
Chapter 12 
Numerical Case Studies 

12.1 Wave Propagation in a Stepped Bar 

12.1.1 Problem Definition 

As the first numerical example, wave propagation in an infinite stepped bar of the 
circular cross-section is considered. It is assumed that only longitudinal elastic waves 
can propagate within the bar. It is also assumed that the bar is made out of aluminium 
having the already known material properties: Young’s modulus .E of 67.5 GPa, 
Poisson’s ratio . ν of 0.33 and material density . ρ of 2700 kg/m. 

3, also summarised in 
Table 4.2 in Sect. 4.2. The geometry of the bar under investigation is presented in 
Fig. 12.1. 

A finite section of the bar, having length .L1 of 600 mm, is of particular interest. 
This section is indicated by points.P1 and.P2 as the points were dynamic responses of 
the bar are examined. The excitation signal is applied as a longitudinally acting force 
at point .P1, having the amplitude of 1 N and the form of 5 sine pulses at the carrier 
frequency . fc of 166.7 kHz, modulated by the Hann window, i.e. the frequency of 
modulation. fm = fc/m being equal to 33.3 kHz, where.m = 5. The total calculation 
time .T covers 300 . µs and is divided into 6,000 equal time steps. The excitation 
signal is presented in Fig. 12.2 in the time and frequency domains, for the initial 
100. µs of its duration in the time domain and the frequency range up to 500 kHz in 
the frequency domain. 

As clearly seen from Fig. 12.2b the excitation signal is broad in the frequency 
domain covering frequencies from the range starting at . f1 = 100.0 kHz up to . f2 =
233.3 kHz, where . f1,2 = fc ∓ 2 fm . It should be recalled that within this frequency 
range 97% of the signal energy is stored, as discussed earlier in Sect. 2.5. 
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Fig. 12.1 Geometry of an infinite stepped aluminium bar with NRCBs at infinity modelled by 
ALID 

Fig. 12.2 Normalised excitation signal in: a the time domain, b in the frequency domain 

The stepped bar under consideration can be characterised by two different cross-
sectional areas, as clearly seen in Fig. 12.1. The cross-sectional area of the bar is 
.S1 = πR2

1 over its entire length except a short section having length .L3 of 200 mm, 
where the cross-sectional area is increased to .S2 = πR2

2 . The assumed values of the 
radii .R1 and .R2 are 5 and 7 mm, respectively. 

12.1.2 Dispersion Curves and Theory Selection 

For modes of longitudinal waves propagating within the bar, the wide range of excited 
frequencies must be compared with the analytical dispersion curves already known 
from Sect. 6.1, in order to select the most appropriate theory of longitudinal behaviour 
of rods, which next can be employed for numerical computations.
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Fig. 12.3 Dispersion curves for: a the phase velocity, b the group velocity, for modes of longitudinal 
waves L.n(n = 0, 1, 2) corresponding to both cross-sectional areas of an infinite stepped aluminium 
bar, according to the analytical solution 

It is clear from Figs. 12.1 and 12.2 that excited elastic longitudinal waves cover 
different ranges of wave velocities for each cross-sectional area of the bar. According 
to the analytical solutions presented in Sect. 6.1, in the case of the cross-sectional 
area.S1 this range covers phase velocities from 4.94 km/s at. f1 = 100.0 kHz down to  
4.51 km/s at . f2 = 233.3 kHz, while in the case of the cross-sectional area . S2, phase 
velocities from 4.88 km/s at . f1 = 100.0 kHz down to 3.55 km/s at . f2 = 233.3 kHz, 
respectively. 

In a similar manner to the case of the cross-sectional area .S1 the same range of 
frequencies covers group velocities from 4.82 km/s at. f1 = 100.0 kHzup to 3.31  km/s  
at . f2 = 233.3 kHz, while in the case of the cross-sectional area . S2, group velocities 
from 4.01 km/s at . f1 = 100.0 kHz up to 1.96 km/s at . f2 = 233.3 kHz, respectively. 
This is clearly illustrated in Fig. 12.3. 

As clearly seen from Fig. 12.3 the longitudinal waves propagating in 1-D elastic 
space, which is the infinite stepped aluminium bar under consideration, are charac-
terised by very strong dispersion, 1 i.e. .−8.7% of the relative change in the phase 
velocity and .−31% in the group velocity in the case of the cross-sectional area . S1, 
as well as.−27% of the relative change in the phase velocity and.−51% in the group 
velocity in the case of the cross-sectional area . S2. This dispersion directly results 
from the Pochhammer characteristic equation and the broad range of excited fre-
quencies. Moreover, it practically concerns the fundamental longitudinal mode L. 0,

1 It is convenient to assume wave signals as characterised by dispersion of various strengths: very 
small, small, moderate, strong and very strong. These strengths correspond to absolute levels of the 
relative change in their phase or group velocities over a given frequency range, i.e. less than 1% for 
very small, up to 5% for small, up to 10% for moderate, up to 20% for strong and above 30% for 
very strong dispersion. 
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which is denoted as L.0|R1 in the case of the cross-sectional area.S1 and as L.0|R2 in the 
case of the cross-sectional area. S2. A similar notation is used for higher longitudinal 
modes L. 1 and L. 2. 

Moreover, it was clearly indicated in Fig. 9.10 from Sect. 9.1 that in the case 
of very strong dispersion, multi-mode or higher-order multi-mode theories of the 
longitudinal behaviour of rods prove to be more useful due to small relative modelling 
errors, as also summarised in Table 9.1. It is seen that in the current case the upper 
frequency limit of the excitation signal never exceeds the frequency corresponding to 
the first cut-off frequency. fL1|R1 of 359.4 kHz in the case of the cross-sectional area 
.S1 and. fL1|R2 of 256.7 kHz in the case of the cross-sectional area . S2. For this reason 
it is decided to employ the higher-order 2-mode 2-D theory of rod behaviour for 
the purpose of numerical modelling. This theory can be characterised by relatively 
simple definition of its displacement field and a great accuracy in the frequency range 
of interest. It should be emphasised here that the values of the cut-off frequencies 
based on analytical dispersion curves are always lower than the corresponding values 
obtained as based on simplified theories, providing a kind of safe margin in modelling. 

The phase velocity dispersion curves obtained for the selected theory, for modes 
of longitudinal waves L.0|R1 and L.1|R1 as well as L.0|R2 and L.1|R2 , corresponding to 
both cross-sectional areas .S1 and.S2 of the bar under consideration, are presented in 
Fig. 12.4. 

Indeed, it can be checked that within the range of excited frequencies the disper-
sion curves for the fundamental mode of longitudinal waves L. 0, corresponding to 
both cross-sectional areas of the bar, obtained for the selected higher-order 2-mode 
2-D theory of the longitudinal behaviour of rods, agree very well with the analytical 
solutions obtained based on the Pochhammer characteristic equation. In the case of 

Fig. 12.4 Dispersion curves for the phase velocity for modes of longitudinal waves L. 0 and L. 1, 
corresponding to: the cross-sectional area . S1, b the cross-sectional area . S2, of an infinite stepped 
aluminium bar, according to the higher-order 2-mode 2-D theory of the longitudinal behaviour of 
rods
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the cross-sectional area .S1 the extreme value of the relative modelling error associ-
ated with the phase velocity is negligible, since its value is equal to 0.26%, while its 
average value to 0.06%. In the case of the cross-sectional area .S2 the extreme value 
of the relative modelling error is higher, but still very small, and is equal to 0.60%, 
while its average value to 0.22%. 

