutions from these zones could be
considered for more strategic implementation.

Table 3. Pareto front zones summary.

number of time (seconds) cost (millions of euros)

solutions min mean std max min mean std max

Zone 1 7 1560.33 1569.86 8.72 1583.98 256.35 256.82 0.54 257.81

Zone 2 25 1543.68 1550.83 4.99 1560.26 258.76 260.81 1.38 263.82

Zone 3 7 1541.33 1542.88 0.87 1543.61 266.33 267.30 1.50 268.85

Zone 4 9 1539.21 1540.31 0.84 1541.05 272.01 272.30 0.28 272.65

Finally, Fig. 8 illustrates a visual representation of a route (depicted in yel-
low) that connects a start point to a destination. The blue lines show the cycle
lanes installed. Left side of this figure shows the current configuration in Málaga
city and the right side presents the proposed infrastructure installation based
on csIV solution. This visualization highlights the significant reduction in travel
time (approximately 15%), and the promotion of multimodality in the trip. The
route computed when using the csIV infrastructure allows for smooth transitions,
incorporating the use of the metro (represented by red dots). Using the public
transportation optimizes travel time because the proposed new road infrastruc-
ture facilitates the integration of various modes of transportation within the
city, enhancing overall mobility and providing a clear example of the practical
benefits of the proposed urban redesign.

354 D. D. Pedroza-Perez et al.

Fig. 8. Representation of a route (orange line) using the current infrastructure (left)
and the infrastructure proposed by the csIV solution (right). (Color figure online)

5.3 Computational Efficiency

An additional ten independent runs of the selected parameterization for the
experimental analysis have been performed with 4, 8, and 16 processing elements
to evaluate the computational efficiency. Table 4 reports the mean, normalized
standard deviation (std%), and maximum (max) of the computational efficiency
metrics assessed for the pNSGA-II across the evaluated numbers of processing
units. These values were presented due to the results follow a normal distribution.

As the number of processing elements increases, a notable reduction in mean
computational time is observed, indicating improved efficiency in solving the
optimization problem. The speedup metric quantifies the algorithm’s accelera-
tion with respect to the sequential version. A substantial increase in speedup is
evident as the number of processing elements grows. This behaviour indicates
successful parallelization, with the algorithm achieving a speedup of up to 29.496
on 32 processing elements. Efficiency shows a decrease with the increasing num-
ber of processing elements. Nonetheless, the algorithm maintains high-efficiency
levels, surpassing 90% even with 32 processing elements.

Table 4. Speedup and efficiency regarding to the number of processing units.

#procs. comp. time (minutes) speedup efficiency

mean std% max mean std% max mean std% max

4 1358.994 0.035 1463.916 3.924 0.006 3.957 0.981 0.006 0.989

8 736.572 0.049 801.928 7.712 0.012 7.814 0.964 0.012 0.977

16 395.819 0.087 468.358 15.329 0.008 15.477 0.958 0.008 0.967

32 213.234 0.067 240.290 29.496 0.053 30.531 0.922 0.053 0.954

The results show that the pNSGA-II efficiently uses additional processing
elements, significantly reducing computational time and notable speedup. The
observed efficiency levels highlight the algorithm’s scalability and effectiveness
in leveraging parallelization for addressing the analyzed optimzation problem.

Optimizing Urban Infrastructure for E-Scooter Mobility 355

6 Conclusions and Future Work

Our study focuses on optimizing urban infrastructure for e-scooter mobility. We
propose a multi-criteria optimization problem, called URIReI, that addresses
the challenge of integrating e-scooters into multimodal transportation systems
by redesigning road infrastructure. To solve this problem, we introduce a parallel
version of the well-known NSGA-II.

Our experimental evaluation was based on real-world data from the city of
Málaga, Spain. The proposed approach was highly effective, consistently explor-
ing the Pareto front and providing decision-makers with diverse non-dominated
solutions. These solutions represent trade-offs between travel time improvement
and infrastructure installation costs, offering flexibility in urban planning deci-
sions. We analyzed distinct zones, each with its characteristics, aiding decision-
makers in choosing solutions aligned with its goals and budget constraints.

Furthermore, we found that our algorithm significantly reduced computa-
tional time, achieving notable speedup while maintaining high-efficiency levels
even with a larger number of processing elements.

Future work should involve testing alternative algorithms to validate the
approach’s robustness. Also, incorporating additional modes of transportation,
such as buses, could enhance the model’s realism. We also plan to consider the
cycle lanes connectivity and assessing the impact on overall urban transporta-
tion networks. Finally, exploring the proposed infrastructure changes’ economic,
environmental, and social effects would contribute to a more holistic evaluation
of the solutions. This multi-faceted analysis would enrich decision-making and
foster sustainable and socially responsible urban development.

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

2. Bai, L., Liu, P., Chan, C.Y., Li, Z.: Estimating level of service of mid-block bicycle
lanes considering mixed traffic flow. Transp. Res. Part A: Policy Pract. 101, 203–
217 (2017)

3. Boeing, G.: OSMnx: New methods for acquiring, constructing, analyzing,
and visualizing complex street networks (Sep 2017). https://doi.org/10.1016/j.
compenvurbsys.2017.05.004, http://dx.doi.org/10.1016/j.compenvurbsys.2017.05.
004

4. Buczyński, A.: The costs of cycling infrastructure (2021). https://ecf.com/
system/files/The Costs of Cycling Infrastructure Factsheet.pdf, online; accessed
01 November 2023

5. Burke, C.M., Scott, D.M.: Identifying “sensible locations” for separated bike lanes
on a congested urban road network: A toronto case study. Prof. Geogr. 70(4),
541–551 (2018)

6. Cintrano, C., Toutouh, J.: Multiobjective electric vehicle charging station locations
in a city scale area: malaga study case. In: Jiménez Laredo, J.L., Hidalgo, J.I.,
Babaagba, K.O. (eds.) Appl. Evol. Comput., pp. 584–600. Springer International
Publishing, Cham (2022)

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
http://dx.doi.org/10.1016/j.compenvurbsys.2017.05.004
http://dx.doi.org/10.1016/j.compenvurbsys.2017.05.004
https://ecf.com/system/files/The_Costs_of_Cycling_Infrastructure_Factsheet.pdf
https://ecf.com/system/files/The_Costs_of_Cycling_Infrastructure_Factsheet.pdf

356 D. D. Pedroza-Perez et al.

7. Cloud, C., Heß, S., Kasinger, J.: Shared e-scooter services and road
safety: Evidence from six european countries. Europ. Econ. Rev. 160,
104593 (2023). https://doi.org/10.1016/j.euroecorev.2023.104593, https://www.
sciencedirect.com/science/article/pii/S0014292123002210

8. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons (2001)

9. Fabbiani, E., Nesmachnow, S., Toutouh, J., Tchernykh, A., Avetisyan, A., Rad-
chenko, G.: Analysis of mobility patterns for public transportation and bus stops
relocation. Program. Comput. Softw. 44(6), 508–525 (2018)

10. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (Jul 2012)

11. Gössling, S.: Integrating e-scooters in urban transportation: problems, policies, and
the prospect of system change. Transp. Res. Part D: Transp. Environ. 79, 102230
(2020)

12. Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Perva-
sive Comput. 7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80

13. Harada, T., Alba, E.: Parallel genetic algorithms: a useful survey. ACM Comput.
Surv. (CSUR) 53(4), 1–39 (2020)

14. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) Evolutionary Multi-Criterion Opti-
mization: 8th International Conference, EMO 2015, Guimarães, Portugal, March
29 –April 1, 2015. Proceedings, Part II, pp. 110–125. Springer International Pub-
lishing, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

15. Jaffe, E.: When adding bike lanes actually reduces traffic delays. https://
www.bloomberg.com/news/articles/2014-09-05/when-adding-bike-lanes-actually-
reduces-traffic-delays. Accessed on November 1st (2023)

16. Javadiansr, M., Davatgari, A., Rahimi, E., Mohammadi, M., Mohammadian, A.,
Auld, J.: Coupling shared e-scooters and public transit: a spatial and temporal
analysis. Transp. Lett. pp. 1–18 (2023)

17. Junta Andalusia Open Data Portal: Directorio de centros docentes no universi-
tarios de andalućıa - portal de datos abiertos. https://www.juntadeandalucia.es/
datosabiertos/portal/dataset/directorio-de-centros-docentes-de-andalucia

18. Li, M., Zheng, J.: Spread assessment for evolutionary multi-objective optimization.
In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO
2009. LNCS, vol. 5467, pp. 216–230. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01020-0 20

19. Liu, S., Shen, Z.J.M., Ji, X.: Urban bike lane planning with bike trajectories:
Models, algorithms, and a real-world case study. Manufact. Serv. Oper. Manage.
24(5), 2500–2515 (2022)

20. Malaga Open Data Portal: Sistema de Información Cartográfica - Sección censal.
https://datosabiertos.malaga.eu/dataset/sistema-de-informacion-cartografica-
seccion-censal

21. Massobrio, R., Toutouh, J., Nesmachnow, S., Alba, E.: Infrastructure deployment
in vehicular communication networks using a parallel multiobjective evolutionary
algorithm. Int. J. Intell. Syst. 32(8), 801–829 (2017)

22. Meng, L.: Political economy and cycling infrastructure investment. Transp.
Res. Interdiscip. Perspect. 14, 100618 (2022). https://doi.org/10.1016/j.trip.2022.
100618, https://www.sciencedirect.com/science/article/pii/S259019822200080X

https://doi.org/10.1016/j.euroecorev.2023.104593
https://www.sciencedirect.com/science/article/pii/S0014292123002210
https://www.sciencedirect.com/science/article/pii/S0014292123002210
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1007/978-3-319-15892-1_8
https://www.bloomberg.com/news/articles/2014-09-05/when-adding-bike-lanes-actually-reduces-traffic-delays
https://www.bloomberg.com/news/articles/2014-09-05/when-adding-bike-lanes-actually-reduces-traffic-delays
https://www.bloomberg.com/news/articles/2014-09-05/when-adding-bike-lanes-actually-reduces-traffic-delays
https://www.juntadeandalucia.es/datosabiertos/portal/dataset/directorio-de-centros-docentes-de-andalucia
https://www.juntadeandalucia.es/datosabiertos/portal/dataset/directorio-de-centros-docentes-de-andalucia
https://doi.org/10.1007/978-3-642-01020-0_20
https://doi.org/10.1007/978-3-642-01020-0_20
https://datosabiertos.malaga.eu/dataset/sistema-de-informacion-cartografica-seccion-censal
https://datosabiertos.malaga.eu/dataset/sistema-de-informacion-cartografica-seccion-censal
https://doi.org/10.1016/j.trip.2022.100618
https://doi.org/10.1016/j.trip.2022.100618
https://www.sciencedirect.com/science/article/pii/S259019822200080X

Optimizing Urban Infrastructure for E-Scooter Mobility 357

23. Málaga: Bolet́ın oficial de la provincia de málaga. edicto 252/2021 - published
from january 11 to 19, 2021 (01 2021). http://www.bopmalaga.es/cve.php?
cve=20210119-00252-2021

24. Nanayakkara, P.K., Langenheim, N., Moser, I., White, M.: Do safe bike lanes really
slow down cars? a simulation-based approach to investigate the effect of retrofitting
safe cycling lanes on vehicular traffic. Int. J. Environ. Res. Public Health 19(7),
3818 (2022)

25. Nesmachnow, S., Rossit, D.G., Toutouh, J.: Comparison of multiobjective evolu-
tionary algorithms for prioritized urban waste collection in Montevideo. Uruguay.
Electron. Notes Discr. Math. 69, 93–100 (2018)

26. Official State Gazette Agency: Official state gazette no 297 of november 11, 2020
(boe) (11 2020). https://www.boe.es/eli/es/rd/2020/11/10/970

27. Olabi, A., et al.: Micromobility: progress, benefits, challenges, policy and regu-
lations, energy sources and storage, and its role in achieving sustainable devel-
opment goals. Int. J. Thermofluids 100292 (2023). https://doi.org/10.1016/j.ijft.
2023.100292

28. Pedroza-Perez, D.D., Toutouh, J., Luque, G.: E-scooters routes potential: open
data analysis in current infrastructure. malaga case. In: Dorronsoro, B., Chicano,
F., Danoy, G., Talbi, E.-G. (eds.) Optimization and Learning: 6th International
Conference, OLA 2023, Malaga, Spain, May 3–5, 2023, Proceedings, pp. 380–392.
Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-
34020-8 29

29. Péres, M., Ruiz, G., Nesmachnow, S., Olivera, A.C.: Multiobjective evolutionary
optimization of traffic flow and pollution in Montevideo. Uruguay. Appl. Soft Com-
put. 70, 472–485 (2018)

30. Rossit, D.G., Toutouh, J., Nesmachnow, S.: Exact and heuristic approaches for
multi-objective garbage accumulation points location in real scenarios. Waste Man-
age. 105, 467–481 (2020)

31. Shaheen, S., Cohen, A.: 12. shared micromobility: policy and practices in the united
states. In: A Modern Guide to the Urban Sharing Economy, chap. 12, pp. 166–180.
Edward Elgar Publishing (2021)

32. Sherriff, G., Lomas, M., Blazejewski, L., Larrington-Spencer, H.: A micromobility
buffet: e-scooters in the context of multimodal spaces and practices in greater
manchester. Active Travel Stud. 3(1) (2023)

33. Tian, D., Ryan, A.D., Craig, C.M., Sievert, K., Morris, N.L.: Characteristics and
risk factors for electric scooter-related crashes and injury crashes among scooter
riders: A two-phase survey study. Int. J. Environ. Res. Public Health 19(16) (2022)

34. Toutouh, J., Rossit, D., Nesmachnow, S.: Soft computing methods for multiob-
jective location of garbage accumulation points in smart cities. Ann. Math. Artif.
Intell. 88(1), 105–131 (2020)

35. Zakhem, M., Smith-Colin, J.: Micromobility implementation challenges and oppor-
tunities: analysis of e-scooter parking and high-use corridors. Transp. Res. Part D:
Transp. Environ. 101, 103082 (2021)

36. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms —
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-
P. (eds.) Parallel Problem Solving from Nature — PPSN V, pp. 292–301. Springer
Berlin Heidelberg, Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

http://www.bopmalaga.es/cve.php?cve=20210119-00252-2021
http://www.bopmalaga.es/cve.php?cve=20210119-00252-2021
https://www.boe.es/eli/es/rd/2020/11/10/970
https://doi.org/10.1016/j.ijft.2023.100292
https://doi.org/10.1016/j.ijft.2023.100292
https://doi.org/10.1007/978-3-031-34020-8_29
https://doi.org/10.1007/978-3-031-34020-8_29
https://doi.org/10.1007/BFb0056872

Evolutionary Computation in Edge, Fog,
and Cloud Computing

Simple Efficient Evolutionary Ensemble
Learning on Network Intrusion Detection

Benchmarks

Zhilei Zhou, Nur Zincir-Heywood , and Malcolm I. Heywood(B)

Faculty of Computer Science, Dalhousie University, Nova Scotia, Canada
{ZhileiZhou,nzincirh,mheywood}@dal.ca

Abstract. Training and deploying genetic programming (GP) classi-
fiers for intrusion detection tasks on the one hand remains a challenge
(high cardinality and high class imbalance). On the other hand, GP solu-
tions can also be particularly ‘lightweight’ from a deployment perspec-
tive, enabling detectors to be deployed ‘at the edge’ without specialized
hardware support. We compare state-of-the-art ensemble learning solu-
tions from GP and XGBoost on three examples of intrusion detection
tasks with 250,000 to 700,000 training records, 8 to 115 features and 2
to 23 classes. XGBoost provides the most accurate solutions, but at two
orders of magnitude higher complexity. Training time for the preferred
GP ensemble is in the order of minutes, but the combination of simplicity
and specificity is such that the resulting solutions are more informative
and discriminatory. Thus, as the number of features increases and/or
classes increase, the resulting ensembles are composed from particularly
simple trees that associate specific features with specific behaviours.

Keywords: Boosting · Bagging · Stacking · Evolutionary Ensemble
Learning · Intrusion Detection

1 Introduction

Intrusion detection tasks are typically either described by flow data collected
across networks or log files summarizing the operation of servers appearing on
a network. In this work, we assume the former flow based data, which is to
say, the packets transferred across a network are described in terms of source–
destination statistics, i.e. a flow. Several tools are available for constructing
flows (e.g. Argos, Tranalizer, WireShark). The intrusion detection task is then
addressed using some form of (supervised) machine learning algorithm. How-
ever, challenges appear on account of the high degree of class imbalance and
high cardinality of the data sets. In this work, we revisit the task of constructing
machine learning solutions to the flow based network intrusion detection prob-
lem, but with the additional objective of engineering features that discriminate

Research enabled by NSERC Discovery Grant RGPIN-2020-04438.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 361–376, 2024.
https://doi.org/10.1007/978-3-031-56852-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_23&domain=pdf
http://orcid.org/0000-0003-2796-7265
http://orcid.org/0000-0002-1521-0671
https://doi.org/10.1007/978-3-031-56852-7_23

362 Z. Zhou et al.

between different behaviours appearing in the data. Moreover, the resulting sim-
ple solutions are then able to operate in real-time on very modest computing
platforms, i.e. an IoT/edge scenario.1

Previous research has deployed genetic programming (GP) to the net-
work intrusion detection task by addressing issues such as data set cardinal-
ity/imbalance [3,20] or multi-class classification [1,16]. However, since these
works were performed there have both been advances to the datasets used to
capture properties of the intrusion detection task and evolutionary ensemble
learners. The latter development implies that multiple (GP) classifiers partic-
ipate in providing a label [10]. One of the central questions when developing
ensembles is how to construct a suitably diverse set of base models [4,15]. That
is to say, if the classifiers participating in an ensemble are trained on the same
data, their behaviours will likely be correlated, rendering their combination in an
ensemble ineffective. With this in mind, different methods have been proposed
for ‘perturbing’ the training conditions, i.e. constructing models from different
subsets of features (e.g. Random Forests), re-weighting/sampling the training
partition (e.g. Bagging or Boosting [4]) and/or randomizing the training pro-
cedure (e.g. stochastic weight/population initialization). In addition, ensemble
methods do not necessarily return solutions that are informative from an end
user perspective. That is to say, if multiple models have to be applied simulta-
neously to collectively produce a label, then it becomes increasingly difficult to
determine the basis for decisions.

In this work, we revisit the network intrusion detection problem through
ensemble learning using two evolutionary ensemble learning frameworks:
BStacGP (Sect. 2) and Symbolic Bid-Based GP (Sect. 3). BStacGP explicitly
constructs a ‘stack’ of classifiers using a boosting process that returns a resid-
ual dataset after adding each classifier. The cardinality of the training partition
therefore decreases as each new tree is added to the stack. Symbolic Bid-Based
GP on the other hand employs a competitive coevolutionary relationship between
a population of teams (candidate ensembles) and a data subset (i.e. bagging
through coevolution). A ‘winner takes all’ model of aggregation is assumed, so
each label is associated with a single program, but programs in themselves might
be complex. In addition we compare solutions to those returned using XGBoost
and Decision Trees. Our interest is to assess the relative performance versus solu-
tion complexity against well known baselines for ensemble learning and single
model classification.

Section 4 reports on the benchmarking study performed across three datasets
(CTU-13, Kitsune and KDD-99) where these are representative of recent and
historically relevant intrusion detection benchmarks. As such the types of feature,
attack and normal data vary. Moreover, the number of classes requiring detection
range from 2 to 23 and the class distribution might be relatively balanced to
extremely imbalanced (<0.001%). BStacGP and XGBoost are most consistently

1 This is distinct but complementary to assuming that intrusion detection can be
performed at some centralized cloud based resource using more computationally
expensive paradigms, such as deep learning.

Simple Efficient Evolutionary Ensemble Learning 363

able to provide solutions across the different datasets, but only BStacGP is
additionally able to return simple solutions. Simplicity in this case provides
more clarity with respect to how features are used and supports execution on
IoT/edge platforms.

2 BStacGP Framework

BStacGP represents a process for evolving a stack of predictors (Sect. 2.1) and
a process for ‘navigating’ the resulting stack (Sect. 2.2). Previous research indi-
cated that good scaling with cardinality was possible [21], but the impact of
class imbalance is unknown.

2.1 Stack Construction

The BStacGP framework is summarized by Algorithm 1. Unlike the majority of
frameworks for ensemble learning, BStacGP incrementally constructs a ‘stack’
of GP classifiers. The classifier maps an input, Xp, to a number line divided
into a discrete number of bins, Fig. 1. As long as inputs mapped to the same
bin have the same class label, then the bin is said to be pure.2 If on the other
hand, multiple inputs with different labels are mapped to the same bin, then
the bin is ambiguous. Any other bins are considered empty. Such a mapping
is independent from the number of classes involved, i.e. the number of bins is
significantly more than the number of classes and mappings are rewarded for
maximizing bin purity.

Fig. 1. Pictorial relation between program outputs (ŷp), bins, labels (0 ≤ Yp < C) and
bin type. Each bin spans an equal interval (max ŷp−min ŷp

MaxBins−1
). Each input, Xp, is mapped

to a single scalar position on the program’s output ŷp for which there is a known class
label, Yp. Depending on the distribution of Yp in the same bin, a bin is said to be pure,
ambiguous or empty

Having mapped the training partition to an individual’s number line, the
fitness function is designed to capture the properties of the bins making up the
resulting histogram distribution (as defined by the mapping). Specifically, for
each bin, the following purity/impurity metric is estimated,
2 Up to β instances from other classes accepted before pure considered ambiguous.

364 Z. Zhou et al.

bin(i, c) =
Count(i, c)

S(i) × Inst(c)
(1)

where Count(i, c) is the number of class ‘c’ records mapped to bin ‘i ’, S(i)
is the number of records mapped to interval ‘i ’, and Inst(c) is the number of
records from class ‘c’ appearing in the training partition. Fitness (fgini) is now
incrementally defined as per the following formulation,3

fgini ←
B,C∑

i,c

(bin(i, c))2 × Inst(c);∀i ∈ B, c ∈ C (2)

where B and C are the number of bins and classes respectively.

Algorithm 1. BStacGP framework
1: Ensemble ← ∅
2: while !MaxBoost do
3: initialize(Pop) � Initialize a Pop of single node ‘trees’
4: Champ ← ∅
5: repeat
6: Fitness ← Evaluate(〈X, Y 〉,Pop) � Evaluate using GiniIndex
7: Ranked ← Sort(Pop, GiniFitness) � Rank Pop
8: PPool ← Top(Ranked,Pop,%Gap) � Drop worst %Gap from Pop
9: Champ ← TestHistogram(PPool) � Identify Champion from parent pool

10: Offspring ← Variation(PPool, %Gap)
11: Pop ← PPool ∪ Offspring
12: until Champ �= ∅ OR !MaxGen
13: 〈X ′, Y ′〉 ← MarkPure(Champ) � Identify correctly labelled
14: 〈X, Y 〉 ← Residual(〈X ′, Y ′〉) � Return residual data partition
15: Ensemble ← Ensemble ∪ Champ � Update ensemble complement
16: end while

Steps 7 and 8 rank the population relative to this fitness function and drop
the worst %Gap individuals, i.e. a breeder. The resulting parent pool is tested
for a champion. A champion is defined as an individual with fitness better than
the last individual added to the stack and with at least one pure bin. Should
such an individual exist, then the inner loop exits, otherwise the loop continues
with the creation of offspring and their addition to the population.

The outer loop of Algorithm 1 completes by identifying the training records
that the champion successfully mapped to pure bins. These are removed from the
training partition, and the ‘residual’ training partition identified. Such a process
incrementally decreases the cardinality of the training partition and helps to
focus the next round of evolution on what the ensemble cannot correctly classify.

3 Motivated by information theoretic formulations employed in decision tree methods,
e.g. Chapter 8 in [6].

Simple Efficient Evolutionary Ensemble Learning 365

2.2 Ensemble Querying Post Training

During training, programs are incrementally added to the ensemble using spe-
cific ‘splits’ of the data. Let a first-in-first-out list, L, reflect the order in which
(champion) programs were added to the ensemble. Given a set of test records,
〈Xt, Y t〉, a record is presented to the first program from the list, Li=0. Pro-
gram execution again maps the record to a bin. We now query the bin type (as
established during training), as follows:

– pure bin: the bin’s label is returned as the class prediction, y′
t, of this test

record. If y′
t = Y t then a correct classification results, otherwise the predicted

class was incorrect.
– ambiguous bin: increment the program list pointer (i.e. select the next

program Li) and repeat execution–bin querying for program, i = i+ 1.
– empty bin: identify the nearest bin that is either ambiguous or pure. Inter-

pret as above.

Such a process deploys the ensemble sequentially, with the ambiguous bin
category causing the next program from the list to be referenced. For each map-
ping to an ambiguous bin, the next program from the ensemble list is selected,
Li. Mapping to a pure bin returns the label associated with the bin during
training. If the last program fails to provide a label (record still mapped to an
ambiguous bin), then a default class can be returned (e.g. most frequent, most
costly).

3 Symbolic Bid Based GP

Symbolic Bid Based GP (hereafter SBB) constructs an ensemble of classifiers
using a symbiotic relationship between learners and teams [11]. In addition, a
data subset is assumed for decoupling the cost of fitness evaluation from train-
ing partition cardinality using a competitive coevolutionary formulation (a form
of boosting). SBB has previously demonstrated its effectiveness under a range
of imbalanced multi-class [14], high dimensional [5] and streaming classification
tasks [13]. In the following we summarize the symbiotic and competitive coevo-
lutionary components respectively.

3.1 Symbiotic Model

The symbiotic framework assumes that two populations are maintained: a team
population (T) and a learner population (L). The team population attempts to
discover good combinations of Learners to appear in a team, whereas the learner
population represents the source of programs to appear in Teams. Learners are
defined in terms of a program, p, and an action, a, where actions are initialized
from the set of class labels, A. Each member of the team population identifies a
subset of Learners to appear in a Team such that,

366 Z. Zhou et al.

– the complement of Learners are unique.4
– at least two Learners appear per Team.5
– there are at least two different actions sampled by the Learners appearing in

the same Team.6

Evaluation of a team implies that the programs from all learners associated
with the same team are executed on the current training exemplar. Whichever
program has the maximum output wins the right to suggest its action (label)
resulting in a binary outcome for each interaction between Team, ti, and training
record pk, or

G(ti, pk) ←
{
1, if team ti classifies record pk
0 otherwise (3)

Once all teams are evaluated across all data records appearing in the data
subset, fitness sharing is applied,

fi =
∑

k

(
G(ti, pk)

1 +
∑

j G(tj , pk)

)2

(4)

Such a function helps to maintain the diversity of the team population with
the objective of letting the more specialist teams exist long enough to be sub-
sumed into the teams labeling the ‘low hanging fruit’. The other element to
diversity maintenance takes the form of the competitive coevolutionary relation-
ship between team and data subset (Sect. 3.2). Moreover, maintaining diversity
across a population provides the basis for independent cycles of evolution in
which new solutions describe their actions in terms of previously evolved teams.
This results in a hierarchy of teams or stacking [12,19].