In order to mimic the infinite length of the bar the technique of ALID is used, 
discussed in detail in Sect. 11.3. As a consequence of this the numerical model must 
be extended 2 accordingly in order to incorporate the presence of two damping layers, 
one at each end of the bar, as presented in Fig. 12.1. The depths of the layers must 
be defined as resulting not only from the frequency content of the excitation signal, 
but also as depending on the applied theory. 

12.1.3 ALID Parameters and Numerical Discretisation 

It is noteworthy that the knowledge of the range of excited frequencies can be used 
not only in order to select the most appropriate theory of the longitudinal behaviour 
of rods, or to establish the depth of ALID, but also to establish the requirements 
for the bar discretisation conforming with the minimal number of nodal distances 
per wavelength. The dispersion curves for the wavelength for modes of longitudinal 
waves corresponding to both cross-sectional areas of the bar, according to the higher-
order 2-mode theory of the longitudinal behaviour of rods, are presented in Fig. 12.5. 

It can be clearly seen from Fig. 12.5 that in the case of the cross-sectional area. S1
the extreme wavelengths for the selected excitation signal and its frequency content 
are .λ1|R1 = 49.4 mm at the frequency . f1 = 100.0 kHz and .λ2|R1 = 19.4 m at the  
frequency. f2 = 233.3 kHz. In a similar manner in the case of the cross-sectional area 
.S2 the corresponding wavelengths are.λ1|R2 = 48.8 mm at the frequency. f1 = 100.0
kHz and .λ1|R2 = 15.2 m at the frequency of . f2 = 233.3 kHz. Since the presence of 
ALID solely concerns the cross-sectional area .S1 the depth of each damping layer 
should be selected as a multiple of .λ1|R1 = 49.4 mm, so the assumed depth of ALID 
is.L = 4λ1|R1 ≈ 200mm, with.p = 3. For this reason the total length of the bar under 
consideration is increased by .2L from.L2 = 600 mm to .L3 = 1000 mm. 

It also is evident from Fig. 12.5 that the cut-off frequencies . fL1|R1 and . fL1|R2

corresponding to the current higher-order 2-mode 2-D theory of the longitudinal 
behaviour of rods are greater than those corresponding to the analytical solution 
based on the Pochhammer characteristic equation. In the case of the cross-sectional 
area.S1 this value is equal to 419.3 kHz, while in the case of the cross-sectional area 
.S2 it is equal to 299.5 kHz. 

At this point it should be strongly emphasised that any changes in the excitation 
frequency . fc or the modulation frequency . fm must involve corresponding modifi-

2 In order to mimic the behaviour of an infinite bar by the direct approach the enlarged FE model 
should be approximately 3 times greater to guarantee no reflections from the external boundaries 
within the assumed time window. 
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Fig. 12.5 Dispersion curves for the wavelength for modes of longitudinal waves L. 0 and L. 1, cor-
responding to: the cross-sectional area . S1, b the cross-sectional area . S2, of an infinite stepped 
aluminium bar, according to the higher-order 2-mode 2-D theory of the longitudinal behaviour of 
rods 

cations to the depth of ALID in order to guarantee its optimal damping properties. 
Based on the established parameters of ALID and the requirements for rod discreti-
sation a numerical model of the stepped bar under investigation can be finally built. 
For the purpose of the current analysis it is decided to use TD-SFEM and 6-node rod 
SFEs based on Chebyshev nodes [ 1], as discussed in Sect. 10.4. 

The knowledge of the corresponding shortest wavelengths obtained from Fig. 12.5 
allows one to state that in the case of the cross-sectional area.S1 the requirement of 5 
nodal distances per wavelength is satisfied only for the lengths of SFEs equal 3 to or 
shorter than the wavelength.λ2|R1 = 19.4mm, while in the case of the cross-sectional 
area .S2 for the lengths of SFEs equal to or shorter than the wavelength. λ2|R2 = 15.2
mm. Since it is decided to divide the bar into 500 rod SFEs of equal lengths, with the 
resulting length. l of a single rod SFE equal to 2 mm, the number of nodal distances per 
wavelength secured by such a discretisation level can be estimated as approximately 
equal to 48 nodal distances in the case of the cross-sectional area .S1 and 38 nodal 
distances in the case of the cross-sectional area. S2, respectively. The resulting number 
of the discrete numerical model DOFs is 5,002. 

12.1.4 Numerical Computations and Result Discussion 

For numerical computations carried out the implicit .β-Newmark method is used, 
as discussed in Sect. 10.7, for the recommended values of the parameters . α and .β

3 It is because for 6-node SFEs there are always 4 nodal distances between their first and last nodes. 
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Fig. 12.6 Spectra of frequencies of free vibrations for modes of longitudinal waves, corresponding 
to: a the higher-order 2-mode 2-D theory, b the 1-mode 1-D (elementary) theory, of the longitudinal 
behaviour of rods, obtained for an infinite stepped aluminium bar. Results of numerical computations 
by TD-SFEM with NRBCs at infinity modelled by ALID 

equal to.1/2 and.1/4, respectively. However, prior to the solution of the equations of 
motion the spectrum of frequencies of free vibrations of the bar under investigation 
is examined to confirm the correctness of the assumed parameters of the discrete 
numerical model of the bar, as presented in Fig. 12.6. 

It should be noted that in this step the discrete numerical model of the bar must 
take into account the contributions to the characteristic global inertia matrix .M and 
the global stiffness matrix. K resulting from the presence of both damping layers. For 
the sake of comparison this spectrum is accompanied by the spectrum of frequencies 
of free vibrations of the same bar, however, obtained in the case of the 1-mode 1-D 
theory (elementary) of rods. The remaining features and parameters of the discrete 
numerical model of the bar remain the same. 

It can be seen from Fig. 12.6 that the obtained spectrum of frequencies of free 
vibrations correlates very well with the dispersion curves for the phase velocity, 
previously presented in Fig. 12.4. At the same time the computational effort related 
to finding the frequencies of free vibrations, preferably a finite number of them, is 
much smaller than that corresponding to the process of establishing all dispersion 
curves from the Pochhammer characteristic equation. 

As a final element of the examination of the discrete numerical model the analysis 
of the performance of ALID is examined, since the use of ALID is directly responsible 
for the correctness and accuracy of calculated dynamic responses and generally 
for appropriate mimicking of the infinite dimensions of the bar [ 2]. The damping 
properties of ALID are tested in the case of a simplified geometry of the bar under 
the assumption of the constant cross-sectional area of the bar of .S1 along its entire 
length. In such a manner the only reflections, which potentially can be present in the
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Table 12.1 Statistical data on the relative amplitude damping associated with the ALID perfor-
mance for the 1-mode 1-D (elementary) and the higher-order 2-mode 2-D theory of longitudinal 
behaviour of rods 

Theory Component Disp. (dB) Vel. (dB) Acc. (dB) 

Elementary 1-D Longitudinal 42.69 60.32 83.25 

Higher-order 
2-mode 2-D 

Longitudinal 38.52 70.15 82.56 

Radial 74.11 105.9 118.5 

Fig. 12.7 Wave propagation patterns for the longitudinal acceleration component .üx for: a the 
higher-order 2-mode 2-D theory, b the 1-mode 1-D (elementary) theory, of the longitudinal 
behaviour of rods, obtained for an infinite stepped aluminium bar. Results of numerical compu-
tations by TD-SFEM with NRBCs at infinity modelled by ALID 

calculated dynamic responses are those related to the improper performance of ALID. 
The obtained results for the assumed form of the excitation signal are summarised 
in Table 12.1. 

Knowledge of the established parameters of the discrete numerical model of the 
bar under consideration allows one to compute its dynamic responses. They are 
presented as wave propagation patterns for the longitudinal acceleration component 
.üx in Fig. 12.7 and compared with similar results obtained in the case of the 1-mode 
1-D theory (elementary) of the longitudinal behaviour of rods. 4 It is also evident 
from Fig. 12.7 that the wave propagation patterns exhibit regions, when propagating 
elastic waves interact with the structural discontinuity present, very clearly revealing 
the part of the bar of the increased cross-sectional area. This concerns both discrete

4 In the case of the higher-order 2-mode 2-D theory of the longitudinal behaviour of rods the 
longitudinal displacement component .ux , or its time derivatives, can be compared with that of the 
1-mode 1-D (elementary) theory only on the upper surface of the bar, i.e. for .ζ = 1. Note that no 
such relationship exists for the radial displacement component. ur . 
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Fig. 12.8 Dynamic responses for the longitudinal acceleration component.üx taken at: a point.P1, 
b point.P2, of an infinite stepped aluminium bar modelled according to the 1-mode 1-D (elementary) 
and the higher-order 2-mode 2-D theory of the longitudinal behaviour of rods. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID 

numerical models of the bar. Despite the fact that qualitatively the obtained results 
are similar, certain obvious differences can be indicated. 

It can be stated that the observed differences result from the dispersive nature of 
the longitudinal waves, which is the direct consequence of the analytical solutions 
arising from the Pochhammer characteristic equation as well as the frequency content 
of the excitation signal. Obviously, this feature cannot be mimicked by the 1-mode 
1-D (elementary) theory of the longitudinal behaviour of rods, since in the case of this 
theory the phase and the group velocities remain independent of the frequency as well 
as the cross-sectional area of the bar. In other words the 1-mode 1-D (elementary) 
theory is non-dispersive. 

The difference between the results obtained based on both discrete numerical 
models of the bar becomes more apparent and even more strongly emphasised when 
the dynamic responses obtained are compared at points .P1 and .P2, as presented in 
Fig. 12.8, for the longitudinal acceleration component . üx . 

Now, it is evident from Figs. 12.7 and 12.8 that this difference builds up in time 
and distance, which for elongated structural elements may lead to significant dis-
crepancies. Such behaviour may be important for problems related to detection of 
any structural discontinuities, such as the stepped change in the bar cross-sectional 
area. For this reason the use of the 1-mode 1-D (elementary) theory for problems 
involving propagation of elastic waves should practically be limited only to quantita-
tive numerical tests before more appropriate multi-mode or higher-order multi-mode 
theories are applied.
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12.2 Wave Propagation in a Strip with a Side Cut-Out 

12.2.1 Problem Definition 

In the second numerical example a similar configuration to the previously analysed 
infinite stepped aluminium bar with NRBC is considered. This time, however, the 
object of the analysis is an infinite strip with a side cut-out. The geometry of the strip 
is presented in Fig. 12.9. 

It is assumed that as well as flexural waves, also shear horizontal waves can 
propagate within the strip. It is assumed that the strip is made out of the same material 
as previously, which is aluminium of the already known material properties: Young’s 
modulus. E of 67.5 GPa, Poisson’s ratio. ν of 0.33 and material density of 2700 kg/m. 

3, 
as summarised in Table 4.2 in Sect. 4.2. 

As before a finite section of the strip, having length .L1 of 900 mm, width .B1 of 
300 mm and thickness. h of 10 mm, is of particular interest. This section in indicated by 
points.P1 and.P2 as the points where dynamic responses of the strip are examined. The 
excitation signal is applied at point.P1 as a transversely acting bending force leading 
to the generation of antisymmetric SH-waves and antisymmetric Lamb waves. The 
excitation signal is assumed to have the amplitude of 1 N and the form of 12 sine 
pulses at the carrier frequency . fc of 60 kHz, modulated by the Hann window, i.e. 
the frequency of modulation . fm = fc/m being equal to 5 kHz, where .m = 12. The  
total calculation time. T covers 800. µs and is divided into 6400 equal time steps. The 

Fig. 12.9 Geometry of an infinite aluminium strip with a side cut-out, with NRCBs at infinity 
modelled by ALID
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Fig. 12.10 Normalised excitation signal in: a the time domain, b in the frequency domain 

excitation signal is presented in Fig. 12.10 in the time and frequency domains, for 
the initial 500. µs of its duration in the time domain and the frequency range from 30 
kHz up to 120 kHz in the frequency domain. 

It is evident from Fig. 12.10b that this time the excitation signal is narrow in the 
frequency domain covering frequencies from within the range from . f1 = 50 kHz 
up to . f2 = 70 kHz, where as before . f1,2 = fc ∓ 2 fm . It should be recalled that 
within this frequency range 97% of the signal energy is stored, as discussed earlier 
in Sect. 2.5. 

From Fig. 12.9 it can be seen that the strip under consideration can be characterised 
by a stepped change in its width, which is reduced from one side from the initial 
width .B1 of 300 mm to .B2 of 200 mm, i.e. by the cut-out of depth equal to 100 mm 
extending over the distance .L2 of 300 mm. Additionally, point .P3, located at the 
distance . l of 150 mm from point .P2 indicates the position of an additional mass of 
5 g. It is noteworthy that the additional mass of 5 g is equivalent to less than 0.1% of 
the total mass of the strip. The additional mass is assumed to be placed on the upper 
surface of the strip. 

12.2.2 Dispersion Curves and Theory Selection 

In a similar manner to before the range of excited frequencies must be compared 
with the analytical dispersion curves already known from Sects. 5.1 and 5.2, for  the  
antisymmetric modes of SH-waves and the Lamb waves propagating within the strip, 
in order to select the most appropriate theory of antisymmetric behaviour of plates, 
which next can be employed for numerical computations.
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Fig. 12.11 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves: A. 0, A. 1 and SH. 1 propagating in a 10 mm thick aluminium 
strip with a side cut-out, according to the analytical solutions 

From Figs. 12.9 and 12.10 it is clear that due to the assumed form of the exci-
tation signal the excited waves within the strip practically concern the fundamental 
antisymmetric mode of Lamb waves A. 0, while the other antisymmetric modes of SH-
waves and Lamb waves are absent. According to the analytical solutions presented 
in Sect. 5.2 the excited phase velocities for the fundamental antisymmetric mode of 
Lamb waves A. 0 cover the range from 1.86 km/s at . f1 = 50 kHz up to 2.08  km/s at  
. f2 = 70 kHz, while in the case of the group velocities from 2.87 km/s at . f1 = 50
kHz up to 3.01  km/s at . f2 = 70 kHz. 