After all the teams have their fitness evaluated on the current data subset,
they are ranked and the bottom GT% of the population are deleted leaving a
parent pool from which GT% children are composed. Any Learners from the
learner population that are not indexed by the parent pool are also deleted.
Variation operators are applied hierarchically to compose new teams/learners
by first cloning GT% teams (selected uniformly) and learners in order to avoid
disrupting working relationships in the respective team and learner parent pools.
Further details of variation can be found in the earlier works [5,14].

3.2 Competitive Coevolution

SBB coevolves a ‘point population’ (P), the content of which defines the data
subset from which fitness evaluation is performed. The point population is strati-
fied such that each class is represented equally with GP% of the point population
replaced at each generation. Although new training records are sampled uni-
formly from the original training partition to replace the GP% records deleted
4 Otherwise a trivial redundancy appears.
5 A single learner would only be able to suggest a single class.
6 All data labeled as the same class.

Simple Efficient Evolutionary Ensemble Learning 367

at each generation, records are prioritized to remain in the data subset using
the concept of distinctions [7]. Record pk is said to form a distinction between
two teams, ti and tj if G(ti, pk) > G(tj , pk). This results in an P × (T 2 − T)
matrix of distinctions. Fitness sharing can also be applied to the resulting matrix
of distinctions [5,7,14]. Records are then prioritized for retention in the point
population that, for example, identify a single team as classifying a record than
no other team can classify.7

4 Results

4.1 Datasets and Parameterization

Benchmarking is performed across two recent large intrusion detection datasets
CTU-13 [8] and the Kitsune network attack dataset [17] and the historically
relevant KDD-99 dataset. Summary dataset statistics appear in Table 1.

The CTU-13 dataset8 contains seven different types of Botnet traffic and is
described using 8 features derived from flows provided by the Argos Netflow gen-
erator. The task is posed as separating normal from Botnet, i.e. anomaly detec-
tion. This results in a relatively balanced distribution of attack versus normal,
but under a low dimensional feature space. This means that feature engineering
will likely be necessary in order to provide effective anomaly detectors.

The Kitsune dataset9 describes eight different types of attack, includ-
ing Man-in-the-Middle, Denial-of-Service and probing/scanning. Moreover, the
devices used to collect the data are representative of IoT applications (e.g. web
cams and baby monitors). Each flow is described in terms of 115 features with
the goal of the classifier to identify each type of attack (as well as normal traf-
fic). The high dimensionality is assumed to provide the basis for better classifier
accuracy. With this in mind, the goal of the classifier is to identify each attack
instance as well as normal. The class distribution is imbalanced with 4 classes
appearing in less than 0.5% of the data.

Finally, the KDD-99 dataset10 has been deployed in multiple ways over
the years, e.g. anomaly only, distinguish between the 5 attack types and normal.
In this work, the full 23 class formulation is assumed, where this represents
a particularly challenging task scenario as individual attack types should be
identified and the high degree of class imbalance is present.

Algorithm parameterization is performed using a grid search. In the case of
BStacGP and SBB the resulting parameterizations are reported in Tables 2 and
3 respectively. In all cases 30 runs are performed. Test data is employed post
training and does not inform parameter choices. XGBoost [2] and Decision Trees
[18] are also subject to task specific parameter tuning, but space restrictions
preclude an enumeration of the parameters.
7 Put another way, without a specific training record, the significance of a Team would

be lost.
8 https://www.stratosphereips.org/datasets-ctu13.
9 https://archive.ics.uci.edu/dataset/516/kitsune+network+attack+dataset.

10 https://www.openml.org/search?type=data&sort=runs&id=1113&status=active.

https://www.stratosphereips.org/datasets-ctu13
https://archive.ics.uci.edu/dataset/516/kitsune+network+attack+dataset
https://www.openml.org/search?type=data&sort=runs&id=1113&status=active

368 Z. Zhou et al.

Table 1. Dataset properties. #Train and #Test are the cardinality for training and
test partitions respectively. D is the number of features and C the number of classes.
Class Distribution reflects the (approx.) distribution of each class. Largest single class
corresponds to ‘normal’. All the rest are different instances of an attack

Dataset CTU-13 Kistume KDD-99

#Train 560,792 735,612 247,010
#Test 240,340 315,263 247,010
Dimension (D) 8 115 41
Labels (C) 2 9 23
Class Distribution (%) 55/ 45 75.8/ 6.7 /5.4/ 4.3/

4.3/ 2/ remaining
with <0.5%

48.1/ 33.8/ 16.7/ 0.4/
0.3/ 0.2/ 0.17/ 0.17/
0.16/ 0.04/ 0.04
remaining with <0.001%

Table 2. BStacGP parameters. MaxBoost through to Gap are defined in Algorithm
1. MaxBins appears in Fig. 1. β is the bin purity threshold

Dataset CTU13 Kitsune KDD99

MaxBoost 10 100 200
MaxGen 2 1 10
Pop 300 1000 300
Gap 30% 30% 30%
MaxBins 100,000 30 100
β 2 2 2

4.2 Benchmarking Comparison

Table 4 summarizes performance on the test partition using the Balanced Accu-
racy and macro F1-score metrics [9] (averaged across 30 champions identified
from training runs). In addition, we also capture multiple statistics to quan-
tify the complexity of a solution. We note that XGBoost provides the most
accurate solutions, but also typically the most complex. Solutions based on the
Decision Tree method will always have the least number of trees (1), but are
not necessarily the simplest solution (high Tree Depth and/or Total number of
nodes). Solutions identified by SBB typically concentrate on classifying the most
frequently occurring classes (difference between Balanced Accuracy and macro
F1-score) and are therefore generally not competitive.

Under the balanced two class CTU13 dataset, decision tree solutions were
the most complex, whereas they were the simplest under the 23 class KDD99
dataset. We also consider the impact of attempting to reduce the decision tree

Simple Efficient Evolutionary Ensemble Learning 369

Table 3. SBB parameters. MaxGen/Team/Length represent max. generations/team
size/num. nodes per tree. #levels is the max. depth of the hierarchy. Gap is the number
of individuals replaced in the ‘point’ and ‘team’ populations respectively

Dataset CTU13 Kitsune KDD99

#levels 10 5 10
MaxGen 10,000
MaxTeam 10
MaxLength 96
Pop. Size 200
Gap 20 (10)

and XGBoost solutions to match the complexity of BStacGP.11 These results
are summarized in the last two columns in Table 4. It is apparent that reducing
the complexity of decision tree or XGBoost (to that of BStacGP) has a negative
impact on macro F1-score.

Table 5 reports the typical training time for constructing classifiers using each
approach. The two GP approaches are the slowest, particularly with respect to
the CTU13 and KDD99 datasets. On the largest cardinality dataset (Kitsune),
however, BStacGP runtimes were in the same order of magnitude of runtime as
recorded for XGBoost. Moreover, BStacGP runtimes were very consistent across
all three datasets. Decision tree training was always the fastest (only constructs
a single classifier), but appeared to slow considerably on the Kitsune dataset.
SBB was by far the slowest and most variable.

4.3 BStacGP Behavioural Properties

XGBoost deploys all the ensemble to label every data record. This makes it
difficult to learn from the resulting model (e.g. identify the most discriminatory
features) as well as costing more computationally. Decision trees need only use
part of a tree to make a decision, but as the tree depth increases, it also becomes
increasingly difficult to provide knowledge transfer. BStacGP on the other hand
explicitly organizes trees hierarchically as a stack. A tree either provides a label
or declares a data point as ambiguous. Only ambiguous records are forwarded
to the next tree (Sect. 2.2). This means that only a single tree is responsible for
making each prediction.

CTU13 is formulated as a two class, low dimensional task for which fea-
ture engineering appears to have taken place, Fig. 2. There are only two trees in
the stack, with a comparatively high complexity (Table 4). No particular pref-
erence to predicting normal/attack appears across the layers, and both trees
appear to have a similar complexity. Conversely, Fig. 3 illustrates how a BStacGP

11 BStacGP average rank of 1.33 for total number of nodes, versus an average rank of
2.67 and 3.67 for decision tree and XGBoost.

370 Z. Zhou et al.

Table 4. Test performance. Bal acc. is the balanced accuracy metric as applied to all
classes. F1-score is the multi-class ratio of precision to recall with equal class weighting.
Trees are the number of trees appearing in a solution. Tree Depth is the max. tree
depth. Total # nodes is the total operator count across all components of a solution.
†denotes the best test classification performance of the simplest solutions. Bold are the
best classification performance ignoring model complexity

CTU13

Model BStacGP SBB DT XGboost simple DT simple XGboost

Bal. acc. 93.1† 80.9 96.0 96.0 92.3 88.8
F1-score 93.1† 81.1 96.1 96.0 92.1 88.8
#Trees 2 3 1 100 1 5
Tree Depth 5.43 4 49 6 15 4
Total #nodes 86.2 184 44,659 9,834 99 147

Kistume

Model BStacGP SBB DT XGboost simple DT simple XGboost

Bal. acc. 90.7 91.1 99.8 99.9 89.5 96.2†
F1-score 92.0† 49.1 99.6 99.9 84.2 80.2
#Trees 28.5 9 1 1,000 1 20
Tree Depth 1 4 35 3.42 11 2
Total #nodes 85.5 383.3 555 15,250 89 136

KDD-99

Model BStacGP SBB DT XGboost simple DT simple XGboost

Bal. acc. 73.5 68.4 68.0† 85.8 – 63.5
F1-score 71.5 44.7 69.9† 81.0 – 62.0
#Trees 101 16 1 2,300 – 69
Tree Depth 2.59 4 34 1.92 – 3.14
Total #nodes 817.8 857.5 405 13,790 – 855

Table 5. Training times (approx). All times on a common Intel i7012799H computing
platform. SBB, BStacGP and Decision Trees perform training using a single thread
whereas XGBoost employed 20

Dataset CTU13 Kitsune KDD99

Decision Tree ≈1 s 5.2 min ≈1 s
XGBoost 14 s 10 min ≈1 s
BStacGP 5–6min 13 min 10min
SBB 30min to 45 h

solution decomposes the Kitsune test partition. There are 53 trees in this par-
ticular champion (x -axis). In the case of normal (subplot (a)) predictions are
made cumulatively across the entire stack whereas for SSDP flood (subplot (e))
most predictions are made early on, particularly level 0. Fuzzing operations are
detected by classifiers at levels 3 and 27 in particular (subplot (b)). The majority

Simple Efficient Evolutionary Ensemble Learning 371

of man-in-the-middle attacks (ARM MitM and Video Injection) are also asso-
ciated with specific levels of the stack (level 4 and 10 respectively). Conversely,
the SYS DoS attack is identified much later in the stack (subplot (f)).

Fig. 2. BStacGP trees under CTU13 test partition. Hit, Miss and Confuse are the
counts of correct, incorrect and ambiguous bin associations respectively

Figure 4 (top row) illustrates the specific predictions on Kitsune correspond-
ing to particular levels of the BStacGP solution from Fig. 3. Moreover, all the
trees comprising this stack take the form of decision tree stumps (a single arith-
metic operation with two features) as follows: level 0: x62−x27; level 3: x62+x58;
level 10: x62 + x9; and level 48: x6 − x27. Figure 4 (bottom row) illustrates the
frequency with which different features are indexed across all trees for 3 example
classes. Thus, feature 62 is frequent and common to all, but features 27, 58 and
9 (or 20) are frequent and specific to each class.

Figure 5 provides a summary of test behaviour from a BStacGP solution over
6 classes from the KDD99 dataset. There are 117 levels to this stack. It is again
clear that specific trees contribute specific properties, albeit with a collection of
trees distributed across the stack classifying each class. However, the ‘Smurf DoS’
class represents an exception in which all 140,000 instances are correctly labeled
by a single tree (subplot (b)). Moreover, the consistently low miss rates indicates
again that the BStacGP classifiers are incrementally ‘picking off’ very specific
behaviours from particular classes. Thus, the Neptune DoS attack appears to
be labeled by 4 trees from the stack (subplot (c)), whereas ≈75% of Warez r2l
attacks are detected by 2 trees (subplot (d)). Similarly, ≈90% of the Satan and
ipsweep probe behaviours are detected by 3 to 4 trees (subplots (e) and (f)).
Given that these preferences also appear under the training condition, specific
trees and features can again be associated with specific attacks.

Figure 6 (top row) illustrates specific predictions on KDD99 corresponding
to particular levels of the BStacGP solution from Fig. 5. It is again apparent
that trees with very specific properties/functions result. Moreover, these trees
are also relatively simple. For example:

372 Z. Zhou et al.

Fig. 3. Operation of BStacGP under Kitsune test partition. x -axis is the stack level,
y-axis is the number of the class labeled correctly (orange), incorrectly (green) or ‘I
don’t know’ (blue). Only the latter are forwarded to the next stack level for labelling

Fig. 4. Example classifier performance under Kitsune test partition. (X) indicates stack
level. Bars represent number of miss/correct/confuse predictions per class. (FF) indi-
cates feature frequency across the entire class

Simple Efficient Evolutionary Ensemble Learning 373

Fig. 5. Operation of BStacGP under KDD-99 test partition. x -axis is the stack level,
y-axis is the number of the class labeled correctly (orange), incorrectly (green) or ‘I
don’t know’ (blue). Only the latter are forwarded to the next stack level for labelling.
6 of 23 classes shown due to space restrictions

Fig. 6. Example classifier performance under KDD99 test partition. (X) indicates stack
level. Bars represent number of miss/correct/confuse predictions per class. (FF) indi-
cates feature frequency across the entire class

374 Z. Zhou et al.

– Smurf DoS (level 82 tree): x31 + x19 + (x2 × x3) − x20 − x23

– Neptune DoS (level 21 tree): (x17 − x2) × (x28 − x24) + x11 + x17 − x2

– Satan probe (level 19 tree): x18 + (x2 + (x27 − x16))

Fig. 6 (bottom row) illustrates the frequency with which specific features are
utilized across all trees for 3 classes. Feature 2 is common to all, but other
features appear to be class specific, e.g. feature 3, 19, 20, 23, 31 (Smurf), 17 24,
28 (Neptune) or 16, 18, 27 (Satan).

5 Conclusion

IoT or edge computing devices increasingly represent the entry point for net-
work borne attacks. Such devices typically have a limited computing capability.
However, as the first point of entry they also represent the first opportunity
to minimize the impact of malicious behaviour. We conduct a benchmarking
study in which we build candidate (machine learning) detectors from three rather
different datasets representing different perspectives on the intrusion detection
task (balanced anomaly detection, imbalanced high dimensional feature space
over 9 classes or imbalanced high class count over a medium number of fea-
tures). XGBoost provided the best classification accuracy, but also represented
solutions that are opaque (thousands of trees). Conversely, the preferred evolu-
tionary ensemble (BStacGP) provided increasingly transparent solutions as the
number of classes and/or dimension of the feature space used to describe the
task increased. In effect, the amount of feature engineering appears to decrease
as the number of features increases, making for trees that often only consist of
1 to 5 nodes. Moreover, such trees are highly discriminatory in that they pro-
vide labels for classifying significant amounts of specific classes. Attempting to
tune XGBoost to the same complexity as BStacGP had particularly negative
consequences for classification performance, precluding their use for intrusion
detection on IoT devices.

Future research will continue to investigate new ways for constructing evolu-
tionary ensemble methods in order to both scale to higher dimension/cardinality
and develop better interpretability.

Acknowledgements. Circos plot constructed using http://circos.ca.

References

1. Badran, K.M.S., Rockett, P.I.: Multi-class pattern classification using single, multi-
dimensional feature-space feature extraction evolved by multi-objective genetic
programming and its application to network intrusion detection. Genet. Program
Evolvable Mach. 13(1), 33–63 (2012)

http://circos.ca

Simple Efficient Evolutionary Ensemble Learning 375

2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 785–794. ACM (2016)

3. Curry, R., Lichodzijewski, P., Heywood, M.I.: Scaling genetic programming to
large datasets using hierarchical dynamic subset selection. IEEE Trans. Syst., Man,
Cybernet.s - Part B 37(4), 1065–1073 (2007)

4. Dietterich, T.G.: An experimental comparison of three methods for constructing
ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn.
40(2), 139–157 (2000)

5. Doucette, J.A., McIntyre, A.R., Lichodzijewski, P., Heywood, M.I.: Symbiotic
coevolutionary genetic programming: a benchmarking study under large attribute
spaces. Genet. Program Evolvable Mach. 13(1), 71–101 (2012)

6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley and Sons, 2nd
edn. (2001)

7. Ficici, S.G., Pollack, J.B.: Pareto optimality in coevolutionary learning. In: Kele-
men, J., Sosík, P. (eds.) Advances in Artificial Life, pp. 316–325. Springer Berlin
Heidelberg, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44811-X_34

8. García, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet
detection methods. Comput. Secur. 45, 100–123 (2014)

9. Grandini, M., Bagli, E., Visani, G.: Metrics for multi-class classification: an
overview. CoRR abs/2008.05756 (2020). https://arxiv.org/abs/2008.05756

10. Heywood, M.I.: Evolutionary ensemble learning. In: Banzhaf, W., Machado, P.,
Zhang, M. (eds.) Handbook of Evolutionary Machine Learning, pp. 205–243.
Springer Nature Singapore, Singapore (2024). https://doi.org/10.1007/978-981-
99-3814-8_8

11. Heywood, M.I., Lichodzijewski, P.: Symbiogenesis as a mechanism for building
complex adaptive systems: a review. In: Di Chio, C., et al. (eds.) Applications of
Evolutionary Computation, pp. 51–60. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12239-2_6

12. Kelly, S., Lichodzijewski, P., Heywood, M.I.: On run time libraries and hierarchical
symbiosis. In: Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 1–8. IEEE (2012)

13. Khanchi, S., Vahdat, A., Heywood, M.I., Zincir-Heywood, A.N.: On botnet detec-
tion with genetic programming under streaming data label budgets and class imbal-
ance. Swarm Evol. Comput. 39, 123–140 (2018)

14. Lichodzijewski, P., Heywood, M.I.: Managing team-based problem solving with
symbiotic bid-based genetic programming. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, pp. 363–370. ACM (2008)

15. Ma, S., Ji, C.: Performance and efficiency: recent advances in supervised learning.
Proc. IEEE 87(9), 1519–1535 (1999)

16. McIntyre, A.R., Heywood, M.I.: Classification as clustering: a pareto cooperative-
competitive GP approach. Evol. Comput. 19(1), 137–166 (2011)

17. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of
autoencoders for online network intrusion detection. In: Annual Network and Dis-
tributed System Security Symposium. The Internet Society (2018)

18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
19. Smith, R.J., Heywood, M.I.: Coevolving deep hierarchies of programs to solve com-

plex tasks. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp. 1009–1016. ACM (2017)

https://doi.org/10.1007/3-540-44811-X_34
https://arxiv.org/abs/2008.05756
https://doi.org/10.1007/978-981-99-3814-8_8
https://doi.org/10.1007/978-981-99-3814-8_8
https://doi.org/10.1007/978-3-642-12239-2_6

376 Z. Zhou et al.

20. Song, D., Heywood, M.I., Zincir-Heywood, A.N.: Training genetic programming
on half a million patterns: an example from anomaly detection. IEEE Trans. Evol.
Comput. 9(3), 225–239 (2005)

21. Zhou, Z., et al.: A boosting approach to constructing an ensemble stack. In: Pappa,
G., Giacobini, M., Vasicek, Z. (eds.) Genetic Programming: 26th European Con-
ference, EuroGP 2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April
12–14, 2023, Proceedings, pp. 133–148. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-29573-7_9

https://doi.org/10.1007/978-3-031-29573-7_9

Evolutionary Computation Meets Stream
Processing

Vincenzo Gulisano1 and Eric Medvet2(B)

1 Department of Computer Science and Engineering, Chalmers University of
Technology, Gothenburg, Sweden
vincenzo.gulisano@chalmers.se

2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy

emedvet@units.it

Abstract. Evolutionary computation (EC) has a great potential of
exploiting parallelization, a feature often underemphasized when describ-
ing evolutionary algorithms (EAs). In this paper, we show that the
paradigm of stream processing (SP) can be used to express EAs in a
way that allows the immediate exploitation of parallel and distributed
computing, not at the expense of the agnosticity of the EAs with respect
to the application domain. We introduce the first formal framework for
EC based on SP and describe several building blocks tailored to EC.
Then, we experimentally validate our framework and show that (a) it
can be used to express common EAs, (b) it scales when deployed on
real-world stream processing engines (SPEs), and (c) it facilitates the
design of EA modifications which would require a larger effort with tra-
ditional implementation.

Keywords: Parallellization · Design of EAs · Distributed computing

1 Introduction

Artificial intelligence (AI) has witnessed significant growth in recent decades,
propelled by advancements in hardware and the establishment of de-facto stan-
dard frameworks with rich application programming interfaces (APIs). These
frameworks play a pivotal role in decoupling aspects such as efficient imple-
mentation and interfacing with diverse hardware platforms. Despite this overall
progress, not all AI-related techniques have advanced uniformly. EC, the focus
of this paper, has seen the emergence of numerous fragmented and specialized
frameworks with limited customizability and in need of structural modifications
to address crucial aspects like scalability and parallel/distributed execution [2].

To make a significant step towards enhancing the adaptability and perfor-
mance of EC, we present here a novel approach to overcome these limitations by
leveraging a state-of-the-art computing paradigm named SP, widely adopted in
the IoT-to-Cloud continuum [6,11,15,24]. SP allows to describe forms of com-
putation which occur over streams of items that flow over time. By connecting
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 377–393, 2024.
https://doi.org/10.1007/978-3-031-56852-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_24&domain=pdf
http://orcid.org/0000-0002-2136-9179
http://orcid.org/0000-0001-5652-2113
https://doi.org/10.1007/978-3-031-56852-7_24

378 V. Gulisano and E. Medvet

simple (or complex) SP building blocks, either stateless of stateful, and orga-
nizing them in graphs called queries, one may describe complex workflows in an
elegant way. Moreover, and more importantly, SP is more than a scientifically
mature field [4,30,34]: there exist many widespread software frameworks which
are used in real-world production-level applications [17] and nicely couple with
different kinds of distributed computing systems [16,29]. On the other side, most
of the significant EAs used in EC are population-based and iterative. In prac-
tice, this means that several candidate solutions exist during the execution of
an EA and they are modified over time by re-iteratively applying a small set
of operations (e.g., selection, variation, evaluation), combined in simple or more
complex ways. The potential link between SP and EC is hence clear: candidate
solutions, i.e., individuals in the EC jargon, are the items that can be processed
by SP blocks in EC-aware queries that reflect the overall working principles of
the EA.

In this work, we lay down this link and propose the first formal framework
based on the SP paradigm for EC. We describe a number of SP blocks, called
operators, tailored to EC which may be used to define different EAs, without
imposing limitations on the kind of entities the EA can work on. In fact, one of
the strong points which has favored the usage of EC in very different domains
is its capability to work with different kinds of solutions (e.g., numerical formu-
lae [18], Boolean functions for cryptography [31], security policies [20], robotic
controllers [27]) and hence on different domains [5]. With most of these solution
kinds, simply resorting on GPU-based parallelization would not be enough. In
contrast, SP facilitates seamless adaptation of existing EAs to different domains
while decoupling the support for efficient parallel/distributed execution on larger
and more heterogeneous computing systems.

We validate our proposal experimentally, by using our SP framework to
implement two EAs and applying them to five problems with two kinds of solu-
tions (bitstrings and mathematical formulae). We show that the implementations
of stream-based EAs are effective and we provide evidence of how simultane-
ous executions (jobs) can be customized without requiring alterations to the
underlying implementation. We also showcase the advantages of decoupling EA
definition and execution in SP with advanced intra- and inter-job customiza-
tion options such as merging of populations from different jobs at runtime, to
trade-off fitting performance and job completion time.

To our knowledge, this is the first attempt to port EAs into the realm of SP.
However, the power of SP has already been harnessed for improving other AI-
related workflows [22,23], mostly based on machine learning (ML). Conversely,
AI and ML proved useful to tune and optimize SP tasks. Actually, most of the
existing literature (e.g., [33]) focuses on the latter case, which is not relevant to
our work. Concerning the first case, i.e., SP for AI, we note that Apache Flink
provides a set of ML APIs [8], which, however, do not support any EA. As stated
in [3], the integration of ML within stream processing is still at its early stage,
with many systems that support efficient data distribution across ML jobs but
that, under the hood, still rely on RPC calls to external frameworks for carrying
out the actual learning processes.

Evolutionary Computation Meets Stream Processing 379

For what concerns the parallelization of EAs [1], many previous works tar-
geted specific hardware platforms, with an increasing interest in the last decade
in those based on GPUs [19,28]. However, despite the EC community acknowl-
edges that scalability and exploitation of large computing infrastructures are
key goals [14], the SP paradigm has not yet been applied to EC. Nevertheless,
modern EC software [9,21] is often designed to exploit concurrency.

2 Preliminaries: Stream Processing

2.1 Definitions

A stream S is an unbounded sequence of tuples defined over the attributes
A(S) = {τ, a1, . . . , ap}, where each attribute a has a domain V (a). τ is a special
attribute called timestamp defined in a time domain V (τ) = T ∪ R, T being the
time domain. A tuple t of a stream S is composed of |A(S)| = p + 1 attribute
values, with each value v(a, t) ∈ V (a), with a ∈ A(S).

For the sake of brevity, we write V (A(S)) for the set of all possible tuples
defined on the attributes A(S) of a stream S, i.e., V (A(S)) = T × V (a1) × · · · ×
V (ap) with A(S) = {τ, a1, . . . , ap}. Moreover, we define Aτ (S) = A(S)\{τ} and,
accordingly, we write v(Aτ (S), t) for the part of the tuple of t consisting of all
the attributes without the timestamp, i.e., v(Aτ (S), t) = 〈v(a1, t), . . . , v(ap, t)〉 ∈
V (Aτ (S)).

In the literature [12], several models build on different assumptions about the
ordering of tuples within a stream S based on their τ attribute. For generality,
we do not impose a total order on τ , but only assume there can exist substreams
Sk ∈ S so that ∀ti, tj ∈ S, k(v(Aτ (S), ti)) = k(v(Aτ (S), tj)) =⇒ v(τ, ti) ≤
v(τ, tj), where k(v(Aτ(S), t) is an arbitrary function applied on any attribute
value of tuple t, implies ti is observed before tj in S.

A stream processing query (or simply query) is a directed graph where nodes
are either sources, operators, or sinks and edges are streams. A query meets
the following criteria: (a) sources have no incoming streams, (b) sinks have no
outgoing streams, (c) and operators have at least one incoming and one outgo-
ing stream. Sources generate tuples over time. Sinks consume tuples. Operators
process tuples from input streams and produce tuples to output streams, not
necessarily resulting in each tuple in the input stream becoming a tuple in the
output stream. We describe operators in the next section.