Based on Fig.  12.11 it can be concluded that the waves propagating as the fun-
damental antisymmetric mode of Lamb waves A. 0 in 2-D elastic space, which is the 
infinite aluminium strip under investigation with a side cut-out, are characterised 
by a moderate dispersion, i.e. 12% of the relative change in the phase velocity and 
5% in the group velocity. This is a direct consequence of the characteristic equa-
tion for antisymmetric modes of Lamb waves. This, together with the considerations 
from Sect. 8.2 and the results presented in Fig. 8.20 allow one to state that simple 
multi-mode theories of the antisymmetric behaviour of plates appears sufficient for 
modelling purposes, as summarised in Table 8.2. 

It is seen that in the current case the upper frequency limit of the excitation signal 
is placed well below the frequency corresponding to the first cut-off frequency for 
the first antisymmetric mode of SH-waves and Lamb waves A. 1 and SH. 1, . fA1|SH1 of 
153.4 kHz. For this reason it is decided to employ the modified 3-mode 2-D theory of 
antisymmetric behaviour of plates. This theory is characterised by a simple definition 
of its displacement field combined with the greatest accuracy in the frequency range 
of interest out of the theories discussed in Sect. 8.2. As before it should be emphasised 
that the values of the cut-off frequencies provided by analytical dispersion curves
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Fig. 12.12 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick infinite aluminium strip with a 
side cut-out, according to the modified 3-mode 2-D theory of the antisymmetric behaviour of plates 

are always lower than the values obtained from simplified theories, thus providing a 
kind of safe margin in modelling. 

The phase and group velocity dispersion curves obtained for this theory, for anti-
symmetric modes of Lamb waves and SH-waves, are presented in Fig. 12.12. It can 
be clearly seen Fig. 12.12 that within the range of excited frequencies the disper-
sion curve for the fundamental antisymmetric mode of Lamb waves A. 0, obtained for 
the selected modified 3-mode 2-D theory of the antisymmetric behaviour of plates, 
agrees very well with the analytical solution obtained based on the characteristic 
equation. 

The results presented in Fig. 12.12 allow one to easily assess the values of the 
modelling error. In the case of the fundamental antisymmetric mode of Lamb waves 
A. 0 it can be checked that the extreme value of the modelling error associated with 
the phase velocity is negligible with its value equal to 0.03% and its average value 
to 0.02%. In a similar manner the extreme value of the modelling error associated 
with the group velocity is equal to .−0.10% and its average value to .−0.06%. 

12.2.3 ALID Parameters and Numerical Discretisation 

In order to model the infinite length of the strip the same method is employed in 
the current case as in the case of the infinite stepped aluminium bar, which is the 
technique of ALID, discussed in detail in Sect. 11.3. As before a consequence of the 
use of ALID is that the numerical model of the strip must be extended accordingly 
to incorporate the presence of two damping layers, one at each end of the strip, as
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Fig. 12.13 Dispersion 
curves for the wavelength for 
modes of Lamb waves and 
SH-waves of a 10 mm thick 
infinite aluminium strip with 
a side cut-out, according to 
the modified 3-mode 2-D 
theory of the antisymmetric 
behaviour of plates 

presented in Fig. 12.9. The depths of the layers must be defined as resulting not only 
from the frequency content of the excitation signal, but also as depending on the 
applied theory. 

Again, it can be stated that the knowledge of the range of the excited frequen-
cies can be used not only to select the most appropriate theory of the antisymmet-
ric behaviour of plates or to establish the depth of ALID, but also to establish the 
requirements for the strip discretisation conforming with the minimal number of 
nodal distances per wavelength. The dispersion curves for the wavelength for modes 
of Lamb waves and SH-waves, according to the modified 3-mode 2-D theory of the 
antisymmetric behaviour of plates, are presented in Fig. 12.13. 

It can be clearly seen from Fig. 12.13 that the extreme wavelengths for the selected 
excitation signal and its frequency content are .λ1 = 37.1 mm at the frequency. f1 =
50 kHz and .λ2 = 29.7 mm at the frequency . f2 = 70 kHz. Since the presence of 
ALID solely concerns the fundamental antisymmetric mode of Lamb waves A. 0 the 
depth of each damping layer should be selected as a multiple of .λ1 = 37.1 mm, so 
the assumed depth of ALID is .L = 4λ1 ≈ 150 mm, with .p = 3. For this reason the 
total length of the strip under consideration is increased by .2L from .L2 = 900 mm 
to .L3 = 1200 mm. 

Yet again it should be strongly emphasised that any changes in the excitation fre-
quency. fc or the modulation frequency. fm must involve corresponding modifications 
to the depth of ALID in order to guarantee its optimal damping properties. Based 
on the established parameters of ALID and the requirements for plate discretisation 
a numerical model of the strip under investigation with a side cut-out can be finally
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Fig. 12.14 The mesh of plate SFEs, according to the modified 3-mode 2-D theory of the antisym-
metric behaviour of plates, used for numerical computations, consisting of 3,300 SFEs and 249,903 
DOFs 

built. For the purpose of the current analysis it is decided to use TD-SFEM and 
36-node plate SFEs based on Lobatto nodes [ 1], as discussed in Sect. 10.4. 

The knowledge of the corresponding shortest wavelengths obtained from 
Fig. 12.13 allows one to state, in a similar manner as in the case of the stepped 
aluminium bar, that the requirement of 5 nodal distances per wavelength is satisfied 
only for the characteristic dimensions of FEs equal to or shorter than the wavelength 
.λ2 = 29.7 mm. Thus, it is decided to divide the strip into 3,300 plate SFEs, i.e. 120 
SFEs along its length axis and 30 SFEs along its width, excluding 300 SFEs resulting 
from the presence of the cut-out. The mesh of SFEs resulting from the discretisation 
process is presented in Fig. 12.14. All SFEs represent squares of equal dimensions of 
10 by 10 mm. Since the characteristic dimension of a single plate SFE is 10 mm, the 
number of nodal distances per wavelength secured by such a discretisation level can 
be estimated as approximately equal to 15 nodal distances per shortest wavelength. 
The resulting number of DOFs of the discrete numerical model is 249,903. 

12.2.4 Numerical Computations and Result Discussion 

For numerical computations carried out the explicit method of central differences is 
used, as discussed in Sect. 10.7. The use of the explicit method of central differences 
enables one to take full advantage of the diagonal form of the resulting global inertia 
matrix. M. It is noteworthy that in the current case however, the spectrum of frequen-
cies of free vibrations of the strip is not examined due to the 2-D nature of the strip 
and, resulting from this, couplings of normal modes, which significantly complicate 
such an analysis in comparison with a 1-D case. For the very same reason also the 
performance of ALID is not tested. This performance can only be estimated based 
on the methodology presented before and concerning the results obtained in the case 
of the 1-D infinite stepped aluminium bar. 