2.2 Operators

Operators are either stateless or stateful. Stateless operators do not maintain a
state that evolves based on the tuples they process, while stateful operators do.
Since a comprehensive overview of common operators found in SPEs [12] is not
within the scope of this contribution, we present next the ones we consider in
our work.

380 V. Gulisano and E. Medvet

Merger. This is a stateless operator with n input streams Sin,1, . . . , Sin,n and
one output stream Sout, such that A(Sin,1) = · · · = A(Sin,n) = A(Sout). We
denote by M a Merger operator.

Merger outputs each input tuple of each input stream on the output stream,
keeping unmodified the timestamp and each attribute.

Delayer. This is a stateless operator with one input stream Sin and one output
stream Sout, such that A(Sin) = A(Sout) and is defined by a delay value δ ∈ T.
We denote by D[δ] a Delayer operator with its parameter.

Delayer outputs each input tuple tin on the output stream as a tuple tout,
increasing the timestamp by δ, i.e., v(τ, tout) = v(τ, tin) + δ.

FlatMap. This is a stateless operator with one input stream Sin and n output
streams Sout,1, . . . , Sout,n and is defined by n functions f1, . . . , fn, each process-
ing an input tuple into a bag of tuples of the i-th output stream. Formally,
fi : V (Aτ (Sin)) → P∗(V (Aτ (Sout,i))). We denote by FM[f1, . . . , fn] a FlatMap
operator with its parameters.

Intuitively, FlatMap maps one incoming tuple to zero or more output streams.
Formally, for each input tuple tin and each fi, FM[f1, . . . , fn] first computes the
bag Tout,i = fi(v(Aτ (Sin), tin)), then it outputs one tuple tout,i for each element
in Tout,i to the i-th output stream, setting v(τ, tout,i) = v(τ, tin).

Aggregate. This is a stateful operator with one input stream Sin and one output
stream Sout. Aggregate is defined by: a key function fkey : V (Aτ (Sin)) → K, with
K being a discrete set of keys, that takes a tuple of Sin and returns a key; an
output function fout : P∗(V (Aτ (Sin))) → P∗(V (Aτ (Sout))) that takes a bag of
tuples of Sin and produces a bag of tuples of Sout; a window size ws ∈ R

+; and
a window advance wa ∈ R

+. We denote by A[fkey, fout, ws, wa] an Aggregate
operator with its parameters.

Intuitively, Aggregate groups incoming tuples in sets (called instances),
based on their key and timestamp, and transforms instances in outgoing
tuples; the instances constitute the state of the operator: they are initially
empty and are updated based on incoming tuples. Formally, A[fkey, fout, ws, wa]
works as follows for each input tuple tin of Sin: (1) it computes the key
k = fkey(v(Aτ (Sin), tin)); (2) it computes the epochs e1, . . . , eh ∈ N such that
v(τ, tin) ∈ [eiwa, eiwa + ws[; (3) it adds tin to each instance Ik,ei

associated with
k and ei. Finally, based on the assumption that tuples in Sk are timestamp
sorted (see Sect. 2.1), for each Ik′,e such that ewa +ws < v(τ, tin) and k′ = k, (1)
it computes Tout = fout(Ik′,e) and (2) it outputs one tuple tout for each element
of Tout with v(τ, tout) = maxt∈Ik′,e v(τ, t). After having set the tuples of Tout,
Aggregate removes the corresponding instance Ik′,e from the state.

Multiplexer. This is a specialized FM[f1, . . . , fn] with one input stream Sin

and n output stream Sout,1, . . . , Sout,n, such that A(Sin) = A(Sout,1) = · · · =

Evolutionary Computation Meets Stream Processing 381

A(Sout,n). All the fi : V (A(Sin)) → P∗(V (A(Sout))) functions are the same: they
return a one-element-bag containing the input. Hence, this operator forwards
each input tuple on each output stream. We denote by X a Multiplexer.

Filter. This is a specialized FM[f1] with one input stream Sin and one out-
put stream Sout, such that A(Sin) = A(Sout). The only f1 : V (A(Sin)) →
P∗(V (A(Sout))) applies a predicate π : V (A(Sin)) → {true, false} to the input
v(A(Sin), tin) and returns an empty bag if π(v(A(Sin), tin)) is false or a one-
element-bag containing only the input otherwise. We denote by F[π] a Filter
with its parameter.

3 EAs as Queries

We consider optimization problems defined by a search space P and a fitness
function q : P → R. We assume, without loss of generality, that q has to be
minimized, i.e., the goal is to find p� = arg minp∈P q(P).

We employ an EA for solving the optimization problem. We do not enforce
any specific constraint on the EA. We only assume it is iterative and population-
based, i.e., that it evolves a population (formally, a bag) of individuals iteratively
until some predefined termination criterion is met. We call individual a triplet
given by an genotype g ∈ G, a phenotype p ∈ P ∪∅, which is a candidate solution
to the optimization problem, and its fitness, which can be either q(p) or ∅; for
both the phenotype and the fitness, ∅ represents the case when they are not yet
been evaluated for g. We call genotype-phenotype mapping a function φ : G → P
that allows to obtain a phenotype p = φ(g) from a genotype g: in EC terms,
φ (together with its domain G and co-domain P) defines the representation of
solutions. We denote by I = G × P × R the set of all possible individuals for a
problem defined over P and tackled with a φ : G → P representation.

An EA has some parameters and is, in general, stochastic. We call job an
execution of an EA with some predefined parameter values: the outcome of a
job is one solution p∗ corresponding to the best individual, i.e., the one with the
best fitness in the population at the last iteration of the EA.

In the following sections, we describe how to use stream processing to describe
EAs, namely, how to express EAs as queries. To this aim, we introduce a number
of operators, defined as specializations of the FlatMap and Aggregate operators
described in Sect. 2.2, with names and functionalities which are familiar to the
EC community.

In a query representing an EA there are three kinds of streams: (a) streams
SJ of jobs, where A(SJ) = {jobId, . . . }, V (jobId) = N, and the other
attributes describe possible other parameters of the EA; (b) streams SI of
individuals, where A(SI) = {jobId, individual} and V (individual) = I; (c)
streams SI∗ of bags of individuals, where A(SI∗) = {jobId, individuals} and
V (individuals) is P∗(I).

Finally, in a query representing an EA the time domain T is N and v(τ, t)
represents the iteration of “birth” of an individual.

382 V. Gulisano and E. Medvet

IndividualFactory. This is a specialized FM[f1] with one input stream of jobs
SJ,in and one output stream of individuals SI,out. The only f1 : I → P∗(I) takes
a job and returns a bag of n individuals where only the genotype is set, according
to the parameters of the input job. In EC terms, f1 represents the population
initialization procedure. We denote by IF[n] an IndividualFactory operator with
its parameter.

FitnessEvaluator. This is a specialized FM[f1] with one input stream of indi-
viduals SI,in and one output stream of individuals SI,out. The only f1 : I →
P∗(I) “fills” the phenotype and fitness of the individual, if they are ∅. Note
that, f1 always outputs bags of one element, i.e., ∀i ∈ I, |f1(i)| = 1. We denote
by FE a FitnessEvaluator operator.

GeneticOperator. This is a specialized FM[f1] with one input stream of bags
of individuals SI∗,in and one output stream of individuals SI,out. The only f1 :
I → P∗(I) takes the input individuals and applies a genetic operator o : G∗ → G
to their genotypes: the resulting genotype g is set as the genotype of the output
individual with φ(g) as phenotype and ∅ as fitness. As for FE, here f1 always
outputs bags of one element. We denote by GO[o] a GeneticOperator with its
parameter.

Selector. This is a specialized A[fkey, fout, 1, 1] (i.e., with ws = wa = 1)
with one input stream of individuals SI,in and one output stream of bags of
individuals SI∗,out. The key function fkey returns the jobId of the individual,
hence instances contain individuals of the same iteration and of the same job—
this is the default behavior for the Selector operator; later in the paper, we
explore different alternatives. The output function fout works as follows: let
Σ : P∗(V (Aτ (SI))) → P∗(V (Aτ (SI))) be a stochastic function that takes a bag
of individuals and returns a subbag of those individuals, then, given an instance
I, fout applies Σ to I for nsel times, hence obtaining nsel bags. We denote by
S[Σ,nsel] a Selector with its parameters.

IndividualWrapper. This is a specialized FM[f1] with one input stream of
individuals SI,in and one output stream of bags of individuals SI∗,out. The
only f1 : I → P∗(P∗(I)) takes an individual and returns a bag containing a
one-element-bag containing that individual. Hence, this operator “wraps” input
individuals in bags. We denote by IW a IndividualWrapper.

IndividualUnwrapper. This is a specialized FM[f1] with one input stream of
bags of individuals SI∗,in and one output stream of individuals SI,out. The only
f1 : P∗(I) → P∗(I) is the identity. Hence, this operator “unwraps” an input bag
of individuals to its elements, which are sent on the output stream. We denote
by IU a IndividualUnwrapper.

Evolutionary Computation Meets Stream Processing 383

3.1 Example: Genetic Algorithm (GA) Query

We here show an example of an EA expressed as a query.
We consider the case of a rather standard genetic algorithm (GA), mostly

agnostic with respect to the solution representation φ—in Sect. 4 we discuss
the experiments we performed with a bitstring representation and a tree-based
representation for mathematical formulae.

This EA works as follows. Initially, it builds a population of npop individuals,
according to a representation-specific procedure. Then it iterates the following
steps. First, it builds an offspring of npop individuals by generating 0.8npop

individuals with crossover followed by mutation and the remaining 0.2npop with
just mutation—in both cases, it selects parents with tournament selection. Then
it merges the parents with the offspring and selects the best npop individuals
that will constitute the population at the next iteration. The EA keeps iterating
for niter times. Figure 1 shows the query corresponding to this EA.

Fig. 1. The query for a standard GA. Arrow types indicate the stream types: dotted
for streams of jobs SJ , solid for streams of individuals SI , solid thick for streams
of bags of individuals SI∗ .

Σtour,n represents tournament selection: given a bag of individuals, it repeats
n times the following steps: it first selects ntour individuals—ntour being a param-
eter of tournament selection—from the bag (randomly with repetition), then it
selects the best individual in the subbag; the output is a bag of n individuals,
consistently with the parameters needed by the S[Σ,nsel] operator. Note that in
the query for this EA Σtour,n is used two times, once for generating nsel = 0.8npop

bags of n = 2 individuals (that will be the parents of a new individual built with
crossover followed by mutation), once for generating nsel = 0.2npop bags of n = 1
individual (that will be the parent of a new individual built with mutation).

Σtrunc,n represents truncation selection: given a bag of individuals, it returns
the n best individuals in the subbag—Σtrunc,n, differently from Σtour,n, is hence
deterministic. There are two operators in the query based on this selection func-
tion: S[Σtrunc,npop , 1] takes input individuals of one iteration (recall that S is an
Aggregate with ws = wa = 1 and that τ is the iteration number) and outputs

384 V. Gulisano and E. Medvet

one bag of the npop best ones. S[Σtrunc,1, 1] just outputs the best individual of
each iteration: this one is then unwrapped and sent to the sink.

The operators D[1] and F[τ < niter] govern the iterations of the EA. The
former increases the iteration number; the latter stops sending back individu-
als to the first Multiplexer when niter iterations occurred: that is, it acts as a
termination criterion.

The job source JS and the Sink represent the “start” and “end” of the evo-
lutionary optimization. Namely, we assume the source emits one job tuple upon
some user action as, e.g., the submission of an optimization task to the SPE
running the query representing the EA. On the other end, the arrival of one
individual (which is the best individual at each iteration) to the Sink might trig-
ger the storing or logging of the individual (i.e., the solution and its fitness) for
later analysis.

3.2 Example: Random Walk (RW) Query

Here we show an example of a query corresponding to another, much simpler
EA. This EA is a form of random walk (RW) where the population is constituted
by one single individual.

In detail, RW works as follows. Initially, it builds the first individual accord-
ing to a representation-specific procedure. Then, at each iteration, it mutates
the individual, used as parent, and compares the obtained offspring against the
parent. If the offspring is better than the parent, it keeps it as the parent for the
next iteration; otherwise, it keeps the parent. The EA keeps iterating for niter

times. Figure 2 shows the query corresponding to RW.

Fig. 2. The query for RW. Arrow types indicate the stream types, as in Fig. 1.

3.3 Streaming-Based Implementation Details

For ease of exposition, Sects. 3.1 and 3.2 discuss the steps performed by the
operators while processing the individuals of a single job. One of the key advan-
tages of stream processing, though, is the possibility of leveraging task/operator
pipelining and data parallelism while processing the individuals of one or more
jobs in a concurrent, parallel, and distributed fashion. In this section, we pro-
vide further insights about how stream processing achieves this while efficiently
handling the tuples flowing through operators.

Evolutionary Computation Meets Stream Processing 385

Watermarks and Result Production. In Sect. 2.2, we stated that the A
operator (i.e., the stateful operator specialized by the Selector operator S—see
Sect. 3) produces a result for Ik,e upon the reception of a tuple tin ∈ Sin so that
ewa + ws < v(τ, tin) and fkey(v(Aτ (Sin), tin)) = k.

In the examples from Sects. 3.1 and 3.2, we note all the individuals of a
job belonging to the first iteration are eventually fed to the S operator. For
such individuals to be fed to fout, nonetheless, S needs to receive at least a
tuple with the timestamp and key required to trigger the invocation of fout.
Under the hood, such triggering is based on special tuples called watermarks [12]
that only carry a timestamp and a key. In SPEs, watermarks are automatically
generated, forwarded, and processed by operators to trigger results production
while correctly enforcing operators’ semantics.

Concurrent, Parallel, and Distributed EA Job Execution. Two impor-
tant aspects must be taken into account when multiple EA jobs are carried out
at the same time by a given query. First, due to the asynchronous analysis of
streaming operators, individuals of one or more jobs could be processed at differ-
ent paces, thus advancing their iterations at different rates. Second, depending
on the fkey used by the S operator, two bags of individuals from the same or
different jobs that are not jointly processed at the i-th iteration could later be
expected to be jointly processed at the j-th iteration, with j > i (this holds true
also for their offspring individuals).

Accounting for the first aspect alone, the watermarks described in the previ-
ous section are sufficient to enforce correct semantics even when intra- or inter-
job iterations advance at different paces, since the watermark triggering the
invocation of fout on such individuals is received after all such individuals. To
handle the second aspect, though, watermarks from different keys need to be
merged, using only the minimum of the latest received values [12] as a trigger
for result production. By doing this, being Pi and P ′

i two bags of individuals
associated to two different keys k, k′ at the i-th iteration, and so that individ-
uals in Pi and P ′

i (or their offspring) are to be jointly processed in bag Pj at
the j-th iteration, with j > i, the watermark forwarded after invoking fout on
Pi cannot prematurely trigger the invocation of fout on Pj before P ′

i individu-
als/offspring are added to Pj (and vice-versa). This mechanism is transparently
handled by SPEs, as we also exemplify in Sect. 4.3.

Query Optimizations. SPEs usually compile the queries defined by users
(referred to as logical) into physical queries by automatically applying optimiza-
tions such as operator chaining and parallelization to boost performance while
preserving the semantics of the logical query [10,25]. Such a conversion is also
applied to the queries considered in this work. During such conversion, UW
operators are chained with their upstream peers. An S followed by a UW, for
instance, performs directly UW’s unwrapping upon the production of a bag of
individuals, thus avoiding unnecessary tuple communication costs between S and

386 V. Gulisano and E. Medvet

UW. IW wrapping, moreover, is transparently handled by the stream connect-
ing IW to its preceding/subsequent operator, avoiding also in this case extra
communication overheads to/from the IW operator itself.

4 Experimental Evaluation

Our experiments aim at answering the following research questions: (RQ1) does
an EA implemented as an SP query deliver the same search effectiveness of
its “classic” implementation? (RQ2) does an EA query scale, in terms of search
efficiency, with the degree of parallelism available to the SPE? (RQ3) is it possible
to express new EAs conveniently in the form of queries?

We performed the experiments considering the EAs presented in Sects. 3.1
and 3.2, each one tailored to two different representations and used to solve two
different problems. Unless otherwise specified, we set npop = 100, ntour = 5, and
niter = 100 for GA and niter = 10 000 for RW. Note that this way, both EAs
generate 10 000 new individuals for each job. For easing the comprehension, in
the following we present the results of the experiments in terms of the number
nevals of fitness function evaluations, rather than of niter.

Problems and Representations. Concerning the problems, we considered
two cases. First, we considered the classic one-max (OM) problem, in which the
goal is to find an �-long bitstring of ones: we took � ∈ {100, 1000}. The fitness
function q gives the rate of bits in the string set to zero, to be minimized. For
OM, G = P = {0, 1}�, i.e., genotypes and phenotypes are bitstrings and the
mapping function φ is the identity. We used as genetic operator omut the bitflip
mutation and as oxo the uniform crossover followed by a bitflip mutation, both
mutations with probability 0.01. We recall that RW uses only omut, while GA
uses both genetic operators. Finally, when building the initial population for
GA and the initial genotype for RW, we simply sampled � bits for each genotype
with uniform probability.

Second, we considered symbolic regression (SR), in which the goal is to find
a mathematical expression which minimizes the prediction error on a dataset
{x(i), y(i)}i=n

i=1 , with x ∈ R
p and y ∈ R. In particular, we considered the datasets

corresponding to three popular benchmarks [36]: Keijzer-6, where y =
∑j=�x1�

j=1
1
j

and the dataset contains n = 50 observations with x1 evenly spaced in [1, 50];
Nguyen-7, where y = ln(x1+1)+ln(x2

1+1) and the dataset contains n = 20 points
with x1 randomly distributed in [0, 2]; Pagie-1, where y = 1

1+x−4
1

+ 1
1+x−4

2
and the

dataset contains n = 625 points with both x1 and x2 evenly spaced in [−5, 5].
In the three cases, the fitness function q is given by the mean squared error
(MSE) of a candidate solution on the dataset—we remark that we did not use
linear scaling while evaluating individuals [35]. For SR we adopted a tree-based
representation for the individuals—when coupled with GA, they correspond to a
standard form of genetic programming (GP). In detail, the genotype space G is
the set of all the trees with a depth in [3, 8] in which the non-terminal nodes are

Evolutionary Computation Meets Stream Processing 387

• + •, • − •, • × •, •/∗•, or ln∗ • (where • represents child nodes and /∗, ln∗ are
the protected versions of the corresponding operations) and terminal nodes are
the problem independent variables xi or the constants 0.1, 1, 10. The phenotype
space P is the set of mathematical expressions corresponding to the trees in G.
With this representation, we used the standard tree mutation and standard tree
crossover as genetic operators.

Implementation and Baseline. We implemented the queries corresponding
to GA and RW (and all the stream operators adopted by them) using Flink
1.15.2 [7], a popular and well-established SPE also offered by Cloud providers
such as AWS. For the experiment related to (RQ1), we used JGEA [21] as the
classic implementation of the two EAs. We remark that both implementations
are based on Java.

We run the experiments on an Intel Xeon E5-2637 v4 @ 3.50 GHz (4 cores,
8 threads) server with 64 GB of RAM with Ubuntu 18.04. In general, the two
implementations exhibited similar performance in terms of running time: how-
ever, we remark that a thorough comparison of the computational efficiency of
JGEA against our prototypical EA queries was not a goal of this study.

4.1 (RQ1): Equivalence of Search Effectiveness

We performed 30 jobs, i.e., evolutionary runs, for each combination of problem,
EA, and implementation (i.e., query or classic). We report the results in Figs. 3
and 4 for OM and in Figs. 5 and 6 for SR. Namely, Figs. 3 and 5 show the fitness
q(p∗) of the best individual during the evolution, while Figs. 4 and 6 detail the
distribution of the best fitness at two stages of the evolution, at nevals = 1000
and at nevals = 10 000, i.e., at the end of the evolution.

Fig. 3. Best fitness (median and interq. range) during the evolution.

By observing the figures, we note that the general trend of the lines (for
Figs. 3 and 5) is similar for the two implementations, regardless of the problem
and of the EA. This finding suggests that an EA implemented as a query is
“functionally” similar to its counterpart implemented in a classic way: solutions
found with a query are as good as those found with a classic implementation.

388 V. Gulisano and E. Medvet

Fig. 4. Distribution of the best fitness nevals = 103 and 104. Over the pairs of boxplots,
p-value of the Wilcoxon test: = means that all the samples are 0.

Fig. 5. Best fitness (median and interq. range) during the evolution.

Fig. 6. Distr. of the best fitness at nevals = 103 and 104; p-values as in Fig. 4.

For each combination of problem and EA, we performed a statistical signif-
icance test (Wilcoxon signed rank, after having verified the proper hypotheses)
with the null hypothesis of equality of the means of the best fitness, at the two
stages of the evolution corresponding to nevals = 1000 and nevals = 10 000. Fig-
ures 4 and 6 report the p-values (and the underlying distributions, in form of
boxplots): in most of the cases the differences are not statistically significant.

4.2 (RQ2): Scalability

SPEs are highly optimized to exploit parallelism. We wanted to verify that this
capability holds also when the SPE is executing a query corresponding to an EA.
For this experiment, we considered the Pagie-1 problem and GA, because they
correspond to the most computationally intensive combination. We submitted to
the query a number njobs of concurrent jobs (with different random seeds), with

Evolutionary Computation Meets Stream Processing 389

njobs ∈ {1, 3, . . . , 29}, and we measured the average completion time (wall time)
for each job. We repeated the experiment four times setting Flink parallelism to
1, 2, 4, or 8 (with 4 and 8 being the parallelism degrees for which all cores are
used). Figure 7 presents the salient results of this experiment, i.e., the average
wall time vs. njobs for different parallelism degrees.

Fig. 7. Average job completion time (wall time) when performing njobs concurrent jobs
using different degrees of parallelism.

It can be seen that, provided a large enough number of jobs (here, ≈10) is
submitted to the query, the SPE can keep the average wall time constant. Also,
by comparing the different lines, one can observe that the greater the parallelism,
the lower the average time: namely, it corresponds to 9.5 s, 7.0 s, 6.2 s, and 5.5 s
for 1, 2, 4, 8 parallelism, respectively, for njobs = 9 and to 7.7 s, 4.9 s, 3.5 s,
3.0 s for njobs = 29. Note that, the gains of higher parallelism degrees are less
pronounced as Flink’s parallelization grows, especially once 5 or more jobs are
run in parallel. This is expected since the 4 available cores are fully utilized for
a parallelism degree higher than 4 or when 5 or more jobs run in parallel.

4.3 (RQ3): Expressive Power of Query-Based EAs

Quantifying the expressive power of queries for EAs, i.e., “counting” how many
sound EAs can be expressed as queries is an hard task which is beyond the scope
of this study. Nevertheless, we attempted to show concretely that a practitioner
would easily be capable of modifying an EA by acting on the query.

Beside trivial modifications involving single operators (e.g., changing the
selection function Σ of the S operators in Fig. 1 from tournament to roulette
wheel), and simple modifications of the query (e.g., removing the “lowest” path
exiting from the first X operator in Fig. 1, hence making the generational model
without overlapping), we considered a modification showcasing the ease for rich
customization enable by SP-based EA queries. In particular, we put ourselves in
the perspective of a user who does not know how to set some hyperparameter
of an EA for a given problem, considering GA applied to Pagie-1 and the set C
of constants defining the genotype space of trees as hyperparameter.

A straightforward approach would be to consider np candidates for C and
then run np jobs. Eventually, one candidate would turn out to be the best one,

390 V. Gulisano and E. Medvet

i.e., the one delivering the best solution. However, this approach would be com-
putationally heavy, because all jobs would be executed entirely, including those
corresponding to bad values of C. A smarter approach is to start np jobs in par-
allel with np candidate values for C and to merge them after a number nmerge

of bootstrap iterations, on the assumption that in the merged population the
individuals built with the best C will likely score better.

While merging jobs is not straightforwardly supported in a traditional EC
software (e.g., in JGEA it would imply a rewriting of the full GA), it is trivial in
the context of a streaming query, since all individuals (from any number of jobs)
are being processed within the same instance of the query. More concretely, this
can be achieved by customizing the fkey of the S operator, returning the same
key for different jobs after the given number of bootstrap iterations.

We realized this modification and experimentally compared it against the
expensive approach where all the candidate values are tested entirely—we
remark, however, that our goal was not to propose a novel and effective meta-EA,
but to show that realizing it is easy if it is an SP-based EA. Namely, we tested
two cases: one (“at once”) in which we started np jobs and merged all the jobs
in a single job after nmerge iterations and one (“continuous”) in which, starting
at the nmerge-th iteration, we merged two random jobs at each generation until
obtaining one single job.

Figure 8 shows the results of the comparison of this meta-EA against the
trivial approach (“baseline”) where np jobs are executed all together and entirely,
all terminating after 100 iterations. We executed 10 times each of the five meta-
EA and reported the best fitness across all their np. We set np = 30 and built
the 30 candidates for C by randomly sampling 3 values in [0, 10] for each one.

Fig. 8. Best fitness (median and interq. range) during the evolution w meta-EAs.

By observing Fig. 8, we see that the experiment highlights the differences
between meta-EAs. In particular, all the variants of the smart approach are
cheaper in terms of the overall number of fitness evaluations. Moreover, they
also appear to be faster in convergence.

5 Concluding Remarks

We proposed a formal framework based on SP for EAs in the context of EC. We
implemented two EAs in the form of SP queries, i.e., graphs of SP operators,

Evolutionary Computation Meets Stream Processing 391

and experimentally showed they are as effective as their non-SP counterparts,
i.e., the EAs implemented in a traditional way. Also, we showed that using our
framework, one may easily define new EAs or modify existing ones to explore
new algorithmic possibilities or to streamline complex experimental procedures.

We believe our work may indicate a path towards a democratized EC. SP,
a paradigm widely used in the IoT-to-Cloud continuum and offered as a service
by, e.g., AWS, may enable the effective use of EAs beyond the communities of
researchers and of specialists of specific implementations, without, remarkably,
diminishing the wide applicability of EC to very different domains. Moreover, we
think that by leveraging the existing literature aimed at characterizing [13] and
explaining [26] the execution of SP queries, EC might stand out, in the broad
family of AI, in consistency and explainability [32].

Acknowledgements. This study was carried out within the PNRR research activ-
ities of the consortium iNEST (Interconnected North-Est Innovation Ecosystem)
funded by the European Union Next-GenerationEU (Piano Nazionale di Ripresa
e Resilienza (PNRR) - Missione 4 Componente 2, Investimento 1.5 - D.D. 1058
23/06/2022, ECS 00000043), and by the Marie Sk�lodowska-Curie Doctoral Network
project RELAX-DN, funded by the European Union under Horizon Europe 2021–2027
Framework Programme Grant Agreement number 101072456.

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

2. Bartoli, A., Manzoni, L., Medvet, E.: Commentary on “Jaws 30”, by W.B. Lang-
don. Genet. Program Evolvable Mach. 24, 23 (2023). https://doi.org/10.1007/
s10710-023-09471-1

3. Carbone, P., Fragkoulis, M., Kalavri, V., Katsifodimos, A.: Beyond analytics: the
evolution of stream processing systems. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pp. 2651–2658 (2020)

4. Cardellini, V., Lo Presti, F., Nardelli, M., Russo, G.R.: Runtime adaptation of data
stream processing systems: the state of the art. ACM Comput. Surv. 54(11s), 1–36
(2022)

5. De Lorenzo, A., Bartoli, A., Castelli, M., Medvet, E., Xue, B.: Genetic program-
ming in the twenty-first century: a bibliometric and content-based analysis from
both sides of the fence. Genet. Program Evolvable Mach. 21, 181–204 (2020)

6. Duvignau, R., Gulisano, V., Papatriantafilou, M., Savic, V.: Streaming piecewise
linear approximation for efficient data management in edge computing. In: Pro-
ceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (2019)

7. Flink: Apache Flink (2023). https://flink.apache.org. Accessed 27 Jan 2023
8. FlinkML: Apache Flink ML Documentation (2023). https://nightlies.apache.org/

flink/flink-ml-docs-stable/. Accessed 14 Nov 2023
9. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.:

DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175
(2012)

https://doi.org/10.1007/s10710-023-09471-1
https://doi.org/10.1007/s10710-023-09471-1
https://flink.apache.org
https://nightlies.apache.org/flink/flink-ml-docs-stable/
https://nightlies.apache.org/flink/flink-ml-docs-stable/

392 V. Gulisano and E. Medvet

10. Frasca, F., Gulisano, V., Mencagli, G., Palyvos-Giannas, D., Torquati, M.: Accel-
erating stream processing queries with congestion-aware scheduling and real-time
Linux threads. In: Proceedings of the 20th ACM International Conference on Com-
puting Frontiers, pp. 144–153 (2023)

11. Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., Valduriez, P.:
StreamCloud: an elastic and scalable data streaming system. IEEE Trans. Parallel
Distrib. Syst. 23(12), 2351–2365 (2012)

12. Gulisano, V., Palyvos-Giannas, D., Havers, B., Papatriantafilou, M.: The role of
event-time order in data streaming analysis. In: Proceedings of the 14th ACM
International Conference on Distributed and Event-Based Systems, DEBS 2020,
pp. 214–217. Association for Computing Machinery, New York (2020). ISBN
9781450380287. https://doi.org/10.1145/3401025.3404088

13. Gulisano, V., Papadopoulos, A.V., Nikolakopoulos, Y., Papatriantafilou, M., Tsi-
gas, P.: Performance modeling of stream joins. In: Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, pp. 191–202
(2017)

14. Harada, T., Alba, E.: Parallel genetic algorithms: a useful survey. ACM Comput.
Surv. 53(4), 1–39 (2020)

15. Havers, B., Duvignau, R., Najdataei, H., Gulisano, V., Koppisetty, A.C., Papatri-
antafilou, M.: DRIVEN: a framework for efficient data retrieval and clustering in
vehicular networks. In: 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE), pp. 1850–1861. IEEE (2019)

16. Hummer, W., Satzger, B., Dustdar, S.: Elastic stream processing in the cloud.
Wiley Interdisc. Rev. Data Min. Knowl. Disc. 3(5), 333–345 (2013)

17. Isah, H., Abughofa, T., Mahfuz, S., Ajerla, D., Zulkernine, F., Khan, S.: A survey
of distributed data stream processing frameworks. IEEE Access 7, 154300–154316
(2019)

18. La Cava, W., et al.: Contemporary symbolic regression methods and their relative
performance. arXiv preprint arXiv:2107.14351 (2021)

19. Maitre, O., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain paral-
lelization of evolutionary algorithms on GPGPU cards with EASEA. In: Proceed-
ings of the 11th Annual Conference on Genetic and Evolutionary Computation,
pp. 1403–1410 (2009)

20. Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of
attribute-based access control policies. In: Gaspar-Cunha, A., Henggeler Antunes,
C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 351–365. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15934-8 24

21. Medvet, E., Nadizar, G., Manzoni, L.: JGEA: a modular java framework for exper-
imenting with evolutionary computation. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion, pp. 2009–2018 (2022)

22. Najdataei, H., Gulisano, V., Tsigas, P., Papatriantafilou, M.: pi-Lisco: parallel
and incremental stream-based point-cloud clustering. In: Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, pp. 460–469 (2022)

23. Najdataei, H., Nikolakopoulos, Y., Gulisano, V., Papatriantafilou, M.: Continuous
and parallel LiDAR point-cloud clustering. In: 2018 IEEE 38th International Con-
ference on Distributed Computing Systems (ICDCS), pp. 671–684. IEEE (2018)

24. Palyvos-Giannas, D., Havers, B., Papatriantafilou, M., Gulisano, V.: Ananke: a
streaming framework for live forward provenance. Proc. VLDB Endow. 14(3), 391–
403 (2020)

https://doi.org/10.1145/3401025.3404088
http://arxiv.org/abs/2107.14351
https://doi.org/10.1007/978-3-319-15934-8_24

Evolutionary Computation Meets Stream Processing 393

25. Palyvos-Giannas, D., Mencagli, G., Papatriantafilou, M., Gulisano, V.: Lachesis: a
middleware for customizing OS scheduling of stream processing queries. In: Pro-
ceedings of the 22nd International Middleware Conference, pp. 365–378 (2021)

26. Palyvos-Giannas, D., Tzompanaki, K., Papatriantafilou, M., Gulisano, V.: Erebus:
explaining the outputs of data streaming queries. In: Very Large Data Base, vol.
16, pp. 230–242 (2023)

27. Pigozzi, F., Medvet, E.: Evolving modularity in soft robots through an embodied
and self-organizing neural controller. Artif. Life 28(3), 322–347 (2022)

28. Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the CUDA archi-
tecture. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp.
442–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12239-
2 46

29. Rathore, M.M., Son, H., Ahmad, A., Paul, A., Jeon, G.: Real-time big data stream
processing using GPU with spark over Hadoop ecosystem. Int. J. Parallel Program.
46(3), 630–646 (2017). https://doi.org/10.1007/s10766-017-0513-2

30. Röger, H., Mayer, R.: A comprehensive survey on parallelization and elasticity in
stream processing. ACM Compu. Surv. (CSUR) 52(2), 1–37 (2019)

31. Rovito, L., De Lorenzo, A., Manzoni, L.: Evolution of Walsh Transforms with
genetic programming. In: Proceedings of the Companion Conference on Genetic
and Evolutionary Computation, pp. 2386–2389 (2023)

32. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

33. Russo, G.R., Cardellini, V., Presti, F.L.: Reinforcement learning based policies
for elastic stream processing on heterogeneous resources. In: Proceedings of the
13th ACM International Conference on Distributed and Event-Based Systems, pp.
31–42 (2019)

34. Stephens, R.: A survey of stream processing. Acta Informatica 34, 491–541 (1997)
35. Virgolin, M., Alderliesten, T., Bosman, P.A.: Linear scaling with and within seman-

tic backpropagation-based genetic programming for symbolic regression. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 1084–1092
(2019)

36. White, D.R., et al.: Better GP benchmarks: community survey results and propos-
als. Genet. Program Evolvable Mach. 14, 3–29 (2013)

https://doi.org/10.1007/978-3-642-12239-2_46
https://doi.org/10.1007/978-3-642-12239-2_46
https://doi.org/10.1007/s10766-017-0513-2

Evolutionary Computation in Image
Analysis, Signal Processing and Pattern

Recognition

Integrating Data Augmentation
in Evolutionary Algorithms for Feature

Selection: A Preliminary Study

Tiziana D’Alessandro , Claudio De Stefano , Francesco Fontanella(B) ,
and Emanuele Nardone

Department of Electrical and Information Engineering (DIEI), University of Cassino
and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino, FR, Italy

{tiziana.dalessandro,destefano,fontanella,emanuele.nardone}@unicas.it

Abstract. In many machine learning applications, there are hundreds
or even thousands of features available, and selecting the smallest sub-
set of relevant features is a challenging task. More recently, researchers
have investigated how data augmentation affects feature selection per-
formance. Although evolutionary algorithms have been widely used for
feature selection, no studies have investigated how data augmentation
affects their performance on this challenging task. The study presented
in this paper investigates how data augmentation affects the performance
of evolutionary algorithms on feature selection problems. To this aim, we
have tested Genetic Algorithms and Particle Swarm Optimization and
compared their performance with two widely used feature selection algo-
rithms. The experimental results confirmed that data augmentation is a
promising tool for improving the performance of evolutionary algorithms
for feature selection.

1 Introduction

In recent years, machine learning has seen a strong growth in the number of fea-
tures used to represent the ever-increasing data collected. Unfortunately, in many
applications, a part of those features may be redundant or irrelevant with respect
to the target concept of the problem at hand. Those features may give rise to
the curse of dimensionality phenomenon: when the dimensionality increases, the
volume of the space increases so fast that the available data becomes sparse. This
sparsity negatively affects the performance of the learned models and increases
training time complexity. Those harmful features can be identified and then
eliminated by using feature selection techniques. Feature selection refers to the
process of finding the smallest subset of relevant features to use for the model
construction. Feature selection is a search problem in the search space made of
all the possible subsets of the available features. In addition to a search strat-
egy, feature selection requires an evaluation function to estimate feature subset
quality. Evaluation functions can be divided into two wide categories, namely
filter and wrapper. Filter functions are based on statistics measures, whereas
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 397–412, 2024.
https://doi.org/10.1007/978-3-031-56852-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_25&domain=pdf
http://orcid.org/0009-0005-4340-7227
http://orcid.org/0000-0002-7654-6849
http://orcid.org/0000-0002-3242-0179
http://orcid.org/0009-0005-8718-5435
https://doi.org/10.1007/978-3-031-56852-7_25

398 T. D’Alessandro et al.

wrapper functions use the performance achieved by a given classification algo-
rithm trained on the subset of features to be evaluated [15]. As concerns the
search strategy, the exponential nature of the search space (if N is the number
of available features, the total number of possible solutions is 2N) makes the
exhaustive search impracticable in most real-world problems. For this reason,
many search techniques have been applied to feature selection, such as complete
search, greedy search, and heuristic search [21]. Unfortunately, the effectiveness
of most of these approaches is limited by their high computational costs or by
early stagnation in local optima.

Thanks to their global search ability, evolutionary computation (EC) tech-
niques have been widely used as search tools in feature selection problems [1,22].
Furthermore, EC techniques do not need domain knowledge and do not make any
assumptions about the search space, such as whether it is linearly or non-linearly
separable and differentiable [5,6]. Among the EC-based approaches, Genetic
Algorithms (GAs) have been widely used. GA binary vectors provide a natu-
ral and straightforward representation for feature subsets: the value 1 or 0 of
the chromosome i-th element indicates whether the i-th feature is included or
not. This allows GA-based algorithms to be used for feature selection without
any modification [7]. More recently, also Particle Swarm Optimization (PSO)
has been widely used. PSO has been inspired by the social behavior of birds
and fish. In the PSO metaphor, a swarm of “particles” (the potential solutions)
move through the search space by adjusting their velocities and positions. Par-
ticle dynamics is based on the knowledge learned so far in the search space by
stochastically toward their own best-known position as well as the entire swarm’s
best-known position. For feature selection, particles can be either binary vectors,
as in the GA algorithm mentioned above, or real-valued numbers [14]. In the sec-
ond case, the i-th feature is selected only if the i-th value in the particle is larger
than a given threshold θ [23].

Data augmentation involves creating new training data by applying various
transformations to the original data [11], and improves model performance by
increasing the diversity of training samples. Data augmentation is widely used in
deep learning to create new training images using transformations like flipping,
rotating, and scaling, among others [20]. Although less common, data augmenta-
tion is also used for tabular data. In this case, transformations include techniques
like adding noise, interpolating data, or shuffling features [26]. Also, EC-based
techniques have been used for data augmentation. In [18], the authors intro-
duce a novel approach for finding effective data augmentation strategies to train
deep neural networks in the medical imaging domain. In [16], the authors use
an evolutionary algorithm to select the input samples generated by a generative
adversarial network (GAN).

Recent studies have investigated the effectiveness of integrating data aug-
mentation and feature selection. In [25], the authors use a generative adversar-
ial network (GAN)-based technique and a hybrid feature selection method for
small sample credit risk assessment with high dimensionality. In [4], the authors
combine data augmentation and feature selection to build a data-driven sys-

Integrating Data Augmentation 399

tem for automatic model recommendation in a computational physics problem.
However, although EC-based approaches have been widely used for feature selec-
tion and, more recently, data augmentation, no studies have investigated how
data augmentation affects the performance of evolutionary algorithms for feature
selection.

In this paper, we try to fill the gap mentioned above by presenting a study
in which we have tested the effectiveness of EC-based algorithms on augmented
data. In particular, we tested GA and PSO as evolutionary algorithms. To inves-
tigate the performance of GA and PSO, we first compared their performance with
the baseline results achieved without feature selection. Then, we compared their
results with those achieved by two widely used feature selection algorithms. The
first algorithm is recursive feature elimination (RFE) [13], whereas the second is
a filter-based algorithm [19], both implemented in scikit-learn [17], used as ML
backend library for the project. The experimental results confirmed that data
augmentation is a promising approach for improving the effectiveness of EC-
based algorithms for feature selection. The analysis of those results has allowed
us to define a wide range of future research activities.

The remainder of the paper is organized as follows: Sect. 2 details the pro-
posed approach, whereas Sect. 3 reports and discusses the experimental results.
Finally, Sect. 4 is devoted to the conclusions and summarizes the future work
inspired by the analysis of the experimental results.

2 The Proposed Approach

This study is aimed at investigating how data augmentation (DA) affects evo-
lutionary algorithms in feature selection (FS) problems. Our approach was to
explore how these techniques influence the performance of machine learning mod-
els, primarily in terms of accuracy and number of features selected. In the follow-
ing subsections, we detail the procedure we implemented for data augmentation
as well as the implementation of the GA and PSO algorithms considered in our
study.

2.1 Data Augmentation

Data augmentation, a pivotal technique in machine learning, is essential for
tackling imbalanced datasets and enhancing model generalization. Our algorithm
(Algorithm 1), streamlines the generation of new samples by initially creating a
set of random samples. The process involves a class-wise computation of the
mean and standard deviation for each feature in the dataset. The augmentation
process is iterative, continuing until the predetermined augmentation percentage
is met. During this iterative process, each class undergoes a procedure where
new samples are perturbed in a manner that adheres to class-wise constraints.
Each perturbed sample is then evaluated to ensure it falls within ±3σ of the
class’s feature distribution. Samples that meet this criterion are retained in the
augmented dataset, while those that do not are discarded and replaced with

400 T. D’Alessandro et al.

Algorithm 1: Data Augmentation with Random Noise.
Input: Dataset with N features and C classes; Percentage of augmentation P .
Output: Augmented dataset.
Load Dataset;
Generate randomly k new samples;
while P not met do

foreach Class do
Calculate the mean and standard deviation of each feature class-wise;
Pertubate samples adhering to class-wise constraints;
Evaluate if a samples falls within ±3σ of the class distribution;
if sample fits within the range then

Retain the sample in the augmented dataset;
else

Discard the sample and generate a new one;
end

end
Check the performance of the augmented dataset with a classifier
(K-Nearest Neighbors);
Ensure class balance in the distribution of new instances;

end

newly generated samples. This approach meticulously maintains the integrity
and distribution of the original dataset, introducing only slight modifications to
random instances.

The augmentation’s effectiveness is estimated using a K-Nearest Neighbors
classifier, ensuring class balance and adjusting generated sample numbers per
class as needed.

2.2 Evolutionary Algorithms for Feature Selection

PSO for Feature Selection. Particle Swarm Optimization (PSO) is an evolu-
tionary computation technique that mimics the social behavior of swarms. In the
context of feature selection for machine learning, PSO can be harnessed to iden-
tify an optimal subset of features that enhance the performance of a predictive
model.

The PSO algorithm begins with the initialization of a population of particles.
Each particle represents a candidate solution to the feature selection problem
and is characterized by a position vector in the search space and a velocity
vector that determines its movement through the search space. The position of
a particle corresponds to a specific subset of features from the dataset.

The fitness of each particle is described in Sect. 2.3. A sigmoid function is
applied to the particle’s position to decide if its value exceeds 0.5, including or
excluding each feature. This function transforms the feature’s score to a probabil-
ity, creating a binary decision process. A particle’s position, therefore, translates
to a particular selection of features.

Integrating Data Augmentation 401

Table 1. PSO parameters setting.

Parameter Value

Swarm Size 30

Cognitive Coefficient (φ1) 2.0

Social Coefficient (φ2) 2.0

Number of Iterations 60

Particle Position Limits (pmin, pmax) [−1.0, 1.0]

Velocity Limits (smin, smax) [−1.0, 1.0]

The PSO algorithm iteratively updates the particles’ velocities and positions.
This update is influenced by the personal best position of each particle and the
global best position found by the swarm, moderated by cognitive and social
coefficients. These coefficients determine the relative influence of an individual
particle’s experience and the collective experience of the swarm, respectively.

Each particle’s velocity is adjusted by considering the difference between its
current position, its personal best, and the global best positions. The velocity
update reflects a balance between exploring new areas in the search space and
exploiting known good solutions. The particles’ positions are then updated by
adding the new velocity to the current position, ensuring that particles move
towards regions of the search space with higher fitness values.

As the algorithm proceeds, particles converge towards a subset of features
that provides a balance between a high accuracy score and a low complexity
penalty. The algorithm terminates after a pre-defined number of iterations.

Upon completion, the algorithm returns the best feature subset found during
the search (Table 1 shows the parameter values used).

GA for Feature Selection. In this section, we describe the second method for
the feature selection process, using a Genetic Algorithm (GA). Traditional meth-
ods may lead to suboptimal solutions. Hence, we employed a GA to efficiently
search for the best subset of features that could yield the highest prediction
accuracy.

The GA begins with a population of potential solutions, each representing a
different combination of features. These solutions are encoded as binary strings,
where the presence of a feature in a given solution is marked as ‘1’ and its
absence as ‘0’. The GA evolves these solutions over several generations. In each
generation, the quality of each solution is evaluated according to the fitness
function detailed in the next subsection.

The evolution process involves selection, crossover, and mutation operations.
Selection favors solutions with higher fitness, allowing them to pass their genes
to subsequent generations. Crossover combines pairs of solutions to produce off-
spring that inherit features from both parents, while mutation introduces ran-
dom changes to maintain genetic diversity within the population. The algorithm

402 T. D’Alessandro et al.

Table 2. GA parameters setting.

Parameter Value

Population Size 50

Crossover Probability 0.6

Mutation Probability 1/#features

Tournament size 3

Number of Generations 40

Elitism Keep best

iteratively refines the population of feature subsets through these operations.
The best-performing individual (feature subset) is identified at the end of the
process. This subset provides the features that better discriminate the classes of
the problem at hand by excluding irrelevant and noisy features.

The GA’s effectiveness is measured by the quality of the final feature subset it
identifies, as well as the consistency of its performance across multiple runs. The
approach is flexible and can be adapted to various types of data and models.
This method allows for an automated and intelligent search for the optimal
feature space, potentially uncovering interactions and dependencies that are not
immediately evident using other feature selection methods (Table 2 shows the
parameter values used).

2.3 Fitness

We use a wrapper fitness function implemented using the DEAP [9] Python
library and based on the K-Nearest Neighbors (KNN) classifier, using five-fold
cross-validation as a model performance evaluation strategy. Furthermore, the
defined fitness function also considers the number of selected features. Given an
Individual I, its fitness f(I) is computed as follows:

f(I) = Acc + α

(
Ntot − Nsel

Ntot

)
(1)

Acc is the accuracy achieved by KNN on the subset of features encoded by I, α
is a penalty coefficient set to 0.01, Ntot is the total number of available features,
whereas Nsel is the cardinality of the subset encoded by I.

3 Experimental Results

As mentioned in the Introduction, this research aims to investigate the effect of
data augmentation on EC-based techniques for feature selection; for this reason,
we performed several sets of experiments. We used six datasets originating from
various application domains. We employed datasets with diverse characteristics
regarding sample sizes, features, and classes. In detail, we considered Hand [2], a

Integrating Data Augmentation 403

Fig. 1. Experimental workflow.

handwriting features dataset for Alzheimer’s disease diagnosis; Isolet [3], known
as the “Isolated Letter Speech Recognition” dataset contains features extracted
from audio recordings, for speech and pattern recognition tasks; Mfeat1 and
Mfeat2 are two subsets of the Multiple Features dataset [8], containing attributes
associated with handwritten numerals. Other datasets are the Ozone [24] dataset,
related to ozone levels for monitoring and studying climate and environment, and
Toxicity [12], comprising toxic and non-toxic molecules specifically crafted for
the functional domains of a protein playing a pivotal role in regulating circadian
rhythms. For further details, please refer to Table 3.

The following subsections comprehensively describe each experiment, dis-
cussing the related results. For each dataset and experiment, we carried out
twenty runs. Figure 1 shows the overall workflow of the experiments carried
out. The first implementation refers to a baseline case, Sect. 3.1, where datasets
were directly used for classification. Instead, four feature selection methods were
exploited in the second experiment, Sect. 3.2. A third experiment, Sect. 3.3,
involved the addition of a data augmentation module. In a fourth set of exper-
iments, we investigated the behavior of GA and PSO during the evolution.
Finally, to assess the effectiveness of GA and PSO, we compared the best results
obtained using data augmentation with the baseline results as well as those
achieved without data augmentation.

To assess the performance we used the accuracy, a common metric in machine
learning that measures the overall correctness of a model’s predictions. It was
calculated as the ratio of correctly predicted instances over the total number
of instances. As we perform 20 runs, we refer to the average accuracy and its
standard deviation, which provide us with information about the stability of the
experimental results. We also report the average number of selected features, as
it is crucial in ML for efficiency, interpretability, and model performance.

404 T. D’Alessandro et al.

Table 3. The datasets used in the experiments.

Dataset #Samples #Features #Classes

Hand 174 90 2

Isolet 7797 617 26

Mfeat1 2000 216 10

Mfeat2 2000 64 10

Ozone 4748 72 2

Toxicity 171 1203 2

3.1 Baseline Experiment

The initial experimental setup served as a basic reference point for comparing its
performance to the subsequent experiments, which were more time-consuming
and resource-intensive. This comparison is helpful to determine whether the
added complexity and effort in more advanced experiments lead to better per-
formance. Figure 1 shows the final experimental workflow, where the baseline
case is represented as the uncoloured section of the model. The system took a
dataset, subjecting it to an initial preprocessing phase. This step is crucial for
ensuring data quality and aligning the dataset with the standards expected by
the subsequent classification algorithm. The procedure can be described through
three operations: the encoding of categorical features, the handling of missing
values, and a scaling transformation of all the features with the RobustScaler
standardization technique. The first two operations were selectively applied to
datasets where their application is meaningful and necessary. This step was the
same for every experimental setting. Once the input dataset was processed, it
was ready for the classification step. First, the dataset was split into training
(80%) and test (20%) sets. Then, the training set was employed in a Bayesian
search [10] to optimize the hyperparameters of the classification algorithm. The
Bayesian search was implemented following a 5-fold cross-validation strategy.
The chosen supervised ML algorithm is K-Nearest Neighbors (KNN), and after
the hyperparameters’ optimization, it was trained on the training set and tested
on the test set. The final output was expressed in average and standard devia-
tion accuracy, computed over the 20 runs. Table 4 shows for every dataset the
obtained value of average accuracy and standard deviation.

Table 4. Baseline experiment results in terms of average accuracy and standard devi-
ation computed over 20 runs.

Dataset AVG STD

Hand 58.8 7.1

Isolet 90.7 0.6

Mfeat1 95.7 1.1

Mfeat2 95.3 1.1

Ozone 94.1 3.8

Toxicity 67.4 5.5

Integrating Data Augmentation 405

3.2 Testing Feature Selection

The second experimental setting can be evinced from Fig. 1, considering the
uncoloured section and the green box referring to the feature selection module.
It is noticeable at first glance that the complexity is increased with respect to
the baseline experiment, described in Sect. 3.1. The setup is similar to the pre-
vious one, with the addition of a feature selection module. Before the Bayesian
search, we used the training set for feature selection (FS). We tested several FS
techniques to understand which feature selection method was more convenient
and to find a good trade-off between resources and performance. In particular,
this experiment aims to compare common FS methods with those proposed in
our approach Sect. 2.2, based on evolutionary algorithms inspired by the prin-
ciples of biological evolution and natural selection. In detail, we considered two
FS algorithms:

– Recursive Feature Elimination (RFE);
– SelectKBest (SKB).

RFE performs a greedy search to find the best-performing feature subset based
on the backward elimination strategy [13]. Starting from the whole set of avail-
able features, the RFE algorithm iteratively creates models and determines the
worst-performing feature at each iteration. Then, it builds the subsequent mod-
els with the remaining features until all of them are explored. Finally, features
are ranked according to the order of their elimination. If the data contain N
features, RFE evaluates N2 subsets in the worst case. SelectKBest algorithm,
instead, is a feature selection technique that identifies the most influential fea-
tures in a dataset. It assigns scores to features based on a specified statistical test,
which measures the strength of the relationship between each feature and the
target variable. Common tests include ANOVA for regression and Chi-squared
for classification. SelectKBest then ranks these features based on their scores.
The parameter k determines the number of top-scoring features to retain. This
process effectively reduces the feature space, enabling models to focus on the
most relevant data, improving efficiency, and potentially enhancing model per-
formance. The training set was partitioned to create a validation set comprising
20% of its samples. This division is crucial, as the validation accuracy is the
scoring function for RFE and SKB obtained from the KNN algorithm.

Table 5 shows the result for the feature selection methods tested; for every
dataset, the best results are in bold. From the table, we can observe that the
best performance was achieved by PSO, which outperforms the others in four
cases out of six. PSO outperformed the remaining algorithms both in terms
of accuracy and the number of selected features. Though PSO was the best,
another interesting trend from the table is that PSO and GA performance was
comparable to the common and well-established FS method tested.

406 T. D’Alessandro et al.

Table 5. Feature selection results in terms of average and standard deviation accuracy
and average number of selected features computed over 20 runs.

Dataset(#features) RFE SKB PSO GA

Acc #feat Acc #feat Acc #feat Acc #feat

Hand (90) 57.7 ± 7.5 45 58.0 ± 6.9 45 58.8 ± 6.8 33.3 58.4 ± 8.0 40.6

Isolet (617) 88.8 ± 1.4 308 88.3 ± 2.1 307 92.1 ± 0.9 291.8 91.5 ± 0.7 302.1

Mfeat1 (216) 95.0 ± 1.7 108 95.4 ± 1.6 109 95.9 ± 0.9 90.9 95.8 ± 1.1 103.3

Mfeat2 (64) 96.0 ± 1.0 32 96.2 ± 0.9 31 95.3 ± 1.0 31.5 95.3 ± 1.2 36.1

Ozone (72) 91.8 ± 3.2 36 92.3 ± 3.9 37 92.4 ± 3.3 29.9 94.2 ±2.8 32.6

Toxicity (1203) 64.8 ± 5.8 600 64.6 ± 6.6 601 67.1 ± 7.5 509.9 64.4 ± 8.7 597.9

3.3 Data Augmentation and Feature Selection

The third experiment shown in Fig. 1 was conducted with the experimental set-
ting described in Sect. 3.2, with the addition of a data augmentation module
(orange box). The workflow equals the previous one, so the input dataset was
processed and split into training and test sets. This time, the training set was
first augmented and then used for feature selection, bayesian search, and finally,
for training the KNN algorithm. Using the data augmentation procedure detailed
in Sect. 2.1, we tested three augmentation percentages, namely 10%, 20%, and
30%.