The knowledge of the established parameters of the discrete numerical model of 
the strip under consideration allows one to compute its dynamic responses. They are 
presented in Fig. 12.15 as wave propagation patterns at selected moments in time 
for the transverse acceleration component . üz . It can be expected that the interaction 
of propagating waves with a structural discontinuity in the form of the additional



244 12 Numerical Case Studies

Fig. 12.15 Wave propagation patterns for the transverse acceleration component .üz according to 
the modified 3-mode 2-D theory of the antisymmetric behaviour of plates, obtained for a 10 mm 
thick infinite aluminium strip with a side cut-out. Results of numerical computations by TD-SFEM 
with NRBCs at infinity modelled by ALID
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Fig. 12.16 Dynamic responses for the transverse acceleration component.üx taken at: a point.P1, 
b point .P2, of an infinite aluminium strip with a side cut-out modelled according to the modified 
3-mode 2-D theory of the antisymmetric behaviour of plates. Results of numerical computations 
by TD-SFEM with NRBCs at infinity modelled by ALID 

mass should influence the observed patterns in such a way that the location of the 
additional mass is clearly revealed. However, from the results presented in Fig. 12.15 
this is not evident. 

The reason for such behaviour may seem to lay in too small sensitivity of the 
propagating waves to structural damage/discontinuity. This sensitivity may be esti-
mated as proportional to the shortest wavelength out of all wavelengths constituent 
in the propagating waves and resulting from the assumed form of the excitation sig-
nal, which in the current case is .λ2 = 29.7 mm. However, this is not applicable to 
damage/discontinuity represented by a point mass. Alternatively, the problem may 
also be related to too complicated wave propagation patterns, which are very difficult 
to interpret due to multiple reflections and/or possible mode conversion. This prob-
lem is very well illustrated by Fig. 12.16 where the obtained dynamic responses are 
compared at points.P1 and.P2. It should be stressed that since the dynamic responses 
obtained at point.P1 are initially dominated by the excitation, it is decided to exclude 
the time window corresponding to the duration of excitation, which is equal to the 
modulation time .Tm of 200 . µs. 

It can be seen from Fig. 12.16 that within the time signals corresponding to points 
.P1 and .P2 there is no clear evidence of any reflections resulting from the presence 
of the additional mass, which on the other hand is the effect of signal reflections 
from lateral structural boundaries. Despite the fact that the signals obtained for the 
case when the additional mass is present or not must be different, it is impossible to 
extract directly from them any useful information about the location of the additional 
mass.
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Fig. 12.17 Differential signals for the transverse acceleration component .üx taken at: a point .P1, 
b point .P2, of an infinite aluminium strip with a side cut-out modelled according to the modified 
3-mode 2-D theory of the antisymmetric behaviour of plates. Results of numerical computations 
by TD-SFEM with NRBCs at infinity modelled by ALID 

This adverse situation is not significantly improved when differential signals 5 are 
examined, as shown in Fig. 12.17. It is clear that the amplitudes of the differential 
signals corresponding to points .P1 and .P2 are smaller than those of the original 
signals, which may present an additional problem for small signal-to-noise ratios. 
For this reason the estimation of the times of flight (ToF), in the current case, indicated 
as . t1 and . t2 in Fig. 12.17 based on which the location of the additional mass can be 
identified [ 1, 3], may be difficult and/or not precise due to the inherent dispersion 
of propagating wave signals. For this reason both ToFs are estimated assuming the 
signal threshold equal to 2% of its maximum value. In general, the poor sensitivity 
may be improved either by an increase in the carrier frequency. fc or alternatively by 
the use of more specialised damage indicators. 

It can be checked that in the current case the distance . l can be easily calculated 
from the following simple relationships: 

.

⎧
⎪⎪⎨

⎪⎪⎩

2|P1P2| = cg| f2 t1

|P1P3| = cg| f2 t2

l = |P1P2| − |P1P3|
→ l = cg| f2

(

t2 − t1
2

)

(12.1) 

which lead to the result of 182.3 mm, which is not too close to the assumed value of 
the distance . l equal to 150 mm, giving the relative error of 21.5%.

5 A differential signal is understood here as a signal resulting from the difference between the signal 
obtained at a given point for the current but unknown state of a structure, and some reference signal 
obtained at the same point, but for a well-defined state of the structure. 
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Fig. 12.18 WRMS(. n2) patterns for the transverse acceleration component .üz according to the 
modified 3-mode 2-D theory of the antisymmetric behaviour of plates, obtained for a 10 mm thick 
infinite aluminium strip with a side cut-out. Results of numerical computations by TD-SFEM with 
NRBCs at infinity modelled by ALID



248 12 Numerical Case Studies

Of many damage indicators that can be possibly built and used, those which are 
based on the observation of the propagation of energy within a structure, rather 
than the observation of pure wave propagation patterns, seem particularly attractive. 
Typically a cumulative kinetic energy indicator or the root mean square (RMS) of 
measured time signals can be used for that purpose [ 1, 4]. It is noteworthy that 
damage indicators based on modified RMS, such as is a weighted root mean square 
(WRMS) for example, provide an increased sensitivity even in the case of damage of 
small magnitudes located at large distances from signal sources. 6 The use of such an 
improved damage indicator in the form of WRMS.(n2) is demonstrated in Fig. 12.18. 

Thanks to this the location of the additional mass within the strip under consider-
ation with a side cut-out becomes clearly visible as soon as the excited waves reach 
point .P2, that is after initial 400 . µs. In subsequent moments in time the obtained 
RMS patterns only become sharpened and amplified, which allows one to shorten 
the time of numerical analysis significantly. In the current case, according to results 
presented in Fig. 12.18, with no loss of accuracy the total calculation time . T can be 
reduced by half from the initial 800 to 400 . µs and from 6,400 equal time steps to 
3,200. 

It should be emphasised that for excitation signals broader in the frequency 
domain, which may lead to the propagation of other antisymmetric modes of SH-
waves and Lamb waves than the fundamental A. 0 mode of Lamb waves, other theo-
ries of antisymmetric behaviour of plates should be used, preferably multi-mode or 
higher-order multi-mode 3-D theories. 

12.3 Wave Propagation in a Flanged Pipe 
with a Circumferential Crack 

12.3.1 Problem Definition 

The last numerical example concerns wave propagation in the most complex con-
figuration, which is represented by an infinite flanged pipe section with a small 
circumferential crack. 

As before, thanks to the application on NRBC only a finite section of the structure 
can be investigated. Its geometry is presented in Fig. 12.19. It is assumed that the 
flanged pipe section under consideration is made out of aluminium of the same 
material properties as before: Young’s modulus .E of 67.5 GPa, Poisson’s ratio . ν of 
0.33 and material density of 2700 kg/m. 

3, as summarised in Table 4.2 in Sect. 4.2.

6 For a discrete sequence .u1, u2, . . . , un of . n numbers a weighted RMS can be simply defined as 

.WRMS(wn) =
/

w1u21 + w2u22 + · · · + wnu2n/
√
w1 + w2 + · · · + wn , where  .wn denote certain 

weights. In the case of WRMS(1) the weights are assumed as .wn = 1 and .WRMS(1) ≡ RMS, 
while in the case of WRMS.(n2) the weights are assumed as .wn = n2, thus . WRMS(n2) =/

u21 + 4u22 + · · · + n2u2n/
√
1 + 4 + · · · + n2. 
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Fig. 12.19 Geometry of an aluminium flanged pipe section with a circumferential crack, with 
NRCBs at infinity modelled by ALID 

The finite section of the pipe, having length .L1 of 500 mm, outer radius .R1 of 
150 mm and thickness. h of 10 mm, is of special interest. In the middle of this section 
a flange is located, having an outer radius .R2 of 250 mm and the same thickness . h
of 10 mm. On the flange face 6 evenly spaced M12 bolt sets are placed at a radius 
.R3 of 200 mm, represented by additional masses of 50 g each. Additionally, it is 
assumed that a small open circumferential crack, with its centre at point .P3 located 
at a distance. d of 17 mm from the flange centre, is spanned over the angle. α of 12. ◦C, 
which corresponds to its surface length of 31 mm. The crack is also assumed as open 
and a through-thickness crack. 