Table 6 shows the results obtained. To have a complete view of how the
DA affects the performance, we also included the results achieved without DA
(0%). From the table, it is evident that increasing the augmentation percentage
generally leads to improved performance. There are exceptions to this trend,
as indicated by the Ozone dataset when using the GA method, and the Isolet
dataset in combination with RFE and SKB. However, for every dataset, the best
performance was reached with the highest percentage of augmented data; in some
cases, the increase in the accuracy reached the 5% from no data augmentation
up to the 30% of augmented data, as for the case of the Isolet dataset with
RFE. Besides this, the evolutionary FS methods outperformed the others for
four datasets out of six, whereas for the remaining datasets, their performance
was comparable to the other well-assessed FS methods. From the table, we can
also observe that for all algorithms, data augmentation did not affect the number
of features selected. Finally, comparing PSO and GA, we can see that the GA
typically selected more features than the PSO.

3.4 Investigating the Behaviour of GA and PSO

In this set of experiments, we investigated the behavior of GA and PSO during
the evolution. To this aim, we plotted the average fitness values as a function
of the generation number. Figure 2 shows those plots for three out of the six
datasets analyzed, namely Hand, Isolet, and Toxicity (the other ones showed
similar trends). To investigate how data augmentation affects evolution, we plot-
ted the average fitness for the three data augmentation percentages as well as

Integrating Data Augmentation 407

Fig. 2. Average fitness trend comparison: PSO on the left and GA on the right.

408 T. D’Alessandro et al.

Table 6. Data augmentation and feature selection results in terms of average accu-
racy and standard deviation computed over 20 runs for every FS technique and DA
percentage.

Dataset (#features) DA (%) RFE SKB PSO GA

Acc #feat Acc #feat Acc #feat Acc #feat

Hand (90) 0 57.7 ± 7.6 45 57.9 ± 6.9 45 58.8 ± 6.8 33.3 58.4 ± 8.1 40.6

10 61.7 ± 7.0 45 60.1 ± 8.0 46 62.7 ± 7.4 38.0 62.8 ± 8.7 40.7

20 65.6 ± 6.6 45 64.5 ± 8.5 44 66.3 ± 9.9 33.1 67.6 ± 6.8 40.1

30 66.7 ± 7.2 44 64.0 ± 9.5 45 68.3 ± 6.2 34.3 69.6 ± 5.7 38.4

Isolet (617) 0 88.8 ± 1.4 308 88.3 ± 2.1 307 92.1 ± 0.9 291.8 91.5 ± 0.8 302.1

10 82.2 ± 4.6 307 81.7 ± 3.6 308 92.0 ± 0.7 294.9 91.5 ± 1.0 301.5

20 85.5 ± 3.8 308 85.9 ± 3.4 306 92.6 ± 0.7 295.6 92.4 ± 0.8 304.1

30 88.9 ± 2.2 308 87.7 ± 2.5 308 92.9 ± 0.9 292.3 92.7 ± 0.7 299.4

Mfeat1 (216) 0 95.0 ± 1.7 108 95.4 ± 1.6 109 95.9 ± 0.9 90.9 95.9 ± 1.1 103.3

10 95.5 ± 1.4 107 95.6 ± 0.9 109 96.2 ± 1.0 94.5 96.5 ± 0.8 101.2

20 96.2 ± 0.9 108 96.3 ± 0.9 109 96.5 ± 0.8 89.5 96.5 ± 0.6 105.1

30 96.5 ± 0.9 106 96.5 ± 0.9 109 96.7 ± 0.6 90.8 96.9 ± 0.9 104.6

Mfeat2 (64) 0 96.0 ± 1.0 32 96.2 ± 0.9 31 95.3 ± 1.1 31.5 95.3 ± 1.2 36.1

10 96.0 ± 1.1 32 96.1 ± 1.4 33 95.4 ± 1.4 32.0 95.2 ± 1.4 35.6

20 96.4 ± 0.9 32 95.6 ± 0.9 34 96.1 ± 1.0 32.4 96.2 ± 0.8 36.2

30 96.1 ± 1.3 32 96.5 ± 0.8 32 95.7 ± 1.3 32.1 96.2 ± 1.0 34.7

Ozone (72) 0 91.8 ± 3.2 36 92.3 ± 3.9 37 92.4 ± 3.4 29.9 94.2 ± 2.9 32.6

10 92.1 ± 3.1 37 93.3 ± 3.4 35 93.1 ± 2.4 30.2 92.8 ± 2.8 33.7

20 93.0 ± 2.8 36 93.4 ± 3.2 35 94.1 ± 2.6 29.2 93.4 ± 2.5 33.7

30 92.9 ± 2.4 36 93.2 ± 2.5 35 94.8 ± 2.1 30.0 94.6 ± 2.2 33.1

Toxicity (1203) 0 64.8 ± 5.8 600 64.6 ± 6.6 601 67.1 ± 7.5 509.9 64.4 ± 8.7 597.9

10 64.5 ± 6.6 601 67.9 ± 7.5 602 66.1 ± 5.5 511.3 62.2 ± 4.2 593.1

20 66.7 ± 9.5 601 66.9 ± 7.9 600 65.3 ± 6.3 502.7 63.4 ± 9.1 592.0

30 70.1 ± 8.9 601 67.1 ± 9.5 600 69.6 ± 8.0 519.8 68.7 ± 8.0 593.3

that without augmentation. Looking at the plots, it is easy to notice that for
each dataset the range of variation of the fitness is the same for the two algo-
rithms and that in every case the line referring to the 0% of DA never exceeds the
others, while the yellow line referring to a DA of 30% exceeds all the others: the
only exceptions occur for some generations in the first part of the evolution, as
shown in Fig. 2(a) for GA and in Fig. 2(b) for PSO. As expected, the increment
of the fitness is directly linked to the increment of the augmented data. This is
true in almost every case, except for PSO algorithm applied to Hand dataset,
where the augmentation of the 10% outperforms the one of the 20%. Another
interesting detail is that the fitness of the GA shows a more stable trend with
respect to the one given by PSO.

3.5 Comparison Findings

Finally, to assess the effectiveness of GA and PSO, we compared the best results
obtained using data augmentation with the baseline results (no FS) as well as
those achieved without DA (see Table 7). To statistically validate the comparison
results, we performed the non-parametric Wilcoxon rank-sum test (α = 0.05).

Integrating Data Augmentation 409

Table 7. Comparison between baseline experiment and best performance achieved
with FS and FS combined with DA.

Dataset (#features) Baseline Without DA 30% DA

Acc FS Acc #feat FS Acc #feat

Hand (90) 58.8 ± 7.1 PSO 58.8 ± 6.8 33.3 GA 69.6 ± 5.7 38.45

Isolet (617) 90.7 ± 0.6 PSO 92.1 ± 0.9 291.8 PSO 92.9 ± 0.9 292.3

Mfeat1 (216) 95.7 ± 1.1 PSO 95.9 ± 0.9 90.9 GA 96.9 ± 0.9 104.6

Mfeat2 (64) 95.3 ± 1.1 SKB 96.2∗ ± 0.9 31 SKB 96.5∗ ± 0.8 32

Ozone (72) 94.1∗ ± 3.8 GA 94.2∗ ± 2.8 32.6 PSO 94.8∗ ± 2.1 30

Toxicity (1203) 67.4∗ ± 5.5 PSO 67.1∗ ± 7.5 509.9 RFE 70.1∗ ± 8.9 601

The values in bold highlight for each dataset the results, which are significantly
better with respect to the remaining ones, according to the Wilcoxon test. As
concerns the results that do not present a statistically significant difference, the
best two results are both starred.

From the table, we can see that the GA and PSO achieved the best sta-
tistically significant results on three out of the six datasets used (Hand, Isolet,
and Mfeat1). It is interesting to note that for the Hand dataset, feature selec-
tion without data augmentation did not achieve any performance improvement,
whereas data augmentation allowed us to achieve a large accuracy improvement
(about 10%), but selecting more features A similar behavior, but with a smaller
accuracy improvement, can be observed for Mfeat1, where data augmentation
improved the accuracy by selecting more features.

Finally, from the table, we can also see that PSO performed better than
GA on all three datasets, whereas data augmentation allowed GA to achieve
the best performance on two out of the three datasets (Hand and Mfeat1), by
selecting more features than those selected without data augmentation. These
results suggest that data augmentation makes advantageous the GA property to
select more features than PSO.

4 Conclusions and Future Work

In this research, we investigated the effect of data augmentation on the perfor-
mance of evolutionary algorithms applied to feature selection problems. To this
aim, we considered two effective and widely used evolutionary-based algorithms
for feature selection, namely a genetic algorithm and a particle swarm optimiza-
tion. They can explore a large search space of feature combinations thanks to
their search efficiency. We tested these algorithms on six different datasets and
considered different percentages of augmented data up to 30%. Finally, we also
evaluated a baseline case where no feature selection and data augmentation were
applied for comparison. For what concerns feature selection, we also tested two
well-known techniques in machine learning: RFE and SKB. As expected, the

410 T. D’Alessandro et al.

developed experimental settings highlighted the importance of a feature selec-
tion technique and a data augmentation procedure.

The results obtained confirm that data augmentation always produces
improvements in the performance of feature selection algorithms and that these
improvements are directly proportional to the percentage of augmented data.
In the case of the Hand dataset, the performance increment is much more sig-
nificant compared to that of the other considered databases: this behavior may
be due both to the fact that the baseline performances of the other databases,
namely Isolet, Mfeat1, Mfeat2 and Ozone, are very high (over 90%) compared
to those of Hand database (less than 60%), and to the fact that probably the
available features are less redundant. This last point is also confirmed by the
percentage of features selected for Hand database, which is lower than those of
the above databases. The only exception is represented by the database Toxic-
ity, which exhibits baseline performance rather low (less than 70% of accuracy),
similar to Hand database, but does not allow the feature selection algorithms to
achieve significant performance improvements. These results probably depend
on the limited number of samples included in the toxicity database (171), but
represented with a very high number of features (1203).

These interesting preliminary results paved the way for a wide range of future
research activities. Indeed, we plan to extend our study by considering more
datasets and evaluating different classification algorithms in both the final step
and the fitness of the feature selection. We will also investigate different metrics
for evaluating classification performance, e.g., F1-score, for imbalanced datasets.
Future research activities will also investigate how data augmentation affects the
performance of Multi-objective feature selection.

References

1. Cilia, N.D., De Stefano, C., Fontanella, F., Scotto di Freca, A.: Variable-length
representation for EC-based feature selection in high-dimensional data. In: Kauf-
mann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 325–
340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2 22

2. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.:
Handwriting analysis to support Alzheimer’s disease diagnosis: a preliminary study.
In: Vento, M., Percannella, G. (eds.) Computer Analysis of Images and Patterns:
18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019,
Proceedings, Part II, pp. 143–151. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29891-3 13

3. Cole, R., Fanty, M.: ISOLET. UCI Machine Learning Repository (1994). https://
doi.org/10.24432/C51G69

4. Daniel, T., Casenave, F., Akkari, N., Ryckelynck, D.: Data augmentation and
feature selection for automatic model recommendation in computational physics.
Math. Comput. Appl. 26(1), 17 (2021). https://doi.org/10.3390/mca26010017

https://doi.org/10.1007/978-3-030-16692-2_22
https://doi.org/10.1007/978-3-030-29891-3_13
https://doi.org/10.1007/978-3-030-29891-3_13
https://doi.org/10.24432/C51G69
https://doi.org/10.24432/C51G69
https://doi.org/10.3390/mca26010017

Integrating Data Augmentation 411

5. De Falco, I., Tarantino, E., Della Cioppa, A., Fontanella, F.: A novel grammar-
based genetic programming approach to clustering. In: Proceedings of the 2005
ACM Symposium on Applied Computing, pp. 928–932 (2005)

6. De Falco, I., Tarantino, E., Cioppa, A.D., Fontanella, F.: An innovative approach to
genetic programming—based clustering. In: Abraham, A., de Baets, B., Köppen,
M., Nickolay, B. (eds.) Applied Soft Computing Technologies: The Challenge of
Complexity, pp. 55–64. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31662-0 4

7. De Stefano, C., Fontanella, F., Marrocco, C.: A GA-based feature selection algo-
rithm for remote sensing images. In: Giacobini, M., et al. (eds.) Applications of
Evolutionary Computing, pp. 285–294. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78761-7 29

8. Duin, R.: Multiple Features. UCI Machine Learning Repository. https://doi.org/
10.24432/C5HC70

9. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

10. Frazier, P.I.: A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811
(2018)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Adaptive Computation
and Machine Learning, MIT Press (2016)

12. Gul, S., et al.: Structure-based design and classifications of small molecules reg-
ulating the circadian rhythm period. Sci. Rep. 11, 18510 (2021). https://api.
semanticscholar.org/CorpusID:237546851

13. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. J. Mach. Learn. Res. 46, 389–422 (2002)

14. Li, A.D., Xue, B., Zhang, M.: Multi-objective particle swarm optimization for key
quality feature selection in complex manufacturing processes. Inf. Sci. 641, 119062
(2023)

15. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. 50(6),
1–45 (2017)

16. Mertes, S., Baird, A., Schiller, D., Schuller, B.W., André, E.: An evolutionary-based
generative approach for audio data augmentation. In: 2020 IEEE 22nd Interna-
tional Workshop on Multimedia Signal Processing (MMSP), pp. 1–6 (2020)

17. Pedregosa, F., et al.: scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

18. Pereira, S., Correia, J., Machado, P.: Evolving data augmentation strategies. In:
Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds.) EvoApplications 2022.
LNCS, vol. 13224, pp. 337–351. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-02462-7 22

19. Sánchez-Maroño, N., Alonso-Betanzos, A., Tombilla-Sanromán, M.: Filter methods
for feature selection – a comparative study. In: Yin, H., Tino, P., Corchado, E.,
Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 178–187. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77226-2 19

20. Shanmugamani, R., Moore, S.: Deep Learning for Computer Vision: Expert Tech-
niques to Train Advanced Neural Networks Using TensorFlow and Keras. Packt
Publishing (2018)

21. Venkatesh, B., Anuradha, J.: A review of feature selection and its methods. Cybern.
Inf. Technol. 19(1), 3–26 (2019)

22. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)

https://doi.org/10.1007/3-540-31662-0_4
https://doi.org/10.1007/3-540-31662-0_4
https://doi.org/10.1007/978-3-540-78761-7_29
https://doi.org/10.1007/978-3-540-78761-7_29
https://doi.org/10.24432/C5HC70
https://doi.org/10.24432/C5HC70
http://arxiv.org/abs/1807.02811
https://api.semanticscholar.org/CorpusID:237546851
https://api.semanticscholar.org/CorpusID:237546851
https://doi.org/10.1007/978-3-031-02462-7_22
https://doi.org/10.1007/978-3-031-02462-7_22
https://doi.org/10.1007/978-3-540-77226-2_19

412 T. D’Alessandro et al.

23. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimisation for feature selec-
tion in classification: novel initialisation and updating mechanisms. Appl. Soft
Comput. 18, 261–276 (2014)

24. Zhang, K., Fan, W., Yuan, X.: Ozone level detection. UCI Machine Learning Repos-
itory (2008). https://doi.org/10.24432/C5NG6W

25. Zhang, X., Yu, L., Yin, H., Lai, K.K.: Integrating data augmentation and hybrid
feature selection for small sample credit risk assessment with high dimensionality.
Comput. Oper. Res. 146, 105937 (2022)

26. Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and
Techniques for Data Scientists, 1st edn. O’Reilly Media Inc. (2018)

https://doi.org/10.24432/C5NG6W

Evolving Feature Extraction Models
for Melanoma Detection: A Co-operative

Co-evolution Approach

Taran Cyriac John(B), Qurrat Ul Ain, Harith Al-Sahaf, and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
P.O. Box 600, Wellington 6140, New Zealand

{taran.john,qurrat.ul.ain,harith.al-sahaf,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. As global mortality rates rise alongside an increasing inci-
dence of skin cancer, it becomes increasingly clear that the pursuit of an
effective strategy to combat this challenge is gaining urgency. In tradi-
tional practices, the diagnosis of skin cancer predominantly depends on
manual inspection of skin lesions. Despite its prevalent use, this approach
is beset with several limitations, such as subjectivity, time constraints,
and the invasive nature of biopsy procedures. Addressing these obsta-
cles, the burgeoning field of Artificial Intelligence has been instrumental
in advancing Computer Automated Diagnostic Systems (CADS) for skin
cancer. A critical aspect of these systems is feature extraction, a process
crucial for discerning and utilising key characteristics from raw image
data, thereby bolstering the efficacy of CADS. This study introduces a
feature extraction model that evolves automatically, leveraging the prin-
ciples of genetic programming and cooperative coevolution. This method
generates a ensemble of models that collaboratively work to extract dis-
cerning features from images of skin lesions. The model’s effectiveness is
evaluated using a publicly accessible dataset, whilst further analysis per-
taining to interactions between the decomposition of image colour chan-
nels are explored. The findings indicate that the proposed method either
matches or significantly surpasses the performance of established bench-
marks and recent methodologies in this field, underscoring its potential
in enhancing skin cancer diagnostic processes.

Keywords: Skin cancer · Genetic programming · Machine learning

1 Introduction

Skin cancer, a pervasive global health concern, is primarily categorized into
non-melanoma skin cancer (NMSC) and cutaneous malignant melanoma (MM).
NMSC, including Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma
(SCC), accounts for the majority of cases but is less deadly compared to MM,
which constitutes less than 5% of cases yet is responsible for about 65% of skin
cancer-related deaths [1].

Currently, skin cancer diagnosis predominantly relies on manual examination
of skin lesions, either through self-examination or by healthcare professionals,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 413–429, 2024.
https://doi.org/10.1007/978-3-031-56852-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_26&domain=pdf
https://doi.org/10.1007/978-3-031-56852-7_26

414 T. C. John et al.

particularly dermatologists. Dermatologists use specific dermoscopic criteria for
diagnosis, which involves pattern analysis, the 7-point checklist, the Menzies
method, and comprehensive methodologies like the Colour, Architecture, Sym-
metry and Homogeneity (CASH) and Asymmetry, Border, Colour, and Dermo-
scopic structures (ABCD) [2–7].

However, several limitations are associated with these diagnostic approaches:

1. Inherent Subjectivity: Diagnostic conclusions can vary among specialists
due to the subjective nature of manual evaluations, leading to potential dis-
crepancies in treatment decisions and patient outcomes [8].

2. Time Constraints: The high demand for dermatological services often
results in limited examination time, possibly leading to missed or delayed
diagnoses with serious prognostic implications [9].

3. Invasiveness of Biopsy Procedures: When manual examination is incon-
clusive, biopsies are conducted. This procedure can cause discomfort or pain,
adding to the patient’s emotional and physical burden [10].

4. Challenges in Early Detection: Early stages of skin cancer, especially
MM, are difficult to detect with the naked eye, often leading to delayed diag-
noses and complicated treatment protocols [11].

In response to these challenges, the integration of Artificial Intelligence (AI)
in healthcare, particularly Computer Automated Diagnostic Systems (CADS), is
gaining traction. CADS, enhanced by the rapid advancement in AI and compu-
tational capabilities, holds the potential to improve the accuracy and efficiency
of skin cancer detection, addressing the limitations of manual examinations [12].
Despite its potential, AI in the realm of skin cancer detection faces substantial
challenges. The complexity of hand-crafting feature extraction (FE) algorithms
introduces development intricacies and limits scalability. The uninterpretable
nature of feature extraction in many AI models can deter medical professionals’
trust in AI-based decisions.

The application of AI in skin cancer diagnosis, especially through CADS,
offers a promising avenue to overcome the limitations of manual diagnostic meth-
ods. By enhancing accuracy and efficiency, AI could drastically contribute to
better prognostic outcomes in skin cancer patients.

Genetic Programming (GP), is a technique known for evolving tree-
structured programs to solve specific problems. Since the early 1990s [13], GP
has seen successful applications in various fields, notably in image processing [14]
and feature detection/extraction [15]. The concept of co-operative co-evolution
(CC), often integrates with GP. CC tackles complex problems by breaking them
down into simpler sub-problems or ‘species’ [16]. Each species evolves indepen-
dently, with the performance of an individual evaluated based on its interaction
with top performers from other species, known as the ‘context vector’.

GP plays a significant role in AI-based CADS for detecting skin cancer. Ain
et al. [17] utilised GP on dermoscopic images to develop a melanoma detection
method, incorporating both domain-independent features, such as LBP descrip-
tors, and domain-specific features from the 7-point dermatology checklist [17].
Their research demonstrated the efficacy of combining these feature types in

Feature Extraction for Melanoma Detection 415

classification, with GP models achieving high accuracy and interpretability in
distinguishing between benign and malignant lesions. This work underscored the
potential of pre-defined features like LBP and statistical wavelet decomposed
images in achieving top-tier results. In a subsequent study, Ain et al. introduced
a two-stage GP system (2SGP-W) for skin lesion analysis, which excelled in
feature selection and construction, outperforming existing algorithms [18].

However, these hand-crafted, pre-defined features may overlook novel dis-
criminatory attributes. Exploring ML, specifically GP, to develop an automatic
FE algorithm is therefore promising. GP’s ability to evolve feature extractors
automatically offers numerous benefits over traditional methods like LBP or
deep learning pipelines, including simultaneous feature extraction and selection.
This dual functionality enhances model efficiency, reducing errors common in
conventional methods with separately optimised components.

Support for the efficacy of GP in automatic image extraction can be found
in the scientific literature. Specifically, in their work [19], Al-Sahaf et al. utilised
GP to automatically evolve an LBP-like image, termed GP-criptor, using raw
pixel values [19]. It is important to note the complexity pertaining to FE for skin-
lesion images, marked by vast search spaces, instance diversity in both shape and
appearance, and presence of artifacts and noise, necessitates innovative solutions.
GP, with capacity to automatically navigate this intricate search space to evolve
a solution, has the potential to effectively address these challenges.

1.1 Goals

The overall objective of this study is to leverage the capabilities of GP and CC,
to automatically evolve a FE model capable of extracting discriminatory features
pertaining to the malignance of a skin lesion instance. To fulfill this goal, the
following objectives are pertinent:

– Evolving and aggregating multiple models for FE by performing colour
decomposition on each skin lesion image in adherence to CC and GP princi-
ples;

– Crafting an appropriate fitness function incorporating both distance-based
and wrapper-based measures to ascertain discriminatory features;

– Comparing the performance of the models synthesised by the proposed
method to that of canonical as well as recently proposed FE methods; and

– Offering an insight into the characteristics of the proposed method through
providing further analysis of the evolutionary process and results produced
by experimentation.

416 T. C. John et al.

2 Literature Survey

2.1 Feature Extraction

2.1.1 Local Binary Pattern
Local Binary Pattern (LBP), first proposed by Ojala et al. [20], can be described
as one of the widely utilised image descriptor feature extraction methods in the
field. Through utilisation of a sliding window with a fixed radius, LBP method
involves scanning an image pixel-by-pixel, starting from the top-left corner to
the bottom-right corner. Each central pixel in the sliding window is assigned a
value based on a binary comparison with its adjacent pixels. Using these values,
a histogram that represents the texture of the overall image is constructed.

LBP can be classified into two patterns, uniform and non-uniform, which
can be categorised based on the nature of the bitwise transitions. The former
(uniform) consists of at most two bitwise transitions (either from 0-to-1 or 1-to-
0), whilst the latter (non-uniform) may contain more than two such transitions.
For example, the pattern (00011110) is considered uniform, whereas (01011100)
can be classified as non-uniform. Furthermore, the classification of the pattern
has an impact on the resulting vector, this vector may be reduced if it stems
from an LBP pattern. To elaborate, the size of the vector can be represented as
2b where b is the number of adjacent pixels, but can be reduced to b(b − 1) + 3
if the pattern is uniform.

2.1.2 GP-Criptor
In [19], GP is utilised to automatically evolve a feature extractor using the raw
pixel values, known as GP-criptor. Although GP-criptor operates in a somewhat
similar manner to LBP, it automatically evolves a set of pixel formulas, thus
replacing the expert designed ones. For this reason, the evolved individual con-
sists of three stages: pixel value extraction, arithmetic operators, and encoding.
Pixel extraction involves the position of the sliding window, wherein the values
of pixels adjacent to the center are extracted, and then used as the terminal set.
From there, arithmetic operators are applied to these extracted pixels, adhering
to the evolved individual’s function set and GP tree structure. The final step
involves encoding the results into a binary string, which is then converted to a
decimal number. This number is subsequently tallied in a histogram-like data
structure. Essentially, this image descriptor allows the conversion of an image to
a histogram like feature vector, which can be fed into a machine learning clas-
sifier such as a support vector machine or k-nearest neighbour for classification
purposes.

2.2 Related Work

The swift advancement of AI in CADS has led to the emergence of innovative
technologies once considered purely fictional. A groundbreaking demonstration
of this shift occurred in 2017 by Esteva et al., wherein they introduced a compu-
tational model that outperformed board-certified dermatologists in diagnosing

Feature Extraction for Melanoma Detection 417

Fig. 1. The overall algorithm of the proposed method.

skin cancer in terms of both accuracy and speed [12]. This achievement has
sparked a surge in research on the application of deep learning in skin cancer
detection, focusing on the development and refinement of FE algorithms.

Deep learning (DL), deeply rooted in neuroscience, is a subset of AI that
utilizes complex ML techniques to replicate the brain’s intricate neural networks
[21]. Codella et al. Were among the pioneers using DL for skin cancer diagnosis,
applying the Caffe DL framework to extract features from skin cancer images
that are essential for distinguishing between classes [22]. Convolutional Neural
Networks (CNNs) are especially prominent in this field, renowned for their ability
to identify high-level feature maps with strong discriminatory power due to their
convolutional structure [23]. The prevalence of DL in skin cancer research was
evident in 2017, with 22 of the 23 studies using a CNN variant [24].

The development of research is not only confined within DL, however, with
researchers exploring other avenues to ascertain an effective AI-based CADS
system. Ain et al. juxtapose four GP-based classification methods in one of
their related works, [25]. After evaluation on two publicly-available datasets, the
authors demonstrate the efficacious nature of GP in the task of feature selection
and construction. Upon further analysis of the interpretable models, authors also
discovered that asymmetry was crucial in the task of skin cancer detection.

3 Co-operative Co-evolution Image Descriptor

3.1 Algorithm Overview

Illustrated by Fig. 1 is a diagrammatic overview of the proposed algorithm: Co-
operative Co-evolution Image Descriptor (CC-Criptor). Firstly, the contents of
the dataset is divided into a training and test split. During the training process,
the extractor sample is randomly chosen, in which 20 samples from each class are
chosen. These extractor samples are fed to the CC evolutionary process, wherein
a feature extraction model is obtained. This newly evolved model is then utilised
to vectorise both the training and the test data. This vectorised training data is
then leveraged to train a classifier, which is then tested using the vectorised test
data, to obtain the final performance of the feature extraction model.

418 T. C. John et al.

3.2 Model Representation

The complete evolved model consists of three sub-trees, wherein each tree repre-
sents the best performing individual of a sub-population. The representation of a
sub-population individual is in alignment with the tree-based GP principles put
forth by Koza [13], wherein terminal nodes are drawn from the terminal set and
non-terminal nodes are sourced from the function set. Numerous studies under-
score the importance of colour in the realm of melanoma detection [26,27]. Con-
sequently, it was deemed prudent to partition each data instance (image) into
three discrete sub-populations, corresponding respectively to the Red, Green,
and Blue colour channels of the data instances, wherein these sub-populations
in adherence to the co-operative co-evolution principles. Each sub-population
individual represents an evolved mathematical formula that is utilised to obtain
the feature vector. It should be noted that the decomposition into colour chan-
nels constitutes the fundamental augmentation of CC-criptor compared to GP-
criptor. Unlike GP-criptor, which generates a single individual corresponding to
the grayscale representation of the image, CC-criptor produces multiple individ-
uals, each corresponding to a different colour channel of the image.

3.2.1 Terminal Set
The terminal set for each GP tree is composed of the raw pixel values extracted
by each sliding window position. For this reason, the size of the terminal set is
determined by the size of the sliding window (w). Furthermore, it is contingent
upon the associate sub-population, as each tree encapsulates a distinct subset
of the feature space, i.e., colour channel. For example, if w = 3 (i.e., the sliding
window is 3 × 3), the terminal set for the three colour channels would consist of
Ra, Gb, and Bc, where a, b, and c each independently range over {1, 2, . . . , 9}.

3.2.2 Function Set
The function set utilised in this algorithm adheres to that which was proposed in
[19]. Specifically, this consists of four binary arithmetic operators, and one encode
operator. The binary operators, including addition, subtraction, multiplication,
and protected division, take two values as inputs, perform the specified operation,
and return a single value. Importantly, the modulation of the division function
is designed to address the division by zero scenario, returning a value of 1 in
such instances. The encode node serves as a unique function node consistently
located at the root of each tree. Specifically, the objective of this code node is to
synthesise a binary number at each position of the sliding window. It should be
noted that the number of children, denoted as h, in the code node determines
the length of the resulting binary number. This length defines the range of values
that can be represented, specifically 2h.

3.3 Feature Vector Synthesis

The primary objective of CC-criptor is to generate three GP-trees which in
turn can be utilised to convert a colour image into a one dimensional vector

Feature Extraction for Melanoma Detection 419

Fig. 2. Diagrammatic explanation of vectorisation process [19].

(or histogram). A sliding window used by the system which traverses the whole
image horizontally and vertically, beginning at the top left, in order to extract
pixel values at each position. In order to clearly elucidate this process, the method
can be broken down into four distinct steps, which is demonstrated by Fig. 2.

1. The pixel values of the current window are extracted and fed to the terminal
set of the GP program.

2. The GP program is utilised to evaluate this terminal set, wherein the encode
node is left with h number of children (i.e. h number of integer values).

3. The integer values of the children of the encode node are evaluated against a
threshold (thresh), in which 1 and 0 are returned for each child, if they are
greater than or less than the threshold, respectively. This creates a binary
code of length h.

4. The generated binary code is converted to decimal, and the corresponding
bin value of the histogram is incremented by one.

It must be noted that this process is repeated for each colour channel, thereby
producing a feature vector of length 3× 2h. Consequently, the generated feature
vector directly represent a histogram with the frequencies of each binary code
in each window position, which can be represented as x.

3.4 Individual Fitness Evaluation

A hybrid fitness evaluation is proposed in this work, wherein two objectives are
performed simultaneously, in a manner analogous to that proposed in [28]. To
elaborate, this fitness function was designed with the objective of having a high
accuracy on the training set, whilst concurrently maximising and minimising
the distances between instances of different and the same classes, respectively.
Specifically, this can be mathematically defined as

Fitness(x) =
(

1
1 + e−5(Dw−Db)

)
+ (1 − Accuracy) (1)

Accuracy =
Correct

Total
(2)

where Dw is the mean distance of instances that are of the same class, and Db

is the mean distance of instances that are of a different class. It must be noted

420 T. C. John et al.

Fig. 3. Skin lesion image samples from PH2 dataset.

that the specified distance measures are in complete adherence to the work of
Al-Sahaf et al. in [29].

In addition to the distance based component of the proposed fitness function,
a wrapper based function is implemented in order to ascertain the discriminatory
capability of the evolved feature extractor. In particular, the k-Nearest Neigh-
bour (k-NN) algorithm is leveraged, wherein the sample set of extracted features
are utilised to evaluate efficacy of the feature extractor as it pertains to select-
ing discriminatory features. Equation 2 delineates the accuracy evaluation of the
wrapper based function. To reduce bias arising from random train/test splits,
stratified k-fold cross-validation is employed, addressing the imbalanced distri-
bution of class samples. It must be noted that the inverse of the mean accuracy
provided by the evaluation is utilised, as fitness minimisation is the objective of
the fitness evaluation.

As elucidated [16], the fitness assessment of an individual is determined not
only on its intrinsic performance but also in conjunction with the performance
of leading individuals, termed “representatives”, from distinct species. In adher-
ence with this paradigm, every individual tree subject to a fitness evaluation
is concatenated with representatives from other species. It is of importance to
highlight that the fitness evaluation of an individual tree is contingent upon the
collective assessment derived from the entire context vector (CV), as opposed
to its isolated performance. Therefore, within a given CV, a tree exhibiting
sub-optimal individual performance may surpass the performance of a tree that
exhibits superior individual performance.

4 Experimental Design

Outlined in this section is the execution of the proposed approach, aimed at
facilitating the replication of the study’s outcomes.

4.1 Dataset

In this work, the Pedro Hispano Hospital (PH2) dataset was utilised. Estab-
lished at the Pedro Hispano Hospital in Mastosinhos, Portugal [30], the PH2
dataset was made publicly available in 2013. This compilation of images encom-
passes a total 200 dermoscopic images captured with a Tubinger Mole Analyser

Feature Extraction for Melanoma Detection 421

Table 1. PH2 Dataset Characteristics

Classes Num of Instances Image Size

Melanoma 40 754 × 576–768 × 675

Common Nevi 80 763 × 552–769 × 577

Atypical Nevi 80 764 × 575–768 × 576

system at a magnification factor of 20, each with a pixel resolution of 765 ×
560 pixels. The PH2 dataset consists of 8-bit RGB skin lesion images, binary
segmentation masks, and clinical diagnoses. A sample of the images utilised in
this study is exhibited in Fig. 3, wherein Figs. 3(a) and 3(b) demonstrate benign
instances, Figs. 3(c) and 3(d) illustrate malignant instances, respectively. More
specifically, a dermatologist evaluated each instance in the dataset, from which
clinical evaluations, manual segmentation of skin lesions, clinical diagnoses, and
features from the 7-point checklist were derived and provided. Table 1 elucidates
the distribution of classes present in the PH2 dataset.

In the context of this study, both Atypical Nevi and Common Nevi instances
are considered as the negative class, while Melanoma instances are designated
as the positive class. This classification is consistent with the literature [31],
thereby transforming a multi-class problem into a binary classification task.

4.2 Data Pre-processing

In the dataset, the proportion of each image occupied by the Region of Interest
(ROI) varied across instances. For instance, while the ROI might encompass half
of one image, it could cover only a quarter of another. To address this variabil-
ity and eliminate potential extraneous details, each image was cropped using
a bounding-box delineated around the ROI. Given that the focus of this task is
skin lesion classification, only the information within the ROI holds relevance for
the algorithm. Consequently, the binary mask was superimposed on the original
image, ensuring that the proposed algorithm would exclusively process the ROI.

4.3 Methods for Benchmark Comparison

In the present study, a descriptor analogous to the LBP method is proposed,
through the integration of CC and GP. LBP for feature extraction has been
leveraged in multi-stage GP-based classification models, exhibiting state-of-the-
art results [25]. As such, it would be judicious to evaluate the discriminatory abil-
ity of features solely-extracted by LBP, and compare it to that which has been
extracted by CC-criptor. Additionally, the CC-criptor represents an advance-
ment over the original GP-criptor algorithm. Given this context, it is appropri-
ate to elucidate the performance disparities between these two algorithms. The
primary objective is to ascertain whether the incorporation of CC has intro-
duced a notable enhancement in performance. Consequently, the GP-criptor is
integrated into this study for comparative analysis.

422 T. C. John et al.

Furthermore, it was considered prudent to contrast the outcomes of the
images derived from the CC-criptor with those from a recently published study in
the domain. In [32], Ain et al. introduced a novel technique capable of automat-
ically extracting global features from skin cancer images. This method, termed
Feature Learning approach using GP (FLGPSCD), leverages GP and combines
six commonly used image descriptors to extract these high-level features. The
researchers demonstrated the superiority of performance of their method over
both the baseline approach and the six feature descriptors on real-world datasets.

Given the pervasive use of DL in computer vision tasks, it was deemed suit-
able to benchmark the performance of our proposed method against a standard
CNN. Consequently, we adopted the LeNet-5 framework, as outlined in [33].
Where relevant, the same methodology was applied, including the utilisation of
a 5-fold cross-validation and identical pre-processing techniques.

4.4 Parameters

In this research, the k tournament selection method with k = 7 was utilised
for parent selection, combined with a one-point crossover mechanism to gen-
erate unique offspring. Uniform mutation was the chosen mutation technique,
involving random sub-tree generation and replacement in a GP tree, with the
evolutionary process concluding after 50 generations. Aligning with [19], the
experimental parameters were meticulously chosen to facilitate a fair compari-
son. The species population size (θ) was set at 50, and the Ramped Half-and-Half
method, incorporating grow and full initialisation techniques, was adopted for
population initiation. The maximum depth size was limited to 10, with initial-
isation sizes ranging from 2 to 5. Genetic operators were configured at 80% for
crossover and 19% for mutation, with an additional 1% dedicated to elitism.
This approach ensures the retention of the fittest individuals in the population,
preserving their fitness through subsequent generations.

4.5 Experimental Setup

The imbalanced structure of the dataset, combined with a limited number of pos-
itive instances, prompted the decision to employ stratified 5-fold cross-validation.
This method aims to minimise the influence of random data splits on fluctua-
tions in algorithm performance. In order to furthermore mitigate the possibility
of stochasticity playing a determining role in deviations of the performance of
the algorithms, 30 distinct experiments were conducted using different random
seeds for stochastic methods, specifically GP-criptor, CC-criptor, and LeNet-5.
It should be noted that GP-criptor was evolved with one grayscale colour channel
per instance, whilst CC-criptor utilised the red, green, and blue colour channels
during evolution. While the primary focus of this study is FE, the efficacy of the
extracted features of the GP-criptor and CC-criptor were ascertained by their
performance in a foundational classifier. To this end, k-NN, Gaussian Näıve
Bayes (GNB), Support Vector Machine (SVM), Linear Discriminant Analysis
(LDA) and Multi-layer Perceptron (MLP) classifiers were employed. It must be

Feature Extraction for Melanoma Detection 423

noted that LeNet-5 instead utilised fully connected neural network layers for
classification purposes, as in adherence to [33].

Table 2. Classification Performance of LBP, GP-Criptor, and CC-criptor (%). Values
represent the mean and standard deviation (mean ± std. dev.)

Classifier F1-Score Balanced Accuracy

LBP k-NN 66.39 68.63

GNB 72.96 67.37

SVM 47.45 50.00

LDA 59.82 68.22

MLP 47.45 50.00

GP-criptor k-NN 64.03 ± 4.15 59.58 ± 3.76

GNB 71.58 ± 3.01 62.55 ± 2.24

SVM 65.78 ± 3.81 61.80 ± 3.68

LDA 70.05 ± 3.57 66.35 ± 4.00

MLP 70.33 ± 3.57 63.02 ± 4.02

CC-criptor k-NN 78.28 ± 2.42 65.43 ± 2.89=

GNB 76.40 ± 2.84 65.25 ± 2.91=

SVM 75.10 ± 3.57 65.25 ± 2.81=

LDA 79.58 ± 3.13 74.83 ± 3.72↑
MLP 80.28 ± 2.27 68.87 ± 2.54=

4.6 Performance Evaluation Metrics

Owing to the imbalanced nature of both datasets, employing balanced accuracy
as the primary statistical metric was considered appropriate. Balanced accuracy
is defined as:

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN

TN + FP

)
, (3)

TP , TN , FN , and FP denote true positive, true negative, false negative, and
false positive values, respectively. The use of balanced accuracy in this study,
rather than conventional raw classification accuracy, helps to offset potential
performance disparities in the proposed method that might arise from the pre-
dominance of specific classes, as discussed earlier in this chapter. In addition to
balanced accuracy, the F1-score was utilised to provide a more comprehensive
analysis of the model’s classification capability.

424 T. C. John et al.

5 Results and Discussions

To determine the statistical significance between each variant in the experiments,
a two-sided, paired t-test at a 95% significance level was used for comparisons
between models. The symbols =, ↑, and ↓ indicate whether the average metrics
of the CC-criptor models are not significantly different, significantly better, or
significantly worse than those of the other models, respectively.

5.1 Binary Classification Performance of GP-Criptor
and CC-Criptor

The binary classification results exhibited by CC-criptor and GP-criptor are
shown in Table 2. Specifically, these are decomposed into algorithmic blocks ver-
tically, wherein each block demonstrates the efficacy of the features on the con-
ventional classifiers delineated in the previous section. Upon inspection of the
results, it becomes clear that LDA provides the best performance in comparison
with the other typical ML algorithms, demonstrating a mean accuracy of 74.83
± 3.72 and 66.35 ± 4.00, for the CC-criptor and GP-criptor algorithms, respec-
tively. Moreover, the results indicate that when using the CC-criptor extracted
features with an LDA classifier, the performance is statistically significantly
superior than all other permutations.

Table 3. Comparison against Benchmark Methods (%)

Classifier with Best
Performance

Mean Balanced Accuracy Best Model Performance

LBP GNB 67.37 73.67

FLGPSCD SVM 66.58 ± 5.40 73.14

LeNet-5 CNN 74.30 ± 4.12= 82.03

GP-criptor LDA 66.35 ± 4.00 77.19

CC-criptor LDA 74.83 ± 3.72= 80.63

5.2 Performance Comparison with Benchmark Methods

Delineated by Table 3, it becomes apparent that although exhibiting similar
performance for k-NN, GNB, and SVM, CC-criptor significantly outperforms
LBP in effective feature extraction when coupled with the LDA classifier. Addi-
tionally, CC-criptor has demonstrated statically significant superiority over the
FLGPSCD method when coupled with the LDA classifier. When comparing the
performance of CC-criptor with LeNet-5, both exhibit similar results. However,
a unique feature of CC-criptor is its ability to automatically evolve three inter-
pretable GP trees. These trees offer insights into the algorithm’s decision-making,
particularly in relation to the interactions among colour channels. Additionally,
CC-criptor extracts model-agnostic features suitable for various classifiers.

Feature Extraction for Melanoma Detection 425

6 Further Analysis

6.1 Algorithm Convergence

To evaluate the evolutionary efficacy of both GP-criptor and CC-criptor, it is
appropriate to examine the convergence graphs that display the average fitness
of the context vector for the GP and CC methodologies, respectively, across
each generation. This evaluation includes the average from the 5-folds over all
50 generations, spanning the 30 independent runs, as depicted in Figs. 4a and b.
The y-axis represents the average CV fitness for the CC-criptor and GP-criptor
algorithms, respectively. It should be noted that the fitness assessment varies
between the two methods, leading to a substantially different range of output
values for each algorithm. To address this, the y-axis has been scaled to facilitate
detailed examination of the fitness convergence. In contrast, the x-axis displays
the count of generations for both algorithms. Elucidated by the GP-criptor plot,
evolution begins at a starting fitness of 0.90 ± 0.089, then drastically decreases
to 0.75 ± 0.072 by generation 25, and then smoothly decreases to 0.72 ± 0.063
by the last generation. In contrast, the CC-criptor plot demonstrates commences
evolution with a starting fitness of 0.993 ± 0.007, however follows a more linear-
like convergence to 0.986 ± 0.009 at the halfway point of evolution, and finally
terminates evolution with a fitness value of 0.982 ± 0.010.

Fig. 4. Comparison of convergence between CC-criptor and GP-criptor.

From this dichotomy, it is immediately apparent that the convergence of GP-
criptor is substantially more drastic than that of CC-criptor. However, it must
be noted that GP-criptor only relies on the learning of one tree, as opposed to
the CV of three trees as in CC-criptor. Furthermore, the linear convergence of
CC-criptor may indicate that the algorithm has not reached full convergence,
as the last 10 generations do not demonstrate a stagnation in fitness as it does
with GP-criptor. Additionally, the smaller relative scale of change in fitness over
the evolutionary process of CC-criptor must be taken into account. Since the
population size of each method is kept consistent for performance comparison

426 T. C. John et al.

purposes, where GP-criptor has 150 individuals in the whole population whereas
CC-criptor has 50 individuals in each subpopulation, it is possible that the lack
of genetic diversity in each CC-criptor sub-population is not conducive to more
productive convergence.

Table 4. Performance of models on different colour decompositions (%).

Model F1-Score Balanced Accuracy

Red Colour Channel KNN 80.96 ± 3.15 58.75 ± 5.94

GNB 79.54 ± 8.07 60.02 ± 8.29

SVM 80.35 ± 0.86 51.01 ± 2.25

LDA 80.19 ± 7.38 63.53 ± 8.54

MLP 80.12 ± 0.52 50.29 ± 1.31

Green Colour Channel KNN 82.19 ± 2.83 62.26 ± 8.21

GNB 81.00 ± 4.74 60.79 ± 5.68

SVM 80.04 ± 0.31 50.10 ± 0.77

LDA 77.38 ± 7.86 59.90 ± 9.69

MLP 80.00 ± 0.00 50.00 ± 0.00

Blue Colour Channel KNN 84.08 ± 3.71 62.36 ± 8.10

GNB 84.50 ± 4.23 64.93 ± 6.23

SVM 80.65 ± 1.34 51.63 ± 3.34

LDA 74.38 ± 10.99 59.11 ± 9.61

MLP 80.12 ± 0.52 50.29 ± 1.31

6.2 Colour Decomposition Analysis

For the purpose of ascertaining the role of each colour channel on the overall
performance of the CC-criptor algorithm, each colour channel was vectorised
through utilisation of the corresponding best performing individual, with the
results of this being illustrated in Table 4. Upon observation of these results, it
becomes apparent that the results of each individual component of the model
are considerably worse than that of the model as a whole.

The juxtaposition of the performance of the whole system and each of the
individual performance is likely a reflection of the co-operative nature of the evo-
lutionary process. To elaborate, when evaluating each of sub-population individ-
uals, their performance is gauged based upon its collaborative performance with
the other members of the CV. Thus, this arises the possibility that although the
individual possesses good collaborative performance, it lacks individual discrim-
inatory ability. With none of the trees demonstrating statistically significantly
superior performance over any of the others, it cannot be claimed that any of the
colour channels contribute substantially more than the others in this proposed
method.

Feature Extraction for Melanoma Detection 427

7 Conclusions and Future Work

Inspired by the effectiveness of GP in FE, this paper proposes an automatically-
evolving feature extraction model for skin cancer. The comparative analysis
reveals that the CC-criptor model, especially when combined with LDA, demon-
strates superior performance over GP-criptor in binary classification tasks. A
salient aspect of CC-criptor is its unique ability to automatically evolve three
distinct GP trees, thus shedding light on the interactions of colour channels and
asserting its adaptability across a spectrum of classifiers. The integrated model
of CC-criptor, leveraging the strengths of individual colour channels, exhibits
enhanced effectiveness, suggesting synergistic contributions rather than depen-
dence on a single channel for its efficacy in feature extraction.

In future research, investigation into a modified elitism function is to be con-
ducted. This approach will focus on selecting permutations of individuals that
exhibit the highest collective fitness. Furthermore, the exploration a two-stage
GP process may yield promising results. Features extracted by CC-criptor will
form the terminal set for evolving a GP tree, offering two benefits: enabling
the creation of complex features and offering insights into colour channel inter-
actions. Understanding these interactions may have significant clinical implica-
tions, by enhancing the efficacy of skin cancer diagnosis and treatment strategies.

References

1. Sung,H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence
and mortality worldwide for 36 cancers in 185 countries. CA Cancer Clin. 71, 209–
49 (2021). This report provides the latest global cancer statistics of incidence and
mortality worldwide, 2022

2. Pehamberger, H., Steiner, A., Wolff, K.: In vivo epiluminescence microscopy of
pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J. Am. Acad.
Dermatol. 17(4), 571–583 (1987)

3. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino,
M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin
lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist
based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998)

4. Menzies, S.W., Crotty, K., Ingvar, C., McCarthy, W.: Dermoscopy: An Atlas, 3rd
edn. McGraw-Hill Education, Australia (2009)

5. Henning, J.S., et al.: The CASH (color, architecture, symmetry, and homogeneity)
algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)

6. Stolz, W.: ABCD rule of dermatoscopy: a new practical method for early recogni-
tion of malignant melanoma. Eur. J. Dermatol. 4, 521–527 (1994)

7. Loescher, L.J., Janda, M., Soyer, H.P., Shea, K., Curiel-Lewandrowski, C.:
Advances in skin cancer early detection and diagnosis. In: Proceedings of Sem-
inars in Oncology Nursing, vol. 29, pp. 170–181. Elsevier (2013)

8. Carrera, C., et al.: Validity and reliability of dermoscopic criteria used to differ-
entiate nevi from melanoma: a web-based international dermoscopy society study.
JAMA Dermatol. 152(7), 798–806 (2016)

428 T. C. John et al.

9. Resneck, J., Jr., Pletcher, M.J., Lozano, N.: Medicare, medicaid, and access to
dermatologists: the effect of patient insurance on appointment access and wait
times. J. Am. Acad. Dermatol. 50(1), 85–92 (2004)

10. Bichakjian, C.K., et al.: Guidelines of care for the management of primary cuta-
neous melanoma. J. Am. Acad. Dermatol. 65(5), 1032–1047 (2011)

11. Schadendorf, D., et al.: Melanoma. The Lancet 392(10151), 971–984 (2018)
12. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural

networks. Nature 542(7639), 115–118 (2017)
13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press (1992)
14. Liang, J., Wen, J., Wang, Z., Wang, J.: Evolving semantic object segmentation

methods automatically by genetic programming from images and image processing
operators. Soft. Comput. 24, 12887–12900 (2020)

15. Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature
extraction and data visualization. Soft. Comput. 21, 2069–2089 (2017)

16. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58484-6 269

17. Ain, Q.U., Xue, B., Al-Sahaf, H., Zhang, M.: Genetic programming for skin cancer
detection in dermoscopic images. In: Proceedings of the 2017 IEEE Congress on
Evolutionary Computation, pp. 2420–2427. IEEE (2017)

18. Ain, Q.U., Al-Sahaf, H., Xue, B., Zhang, M.: Automatically diagnosing skin cancers
from multimodality images using two-stage genetic programming. IEEE Trans.
Cybern. 53(5), 2727–2740 (2022)

19. Al-Sahaf, H., Zhang, M., Johnston, M., Verma, B.: Image descriptor: a genetic
programming approach to multiclass texture classification. In: Proceedings of the
2015 IEEE Congress on Evolutionary Computation, pp. 2460–2467. IEEE (2015)

20. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Mach. Intell. 24(7), 971–987 (2002)

21. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
22. Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R.: Deep

learning, sparse coding, and SVM for melanoma recognition in dermoscopy images.
In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp.
118–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2 15

23. Barata, C., Celebi, M.E., Marques, J.S.: A survey of feature extraction in der-
moscopy image analysis of skin cancer. IEEE J. Biomed. Health Inf. 23(3), 1096–
1109 (2018)

24. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge
at the 2017 international symposium on biomedical imaging (ISBI), hosted by
the international skin imaging collaboration (ISIC). In: Proceedings of the 15th
International Symposium on Biomedical Imaging, pp. 168–172. IEEE (2018)

25. Ain, Q.U., Al-Sahaf, H., Xue, B., Zhang, M.: Automatically diagnosing skin cancers
from multimodality images using two-stage genetic programming. IEEE Trans.
Cybern. 53, 2727–2740 (2022)

26. Barata, C., Ruela, M., Francisco, M., Mendonça, T., Marques, J.S.: Two systems
for the detection of melanomas in dermoscopy images using texture and color
features. IEEE Syst. J. 8(3), 965–979 (2013)

27. Barata, C., Celebi, M.E., Marques, J.S.: Improving dermoscopy image classification
using color constancy. IEEE J. Biomed. Health Inform. 19(3), 1146–1152 (2014)

https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/978-3-319-24888-2_15

Feature Extraction for Melanoma Detection 429

28. Al-Sahaf, H., Zhang, M., Johnston, M.: Genetic programming for multiclass texture
classification using a small number of instances. In: Dick, G., et al. (eds.) SEAL
2014. LNCS, vol. 8886, pp. 335–346. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13563-2 29

29. Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., Zhang, M.: Automatically evolv-
ing rotation-invariant texture image descriptors by genetic programming. IEEE
Trans. Evol. Comput. 21(1), 83–101 (2017)

30. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH2 - a
dermoscopic image database for research and benchmarking. In: Proceedings of the
35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 5437–5440. IEEE (2013)

31. Ain, Q.U., Al-Sahaf, H., Xue, B., Zhang, M.: Generating knowledge-guided dis-
criminative features using genetic programming for melanoma detection. IEEE
Trans. Emerg. Top. Computat. Intell. 5(4), 554–569 (2020)

32. Ain, Q.U., Al-Sahaf, H., Xue, B., Zhang, M.: A new genetic programming rep-
resentation for feature learning in skin cancer detection. In: Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, pp. 707–710
(2023)

33. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

https://doi.org/10.1007/978-3-319-13563-2_29
https://doi.org/10.1007/978-3-319-13563-2_29

3D Motion Analysis in MRI Using
a Multi-objective Evolutionary k-means

Clustering

Conor Spann1(B) , Evelyne Lutton2 , François Boué3 , and Franck Vidal4

1 School of Computer Science and Engineering, Bangor University, Bangor, UK
c.spann@bangor.ac.uk

2 INRAE-UMR518, AgroParisTech, Univ Paris-Saclay, 91120 Palaiseau, France
3 LLB-CEA, CNRS-UMR12, Univ Paris-Saclay, 91190 Gif-sur-Yvette, France
4 Scientific Computing Department, Science Technology Facilities Council, UK

Research and Innovation, Daresbury, UK
franck.vidal@stfc.ac.uk

Abstract. Many studies focused on gastric motility require the use of
synthetic tracers to map the motion of content. Our study instead takes
advantage of an unusual MRI acquisition protocol, combined with multi-
objective optimised clustering to map the motion of food (peas, a natural
‘tracer’) in a human stomach. We chose NSGA-II to optimise the starting
positions for a modified k -means to create optimum clusters. We com-
pared our optimisation approach with a purely random approach that
took an equal amount of processing time. Since we have no ground truth
available, we have created alternative measures to evaluate our solutions:
if the resulting pea velocities are within an expected range, and if each
pea’s motion is correlated with neighbouring peas. We found that the
optimised version has a significant improvement over the purely random
search. Furthermore, we found many interesting food motion behaviours,
such as correlated pea motion and more complex motion dynamics such
as collision. Overall we found that the combined optimisation and clus-
tering approach produced interesting findings relating to food dynamics
in a human stomach.