The flanged pipe section of interest is indicated by points .P1 and .P2, which are 
the points where dynamic responses are examined. The excitation signal is applied 
at point .P1 either as a transversely acting bending force leading to the generation of 
antisymmetric waves (antisymmetric excitation) or a transversely acting pair of ten-
sile or compressive forces leading to the generation of symmetric waves (symmetric 
excitation), as discussed in [ 5]. It has the amplitude of 1 N and the form of 11 sine 
pulses of the carrier frequency . fc of 110 kHz, modulated by the Hann window, i.e. 
the frequency of modulation . fm = fc/m being equal to 10 kHz, where .m = 11. As  
previously, the total calculation time. T covers 800. µs and is divided into 6400 equal 
time steps.
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Fig. 12.20 Normalised excitation signal in: a the time domain, b the frequency domain 

The excitation signal is presented in Fig. 12.20 in the time and frequency domains, 
for the initial 250. µs of its duration in the time domain and the frequency range from 
50 kHz up to 200 kHz in the frequency domain. 

12.3.2 Dispersion Curves and Theory Selection 

In the current case, due to the geometry of the section under consideration as well as 
two excitation modes, the process of the theory selection must concern both symmet-
ric and antisymmetric modes, which can propagate. As before the range of excited 
frequencies must be compared with the analytical dispersion curves already known 
from Sects. 5.1 and 5.2. This time, however, this process concerns the symmetric 
and antisymmetric modes of SH-waves and the Lamb waves, which can propagate 
within the structure, in order to select the most appropriate theories of symmetric and 
antisymmetric behaviour of plates/shells, which next can be employed for numerical 
computations. 

From Figs. 12.20 and 12.21 it is evident that due to the assumed form of the exci-
tation signal the excited waves within the section only concern three fundamental 
modes: the fundamental symmetric mode of Lamb waves S. 0, the fundamental anti-
symmetric mode of Lamb waves A. 0 as well as the fundamental symmetric mode of 
SH-waves SH. 0, while the remaining symmetric and antisymmetric modes of SH-
waves and Lamb waves are absent. 

According to the analytical solutions presented in Sect. 5.2 the excited phase 
velocities for the fundamental symmetric mode of Lamb waves S. 0 cover the range 
from 5.23 km/s at . f1 = 90 kHz down to 5.13 km/s at . f2 = 130 kHz, for the funda-
mental antisymmetric mode of Lamb waves A. 0 from 2.23 km/s at. f1 = 90 kHz up to
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Fig. 12.21 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric and 
antisymmetric modes of Lamb waves and SH-waves: S. 0, S. 1, A. 0, A. 1, SH. 0 and SH. 1 propagating 
in a 10 mm thick aluminium flanged pipe section with a circumferential crack, according to the 
analytical solutions 

2.44 km/s at. f2 = 130 kHz, while for the fundamental symmetric mode of SH-waves 
SH. 0, which is non-dispersive, it is constant and equal to 3.07 km/s for all frequen-
cies. In the case of the group velocities the obtained values are different and for the 
fundamental symmetric mode of Lamb waves S. 0 cover the range from 5.08 km/s 
at . f1 = 90 kHz down to 4.73 km/s at . f2 = 130 kHz, for the fundamental antisym-
metric mode of Lamb waves A. 0 from 3.07 km/s at . f1 = 90 kHz up to 3.10  km/s at  
. f2 = 130 kHz. 

Based on Fig. 12.21 it can be concluded that the waves propagating as the funda-
mental modes in 2-D elastic space, which is the infinite flanged pipe section under 
investigation with a circumferential crack, are characterised by moderate dispersion, 
i.e. .−1.9% of the relative change in the phase velocity and .−6.9% in the group 
velocity in the case of the fundamental symmetric mode of Lamb waves S. 0 and 9.4% 
of the relative change in the phase velocity and 1.0% in the group velocity in the 
case of the fundamental antisymmetric mode of Lamb waves A. 0. This is a direct 
consequence of the characteristic equations for the symmetric and antisymmetric 
modes of Lamb waves and SH-waves. This, together with the considerations from 
Sects. 8.1 and 8.2, as well as the results presented in Fig. 8.20, allows one to state 
that simple multi-mode theories of the symmetric and antisymmetric behaviour of 
plates appear sufficient for modelling purposes, as summarised in Tables 8.1 and 8.2. 

In the same manner as before it can be noted that in the current case the upper 
frequency limit of the excitation signal is placed below the frequency corresponding 
to the first cut-off frequency for the first antisymmetric mode of SH-waves and Lamb 
waves, A. 1 and SH. 1,. fA1|SH1 of 153.4 kHz. Based on the same reasoning as in the case 
of the previous numerical example, discussed in Sect. 12.2, it is decided to employ the 
modified 6-mode 3-D theory of shells. Of the simple theories discussed in Sects. 8.1
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Fig. 12.22 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric and 
antisymmetric modes of Lamb waves and SH-waves propagating in a 10 mm thick infinite aluminium 
flanged pipe section with a circumferential crack, according to the modified 6-mode 3-D theory of 
shells 

and 8.2, the current theory, being a simple combination of the modified 3-mode 
theories of the symmetric and antisymmetric behaviour of plates, is characterised by 
a simple definition of its displacement field combined with a great accuracy in the 
frequency range of interest. As previously it should be emphasised that the values 
of the cut-off frequencies provided by analytical dispersion curves are always lower 
than the values obtained from simplified theories, thus providing a kind of safe margin 
in modelling. 

The phase and group velocity dispersion curves obtained for the modified 6-mode 
theory of shells, for symmetric and antisymmetric modes of Lamb waves and SH-
waves, are presented in Fig. 12.22. It can be clearly seen in Fig. 12.22 that within the 
range of excited frequencies the dispersion curves for the fundamental symmetric 
mode of Lamb waves S. 0, the fundamental antisymmetric mode of Lamb waves A. 0

and the fundamental symmetric mode of SH-waves SH. 0, obtained for the selected 
modified 6-mode 3-D theory of shells, agree very well with the analytical dispersion 
curves obtained based on the corresponding characteristic equations. 

It should be emphasised that based on the results presented in Fig. 12.22 the 
extreme values of the modelling errors can be easily assessed. In the case of the 
fundamental symmetric mode of Lamb waves S. 0 the relative error associated with 
the phase velocity is very small with its value equal to 0.92% and its average value to 
0.55%, while in the case of the fundamental antisymmetric mode of Lamb waves A. 0

is negligible with its value equal to .−0.06% and its average value equal to .−0.04%. 
In the same manner the extreme values of the modelling errors associated with the 
group velocity are examined. As a result it can be stated that in the case of the 
fundamental symmetric mode of Lamb waves S. 0 the relative error associated with 
the group velocity is small with its value equal to 3.92% and its average value equal to
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2.21%, while in the case of the fundamental antisymmetric mode of Lamb waves A. 0

is negligible with its value equal to .−0.26% and its average value equal to .−0.21%. 
The modelling errors associated with the fundamental symmetric mode of SH-

waves SH. 0 is neglected in this analysis, since this wave mode is non-dispersive and 
as a consequence it fully conforms with the analytical dispersion curves obtained for 
the phase and group velocities. 