Keywords: NSGA-II · k -means · MRI

1 Introduction

Magnetic resonance imaging (MRI) of the gastrointestinal tract (GIT) is a non
invasive technique providing good spatial resolution and tissue contrast which
has been used since the late 90s to diagnose various diseases of the GIT and more
recently to evaluate functional disorders [17]. Research on digestion (human and
animal) are also based on MRI [5], but the imaging of stomach, as a soft tissue
that moves and expands, is particularly challenging. MRI is currently used to
measure gastric volume, emptying, and contractile activity in various conditions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 430–445, 2024.
https://doi.org/10.1007/978-3-031-56852-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56852-7_27&domain=pdf
http://orcid.org/0000-0001-5770-6280
http://orcid.org/0000-0003-0889-4427
http://orcid.org/0000-0002-6799-3292
http://orcid.org/0000-0002-2768-4524
https://doi.org/10.1007/978-3-031-56852-7_27

3D Motion Analysis in MRI Using a Multi-objective 431

(empty stomach, liquid or solid meals) [7]. These measurements rely on the
design of appropriate acquisition and image reconstruction protocols. But image
analysis still relies on human intervention, for instance to identify the limits of
the organ by manually placing reference points, slowing down the analysis of
large volumes of data. The analysis of gastric motility is another difficult and
challenging issue [13]. Various experimental protocols have been developed [10],
often based on the ingestion of tracers [26], aiming at providing a rapid and high
resolution acquisition [17]. Semi-automated analysis of such datasets have been
recently proposed [20], mainly focused on the external shape of the organ.

In this paper we propose an automatic image analysis method based on
an experimental protocol developed in [5], focused on the visualisation of the
stomach content instead of its limits, which is rather novel. The idea is to identify
the trajectories of a set of harmless tracers (frozen peas) in the MRI of a human
stomach to gain information on the distribution of food inside the stomach during
the digestion process. A major limit for the analysis of dynamic stomach content
is the MRI acquisition protocol itself, that, to limit the interaction between slices
during the measurement, interleaves the acquisition of the slices (see Sect. 3 for
details). As the stomach content constantly moves, objects observed in a 2D
slice may also appear in another slice: it puzzles the interpretation of the 3D
geometry. We propose a 4D reconstruction approach (3D + time) that takes this
acquisition protocol into account. By doing this, we are able to group duplicated
peas into clusters captured at different time steps. To do this, we have created
a multi-objective optimised clustering method using NSGA-II and k -means to
cluster these duplicated peas. Then, subsequent analysis of each cluster enables
estimating a local trajectory of it, turning what might have been considered
as a defect into valuable information about the local movements. In addition,
simultaneous imaging of a set of tracers makes it possible to visualise where
local movements are correlated or not, providing further valuable information
for understanding stomach mechanisms.

The rest of this paper is structured as follows: Sect. 2 reports related research
in stomach mechanics and clustering; Sect. 3 describes the MRI datasets used;
Sect. 4 expresses our problem in more detail; Sect. 5 describes our optimised clus-
tering approach, Sect. 6 describes our methods of evaluation and finally Sect. 7
reviews whether our solution has achieved its aims and makes suggestions for
future work.

2 Related Work

The human stomach can be split in four regions: the fundus, stomach body,
antrum and pylorus [8]. The fundus and stomach body serves as a highly-flexible
content storage area. The antrum serves as a soft mixer, the pylorus initial aim
is a tap and as a second effect, it may generate some higher shear. After a meal
is ingested, the stomach wall contracts which causes peristaltic waves to move
food through the stomach and aid digestion [11,14]. These peristaltic waves start
from the stomach wall and proceed in the direction of the antrum, where the

432 C. Spann et al.

food contents are mixed and any large components are dispersed in smaller parts.
The contents are pushed into the pylorus, which itself contracts and pushes the
contents back into the stomach [11]. Most of the large particles are reduced
into smaller pieces (1–3mm size), which make it easier to pass through the
pylorus [8,11]. The frequency of peristaltic waves is approximately 3 cycles per
minute [14,19] and the average range of peristaltic speed is 1.5–5.0mm/s [14].
Furthermore, in the gastric emptying phase, these contractile waves significantly
increase in amplitude and velocity [14]. The speed of stomach-emptying will
depend on the food consumed, since solid foods must be ground to a sufficient
size first before proceeding [14]. For example, over 50% of a calorific liquid meal
will be emptied in 1 h [8,22], and over 2 h for a solid meal [8]. Zero-calorie liquids
such as water are emptied almost immediately [14]. There have been several
studies focused on quantifying motion in medical imaging. [21] used cine-MRI
to compare stomach motion in fasting and post-prandial states. They quantified
gastric motility based on the minimum and maximum antrum diameters. An
alternative method of quantifying motion in medical imaging is by using the
Hausdorff Distance, which has been applied in [28] to show differences in the
inhalation states of the human diaphragm.

Our work relies on k -means clustering algorithm, which involves partitioning
a multi dimensional dataset into ‘k’ clusters [18]. The algorithm involves defining
a set number of centroids, relating each point to its closest centroid, and then
moving centroids to the mean position of its cluster. The initial placement of the
centroids can have an impact on the final result of the algorithm [9,23]. Some
methods of initialising centroids include the Forgy, MacQueen, Kaufman and
random methods [23]. Another approach is the use of wrapper methods, which
repeatedly execute k -means with different initial centroids and then picking the
best result [9,15]. Alternatively, the initial starting points could be initialised
using an evolutionary algorithm to produce optimal clusters [12]. A modified k -
means has been used to detect object motion [27]. In the study presented here,
we will also used a modified k -means to analyse the motion in the MRI datasets
presented next.

3 Datasets

This paper builds upon a previous experiment using MRI to examine digestion.
Volunteers swallowed whole frozen garden peas as well as carbohydrates (bread or
pasta) with water or lemon juice [5]. They then had MRI scans of their stomachs.
Frozen peas have been chosen as they have a simple shape (sphere) and they keep
their shape through the initial steps of the digestion. The original experiment
focused on the carbohydrate digestion and gastric emptying, whereas here we are
interested in the information that can be obtained by following the peas. Each
dataset referred to in this study refers to a single patient’s stomach scanned
in MRI. A numerical identifier is used to allow for anonymity (see Table 1). For
consistency we use the same identifiers as in previous articles [1,6,25]. Each scan
consists of several 2D cross sectional ‘slices’. The key principle to understand is

3D Motion Analysis in MRI Using a Multi-objective 433

Table 1. Dataset description

Dataset # Type of peas Pixel spacing
(in mm)

Pea diameter
(in mm)

1 Garden peas [0.5, 0.5, 2.0] ∼8

2 None [0.98, 0.98, 2.0] N/A
3 to 7 Petits pois [0.9, 0.9, 2.0] ∼5

8 to 10 Petits pois [0.83, 0.83, 3.0] ∼5

that slices were not scanned in a sequential order. To reduce interference between
contiguous slices in the 3D space, atoms of hydrogen must be given time to
‘relax’. For this reason, the slices were scanned in groups with spatial gaps in
between, and there is a time delay between the scanning of each slice group (see
Fig. 1). Due to the time delay, we consider each dataset to be 4D (3D + time).
Each cell of Fig. 1 corresponds to the Z index of the corresponding 2D slice in
the 3D space. Light blue cells show the cells being acquired at a given timestep;
dark blue cells are already acquired at a given timestep. Each row in the figure
shows a particular timestep (T = 1, T = 2, and T = 3) from the same scanned
volume. All the slices of “Group slice 1”, namely 1, 10, 19 and 28, correspond to
the timestep T = 1, etc. and were scanned almost simultaneously. Ten datasets
were produced in this way.

Fig. 1. Demonstrating the unusual scanning order for each of our datasets. Slices are
scanned in groups with a time delay in between, meaning that peas can be duplicated
in multiple slices.

There are three additional concerns to be raised. Firstly, Dataset 1, a different
size of peas were used that were much larger in diameter than the peas used in

434 C. Spann et al.

other datasets (see Table 1). Secondly, Dataset 2 contains no peas, and was used
as a control in the original experiments. Thirdly, some of the Datasets when
analysed visually had clearer defined peas, in particular Datasets 3–5. In this
study, we are focusing on Dataset 3 for the comparison between the optimised
and un-optimised k -means. We also use Dataset 4 and Dataset 5 for visualising
and analysing the dataset differences between pea correlations.

4 Problem Statement

Due to the nature of the MRI acquisition method, we believe some of the peas
have moved during scanning, and have been scanned more than once. From the
experimental protocol, we know that there are at most 20 true peas per dataset,
and during the acquisition of Dataset 3 for example there are 9 timesteps. There-
fore, for this dataset there is a theoretical maximum of 180 possible “duplicated”
peas. The focus of this study is whether or not we can identify duplicated peas
that are most likely be the same pea but observed at 9 different timesteps, and
then recreate each pea’s motion through the stomach. We saw this as a cluster-
ing problem. The goal is to identify 20 possible clusters, each containing up to
9 peas, with a max of 1 pea per timestep. Each cluster represents 1 true pea,
but at different timesteps. We are taking what could have been an inconvenient
detail, and exploiting it. By assigning detected peas into clusters, it becomes pos-
sible to model the motion of each clustered pea. This provides some important
information about stomach content movement patterns.

Due to this being a clustering problem, a challenging question is whether we
can improve upon a traditional clustering method (k -means), by using multi-
objective optimisation (NSGA-II). A multi-objective strategy makes sense in
this context, as, in the absence of ground truth data, there are various ways to
evaluate the quality of a cluster (see details in Sect. 5.3).

5 Method

Our solution to model the motion of peas is a modified k -means clustering app-
roach, because there are important constraints to consider:
(i) Our pea data is four dimensional (x, y, z, t), however each cluster can only
have a max of 1 pea per timestep. This is the biggest difference to vanilla k -
means, which would usually assign every available point to a cluster.
(ii) The evaluation of what is considered as a good cluster is a tradeoff between
at least two criteria, this is why we rely on a multi-objective optimisation.

5.1 Definitions

A pea in terms of this paper is a point in 4D space (x, y, z, t) (see Fig. 2). We
call a physical pea in the stomach a true pea. Each detected pea is assigned
a unique id. Due to various causes, among which false positives due to the image

3D Motion Analysis in MRI Using a Multi-objective 435

detection algorithm and the above mentioned acquisition process, there are many
more detected peas than actual true peas. These pea positions have already been
identified in previous work [1,6,25].

A cluster is a collection of peas, identified as corresponding to the same true
pea, but at different timesteps. There are 9 timesteps in Dataset 3 for example,
meaning that each cluster can contain up to 9 peas. We know that there are
20 true peas swallowed during the experiments, therefore there are 20 clusters.
Not all peas will be clustered. This is because there are more detected peas than
possible duplicates.

A pea vector is defined as the vector between a pea in cluster c at a timestep
t, and another pea in the same cluster c at timestep t+1. We define the velocity
of a pea at timestep t to be equal to the magnitude of its vector.

Fig. 2. Our definitions. (A) lists a selection of timesteps. (B) and (C) show two distinct
clusters of peas. (D) shows some peas not assigned to a cluster. (E) shows an example
pea in a cluster, and (F) is a pea vector between two peas in the same cluster but at
different timesteps.

5.2 Evolutionary Algorithm

As part of our solution, we will use NSGA-II [3] for optimisation, using the
multi-objective Python framework Pymoo [2]. We have chosen to run it with a
population size of 100, and for 100 generations (see Table 2) because it enabled us
to obtain good results while keeping computing time rather short. An individual
in this study represents the starting positions for the centroids (see Fig. 3) for the
k-mean algorithm. In our pipeline, the starting positions for centroids must equal
a pea position in the data. Therefore, each individual is defined as a list of size
equal to the number of clusters (20), with each value equal to a unique pea id.
There cannot be repeated pea ids per individual. Due to changes when mutating
individuals, an invalid pea id may be assigned to an individual. Therefore, we
include a repair function to change any invalid or duplicate pea ids to a valid id
from the left over available pool of pea ids.

436 C. Spann et al.

Table 2. NSGA-II parameters

Parameter Value

Individuals 100
Generations 100
Crossover Simulated Binary Crossover (SBX) [4]
Mutation Polynomial Mutation (PM) [4]

Fig. 3. The individual creation process. It is important to note that here only a small
set of peas is shown for simplicity. Each pea has a temporal position and a unique id.
Each individual is made up of 20 unique ids. If an invalid id occurs during the mutation
process, a repair function is used to replace invalid ids with left over valid ones. The
corresponding pea positions from the pea ids are used as the centroid initial positions.

5.3 Assessment of the Clustering Results

Since we have no ground truth available to determine whether the produced clus-
ters are correct, we have to produce alternate measures to assess the quality of
our solutions. One measure is to check that each cluster pea velocity is within an
expected range. We know a range of food velocity is 1.5–5.0mm/s [14]. However,
there is a degree of uncertainty so we apply a 20 percent tolerance to the upper
and lower bounds of the range. To create a metric from this range, we count for
each pea, how many velocities are inside the range versus outside, which gives
us a percentage out of one hundred.

rs = 100× nv

tv
(1)

where: nv = number of velocities in range
tv = total number of velocities

Also, we make the presumption that if the pea motion is accurate, each pea’s
motion might be correlated with neighbouring peas due to the peristaltic motion

3D Motion Analysis in MRI Using a Multi-objective 437

caused by the stomach wall. To measure this, we identify the pea vectors for each
timestep. We calculate the dot product of each pea vector with each other pea
vector at time step t, for all timesteps and calculate the mean of all the dot
products:

md =
1
N

N∑

t=1

n∑

j=1

at,i × bt,i (2)

where: N = the number of timesteps
n = the number of components in each vector

at,i = the i-th of component of vector a at timestep t

bt,i = the i-th of component of vector b at timestep t

A result of 1.0 means that the two vectors a and b are pointing in the same
direction, and a result of −1.0 means that the two vectors a and b are pointing in
opposite directions. A satisfying clustering result is then a tradeoff between two
objectives: a set of smooth pea trajectories but having plausible velocities (in
the above specified ranges). We use NSGA-II to supply k -means with potential
centroid starting positions. NSGA-II initially starts with a population of random
but bounded starting positions and supplies them to k -means. The resulting
clusters are then evaluated according to the percentage of pea velocities inside
the acceptable stomach velocity range (f1), and the mean dot product of each
cluster compared to every other cluster (f2) (see Fig. 4).

f1 = rs (3)
f2 = md (4)

Fig. 4. Each of our metrics for evaluating clustering solutions shown here with only
two clusters for simplicity (orange and purple). (Color figure online)

438 C. Spann et al.

Fig. 5. The pipeline for our optimised k -means algorithm.

A satisfactory f1 objective would imply that the euclidean distance between
two peas at different timesteps does not exceed a specific range. This is important
because there is a physical limit to how fast content can move in the stomach [14].
Furthermore, due to the many different motions the stomach performs (e.g.
mixing, grinding), peas should not be able to ‘skip’ stages by moving too quickly.
A satisfactory f2 objective would imply that each pea trajectory is similar to
many other pea trajectories. This is important because it would suggest that the
motion of the peas is correlated as they are mixed in the stomach. Succeeding in
both objectives may suggest that the peas are both within a reasonable velocity
and are correlated with the other peas, however succeeding in one may have a
trade-off with the other, which is why we employ NSGA-II. Furthermore, it is
important to note that the f2 objective only considers the global group of 20
true peas. In reality, peas in one region of the stomach may have their own local
trajectories different to another region of the stomach.

5.4 Pipeline

The customised k -means algorithm runs as follows. First, NSGA-II supplies 20
unique pea ids per individual, which are used to identify the initial centroid
starting positions. Next, for each timestep t, find the closest pea to each cen-
troid in the current timestep. Once all timesteps are completed, we compute

3D Motion Analysis in MRI Using a Multi-objective 439

the mean of each cluster’s point set. If none of the means are different to the
current centroid’s position, end the algorithm. Otherwise, the centroids position
becomes the mean and the algorithm iterates again. To prevent an infinite loop,
an iteration limit is set to 20 iterations. Once the peas are clustered, each cluster
trajectory is calculated and supplied back to NSGA-II to evaluate fitness (see
Fig. 5). A tool was implemented to visualise the results of the optimised k -means
written in Python with VTK [24]. It shows a semi-transparent boundary of the
stomach volume rendered using Marching Cubes [16] with the peas inside ren-
dered using the Glyph Filter from VTK. Each cluster of peas is given a unique
cluster colour to differentiate, and arrows showing the previous pea positions at
each timestep are also shown. Furthermore, to verify if the optimisation app-
roach is beneficial, it is compared to an approach without optimisation. For the
optimisation version, NSGA-II is run with a population of 100 individuals for
100 generations, and for the without version, the modified k -means is run with
10000 random seeds.

6 Results

We have used the MRI Dataset 3 for testing the varying performance of optimised
versus non-optimised. Due to the nature of multi objective optimisation, a set
of non-dominated solutions which are all non-compromising in either objective
are produced (see Fig. 6). The highest range accuracy encountered is 59.17%
which has a corresponding dot product score of 0.03. The highest mean dot
product is 0.19 which has a corresponding range score of 43.33. To compare
the performance of the optimised versus non-optimised, we compare the non
dominated solutions with the average results from the non-optimised run. Both
methods were run on a PC with an Intel Core i5 CPU with 8GB of RAM. In
terms of computation time, they are both very similar and take around 40min to
complete each (see Table 3). In terms of comparing the k -means to the optimised
pipeline, the optimised version appears to perform better. The un-optimised
version has a mean of 42.85% for the range metric (see Fig. 7a), and a mean of
0.047 for the mean dot product metric (see Fig. 7b). Compared to the optimised
version which has a mean of 54.46% for the range metric and 0.107 for the mean
dot product, the optimised version clearly has a performance benefit over the
non-optimised pipeline. The optimised version appears to perform better for the
first objective (range score), with its minimum (Q0) scoring better than the
without optimisation’s maximum (Q4), excluding outliers. For the dot product,
the optimised version has a much broader range between Q1 and Q3, and it’s
mean is only slightly higher than the un-optimised versions maximum (Q4). From
the pareto front generated by NSGA-II, two solutions were selected. One with
the highest range score, and one with the highest mean dot product score. These
two solutions provided varying trajectory outcomes depending on the dataset.

A single pea cluster may be more strongly correlated with one other clus-
ter, but have much weaker correlation than others. For this reason, we retrieve
the individual mean dot products between each clusters, so these correlation

440 C. Spann et al.

Table 3. Computation times for the un-optimised versus the optimised.

Method Running Time (in minutes)

Seeds 41.17
NSGA-II 40.15

Fig. 6. Pareto front for the optimised k -means, and pareto front from the 10000 seeds
approach. The two solutions picked from NSGA-II are marked.

Fig. 7. Comparison between the two k -means centroid initialisation methods: no opti-
misation (run with 10000 seeds) versus NSGA-II optimisation (non dominated solu-
tions). Figure a shows the comparison in pea velocity range metric, and Figure b shows
the comparison in the mean dot product score.

relationships can be observed (see Fig. 8). For example, Cluster 8 is poorly cor-
related with Cluster 16, but strongly correlated with Cluster 6. Cluster 4 appears
to be broadly correlated with many other clusters, whereas Cluster 2 is poorly
correlated with most other clusters.

Further analysis was done using the custom visualisation tool we created.
Using this tool, we can visualise the pea motion, as well as analyse the various

3D Motion Analysis in MRI Using a Multi-objective 441

Fig. 8. Heatmap showing how each pea cluster is correlated with each other pea cluster.
The solution picked here was the highest range scoring individual so that a more distinct
variance of correlation can be shown. Dark blue cells show clusters moving in the same
directions at each timestep; dark red cells in opposite directions; and white cells in
unrelated directions. (Color figure online)

correlations that we have calculated (see Fig. 9). In Dataset 3, we identified
several peas that have correlated movements. One such correlation is located
near the antrum of the stomach, and the final pea trajectory appears like the
peas are about to leave the stomach (see Fig. 10a). This implies that the peas
here may be at a later stage of digestion and are about to be passed to the small
intestine. Elsewhere in the stomach, we have found some peas that are correlated
for a set amount of timesteps, but depart on later timesteps (see Fig. 10b). This
could be due to reconstruction errors, or other factors such as other stomach
content changing the pea trajectories. We also performed the optimised k -means
on other datasets. Dataset 4 in particular had some interesting findings. Many
of the peas had poor correlation, but instead there were what appear to be
‘collisions’ between peas, resulting in many altered trajectories (see Fig. 11).
This could be due to the scan taking place at a different stage of digestion,
such as a grinding or mixing stages, and due to a large number of detected peas
confined in a smaller area, causing many collisions. Furthermore, its important
to note that due to different combinations of bread, pasta, lemon juice or water
used in the MRI protocol, the different contents could also have an impact on
the pea trajectories.

442 C. Spann et al.

Fig. 9. The 3D stomach model and peas, showing the highest correlation scoring indi-
vidual. Each cluster is represented with its own unique colour and ID. Figure a shows
the initial pea positions at t0, and Figure b shows the trajectories of each pea as they
move to t1.

Fig. 10. Two examples of correlated peas from Dataset 3 using the highest correlation
scoring individual. Figure a shows an example of two correlated pea clusters: Cluster 6
and Cluster 8 from Dataset 3. Figure b shows an example of two partially correlated
pea clusters: Cluster 0 and Cluster 5.

3D Motion Analysis in MRI Using a Multi-objective 443

Fig. 11. Using the higher range scoring individual for Dataset 4 had fewer correlated
peas compared to Dataset 3, instead featuring many ‘collisions’ between peas. Figure
a shows a collision between Cluster 5 and Cluster 10, and Figure b shows a collision
between Cluster 17 and Cluster 19.

7 Conclusion and Future Work

In this paper, we have shown that optimising a clustering algorithm using multi-
objective optimisation is highly beneficial. Our optimised version overall out-
performed the un-optimised method in each of the measures we have defined.
Furthermore, we have found many interesting findings as a result of the cluster-
ing, such as groups of peas with similar trajectories and what appear to be peas
having altered trajectories due to collisions, varying depending on the dataset.
Further work could be done to analyse the trajectories of the peas after they
have exited the stomach and entered the small intestine, and beyond. In terms
of the evolutionary approach, further parameters could be tuned. For example,
since the peas are moving and may after a certain time leave the stomach, the
genetic approach could be modified to account for a variable individual size.
Furthermore, in these experiments a population of 100 was used, in future much
larger runs could be completed to see if it improves the results.

Acknowledgements. This work was partially supported by a STSM Grant from
COST Action CA15118 (FoodMC) and the MRI data used in this study were collected
at CEA-SHFJ with the support of IR4M CNRS/Orsay University (Xavier Maître and
Luc Darrasse) in the framework of the IDI/Paris Saclay PhD of Daniela Freitas.

Ethical Approval. The study protocol has been approved by the Ethics Committee
Lyon Sud-Est IV, and it has been registered in the Clinical Trial Registry (clinical-
trials.gov; NCT03265392) (see https://clinicaltrials.gov/ct2/show/NCT03265392). All
volunteers gave their written informed consent after being provided with oral and writ-
ten information about the aims and protocol of the study.

https://clinicaltrials.gov/ct2/show/NCT03265392

444 C. Spann et al.

References

1. Al-Maliki, S.F., Vidal, F.P.: Visualisation, optimisation and Machine Learning:
application in PET Reconstruction and Pea segmentation in MRI Images. Ph.D.
thesis, Bangor University (2020)

2. Blank, J., Deb, K.: pymoo: multi-Objective Optimization in Python. IEEE Access
8, 89497–89509 (2020). https://doi.org/10.1109/ACCESS.2020.2990567

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

4. Deb, K., Sindhya, K., Okabe, T.: Self-adaptive simulated binary crossover for
real-parameter optimization. In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2007, pp. 1187–1194. Association
for Computing Machinery, New York (2007). https://doi.org/10.1145/1276958.
1277190

5. Freitas, D.: Novel insights into starch digestion and the glycaemic response: from
in vitro digestions to a human study using magnetic resonance imaging (MRI).
Ph.D. thesis, Université Paris-Saclay (2018)

6. Gardner, J., Al-Maliki, S., Lutton, E., Boué, F., Vidal, F.: Recognising specific
foods in MRI scans using CNN and visualisation. In: Ritsos, P.D., Xu, K. (eds.)
Computer Graphics and Visual Computing (CGVC). The Eurographics Associa-
tion (2020). https://doi.org/10.2312/cgvc.20201145

7. Goetze, O., et al.: The effect of macronutrients on gastric volume responses and
gastric emptying in humans: a magnetic resonance imaging study. Am. J. Phys-
iol. Gastrointest. Liver Physiol. 292(1), G11–G17 (2007). https://doi.org/10.1152/
ajpgi.00498.2005

8. Goyal, R.K., Guo, Y., Mashimo, H.: Advances in the physiology of gastric emp-
tying. Neurogastroenterol. Motil. 31(4), e13546 (2019). https://doi.org/10.1111/
nmo.13546

9. Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better clus-
terings. In: Proceedings of the Eleventh International Conference on Information
and Knowledge Management, CIKM 2002, pp. 600–607. Association for Computing
Machinery, New York (2002). https://doi.org/10.1145/584792.584890

10. Heissam, K., et al.: Measurement of fasted state gastric antral motility before and
after a standard bioavailability and bioequivalence 240 mL drink of water: vali-
dation of MRI method against concomitant perfused manometry in healthy par-
ticipants. PLOS ONE 15(11), e0241441 (2020). https://doi.org/10.1371/journal.
pone.0241441. https://dx.plos.org/10.1371/journal.pone.0241441

11. Kong, F., Singh, R.: A model stomach system to investigate disintegration kinet-
ics of solid foods during gastric digestion. J. Food Sci. 73(5), E202–E210 (2008).
https://doi.org/10.1111/j.1750-3841.2008.00745.x

12. Krishna, K., Narasimha Murty, M.: Genetic k-means algorithm. IEEE Trans. Syst.
Man Cybern. Part B (Cybern.) 29(3), 433–439 (1999). https://doi.org/10.1109/
3477.764879

13. Kunz, P., Feinle, C., Schwizer, W., Fried, M., Boesiger, P.: Assessment of gastric
motor function during the emptying of solid and liquid meals in humans by MRI.
J. Magn. Reson. Imaging 9(1), 75–80 (1999). https://doi.org/10.1002/(SICI)1522-
2586(199901)9:1<75::AID-JMRI10>3.0.CO;2-I. https://onlinelibrary.wiley.com/
doi/10.1002/(SICI)1522-2586(199901)9:1<75::AID-JMRI10>3.0.CO;2-I

https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1276958.1277190
https://doi.org/10.1145/1276958.1277190
https://doi.org/10.2312/cgvc.20201145
https://doi.org/10.1152/ajpgi.00498.2005
https://doi.org/10.1152/ajpgi.00498.2005
https://doi.org/10.1111/nmo.13546
https://doi.org/10.1111/nmo.13546
https://doi.org/10.1145/584792.584890
https://doi.org/10.1371/journal.pone.0241441
https://doi.org/10.1371/journal.pone.0241441
https://dx.plos.org/10.1371/journal.pone.0241441
https://doi.org/10.1111/j.1750-3841.2008.00745.x
https://doi.org/10.1109/3477.764879
https://doi.org/10.1109/3477.764879
https://doi.org/10.1002/(SICI)1522-2586(199901)9:1<75::AID-JMRI10>3.0.CO;2-I
https://doi.org/10.1002/(SICI)1522-2586(199901)9:1<75::AID-JMRI10>3.0.CO;2-I
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1522-2586(199901)9:1<75::AID-JMRI10>3.0.CO;2-I
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1522-2586(199901)9:1<75::AID-JMRI10>3.0.CO;2-I

3D Motion Analysis in MRI Using a Multi-objective 445

14. Li, Y., Kong, F.: Simulating human gastrointestinal motility in dynamic in vitro
models. Compr. Rev. Food Sci. Food Saf. 21(5), 3804–3833 (2022). https://doi.
org/10.1111/1541-4337.13007

15. Likas, A., Vlassis, N., J. Verbeek, J.: The global k-means clustering algo-
rithm. Pattern Recogn. 36(2), 451–461 (2003). https://doi.org/10.1016/S0031-
3203(02)00060-2

16. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3D surface construction
algorithm. Comput. Graph. 21(4), 163–169 (1987)

17. Maccioni, F., Busato, L., Valenti, A., Cardaccio, S., Longhi, A., Catalano, C.: Mag-
netic resonance imaging of the gastrointestinal tract: current role, recent advance-
ments and future prospectives. Diagnostics 13(14), 2410 (2023). https://doi.org/
10.3390/diagnostics13142410. https://www.mdpi.com/2075-4418/13/14/2410

18. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability (1967). https://api.semanticscholar.org/CorpusID:6278891

19. Marciani, L., et al.: Antral motility measurements by magnetic resonance imaging.
Neurogastroenterol. Motil. 13(5), 511–518 (2001). https://doi.org/10.1046/j.1365-
2982.2001.00285.x

20. Menys, A., et al.: Spatio-temporal motility MRI analysis of the stomach and
colon. Neurogastroenterol. Motil. 31(5), e13557 (2019). https://doi.org/10.1111/
nmo.13557. https://onlinelibrary.wiley.com/doi/10.1111/nmo.13557

21. Nonaka, H., Onishi, H., Watanabe, M., Nam, V.H.: Assessment of abdominal organ
motion using cine magnetic resonance imaging in different gastric motilities: a
comparison between fasting and postprandial states. J. Radiat. Res. 60(6), 837–
843 (2019)

22. Parker, H.L., et al.: Clinical assessment of gastric emptying and sensory function
utilizing gamma scintigraphy: establishment of reference intervals for the liquid
and solid components of the nottingham test meal in healthy subjects. Neurogas-
troenterol. Motil. 29(11), e13122 (2017). https://doi.org/10.1111/nmo.13122

23. Peña, J., Lozano, J., Larrañaga, P.: An empirical comparison of four initializa-
tion methods for the k-means algorithm. Pattern Recogn. Lett. 20(10), 1027–1040
(1999). https://doi.org/10.1016/S0167-8655(99)00069-0

24. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kit-
ware (2006)

25. Spann, C., Al-Maliki, S., Boué, F., Lutton, E., Vidal, F.P.: Interactive visualisation
of the food content of a human stomach in MRI. In: Computer Graphics and Visual
Computing (CGVC), pp. 47–54. The Eurographics Association (2022). https://doi.
org/10.2312/cgvc.20221171

26. Steingoetter, A., et al.: Magnetic resonance imaging for the in vivo evaluation
of gastric-retentive tablets. Pharm. Res. 20(12), 2001–2007 (2003). https://doi.
org/10.1023/B:PHAM.0000008049.40370.5a. http://link.springer.com/10.1023/B:
PHAM.0000008049.40370.5a

27. Tao, F., Lin-sheng, L., Qi-chuan, T.: A novel adaptive motion detection based on
k-means clustering. In: 2010 3rd International Conference on Computer Science
and Information Technology, vol. 3, pp. 136–140 (2010). https://doi.org/10.1109/
ICCSIT.2010.5564529

28. Vidal, F.P., Villard, P.F., Lutton, É.: Tuning of patient-specific deformable models
using an adaptive evolutionary optimization strategy. IEEE Trans. Biomed. Eng.
59, 2942–2949 (2012). https://doi.org/10.1109/TBME.2012.2213251

https://doi.org/10.1111/1541-4337.13007
https://doi.org/10.1111/1541-4337.13007
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.3390/diagnostics13142410
https://doi.org/10.3390/diagnostics13142410
https://www.mdpi.com/2075-4418/13/14/2410
https://api.semanticscholar.org/CorpusID:6278891
https://doi.org/10.1046/j.1365-2982.2001.00285.x
https://doi.org/10.1046/j.1365-2982.2001.00285.x
https://doi.org/10.1111/nmo.13557
https://doi.org/10.1111/nmo.13557
https://onlinelibrary.wiley.com/doi/10.1111/nmo.13557
https://doi.org/10.1111/nmo.13122
https://doi.org/10.1016/S0167-8655(99)00069-0
https://doi.org/10.2312/cgvc.20221171
https://doi.org/10.2312/cgvc.20221171
https://doi.org/10.1023/B:PHAM.0000008049.40370.5a
https://doi.org/10.1023/B:PHAM.0000008049.40370.5a
http://springerlink.bibliotecabuap.elogim.com/10.1023/B:PHAM.0000008049.40370.5a
http://springerlink.bibliotecabuap.elogim.com/10.1023/B:PHAM.0000008049.40370.5a
https://doi.org/10.1109/ICCSIT.2010.5564529
https://doi.org/10.1109/ICCSIT.2010.5564529
https://doi.org/10.1109/TBME.2012.2213251

Author Index

A
Ain, Qurrat Ul I-413
Ali, Muhammad Junaid II-163
Al-Sahaf, Harith I-413
Amerehi, Fatemeh I-224
Andova, Andrejaana II-310
Arjonilla, Jérôme II-376
Arzoky, Mahir I-240

B
Bandhey, Harsh II-225
Baumann, Jill II-212
Bernal-Zubieta, Emilio II-130
Bi, Ying II-196
Biau, Julien I-19
Bierbach, David I-146
Boman, Anna S. II-293
Boué, François I-430
Bulnes, Darian Reyes Fernández de I-224
Buzdalov, Maxim I-322

C
Callegari, Vincent I-131
Carlet, Claude I-287
Cazenave, Tristan II-376
Chicano, Francisco II-240
Chugh, Tinkle II-391
Clare, Luana II-147
Comet, Jean-Paul I-131
Cork, Jordan N. II-310
Correia, João II-147
Cortês, Gabriel II-76
Cotta, Carlos I-194
Cowan, Tyler II-345
Cruz-Duarte, Jorge M. II-130
Cussat-Blanc, Sylvain I-19

D
D’Alessandro, Tiziana I-397
Dahi, Zakaria Abdelmoiz II-240

de Jeu, Luke I-162
De Stefano, Claudio I-397
Degaugue, Sarah I-51
Delazeri, Gustavo I-273
Durand, Nicolas I-51
Ðurasević, Marko I-3, I-287, II-91

E
El-Abd, Mohammed I-259
Ellefsen, Kai Olav II-19
Escalante, Hugo Jair II-180
Essaid, Mokhtar II-163
Evans, Alex II-391

F
Falcón-Cardona, Jesús Guillermo II-130
Farinati, Davide I-68
Filipič, Bogdan II-310, II-326
Fontanella, Francesco I-397

G
Gallardo, José E. I-194
Garcia-Garcia, Cosijopii II-180
Gašperov, Bruno I-3, I-287, II-91
Gotteland, Jean-Baptiste I-51
Gulisano, Vincenzo I-377

H
Hafner, Verena V. I-146
Hähner, Jörg II-256
Hamon, Gautier II-36
Hamon, Myriam I-146
Hart, Emma I-98, I-178
Hasan, Yumnah I-224
Healy, Patrick I-224
Heywood, Malcolm I. I-361
Hinaut, Xavier II-36
Hunter, Kelly I-83

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
S. Smith et al. (Eds.): EvoApplications 2024, LNCS 14634, pp. 447–449, 2024.
https://doi.org/10.1007/978-3-031-56852-7

https://doi.org/10.1007/978-3-031-56852-7

448 Author Index

I
Iacca, Giovanni I-35, II-3
Idoumghar, Lhassane II-163

J
Jakobovic, Domagoj I-3, I-287, II-91
John, Taran Cyriac I-413
Joseph, Marshall II-361

K
Kamoun, Malek II-225
Kenny, Angus II-115
Knoll, Alois II-3
Kramer, Oliver II-212
Krause, Jens I-146
Krömer, Pavel II-326
Kyrki, Ville II-61

L
Lakhmani, Ashish I-115
Léger, Corentin II-36
Lima, Allan de I-224
Limmer, Steffen II-115
Lourenço, Nuno II-76
Luga, Hervé I-19
Lunelli, Riccardo I-35
Luque, Gabriel I-341, II-240
Lutton, Evelyne I-430

M
Machado, Penousal II-76
Malan, Katherine M. II-293
Mann, Ashley I-240
Mariot, Luca I-287
Marques, Alexandra II-147
Mazumdar, Atanu II-61
Medvet, Eric I-377
Michelucci, Romain I-131
Moalic, Laurent II-163
Moghadam, Mahshid Helali I-259
Montague, Kirsty I-178
Morales-Reyes, Alicia II-180
Mostaghim, Sanaz I-209
Moulin-Frier, Clément II-36
Mousavirad, Seyed Jalaleddin I-259
Musiolek, Lea I-146

N
Nardone, Emanuele I-397
Nisioti, Eleni II-36
Nordsieck, Richard II-256

O
Olhofer, Markus II-115
Oliva, Diego I-259

P
Paechter, Ben I-178
Pallez, Denis I-131
Pätzel, David II-256
Pedroza-Perez, Diego Daniel I-341
Picek, Stjepan I-287
Pienaar, Johannes J. II-293
Preuß, Oliver Ludger I-305

R
Ray, Tapabrata II-115
Reilstad, Didrik Spanne II-19
Renau, Quentin I-98
Ritt, Marcus I-273
Rodemann, Tobias II-115
Rook, Jeroen I-305
Ross, Brian J. II-345, II-361
Ryan, Conor I-224

S
Sadek, Sphia II-225
Saffidine, Abdallah II-376
Sagri, Amani II-376
Sayar, Erdi II-3
Schaefer, Gerald I-259
Singh, Hemant Kumar II-115
Spann, Conor I-430
Swift, Stephen I-240

T
Thulasiram, Ruppa K. I-115
Thulasiraman, Parimala I-115
Toutouh, Jamal I-341
Trautmann, Heike I-305
Tsompanas, Michail-Antisthenis II-275
Tušar, Tea II-310, II-326

Author Index 449

U
Uher, Vojtěch II-326
Urbanowicz, Ryan II-225
Urquhart, Neil I-83

V
Vanneschi, Leonardo I-68
Vidal, Franck I-430
Vintaykin, Vladislav II-3
Vodopija, Aljoša II-310

W
Walden, Aidan I-322
Wang, Qinyu II-196

Weimar, Nils I-146
Weise, Jens I-209

X
Xue, Bing II-196

Y
Yaman, Anil I-162

Z
Zhang, Mengjie I-413, II-196
Zhou, Zhilei I-361
Zincir-Heywood, Nur I-361

	 Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	Applications of Evolutionary Computation
	Finding Near-Optimal Portfolios with Quality-Diversity
	1 Introduction
	1.1 Portfolio Optimization and Near-Optimal Portfolios
	1.2 Prior Research
	1.3 Objectives and Contributions

	2 Methodology
	2.1 Problem Formulation
	2.2 Behavior Function and Space
	2.3 Fitness Functions
	2.4 Recombination Operator
	2.5 Algorithm

	3 Experimental Results
	3.1 Toy Example
	3.2 Higher-Dimensional Setting

	4 Conclusion and Further Work
	References

	Improving Image Filter Efficiency: A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency
	1 Introduction
	2 Related Works
	2.1 Multi-objective Evolution Algorithms
	2.2 Cartesian Genetic Programming
	2.3 Cartesian Genetic Programming for Image Processing
	2.4 Genetic Improvement
	2.5 Genetic Improvement in Cartesian Genetic Programming for Image Processing

	3 Multi-objective Implementation in Cartesian Genetic Programming for Image Processing
	3.1 Evolutionary Algorithm
	3.2 Adapting NSGA-II for CGP-IP-GI
	3.3 Synchronization of Islands
	3.4 Objectives Functions

	4 Experiments
	4.1 Urban Traffic Dataset
	4.2 CGP-IP Parameters
	4.3 Image Processing Functions

	5 Results
	5.1 Comparing Multi-objective to Mono-objective Results

	6 Conclusion
	References

	Low-Memory Matrix Adaptation Evolution Strategies Exploiting Gradient Information and Lévy Flight
	1 Introduction
	2 Methods
	3 Experimental Setup
	3.1 Forward-Forward Algorithm
	3.2 Cart Pole
	3.3 Benchmark Functions

	4 Experimental Results
	4.1 Forward-Forward Algorithm
	4.2 Cart Pole
	4.3 Benchmark Functions

	5 Conclusion
	References

	Memory Based Evolutionary Algorithm for Dynamic Aircraft Conflict Resolution
	1 Introduction
	2 EA for Dynamic Optimisation Problems
	2.1 Naive Approach
	2.2 Implicit Memory
	2.3 Explicit Memory

	3 Problem Modelling
	3.1 Environment
	3.2 Decision Variables

	4 Algorithm Versions
	4.1 Population Element Structure
	4.2 Population Element Fitness
	4.3 EA Operators
	4.4 Sharing Process
	4.5 Selection
	4.6 Population Size and Ending Criterion
	4.7 Final Optimisation

	5 Memory Management
	5.1 Naive Approach (NA)
	5.2 Explicit Memory Approach (EMA)
	5.3 Summary of the Tested Algorithms

	6 Experimental Results
	6.1 Exercises
	6.2 First Results
	6.3 External Action Impacts

	7 Conclusion
	References

	GM4OS: An Evolutionary Oversampling Approach for Imbalanced Binary Classification Tasks
	1 Introduction
	2 Literature Review
	3 Genetic Methods for Oversampling
	4 Experimental Settings and Test Problems
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Evolving Staff Training Schedules Using an Extensible Fitness Function and a Domain Specific Language
	1 Introduction and Motivation
	2 Related Work
	3 Problem Domain
	3.1 Problem Definition
	3.2 Problem Instances

	4 Solving Using an Evolutionary Algorithm
	4.1 Algorithm Description
	4.2 Initial Results

	5 Extending the Fitness Function
	5.1 Introduction
	5.2 The Basil Language Syntax, Compilation and Evaluation
	5.3 Basil Execution
	5.4 Results with Basil

	6 Discussion and Future Work
	6.1 Conclusions
	6.2 Future Work

	References

	On the Utility of Probing Trajectories for Algorithm-Selection
	1 Introduction
	2 Background and Related Work
	3 Methods
	3.1 Data
	3.2 Algorithm Selection Inputs
	3.3 Algorithm Selection Methods

	4 Results
	4.1 ELA Features vs Single Trajectories
	4.2 ELA Features vs Multiple Trajectories
	4.3 Additional Insights into Trajectory Performance

	5 Insights into Trajectory Similarity
	6 Pros and Cons of Trajectories
	7 Conclusion
	References

	Nature-Inspired Portfolio Diversification Using Ant Brood Clustering
	1 Introduction
	2 Related Work and Motivation
	3 Ant Brood Clustering
	3.1 Measuring Object Similarity for Clustering
	3.2 Co-integration

	4 Dataset, Algorithm and Experiments
	4.1 Dataset
	4.2 Implementation
	4.3 Parameter Tuning

	5 Results and Discussions
	5.1 Heatmap and Cosine Similarity Results
	5.2 Silhouette Score
	5.3 Inter-cluster Analysis
	5.4 Additional Discussion

	6 Conclusion
	References

	Cellular Genetic Algorithms for Identifying Variables in Hybrid Gene Regulatory Networks
	1 Introduction
	2 hGRN Variables Optimisation
	2.1 Hybrid Gene Regulatory Networks
	2.2 Biological Knowledge
	2.3 Single Objective and Multimodal Optimisation Problem

	3 RS-CMSA-ESII and cGAs for MMO
	4 Experimental Study
	4.1 Optimisation Methods and Parameters Search
	4.2 Results
	4.3 Statistical Analysis
	4.4 Visualisation

	5 Conclusion
	References

	Evolving Artificial Neural Networks for Simulating Fish Social Interactions
	1 Introduction
	2 Methods
	2.1 Ground Truth Data
	2.2 Neural Network Models
	2.3 Input Information
	2.4 Evolution Strategy for Neural Network Architecture Search
	2.5 Data Labels
	2.6 Simulation
	2.7 Analysis of Evolution Results
	2.8 Simulation Discriminator

	3 Results
	3.1 Experiment 1: Selection Through Testing on Prelabeled Data
	3.2 Experiment 2: Selection Via Discriminator Ratings

	4 Discussion
	4.1 Experiment 1
	4.2 Experiment 2

	5 Summary
	6 Limitations and Outlook
	References

	Heuristics for Evolutionary Optimization for the Centered Bin Packing Problem
	1 Introduction
	2 Method
	2.1 Baseline EA
	2.2 Heuristics

	3 Experimental Setup
	4 Results
	4.1 Configuration Performance Results
	4.2 Individual Heuristic Effects

	5 Discussion
	6 Conclusion
	References

	A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control
	1 Introduction
	2 Background
	3 Methodology
	3.1 Setup
	3.2 Evolving New Primitives
	3.3 Evolving an Arbitrator

	4 Results
	4.1 Extending and Improving the Primitive Repertoire
	4.2 Foraging Experiments
	4.3 Readability

	5 Conclusions and Further Work
	References

	Evolutionary Algorithms for Optimizing Emergency Exit Placement in Indoor Environments
	1 Introduction
	2 Problem Statement
	3 A CA for Modeling Pedestrian Evacuation
	3.1 State of the CA
	3.2 Update Procedure
	3.3 Transition Function

	4 Algorithms for Emergency Exit Optimization
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions
	References

	Finding Sets of Solutions for Temporal Uncertain Problems
	1 Introduction
	2 Background
	2.1 Graph Theory
	2.2 Multi-objective Pathfinding

	3 Related Work
	3.1 Pareto Set Reduction as a DSS
	3.2 Pareto Graphs

	4 Finding Related Paths
	4.1 Constructing the Route-Change-Graph
	4.2 Community Detection and Analysis

	5 Evaluation and Discussion
	6 Conclusion and Outlook
	References

	Interpretable Solutions for Breast Cancer Diagnosis with Grammatical Evolution and Data Augmentation
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Experimental Details
	4.1 System Settings
	4.2 Performance Metric
	4.3 Class Balancing
	4.4 Grammatical Evolution
	4.5 Other Classifiers

	5 Results and Discussion
	5.1 Statistical Analysis

	6 Conclusion and Future Work
	References

	Applying Graph Partitioning-Based Seeding Strategies to Software Modularisation
	1 Introduction
	1.1 General Background
	1.2 Motivation

	2 Related Work
	2.1 Bunch and Munch
	2.2 Starting Points and Search Space

	3 Research Questions
	4 Methods
	4.1 Munch
	4.2 Graph Partitioning
	4.3 Starting Points

	5 Experimental Setup
	5.1 Graph Collection and Pre-processing
	5.2 Experiment Setup
	5.3 Data Collection and Analysis

	6 Results
	7 Summary of Main Findings
	8 Generalisability
	9 Future Work
	10 Appendix A
	References

	A Novel Two-Level Clustering-Based Differential Evolution Algorithm for Training Neural Networks
	1 Introduction
	2 Background
	2.1 Differential Evolution
	2.2 Pattern Clustering
	2.3 Feed-Forward Neural Networks

	3 Proposed C2L-DE Algorithm
	3.1 First-Level Clustering
	3.2 Second-Level Clustering
	3.3 Encoding Strategy
	3.4 Objective Function
	3.5 Levenberg-Marquardt Algorithm
	3.6 C2L-DE Algorithm

	4 Experimental Results
	5 Conclusions
	References

	Iterated Beam Search for Wildland Fire Suppression
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Preliminaries
	5 Proposed Algorithm
	5.1 Beam Search
	5.2 Expanding an Allocation of Resources
	5.3 Dynamical Update of the Fire Perimeter Size

	6 Experimental Evaluation
	6.1 Test Instances
	6.2 Parameter Values
	6.3 Transition Instant
	6.4 Comparison with the Literature

	7 Conclusions and Future Work
	References

	A New Angle: On Evolving Rotation Symmetric Boolean Functions
	1 Introduction
	2 Background
	2.1 Boolean Function Representations
	2.2 Boolean Function Properties and Bounds
	2.3 Rotation Symmetric Boolean Functions

	3 Related Work
	4 Experimental Settings
	4.1 Representations
	4.2 Fitness Functions

	5 Experimental Results
	5.1 General Vs. Rotation Symmetric Functions
	5.2 Rotation Symmetric Balanced, Highly Nonlinear Boolean Functions
	5.3 Rotation Symmetric Bent Boolean Functions

	6 Conclusions and Future Work
	References

	Analysis of Evolutionary Computation Methods: Theory, Empirics, and Real-World Applications
	On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems
	1 Introduction
	2 Multi-objective (Evolutionary) Optimisation
	3 Multi-objective Automated Algorithm Configuration
	4 Experiments
	4.1 Experimental Setup
	4.2 Results
	4.3 Summary and Discussion of Results

	5 Conclusion and Future Work
	References

	A Simple Statistical Test Against Origin-Biased Metaheuristics
	1 Introduction
	2 Proposed Testing Procedure
	3 Experiments
	3.1 Algorithms that Pass the Test
	3.2 CMA-ES
	3.3 Algorithms that Pass the Test but are Biased Differently
	3.4 Algorithms that Fail the Test

	4 Conclusion
	References

	Computational Intelligence for Sustainability
	Optimizing Urban Infrastructure for E-Scooter Mobility
	1 Introduction
	2 The Multiobjective Urban Road Infrastructure Redesign for E-Scooters Integration Problem
	2.1 Problem Description

	3 Parallel Multi-objective Evolutionary Algorithm
	3.1 The NSGA-II Algorithm Applied to URIReI
	3.2 Evolutionary Operators
	3.3 Parallel Master-Slave Implementation

	4 Experimental Setup
	4.1 Problem Instance
	4.2 Evaluated Metrics
	4.3 Parameter Settings
	4.4 Execution Platform and Implementation Details

	5 Experimental Evaluation
	5.1 Multi-objective Optimization Evaluation
	5.2 Solution Analysis and Interpretation
	5.3 Computational Efficiency

	6 Conclusions and Future Work
	References

	Evolutionary Computation in Edge, Fog, and Cloud Computing
	Simple Efficient Evolutionary Ensemble Learning on Network Intrusion Detection Benchmarks
	1 Introduction
	2 BStacGP Framework
	2.1 Stack Construction
	2.2 Ensemble Querying Post Training

	3 Symbolic Bid Based GP
	3.1 Symbiotic Model
	3.2 Competitive Coevolution

	4 Results
	4.1 Datasets and Parameterization
	4.2 Benchmarking Comparison
	4.3 BStacGP Behavioural Properties

	5 Conclusion
	References

	Evolutionary Computation Meets Stream Processing
	1 Introduction
	2 Preliminaries: Stream Processing
	2.1 Definitions
	2.2 Operators

	3 ea as Queries
	3.1 Example: Genetic Algorithm (GA) Query
	3.2 Example: Random Walk (RW) Query
	3.3 Streaming-Based Implementation Details

	4 Experimental Evaluation
	4.1 ([rq:equivalence]RQ1): Equivalence of Search Effectiveness
	4.2 ([rq:scalability]RQ2): Scalability
	4.3 ([rq:expressivity]RQ3): Expressive Power of Query-Based ea

	5 Concluding Remarks
	References

	Evolutionary Computation in Image Analysis, Signal Processing and Pattern Recognition
	Integrating Data Augmentation in Evolutionary Algorithms for Feature Selection: A Preliminary Study
	1 Introduction
	2 The Proposed Approach
	2.1 Data Augmentation
	2.2 Evolutionary Algorithms for Feature Selection
	2.3 Fitness

	3 Experimental Results
	3.1 Baseline Experiment
	3.2 Testing Feature Selection
	3.3 Data Augmentation and Feature Selection
	3.4 Investigating the Behaviour of GA and PSO
	3.5 Comparison Findings

	4 Conclusions and Future Work
	References

	Evolving Feature Extraction Models for Melanoma Detection: A Co-operative Co-evolution Approach
	1 Introduction
	1.1 Goals

	2 Literature Survey
	2.1 Feature Extraction
	2.2 Related Work

	3 Co-operative Co-evolution Image Descriptor
	3.1 Algorithm Overview
	3.2 Model Representation
	3.3 Feature Vector Synthesis
	3.4 Individual Fitness Evaluation

	4 Experimental Design
	4.1 Dataset
	4.2 Data Pre-processing
	4.3 Methods for Benchmark Comparison
	4.4 Parameters
	4.5 Experimental Setup
	4.6 Performance Evaluation Metrics

	5 Results and Discussions
	5.1 Binary Classification Performance of GP-Criptor and CC-Criptor
	5.2 Performance Comparison with Benchmark Methods

	6 Further Analysis
	6.1 Algorithm Convergence
	6.2 Colour Decomposition Analysis

	7 Conclusions and Future Work
	References

	3D Motion Analysis in MRI Using a Multi-objective Evolutionary k-means Clustering
	1 Introduction
	2 Related Work
	3 Datasets
	4 Problem Statement
	5 Method
	5.1 Definitions
	5.2 Evolutionary Algorithm
	5.3 Assessment of the Clustering Results
	5.4 Pipeline

	6 Results
	7 Conclusion and Future Work
	References

	Author Index