12.3.3 ALID Parameters and Numerical Discretisation 

In order to model the infinite length of the flanged pipe section the same method is 
employed in the current case as in the case of the infinite aluminium strip, which 
is the technique of ALID, discussed in detail in Sect. 11.3. In the same manner as 
before it can be said that as a consequence of the use of ALID the numerical model 
of the pipe section must be extended accordingly to incorporate the presence of two 
damping layers, one at each end of the pipe section, as presented in Fig. 12.19. The  
depths of the layers must be defined as resulting not only from the frequency content 
of the excitation signal, but also as depending on the applied theory. 

Once again, it can be stated that the knowledge of the range of the excited frequen-
cies can be used not only to select the most appropriate theory of the shell behaviour 
or to establish the depth of ALID, but also to establish the requirements for the 
flanged pipe section discretisation conforming with the minimal number of nodal 
distances per wavelength. The dispersion curves for the wavelength for modes of 
Lamb waves and SH-waves, according to the modified 6-mode 3-D theory of shells, 
are presented in Fig. 12.23. 

It can be clearly seen from Fig. 12.23 that the extreme wavelengths for the selected 
excitation signal and its frequency content must differ depending on the wave mode 
under consideration, since three fundamental modes of Lamb waves and SH-waves 
are present there. In the case of the fundamental symmetric mode of Lamb waves S. 0
the corresponding values of the extreme wavelengths are the greatest and equal to 
.λ1|S0 = 58.4mm at the frequency. f1 = 90 kHz and.λ2|S0 = 39.8mm at the frequency 
. f2 = 130 kHz. In the case of the fundamental antisymmetric mode of Lamb waves 
A. 0 the corresponding values of the extreme wavelengths are the smallest and equal to 
.λ1|A0 = 24.8mm at the frequency. f1 = 90kHz and.λ2|A0 = 18.8mm at the frequency 
. f2 = 130 kHz. Consequently, in the case of the fundamental symmetric mode of SH-
waves SH. 0 the extreme wavelengths take intermediate values equal to. λ1|SH0 = 34.1
mm at the frequency. f1 = 90 kHz and.λ2|SH0 = 23.6 mm at the frequency. f2 = 130
kHz. 

Since the depth of ALID must be defined using the knowledge about the longest 
wavelength in the frequency content of the excitation signal out of all modes available, 
it can be stated that in the current case this must be done based on the values related 
to the fundamental symmetric mode of Lamb waves S. 0. As before the depth of each 
damping layer is taken as a multiple of .λ1|S0 = 58.3 mm, so the assumed depth 
of ALID is .L = 4λ1 ≈ 234 mm, with .p = 3. For this reason the total length of
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Fig. 12.23 Dispersion 
curves for the wavelength for 
modes of Lamb waves and 
SH-waves of a 10 mm thick 
infinite aluminium flanged 
pipe section with a 
circumferential crack, 
according to the modified 
6-mode 3-D theory of shells 

the flanged pipe section under consideration must be increased by at least .2L from 
.L1 = 500 mm to.L2 = 968 mm, which value is additionally increased to. L2 = 1000
mm in order to simplify the discretisation process. 

It should be emphasised here that any changes in the excitation frequency. fc or the 
modulation frequency . fm must involve corresponding modifications to the depth of 
ALID in order to guarantee its optimal damping properties. Based on the established 
parameters of ALID and the requirements for shell discretisation a numerical model 
of the flanged pipe section under investigation with a circumferential crack can be 
finally built. For the purpose of the current analysis it is decided to use TD-SFEM 
and 36-node shell SFEs based on Lobatto nodes [ 1], as discussed in Sect. 8.3. 

The knowledge of the corresponding shortest wavelengths obtained from 
Fig. 12.23 allows one to state, in a similar manner as in both previous numerical 
cases, that the requirement of 4 nodal distances per wavelength is satisfied only for 
the lengths of SFEs equal to, or shorter than, the wavelength .λ2|A0 = 18.8 mm. 

Thus, it is decided to divide the strip into 3,960 shell SFEs, i.e. 60 SFEs along its 
length axis and 60 SFEs along its circumference, plus 360 SFEs used for modelling 
the flange, as presented in Fig. 12.24. As a result of the discretisation process the 
characteristic dimension of each SFE can be estimated as 16.6 mm, thus the number 
of nodal distances per wavelength secured by such a discretisation level can be 
estimated as approximately equal to 6 nodal distances per shortest wavelength. The 
resulting number of DOFs of the discrete numerical model is 595,854.
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Fig. 12.24 The mesh of 
shell SFEs, according to the 
modified 6-mode 3-D theory 
of shells, used for numerical 
computations, consisting of 
3,960 SFEs and 595,854 
DOFs 

12.3.4 Numerical Computations and Result Discussion 

For numerical computations carried out the explicit method of central differences, as 
discussed in Sect. 10.7, is employed exactly in the same manner as in the case of the 
infinite aluminium strip with a side cut-off. The use of the explicit method of central 
differences enables one to take advantage of the diagonal form of the resulting global 
inertia matrix. M. However, it should be strongly emphasised here that in the case of 
the flanged pipe section under investigation the geometrical couplings resulting from 
non-flat geometry lead to certain off-diagonal elements in the global inertia matrix 
. M. Their magnitudes, being inversely proportional to the local radius of curvature, 
remain very small in comparison with the diagonal elements of this matrix and for 
this reason all off-diagonal elements in the global inertial matrix .M are neglected. 

The spectrum of frequencies of free vibrations of the flanged pipe section is 
also not examined due to the 3-D nature of the section and resulting couplings of 
normal modes, which significantly complicate, or simply prevent, such an analysis in 
comparison with 1-D cases. For the very same reason also the performance of ALID 
is not tested. However, this performance can be estimated based on the methodology 
presented before and concerning the results obtained in the case of the 1-D infinite 
stepped aluminium bar. 

The knowledge of the established parameters of the discrete numerical model 
of the flanged pipe section under consideration allows one to compute its dynamic 
responses. They are presented in Figs. 12.25 and 12.26 as wave propagation patterns 
at selected moments in time for the amplitudes of the resulting acceleration compo-
nents .AMP2 = ü2x + ü2y + ü2z , for both types of excitation. It can be expected that 
the interaction of propagating waves with structural discontinuities in the form of
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Fig. 12.25 Wave propagation patterns for the amplitude of the resulting acceleration component 
AMP according to the modified 6-mode 3-D theory of shells, obtained for an aluminium flanged pipe 
section with a circumferential crack in the case of antisymmetric excitation. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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Fig. 12.26 Wave propagation patterns for the amplitude of the resulting acceleration component 
AMP according to the modified 6-mode 3-D theory of shells, obtained for an aluminium flanged pipe 
section with a circumferential crack in the case of the symmetric excitation. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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the crack and bolts should influence the observed patterns in such a way that their 
locations are revealed. However, from the results presented in Figs. 12.25 and 12.26 
this is not evident. 

The reason for such behaviour may seem to lie in too small sensitivity of the prop-
agating waves to structural damage/discontinuity. This sensitivity may be estimated 
as proportional to the shortest wavelength out of all wavelengths constituent in the 
propagating waves and resulting from the assumed form of the excitation signal, 
but it also depends on the type of excitation [ 1, 6, 7]. In the case of antisymmetric 
excitation the shortest wavelengths is .λ2|A0 = 18.8 mm, while in the case of sym-
metric excitation it is.λ2|S0 = 39.8 mm. Despite the fact of mode conversion between 
symmetric and antisymmetric modes at the flange position the response of the pipe 
section is dominated by the type of excitation. For this reason, at least in the case 
of the antisymmetric excitation, since the crack length of 31 mm is grater than the 
shortest wavelength, the location of the crack should be clearly revealed. However, 
this is not visible in either case of excitation except the early stage of development of 
wave propagation patterns, as seen in Fig. 12.25 at 200 . µs and Fig. 12.26 at 100 . µs. 
Alternatively, the problem may also be related to too complicated wave propagation 
patterns, which are very difficult to interpret due to multiple reflections and/or possi-
ble mode conversion. This problem is very well illustrated by Figs. 12.27 and 12.28, 
for both types of excitation, where the obtained dynamic responses are compared at 
points .P1 and.P2. As previously it should be pointed out that the dynamic responses 
obtained at point .P1 are initially dominated by the excitation. For this reason it is 
decided to exclude the time window corresponding to the time of excitation, which 
is equal to the modulation time .Tm of 100 . µs. 

Fig. 12.27 Dynamic responses for the transverse acceleration component .üx taken at: a point 
.P1, b point .P2, of an aluminium flanged pipe section with a circumferential crack in the case of 
the antisymmetric excitation, according to the modified 6-mode 3-D theory of shells. Results of 
numerical computations by TD-SFEM with NRBCs at infinity modelled by ALID
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Fig. 12.28 Dynamic responses for the transverse acceleration component.üx taken at: a point.P1, 
b point .P2, of an aluminium flanged pipe section with a circumferential crack in the case of the 
symmetric excitation, according to the modified 6-mode 3-D theory of shells. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID 

It can be seen from Figs. 12.27 and 12.28 that within the time signals correspond-
ing to points .P1 and .P2 there is no clear evidence of any reflections resulting from 
the presence of the crack, which on the other hand is the effect of signal reflec-
tions/conversion at the flange position. Despite the fact that the signals obtained for 
the cases when the crack is present or not must be different, it is impossible to directly 
extract from them any useful information about the location of the crack. 

This adverse situation is not significantly improved when differential signals are 
examined, as shown in Figs. 12.29 and 12.30, for the same two types of excitation. 
It is clear that the amplitudes of the differential signals corresponding to points . P1
and .P2 are smaller than those of the original signals, which may present a problem 
for small signal-to-noise ratios. For this reason the estimation of the times of flight 
(ToF), in the current case indicated as . t1 and . t2 in Figs. 12.29 and 12.30, based on 
which the location of the additional mass can be evaluated [ 1, 3], is difficult and/or 
not precise due to the inherent dispersion of propagating wave signals. Both ToFs 
are estimated assuming the same signal threshold equal to 2% of its maximum value. 
In the same manner as before the poor sensitivity may be improved either by an 
increase in the carrier frequency . fc or alternatively by the use of more specialised 
damage indicators. 

It can be checked that in the current case the distance . d can be easily calculated 
from the following simple relationships: 

.

⎧
⎪⎪⎨

⎪⎪⎩

2|P1P3| = cg| f2 t1

|P1P2| = cg| f2 t2

2d = 2|P1P3| − |P1P2|
→ d = cg| f2

(
t1 − t2

2

)

(12.2)
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Fig. 12.29 Differential signals for the transverse acceleration component .üx taken at: a point 
.P1, b point .P2, of an aluminium flanged pipe section with a circumferential crack in the case of 
the antisymmetric excitation, according to the modified 6-mode 3-D theory of shells. Results of 
numerical computations by TD-SFEM with NRBCs at infinity modelled by ALID 

Fig. 12.30 Differential signals for the transverse acceleration component .üx taken at: a point .P1, 
b point .P2, of an aluminium flanged pipe section with a circumferential crack in the case of the 
symmetric excitation, according to the modified 6-mode 3-D theory of shells. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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Fig. 12.31 WRMS (. n2) patterns for the amplitude of the resulting acceleration component AMP 
according to the modified 6-mode 3-D theory of shells, obtained for an aluminium flanged pipe 
section with a circumferential crack in the case of the antisymmetric excitation. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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Fig. 12.32 WRMS (. n2) patterns for the amplitude of the resulting acceleration component AMP 
according to the modified 6-mode 3-D theory of shells, obtained for an aluminium flanged pipe 
section with a circumferential crack in the case of the symmetric excitation. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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which lead to the result of 18.5 mm in the case of antisymmetric excitation and of 
16.0 mm in the case of symmetric excitation. The obtained results stay close to the 
assumed value of the distance . d equal to 17 mm with the relative error of 8.5% and 
.−5.5%, respectively. 

In the very same manner as before, in order to precisely pinpoint the location of 
the crack, the damage indicator in the form of WRMS.(n2) is employed as presented 
in Figs. 12.31 and 12.32. Thanks to this the location of the crack within the flanged 
pipe section under consideration with a circumferential crack becomes easily visible 
as soon as the excited waves reach point .P2, that is well before the initial 400. µs. At 
the same time the locations of the bolts are also revealed. 

It can be also noted that the interaction of propagating waves with the crack 
leads to more prominent patterns revealing the crack location in the case of the 
antisymmetric excitation than in the case of the symmetric excitation. The behaviour 
observed is explained based on the same analysis of the characteristic wavelengths 
associated with both types of excitations already given. Consequently, in the case of 
the symmetric excitation these wavelengths are much greater due to the greater values 
of the phase and group velocities associated with the fundamental symmetric mode 
of Lamb waves S. 0, as clearly seen from Fig. 12.23. Thus, the resulting sensitivity to 
damage is smaller than in the case of the antisymmetric excitation. 

As before, it can be observed that in consecutive moments in time the obtained 
RMS patterns only become sharpened and amplified, which allows one to shorten 
the time of numerical analysis significantly. In the current case, according to results 
presented in Figs. 12.31 and 12.32, with no loss of accuracy the total calculation time 
. T can be reduced by half from the initial 800 to 400 . µs and from 6,400 equal time 
steps to 3,200. 

It should be emphasised that for excitation signals broader in the frequency 
domain, which may lead to the propagation of other symmetric or antisymmetric 
modes of Lamb waves and SH-waves than the fundamental modes S. 0, A. 0 and SH. 0

mode other theories of shell behaviour should be used, preferably multi-mode or 
higher-order multi-mode 3-D theories. 
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3. W. Ostachowicz, M. Krawczuk, A. Żak, and P. Kudela. Damage detection strategies in ele-
ments of structures by the elastic wave propagation method. Computer Assisted Mechanics and 
Engineering Sciences, 13:109–204, 2006. 
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